. .
Ot

M '

.‘l. »

—
.
.
® _
e

i""“"";, - *’.@ /‘\"“5 T
“ DIGITAL HARDWARE ARCHITECTURES
FOR BEAM SYNCHRONOUS PROCESSING
AND RF SYNCHRONIZATION
OF PARTICLE ACCELERATORS

3 4

- Fco. Javier Galindo Guarch

DE CATALUNYA \
BARCELONATECH <7/

PhD in Electronic Engineering @ UNIVERSITAT POLITECNICA CE/RW

Barcelona, 2021

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

Departament d’Enginyeria Electronica

DIGITAL HARDWARE ARCHITECTURES FOR
BEAM SYNCHRONOUS PROCESSING
AND RF SYNCHRONIZATION OF
PARTICLE ACCELERATORS

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENT FOR THE PHD DEGREE ISSUED BY THE
UNIVERSITAT POLITECNICA DE CATALUNYA, IN ITS
ELECTRONIC ENGINEERING PROGRAM.

FRANCISCO JAVIER GALINDO GUARCH

DIRECTORS:
JUAN MANUEL MORENO AROSTEGUI, UPC
PHILIPPE BAUDRENGHIEN, CERN

Barcelona, Spain February, 2021

A mis Padres,

a mis Abuelos.

Agradecimientos

Tengo que agradecer, en primer lugar, a mis directores J. Manuel Moreno y Philippe Baudrenghien su
apoyo y orientacion durante los afios en los que este trabajo ha tenido lugar. Manuel, gracias por tu infinita
paciencia conmigo y tus acertados consejos a los que tendria que haber hecho mas caso. Et Philippe, ton

soutien, implication au-dela du devoir, exemple... merci!

Quiero a continuacion dedicar esta Tesis, que culmina muchos afios de trabajo y esfuerzo de mi
vida, a mis abuelos, Mercedes, Joaquina, Francisco y Francisco, y a mis padres, Paquita y Vicente, gracias
por estar siempre a mi lado, aun cuando a veces nos separen cientos de kilometros de distancia... también

a Diana y Maya, por vuestro inestimable apoyo, escucha y carifio durante estos afios.

Deseo expresar mi gratitud a todos aquellos que, de una manera u otra, han contribuido también a
que este trabajo haya alcanzado su fin, mis familiares, mis compafieros en Suiza, Holanda, Espaia... En el
CERN, en el grupo de RF... Jorge Sanchez, Juan Carlos Allica, Natalia Galindo, Silvia Aguilera, David
Cabrerizo, Jordi Ustrell, Endre Bjorsvik, Javier Llorente, Ricardo Hernandez, Carolina Belver, Rubén
Lorenzo, Miguel Ojeda, Diego Barrientos, Alejandro Diaz, Sergio Calvente, Jorge Flores, Rubén Garcia,
Enrique de Nicolas, Nuria Ayala, Alicia del Barrio, Ifiaki Ortega, Luis E. Fernandez, Alvaro Ferrero, Pablo
Prieto, Jesus Cortés, Lorena Vega, Juan Esteban, Gregoire Hagmann, Jose Noirjean, Predrag Kuzmanovic,
Tom Levens, Tomasz Wlostowski, Javier Serrano, Michael Jaussi, Robert Borner, Heiko Damerau, Vebjorn
Myklebust, Michal Husejko, Eleanor Davies, Fathia Saidi, Themis Mastoridis... Me gustaria expresar mi
gratitud a Wolfgang Hofle y Erk Jensen, por apoyar y albergar esta Tesis dentro del grupo de RF.

Seria imperdonable no demostrar mi agradecimiento a todos mis amigos dispersos por el mundo,
entre ellos a Pablo T. Chinea, Jaime Crespo, Jorge Solana, Oriol Lluch, Idoia Palicio, Manuel Blanco... a
los del pueblo, La Fresneda, y a los de Zaragoza, Santi, Alberto, Alberto, Alex, David, Javi, Kiko, J.
Miguel... y especialmente a Ismael Bel quien tanto me ha escuchado. Por supuesto también a Andrea,

Fernando, Yolanda y Fernando.

Mi agradecimiento para Herbert Shea, Arturo Mediano, Alfonso Mufioz y Antonio Agudo por
descubrirme que es la Investigacion y el rigor académico. Antes de terminar, no quiero olvidar a mis
compaiieros de la universidad donde todo empez6 mucho tiempo atras, J. Ignacio Gimeno, Jesus Gonzalvo,
Andrés Grande, Antonio Oteo, Diego Pérez, Sergio Sanz y Jesus Velazquez.

iA todos, Gracias!

Acknowledgements

I would like to express my gratitude in in first place to my Thesis directors, J. Manuel Moreno and Philippe
Baudrenghien for their support and guidance during these years. Thankyou Manuel for your endless
patience and wise advice that I should follow more often. Et Philippe, ton soutien, implication au-dela du

devoir, exemple... merci!

I would like to dedicate this Thesis, that is the result of many years of devoted work in my life, to
my grandparents, Mercedes, Joaquina, Francisco and Francisco, and to my parents, Paquita and Vicente,
thank you for being always available and close to me, even when sometimes we are separated by a long
distance... and to Diana and Maya, for your invaluable support, for listening to me, and your affection

during these years.

I would like to seize this opportunity to thank all of you that, in one way or another, have contributed
to the fruitful end of this work, my family, my colleagues in Switzerland, Holland, Spain... at CERN, the
RF group... Jorge Sanchez, Juan Carlos Allica, Natalia Galindo, Silvia Aguilera, David Cabrerizo, Jordi
Ustrell, Endre Bjorsvik, Javier Llorente, Ricardo Hernandez, Carolina Belver, Rubén Lorenzo, Miguel
Ojeda, Diego Barrientos, Alejandro Diaz, Sergio Calvente, Jorge Flores, Rubén Garcia, Enrique de Nicolas,
Nuria Ayala, Alicia del Barrio, Ifiaki Ortega, Luis E. Fernandez, Alvaro Ferrero, Pablo Pricto, Jestis Cortés,
Lorena Vega, Juan Esteban, Gregoire Hagmann, Jose Noirjean, Predrag Kuzmanovic, Tom Levens, Tomasz
Wlostowski, Javier Serrano, Michael Jaussi, Robert Borner, Heiko Damerau, Vebjorn Myklebust, Michal
Husejko, Eleanor Davies, Fathia Saidi, Themis Mastoridis... I would like also to thank Wolfgang Hofle
and Erk Jensen, for supporting this work within the RF group.

To all my friends spread around the world, among them Pablo T. Chinea, Jaime Crespo, Jorge
Solana, Oriol Lluch, Idoia Palicio, Manuel Blanco... to the ones in La Fresneda, and the ones in Zaragoza,
Santi, Alberto, Alberto, Alex, David, Javi, Kiko, J. Miguel ... especially to Ismael Bel, who has always had

a minute for me. And of course, to Andrea, Fernando, Yolanda and Fernando.

Special thanks also to Herbert Shea, Arturo Mediano, Alfonso Muifioz and Antonio Agudo for
discovering me what Research is and the academic rigor. I do not want to forget my folks in the university
where all this started year ago, J. Ignacio Gimeno, Jesus Gonzalvo, Andrés Grande, Antonio Oteo, Diego
Pérez, Sergio Sanz and Jesus Velazquez.

Thanks to each one of you!

il

Resumen

En un Acelerador de Particulas, el Low Level RF (LLRF) es el sistema encargado del control de la Radio
Frecuencia, e implicitamente, de la transferencia de energia y aceleracion de las particulas, objetivo tltimo
de la maquina. EI LLRF implementa algoritmos que sincronizan la transferencia de energia de la RF hacia
el haz, asi como también la configuracion de sus parametros longitudinales. Para ello, usa sefales derivadas
del haz, cuyo contenido espectral se ve modificado con la aceleracion. El incremento en energia implica un
incremento en la velocidad del haz que, en el caso de aceleradores circulares (Sincrotrones) se traduce en
un decremento del periodo de revolucion. Esto es especialmente relevante para los aceleradores de
Hadrones, para los cuales la energia de inyeccion es baja, lo que resulta en grandes incrementos en su
velocidad antes de alcanzar niveles relativistas. EI LLRF necesita por tanto sintonizar continuamente el

procesado y el haz; hemos llamado a esta técnica Beam Synchronous Processing.

Una importante mision del LLRF es la compensacion de la tension inducida por el haz en las
cavidades de aceleracion (Beam Loading). En el sincrotrén SPS del CERN, la regulacion tiene especificado
un ancho de banda de 5 MHz a cada lado de la RF (200 MHz). Dado que el periodo de revolucion es de
aproximadamente 23 us, mas de cien harmoénicos de la frecuencia de revolucion estan presentes en cada
una de las bandas alrededor de la RF. La variacion en velocidad del haz altera la posicion y el espaciado de
estos harmonicos en el espectro. Su gran niimero y posicion cambiante hace de la reconfiguracion de los
algoritmos de control una opcion poco deseable. Dicha problematica ha sido abordada clasicamente en el
mundo de los aceleradores mediante un reloj de sistema derivado de la RF, y por tanto variable, que liga
por disefo los procesos de muestreo y procesado al haz. Esta solucion histdrica, todavia en uso en varias

maquinas, es ahora un factor limitante para el uso de nuevas y modernas tecnologias.

Esta Tesis presenta una nueva Arquitectura para procesado sincrono de sefiales derivadas del haz,
mediante un reloj de sistema con frecuencia fija, que hace posible el tratamiento de sefiales periodicas en
las que el harmoénico fundamental tiene una frecuencia variable y conocida. La Arquitectura es una
alternativa valida al complejo problema de reconfiguracion de algoritmos de procesado; esta sintoniza el
espectro al procesado mediante el re-muestreo de los datos. Dos Re-muestreadores (Resampler en inglés)
son combinados originando el denominada sdandwich de re-muestreo. El algoritmo de aplicacion, el cual

requiere sincronismo con la sefial de entrada, se sitiia en medio de este sandwich.

El elemento clave que hace esto posible es un novedoso Resampler completamente digital y basado
en una arquitectura Farrow, que acepta ademds relaciones de re-muestreo arbitrarias siendo estas

modificables en tiempo real. El hardware usa un reloj de sistema tnico de frecuencia fija, lo cual facilita su

implementacion en FPGAs, ASICs y sistemas de ultima generacion, como los nuevos controladores uTCA
que se estan implantando en los sistemas LLRF del SPS. Los puertos de entrada y salida del Resampler, y
en general el data-path en toda la Arquitectura propuesta, son sincronos a este reloj, y ademas aceptan una

frecuencia de muestreo variable y modificable en tiempo real.

La Arquitectura ha sido implementada y puesta en marcha en uno de estos controladores uTCA
para LLRF, albergando el algoritmo One Turn FeedBack para control de una cavidad del SPS en el CERN.
El algoritmo compensa el Beam Loading. La Arquitectura ha demostrado ser viable operando sintonizada
en todo momento a una rampa de aceleracion de energia del haz, con una RF variable que sigue un patron
en diente de sierra con una tasa de cambio de la frecuencia lineal de 2.4 MHz por segundo. La
implementacion de la Arquitectura en el controlador uTCA ha pasado toda la validacion funcional y los

test cualitativos.

La Arquitectura se adapta de manera sin igual a los dos cambios de paradigma tecnologico
adoptados por el SPS para sus nuevos sistemas LLRF; primero, la distribucion del valor instantaneo de la
frecuencia de la RF es ahora hecho mediante una palabra digital (usada para el calculo de la relacion de re-
muestreo), empleando una red determinista, en este caso White Rabbit. Y segundo, la sefal de referencia
es ahora un reloj con frecuencia fija extraido de esta red determinista. La adopcion de ambos paradigmas
se ve beneficiada por el uso de la Arquitectura Beam Synchronous Processing y del nuevo Resampler
compleménteme digital, que satisfacen los requerimientos técnicos y tecnoldgicos para la implementacion

de nuevos algoritmos y soluciones en el campo del LLRF.

Palabras clave; Arquitectura Hardware, FPGA, RF de Baja Serial, Conversion de Tasa de
Muestreo, Procesado Digital de Senial, Procesado Adaptivo de Serial, Acelerador de Particulas, Sincrotron,

Beam Loading, One Turn Delay Feedback.

vi

Abstract

In Particle Accelerators, the Low-Level RF (LLRF) is the control system of the RF, and in the end, of the
purpose of the machine, that is the energy transfer and acceleration of particles. It implements algorithms
synchronizing the RF conveying the energy to the beam and tailoring its longitudinal parameters. For this,
the LLRF uses beam-related signals whose spectral content changes during the acceleration. The increase
in energy results in an increase of the beam velocity, and for circular accelerators (Synchrotrons) a decrease
in revolution period. This is especially relevant for Hadron machines whose injection energy is low
resulting in a significant increase of their velocity before reaching relativistic speeds. Hence, the LLRF

needs to continuously tune its processing to the beam; we call this technique Beam Synchronous Processing.

One important task of the LLRF is the compensation of the beam-induced voltage in the
accelerating cavities (Beam Loading). In the CERN SPS the regulation bandwidth must cover 5 MHz on
each side of the 200 MHz RF. With a beam revolution period around 23 us more than a hundred revolution
frequency harmonics, present in the beam signal, fall in the RF sidebands. The variation in beam velocity
changes the position and spacing of the harmonics in the spectrum. The large number of harmonics and
their varying positions make the algorithm reconfiguration an undesirable option. To cope with this, the
early digital implementations used a system clock derived from the sweeping RF. This locks the sampling
and the processing to the beam, by design. This historical solution, that is still in use in several machines,

is now a limiting factor for the use of modern technologies.

The Thesis presents a novel Beam Synchronous Processing Architecture, using a fixed frequency
clocking, and capable of treating periodic signals with known and varying fundamental frequency. The
Architecture is an alternative to the burden of reconfiguration in processing algorithms; it tunes the
spectrum to the processing by resampling the input data. Two Resamplers are combined in the so-called
resampling sandwich. The application algorithm requiring synchronism with the input signal is placed in

the middle.

The key element is a novel All-Digital Farrow-based Resampler, that accepts arbitrary resampling
ratios that can be modified in real-time. The hardware uses a single fixed frequency system clock, making
its implementation feasible in State-Of-the-Art FPGAs, ASICs and systems such as the new uTCA platform
currently being deployed in the CERN SPS LLRF system. The input and output ports of the Resampler,
and all the processing within the Architecture, are synchronous to this fixed frequency clock and accept

data streams whose sampling rate can be variable and modified in real time.

vil

The Architecture has been commissioned in a LLRF uTCA crate hosting the One Turn FeedBack
algorithm to control a real SPS cavity. The algorithm compensates the Beam Loading. The Architecture
has demonstrated its capability to track in real-time an energy ramp with an RF frequency following a linear
sawtooth pattern ramped at 2.4 MHz per second. The complete uTCA implementation has successfully

passed all the functional validation and qualitative tests.

The Architecture suits seamless the two technological paradigm changes adopted for the new
CERN SPS LLRF system; first, the instantaneous value of the RF frequency is transmitted as a numerical
word (used to set the resampling ratio), via a deterministic network, the White Rabbit. And second, the
reference signal is now the fixed frequency clock recovered from this network. Both paradigms benefit
from the all-digital Resampler and the Beam Synchronous Architecture that fulfil the techniques and

technological needs for its implementation enabling novel LLRF algorithms and solutions.

Keywords; Hardware Architecture, FPGA, Low Level RF, Sampling Rate Conversion, Digital
Signal Processing, Adaptive Signal Processing, Particle Accelerator, Synchrotron, Beam Loading, One

Turn Delay Feedback.

viii

Résume

Dans le monde des Accélérateurs de Particules, le Low-Level RF (LLRF) est le systéme de controle de la
RF et, in-fine, du transfert d'énergie et de 'accélération des particules. Il met en ceuvre des algorithmes
synchronisant la RF transférant 1'énergie au faisceau et adaptant ses paramétres longitudinaux. Pour cela,
le LLRF utilise des signaux liés au faisceau dont le contenu spectral est modifi¢ par l'accélération.
L'augmentation d'énergie se traduit par une augmentation de la vitesse du faisceau, et pour les accélérateurs
circulaires (Synchrotrons), une diminution de la période de révolution. Cela est particuliérement pertinent
pour les machines a Hadrons dont 1’énergie d’injection est faible, avec la conséquence d’une augmentation
significative de leur vitesse durant I’accélération. Le LLRF doit donc ajuster en permanence son traitement

au faisceau ; nous appelons cette exigence Beam Synchronous Processing.

Une tache importante du LLRF est la compensation de la tension induite par le faisceau (Beam
Loading). Dans le SPS au CERN, la régulation couvre 5 MHz de chaque co6té de la RF (200 MHz). Avec
une période de révolution autour de 23 us, plus d'une centaine d’harmoniques de fréquence de révolution,
présentes dans le spectre du faisceau, tombent dans la bande +- 5 MHz. La variation de vitesse du faisceau
modifie la position et 1'espacement des harmoniques dans le spectre. Le grand nombre de raies spectrales
et leur position variable font de la reconfiguration de l'algorithme une option indésirable. Les solutions
digitales existantes ont donc préféré changer I’horloge d’échantillonnage : Celle-ci est verrouillée sur la
RF, ce qui synchronise par conception 1'échantillonnage et le traitement du faisceau. Cette solution
historique, toujours en usage dans plusieurs machines, est aujourdhui un facteur limitant pour les

technologies modernes.

La Thése présente une nouvelle Architecture de traitement synchrone de faisceau, utilisant une
horloge fixe, et capable de traiter des signaux périodiques de fréquence fondamentale connue et
possiblement variable. L'Architecture apporte une alternative au fardeau de la reconfiguration dans les
algorithmes ; il ajuste le spectre au traitement en rééchantillonnant les données d'entrée. Deux Ré-
échantillonneurs ont été combinés dans le sandwich de rééchantillonnage. L'algorithme d'application

nécessitant un synchronisme avec le signal d'entrée est placé au milieu.

L'élément clé est un nouveau Ré-échantillonneur entiérement numérique bas¢ sur une architecture
Farrow, qui accepte des taux de rééchantillonnage arbitraires pouvant également étre modifiés en temps
réel. L’implémentation utilise une seule horloge systéme a fréquence fixe, ce qui rend sa mise en ceuvre
possible dans les FPGA, ASIC et systémes de pointe comme la nouvelle plate-forme uTCA actuellement

déployée dans le SPS du CERN. L’entrée et la sortic du Ré-échantillonneur, et tout le traitement dans

X

I'Architecture, sont synchrones avec cette horloge et acceptent un taux d’échantillonnage variable que peut

étre modifiée en temps réel.

L'Architecture a été déployée dans un chassis uTCA hébergeant 1'algorithme One Turn FeedBack
pour contrdler une véritable cavité SPS. L'algorithme compense le Beam Loading. L'Architecture a
démontré sa capacité a suivre en temps réel une rampe d'énergie avec une fréquence RF suivant une
modulation en dent de scie, a 2.4 MHz par seconde. L’ implémentation compléte sur uTCA a passé€ avec

succes les tests de validation fonctionnelle et qualitative.

L'Architecture convient parfaitement aux deux paradigmes technologiques adoptés pour le nouveau
systéme LLRF du SPS ; premiérement, la valeur instantanée de la fréquence RF est transmise sous forme
de mot numérique (qui donnera le taux de rééchantillonnage), via un réseau déterministe, le White Rabbit.
Et deuxiémement, le signal de référence est maintenant 1'horloge a fréquence fixe récupérée de ce réseau.
La solution présentée respecte ces deux paradigmes grace au Ré-échantillonneur entiérement numérique et

a l'horloge fixe.

Mots-clés ; Architecture Hardware, FPGA, RF a Faible Signal, Conversion de Taux de
Echantillonnage, Traitement Numérique du Signal, Traitement Adaptatif du Signal, Accélérateur de

Particules, Synchrotron, Beam Loading, One Turn Delay Feedback.

Resum

En un Accelerador de Particules, el Low Level RF (LLRF) és el sistema encarregat de controlar la
Radiofreqiiéncia, i implicitament, de la transferéncia d’energia i acceleracio de les particules, 1’objectiu
final de la maquina. El LLRF implementa algoritmes que sincronitzen la transferéncia d’energia RF al feix,
aixi com la configuraci6 dels seus parametres longitudinals. Per a aixo, utilitza senyals derivats del feix, el
contingut espectral del qual es modifica amb acceleracio. L’augment de ’energia implica un augment de
la velocitat del feix que, en el cas dels acceleradors circulars (Sincrotrd) es tradueix en una disminucio del
periode de revolucio. Aixo és especialment rellevant per als acceleradors d’Hadrons, per als quals 1’energia
d’injecci6 és baixa resultant en grans augments de velocitat abans d’arribar a nivells relativistes. Per tant,
el LLRF necessita sintonitzar continuament el processament amb 1’espectre del feix; hem anomenat aquesta

tecnica Beam Synchronous Processing.

Una missio important del LLRF és la compensacié de la tensio induida pel feix a les cavitats
d’acceleracio (Beam Loading). En el sincrotré SPS del CERN, la regulaci6 té un ample de banda de 5 MHz
especificat a cada costat de la RF (200 MHz). Atés que el periode de revolucio és d’aproximadament 23
us, més d’un centenar d’harmonics de la freqiiéncia de revolucio estan presents en cadascuna de les bandes
al voltant de la RF. La variacio en la velocitat del feix canvia la posicio i I’espaiat d’aquests harmonics en
I’espectre. El seu gran nombre i posicio canviant fa que la reconfiguracié dels algoritmes de control sigui
una opcio indesitjable. Aquest problema ha estat abordat historicament amb un rellotge de sistema derivat
del RF i, per tant, variable, que lliga per disseny els processos de mostreig i processament al feix. Aquesta
solucio historica, encara en Us en diverses maquines, €s ara un factor limitant per a I’s de les noves i

modernes tecnologies.

Aquesta Tesi presenta una nova Arquitectura per al tractament sincron dels senyals derivats del
feix, utilitzant un rellotge de sistema amb freqiiéncia fixa, el que fa possible el tractament de senyals
periodics en qué els quals I’harmonic fonamental té€ una freqiiéncia variable i coneguda. L’ Arquitectura és
una alternativa valida al complex problema de reconfiguracid d’algoritmes de processament; sintonitza
I’espectre al processament mitjangant el re-mostreig de les dades. Dos re-mostrajadors (Resampler en
anglés) es combinen originant I’anomenat sandvitx de re-mostreig. L’algoritme d’aplicacid, que requereix

sincronitzacié amb el senyal d’entrada, es troba al mig d’aquest sandvitx.

L’element clau que ho fa possible és un nou Resampler totalment digital basat en una arquitectura
Farrow, que també accepta relacions arbitraries de re-mostreig que sén modificables en temps real. El

hardware utilitza un Gnic rellotge de sistema de freqliéncia fixa, que fa possible la implementacié en FPGAs

X1

d’ultima generacio, ASICs i sistemes tals que els nous controladors uTCA que s’estan desplegant en els
sistemes LLRF del SPS. Tan els ports d’entrada i sortida del Resampler, com tot el processat dins aquesta
Arquitectura son sincrons amb aquest rellotge de sistema de freqliéncia fixa 1 accepten senyals amb

freqiiéncia de mostreig que pot ser variable i es pot modificar en temps real.

L’ Arquitectura s’ha implementat en un controlador uTCA per LLRF, el qual conté 1’algoritme One
Turn FeedBack per controlar una cavitat SPS del CERN. L’algoritme compensa el Beam Loading.
L’Arquitectura ha demostrat ser viable operant sintonitzada en tot moment a una rampa d’acceleracio
d’energia de feix, amb una RF variable seguint un patré de serra amb una velocitat de canvi de freqiiéncia
de 2,4 MHz per segon. La implementacié de I’ Arquitectura en el controlador uTCA ha superat totes les

proves de validaci6 funcional i qualitativa.

L’Arquitectura s’adapta d’una manera com cap altra als dos canvis de paradigma tecnologic
adoptats pel SPS per als seus nous sistemes LLRF; en primer lloc, la distribucié del valor instantani de la
freqliéncia RF es realitza ara mitjan¢ant una paraula digital (utilitzada per al calcul de la relacio de re-
mostreig), utilitzant una xarxa determinista, en aquest cas White Rabbit. I en segon lloc, el senyal de
referéncia és ara un rellotge de freqiiéncia fixa extret d’aquesta xarxa determinista. L’adopcié d’ambdds
paradigmes es beneficia de I'is de I’ Arquitectura Beam Synchronous Processing i del nou Resampler
digital, que compleixen els requisits técnics i tecnologics per a la implementacié de nous algoritmes i

solucions en I’ambit de la LLF.

Paraules clau; Arquitectura Hardware, FPGA, RF de Senyal Feble, Conversio de Taxa de
Mostreig, Processat Digital de Senyal, Processat Adaptatiu de Senyal, Accelerador de Particules,
Sincrotro, Beam Loading, One Turn Delay Feedback.

Xii

List of Figures

Fig. 1.1. Schematic representation of the LLRF network architecture in a synchrotron that uses White
Rabbit for synchronization and recovers the hardware clock from the data stream. Further details are
PreseNted N CRAPLET 6.eccuiiiiiiiieiieieereesteete et eteete et et e seeeesseesseesseessaessaesssessseasseesseesseesssesssesssennseenses 4
Fig. 2.1. The simplified spectrum of a beam signal acquired with a pick-up; the position and the spacing
of the harmonics change during acceleration ramp proportionally to the revolution frequency increase

[00700011 1T TR USSP 12
Fig. 2.2. Signals at the input and output ports of a MERCEDES Decouple interface. The input port
interfaces a coupled data-path with sampling and processing clocks operating at the same frequency. The
output port interfaces a decoupled data-path with a processing clock operating at a frequency double with
respect to the SAmMPlNG CLOCK, M = 2. ...ccuiiiiiiiiiieiecee ettt r et te e etaeeaveeabeebe e aseens 13
Fig. 2.3. Schematic representation of the fabrics and clocking architecture; sampling f; and processing f;
clocks for the hardware fabric (white fabric with blue clocks), and the FRANCISCO adaptation fabric
(grey fabric with yellow clocks). In the figure, 4 is an arbitrary value, and M is the relation between

processing clocks in the MERCEDES INtEITACES.........cceeeiieeuierieriierieiiesieeieesieesieesieeseessvesnsesnseesseesseennns 14
Fig. 2.4. (a) ASIC style asynchronous arbitrary ratio resampler. (b) FPGA synchronous arbitrary ratio
TESAIMPLET. ..vieiiieiieiieiteeeteeette et e eteete e teeetaestteesseesbeesseestsestseesseesseesseasssenssessseesseesseesseeseessseesseesseenseenseesssenens 15
Fig. 2.5. Resampler architecture based on a Farrow Variable Fractional Delay Filter, VFD, and the
DIANA QlOTIERIMNLeoviiiiiiieciiecieet ettt ere et e ete e te e taeeasestbeeebeesbeesseesteesseessseesseesseesseenssasssasssensns 16
Fig. 2.6. Signals at the input (left) and output (right) port of a resampler configured with an up-sampling
ratio R =4 /3 and implemented in the FRANCISCO adaptation fabric.cccceverveneninienenieneneeene 16
Fig. 2.7. New One Turn FeedBack architecture based on the FRANCISCO fabric for the BSP filter..... 17
Fig. 2.8. The response of a Comb filter with 12 resonances in the first Nyquist zone...........cccccceeuenee. 18
Fig. 3.1. Functional sketch of the Architecture. The BSP unit is surrounded by resamplers performing
SAMPLING TALE AAAPTALION.vviiiieiieitieitieeieeteete et eeteesteesteeeteeetbeebeebeesseestaeseseessessseesseesseesssesssesssessseeseens 22

Fig. 3.2. High-level representation of the sampling process. On the left, the real signal x(7) to be acquired
by an ADC. In the middle the ADC interfacing the real signal and the discrete representation x[#]. On the

right, the sequence of discrete samples, spaced by the sampling period Ts.......c.ccocvevverieriieecieenieeneeieene 25
Fig. 3.3. High-level representation of the resampling process. On the left, the input sequence x[#]
sampled at a rate f;. On the right the resulting sequence y[m] after resampling to a rate f7s.......c.cccceeruenee. 25
Fig. 3.4. Frequency-domain representation of the sampling process; mapping of Fy to wo in the discrete
NOIMAIIZEA SPECIIUINL. ...cuviiiiiiiiiieii ettt ettt e eteeeteestaestbeesbeesveesbeestsesssessseesseesseesseestseesseesseesseenseesssenens 26
Fig. 3.5. Frequency-domain representation of the resampling process; the discrete normalized spectrum
of Fiy 1S 1€-MAapPPEd fTOM 00 (0 0. «vveerrrieiiieeiiiieiie ettt ettt et ee e e e e s teeestbe e beeestbeessbeeessaeessaessseeennses 26

Fig. 3.6. Representation of the resampling process as element to tune the discrete representation of the
signal woto a predefined fixed processing wproc. The fixed processing wproc (red band-pass filter) remains
constant defined at @proc = 277 0.26 1adian/Sample.cccevevieeiieciierieriene e 27
Fig. 3.7. Representation of the beam signal in the acceleration process of the example in section 3.2.2.4:
(a) depicts the spectrum at the beginning of the ramp, (b) at the end of the ramp when the sampling clock
is a fixed frequency one, and (¢) at the end of the ramp with a swept clock (or resampling). 28
Fig. 3.8. High-level representation of the different zones performing processing at different intermediate
frequencies (IFs). In the figure, the RF green zone is the region where the RF is at its nominal value. The

xiii

IF1, IF2 and IF3 depict different regions in which the RF is down-converted to other intermediate
TTEQUETICIES. .uveeuvieiieiieieeete et et et et e st e st e stbesabeesbeesseesstesssessseasseenseessaessaessseasseasseasseassaesssesssesnsennsennseenses 30
Fig. 3.9. High-level sketch with the implementation of the proposed Architecture in an FPGA............. 32
Fig. 3.10. Representation of the interleaving process of three channels. The resulting data-path operates
at a clock three times faster than the sampling clock. The samples of the different channels are interleaved
WIthIn the data-Path.ccooiiiiiiiie ettt v e v e et e et e e s be e s tbeeabeeabeebeebeesesenens 35
Fig. 3.11. Representation of the distribution of processing slots, the processing clock and samples in the
data-path for different sampling rates. The activation rate ar dictates the number of occupied processing
slots for a given period of time t. In (a) the activation rate is ar = 8/16, in (b) the activation rate is ar =

10/16, and in (c) the activation 1ate iS @r = 16/16.ccceeeiieeiieiieiierie e ste e seeseeeees 36
Fig. 3.12. Representation of a coupled data-path with a cloud of logic encapsulated within two pipeline
TEEISTOTS. 11euvrerureiereeteesteesseesteesseaseasseesseesseessseasseasseesseessaessaessseasseasseasseesseenssesssesssesssesssesssessssessseansennsennseenses 37
Fig. 3.13. Representation of the relation between the processing clock, the sampling clock, processing
slots and data samples in a coupled data-path.cccoeviiiiiiiiiiiice e e 37
Fig. 3.14. Representation of a decoupled data-path with a cloud of logic encapsulated within two
PIPElINE ENADIEA TEGISTEIS. ...viiuviiiiiiiiitieiiecie ettt ettt e st e st e eaeeveebe e be e tbestbeeebeesbeesseesteestseesseesseesseenseesssenens 38
Fig. 3.15. Representation of the relation between the processing clock, the average sampling clock,
processing slots, the data samples and the valid signal in a decoupled data-path.ccccecceviriinininen. 38
Fig. 3.16. Simulation depicting the truncation error for the up-sampling (left) and down-sampling (right)
18 Lo IS P 021 USRS 40
Fig. 3.17. Simulation depicting the truncation and inversion errors; the ratio product results in a value
QIFFETENE fTOM 1. ..ottt et et et e et e en e e b e sseentebeeseensesseenneseeneennas 41
Fig. 3.18. Functional representation of the MERCEDES Decouple interface. The input port interfaces a
coupled data-path. The output port interfaces the decoupled data-path.c..ccceeevvevievienieniecieereenen. 42

Fig. 3.19. Schematic representation of a possible MERCEDES Decouple interface implementation. 43
Fig. 3.20. Chronogram with the signals at the input and output ports of the MERCEDES Decouple

TIEETTACE. ...ttt ettt h ettt e a e e bt e bt et e bt e st et e sb e et e et e ea e e bt bt e st e bt ent et e bt entan 43
Fig. 3.21. Functional representation of the MERCEDES Couple interface. The input port interfaces a
decoupled data-path. The output port interfaces the coupled data-path.cccccceeevveviienieniencienienieenen, 44
Fig. 3.22. Schematic representation of a possible MERCEDES Couple interface implementation. 44
Fig. 3.23. Chronogram with the signals at the input and output ports of the MERCEDES Couple
IIEETTACE. 1.ttt ettt et ettt e bt e b e s bt e eh et eateeate et e e e bt e eheesabeeabeenbe e bt e bt e nbteeaeeeateentean 45

Fig. 3.24. Schematic representation of a possible MERCEDES Couple interface implementation with the
correction signal corr R used to create the JOAQUINA Frequency-Locked Loop to cope with the

truncation error in the OUtPUL TESAMPIET TALIO.eeriierieerieiieeieeieeieeree e see et ereesteesteessaessreenseesseenseenens 47
Fig. 3.25. Schematic representation of the developed resampling architecture with decoupled data-path
(CRAPLET 4.ttt ettt ettt et e st eetbeeabeebe e be e beesssessbeesseesseesteasaessseesseesbeenbeessaessassseseneesseenseenses 48

Fig. 3.26. Schematic representation of a processing segment in a decoupled data-path between two
resamplers. The ratio signal fed to the output resampler r out s mimics the latency through the

PTOCESSINIEZ. ...eeeveeeieeuieeteeteesttesetesteesseesseesseesseesssessseasseasseasseesseesssesssessseanseanseensaesseesssessseasseessesseenseenseenssennes 50
Fig. 3.27. Schematic representation of the relations between sampling frequencies, Nyquist frequencies
and resampler bandwidths in the BSP ATChiteCtUre.cccuvviieiieiiieiierieciece e 51

Fig. 3.28. Derivation of the bandwidth limit for the input resampled signal for a single resampler........ 51
Fig. 3.29. Derivation of the bandwidth limit for the input signal of the output resampler in a sandwich

CONTIZUIALION. ...iiueviiiiiieitiieetieeeieeetee ettt e sbee e tteesabeeestaeessseeessaeessseeassaeessseesssaeasssaaassaeensseessseeassseenssesansseensses 52
Fig. 3.30. Derivation of the bandwidth limit for the input signal of the sandwich based on the input and
OULPUL TESAMPLET LIMIES. ..oevvviieiiiiiieiieitieceecteete et et e st e st e st e esbeeabeeteestaeetseesseesbeesbeessaesssesssesssessseesseeses 53
Fig. 4.1. Proposed synchronous sampling rate conversion architecture, the resampler.cc.cccceue... 56
Fig. 4.2. (a) Sampling rate conversion for R < 1. (b) Sampling rate conversion for R > 1. 57
Fig. 4.3. Interpolation between available samples regardless of the resampling ratio R...........ccccecueneee. 57
Fig. 4.4. (a) Absolute time position for input sample x[3], and output samples y[3] and y[4]. (b) Delay
computation for output y[3]. (¢) Delay computation for output p[4]......ccceevverieeiieeiiieiieiieceecee e 60

Xiv

Fig. 4.5. DistAnce iN time AIGOFIthin (DIANA)........cccceevueecueeiieeiieeiesteste sttt eieesteestaessnessesnsesssaesseeees 62
Fig. 4.6. (a) Frequency response Hip(Q) of Eq.(4.12). (b) Impulse response (1 / Q) - hip(f) of Eq.(4.13
)ttt ettt h et h b bkt h bRt h e h Rt h Rt b et bt h et ekt b b a bbb st b et bbbt be et 65
Fig. 4.7. Ideal impulse responses; (a) prototype filter, (b) shifted ideal response and sampled coefficients
when the delay D = 7 sample, and (c) shifted ideal response and sampled coefficients when the delay d =

L Y 1 11 o [T SRRSO 68
Fig. 4.8. Schematic representation of sampling rate conversion with analog reconstruction................... 69
Fig. 4.9. Schematic representation of sampling rate conversion with analog reconstruction merging the
EWO ANALOE TIILETS. ...viiviiiiieitieciie ettt et e et e et e e te e e tbeetbeeaveeabeesbeetsestseesbeesseesbeestsesssesssessseenseesseenses 70
Fig. 4.10. Filtering architecture with the filter coefficients stored in a table accessed based on the delay

