
 

 

   PhD in Electronic Engineering 

   Barcelona, 2021 

DIGITAL HARDWARE ARCHITECTURES  

FOR BEAM SYNCHRONOUS PROCESSING 

AND RF SYNCHRONIZATION  

OF PARTICLE ACCELERATORS 

 

 
Fco. Javier Galindo Guarch 

 





 
 

 

 

 

 

 

 

   

DIGITAL HARDWARE ARCHITECTURES FOR  

BEAM SYNCHRONOUS PROCESSING  

AND RF SYNCHRONIZATION OF  

PARTICLE ACCELERATORS 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 
REQUIREMENT FOR THE PHD DEGREE ISSUED BY THE 
UNIVERSITAT POLITECNICA DE CATALUNYA, IN ITS 
ELECTRONIC ENGINEERING PROGRAM. 

FRANCISCO JAVIER GALINDO GUARCH  

DIRECTORS:  

JUAN MANUEL MORENO AROSTEGUI ,  UPC   

PHILIPPE BAUDRENGHIEN, CERN  

February, 2021   Barcelona, Spain 

 





 
 





 

 

 

 

 

 

 

 

 

 

 

 

A mis Padres,  

a mis Abuelos.





i 
 

Agradecimientos 
 

Tengo que agradecer, en primer lugar, a mis directores J. Manuel Moreno y Philippe Baudrenghien su 

apoyo y orientación durante los años en los que este trabajo ha tenido lugar. Manuel, gracias por tu infinita 

paciencia conmigo y tus acertados consejos a los que tendría que haber hecho más caso. Et Philippe, ton 

soutien, implication au-delà du devoir, exemple… merci! 
 

Quiero a continuación dedicar esta Tesis, que culmina muchos años de trabajo y esfuerzo de mi 

vida, a mis abuelos, Mercedes, Joaquina, Francisco y Francisco, y a mis padres, Paquita y Vicente, gracias 

por estar siempre a mi lado, aun cuando a veces nos separen cientos de kilómetros de distancia... también 

a Diana y Maya, por vuestro inestimable apoyo, escucha y cariño durante estos años.  
 

Deseo expresar mi gratitud a todos aquellos que, de una manera u otra, han contribuido también a 

que este trabajo haya alcanzado su fin, mis familiares, mis compañeros en Suiza, Holanda, España… En el 

CERN, en el grupo de RF... Jorge Sánchez, Juan Carlos Allica, Natalia Galindo, Silvia Aguilera, David 

Cabrerizo, Jordi Ustrell, Endre Bjorsvik, Javier Llorente, Ricardo Hernández, Carolina Belver, Rubén 

Lorenzo, Miguel Ojeda, Diego Barrientos, Alejandro Díaz, Sergio Calvente, Jorge Flores, Rubén García, 

Enrique de Nicolás, Nuria Ayala, Alicia del Barrio, Iñaki Ortega, Luis E. Fernández, Alvaro Ferrero, Pablo 

Prieto, Jesús Cortés, Lorena Vega, Juan Esteban, Gregoire Hagmann, Jose Noirjean, Predrag Kuzmanovic, 

Tom Levens, Tomasz Wlostowski, Javier Serrano, Michael Jaussi, Robert Borner, Heiko Damerau, Vebjorn 

Myklebust, Michal Husejko, Eleanor Davies, Fathia Saidi, Themis Mastoridis… Me gustaría expresar mi 

gratitud a Wolfgang Hofle y Erk Jensen, por apoyar y albergar esta Tesis dentro del grupo de RF.  
 

Sería imperdonable no demostrar mi agradecimiento a todos mis amigos dispersos por el mundo, 

entre ellos a Pablo T. Chinea, Jaime Crespo, Jorge Solana, Oriol Lluch, Idoia Palicio, Manuel Blanco… a 

los del pueblo, La Fresneda, y a los de Zaragoza, Santi, Alberto, Alberto, Alex, David, Javi, Kiko, J. 

Miguel… y especialmente a Ismael Bel quien tanto me ha escuchado. Por supuesto también a Andrea, 

Fernando, Yolanda y Fernando. 

Mi agradecimiento para Herbert Shea, Arturo Mediano, Alfonso Muñoz y Antonio Agudo por 

descubrirme que es la Investigación y el rigor académico. Antes de terminar, no quiero olvidar a mis 

compañeros de la universidad donde todo empezó mucho tiempo atrás, J. Ignacio Gimeno, Jesús Gonzalvo, 

Andrés Grande, Antonio Oteo, Diego Pérez, Sergio Sanz y Jesús Velázquez. 

¡A todos, Gracias! 





iii 
 

Acknowledgements 
 

I would like to express my gratitude in in first place to my Thesis directors, J. Manuel Moreno and Philippe 

Baudrenghien for their support and guidance during these years. Thankyou Manuel for your endless 

patience and wise advice that I should follow more often. Et Philippe, ton soutien, implication au-delà du 

devoir, exemple… merci! 
 

I would like to dedicate this Thesis, that is the result of many years of devoted work in my life, to 

my grandparents, Mercedes, Joaquina, Francisco and Francisco, and to my parents, Paquita and Vicente, 

thank you for being always available and close to me, even when sometimes we are separated by a long 

distance... and to Diana and Maya, for your invaluable support, for listening to me, and your affection 

during these years.  
 

I would like to seize this opportunity to thank all of you that, in one way or another, have contributed 

to the fruitful end of this work, my family, my colleagues in Switzerland, Holland, Spain… at CERN, the 

RF group… Jorge Sánchez, Juan Carlos Allica, Natalia Galindo, Silvia Aguilera, David Cabrerizo, Jordi 

Ustrell, Endre Bjorsvik, Javier Llorente, Ricardo Hernández, Carolina Belver, Rubén Lorenzo, Miguel 

Ojeda, Diego Barrientos, Alejandro Díaz, Sergio Calvente, Jorge Flores, Rubén García, Enrique de Nicolás, 

Nuria Ayala, Alicia del Barrio, Iñaki Ortega, Luis E. Fernández, Alvaro Ferrero, Pablo Prieto, Jesús Cortés, 

Lorena Vega, Juan Esteban, Gregoire Hagmann, Jose Noirjean, Predrag Kuzmanovic, Tom Levens, Tomasz 

Wlostowski, Javier Serrano, Michael Jaussi, Robert Borner, Heiko Damerau, Vebjorn Myklebust, Michal 

Husejko, Eleanor Davies, Fathia Saidi, Themis Mastoridis… I would like also to thank Wolfgang Hofle 

and Erk Jensen, for supporting this work within the RF group. 
 

To all my friends spread around the world, among them Pablo T. Chinea, Jaime Crespo, Jorge 

Solana, Oriol Lluch, Idoia Palicio, Manuel Blanco… to the ones in La Fresneda, and the ones in Zaragoza, 

Santi, Alberto, Alberto, Alex, David, Javi, Kiko, J. Miguel … especially to Ismael Bel, who has always had 

a minute for me. And of course, to Andrea, Fernando, Yolanda and Fernando. 
 

Special thanks also to Herbert Shea, Arturo Mediano, Alfonso Muñoz and Antonio Agudo for 

discovering me what Research is and the academic rigor. I do not want to forget my folks in the university 

where all this started year ago, J. Ignacio Gimeno, Jesús Gonzalvo, Andrés Grande, Antonio Oteo, Diego 

Pérez, Sergio Sanz and Jesús Velázquez. 

Thanks to each one of you! 





v 
 

Resumen
En un Acelerador de Partículas, el Low Level RF (LLRF) es el sistema encargado del control de la Radio 

Frecuencia, e implícitamente, de la transferencia de energía y aceleración de las partículas, objetivo último 

de la máquina. El LLRF implementa algoritmos que sincronizan la transferencia de energía de la RF hacia 

el haz, así como también la configuración de sus parámetros longitudinales. Para ello, usa señales derivadas 

del haz, cuyo contenido espectral se ve modificado con la aceleración. El incremento en energía implica un 

incremento en la velocidad del haz que, en el caso de aceleradores circulares (Sincrotrones) se traduce en 

un decremento del periodo de revolución. Esto es especialmente relevante para los aceleradores de 

Hadrones, para los cuales la energía de inyección es baja, lo que resulta en grandes incrementos en su 

velocidad antes de alcanzar niveles relativistas. El LLRF necesita por tanto sintonizar continuamente el 

procesado y el haz; hemos llamado a esta técnica Beam Synchronous Processing.

Una importante misión del LLRF es la compensación de la tensión inducida por el haz en las 

cavidades de aceleración (Beam Loading). En el sincrotrón SPS del CERN, la regulación tiene especificado 

un ancho de banda de 5 MHz a cada lado de la RF (200 MHz). Dado que el periodo de revolución es de 

aproximadamente 23 µs, más de cien harmónicos de la frecuencia de revolución están presentes en cada 

una de las bandas alrededor de la RF. La variación en velocidad del haz altera la posición y el espaciado de 

estos harmónicos en el espectro. Su gran número y posición cambiante hace de la reconfiguración de los 

algoritmos de control una opción poco deseable. Dicha problemática ha sido abordada clásicamente en el 

mundo de los aceleradores mediante un reloj de sistema derivado de la RF, y por tanto variable, que liga 

por diseño los procesos de muestreo y procesado al haz. Esta solución histórica, todavía en uso en varias 

máquinas, es ahora un factor limitante para el uso de nuevas y modernas tecnologías.

Esta Tesis presenta una nueva Arquitectura para procesado síncrono de señales derivadas del haz, 

mediante un reloj de sistema con frecuencia fija, que hace posible el tratamiento de señales periódicas en 

las que el harmónico fundamental tiene una frecuencia variable y conocida. La Arquitectura es una 

alternativa válida al complejo problema de reconfiguración de algoritmos de procesado; esta sintoniza el 

espectro al procesado mediante el re-muestreo de los datos. Dos Re-muestreadores (Resampler en inglés) 

son combinados originando el denominada sándwich de re-muestreo. El algoritmo de aplicación, el cual 

requiere sincronismo con la señal de entrada, se sitúa en medio de este sándwich.

El elemento clave que hace esto posible es un novedoso Resampler completamente digital y basado 

en una arquitectura Farrow, que acepta además relaciones de re-muestreo arbitrarias siendo estas 

modificables en tiempo real. El hardware usa un reloj de sistema único de frecuencia fija, lo cual facilita su



vi 
 

implementación en FPGAs, ASICs y sistemas de última generación, como los nuevos controladores uTCA 

que se están implantando en los sistemas LLRF del SPS. Los puertos de entrada y salida del Resampler, y 

en general el data-path en toda la Arquitectura propuesta, son síncronos a este reloj, y además aceptan una 

frecuencia de muestreo variable y modificable en tiempo real.  

La Arquitectura ha sido implementada y puesta en marcha en uno de estos controladores uTCA 

para LLRF, albergando el algoritmo One Turn FeedBack para control de una cavidad del SPS en el CERN. 

El algoritmo compensa el Beam Loading. La Arquitectura ha demostrado ser viable operando sintonizada 

en todo momento a una rampa de aceleración de energía del haz, con una RF variable que sigue un patrón 

en diente de sierra con una tasa de cambio de la frecuencia lineal de 2.4 MHz por segundo. La 

implementación de la Arquitectura en el controlador uTCA ha pasado toda la validación funcional y los 

test cualitativos.  

La Arquitectura se adapta de manera sin igual a los dos cambios de paradigma tecnológico 

adoptados por el SPS para sus nuevos sistemas LLRF; primero, la distribución del valor instantáneo de la 

frecuencia de la RF es ahora hecho mediante una palabra digital (usada para el cálculo de la relación de re-

muestreo), empleando una red determinista, en este caso White Rabbit. Y segundo, la señal de referencia 

es ahora un reloj con frecuencia fija extraído de esta red determinista. La adopción de ambos paradigmas 

se ve beneficiada por el uso de la Arquitectura Beam Synchronous Processing y del nuevo Resampler 

compleménteme digital, que satisfacen los requerimientos técnicos y tecnológicos para la implementación 

de nuevos algoritmos y soluciones en el campo del LLRF. 

 

Palabras clave; Arquitectura Hardware, FPGA, RF de Baja Señal, Conversión de Tasa de 

Muestreo, Procesado Digital de Señal, Procesado Adaptivo de Señal, Acelerador de Partículas, Sincrotrón, 

Beam Loading, One Turn Delay Feedback. 

  



vii 
 

Abstract 
In Particle Accelerators, the Low-Level RF (LLRF) is the control system of the RF, and in the end, of the 

purpose of the machine, that is the energy transfer and acceleration of particles. It implements algorithms 

synchronizing the RF conveying the energy to the beam and tailoring its longitudinal parameters. For this, 

the LLRF uses beam-related signals whose spectral content changes during the acceleration. The increase 

in energy results in an increase of the beam velocity, and for circular accelerators (Synchrotrons) a decrease 

in revolution period. This is especially relevant for Hadron machines whose injection energy is low 

resulting in a significant increase of their velocity before reaching relativistic speeds. Hence, the LLRF 

needs to continuously tune its processing to the beam; we call this technique Beam Synchronous Processing.  

One important task of the LLRF is the compensation of the beam-induced voltage in the 

accelerating cavities (Beam Loading). In the CERN SPS the regulation bandwidth must cover 5 MHz on 

each side of the 200 MHz RF. With a beam revolution period around 23 µs more than a hundred revolution 

frequency harmonics, present in the beam signal, fall in the RF sidebands. The variation in beam velocity 

changes the position and spacing of the harmonics in the spectrum. The large number of harmonics and 

their varying positions make the algorithm reconfiguration an undesirable option. To cope with this, the 

early digital implementations used a system clock derived from the sweeping RF. This locks the sampling 

and the processing to the beam, by design. This historical solution, that is still in use in several machines, 

is now a limiting factor for the use of modern technologies. 

The Thesis presents a novel Beam Synchronous Processing Architecture, using a fixed frequency 

clocking, and capable of treating periodic signals with known and varying fundamental frequency. The 

Architecture is an alternative to the burden of reconfiguration in processing algorithms; it tunes the 

spectrum to the processing by resampling the input data. Two Resamplers are combined in the so-called 

resampling sandwich. The application algorithm requiring synchronism with the input signal is placed in 

the middle. 

The key element is a novel All-Digital Farrow-based Resampler, that accepts arbitrary resampling 

ratios that can be modified in real-time. The hardware uses a single fixed frequency system clock, making 

its implementation feasible in State-Of-the-Art FPGAs, ASICs and systems such as the new uTCA platform 

currently being deployed in the CERN SPS LLRF system. The input and output ports of the Resampler, 

and all the processing within the Architecture, are synchronous to this fixed frequency clock and accept 

data streams whose sampling rate can be variable and modified in real time. 



viii 
 

The Architecture has been commissioned in a LLRF uTCA crate hosting the One Turn FeedBack 

algorithm to control a real SPS cavity. The algorithm compensates the Beam Loading. The Architecture 

has demonstrated its capability to track in real-time an energy ramp with an RF frequency following a linear 

sawtooth pattern ramped at 2.4 MHz per second. The complete uTCA implementation has successfully 

passed all the functional validation and qualitative tests.  

The Architecture suits seamless the two technological paradigm changes adopted for the new 

CERN SPS LLRF system; first, the instantaneous value of the RF frequency is transmitted as a numerical 

word (used to set the resampling ratio), via a deterministic network, the White Rabbit. And second, the 

reference signal is now the fixed frequency clock recovered from this network. Both paradigms benefit 

from the all-digital Resampler and the Beam Synchronous Architecture that fulfil the techniques and 

technological needs for its implementation enabling novel LLRF algorithms and solutions.   

 

Keywords; Hardware Architecture, FPGA, Low Level RF, Sampling Rate Conversion, Digital 

Signal Processing, Adaptive Signal Processing, Particle Accelerator, Synchrotron, Beam Loading, One 

Turn Delay Feedback.



ix 
 

Résumé 
Dans le monde des Accélérateurs de Particules, le Low-Level RF (LLRF) est le système de contrôle de la 

RF et, in-fine, du transfert d'énergie et de l'accélération des particules. Il met en œuvre des algorithmes 

synchronisant la RF transférant l'énergie au faisceau et adaptant ses paramètres longitudinaux. Pour cela, 

le LLRF utilise des signaux liés au faisceau dont le contenu spectral est modifié par l'accélération. 

L'augmentation d'énergie se traduit par une augmentation de la vitesse du faisceau, et pour les accélérateurs 

circulaires (Synchrotrons), une diminution de la période de révolution. Cela est particulièrement pertinent 

pour les machines à Hadrons dont l’énergie d’injection est faible, avec la conséquence d’une augmentation 

significative de leur vitesse durant l’accélération. Le LLRF doit donc ajuster en permanence son traitement 

au faisceau ; nous appelons cette exigence Beam Synchronous Processing. 

Une tâche importante du LLRF est la compensation de la tension induite par le faisceau (Beam 

Loading). Dans le SPS au CERN, la régulation couvre 5 MHz de chaque côté de la RF (200 MHz). Avec 

une période de révolution autour de 23 µs, plus d'une centaine d’harmoniques de fréquence de révolution, 

présentes dans le spectre du faisceau, tombent dans la bande +- 5 MHz. La variation de vitesse du faisceau 

modifie la position et l'espacement des harmoniques dans le spectre. Le grand nombre de raies spectrales 

et leur position variable font de la reconfiguration de l'algorithme une option indésirable. Les solutions 

digitales existantes ont donc préféré changer l’horloge d’échantillonnage : Celle-ci est verrouillée sur la 

RF, ce qui synchronise par conception l'échantillonnage et le traitement du faisceau. Cette solution 

historique, toujours en usage dans plusieurs machines, est aujourd'hui un facteur limitant pour les 

technologies modernes. 

La Thèse présente une nouvelle Architecture de traitement synchrone de faisceau, utilisant une 

horloge fixe, et capable de traiter des signaux périodiques de fréquence fondamentale connue et 

possiblement variable. L'Architecture apporte une alternative au fardeau de la reconfiguration dans les 

algorithmes ; il ajuste le spectre au traitement en rééchantillonnant les données d'entrée. Deux Ré-

échantillonneurs ont été combinés dans le sandwich de rééchantillonnage. L'algorithme d'application 

nécessitant un synchronisme avec le signal d'entrée est placé au milieu. 

L'élément clé est un nouveau Ré-échantillonneur entièrement numérique basé sur une architecture 

Farrow, qui accepte des taux de rééchantillonnage arbitraires pouvant également être modifiés en temps 

réel. L’implémentation utilise une seule horloge système à fréquence fixe, ce qui rend sa mise en œuvre 

possible dans les FPGA, ASIC et systèmes de pointe comme la nouvelle plate-forme uTCA actuellement 

déployée dans le SPS du CERN. L’entrée et la sortie du Ré-échantillonneur, et tout le traitement dans 



x 
 

l'Architecture, sont synchrones avec cette horloge et acceptent un taux d’échantillonnage variable que peut 

être modifiée en temps réel. 

L'Architecture a été déployée dans un châssis uTCA hébergeant l'algorithme One Turn FeedBack 

pour contrôler une véritable cavité SPS. L'algorithme compense le Beam Loading. L'Architecture a 

démontré sa capacité à suivre en temps réel une rampe d'énergie avec une fréquence RF suivant une 

modulation en dent de scie, à 2.4 MHz par seconde. L’implémentation complète sur uTCA a passé avec 

succès les tests de validation fonctionnelle et qualitative. 

L'Architecture convient parfaitement aux deux paradigmes technologiques adoptés pour le nouveau 

système LLRF du SPS ; premièrement, la valeur instantanée de la fréquence RF est transmise sous forme 

de mot numérique (qui donnera le taux de rééchantillonnage), via un réseau déterministe, le White Rabbit. 

Et deuxièmement, le signal de référence est maintenant l'horloge à fréquence fixe récupérée de ce réseau. 

La solution présentée respecte ces deux paradigmes grâce au Ré-échantillonneur entièrement numérique et 

à l'horloge fixe.  

 

Mots-clés ; Architecture Hardware, FPGA, RF à Faible Signal, Conversion de Taux de 

Echantillonnage, Traitement Numérique du Signal, Traitement Adaptatif du Signal, Accélérateur de 

Particules, Synchrotron, Beam Loading, One Turn Delay Feedback.



xi 
 

Resum
En un Accelerador de Partícules, el Low Level RF (LLRF) és el sistema encarregat de controlar la 

Radiofreqüència, i implícitament, de la transferència d’energia i acceleració de les partícules, l’objectiu 

final de la màquina. El LLRF implementa algoritmes que sincronitzen la transferència d’energia RF al feix, 

així com la configuració dels seus paràmetres longitudinals. Per a això, utilitza senyals derivats del feix, el 

contingut espectral del qual es modifica amb acceleració. L’augment de l’energia implica un augment de 

la velocitat del feix que, en el cas dels acceleradors circulars (Sincrotró) es tradueix en una disminució del 

període de revolució. Això és especialment rellevant per als acceleradors d’Hadrons, per als quals l’energia 

d’injecció és baixa resultant en grans augments de velocitat abans d’arribar a nivells relativistes. Per tant, 

el LLRF necessita sintonitzar contínuament el processament amb l’espectre del feix; hem anomenat aquesta 

tècnica Beam Synchronous Processing.

Una missió important del LLRF és la compensació de la tensió induïda pel feix a les cavitats 

d’acceleració (Beam Loading). En el sincrotró SPS del CERN, la regulació té un ample de banda de 5 MHz 

especificat a cada costat de la RF (200 MHz). Atès que el període de revolució és d’aproximadament 23 

µs, més d’un centenar d’harmònics de la freqüència de revolució estan presents en cadascuna de les bandes 

al voltant de la RF. La variació en la velocitat del feix canvia la posició i l’espaiat d’aquests harmònics en 

l’espectre. El seu gran nombre i posició canviant fa que la reconfiguració dels algoritmes de control sigui 

una opció indesitjable. Aquest problema ha estat abordat històricament amb un rellotge de sistema derivat 

del RF i, per tant, variable, que lliga per disseny els processos de mostreig i processament al feix. Aquesta 

solució històrica, encara en ús en diverses màquines, és ara un factor limitant per a l’ús de les noves i 

modernes tecnologies.

Aquesta Tesi presenta una nova Arquitectura per al tractament síncron dels senyals derivats del 

feix, utilitzant un rellotge de sistema amb freqüència fixa, el que fa possible el tractament de senyals 

periòdics en què els quals l’harmònic fonamental té una freqüència variable i coneguda. L’Arquitectura és 

una alternativa vàlida al complex problema de reconfiguració d’algoritmes de processament; sintonitza 

l’espectre al processament mitjançant el re-mostreig de les dades. Dos re-mostrajadors (Resampler en 

anglès) es combinen originant l’anomenat sandvitx de re-mostreig. L’algoritme d’aplicació, que requereix 

sincronització amb el senyal d’entrada, es troba al mig d’aquest sandvitx.

L’element clau que ho fa possible és un nou Resampler totalment digital basat en una arquitectura 

Farrow, que també accepta relacions arbitràries de re-mostreig que són modificables en temps real. El 

hardware utilitza un únic rellotge de sistema de freqüència fixa, que fa possible la implementació en FPGAs



xii 
 

d’última generació, ASICs i sistemes tals que els nous controladors uTCA que s’estan desplegant en els 

sistemes LLRF del SPS. Tan els ports d’entrada i sortida del Resampler, com tot el processat dins aquesta 

Arquitectura son síncrons amb aquest rellotge de sistema de freqüència fixa i accepten senyals amb 

freqüència de mostreig que pot ser variable i es pot modificar en temps real. 

L’Arquitectura s’ha implementat en un controlador uTCA per LLRF, el qual conté l’algoritme One 

Turn FeedBack per controlar una cavitat SPS del CERN. L’algoritme compensa el Beam Loading. 

L’Arquitectura ha demostrat ser viable operant sintonitzada en tot moment a una rampa d’acceleració 

d’energia de feix, amb una RF variable seguint un patró de serra amb una velocitat de canvi de freqüència 

de 2,4 MHz per segon. La implementació de l’Arquitectura en el controlador uTCA ha superat totes les 

proves de validació funcional i qualitativa. 

L’Arquitectura s’adapta d’una manera com cap altra als dos canvis de paradigma tecnològic 

adoptats pel SPS per als seus nous sistemes LLRF; en primer lloc, la distribució del valor instantani de la 

freqüència RF es realitza ara mitjançant una paraula digital (utilitzada per al càlcul de la relació de re-

mostreig), utilitzant una xarxa determinista, en aquest cas White Rabbit. I en segon lloc, el senyal de 

referència és ara un rellotge de freqüència fixa extret d’aquesta xarxa determinista. L’adopció d’ambdós 

paradigmes es beneficia de l’ús de l’Arquitectura Beam Synchronous Processing i del nou Resampler 

digital, que compleixen els requisits tècnics i tecnològics per a la implementació de nous algoritmes i 

solucions en l’àmbit de la LLF. 