A 221 LSOO OO T OSSPSR S PRSP 71
Fig. 4.11. Prototype impulse response divided in B SEZMENLS.cc.eevverrirciieriierieeriieneesieereereeseeseeenns 71
Fig. 4.12. Filtering architecture with the filter coefficients approximated by piecewise polynomial...... 72
Fig. 4.13. VFD architecture based on the Farrow architecture and the Horner rule.c..covvevvennenee. 74
Fig. 4.14. High-level architecture of the implementation of the resampler...........ccccevvveeiieiiiecieenieennnenne. 75
Fig. 4.15. Arbitrary ratio SRC architecture based on a Farrow VFD with different input and output clock
QOMAINS. ...ttt sttt ettt e et e e te e st e te st e eae e teeseenseeseeseenseeseenseeseensenseseeensaseentenseeneensenseensansas 75
Fig. 4.16. Architectural view of the VFD filter. In blue, the FIR bank of filters and the Horner
architecture. In green, the synchronization memories, not part of the entity.c.ccecevenerveninencnennen. 77
Fig. 4.17. Decrease in the number of populated slots in the data-path in the case of down-sampling..... 78
Fig. 4.18. Increase in the number of populated slots in the data-path in the case of up-sampling. 79
Fig. 4.19. Data-path overflow and accumulator underflow; the distribution of populated slots is altered
ANA CONMLAINS DUISES. ...veeuieiiieieieitieiete ettt ettt et et e et et e e bt et e beestesseeseeneesseentensesseensenseeseensesneensenseeneansas 80
Fig. 4.20. Data-path architecture with multiple reSamplers.cccovveviiiiiieiienieneesee e e 81
Fig. 4.21. Implementation of the DIANA ENZINE.......c..covveivieiiierieriecieecee e ere et e steesereereeeveebeesaeees 83
Fig. 4.22. Synchronization interfaces of the resampler (vertical lines), and signal paths (horizontal
AITOWS). veevveeueerureenseanseenseesseesseessseasseasseesseesseesssesssessseassessseesseesssesssssssesssesssesssessssessseasseenseenseessessssesssennsennsens 84
Fig. 4.23. Hardware and signal propagation arriving to the Filter Bank Interface..........c..cccccocenveninncnne 85
Fig. 4.24. Hardware and signal propagation arriving to the Horner Interface.............ccoceeceniniencnennene. 86
Fig. 4.25. Propagation through the tapped delay line of a filter with (a) a non-decoupled and (b) a
decoupled data-Path..........ccoooiiiiiiiice ettt e ettt e eabe e be e te e taesraeeraeeareenres 88
Fig. 4.26. Hardware and signal propagation arriving to the Output interface............ccccevvverveecrrecreeneenne. 90
Fig. 5.1. Functional verification of the sweeping dynamic resampling ratio. (a) Reference signal. (b)
Resampled signal. (¢) ReSAMPIING TALI0.eeviieiiiriierieerie ettt ettt sreete e estaesteeseaesseesnseenseenseennns 95
Fig. 5.2. Magnitude of the frequency response of the periodic notch filter normalized to the BSP
SAMPIING TTEGUEIICY 75 vvervrereieiiieiitesieesteste st eteereeseesseesseesseessseesseessaesseesseesssesssessseasseesseesseessessssenssensseens 97
Fig. 5.3. Spectrograms at the input (a) and output (b) of the BSP Architecture...........cccceceverienenennene. 98
Fig. 5.4. JOAQUINA inspired feedback loop around the resampling ratio for a single resampler. 102
Fig. 5.5. Model of the VFD in the StUAY.ccveooiiiiiiiiiiiieeiie ettt ve et steesvaeeveeaveens 103
Fig. 5.6. Error function and group delay error function for the computed filter with = 0.6. Zoom in the
pass-band region. (a) Magnitude of the error function. (b) Fractional group delay error.ccc.c........ 105
Fig. 5.7. SNR at the output of the computed filter when excited with a 1 Ve tone with & = 0.6. (a) First
Nyquist zone. (b) Zoom in the pass-band re€ZION.cccvviieeiiiiiiiiiiie e 106
Fig. 5.8. Error function for the implemented filter with &= 0.6 and sixteen-bit data-path. (a) Magnitude
of the error function. (b) Zoom in the pass-band rEZION.c.cccuerirrciierierierieree e 107
Fig. 5.9. SNR at the output of the implemented filter with &= 0.6 and sixteen-bit data-path when excited
with a 1 Ve tone with = 0.6. (a) First Nyquist zone. (b) Zoom in the pass-band region.................... 108
Fig. 5.10. Detailed model of the resampler in the StudY.........cccecveveiieriieiierieiece e 109
Fig. 5.11. Simplified model of the resampler in the StUAY.ccceoeevieriieniiieiieeee e 110
Fig. 5.12. Error function for the computed resampler, down-sampling ratios. (a) Magnitude of the error
function. (b) Zoom in the pass-band IEION.cccecviirieiieiiicie ettt et veesre e baeseeeeare e 111

XV

Fig. 5.13. Magnitude of the square error function for the computed resampler in down-sampling
configuration. Zoom in the pass-band region. (a) Slices along the ratio axis. (b) Slices along the frequency
AXES. +eutteuterteentet e et et h e a e et e e b et eh e ea e e bt e bt e s et bt ea s ekt eh e et e eh e e st e bt e bt en e e bt e et e bt eh e et e ehe e et e bt ehtenteebeea b e bt ent e tenaeenten 112
Fig. 5.14. Error function for the computed resampler, up-sampling ratios. (a) Magnitude of the error
function. (b) Zoom in the pass-band rEZION.cceevveriieriierierieeie ettt ree e sresreereesreesseesseessneenns 113
Fig. 5.15. SNR at the output of the computed resampler, both down-sampling and up-sampling ratios,
when excited with a 1 Ve tone. (a) First Nyquist zone. (b) Zoom in the pass-band region. 113
Fig. 5.16. Magnitude of the square error function for the implemented resampler in down-sampling
configuration. Zoom in the pass-band region. (a) Slices along the ratio axis. (b) Slices along the frequency
AXES. +eutteutenteeutet e et e et e bt e a e et e e bt et bt ea e e bt e bt e a et bt e et et e eh e et e eh e e st e bt e bt en e e bt e a b et e eh e et e eheea e e bt ehtenteeheea b e bt entetenheeneen 114
Fig. 5.17. Magnitude of the square error function for the implemented resampler in up-sampling
configuration. Zoom in the pass-band region. (a) Slices along the ratio axis. (b) Slices along the frequency

AXES. +eutteuterteeutent e et et e e bt e st e te e bt et bt ea e e bt e bt ea et bt e et ekt eh e et e ekt e et e bt eh e en e e bt ea b e bt eh e et e eheen e e bt ehtenteebeea s e beentetesheennen 114
Fig. 5.18. SNR at the output of the implemented resampler, both down-sampling and up-sampling ratios,
when excited with a 1 Ve tone. (a) First Nyquist zone. (b) Zoom in the pass-band region. 115
Fig. 5.19. Detailed model of the BSP sandwich Architecture in the study.c.cccveevvieviieniienienieenens 116
Fig. 5.20. Simplified model of the BSP sandwich Architecture in the study..........cccccceevievieniieiieenenns 118
Fig. 5.21. Error function for the computed sandwich, down-sampling ratios in the input resampler. (a)
Magnitude of the error function. (b) Zoom in the pass-band region.cccceeceerverciieriereereeree e 119
Fig. 5.22. Error function for the computed sandwich, up-sampling ratios in the input resampler. (a)
Magnitude of the error function. (b) Zoom in the pass-band re€gion.cccceeveevirrciierieriereesee e 119

Fig. 5.23. SNR at the output of the computed sandwich, both down-sampling and up-sampling ratios in
the input resampler, when excited with a 1 Vpeax tone. (a) First Nyquist zone. (b) Zoom in the pass-band
(<4 (o) 4 DU TSRS SRI 120
Fig. 5.24. Magnitude of the square error function for the implemented sandwich with down-sampling
ratios in the input resampler. Zoom in the pass-band region. (a) Slices along the ratio axis. (b) Slices
AlONG the fIEQUENICY XIS, ...uieiuiiiiiiiieiieieeieereesteete et et eteesteesstesstessseesseesseesseessaesseesssesssessseenseenseenseennes 121
Fig. 5.25. Magnitude of the square error function for the implemented sandwich with up-sampling ratios
in the input resampler. Zoom in the pass-band region. (a) Slices along the ratio axis. (b) Slices along the
TTEQUEIICY @XIS. 1eevvieiiiieiiiieiiieesteeetee ettt esbeeeteeestbeeesseeeeseesssaeessseeassaeesssaessseesssssensseeassseessseesnseeensseessseennes 121
Fig. 5.26. SNR at the output of the implemented sandwich, for both down-sampling and up-sampling
ratios in the input resampler, when excited with a 1 Ve tone. (a) First Nyquist zone. (b) Zoom in the
PASS-DANA TEEIOMN.ecuviiiieitieitiectiecie ettt e st e st eetteetbeesbeesteesteestsestbeesseesbeesseesssesssessseesseesseesseessaesssessseans 122
Fig. 5.27. 2D colour coded plot of the SNR surface at the output of the implemented sandwich, for both
down-sampling and up-sampling ratios in the input resampler, when excited with a 1 Ve tone. (a) First

Nyquist zone. (b) Zoom in the pass-band TEZION.c.ecceereerirriieriieeieereereesre e e ereesseesseesnessseessens 122
Fig. 5.28. SNR at the output of the BSP sandwich Architecture for & = 0.6 with resampling ratio Ri, =
1.4. SNR vs filter bank architecture and data-path without quantization €ITor.cceevveevieeneerreeenenns 123
Fig. 5.29. SNR at the output of the BSP sandwich Architecture for &= 0.6 with resampling ratio Ri, =
1.4. SNR vs Data-path width and reference architecture, six filters with fifteen taps each. 124
Fig. 5.30. Spectrum of the LLRF drive. BSP and synthesizer tuned to 200.2 MHz. Span of (a) 2 MHz
ANA (D) 100 KHZ. ..ottt sttt e sttt ettt et et e e st et e sseesteseeseensesseenseseeneensesseennans 128
Fig. 5.31. Phase noise measurement. BSP tuned to 200.2 MHz, bandwidth of 1 MHz. 128
Fig. 6.1. Aerial view of the CERN SPS layout (left), and BA3 location detail in the tunnel hosting the
SPS RF CaVILIES (TIZNL). ..veeiuiiieiiieeiie ettt ettt e et e et e et e e s sbeeestaeessseeessaeessseesnsaeesssesnnses 134
Fig. 6.2. Schematic representation of the SPS RF System; (a) prior to LIU SPS upgrade, (b) after the
LIU SPS upgrade. Reproduced from [18].cccuiieiiriiieiiierienieiiesie et eieesieeseesreseeeeseeseessaesseessnesnnenns 135
Fig. 6.3. Image of the SPS 200 MHz LLRF system in the Faraday cage: the pre-LIU SPS upgrade
configuration (2018) (left), and the new configuration after the LIU SPS upgrade (right)..........c.cc.c...... 136
Fig. 6.4. CERN SPS travelling wave cavity in BAF3 test-stand during the Long Shutdown 2, before
INSTAllAtION T TUNNEL.iiiiiieie ettt et et et e et e st ebeese e e e sseene e seeneensesseennans 137

xvi

Fig. 6.5. (a) Impedance Z, (real part in blue and imaginary part in red) after compensation of the 7/2
delay, around the central frequency of the cavity. (b) Impedance Z, (real part in blue and imaginary part

N T€d). FOUT-SECHION CAVILY. .vvivvviieiiiiieiieieesieestesteeteeteeteesteesseesseessseesseesseesseessaesseesssessseasseenseesseenseenses 137
Fig. 6.6. Schematic representation of the network architecture in a synchrotron that uses White Rabbit
for synchronization. The nodes use local free running oscillators for the clocking of the hardware. 138
Fig. 6.7. Schematic representation of a signal synthesizer based on Direct Digital Synthesis............... 139
Fig. 6.8. Schematic representation of @ UTCA Station..........ceeevviereiieiiiieiiee e eciee e eree e 141
Fig. 6.9. SPS Low Level RF schematic architecture. Reproduced from [18].........c.ccvevvieiieniieiieenenn, 142
Fig. 6.10. Schematic representation of the One Turn FeedBack algorithm.c.ccccoevvvevivenieniennnnn, 143
Fig. 6.11. Partitioning of the OTFB units between the BSP and BAP regions of the processing device.
.. 144
Fig. 6.12. Simplified representation of the OTFB implementation, and the clocking architecture in the
PTOCESSINE AEVICE. .uvieuvieuiieiieriieiiieieesteesteesteesteasseasseesseesseesssesssessseasseessassseesssessseassessseenseesssesssesssessesnsens 145
Fig. 6.13. TIR COMD fIIOI....ccuiiiiiiiiiciiciiceececee ettt et et et e e te e te e sabeeabeeabeebeestaestseesnaens 147
Fig. 6.14. Test DENCh arChit@CTUIE.ecciiiuiieiieiicieetiecte ettt eete e te e st e st eeebeeebeeteesteestseeraeesbeenveens 150
Fig. 6.15. (a) Open-loop transfer function of the feedback system, RF at base-band. (b) Zoom of the first
Lo0 IMIHZ. ..ttt ettt et e et e st e bt e st et e en e et e st en e et e eReente bt eatente st entenseenteteeaeenten 153
Fig. 6.16. Nyquist plot of the open-loop transfer function of the simulation.cccecevererienennnnnne. 154
Fig. 6.17. Cavity voltage during the simulated ramp, zoom around simulation time 64 ms. (a) RF
instantaneous frequency, (b) Cartesian I component and (c) Cartesian Q component................ceeuvene.. 154

Fig. 6.18. Cavity voltage for the first 1.1 ms of the simulation in Cartesian I (left) and Q (right)
components: (a) Beam-induced voltage, (b) Generator-induced voltage, (¢) Total cavity voltage. RF in the
beginning at 200.242 IMHZ.c.ooooiiiiiieeiee ettt e et e e sve e e bee e aeesreeesbeessbeeesseessseeesssaesnreeas 155
Fig. 6.19. Cavity voltage for the last 0.25 ms of the simulation in Cartesian I (left) and Q (right)
components: (a) Beam-induced voltage, (b) Generator-induced voltage, (¢) Total cavity voltage. RF in the

end at 200.342 MHZ.c.ooiiiiiiiiiiiieee ettt 156
Fig. 6.20. Transfer function of the OTFB processing chain. The BSP, analyser and measurement are
tuned to 200.2 MHZ With 2 MHZ SPAIN.cc.eoiiiiiiiiiiiicie ettt ettt seaesebessseesaessaessaessnenns 157

Fig. 6.21. Enlargements of the OTFB magnitude transfer function: (a) RF frequency at 200.2 MHz and
span covering the first harmonics. (b) Bandwidth modified with ¢ = 7 / 8. (¢) Gain modified to G = 1.5.

(d) RF frequency of 200.2 MHz and zoom around harmonic higo.c.ceevvevvvevienienieiieenieccieesiecieeeeneens 158
Fig. 6.22. Measured open-loop response, NYQuiSt PLOt.cccueeecviieiiieiciiieiiieciie e 159
Fig. 6.23. Spectrum of the RF signal at the output of the OTFB, RF at 200.2 MHz. Span of (a) 2 MHz

N a1 I (o) 0[O 4 = /2SR 159
Fig. 6.24. Phase noise measurement. BSP tuned to 200.2 MHz, bandwidth of 1 MHz. 159
Fig. 6.25. Spectrum of the measured cavity field, RF frequency at 200.347 MHz. Span of (a) 2 MHz and
() 100 KHZ. ...ttt sttt ettt b et e s bt e st et e sb e et e bt eb e et e eb e et e st e ent e tesaeennens 160
Fig. 6.26. Spectrogram of the measured cavity field; the RF is swept following a linear sawtooth pattern
(600 KHZ PAK-PEAK). ...c.viitieiiiitiiciieeieete ettt ettt eteeteeteete e te e taestveetbeesbeesbessteestsestsesaseesseenteesseenseenens 160
Fig. 6.27. Measured RF field in the cavity. (a) Beam-induced voltage, (b) total cavity voltage in open-
loop, (c) total cavity voltage in CloSEd-100P.ccucevuiiiiiriieiieiieciecte ettt et eve e v e ve e te e ene e 161
Fig. 6.28. Cavity voltage measured during 65 ps in Cartesian I (left) and Q (right) components: (a)
Open-loop measurement, (b) closed-loop measurement. RF at 199.89 MHz.ccccceevveciveciienieennnne, 162

Fig. 6.29. Performance of the beam loading compensation: Spectrum of the cavity voltage with OTFB
OFF (red trace) and OTFB ON (blue trace). The RF frequency is at 199.898 MHz so that the revolution
harmonics induced by the beam are spaced by 43.3 KHZ........ccoovviiiiiiiiiiiiciiceceeeeeeece e 162

Xvii

List of Tables

Table. 4.1 Modes of operation for the SSRC architeCture.............cceevvieviinieiieciecie e 82
Table. 4.2 Scenarios, control signals and actions to be done within the synchronization logic................ 87
Table. 5.1 FPGA resource utilization after PAR for a single resampler...........ccccoeevvevereeneenieneennene, 126
Table. 5.2 FPGA resource utilization after PAR for the BSP Architectureccoeevvevieevieeneeniennenne, 126

X1X

List of Equations

EQu(L1 Yoo seee e e eeee e s e s e e seeee e ees e e e s e e e e s e e s e e e s e e s s esreens 6
EQu(2.1 Yveoeeeeeeeeeeeeeeeeeeeeeeeeeseee e eeee e eese e e e e st e e e e s 12
B0 2.2)veoeeeeeeeeeeeeeeeeeeeeeeeeeeeseee e eeee e e e et s ettt e e e e e e 16
EQ(3.1 Yoo e et s et e e e e oo 25
Q3.2 Yoo e e et e e e e ee e 35
Qe 3.3 Yoo e ettt e e e e e 35
Q0 34 Yoo e oo e ettt s e e 49
B 3.5)veoeeeeeeeeeeeeeeeeeeeeeeeeeeseee e eeee e e e et s ettt e e s e 49
B 3.6)veooeeeeeeeeeeeeeeeeeeeeeeeeeeseee e eeee e e ese e e e e e st e ettt e e s e 49
B 3.7 Yeveoeeeeeeeeeeeeeeeeeseeeeeeeeseee e e e e et s ettt s e e e en e 49
B 3.8)overreeeeeeeeeeeeeeeeeeeeseeeeeseee e e e e et e et s et e e ee e 49
Q0 3.9 Yoo e e et e e e ee e 51
Q0 310)t s e e ee e 53
EQu(311) et e et e e e e 53
EQu(A1 Yoot e et e e e e 59
EQu(4.2 Yoo e eee e e s e e e e s et s et e e e e 59
B0 4.3 Yoo e eeeee e seee e e e e e st s et s e s s 59
EQu(44 Yoo e oo e eee e et e ettt e e es e 60
B0 4.5) eveoeeeeeeeeeeeee e eee e e e e et s et s et e e s e 60
EQu(46) e ee e e et e oo e e e ee e 61
EQu(4.7 Yoo et e e e ee e 61
EQu(48 Yoo e e e ettt e e e 61
EQu(49 Yoo e et e e e e 64
EQu(410) eeeee e eee e e e e e et e e e et s e e e ee e 64
EQu(411) eee e eeee e eeee e e e e s et e et e e e e ee e 64
EQu(412) oo eee e e e e e ettt e e e e s 64
B0 413) eee e e e e e st s et e e e e s 64
EQu(414) oo e e et e e e e e 64
EQu(415) e e ettt e e e 65
EQu(416) e e e e ettt e e e 65
EQu(417) ettt e e e e e 65
EQu(418)oeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeee e e e ese e e e sttt e e s es e 65
EQu(419) eee e eeee e e e e sttt e e s e es e 66
EQu(420) eeeeeeeeeee e eeee e e e e e e e e et e ettt e e e e es e 66
EQuC 421) eee e eeee e e e et s et s e e es e 67
EQu(422) e ettt e e e ee e 67
EQu(423) e e ettt e e e e e 67
EQu(424) oottt e e e ee e 67
EQ(425) oo ettt e e e e 70
EQu(426) oo eee e eeee e e e s ettt e e es e e 72
EQu(427) e eee e e e e sttt s e e e s e e 73

XX1

B0 429) eee e e e e e e et s et s e s e en e 73
EQu(430) eee e eeeee e eeee e e e et e ettt s e e e ee e 73
EQu(431) eee e eeeee e eeee e e e et sttt e e e e s 73
B0 432) oo eee e s e et e et s et e e e e s 73
E Q0 433) e e et e e e ee e 73
EQu(434) oottt e e e e ee e 77
EQu(5.1 Yoo e e et e e e e e e ee e 97
Q5.2 Yoo e e e et e e e e e 97
B 5.3)veroeeeeeeeeeeeeeeeeeseeseeeeeseee e eeee e e e et e e st s et e e es e 97
B 5.4 Yoo eeeeeeeeeeeeeeesee e eee e et s ettt e e es e 97
B 5.5)verreeeeeeeeeeeeeoeeeseeeeeeeeeeeseeeee s e s ettt e et e et e e s 100
B 5.6)veereeeeeeeeeeeeeeeeseeeeeeeseeeeeeee s s sttt e ettt e e et ee e s 100
EQu(5.7 Yoo e eee e e st s e s 100
Q5.8)vere oo e e oo e e s ettt r e s e 103
EQu(5.9 Yoo e st e et s e ee e 104
EQu(510) s e e st s e e 104
BQu(511)t eeeeeee oo eeee e e e s e et s et e et e et e s e e et e e s 105
B0 512)t eeeeeeeeeeeeeees e e st e et e et s e s 106
EQu(6.1 Yoo eeeeeeeeeeeeeeeeeseeeee e s e s e e s ettt e et e et e s et e e s 136
EQu(6.2)veeeeeeeeeeeeeeeeeeeseeeeeeeeseeeee e s e s et e et et e et e e e s e e s e 137
EQu(6.3 Yoo st e e et s e s 137
EQu(6.4 Yoo et s et r e e 146
Q6.5) e e oo e s et s e s e s 147
EQu(6.6)verreeeeeee oo eeee e e st e et s s 148
EQu(6.7 Yveereeeeeeeeeeeeeeeeseeeeeeeeeeeeeee e s e see e e s et e et e e s e s 148
EQu(6.8)overoeeeeeeeeeeeeeeeeseeeeeeeeseeeee e s s s e s et e et e e et e et s e s 148
Bl 6.9 Yoo eeeeeeeseeeeeeeeeeeee e s e s ettt e et e et e et ee e s 148
EQu(610) eeeeeeeeeeeee e e e e s et e e e et e e s e s e e s 148
EQuC 611)t s e e st s e e 152
EQu(612) s e st r e s 152
EQu(613) s e st s e e 152
EQu(614) s st r e s 152
B 615) eeeee e oo eeeeeeeeee e s ettt e et e e s 152
EQu(616) ereeeeeeeeeeeeeeeeeeeeeeeeeeeeee s ses e s e ettt e s e s e s e 152
EQu(617) ereeeeeeeeeeeeeeeeeeeeeees e e e e s e e e et e et ee e s 152

xxii

List of Abbreviations

ADC Analog to Digital Converter

AMC Advanced Mezzanine Card

ANC Adaptive Noise Cancelling

ASIC Application Specific Integrated Circuit
ASRC Asynchronous Sampling Rate Conversion
BAP Beam Asynchronous Processing

BNL Brookhaven National Laboratory

BSP Beam Synchronous Processing

BW BandWidth

CERN Conseil Européen pour la Recherche Nucléaire
COTS Commercial-Off-The-Shelf

DAC Digital to Analog Converter

dB DeciBel

DC Direct Current

DDS Direct Digital Synthesis

DIANA DIstAnce iN time Algorithm

DSP Digital (or Discrete) Signal Processing (or Processor)
EM Electro-Magnetic

FCC Future Circular Collider

FD Fractional Delay

FFA Fixed Frequency Acceleration

FFT Fast Fourier Transform

FIFO First-In-First-Out

FIR Finite Impulse Response

FNAL Fermi National Accelerator Laboratory
FPGA Field Programmable Gate Array

FRANCISCO FabRic with Adaptive aNd deCoupled clockIng for SynChronous prOcessing
FT Fourier Transform

FTW Frequency Tunning Word

GSI Helmbholtzzentrum fiir Schwerionenforschung
HL-LHC High Luminosity LHC

1/Q In-phase and in-Quadrature

IF Intermediate Frequency

IR Infinite Impulse Response

10T Inductive Output Tube

JOAQUINA JOintly Averaged and QUaNtized rAtio
JPARC Japan Proton Accelerator Research Complex
LHC Large Hadron Collider

XX1il

LINAC LINear ACcelerator

LIU LHC Injectors Upgrade

LLRF Low Level Radio Frequency

LMS Least-Mean-Square

LO Local Oscillator

LS2 Long Shutdown 2

LSB Least Significative Bit

MERCEDES MultiplE Rate and Clocking interfacE for Data procEssing and Sampling
NCO Numerically Controlled Oscillator

NIM Nuclear Instrumentation Module

OTFB One Turn FeedBack

PAR Place And Route

PLL Phase-Locked Loop

PS Proton Synchrotron

PSB Proton Synchrotron Booster

RF Radio Frequency

RML Recursive Maximum Likelihood

RPE Recursive Prediction Error

RS register ~ Reset Set register

RTM Rear Transition Module

SA Spectrum Analyzer

SNR Signal to Noise Ratio

SOA State-Of-the-Art

SPS Super Proton Synchrotron

SQNR Signal to Quantization Noise Ratio

SRC Sampling Rate Conversion

SSPA Solid-State Power Amplifiers

SSRC Synchronous Sampling Rate Conversion
TBLC Transient Beam Loading Compensation
TRL Technology Readiness Level

TWC Travelling Wave Cavity

uTCA Micro Telecommunications Computing Architecture
VFD Variable Fractional Delay

VHDL Very high-speed integrated circuit Hardware Description Language
VME Versa Module Eurocard

VNA Vector Network Analyzer

WLS Weighted Least Squares

WR White Rabbit

XX1v

Contents

A GTAQCCIMICIILOS.veevvieurietiectieetteeteeteeteesteesteesteeetseesbeesseesbeesseestsessseseseesseesseasssassessseesseesseessaesaesssesssesssesnns i
ACKNOWICAZGEIMENLSeeuvieiieeiieeiieteeeete sttt e et eete et e steeseaeseseseseesseesseesseessseasseassaessaesseesssesnseanseenseensesnsees iii
RESUMETI ...ttt st sttt e b e bt e s bt e sat e st e it et e e bt e sbeesaeesanesaneens v
ADSETACT ...ttt ettt e b e bttt ettt e bt e bt e e a et e at e e a bt e bt e bt e nb e e eht e eate e bt e bt e bt e eaeeeaee vii
RESUME ...ttt ettt sttt et ettt sae e st e bt et e sbeesbeesatesabe e bt enbeennees 1X
RESUIML. .ttt et ettt e b e st s ettt et e bt e s beesatesateeabe e bt esbeesaeesaees X1
LASE OF FIZUIES ..veiiviiiiiieeiie ettt ettt e et e et e e esbeeestbeessseeessbeesssaeessseesssaaassseeasseeansseenssaesnsseesssennns xiil
ST OF TADIES. ..ttt ettt et h e s bttt ettt e bt e bt e e bt e sat e eab e et e e beesheesaeesaeeeaee Xix
LSt Of EQUALIONSveiuvieiieiiesiieeie e ete ettt st e st est e et e e taesteessaessseasseesseesseessaesssessseasseenseessessssesssesssennns XX1
LSt Of ADDIEVIALIONS ... eeuieitiitieieite ettt ettt b et e st st e e st e e st et e sbe et esbesstenae bt eneenees Xxiii
L0703111S) 1L OO OO TSRO U PR SRR XXV
Chapter 1 Motivation and INtrodUCHION...........cverieriiriieiieeeiee ettt ettt re e seesseeseeesraesnseens 1
Lol MIOTIVALIOML c.enteeieteeeteie ettt ettt ettt e b ettt e st et e s bt e st e bt eat et e e beenbenbeemeebesaeeneens 1
1.2. The CERN accelerator COMPIEX.......cccvuiirrieeiieeiiieeitieesireesteeeseteesveeeseeessseeessseessseesssesesssessseennes 3
1.3, Beam-Cavity INTETACHION.eeeetiieireeeiieeeteeeiteeesteeeeteeestteesreeestseessseeesseeesssesessseessseessseeesssesssseennes 5
1.4. State-Of-the-Art in BSP algOorithimsccccveiiiiiiiiiiiiieriecie et se e esene e 6
1.5, DOCUMENE OFZANIZALION ...eeeuvrieeeiieerieerrieeiteeesteeateeestreesseeesseessseesssseessssesssesessseesssesssssessssssssssennns 8
Chapter 2 Contributions 0f the TRESIScccviiiiiiiiiiiiiiiieie ettt ettt a e s ve v e ebeesteesreesrseesveens 9
2,10 TITOAUCTION ..ttt sttt b e et e e bt et e st e e st et e sbe et e bt esteneesbeenees 9
2.2. Tangible improvements with the new ArchiteCturececcveviercieriiieniereerie e 10
2.3. Contributions to the State-Of-the-ATt........ccciiiiiiieeeee e 11
2.3.1. Signal/Beam Synchronous ProCesSINgcc.civveiiiiiieiiieiiieiieeeecireere et sree e 11
2.3.2. Resampling architecture with arbitrary and real-time variable ratio..........ccccoceeverencennene 15
2.3.3. New Transient Beam Loading Compensation SChema...........c.cceeeevveerieencieenieescvee e 17

2.4, CONCIUSIONS ...ttt ettt ettt ettt e bt e s bt e saeeeabe e bt ebe e bt e sbeesateenteenteeneean 19
Chapter 3 Beam Synchronous Processing ATChiteCture...........c.vecvverierieiienieeieesieeseesee e 21
T8 R 5115 (oo 1L To1 5 T) o WO OO OO OSSP U PSR 21
3.2, Proposed processing ATCHILECTUIEcccviieiieeiiieeiieeriteeeteeeieeeeteeeteeeereeebeeessaeesareeensseessseeas 21
3.2.1. High-level functional SKEtCh..........ccccoviiiiiiiiiiiiiececeeee e 22
3.2.2. SAMPIING TALE VATIALION.eerveeiieiieieesieerteestesteeteesteesteesteesssessseenseesseessaesseessaesssenssesssenns 23

XXV

3.2.3. Resampling SandwWiCh..........ccocviiiiiiierieiieeieeiceeeceee et 29

324, Modulation archit@CtUTE.........ceoueruiruieiiriieteieecee ettt 30
3.3. Implementation of the Processing ArChiteCtureoccvveevieeriieeiiieecie et eee e 31
3.3.1. COMVENTIONS 1.ttt ettt et et eit e et e bt e bt e s bt e e u e e eateeab e e bt e bt e sbeesaeeeabeeabe e bt e bt enneesmeeeneeenseanbean 31
3.3.2. High-level implementation SKEtCh............ccceeriiriiriiiiiiiieeecee e 31
3.3.3. Conceptual decoupled data-path............ccceevieviiniiiiiiieeeeee e 33
3.3.4. Beam Asynchronous Processing fabric.........cccccociiviiiviiinieniiiiie e 36
3.3.5. Beam Synchronous Processing FRANCISCO fabriC.........ccccceveverviveciieseenierieeieeieeieeeenn 37
3.3.6. The ratio truncation and IMVETSION.ceeeriririererieriere ettt 38
3377, MERCEDES INTEITACES. ...ceuiiitiiiiiiie ettt ettt ettt ettt st s 41
3.3.8. Real-time variable ratio resampler with decoupled data-path.............ccccevvevveniiniieieannn. 48
3.3.9. Resampling ratio and BSP processing relation..........c.ccevvveveervencieeiieeneesieneeseesveeveeneens 49
3.3.10. Input signal bandwidth lMit...........cccecveeiieriirierierie et seaeseseeneees 50
34, CONCIUSIONS ...ttt ettt ettt ettt e s bt e shte s abe e bt e bt e bt e sbeesateemeeenteeneean 53
Chapter 4 Arbitrary and Real-Time Variable Ratio Resampling Architecture.............coccevenirienennennee. 55
410 TIITOAUCTION ...ttt h et b e s bt et b et e bt e bt et e ste e st e besbeeneenbeeneenee 55
4.2. Proposed Synchronous Sampling Rate Conversion architecture...........c.ccevveercreeenieencveeeceneennnn. 55
4.2.1. Interpolation between available SAMPIES........ccveevvieviiiiieiieeie et 56
4.2.2. Timing reference and synchroniZationccecvevieerierieniieniee et 58
4.2.3. Proposed interpolator and timMing UNItS...........cceevveevieeriesieesiesreeireeereeereesreesseesenessneeveesves 58
4.3. Application of the architecture to arbitrary SRC..........c.cooveiiiiiiiiiiiiecceee e 59
4.3.1. The DIANA @NZINEeoveeieiiiieeiieieeeteesteste st e ete et e e e steestaesssesssessseesseesseesssesnsessseesseensees 59
432, The VED fIET . .coouiiiiiiieiieeee ettt sttt sttt ettt 63
4.4. Implementation of the SRC architeCturec.covviiviiirieiiecie et 74
4.4.1. Decoupled data-path SSRC architecture with arbitrary variable ratioc.ccoeevveveennen. 75
442, VFD iMPlementation..........ccceccverierierierierieeieeieesieesseesseessressesseesseessessssesssesssesssesssesssens 76
4.4.3. DIANA algOTithmiC ENZINEccvviivreiereeereerierieereeeteeseesteeeaeereeveesteesteestseseseesseesseesesssessses 77
4.4.4. SYNCRIONIZALION......ccuviiviiiieiiieitiectee et eteeste e s e e et e eaeebeeebeesbeesaesssessseesseesseesessseesseesssanes 84
4.5, COMNCIUSIONS ...ttt sttt s h et b e s bt et e e bt et e bt e st et e sbe e st ebesbeeneenbesaeenee 90
Chapter 5 Verification and Validation of the Resampler and the BSP Architecturecccccccevueeneeee. 91
S R 6115 (o ¢ LT o) USSR 91
520 VETITICALION. ..ottt ettt b e h e et e et e bt e bt e bt e s bt e sheesateenteeteenbeesbeesateean 92
5.2.1. Entities and resampler VErifiCationc.evvvereieeciieriieriiesie e e eieeteesieeseesresnreeseesseeeees 92
5.2.2. BSP Architecture VerifiCation.........ccceeierieriieieriesiieiesie ettt ee st ee s 95
G TR V1§ U 1 o) s WO S 98
5.3.1. Entities and resampler validationcccecverieriiiiiieiieeneeree st 98
5.3.2. BSP Architecture validationccoeiieiieriiieninieeeee e 115
54, Implementation TESUILSccciiiiiiiiiiie ettt ettt e st eetr e e sebeeetaeesebeesssaeessbeesaseeas 124

XXV

5.5, HATAWATE tESES .oeeiiiiiieeeieeeee ettt e e e e e e et e e e e e e et eeeeeeeesae e aaaeeeeeeeesanraaeeeeeeeaaas 127

5.5.1. TRE CTALE ...ttt ettt ettt b ettt et e e b et e bt et eteebeenees 127
5.5.2. THE PIOCESSINIE. .. vecvviieiieiieiiieitieetteette et ettt eete e teestaesebeeebeesbeesbeesseesasestseesbeesbeesseesbeessenssenens 127
5.5.3. Performance tESTSccueeiuiiriieitieiie ettt ettt ettt s 128
5.6, CONCIUSIONS ...eutitieuieiieitete ettt ettt ettt et e e s h et e bt e et et e e bt et e sbeestenbesaeenteabeeatenteemeentesbeeneens 129
Chapter 6 Beam Synchronous Processing Architecture for Transient Beam Loading Compensation in
the CERIN SPS ACCEIETALOTcotiiiiieie ettt ettt et sb e st st e te e be e beesbeesaeeens 133
LT R 0315 (o To L 1o o o TSRS 133
0.2, THE SP S ettt bt et h e ettt h et s b ettt s h et he et ettt nees 134
6.2.1. The RF and LLRF SYSIEMIS......ccccviiiiiiiieiieiieriiesie sttt et eeeseeeseeeseeesnressseessaesseeseessnennns 134
6.2.2. The SPS 200 MHZ TWC CAVILY .veeuteiiieieieeiieiieeieeieeteste et et etesteeete et eneeseeeneesesneeneas 136
6.3. Synchronization and fixed-frequency ClOCKScccovcviriirciieriieieiee e 138
6.3.1. The synchronization, and the distribution of clocks and datacccceeevveeieeciienieennnne. 138
6.3.2. Node and station hardware architeCtureccoeeveruieiererieiee e 140
6.4. The BSP Architecture implementing the OTFBccccoviiiiiiiiiiieicecece e 141
6.4.1. The SPS 200 MHz LLRF System, Beam and Cavity Controllers............ccceccvervrerrrennnnee. 141
6.4.2. The OTFB alOTIthimcccuviiiiiiiiie ettt e be e eees 142
6.4.3. Partitioning of the OTFB between BSP and BAPc.coooviiiiiicciiieete e, 143
6.4.4. The clocking architecture in the BAP and BSP..........cccoooiviiiiiiniiiieeeeee 144
6.4.5. The 1T Delay in the BAPccoooiiiieee ettt 146
6.4.6. The comb filter in the BSP and the regulationc.ccvevieiieniiiie et 146
6.5. Functional validationcocieiiiiieieieeieee ettt ettt 148
6.5.1. The test bench MOdel..........oouiiiiiiiiii e 149
6.5.2. The SIMUIALIONSeeueeiieiieie ettt ettt ettt et te et e e e eneeneesseeneeneas 153
0.5.3. HAIAWATE tSLS ...etieuieiieeieieeiieieste ettt ettt et e e te et estesseeneesseestenseeseensenseeneensenseeneas 157
6.6, COMNCIUSION. ..c..iiiiiiiiieie ettt b ettt s a et bt et e sbesateeesaeenees 163
Chapter 7 Conclusions and FUtUre WOrkK..........ccccvevuieriienienienierieeeeeeeesiee e e 165
Tl CONCIUSIONS ...ttt ettt b e b e sttt et et e e bt e sbe e satesatesabeebeenbeenseennes 165
7.1.1. Tangible CONTIIDULIONScc.eiiiieiiecie ettt ettt e et esae e s teeetreerbeesbeesbeebaesenenens 166
A B LT 1101 (S USRS 166
7.1.3. The BSP ATCRIECTUIE......ccuiieieiieieeiee ettt sttt neas 167
7.1.4. The application of the BSP Architecture in the CERN SPS OTFBcccccooveevvivvennnnee. 168
720 FULUIE WOTK ...ttt b ettt et bt et e st e estebesbeeneesbeeaeen 168
RETETEIICES ...ttt ettt st at e bt bt et e bt et e st e s st et e sbe e st e bt eat et e sbeeneas 171

XXVii

Chapter 1

Motivation and Introduction

Abstract: This chapter introduces the Beam
Synchronous Processing topic and motivates the
research and the objectives of the problem solved by
the Thesis. It presents the CERN laboratory and LLRF
systems. Then we overview the Beam-Cavity
interaction originating the Transient Beam Loading
perturbation, and the current solutions to the problem.

1.1. Motivation

Signal Processing is a wide field of Science covered by many disciplines of engineering, physics,
mathematics, etc. It is a powerful tool that addresses the representation and manipulation of the information
contained in signals [1]. Many of its underlying concepts have been known for many years, but the
applications born out of the field in the last centuries have boosted its development with the discovery of
electricity and the development of micro-electronics providing more advanced and complex solutions and
devices. It played a crucial role in control systems in the early 1900s with continuous-time analog systems,
and since then, with the advent of digital systems, we can find processing systems in almost any electronic

device on the market.

These processing systems implement algorithms that are “a set of mathematical instructions or
rules that, especially if given to a computer, will help to calculate an answer to a problem” [2]. In general,
these instructions and the algorithm need to be aware of the characteristics and properties of the underlying
signal or information that they are processing. When you listen to music, for instance on your radio set, you
used to move the dial (nowadays you enter some numbers in a screen) to tune the radio station playing your
favourite song. The dial instructs the receiver to tune to the frequency in which the radio station is

broadcasting its signal. After some treatment in the radio receiver, you listen to your song [3]. Behind the

Motivation

scenes, the receiver has processed a small band of the radio spectrum around the station frequency; the

relevant signal information in your case was the frequency of the carrier broadcasting your song.

There is a sub-field in signal processing, Adaptive Signal Processing, in which the algorithms
and/or systems adapt its behaviour to improve its performance [4]; the treatment is adapted to the varying
properties of the signal. It finds application and is very common in audio or video processing systems where
signals are filtered to cancel echo or to enhance its contents from additive noise [5] or in bioengineering,
for instance, with the filtering of electrocardiograms using the Least Mean Square (LMS) algorithm [6].
Usually, in these applications, the complex task is to guess how the property of the signal changes. For

instance, if another frequency is assigned to your radio station you will need to re-tune your receiver.

In modern Particle Accelerators radio signals are also used intensively. These machines, that find
application nowadays in many fields, increase the energy of charged particle beams [7]: The industry uses
them for food sterilization, X-ray lithography, ion implantation, material testing and modification.
Synchrotron radiation is used in chemistry, material sciences, molecular and cell biology. Coherent
radiation is used in free-electron lasers and holography, for instance. The medical sector is also a well-
known user, it makes intensive use with radiotherapy, radiographies, sterilization, etc. In Particle Physics
these machines are used to accelerate all species of beams with electrons, protons, ions... to investigate the
inside structure of matter; two very energetic beams circulating in opposite directions are guided to collision
against each other (or sometimes against a fixed target). In these collisions, the energy is transformed into
matter, new particles, and physicists monitor these collisions with detectors to study the behaviour of

particles in collisions and probe new theories.

The Radio Frequency (RF) system is responsible for the acceleration (that is the increase of the
energy) of the particles. An RF signal induces an Electro-Magnetic (EM) field in an RF structure (usually
a resonant cavity). The longitudinal component of the EM field gives a momentum kick to the charged
particle when it crosses the cavity [7], [8]. In circular accelerators, called Synchrotrons, the increase in
particle speed results in a decrease of the beam revolution period. The RF control system of the synchrotron,
called the Low Level RF (LLRF), uses beam signals whose properties (the spectral content) are modified
as a result of the change in the revolution period. The LLRF needs hence to tune its processing to the beam

[9]; we call this Beam (or Signal) Synchronous Processing (BSP).

This Thesis presents an Architecture for the processing of such a pseudo-periodic signal, whose
period changes in a known manner, by tuning the sampling rate of the processed signal. It uses a single
fixed frequency hardware clock for the entire data-path and avoids the real-time reconfiguration of the
processing elements or the algorithm. The treatment of frequency-variant signals in real-time (adaptive
processing) is hence made possible for any static algorithm. The solution is based on a synchronous
arbitrary ratio resampler for real-time applications. The Architecture is targeted to a Field Programmable

Gate Array (FPGA) implementation. We validate and demonstrate its feasibility by implementing a LLRF

Chapter 1. Motivation and Introduction

solution, the One Turn FeedBack (OTFB) [10] algorithm for Transient Beam Loading Compensation
(TBLC) [9].

This chapter provides an overview of a Particle Accelerator RF system. The European Organization
for Nuclear Research (CERN) is introduced, and the context in which the work was born is presented. We
outline the CERN future requirements which triggered the use of a fixed frequency clock. The chapter
presents in a very simplistic form the LLRF essentials of particle acceleration and beam related signals.
The problematic of TBLC is introduced, and the current solutions are presented with their Signal Processing

foundations. We introduce the problematics to be solved in the current solution.

1.2. The CERN accelerator complex

The CERN accelerator complex is an international facility established in 1954 and now the largest
laboratory for fundamental physics research. It has made many discoveries in the field of experimental
particle physics, such as the observation of the Higgs boson in 2012, in the Large Hadron Collider (LHC),
completing the Standard Model [11]. It is at the border between France and Switzerland, and the facilities
are located on the surface of both countries, but also in underground tunnels. It hosts a group of
interconnected accelerators to serve beam for experiments in colliders and fixed targets, aiming at
fundamental particle physics research: The structure of matter, the interaction between forces and matter,
etc. The technological requirements of the laboratory are usually far beyond State-Of-the-Art (SOA)
Commercial-Off-The-Shelf (COTS) technologies. CERN plays therefore also an important role in
developing new technologies which can later be exported to other fields not related to physics. Electronics,
being a key element of any accelerator, also benefits from this research and technology advance; the Thesis

focuses on this field.

The CERN LHC Injectors Upgrade (LIU) project plans to double the intensity extracted from the
Super Proton Synchrotron (SPS) for injection into the LHC, therefore requiring a major upgrade of the SPS
200 MHz RF system, including the power plant, layout and cavities [12]. This system is responsible for the
acceleration of all beams by means of Travelling Wave Cavities (TWC) that consist of a periodic
arrangement of drift-tube cells with a /2 phase advance between cells at the centre frequency
(200.222 MHz) [13]. The cavity configuration is being modified during the Long Shutdown 2 (LS2, 2019-
2020); as the Beam Loading effects scale with the beam current, the new layout will provide higher voltage
and reduce the longitudinal impedance at the fundamental harmonic to prevent longitudinal coupled-bunch
instabilities [12], [14]. This improves the longitudinal stability required by the planned doubling of the
beam intensity for the High Luminosity LHC (HL-LHC) [12]. The LLREF is also replaced. The old system
was using beam synchronous clocks (locked to a harmonic of the revolution frequency) for the electronics
dealing with longitudinal instabilities (OTFB [15]), resulting in clock frequency sweeping during the
acceleration ramp. The electronics was implemented in Nuclear Instrumentation Modules (NIM) and

custom-designed Versa Module Eurocard (VME) cards, similar to the ones used in LHC or LINear

3

The CERN accelerator complex

ACcelerator 4 (LINAC) [16], [17]. It is entirely replaced with SOA technology during LS2, implemented
on the micro Telecom Computing Architecture (uTCA) platform [18], [19].

A Future Circular Collider, (FCC) reaching collision energies of 100 TeV is also being studied at
CERN [20]. This project will require a new accelerator with a one-hundred km circumference. This brings
many technological endeavours such as new more powerful superconducting bending magnets or a high
scale cryogenic plant. On the RF side, with cavities placed in two opposite locations, new techniques and

technologies for synchronization in distributed architectures are required [20], [21].

The introduction of the new uTCA standard brings some architectural paradigm changes. The
classic master-slave architecture used in timing/synchronization and RF reference clock/phase distribution
is now replaced by a distributed network topology [22]-[24], such as the one depicted in Fig. 1.1. The
reference clock and instantaneous value of the RF frequency are transmitted as a numerical word, using a
deterministic network (blue links in the figure), the White Rabbit (WR) [25], and no longer as point-to-
point analog or optical signals. The WR project is a collaboration between several laboratories and
universities, including CERN, where many groups are active in its development [26] and applications [18].
The presented work does not include research in the WR but uses the results of many others who are actively
working in that field. The main characteristic of this Ethernet-based network is its full determinism, which
enables general purpose data transfer and sub-nanosecond precision. Similar architectures are already in

use in the accelerator world, for instance, the Brookhaven National Laboratory (BNL), in Upton, NY, USA

T TS

Beam
Controller

D Clock]

Recovery | WR

N\
Network |V
Interface
Application
Interface

= Cavity Cavity =
= =
= § ontroller = § = § ontroller §
/ Controller A |% £ 8| Controller B |2 AN
< & o & g€ S <
& £3 2 5le 23 254
& —P =z @ z = z = &= %
< <
/ —
/ Clock

| Recovery | WR e

& Clock M
R
Pick Up ‘I_I:mve'y WR
\
%

A

8 o| Beamphase |. o R Damper B3

5 & mod ule 58 58 5 &

- _ @ ZE ZE @ - _

s
e
-~ ~
~

[-————————= >_\ _________________________ = ___ |
I Legend . |
I esmmm=s Recovered Clock e Analog Signals |
| |
| Synchronous NCO @sssmme White Rabbit Network Application Links |

—_————— e — -

Fig. 1.1. Schematic representation of the LLRF network architecture in a synchrotron that uses White Rabbit for
synchronization and recovers the hardware clock from the data stream. Further details are presented in Chapter 6.

Chapter 1. Motivation and Introduction

[27], uses its own deterministic protocol called the Update Link [28], and the Helmholtzzentrum fiir
Schwerionenforschung (GSI), in Darmstadt, Germany [29], uses WR [30]. In our architecture, the receiving
slave nodes (cavities, injectors, beam instrumentation, kickers and dampers) get the beam information (RF
frequency, cavity amplitude and phase, etc.) from this digital network and extract a 125 MHz reference
clock signal from the data stream, clock recovery units in Fig. 1.1. The reference clock is now decoupled

from the RF and is fixed in frequency.

1.3. Beam-Cavity interaction

The RF system of a particle accelerator is composed of several subsystems. The cavity, in which a
component of the electrical field is aligned to the particle velocity, transfers energy to the beam. The power
levels required for this RF signal are in the order of KW to MW. An amplifier is therefore used to increase
the level of the RF signal. These high-power amplifiers are normally klystrons, tetrodes, Inductive Output
Tube (IOT) or Solid-State Power Amplifiers (SSPA). A distribution system composed of waveguides and
coaxial conductors transports the RF power from the amplifier to the cavity. Circulators and dummy loads
are commonly used to absorb power reflected from the cavity. Finally, the LLRF is the low power

electronics generating the RF signal and keeping the synchronism between beam and RF phase.

The beam is a collection of charged particles travelling in the accelerator vacuum chamber, and
crossing the accelerating cavities [31]. These particles are grouped in bunches spaced by a multiple of the
RF wavelength [7], [32]. With electromagnetic pick-up sensors, the LLRF system acquires signals related
to the azimuth and transverse position of the beam [9]; particle bunches passing through the pick-up
generate a short pulse. In circular accelerators this passage is periodic turn after turn; the pick-up signal in
the time domain is hence a train of short pulses spaced by the revolution period. The signal spectrum is also
a train of pulses at multiples of the revolution frequency [9], [33]. When the beam crosses the cavity, it
modifies the electromagnetic field. This effect is called Beam Loading [34], [35]. The cavity impedance is
excited by the beam current generating a voltage in addition to the one induced by the generator; the
effective accelerating voltage seen by the beam is therefore perturbed. These beam-induced perturbations
such as Transient Beam Loading (at the injection or when the beam pattern is not uniform) will appear in
the spectrum at the revolution frequency and its multiples [9]. Due to the non-zero bunch length, these
revolution frequency harmonics, nFv (Eq.(1.1)) are not all equal in amplitude, 4, and phase, ¢, (the
envelope of the revolution frequency harmonics is the Fourier Transform (FT) of the longitudinal bunch

profile [36]).

For leptons (electrons and positrons) synchrotrons the particles are already very relativistic
(velocity close to the speed of light) because their rest mass is small. Therefore, the RF frequency can be
fixed and the BSP algorithms processing these revolution harmonics do not need reconfiguration during
the acceleration ramp. Hadrons (protons and heavy ions) are much heavier. In the CERN SPS, the speed of

hadron particles changes significantly during the acceleration ramp, and so does the RF frequency. In that

5

State-Of-the-Art in BSP algorithms

case, the BSP algorithms treating beam-induced perturbations need to tune their processing to the signal
spectrum; the position of the harmonics is displaced as the spacing among them is increased. As the
revolution frequency varies very slowly compared to the beam dynamics, the signal from a given bunch

sampled by a LLRF pick-up is

N
x(t) = Z A, PUCLITINEY Eq.(1.1)
n=0

where N, the number of harmonics to be considered, depends on the intended application. For compensation
of the beam-induced transient in a given cavity we must only consider the harmonics falling in the cavity
BandWidth (BW) (in the case of the SPS the regulation bandwidth covers 5 MHz on each sideband around
the RF). In all cases, the signal bandwidth must be limited before sampling to avoid aliasing. Refer to [7],
[9], [32], [33] for more information.

1.4. State-Of-the-Art in BSP algorithms

Let us consider a simple process trying to enhance the pick-up signal out of white additive measurement
noise. The required comb filtering contains harmonically related pass-bands centred on the revolution
frequency harmonics. Its frequency response needs to follow the signal spectrum at these multiples of the

revolution frequency.

Such a problem is commonly found in adaptive signal processing, for instance, a classic method is
Adaptive Noise Cancelling (ANC) [5]. The filtering of electrocardiogram using the LMS algorithm was an
early example. More sophisticated algorithms such as the Recursive Prediction Error (RPE) and Recursive
Maximum Likelihood (RML) have been proposed for comb filtering [37], [38]. The latter did not require
knowledge of the instantancous fundamental frequency. It can be estimated by the algorithm. The
computational load of these algorithms scales linearly with the number of harmonics when using the simple
LMS, and quadratic for the more sophisticated RPE and RML algorithms. Their performances degrade if
the number of harmonics present in the signal is not modelled correctly [37]. We require however a much
lighter solution for LLRF algorithms in terms of calculations. Variable Fractional Delay (VFD) filters have
been proposed to implement a comb adapted to any fundamental frequency (not necessarily a sub-multiple
of the sampling frequency) [39]. The coefficients of the filter are then changed to track the fundamental
frequency. A side effect is the displacement of the poles with the delay that can possibly make the Infinite
Impulse Response filter (IIR) unstable. We want to avoid reconfiguration of the filter as it might be a

cumbersome approach for our real-time system.

The accelerator world employs several BSP approaches in this adaptive filtering to cope with beam-
related perturbations such as Transient Beam Loading. In the early digital systems introduced in the mid-
1980s, the sampling clock was swept proportionally to the revolution frequency [10]. This locks the

processing on the spectral content of the beam signal and the processing algorithm needs not be changed

Chapter 1. Motivation and Introduction

during the acceleration. This swept clock philosophy has been extensively used in the accelerator world, at
CERN and other labs [40]. This easy solution is not optimal, however. In case the processing is not related
to the beam energy ramp, for example, to compensate an amplifier frequency response, the processing
should not change with beam energy. In that case, Beam Asynchronous Processing (BAP) would be
preferred. If the system uses such a swept clock, this requires complicated implementations with limitations
[41]. Furthermore, modern FPGAs are intended for use with a fixed clock, as swept clocks pose problems
in FPGA clocking logic and Phase-Locked Loops (PLLs). This also limits the use of its serial interfaces.
The old swept clock scheme would therefore limit the exploitation of the new CERN distributed LLRF
architecture, and the SOA uTCA based processing systems.

Alternative approaches have been implemented: In small machines (high revolution frequency and
a small number of bunches) with the spectral content of the beam signal limited to a small number of
revolution frequency lines, a common solution is to decompose the problem in several parallel processing
systems, one per revolution line, where a fixed sampling clock can be used. This requires multiple
demodulators (one per revolution harmonic) for base-band down-conversion and several processing
systems [42]. The amount of resources grows linearly with the number of revolution lines to be treated.
This solution solves the constraint of the swept clock, as it can be implemented with a fixed frequency
clock. However, the resources required when extending the regulation bandwidth limits its applicability.
Examples of this strategy are found at CERN [43]-[45] and the Japan Proton Accelerator Research
Complex (JPARC) [46], in Tokai, Japan [47]. But it does not apply to larger machines where many

revolution lines are to be covered.

Another approach used is feedforward. Based on the reproducibility of the machine cycles and the
slow variation of the beam pattern in each cavity passage, the feedforward employs signal tables
precomputed from past observations, which are added to the set-point to compensate the beam loading
effect. In this case, the processing itself is not tuned to the spectral content of the signal, but the set-point
is adapted to mitigate the predicted effect of the beam passage. These algorithms require a deep knowledge
of the machine, including the non-linearity of the amplifier. When many types of cycles and different
particles and users are needed, this might require information not always available. Such a system can be
found at BNL [28] for instance. A similar approach is used also at the Fermi National Accelerator
Laboratory (FNAL) [48], in Batavia, IL, USA [49], and CERN SPS [50] where corrections are applied to
the amplifier drive based on the beam signal acquired with a pick-up. These feedforward approaches, as
open-loop systems, lack adaptive capabilities and are sensitive to variations of the amplifier response for

instance.

If we want to use a fixed frequency clock there is still the need for a solution to avoid the
reconfiguration of the processing elements (filtering for instance) to tune to the beam revolution frequency
(and to the spectrum of the sampled signal). The real-time reconfiguration in complex processing schemes

or algorithms can require plenty of parameters to change and becomes cumbersome. A generic BSP solution

Document organization

is therefore desirable which can be extended to small or larger machines with different regulation
bandwidths. The Thesis focus on this BSP Architecture applied to TBLC, but at the same time being generic
enough to host other BSP related algorithms such as longitudinal and transverse dampers [51], [52]. The

solution needs to be compatible with modern electronics making use of a fixed frequency clock.

1.5. Document organization

This dissertation, that presents a new Architecture for BSP and demonstrates its use for implementing the
OTFB algorithm, is organized to guide the reader through the problematics of the actual systems, the
decisions taken in the research process, the developments performed and the final application of the ideas

in the implementation of the OTFB algorithm.

The introduction in Chapter 1 has presented the circumstances and ideas which triggered the
research work. It has also settled basic foundations related to Accelerators and LLRF systems. Then it

presented the SOA in electronics and the principal solutions used for TBLC in LLRF systems.

Chapter 2 presents the objectives and contributions of the Thesis to the SOA grouped in three main
fields: BSP solutions for Particle Accelerators, Resampling of frequency varying signals in FPGA with

variable resampling ratios, and 7TBLC by means of the new OTFB algorithm implementation.

Chapter 3 presents the proposed Architecture for BSP; it introduces the so-called resampling
sandwich and elaborates the ancillary hardware and abstractions needed for its implementation. These are
our virtual FPGA FabRic with Adaptive aNd deCoupled clocking for SynChronous prOcessing
(FRANCISCO), and the MultiplE Rate and Clocking interfacE for Data procEssing and Sampling
(MERCEDES) interfaces. It presents also the JOintly Averaged and QUaNtized rAtio (JOAQUINA)

Frequency-Locked Loop that solves implementation problems related to quantization of the ratio signals.

Chapter 4 is focused on the core element that performs resampling, our novel Sampling Rate
Conversion (SRC) architecture, the resampler, that lies at the input and output of the resampling sandwich.
It elaborates and presents the implementation details for its three functional units; the DistAnce iN time

Algorithm (DIANA), the VFD filter and the synchronization logic.

Chapter 5 presents the verification and validation results of the BSP Architecture and the developed
hardware and units of Chapters 3 and 4; first the simulations of all the elements and then the hardware test

with the implementation of the Architecture in a uTCA crate for measuring its performance.

Chapter 6 demonstrates the use of the BSP Architecture implementing the new OTFB algorithm
for TBLC. Then it presents the verification and validation results of the simulations and the hardware tests

in a real CERN SPS cavity.

Finally, Chapter 7 presents the conclusions and suggests some future work to be conducted in the

field.

Chapter 2

Contributions of the Thesis

Abstract: This chapter presents the contributions of
the Thesis to the State-Of-the-Art in the different fields
in which the work has elaborated. First, a high-level
overview of the achievements is presented, and some
tangible improvements stated. Then the contributions
for the main related domains are detailed. These
contributions encompass technical (signal processing -
LLRF Beam Synchronous Processing), technological
(FPGA resampling architectures), and application
(particle accelerators - Transient Beam Loading
Compensation) aspects.

2.1. Introduction

The previous chapter has presented the more relevant LLRF Beam Synchronous Processing solutions for
Transient Beam Loading Compensation in particle accelerators. The swept clock architecture is the key
element of the current CERN solution [10], [15], [22]. It nevertheless poses some problems (that we present
in this chapter) and it is a bottleneck for implementation in modern digital technologies. The contributions

of the Thesis in this aspect are therefore twofold:
- To solve and avoid the present problems in new LLRF architectures.

- To develop techniques and technologies ensuring the efficient and feasible implementation of

new architectural paradigms.

The new projects being planned and implemented at CERN, namely LIU SPS [12], [14], HL-LHC
[53] and FCC [20], [54], motivate the change of the synchronization and RF distribution architecture. A
distributed approach is envisaged more reliable and offering better scalability for these “new-sized” projects
(FCC plans a new accelerator with a 100 km circumference ring). This introduces the use of a deterministic

protocol, the White Rabbit [25]. With this new protocol, the distribution of a swept clock in a dedicated

Tangible improvements with the new Architecture

fibre has no sense, since this would duplicate the distribution infrastructure. The clock is therefore now
extracted from the data stream, locally in each node (Fig. 1.1), being this a fixed frequency clock [18]. The
revolution frequency and RF frequency information in each RF station are distributed via the WR network
in a digital format [55]. For Beam Synchronous Processing, this makes it more appropriate to use the fixed
frequency WR clock and this digital information, instead of regenerating a swept clock to feed the
processing FPGA. A new strategy or algorithm is therefore needed for Transient Beam Loading

Compensation, being this the contribution of the Thesis in the application field:

- A new OTFB implementation with fixed frequency processing clock.

2.2. Tangible improvements with the new Architecture

This section presents some tangible contributions to current problems in the LLRF systems object of the
Thesis. These problems result from the present implementation of the LLRF architecture at CERN, and the

new presented Architecture aims at solving them.

The distributed and fixed clock architecture proposed in this Thesis benefits to RF gymnastics [56],
[57]. This term refers to manipulations in the beam tailoring its longitudinal characteristics. These
manipulations are done by modulating the RF parameters to achieve the desired beam, including bunch
length, energy spread, distance between bunches or number of bunches among others. More complex
operations as slip stacking [58] can be now implemented, and machine synchronization schemes [59]
simplified. A common clock between machines and an absolute time reference facilitate the computation

of synchronization events and the computation of phase advance of signals among others [60], [61].

Another consequence of using the new Architecture with a fixed clock is the improvement on
spectral purity of the signals. PLL based architectures are used to clean the clocks. These have a certain
operational frequency range based on loop filters which cover a certain bandwidth. The new schema using

fixed frequency clocks makes it possible to optimize the cleaning architecture for a given fixed frequency.

In line with these technical aspects, modern electronics, namely FPGAs, will be using this fixed
frequency Architecture in uTCA platforms [19]. Digital clock managers in FPGAs, among others, make
use of PLLs [62]. Eventual problems associated with these subsystems, as for instance potential unlock of
the PLL, are avoided thanks to the new fixed clock. This permits the exploitation of all the features of SOA
FPGAs. This can be extended to modern Analog to Digital Converters (ADCs) and Digital to Analog
Converters (DACs) using differential serial interfaces. These usually include PLLs and complex logic for
clock synchronization for chip-to-chip communications. A swept clock can make its use unfeasible, forcing
the designer to rely on old parallel interfaces. On the processing side, these digital systems make intensive
use of Discrete Signal Processing (DSP) architectures based on synchronous digital logic design. This
philosophy is based on the use of combinatorial logic elements and registers. The combinatorial elements

are pipelined between the registers to increase the operation frequency. A variable clock forces the FPGA

10

Chapter 2. Contributions of the Thesis

Place and Route (PAR) process to use the highest frequency value in the slack estimation. This complicates
the re-use of implemented FPGA designs that use clocks which are extracted from the RF and hence swept.
A design running in an operational machine can require optimizations of the hardware architecture and a
new synthesis and PAR, this limits the re-use in a different accelerator or system where the RF is different.
In line with this, multiple clock domains are usually present in FPGA designs, and a swept clock implies a
huge complication for the synchronization and communication between clock domains. The fixed

frequency clock greatly simplifies these issues.

Another consequence of the proposed solution is to avoid interruptions of the processing clock
between cycles; in the old system the clock comes from the RF [10], any interruption on that signal causes
also the interruption of the clock. This is the case when doing resynchronization between machines; the RF
is interrupted or abruptly modified, thus originating clock problems [59]. The new fixed frequency clock is
not any longer extracted from the RF, now it is independent and regenerated from the WR network. Since
the WR is always in operation, no more interruptions when resynchronizing machines will be present. A
similar phenomenon happens in small synchrotrons as for instance the CERN Proton Synchrotron Booster
(PSB) [63], where the revolution frequency span is wide. This implies a complex clocking scheme for
FPGAs: To avoid such a big span in the clock, several harmonics multiplexed in real-time are used as clock
source. This produces phase discontinuities and jumps. Again, this is avoided in the new Architecture

proposed in this Thesis.

2.3. Contributions to the State-Of-the-Art

The previous chapter has motivated the Thesis work by presenting some future projects which are being
planned at CERN. Such projects require paradigm changes which are not compatible with some
implementations and LLRF architectures currently used at CERN. Advances in the Technology Readiness
Level (TRL) of the LLRF systems and new techniques have been developed to cope with the new paradigms
and to solve the specific requirements of their implementation and application. The three main domains in

which contributions have been made are presented now.

2.3.1. Signal/Beam Synchronous Processing

The Thesis proposes a new solution for Signal/Beam Synchronous Processing making use of a
fixed frequency processing clock. This Architecture makes it possible the processing of signals with known
but possibly varying frequency with algorithms dependent on the spectral content of the signal. The
common approach for that is the reconfiguration of the algorithm parameters [39] or the use of adaptive
processing (filtering) [5], [37], [38]; an alternative approach is presented here. The presented innovation is
especially suited for periodic signals with a varying fundamental frequency. These signals present a
Homothetic spectrum (we call it Homothetic because the change in spectrum is equivalent to a dilation of

the frequency axis), like the one depicted in Fig. 2.1. The plots depict the spectrum of a beam signal

11

Contributions to the State-Of-the-Art

acquired with a pick-up in different time instants of an accelerating ramp. The blue plot shows the
revolution frequency peaks at the beginning of the ramp, while the purple and red plots show the peak
position and spacing at later instants during the momentum ramp. The red plot containing the harmonic
peaks at higher frequencies and with the widest spacing between them corresponds to the last instants of
the accelerating ramp. The purple one shows the spectrum in the middle of the ramp. The processing needs
to adapt to the constant change of position and spacing of the peaks. When this signal-synchronous

technique is applied in the Accelerator field, we call this Beam Synchronous Processing.

Mag [dB]
Frev
«— Y
kA M F[Hz]
i IS
hO hl h2 h3 h4

Fig. 2.1. The simplified spectrum of a beam signal acquired with a pick-up; the position and the spacing of the harmonics
change during acceleration ramp proportionally to the revolution frequency increase (Homothety).

The presented solution tunes the signal to the processing algorithm by varying the sampling period
T; of the digitized signal with fundamental frequency F while keeping the algorithm parameters fixed (no
reconfiguration). If this sampling frequency variation f’s = f; - (1 + A) is proportional to the variation of the
signal frequency F’ = F - (1 + A), the representation of the signal frequency in the discrete normalized
spectrum @ remains constant

a)=2nf=2ni—2nM=2n£=constant Eq.(2.1)

o faen s

This resampling operation brings the discrete representation of the signal frequency w to a
predefined digital frequency wproc Where the processing has been defined (@ = @proc). The solution is generic

and supports the implementation of any processing or filtering algorithms.

2.3.1.1. FRANCISCO fabric

The solution is based on an adaptation fabric, called FabRic with Adaptive aNd deCoupled clocking
for SynChronous prOcessing (FRANCISCO), built on top of the real FPGA hardware fabric. In the
hardware fabric, the frequency of the processing f, and sampling f; clocks are identical. In the adaptation
fabric, the clocks are decoupled and need not to operate at the same frequency. This makes it possible to
use a hardware clock with fixed frequency to operate the hardware fabric, and on top of that to implement
the adaptation fabric with an average variable sampling rate. In the adaptation fabric, the sampling period

of the data is modified according to our needs, and this can be done in real-time.

The solution is well suited to FPGA technology and applications, where the hardware processing
clock is preferably fixed in frequency and stable. This permits to use all the hardware and clocking resources

of the FPGA, something that might not be feasible with a swept clock. The solution can also be migrated

12

Chapter 2. Contributions of the Thesis

to Application Specific Integrated Circuits (ASIC) technologies, however, the target within the Thesis is
FPGA.

The adaptation fabric FRANCISCO interfaces the real hardware fabric by means of dedicated
interfacing entities called Multip/lE Rate and Clocking interfacE for Data procEssing and Sampling
(MERCEDES). These interfaces perform processing and sampling clock coupling (MERCEDES Couple)
and decoupling (MERCEDES Decouple). They generate also a valid signal when decoupling, and merge
this signal with the processing clock when coupling the data-path. The valid signal, depicted in the
chronograms of Fig. 2.2, accompanies each processing slot in the adaptation fabric. The signal is introduced
to indicate which processing slots contain valid data in the data-path (populated processing slots). The
chronograms present also the clocks in the MERCEDES Decouple interface. The data-path arriving at its
input is coupled, and processing and sampling clocks operate at the same rate. In the output, the sampling
clock remains at the same frequency, but the processing clock operates at the double frequency, M = 2. The
MERCEDES Couple interface performs the complementary operation, it merges the sampling and
processing clocks with the frequency of the latter reduced by M. Only the slots flagged valid are passed out

of the interface within the now coupled data-path.

Decouple data-path M =2

Real Fabric f,=f; » Virtual Fabric f,=M:f
processing f J | | | | | | |_ processing f
clock P clock /P
processing PSx X ps0 X psl X ps2 XpsB processing PSx XpsOXplepsZXps3Xps4Xp55 XpsGX
slots slots

average

sampling .
e N e L e O S I N I

clock
data-path dy X X X X data-path dy X@X - XX - X - m
Jp:[Hz] f;: [sample/s] / : data sample ; ia;niadl J | | | | | | |_

Fig. 2.2. Signals at the input and output ports of a MERCEDES Decouple interface. The input port interfaces a coupled data-
path with sampling and processing clocks operating at the same frequency. The output port interfaces a decoupled data-path with
a processing clock operating at a frequency double with respect to the sampling clock, M = 2.

The hardware and FRANCISCO fabrics are depicted in Fig. 2.3, the hardware in white while the
adaptation fabric is coloured in grey. The hardware processing clocks are also depicted in Fig. 2.3, blue
lines are used for the real hardware fabric, and yellow lines for the adaptation fabric. These clocks define
the processing cycles or processing slots (psy) at which the FPGA can operate on data in both fabrics. This
frequency is the maximum sampling rate that the sampling clock can achieve (when f; = f;). The adaptation
sampling clock frequency is thus a slower fraction (or equal in the limiting case) of the hardware clock

frequency.

The adaptation sampling clock does not exist as a physical signal, it is an abstraction which defines
the average sampling rate of the data in the data-path. It abstracts the samples from the processing slots of
the real hardware clock. The decoupling requires the use of a hardware processing clock f, at higher
frequency (or equal in the limiting case) than the virtual sampling clock f;. When this is satisfied, the number

of available processing slots is larger than (or equal to) the number of available samples.

13

Contributions to the State-Of-the-Art

P T T T T T o o e e P ey o]
MERCEDES FRANCISCO Adaptation Fabric |
Decouple |
]:.e o Asynchr din | Data-Path data 2 |
ig) < HE synchronous _ vy : > I
ADC Processing »1 /o out Jo.in valid > Resampler !
|
) [[; A l A
Ratio - : > Signal/Beam :
MERCEDES 1R Synchronous |
Couple Processing |
|
Data-Path ¢ |
Out <&
Asynchronous d_out _ <
- < n=M [o I
DAC [« Processing S Jo. /:n 5 Resampler = !
] [[T I
SO0 2 ' X ; |
: Region I ¢fixed £) Region II (variable £ ,
ey | e |
: “““;"“\“ii fo =4 [sample/s] sa::giik“g fs=R -A [sample/s] :
FPGA Clock Hardware S A s
Manager Fabl‘iC SalelP“k“g fs= A [sample/s]
Fixed cloc
Frequency *
Clock l

Fig. 2.3. Schematic representation of the fabrics and clocking architecture; sampling fs and processing f; clocks for the hardware
fabric (white fabric with blue clocks), and the FRANCISCO adaptation fabric (grey fabric with yellow clocks). In the figure, 4 is
an arbitrary value, and M is the relation between processing clocks in the MERCEDES interfaces.

The hardware fabric in Fig. 2.3 contains the processing f, and sampling f; clocks operating at the
same arbitrary frequency, f, = 4 and f; = A4, respectively. The adaptation fabric can host multiple arbitrary
sampling rates defined according to the limits specified before. Two different sampling clock regions
(region I and region II) are depicted in the adaptation fabric in the figure as an example. In this case, both
regions use a processing clock with frequency f, = M - A4; for instance, with M = 2 the frequency of the
hardware clock is doubled. The sampling rate is however different in the two regions; while the region I

uses an adaptation sampling rate of f; = A, region Il uses a rate of /s =R - A4.

Input and output resamplers in the adaptation fabric perform the conversion of the sampling rate
between these two regions. The input resampler translates the input data with a fixed sampling period
fs=4, to a data stream with a variable sampling period /s = R - 4. The ratio R in the sampling rate conversion
is the relation between the frequencies of input and output sampling clocks of the resampler, and it can vary
in real-time. The output resampler performs the inverse operation using a resampling ratio inverse of the
input one. Since the processing clock of the adaptation fabric is f, = M - A, the maximum adaptation

sampling rate which can be achieved in region Il is /s =M - A, when R = M.

In the adaptation fabric, the faster processing clock makes it possible to operate and process any
data in the data-path in a bounded time, without data overrun regardless of the sampling rate. The fabric
tracks the valid flag (valid line in Fig. 2.3) and uses only data results marked as valid. Contrary to this, the
hardware fabric “operates” on any processing slot (sampling and processing clocks are coupled). The

FRANCISCO fabric and the MERCEDES interfaces are described in detail in Chapter 3.

14

Chapter 2. Contributions of the Thesis

2.3.2. Resampling architecture with arbitrary and real-time variable ratio

The main technical contribution of this work is a new resampling architecture with a real-time
variable and arbitrary resampling ratio [36]. The architecture is intended for implementation in an FPGA
where the processing clock is preferably fixed, as presented in the previous point. The architecture can
easily be ported to ASIC technology. It is based on the FRANCISCO fabric with decoupled clocks. Such a
resampling architecture, accepting the arbitrary modification in real-time of the resampling ratio is not
common in an FPGA. The available solutions accepting variable rates usually support only a predefined set
of values [64], [65]. When any other ratio needs to be used a re-synthesis of the design is required [66]—
[71]. This is motivated by the clocking schema used in the output interface of the resampler; these
architectures do not decouple the sampling and processing clocks. In that case, when the resampling ratio
is modified, the frequency of the processing clock in the output port is changed, being this not always
acceptable for an FPGA. To cope with this limitation, the presented resampler uses the decoupled data-

path. This allows for using any average sampling rate at the input and/or output ports.

The interpolation architecture estimating output samples and the timing generation mechanism
[67], [70]-[73] for the output port, are also usually linked to the sampling clock of the output port
(Asynchronous Sampling Rate Conversion, ASRC [74]). The existing resampling architectures for ASIC
technology [73], [75], [76] supporting a variable resampling ratio require this output clock to be an input
signal; the output clock fed to the device dictates the time instant in which the output data is computed and
latched in the port. The presented architecture avoids the use of such external output clock by computing
the output sampling period based on the input port (or system) clock (Synchronous Sampling Rate
Conversion, SSRC). For this purpose, a new algorithm called DistAnce iN time Algorithm (DIANA) has
been developed. This algorithm is described in detail in Chapter 4. The first asynchronous resampler
presented is depicted in Fig. 2.4(a); the input and output ports are fed with their own clocks. The

synchronous resampler proposed in this work is depicted on Fig. 2.4(b).

(@) (b)
Input sampling rate:) Output sampling rate: Input sampling rate: : Output sampling rate:
/s [sample/s] . f’s =R - fs [sample/s] s [sample/s] : f’s =R - fs [sample/s]
ﬂ,;,/ Asynchronous \%, %/ Synchronous ~ |.¥1™
clk in clk out ratio R
_ StRC . _ SRC
Input port ~— £atio _/ Output port N :
clock: f, in [Hz] : clock: f; ou [Hz] clk | { Processing clock: £, [Hz]

Fig. 2.4. (a) ASIC style asynchronous arbitrary ratio resampler. (b) FPGA synchronous arbitrary ratio resampler.

2.3.2.1. Farrow-based resampler with decoupled clocks
The resampling architecture, depicted in Fig. 2.5, is inspired on a Farrow-based [77] VFD filter
[78] for interpolation, and a computing engine implementing the DIANA algorithm for timing. The Farrow-
based VFD is an efficient hardware architecture to estimate the value of a signal in a time instant different
from the available data by less than a sampling period. Such architecture employs a Finite Impulse Response

(FIR) filter bank with static coefficients. It is efficient as there is no need to recompute these coefficients

15

Contributions to the State-Of-the-Art

data_in
clock
“ratio
R’
DIANA Y FILTER Y A
ENGINE FIRN ___ﬁANf(__ FIR | FIRO
DISTANCE data out
IN TIME (:)—---—:ﬂij;)—ﬂ) —>
ALGORITHM dly‘ L HORNER
TIME -
DISTANCE
RN VFD VARIABLE FRACTIONAL DELAY

Fig. 2.5. Resampler architecture based on a Farrow Variable Fractional Delay Filter, VFD, and the DIANA algorithm.
when the time distance (delay) between available samples and desired new sample varies. The outputs of
the filters are combined with the delay value in a Horner structure [79]. The DIANA algorithm computes
the time distance based on the received samples at the input port of the resampler, the resampling ratio, and
the history of processed samples. It generates the delay value signal fed to the VFD when a new output
sample can be computed. It also generates a control signal indicating when this output sample can be
processed, or conversely when the VFD and the resampler output data-path are void. This is the case when
the time distance is bigger than plus or minus half an input sampling period, maximum delay accepted by

our VFD implementation.