 

Paraules clau;  Arquitectura Hardware, FPGA, RF de Senyal Feble, Conversió de Taxa de 

Mostreig, Processat Digital de Senyal, Processat Adaptatiu de Senyal, Accelerador de Partícules, 

Sincrotró, Beam Loading, One Turn Delay Feedback.



xiii 
 

List of Figures 
 

Fig.  1.1.  Schematic representation of the LLRF network architecture in a synchrotron that uses White 
Rabbit for synchronization and recovers the hardware clock from the data stream. Further details are 
presented in Chapter 6. ................................................................................................................................. 4 
Fig.  2.1.  The simplified spectrum of a beam signal acquired with a pick-up; the position and the spacing 
of the harmonics change during acceleration ramp proportionally to the revolution frequency increase 
(Homothety). .............................................................................................................................................. 12 
Fig.  2.2.  Signals at the input and output ports of a MERCEDES Decouple interface. The input port 
interfaces a coupled data-path with sampling and processing clocks operating at the same frequency. The 
output port interfaces a decoupled data-path with a processing clock operating at a frequency double with 
respect to the sampling clock, M = 2. ......................................................................................................... 13 
Fig.  2.3.  Schematic representation of the fabrics and clocking architecture; sampling fs and processing fp 
clocks for the hardware fabric (white fabric with blue clocks), and the FRANCISCO adaptation fabric 
(grey fabric with yellow clocks).  In the figure, A is an arbitrary value, and M is the relation between 
processing clocks in the MERCEDES interfaces. ....................................................................................... 14 
Fig.  2.4.  (a) ASIC style asynchronous arbitrary ratio resampler. (b) FPGA synchronous arbitrary ratio 
resampler. ................................................................................................................................................... 15 
Fig.  2.5.  Resampler architecture based on a Farrow Variable Fractional Delay Filter, VFD, and the 
DIANA algorithm. ....................................................................................................................................... 16 
Fig.  2.6.  Signals at the input (left) and output (right) port of a resampler configured with an up-sampling 
ratio R = 4 / 3 and implemented in the FRANCISCO adaptation fabric. .................................................... 16 
Fig.  2.7.  New One Turn FeedBack architecture based on the FRANCISCO fabric for the BSP filter. .... 17 
Fig.  2.8.  The response of a Comb filter with 12 resonances in the first Nyquist zone. ............................ 18 
Fig.  3.1.  Functional sketch of the Architecture. The BSP unit is surrounded by resamplers performing 
sampling rate adaptation. ............................................................................................................................ 22 
Fig.  3.2.  High-level representation of the sampling process. On the left, the real signal x(t) to be acquired 
by an ADC. In the middle the ADC interfacing the real signal and the discrete representation x[n]. On the 
right, the sequence of discrete samples, spaced by the sampling period Ts. ............................................... 25 
Fig.  3.3.  High-level representation of the resampling process. On the left, the input sequence x[n] 
sampled at a rate fs. On the right the resulting sequence y[m] after resampling to a rate f’s. ...................... 25 
Fig.  3.4.  Frequency-domain representation of the sampling process; mapping of F0 to ω0 in the discrete 
normalized spectrum. ................................................................................................................................. 26 
Fig.  3.5.  Frequency-domain representation of the resampling process; the discrete normalized spectrum 
of F0  is re-mapped from ω0 to ω’0. ............................................................................................................ 26 
Fig.  3.6.  Representation of the resampling process as element to tune the discrete representation of the 
signal ω0 to a predefined fixed processing ωproc. The fixed processing ωproc (red band-pass filter) remains 
constant defined at ωproc = 2π·0.26 radian/sample. ..................................................................................... 27 
Fig.  3.7.  Representation of the beam signal in the acceleration process of the example in section 3.2.2.4: 
(a) depicts the spectrum at the beginning of the ramp, (b) at the end of the ramp when the sampling clock 
is a fixed frequency one, and (c) at the end of the ramp with a swept clock (or resampling). ................... 28 
Fig.  3.8.  High-level representation of the different zones performing processing at different intermediate 
frequencies (IFs). In the figure, the RF green zone is the region where the RF is at its nominal value. The 



xiv 
 

IF1, IF2 and IF3 depict different regions in which the RF is down-converted to other intermediate 
frequencies. ................................................................................................................................................ 30 
Fig.  3.9.  High-level sketch with the implementation of the proposed Architecture in an FPGA. ............ 32 
Fig.  3.10.  Representation of the interleaving process of three channels. The resulting data-path operates 
at a clock three times faster than the sampling clock. The samples of the different channels are interleaved 
within the data-path. ................................................................................................................................... 35 
Fig.  3.11.  Representation of the distribution of processing slots, the processing clock and samples in the 
data-path for different sampling rates. The activation rate ar dictates the number of occupied processing 
slots for a given period of time τ. In (a) the activation rate is ar = 8/16, in (b) the activation rate is ar = 
10/16, and in (c) the activation rate is ar = 16/16. ..................................................................................... 36 
Fig.  3.12.  Representation of a coupled data-path with a cloud of logic encapsulated within two pipeline 
registers. ..................................................................................................................................................... 37 
Fig.  3.13.  Representation of the relation between the processing clock, the sampling clock, processing 
slots and data samples in a coupled data-path. ........................................................................................... 37 
Fig.  3.14.  Representation of a decoupled data-path with a cloud of logic encapsulated within two 
pipeline enabled registers. .......................................................................................................................... 38 
Fig.  3.15.  Representation of the relation between the processing clock, the average sampling clock, 
processing slots, the data samples and the valid signal in a decoupled data-path. ..................................... 38 
Fig.  3.16.  Simulation depicting the truncation error for the up-sampling (left) and down-sampling (right) 
ratio signals. ............................................................................................................................................... 40 
Fig.  3.17.  Simulation depicting the truncation and inversion errors; the ratio product results in a value 
different from 1. ......................................................................................................................................... 41 
Fig.  3.18.  Functional representation of the MERCEDES Decouple interface. The input port interfaces a 
coupled data-path. The output port interfaces the decoupled data-path. .................................................... 42 
Fig.  3.19.  Schematic representation of a possible MERCEDES Decouple interface implementation. .... 43 
Fig.  3.20.  Chronogram with the signals at the input and output ports of the MERCEDES Decouple 
interface. ..................................................................................................................................................... 43 
Fig.  3.21.  Functional representation of the MERCEDES Couple interface. The input port interfaces a 
decoupled data-path. The output port interfaces the coupled data-path. .................................................... 44 
Fig.  3.22.  Schematic representation of a possible MERCEDES Couple interface implementation. ........ 44 
Fig.  3.23.  Chronogram with the signals at the input and output ports of the MERCEDES Couple 
interface. ..................................................................................................................................................... 45 
Fig.  3.24.  Schematic representation of a possible MERCEDES Couple interface implementation with the 
correction signal corr_R used to create the JOAQUINA Frequency-Locked Loop to cope with the 
truncation error in the output resampler ratio. ............................................................................................ 47 
Fig.  3.25.  Schematic representation of the developed resampling architecture with decoupled data-path 
(Chapter 4). ................................................................................................................................................. 48 
Fig.  3.26.  Schematic representation of a processing segment in a decoupled data-path between two 
resamplers. The ratio signal fed to the output resampler r_out_s mimics the latency through the 
processing. .................................................................................................................................................. 50 
Fig.  3.27.  Schematic representation of the relations between sampling frequencies, Nyquist frequencies 
and resampler bandwidths in the BSP Architecture. .................................................................................. 51 
Fig.  3.28.  Derivation of the bandwidth limit for the input resampled signal for a single resampler. ....... 51 
Fig.  3.29.  Derivation of the bandwidth limit for the input signal of the output resampler in a sandwich 
configuration. ............................................................................................................................................. 52 
Fig.  3.30.  Derivation of the bandwidth limit for the input signal of the sandwich based on the input and 
output resampler limits. .............................................................................................................................. 53 
Fig.  4.1.  Proposed synchronous sampling rate conversion architecture, the resampler. .......................... 56 
Fig.  4.2.  (a) Sampling rate conversion for R < 1. (b) Sampling rate conversion for R > 1. ..................... 57 
Fig.  4.3.  Interpolation between available samples regardless of the resampling ratio R. ......................... 57 
Fig.  4.4.  (a) Absolute time position for input sample x[3], and output samples y[3] and y[4]. (b) Delay 
computation for output y[3]. (c) Delay computation for output y[4]. ......................................................... 60 



xv 
 

Fig.  4.5.  DIstAnce iN time Algorithm (DIANA). ....................................................................................... 62 
Fig.  4.6.  (a) Frequency response HLP(Ω) of Eq.( 4.12 ). (b) Impulse response (π / Ωc) · hLP(t) of Eq.( 4.13 
)................................................................................................................................................................... 65 
Fig.  4.7.  Ideal impulse responses; (a) prototype filter, (b) shifted ideal response and sampled coefficients 
when  the delay D = 7 sample, and (c) shifted ideal response and sampled coefficients when  the delay d = 
0.4 sample. .................................................................................................................................................. 68 
Fig.  4.8.  Schematic representation of sampling rate conversion with analog reconstruction................... 69 
Fig.  4.9.  Schematic representation of sampling rate conversion with analog reconstruction merging the 
two analog filters. ....................................................................................................................................... 70 
Fig.  4.10.  Filtering architecture with the filter coefficients stored in a table accessed based on the delay 
value. .......................................................................................................................................................... 71 
Fig.  4.11.  Prototype impulse response divided in B segments. ................................................................ 71 
Fig.  4.12.  Filtering architecture with the filter coefficients approximated by piecewise polynomial. ..... 72 
Fig.  4.13.  VFD architecture based on the Farrow architecture and the Horner rule. ............................... 74 
Fig.  4.14.  High-level architecture of the implementation of the resampler. ............................................. 75 
Fig.  4.15.  Arbitrary ratio SRC architecture based on a Farrow VFD with different input and output clock 
domains. ..................................................................................................................................................... 75 
Fig.  4.16.  Architectural view of the VFD filter. In blue, the FIR bank of filters and the Horner 
architecture. In green, the synchronization memories, not part of the entity. ............................................ 77 
Fig.  4.17.  Decrease in the number of populated slots in the data-path in the case of down-sampling. .... 78 
Fig.  4.18.  Increase in the number of populated slots in the data-path in the case of up-sampling. .......... 79 
Fig.  4.19.  Data-path overflow and accumulator underflow; the distribution of populated slots is altered 
and contains bursts. .................................................................................................................................... 80 
Fig.  4.20.  Data-path architecture with multiple resamplers. .................................................................... 81 
Fig.  4.21.  Implementation of the DIANA engine. ..................................................................................... 83 
Fig.  4.22.  Synchronization interfaces of the resampler (vertical lines), and signal paths (horizontal 
arrows). ....................................................................................................................................................... 84 
Fig.  4.23.  Hardware and signal propagation arriving to the Filter Bank Interface. .................................. 85 
Fig.  4.24.  Hardware and signal propagation arriving to the Horner Interface.......................................... 86 
Fig.  4.25.  Propagation through the tapped delay line of a filter with (a) a non-decoupled and (b) a 
decoupled data-path. ................................................................................................................................... 88 
Fig.  4.26.  Hardware and signal propagation arriving to the Output interface. ......................................... 90 
Fig.  5.1.  Functional verification of the sweeping dynamic resampling ratio. (a) Reference signal. (b) 
Resampled signal. (c) Resampling ratio. .................................................................................................... 95 
Fig.  5.2.  Magnitude of the frequency response of the periodic notch filter normalized to the BSP 
sampling frequency f’s. ............................................................................................................................... 97 
Fig.  5.3.  Spectrograms at the input (a) and output (b) of the BSP Architecture....................................... 98 
Fig.  5.4.  JOAQUINA inspired feedback loop around the resampling ratio for a single resampler. ....... 102 
Fig.  5.5.  Model of the VFD in the study. ............................................................................................... 103 
Fig.  5.6.  Error function and group delay error function for the computed filter with = 0.6. Zoom in the 
pass-band region. (a) Magnitude of the error function. (b) Fractional group delay error. ....................... 105 
Fig.  5.7.  SNR at the output of the computed filter when excited with a 1 Vpeak tone with = 0.6. (a) First 
Nyquist zone. (b) Zoom in the pass-band region. .................................................................................... 106 
Fig.  5.8.  Error function for the implemented filter with = 0.6 and sixteen-bit data-path. (a) Magnitude 
of the error function. (b) Zoom in the pass-band region. ......................................................................... 107 
Fig.  5.9.  SNR at the output of the implemented filter with = 0.6 and sixteen-bit data-path when excited 
with a 1 Vpeak tone with = 0.6. (a) First Nyquist zone. (b) Zoom in the pass-band region. ................... 108 
Fig.  5.10.  Detailed model of the resampler in the study. ........................................................................ 109 
Fig.  5.11.  Simplified model of the resampler in the study. .................................................................... 110 
Fig.  5.12.  Error function for the computed resampler, down-sampling ratios. (a) Magnitude of the error 
function. (b) Zoom in the pass-band region. ............................................................................................ 111 



xvi 
 

Fig.  5.13.  Magnitude of the square error function for the computed resampler in down-sampling 
configuration. Zoom in the pass-band region. (a) Slices along the ratio axis. (b) Slices along the frequency 
axis. .......................................................................................................................................................... 112 
Fig.  5.14.  Error function for the computed resampler, up-sampling ratios. (a) Magnitude of the error 
function. (b) Zoom in the pass-band region. ............................................................................................ 113 
Fig.  5.15.  SNR at the output of the computed resampler, both down-sampling and up-sampling ratios, 
when excited with a 1 Vpeak tone. (a) First Nyquist zone. (b) Zoom in the pass-band region. ................. 113 
Fig.  5.16.  Magnitude of the square error function for the implemented resampler in down-sampling 
configuration. Zoom in the pass-band region. (a) Slices along the ratio axis. (b) Slices along the frequency 
axis. .......................................................................................................................................................... 114 
Fig.  5.17.  Magnitude of the square error function for the implemented resampler in up-sampling 
configuration. Zoom in the pass-band region. (a) Slices along the ratio axis. (b) Slices along the frequency 
axis. .......................................................................................................................................................... 114 
Fig.  5.18.  SNR at the output of the implemented resampler, both down-sampling and up-sampling ratios, 
when excited with a 1 Vpeak tone. (a) First Nyquist zone. (b) Zoom in the pass-band region. ................. 115 
Fig.  5.19.  Detailed model of the BSP sandwich Architecture in the study. ........................................... 116 
Fig.  5.20.  Simplified model of the BSP sandwich Architecture in the study. ........................................ 118 
Fig.  5.21.  Error function for the computed sandwich, down-sampling ratios in the input resampler. (a) 
Magnitude of the error function. (b) Zoom in the pass-band region. ....................................................... 119 
Fig.  5.22.  Error function for the computed sandwich, up-sampling ratios in the input resampler. (a) 
Magnitude of the error function. (b) Zoom in the pass-band region. ....................................................... 119 
Fig.  5.23.  SNR at the output of the computed sandwich, both down-sampling and up-sampling ratios in 
the input resampler, when excited with a 1 Vpeak tone. (a) First Nyquist zone. (b) Zoom in the pass-band 
region. ....................................................................................................................................................... 120 
Fig.  5.24.  Magnitude of the square error function for the implemented sandwich with down-sampling 
ratios in the input resampler. Zoom in the pass-band region. (a) Slices along the ratio axis. (b) Slices 
along the frequency axis. .......................................................................................................................... 121 
Fig.  5.25.  Magnitude of the square error function for the implemented sandwich with up-sampling ratios 
in the input resampler. Zoom in the pass-band region. (a) Slices along the ratio axis. (b) Slices along the 
frequency axis. ......................................................................................................................................... 121 
Fig.  5.26.  SNR at the output of the implemented sandwich, for both down-sampling and up-sampling 
ratios in the input resampler, when excited with a 1 Vpeak tone. (a) First Nyquist zone. (b) Zoom in the 
pass-band region. ...................................................................................................................................... 122 
Fig.  5.27.  2D colour coded plot of the SNR surface at the output of the implemented sandwich, for both 
down-sampling and up-sampling ratios in the input resampler, when excited with a 1 Vpeak tone. (a) First 
Nyquist zone. (b) Zoom in the pass-band region. .................................................................................... 122 
Fig.  5.28.  SNR at the output of the BSP sandwich Architecture for = 0.6 with resampling ratio Rin = 
1.4. SNR vs filter bank architecture and data-path without quantization error. ....................................... 123 
Fig.  5.29.  SNR at the output of the BSP sandwich Architecture for = 0.6 with resampling ratio Rin = 
1.4. SNR vs Data-path width and reference architecture, six filters with fifteen taps each. .................... 124 
Fig.  5.30.  Spectrum of the LLRF drive. BSP and synthesizer tuned to 200.2 MHz. Span of (a) 2 MHz 
and (b) 100 kHz. ....................................................................................................................................... 128 
Fig.  5.31.  Phase noise measurement. BSP tuned to 200.2 MHz, bandwidth of 1 MHz. ........................ 128 
Fig.  6.1.  Aerial view of the CERN SPS layout (left), and BA3 location detail in the tunnel hosting the 
SPS RF cavities (right). ............................................................................................................................ 134 
Fig.  6.2.  Schematic representation of the SPS RF System; (a) prior to LIU SPS upgrade, (b) after the 
LIU SPS upgrade. Reproduced from [18]. ............................................................................................... 135 
Fig.  6.3.  Image of the SPS 200 MHz LLRF system in the Faraday cage: the pre-LIU SPS upgrade 
configuration (2018) (left), and the new configuration after the LIU SPS upgrade (right). ..................... 136 
Fig.  6.4.  CERN SPS travelling wave cavity in BAF3 test-stand during the Long Shutdown 2, before 
installation in tunnel. ................................................................................................................................ 137 



xvii 
 

Fig.  6.5.  (a) Impedance Zg (real part in blue and imaginary part in red) after compensation of the τ/2 
delay, around the central frequency of the cavity. (b) Impedance Zb (real part in blue and imaginary part 
in red). Four-section cavity. ..................................................................................................................... 137 
Fig.  6.6.  Schematic representation of the network architecture in a synchrotron that uses White Rabbit 
for synchronization. The nodes use local free running oscillators for the clocking of the hardware. ...... 138 
Fig.  6.7.  Schematic representation of a signal synthesizer based on Direct Digital Synthesis............... 139 
Fig.  6.8.  Schematic representation of a uTCA station. ........................................................................... 141 
Fig.  6.9.  SPS Low Level RF schematic architecture. Reproduced from [18]. ....................................... 142 
Fig.  6.10.  Schematic representation of the One Turn FeedBack algorithm. .......................................... 143 
Fig.  6.11.  Partitioning of the OTFB units between the BSP and BAP regions of the processing device.
 .................................................................................................................................................................. 144 
Fig.  6.12.  Simplified representation of the OTFB implementation, and the clocking architecture in the 
processing device. .................................................................................................................................... 145 
Fig.  6.13.  IIR comb filter. ....................................................................................................................... 147 
Fig.  6.14.  Test bench architecture. ......................................................................................................... 150 
Fig.  6.15.  (a) Open-loop transfer function of the feedback system, RF at base-band. (b) Zoom of the first 
1.6 MHz. ................................................................................................................................................... 153 
Fig.  6.16.  Nyquist plot of the open-loop transfer function of the simulation. ........................................ 154 
Fig.  6.17.  Cavity voltage during the simulated ramp, zoom around simulation time 64 ms. (a) RF 
instantaneous frequency,  (b) Cartesian I component and (c) Cartesian Q component. ........................... 154 
Fig.  6.18.  Cavity voltage for the first 1.1 ms of the simulation in Cartesian I (left) and Q (right) 
components: (a) Beam-induced voltage, (b) Generator-induced voltage, (c) Total cavity voltage. RF in the 
beginning at 200.242 MHz. ...................................................................................................................... 155 
Fig.  6.19.  Cavity voltage for the last 0.25 ms of the simulation in Cartesian I (left) and Q (right) 
components: (a) Beam-induced voltage, (b) Generator-induced voltage, (c) Total cavity voltage. RF in the 
end at 200.342 MHz. ................................................................................................................................ 156 
Fig.  6.20.  Transfer function of the OTFB processing chain. The BSP, analyser and measurement are 
tuned to 200.2 MHz with 2 MHz span. .................................................................................................... 157 
Fig.  6.21.  Enlargements of the OTFB magnitude transfer function: (a) RF frequency at 200.2 MHz and 
span covering the first harmonics. (b) Bandwidth modified with a = 7 / 8. (c) Gain modified to G = 1.5. 
(d) RF frequency of 200.2 MHz and zoom around harmonic h100. .......................................................... 158 
Fig.  6.22.  Measured open-loop response, Nyquist plot. ......................................................................... 159 
Fig.  6.23.  Spectrum of the RF signal at the output of the OTFB, RF at 200.2 MHz. Span of (a) 2 MHz 
and (b) 100 kHz. ....................................................................................................................................... 159 
Fig.  6.24.  Phase noise measurement. BSP tuned to 200.2 MHz, bandwidth of 1 MHz. ........................ 159 
Fig.  6.25.  Spectrum of the measured cavity field, RF frequency at 200.347 MHz. Span of (a) 2 MHz and 
(b) 100 kHz. .............................................................................................................................................. 160 
Fig.  6.26.  Spectrogram of the measured cavity field; the RF is swept following a linear sawtooth pattern 
(600 kHz peak-peak). ............................................................................................................................... 160 
Fig.  6.27.  Measured RF field in the cavity. (a) Beam-induced voltage, (b) total cavity voltage in open-
loop, (c) total cavity voltage in closed-loop. ............................................................................................ 161 
Fig.  6.28.  Cavity voltage measured during 65 µs in Cartesian I (left) and Q (right) components: (a) 
Open-loop measurement, (b) closed-loop measurement. RF at 199.89 MHz. ......................................... 162 
Fig.  6.29.  Performance of the beam loading compensation: Spectrum of the cavity voltage with OTFB 
OFF (red trace) and OTFB ON (blue trace). The RF frequency is at 199.898 MHz so that the revolution 
harmonics induced by the beam are spaced by 43.3 kHz. ........................................................................ 162 





xix 
 

List of Tables 
  

Table. 4.1  Modes of operation for the SSRC architecture......................................................................... 82 
Table. 4.2  Scenarios, control signals and actions to be done within the synchronization logic ................ 87 
Table. 5.1  FPGA resource utilization after PAR for a single resampler ................................................. 126 
Table. 5.2  FPGA resource utilization after PAR for the BSP Architecture ............................................ 126 
 





xxi 
 

List of Equations 
  

Eq.( 1.1 ) ....................................................................................................................................................... 6 
Eq.( 2.1 ) ..................................................................................................................................................... 12 
Eq.( 2.2 ) ..................................................................................................................................................... 16 
Eq.( 3.1 ) ..................................................................................................................................................... 25 
Eq.( 3.2 ) ..................................................................................................................................................... 35 
Eq.( 3.3 ) ..................................................................................................................................................... 35 
Eq.( 3.4 ) ..................................................................................................................................................... 49 
Eq.( 3.5 ) ..................................................................................................................................................... 49 
Eq.( 3.6 ) ..................................................................................................................................................... 49 
Eq.( 3.7 ) ..................................................................................................................................................... 49 
Eq.( 3.8 ) ..................................................................................................................................................... 49 
Eq.( 3.9 ) ..................................................................................................................................................... 51 
Eq.( 3.10 ) ................................................................................................................................................... 53 
Eq.( 3.11 ) ................................................................................................................................................... 53 
Eq.( 4.1 ) ..................................................................................................................................................... 59 
Eq.( 4.2 ) ..................................................................................................................................................... 59 
Eq.( 4.3 ) ..................................................................................................................................................... 59 
Eq.( 4.4 ) ..................................................................................................................................................... 60 
Eq.( 4.5 ) ..................................................................................................................................................... 60 
Eq.( 4.6 ) ..................................................................................................................................................... 61 
Eq.( 4.7 ) ..................................................................................................................................................... 61 
Eq.( 4.8 ) ..................................................................................................................................................... 61 
Eq.( 4.9 ) ..................................................................................................................................................... 64 
Eq.( 4.10 ) ................................................................................................................................................... 64 
Eq.( 4.11 ) ................................................................................................................................................... 64 
Eq.( 4.12 ) ................................................................................................................................................... 64 
Eq.( 4.13 ) ................................................................................................................................................... 64 
Eq.( 4.14 ) ................................................................................................................................................... 64 
Eq.( 4.15 ) ................................................................................................................................................... 65 
Eq.( 4.16 ) ................................................................................................................................................... 65 
Eq.( 4.17 ) ................................................................................................................................................... 65 
Eq.( 4.18 ) ................................................................................................................................................... 65 
Eq.( 4.19 ) ................................................................................................................................................... 66 
Eq.( 4.20 ) ................................................................................................................................................... 66 
Eq.( 4.21 ) ................................................................................................................................................... 67 
Eq.( 4.22 ) ................................................................................................................................................... 67 
Eq.( 4.23 ) ................................................................................................................................................... 67 
Eq.( 4.24 ) ................................................................................................................................................... 67 
Eq.( 4.25 ) ................................................................................................................................................... 70 
Eq.( 4.26 ) ................................................................................................................................................... 72 
Eq.( 4.27 ) ................................................................................................................................................... 73 



xxii 
 

Eq.( 4.28 ) ................................................................................................................................................... 73 
Eq.( 4.29 ) ................................................................................................................................................... 73 
Eq.( 4.30 ) ................................................................................................................................................... 73 
Eq.( 4.31 ) ................................................................................................................................................... 73 
Eq.( 4.32 ) ................................................................................................................................................... 73 
Eq.( 4.33 ) ................................................................................................................................................... 73 
Eq.( 4.34 ) ................................................................................................................................................... 77 
Eq.( 5.1 ) ..................................................................................................................................................... 97 
Eq.( 5.2 ) ..................................................................................................................................................... 97 
Eq.( 5.3 ) ..................................................................................................................................................... 97 
Eq.( 5.4 ) ..................................................................................................................................................... 97 
Eq.( 5.5 ) ................................................................................................................................................... 100 
Eq.( 5.6 ) ................................................................................................................................................... 100 
Eq.( 5.7 ) ................................................................................................................................................... 100 
Eq.( 5.8 ) ................................................................................................................................................... 103 
Eq.( 5.9 ) ................................................................................................................................................... 104 
Eq.( 5.10 ) ................................................................................................................................................. 104 
Eq.( 5.11 ) ................................................................................................................................................. 105 
Eq.( 5.12 ) ................................................................................................................................................. 106 
Eq.( 6.1 ) ................................................................................................................................................... 136 
Eq.( 6.2 ) ................................................................................................................................................... 137 
Eq.( 6.3 ) ................................................................................................................................................... 137 
Eq.( 6.4 ) ................................................................................................................................................... 146 
Eq.( 6.5 ) ................................................................................................................................................... 147 
Eq.( 6.6 ) ................................................................................................................................................... 148 
Eq.( 6.7 ) ................................................................................................................................................... 148 
Eq.( 6.8 ) ................................................................................................................................................... 148 
Eq.( 6.9 ) ................................................................................................................................................... 148 
Eq.( 6.10 ) ................................................................................................................................................. 148 
Eq.( 6.11 ) ................................................................................................................................................. 152 
Eq.( 6.12 ) ................................................................................................................................................. 152 
Eq.( 6.13 ) ................................................................................................................................................. 152 
Eq.( 6.14 ) ................................................................................................................................................. 152 
Eq.( 6.15 ) ................................................................................................................................................. 152 
Eq.( 6.16 ) ................................................................................................................................................. 152 
Eq.( 6.17 ) ................................................................................................................................................. 152 



xxiii 
 

List of Abbreviations 
  

ADC  Analog to Digital Converter 
AMC  Advanced Mezzanine Card 
ANC  Adaptive Noise Cancelling  
ASIC  Application Specific Integrated Circuit 
ASRC  Asynchronous Sampling Rate Conversion 
BAP  Beam Asynchronous Processing 
BNL  Brookhaven National Laboratory 
BSP  Beam Synchronous Processing 
BW  BandWidth 
CERN  Conseil Européen pour la Recherche Nucléaire 
COTS  Commercial-Off-The-Shelf 
DAC  Digital to Analog Converter 
dB  DeciBel 
DC  Direct Current 
DDS  Direct Digital Synthesis 
DIANA  DIstAnce iN time Algorithm 
DSP  Digital (or Discrete) Signal Processing (or Processor) 
EM  Electro-Magnetic 
FCC  Future Circular Collider 
FD  Fractional Delay 
FFA  Fixed Frequency Acceleration 
FFT  Fast Fourier Transform 
FIFO  First-In-First-Out 
FIR  Finite Impulse Response 
FNAL  Fermi National Accelerator Laboratory  
FPGA  Field Programmable Gate Array 
FRANCISCO FabRic with Adaptive aNd deCoupled clockIng for SynChronous prOcessing 
FT  Fourier Transform 
FTW  Frequency Tunning Word 
GSI  Helmholtzzentrum für Schwerionenforschung 
HL-LHC  High Luminosity LHC 
I/Q  In-phase and in-Quadrature 
IF  Intermediate Frequency 
IIR  Infinite Impulse Response 
IOT  Inductive Output Tube  
JOAQUINA JOintly Averaged and QUaNtized rAtio 
JPARC  Japan Proton Accelerator Research Complex  
LHC  Large Hadron Collider 



xxiv 
 

LINAC  LINear ACcelerator 
LIU  LHC Injectors Upgrade 
LLRF  Low Level Radio Frequency 
LMS  Least-Mean-Square 
LO  Local Oscillator 
LS2  Long Shutdown 2 
LSB  Least Significative Bit 
MERCEDES MultiplE Rate and Clocking interfacE for Data procEssing and Sampling 
NCO  Numerically Controlled Oscillator 
NIM  Nuclear Instrumentation Module 
OTFB  One Turn FeedBack 
PAR  Place And Route 
PLL  Phase-Locked Loop 
PS  Proton Synchrotron 
PSB  Proton Synchrotron Booster  
RF  Radio Frequency 
RML  Recursive Maximum Likelihood  
RPE  Recursive Prediction Error 
RS register Reset Set register  
RTM  Rear Transition Module 
SA  Spectrum Analyzer 
SNR  Signal to Noise Ratio 
SOA  State-Of-the-Art 
SPS  Super Proton Synchrotron 
SQNR  Signal to Quantization Noise Ratio 
SRC  Sampling Rate Conversion 
SSPA  Solid-State Power Amplifiers  
SSRC  Synchronous Sampling Rate Conversion 
TBLC  Transient Beam Loading Compensation 
TRL  Technology Readiness Level 
TWC  Travelling Wave Cavity 
uTCA  Micro Telecommunications Computing Architecture 
VFD  Variable Fractional Delay 
VHDL  Very high-speed integrated circuit Hardware Description Language  
VME  Versa Module Eurocard 
VNA  Vector Network Analyzer 
WLS  Weighted Least Squares 
WR  White Rabbit 



xxv 
 

Contents 
 

Agradecimientos ............................................................................................................................................ i 

Acknowledgements ..................................................................................................................................... iii 

Resumen ....................................................................................................................................................... v 

Abstract ...................................................................................................................................................... vii 

Résumé ........................................................................................................................................................ ix 

Resum .......................................................................................................................................................... xi 

List of Figures ........................................................................................................................................... xiii 

List of Tables ............................................................................................................................................. xix 

List of Equations ....................................................................................................................................... xxi 

List of Abbreviations ............................................................................................................................... xxiii 

Contents .................................................................................................................................................... xxv 

Chapter 1 Motivation and Introduction ..................................................................................................... 1 

1.1. Motivation .................................................................................................................................... 1 

1.2. The CERN accelerator complex ................................................................................................... 3 

1.3. Beam-Cavity interaction ............................................................................................................... 5 

1.4. State-Of-the-Art in BSP algorithms ............................................................................................. 6 

1.5. Document organization ................................................................................................................ 8 

Chapter 2 Contributions of the Thesis ...................................................................................................... 9 

2.1. Introduction .................................................................................................................................. 9 

2.2. Tangible improvements with the new Architecture ................................................................... 10 

2.3. Contributions to the State-Of-the-Art ......................................................................................... 11 

2.3.1. Signal/Beam Synchronous Processing ............................................................................... 11 

2.3.2. Resampling architecture with arbitrary and real-time variable ratio .................................. 15 

2.3.3. New Transient Beam Loading Compensation schema ....................................................... 17 

2.4. Conclusions ................................................................................................................................ 19 

Chapter 3 Beam Synchronous Processing Architecture .......................................................................... 21 

3.1. Introduction ................................................................................................................................ 21 

3.2. Proposed processing Architecture .............................................................................................. 21 

3.2.1. High-level functional sketch............................................................................................... 22 

3.2.2. Sampling rate variation....................................................................................................... 23 



xxvi 
 

3.2.3. Resampling sandwich ......................................................................................................... 29 

3.2.4. Modulation architecture...................................................................................................... 30 

3.3. Implementation of the Processing Architecture ......................................................................... 31 

3.3.1. Conventions ........................................................................................................................ 31 

3.3.2. High-level implementation sketch ...................................................................................... 31 

3.3.3. Conceptual decoupled data-path ......................................................................................... 33 

3.3.4. Beam Asynchronous Processing fabric .............................................................................. 36 

3.3.5. Beam Synchronous Processing FRANCISCO fabric .......................................................... 37 

3.3.6. The ratio truncation and inversion ...................................................................................... 38 

3.3.7. MERCEDES Interfaces ....................................................................................................... 41 

3.3.8. Real-time variable ratio resampler with decoupled data-path ............................................ 48 

3.3.9. Resampling ratio and BSP processing relation................................................................... 49 

3.3.10. Input signal bandwidth limit ............................................................................................... 50 

3.4. Conclusions ................................................................................................................................ 53 

Chapter 4 Arbitrary and Real-Time Variable Ratio Resampling Architecture ....................................... 55 

4.1. Introduction ................................................................................................................................ 55 

4.2. Proposed Synchronous Sampling Rate Conversion architecture................................................ 55 

4.2.1. Interpolation between available samples ............................................................................ 56 

4.2.2. Timing reference and synchronization ............................................................................... 58 

4.2.3. Proposed interpolator and timing units ............................................................................... 58 

4.3. Application of the architecture to arbitrary SRC ........................................................................ 59 

4.3.1. The DIANA engine ............................................................................................................. 59 

4.3.2. The VFD filter .................................................................................................................... 63 

4.4. Implementation of the SRC architecture .................................................................................... 74 

4.4.1. Decoupled data-path SSRC architecture with arbitrary variable ratio ............................... 75 

4.4.2. VFD implementation .......................................................................................................... 76 

4.4.3. DIANA algorithmic engine ................................................................................................. 77 

4.4.4. Synchronization .................................................................................................................. 84 

4.5. Conclusions ................................................................................................................................ 90 

Chapter 5 Verification and Validation of the Resampler and the BSP Architecture .............................. 91 

5.1. Introduction ................................................................................................................................ 91 

5.2. Verification ................................................................................................................................. 92 

5.2.1. Entities and resampler verification ..................................................................................... 92 

5.2.2. BSP Architecture verification............................................................................................. 95 

5.3. Validation ................................................................................................................................... 98 

5.3.1. Entities and resampler validation ....................................................................................... 98 

5.3.2. BSP Architecture validation ............................................................................................. 115 

5.4. Implementation results ............................................................................................................. 124 



xxvii 
 

5.5. Hardware tests .......................................................................................................................... 127 

5.5.1. The crate ........................................................................................................................... 127 

5.5.2. The processing .................................................................................................................. 127 

5.5.3. Performance tests ............................................................................................................. 128 

5.6. Conclusions .............................................................................................................................. 129 

Chapter 6 Beam Synchronous Processing Architecture for Transient Beam Loading Compensation in 
the CERN SPS Accelerator ...................................................................................................................... 133 

6.1. Introduction .............................................................................................................................. 133 

6.2. The SPS .................................................................................................................................... 134 

6.2.1. The RF and LLRF systems ............................................................................................... 134 

6.2.2. The SPS 200 MHz TWC cavity ....................................................................................... 136 

6.3. Synchronization and fixed-frequency clocks ........................................................................... 138 

6.3.1. The synchronization, and the distribution of clocks and data .......................................... 138 

6.3.2. Node and station hardware architecture ........................................................................... 140 

6.4. The BSP Architecture implementing the OTFB ...................................................................... 141 

6.4.1. The SPS 200 MHz LLRF System, Beam and Cavity Controllers .................................... 141 

6.4.2. The OTFB algorithm ........................................................................................................ 142 

6.4.3. Partitioning of the OTFB between BSP and BAP ............................................................ 143 

6.4.4. The clocking architecture in the BAP and BSP ................................................................ 144 

6.4.5. The 1T Delay in the BAP ................................................................................................. 146 

6.4.6. The comb filter in the BSP and the regulation ................................................................. 146 

6.5. Functional validation ................................................................................................................ 148 

6.5.1. The test bench model ........................................................................................................ 149 

6.5.2. The simulations ................................................................................................................ 153 

6.5.3. Hardware tests .................................................................................................................. 157 

6.6. Conclusion ................................................................................................................................ 163 

Chapter 7 Conclusions and Future Work .............................................................................................. 165 

7.1. Conclusions .............................................................................................................................. 165 

7.1.1. Tangible contributions ...................................................................................................... 166 

7.1.2. Resampler ......................................................................................................................... 166 

7.1.3. The BSP Architecture ....................................................................................................... 167 

7.1.4. The application of the BSP Architecture in the CERN SPS OTFB ................................. 168 

7.2. Future work .............................................................................................................................. 168 

References ................................................................................................................................................ 171 





1 

Chapter 1  
 
Motivation and Introduction 

 Abstract: This chapter introduces the Beam 
Synchronous Processing topic and motivates the 

research and the objectives of the problem solved by 
the Thesis. It presents the CERN laboratory and LLRF 

systems. Then we overview the Beam-Cavity 
interaction originating the Transient Beam Loading 

perturbation, and the current solutions to the problem. 

 

1.1. Motivation 

Signal Processing is a wide field of Science covered by many disciplines of engineering, physics, 

mathematics, etc. It is a powerful tool that addresses the representation and manipulation of the information 

contained in signals [1]. Many of its underlying concepts have been known for many years, but the 

applications born out of the field in the last centuries have boosted its development with the discovery of 

electricity and the development of micro-electronics providing more advanced and complex solutions and 

devices. It played a crucial role in control systems in the early 1900s with continuous-time analog systems, 

and since then, with the advent of digital systems, we can find processing systems in almost any electronic 

device on the market.  

These processing systems implement algorithms that are “a set of mathematical instructions or 

rules that, especially if given to a computer, will help to calculate an answer to a problem” [2]. In general, 

these instructions and the algorithm need to be aware of the characteristics and properties of the underlying 

signal or information that they are processing. When you listen to music, for instance on your radio set, you 

used to move the dial (nowadays you enter some numbers in a screen) to tune the radio station playing your 

favourite song. The dial instructs the receiver to tune to the frequency in which the radio station is 

broadcasting its signal. After some treatment in the radio receiver, you listen to your song [3]. Behind the 



Motivation 

2 
 

scenes, the receiver has processed a small band of the radio spectrum around the station frequency; the 

relevant signal information in your case was the frequency of the carrier broadcasting your song.  

There is a sub-field in signal processing, Adaptive Signal Processing, in which the algorithms 

and/or systems adapt its behaviour to improve its performance [4]; the treatment is adapted to the varying 

properties of the signal. It finds application and is very common in audio or video processing systems where 

signals are filtered to cancel echo or to enhance its contents from additive noise [5] or in bioengineering, 

for instance, with the filtering of electrocardiograms using the Least Mean Square (LMS) algorithm [6]. 

Usually, in these applications, the complex task is to guess how the property of the signal changes. For 

instance, if another frequency is assigned to your radio station you will need to re-tune your receiver. 

In modern Particle Accelerators radio signals are also used intensively. These machines, that find 

application nowadays in many fields, increase the energy of charged particle beams [7]: The industry uses 

them for food sterilization, X-ray lithography, ion implantation, material testing and modification. 

Synchrotron radiation is used in chemistry, material sciences, molecular and cell biology. Coherent 

radiation is used in free-electron lasers and holography, for instance. The medical sector is also a well-

known user, it makes intensive use with radiotherapy, radiographies, sterilization, etc. In Particle Physics 

these machines are used to accelerate all species of beams with electrons, protons, ions… to investigate the 

inside structure of matter; two very energetic beams circulating in opposite directions are guided to collision 

against each other (or sometimes against a fixed target). In these collisions, the energy is transformed into 

matter, new particles, and physicists monitor these collisions with detectors to study the behaviour of 

particles in collisions and probe new theories.  

The Radio Frequency (RF) system is responsible for the acceleration (that is the increase of the 

energy) of the particles. An RF signal induces an Electro-Magnetic (EM) field in an RF structure (usually 

a resonant cavity). The longitudinal component of the EM field gives a momentum kick to the charged 

particle when it crosses the cavity [7], [8]. In circular accelerators, called Synchrotrons, the increase in 

particle speed results in a decrease of the beam revolution period. The RF control system of the synchrotron, 

called the Low Level RF (LLRF), uses beam signals whose properties (the spectral content) are modified 

as a result of the change in the revolution period. The LLRF needs hence to tune its processing to the beam 

[9]; we call this Beam (or Signal) Synchronous Processing (BSP).  

This Thesis presents an Architecture for the processing of such a pseudo-periodic signal, whose 

period changes in a known manner, by tuning the sampling rate of the processed signal. It uses a single 

fixed frequency hardware clock for the entire data-path and avoids the real-time reconfiguration of the 

processing elements or the algorithm. The treatment of frequency-variant signals in real-time (adaptive 

processing) is hence made possible for any static algorithm. The solution is based on a synchronous 

arbitrary ratio resampler for real-time applications. The Architecture is targeted to a Field Programmable 

Gate Array (FPGA) implementation. We validate and demonstrate its feasibility by implementing a LLRF 



Chapter 1.   Motivation and Introduction  

3 
 

solution, the One Turn FeedBack (OTFB) [10] algorithm for Transient Beam Loading Compensation 

(TBLC) [9].  

This chapter provides an overview of a Particle Accelerator RF system. The European Organization 

for Nuclear Research (CERN) is introduced, and the context in which the work was born is presented. We 

outline the CERN future requirements which triggered the use of a fixed frequency clock. The chapter 

presents in a very simplistic form the LLRF essentials of particle acceleration and beam related signals. 

The problematic of TBLC is introduced, and the current solutions are presented with their Signal Processing 

foundations. We introduce the problematics to be solved in the current solution.  

1.2. The CERN accelerator complex 

The CERN accelerator complex is an international facility established in 1954 and now the largest 

laboratory for fundamental physics research. It has made many discoveries in the field of experimental 

particle physics, such as the observation of the Higgs boson in 2012, in the Large Hadron Collider (LHC), 

completing the Standard Model [11]. It is at the border between France and Switzerland, and the facilities 

are located on the surface of both countries, but also in underground tunnels. It hosts a group of 

interconnected accelerators to serve beam for experiments in colliders and fixed targets, aiming at 

fundamental particle physics research: The structure of matter, the interaction between forces and matter, 

etc. The technological requirements of the laboratory are usually far beyond State-Of-the-Art (SOA) 

Commercial-Off-The-Shelf (COTS) technologies. CERN plays therefore also an important role in 

developing new technologies which can later be exported to other fields not related to physics. Electronics, 

being a key element of any accelerator, also benefits from this research and technology advance; the Thesis 

focuses on this field.  

The CERN LHC Injectors Upgrade (LIU) project plans to double the intensity extracted from the 

Super Proton Synchrotron (SPS) for injection into the LHC, therefore requiring a major upgrade of the SPS 

200 MHz RF system, including the power plant, layout and cavities [12]. This system is responsible for the 

acceleration of all beams by means of Travelling Wave Cavities (TWC) that consist of a periodic 

arrangement of drift-tube cells with a π/2 phase advance between cells at the centre frequency  

(200.222 MHz) [13]. The cavity configuration is being modified during the Long Shutdown 2 (LS2, 2019-

2020); as the Beam Loading effects scale with the beam current, the new layout will provide higher voltage 

and reduce the longitudinal impedance at the fundamental harmonic to prevent longitudinal coupled-bunch 

instabilities [12], [14]. This improves the longitudinal stability required by the planned doubling of the 

beam intensity for the High Luminosity LHC (HL-LHC) [12]. The LLRF is also replaced. The old system 

was using beam synchronous clocks (locked to a harmonic of the revolution frequency) for the electronics 

dealing with longitudinal instabilities (OTFB [15]), resulting in clock frequency sweeping during the 

acceleration ramp. The electronics was implemented in Nuclear Instrumentation Modules (NIM) and 

custom-designed Versa Module Eurocard (VME) cards, similar to the ones used in LHC or LINear 



The CERN accelerator complex 

4 
 

ACcelerator 4 (LINAC) [16], [17]. It is entirely replaced with SOA technology during LS2, implemented 

on the micro Telecom Computing Architecture (uTCA) platform [18], [19].  

A Future Circular Collider, (FCC) reaching collision energies of 100 TeV is also being studied at 

CERN [20]. This project will require a new accelerator with a one-hundred km circumference. This brings 

many technological endeavours such as new more powerful superconducting bending magnets or a high 

scale cryogenic plant. On the RF side, with cavities placed in two opposite locations, new techniques and 

technologies for synchronization in distributed architectures are required [20], [21].  

The introduction of the new uTCA standard brings some architectural paradigm changes. The 

classic master-slave architecture used in timing/synchronization and RF reference clock/phase distribution 

is now replaced by a distributed network topology [22]–[24], such as the one depicted in Fig.  1.1. The 

reference clock and instantaneous value of the RF frequency are transmitted as a numerical word, using a 

deterministic network (blue links in the figure), the White Rabbit (WR) [25], and no longer as point-to-

point analog or optical signals. The WR project is a collaboration between several laboratories and 

universities, including CERN, where many groups are active in its development [26] and applications [18]. 

The presented work does not include research in the WR but uses the results of many others who are actively 

working in that field. The main characteristic of this Ethernet-based network is its full determinism, which 

enables general purpose data transfer and sub-nanosecond precision. Similar architectures are already in 

use in the accelerator world, for instance, the Brookhaven National Laboratory (BNL), in Upton, NY, USA 

Cavity
Controller B

A
pp

lic
a

ti
on

In
te

rf
ac

e

Damper
Pick Up

Cavity BCavity A

N
et

w
o

rk
In

te
rf

ac
e

Cavity
Controller A

A
pp

lic
a

ti
on

In
te

rf
ac

e

N
et

w
o

rk
In

te
rf

ac
e

Beam phase 
module

A
pp

li
ca

ti
on

In
te

rf
ac

e

N
et

w
o

rk
In

te
rf

ac
e Dampe r

A
pp

li
ca

ti
on

In
te

rf
ac

e

N
et

w
o

rk
In

te
rf

ac
e

Beam
Controller

N
et

w
o

rk
In

te
rf

ac
e

A
pp

li
ca

ti
on

In
te

rf
ac

e

WR network

Recovered Clock

Application LinksWhite Rabbit Network

Analog Signals

Synchronous NCO

Legend:

Clock 
Recove ry WR

Clock 
Recove ry WR

Clock 
Recove ryWR

Clock 
RecoveryWR

Clock 
Recove ry WR

Fig.  1.1.  Schematic representation of the LLRF network architecture in a synchrotron that uses White Rabbit for 
synchronization and recovers the hardware clock from the data stream. Further details are presented in Chapter 6. 



Chapter 1.   Motivation and Introduction  

5 
 

[27], uses its own deterministic protocol called the Update Link [28], and the Helmholtzzentrum für 

Schwerionenforschung (GSI), in Darmstadt, Germany [29], uses WR [30]. In our architecture, the receiving 

slave nodes (cavities, injectors, beam instrumentation, kickers and dampers) get the beam information (RF 

frequency, cavity amplitude and phase, etc.) from this digital network and extract a 125 MHz reference 

clock signal from the data stream, clock recovery units in Fig.  1.1. The reference clock is now decoupled 

from the RF and is fixed in frequency. 

1.3. Beam-Cavity interaction 

The RF system of a particle accelerator is composed of several subsystems. The cavity, in which a 

component of the electrical field is aligned to the particle velocity, transfers energy to the beam. The power 

levels required for this RF signal are in the order of KW to MW. An amplifier is therefore used to increase 

the level of the RF signal. These high-power amplifiers are normally klystrons, tetrodes, Inductive Output 

Tube (IOT) or Solid-State Power Amplifiers (SSPA). A distribution system composed of waveguides and 

coaxial conductors transports the RF power from the amplifier to the cavity. Circulators and dummy loads 

are commonly used to absorb power reflected from the cavity. Finally, the LLRF is the low power 

electronics generating the RF signal and keeping the synchronism between beam and RF phase. 

The beam is a collection of charged particles travelling in the accelerator vacuum chamber, and 

crossing the accelerating cavities [31]. These particles are grouped in bunches spaced by a multiple of the 

RF wavelength [7], [32]. With electromagnetic pick-up sensors, the LLRF system acquires signals related 

to the azimuth and transverse position of the beam [9]; particle bunches passing through the pick-up 

generate a short pulse. In circular accelerators this passage is periodic turn after turn; the pick-up signal in 

the time domain is hence a train of short pulses spaced by the revolution period. The signal spectrum is also 

a train of pulses at multiples of the revolution frequency [9], [33]. When the beam crosses the cavity, it 

modifies the electromagnetic field. This effect is called Beam Loading [34], [35]. The cavity impedance is 

excited by the beam current generating a voltage in addition to the one induced by the generator; the 

effective accelerating voltage seen by the beam is therefore perturbed. These beam-induced perturbations 

such as Transient Beam Loading (at the injection or when the beam pattern is not uniform) will appear in 

the spectrum at the revolution frequency and its multiples [9]. Due to the non-zero bunch length, these 

revolution frequency harmonics, nFrev (Eq.( 1.1 )) are not all equal in amplitude, An and phase, φn (the 

envelope of the revolution frequency harmonics is the Fourier Transform (FT) of the longitudinal bunch 

profile [36]).  

For leptons (electrons and positrons) synchrotrons the particles are already very relativistic 

(velocity close to the speed of light) because their rest mass is small. Therefore, the RF frequency can be 

fixed and the BSP algorithms processing these revolution harmonics do not need reconfiguration during 

the acceleration ramp. Hadrons (protons and heavy ions) are much heavier. In the CERN SPS, the speed of 

hadron particles changes significantly during the acceleration ramp, and so does the RF frequency. In that 



State-Of-the-Art in BSP algorithms 

6 
 

case, the BSP algorithms treating beam-induced perturbations need to tune their processing to the signal 

spectrum; the position of the harmonics is displaced as the spacing among them is increased. As the 

revolution frequency varies very slowly compared to the beam dynamics, the signal from a given bunch 

sampled by a LLRF pick-up is  

rev(2π )

0

( ) =  n

N
i nF t

n
n=

x t A ·e    Eq.( 1.1 ) 

where N, the number of harmonics to be considered, depends on the intended application. For compensation 

of the beam-induced transient in a given cavity we must only consider the harmonics falling in the cavity 

BandWidth (BW) (in the case of the SPS the regulation bandwidth covers 5 MHz on each sideband around 

the RF). In all cases, the signal bandwidth must be limited before sampling to avoid aliasing. Refer to [7], 

[9], [32], [33] for more information.  

1.4. State-Of-the-Art in BSP algorithms 

Let us consider a simple process trying to enhance the pick-up signal out of white additive measurement 

noise. The required comb filtering contains harmonically related pass-bands centred on the revolution 

frequency harmonics. Its frequency response needs to follow the signal spectrum at these multiples of the 

revolution frequency.  

Such a problem is commonly found in adaptive signal processing, for instance, a classic method is 

Adaptive Noise Cancelling (ANC) [5]. The filtering of electrocardiogram using the LMS algorithm was an 

early example. More sophisticated algorithms such as the Recursive Prediction Error (RPE) and Recursive 

Maximum Likelihood (RML) have been proposed for comb filtering [37], [38]. The latter did not require 

knowledge of the instantaneous fundamental frequency. It can be estimated by the algorithm. The 

computational load of these algorithms scales linearly with the number of harmonics when using the simple 

LMS, and quadratic for the more sophisticated RPE and RML algorithms. Their performances degrade if 

the number of harmonics present in the signal is not modelled correctly [37]. We require however a much 

lighter solution for LLRF algorithms in terms of calculations. Variable Fractional Delay (VFD) filters have 

been proposed to implement a comb adapted to any fundamental frequency (not necessarily a sub-multiple 

of the sampling frequency) [39]. The coefficients of the filter are then changed to track the fundamental 

frequency. A side effect is the displacement of the poles with the delay that can possibly make the Infinite 

Impulse Response filter (IIR) unstable. We want to avoid reconfiguration of the filter as it might be a 

cumbersome approach for our real-time system. 

The accelerator world employs several BSP approaches in this adaptive filtering to cope with beam-

related perturbations such as Transient Beam Loading. In the early digital systems introduced in the mid-

1980s, the sampling clock was swept proportionally to the revolution frequency [10]. This locks the 

processing on the spectral content of the beam signal and the processing algorithm needs not be changed 



Chapter 1.   Motivation and Introduction  

7 
 

during the acceleration. This swept clock philosophy has been extensively used in the accelerator world, at 

CERN and other labs [40]. This easy solution is not optimal, however. In case the processing is not related 

to the beam energy ramp, for example, to compensate an amplifier frequency response, the processing 

should not change with beam energy. In that case, Beam Asynchronous Processing (BAP) would be 

preferred. If the system uses such a swept clock, this requires complicated implementations with limitations 

[41]. Furthermore, modern FPGAs are intended for use with a fixed clock, as swept clocks pose problems 

in FPGA clocking logic and Phase-Locked Loops (PLLs). This also limits the use of its serial interfaces. 

The old swept clock scheme would therefore limit the exploitation of the new CERN distributed LLRF 

architecture, and the SOA uTCA based processing systems.   

Alternative approaches have been implemented: In small machines (high revolution frequency and 

a small number of bunches) with the spectral content of the beam signal limited to a small number of 

revolution frequency lines, a common solution is to decompose the problem in several parallel processing 

systems, one per revolution line, where a fixed sampling clock can be used. This requires multiple 

demodulators (one per revolution harmonic) for base-band down-conversion and several processing 

systems [42]. The amount of resources grows linearly with the number of revolution lines to be treated. 

This solution solves the constraint of the swept clock, as it can be implemented with a fixed frequency 

clock. However, the resources required when extending the regulation bandwidth limits its applicability. 

Examples of this strategy are found at CERN [43]–[45] and the Japan Proton Accelerator Research 

Complex (JPARC) [46], in Tokai, Japan [47].  But it does not apply to larger machines where many 

revolution lines are to be covered.  

Another approach used is feedforward. Based on the reproducibility of the machine cycles and the 

slow variation of the beam pattern in each cavity passage, the feedforward employs signal tables 

precomputed from past observations, which are added to the set-point to compensate the beam loading 

effect. In this case, the processing itself is not tuned to the spectral content of the signal, but the set-point 

is adapted to mitigate the predicted effect of the beam passage. These algorithms require a deep knowledge 

of the machine, including the non-linearity of the amplifier. When many types of cycles and different 

particles and users are needed, this might require information not always available. Such a system can be 

found at BNL [28] for instance. A similar approach is used also at the Fermi National Accelerator 

Laboratory (FNAL) [48], in Batavia, IL, USA [49], and CERN SPS [50] where corrections are applied to 

the amplifier drive based on the beam signal acquired with a pick-up. These feedforward approaches, as 

open-loop systems, lack adaptive capabilities and are sensitive to variations of the amplifier response for 

instance. 

If we want to use a fixed frequency clock there is still the need for a solution to avoid the 

reconfiguration of the processing elements (filtering for instance) to tune to the beam revolution frequency 

(and to the spectrum of the sampled signal). The real-time reconfiguration in complex processing schemes 

or algorithms can require plenty of parameters to change and becomes cumbersome. A generic BSP solution 



Document organization 

8 
 

is therefore desirable which can be extended to small or larger machines with different regulation 

bandwidths. The Thesis focus on this BSP Architecture applied to TBLC, but at the same time being generic 

enough to host other BSP related algorithms such as longitudinal and transverse dampers [51], [52]. The 

solution needs to be compatible with modern electronics making use of a fixed frequency clock.   