The resampler relies on the decoupled data-path to implement the real-time and arbitrary variable
resampling ratio. The average sampling rate of the samples in the data-path for a given number of clock
cycles varies according to the ratio. This is depicted in Fig. 2.6. The left chronogram presents the resampler
input where the average frequency of the sampling clock in the adaptation fabric has a value of f; =4/ 2
with a processing clock with frequency f, = A, and M = 2. The right chronogram shows the output signals,
where the average frequency of the sampling clock in the adaptation fabric, within six processing clocks,
is f’s=A - (4 / 6) with a processing clock with frequency f, = A, and M = 2. Note that the relation M is
handled by the MERCEDES Decouple interface. The resampler has an up-sampling ratio of R =4/ 3 with

Rt
7,

Eq.(2.2)

Resampling ratio R=4/3

Input Virtual Fabric » Output Virtual Fabric
M=2 =4 [Hz] M=2 fi=4 [Hz]
: data sample fi= fo! M [sample/s] : data sample f’s= R-(f,/M) [sample/s]

clock p I r clock p
prOSCleOStSSlng PSx X ps0 X psl X ps2 X ps3 X ps4 X ps5 XpSG X prOSCleOStSSing X ps0 X psl X ps2 X ps3 X ps4 X ps5 X psGX
ST <~ 8« 8 o> 8 o T TR o B oh o5 o B)|
valid i | | | | | [valid T F
signal J J |_ signal _I I_, [|_

average : - average P :
sampling ﬂ _I | | | | | r |_ sampling f; I [
clock A clock

- 3 samples / 6 processing slots - - 4 samples / 6 processing slots -
4 » “4 »

Fig. 2.6. Signals at the input (left) and output (right) port of a resampler configured with an up-sampling ratio R =4 /3 and
implemented in the FRANCISCO adaptation fabric.

16

Chapter 2. Contributions of the Thesis

2.3.3. New Transient Beam Loading Compensation schema

The contribution of the Thesis, as application in the field of Low Level RF for Particle Accelerators,
is a new wideband implementation of the One Turn FeedBack algorithm [10] for Transient Beam Loading
Compensation [80] implemented in an FPGA using a fixed frequency processing clock. The
implementation is based on the original solution from Boussard [10] but employs the Beam Synchronous
Processing Architecture presented in section 2.3.1. It solves efficiently the constraints that new hardware
technologies and systems impose in terms of clocking schemes. Nowadays it is not feasible to keep using
an RF derived clock as in the original solution. The presented approach respects the original idea, as it does
not limit or poses constraints on the regulation bandwidth (it can handle an arbitrary number of revolution
harmonics). This is not the case with some other alternatives which imply limitations, depending on the
bandwidth to be covered; some solutions decompose the problem in multiple instances of processing/filters
or use filter banks, each one addressing a single revolution harmonic [43], [44], [46], [81]-[83], or even
time multiplexing of hardware [84]. This increases drastically the hardware resources needed and/or
reduces the performance of the solution. Reconfiguration of the filter architecture might seem also feasible,
however, the rate at which the reconfiguration needs to be done, or the volume of data to do it, limits its

applicability.

The present work is a competitive alternative to the approaches indicated previously since it does
not imply overhead in the hardware resources when the bandwidth (or the number of harmonics) to be
covered increases. Instead of adapting the processing to the spectral content of the signal, this method
modifies the sampling rate to tune the spectral representation of the signal to a predefined normalized
frequency in which the processing is performed with a fixed filter. The hardware resources to be used are
almost the same as with a swept clock architecture. The solution is based on the FRANCISCO fabric
presented before, which is used for BSP, depicted in Fig. 2.7. The only difference in hardware resources
needed, with respect to the original solution, consists in the two extra resamplers and MERCEDES

interfaces, and some minimal signalling logic in the decoupled fabric.

ﬂ FRANCISCO - Adaptation Fabrie - copamase ¥ ﬂ
ol o E——) ’ y
(7} Z i v
5 ﬂ g E) ‘ ‘ 4] & | One Turn] I] = Amplifier
| B3| |2 S eEen o m
< = = { |
= y &= ; 8
I FENEERaN): = 22 el Wy 2
= = 3 g g =3 | : 5
& ﬂ a o ; Beam | I]
4 *~. Begm Synchronous Processing .-/ ' Asynchronous /
ﬂ Processing I]
In Ratio Set Point Out Ratio Hardware
White Rabbit Interface ‘ FPGA Fabric
A

Fig. 2.7. New One Turn FeedBack architecture based on the FRANCISCO fabric for the BSP filter.

Contributions to the State-Of-the-Art

The communication requirements (bandwidth required in case of reconfiguration of the processing)
are also negligible as the only information required is the resampling ratio. It also simplifies the use of more
complex filtering in the OTFB, for instance addressing synchrotron sidebands to increase longitudinal
stability. This is thanks to the fact that no modification or hardware limitation is imposed to these more

complex filtering architectures, thus it is easy to migrate and combine different filters addressing different

spectral components.

2.3.3.1. New One Turn FeedBack with the fixed clock
The OTFB has been introduced in Chapter 1, it contains a filter tuned to the revolution frequency
harmonics of the processed signal. This filter is the processing that needs to track the momentum ramp of
the synchrotron, i.e., the sweeping revolution frequency harmonics. In the presented work, it is implemented
in the FRANCISCO fabric. Since the revolution frequency is known (it is also the LLRF that controls it), it
is possible to tune the discrete representation of the sampled data to the filter response using the presented
fabric. This avoids alternatives requiring estimation and tracking of the revolution frequency, based on

adaptive filters, or the real-time reconfiguration of the filter parameters.

The filter in the FRANCISCO fabric is a static IIR comb as depicted in Fig. 2.8. The first peak of
the comb above Direct Current (DC) is used as the reference to define the filter response. This peak is
computed to be at a normalized frequency wproc1 that matches, at the beginning of the momentum ramp, the
first revolution harmonic wn; of the filtered signal (h; in Fig. 2.1), @proct = wni. The rest of the filter and the

signal peaks follow due to its periodicity.

Response of the Comb filter
T T

Magnitude [dB]
Lo L
o <o
T
1

1

w

S
T

|

|
0.1 0.2 0.3 0.4 0.5

Normalized Frequency w / 27 [samplc'l]

A
S

(]

Fig. 2.8. The response of a Comb filter with 12 resonances in the first Nyquist zone.

The filter is placed between two resamplers in the FRANCISCO fabric. The input resampler adapts
continuously the sampling frequency f’s in the adaptation fabric (Fig. 2.3). This keeps the discrete
representation of the signal tuned to the filter, as in Eq.(2.1). After processing, the output resampler
recovers the original sampling period. This Architecture is depicted in Fig. 2.7, the grey region represents
the FRANCISCO fabric, the dotted red box in the adaptation fabric depicts the region where BSP is

performed, and the red filter within it performs the harmonic filtering between the two resamplers.

The one turn matching delay element is implemented in the BAP region, either in the hardware

fabric of the FPGA or the region I of the FRANCISCO fabric. Any revolution period can be decomposed
18

Chapter 2. Contributions of the Thesis

into an integer delay, plus a fractional part. The integer delay can be synthetized efficiently with a dual-
port memory, adapting the write and read pointers of the memory in real-time. The fractional part can be

synthetized with a VFD as the one used in the resampler.

2.4. Conclusions

The chapter has presented the improvements that the proposed solution brings to the State-Of-the-Art. We
have shown first the fangible contributions and the benefits that the new Architecture introduces for daily
LLRF problems. Then we have addressed the changes and implications that these contributions bring, from
a scientific and technical perspective. We want that the new projects planned at CERN benefit from all
these improvements. This results in advances for the Technology Readiness Level of the LLRF systems and

techniques. These advances are grouped around three technical fields where new paradigms are introduced.

We have first presented a new Signal/Beam Synchronous Processing Architecture for FPGA. The
Architecture is based on a fixed frequency processing clock paradigm to ease implementation in the
innovative hardware platforms and devices where the old swept clock poses constraints to the clocking
architecture. The solution facilitates the migration of any existing algorithm and the development of new

ones.

The second paradigm consists in the Resampling in the data-path to tune the processed signals to
the processing algorithms. We have developed a new resampler with an arbitrary and real-time variable

ratio that is used in the proposed Architecture with fixed processing clock.

Finally, a new Transient Beam Loading Compensation scheme that exploits the Architecture and
the resampler has been presented. This schema makes it feasible its implementation in the proposed new

uTCA hardware for the CERN SPS LLRF systems.

The following chapters are dedicated to each of these three main contributions; Chapter 3 presents
the BSP Architecture and Chapter 4 the resampler. The validation of these enabling concepts and resulting
performances are presented in Chapter 5. Finally, Chapter 6 shows the new One Turn FeedBack control

system and algorithm implementation for Transient Beam Loading Compensation.

19

Chapter 3

Beam Synchronous Processing Architecture

Abstract: This chapter presents the Beam
Synchronous Processing Architecture proposed in this
Thesis. It first depicts the Architecture at functional
level. Then, the foundations in which the solution is
built are inspected. The chapter continues presenting
the key elements used in the Architecture at logic and
physical level. It concludes with a feasible
implementation for each of these elements.

3.1. Introduction

This chapter presents the Signal/Beam Synchronous Processing architectural solution developed in the
Thesis. We start depicting the proposed Architecture from a functional level, abstracted from any hardware
aspects at physical or logical level. No implementation details are given and only the functional behaviour
is stated. Then the foundations and concepts supporting the proposed functional Architecture are presented,
and the characteristics achieved with this solution are stated. Finally, we present the principal elements in

the Architecture and a proposed digital implementation for them, valid for both ASIC and FPGA.

3.2. Proposed processing Architecture

This section presents at functional level the proposed Architecture that makes Beam Synchronous
Processing feasible in a digital system with a fixed frequency for either the processing or system clock. No
hardware details besides the clock are given. The same data-path supports Beam Asynchronous Processing.
We first depict the BSP and BAP units and the element interfacing them within the data-path. Then in the
following subsections, we review and develop the theoretical concepts on which the BSP solution is based.

We start by justifying the use of a technique based on sampling rate variation for tuning of the signal to the

21

Proposed processing Architecture

processing. We continue with a description of how we map the resampling operation within the data-path

of the Architecture. Finally, we present the implications of the resampling for the modulation architecture.

3.2.1. High-level functional sketch

The Architecture presents a solution for the processing of periodic signals with known and varying
fundamental frequency, the so-called Signal/Beam Synchronous Processing introduced in Chapter 2. From
a functional point of view, it solves the need for a data-path that supports such a processing with a fixed
system clock in control systems for LLRF applications [18], especially for beam based measurements and

controls loops.

Several processing algorithms can be used in these LLRF systems depending on the required
functionality; our solution is independent of the spectral bandwidth covered by the processing. It supports
algorithms performing narrow bandwidth processing, where only one or a few harmonics of the
fundamental frequency are treated [45]. It is also compatible with wide bandwidth processing, where many
harmonics are processed [10]. The Architecture is also meant for systems where algorithms not dependent
on the spectral content of the signal, Beam Asynchronous Processing, are used [9], [85]. It is generic in the
sense that the BSP and BAP can coexist in the same platform and data-path, and can be linked to perform

more complex processing on the same signal.

The high-level functional sketch of the proposed architectural solution is depicted in Fig. 3.1. No
implementation details are given at this point, but the fixed frequency system clock is depicted, as it is a
key element in the solution. The figure sketches the data-path inside the device, an FPGA in this case, the
input and output RF front-ends and the RF plant. The data-path contains a blue processing unit that performs
the BAP and a red processing unit that performs BSP. Two resamplers, in orange, encapsulate the BSP unit.
The input resampler converts the fixed sampling rate at which the data arrives into a variable sampling rate
sequence. The output resampler uses an inverse resampling ratio to the input one. This results in the
complementary operation so that it recovers the original fixed sampling rate. The BSP is performed between
the complementary resamplers. The information about the fundamental frequency of the signal is provided
externally to the device. This information is known and used for the BSP tuning. Other parameters linked

to the algorithm are also provided to the device.

Algorithm Control Fundamental Frequency Information
________________ V" T 2 W e)
Beam Beam Amplifier
i Asynchronous } Cg) Synchr {5 2
" i o ——{
g i Processing ; LE Processing e g
o ; ' Vg b2 =
2 L Fixed / &l Variable 4 &=
Sampling Rate / N Sampling Rate 7
Fixed |
Frequency
Clock |

Fig. 3.1. Functional sketch of the Architecture. The BSP unit is surrounded by resamplers performing sampling rate adaptation.

22

Chapter 3. Beam Synchronous Processing Architecture

The prototype solution depicted in Fig. 3.1 implements processing and/or up(down)-conversion of
signals; LLRF control algorithms commonly perform the processing within the data-path after down-
conversion, either to base-band or any other Intermediate Frequency (IF) [86]. As an example, the
application of the presented Architecture that will be demonstrated in Chapter 6, down-converts the RF
signal to base-band/IF by an analog RF input front-end. Then the signals are sampled, and the algorithms
perform either BSP and/or BAP. The processing supports also digital up or down-conversion of the signal
frequency from/to base-band to other IFs. Finally, an output stage with a complementary RF front-end
brings the signal back from base-band or the IF to the required RF frequency.

It is an all-digital solution; there is no need, when resampling, for analog reconstruction of the
processed signal before the DAC output stage in the output front-end, nor any other auxiliary signal or
clock. The frequency information of the signal being processed is passed to the Architecture in digital

format.

3.2.2. Sampling rate variation

The State-Of-the-Art in Chapter 1 has introduced solutions used for tuning between the response
of the processing algorithms and the spectral content of the processed signal. These solutions were based
either on functional approaches, as the real-time reconfiguration of the processing architecture [37]-[39],
hardware approaches with a sampling of the signal by a variable clock in the ADCs while clocking the
processing device with the same swept clock [10], or decomposition of the signal in its multiple spectral
harmonics (multiples of the fundamental frequency) using a parallel dedicated system for processing per

harmonic [87].

The presented Architecture tunes the digital representation of the spectral content of the signal to
the BSP processing by dynamically resampling the digitized signal to a variable rate. It uses only fixed
frequency clocks in the sampling and processing sections. To better understand the mechanism, the
following subsections elaborate the sampling and resampling concepts and illustrate how the latter performs

the tuning.

3.2.2.1. Conventions

The Thesis uses intensively some related concepts such as sampling, processing, clock, and rate.
We follow the de-facto conventions used to refer to them in the many signal processing text available in
the literature [1], [88], [89]. When referring to the frequency of a real signal we will use capital ' as symbol
in this document. A real signal x(f) with a tone at a frequency of 100 Hz will be denoted as Fx = 100 Hz.

When referring to the associated angular frequency, this is represented as Q.= 2n-F radian/s.

When referring a clock clky we refer to a hardware signal at a given real frequency Fx measured in

Hz. When referring to a rate 7x we refer to the speed at which something happens.

23

Proposed processing Architecture

The sampling clock clks is the clock driving the data acquisition; a sampling clock clks at a
frequency Fs = 100 Hz acquires data at a sampling rate of », = 100 sample/s. That clock acquires a hundred
data samples, Ny = 100 sample, in one second, and it has a sampling period of 75 = 1/100 s/sample. For
this special and specific case, we will refer indistinctly in the Thesis to a sampling clock clk; by its sampling
rate or sampling frequency. We will denote indistinctly the sampling rate as 7 = fs or the sampling frequency

as F = f; as the value is the same and only the units change depending on the context.

The processing or system clock c/k; is the clock driving a processing system that operates the data-
path; a processing clock clk, at a frequency F, = 100 Hz performs operations at a rate of
r, = 100 operation/s. That clock performs a number of operations Ny, = 100, with a period of time per
operation 7, = 1/100 s. Equivalently the data-path clocked by that processing clock contains a number of
processing slots Nps = 100 per second to perform the hundred operations. Again, we will refer indistinctly
in the Thesis to a processing clock clk, by its processing rate or processing frequency. We will denote

indistinctly the processing rate as r, = f;, or processing frequency as F;, = f, depending on the context.

When referring to a normalized frequency in the discrete representation x[n] of a real signal x(¢)
having a tone at a frequency Fx that is sampled with a sampling clock at f;, we will use fx as symbol. The
discrete frequency fx results from the quotient between the signal frequency and the sampling frequency
Jfx = Fx/ fs with units of sample™. We call it normalized frequency as it normalizes the real frequency Fx of
the tone in the analog signal to the sampling frequency f;. When referring to angular normalized frequencies,

these are represented as wx= 27-f; and the units are radian/sample.

3.2.2.2. Sampling
Digital or Discrete Signal Processing systems operate on data samples, x[#n], that represent a real
continuous-time signal x(¢), in the discrete-time domain [1], [90]. The conversion of the real signal to these
discrete-time quantized samples is generally performed by Analog to Digital Converters. The process
involves two steps. The first stage is sampling, which evaluates the continuous-time signal at discrete-time
instants #, spaced by the sampling period Ts, with #, = n - T;. Then, quantization translates the signal
amplitude in these discrete-time instants to a digital word [91]. The samples x[#] are the digital (or discrete)

representation of the x(7) signal value at specific time instants #,.

The signals at the input and output of the sampling process are depicted in Fig. 3.2. The left plot
of the figure depicts in grey the analog signal x(f) sampled by an ADC. This originates the discrete sequence

of samples x[#] in beige acquired at f;.

In this document, sampling is used indistinctly to name the conversion from the real-time
continuous signal to its quantized discrete-time samples, including quantization. Sampling therefore maps
the real signal x(¢) to a discrete representation x[n] sampled at a rate fs = 1 / Ts. This discrete sequence x[#]

is later processed by a digital system.

24

Chapter 3. Beam Synchronous Processing Architecture

x(?) x(f) x[n] x[n]
ADC —>»
A T,
clks e
t H n
> Analog to Digital >
! Conversion

Continuous-time Sampled at f;

Fig. 3.2. High-level representation of the sampling process. On the left, the real signal x(¢) to be acquired by an ADC. In the
middle the ADC interfacing the real signal and the discrete representation x[n]. On the right, the sequence of discrete samples,
spaced by the sampling period Ts.

3.2.2.3. Resampling

Resampling is an operation on a sequence of discrete samples x[7] acquired at a rate f; that generates
a new sequence of discrete samples y[m]. The values of this new sequence approximate the values of the
real signal x(#) when acquired at a different rate f’s [72], [92]. This is depicted in Fig. 3.3 where the beige
discrete samples of the grey waveform sampled at f; = 10-10° sample/s, are resampled to a rate of
f’s=7.5-10° sample/s. The new sequence approximating the real signal is depicted in pink in the right-hand

side of the figure.

x[n] x[n] ylm] ylm]
—»| RESAMPLER >

H fi=10 10° [sample/s] f= 75-10° [sample/s]

H m
>
>

\ B

Resampling
Sampled at f; > Sampled at

Fig. 3.3. High-level representation of the resampling process. On the left, the input sequence x[n] sampled
at a rate fs. On the right the resulting sequence y[m] after resampling to a rate f’s.

3.2.2.4. Frequency-domain interpretation of sampling and resampling

Let’s now have a look at these operations in the frequency domain. When a real sinewave signal
x(¢) with fundamental frequency Fy, is sampled at a rate f, its representation is mapped to a point in the

discrete normalized spectrum [1], [90] at

B _Q

a)0=275'f(‘)=27[f _f_

Eq.(3.1)
This is depicted in Fig. 3.4 where a tone at F =2 kHz is sampled with a clock clk; at Fs =10 kHz.
The figure depicts in the left side the tone in the analog spectrum in beige and the sampling clock in purple.
The sampling maps the tone in the discrete spectrum X(¢“) to an angular discrete frequency at
o = 2m-0.2 radian/sample. The right half of the figure depicts the mapping with the tone again in beige and
the sampling rate in purple. The figure spans through the first two Nyquist zones [93]; the first ranging
from DC to half the sampling rate, and the second Nyquist zone starting at half the sampling rate up to the

sampling rate as the upper limit.

25

Proposed processing Architecture

LX(F)| Analog Signal |X(¢®) Discrete
Spectrum Spectrum
x(7) x[n]

F, ADC —» A

Fy \ 7 A ay/ (2m) o/ (21[)
T [kHz] clks [sample™]

| > Analog to Digital | >

2 I Conversion ~ 0.2 I

10 " 1

Fig. 3.4. Frequency-domain representation of the sampling process; mapping of Fo to wo in the discrete normalized spectrum.

When this discrete signal is resampled, this results in a change of the mapping of its discrete
spectrum. This is depicted in Fig. 3.5; the left side shows the original digitized tone at a rate of f; = 10-10°
sample/s (purple arrow) mapped to wo = 27-0.2 radian/sample (beige line). The right-hand side depicts the
ideal result after resampling to a new rate of /s = 7.5-10° sample/s (brown arrow); the tone is shifted to

w’o=2m0.26 radian/sample (pink line).

) . x[n] Mml |y Discrete
@) SDlsctrete —»| RESAMPLER —> Spectrum
pectrum
; S
=10-10" [sample/s ’
o/ 27) . (27:) [sample/s] @’/ (2m) o/ (27:)
[sample 0 fs=17.5-10° [sample/s] [sample™]
Resampling
| 0.2 ! > | 0.26 I
1 ' 1

Fig. 3.5. Frequency-domain representation of the resampling process; the discrete normalized spectrum of Fo
is re-mapped from woto w .

The resampling of a discrete signal modifies and changes the mapping of frequencies in the discrete
frequency domain. The new discrete representation Y(¢’”) confines the spectrum within frequencies
spanning up to the new sampling rate. It is hence possible to shift the mapping of a point in the discrete
spectrum X(€/”) (sampled signal) by changing the sampling rate. This makes it possible to tune that discrete
spectrum to the desired point at the discrete normalized frequency wproc Where the processing can be defined.

This is, therefore, a suitable alternative for tuning the signal to the processing.

This approach is the inverse of the classic reconfiguration of the processing elements; instead of
adapting the frequency @y in the response of the processing to the spectral content of the signal X(e”),
the resampling tunes the signal representation Y(¢’) to a fixed processing frequency wproc in the discrete
normalized spectrum. This is depicted in Fig. 3.6; the processing (red band-pass filter) is centred at a fixed
discrete frequency of wproc = 27-0.26 radian/sample. In the left side of the figure, before resampling, the
discrete representation of the tone lies at mo = 27-0.2 radian/sample using a sampling rate of f; = 10-10°
sample/s. We then use resampling of x[#] to tune the discrete spectrum Y(&”) of the signal y[m] to the fixed
processing frequency wproc according to Eq.(3.1). This is depicted in the right side of the figure: The
resampled tone in pink now matches the filter in red. For this purpose, the sampling rate is modified to

f’s=7.5-10° sample/s, depicted in brown in the figure.

26

Chapter 3. Beam Synchronous Processing Architecture

’ . x[n] yml |y Discrete
(e Discrete —»| RESAMPLER —> Spectrum
Spectrum
f@ 3 fS
=10-10 le/
o/ 27) o (270 [samplels] '/ @) o/ @)
/—\a)pmc/ (271:) [sample] f T 75 10 [sample/S] /_\%mc (275) [sample]
> Resampling I
l 0.26 | > |
0.2 0.26
1 1

Fig. 3.6. Representation of the resampling process as element to tune the discrete representation of the signal wo to a predefined
fixed processing wproc. The fixed processing wproc (red band-pass filter) remains constant defined at wproc = 21-0.26 radian/sample.

Let us now analyse how we can use this in our BSP application. Consider the case of an accelerator
at the beginning of the momentum ramp; a pick-up signal x..,(f) contains the revolution frequency Frev
(fundamental harmonic) and harmonics at integer multiples of the fundamental. Assume that the
fundamental is at Fry = 2 kHz, and consider three harmonics at Frev1 = 2 - Frv = 4 kHz,

Frev2=3 " Frev = 6 kHz and Frey 3 =4 - Frev = 8 kHz. This signal xrv(f) is down-converted to base-band
generating x(¢). During the ramp the fundamental harmonic is kept constant at DC by adjusting the Local

Oscillator (LO) of the mixer. The signal x(¢) is then sampled generating x[#].

Fig. 3.7 depicts two instants of the acceleration process. In Fig. 3.7(a), which corresponds to the
beginning of the ramp, the analog and discrete spectrums of x(f) are presented. The sampling rate at that
time is f; = 20-10° sample/s, depicted with a purple arrow in the figure. The down-converted fundamental
harmonic Frv is now at Fo = 0 kHz (in beige) and the harmonics Frev 1, Frev 2 and Frey 3 at F1 = 2 kHz,
F>, =4XkHz and F5 = 6 kHz (in blue, green and orange) respectively. The discrete spectrum of the sampled
signal follows the same colour convention. In that situation, the fundamental lies at DC and the three
harmonics, at w; = 27-0.1 radian/sample, w, = 27-0.2 radian/sample and w3 = 27-0.3 radian/sample. The
discrete processing of the LLRF, the bank of pass-band filters in red in the figure, is at injection centred in
the discrete frequency of each harmonic (beginning of the accelerating ramp). This processing will remain

fixed (without any reconfiguration) at these discrete spectral positions during all the acceleration.

Then the momentum ramp of the accelerator accelerates the beam,; the spectrum of the signal xre(?)
sweeps the fundamental from Fry = 2 kHz at injection to Frv = 3 kHz at extraction. The front-end adjusts
the LO continuously and keeps the fundamental at DC in the down-converted signal x(f). However, the
position of the other harmonics is not constant in base-band. They suffer a homothetic transformation as
the momentum ramp advances. They change in position and spacing in the spectrum of the down-converted
signal. Fig. 3.7(b) depicts the situation at the end of the ramp (extraction) when the signal is sampled using
the same fixed frequency sampling clock clks at a rate fs= 20-10° sample/s. The analog spectrum remains
with the fundamental at DC Fy, = 0 kHz but the harmonics are now at F; = 3 kHz, F> = 6 kHz and
F3 =9 kHz. The sampling maps the harmonics to the discrete spectrum at w; = 2m-0.15 radian/sample,
w2 =2m-0.3 radian/sample and w3 = 2n-0.45 radian/sample. In this situation, the bank of filters is completely

misaligned, as no reconfiguration has been done.

27

Proposed processing Architecture

Legend: Sampling Clock/rate ¢ clks Analog Spectrum Fo Fi P, F Discrete Spectrum 20 @1 @2 @3
Processing (Filter) /™ \ @proc Harmonics A A Harmonics T T
|X(F) Down-converted 0, =21 - f,

Analog Spectrum

- 1
_>.:1'1
e

1S et
5

|X(¢)] Down-converted
Discrete Spectrum

| S T S | A |
% ! ! A,‘ - /@n
| [y sample”]
0 01 02 03 | 07 08 0.9 | L1 12 13 |
0.5 1 L5

(a) Analog and Discrete Spectrum at the beginning of the accelerating ramp, using a fixed frequency sampling clock

|X(F)| Down-converted
Analog Spectrum

FS
F, 1 F 2 F 3 F
b i
1 1 1 »-
0 3 6 9 |
10 20 30
|X(¢*)Down-converted
Discrete Spectrum
g i p 5 £ - wley
I f | * L] i [sample'l]
! Vb N2 U A !
! / \\L/ \ 7/ 1 \ 3 _
I ’) i : o
0 0.15 0.3 0.45 | 0.55 . . | 1.15 1.3 145 |
0.5 1 1.5
(b) Analog and Discrete Spectrum at the end of the accelerating ramp, using a fixed frequency sampling clock
[X(#) Down-converted
Analog Spectrum
F’s/2 F,
0 F 1 F: 2 F: 3 F
by i
—{ ' v >
0 3 6 9 |
15 30
|Y(¢”)Down-converted ,
Discrete Spectrum 12 S
fo /i iz 2 | A
'Y) i M ¢ o/ (2m)
AVARVARVARN RVARVA NS
. I >
0 0.1 0.2 0.3 3 0.7 0.8 0.9
0.5 1

(c) Analog and Discrete Spectrum at the end of the accelerating ramp, emulating a variable frequency sampling
clock with resampling of the discrete samples

Fig. 3.7. Representation of the beam signal in the acceleration process of the example in section 3.2.2.4: (a) depicts the spectrum
at the beginning of the ramp, (b) at the end of the ramp when the sampling clock is a fixed frequency one, and (c) at the end of
the ramp with a swept clock (or resampling).

28

Chapter 3. Beam Synchronous Processing Architecture

Consider now that the signal x[#] is resampled to y[m]. The sampling rate /s of the new signal y[m]
is dynamically modified during the ramp. The resampling ratio R is proportional to the variation of

frequency of the fundamental harmonic Fiey (increase in revolution frequency).

Fig. 3.7(c) depicts the end of the accelerating ramp but now following this technique. At the end
of the ramp, the variable sampling rate in the new signal y[m] reaches f’s = 30-10* sample/s. In this case,
the homothety is compensated and the mapping of the harmonics in the discrete spectrum remains at a
constant position, as a result of Eq.(3.1). The figure depicts first the analog spectrum of the signal that
remains the same (only the new sampling clock in brown moves). The discrete spectrum maps the
harmonics to the same position as at injection; wo = 2n-0 radian/sample, w; = 2n-0.1 radian/sample,
w, = 2m-0.2 radian/sample and w3 = 27-0.3 radian/sample. The resampling of the sweeping signal results
thus in the fixed discrete position of the harmonics. As a result of this, the filter bank, whose frequency

response has not been changed, remains also in tune with the harmonics.

The proposed Architecture is based on this resampling example. Instead of sampling the down-
converted signal with a swept clock, we use resampling. We resample the signal acquired with a fixed
frequency clock to obtain the same result as when using the swept clock. This tunes the discrete
representation wy of the signal frequency to the frequency wproc at which the processing algorithm has been

defined and that can remain fixed.

3.2.3. Resampling sandwich

The previous point has presented sampling rate conversion as the enabling solution for tuning
between signal and processing. Other elements or algorithms which operate at a fixed sampling rate in the
same data-path need, however, to interface the processing at a variable sampling rate, the BSP unit. This is
the case for instance of ADCs, DACs and the BAP unit that use fixed frequency clocks for the acquisition

and the processing.

The Architecture is capable of supporting both BSP and BAP by proposing a solution based on the
encapsulation of the BSP unit within two resamplers, depicted in orange in the functional sketch of the
Architecture in Fig. 3.1. This makes it possible to interface the processing at a variable sampling rate to
the rest of the system. The BSP is hence performed and encapsulated between the two resamplers, within
the so-called “resampler sandwich”. In that unit of the Architecture, the sampling rate is adapted
synchronously to the spectral content of the signal. The “adaptation to the content” follows the mechanism
presented in section 3.2.2.4. The resamplers perform the conversion between sampling rates, obfuscating
the fixed sampling elements in the data-path from the BSP unit. This makes the BSP resampling based
solution compatible with any data-path that in some stage uses a fixed sampling rate. Section 3.3 will show
the implementation details. It presents how a fixed processing clock can host a data-path with variable

sampling rate.

29

Proposed processing Architecture

3.2.4. Modulation architecture

Control algorithms for LLRF systems normally perform the processing in base-band. This concept
has been presented in section 3.2.2.4 where the signal x..,(f) was down-converted to base-band, x(¢), before
processing. In systems where the RF is fixed, the down-conversion of the signals to base-band can be done
with a static LO. In the SPS, the swept RF [50] poses a further requirement for the presented BSP
Architecture. We need a varying LO to down-convert the sweeping RF to base-band during the entire

accelerating ramp.

In small machines, the RF signals can be sampled directly and the down-conversion can be done
digitally by means of a digital mixer driven from a Numerically Controlled Oscillator (NCO) [71]. Larger
machines rely on RF demodulation [85]; a narrowband RF signal is down-converted to an IF with an analog
RF front-end using a signal coming from a LO. This IF signal is sampled and a second digital complex In-
phase and in-Quadrature (I/Q) mixer down-converts it to base-band, resulting in two components 1/Q whose
bandwidth is much smaller than the Nyquist rate of the digital processing. An output stage with a

complementary up-converter brings the signal back to the required RF frequency.

The presented Architecture supports all these options. Fig. 3.8 presents an example incorporating
all of them. In the figure, the RF is first mixed with an analog LO resulting in an intermediate frequency
IF1. The signal at this IF1 is sampled by an ADC. The RF component of the discrete signal is then digitally
down-converted to base-band within the FPGA using a second swept LO2. This LO2 is synthetized by an
NCO. The resulting IF2 (with the RF component translated to DC) is processed by a BSP algorithm. At the
output of the BSP, a second digital mixer performs up-conversion of the processed signal to an IF3. In the
figure, this LO3 is also swept and translates the RF from DC to a sweeping IF3. There the processing can
perform for instance BAP (this is the case in the figure). BAP algorithms are in general not dependant on
the instantaneous frequency of the RF, for instance, compensation of the reconstructing response of the
DAC. Finally, a fourth mixer recovers the RF signal sent to the amplifier after mixing with a fixed analog
LO. The digital LOs are reconstructed locally in the FPGA with the digital information received, the RF

frequency and revolution frequency.

Amplifier 1

RF i

BSP BAP | DAC ° i
LO4 :

Fixed

Swept] @ 1
IF2 IF3 ; RF i

Fig. 3.8. High-level representation of the different zones performing processing at different intermediate frequencies (IFs). In
the figure, the RF green zone is the region where the RF is at its nominal value. The IF1, IF2 and IF3 depict different regions in
which the RF is down-converted to other intermediate frequencies.

30

Chapter 3. Beam Synchronous Processing Architecture

3.3. Implementation of the Processing Architecture

This section presents the implementation details of the proposed Architecture, the data-path and other
supporting elements. We first introduce the high-level sketch of the Architecture at logical and physical
level including these supporting elements needed to make the functional model presented in section 3.2
feasible. We introduce the concept of decoupled data-path. Then in the following subsections, we present
how to implement such a data-path within an adaptation fabric in a digital device, for instance, an FPGA.
We show the required interfaces at logic and physical level performing adaptation of the data-path signals
between coupled and decoupled regions. Recall that we want to use the BSP Architecture inside a feedback
loop, as the example in Fig. 3.8, this is the reason why we place the second resampler as output stage
recovering the original sampling rate. We conclude presenting the functional model of the resampler, that

is developed in detail in Chapter 4, and the operational configuration of the Architecture.

3.3.1. Conventions

The following sections and chapters intensively elaborate on hardware signals and variables. A
convention has been stablished in the Thesis to denote signals and relates them to the variables that provide
its value. Hardware signals are represented with Courier font and no italics, x. When such a signal is the
physical implementation of a variable, the name used in the variable is the same when possible and is
represented in Times New Roman font and italics, x. A subscript is added when needed to variables and
signals to univocally identify them among related ones, for instance, Xin, Xout, Xin and Xou. In the case of
clocks, c1k proci, is the signal, at the input port of an entity, mapping the processing clock clk, with

frequency Fy.

3.3.2. High-level implementation sketch

The high-level implementation model of the proposed architectural solution supporting BAP and
BSP is depicted in Fig. 3.9. It maps the functional model of Fig. 3.1 depicting, in addition, the hardware
resources and blocks needed to make the implementation feasible. The mixing stages of the RF front-ends
are not included as we only focus on the data-path, however, the ADC and DAC are included in Fig. 3.9

to denote the fixed frequency clocking scheme used within the Architecture.

The implementation model contains two fabrics, the “Hardware fabric” in white and blue, and the
“FabRic with Adaptive aNd deCoupled clocking for SynChronous prOcessing (FRANCISCO) adaptation
fabric” in grey, yellow and red. The hardware fabric (the device hosting the Architecture, for instance, an
ASIC or FPGA) is used for implementation of the BAP where a standard data-path (coupled) is used. The
adaptation fabric is used for implementation of the BSP where a decoupled data-path is used. In a decoupled
data-path the processing and sampling clocks operate at different frequencies, and the number of processing
slots and samples needs not to be the same. Such a data-path requires an extra hardware signal, valid, to

flag the processing slots containing valid data. In a coupled data-path these two clocks operate at the same

31

Implementation of the Processing Architecture

frequency, all the processing slots are hence populated, and this line is not necessary. The hardware and
FRANCISCO fabrics coexist in the same device and need to communicate, note that the FRANCISCO fabric
is built on top of the hardware fabric. Two interfaces, the “MultiplE Rate and Clocking interfacE for Data
procEssing and Sampling (MERCEDES) Decouple and Couple interfaces” in green in the figure are these
unique data-path points linking the two regions. A Frequency-Locked Loop, the “JOintly Averaged and
QUaNtized rAtio (JOAQUINA) Frequency-Locked Loop” is set around the MERCEDES Couple interface
and the output resampler to correct for the truncation errors in the ratio signals of the resamplers, in red in
Fig. 3.9. These ratio signals are r in for the input resampler and r out for the output resampler. The

correction signal corr Ris added to r out before the output resampler.

In the FRANCISCO adaptation fabric, there are two sub-regions. The first, between the
MERCEDES interfaces and the resamplers, is a sub-region where the sampling rate is fixed and equal to
the hardware fabric. In the figure, that sub-region contains only the signals d_dcpl and valid connecting
the MERCEDES interfaces and the resampler. These signals compose a segment of the decoupled data-path
in which no processing is performed. That segment can nevertheless be used to implement BAP. The second
sub-region is encapsulated within two resamplers, in orange in the figure, and contains the red BSP
processing unit of the data-path (where the sampling rate varies). The data-path remains decoupled. This

second sub-region is hence defined as the “resampling sandwich”.

The resamplers are responsible for the sampling rate conversion in the data-path, and the
resampling ratio of the input resampler dictates the sampling rate within the sandwich. They operate with

the fixed frequency processing clock of the FRANCISCO fabric, the signal c1k dcpl in the figure. These

FPGA T T !
I I
| |
. | |
: |
Hardware Fabric : Sub-region Il (variable £;) 1
; - I : |
processing fp ot = A [Hz] : processing fp aepi =M+ A [Hz] :
clock clky signal c1k _cpl : clock el signal 1k depl |
sampling 1 I 2 T, |
me Joo =4 [sample/s] ! sampling />.dept = R *A [sample/s] 1
I rate rpep = (M)~ R :

|
I St |
| d-depl N d_depl :
| MERCEDES [a1ia it Té« valid 1
< Decouple qg; :
e A g |
2 ; CAn IR St |
d_in BAP_ ; Gatpl : 1
» Processing | LW v :
i BSP |
I ," . 1
i 4 Processing 1
d_out d cpl : | ; :
< Coupled data-path —— | * Decoupled data-path |
! ~— o 1
| j
! 2 1
----------------- I . id.depl & 1, ddepl !
MERCEDES [t 2114 g« e] :
FPGA Clock | CtE-depL Couple 2]
Manager clk cpl { 7) 1
ez corr_R Sy |

¥

clk r_in ! ik R?_/F :
Control Interface [£_out I o !

|
iR bRl O e IR R RS s SRR B e I S s SRS s LRI s e R s SRR I

[

Fundamental Frequency Information

Fig. 3.9. High-level sketch with the implementation of the proposed Architecture in an FPGA.