1.5. Document organization  

This dissertation, that presents a new Architecture for BSP and demonstrates its use for implementing the 

OTFB algorithm, is organized to guide the reader through the problematics of the actual systems, the 

decisions taken in the research process, the developments performed and the final application of the ideas 

in the implementation of the OTFB algorithm.  

The introduction in Chapter 1 has presented the circumstances and ideas which triggered the 

research work. It has also settled basic foundations related to Accelerators and LLRF systems. Then it 

presented the SOA in electronics and the principal solutions used for TBLC in LLRF systems.  

Chapter 2 presents the objectives and contributions of the Thesis to the SOA grouped in three main 

fields: BSP solutions for Particle Accelerators, Resampling of frequency varying signals in FPGA with 

variable resampling ratios, and TBLC by means of the new OTFB algorithm implementation.  

Chapter 3 presents the proposed Architecture for BSP; it introduces the so-called resampling 

sandwich and elaborates the ancillary hardware and abstractions needed for its implementation. These are 

our virtual FPGA FabRic with Adaptive aNd deCoupled clockIng for SynChronous prOcessing 

(FRANCISCO), and the MultiplE Rate and Clocking interfacE for Data procEssing and Sampling 

(MERCEDES) interfaces. It presents also the JOintly Averaged and QUaNtized rAtio (JOAQUINA) 

Frequency-Locked Loop that solves implementation problems related to quantization of the ratio signals.  

Chapter 4 is focused on the core element that performs resampling, our novel Sampling Rate 

Conversion (SRC) architecture, the resampler, that lies at the input and output of the resampling sandwich. 

It elaborates and presents the implementation details for its three functional units; the DIstAnce iN time 

Algorithm (DIANA), the VFD filter and the synchronization logic.  

Chapter 5 presents the verification and validation results of the BSP Architecture and the developed 

hardware and units of Chapters 3 and 4; first the simulations of all the elements and then the hardware test 

with the implementation of the Architecture in a uTCA crate for measuring its performance.  

Chapter 6 demonstrates the use of the BSP Architecture implementing the new OTFB algorithm 

for TBLC. Then it presents the verification and validation results of the simulations and the hardware tests 

in a real CERN SPS cavity. 

Finally, Chapter 7 presents the conclusions and suggests some future work to be conducted in the 

field.



9 

Chapter 2  
 
Contributions of the Thesis 

 Abstract: This chapter presents the contributions of 
the Thesis to the State-Of-the-Art in the different fields 

in which the work has elaborated. First, a high-level 
overview of the achievements is presented, and some 

tangible improvements stated. Then the contributions 
for the main related domains are detailed. These 

contributions encompass technical (signal processing - 
LLRF Beam Synchronous Processing), technological 
(FPGA resampling architectures), and application 
(particle accelerators – Transient Beam Loading 

Compensation) aspects.   

 

2.1. Introduction 

The previous chapter has presented the more relevant LLRF Beam Synchronous Processing solutions for 

Transient Beam Loading Compensation in particle accelerators. The swept clock architecture is the key 

element of the current CERN solution [10], [15], [22]. It nevertheless poses some problems (that we present 

in this chapter) and it is a bottleneck for implementation in modern digital technologies. The contributions 

of the Thesis in this aspect are therefore twofold: 

- To solve and avoid the present problems in new LLRF architectures.  

- To develop techniques and technologies ensuring the efficient and feasible implementation of 

new architectural paradigms.  

The new projects being planned and implemented at CERN, namely LIU SPS [12], [14], HL-LHC 

[53] and FCC [20], [54], motivate the change of the synchronization and RF distribution architecture. A 

distributed approach is envisaged more reliable and offering better scalability for these “new-sized” projects 

(FCC plans a new accelerator with a 100 km circumference ring). This introduces the use of a deterministic 

protocol, the White Rabbit [25]. With this new protocol, the distribution of a swept clock in a dedicated 



Tangible improvements with the new Architecture 

10 
 

fibre has no sense, since this would duplicate the distribution infrastructure. The clock is therefore now 

extracted from the data stream, locally in each node (Fig.  1.1), being this a fixed frequency clock [18]. The 

revolution frequency and RF frequency information in each RF station are distributed via the WR network 

in a digital format [55]. For Beam Synchronous Processing, this makes it more appropriate to use the fixed 

frequency WR clock and this digital information, instead of regenerating a swept clock to feed the 

processing FPGA. A new strategy or algorithm is therefore needed for Transient Beam Loading 

Compensation, being this the contribution of the Thesis in the application field: 

- A new OTFB implementation with fixed frequency processing clock.  

2.2. Tangible improvements with the new Architecture 

This section presents some tangible contributions to current problems in the LLRF systems object of the 

Thesis. These problems result from the present implementation of the LLRF architecture at CERN, and the 

new presented Architecture aims at solving them.  

The distributed and fixed clock architecture proposed in this Thesis benefits to RF gymnastics [56], 

[57]. This term refers to manipulations in the beam tailoring its longitudinal characteristics. These 

manipulations are done by modulating the RF parameters to achieve the desired beam, including bunch 

length, energy spread, distance between bunches or number of bunches among others. More complex 

operations as slip stacking [58] can be now implemented, and machine synchronization schemes [59] 

simplified. A common clock between machines and an absolute time reference facilitate the computation 

of synchronization events and the computation of phase advance of signals among others [60], [61].  

Another consequence of using the new Architecture with a fixed clock is the improvement on 

spectral purity of the signals. PLL based architectures are used to clean the clocks. These have a certain 

operational frequency range based on loop filters which cover a certain bandwidth. The new schema using 

fixed frequency clocks makes it possible to optimize the cleaning architecture for a given fixed frequency.  

In line with these technical aspects, modern electronics, namely FPGAs, will be using this fixed 

frequency Architecture in uTCA platforms [19]. Digital clock managers in FPGAs, among others, make 

use of PLLs [62]. Eventual problems associated with these subsystems, as for instance potential unlock of 

the PLL, are avoided thanks to the new fixed clock. This permits the exploitation of all the features of SOA 

FPGAs. This can be extended to modern Analog to Digital Converters (ADCs) and Digital to Analog 

Converters (DACs) using differential serial interfaces. These usually include PLLs and complex logic for 

clock synchronization for chip-to-chip communications. A swept clock can make its use unfeasible, forcing 

the designer to rely on old parallel interfaces. On the processing side, these digital systems make intensive 

use of Discrete Signal Processing (DSP) architectures based on synchronous digital logic design. This 

philosophy is based on the use of combinatorial logic elements and registers. The combinatorial elements 

are pipelined between the registers to increase the operation frequency. A variable clock forces the FPGA 



Chapter 2.   Contributions of the Thesis 

11 
 

Place and Route (PAR) process to use the highest frequency value in the slack estimation. This complicates 

the re-use of implemented FPGA designs that use clocks which are extracted from the RF and hence swept. 

A design running in an operational machine can require optimizations of the hardware architecture and a 

new synthesis and PAR, this limits the re-use in a different accelerator or system where the RF is different. 

In line with this, multiple clock domains are usually present in FPGA designs, and a swept clock implies a 

huge complication for the synchronization and communication between clock domains. The fixed 

frequency clock greatly simplifies these issues.  

Another consequence of the proposed solution is to avoid interruptions of the processing clock 

between cycles; in the old system the clock comes from the RF [10], any interruption on that signal causes 

also the interruption of the clock. This is the case when doing resynchronization between machines; the RF 

is interrupted or abruptly modified, thus originating clock problems [59]. The new fixed frequency clock is 

not any longer extracted from the RF, now it is independent and regenerated from the WR network. Since 

the WR is always in operation, no more interruptions when resynchronizing machines will be present. A 

similar phenomenon happens in small synchrotrons as for instance the CERN Proton Synchrotron Booster 

(PSB) [63], where the revolution frequency span is wide. This implies a complex clocking scheme for 

FPGAs: To avoid such a big span in the clock, several harmonics multiplexed in real-time are used as clock 

source. This produces phase discontinuities and jumps. Again, this is avoided in the new Architecture 

proposed in this Thesis.  

2.3. Contributions to the State-Of-the-Art 

The previous chapter has motivated the Thesis work by presenting some future projects which are being 

planned at CERN. Such projects require paradigm changes which are not compatible with some 

implementations and LLRF architectures currently used at CERN. Advances in the Technology Readiness 

Level (TRL) of the LLRF systems and new techniques have been developed to cope with the new paradigms 

and to solve the specific requirements of their implementation and application. The three main domains in 

which contributions have been made are presented now.  

2.3.1. Signal/Beam Synchronous Processing 

The Thesis proposes a new solution for Signal/Beam Synchronous Processing making use of a 

fixed frequency processing clock. This Architecture makes it possible the processing of signals with known 

but possibly varying frequency with algorithms dependent on the spectral content of the signal. The 

common approach for that is the reconfiguration of the algorithm parameters [39] or the use of adaptive 

processing (filtering) [5], [37], [38]; an alternative approach is presented here. The presented innovation is 

especially suited for periodic signals with a varying fundamental frequency. These signals present a 

Homothetic spectrum (we call it Homothetic because the change in spectrum is equivalent to a dilation of 

the frequency axis), like the one depicted in Fig.  2.1. The plots depict the spectrum of a beam signal 



Contributions to the State-Of-the-Art 

12 
 

acquired with a pick-up in different time instants of an accelerating ramp. The blue plot shows the 

revolution frequency peaks at the beginning of the ramp, while the purple and red plots show the peak 

position and spacing at later instants during the momentum ramp. The red plot containing the harmonic 

peaks at higher frequencies and with the widest spacing between them corresponds to the last instants of 

the accelerating ramp. The purple one shows the spectrum in the middle of the ramp. The processing needs 

to adapt to the constant change of position and spacing of the peaks. When this signal-synchronous 

technique is applied in the Accelerator field, we call this Beam Synchronous Processing.  

The presented solution tunes the signal to the processing algorithm by varying the sampling period 

Ts of the digitized signal with fundamental frequency F while keeping the algorithm parameters fixed (no 

reconfiguration). If this sampling frequency variation f’s = fs · (1 + Δ) is proportional to the variation of the 

signal frequency F’ = F · (1 + Δ), the representation of the signal frequency in the discrete normalized 

spectrum ω remains constant  

s s s

(1 )
2π· 2π 2π 2π constant

’

’ (1 )

F F F
f

f f f
   
    

  
 Eq.( 2.1 ) 

This resampling operation brings the discrete representation of the signal frequency ω to a 

predefined digital frequency ωproc where the processing has been defined (ω=ωproc). The solution is generic 

and supports the implementation of any processing or filtering algorithms. 

2.3.1.1. FRANCISCO fabric 

The solution is based on an adaptation fabric, called FabRic with Adaptive aNd deCoupled clockIng 

for SynChronous prOcessing (FRANCISCO), built on top of the real FPGA hardware fabric. In the 

hardware fabric, the frequency of the processing fp and sampling fs clocks are identical. In the adaptation 

fabric, the clocks are decoupled and need not to operate at the same frequency. This makes it possible to 

use a hardware clock with fixed frequency to operate the hardware fabric, and on top of that to implement 

the adaptation fabric with an average variable sampling rate. In the adaptation fabric, the sampling period 

of the data is modified according to our needs, and this can be done in real-time.  

The solution is well suited to FPGA technology and applications, where the hardware processing 

clock is preferably fixed in frequency and stable. This permits to use all the hardware and clocking resources 

of the FPGA, something that might not be feasible with a swept clock. The solution can also be migrated 

F [Hz]

Mag [dB]

h0 h1 h2 h3 h4

Frev

 
Fig.  2.1.  The simplified spectrum of a beam signal acquired with a pick-up; the position and the spacing of the harmonics 

change during acceleration ramp proportionally to the revolution frequency increase (Homothety). 



Chapter 2.   Contributions of the Thesis 

13 
 

to Application Specific Integrated Circuits (ASIC) technologies, however, the target within the Thesis is 

FPGA.  

The adaptation fabric FRANCISCO interfaces the real hardware fabric by means of dedicated 

interfacing entities called MultiplE Rate and Clocking interfacE for Data procEssing and Sampling 

(MERCEDES). These interfaces perform processing and sampling clock coupling (MERCEDES Couple) 

and decoupling (MERCEDES Decouple). They generate also a valid signal when decoupling, and merge 

this signal with the processing clock when coupling the data-path. The valid signal, depicted in the 

chronograms of Fig.  2.2, accompanies each processing slot in the adaptation fabric. The signal is introduced 

to indicate which processing slots contain valid data in the data-path (populated processing slots). The 

chronograms present also the clocks in the MERCEDES Decouple interface. The data-path arriving at its 

input is coupled, and processing and sampling clocks operate at the same rate. In the output, the sampling 

clock remains at the same frequency, but the processing clock operates at the double frequency, M = 2. The 

MERCEDES Couple interface performs the complementary operation, it merges the sampling and 

processing clocks with the frequency of the latter reduced by M. Only the slots flagged valid are passed out 

of the interface within the now coupled data-path.  

The hardware and FRANCISCO fabrics are depicted in Fig.  2.3, the hardware in white while the 

adaptation fabric is coloured in grey. The hardware processing clocks are also depicted in Fig.  2.3, blue 

lines are used for the real hardware fabric, and yellow lines for the adaptation fabric. These clocks define 

the processing cycles or processing slots (psx) at which the FPGA can operate on data in both fabrics. This 

frequency is the maximum sampling rate that the sampling clock can achieve (when fs = fp). The adaptation 

sampling clock frequency is thus a slower fraction (or equal in the limiting case) of the hardware clock 

frequency.  

The adaptation sampling clock does not exist as a physical signal, it is an abstraction which defines 

the average sampling rate of the data in the data-path. It abstracts the samples from the processing slots of 

the real hardware clock. The decoupling requires the use of a hardware processing clock fp at higher 

frequency (or equal in the limiting case) than the virtual sampling clock fs. When this is satisfied, the number 

of available processing slots is larger than (or equal to) the number of available samples.  

dA dB

processing 
clock fp 

processing
slots

Virtual Fabric

- - -

ps0 ps1 ps2 ps3 ps4 ps5 ps6

sampling 
clock

data-path

processing 
clock fp 

fs 

processing
slots

Real Fabric

ps0 ps1 ps2 ps3

average 
sampling 
clock

data-path

fs 

valid
signal

fp = fs fp = M · fs 
Decouple data-path M = 2

psx psx 

dA dB dC dD dC dD

fp : [Hz]    fs : [sample/s]                /            : data sample dXdX

dx dx 

 

Fig.  2.2.  Signals at the input and output ports of a MERCEDES Decouple interface. The input port interfaces a coupled data-
path with sampling and processing clocks operating at the same frequency. The output port interfaces a decoupled data-path with 

a processing clock operating at a frequency double with respect to the sampling clock, M = 2. 



Contributions to the State-Of-the-Art 

14 
 

The hardware fabric in Fig.  2.3 contains the processing fp and sampling fs clocks operating at the 

same arbitrary frequency, fp = A and fs = A, respectively. The adaptation fabric can host multiple arbitrary 

sampling rates defined according to the limits specified before. Two different sampling clock regions 

(region I and region II) are depicted in the adaptation fabric in the figure as an example. In this case, both 

regions use a processing clock with frequency fp = M · A; for instance, with M = 2 the frequency of the 

hardware clock is doubled. The sampling rate is however different in the two regions; while the region I 

uses an adaptation sampling rate of fs = A, region II uses a rate of f’s = R · A.  

Input and output resamplers in the adaptation fabric perform the conversion of the sampling rate 

between these two regions. The input resampler translates the input data with a fixed sampling period  

fs = A, to a data stream with a variable sampling period f’s = R · A. The ratio R in the sampling rate conversion 

is the relation between the frequencies of input and output sampling clocks of the resampler, and it can vary 

in real-time. The output resampler performs the inverse operation using a resampling ratio inverse of the 

input one. Since the processing clock of the adaptation fabric is fp = M · A, the maximum adaptation 

sampling rate which can be achieved in region II is f’s = M · A, when R = M. 

In the adaptation fabric, the faster processing clock makes it possible to operate and process any 

data in the data-path in a bounded time, without data overrun regardless of the sampling rate. The fabric 

tracks the valid flag (valid line in Fig.  2.3) and uses only data results marked as valid. Contrary to this, the 

hardware fabric “operates” on any processing slot (sampling and processing clocks are coupled). The 

FRANCISCO fabric and the MERCEDES interfaces are described in detail in Chapter 3.  

ADC Resampler

Signal/Beam
Synchronous
Processing

processing 
clock fp = A [Hz] 

data

d_out

valid
d_in

FPGA

Resampler

Asynchronous
Processing

Out

Beam
Sig.

sampling
clock   

fs = A [sample/s] 

processing 
clock fp = M · A [Hz] 

sampling
clock   

fs = A [sample/s] 

processing 
clock

fp = M · A [Hz] 

sampling
clock   

f’s = R · A [sample/s] 

FPGA Clock 
Manager

Asynchronous
Processing

Hardware 
Fabric

FRANCISCO Adaptation Fabric

DAC

Fixed 
Frequency 
Clock

Region I (fixed fs) Region II (variable f’s)

Ratio R

1/R

fp_out = M · fp_in

fp_in = M · fp_out

MERCEDES
Couple

Data-Path

MERCEDES
Decouple
Data-Path

 

Fig.  2.3.  Schematic representation of the fabrics and clocking architecture; sampling fs and processing fp clocks for the hardware 
fabric (white fabric with blue clocks), and the FRANCISCO adaptation fabric (grey fabric with yellow clocks).  In the figure, A is 

an arbitrary value, and M is the relation between processing clocks in the MERCEDES interfaces. 



Chapter 2.   Contributions of the Thesis 

15 
 

2.3.2. Resampling architecture with arbitrary and real-time variable ratio 

The main technical contribution of this work is a new resampling architecture with a real-time 

variable and arbitrary resampling ratio [36]. The architecture is intended for implementation in an FPGA 

where the processing clock is preferably fixed, as presented in the previous point. The architecture can 

easily be ported to ASIC technology. It is based on the FRANCISCO fabric with decoupled clocks. Such a 

resampling architecture, accepting the arbitrary modification in real-time of the resampling ratio is not 

common in an FPGA. The available solutions accepting variable rates usually support only a predefined set 

of values [64], [65]. When any other ratio needs to be used a re-synthesis of the design is required [66]–

[71]. This is motivated by the clocking schema used in the output interface of the resampler; these 

architectures do not decouple the sampling and processing clocks. In that case, when the resampling ratio 

is modified, the frequency of the processing clock in the output port is changed, being this not always 

acceptable for an FPGA. To cope with this limitation, the presented resampler uses the decoupled data-

path. This allows for using any average sampling rate at the input and/or output ports.  

The interpolation architecture estimating output samples and the timing generation mechanism 

[67], [70]–[73] for the output port, are also usually linked to the sampling clock of the output port 

(Asynchronous Sampling Rate Conversion, ASRC [74]). The existing resampling architectures for ASIC 

technology [73], [75], [76] supporting a variable resampling ratio require this output clock to be an input 

signal; the output clock fed to the device dictates the time instant in which the output data is computed and 

latched in the port. The presented architecture avoids the use of such external output clock by computing 

the output sampling period based on the input port (or system) clock (Synchronous Sampling Rate 

Conversion, SSRC). For this purpose, a new algorithm called DIstAnce iN time Algorithm (DIANA) has 

been developed. This algorithm is described in detail in Chapter 4. The first asynchronous resampler 

presented is depicted in Fig.  2.4(a); the input and output ports are fed with their own clocks. The 

synchronous resampler proposed in this work is depicted on Fig.  2.4(b).  

clk_in clk_out

Input sampling rate: 
fs [sample/s]

Output sampling rate: 
f’s  = R · fs [sample/s]

x[n] y[m]Asynchronous
SRC

ratio R
ratio R

clk

Input sampling rate: 
fs [sample/s]

Output sampling rate: 
f’s  = R · fs [sample/s]

x[n] y[m]Synchronous
SRC

Processing clock:   fp [Hz]

(a) (b)

Input port 
clock:   fp_in [Hz]

Output port 
clock:   fp_out [Hz]  

Fig.  2.4.  (a) ASIC style asynchronous arbitrary ratio resampler. (b) FPGA synchronous arbitrary ratio resampler. 

2.3.2.1. Farrow-based resampler with decoupled clocks 

The resampling architecture, depicted in Fig.  2.5, is inspired on a Farrow-based [77] VFD filter 

[78] for interpolation, and a computing engine implementing the DIANA algorithm for timing. The Farrow-

based VFD is an efficient hardware architecture to estimate the value of a signal in a time instant different 

from the available data by less than a sampling period. Such architecture employs a Finite Impulse Response 

(FIR) filter bank with static coefficients. It is efficient as there is no need to recompute these coefficients 



Contributions to the State-Of-the-Art 

16 
 

when the time distance (delay) between available samples and desired new sample varies. The outputs of 

the filters are combined with the delay value in a Horner structure [79]. The DIANA algorithm computes 

the time distance based on the received samples at the input port of the resampler, the resampling ratio, and 

the history of processed samples. It generates the delay value signal fed to the VFD when a new output 

sample can be computed. It also generates a control signal indicating when this output sample can be 

processed, or conversely when the VFD and the resampler output data-path are void. This is the case when 

the time distance is bigger than plus or minus half an input sampling period, maximum delay accepted by 

our VFD implementation.  

The resampler relies on the decoupled data-path to implement the real-time and arbitrary variable 

resampling ratio. The average sampling rate of the samples in the data-path for a given number of clock 

cycles varies according to the ratio. This is depicted in Fig.  2.6. The left chronogram presents the resampler 

input where the average frequency of the sampling clock in the adaptation fabric has a value of fs = A / 2 

with a processing clock with frequency fp = A, and M = 2. The right chronogram shows the output signals, 

where the average frequency of the sampling clock in the adaptation fabric, within six processing clocks, 

is f’s = A · (4 / 6) with a processing clock with frequency fp = A, and M = 2. Note that the relation M is 

handled by the MERCEDES Decouple interface. The resampler has an up-sampling ratio of R = 4 / 3 with 

s

s

’
R

f

f
  Eq.( 2.2 ) 

x + +x
data_out

data_in
clock
ratio

FIR 0

HORNER

FILTER 
BANK

VARIABLE FRACTIONAL DELAY

dly

VFD

FIR 1FIR N

DISTANCE
IN TIME 

ALGORITHM

TIME
DISTANCE

COMPUTATION

DIANA
ENGINE

 

Fig.  2.5.  Resampler architecture based on a Farrow Variable Fractional Delay Filter, VFD, and the DIANA algorithm. 

dA

processing 
clock fp 

processing
slots

Input Virtual Fabric

ps0 ps1 ps2 ps3 ps4 ps5 ps6

average 
sampling 
clock

data-path

fs 

processing 
clock fp 

processing
slots

Output Virtual Fabric

ps0 ps1 ps2 ps3 ps4 ps5 ps6

average 
sampling 
clock

data-path

fs 

valid
signal

valid
signal

- -- - -

Resampling ratio R = 4 / 3

M = 2 fp =  A       [Hz]

fs =  fp / M    [sample/s]

M = 2                fp =  A          [Hz]

              f’s =  R · ( fp / M )    [sample/s]

3 samples / 6 processing slots 4 samples / 6 processing slots

psx psx 

dB dC dDdx dx dA dB dC dD dE

           : data sample dX            : data sample dX

 

Fig.  2.6.  Signals at the input (left) and output (right) port of a resampler configured with an up-sampling ratio R = 4 / 3 and 
implemented in the FRANCISCO adaptation fabric.  



Chapter 2.   Contributions of the Thesis 

17 
 

2.3.3. New Transient Beam Loading Compensation schema 

The contribution of the Thesis, as application in the field of Low Level RF for Particle Accelerators, 

is a new wideband implementation of the One Turn FeedBack algorithm [10] for Transient Beam Loading 

Compensation [80] implemented in an FPGA using a fixed frequency processing clock. The 

implementation is based on the original solution from Boussard [10] but employs the Beam Synchronous 

Processing Architecture presented in section 2.3.1. It solves efficiently the constraints that new hardware 

technologies and systems impose in terms of clocking schemes. Nowadays it is not feasible to keep using 

an RF derived clock as in the original solution. The presented approach respects the original idea, as it does 

not limit or poses constraints on the regulation bandwidth (it can handle an arbitrary number of revolution 

harmonics). This is not the case with some other alternatives which imply limitations, depending on the 

bandwidth to be covered; some solutions decompose the problem in multiple instances of processing/filters 

or use filter banks, each one addressing a single revolution harmonic [43], [44], [46], [81]–[83], or even 

time multiplexing of hardware [84]. This increases drastically the hardware resources needed and/or 

reduces the performance of the solution. Reconfiguration of the filter architecture might seem also feasible, 

however, the rate at which the reconfiguration needs to be done, or the volume of data to do it, limits its 

applicability.  

The present work is a competitive alternative to the approaches indicated previously since it does 

not imply overhead in the hardware resources when the bandwidth (or the number of harmonics) to be 

covered increases. Instead of adapting the processing to the spectral content of the signal, this method 

modifies the sampling rate to tune the spectral representation of the signal to a predefined normalized 

frequency in which the processing is performed with a fixed filter. The hardware resources to be used are 

almost the same as with a swept clock architecture. The solution is based on the FRANCISCO fabric 

presented before, which is used for BSP, depicted in Fig.  2.7. The only difference in hardware resources 

needed, with respect to the original solution, consists in the two extra resamplers and MERCEDES 

interfaces, and some minimal signalling logic in the decoupled fabric. 

Filter

Beam Synchronous Processing

One Turn 
Delay

Beam
Asynchronous

Processing

One Turn FeedBack

White Rabbit Interface FPGA

+

R
es

am
pl

er

Set Point

 -
+

In Ratio Out Ratio

Amplifier

Cavity

R
F 

F
ro

nt
-e

nd

FRANCISCO - Adaptation Fabric

Hardware
Fabric

M
E

R
C

E
D

E
S

D
ec

ou
pl

e 
In

te
rf

ac
e

R
F 

F
ro

nt
-e

nd

R
es

am
pl

er

M
E

R
C

E
D

E
S

C
ou

pl
e 

In
te

rf
ac

e

Memory

 

Fig.  2.7.  New One Turn FeedBack architecture based on the FRANCISCO fabric for the BSP filter. 



Contributions to the State-Of-the-Art 

18 
 

The communication requirements (bandwidth required in case of reconfiguration of the processing) 

are also negligible as the only information required is the resampling ratio. It also simplifies the use of more 

complex filtering in the OTFB, for instance addressing synchrotron sidebands to increase longitudinal 

stability. This is thanks to the fact that no modification or hardware limitation is imposed to these more 

complex filtering architectures, thus it is easy to migrate and combine different filters addressing different 

spectral components.  

2.3.3.1. New One Turn FeedBack with the fixed clock  

The OTFB has been introduced in Chapter 1, it contains a filter tuned to the revolution frequency 

harmonics of the processed signal. This filter is the processing that needs to track the momentum ramp of 

the synchrotron, i.e., the sweeping revolution frequency harmonics. In the presented work, it is implemented 

in the FRANCISCO fabric. Since the revolution frequency is known (it is also the LLRF that controls it), it 

is possible to tune the discrete representation of the sampled data to the filter response using the presented 

fabric. This avoids alternatives requiring estimation and tracking of the revolution frequency, based on 

adaptive filters, or the real-time reconfiguration of the filter parameters.  

The filter in the FRANCISCO fabric is a static IIR comb as depicted in Fig.  2.8. The first peak of 

the comb above Direct Current (DC) is used as the reference to define the filter response. This peak is 

computed to be at a normalized frequency ωproc1 that matches, at the beginning of the momentum ramp, the 

first revolution harmonic ωh1 of the filtered signal (h1 in Fig.  2.1), ωproc1 = ωh1. The rest of the filter and the 

signal peaks follow due to its periodicity.  

    

Fig.  2.8.  The response of a Comb filter with 12 resonances in the first Nyquist zone. 

The filter is placed between two resamplers in the FRANCISCO fabric. The input resampler adapts 

continuously the sampling frequency f’s in the adaptation fabric (Fig.  2.3). This keeps the discrete 

representation of the signal tuned to the filter, as in Eq.( 2.1 ). After processing, the output resampler 

recovers the original sampling period. This Architecture is depicted in Fig.  2.7, the grey region represents 

the FRANCISCO fabric, the dotted red box in the adaptation fabric depicts the region where BSP is 

performed, and the red filter within it performs the harmonic filtering between the two resamplers.  

The one turn matching delay element is implemented in the BAP region, either in the hardware 

fabric of the FPGA or the region I of the FRANCISCO fabric. Any revolution period can be decomposed 



Chapter 2.   Contributions of the Thesis 

19 
 

into an integer delay, plus a fractional part. The integer delay can be synthetized efficiently with a dual-

port memory, adapting the write and read pointers of the memory in real-time. The fractional part can be 

synthetized with a VFD as the one used in the resampler.  

2.4. Conclusions 

The chapter has presented the improvements that the proposed solution brings to the State-Of-the-Art. We 

have shown first the tangible contributions and the benefits that the new Architecture introduces for daily 

LLRF problems. Then we have addressed the changes and implications that these contributions bring, from 

a scientific and technical perspective. We want that the new projects planned at CERN benefit from all 

these improvements. This results in advances for the Technology Readiness Level of the LLRF systems and 

techniques. These advances are grouped around three technical fields where new paradigms are introduced.  

We have first presented a new Signal/Beam Synchronous Processing Architecture for FPGA. The 

Architecture is based on a fixed frequency processing clock paradigm to ease implementation in the 

innovative hardware platforms and devices where the old swept clock poses constraints to the clocking 

architecture. The solution facilitates the migration of any existing algorithm and the development of new 

ones.  

The second paradigm consists in the Resampling in the data-path to tune the processed signals to 

the processing algorithms. We have developed a new resampler with an arbitrary and real-time variable 

ratio that is used in the proposed Architecture with fixed processing clock.  

Finally, a new Transient Beam Loading Compensation scheme that exploits the Architecture and 

the resampler has been presented. This schema makes it feasible its implementation in the proposed new 

uTCA hardware for the CERN SPS LLRF systems.  

The following chapters are dedicated to each of these three main contributions; Chapter 3 presents 

the BSP Architecture and Chapter 4 the resampler.  The validation of these enabling concepts and resulting 

performances are presented in Chapter 5. Finally, Chapter 6 shows the new One Turn FeedBack control 

system and algorithm implementation for Transient Beam Loading Compensation.  

 

 

 

 

 

 





21 

Chapter 3  
 
Beam Synchronous Processing Architecture 

 Abstract: This chapter presents the Beam 
Synchronous Processing Architecture proposed in this 

Thesis. It first depicts the Architecture at functional 
level. Then, the foundations in which the solution is 

built are inspected. The chapter continues presenting 
the key elements used in the Architecture at logic and 

physical level. It concludes with a feasible 
implementation for each of these elements.  

 

3.1. Introduction 

This chapter presents the Signal/Beam Synchronous Processing architectural solution developed in the 

Thesis. We start depicting the proposed Architecture from a functional level, abstracted from any hardware 

aspects at physical or logical level. No implementation details are given and only the functional behaviour 

is stated. Then the foundations and concepts supporting the proposed functional Architecture are presented, 

and the characteristics achieved with this solution are stated. Finally, we present the principal elements in 

the Architecture and a proposed digital implementation for them, valid for both ASIC and FPGA.  

3.2. Proposed processing Architecture 

This section presents at functional level the proposed Architecture that makes Beam Synchronous 

Processing feasible in a digital system with a fixed frequency for either the processing or system clock. No 

hardware details besides the clock are given. The same data-path supports Beam Asynchronous Processing. 

We first depict the BSP and BAP units and the element interfacing them within the data-path. Then in the 

following subsections, we review and develop the theoretical concepts on which the BSP solution is based. 

We start by justifying the use of a technique based on sampling rate variation for tuning of the signal to the 



Proposed processing Architecture 

22 
 

processing. We continue with a description of how we map the resampling operation within the data-path 

of the Architecture. Finally, we present the implications of the resampling for the modulation architecture.  

3.2.1. High-level functional sketch 

The Architecture presents a solution for the processing of periodic signals with known and varying 

fundamental frequency, the so-called Signal/Beam Synchronous Processing introduced in Chapter 2. From 

a functional point of view, it solves the need for a data-path that supports such a processing with a fixed 

system clock in control systems for LLRF applications [18], especially for beam based measurements and 

controls loops. 

Several processing algorithms can be used in these LLRF systems depending on the required 

functionality; our solution is independent of the spectral bandwidth covered by the processing. It supports 

algorithms performing narrow bandwidth processing, where only one or a few harmonics of the 

fundamental frequency are treated [45]. It is also compatible with wide bandwidth processing, where many 

harmonics are processed [10]. The Architecture is also meant for systems where algorithms not dependent 

on the spectral content of the signal, Beam Asynchronous Processing, are used [9], [85]. It is generic in the 

sense that the BSP and BAP can coexist in the same platform and data-path, and can be linked to perform 

more complex processing on the same signal.  

The high-level functional sketch of the proposed architectural solution is depicted in Fig.  3.1. No 

implementation details are given at this point, but the fixed frequency system clock is depicted, as it is a 

key element in the solution. The figure sketches the data-path inside the device, an FPGA in this case, the 

input and output RF front-ends and the RF plant. The data-path contains a blue processing unit that performs 

the BAP and a red processing unit that performs BSP. Two resamplers, in orange, encapsulate the BSP unit. 

The input resampler converts the fixed sampling rate at which the data arrives into a variable sampling rate 

sequence. The output resampler uses an inverse resampling ratio to the input one. This results in the 

complementary operation so that it recovers the original fixed sampling rate. The BSP is performed between 

the complementary resamplers. The information about the fundamental frequency of the signal is provided 

externally to the device. This information is known and used for the BSP tuning. Other parameters linked 

to the algorithm are also provided to the device.  

FPGA

Fundamental Frequency Information

Amplifier

CavityR
F 

F
ro

nt
-e

nd

R
F 

F
ro

nt
-e

nd

Algorithm Control

Fixed
Frequency

Clock

Beam
Synchronous
Processing

Beam
Asynchronous

Processing

R
es

am
pl

er

R
es

am
pl

er

Fixed
Sampling Rate

Variable
Sampling Rate

 

Fig.  3.1.  Functional sketch of the Architecture. The BSP unit is surrounded by resamplers performing sampling rate adaptation. 



Chapter 3.   Beam Synchronous Processing Architecture  

23 
 

The prototype solution depicted in Fig.  3.1 implements processing and/or up(down)-conversion of 

signals; LLRF control algorithms commonly perform the processing within the data-path after down-

conversion, either to base-band or any other Intermediate Frequency (IF) [86]. As an example, the 

application of the presented Architecture that will be demonstrated in Chapter 6, down-converts the RF 

signal to base-band/IF by an analog RF input front-end. Then the signals are sampled, and the algorithms 

perform either BSP and/or BAP. The processing supports also digital up or down-conversion of the signal 

frequency from/to base-band to other IFs. Finally, an output stage with a complementary RF front-end 

brings the signal back from base-band or the IF to the required RF frequency.  

It is an all-digital solution; there is no need, when resampling, for analog reconstruction of the 

processed signal before the DAC output stage in the output front-end, nor any other auxiliary signal or 

clock. The frequency information of the signal being processed is passed to the Architecture in digital 

format.  

3.2.2. Sampling rate variation 

The State-Of-the-Art in Chapter 1 has introduced solutions used for tuning between the response 

of the processing algorithms and the spectral content of the processed signal. These solutions were based 

either on functional approaches, as the real-time reconfiguration of the processing architecture [37]–[39], 

hardware approaches with a sampling of the signal by a variable clock in the ADCs while clocking the 

processing device with the same swept clock [10], or decomposition of the signal in its multiple spectral 

harmonics (multiples of the fundamental frequency) using a parallel dedicated system for processing per 

harmonic [87].  

The presented Architecture tunes the digital representation of the spectral content of the signal to 

the BSP processing by dynamically resampling the digitized signal to a variable rate. It uses only fixed 

frequency clocks in the sampling and processing sections. To better understand the mechanism, the 

following subsections elaborate the sampling and resampling concepts and illustrate how the latter performs 

the tuning.  

3.2.2.1. Conventions 

The Thesis uses intensively some related concepts such as sampling, processing, clock, and rate. 

We follow the de-facto conventions used to refer to them in the many signal processing text available in 

the literature [1], [88], [89]. When referring to the frequency of a real signal we will use capital F as symbol 

in this document. A real signal x(t) with a tone at a frequency of 100 Hz will be denoted as Fx = 100 Hz. 

When referring to the associated angular frequency, this is represented as Ωx = 2π·Fx radian/s.  

When referring a clock clkx we refer to a hardware signal at a given real frequency Fx measured in 

Hz. When referring to a rate rx we refer to the speed at which something happens.  



Proposed processing Architecture 

24 
 

The sampling clock clks is the clock driving the data acquisition; a sampling clock clks at a 

frequency Fs = 100 Hz acquires data at a sampling rate of rs = 100 sample/s. That clock acquires a hundred 

data samples, Nspl = 100 sample, in one second, and it has a sampling period of Ts = 1/100 s/sample. For 

this special and specific case, we will refer indistinctly in the Thesis to a sampling clock clks by its sampling 

rate or sampling frequency. We will denote indistinctly the sampling rate as rs = fs or the sampling frequency 

as Fs = fs as the value is the same and only the units change depending on the context.  

The processing or system clock clkp is the clock driving a processing system that operates the data-

path; a processing clock clkp at a frequency Fp = 100 Hz performs operations at a rate of  

rp = 100 operation/s. That clock performs a number of operations Nop = 100, with a period of time per 

operation Tp = 1/100 s. Equivalently the data-path clocked by that processing clock contains a number of 

processing slots Nps = 100 per second to perform the hundred operations. Again, we will refer indistinctly 

in the Thesis to a processing clock clkp by its processing rate or processing frequency. We will denote 

indistinctly the processing rate as rp =  fp or processing frequency as Fp = fp depending on the context. 

When referring to a normalized frequency in the discrete representation x[n] of a real signal x(t) 

having a tone at a frequency Fx that is sampled with a sampling clock at fs, we will use fx as symbol. The 

discrete frequency fx results from the quotient between the signal frequency and the sampling frequency  

fx = Fx / fs with units of sample-1. We call it normalized frequency as it normalizes the real frequency Fx of 

the tone in the analog signal to the sampling frequency fs. When referring to angular normalized frequencies, 

these are represented as ωx = 2π·fx and the units are radian/sample.  

3.2.2.2. Sampling 

Digital or Discrete Signal Processing systems operate on data samples, x[n], that represent a real 

continuous-time signal x(t), in the discrete-time domain [1], [90]. The conversion of the real signal to these 

discrete-time quantized samples is generally performed by Analog to Digital Converters. The process 

involves two steps. The first stage is sampling, which evaluates the continuous-time signal at discrete-time 

instants tn spaced by the sampling period Ts, with tn = n · Ts. Then, quantization translates the signal 

amplitude in these discrete-time instants to a digital word [91]. The samples x[n] are the digital (or discrete) 

representation of the x(t) signal value at specific time instants tn.  

The signals at the input and output of the sampling process are depicted in Fig.  3.2. The left plot 

of the figure depicts in grey the analog signal x(t) sampled by an ADC. This originates the discrete sequence 

of samples x[n] in beige acquired at fs.  

In this document, sampling is used indistinctly to name the conversion from the real-time 

continuous signal to its quantized discrete-time samples, including quantization. Sampling therefore maps 

the real signal x(t) to a discrete representation x[n] sampled at a rate fs = 1 / Ts. This discrete sequence x[n] 

is later processed by a digital system.  

 



Chapter 3.   Beam Synchronous Processing Architecture  

25 
 

3.2.2.3. Resampling 

Resampling is an operation on a sequence of discrete samples x[n] acquired at a rate fs that generates 

a new sequence of discrete samples y[m]. The values of this new sequence approximate the values of the 

real signal x(t) when acquired at a different rate f’s [72], [92]. This is depicted in Fig.  3.3 where the beige 

discrete samples of the grey waveform sampled at fs = 10·103 sample/s, are resampled to a rate of  

f’s = 7.5·103 sample/s. The new sequence approximating the real signal is depicted in pink in the right-hand 

side of the figure.  

x[n] y[m]

n

y[m]

m

Resampling
Sampled at f’s

x[n]

Sampled at fs

RESAMPLER

  fs = 10·103 [sample/s]   f’s = 7.5·103 [sample/s]

 

Fig.  3.3.  High-level representation of the resampling process. On the left, the input sequence x[n] sampled 
at a rate fs. On the right the resulting sequence y[m] after resampling to a rate f’s.  

3.2.2.4. Frequency-domain interpretation of sampling and resampling 

Let’s now have a look at these operations in the frequency domain. When a real sinewave signal 

x(t) with fundamental frequency F0, is sampled at a rate fs, its representation is mapped to a point in the 

discrete normalized spectrum [1], [90] at 

0 0
0 0

s s

2π· 2π
F

f
f f

 
    Eq.( 3.1 ) 

This is depicted in Fig.  3.4 where a tone at F0 = 2 kHz is sampled with a clock clks at Fs = 10 kHz. 

The figure depicts in the left side the tone in the analog spectrum in beige and the sampling clock in purple. 

The sampling maps the tone in the discrete spectrum X(ejω) to an angular discrete frequency at  

ω0 = 2π·0.2 radian/sample. The right half of the figure depicts the mapping with the tone again in beige and 

the sampling rate in purple. The figure spans through the first two Nyquist zones [93]; the first ranging 

from DC to half the sampling rate, and the second Nyquist zone starting at half the sampling rate up to the 

sampling rate as the upper limit.  

ADC
x(t) x[n]x(t)

t

x[n]

n
Analog to Digital 

Conversion
Sampled at fs

Ts

  clks 

Continuous-time
 

Fig.  3.2.  High-level representation of the sampling process. On the left, the real signal x(t) to be acquired by an ADC. In the 
middle the ADC interfacing the real signal and the discrete representation x[n]. On the right, the sequence of discrete samples, 

spaced by the sampling period Ts. 



Proposed processing Architecture 

26 
 

2

10

F 
[kHz]

Analog Signal 
Spectrum

  Fs   F0
ADC

x(t) x[n]

  clks

Analog to Digital 
Conversion

|X(F)|

0.2

1

/(2p) 
[sample-1]

Discrete 
Spectrum

fs 
0/(2p) 

|X(ej)|

 

Fig.  3.4.  Frequency-domain representation of the sampling process; mapping of F0 to ω0 in the discrete normalized spectrum.  

When this discrete signal is resampled, this results in a change of the mapping of its discrete 

spectrum. This is depicted in Fig.  3.5; the left side shows the original digitized tone at a rate of fs = 10·103 

sample/s (purple arrow) mapped to ω0 = 2π·0.2 radian/sample (beige line). The right-hand side depicts the 

ideal result after resampling to a new rate of f’s = 7.5·103 sample/s (brown arrow); the tone is shifted to  

ω’0 = 2π·0.26 radian/sample (pink line). 

0.26
1

f’s 

x[n] y[m]

Resampling

RESAMPLER

  fs = 10·103 [sample/s]

  f’s = 7.5·103 [sample/s]

Discrete 
Spectrum

|Y(ej)|

/(2p) 
[sample-1]

0.2
1

/(2p) 
[sample-1]

Discrete 
Spectrum

fs 

0/(2p) 

|X(ej)|

’0/(2p) 

 

Fig.  3.5.  Frequency-domain representation of the resampling process; the discrete normalized spectrum of F0  
is re-mapped from ω0 to ω’0.  

The resampling of a discrete signal modifies and changes the mapping of frequencies in the discrete 

frequency domain. The new discrete representation Y(ejω) confines the spectrum within frequencies 

spanning up to the new sampling rate. It is hence possible to shift the mapping of a point in the discrete 

spectrum X(ejω) (sampled signal) by changing the sampling rate. This makes it possible to tune that discrete 

spectrum to the desired point at the discrete normalized frequency ωproc where the processing can be defined. 

This is, therefore, a suitable alternative for tuning the signal to the processing.  

This approach is the inverse of the classic reconfiguration of the processing elements; instead of 

adapting the frequency ωproc in the response of the processing to the spectral content of the signal X(ejω), 

the resampling tunes the signal representation Y(ejω) to a fixed processing frequency ωproc in the discrete 

normalized spectrum. This is depicted in Fig.  3.6; the processing (red band-pass filter) is centred at a fixed 

discrete frequency of ωproc = 2π·0.26 radian/sample. In the left side of the figure, before resampling, the 

discrete representation of the tone lies at ω0 = 2π·0.2 radian/sample using a sampling rate of fs = 10·103 

sample/s.  We then use resampling of x[n] to tune the discrete spectrum Y(ejω) of the signal y[m] to the fixed 

processing frequency ωproc according to Eq.( 3.1 ). This is depicted in the right side of the figure: The 

resampled tone in pink now matches the filter in red. For this purpose, the sampling rate is modified to  

f’s = 7.5·103 sample/s, depicted in brown in the figure.  



Chapter 3.   Beam Synchronous Processing Architecture  

27 
 

0.26
1

f’s 

x[n] y[m]

Resampling

RESAMPLER

  fs = 10·103 [sample/s]

  f’s = 7.5·103 [sample/s]

Discrete 
Spectrum

|Y(ej)|

/(2p) 
[sample-1]

0.2
1

/(2p) 
[sample-1]

Discrete 
Spectrum

fs 

0/(2p) 

|X(ej)|

’0/(2p) 

proc/(2p) 

0.26

proc/(2p) 

 

Fig.  3.6.  Representation of the resampling process as element to tune the discrete representation of the signal ω0 to a predefined 
fixed processing ωproc. The fixed processing ωproc (red band-pass filter) remains constant defined at ωproc = 2π·0.26 radian/sample.  

Let us now analyse how we can use this in our BSP application. Consider the case of an accelerator 

at the beginning of the momentum ramp; a pick-up signal xrev(t) contains the revolution frequency Frev 

(fundamental harmonic) and harmonics at integer multiples of the fundamental. Assume that the 

fundamental is at Frev = 2 kHz, and consider three harmonics at Frev_1 = 2 · Frev = 4 kHz,  

Frev_2 = 3 · Frev = 6 kHz and Frev_3 = 4 · Frev = 8 kHz. This signal xrev(t) is down-converted to base-band 

generating x(t). During the ramp the fundamental harmonic is kept constant at DC by adjusting the Local 

Oscillator (LO) of the mixer. The signal x(t) is then sampled generating x[n].  

Fig.  3.7 depicts two instants of the acceleration process. In Fig.  3.7(a), which corresponds to the 

beginning of the ramp, the analog and discrete spectrums of x(t) are presented. The sampling rate at that 

time is fs = 20·103 sample/s, depicted with a purple arrow in the figure. The down-converted fundamental 

harmonic Frev is now at F0 = 0 kHz (in beige) and the harmonics Frev_1, Frev_2 and Frev_3 at F1 = 2 kHz,  

F2 = 4 kHz and F3 = 6 kHz (in blue, green and orange) respectively. The discrete spectrum of the sampled 

signal follows the same colour convention. In that situation, the fundamental lies at DC and the three 

harmonics, at ω1 = 2π·0.1 radian/sample, ω2 = 2π·0.2 radian/sample and ω3 = 2π·0.3 radian/sample. The 

discrete processing of the LLRF, the bank of pass-band filters in red in the figure, is at injection centred in 

the discrete frequency of each harmonic (beginning of the accelerating ramp). This processing will remain 

fixed (without any reconfiguration) at these discrete spectral positions during all the acceleration.  

Then the momentum ramp of the accelerator accelerates the beam; the spectrum of the signal xrev(t) 

sweeps the fundamental from Frev = 2 kHz at injection to Frev = 3 kHz at extraction. The front-end adjusts 

the LO continuously and keeps the fundamental at DC in the down-converted signal x(t). However, the 

position of the other harmonics is not constant in base-band. They suffer a homothetic transformation as 

the momentum ramp advances. They change in position and spacing in the spectrum of the down-converted 

signal. Fig.  3.7(b) depicts the situation at the end of the ramp (extraction) when the signal is sampled using 

the same fixed frequency sampling clock clks at a rate fs = 20·103 sample/s. The analog spectrum remains 

with the fundamental at DC F0 = 0 kHz but the harmonics are now at F1 = 3 kHz, F2 = 6 kHz and  

F3 = 9 kHz. The sampling maps the harmonics to the discrete spectrum at ω1 = 2π·0.15 radian/sample,  

ω2 = 2π·0.3 radian/sample and ω3 = 2π·0.45 radian/sample. In this situation, the bank of filters is completely 

misaligned, as no reconfiguration has been done.  



Proposed processing Architecture 

28 
 

n2p· fn

2 4

0.1 0.2

0.15 0.3

20

0.5 1

0.8 0.9

6

0.3 0.7

0.45 0.70.55 0.85

1.1

1.3

1.31.2

1.15 1.45

1.5

0.8 0.90.7

10

F 
[kHz]

/(2p) 
[sample-1]

30

3 6

20

9

10

F 
[kHz]

30

Down-converted 
Analog Spectrum

0.5 1 1.5

/(2p) 
[sample-1]

Down-converted 
Discrete Spectrum

Fs 

  fs

Fs 

  fs

0.1 0.2 0.3

3 6

15

9

F 
[kHz]

30

/(2p) 
[sample-1]

F’s   F’s / 2

0.5 1

  f’s  f’s / 2

(b) Analog and Discrete Spectrum at the end of the accelerating ramp, using a fixed frequency sampling clock

(a) Analog and Discrete Spectrum at the beginning of the accelerating ramp, using a fixed frequency sampling clock

(c) Analog and Discrete Spectrum at the end of the accelerating ramp, emulating a variable frequency sampling 
clock with resampling of the discrete samples

Legend:

  F1   F2   F3  F0

f2   f0   f1 f3 

  F1   F3  F0

0

0

  F2

0

f2   f0   f1 f3 

  F1   F3  F0   F2

0

0

f2   f0   f1 f3 

0

Down-converted 
Analog Spectrum

Down-converted 
Discrete Spectrum

Down-converted 
Analog Spectrum

Down-converted 
Discrete Spectrum

|X(ejω)|

|X(ejω)|

|Y(ejω)|

|X(F)|

|X(F)|

|X(F)|

Analog Spectrum 
HarmonicsProcessing (Filter)

  F0Sampling Clock/rate ω2 Discrete Spectrum 
Harmonics

  ω0   ω1 ω3   F1   F2   F3clks 

proc

 

Fig.  3.7.  Representation of the beam signal in the acceleration process of the example in section 3.2.2.4: (a) depicts the spectrum 
at the beginning of the ramp, (b) at the end of the ramp when the sampling clock is a fixed frequency one, and (c) at the end of 

the ramp with a swept clock (or resampling).  



Chapter 3.   Beam Synchronous Processing Architecture  

29 
 

Consider now that the signal x[n] is resampled to y[m]. The sampling rate f’s of the new signal y[m] 

is dynamically modified during the ramp. The resampling ratio R is proportional to the variation of 

frequency of the fundamental harmonic Frev (increase in revolution frequency).  

Fig.  3.7(c) depicts the end of the accelerating ramp but now following this technique. At the end 

of the ramp, the variable sampling rate in the new signal y[m] reaches f’s = 30·103 sample/s. In this case, 

the homothety is compensated and the mapping of the harmonics in the discrete spectrum remains at a 

constant position, as a result of Eq.( 3.1 ). The figure depicts first the analog spectrum of the signal that 

remains the same (only the new sampling clock in brown moves). The discrete spectrum maps the 

harmonics to the same position as at injection; ω0 = 2π·0 radian/sample, ω1 = 2π·0.1 radian/sample,  

ω2 = 2π·0.2 radian/sample and ω3 = 2π·0.3 radian/sample. The resampling of the sweeping signal results 

thus in the fixed discrete position of the harmonics. As a result of this, the filter bank, whose frequency 

response has not been changed, remains also in tune with the harmonics.  

The proposed Architecture is based on this resampling example. Instead of sampling the down-

converted signal with a swept clock, we use resampling. We resample the signal acquired with a fixed 

frequency clock to obtain the same result as when using the swept clock. This tunes the discrete 

representation ωx of the signal frequency to the frequency ωproc at which the processing algorithm has been 

defined and that can remain fixed.   

3.2.3. Resampling sandwich 

The previous point has presented sampling rate conversion as the enabling solution for tuning 

between signal and processing. Other elements or algorithms which operate at a fixed sampling rate in the 

same data-path need, however, to interface the processing at a variable sampling rate, the BSP unit. This is 

the case for instance of ADCs, DACs and the BAP unit that use fixed frequency clocks for the acquisition 

and the processing.  

The Architecture is capable of supporting both BSP and BAP by proposing a solution based on the 

encapsulation of the BSP unit within two resamplers, depicted in orange in the functional sketch of the 

Architecture in Fig.  3.1. This makes it possible to interface the processing at a variable sampling rate to 

the rest of the system. The BSP is hence performed and encapsulated between the two resamplers, within 

the so-called “resampler sandwich”. In that unit of the Architecture, the sampling rate is adapted 

synchronously to the spectral content of the signal. The “adaptation to the content” follows the mechanism 

presented in section 3.2.2.4. The resamplers perform the conversion between sampling rates, obfuscating 

the fixed sampling elements in the data-path from the BSP unit. This makes the BSP resampling based 

solution compatible with any data-path that in some stage uses a fixed sampling rate. Section 3.3 will show 

the implementation details. It presents how a fixed processing clock can host a data-path with variable 

sampling rate.  



Proposed processing Architecture 

30 
 

3.2.4. Modulation architecture 

Control algorithms for LLRF systems normally perform the processing in base-band. This concept 

has been presented in section 3.2.2.4 where the signal xrev(t) was down-converted to base-band, x(t), before 

processing. In systems where the RF is fixed, the down-conversion of the signals to base-band can be done 

with a static LO. In the SPS, the swept RF [50] poses a further requirement for the presented BSP 

Architecture. We need a varying LO to down-convert the sweeping RF to base-band during the entire 

accelerating ramp.  