32

Chapter 3. Beam Synchronous Processing Architecture

different processing clocks and the ratio signals for resamplers are depicted with different colours in Fig.
3.9. The clocks related to the coupled data-path in the hardware fabric use the blue. The ones related to the
decoupled data-path in the adaptation fabric use yellow. The regions of the adaptation fabric having a
sampling rate equal to the hardware fabric will be depicted in yellow, the ones with a sampling rate that is
variable use the red colour. A dashed vertical line in pink denotes the partition of the variable sampling rate

(right) and fixed sampling rate (left) sub-regions in the FRANCISCO fabric.

At the functional level, the resamplers are hence the interfaces between the different sampling rates
and processing units in the data-path. At the logic and physical level, the MERCEDES are the interfaces
between the fabrics in the device (and the coupled and decoupled segments of the data-path), regardless of
the sampling rate that crosses these interfaces unchanged. We call “BAP region” the hardware fabric where
the data-path has a fixed sampling rate, and the sub-region in the FRANCISCO fabric where the data-path
has a fixed and identical sampling rate (sub-region I in Fig. 3.9). We call “BSP region” the sub-region in
the FRANCISCO fabric where the data-path has a variable sampling rate (sub-region II in Fig. 3.9).

The solution focuses on the use of a fixed processing clock. This is to be compatible with the use
of all hardware features of new hardware devices, such as FPGAs, that might not be feasible with a swept
processing clock [62], [94]. These devices are substituting Digital Signal Processors in LLRF systems.
They offer much higher processing rates, customization of the hardware, integration of resources and
parallelism. These devices are best suited to a fixed system clock. The Architecture replaces the swept clock
ofthe old solutions with the fixed frequency clock; this makes the implementation in uTCA systems suitable

[19].

3.3.3. Conceptual decoupled data-path

Section 3.2 has introduced resampling as the functional solution to tune the spectral content of the
signal to the discrete processing with fixed frequency response in the BSP region. This operation is used to
modify the data sampling rate as it is acquired with a processing clock having a fixed frequency at the
beginning of the data-path, the ADC in Fig. 3.9. This data leaves the processing device at the end of the
data-path towards a DAC that also uses a fixed frequency processing clock. The Architecture and the data-
path need therefore to support and accommodate fixed and variable sampling rates, the BAP and BSP
regions. As both regions are implemented in the same processing device, the resampling operation needs

to be as well.

Since we want to follow the momentum ramp of the accelerator, this sampling rate conversion
approach must implement a variable ratio, which should be feasible from a functional point of view. We
use the input resampler to define the sampling rate in the BSP region; the data arrives at the resampler at a
constant sampling rate, while the output rate is variable. This has, however, implications at hardware level
for both the resampler and the data-path; the clocking architecture and hardware need to support this

variable sampling rate.

33

Implementation of the Processing Architecture

Take the case of the hardware at the output port of the input resampler; when it operates with a
clock that has the same frequency as the sampling rate, this clock needs to vary and adapt its frequency (we
say that the frequency of the clock and the sampling rate are coupled). This situation is similar to the first
solution used for the implementation of the OTFB; the entire system clock was swept [10]. In our case,
instead of the entire system, only a part of the data-path (between the resamplers) sweeps the clock. We

want to avoid this, otherwise many of the problems presented in the previous chapters would be reproduced.

We hence need a feasible solution supporting the implementation in a digital device of a data-path
with a variable sampling rate but using a fixed clock for the whole hardware. Again, from a functional point
of view, when we study or develop an algorithm, we think of the data-path regardless of its implementation
(the hardware clock level); in that situation, the relevant information for us is the sampling rate of the data.
We abstract the sampling operation from the rate at which the data processing is performed. This approach
can be extrapolated to the implementation; the processing or system clock clk, and the sampling rate f; of
the data-path (equivalently the clock clks with frequency fs used for sampling of the data samples) do not

need to operate at the same frequency.

For simple systems the frequency of these two clocks is identical, the data-path is coupled; the same
clock or one with the same frequency is used in the ADCs, DACs and FPGA. If this is the case, all the
processing cycles in the data-path operate on valid data; all the processing slots contain data samples.
However, when the processing requirements are more demanding this paradigm limits the exploitation of

hardware capabilities, the use of new devices, and the implementation of more complex algorithms.

To overcome this limitation, the processing clock can operate the data-path at a different frequency
than the one used for the sampling. In the case of the resampler, the sampling rate at the input and output
will be different from the frequency of the hardware clock operating the data-path. The frequency of these
two clocks, sampling clock f; and processing/system clock f,, is hence different and the data-path is
decoupled. The paradigm abstracts the data-path samples from the hardware; the sampling frequency of the

data is decoupled from the hardware processing clock.

This paradigm requires only the processing rate to be higher than the sampling rate. This
requirement ensures that the data-path can absorb all valid data samples not overflowing the hardware; the
data-path operates at a higher frequency and can thus perform more operations than samples are available.
We say that there are more processing slots available in the hardware than samples in the data-path. The
decoupling idea is not new [70], [95]. It is widely used to implement time multiplexing of hardware

resources within digital systems, or for interleaving or serializing data.

Fig. 3.10 depicts the interleaving of three data channels in a single data-path. The three channels
are merged in the data-path by populating iteratively one processing slot per channel. Offline data

processing in a computer is also a similar concept. In that case, the processor operates the data at an arbitrary

34

Chapter 3. Beam Synchronous Processing Architecture

sampling clk nterleaving
S

clock

processing clock clk,

Uy Uyl

a a
H

channel 1 X X o X a0 x 7 \
channel 2 X X T X o X . _— K X dao X das X i X dio X s X de1)
/ interleaved data
(dw) di dc. d,
channel 2 X = X = X = X = 3 different channels
3 different channels/data-paths in a single data-path

Fig. 3.10. Representation of the interleaving process of three channels. The resulting data-path operates at a clock three times
faster than the sampling clock. The samples of the different channels are interleaved within the data-path.

system clock and later, it is the user who interprets and relates the samples to the sampling clock used in

the acquisition.

The motivation for this paradigm is in our case to make feasible a variable sampling rate in the
data-path of the BSP region between resamplers. Thus, we avoid the variable frequency processing clock
by decoupling it from the sampling rate; we use fixed-frequency clocks driving the hardware, both for ADC
and FPGA, and we decouple the sampling rate f; from the processing clock clk.

We want to use this paradigm in a feedback system, as in the example in Fig. 2.7, that requires
processing in real-time. This type of systems is implemented normally with a fixed sampling rate in the
data-path as the variable sampling rate varies the number of samples in the data-path. We are hence more
interested in computing the sampling rate in the decoupled data-path based on the average number of
samples within it; the sampling rate is a function of the number of samples present in the available
processing slots for a given period of time 1 (this period of time is not the sampling period 7 but the amount
of time in which the average sampling rate is evaluated). We call the relation between samples populating
the processing slots and the available processing slots the activation rate ar of the data-path. The number
of processing slots in a given period of time T is Nps = f, - 7. In that same period of time, an ADC at a
sampling rate f; acquires a number of samples Ny = f; - T sample. By populating the data-path with these

samples, the activation rate becomes

ar =Ny /N,= (f-0)/(f,1) =£11, Eq.(3.2)

Recall that there is no physical sampling clock as such in a decoupled data-path; the sampling rate
fs 1s hence an abstraction computed based on the activation rate and the operation rate of the processing

clock

fo=arf, Eq.(3.3)

When all the processing slots are populated, we reach the maximum number of samples in the data-
path. In this case, the sampling rate f; equals the frequency f, of the processing clock clk,; the data-path
operates at its maximum sampling rate. When not all the processing slots are populated, the sampling
frequency is lower than the processing clock. The distribution of the populated processing slots does not

need to be periodic. This concept is depicted in Fig. 3.11.

35

Implementation of the Processing Architecture

T=Ny T,=16" T, [s] fs=ar - f,=(8/16) - f, [sample/s]

(@) ¢ »
proscleostssing PSx X Pso X pPsi X ps2 X ps; X Psa X pPss x Pss Xps~ Xp35 X PSs Xpsw X psl;Xpslz xpsl3Xpsl4 X psMX
derett Y@K - fG@N - J@r - @) - @K - I - Ik - I@ - X

(b)) T=Ny T,=16"T, [s] fs=ar - f,=(10/16) - f, [sample/s] ‘
Sl o O £ £ 0 0, € £ C 00, €5, £ () C00 620 €2
gl) @) () @5 B @5 @5) @5 @5 @) @5) @ 5 @5 5|

(O]) T=Ny T,=16" T, [s] fo=ar - f,=(16/16) - f, [sample/s]
proccle Oscsking e lkp
processing ps, [e N s f oo oo Koo fper Koo Koo Noor K oo oou Koo Koo Koo foor oou X
SRl @ @5/ @5 @) @5 F)| @5 @D @) &h) @D @ &N TN @D @5 |

Fig. 3.11. Representation of the distribution of processing slots, the processing clock and samples in the data-path for different
sampling rates. The activation rate ar dictates the number of occupied processing slots for a given period of time t. In (a) the
activation rate is ar = 8/16, in (b) the activation rate is ar = 10/16, and in (c) the activation rate is ar = 16/16.

In Fig. 3.11(a) the activation rate is ar = 8/16, this results in one out of two processing slots
populated. This gives a sampling rate in the data-path for a time t of £; = (8/16) - f, sample/s. In Fig. 3.11(b)
the activation rate is ar = 10/16, ten out of sixteen processing slots are populated, with a burst in the middle.
This gives a sampling rate in the data-path for a time t of f; = (10/16) - f;, sample/s. In Fig. 3.11(c) the
activation rate is ar = 16/16, all processing slots are populated. This gives a sampling rate in the data-path
for a time 1 of f; = f, sample/s, the maximum sampling rate supported by the data-path. Such a decoupled

data-path solves our problem for a variable sampling rate operated with a fixed frequency processing clock.

3.3.4. Beam Asynchronous Processing fabric

The proposed Architecture supports both BAP and BSP. In the BAP region, we do not vary the
data-path sampling rate; the processing does not need to tune the spectral content of the signal. In this case,
the hardware fabric, with a data-path that has the sampling clock c/ks and processing clock clk, coupled, is
more suitable. Even though possible, the implementation of BAP in the decoupled data-path in sub-region
I of the FRANCISCO fabric results in a more complicated design. The preferred option is thus to use the
hardware fabric where the processing clock is a fixed frequency clock with the same frequency as the

sampling clock used to acquire the data, f, = f..

As in this case there is no abstraction of the hardware in the data-path, the FPGA hardware fabric
is used as it is. The same clock, or a clock at the same frequency, drives the ADCs and FPGA, and the

pipeline in the data-path does not need any special clocking architecture.

36

Chapter 3. Beam Synchronous Processing Architecture

A schematic representation of this standard data-path is depicted in Fig. 3.12. Two registers
encapsulate a “processing cloud” within the data-path of the signal d_in. In this case, the “cloud” contains
only combinatorial logic independent of the clocking signal. The fixed frequency clock drives only the
registers pipelining the data-path. Nonetheless, the processing can contain more complex elements, such as
DSP slices [96]. In that case, the clock is also fed to these elements. The simple model of the figure remains
valid as these more complex elements can be modelled and reduced to simple combinatorial logic pipelined

between registers.

| |
| |
| |
: d in d out :
| » d q d q > :
| w |
| |
| |
| |
| |
| |

Fig. 3.12. Representation of a coupled data-path with a cloud of logic encapsulated within two pipeline registers.

Fig. 3.13 depicts the relation between clocks, processing slots and data samples in this data-path.
In this case, the processing and the sampling are performed at the same rate; the clocks, clk, and clk; have
the same frequency, f, = f;, and all the processing slots are populated with data. Note that no extra logic
elements or signals are needed in the data-path. The processing clock (signal c1k in Fig. 3.12)is enough

to drive and operate the pipeline registers.

processing
clock clky
sampling
clock clks
processing 4. >< pso >< ps; X ps: >< ps; ><
slots

data-path d, ><><X><><

samples

Fig. 3.13. Representation of the relation between the processing clock, the sampling clock, processing slots and data samples in
a coupled data-path.

3.3.5. Beam Synchronous Processing FRANCISCO fabric

The decoupled data-path implemented in the BSP region is based on the adaptation fabric
FRANCISCO, introduced in Chapter 2 and section 3.3.2. This adaptation fabric is built on top of the FPGA
hardware fabric (BAP processing). It combines logic elements and the FPGA clocking architecture to
support the decoupled data-path concept presented in section 3.3.3. It adds very little extra complexity to
the system; the processing algorithms implemented in the fabric require an extra hardware line, valid,
one bit wide in the data-path. It is used to indicate which processing slots contain valid data, and which are

void slots.

A schematic representation of a segment of such a data-path implementing BSP based on the

FRANCISCO fabric is depicted in Fig. 3.14. The figure shows an implementation in which the valid line

is propagated in parallel to the data-bus signal of the data-path. At the output of the data-path segment, the

37

Implementation of the Processing Architecture

valid in valid out

Fig. 3.14. Representation of a decoupled data-path with a cloud of logic encapsulated within two pipeline enabled registers.
qualification signal valid is used to distinguish samples with valid data. Fig. 3.15 depicts the relation
between clocks, processing slots and data samples in such a data-path implemented in the FRANCISCO
fabric. The decoupling makes the processing clock clk, and sampling clock clks operate at different
frequencies. Recall that the sampling clock does not exist as a physical signal in the decoupled data-path.
It is just an abstraction indicating the average sampling rate of the data in the data-path. Not all processing
slots psx are populated, and the valid signal flags which ones contain valid data dx and which ones are
void or invalid (denoted with -) .

processing

clock clley
processing

slots PSx X PSo X pPs: X pPs2 X pss X
DRSS @' @5 () @5

samples

valid valid J L The average rate f; of valid data in a

i 1
sane decoupled data-path is depicted as the

sacmlpolcikng [clk, I—‘ |_| r] e sampling clock clk; but it does not

exist as physical signal.

Fig. 3.15. Representation of the relation between the processing clock, the average sampling clock, processing slots, the data
samples and the valid signal in a decoupled data-path.

The decoupling paradigm makes the use of the clocking architecture of the FPGA feasible with a
variable sampling rate. It solves the need for a fixed frequency clock that does not interfere with PLLs as
the swept clock would do. The Architecture has been developed with FPGA as target technology, however,
it can be migrated to ASIC technologies easily.

3.3.6. The ratio truncation and inversion

The high-level functional Architecture presented in section 3.2 does not consider the quantization
effect on real-valued variables, that are mapped to signals when discretized and implemented in a digital
processing system. This is the case for instance of our Architecture being implemented in an FPGA or an
ASIC. These quantization effects are especially relevant for the signals containing the resampling ratios

used in the resamplers.

Our BSP region is implemented within two of these resamplers. They modify the sampling rate of

their input data-path according to their resampling ratio R. In Fig. 3.9 the fundamental frequency

38

Chapter 3. Beam Synchronous Processing Architecture

information used to compute that value is externally provided by the control system via a control interface;
there the ratio value R is used to compute the ratio signals r in for the input resampler and r out for
the output one. As it will be presented in Chapter 4, the input resampler maps R to its ratio signal r _in in
the form of the value T_out n = 1/R. For proper operation of the sandwich, the output resampler needs the
ratio value to be the inverse of the ratio of the input resampler; the r out signal needs hence to adopt the
exact inverse value of the r in signal, this is R. This ensures that the sampling rate present in the data-
path before the input resampler, f; ¢ = A sample/s, is again perfectly reconstructed after the output
resampler, f; acpt = A sample/s. Recall that we intend to use this Architecture in a feedback loop. The input

and output resampling ratio signals need therefore to be exactly inverse for proper operation.

This is in practice impossible for any real-valued resampling ratio R after quantization. Any discrete
representation, as for instance fixed-point arithmetic, offers support for only a set of discrete values. Other
real values lying between two of the set of discrete values are truncated to either its upper or lower closest
neighbour. It is hence impossible to represent a real varying value without error. At some point, as the value

varies with infinite precision, the quantized signal will adapt a value which is not exactly in the discrete set.

Our ratios vary continuously with time and are therefore affected by this error; the signals r in
and r out that contain these discrete representations will not always be exactly inverse. They will not
always feed the perfect inverse ratios valued 1/R and R to the resampler. The engineering solution to deal
with this problem is to increase the number of bits in the digital word representing the real values. The
truncation error between the discrete representation and the real value can become negligible when,
depending on the application, a sufficient number of bits is used. This is effective for instance for the
processed signal in the data-path, where the precision is in any case limited by the resolution of the ADC
and DAC. The dimensioning of the digital representation of the data-path is hence based on that. This
solution is, however, not feasible for us in the control signals hosting the ratio values. We need perfect

inverse ratios and the error, even when very small using a huge number of bits, is not negligible for us.

Furthermore, the problem becomes more relevant in our Architecture; we need to compute the
inverse of R to obtain 1/R. The inversion is performed in a digital system with finite precision and is again
only accurate within an error range. Such operation adds and/or increases the error between the resulting
pair of discrete ratios. First, we quantize R when mapped to the output resampler signal r out, this
introduces a first truncation error. This quantized value is subsequently inverted in the system to compute
1/R for the input resampler signal r in. Note that the inversion is based on a value that already contains
an error. The resulting inversion hence accumulates the initial truncation error plus the error resulting from

the inversion.

An example of the resulting situation is depicted in Fig. 3.16 where two ratios are swept with time.
It shows both the contribution of the truncation error and the contribution of the computation of the inverse

ratio in a discrete system. The figure depicts a variable representing a ratio R and its inverse 1/R; the left

39

Implementation of the Processing Architecture

) In Ratio Real Value | Out Ratio Real Value
E 20.8
S 15} 1 =
= S
0.6 1
] 1 L 1 L L 1 L 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time [s] Time [s]
In Ratio Quant. Representation | Out Ratio Quant. Representation
(] o
=R = 0.8
= 1.5F =
= =
0.6
1 " 1 1 1 I I I I
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time [s] Time [s]
5 X 107 Truncation Error 5 X 10 Truncation Error
&3 &)
2 : : : : 2 : : : :
1 1.2 1.4 1.6 1.8 2 1 0.9 0.8 0.7 0.6 0.5
In Ratio Real Value Out Ratio Real Value

Fig. 3.16. Simulation depicting the truncation error for the up-sampling (left) and down-sampling (right) ratio signals.

column contains the plots of the R, and the right column contains the plots of the inverse ratio. The first
row depicts the real values of the ratios. The second row depicts the quantized representations of the real
values. Finally, the third row depicts the error, i.e., the difference between the quantized and real
representation. The inversion is computed in fixed-point arithmetic represented with sixteen bits: A sign
bit, three integer bits and twelve fractional bits. The input resampling ratio is swept between an initial value
of 1 at the beginning of the ramp, and an end value of 2. The sweep time is 1 s. The inverse output value
sweeps from 1 at the beginning reaching a value of 0.5 at the end of the simulation. The truncation error of
the input ratio follows a periodic pattern resulting from the truncation to the nearest neighbour, adopting a
magnitude in the worst case of half a Least Significative Bit (LSB), 1.22:10"*. The output ratio in the
example incorporates to this error the inversion error, making the total error to adopt a complex pattern

within the same range.

This results in practice in the impossibility to have two exactly inverse ratio values in the discrete
system. That is only achieved for a very limited set of simple cases, but never if the real-valued ratio varies.
For instance, the inverse of 1 is also 1. In that case, both same values can univocally be represented in fixed-

point arithmetic.

In our case, the vast majority of pair values will not be exact inverse ratios, and thus the product of
the pair will not result in the unit value. Fig. 3.17 depicts the product of the ratios of Fig. 3.16 during the
sweep; the left column depicts the real values, the right one the discrete representation. The first row
contains the input ratio, the second row the output ratio, and the third row the product of both input and
output ratios. The product of the real values gives as result 1 during the whole ramp. There is no error as
this product has infinite precision. The product of the discrete representations oscillates around 1 reaching

an error of magnitude of 2.5-10, above one LSB, due to the limited precision and the inversion.

40

Chapter 3. Beam Synchronous Processing Architecture

) In Ratio Real Value) In Ratio Quant. Representation
3 3
=15 = 1.5
= =
! : : : : ! : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time [s] Time [s]
| Out Ratio Real Value | Out Ratio Quant. Representation
208 2038
= =
0.6 0.6
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time [s] Time [s]
In-Out Product of Real Values In-Out Product of Quant. Representations
1.0005 T T T T 1.0005 T T T T
2 2
2 2
=% =%
0.9995 : : : : 0.9995 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time [s] Time [s]

Fig. 3.17. Simulation depicting the truncation and inversion errors; the ratio product results in a value different from 1.

The error in the product between two truncated inverse input and output ratios cannot hence be
solved by increasing the number of bits in the discrete word. This result for our BSP Architecture in a
discrepancy between the ratio values arriving at the resamplers. The discrepancy generates a difference
between the expected sampling rate and the real sampling rate achieved in the output port of the output
resampler of the sandwich. The difference in sampling rates hence changes the volume of valid samples in
the decoupled data-path, that can lead to a desynchronization between resamplers and fabrics. The solution
to the problem is introduced in section 3.3.7 where we present the MERCEDES interfaces and the
JOAQUINA loop. The MERCEDES Couple interface is first presented as an ideal interface regardless of

this issue and then upgraded to solve the problem.

3.3.7. MERCEDES Interfaces

The data-path uses interface entities in the input and output ports of the FRANCISCO fabric to
communicate with the FPGA fabric. Two entities have been developed for that, the MERCEDES Decouple
and MERCEDES Couple interfaces introduced in Chapter 2. The two interfaces are depicted in Fig. 3.9, in
the high-level sketch of the FPGA implementation. From a functional point of view, at application level,
they are transparent as the data-path sampling rate remains the same at those points. Note that they are not
depicted in Fig. 3.1, where we show the functional view of the Architecture. In these interfaces adaptation
is therefore only performed at logic and physical level in the signals of the data-path; they control the
valid signal and synchronize the different clock domains. The interfaces ensure the activation of the
valid signal in the correct processing slot at the input and the proper reconstruction of the coupled data-
path at the output. The first one, MERCEDES Decouple, is used at the input of the FRANCISCO fabric to
adapt the coupled data-path to a decoupled one. The MERCEDES Couple interface performs the

41

Implementation of the Processing Architecture

complementary operation, it is used at the output of the FRANCISCO fabric to adapt the decoupled data-

path to a coupled one. A detailed description is presented in the following subsections.

3.3.7.1. MERCEDES Decouple interface

The functional representation of the MERCEDES Decouple interface of Fig. 3.9 is depicted in Fig.
3.18. The input port of the interface receives the signals of the coupled data-path; these signals are
composed of the data-bus signal d_cp1l and the clock signal c1k cpl. The output port receives the signal
clk dcpl (that clocks also the output decoupled data-path) and provides the data-bus signal d dcpl

and the qualification signal valid for the processing slots.

In the input port, the processing clock and the data sampling clock have identical frequencies,
clk cplatf, =4 Hzand d _cpl sampled at f; ;1 = 4 sample/s. This port uses hence a coupled data-
path and it makes no sense to talk about activation rate (expressed in Fig. 3.18 with ar = -) as there is no

valid signal. The transitions in the data bus are synchronized with the rising edges of the clock.

In the output port, the frequency f; acpi 0f the processing clock c1k dcpl is an integer multiple M
of the frequency f; ¢pi of the input processing clock c1k cpl; fp aept =M - fp opp = M - A Hz. The transitions
in the data-bus signal, are also synchronous with this clock signal. The average sampling rate of the output
data-path remains the same f; 4cp1 = 4 sample/s; this is achieved by qualifying only the first processing slot

out of M with the valid signal active.

d dcpl
foon=A[sampless] dcpl] MERCEDES [—— fi_cep = A [samples]
- valid -
Jo_ep =4 [Hz] Decouple ——» fyap =M+ A[Hz]
ar= — clk cpl o clk dcpl ar = (I/M)
- M

Fig. 3.18. Functional representation of the MERCEDES Decouple interface. The input port interfaces a coupled data-path.
The output port interfaces the decoupled data-path.

A possible implementation of the MERCEDES Decouple interface is depicted in Fig. 3.19. In the
implementation, the entity receives both the input and output clocks provided by the FPGA clock manager.
The clock domain in the coupled data-path port (input) requires synchronization to the clock domain in the
decoupled data-path port (output). This is done with a series of registers that are clocked by the output clock
clk dcpl. The output port samples the synchronized data bus at the rate of the output port clock. To keep
the sampling rate constant in both ports, only one out of M clock cycles (the relation between clocks) is
qualified as valid at the output. For this, an edge detector monitors the input port clock c1k cpl. When a
rising edge is detected, a qualification signal enables the register driving the data-bus signal d_dcpl in the
output port during one clock cycle. This signal is also provided to the output port as the valid flag signal.
This architecture supports any integer relation between input and output clocks, as long as the frequency of

the c1k dcpl clock is at least the double of the frequency of the c1k cpl clock.

42

Chapter 3. Beam Synchronous Processing Architecture

MERCEDES Decouple

d cpl d decpl

> »d g > d g »d g »d g >
» enb
clk_cpl = valid
»d g »d g »d g »dq 4
— — —]

clk dcpl

Fig. 3.19. Schematic representation of a possible MERCEDES Decouple interface implementation.

Fig. 3.20 depicts a chronogram with the relation between signals at the input and output port of the
MERCEDES Decouple interface. The relation between clocks is M = 3. The latency through the interfaces
is omitted for simplicity. The chronogram depicts the data-path processing slots psx in d_cpl and
d dcpl, and the value dx (- when void slot) of the data sample in the bus signals. The qualified processing

slots in the output are signalled by the valid signal.

COUPLED processing clk cpl
INPUT clock -

PORT

data bus >< X X
..d 1 ..d

:datasample processing slots d_cpl b0 = 2 =

OUTPUT clock -
PORT
data bus Ps; >< ps; X PSs x PS4 X PSs x PSe i{
d dcpl
processing slots — P - Z - - Nde)\
M=3
qualifying)
: data sample signal valid

Fig. 3.20. Chronogram with the signals at the input and output ports of the MERCEDES Decouple interface.

3.3.7.2. MERCEDES Couple interface

The following section presents implementation details for the MERCEDES Couple interface. Two
solutions are presented; first, an initial idea where the inversion and truncation errors were not considered.
This solution serves to understand the interface from a functional point of view. A feasible solution was
found after analysis of the problems noticed in the verification. That solution is presented in the second

point of this section and shows the final implementation of the interface solving the truncation problems.

3.3.7.2.1. Initial implementation
The functional representation of the initial MERCEDES Couple interface is depicted in Fig. 3.21.
The input port of the interface receives the signals of the decoupled data-path; these signals are composed
of the data-bus signal d_dcpl, and the qualification flag signal valid. The clock signal c1k dcpl is
also provided to this input port. The output port receives the clock signal c1k cpl (that clocks also the

output coupled data-path) and provides the data-bus signal d_cp1l. The frequency f, 4cpi Of the processing

43

Implementation of the Processing Architecture

clock c1k dcpl inthe input port is a multiple M of the data-path average sampling rate f; 4cpi = A sample/s,
o acpt = M - A Hz. The activation rate of the valid signal is hence (1/M).

In the output port, the frequency f; p = 4 Hz of the processing clock c1k cpl has the same value
as the sampling rate f; ;1 = 4 sample/s of the data-bus signal d_cpl. Again, in this coupled port there is

no valid signal, it makes hence no sense to talk about activation rate (expressed in Fig. 3.21 as ar = -).

The relation between the frequencies of the input clock c1k dcpl and the output clock c1k cpl
in the interface is hence M, f; cpi = fp acpi/ M = A Hz. The sampling rate in the data-path remains the same

at both the input and output ports f; dacpl = fs opl = 4 sample/s.

J+ dept = A [sample/s] -&) MERCEDES |[<_cpl > Js opt = A [sample/s]
¥ s -

foam=M-A[Hz] ~ ————» Couple o o = A [Hz]

ar = (1/M) clk_depl | |clk cpl gp=-

Fig. 3.21. Functional representation of the MERCEDES Couple interface. The input port interfaces a decoupled data-path.
The output port interfaces the coupled data-path.

The initial implementation of the MERCEDES Couple interface is depicted in Fig. 3.22. The
synchronization between decoupled (input) and coupled (output) clock domains is done with a First-In-
First-Out (FIFO) memory. The interface stores the output samples of the sandwich in the FIFO. This is a
technique used for clock domain crossing and synchronization. This makes it possible to recover a uniform
input sample pattern with activation ratio ar = 1/M, with M the relation between the input and output
frequencies of the processing clocks, at the output of the memory. The idea is based on the reading of the
FIFO at the same effective rate at which it is written, in that case, the filling level remains constant. If we
analyse this again from a functional point of view, this results in the sampling rate passing unaltered through

the FIFO and the interface.

Looking at the inside, the entity receives both the input c1k dcpl, and output c1k cpl clocks
provided by the device clock manager, either ASIC or FPGA. The clock of the decoupled data-path is fed
to the write port of the memory. The input signal valid in the decoupled port is used to enable the write
port of the memory, WE. Only the samples marked as valid in the input data-bus signal d dcpl (one out

of M on average) are written into the FIFO. The output port of the entity is controlled by glue logic that

d depl T T T 1 MERCEDES Couple

i dout
FIFO —I_> d cpl
valid d g
»| WE RE
A level A enb
[

level

ready

\
[}
j
=]

v

A 4
y

e a_empty S E d d
©, R 9=
empt
clk_depl ety |_ l_ clk_cpl
R

Fig. 3.22. Schematic representation of a possible MERCEDES Couple interface implementation.

44

Chapter 3. Beam Synchronous Processing Architecture

monitors the filling level of the FIFO. FIFO memories provide embedded functionalities and signals for
this; however, we explicitly describe here a feasible implementation of such a logic based on a signal

level provided by the FIFO that shows the number of samples available within it.

We base on that signal our final implementation (section 3.3.7.2.2) that solves the truncation and
ratio inversion problems. The 1evel port of the FIFO is compared against two reference levels. A ready
signal is set in the comparison logic when the number of samples in the memory is above an operation
threshold, the ready level threshold. This threshold dictates when the FIFO is populated with enough
samples for the safe operation of the interface. A second threshold signal a_empty is set when the level
goes below a safety threshold, the empty level threshold. This second level is lower than the ready
level threshold, and halts the read port of the FIFO when it is “almost empty”.

The ready signal drives the set port of a Reset-Set (RS) register. The a empty signal drives the
reset port of the RS register. The output of this register is hence asserted when the number of samples in
the FIFO achieves the operational level. The register is de-asserted when the level goes below the safety
level. The output of the RS register drives the read enable port, RE, of the FIFO to control the synchronous
extraction of data. This data is latched in a register driving the data bus of the output port (coupled port) of
the entity. This register is also controlled by the RS register; the enable control port is driven by a

synchronized version of the RS output signal.

The resulting interface architecture supports any relation between input and output clocks. For
proper operation, it requires an average sampling rate in the decoupled input port, the same as the sampling
rate of the coupled output port. The operation and safety levels of the FIFO allow for variation of this input
rate, however, in the long-term the average needs to be stable. Fig. 3.23 depicts a chronogram example of
the relation between signals at the input and output port of the MERCEDES Couple interface. The relation
between clocks is M = 3. The chronogram depicts the data-path processing slots psx in d_dcpl and
d_cpl, and the value dx (- when void slot) of the data sample in the bus signals. The qualified processing
slots in the input are signalled by the valid signal. The latency through the interface has been omitted for

simplicity.

DECOUPLED processing clk_depl J_I_I_I_I_I_I_I_I_I_I_I_I_I_I
INPUT clock -
PORT So \/ ps: \ Ps; [ps; \ ps: [oss | pse
dA - _ dR — - d(‘
M=3
qualifying
. valid
: data sample signal
COUPLED i
processing J—I—l—l—li
OUTPUT clock cept

PORT

data bus >< X X
d s1 (d]

(@) data sample processing slots - o °

data bus

: d dcpl
processing slots —

Fig. 3.23. Chronogram with the signals at the input and output ports of the MERCEDES Couple interface.

45

Implementation of the Processing Architecture

3.3.7.2.2. Final implementation

The MERCEDES Couple interface has been modified to cope with the inversion and truncation
problem presented in section 3.3.6. These problems result in a difference between the expected sampling

rate in the input and output ports of the interface.

Analysing in detail Fig. 3.22, we can see that a clock generated by the device clock manager is
used to read the output port of the FIFO memory. This clock c1k cpl has a “perfect” fixed frequency
fo_cpt = A Hz. This frequency has the same value as the sampling rate f; ¢, = 4 sample/s of the coupled data-
path of the interface. This value is also the expected sampling rate f; acpt = 4 sample/s of the decoupled data-
path port of the interface, the same at the output port of the output resampler. This is the case when the
values R and (1 / R) of the ratio signals r out and r in of the resampling sandwich are perfectly inverse,
and thus f; ¢pl = f5 dept = A sample/s. In this case, the level of the FIFO remains constant; the writing rate is

the same as the reading rate.

As we saw in section 3.3.6, the value of the ratio signal in the input resampler can have some error.
This error makes the sampling rate in the output port of that resampler not exactly fs ot = R - 4 sample/s
but f; aep = R - 4 sample/s, with R = (1 + €;) - R the actual value of the truncated resampling ratio and €, the
magnitude of the truncation error. If the value of the ratio signal in the output resampler compensates that
error (its value R becomes perfect inverses of the input, R = (1/ R)), the error would cancel in the sandwich.
This would make the rate in the output port of the output resampler be again f; 4oy = R- R- 4 = A

sample/s.

But this is not the case, and due to the error between ratios, the rate in the output port of the output
resampler becomes f; apl = (1 + €) - A sample/s, with R - R = (1 +). The variable ¢ is the resulting
magnitude of the error from the ratio truncation in the input resampler and the inversion; it makes the ratios
diverge. In Fig. 3.17 e has a worst-case magnitude of 2.5-10* for fixed-point arithmetic represented with
sixteen bits: A sign bit, three integer bits and twelve fractional bits. This is in the order of one LSB. When
this is the case, the frequency of the clock used to read the memory and the data rate at the read port, is
different from the rate at which the data arrives at the memory, f; ;1 = 4 sample/s vs f; apt = (1 + €2) - 4
sample/s respectively. This results in fluctuations in the FIFO level, that can lead to underflow or overflow

in the long term.

The discrepancy between sampling rates that produces the fluctuations results from the truncation
and inversion errors in the ratios. If the ratios are kept constant the fluctuation of the FIFO level is
monotonic for a given pair of ratios. However, our ratios change with time, hence the variation in the level
of the FIFO becomes dependent on the different pair of imperfect inverse ratios. The error accumulates thus
through the FIFO level resulting in the known and studied problem of the Random Walk [97]. The computer

simulations of the interface were not able to accumulate enough simulation cycles to make the sandwich

46

Chapter 3. Beam Synchronous Processing Architecture

lose the synchronization between resamplers due to overflow or underflow. However, the verification in

the laboratory quickly revealed the problem. Further results are presented in Chapter 5.

The solution to cope with the problem is to keep, on average, a perfect inverse ratio between
resamplers. For this, we exploit the fact that the FIFO can absorb small instantaneous fluctuations deviating
from the average. The JOAQUINA Frequency-Locked Loop is included around the MERCEDES Couple
interface and the output resampler. It acts by providing corrections to the output resampling ratio, that keep
the sampling rates equal in average at the input and output ports of the MERCEDES Couple interface, and
thus f; cp1 = f5_depl = 4 sample/s. This makes inverse ratios possible, on average, between resamplers. As the
divergence and the corrections have very small values and keep the average constant, the modulation of the

resulting signal due to the variations in resampling ratio is negligible.

This mechanism is based on the comparison of the FIFO level against a reference value. When the
sampling rates in the interface are equal, the FIFO level does not fluctuate. When the difference in the
product of the ratio signals is larger than one LSB, the level starts to diverge. The resulting error signal

from the comparison of levels is used as a correction for the ratio in the output resampler.

The modified MERCEDES Couple interface is depicted in Fig. 3.24. The level of the FIFO memory
that should be stable in operation is compared against the ready level. The resulting error signal e R is
scaled by a gain factor K and propagated out of the resampler as the corr R signal. This signal is used in
the output ratio JOAQUINA Frequency-Locked Loop. The gain K acts as a scaling of the level error to make
the loop more reactive or damp its response. We have experimentally verified that a scaling factor, that
results in a value of one LSB for the corr R signal, keeps the Architecture stable and operational when

the difference between levels is one memory position of the FIFO.

The high-level Architecture presented in Fig. 3.9 implements this modified MERCEDES Couple
interface. The ratio Frequency-Locked Loop is fully depicted around the output resampler and the
MERCEDES Couple interface. This interface outputs the correction error signal corr R which is added
to the output ratio r _out. This solution keeps the sampling rate at the output port of the output resampler,

on average, at the same fixed sampling rate present before the input resampler, f; d¢p1 = 4 sample/s. Thanks

d depl MERCEDES Couple
P> din
d_cpl
valid . |—> d g >
i A level » enb
corr R
» d q »
—1» enb
—» d a -
-
clk_depl 1_ clk_cpl
frentin) .

Fig. 3.24. Schematic representation of a possible MERCEDES Couple interface implementation with the correction signal
corr Rused to create the JOAQUINA Frequency-Locked Loop to cope with the truncation error in the output resampler ratio.

47

Implementation of the Processing Architecture

to this loop, the interfaces are transparent from a functional point of view, they keep the sampling rate

constant at its inputs and outputs, performing only adaptation at logical and physical level.

3.3.8. Real-time variable ratio resampler with decoupled data-path

Beam Synchronous Processing is performed within the BSP region after adaptation of the sampling
rate in the data-path. We have already introduced the two resamplers, depicted in the functional and
implementation sketches of the Architecture. Traditional arbitrary ratio resamplers use the ASRC approach
introduced in Chapter 2; the input port uses a hardware processing clock with the same frequency as the
input sampling rate, and the output port uses a second hardware clock at the same frequency as the new
output sampling rate in the data-path [74]. We wanted to avoid implementation problems in our SSRC
derived from this output clock (swept in our case); our resampler is implemented within the FRANCISCO

fabric to decouple the clocking architecture and the sampling rate.