In small machines, the RF signals can be sampled directly and the down-conversion can be done 

digitally by means of a digital mixer driven from a Numerically Controlled Oscillator (NCO) [71]. Larger 

machines rely on RF demodulation [85]; a narrowband RF signal is down-converted to an IF with an analog 

RF front-end using a signal coming from a LO. This IF signal is sampled and a second digital complex In-

phase and in-Quadrature (I/Q) mixer down-converts it to base-band, resulting in two components I/Q whose 

bandwidth is much smaller than the Nyquist rate of the digital processing. An output stage with a 

complementary up-converter brings the signal back to the required RF frequency.  

The presented Architecture supports all these options. Fig.  3.8 presents an example incorporating 

all of them. In the figure, the RF is first mixed with an analog LO resulting in an intermediate frequency 

IF1. The signal at this IF1 is sampled by an ADC. The RF component of the discrete signal is then digitally 

down-converted to base-band within the FPGA using a second swept LO2. This LO2 is synthetized by an 

NCO. The resulting IF2 (with the RF component translated to DC) is processed by a BSP algorithm. At the 

output of the BSP, a second digital mixer performs up-conversion of the processed signal to an IF3. In the 

figure, this LO3 is also swept and translates the RF from DC to a sweeping IF3. There the processing can 

perform for instance BAP (this is the case in the figure). BAP algorithms are in general not dependant on 

the instantaneous frequency of the RF, for instance, compensation of the reconstructing response of the 

DAC. Finally, a fourth mixer recovers the RF signal sent to the amplifier after mixing with a fixed analog 

LO. The digital LOs are reconstructed locally in the FPGA with the digital information received, the RF 

frequency and revolution frequency. 

DAC

LO1

clock

RF

FPGA

X XBSPXADC

LO2 LO3
LO4

IF1 IF2 IF3 RF

RF

Fixed Swept
Fixed

Swept

Amplifier

Cavity

BAP

NCO NCO

X

IF3IF2IF1

 

Fig.  3.8.  High-level representation of the different zones performing processing at different intermediate frequencies (IFs). In 
the figure, the RF green zone is the region where the RF is at its nominal value. The IF1, IF2 and IF3 depict different regions in 

which the RF is down-converted to other intermediate frequencies.  



Chapter 3.   Beam Synchronous Processing Architecture  

31 
 

3.3. Implementation of the Processing Architecture 

This section presents the implementation details of the proposed Architecture, the data-path and other 

supporting elements. We first introduce the high-level sketch of the Architecture at logical and physical 

level including these supporting elements needed to make the functional model presented in section 3.2 

feasible. We introduce the concept of decoupled data-path. Then in the following subsections, we present 

how to implement such a data-path within an adaptation fabric in a digital device, for instance, an FPGA. 

We show the required interfaces at logic and physical level performing adaptation of the data-path signals 

between coupled and decoupled regions. Recall that we want to use the BSP Architecture inside a feedback 

loop, as the example in Fig.  3.8, this is the reason why we place the second resampler as output stage 

recovering the original sampling rate. We conclude presenting the functional model of the resampler, that 

is developed in detail in Chapter 4, and the operational configuration of the Architecture. 

3.3.1. Conventions 

The following sections and chapters intensively elaborate on hardware signals and variables. A 

convention has been stablished in the Thesis to denote signals and relates them to the variables that provide 

its value. Hardware signals are represented with Courier font and no italics, x. When such a signal is the 

physical implementation of a variable, the name used in the variable is the same when possible and is 

represented in Times New Roman font and italics, x. A subscript is added when needed to variables and 

signals to univocally identify them among related ones, for instance, xin, xout, xin and xout. In the case of 

clocks, clk_procin is the signal, at the input port of an entity, mapping the processing clock clkp with 

frequency Fp. 

3.3.2. High-level implementation sketch 

The high-level implementation model of the proposed architectural solution supporting BAP and 

BSP is depicted in Fig.  3.9. It maps the functional model of Fig.  3.1 depicting, in addition, the hardware 

resources and blocks needed to make the implementation feasible. The mixing stages of the RF front-ends 

are not included as we only focus on the data-path, however, the ADC and DAC are included in Fig.  3.9 

to denote the fixed frequency clocking scheme used within the Architecture.  

The implementation model contains two fabrics, the “Hardware fabric” in white and blue, and the 

“FabRic with Adaptive aNd deCoupled clockIng for SynChronous prOcessing (FRANCISCO) adaptation 

fabric” in grey, yellow and red. The hardware fabric (the device hosting the Architecture, for instance, an 

ASIC or FPGA) is used for implementation of the BAP where a standard data-path (coupled) is used. The 

adaptation fabric is used for implementation of the BSP where a decoupled data-path is used. In a decoupled 

data-path the processing and sampling clocks operate at different frequencies, and the number of processing 

slots and samples needs not to be the same. Such a data-path requires an extra hardware signal, valid, to 

flag the processing slots containing valid data. In a coupled data-path these two clocks operate at the same 



Implementation of the Processing Architecture 

32 
 

frequency, all the processing slots are hence populated, and this line is not necessary. The hardware and 

FRANCISCO fabrics coexist in the same device and need to communicate, note that the FRANCISCO fabric 

is built on top of the hardware fabric. Two interfaces, the “MultiplE Rate and Clocking interfacE for Data 

procEssing and Sampling (MERCEDES) Decouple and Couple interfaces” in green in the figure are these 

unique data-path points linking the two regions. A Frequency-Locked Loop, the “JOintly Averaged and 

QUaNtized rAtio (JOAQUINA) Frequency-Locked Loop” is set around the MERCEDES Couple interface 

and the output resampler to correct for the truncation errors in the ratio signals of the resamplers, in red in 

Fig.  3.9. These ratio signals are r_in for the input resampler and r_out for the output resampler. The 

correction signal corr_R is added to r_out before the output resampler.  

In the FRANCISCO adaptation fabric, there are two sub-regions. The first, between the 

MERCEDES interfaces and the resamplers, is a sub-region where the sampling rate is fixed and equal to 

the hardware fabric. In the figure, that sub-region contains only the signals d_dcpl and valid connecting 

the MERCEDES interfaces and the resampler. These signals compose a segment of the decoupled data-path 

in which no processing is performed. That segment can nevertheless be used to implement BAP. The second 

sub-region is encapsulated within two resamplers, in orange in the figure, and contains the red BSP 

processing unit of the data-path (where the sampling rate varies). The data-path remains decoupled. This 

second sub-region is hence defined as the “resampling sandwich”.  

The resamplers are responsible for the sampling rate conversion in the data-path, and the 

resampling ratio of the input resampler dictates the sampling rate within the sandwich. They operate with 

the fixed frequency processing clock of the FRANCISCO fabric, the signal clk_dcpl in the figure. These 

processing 
clock clkp 

fp_cpl = A [Hz] 
signal clk_cpl

d_dcpl

valid

FPGA

sampling
rate   fs_cpl = A [sample/s] 

processing 
clock clkp

sampling
rate   

fs_dcpl = A [sample/s] 
arbap = (1/M)

Hardware Fabric

Coupled data-path

BAP
Processing

d_dcpl

valid

d_cpl

d_cpl

d_in

d_out

clk

clk_cpl

clk_dcpl

BSP
Processing

Decoupled data-path

d_dcpl

valid

d_dcpl

valid

r_in
r_out

processing 
clock clkp 

fp_dcpl = M · A [Hz] 
signal clk_dcpl

sampling
rate   

fs_dcpl = R ·A [sample/s] 
arbsp = (1/M) · R

+
corr_R

R
es

am
pl

er
R

es
am

pl
er

FRANCISCO Adaptation Fabric

fp_dcpl = M · A [Hz] 
signal clk_dcpl

r_out = R

r_in = 1 / R

Fundamental Frequency Information

Sub-region I (fixed fs) Sub-region II (variable fs)

FPGA Clock 
Manager

Control Interface

M

MERCEDES
Decouple

MERCEDES
Couple

M

 

Fig.  3.9.  High-level sketch with the implementation of the proposed Architecture in an FPGA.  



Chapter 3.   Beam Synchronous Processing Architecture  

33 
 

different processing clocks and the ratio signals for resamplers are depicted with different colours in Fig.  

3.9. The clocks related to the coupled data-path in the hardware fabric use the blue. The ones related to the 

decoupled data-path in the adaptation fabric use yellow. The regions of the adaptation fabric having a 

sampling rate equal to the hardware fabric will be depicted in yellow, the ones with a sampling rate that is 

variable use the red colour. A dashed vertical line in pink denotes the partition of the variable sampling rate 

(right) and fixed sampling rate (left) sub-regions in the FRANCISCO fabric. 

At the functional level, the resamplers are hence the interfaces between the different sampling rates 

and processing units in the data-path. At the logic and physical level, the MERCEDES are the interfaces 

between the fabrics in the device (and the coupled and decoupled segments of the data-path), regardless of 

the sampling rate that crosses these interfaces unchanged. We call “BAP region” the hardware fabric where 

the data-path has a fixed sampling rate, and the sub-region in the FRANCISCO fabric where the data-path 

has a fixed and identical sampling rate (sub-region I in Fig.  3.9). We call “BSP region” the sub-region in 

the FRANCISCO fabric where the data-path has a variable sampling rate (sub-region II in Fig.  3.9). 

The solution focuses on the use of a fixed processing clock. This is to be compatible with the use 

of all hardware features of new hardware devices, such as FPGAs, that might not be feasible with a swept 

processing clock [62], [94]. These devices are substituting Digital Signal Processors in LLRF systems. 

They offer much higher processing rates, customization of the hardware, integration of resources and 

parallelism. These devices are best suited to a fixed system clock. The Architecture replaces the swept clock 

of the old solutions with the fixed frequency clock; this makes the implementation in uTCA systems suitable 

[19].  

3.3.3. Conceptual decoupled data-path 

Section 3.2 has introduced resampling as the functional solution to tune the spectral content of the 

signal to the discrete processing with fixed frequency response in the BSP region. This operation is used to 

modify the data sampling rate as it is acquired with a processing clock having a fixed frequency at the 

beginning of the data-path, the ADC in Fig.  3.9. This data leaves the processing device at the end of the 

data-path towards a DAC that also uses a fixed frequency processing clock. The Architecture and the data-

path need therefore to support and accommodate fixed and variable sampling rates, the BAP and BSP 

regions. As both regions are implemented in the same processing device, the resampling operation needs 

to be as well.  

Since we want to follow the momentum ramp of the accelerator, this sampling rate conversion 

approach must implement a variable ratio, which should be feasible from a functional point of view. We 

use the input resampler to define the sampling rate in the BSP region; the data arrives at the resampler at a 

constant sampling rate, while the output rate is variable. This has, however, implications at hardware level 

for both the resampler and the data-path; the clocking architecture and hardware need to support this 

variable sampling rate.  



Implementation of the Processing Architecture 

34 
 

Take the case of the hardware at the output port of the input resampler; when it operates with a 

clock that has the same frequency as the sampling rate, this clock needs to vary and adapt its frequency (we 

say that the frequency of the clock and the sampling rate are coupled). This situation is similar to the first 

solution used for the implementation of the OTFB; the entire system clock was swept [10]. In our case, 

instead of the entire system, only a part of the data-path (between the resamplers) sweeps the clock. We 

want to avoid this, otherwise many of the problems presented in the previous chapters would be reproduced.  

We hence need a feasible solution supporting the implementation in a digital device of a data-path 

with a variable sampling rate but using a fixed clock for the whole hardware. Again, from a functional point 

of view, when we study or develop an algorithm, we think of the data-path regardless of its implementation 

(the hardware clock level); in that situation, the relevant information for us is the sampling rate of the data. 

We abstract the sampling operation from the rate at which the data processing is performed. This approach 

can be extrapolated to the implementation; the processing or system clock clkp and the sampling rate fs of 

the data-path (equivalently the clock clks with frequency fs used for sampling of the data samples) do not 

need to operate at the same frequency.  

For simple systems the frequency of these two clocks is identical, the data-path is coupled; the same 

clock or one with the same frequency is used in the ADCs, DACs and FPGA. If this is the case, all the 

processing cycles in the data-path operate on valid data; all the processing slots contain data samples. 

However, when the processing requirements are more demanding this paradigm limits the exploitation of 

hardware capabilities, the use of new devices, and the implementation of more complex algorithms.  

To overcome this limitation, the processing clock can operate the data-path at a different frequency 

than the one used for the sampling. In the case of the resampler, the sampling rate at the input and output 

will be different from the frequency of the hardware clock operating the data-path. The frequency of these 

two clocks, sampling clock fs and processing/system clock fp, is hence different and the data-path is 

decoupled. The paradigm abstracts the data-path samples from the hardware; the sampling frequency of the 

data is decoupled from the hardware processing clock.  

This paradigm requires only the processing rate to be higher than the sampling rate. This 

requirement ensures that the data-path can absorb all valid data samples not overflowing the hardware; the 

data-path operates at a higher frequency and can thus perform more operations than samples are available. 

We say that there are more processing slots available in the hardware than samples in the data-path. The 

decoupling idea is not new [70], [95]. It is widely used to implement time multiplexing of hardware 

resources within digital systems, or for interleaving or serializing data. 

Fig.  3.10 depicts the interleaving of three data channels in a single data-path. The three channels 

are merged in the data-path by populating iteratively one processing slot per channel. Offline data 

processing in a computer is also a similar concept. In that case, the processor operates the data at an arbitrary 



Chapter 3.   Beam Synchronous Processing Architecture  

35 
 

system clock and later, it is the user who interprets and relates the samples to the sampling clock used in 

the acquisition.  

The motivation for this paradigm is in our case to make feasible a variable sampling rate in the 

data-path of the BSP region between resamplers. Thus, we avoid the variable frequency processing clock 

by decoupling it from the sampling rate; we use fixed-frequency clocks driving the hardware, both for ADC 

and FPGA, and we decouple the sampling rate fs from the processing clock clkp.  

We want to use this paradigm in a feedback system, as in the example in Fig.  2.7, that requires 

processing in real-time. This type of systems is implemented normally with a fixed sampling rate in the 

data-path as the variable sampling rate varies the number of samples in the data-path. We are hence more 

interested in computing the sampling rate in the decoupled data-path based on the average number of 

samples within it; the sampling rate is a function of the number of samples present in the available 

processing slots for a given period of time τ (this period of time is not the sampling period Ts but the amount 

of time in which the average sampling rate is evaluated). We call the relation between samples populating 

the processing slots and the available processing slots the activation rate ar of the data-path. The number 

of processing slots in a given period of time τ is Nps = fp · τ. In that same period of time, an ADC at a 

sampling rate fs acquires a number of samples Nspl = fs · τ sample. By populating the data-path with these 

samples, the activation rate becomes  

( ) ( )spl ps s p s p  /  · τ / · τ   /ar N N f f f f    Eq.( 3.2 ) 

Recall that there is no physical sampling clock as such in a decoupled data-path; the sampling rate 

fs is hence an abstraction computed based on the activation rate and the operation rate of the processing 

clock  

s p · f ar f
 

Eq.( 3.3 ) 

When all the processing slots are populated, we reach the maximum number of samples in the data-

path. In this case, the sampling rate fs equals the frequency fp of the processing clock clkp; the data-path 

operates at its maximum sampling rate. When not all the processing slots are populated, the sampling 

frequency is lower than the processing clock. The distribution of the populated processing slots does not 

need to be periodic. This concept is depicted in Fig.  3.11.  

sampling
clock

channel 1

clks 

channel 2

channel 3

processing  clock

interleaved data

clkp 
Interleaving

3 different channels/data-paths

3 different channels 
in a single data-path

dA1

dA2

dA3

dB1

dB2

dB3

dC1

dC2

dC3

dD1

dD2

dD3

dA1 dA2 dA3 dB1 dB2 dB3 dC1

 

Fig.  3.10.  Representation of the interleaving process of three channels. The resulting data-path operates at a clock three times 
faster than the sampling clock. The samples of the different channels are interleaved within the data-path.  



Implementation of the Processing Architecture 

36 
 

processing
slots

data-path
samples

processing 
clock

ps8 ps9 ps10 ps11 ps12ps1 ps2 ps3 ps4 ps5 ps6ps0 ps7

clkp 

spl6 - spl7 - spl8- spl1 - spl2 spl3 spl4spl0 spl5

psx 

dx 

ps13 ps14 ps15

- spl9 -

τ = Nps · Tp  = 16 · Tp  [s] fs = ar · fp = (10/16) · fp  [sample/s]

processing
slots

data-path
samples

processing 
clock

ps8 ps9 ps10 ps11 ps12ps1 ps2 ps3 ps4 ps5 ps6ps0 ps7

clkp 

spl4 - spl5 - spl6- spl1 - spl2 - spl3spl0 -

psx 

dx 

ps13 ps14 ps15

- spl7 -

τ = Nps · Tp  = 16 · Tp  [s] fs = ar · fp = (8/16) · fp  [sample/s]

processing
slots

data-path
samples

processing 
clock

ps8 ps9 ps10 ps11 ps12ps1 ps2 ps3 ps4 ps5 ps6ps0 ps7

clkp 

spl8 spl9 spl10 spl11 spl12spl1 spl2 spl3 spl4 spl5 spl6spl0 spl7

psx 

dx 

ps13 ps14 ps15

spl13 spl14 spl15

τ = Nps · Tp  = 16 · Tp  [s] fs = ar · fp = (16/16) · fp  [sample/s]

(a)

(b)

(c)

dA dB dC dD dE dF dG dH

dA dB dC dE dG dH dI dJ

dA dC dE dG dI dK dM dOdB dD dF dH dJ dL dN dP

dD dF

 

Fig.  3.11.  Representation of the distribution of processing slots, the processing clock and samples in the data-path for different 
sampling rates. The activation rate ar dictates the number of occupied processing slots for a given period of time τ. In (a) the 

activation rate is ar = 8/16, in (b) the activation rate is ar = 10/16, and in (c) the activation rate is ar = 16/16.  

In Fig.  3.11(a) the activation rate is ar = 8/16, this results in one out of two processing slots 

populated. This gives a sampling rate in the data-path for a time τ of fs = (8/16) · fp sample/s. In Fig.  3.11(b) 

the activation rate is ar = 10/16, ten out of sixteen processing slots are populated, with a burst in the middle. 

This gives a sampling rate in the data-path for a time τ of fs = (10/16) · fp sample/s. In Fig.  3.11(c) the 

activation rate is ar = 16/16, all processing slots are populated. This gives a sampling rate in the data-path 

for a time τ of fs = fp sample/s, the maximum sampling rate supported by the data-path. Such a decoupled 

data-path solves our problem for a variable sampling rate operated with a fixed frequency processing clock.  

3.3.4. Beam Asynchronous Processing fabric 

The proposed Architecture supports both BAP and BSP. In the BAP region, we do not vary the 

data-path sampling rate; the processing does not need to tune the spectral content of the signal. In this case, 

the hardware fabric, with a data-path that has the sampling clock clks and processing clock clkp coupled, is 

more suitable. Even though possible, the implementation of BAP in the decoupled data-path in sub-region 

I of the FRANCISCO fabric results in a more complicated design. The preferred option is thus to use the 

hardware fabric where the processing clock is a fixed frequency clock with the same frequency as the 

sampling clock used to acquire the data, fp = fs.  

As in this case there is no abstraction of the hardware in the data-path, the FPGA hardware fabric 

is used as it is. The same clock, or a clock at the same frequency, drives the ADCs and FPGA, and the 

pipeline in the data-path does not need any special clocking architecture.  



Chapter 3.   Beam Synchronous Processing Architecture  

37 
 

A schematic representation of this standard data-path is depicted in Fig.  3.12. Two registers 

encapsulate a “processing cloud” within the data-path of the signal d_in. In this case, the “cloud” contains 

only combinatorial logic independent of the clocking signal. The fixed frequency clock drives only the 

registers pipelining the data-path. Nonetheless, the processing can contain more complex elements, such as 

DSP slices [96]. In that case, the clock is also fed to these elements. The simple model of the figure remains 

valid as these more complex elements can be modelled and reduced to simple combinatorial logic pipelined 

between registers.  

d   q
d_in d_out

clk

d   q

 

Fig.  3.12.  Representation of a coupled data-path with a cloud of logic encapsulated within two pipeline registers.  

Fig.  3.13 depicts the relation between clocks, processing slots and data samples in this data-path. 

In this case, the processing and the sampling are performed at the same rate; the clocks, clkp and clks have 

the same frequency, fp = fs, and all the processing slots are populated with data. Note that no extra logic 

elements or signals are needed in the data-path. The processing clock (signal clk in Fig.  3.12)is enough 

to drive and operate the pipeline registers.  

processing
slots

data-path
samples

sampling 
clock

ps1 ps2 ps3ps0

clks 

spl1 spl2 spl3spl0

psx 

processing 
clock clkp 

dA dB dC dDdx 
 

Fig.  3.13.  Representation of the relation between the processing clock, the sampling clock, processing slots and data samples in 
a coupled data-path.  

3.3.5. Beam Synchronous Processing FRANCISCO fabric 

The decoupled data-path implemented in the BSP region is based on the adaptation fabric 

FRANCISCO, introduced in Chapter 2 and section 3.3.2. This adaptation fabric is built on top of the FPGA 

hardware fabric (BAP processing). It combines logic elements and the FPGA clocking architecture to 

support the decoupled data-path concept presented in section 3.3.3. It adds very little extra complexity to 

the system; the processing algorithms implemented in the fabric require an extra hardware line, valid, 

one bit wide in the data-path. It is used to indicate which processing slots contain valid data, and which are 

void slots.  

A schematic representation of a segment of such a data-path implementing BSP based on the 

FRANCISCO fabric is depicted in Fig.  3.14. The figure shows an implementation in which the valid line 

is propagated in parallel to the data-bus signal of the data-path. At the output of the data-path segment, the 



Implementation of the Processing Architecture 

38 
 

qualification signal valid is used to distinguish samples with valid data. Fig.  3.15 depicts the relation 

between clocks, processing slots and data samples in such a data-path implemented in the FRANCISCO 

fabric. The decoupling makes the processing clock clkp and sampling clock clks operate at different 

frequencies. Recall that the sampling clock does not exist as a physical signal in the decoupled data-path. 

It is just an abstraction indicating the average sampling rate of the data in the data-path. Not all processing 

slots psx are populated, and the valid signal flags which ones contain valid data dx and which ones are 

void or invalid (denoted with -).  

dA

processing
slots

data-path
samples

sampling 
clock

ps1 ps2 ps3ps0

clks 

-

psx 

processing 
clock clkp 

valid
signal valid

dB dCdx 

The average rate fs of valid data in a 
decoupled data-path is depicted as the 

sampling clock clks but it does not 
exist as physical signal.

 

Fig.  3.15.  Representation of the relation between the processing clock, the average sampling clock, processing slots, the data 
samples and the valid signal in a decoupled data-path.  

The decoupling paradigm makes the use of the clocking architecture of the FPGA feasible with a 

variable sampling rate. It solves the need for a fixed frequency clock that does not interfere with PLLs as 

the swept clock would do. The Architecture has been developed with FPGA as target technology, however, 

it can be migrated to ASIC technologies easily.  

3.3.6. The ratio truncation and inversion 

The high-level functional Architecture presented in section 3.2 does not consider the quantization 

effect on real-valued variables, that are mapped to signals when discretized and implemented in a digital 

processing system. This is the case for instance of our Architecture being implemented in an FPGA or an 

ASIC. These quantization effects are especially relevant for the signals containing the resampling ratios 

used in the resamplers.  

Our BSP region is implemented within two of these resamplers. They modify the sampling rate of 

their input data-path according to their resampling ratio R. In Fig.  3.9 the fundamental frequency 

d   q
d_in d_out

clk

d   q d   q
valid_in valid_out

d   q

 

Fig.  3.14.  Representation of a decoupled data-path with a cloud of logic encapsulated within two pipeline enabled registers.  



Chapter 3.   Beam Synchronous Processing Architecture  

39 
 

information used to compute that value is externally provided by the control system via a control interface; 

there the ratio value R is used to compute the ratio signals r_in for the input resampler and r_out for 

the output one. As it will be presented in Chapter 4, the input resampler maps R to its ratio signal r_in in 

the form of the value T_out_n = 1/R. For proper operation of the sandwich, the output resampler needs the 

ratio value to be the inverse of the ratio of the input resampler; the r_out signal needs hence to adopt the 

exact inverse value of the r_in signal, this is R. This ensures that the sampling rate present in the data-

path before the input resampler, fs_dcpl = A sample/s, is again perfectly reconstructed after the output 

resampler, fs_dcpl = A sample/s. Recall that we intend to use this Architecture in a feedback loop. The input 

and output resampling ratio signals need therefore to be exactly inverse for proper operation.  

This is in practice impossible for any real-valued resampling ratio R after quantization. Any discrete 

representation, as for instance fixed-point arithmetic, offers support for only a set of discrete values. Other 

real values lying between two of the set of discrete values are truncated to either its upper or lower closest 

neighbour. It is hence impossible to represent a real varying value without error. At some point, as the value 

varies with infinite precision, the quantized signal will adapt a value which is not exactly in the discrete set.  

Our ratios vary continuously with time and are therefore affected by this error; the signals r_in 

and r_out that contain these discrete representations will not always be exactly inverse. They will not 

always feed the perfect inverse ratios valued 1/R and R to the resampler. The engineering solution to deal 

with this problem is to increase the number of bits in the digital word representing the real values. The 

truncation error between the discrete representation and the real value can become negligible when, 

depending on the application, a sufficient number of bits is used. This is effective for instance for the 

processed signal in the data-path, where the precision is in any case limited by the resolution of the ADC 

and DAC. The dimensioning of the digital representation of the data-path is hence based on that. This 

solution is, however, not feasible for us in the control signals hosting the ratio values. We need perfect 

inverse ratios and the error, even when very small using a huge number of bits, is not negligible for us.  

Furthermore, the problem becomes more relevant in our Architecture; we need to compute the 

inverse of R to obtain 1/R. The inversion is performed in a digital system with finite precision and is again 

only accurate within an error range. Such operation adds and/or increases the error between the resulting 

pair of discrete ratios. First, we quantize R when mapped to the output resampler signal r_out, this 

introduces a first truncation error. This quantized value is subsequently inverted in the system to compute 

1/R for the input resampler signal r_in. Note that the inversion is based on a value that already contains 

an error. The resulting inversion hence accumulates the initial truncation error plus the error resulting from 

the inversion. 

An example of the resulting situation is depicted in Fig.  3.16 where two ratios are swept with time. 

It shows both the contribution of the truncation error and the contribution of the computation of the inverse 

ratio in a discrete system. The figure depicts a variable representing a ratio R and its inverse 1/R; the left 



Implementation of the Processing Architecture 

40 
 

column contains the plots of the R, and the right column contains the plots of the inverse ratio. The first 

row depicts the real values of the ratios. The second row depicts the quantized representations of the real 

values. Finally, the third row depicts the error, i.e., the difference between the quantized and real 

representation. The inversion is computed in fixed-point arithmetic represented with sixteen bits: A sign 

bit, three integer bits and twelve fractional bits. The input resampling ratio is swept between an initial value 

of 1 at the beginning of the ramp, and an end value of 2. The sweep time is 1 s. The inverse output value 

sweeps from 1 at the beginning reaching a value of 0.5 at the end of the simulation. The truncation error of 

the input ratio follows a periodic pattern resulting from the truncation to the nearest neighbour, adopting a 

magnitude in the worst case of half a Least Significative Bit (LSB), 1.22·10-4. The output ratio in the 

example incorporates to this error the inversion error, making the total error to adopt a complex pattern 

within the same range.  

This results in practice in the impossibility to have two exactly inverse ratio values in the discrete 

system. That is only achieved for a very limited set of simple cases, but never if the real-valued ratio varies. 

For instance, the inverse of 1 is also 1. In that case, both same values can univocally be represented in fixed-

point arithmetic.  

In our case, the vast majority of pair values will not be exact inverse ratios, and thus the product of 

the pair will not result in the unit value. Fig.  3.17 depicts the product of the ratios of Fig.  3.16 during the 

sweep; the left column depicts the real values, the right one the discrete representation. The first row 

contains the input ratio, the second row the output ratio, and the third row the product of both input and 

output ratios. The product of the real values gives as result 1 during the whole ramp. There is no error as 

this product has infinite precision. The product of the discrete representations oscillates around 1 reaching 

an error of magnitude of 2.5·10-4, above one LSB, due to the limited precision and the inversion.  

 

Fig.  3.16.  Simulation depicting the truncation error for the up-sampling (left) and down-sampling (right) ratio signals.  

V
al

ue
V

al
ue

E
rr

or

V
al

ue
V

al
ue

E
rr

or



Chapter 3.   Beam Synchronous Processing Architecture  

41 
 

 
Fig.  3.17.  Simulation depicting the truncation and inversion errors; the ratio product results in a value different from 1.  

The error in the product between two truncated inverse input and output ratios cannot hence be 

solved by increasing the number of bits in the discrete word. This result for our BSP Architecture in a 

discrepancy between the ratio values arriving at the resamplers. The discrepancy generates a difference 

between the expected sampling rate and the real sampling rate achieved in the output port of the output 

resampler of the sandwich. The difference in sampling rates hence changes the volume of valid samples in 

the decoupled data-path, that can lead to a desynchronization between resamplers and fabrics. The solution 

to the problem is introduced in section 3.3.7 where we present the MERCEDES interfaces and the 

JOAQUINA loop. The MERCEDES Couple interface is first presented as an ideal interface regardless of 

this issue and then upgraded to solve the problem.  

3.3.7. MERCEDES Interfaces 

The data-path uses interface entities in the input and output ports of the FRANCISCO fabric to 

communicate with the FPGA fabric. Two entities have been developed for that, the MERCEDES Decouple 

and MERCEDES Couple interfaces introduced in Chapter 2. The two interfaces are depicted in Fig.  3.9, in 

the high-level sketch of the FPGA implementation. From a functional point of view, at application level, 

they are transparent as the data-path sampling rate remains the same at those points. Note that they are not 

depicted in Fig.  3.1, where we show the functional view of the Architecture. In these interfaces adaptation 

is therefore only performed at logic and physical level in the signals of the data-path; they control the 

valid signal and synchronize the different clock domains. The interfaces ensure the activation of the 

valid signal in the correct processing slot at the input and the proper reconstruction of the coupled data-

path at the output. The first one, MERCEDES Decouple, is used at the input of the FRANCISCO fabric to 

adapt the coupled data-path to a decoupled one. The MERCEDES Couple interface performs the 

V
al

ue
V

al
ue

P
ro

du
ct

V
al

ue
V

al
ue

P
ro

du
ct



Implementation of the Processing Architecture 

42 
 

complementary operation, it is used at the output of the FRANCISCO fabric to adapt the decoupled data-

path to a coupled one. A detailed description is presented in the following subsections.  

3.3.7.1. MERCEDES Decouple interface 

The functional representation of the MERCEDES Decouple interface of Fig.  3.9 is depicted in Fig.  

3.18. The input port of the interface receives the signals of the coupled data-path; these signals are 

composed of the data-bus signal d_cpl and the clock signal clk_cpl. The output port receives the signal 

clk_dcpl (that clocks also the output decoupled data-path) and provides the data-bus signal d_dcpl 

and the qualification signal valid for the processing slots.  

In the input port, the processing clock and the data sampling clock have identical frequencies, 

clk_cpl at fp_cpl = A Hz and d_cpl sampled at fs_cpl = A sample/s. This port uses hence a coupled data-

path and it makes no sense to talk about activation rate (expressed in Fig.  3.18 with ar = -) as there is no 

valid signal. The transitions in the data bus are synchronized with the rising edges of the clock.  

In the output port, the frequency fp_dcpl of the processing clock clk_dcpl is an integer multiple M 

of the frequency fp_cpl of the input processing clock clk_cpl; fp_dcpl = M · fp_cpl = M · A Hz. The transitions 

in the data-bus signal, are also synchronous with this clock signal. The average sampling rate of the output 

data-path remains the same fs_dcpl = A sample/s; this is achieved by qualifying only the first processing slot 

out of M with the valid signal active.  

d_dcpl

valid

clk_cpl clk_dcpl

d_cpl MERCEDES

M

Decouple

 fs_cpl = A [sample/s]
 fp_cpl = A [Hz]
 ar = -

 fs_dcpl = A [sample/s]
 fp_dcpl = M · A [Hz]
ar = (1/M)

 

Fig.  3.18.  Functional representation of the MERCEDES Decouple interface. The input port interfaces a coupled data-path. 
The output port interfaces the decoupled data-path.  

A possible implementation of the MERCEDES Decouple interface is depicted in Fig.  3.19.  In the 

implementation, the entity receives both the input and output clocks provided by the FPGA clock manager. 

The clock domain in the coupled data-path port (input) requires synchronization to the clock domain in the 

decoupled data-path port (output). This is done with a series of registers that are clocked by the output clock 

clk_dcpl. The output port samples the synchronized data bus at the rate of the output port clock. To keep 

the sampling rate constant in both ports, only one out of M clock cycles (the relation between clocks) is 

qualified as valid at the output. For this, an edge detector monitors the input port clock clk_cpl. When a 

rising edge is detected, a qualification signal enables the register driving the data-bus signal d_dcpl in the 

output port during one clock cycle. This signal is also provided to the output port as the valid flag signal. 

This architecture supports any integer relation between input and output clocks, as long as the frequency of 

the clk_dcpl clock is at least the double of the frequency of the clk_cpl clock.  



Chapter 3.   Beam Synchronous Processing Architecture  

43 
 

d   q d   q d   q

d   q d   q d   q

d   q

d   q

enb

d_cpl

clk_cpl

clk_dcpl

d_dcpl

valid

MERCEDES Decouple

 

Fig.  3.19.  Schematic representation of a possible MERCEDES Decouple interface implementation.  

Fig.  3.20 depicts a chronogram with the relation between signals at the input and output port of the 

MERCEDES Decouple interface. The relation between clocks is M = 3. The latency through the interfaces 

is omitted for simplicity. The chronogram depicts the data-path processing slots psX in d_cpl and 

d_dcpl, and the value dX (- when void slot) of the data sample in the bus signals. The qualified processing 

slots in the output are signalled by the valid signal. 

data bus
processing slots

qualifying 
signal

processing 
clock

ps1 ps2 ps3 ps4 ps5 ps6ps0

clk_dcpl

d_dcpl

ps1ps0

valid

clk_cpl

d_cpl
data bus

processing slots

processing 
clock

DECOUPLED 
OUTPUT 
PORT

M = 3

COUPLED 
INPUT
PORT

dB

dA

dBdA

dA - - - -dB dC

dX  : data sample 

dX  : data sample dX
 

Fig.  3.20.  Chronogram with the signals at the input and output ports of the MERCEDES Decouple interface.  

3.3.7.2. MERCEDES Couple interface 

The following section presents implementation details for the MERCEDES Couple interface. Two 

solutions are presented; first, an initial idea where the inversion and truncation errors were not considered. 

This solution serves to understand the interface from a functional point of view. A feasible solution was 

found after analysis of the problems noticed in the verification. That solution is presented in the second 

point of this section and shows the final implementation of the interface solving the truncation problems.  

3.3.7.2.1. Initial implementation 

The functional representation of the initial MERCEDES Couple interface is depicted in Fig.  3.21. 

The input port of the interface receives the signals of the decoupled data-path; these signals are composed 

of the data-bus signal d_dcpl, and the qualification flag signal valid. The clock signal clk_dcpl is 

also provided to this input port. The output port receives the clock signal clk_cpl (that clocks also the 

output coupled data-path) and provides the data-bus signal d_cpl. The frequency fp_dcpl of the processing 



Implementation of the Processing Architecture 

44 
 

clock clk_dcpl in the input port is a multiple M of the data-path average sampling rate fs_dcpl = A sample/s, 

fp_dcpl = M · A Hz. The activation rate of the valid signal is hence (1/M). 

In the output port, the frequency fp_cpl = A Hz of the processing clock clk_cpl has the same value 

as the sampling rate fs_cpl = A sample/s of the data-bus signal d_cpl. Again, in this coupled port there is 

no valid signal, it makes hence no sense to talk about activation rate (expressed in Fig.  3.21 as ar = -). 

The relation between the frequencies of the input clock clk_dcpl and the output clock clk_cpl 

in the interface is hence M, fp_cpl =  fp_dcpl / M = A Hz. The sampling rate in the data-path remains the same 

at both the input and output ports fs_dcpl = fs_cpl = A sample/s.  

d_dcpl

valid

clk_cplclk_dcpl

d_cplMERCEDES

M

Couple

 fs_cpl = A [sample/s]
 fp_cpl = A [Hz]
 ar = -

 fs_dcpl = A [sample/s]
 fp_dcpl = M · A [Hz]
ar = (1/M)

 

Fig.  3.21.  Functional representation of the MERCEDES Couple interface. The input port interfaces a decoupled data-path. 
The output port interfaces the coupled data-path.  

The initial implementation of the MERCEDES Couple interface is depicted in Fig.  3.22.  The 

synchronization between decoupled (input) and coupled (output) clock domains is done with a First-In-

First-Out (FIFO) memory. The interface stores the output samples of the sandwich in the FIFO. This is a 

technique used for clock domain crossing and synchronization. This makes it possible to recover a uniform 

input sample pattern with activation ratio ar = 1/M, with M the relation between the input and output 

frequencies of the processing clocks, at the output of the memory. The idea is based on the reading of the 

FIFO at the same effective rate at which it is written, in that case, the filling level remains constant. If we 

analyse this again from a functional point of view, this results in the sampling rate passing unaltered through 

the FIFO and the interface.  

Looking at the inside, the entity receives both the input clk_dcpl, and output clk_cpl clocks 

provided by the device clock manager, either ASIC or FPGA. The clock of the decoupled data-path is fed 

to the write port of the memory. The input signal valid in the decoupled port is used to enable the write 

port of the memory, WE. Only the samples marked as valid in the input data-bus signal d_dcpl (one out 

of M on average) are written into the FIFO. The output port of the entity is controlled by glue logic that 

S   q

d   q

d   q

enb

d_dcpl

clk_cpl

d_cpl

MERCEDES Couple

R   q

ready
a_empty

FIFO

valid
WE

din

RE

dout

clk_dcpl

level

>

<

empty 
level

ready 
level

 

Fig.  3.22.  Schematic representation of a possible MERCEDES Couple interface implementation.  



Chapter 3.   Beam Synchronous Processing Architecture  

45 
 

monitors the filling level of the FIFO. FIFO memories provide embedded functionalities and signals for 

this; however, we explicitly describe here a feasible implementation of such a logic based on a signal 

level provided by the FIFO that shows the number of samples available within it.  

We base on that signal our final implementation (section 3.3.7.2.2) that solves the truncation and 

ratio inversion problems. The level port of the FIFO is compared against two reference levels. A ready 

signal is set in the comparison logic when the number of samples in the memory is above an operation 

threshold, the ready level threshold. This threshold dictates when the FIFO is populated with enough 

samples for the safe operation of the interface. A second threshold signal a_empty is set when the level 

goes below a safety threshold, the empty level threshold. This second level is lower than the ready 

level threshold, and halts the read port of the FIFO when it is “almost empty”.  

The ready signal drives the set port of a Reset-Set (RS) register. The a_empty signal drives the 

reset port of the RS register. The output of this register is hence asserted when the number of samples in 

the FIFO achieves the operational level. The register is de-asserted when the level goes below the safety 

level. The output of the RS register drives the read enable port, RE, of the FIFO to control the synchronous 

extraction of data. This data is latched in a register driving the data bus of the output port (coupled port) of 

the entity. This register is also controlled by the RS register; the enable control port is driven by a 

synchronized version of the RS output signal.  

The resulting interface architecture supports any relation between input and output clocks. For 

proper operation, it requires an average sampling rate in the decoupled input port, the same as the sampling 

rate of the coupled output port. The operation and safety levels of the FIFO allow for variation of this input 

rate, however, in the long-term the average needs to be stable.  Fig.  3.23 depicts a chronogram example of 

the relation between signals at the input and output port of the MERCEDES Couple interface. The relation 

between clocks is M = 3. The chronogram depicts the data-path processing slots psX in d_dcpl and 

d_cpl, and the value dX (- when void slot) of the data sample in the bus signals. The qualified processing 

slots in the input are signalled by the valid signal. The latency through the interface has been omitted for 

simplicity. 

data bus
processing slots

qualifying 
signal

processing 
clock

ps1 ps2 ps3 ps4 ps5 ps6ps0

clk_dcpl

d_dcpl

ps1ps0

valid

clk_cpl

d_cpl
data bus

processing slots

processing 
clock

DECOUPLED 
INPUT 
PORT

M = 3

COUPLED 
OUTPUT 
PORT

dBdA dBdA
dX  : data sample 

dX  : data sample dX

dA - - - -dB dC

 

Fig.  3.23.  Chronogram with the signals at the input and output ports of the MERCEDES Couple interface.  



Implementation of the Processing Architecture 

46 
 

3.3.7.2.2. Final implementation 

The MERCEDES Couple interface has been modified to cope with the inversion and truncation 

problem presented in section 3.3.6. These problems result in a difference between the expected sampling 

rate in the input and output ports of the interface.  

Analysing in detail Fig.  3.22, we can see that a clock generated by the device clock manager is 

used to read the output port of the FIFO memory. This clock clk_cpl has a “perfect” fixed frequency 

fp_cpl = A Hz. This frequency has the same value as the sampling rate fs_cpl = A sample/s of the coupled data-

path of the interface. This value is also the expected sampling rate fs_dcpl = A sample/s of the decoupled data-

path port of the interface, the same at the output port of the output resampler. This is the case when the 

values R and (1 / R) of the ratio signals r_out and r_in of the resampling sandwich are perfectly inverse, 

and thus fs_cpl = fs_dcpl = A sample/s. In this case, the level of the FIFO remains constant; the writing rate is 

the same as the reading rate. 

As we saw in section 3.3.6, the value of the ratio signal in the input resampler can have some error. 

This error makes the sampling rate in the output port of that resampler not exactly fs_dcpl = R · A sample/s 

but fs_dcpl = Ř · A sample/s, with Ř = (1 + ϵ1) · R the actual value of the truncated resampling ratio and ϵ1 the 

magnitude of the truncation error. If the value of the ratio signal in the output resampler compensates that 

error (its value Ŗ becomes perfect inverses of the input, Ŗ = (1 / Ř)), the error would cancel in the sandwich. 

This would make the rate in the output port of the output resampler be again fs_dcpl = Ř· Ŗ· A = A 

sample/s.  

But this is not the case, and due to the error between ratios, the rate in the output port of the output 

resampler becomes fs_dcpl = (1 + ϵ2) · A sample/s, with Ř · Ŗ = (1 + ϵ2). The variable ϵ2 is the resulting 

magnitude of the error from the ratio truncation in the input resampler and the inversion; it makes the ratios 

diverge. In Fig.  3.17 ϵ2 has a worst-case magnitude of 2.5·10-4 for fixed-point arithmetic represented with 

sixteen bits: A sign bit, three integer bits and twelve fractional bits. This is in the order of one LSB. When 

this is the case, the frequency of the clock used to read the memory and the data rate at the read port, is 

different from the rate at which the data arrives at the memory, fs_cpl = A sample/s vs fs_dcpl = (1 + ϵ2) · A 

sample/s respectively. This results in fluctuations in the FIFO level, that can lead to underflow or overflow 

in the long term.   

The discrepancy between sampling rates that produces the fluctuations results from the truncation 

and inversion errors in the ratios. If the ratios are kept constant the fluctuation of the FIFO level is 

monotonic for a given pair of ratios. However, our ratios change with time, hence the variation in the level 

of the FIFO becomes dependent on the different pair of imperfect inverse ratios. The error accumulates thus 

through the FIFO level resulting in the known and studied problem of the Random Walk [97]. The computer 

simulations of the interface were not able to accumulate enough simulation cycles to make the sandwich 



Chapter 3.   Beam Synchronous Processing Architecture  

47 
 

lose the synchronization between resamplers due to overflow or underflow. However, the verification in 

the laboratory quickly revealed the problem. Further results are presented in Chapter 5.  

The solution to cope with the problem is to keep, on average, a perfect inverse ratio between 

resamplers. For this, we exploit the fact that the FIFO can absorb small instantaneous fluctuations deviating 

from the average. The JOAQUINA Frequency-Locked Loop is included around the MERCEDES Couple 

interface and the output resampler. It acts by providing corrections to the output resampling ratio, that keep 

the sampling rates equal in average at the input and output ports of the MERCEDES Couple interface, and 

thus fs_cpl = fs_dcpl = A sample/s. This makes inverse ratios possible, on average, between resamplers. As the 

divergence and the corrections have very small values and keep the average constant, the modulation of the 

resulting signal due to the variations in resampling ratio is negligible.  

This mechanism is based on the comparison of the FIFO level against a reference value. When the 

sampling rates in the interface are equal, the FIFO level does not fluctuate. When the difference in the 

product of the ratio signals is larger than one LSB, the level starts to diverge. The resulting error signal 

from the comparison of levels is used as a correction for the ratio in the output resampler.  

The modified MERCEDES Couple interface is depicted in Fig.  3.24. The level of the FIFO memory 

that should be stable in operation is compared against the ready level. The resulting error signal e_R is 

scaled by a gain factor K and propagated out of the resampler as the corr_R signal. This signal is used in 

the output ratio JOAQUINA Frequency-Locked Loop. The gain K acts as a scaling of the level error to make 

the loop more reactive or damp its response. We have experimentally verified that a scaling factor, that 

results in a value of one LSB for the corr_R signal, keeps the Architecture stable and operational when 

the difference between levels is one memory position of the FIFO.  

The high-level Architecture presented in Fig.  3.9 implements this modified MERCEDES Couple 

interface. The ratio Frequency-Locked Loop is fully depicted around the output resampler and the 

MERCEDES Couple interface. This interface outputs the correction error signal corr_R which is added 

to the output ratio r_out. This solution keeps the sampling rate at the output port of the output resampler, 

on average, at the same fixed sampling rate present before the input resampler, fs_dcpl = A sample/s. Thanks 

S   q

d   q

d   q

enb

d_dcpl

clk_cpl

d_cpl

MERCEDES Couple

R   q

ready

a_empty

FIFO

valid
WE

din

RE

dout

clk_dcpl

level

>

d   q
enb

corr_R

++

-

<

empty 
level

ready 
level

k
e_R

 

Fig.  3.24.  Schematic representation of a possible MERCEDES Couple interface implementation with the correction signal 
corr_R used to create the JOAQUINA Frequency-Locked Loop to cope with the truncation error in the output resampler ratio.  



Implementation of the Processing Architecture 

48 
 

to this loop, the interfaces are transparent from a functional point of view, they keep the sampling rate 

constant at its inputs and outputs, performing only adaptation at logical and physical level.  

3.3.8. Real-time variable ratio resampler with decoupled data-path 

Beam Synchronous Processing is performed within the BSP region after adaptation of the sampling 

rate in the data-path. We have already introduced the two resamplers, depicted in the functional and 

implementation sketches of the Architecture. Traditional arbitrary ratio resamplers use the ASRC approach 

introduced in Chapter 2; the input port uses a hardware processing clock with the same frequency as the 

input sampling rate, and the output port uses a second hardware clock at the same frequency as the new 

output sampling rate in the data-path [74]. We wanted to avoid implementation problems in our SSRC 

derived from this output clock (swept in our case); our resampler is implemented within the FRANCISCO 

fabric to decouple the clocking architecture and the sampling rate.  

 As resamplers based on a decoupled architecture are not common, we have developed a new one 

exploiting such a paradigm. It uses the same hardware processing clock in both input and output ports, and 

at the same time makes it possible to have a variable sampling rate in the data-path. This new resampler is 

hence the key element in the proposed Architecture that enables the change of the data-path sampling rate 

with a fixed frequency processing clock. Chapter 4 is dedicated entirely to the resampling architecture; it 

presents in detail the concept and implementation, but a brief introduction is anticipated here to provide the 

reader with its foundations. Fig.  3.25 depicts schematically the signals of its physical interfaces.  

processing clock:

fp = M · A [Hz] 

sampling rate:

R
es

am
pl

er

d_dcpl

valid

r

d_dcpl

valid

c
l
k
_
d
c
p
l

Input data-path
(Decoupled)

Output data-path
(Decoupled)

processing clock:

 fp = M · A [Hz] 

sampling rate:

fs = A [sample/s] 
ar = 1 / M 

f’s = R · A [sample/s] 
ar’ = R / M  

 

Fig.  3.25.  Schematic representation of the developed resampling architecture with decoupled data-path (Chapter 4).  

Both, the input and output ports interface the decoupled data-path signals; the data bus d_bus, and 

the qualification signal valid. In addition, the decoupled processing clock clk_dcpl operates the 

hardware and the resampling ratio R is dictated by the value of the signal r.   

The resampler operates by modifying the number of samples in the data-path at its output. For this 

to happen in the case of up-sampling, it interpolates a new sequence that populates some void processing 

slots. In the case of down-sampling, the interpolation reduces the number of samples and some previously 

populated processing slots become now empty. The value of the resampling ratio R, that relates the input 

and output sampling frequencies, dictates the case. The valid signal indicates the populated processing 



Chapter 3.   Beam Synchronous Processing Architecture  

49 
 

slots. The activation rate ar of this signal is hence also modified by the resampling ratio, and its relation 

between the input and output ports of the resampler becomes 

’  · ar ar R  Eq.( 3.4 ) 

The resampler of Fig.  3.25 uses a processing clock clk_dcpl at a frequency fp = M · A Hz. The 

sampling rate at the input is fs = A sample/s. So that only one out of M processing slots is occupied. The 

activation rate at the input is hence ar = 1/M. According to Eq.( 3.4 ), the activation ratio becomes at the 

output of the resampler ar’ = R/M. By using Eq.( 3.3 ) we can relate the sampling rate of the data-path at 

the output port of a resampler with ratio R to the processing clock resulting in 

s s p p’  ·  ·  · ’· f R f R ar f ar f    Eq.( 3.5 ) 

3.3.9. Resampling ratio and BSP processing relation 

The proposed BSP Architecture modifies the sampling rate of the processed signal to tune its 

resulting discrete representation Y(ejω) to the frequency where processing is defined ωproc as depicted in Fig.  

3.6. The tuning element is the input resampler and the parameter used in the tuning is hence its resampling 

ratio R. We need to know how to compute this ratio based on the frequency information of the fundamental 

tone of the processed signal. 

Recall that the processing is performed after resampling to a rate f’s. The signal y[m] at the output 

of the resampler is thus the discrete sequence tuned to the processing. It approximates a signal acquired 

with sampling rate f’s = R · fs.  

The response of the processing algorithm in the frequency domain, for instance a filter, is defined 

at a fixed normalized frequency ωproc in the resampled domain. When the ratio R is properly selected, the 

normalized frequency ωx= 2π · fx radian/sample of the fundamental tone Fx Hz in the signal x[n] matches 

the response of the processing defined in the resampled domain at ωproc = 2π · fproc radian/sample. We need 

thus to compute R to map ωx to ωproc in the resampled domain. 

That is equivalent to say that we want to match the absolute analog frequency of the processing 

Fproc with the frequency of the tone Fx  

proc xF F
 

Eq.( 3.6 ) 

Looking at the problem from the input of the resampler, that absolute analog frequency becomes  

proc proc s proc s · ’ ·  · F f f f R f   Eq.( 3.7 ) 

By inserting Eq.( 3.6 ) in Eq.( 3.7 ) and reordering, the resampling ratio results in  

x proc s( )  / · R F f f  Eq.( 3.8 ) 

This resampling ratio R is the ratio needed in the input resampler of the sandwich. It needs to be 

updated in real-time to track the changes in the fundamental frequency of the signal.  



Implementation of the Processing Architecture 

50 
 

When operating two resamplers in a “sandwich” configuration, we have seen that the output 

resampler requires the inverse value of the input resampling ratio to properly recover the original sampling 

rate of the signal prior to the BSP region. This requires from the Architecture not only the JOAQUINA 

Frequency-Locked Loop but also the output ratio to be synchronized with the samples in the data-path; the 

instantaneous value of the resampling ratio needs hence to match the instantaneous sampling rate of the 

data arriving at the resampler.  

As the resampled data-path signal is being processed in the BSP region after the input resampler, 

the output ratio needs hence to be synchronized with the arrival of that data to the output resampler. It needs 

to mimic a latency equal to the latency of the processing in the BSP. This is depicted in Fig.  3.26; a register 

chain mimicking this BSP processing latency is placed in the ratio signal r_out before the output 

resampler. The synchronized signal is then fed to the output resampler as r_out_s.  

clk_dcpl

B
SP

P
ro

ce
ss

in
g

D
ec

ou
pl

ed
 d

at
a-

pa
th

d_dcpl

valid

FRANCISCO Adaptation Fabric

d_dcpl

valid

d q

R
es

am
pl

er

d_dcpl

valid

R
es

am
pl

er

d_dcpl

valid

Latency L

Z-L

r_out_s

r_in

r_out

 

Fig.  3.26.  Schematic representation of a processing segment in a decoupled data-path between two resamplers. The ratio signal 
fed to the output resampler r_out_s mimics the latency through the processing.  

3.3.10. Input signal bandwidth limit 

The proposed BSP Architecture performs processing of a sampled signal and modifies its sampling 

rate. The resampling operation (we consider an ideal resampling without quantization of signals) imposes 

some constraints on the maximum absolute bandwidth, BWSIGNAL, that the treated signal can contain at the 

input of the BSP Architecture. These constraints come from two sources; first the absolute Nyquist 

frequency FNY of the signal in the data-path that is the highest frequency that can be coded at a sampling 

rate fs. The second is the input bandwidth of the resampler, bwRSP  = α · 0.5  with α ≤ 1, that is the range of 

normalized frequencies for which the resampling architecture has been optimized and can hence be 

resampled (further information will be presented in Chapter 4).  

Fig.  3.27 depicts the sampling rates, Nyquist frequencies and normalized resampler bandwidths 

present in the data-path segment of Fig.  3.26 that models the BSP Architecture. We will consider as starting 

point the input resampler, disregarding the output one, to derive the maximum normalized bandwidth,  

bwSIGNAL in Eq.( 3.9 ), that the input signal can contain.  