As resamplers based on a decoupled architecture are not common, we have developed a new one
exploiting such a paradigm. It uses the same hardware processing clock in both input and output ports, and
at the same time makes it possible to have a variable sampling rate in the data-path. This new resampler is
hence the key element in the proposed Architecture that enables the change of the data-path sampling rate
with a fixed frequency processing clock. Chapter 4 is dedicated entirely to the resampling architecture; it
presents in detail the concept and implementation, but a brief introduction is anticipated here to provide the

reader with its foundations. Fig. 3.25 depicts schematically the signals of its physical interfaces.

d dcpl 777y, d depl
Input data-path ‘#’; s , Output data-path
(Decoupled) &PE Lé wvalid (Decoupled)

i]

! s |
processing clock: E é E processing clock:
fo=M- A[Hz] ‘~.,=:|1*' fo=M- A[Hz]
sampling rate: § sampling rate:
fs= A [sample/s] f.l f’s=R - A [sample/s]
ar=1/M al o ar’=R/M

Fig. 3.25. Schematic representation of the developed resampling architecture with decoupled data-path (Chapter 4).
Both, the input and output ports interface the decoupled data-path signals; the data bus d_bus, and
the qualification signal valid. In addition, the decoupled processing clock clk dcpl operates the

hardware and the resampling ratio R is dictated by the value of the signal r.

The resampler operates by modifying the number of samples in the data-path at its output. For this
to happen in the case of up-sampling, it interpolates a new sequence that populates some void processing
slots. In the case of down-sampling, the interpolation reduces the number of samples and some previously
populated processing slots become now empty. The value of the resampling ratio R, that relates the input

and output sampling frequencies, dictates the case. The valid signal indicates the populated processing

48

Chapter 3. Beam Synchronous Processing Architecture

slots. The activation rate ar of this signal is hence also modified by the resampling ratio, and its relation

between the input and output ports of the resampler becomes

ar’=ar - R Eq.(3.4)
The resampler of Fig. 3.25 uses a processing clock c1k dcpl at a frequency f, = M - A Hz. The
sampling rate at the input is fs = 4 sample/s. So that only one out of M processing slots is occupied. The
activation rate at the input is hence ar = 1/M. According to Eq.(3.4), the activation ratio becomes at the
output of the resampler ar’ = R/M. By using Eq.(3.3) we can relate the sampling rate of the data-path at

the output port of a resampler with ratio R to the processing clock resulting in

fs=R-f;=R-ar f =ar-jf, Eq.(3.5)

3.3.9. Resampling ratio and BSP processing relation

The proposed BSP Architecture modifies the sampling rate of the processed signal to tune its
resulting discrete representation ¥(¢") to the frequency where processing is defined . as depicted in Fig.
3.6. The tuning element is the input resampler and the parameter used in the tuning is hence its resampling
ratio R. We need to know how to compute this ratio based on the frequency information of the fundamental

tone of the processed signal.

Recall that the processing is performed after resampling to a rate f’s. The signal y[m] at the output
of the resampler is thus the discrete sequence tuned to the processing. It approximates a signal acquired

with sampling rate /s = R - fs.

The response of the processing algorithm in the frequency domain, for instance a filter, is defined
at a fixed normalized frequency wproc in the resampled domain. When the ratio R is properly selected, the
normalized frequency wx = 2= - f, radian/sample of the fundamental tone Fx Hz in the signal x[n] matches
the response of the processing defined in the resampled domain at wproc = 27 - fproc radian/sample. We need

thus to compute R to map wxto wproc in the resampled domain.

That is equivalent to say that we want to match the absolute analog frequency of the processing

Foroc with the frequency of the tone Fx

F -F Eq.(3.6)

proc X

Looking at the problem from the input of the resampler, that absolute analog frequency becomes

F;)TOC = f}‘)roc .f’S = f}‘)roc. R .f; Eq'(3'7)

By inserting Eq.(3.6) in Eq.(3.7) and reordering, the resampling ratio results in

R = Fx /(f;)roc.f;) Eq(3.8)
This resampling ratio R is the ratio needed in the input resampler of the sandwich. It needs to be

updated in real-time to track the changes in the fundamental frequency of the signal.

49

Implementation of the Processing Architecture

When operating two resamplers in a “sandwich” configuration, we have seen that the output
resampler requires the inverse value of the input resampling ratio to properly recover the original sampling
rate of the signal prior to the BSP region. This requires from the Architecture not only the JOAQUINA
Frequency-Locked Loop but also the output ratio to be synchronized with the samples in the data-path; the
instantaneous value of the resampling ratio needs hence to match the instantaneous sampling rate of the

data arriving at the resampler.

As the resampled data-path signal is being processed in the BSP region after the input resampler,
the output ratio needs hence to be synchronized with the arrival of that data to the output resampler. It needs
to mimic a latency equal to the latency of the processing in the BSP. This is depicted in Fig. 3.26; a register
chain mimicking this BSP processing latency is placed in the ratio signal r out before the output

resampler. The synchronized signal is then fed to the output resampler as r out_s.

| |
| |
: Latency L :
| LeTTTT & |
I y 6 I
| [w B |
| d-decpl > E 5o d-depl > H : E }IS yd-depl }i 5 d_ decpl > |
| valid g & i valid LA 2§ i valid i & il
: TLoE TR 8 B THog g
' Pg (A8 Pg '
1
[L CooB 2 L !
I S ! A~ g R !
’

| : \ =), !
| R L |
| Bl |
| |
| riout IS |
| = d g — !
I - !

|
: clk - depl |
| |

Fig. 3.26. Schematic representation of a processing segment in a decoupled data-path between two resamplers. The ratio signal
fed to the output resampler r _out s mimics the latency through the processing.

3.3.10. Input signal bandwidth limit

The proposed BSP Architecture performs processing of a sampled signal and modifies its sampling
rate. The resampling operation (we consider an ideal resampling without quantization of signals) imposes
some constraints on the maximum absolute bandwidth, BWsignaL, that the treated signal can contain at the
input of the BSP Architecture. These constraints come from two sources; first the absolute Nyquist
frequency Fny of the signal in the data-path that is the highest frequency that can be coded at a sampling
rate f;. The second is the input bandwidth of the resampler, bwrsp = a - 0.5 with a < 1, that is the range of
normalized frequencies for which the resampling architecture has been optimized and can hence be

resampled (further information will be presented in Chapter 4).

Fig. 3.27 depicts the sampling rates, Nyquist frequencies and normalized resampler bandwidths
present in the data-path segment of Fig. 3.26 that models the BSP Architecture. We will consider as starting
point the input resampler, disregarding the output one, to derive the maximum normalized bandwidth,

bwsignar in Eq.(3.9), that the input signal can contain.

50

Chapter 3. Beam Synchronous Processing Architecture

Fyxy =f /2 [Hz] Ny iy e o i P 1 8 | iy el a6 bl

| Optimized BW Optimized BW :
: for the input resamplet: for the output resampler: ey
| bwkgpme [0, 03 o 05] [cycle/sample] Lol Sso bWRSPom€ [07 Ok Rm 2 05] [CyCIC/Sample] E/ :
| ,” ‘:\\ (with respect to the sandwich input £) LE |
| ,—-—L i = N PEEE § — |
| i | * : %D % H ¢ | N 5 |
wl i Iy e
: d in = E <] | dmid L@ g i d mid ‘E %«i } d out = = :
| * 7 », £ i . x »” N 1) = ¥ % », g. g % I =
| valid in = oy 8' ! valid mid =] m o S ! valid mid . - S| valid out o % |
| -1 L g B Lol = S
| -~ E'VYI u‘ [a® 8 ,’l 0 n'p{l <E |
' : 5 Ay : i
| Rin I \\ b Roul ot 1/Rin | , U |
| | S A i Sampling frequency: Py
: Sampling frequency: | Sampling frequency: s s R e Ran - R o fes C |
I f. [sample/s] I f’s=Rin- f. [sample/s] | f: [sample/s] <ZE :
| | ‘
l I : [
: Nyquist frequency: | Nyquist frequency: ; Nyquist frequency: 5 |
2 |
l |
: ; : '

Fig. 3.27. Schematic representation of the relations between sampling frequencies, Nyquist frequencies and resampler
bandwidths in the BSP Architecture.

bWgenar = BWaonaL ! /. Eq.(3.9)
First, note that a resampler has two ports with different sampling rates. The Nyquist frequency for
the treated signal in the resampler is hence defined as the most restrictive one of the Nyquist frequencies
between the input port Fxy=fs / 2 and the output port F'xny =f’s /2= Rin - (fs/ 2). We can normalize these
Nyquist frequencies to the input sampling rate as fvy = Fxy / fs and f'ny = F/'ny / fs respectively. In the case
of up-sampling, the most restrictive one is found in the input as the resampling ratio is larger than one,
Rin > 1. In the case of down-sampling it is the output who imposes the Nyquist frequency of the resampler

data-path, as the resampling ratio is smaller than one, Ri, < 1.

These boundaries are depicted in Fig. 3.28, where we present the configuration found in the input
resampler. The resampling ratios accepted in this case are Ri, € [0.5, 2], and its interpolator has been
optimized to operate in a normalized bandwidth bwrspin = o - 0.5 with oo = 0.6 (we anticipate here some of

the characteristics of the resampling architecture that will be presented in Chapter 4). The magenta trace

| Normalized bandwidth limit for the input signal of the input resampler
T T

— Normalized Nyquist frequency @ input port fNY

Normalized Nyquist frequency @ output port fNY

(.8 | — — Normalized optimized bandwidth of the resampler hWRSPm —

== Normalized bandwidth limit fBWup

=)
>
T
|

F/fS [sample'l]
<
~
T
1

021 _

| |
1 1.5 2
Input Resampler Ratio R, [f'g/fg]

oo
W

Fig. 3.28. Derivation of the bandwidth limit for the input resampled signal for a single resampler.

51

Implementation of the Processing Architecture

depicts the normalized Nyquist frequency of the input port of the resampler, in this case, it adopts a constant
value fny = 0.5. The green trace depicts the normalized Nyquist frequency of the output port
f'ny(Rin) = Rin - 0.5. This frequency varies as a function of the input resampling ratio Ri» and spans between
0.25 for Ri» = 0.5, and 1 for Rin = 2. The dashed line presents the upper frequency for the normalized
optimized bandwidth of the resampler that spans up to bwrspin = 0.3. The blue trace depicts hence the upper
limit frequency fewwp = FBwup / fs for any input signal in the normalized bandwidth that the resampler can
treat (the absolute bandwidth BWsignar is defined as the range of accepted frequencies for the signal
FsionaL € [0, Fawup)). The reader can notice that only for resampling ratios Ri, < 0.6 does the output data-

path limit the maximum frequency of the treated signal, besides that it is the interpolator that sets the limits.

We extend the analysis now to the output resampler of Fig. 3.27. In this case, the input sampling
rate f’s is variable and governed by the configured ratio Rj, in the input resampler, f°s = Rin - fs. The output
sampling rate f”’s however, is fixed; the ratio Ro. is computed to be the inverse Rou= 1 / Rin, depicted with

an orange line in Fig. 3.29. The output sampling frequency is hence /s = Rout * f's = Rout * Rin * fs = fs.

We also depict in Fig. 3.29, the boundaries, as we did for the input resampler, normalized to the
sampling frequency f; in the signal at the input of the sandwich. This resampler is identical to the input one,
Rout € [0.5, 2] and bwrspour = o * (Rin * 0.5) with o = 0.6. The green trace depicts the normalized Nyquist
frequency of the input port, that it is the same as the one of the output port in the input resampler fnv(Rin)
= 0.5 - Rir. Note that this is normal as both resamplers share that segment of the data-path. The cyan trace
depicts the normalized Nyquist frequency of the output port f*'nv = F''ny / fs = 0.5. As expected, it adopts
the same value as the input of the sandwich. The dashed line presents the upper frequency for the normalized
optimized bandwidth of the resampler. In that case, as the input sampling rate varies, the upper limit does
it as well resulting in dbwrspou = 0.3 - Rin. The red trace finally depicts the upper limit frequency
f’Bwwp = F’Bwyp / fs in the normalized bandwidth for the signal present at the input port of the output

resampler. In this case, it is the optimized bandwidth of the resampler that sets the limit for ratios below

Normalized bandwidth limit for the input signal of the output resampler
T T

Normalized Nyquist frequency @ input port fNY
Normalized Nyquist frequency @ output port /"NY
08 H Normalized optimized bandwidth of the resampler bw

Normalized bandwidth limit 'fBWup

RSPout

Output resampler ratio Rout 415

=
(o)
T

F/ fS [sample l]
(e
-~

|

Output Resampler Ratio Rout [f"s/ f's]

02 /

I L 0.5
1 1.5 2

Input Resampler Ratio R, [fg/fg]

oo
W

Fig. 3.29. Derivation of the bandwidth limit for the input signal of the output resampler in a sandwich configuration.

52

Chapter 3. Beam Synchronous Processing Architecture

Rin <1.66 (or equivalently Ro, < 0.6024). For larger ratios, with the second resampler configured as a down-

sampler, the output Nyquist frequency sets the limit.

Now we have the normalized bandwidth limits for the input signals in both resamplers, fawyp and
f’Bwup. Both of them are referred to the sampling rate f; at the input of the sandwich; we can hence compute
the maximum normalized bandwidth dwsignar, that the treated signal in the BSP Architecture can contain,
as the set of the most restrictive limit frequencies of the two resamplers. This is depicted in Fig. 3.30, where
the blue trace depicts the upper limit frequency fawy, in the normalized bandwidth of the input resampler,
the red trace depicts the upper limit frequency f’swyp in the normalized bandwidth of the output resampler
and the black trace depicts the resulting upper limit frequency fswup-sandwich combining both resamplers. The

normalized bandwidth bwsignar for any signal at the input of the BSP Architecture is hence limited to

bwginar : X (f) with [~ € [0, fBWup—sandwich] Eq.(3.10)

with the absolute upper limit for the real signal defined as

FBWup-sandwich = f; .fBWup-sandwich Eq'(3.11)
{ Normalized bandwidth limit for the input signal of the sandwich
T T
Normalized bandwidth limit for the input resampler fBWup
Normalized bandwidth limit for the output resampler 'fBWup
().8 || === Normalized bandwidth limit for the sandwich fBWup-sa.n dwich -
‘o
= 061 .
5
L
7
T 04r -
S
0.2 / .
0 | |
0.5 1 1.5 2

Input Resampler Ratio R, [f's/fs]

Fig. 3.30. Derivation of the bandwidth limit for the input signal of the sandwich based on the input and output resampler limits.

3.4. Conclusions

The chapter has presented a new architectural solution for Beam Synchronous Processing in a digital device,
either FPGA or ASIC, with a fixed frequency system/processing clock. This new Architecture contains
both BSP and BAP regions. The BAP contains processing whose functionalities are not dependent on the
parameters of the signal. The BSP automatically tunes the signal to the algorithms. The BSP and BAP

regions support the porting of any new or existing algorithm, requiring no specific modification of such

algorithm.

53

Conclusions

The only implementation constraint is to use a decoupled data-path in the BSP region. This BSP
region is built on top of the FPGA fabric in an adaptation fabric, the FRANCISCO fabric that adapts the
data sampling rate to the signal spectral properties. This avoids the reconfiguration of BSP algorithms in
real-time. The data-path interfaces the FRANCISCO fabric by means of dedicated points, the MERCEDES
interfaces. These interfaces perform coupling and decoupling of the data-path and synchronization of its

signals; they act at logical and physical level.

Within the FRANCISCO fabric, two resamplers encapsulate the BSP region. The input one
performs the conversion of the fixed sampling rate, at which the data arrives at this BSP region, to a new
rate proportional to the signal spectral content. At the output port, a second resampler brings the signal back
to the original fixed rate. The resampling ratio values of the resamplers are reciprocal (inverse) and vary

dynamically. The resamplers interface the different processing regions at functional level.

The implementation problems, truncation of values in digital signals and synchronization, have
been presented and solved. The main concern has been to obtain a perfect pair of resampling ratios with

inverse values between resamplers. The problem is solved with the JO4QUINA Frequency-Locked Loop.

54

Chapter 4

Arbitrary and Real-Time Variable Ratio
Resampling Architecture

Abstract: This chapter presents a new solution for
Sampling Rate Conversion in which the ratio can take
any value and can be modified continuously enabling

Beam Synchronous Processing. The architecture is based
on a Farrow-based Variable Fractional Delay filter and
a timing unit element. The resampler architecture is
optimized for modern FPGA devices. It decouples the
processing and sampling clocks, and uses a single
processing (hardware) clock whose frequency remains
fixed. First, a high-level overview of the architecture is
presented. Then the implementation details of the
different resampler blocks are elaborated.

4.1. Introduction

The previous chapter has presented an Architecture that makes Beam Synchronous Processing possible by
resampling the treated signal. The Architecture uses two resamplers that modify the sampling rate of the
signal to tune the representation of the spectral content to the processing algorithm. These resamplers are
the key element of the BSP Architecture, but in Chapter 3 only the functional model has been introduced.

This chapter presents the internal architectural and implementation details.

4.2. Proposed Synchronous Sampling Rate Conversion
architecture

Any digital resampling architecture contains two functional elements; an interpolator and a timing unit.
These elements are common in up-sampling and down-sampling architectures. The resampling operation

first requires the determination of the time instants (or a derived parameter of these) in which the output

55

Proposed Synchronous Sampling Rate Conversion architecture

sequence needs to be estimated. Then a second process interpolates the output value at those instants using
the available samples in the input sequence [78], [98]. The first process requires a timing reference and the
resampling ratio R, Eq.(2.2). The second uses the input samples x [n] and the output result of the timing

process, m. Sampling rate conversion is therefore a twofold process.

The Thesis proposes a resampling architecture with these two functional units fulfilling the
requirements presented to the Architecture in Chapters 1, 2 and 3. Fig. 4.1 depicts our resampler model,
and illustrates the relations between the two functional elements implementing the interpolation process
and the timing unit. The blue block performs the mathematical operation of interpolation, and the red block
computes the sampling instant dictated by the resampling ratio R and the reference n. The figure presents
the flow of signals and relations between the main blocks. Our resampling architecture is generic accepting
up-sampling or down-sampling ratios. It addresses SSRC; for that it uses the input sequence as timing
reference and computes the output time instants based on the resampling ratio. The resampling ratio, that

can adopt any arbitrary and variable value, is made available to the resampler via an external signal, R.

PROPOSED SSRC ARCHITECTURE

VARIABLE
»| FRACTIONAL DELAY FILTER y[m]

INTERPOLATION OF THE
OUTPUT VALUE

ylm]l= x[n -dly]

A A valid_out
N

>

dly

new_spl DIANA ENGINE

COMPUTATION OF THE
R SAMPLING INSTANT

dly = f(R)

Y

Y

Fig. 4.1. Proposed synchronous sampling rate conversion architecture, the resampler.
The remaining of the section presents the mathematical process behind the interpolating block from
a functional point of view, and regardless of any implementation detail. It shows that the two families of
resamplers, classified based on the resampling ratio value, can use the same interpolating unit. It then

elaborates a second classification according to the timing reference block introduced in Chapter 2.

4.2.1. Interpolation between available samples

The interpolator block performs interpolation; this is a mathematical process used for estimation of
the values of an unknown function at points where no information is available. The unknown function is
approximated by a second function, for instance a polynomial, that fits a discrete set of known values. Then,
when an unknown value is required it suffices to evaluate the polynomial at the required point [99].
Sampling rate conversion is an analogue process in which the input samples are the available information,
the input signal is the approximated function, and the output sampling instants are the points where no

information is available.

56

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

It is common to distinguish between sampling rate conversion structures for up-sampling and
down-sampling [72], [100]. We can classify the resamplers in two families according to the number of
output samples computed by the interpolator, with respect to the number of samples in the input sequence.
That relation is the resampling ratio R, Eq.(2.2). Fig. 4.2(a) depicts an example in case of down-sampling,
sampling rate conversion with a ratio R smaller than one. In that case the number of samples at the output
is smaller. This makes the spacing between output samples larger; the output sampling period is larger. In
case of up-sampling, depicted in Fig. 4.2(b), there are more samples at the output and the spacing between

them is smaller than at the input; the output sampling period is smaller.

(a) Input sequence Output sequence
x[n] 7 yIm]
R="= <1
.fS
—_—
| : | ;
Sampled at f; ! Sampled at /7
(b) Input sequence Output sequence
x[n]) ylm]
R=Le)
S
i
| : alfiE
Sampled at f; Sampled at £’

Fig. 4.2. (a) Sampling rate conversion for R < 1. (b) Sampling rate conversion for R > 1.

In any case, regardless of the resampling ratio, each output sample is computed based only on a
given set of neighbour input samples. This dependence abstracts the interpolator from the ratio; the two
families of resamplers operate only with input samples and a desired time instant. From a mathematical
point of view, there is thus no difference between up-sampling and down-sampling. This implies that the
same interpolating unit can be used for both families. We illustrate this in Fig. 4.3, where only a single
output sample (in green in the figure) is depicted. The output sample is obfuscated from other samples in
the output sequence. It can result from either up-sampling or down-sampling. In any case, the only

information the interpolator uses are the five available neighbour samples, in beige.

yim]

[

Output m
Fig. 4.3. Interpolation between available samples regardless of the resampling ratio R.

The interpolator first fits the available samples to the subjacent input signal (in grey), and then
evaluates the resulting function at the desired time instant. It does not observe the resampling ratio, but the

desired point where the output is required. Multiple interpolation algorithms exist based on the shape of the

57

Proposed Synchronous Sampling Rate Conversion architecture

fitting function or polynomial [72], [99]; linear, cubic, splines...but research in the topic is out of the scope

of the Thesis.

4.2.2. Timing reference and synchronization

The computation of the sampling instant is based on the resampling ratio R and a timing reference.
Fig. 4.1 has depicted a generic timing unit; it does not provide information on how the timing reference is
made available to the resampler. The ratio R is not constrained within any set of values. We have reviewed
in the previous section the classification of resamplers based on the resampling ratio R. For the timing unit
it is more relevant to look instead at the timing reference. Two main families of sampling rate conversion
architectures can be identified: Asynchronous SRC (ASRC) and Synchronous SRC (SSRC) [74]. They
were introduced in section 2.3.2 and two of these resamplers were depicted in Fig. 2.4. In the first family
the timing references for the input and output sequences are different. In that case, the resampling ratio R
is inferred from the relation between the references. It is called asynchronous as it is in practice impossible
to synchronize two sequences with different references. SSRC addresses a different philosophy; a general
reference (normally the input sequence or system clock) is common for all the resampler elements. The
resampling ratio is provided externally and the output sampling instants are computed based on the two
parameters: The ratio and the common reference. In this case it is possible to synchronize the input and
output sequences. The timing unit cannot thus be generic and support the two families. It needs to be

customized to one of the two approaches. Our proposed architecture uses this second philosophy, SSRC.

4.2.3. Proposed interpolator and timing units

The interpolation block is based on a discrete-time Variable Fractional Delay (VFD) filter, depicted
in Fig. 4.1. These filters are Fractional Delay (FD) filters accepting variable delays and are used in discrete
interpolation of bandlimited signals [78]. They generate an output sequence y[m] that approximates the
value of a real signal x(¢). The output sampling instants are arbitrary points lying between samples of the
discrete input sequence x[n] that represents x(¢) at the input sampling rate. Each output sample of y[m] is
estimated by “filtering” the neighbour input samples with a given amount of time, the delay d/y. The filter
synthesizes a phase shift of the input signal with an all-pass filter; it transforms the interpolation operation
into filtering. The VFD receives three parameters: The input sequence of samples x[#], the delay value dly,
and a qualifying signal valid out. The input sequence contains the discrete samples of the real valued signal
x(¢) uniformly sampled at the input sampling rate, fs. The output sequence y[m] is composed of the filtered
samples. The delay value is different for each pair reference-output sample, and it specifies the amount of
time that the input reference sample need to be shifted. The qualifying signal triggers the VFD to estimate
the output sample when the delay value can be handled by the filter.

The input and output sampling instants are managed by the timing block; it implements an
algorithmic engine. This block uses the input sequence as timing reference and receives the resampling

ratio R as parameter. The engine, depicted also in Fig. 4.1, hosts the DIANA (DIstAnce iN time Algorithm)

58

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

algorithm that computes the different delay values dly for each desired output sample. This delay is
computed based on the sampling instant of the sample used as reference, and the desired output. It monitors
the valid incoming input samples, flagged by the signal new spl, to track the current time instant of the
input sample used as reference. It concurrently tracks the required time instant for the output sample, that
is computed based on the resampling ratio. The difference between these two times dictates the delay to be
fed to the VFD filter. When that amount of delay can be handled by the VFD, the triggering signal valid out

is raised. That signal is also made available at the output of the resampler as a qualifying signal.

4.3. Application of the architecture to arbitrary SRC

This section presents the functional details of the architecture presented in the previous point. It details how
the functional units have been tailored for use in the BSP application of the Thesis. These customizations
result from the special need of an arbitrary and real-time variable ratio. It elaborates the algorithmic engine

and the principles of the VFD.

4.3.1. The DIANA engine

4.3.1.1. Delay computation procedure

The architecture is based on a VFD whose control parameter is the delay value. This delay is
computed by the timing engine with the DIANA algorithm. For this, the timing unit tracks the input and
output sampling instants, that are times measured in seconds. The delay results from subtracting the
sampling instant g, of the input reference sample to the sampling instant #,,] of the desired output. The

sampling instant of the reference input can be computed as

t n-T Eq.(4.1)

x[n] = s

T is the input sampling period and # the index of the reference input sample in the input sequence.

The sampling instant of the desired output can be computed as

tym = m T, Eq.(4.2)

T’s is the output sampling period and m the index of the desired output sample in the output

sequence. The time distance 7 is thus a physical time difference in seconds and can be computed as

T =t Eq.(4.3)

yim ~ L

In Fig. 4.4(a) we depict several delay cases for different output samples (green) based on the same
reference (beige): The diamond marks the input reference sample x[#]. The circles represent desired output
samples y[m]. The reference sample in the input sequence of the figure is x[3], while the desired outputs

are y[3] and y[4].

59

Application of the architecture to arbitrary SRC

(a) Delay computation (b) Delay for y[3]: T<0 (c) Delay fory[4]: T>0
A ylm] A y[m] A y[m]
! | |
1 , i
w31 4 461 3] y4
| ! ! Oulpﬁ m "l 0 t=t P 0 l=l
’ . D n N utput m
Y | | | 37T I | utput m | 4T, | p
L AT ! ! I ! 1
7 I - | .o
Plor=37, 23T, bl o, o3t
>

t=mTs-nT,

Fig. 4.4. (a) Absolute time position for input sample x[3], and output samples y[3] and y[4]. (b) Delay computation for output
y[3]. (c) Delay computation for output y[4].

Fig. 4.4(b) depicts the delay computation for the output sample y[3], considering x[3] as the input

sample. The delay value is the time difference between the sampling instant of the two discrete samples
T o=t~y <0 Eq.(4.4)
In this case, looking “backwards”, the delay value is a negative number.

Fig. 4.4(c) depicts the delay computation for the output sample y[4]. In this case, the delay value

is positive, looking “forward”

T =t~ 1y >0 Eq.(4.5)

4.3.1.2. DIANA algorithm

There are applications of FD filters that require the same fixed delay amount for all the output
samples. This is the case for instance of echo cancellation, phase array antennas or speech synthesis [78].
In sampling rate conversion this is not the case, and each sample requires a different delay value, thus VFDs

are used instead.

When the resampling ratio is fixed, the different delay values follow a periodic pattern within a
discrete set of values [72]. If the ratio is known beforehand, the delay values can be computed and the
interpolating coefficients of the FD filter stored in a table. It is also possible to customized the FD filter
architecture based on this set of values with polyphase architectures [101], [102]. In any case, all the

optimizations exploit the fact that the delay values are constrained within a set of discrete values.

Our resampler deals with an arbitrary and variable resampling ratio R. This characteristic translates
into different sets of delay values for different ratios. Furthermore, our resampling ratio varies in real-time,
this makes that the different sets of associated discrete delays merge: The delay can adopt any value within
a certain pair of thresholds. This greatly influences the architecture of the timing unit and the DIANA

algorithm. To deal with that, the unit computes the delay associated with each input sample based on the

60

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

current value of the resampling ratio signal. This delay 7 was presented in the previous point, Eq.(4.3). It
was presented as a difference between the output samples and the time instant of the input reference . The
DIANA algorithm needs thus first to compute the output time instant based on the resampling ratio. Then,

when this value is known, the algorithm obtains the time difference and finally translates it to a delay value.

Some further considerations are needed for the DIANA algorithm. The word fractional in a VFD
comes from the fact that the amount of delay used by the filter “zo shift” the output is a fraction of the input
sampling period. The timing unit needs thus to feed the VFD with a delay value adopting such a fractional

format, dly in Fig. 4.1.

The DIANA algorithm has been developed satisfying these requirements, and focusing on the
adaptive requirements of a variable resampling ratio. The algorithm normalizes any time information it
processes to the input sampling period 7s. With this, the delay 7 is not anymore expressed in seconds but in

number of sampling periods at the input rate as
T
dly =—
ly T Eq.(4.6)

This provides a direct interface with the VFD. The resampling ratio R, Eq.(2.2), can be also

expressed in terms of sampling periods instead of sampling rates

=== Eq.(4.7)

Note that in this case the ratio is normalized to the output sampling rate, 7"’s instead of to the input.
It is thus more convenient to feed the resampler and the DIANA algorithm with the inverse of the resampling

ratio, 1/R, instead of R

T out n=

%= T Eq.(4.8)
We refer to this inverse resampling ratio as the value or the variable 7 out n. With this all the
processing within the algorithm is normalized to the input sampling period. That makes it possible to easily
compute the sampling instant of the input reference sample. We just need to increment by one a counter (or
accumulator) each time that a new sample arrives. Similarly, the output sampling instant can be computed
incrementing by 1/R a second counter (or accumulator) accumulating the normalized output time (output
sampling instant). This output counter is incremented each time that a new sample is computed to prepare

the algorithm for the next iteration. The delay value results from the difference between these two counters,

for instance a delay equal to one output sample will be 1/R.

The algorithm can still benefit from some optimization anticipating its implementation and
mapping to a given technology, for instance, an FPGA. Recall that as the operation of the resampler

advances and new samples are processed, the two time counters grow indefinitely. This is not efficient as

61

Application of the architecture to arbitrary SRC

the discrete word containing a count cannot grow indefinitely in the same manner. To solve this problem
the algorithm operates and stores only the instantaneous delay value needed to compute a new output
sample. The DIANA algorithm references this delay to the time instant of last input sample received. In
other words, our timing reference is the sampling instant of the last input sample. Our stored delay is the
time difference between the current reference and the sampling instant of the desired output. Thanks to that,
we store only a delay value that does not grow indefinitely, and not two growing times associated to the

input and output sampling instants. The DIANA algorithm implementing this idea is presented in Fig. 4.5.

It evaluates two input control variables: new_sp/ that specifies if a new input sample arrives at the
resampler, and valid prev that keeps track of whether a valid output sample was calculated during the
previous iteration of the algorithm. Another data input variable is d/y_incr that corresponds to the delay
increment for each new output sample as presented in Eq.(4.7) and Eq.(4.8). This value is a function of
the current resampling ratio. The last input variable is vfd_range that specifies the maximum magnitude in
fractions of the input sampling period accepted by the VFD, in our case vfd range = 0.5 sample specifies

a delay range of plus or minus half a sampling period.

The algorithm controls two output variables: dly, that stores the delay value needed to compute the
next output sample based on the input reference of the resampler, and valid_out, that flags when the delay

value is within the range of delay values accepted by the VFD, vfd range.

new
sample

iteration
valid

A
| valid out=1 | | valid_out=0|

Fig. 4.5. DIstAnce iN time Algorithm (DIANA).

62

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

In each iteration the algorithm evaluates the control variables. In case a new input sample is
received, the delay variable dly is decremented by one unit. This value results from decrementing the
distance between input and output sampling instants by one input sampling period. Then, if the previous
iteration has produced a valid output sample, the delay must be incremented by d/ly incr. This updates the
delay value to reflect that the sampling instant for the next output sample has moved further by one output
sampling period. Finally, the algorithm evaluates the updated delay; when the delay magnitude is less than
or equal to vfd_range, a new output sample can be computed in the iteration. This is indicated by asserting

the output signal valid out, that is forwarded to the VFD together with the delay value.

The algorithm is initialized with dly = 1. This ensures that no output sample will be processed until
a first input sample arrives at the resampler; this value is above any fraction of the input sampling period

accepted by our VFD, and aligns the first output sample with the reference based on the first input sample.

The variables of the algorithm can directly be mapped to the ports of the timing unit. The only
exception is the valid prev variable with the valid_out port. In this case the valid _prev variable evaluates
the valid out state in the previous iteration of the algorithm. This requires a memory element, a register,

that stores valid out between iterations.

The algorithm assumes that each new sample arriving at the resampler is directly inserted into the
VFD filter. It handles changes in the resampling ratio, in real-time, by just updating the dly incr variable

(the ratio signal in the implementation). This is elaborated in more detail in Chapter 5.

4.3.2. The VFD filter

The VFD filters used in resampling applications are responsible for the interpolating process. The
operation of such a filter is also a twofold problem. It first requires the computation of an impulse response
(the set filter coefficients) that approximates a time shifting operation (delay of the input discrete sequence).
Then this impulse response, that is different for different delays, has to be made available to the filtering
architecture; it needs to update its coefficients to reflect the new delay. To better understand the problem,
let’s first have a look at the first problem, synthesis of a filter that approximates a generic and fixed delay
value. Then, in the successive sections this filter will be upgraded to a fractional delay filter that accepts

variable delays.

4.3.2.1. Discrete filters for delay synthesis
The filter has to compute a good approximate y[m] of a signal x(¢) at the new desired sampling
point .. The motivation for the use of delay filters is that they transform the interpolation operation into
the problem of synthetizing a discrete filter 4[n], that approximates a time shift; the shift in time instant, in
which the continuous-time signal is sampled, is equivalent to the sampling of a shifted version y(¢) of the
signal x(¢) by 7 s. When 7 is negative we call the shift operation “a delay by t s, otherwise “an advance by
75”. When referring “a delay by t s”, we hence normally provide the magnitude |z| of the negative valued

shift variable 7 < 0 fed to the delay filter. This delay operation can be expressed as

63

Application of the architecture to arbitrary SRC

y(t) =x(+(-1)) =x(t—1) Eq.(4.9)

with 7 € R for the shift operation. This continuous-time shifting is a well-known operation that results from

convolving the input signal x(#) with a Dirac delta with ideal impulse response ia(?)

hy (1) =8(t—7) Eq.(4.10)

By taking the Fourier Transform of the impulse response we obtain the continuous-time frequency

response of the ideal delay operation

H,(Q)=e'"" Eq.(4.11)

This filter Hia(€2) corresponds to an all-pass filter with unitary magnitude. The linear phase is the
term that contributes to the delay operation. We want to find an equivalent discrete-time version hiq[n] for
our discrete fractional delay filter 4[n]. Recall that when sampling any real signal, as the ideal x(#) or y(¢),
we first bandlimit its spectral content with respect to the sampling frequency f;. We use for that antialiasing
filters that have an ideal low-pass frequency response Hip(€2). We can plug the anti-aliasing filter into our
delay operation by setting a cut-off frequency Q¢ =27n-(fs/ 2) for our ideal filter Hig(Q2). This transforms

the desired frequency response to

Hy(Q) > H,(Q) =17 for|Q<Q, Eq.(4.12)

This prototype low-pass filter removes the frequency components above the cut-off frequency Q¢
without affecting the rest of the spectrum. It still observes group gdia(Q2) and phase pdia(Q2) delays that are
constant in all the pass-band with value gdia(QQ) = pdia(Q2) = 7 s. Note that as the cut-off frequency equals
half of the sampling rate, the filter corresponds to the ideal filter used in reconstruction of discrete to

continuous-time signals [89].

For the time being let’s ignore the linear phase term ¢”*. We develop only the magnitude and the
frequency bands. We can compute the impulse response Ap(?) of the filter as the inverse Fourier Transform

of the frequency response Hrp(£2), it becomes

Q . (Q
hyp (1) =— smc(e tj Eq.(4.13)
T T
with the sinc(x) function defined as
sine(x) = sin(m) Eq.(4.14)
XT

The function equals zero for integer multiples of the variable x, and in the limit for x = 0 its value

is one. Fig. 4.6 depicts the frequency response of Eq.(4.12) and the impulse response of Eq.(4.13) for a

64

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

(a) (b)

) Frequency Response =<) Impulse Response
g <
= ~,
T Ir S 1 .
=1
= 0 8 0
£ E
< =
B : - : : - £ 1 : : : : :
5 1 05 0 05 1 15 < 6 4 2 0 2 4 6
Frequency €)/27 [Hz] Time (QC/ m) -t [s]

Fig. 4.6. (a) Frequency response HLp(Q2) of Eq.(4.12). (b) Impulse response (1 / Qc) - ALp(f) of Eq.(4.13).
fs=1 Hz. This continuous-time impulse response is also known as the sinus cardinal [98]. It corresponds to

an ideal bandlimited interpolator [98] that makes it a perfect reconstruction of bandlimited signals x.(¢)

possible from a sampled sequence x[7]

w ()= S kb (—kT) =2 3 x[k]-sinc(Qc (=T,)) Bq(415)
T

k=—0 k=—0

This continuous-time impulse response is exact as the sinc(x) function is infinite and noncausal.
We want to compute a discrete counterpart for our filter, but the sinc(x) cannot be made causal by shifting
as it would require infinite shifting. It is only possible to obtain a finite-length approximation 4[n] of the
ideal filter Arp[n] by sampling a shifted and truncated version of the continuous-time impulse response
hp(?) [98]. For this, the intermediate approximation As(¢) first shifts the impulse response /4ip(f) by { s with
CeR

Q . (Q
hs(t)zhLP(t—g)z nc smc[°(t—g“)} Eq.(4.16)

T

Then this shifted impulse response 4s(f) is made finite by truncating it to a sufficient duration
segment of Ly, s. This can be done by multiplying in the time domain /4(¢) with a window function wpee(?)

that spans Ly,

Q . [Q
h(6)=h (1) Wieg ()= smc(= (r—;)j forze [0,L,,] Eq.(4.17)

This results in a realizable impulse response A(#) that approximates the ideal response of the pure
delay. The resulting impulse response can then be sampled to obtain the discrete impulse response

counterpart

B-1 Q Q
h[n]:th Oln—-b]=—2 sinc(c[n—D]] for ne [0,B-1] Eq.(4.18)

b=0 T T

In Eq.(4.18) D =/ T samples is the shifting term, B the number of coefficients in the impulse

response, g5 the value of the b coefficient of the impulse response and ¢ = n - Ty, with D and ¢, € R, and B

65

Application of the architecture to arbitrary SRC

and n € Z. We just need to incorporate the linear phase term e7* of Eq.(4.12) and make { = to obtain the

discrete approximation of our required delay filter.

When processing a discrete sequence x[z] with the computed impulse response 4[n] we will obtain

the sequence y[m] that approximates the input sequence shifted by z:

y[m] =x[n—D]=x[n]*hn]= Biih[b] x[n—b] withD=1 /T, Eq.(4.19)
b=0

To conclude, recall that we have used as prototype filter an ideal low-pass with cut-off frequency
equal to one half of the sampling frequency, and we have approximated the resulting impulse response by
sampling a shifted and truncated segment of its infinite sinc(x) function. We will see in the next section that
this method best reflects the required delay when the shifting term D results an integer multiple of the
sampling period. The obtained discrete filter works by “implicitly” reconstructing the original bandlimited
signal, shifting it in time and finally resampling the resulting continuous-time signal [98]. When the
frequency response constraints of the filter are stringent, or D is not an integer, different methods [98] exist
to obtain prototype impulse responses that better approximate the required filter response; Least Squares
phase and/or delay approximation, Maximally Flat approximations, Weighted Least Squares methods...,
however, that topic is out of scope of the Thesis. In section 4.4.2.1 we briefly present the method that we
have used to compute the used prototype impulse response in the Thesis. In any case the presented process
clearly illustrates the implications that the delay operation poses to achieve a realizable discrete impulse

response for a delay filter; the need for truncation and shifting of an ideal prototype impulse response.

4.3.2.2. Fractional Delay discrete filters

We have just presented an ideal discrete filter synthetizing a delay { . We are, however, interested
in using this delay filter as the interpolating element for the digital architecture; as a building block of the
VFD filter. A realizable version of the VFD filter generates the samples y[m], depicted in Fig. 4.3 at
arbitrary instants in time .5, Eq.(4.2). Any of these arbitrary instants lie between the sampling instants
tan, Eq.(4.1), of the input sequence x[n]. Both originate the time difference 7 of Eq.(4.3). This time was
translated to a delay term, dly in Eq.(4.6), that is measured as a fraction of the input sampling period. We
need thus to find the relation between this required fractional delay dly computed by the DIANA algorithm,
the delay C (or D) synthetized by the filter in the previous section and a feasible architecture supporting the
mapping of the filter.

Note that the filter delay in the previous section can adopt any real value (s. This delay when

divided by the sampling period 7 results in an integer part D; sample and a fractional part d sample:

D=¢/T,=D,+d Eq.(4.20)
We use the low-pass prototype filter, Eq.(4.18), of the previous section within an example to
analyse the relations between the fractional delay d/y and the integer and fractional parts of the term D for

the two cases. For simplicity the sampling clock has a period T = 1 s. In the first case the required delay is

66

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

a pure integer multiple of the sampling clock, for instance D = D; = 7 sample. The second case requires a
delay of { = 0.4 s that results in a D with only a fractional part d = 0.4 sample. We define our cut-off
frequency again as Q.= 2n(fs/ 2) radian/s.

We start revisiting the ideal continuous-time impulse response of the prototype filter depicted in
Fig. 4.7(a). This response is centred in the origin and thus not yet realizable, it corresponds with
Eq.(4.13). The sinc(x) in the time domain expands the width of the lobes when the cut-off frequency Q.
of the filter is reduced. In our case the cut-off frequency Q.= 27-(fs/ 2) makes the impulse response to

equal zero in time values ¢ that are integer multiples of the sampling period

t . .
‘t=f, -tzelnteger—n:n-]; with ne Z and n#0 Eq.(4.21)
We now analyse the resulting impulse response when made it realizable for the first case, D =7
sample. We use an odd B tap FIR filter architecture to map the coefficients of the filter 4[x]. In these FIR
filters the latency L sample accounts for the number of clock cycles that a sample takes to reach the central

tap [71] and it becomes

L= B-1 Eq.(4.22)
2

By making L = D we obtain a digital filter that exactly reproduces the required delay, and has

B =15 taps. The continuous-time impulse response is shifted by { =D - T, = 7 s for a sampling period

T =1 s, depicted in Fig. 4.7(b) by the blue trace. We have enough information to define the window that

we use to make the impulse response realizable; the duration of the window for a symmetric filter becomes

Lseg =2 - L - Ty = 14 s. The resulting discrete impulse response, Eq.(4.18), that results from the sampling

of the shifted continuous-time impulse response is depicted in the same figure by the red circles.

In this case, the shifting operation preserves the zeros of the response matched with the sampling
instants, and thus the discrete impulse response become a delta at » = D. Furthermore, note that when the
shift operation uses as delay an integer multiple of the sampling period, only the coefficient corresponding
to ¢ = 0 s in the prototype filter is non zero. This results in a discrete filter that rather than approximating
reproduces with no error the continuous-time prototype; the sampling of the sinc(x) does not need to extend

to the infinite. The Z transform of this perfect delay operation can be expressed as
H(z)=z" Eq.(4.23)
And the discrete version of Eq.(4.9) becomes
y[m]=x[n—- D] Eq.(4.24)

67

Application of the architecture to arbitrary SRC
(a)

Prototype Impulse Response
T | T

1.5 T T
l Prototype Impulse Response ‘
0 1
o
2
= 05
g
< 0
-0.5 I I 1 I I I I
-15 -10 -5 0 5 10 15
Time [s]
(b)
15 Impulse Response for D = 7 [sample] - Hardware latency L = 7 [sample]
. T T T T T T T
—— Shifted Prototype Impulse Response
3 1 | O Discrete Impulse Response 7
3
=
g
<
Time [s]
(©)
15 Impulse Response for D = 0.4 [sample] - Hardware latency L = 7 [sample]
. T T T T T T T
— Shifted Prototype Impulse Response
L2 Il -| O Discrete Impulse Response 7
=1
=}
g
<

Time [s]

Fig. 4.7. Ideal impulse responses; (a) prototype filter, (b) shifted ideal response and sampled coefficients when
the delay D = 7 sample, and (c) shifted ideal response and sampled coefficients when
the delay d = 0.4 sample.

We are, however, interested in VFD filters where the delay dly, Eq.(4.6), contains only a fractional
part, the term d in Eq.(4.20). For these VFD filters D; is zero, but this is not a problem. We can use the
same odd B tap FIR architecture as before to map the coefficients, setting D; = L to account for the filter
latency. This will result in the required fractional shifting operation present at the output of the filter after

atime ¢ = L-Ts s, the latency of the filter.

Take our second case in the example with dly = d = 0.4 sample; we will solve it with a VFD filter
in which the desired fractional delay d = 0.4 sample appears at the output after a latency of 7 samples as
introduced above. We compute an impulse response with D; = 7 samples and d = 0.4 sample, that
corresponds to a shift of the prototype impulse response by { = 7.4 s, depicted by the blue trace in Fig.
4.7(c). The duration of the window is again Ly = 2-L-Ts = 14 s. The resulting discrete impulse response is

depicted superimposed in the same figure with the red circles at the sampling instants.

By inspecting the resulting impulse response in Fig. 4.7(c) we can realize that now the set of
coefficients for the FIR filter (the sampled values of the sinc(x) in Eq.(4.17)) are not anymore matching

the zeros of the sinc(x). The shifting operation does not preserve the correspondence between the zeros and

68

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

the sampling instants, that have an offset that equals the fractional part d of the delay. This brings as a
consequence that now all the coefficients in the filter are different from zero. We would need an infinite
number of samples to exactly reproduce the sinc(x) within a discrete impulse response, but we use only the
subset lying within our window. This is acceptable for the implementation, but it results in a realizable
discrete filter that now only approximates the continuous-time prototype. This approximation introduces
an error in the frequency response H(¢®) that it also only approximates the ideal frequency response Hip(£2)

of Eq.(4.12) within a certain error margin.

4.3.2.3. Cut-off frequency relation to the resampling ratio

We have used an ideal reconstruction filter as prototype whose frequency response is that of an
ideal low-pass filter having a cut-off frequency equal to half the sampling rate. This is not normally the
case, as the prototype filter (that sets the cut-off frequency) is defined based on the resampling ratio used
[89]. We can understand better the characteristics of the reconstruction filter by examining the sampling
rate conversion operation from an analog perspective [89]. This analog equivalent of the discrete operation
involves a two-step process depicted in Fig. 4.8. First the original discrete sequence sampled at f; is
reconstructed as an analog bandlimited signal x.c(f). This process includes pre-filtering of an intermediate
reconstructed signal xo(¢) to obtain x.c(¢). This reconstruction filter /..(¢) is a low-pass filter that limits the
spectrum of the analog signal xo(¢) to the Nyquist frequency. It removes folded replications (images) of the
sampled signal at multiples of the sampling frequency. Then, a second process samples the analog signal
xr(?) at the new output rate f’s to obtain the output sequence y[m]. This second process includes also filtering
of the intermediate analog signal x.c(). It uses an anti-aliasing low-pass filter /,.(¢), that limits the bandwidth

of the signal according to the Nyquist rate.

RECONSTRUCTION ! SAMPLING AT OUTPUT RATE
— | —
FPGA| || Front end | Front end| |[FPGA
zeme | %o (£)] h.c(t) X, (t) ha. (t) | y(t) ymlf| 177
; » DAC % : > % ADC —>
! I
|| £ T ! A\, i [___\
[
‘sampling rate i sampling rate
f; [sample/s] analog domain fs [sample/s]

Fig. 4.8. Schematic representation of sampling rate conversion with analog reconstruction.

The Nyquist frequency in the reconstruction filter /..(¢) dictates the lower boundary at which images
of the discrete spectrum appear folded in the reconstructed signal x(¢). This is the highest frequency that
can be coded at the sampling rate f; making full reconstruction of the signal possible. The Nyquist rate is
the minimum sampling rate satisfying the sampling theorem (twice the bandwidth of the bandlimited signal)
[103]. This rate, given the output sampling frequency f’s, sets an upper boundary in the spectral contents of
the bandlimited signal x..(f) for sampling without loss of information. This boundary dictates the cut-off
frequency of the anti-aliasing filter /..(f). As the reader can observe in Fig. 4.8, these two filters are in

series. They can thus be combined by using the most restrictive characteristics originating a new single

69

Application of the architecture to arbitrary SRC

filter A.(¢) that reduces the number of required operations and resources [89]. The frequency response of
the new low-pass filter 4.(f) combining both responses inherits thus the most restrictive cut-off frequency

Q. radian/s according to

1 for | <O . o
H.(Q)= orfQ<0. Ly 0= mind 2 27 L dians Eq.(4.25)
0 for | >Q, 2 2

The resulting combined analog equivalent is depicted in Fig. 4.9, where A.(¢) denotes the impulse

response of the combined filter H.(€2).

AT
FPGA| | Front end FP(%A
zaa? | %o (t)| he(t) | y(t) ylmdy | =
: » DAC % >
[
: . \
| | f AN fs B
P
‘sampling rate analog sampling rate
/. [sample/s] domain f’s [sample/s]

Fig. 4.9. Schematic representation of sampling rate conversion with analog reconstruction merging the two analog filters.
We can think of this procedure as the method to define the cut-off frequency of our fractional delay
filter. It makes it possible to tailor the filter response based on the most restrictive sampling rate at the input
and output ports of the resampler, provided that the input signal is bandlimited below any of these two rates.
In any case, the resulting continuous-time filter using these constraints or any other method needs to be

made realizable as presented in the previous sections.

4.3.2.4. Variable Fractional Delay discrete filters

We have presented so far how to estimate the coefficients of our reconstruction filter based on a
prototype frequency response. We know how to design a FD filter that has a fixed delay value, and we have
developed the procedure to map it to an FIR architecture. We are, however, interested for our interpolator
in a VFD with a variable delay. This implies a different impulse response dependent on each required delay
value. We can think of our VFD as a reconfigurable FIR filter, in which we update the coefficient set based
on the required delay. We, however, need to analyse the consequence of this coefficient update requirement,

and sketch a strategy to obtain and update the coefficients of the FD filter based on the delay.

Revisiting one more time the procedure to obtain the set of B coefficients, one realizes that it is
always the same no matter what is the delay; we shift (based on the required delay) and sample the
associated continuous-time impulse response within a window. One feasible option could be thus to store
different sets of coefficients based on the different delay values that we will use. Unfortunately, as we
introduced in section 4.3.1.2, our variable resampling ratio makes the possible values for the delay infinite.
This, in practice, makes storing multiple sets of coefficients an inefficient approach. We would require

infinite sets for an infinite delay precision.

70

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

This unfeasible approach is depicted in Fig. 4.10; in the example we present a VFD filter A[n]
whose B coefficients are read from a table and updated, based on the required delay. The delay range spans
between plus and minus half of an input sampling period, -0.5 sample < dly < 0.5 sample, and we want a
delay resolution of 0.1 sample. This results in eleven possible configurable delays, dlys = {-0.5, -0.4, ...,
0.4, 0.5} with 4 € [0, 10], and a coefficient set /a[n] per delay value. When implementing this filter, if we
store the coefficient sets in a memory, we need as many rows as taps in the filter, B, and as many columns
as delay slices, 4; (BxA) table. We read the memory based on a column index computed from the desired
delay, extracting the rows in parallel. In the figure, following the examples of 4.3.2.2 we match the latency

of filtering architecture D; = L, and we do d = dly.

x[n] VED filter

(1) [Qi) || 5

(hi18-11) |- @102[3—1)

Y
@Column
pointer

/ A [B-1]

Fig. 4.10. Filtering architecture with the filter coefficients stored in a table accessed based on the delay value.

~

Instead of storing multiple sets of coefficients (4 —), we can develop a method that lets the
hardware implementing the VFD to compute the set based on the required delay. This replaces the infinite

memory constraint with a requirement for an efficient and accurate coefficient calculator.

The idea behind this calculator is to divide the continuous-time impulse response of the prototype
filter in B segments (one per coefficient) that span for one sampling period, and are centred around the zero
crossing of the sinc(x) response, as depicted in Fig. 4.11. Each segment is then approximated by a low
order piecewise polynomial that is evaluated with the desired delay d as parameter. These polynomials are
thus generators (the calculators based on the required delay) for each one of the B coefficients of the
prototype filter of Eq.(4.18) and Eq.(4.19). The resulting coefficient set is passed to the filter core each

time the delay is updated. For the sake of simplicity, in the following we disregard the latency of discrete-

Prototype Impulse Response
T T T

1.5 T T

Prototype Impulse Response

1 | O Discrete Impulse Response .

Amplitude

s1|s2|s3|s4|s5]|s6]|s7]s8]s9]|s10|s11/s12[S135B-1 .
T T T T T T T T T T T T T T

0.5 EU

_] 1 | | | | 1 |

-15 -10 -5 0 5 10 15

Time [s]

Fig. 4.11. Prototype impulse response divided in B segments.

71

Application of the architecture to arbitrary SRC

time implementation, we make D; = L = 0. The polynomials mapping the segments of the impulse response

can be expressed as Taylor series [72] becoming

C
hn=>bl=PB(d)=> g(b,c)-d° Eq.(4.26)
c=0

with b the index of the coefficient in the FD filter A[n] (Eq.(4.19)), C the order of the polynomial, d the
fractional delay value and g(b,c) the ¢ order coefficient of the polynomial originating the o™ coefficient of
the filter. The matrix g(b,c) corresponds to a matrix of B rows with C+1 columns. Each one of the B
coefficients of the filter 4#[n] has hence a different set of C+1 polynomial coefficients (calculators). The
first coefficient =0 of the prototype filter 4#[n] (obtained from the polynomial approximation of the segment
“S 0”in Fig. 4.11) is for instance computed by plugging the C+1 elements of the row »=0 in g(b,c) (Eq.(
4.26)) with the given delay d.

Fig. 4.12 depicts the architecture implementing this approach. It contains the hardware core
implementing the FIR reconstruction filter /4[n], and for the coefficients the B polynomial generators of

order C controlled by the delay d.

x[n] VFD filter h[n] FIR core

(Coefficient calculators
d

>(Coeff 0 : Polynomial Generator Py[d]

) h[n]
)

—P(Coeff 1 : Polynomial Generator P;[d]

—)(Coeff B-1 : Polynomial Generator PB_l[d]>

Fig. 4.12. Filtering architecture with the filter coefficients approximated by piecewise polynomial.

4.3.2.5. The Farrow Architecture

The architecture presented in the previous point is a feasible solution for the VFD. However, it
requires the computation of the reconstruction filter coefficients before the filtering operation. This requires
some control and synchronization mechanism to properly synchronize the filtering stages. An alternative
architecture was proposed in [77]. The architecture is known as the Farrow architecture. It combines the
polynomials of the coefficients, Eq.(4.26), within the convolution operation in the filtering architecture,
Eq.(4.19). This generates an efficient architectural alternative that does not require any computation of
coefficients beforehand. Instead, the input samples are pre-filtered with a bank of filters resulting from the
arithmetic manipulations on the convolution and the polynomials. The outputs of the bank are combined
with the delay value in a Horner structure [79], that efficiently solves the evaluation of polynomials

reducing the hardware resources needed and enables the real-time delay update.

The Farrow architecture inserts Eq.(4.26) in Eq.(4.19) to obtain

72

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

] =x{n-D]= Zh[b]-x[n—b]

-1

B,(d)-x[n—b] Eq.(4.27)

ba

>
=)

&

Zc:g(b ¢)-d°-x[n—>b]

c=

b=

o

Reordering the summations, we can obtain

[

yin

o
L

ig(b ¢)-d°-x[n—>b]
dCB 1g(b,c)-x[n—b]

b=0

Il
M

Eq.(4.28)

<>
Il
=)

I
M-

=)

c=

We can define a new set of data u(#n,c) based on the input sample x[#] and the matrix g(b,c) as
B-1
u(n,c)=Y_ g(b,c)-x[n—>b] Eq.(4.29)

By examining Eq.(4.29) we can realize that the data u(n,c) is a vector of C+1 elements linearly
dependent on the input data x[#]. This input dependent vector results from C+1 parallel convolutions with
the sequence x[n]. The B coefficients of each parallel convolution correspond to the columns of g(b,c) in
Eq.(4.26). Note that now the matrix g(b,c) is read by columns instead of rows. We thus use the same
coefficients used in the polynomial generators but we read them by columns instead of by rows (Eq.(4.26
) and Fig. 4.12), and we use the input samples x[#] instead of the delay d. We can rewrite u(n,c) as vector

of C+1 samples dependent on the input data x[n]

ﬁc[n]=u<n,c):ch[b]-x[n—b]:x[n]*gc[n] Bq.(4.30)

This vector i.[n] can be seen as the outputs of a bank of C+1 filters g.[n] pre-processing the input

samples x[n]. By inserting Eq.(4.30) in Eq.(4.28) we obtain
C
y[n] =x[n—- D] =Zd0'170[n] Eq.(4.31)
c=0

This last equation is a Taylor series representation of the filtered output sequence y[#], that uses the

vector i [n] as coefficients and evaluates the series with the delay value d [72].
The Eq.(4.31) can be expanded and results
c
y[n] =x[n—-D]= ;dc'ﬁc[n] =u,[n]+du[n]+d*u,[n]+..+d u.[n] Eq.(4.32)
Finally evaluating this series with the Horner [79] rule we obtain
yin] =x[n—-D]=u,[nl+d (u,[n]+d (u,[n]+d-(..+ du.[n]))) Eq.(4.33)

73

Implementation of the SRC architecture

The resulting VFD architecture, that is depicted in Fig. 4.13, does not need polynomial re-
computation of the interpolating coefficients for each output sample. Instead, it exploits the reordering of
the filtering arithmetic operations within the Farrow architecture. It is composed of a bank of FIR sub-filters
g.[n], which pre-processes the available input samples, x[n] in Eq.(4.30), to generate intermediate filtered
data i [n]. The filter bank coefficients g.[n] are static and pre-computed offline resulting from the matrix
2(b,c), that approximates segments of the prototype impulse response with piecewise polynomials. A new
output y[m] is computed combining the intermediate data i.[n] with the delay value d = dly sample using

the Horner rule. The output data is obtained by feeding the filter just with only the delay d and data x [n].

x[n]

v v v VED v
N N N . N
s _ 8 = 8 = filter S
=g ~ S ~ S s
Nl T = T = o~
s [NN e
>)) >
5] S S g
Ry By Ry Iy
uc[n] Uc-; [n] Uc-2[n] up[n]
) 4 }) 4) 4 y[m]
X + + AAAAAAAA —)@ >
d
Horner

Fig. 4.13. VFD architecture based on the Farrow architecture and the Horner rule.

4.4. Implementation of the SRC architecture

The high-level architecture for implementation of the proposed resampler is presented in Fig. 4.14. From
a logic point of view, only six signals constitute the interface of the architecture. These signals are the
hardware equivalent to the functional ones presented in Fig. 4.1. At the input interface, the data-path input
port feeds the available data samples; it contains the data i bus signal and the valid i qualification
signal. The data_ i bus signal corresponds to the x[n] and the valid i qualification signal to new_sp/
in Fig. 4.1. A second input port receives the control signal T out n, that lets the resampler know the
relation between output and input rates. This signal corresponds to the R signal in Fig. 4.1 and feeds the
value (1/R) as presented in Eq.(4.8). The third input port is a clock port, c1k, driving the hardware. This
clock is the processing clock in the convention followed in this document. At the output, only the data-path
port is present, it contains the data os bus signal and the valid os qualification signal. The first
corresponds to y[m], while the second to valid out in Fig. 4.1. Looking at the internals of the resampler, it
is composed of three functional blocks. The first entity, in red in Fig. 4.14, hosts the DIANA engine, which
implements the algorithm presented in Fig. 4.5, for the computation of the time shift (d1y signal). It also
controls when an output data sample can be computed (op signal). The second block implements the VFD
filter, in blue in Fig. 4.14. This hosts the bank of FIR filters to process the available samples, and the
Horner chain of adders and multipliers combining these filter outputs as outlined in Fig. 4.13. Finally, the
third block, in green in Fig. 4.14, contains the “Control Logic and Synchronization Memories”. This block
handles the communication and synchronization between the entities of the resampler and the interface

ports.

74

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

VARIABLE FRACTIONAL DELAY
. . . . FIR
valid i N Valld_ls filter | 00— | mmmm]
data_i alingmentj|data_is bank data_f || i [data_fs
> logic > = L ! valid_os
_______________ horner] data,o‘ qualifi. >
dly | y [dly_s structure | L1 logic data_os‘
» DIANA > z ‘
T out_n TioutinAV ENGINE op J fifo b d
[control I
CONTROL AND SYNCRHONIZATION
clk I I T

Fig. 4.14. High-level architecture of the implementation of the resampler.

4.4.1. Decoupled data-path SSRC architecture with arbitrary variable ratio

Sampling rate conversion architectures based on the use of a VFD and timing engine employ
normally at least two clock domains, marked c1k x and clk vy in Fig. 4.15. They are better suited for
arbitrary ratio ASRC implementations. The input clock domain is used to feed the data to the VFD filter
bank. The output clock domain activates the Horner combiner when an output data sample is required. The
timing unit computes the delay based on the difference of sampling instants between the clock domains. As
presented in Chapter 2 and section 4.2.2 such an approach requires the output clock domain to sweep in

frequency if the resampling ratio changes.

x[n]
clk x

‘ FILTER " "

TIME
DISTANCE L y[m]
COMPUTATION | 4,
¥y - HORNER

VFD VARIABLE FRACTIONAL DELAY

v

clk y

<
<

Fig. 4.15. Arbitrary ratio SRC architecture based on a Farrow VFD with different input and output clock domains.

In our case we focus on a SSRC architecture that accepts a variable resampling ratio. Our goal is
to use a single processing clock, as depicted in Fig. 2.5. We thus use a decoupled data-path in the FPGA
implemented on the FRANCISCO fabric. This combination makes it possible to have different sampling
rates in the data-path using a single processing clock, and to vary sampling rates in real-time. From a
functional point of view the VFD is the same element. It requires no architectural modifications for
implementation within the FRANCISCO fabric. At implementation level, the registers in the taps of the
filters use an enable signal as presented in Chapter 3 to propagate valid samples only. The common clock
is used in both the filter bank and the Horner, however, the insertion of data in the filter is done based on
the input data-path valid signal, and the validation after the Horner based on the output data-path valid

qualification signal, valid is and op (orits synchronized version valid os)respectively in Fig. 4.14.

The same applies to the timing unit; from a functional point of view the use of the FRANCISCO

fabric is transparent. At the implementation level it infers the resampling ratio from an external signal as

75

Implementation of the SRC architecture

introduced in section 4.2, T _out n in Fig. 4.14. This entity is the responsible for handling the different
sampling rates in the data-path. It controls the incoming valid samples and modifies the valid signal of the
decoupled data-path to reflect the change in ratio at the output of the resampler. The up-sampling ratio is

limited by the relation between processing and sampling clock as presented in Chapter 3, section 3.3.3.

The main problem to be addressed in this implementation is thus to synchronize the data-path
signals among the different elements of the VFD, and with the delay in the time-distance engine. The

following sections address these implementation issues.

4.4.2. VFD implementation

Introduced in Fig. 4.13, the VFD unit contains two functional elements: The bank of FIR filters
g.[n] and the Horner combiner. The architecture of the VFD and the interfacing signals are as depicted in
Fig. 4.16. In the filter-bank, the valid is signal enables the tapped delay line registers of the bank when
a valid data is present in the data-path. The data signal data_1is feeds the filters of the bank with the new
samples in parallel. In the Horner structure, the data fs signals feed C+1 buses containing the outputs
of the filter bank, #.[n] vector. The d1y s signal contains the delay value used for the current output
sample. These signals need synchronization among themselves, hence the postfix “s”. FIFO memories are
used for this (in green in Fig. 4.16). The memories are part of the “Control Logic and Synchronization

Memories” entity.

The filters in the bank are FIR ones. They are implemented with enabled registers in the taps, to
cope with the decoupled data-path architecture. Recall that the resampler is implemented in a FRANCISCO
fabric, and not all the clock cycles contain valid data in the data-path, hence only the data of the valid
processing slots needs to be inserted in the filter. The even filters (g.[n] with ¢ even) have coefficients
which are even symmetric while the odd filters (g.[n] with ¢ odd) have also odd symmetric coefficients.
The number of coefficients (B in Eq.(4.29)) is dependent of the desired precision in the interpolation
process of the VFD. The filters are implemented benefiting from the coefficient symmetry, they are folded
around the central tap. The coefficients of the filter are scaled to avoid overflow in the internals of the filter.

This scaling factor is compensated by re-scaling the data-path at the output of the filter.

A chain of adders and multipliers following the Horner rule combine the outputs of the different
filters of the bank with the delay parameter, Eq.(4.33), signal d1y_s in Fig. 4.16. There is one multiplier
per filter bank branch, except for the last one. There is also one adder per branch except for the first one.
The arithmetic elements, multipliers and adders, are pipelined with registers to segment the combinatorial
path to ease the timing in the place and route process. The registers used in the pipeline and in the arithmetic
operators do not have enable signal. This makes the propagation time between any of the data-path inputs
and the output known. The inserted registers in the input data-path branches account for the pipelined

arithmetic operators, and compensate the propagation of the signals in the arithmetic operators.

76

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

data ips data is
= ey = I

FIR
FILTER
BANK

valid ips-—valid is

clk
data_f {[C] data_ fy [2] data f{[1] data f{[0]
datafs!) data_fs{[2] data fs[[1] data fs (0]

dl HORNER X Dol NG A | data o
Y o] d1 vy s STRUCTURE pipelined arithmetic operators ’\T/
L1l B

Fig. 4.16. Architectural view of the VFD filter. In blue, the FIR bank of filters and the Horner architecture. In green, the
synchronization memories, not part of the entity.

4.4.2.1. The coefficients
The coefficients of the Farrow-based VFD of Fig. 4.16 have been obtained using the Weighted-
Least-Square (WLS) method [104]. The delay signal dly takes values from -0.5 to 0.5 sample,
dly €[-0.5, 0.5]. For each value we want the response from the input to the output to approximate an exact
delay. Let H(¢"*,d) be this transfer function, with » the normalized angular frequency in radian/sample and

d the delay, the WLS computes the filter coefficients that minimize the cost function

=11

The parameter « is a fixed number, smaller than one, that specifies the pass-band (between 0 and

" dd de Eq.(4.34)

H(ej’”,d)— e /!

nt radian/sample) over which the cost is evaluated. The number of filters (C+1) and the filter length (8) must
be chosen to achieve the required precision in the pass-band. In our design, we set &= 0.6, and used six
filters containing fifteen taps each. The resulting maximum square error for all values of d, in the pass-band
is less than 5-10°. This was found to be good enough for our application. The number of taps has a big
effect. When reducing it to seven, without changing any other parameter, the maximum square error

increases to 3-107. Further details are provided in Chapter 5.

4.4.3. DIANA algorithmic engine

The following section presents implementation details for the DIANA algorithmic engine. We first
introduce the resulting features when implementing the DIANA engine with a decoupled data-path in the
FRANCISCO fabric. Then we show the proposed implementation for the engine.

4.4.3.1. Ratio limits
We saw in section 4.2.3 that the use of a VFD as interpolating unit for resampling of a discrete
sequence, results in a generic unit in the sense that it can be used for either up-sampling or down-sampling
without modifications. The DIANA algorithm presented in section 4.3.1.2 is the solution in our architecture

for the computation of the delay fed to such a VFD filter. This algorithm is also generic, it supports both

77

Implementation of the SRC architecture

up-sampling and down-sampling, and solves our key concern; the capability to compute the delay with an
arbitrary ratio value that changes in real-time. We focus in this section on the implementation of the
algorithm; our main architectural decision is the use of the fixed processing clock to avoid clocking and
synchronization problems related to the variable ratio. For this, we use the FRANCISCO fabric synthetizing
a decoupled data-path, that copes with the variable sampling rate at the output port of the resampler,
resulting from the variable ratio. This decoupled data-path brings, however, some implications in the

performance that the algorithm can achieve once implemented.

Another functional requirement in our solution is the feasibility to be used in a feedback loop,
where processing in real-time is required. We insert the incoming samples directly in the VFD to be able
to perform online resampling; we do not want to store this data in a buffer where to perform subsequent
offline resampling reading that data on demand. We need hence a unit that receives, processes the data as
it arrives, and outputs the new sequence. The objective of the decoupled data-path is to make the use of the
fixed frequency processing clock feasible in the system responsible for that. When this clock has a higher
frequency than the data sampling rate, we ensure more processing slots than available samples in the
decoupled data-path. This avoids its overflow within some boundaries and partially solves our swept clock
concern; we have now void processing slots to populate with new data and we can use a fixed frequency

processing clock.

The distribution of incoming samples in the data-path is also relevant. Note that all the input
samples are inserted in the FIR filter bank as all of them are used in the interpolation process, however, not
all of them are used as reference for an output when they reach the central tap. Take the case of down-
sampling, as presented in Fig. 4.2 or Fig. 4.17; the resulting time spacing in the output sequence between
sampling instants of the subjacent analog signal is always larger than the input sampling period, and larger

than the VFD input range, dly € [-0.5, 0.5] sample. We will hence never use an input sample as delay

x[n]
A x[n+3
P : x:[n+2] i[] x‘i[n+4] Sampled
R==7 <1 ; : 1 1 atfs
! tnput RO R | |
sequence [i [[
| | | | :
! | | | >
ym): ! ' : :
! ' ymi2] Wm+3]
! ! ! ' Sampled
p Vimtl] I I atf’s
Resampled Ym] i | | |
sequence i | | | "
|
).(

Input
data-path W
Output
data-path >@<

Fig. 4.17. Decrease in the number of populated slots in the data-path in the case of down-sampling.

)D)(- X
¥ - X

78

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

reference for more than one output, and in some cases nor for one (the case when no output sample is
calculated between two correlative input samples that result from a delay value larger than 0.5 sample).
More void processing slots are thus found in the output sequence. This is depicted in Fig. 4.17 where we
down-sample a sequence and we show the resulting distribution of samples populating the processing slots
in the data-path (we neglect the processing time). The 0.5 sample delay window that the VFD accepts is
depicted in the figure by the green vertical lines around each input sample. In this case, the sample x[n+2]
is not used as reference to compute any output sample; y[m+1] is computed with x[n+1] and as the delay

value is above 0.5 sample for x[n+2], the output y[m+2] is computed using as reference x[n+3].

Any down-sampling ratio, R < 1, is hence suitable for the decoupled data-path as there is no way
to overflow it, no matter what the distribution of input samples we receive is. The figure depicts also for

this case the output data-path that contains less populated processing slots at the output than at the input.

In the case of up-sampling, the decoupled-data (and the input distribution of valid samples)
introduces some further considerations; we want to insert new valid samples in the output that alter the
input distribution. The output spacing between sampling instants, that emulates the acquisition of the analog
signal, is always smaller than the input sampling period, and hence smaller than the input delay range of
the VFD (one input sampling period, from -0.5 to +0.5 sample). We will hence use each input sample, as
delay reference, to compute at least one output and in some cases more than one. We need hence a data-
path with enough void processing slots where to fit this new data. Depending on the population of the input
data-path we will be able to do it so or not. The up-sampling rate is hence linked to the relation between
processing clock and sampling rate at the output of the MERCEDES Decouple interface, M = f,/ f;, and to
the input sample pattern (valids) dependent on the physical position of the resampler in the data-path.

When the resampler is placed just after the MERCEDES Decouple interface, the activation rate of

the data-path is arin = (1 / M) and the input pattern is a uniform and periodic distribution of valid samples

x[n]
A [x[n+3] +4
o 7’ , i xfrﬁZ] | x[:n 1 Santlpled
) Input Al xﬂn+1] ' ' ' s
sequence ! ! ! !
| | | | "
| | | |
: : [m+6] :
e | w5 L ymiT) |
T et o
Syum ; : : Sampled
) i i ["
Resampled sl ylm+1] [m, : i | | "
sequence T, , , , m
| | | | >
i i i i

Input

n+1 n+2 (:[n+3] n+4
data-path >.< . X
d;)tzfgz‘:h M m+ |' m+6 m+ [m+8 @X

Fig. 4.18. Increase in the number of populated slots in the data-path in the case of up-sampling.

79

Implementation of the SRC architecture

without bursts. One out of M processing slots contains valid data and the others are void. We will represent
and refer such a pattern as UPy: {100...0100...0100...}, with M - 1 zeros in between the ones. In
this case, we have always free space, free processing slots, between input samples where to insert new
outputs, and the DIANA engine has enough clock cycles to compute all the possible outputs for a given
reference. The maximum possible up-sampling ratio for this configuration is hence R = M, as we can
populate these M - 1 available processing slots in between. This is depicted in Fig. 4.18; the data-path has
an M = 2 and we up-sample a sequence with a ratio R = 2, we show the input periodic pattern UP, : {1 0 1

0...1010...10...} and the resulting distribution in the data-path {111 1...1111...11...}.

Another situation that we can find happens when we do not satisfy this periodic and uniform
distribution of samples in the input data-path port of the resampler. Note that this does not mean that the
samples have not been periodically sampled, it means that the sequence of samples arrives to the resampler
with a non-periodic and/or uniform pattern (for instance, some further processing between the MERCEDES
and the resampler alters the distribution). In that case we can have two consecutive samples arriving in a
burst, but keeping still an average sampling rate arin=(1/M), {10...10110010... }. In the middle of
this burst, there are no free processing slot available. In this case, we cannot ensure that we will not overflow
the output data-path of the resampler (and underflow the delay value in the DIANA engine). It might be the
case that a new output sample needs to be inserted in a inexistent slot in the middle of the burst, or that the
engine has no enough clock cycles to compute all the possible outputs for a given reference, resulting both
in blocking of the architecture. When the input distribution is hence not known or not uniform and periodic

(UPu), we cannot operate the resampler in up-sampling mode safely.

An example is depicted in Fig. 4.19 where we up-sample a sequence with a ratio R = 2. The clock
relation in the data-path is also M = 2, but now there is an input burst. With this ratio we compute two

output samples per input reference, the maximum up-sampling value. We hence need an extra void

x[n]
A I x[n+3]
’ : xfln+2] i x[:n+4] Sampled
R=""> =2 : f | at f;
s Input Ain] x[n+1] ' ' '
sequence ! ! ' !
| | | | ",
| | | |
1 f y[m+6] 1
y[m]A : [+!k1]y[m+5] : y[m+7][+!8]
I y[m+ yimT +9
Expected Lymt3] ! ! e Sampled
Resampled YA Y[mk2] | [[at fs
sequence Mmhl] i i i [
Burst\iJ L ' ! i "
|

~— >
gty — X x-x X(m D) T
O
datf;z:h X m @8)ﬁm m(_@x

DIANA
Accumulator

X+o.9X—0.1X+O.4X+o.9X—O.1X—O.6X ur X UF X ur X UF X UF X

Fig. 4.19. Data-path overflow and accumulator underflow; the distribution of populated slots is altered and contains bursts.

80

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

processing slot per input sample. In the figure, we see the analog signal and the resulting periodically
sampled sequence x[n]. We can observe as well the distribution of these samples in the processing slots of
the input data-path, altered with respect to Fig. 4.18. The overflow event is depicted with a red ellipse.
Take a look at the burst in the x[n+1] and x[n+2] samples; these arrive in consecutive processing clock
cycles, with a delay value of 0.9 sample in the DIANA accumulator prior to the x[n+1] arrival. The algorithm
updates the value resulting in 0.9 — 1 = -0.1 sample (arrival of a new sample but no valid output in the
previous iteration). This value lets us compute y[m+2]. In the subsequent processing clock cycle, the
algorithm updates again the value. If no new sample would arrive the result would be -0.1 + 0.5 = 0.4
sample and we could hence compute y[m+3] as expected. However, x[n+2] arrives within the burst, this
results in a final computed delay value of —0.1 + 0.5 — 1= -0.6 sample. As a result of the burst, the
accumulator underflows the delay value (-0.6 < -0.5 sample, minimum VFD range value), and overflows
the data-path as there is no available slot where to insert y[m+3]. The DIANA engine can detect this
underflow condition when the delay adopts a value below -0.5 sample. Unfortunately, it cannot recover
automatically as the only way to increment the accumulator delay is by computing new output samples;
this is not any longer possible as the current value is under the valid range of the VFD, remaining thus

blocked.

The maximum up-sampling ratio is hence a function of the input sample pattern and the relation
between processing and sampling clocks. When the relation between frequencies in the sampling and
processing clocks is M, being the processing clock higher, and the input samples are equispaced with
(M-1) samples between valid inputs, ar = 1/M satisfying UPy: {100...0100...0100...}, the maximum
ratio value is R = M. When this is not the case, the activation rate is not uniform or it contains bursts, we

cannot ensure available processing slots and thus the resampler should not be used for up-sampling.

There are specific cases with this still being feasible; take for instance two up-samplers in series
and a data-path with M = 4 at the input of the segment resulting from a MERCEDES Decouple interface as
depicted in Fig. 4.20. In the input of the first resampler we have the uniform distribution UP4: {1 000 1
00010 ...} ensured by the MERCEDES interface. We first up-sample by R = 2 in the first stage; with

r ___ a

o i e |

FPGA : FRANCISCO Adaptation Fabric |

1 e P - dne PrE P G |

At 7 N, ’ 3 / . By |

e didcpl; '%‘) . d. depl :,' 5 \ d;dcpl;' %‘J 1 d depl > B Yy d depl ;' %‘J ' d depl = |

= MERCEDES ["yo1ia 1 & [valid | e | valid & & lvalid E {valid g tvalid I

Decouple - Tiog g S T8 8 i l

clk cpl - 8 &)] &) !

B oA -7 A ~ A |

B RAY . |

r71 | |

|

i Fi2 : |

— |

clk_dcpl : |

| |

. : 3 \ : I

Hardware Fabric | Segment A (fixed) Segment B (variable £;) Segment € (variable /) |
processing fo.cp =4 [Hz] : processing T dept.= M A [Hz] progessing - i qupr = M-+ A [Hz] processing - fs aepr =M - 4 [Hz] :
clock clky Slgml clk cpl | clockelks sisnal ol k v clack ¢lhgisipnal ¢ idopl clockelks - signat-cl k |
h by |
sampling fi o1 = A [sample/s] : samplifig fiaepl = A [sample/s] sampling = fi-aepr b Ry A [sample/sTy - sampling of5 qeptn = Ra' RiA [sample/s]
s ‘ (e ary = (1/M) mie gy = Ry (1IM) rale = R RV |
o A A A

Fig. 4.20. Data-path architecture with multiple resamplers.

81

Implementation of the SRC architecture

fo acpi=4 - A Hz and f; 4cp1 = 4 sample/s this results in f; api b= 2 * 4 sample/s. The output distribution of
this first resampler willbe {1 10011001 1 ...}. Some processing after the first resampler rearranges the
data-path pattern without altering the sampling rate resultingin {10101010 10 ...}. In this situation
we could still place a second up-sampler with again a feasible maximum up-sampling ratio of R, = 2. Its
input distribution is equispaced and has a pattern that makes it possible to insert the new second output
sample per input sample without overflowing the maximum sampling rate f; apl c = 4 - 4 sample/s of the
data-path. The resulting pattern would be {1 111111111 ...}. We can generalize the result; for a given
up-sampling ratio R = U with U < M being M the relation between processing and sampling clocks in the
data-path, we need at least v = ceil(U) — 1 void processing slots in between input samples to ensure the

correct operation of the resampler. The ceil(X) operator results the least integer greater than or equal to X.

Table 4.1 lists the possible modes of operation for the resampler based on the pattern of valid

samples at the input and for a relation between clocks M.

Table. 4.1 Modes of operation for the SSRC architecture

Pattern of valid

Mode . Is the configuration accepted? Accepted ratio R
samples at the input
Down-sampling Any Accepted Re(0,1)

Periodic, valid

Up-sampling sample following by Accepted Re(1,M]
(M-1) void slots

Up-sampling Others Not accepted * -

Transparent Any Accepted R=1

* As introduced in the section in some situations this configuration is also valid, however,
it is not desirable as it requires further logic and/or constraints in the valid distribution or resampling ratio.

To cope with burst resulting in a non-uniform input pattern a feasible solution is to use a FIFO
memory in the input of the resampler. We can ensure the required valid pattern by first writing the input in
the FIFO and then reading the samples inserting void processing slots in the middle. However, for our BSP
Architecture this is not needed as we use two resamplers in a sandwich configuration where the input one
is placed after a MERCEDES interface, thus ensuring the necessary input pattern, and the output resampler

operates in down-sampling configuration, hence with no constraints on the received valid pattern.

4.4.3.2. Engine implementation
The proposed implementation for the DIANA functional unit, depicted in Fig. 4.21, has three input
ports. The first one is the valid signal, valid i, indicating the validity of the data present in the engine
input data-path. This indicates a new input sample arriving at the resampler and corresponds to the variable
new_spl in the algorithm of Fig. 4.5. The second input port is a bus signal, T _out n which provides the
information about the resampling ratio, equal to 1/R as presented in 4.3.1.2. It maps the variable dly_incr
in the algorithm. The width of this bus is dependent on the performance (desired precision) of the resampler,

this is elaborated in Chapter 5. Finally, a clock input port receives the processing clock.

82

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

DLY Accumulator
valid i] . Accum. 4
T \{ Step »(+ d g > > d q y:
1 |
0 Y
+ »
II' v OP
| 1<0.5 .
T out n NP i 0 Logic
»—> d g > » 1 op
A d g » »| d g >
clk A
— DIANA ENGINE

Fig. 4.21. Implementation of the DIANA engine.
At the output, the entity has two ports. The first is the computed delay, d1y, implemented by means

of a bus signal whose width is also dependent on the desired precision of the resampler. It maps the variable
with same name, d/y in the algorithm. The second port contains the op signal, which indicates that a new
output sample can be computed using the delay value present in the delay bus. It corresponds to the variable
valid out in the algorithm. The DIANA algorithm of Fig. 4.5 is implemented by means of an accumulator
(Fig. 4.21). Two multiplexers evaluate the accumulator step at each iteration. One is controlled by the
valid i signal, while the other is driven by feedback logic evaluating the op signal from the last iteration.

The output of the multiplexor is accumulated by a dedicated DSP block.

The op signal is activated when a comparator evaluating the magnitude of the accumulator
indicates a value less than or equal to 0.5 (half an input sampling period). This corresponds to the hard-
coded variable vfd range =0.5. The T out n signal is evaluated at each iteration, for real-time variable
and arbitrary ratio operation of the resampler. In case of a fixed ratio resampler, this signal could be hard-
wired for resource optimization. The registers do not incorporate enable signal, because the algorithm runs

an iteration with each processing clock cycle.

This engine implementing the algorithm exploits the decoupled data-path paradigm. It populates,
in the case of an up-sampler, the void processing slots with new computed samples. For that to happen, the
engine needs to run and evaluate the data-path at the processing clock rate, and not at the sampling rate.
The algorithm can thus handle the delay computation as long as the processing clock frequency f; is higher
than both input and output sampling clocks (f; and f7s), and as we have seen in the previous point, the input
distribution in the data-path contains available processing slots between incoming samples where to insert

new output data.

As an example, take a case where the MERCEDES Couple interface is configure with M = 2, the
processing clock operates at the double of the frequency of the sampling clock. A resampler is placed just
after the interface. In that case the upper boundary for the resampling ratios is set by the data-path and the
clock relation M resulting from the interface, being R = M =2. We saw that there is no lower boundary for

the resampling ratio. We nevertheless constrain it to R = 0.5 in our BSP Architecture. The resampling ratio

can hence adopt values within the range R € [0.5, 2].

83

Implementation of the SRC architecture

4.4.4. Synchronization

This block contains glue logic and synchronization memories connecting the main entities of the
architecture. Synchronization is understood as alignment, at processing-clock cycle level, between different
propagating signals. This entity is therefore responsible for the management of the signals between the
different functional blocks. It comprises registers, memories, and logic elements used for synchronization

purposes.

4.4.4.1. The signal paths

All these signals propagate through three different paths, depicted schematically in Fig. 4.22. These
paths cross the different functional units of the architecture. The first path, in blue, hosts the data-path from
the input to the output interface. The second, depicted in red, contains the signals related to the resampling
ratio. This ratio is fed at the input as T out n. That signal is internally translated to delay to be used in
the VFD. Finally, the third path, in green, groups the internal control signals. The alignment between these
different signal types is required at certain interfaces. These interfaces lie between the main entities of the

resampler. The interfaces are depicted as vertical lines in the same figure.

Data-Path . Data-Path Horner Data-Path
Data FIR Filter
Path ’ FIR Bank * Bank ’ fIFO Structure ’ OUtp}lt *
Alingment Alingment Qualif.
Delay ' Delay FIFO
Value BTARA . Alingment
_ . B e b e o b |— — s — -
. Control
Control bt
Input Filter Bank Horner Output
Interface Interface Interface Interface

Fig. 4.22. Synchronization interfaces of the resampler (vertical lines), and signal paths (horizontal arrows).

4.4.4.2. The interfaces

The interfaces are hardware locations where the signals crossing the interface need to be aligned at
clock cycle level. These are the results of the concurrent operation on data and control signals in the
architecture. The signals follow therefore the different paths with different latencies. The first interface is
placed at the input of the resampler. There the data-path signals data iandvalid 1i,and the resampling
ratio T _out n must arrive aligned. The resampler operates at sample level, and the ratio signal specifies

this quantity for each specific sample in the input data-path.

The second interface lies at the input of the bank of filters. At that point alignment is required
between the data-path (signals data ipsand valid ips), the computed delay signal d1y, and the op

control signal.

84

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

The third interface lies at the input of the Horner structure. This interface requires alignment
between the data-path buses data fs, the delay value d1y s, and the internal control signals. The buses

data fs are the filtered output of each of the bank of filters branches.

Finally, the fourth interface, is placed at the output of the resampler and it requires alignment

between the data-path data os, and the valid os signal qualifying the output stream.

4.4.4.3. Input interface alignment
The input interface poses a constraint to the system hosting the resampler rather than to the
resampler itself. It requires that the input signals arriving to the resampler and the clock are all aligned in

phase and frequency.

4.4.4.4. Filter Bank interface alignment

The filter bank interface is used to align the computed delay to be applied at each sample, and the
sample itself in the data-path. The synchronization problem is a trivial problem in this case, as the logic
used for the computation of the delay is fully deterministic. This unit has been designed with a latency of
three cycles, thus three registers are inserted in the data-path between data i and data ips, and
between valid i and valid ips. Therefore, only glue logic (registers) is used to align the data-path
to the output signals of the DIANA engine. The different data-path, delay and control path signals arriving
to the Filter Bank Interface are depicted in Fig. 4.23.

Input ;
pf data i data ips Filter Bank
Interface — Interface
DATA-PATH

d g dg
DATA-PATH a FIR BANK d L DATA-PATH

valid i ALIGNMENT valid ips

dly DELAY
VALUE
DELAY T out n
VALUE
op)
CONTROL

clk

Fig. 4.23. Hardware and signal propagation arriving to the Filter Bank Interface.

4.4.4.5. Horner interface alignment
The synchronization at the Horner interface, lying at the input of the Horner combiner, is the most
complex element of the architecture. It ensures the synchronized arrival to the combiner of the signal pair
composed of the filtered reference sample, data fs signal buses, and the delay value, d1y s signal in
Fig. 4.16. This pair of signals is used by the Horner when computing a new output sample. The

synchronization mechanism also aligns the signal op s for the qualification logic at the output.

85

Implementation of the SRC architecture

The interface and the preceding hardware elements are depicted in Fig. 4.24. The synchronization
mechanism needs hence to manage signals propagating in parallel within the three paths; data-path, delay
and control. The segment of the data-path preceding the interface contains the VFD filter bank. The filtering
that it performs has a variable latency when implemented within the FRANCISCO fabric. This makes the

synchronized propagation of reference samples and delay a non-trivial problem.

In the case of delay and control paths, the filter bank interface at the output of the previous stage
provides the delay value d1y, and the control signal op aligned at processing-clock cycle level. These
signals have been generated by the DIANA engine. They contain the decision about the computation of a

new output sample (algorithm in Fig. 4.5); if possible, the op signal is active, otherwise it remains low.

In the same preceding interface, the incoming data-path (data_ips and valid ips signals)
is also aligned at clock cycle level with these delay and control paths. The latter signal, valid ips, flags
when active that the data-path reference sample at the filter bank interface needs to be processed (inserted

in the bank and filtered), otherwise the data-path remains halted.

Filter Bank

Horner

Interface FIR FILTER BANK Interface
data_ip ! data g:ln < golnl
— ralid_
L TEO—0-0 TFo—0-0
DATA-PATH GLUE LY oNe [oNe
LOGIC FIR C FIR 1

data_£|[C] data_£| (1]

push

CONTROL oop e
FIFO empty

BANK
push

il D
L]

LIt

Fig. 4.24. Hardware and signal propagation arriving to the Horner Interface.

data_fs| [C] data_fs [[1]

DATA-PATH
DELAY

VALUE

CONTROL op DELAY
VALUE

CONTROI

As we have just introduced, when a new output needs to be computed, and a new sample needs also
to be filtered, the synchronization mechanism needs to propagate and recover the alignment of the pair
data ips and dly at the input of the Horner combiner (data fs and dly_s). It can also be the case
that a new output needs to be computed but no new reference sample is available in the data-path (R > 1
with valid ips low in the filter bank interface). In these circumstances the last filtered input sample is
used as reference. This filtered sample is already processed or being processed in the filter pipeline. In any
case, the delay value d1y that will be used in the new output needs to have synchronized its arrival at the
input of the Horner structure together with its associated reference sample being filtered. The
synchronization mechanism hence handles the filtering of the data-path and the arrival of the sample and
the delay value to the Horner based on the control signals. The computation of a new sample requires

therefore different mechanisms depending on the case. The possible scenarios are listed in Table 4.2.

86

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

Table. 4.2 Scenarios, control signals and actions to be done within the synchronization logic

Scenario valid ips op Actions of the VFD
1 0 0 Do nothing
2 0 1 Process new output
3 1 0 Propagate data-path to filter bank
4 1 1 Propagate data-path & process new output

In the first scenario nothing has to be done. The delay value to be applied to a sample for the
computation of a new output cannot be handled by the VFD, therefore the op signal is not active.
Concurrently there is no new sample arriving to the filter bank interface as the valid ips signal is low.

No new sample needs to be filtered.

Scenario two happens when a new output needs to be computed but there is no new sample arriving
to the filter bank. In this case the delay value is within the limits of the VFD, and the last sample inserted
in the filter bank pipeline needs to be reused as reference. The delay propagation needs hence to be

synchronized with the filter bank output; the reference sample in the bank needs to be used twice.

Scenario three is present when a new sample arrives at the filter bank and the delay required for a
new output cannot be handled by the VFD. In this case the sample is inserted in the filter pipeline but no

new output is computed.

Finally, scenario four combines scenarios two and three. In that case a new sample has arrived at
the filter bank. This sample needs to be filtered and propagated through the pipeline. Concurrently, a new
output needs also to be computed with that sample; the DIANA engine has computed a delay value using
that sample as reference that results within the VFD range. The alignment mechanism needs therefore to
mimic the latency of the reference sample through the filter bank pipeline, and synchronize the propagation

of the delay value with the same latency, to make it both to cross the Horner interface together.

The estimation of this latency through a filtering architecture implemented with a coupled data-
path is a trivial problem. The signal advances one register in each clock cycle, as depicted in Fig. 4.25(a).
In this case, for instance implementing the filter in the FPGA hardware fabric hosting BAP, the latency is
a function of the architectural implementation of the filter, Eq.(4.22). This makes the solution for the
synchronization of the delay signal easy; the filtering latency can be mimicked by adding the same fixed

number of pipeline registers to the delay path.

This is not feasible for our filtering architecture, as we use a FRANCISCO decoupled data-path. In
such a case, the filtering latency varies with the sampling rate and input pattern. This variation is a direct
consequence of the decoupling and the valid signal: The data advances one register further in the filter’s
tapped delay line only when the enables are active (valid signal in Fig. 4.25(b)). The data-path
propagation through the taps is now driven by the valid signal, and the latency (in processing clock
cycles) is dependent on its activation rate and distribution. In this case, the filtering latency for a given

processing clock, is hence a function of the sampling rate, that dictates the activation ratio ar of the valid

87

Implementation of the SRC architecture

(a) (b)
Tap 1 Tap 2 Tap 3 Tap 1 Tap 2 Tap 3
d_in N d_in N N
= +—>»d g +—»d g dq iid »d g »d g d g
Slenb SJenb L gnb
d_out d_out
—> —>
clk clk |_, |_, |_, |_, I_, I_, I_,
d_in _ XCZOXCEIXCTIOXCTIDIXCTIIXCdIXCIX d in __ XX - XXX - XCTdX - X
valid _ | | I I
Tap 1 _ X - XCdOXCdaIXCdIXCdn XTI DX Cde X Tap1 _ X - XC@OXCZOXCdDXCIOXCID XCdn X
Tap2 _ X - X - XCdXCda XXX X Tap2 _ X - X - X - XC@OXCIOIXCIOIXCIIX
Tap3 _X - X - X - XCIOXCIOXTIOXTdX Tap3 _ X - X - X - X - XCZOXCLOXCdaX

Fig. 4.25. Propagation through the tapped delay line of a filter with (a) a non-decoupled and (b) a decoupled data-path.

signal as stated in Eq.(3.2). If the sampling rate in the decoupled data-path is uniform, the propagation
delay can still be mimicked with the same approach as before, adding registers to the delay path. As our
architecture needs to handle different scenarios (a resampler accepting different input rates that result in
different filtering latencies) and must be generic, the delay synchronization problem cannot be solved

anymore by adding a fixed number of pipeline registers to the delay path.

3

In the filter bank, the data advance through the taps is hence based on a “valid driven
propagation”. Each delay value is computed and associated to its reference sample in the DIANA engine,
arriving aligned to filter bank interface. Note now that the filtering of one sample requires several
subsequent samples marked valid, the number depends on the tap length of the filter. With each valid
sample, the data samples in the data-path advance one tap register in the filter, as depicted in Fig. 4.25(b).
The process starts for a given reference sample with the active valid signal accompanying it; that valid
signal triggers the filtering by inserting the sample in the first tap of the filter data-path. Then, the upcoming
samples with the valid signal active, drive the sample through the filter. The new arriving samples are
inserted in the pipeline and at the same time, the insertion propagates the precedent samples through the
successive taps. A filtered sample is hence popped out of the filter only when a sufficient number of valid

samples propagates it from the input of the filter to the central tap (we neglect here the latency and/or

pipelining in the arithmetic hardware elements from that middle tap to the output of the filter).

To cope with the propagation based on upcoming samples, and the variable filtering latency, the
solution adopted is to use FIFO memories for synchronization of the different paths. Two banks are used:
CONTROL FIFO BANK and FILTER FIFO BANK, depicted in Fig. 4.24 in green. The first stores the
delay value d1y, the op and the valid ips control signals in the filter bank interface, the second stores
the outputs of the filter bank data f at the output of the filters. By managing the reading of these banks,
the synchronization mechanism can handle the aligned arrival of the filtered sample-delay pair at the Horner

interface.

The first bank, CONTROL FIFO BANK (control signals), compensates (mimics) the propagation
latency of the data-path through the filter bank pipeline. It acts handling the propagation latency of the

88

Chapter 4. Arbitrary and real-time variable ratio resampling architecture

delay signal and control signals (current scenario) between the output of the DIANA engine (filter bank
interface), and the input of the Horner structure (Horner interface). The scenario and delay are pushed in
this bank, once the first valid data sample arrives at the filter bank interface. This associated reference
sample is filtered in the parallel data-path and stored in the second FILTER FIFO BANK once ready. The
filling level of this second memory bank is monitored by the synchronization mechanism. With this
information this mechanism pops and validates that data out of the CONTROL FIFO BANK as long as the

second bank is not empty.

The second memory bank, FILTER FIFO BANK in the figure, stores the valid processed outputs
of the filter bank. This makes the controlled extraction of filtered samples from the memory possible,
reusing them when needed. The Filter Bank Ready block latches an active signal after initialization
of the data-path pipeline in the filters; the taps of the filter bank are populated with valid data after the start
of the system. After the latching of that signal, data is pushed into the FIFO bank when new valid samples
arrive (signal valid ips active). The bank pops out filtered data, signals data fs, when the pop
control signal becomes active. This signal, that is a synchronized version of the valid flag in the input data-
path, is extracted from the CONTROL FIFO BANK memory. It reproduces together with the delay value

and the op signal the input scenario in the filter bank interface.

Although in our sandwich configuration we will not have bursts arriving to a resampler configured
in up-sampling mode, our synchronization mechanism can handle also such a case. As presented in 4.3.1,
a same sample will be used as reference for several output values in up-sampling configurations. When a
burst arrives (successive input samples marked valid arriving at the data-path input in the filter bank), the
filter produces consecutive outputs in consecutive processing slots; this pops several filtered samples out
of the filter based on the consecutive valid of the burst. These bursts at the output need to be handled
properly by the synchronization mechanism, otherwise corruption may occur. This is the case if the first
popped sampled of the burst was used in the DIANA engine as reference in two delay values; it needs to be
re-used twice in the Horner structure, to produce two output samples, with the two delay values (scenario
4 followed by scenario 2 at the filter bank interface). Imagine that a burst arrives at the input of the filter in
such a circumstance, the precedent same sample needs to remain two consecutive cycles at the output of
the filter. The filter will pop a second sample, making the needed one to remain only for one single slot at
the output port. Without our memory-based mechanism this would violate the delay-sample combination,
since the sample would only be available for the first of the two processing slots required. However, with

the controlled extraction of the memories present in our mechanism, this would be safely handled.

Combining hence the operation of the two memory banks, the scenarios can be safely passed from
the filter bank interface to Horner interface. The delay and filtered sample signals are thus fed aligned to

the Horner structure, and a new output can be produced.

89

Conclusions

4.4.4.6. Output interface alignment

The propagation between Horner interface and output interface, through the Horner structure, is
deterministic. The Horner entity is composed of adders and multipliers which combine and propagate the
filtered data with the delay value. Only arithmetic operators implemented in DSP macros are present, and
no enable register is used in this data-path pipeline. The latency through them can thus be estimated and
mimicked with a chain of registers in the op_ s line: This signal is propagated in parallel to the data-path
with pipeline registers reproducing the delay. At the output of the Horner structure, the synchronized op_ s
signal qualifies the result of the resampler (signals data os and valid os). These elements are

depicted in Fig. 4.26.

Homer | faata £s (07 HORNER OUTPUT Output
Interface data f£s [1] STRUCTURE INTERFACE Interface
DATA-PATH data o ~ |data os

data_fs [C] pipelined

arithmetic
DELAY dly s operators
VALUE | = | T

CONTROL °®=3 S

DATA-PATH

valid os

Fig. 4.26. Hardware and signal propagation arriving to the Output interface.

4.5. Conclusions

The chapter has presented a new all-digital sampling rate conversion architecture with a fixed frequency
system/processing clock. The output data port is synchronous to the input that also serves as reference. The
resampling ratio is externally provided. The architecture supports both up-sampling and down-sampling.
The resampler contains an interpolating unit based on a Variable Fractional Delay filter and timing unit
based on an algorithmic engine implementing the DIANA algorithm. The range of values for this resampling
ratio is defined by the relation between sampling clock and processing clock in the decoupled data-path in
which it is included, and the position of the resampler in the data-path. It uses the FRANCISCO fabric
presented in Chapter 3. The ratio can adopt arbitrary values within the range and accepts its modification

in real-time.

90

Chapter 5

Verification and Validation of the Resampler
and the BSP Architecture

Abstract: This Chapter presents the results of the
functional verification and validation of the main units
of the proposed solution. The entities of the resampler,
DIANA engine, VFD filter and Synchronization logic
are first analysed. They are later studied combined
within a resampler. Finally, the BSP Architecture
containing two resamplers and application specific
processing is tested. The results of Hardware tests in a
laboratory setup are also presented.

5.1. Introduction

This chapter presents the functional verification of the resampler, its three functional units and the
combination of two resamplers in a sandwich configuration originating the BSP Architecture. The chapter
presents also the validation results of the tests that we have performed in the units affecting the final

performance of the BSP Architecture.

In the verification process we have checked the operation and behaviour of the resampler, its units,
and the BSP Architecture against the functional specification that we have introduced in Chapters 3 and 4.
The validation procedures assessed the performance of these entities; we look at the key elements and the
implications they have, that affect the quality of the results of the BSP Architecture when in operation. This
analysis is closely related to the implementation details of the Architecture; it is defined by parameters such
as the number of bits used in the data-path, the coefficients of the filter bank, or the delay/ratio data-path,
the number of taps in the filters, the architecture of the VFD, etc. They all influence the final performance
of the BSP Architecture. The optimization of all these parameters is out of the scope of the Thesis; we
however present some guidelines that should be taken into account by the reader as an illustration on how

all these trade-offs affect the performance when tailoring the Architecture to other implementations.

91

Verification

The methodology that we have followed in the development, implementation, verification and
validation procedures is as follows. We have first studied the resampling algorithm with MATLAB
simulations, regardless of any implementation details. Then a functional Simulink model was used for
architectural exploration and its verification. The algorithmic operations and control structures were
grouped by functionalities, and translated into system level blocks. These were integrated into a functional
system level model of the resampler. Then two resamplers in “sandwich configuration” were connected to
study the BSP Architecture. These simulations included the latency of the hardware blocks mapping the
data-path and the control structures. No signal quantization constraints were incorporated at this stage, the
only error source came from the coefficients of the VFD that approximates the response of a pure delay.
This functional model was migrated to Xilinx System Generator primitives within our hardware
implementation for verification and validation with simulations and also in real hardware in the laboratory.
These hardware primitives and the System Generator suite make possible the simulation of the Architecture
and its internal signals with an accuracy of a processing clock cycle. We run several simulations with test
benches mimicking real scenarios and applications of the resampler and the BSP Architecture. These
verified the feasibility of the solution. Finally, the resampler and the BSP Architecture have been migrated

to a uTCA crate for test in the laboratory and real hardware.

5.2. Verification

The section presents the verification of the BSP Architecture against the functional specification. We first
briefly present the procedure that we have followed to verify the resampler entities and the resampler as a
whole. Then we concentrate on the BSP Architecture verification; its results implicitly double-confirm that
the verification was also successful for the internal entities and single resampler. We use in all the
verification and validation processes the same clocking configuration for the FRANCISCO fabric and the
MERCEDES interfaces; the data stream at the input of the decouple interface arrives at sampling rate
fs =62.5-10° sample/s, we configure the interfaces with M = 2 (section 3.3.7), this results in a processing
clock in the decoupled data-path at a frequency of 125 MHz. These values are also the ones that will be
used in the OTFB application tests of Chapter 6 (the recovered WR clock is also a signal at 125 MHz).

5.2.1. Entities and resampler verification

We present in first place the verification procedure for the DIANA engine, the synchronization logic
and the VFD. We have used System Generator instead of the Very high-speed integrated circuit Hardware
Description Language (VHDL) for the hardware implementation of the resampler and BSP Architecture,
this eases the design and also the verification process of a DSP hardware architecture. This graphical
language instantiates hardware primitives present in Xilinx FPGAs and accepts easily parametric
configuration of the hardware elements; we can play with different architectural configurations and, at the
same time, System Generator makes possible computer simulation of the synthetized final hardware in the

time domain. We prepared different test benches for the verified entities where we instantiated the System

92

Chapter 5. Verification and Validation of the Resampler and the BSP Architecture

Generator models of the hardware entities and excited them with signals generated in a computer

workspace.

In the case of the DIANA engine verification, we have simulated the System Generator
implementation of the entity depicted in Fig. 4.21 against the algorithmic specification (section 4.3.1.2).
We studied different input stimulus; the different sampling rates in the input data-path of the resampler are
defined by the valid signal. We have simulated different activation ratios and different distributions in the
tests. The resampling ratio R (mapped as 1/R in the signal T out n as presented in Eq.(4.8)) also
reproduces different scenarios; we performed tests with the ratio as a static signal, and dynamic scenarios
where the ratio changed with time. The functional behaviour of the resampler is also controlled with this
signal; we tested scenarios where it was configured in up-sampling mode and others were the resampler
was configured in down-sampling mode. We analysed the correct generation and synchronization of the

output signals op and d1y according to the algorithm diagram of Fig. 4.5.

The VFD interpolating unit of the resampler was the next entity verified. It estimates the value of
an analog subjacent signal at the requested instants by shifting (filtering) the available samples. These new
sampling instants are defined by an amount of time (the delay) with respect to the reference handled by the
DIANA. We have verified that our VFD satisfies the delay ranges (section 4.4.2.1) and the dynamic
modification of its value. We performed this preliminary verification in the time domain, and we let the
frequency-domain analysis for the validation study. The data-path of the VFD is implemented in the
FRANCISCO fabric and uses hence a decoupled data-path. In the verification we do not focus on the data-
path implementation issues that are tackled when verifying the synchronization logic between different
elements of the resampler, among them the filter bank and the Horner. Moreover, from a functional point

of view the use of a coupled or decoupled data-path is transparent.

We have performed simple tests on the VFD that had as objective the verification of the correct
signal shift or “estimation”, both for “past” and “future” sampling instants with respect to the reference, as
presented in 4.3.1.1; the “delay by 7 s” operation was modelled in the continuous-time in Eq.(4.10) as the
impulse response 4ia(f). This impulse response is a shift operation of magnitude [t] s, being 7 negative
valued. The discrete counterpart /4[n] was presented in Eq.(4.18), where the total delay D measured in
samples (Eq.(4.20)) contains an integer part D; that accounts for the latency of the filter and the fractional
one d. We were interested in this fractional contribution; it defines towards what time direction and how
much we shift our reference to obtain the estimated output sample. Note that as the contribution of the
integer part (the hardware latency) is always larger than the fractional contribution, the total magnitude of
the delay will always be D < 0. When d is also negative, d < 0, the VFD estimates the value of the signal in
past sampling instants (looking “backwards ") with respect to the reference x[#n], that lies in the central tap
of the filter. When the fractional delay value is positive, the VFD estimates the value of the signal in future
sampling instants (looking “forward”) with respect to the reference x[n]. The test to verify this correct

behaviour for positive and negative values fed fixed negative (-d) and positive (d) fractional delay values

93

Verification

to the VFD. Then the resulting delayed and advanced signals were post-processed; the latency D; of the
VFD was removed and the resulting signal aligned with the reference one. The VFD successfully passed
all the tests. We performed more complex tests with the delay value modified in real-time. Note that the
filter does not need any reconfiguration time, nor flushing of the internal pipeline and/or taps when changing
the delay value. The Farrow-based VFD does not require re-computation of the filter coefficients as a
function of the delay as presented in 4.3.2.5, instead it prefilters the input samples x[#] in the parallel static
branches that contain the sub-filters g.[n] of the filter bank. This results in a parallel set of pre-filtered data
based on the single input of the VFD. These pre-filtered data are the coefficients @z.[n] (Eq.(4.30)) of the
Taylor polynomial (Eq.(4.32)), with the delay value d as the variable in this case. We were able to change
the delay value in real-time and obtain the estimate y[#] of the signal at the sampling instant pointed by this

delay value.

The glue logic and synchronization elements connecting the main entities of the architecture have
also been verified. The process checked that the signals crossing the interfaces presented in section 4.4.4
arrive aligned at processing-clock cycle level to the following interface. The entities are the DIANA engine,
and the VFD filter that contains the FIR filter bank and the Horner combiner. The DIANA engine requires
alignment between data-path and resampling ratio. In the VFD, the filter bank interface requires alignment
between the data-path and the delay value resulting from the engine. The Horner, that combines the
processed data-path and the delay, requires also alignment among them, and with the control signal op of
the engine, that flags when these signals will produce a valid output sample. The synchronization

mechanism performed correctly.

After verification of the entities as isolated elements, we studied the entire resampler. We resampled
different input signals and verified the output to properly represent the underlaying analog signal of the
input. The ratio was configured in up-sampling mode, in down-sampling mode and to perform no operation,
being transparent, i.e., R = 1. We also checked that the resampler operates as expected when modifying its
input resampling ratio signal in real-time. We depict in Fig. 5.1 a summary plot of one of these tests with
varying ratio in real-time, that implicitly also verifies the simpler cases. We used as input a sinusoidal signal
at a frequency of 1.5 kHz. The ratio starts adopting a down-sampling value R = 0.5, then is modified towards
up-sampling values according to R = 0.7, R=0.9, R=1.1, R =13 and R = 1.5. We then decrease the
resampling ratio towards down-sampling ratios; R = 13, R = 1.1, R = 09, R = 0.7 and
R =0.5. After each modification of the resampling ratio, the resampler operates in steady state for 0.1 ms.
We have decimated the stored reference signal, the resampled signal and the ratio signal to better depict the
results; we plot one sample in the figure per one-thousand-five-hundred samples in the simulation. In Fig.
5.1(a) we depict the input reference samples fed to the resampler and its subjacent analog signal. In Fig.
5.1(b) we depict the resulting signal that follows the resampling ratio, that it is also depicted in the third
trace, Fig. 5.1(c). We observe at the beginning of the simulation, in the first steady period, that we have
more samples in the reference trace than in the output trace. The reference trace contains six depicted

samples while the resampled trace only three. This is coherent for R = 0.5. Then the ratio starts to grow and

94

Chapter 5. Verification and Validation of the Resampler and the BSP Architecture

around the simulation time 0.3 ms, it changes from down-sampling to up-sampling values. We see how in
each segment, the number of samples in the resampled trace is larger than in the reference. Then, between
0.5 ms and 0.7 ms, the resampler operates at R = 1.5, we can observe how in the refence trace we have nine
depicted samples while in the resampled one this value is increased up to thirteen depicted samples, this is
again coherent for R = 1.5. We finally start to decrease the ratio, and at the end of the simulation it reaches
the starting value R = 0.5, with again six depicted samples in the reference and three in the resampled trace.
We can hence conclude that according to this functional test, the resampler is verified, and all the units and
entities that integrate it and provide support for the implementation, operate as expected with static and

dynamic ratios.

(a)

Reference signal
T

0 0.2 0.4 0.6 0.8 1 1.2
Time [ms]

(b)

Resampled signal

Amplitude
) —

Time [ms]

(©

Evolution of the resampling ratio with time
T

105 T T I

Resampling ratio

0.5 L I 1 I I
0 0.2 0.4 0.6 0.8 1 1.2
Time [ms]

Fig. 5.1. Functional verification of the sweeping dynamic resampling ratio. (a) Reference signal. (b) Resampled signal.
(c) Resampling ratio.

5.2.2. BSP Architecture verification

The verification of the BSP Architecture that we present in this point checked that the tuning
between signal and BSP algorithm was achieved for spectral contents that vary with time. This requires
dynamic reconfiguration of the resampling ratios in the sandwich. We assessed that our BSP Architecture
effectively maps the signal spectrum to the BSP processing (filtering), and at the output recovers the original

sampling rate, in a test bench emulating different scenarios found in LLRF applications.

The test bench that we used instantiates the segment of the data-path that contains the BSP
Architecture implementation presented in Chapter 3. It spans between the input and output MERCEDES
interfaces of Fig. 3.9. The data-path is decoupled before the first resampler and coupled back after the

second. We used the presented clocking configuration in the introduction with M = 2. The valid signal

95

Verification

present after the MERCEDES Decouple interface has a uniform activation ratio ar = 0.5. The BSP region
between the two resamplers in sandwich configuration is implemented in the FRANCISCO fabric. It
contains the application-specific processing. The MERCEDES Decouple interface implements also in
System Generator the proposed architecture of Fig. 3.19, and the MERCEDES Couple interface does the
same with the architecture of Fig. 3.24. As the test bench aims to mimic LLRF applications, the BAP
processing block (Fig. 3.9) in our application would be the responsible for the down-conversion of the

digitized RF signal.

In the BSP region, we used for the verification a static processing filter inserted between the two
resamplers. The first resampler increases the sampling rate of the discrete signal. The resampling ratio is
modified in real-time proportionally to the instantaneous frequency of the signal. This operation tunes the
discrete representation of the sweeping spectral components of the processed signal to fixed normalized
frequencies according to Eq.(3.6). Finally, the filtered signal is brought back to the original sampling rate
by the second resampler. The ratio is modified in real-time in this resampler with the inverse value of the
input one. The BSP filter was also implemented in System Generator primitives. The stimulus and other
auxiliary system blocks were implemented using Simulink blocks for simplicity. The tests were conducted
without and with quantization of the signals to fixed-point arithmetic. We present here the quantized case;
the data-paths at the input and output of the MERCEDES interfaces, BAP and BSP regions are sixteen bits
wide, with fifteen fractional bits. The coefficients of the VFD filter within the resamplers and the BSP filter
are twenty-seven bits wide, with twenty-six fractional part bits. The resampling ratio signals are thirty-two
bits wide words, with twenty-nine fractional part bits, two integer part bits and one sign bit. The computed

delay value is an eighteen bits wide word, with seventeen fractional bits and one sign bit.

5.2.2.1. Notching filter scenario

The use case scenario that we present in this section emulated an RF signal with harmonic and
variable spectral content that needs to be processed. The stimulus signal at the input of the data-path test
bench represents this harmonic signal after down-conversion to base-band: It contains a DC level and a
tone at a frequency that changes with time. The DC level remains at that fixed position in the normalized
spectrum during the whole simulation. The real frequency of the tone changes with time but we use the
BSP Architecture to tune the sweeping tone to the processing, both at a fixed position in the normalized
discrete spectrum. The signal processing is hence static, it is not reconfigured, and has a fixed frequency
response addressing the harmonic content. We use for that a static periodic filter whose notches cancel the
DC level and the variable frequency tone. In the test bench an extra line at a fixed static frequency is added
as witness of the proper BSP behaviour. When the system performs a