Chapter 3.   Beam Synchronous Processing Architecture  

51 
 

SIGNAL SIGNAL s  /  bw BW f  Eq.( 3.9 ) 

First, note that a resampler has two ports with different sampling rates. The Nyquist frequency for 

the treated signal in the resampler is hence defined as the most restrictive one of the Nyquist frequencies 

between the input port FNY = fs / 2 and the output port F’NY = f’s / 2 = Rin · (fs / 2). We can normalize these 

Nyquist frequencies to the input sampling rate as fNY = FNY / fs and f’NY = F’NY / fs respectively. In the case 

of up-sampling, the most restrictive one is found in the input as the resampling ratio is larger than one,  

Rin > 1. In the case of down-sampling it is the output who imposes the Nyquist frequency of the resampler 

data-path, as the resampling ratio is smaller than one, Rin < 1.        

These boundaries are depicted in Fig.  3.28, where we present the configuration found in the input 

resampler. The resampling ratios accepted in this case are Rin ϵ [0.5, 2], and its interpolator has been 

optimized to operate in a normalized bandwidth bwRSPin = α · 0.5 with α = 0.6 (we anticipate here some of 

the characteristics of the resampling architecture that will be presented in Chapter 4). The magenta trace 

B
SP

P
ro

ce
ss

in
g

D
ec

ou
pl

ed
 d

at
a-

pa
th

d_out

valid_out

F
R

A
N

C
IS

C
O

 A
da

pt
at

io
n 

Fa
br

ic

d_mid

valid_mid

R
es

am
pl

erd_in

valid_in

R
es

am
pl

er d_mid

valid_mid

Rin Rout = 1/Rin

Sampling frequency:

fs  [sample/s]

Nyquist frequency:

FNY = fs  / 2  [Hz]

Sampling frequency:

f’s = Rin · fs  [sample/s]

Nyquist frequency:

F’NY = f’s / 2 = Rin · ( fs  / 2 )  [Hz]

Sampling frequency:

f’’s = Rout · f’s = Rout · Rin · fs = 

 fs [sample/s]

Nyquist frequency:

F’’NY = f’’s  / 2 = fs  / 2  [Hz]

Optimized BW 

for the input resampler:

bwRSPin ϵ [0, α · 0.5] [cycle/sample]

Optimized BW 

for the output resampler:

bwRSPout ϵ [0, α · Rin · 0.5]  [cycle/sample]
(with respect to the sandwich input fs)

Fig.  3.27.  Schematic representation of the relations between sampling frequencies, Nyquist frequencies and resampler 
bandwidths in the BSP Architecture.  

Fig.  3.28.  Derivation of the bandwidth limit for the input resampled signal for a single resampler.  

 F
 / 

 f s [
sa

m
pl

e-1
]



Implementation of the Processing Architecture 

52 
 

depicts the normalized Nyquist frequency of the input port of the resampler, in this case, it adopts a constant 

value fNY = 0.5. The green trace depicts the normalized Nyquist frequency of the output port  

f’NY(Rin) = Rin · 0.5. This frequency varies as a function of the input resampling ratio Rin and spans between 

0.25 for Rin = 0.5, and 1 for Rin = 2. The dashed line presents the upper frequency for the normalized 

optimized bandwidth of the resampler that spans up to bwRSPin = 0.3. The blue trace depicts hence the upper 

limit frequency fBWup =  FBWup / fs for any input signal in the normalized bandwidth that the resampler can 

treat (the absolute bandwidth BWSIGNAL is defined as the range of accepted frequencies for the signal  

FSIGNAL ϵ [0, FBWup]). The reader can notice that only for resampling ratios Rin ≤ 0.6 does the output data-

path limit the maximum frequency of the treated signal, besides that it is the interpolator that sets the limits.  

We extend the analysis now to the output resampler of Fig.  3.27. In this case, the input sampling 

rate f’s is variable and governed by the configured ratio Rin in the input resampler, f’s = Rin · fs. The output 

sampling rate f’’s however, is fixed; the ratio Rout is computed to be the inverse Rout = 1 / Rin, depicted with 

an orange line in Fig.  3.29. The output sampling frequency is hence f’’s = Rout · f’s = Rout · Rin · fs = fs.       

We also depict in Fig.  3.29, the boundaries, as we did for the input resampler, normalized to the 

sampling frequency fs in the signal at the input of the sandwich. This resampler is identical to the input one, 

Rout ϵ [0.5, 2] and bwRSPout = α · (Rin · 0.5) with α = 0.6. The green trace depicts the normalized Nyquist 

frequency of the input port, that it is the same as the one of the output port in the input resampler f’NY(Rin) 

= 0.5 · Rin. Note that this is normal as both resamplers share that segment of the data-path. The cyan trace 

depicts the normalized Nyquist frequency of the output port f’’NY = F’’NY / fs = 0.5. As expected, it adopts 

the same value as the input of the sandwich. The dashed line presents the upper frequency for the normalized 

optimized bandwidth of the resampler. In that case, as the input sampling rate varies, the upper limit does 

it as well resulting in bwRSPout = 0.3 · Rin. The red trace finally depicts the upper limit frequency  

f’BWup =  F’BWup / fs in the normalized bandwidth for the signal present at the input port of the output 

resampler. In this case, it is the optimized bandwidth of the resampler that sets the limit for ratios below  

Fig.  3.29.  Derivation of the bandwidth limit for the input signal of the output resampler in a sandwich configuration.  

 F
 / 

 f s [
sa

m
pl

e-1
]

O
ut

pu
t R

es
am

pl
er

 R
at

io
  R

ou
t [

 f'
' s/ 

f' s]



Chapter 3.   Beam Synchronous Processing Architecture  

53 
 

Rin ≤ 1.66 (or equivalently Rout ≤ 0.6024). For larger ratios, with the second resampler configured as a down-

sampler, the output Nyquist frequency sets the limit.  

Now we have the normalized bandwidth limits for the input signals in both resamplers, fBWup and 

f’BWup. Both of them are referred to the sampling rate fs at the input of the sandwich; we can hence compute 

the maximum normalized bandwidth bwSIGNAL, that the treated signal in the BSP Architecture can contain, 

as the set of the most restrictive limit frequencies of the two resamplers. This is depicted in Fig.  3.30, where 

the blue trace depicts the upper limit frequency fBWup in the normalized bandwidth of the input resampler, 

the red trace depicts the upper limit frequency f’BWup in the normalized bandwidth of the output resampler 

and the black trace depicts the resulting upper limit frequency fBWup-sandwich combining both resamplers. The 

normalized bandwidth bwSIGNAL for any signal at the input of the BSP Architecture is hence limited to 

SIGNAL BWup-sandwich:  with   0,  ( ) [ ]b f ffw X   Eq.( 3.10 ) 

with the absolute upper limit for the real signal defined as 

BWup-sandwich s BWup-sandwich · F f f  Eq.( 3.11 ) 

    

Fig.  3.30.  Derivation of the bandwidth limit for the input signal of the sandwich based on the input and output resampler limits. 

3.4. Conclusions 

The chapter has presented a new architectural solution for Beam Synchronous Processing in a digital device, 

either FPGA or ASIC, with a fixed frequency system/processing clock. This new Architecture contains 

both BSP and BAP regions. The BAP contains processing whose functionalities are not dependent on the 

parameters of the signal. The BSP automatically tunes the signal to the algorithms. The BSP and BAP 

regions support the porting of any new or existing algorithm, requiring no specific modification of such 

algorithm.  

 F
 / 

 f s [
sa

m
pl

e-1
]



Conclusions 

54 
 

The only implementation constraint is to use a decoupled data-path in the BSP region. This BSP 

region is built on top of the FPGA fabric in an adaptation fabric, the FRANCISCO fabric that adapts the 

data sampling rate to the signal spectral properties. This avoids the reconfiguration of BSP algorithms in 

real-time. The data-path interfaces the FRANCISCO fabric by means of dedicated points, the MERCEDES 

interfaces. These interfaces perform coupling and decoupling of the data-path and synchronization of its 

signals; they act at logical and physical level.  

Within the FRANCISCO fabric, two resamplers encapsulate the BSP region. The input one 

performs the conversion of the fixed sampling rate, at which the data arrives at this BSP region, to a new 

rate proportional to the signal spectral content. At the output port, a second resampler brings the signal back 

to the original fixed rate. The resampling ratio values of the resamplers are reciprocal (inverse) and vary 

dynamically. The resamplers interface the different processing regions at functional level.  

The implementation problems, truncation of values in digital signals and synchronization, have 

been presented and solved. The main concern has been to obtain a perfect pair of resampling ratios with 

inverse values between resamplers. The problem is solved with the JOAQUINA Frequency-Locked Loop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

Chapter 4  
 
Arbitrary and Real-Time Variable Ratio 
Resampling Architecture 

 Abstract: This chapter presents a new solution for 
Sampling Rate Conversion in which the ratio can take 
any value and can be modified continuously enabling 

Beam Synchronous Processing. The architecture is based 
on a Farrow-based Variable Fractional Delay filter and 

a timing unit element. The resampler architecture is 
optimized for modern FPGA devices. It decouples the 

processing and sampling clocks, and uses a single 
processing (hardware) clock whose frequency remains 
fixed. First, a high-level overview of the architecture is 

presented. Then the implementation details of the 
different resampler blocks are elaborated.   

 

4.1. Introduction 

The previous chapter has presented an Architecture that makes Beam Synchronous Processing possible by 

resampling the treated signal. The Architecture uses two resamplers that modify the sampling rate of the 

signal to tune the representation of the spectral content to the processing algorithm. These resamplers are 

the key element of the BSP Architecture, but in Chapter 3 only the functional model has been introduced. 

This chapter presents the internal architectural and implementation details. 

4.2. Proposed Synchronous Sampling Rate Conversion 
architecture 

Any digital resampling architecture contains two functional elements; an interpolator and a timing unit. 

These elements are common in up-sampling and down-sampling architectures. The resampling operation 

first requires the determination of the time instants (or a derived parameter of these) in which the output 



Proposed Synchronous Sampling Rate Conversion architecture 

56 
 

sequence needs to be estimated. Then a second process interpolates the output value at those instants using 

the available samples in the input sequence [78], [98]. The first process requires a timing reference and the 

resampling ratio R, Eq.( 2.2 ). The second uses the input samples x[n] and the output result of the timing 

process, m. Sampling rate conversion is therefore a twofold process. 

The Thesis proposes a resampling architecture with these two functional units fulfilling the 

requirements presented to the Architecture in Chapters 1, 2 and 3. Fig.  4.1 depicts our resampler model, 

and illustrates the relations between the two functional elements implementing the interpolation process 

and the timing unit. The blue block performs the mathematical operation of interpolation, and the red block 

computes the sampling instant dictated by the resampling ratio R and the reference n. The figure presents 

the flow of signals and relations between the main blocks. Our resampling architecture is generic accepting 

up-sampling or down-sampling ratios. It addresses SSRC; for that it uses the input sequence as timing 

reference and computes the output time instants based on the resampling ratio. The resampling ratio, that 

can adopt any arbitrary and variable value, is made available to the resampler via an external signal, R. 

x[n]
VARIABLE 

FRACTIONAL DELAY FILTER

INTERPOLATION OF THE 
OUTPUT VALUE

y[m]

PROPOSED SSRC ARCHITECTURE

dly

R

new_spl

valid_out

y[m]= x[n - dly]

DIANA ENGINE

COMPUTATION OF THE 
SAMPLING INSTANT

dly = f (R)
 

Fig.  4.1.  Proposed synchronous sampling rate conversion architecture, the resampler. 

The remaining of the section presents the mathematical process behind the interpolating block from 

a functional point of view, and regardless of any implementation detail. It shows that the two families of 

resamplers, classified based on the resampling ratio value, can use the same interpolating unit. It then 

elaborates a second classification according to the timing reference block introduced in Chapter 2.  

4.2.1. Interpolation between available samples 

The interpolator block performs interpolation; this is a mathematical process used for estimation of 

the values of an unknown function at points where no information is available. The unknown function is 

approximated by a second function, for instance a polynomial, that fits a discrete set of known values. Then, 

when an unknown value is required it suffices to evaluate the polynomial at the required point [99]. 

Sampling rate conversion is an analogue process in which the input samples are the available information, 

the input signal is the approximated function, and the output sampling instants are the points where no 

information is available.  



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

57 
 

It is common to distinguish between sampling rate conversion structures for up-sampling and 

down-sampling [72], [100]. We can classify the resamplers in two families according to the number of 

output samples computed by the interpolator, with respect to the number of samples in the input sequence. 

That relation is the resampling ratio R, Eq.( 2.2 ). Fig.  4.2(a) depicts an example in case of down-sampling, 

sampling rate conversion with a ratio R smaller than one. In that case the number of samples at the output 

is smaller. This makes the spacing between output samples larger; the output sampling period is larger. In 

case of up-sampling, depicted in Fig.  4.2(b), there are more samples at the output and the spacing between 

them is smaller than at the input; the output sampling period is smaller.  

n

y[m]

n

Sampled at f’s

x[n]

Sampled at fs

n

y[m]

n

Sampled at f’s

x[n]

Sampled at fs

Input sequence

Output sequenceInput sequence

Output sequence

 R =         >1 
f’s

fs

 R =         <1 
f’s

fs

(a)

(b)

 

Fig.  4.2.  (a) Sampling rate conversion for R < 1. (b) Sampling rate conversion for R > 1. 

In any case, regardless of the resampling ratio, each output sample is computed based only on a 

given set of neighbour input samples. This dependence abstracts the interpolator from the ratio; the two 

families of resamplers operate only with input samples and a desired time instant. From a mathematical 

point of view, there is thus no difference between up-sampling and down-sampling. This implies that the 

same interpolating unit can be used for both families. We illustrate this in Fig.  4.3, where only a single 

output sample (in green in the figure) is depicted. The output sample is obfuscated from other samples in 

the output sequence. It can result from either up-sampling or down-sampling. In any case, the only 

information the interpolator uses are the five available neighbour samples, in beige.  

x[n] y[m]

x(t)

Input n

Output m
 

Fig.  4.3.  Interpolation between available samples regardless of the resampling ratio R. 

The interpolator first fits the available samples to the subjacent input signal (in grey), and then 

evaluates the resulting function at the desired time instant. It does not observe the resampling ratio, but the 

desired point where the output is required. Multiple interpolation algorithms exist based on the shape of the 



Proposed Synchronous Sampling Rate Conversion architecture 

58 
 

fitting function or polynomial [72], [99]; linear, cubic, splines…but research in the topic is out of the scope 

of the Thesis.  

4.2.2. Timing reference and synchronization 

The computation of the sampling instant is based on the resampling ratio R and a timing reference. 

Fig.  4.1 has depicted a generic timing unit; it does not provide information on how the timing reference is 

made available to the resampler. The ratio R is not constrained within any set of values. We have reviewed 

in the previous section the classification of resamplers based on the resampling ratio R. For the timing unit 

it is more relevant to look instead at the timing reference. Two main families of sampling rate conversion 

architectures can be identified: Asynchronous SRC (ASRC) and Synchronous SRC (SSRC) [74]. They 

were introduced in section 2.3.2 and two of these resamplers were depicted in Fig.  2.4. In the first family 

the timing references for the input and output sequences are different. In that case, the resampling ratio R 

is inferred from the relation between the references. It is called asynchronous as it is in practice impossible 

to synchronize two sequences with different references. SSRC addresses a different philosophy; a general 

reference (normally the input sequence or system clock) is common for all the resampler elements. The 

resampling ratio is provided externally and the output sampling instants are computed based on the two 

parameters: The ratio and the common reference. In this case it is possible to synchronize the input and 

output sequences. The timing unit cannot thus be generic and support the two families. It needs to be 

customized to one of the two approaches. Our proposed architecture uses this second philosophy, SSRC.  

4.2.3. Proposed interpolator and timing units 

The interpolation block is based on a discrete-time Variable Fractional Delay (VFD) filter, depicted 

in Fig.  4.1. These filters are Fractional Delay (FD) filters accepting variable delays and are used in discrete 

interpolation of bandlimited signals [78]. They generate an output sequence y[m] that approximates the 

value of a real signal x(t). The output sampling instants are arbitrary points lying between samples of the 

discrete input sequence x[n] that represents x(t) at the input sampling rate. Each output sample of y[m] is 

estimated by “filtering” the neighbour input samples with a given amount of time, the delay dly. The filter 

synthesizes a phase shift of the input signal with an all-pass filter; it transforms the interpolation operation 

into filtering. The VFD receives three parameters: The input sequence of samples x[n], the delay value dly, 

and a qualifying signal valid_out. The input sequence contains the discrete samples of the real valued signal 

x(t) uniformly sampled at the input sampling rate, fs. The output sequence y[m] is composed of the filtered 

samples. The delay value is different for each pair reference-output sample, and it specifies the amount of 

time that the input reference sample need to be shifted. The qualifying signal triggers the VFD to estimate 

the output sample when the delay value can be handled by the filter.  

The input and output sampling instants are managed by the timing block; it implements an 

algorithmic engine. This block uses the input sequence as timing reference and receives the resampling 

ratio R as parameter. The engine, depicted also in Fig.  4.1, hosts the DIANA (DIstAnce iN time Algorithm) 



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

59 
 

algorithm that computes the different delay values dly for each desired output sample. This delay is 

computed based on the sampling instant of the sample used as reference, and the desired output. It monitors 

the valid incoming input samples, flagged by the signal new_spl, to track the current time instant of the 

input sample used as reference. It concurrently tracks the required time instant for the output sample, that 

is computed based on the resampling ratio. The difference between these two times dictates the delay to be 

fed to the VFD filter. When that amount of delay can be handled by the VFD, the triggering signal valid_out 

is raised. That signal is also made available at the output of the resampler as a qualifying signal.  

4.3. Application of the architecture to arbitrary SRC 

This section presents the functional details of the architecture presented in the previous point. It details how 

the functional units have been tailored for use in the BSP application of the Thesis. These customizations 

result from the special need of an arbitrary and real-time variable ratio. It elaborates the algorithmic engine 

and the principles of the VFD. 

4.3.1. The DIANA engine 

4.3.1.1. Delay computation procedure 

The architecture is based on a VFD whose control parameter is the delay value. This delay is 

computed by the timing engine with the DIANA algorithm. For this, the timing unit tracks the input and 

output sampling instants, that are times measured in seconds. The delay results from subtracting the 

sampling instant tx[n] of the input reference sample to the sampling instant ty[m] of the desired output. The 

sampling instant of the reference input can be computed as  

s[ ]   · x nt n T
 

Eq.( 4.1 ) 

Ts is the input sampling period and n the index of the reference input sample in the input sequence. 

The sampling instant of the desired output can be computed as   

s[ ]   · ’y mt m T
 

Eq.( 4.2 ) 

T’s is the output sampling period and m the index of the desired output sample in the output 

sequence. The time distance τ is thus a physical time difference in seconds and can be computed as 

[ ] [ ]  y m x nt t  
 

Eq.( 4.3 ) 

In Fig.  4.4(a) we depict several delay cases for different output samples (green) based on the same 

reference (beige): The diamond marks the input reference sample x[n]. The circles represent desired output 

samples y[m]. The reference sample in the input sequence of the figure is x[3], while the desired outputs 

are y[3] and y[4].  



Application of the architecture to arbitrary SRC 

60 
 

Fig.  4.4(b) depicts the delay computation for the output sample y[3], considering x[3] as the input 

sample.  The delay value is the time difference between the sampling instant of the two discrete samples  

   3 3  0y xt t   
 

Eq.( 4.4 ) 

In this case, looking “backwards”, the delay value is a negative number. 

Fig.  4.4(c) depicts the delay computation for the output sample y[4]. In this case, the delay value 

is positive, looking “forward”  

   4 3  0y xt t   
 

Eq.( 4.5 ) 

4.3.1.2. DIANA algorithm 

There are applications of FD filters that require the same fixed delay amount for all the output 

samples. This is the case for instance of echo cancellation, phase array antennas or speech synthesis [78]. 

In sampling rate conversion this is not the case, and each sample requires a different delay value, thus VFDs 

are used instead.  

When the resampling ratio is fixed, the different delay values follow a periodic pattern within a 

discrete set of values [72]. If the ratio is known beforehand, the delay values can be computed and the 

interpolating coefficients of the FD filter stored in a table. It is also possible to customized the FD filter 

architecture based on this set of values with polyphase architectures [101], [102]. In any case, all the 

optimizations exploit the fact that the delay values are constrained within a set of discrete values.  

Our resampler deals with an arbitrary and variable resampling ratio R. This characteristic translates 

into different sets of delay values for different ratios. Furthermore, our resampling ratio varies in real-time, 

this makes that the different sets of associated discrete delays merge: The delay can adopt any value within 

a certain pair of thresholds. This greatly influences the architecture of the timing unit and the DIANA 

algorithm. To deal with that, the unit computes the delay associated with each input sample based on the 

x[n] y[m]

x(t)

Input n

Output m
3T’s

4T’s

y[3] y[4]

3Ts 

x[3]

(a)  Delay computation 

x[n] y[m]

x(t)

Input n

Output m
3T’s

y[3]

3Ts 

(b)   Delay for y[3]:   τ < 0

τ = 3T’s  - 3Ts 

x[n] y[m]

x(t)

Input n

Output m
4T’s

y[4]

3Ts 

(c)   Delay for y[4]:   τ > 0

τ = 4T’s  - 3Ts 

x[3]x[3]

τ = m·T’s  - n·Ts  

Fig.  4.4.  (a) Absolute time position for input sample x[3], and output samples y[3] and y[4]. (b) Delay computation for output 
y[3]. (c) Delay computation for output y[4]. 



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

61 
 

current value of the resampling ratio signal. This delay τ was presented in the previous point, Eq.( 4.3 ). It 

was presented as a difference between the output samples and the time instant of the input reference . The 

DIANA algorithm needs thus first to compute the output time instant based on the resampling ratio. Then, 

when this value is known, the algorithm obtains the time difference and finally translates it to a delay value.  

Some further considerations are needed for the DIANA algorithm. The word fractional in a VFD 

comes from the fact that the amount of delay used by the filter “to shift” the output is a fraction of the input 

sampling period. The timing unit needs thus to feed the VFD with a delay value adopting such a fractional 

format, dly in Fig.  4.1.  

The DIANA algorithm has been developed satisfying these requirements, and focusing on the 

adaptive requirements of a variable resampling ratio. The algorithm normalizes any time information it 

processes to the input sampling period Ts. With this, the delay τ is not anymore expressed in seconds but in 

number of sampling periods at the input rate as 

s

dly
T




 
Eq.( 4.6 ) 

This provides a direct interface with the VFD. The resampling ratio R, Eq.( 2.2 ), can be also 

expressed in terms of sampling periods instead of sampling rates 

s s

s s

’

’

f T
R

f T
 

 
Eq.( 4.7 ) 

Note that in this case the ratio is normalized to the output sampling rate, T’s instead of to the input. 

It is thus more convenient to feed the resampler and the DIANA algorithm with the inverse of the resampling 

ratio, 1/R, instead of R 

s

s

1 ’
_ _

T
T out n

R T
 

 
Eq.( 4.8 ) 

We refer to this inverse resampling ratio as the value or the variable T_out_n. With this all the 

processing within the algorithm is normalized to the input sampling period. That makes it possible to easily 

compute the sampling instant of the input reference sample. We just need to increment by one a counter (or 

accumulator) each time that a new sample arrives. Similarly, the output sampling instant can be computed 

incrementing by 1/R a second counter (or accumulator) accumulating the normalized output time (output 

sampling instant). This output counter is incremented each time that a new sample is computed to prepare 

the algorithm for the next iteration. The delay value results from the difference between these two counters, 

for instance a delay equal to one output sample will be 1/R.  

The algorithm can still benefit from some optimization anticipating its implementation and 

mapping to a given technology, for instance, an FPGA. Recall that as the operation of the resampler 

advances and new samples are processed, the two time counters grow indefinitely. This is not efficient as 



Application of the architecture to arbitrary SRC 

62 
 

the discrete word containing a count cannot grow indefinitely in the same manner. To solve this problem 

the algorithm operates and stores only the instantaneous delay value needed to compute a new output 

sample. The DIANA algorithm references this delay to the time instant of last input sample received. In 

other words, our timing reference is the sampling instant of the last input sample. Our stored delay is the 

time difference between the current reference and the sampling instant of the desired output. Thanks to that, 

we store only a delay value that does not grow indefinitely, and not two growing times associated to the 

input and output sampling instants. The DIANA algorithm implementing this idea is presented in Fig.  4.5.  

It evaluates two input control variables: new_spl that specifies if a new input sample arrives at the 

resampler, and valid_prev that keeps track of whether a valid output sample was calculated during the 

previous iteration of the algorithm. Another data input variable is dly_incr that corresponds to the delay 

increment for each new output sample as presented in Eq.( 4.7 ) and Eq.( 4.8 ). This value is a function of 

the current resampling ratio. The last input variable is vfd_range that specifies the maximum magnitude in 

fractions of the input sampling period accepted by the VFD, in our case vfd_range = 0.5 sample specifies 

a delay range of plus or minus half a sampling period.  

The algorithm controls two output variables: dly, that stores the delay value needed to compute the 

next output sample based on the input reference of the resampler, and valid_out, that flags when the delay 

value is within the range of delay values accepted by the VFD, vfd_range.  

dly = dly - 1 

dly = dly + dly_incr  

valid_out = 1

new 
sample

?

prev. 
iteration

valid
?

|dly|
<? 

vfd_range 

valid_out = 0

no

no

yes

yes

yes

no

 

Fig.  4.5.  DIstAnce iN time Algorithm (DIANA). 

 



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

63 
 

In each iteration the algorithm evaluates the control variables. In case a new input sample is 

received, the delay variable dly is decremented by one unit. This value results from decrementing the 

distance between input and output sampling instants by one input sampling period. Then, if the previous 

iteration has produced a valid output sample, the delay must be incremented by dly_incr. This updates the 

delay value to reflect that the sampling instant for the next output sample has moved further by one output 

sampling period. Finally, the algorithm evaluates the updated delay; when the delay magnitude is less than 

or equal to vfd_range, a new output sample can be computed in the iteration. This is indicated by asserting 

the output signal valid_out, that is forwarded to the VFD together with the delay value.  

The algorithm is initialized with dly = 1. This ensures that no output sample will be processed until 

a first input sample arrives at the resampler; this value is above any fraction of the input sampling period 

accepted by our VFD, and aligns the first output sample with the reference based on the first input sample.  

The variables of the algorithm can directly be mapped to the ports of the timing unit. The only 

exception is the valid_prev variable with the valid_out port. In this case the valid_prev variable evaluates 

the valid_out state in the previous iteration of the algorithm. This requires a memory element, a register, 

that stores valid_out between iterations.  

The algorithm assumes that each new sample arriving at the resampler is directly inserted into the 

VFD filter.  It handles changes in the resampling ratio, in real-time, by just updating the dly_incr variable 

(the ratio signal in the implementation). This is elaborated in more detail in Chapter 5.  

4.3.2. The VFD filter 

The VFD filters used in resampling applications are responsible for the interpolating process. The 

operation of such a filter is also a twofold problem. It first requires the computation of an impulse response 

(the set filter coefficients) that approximates a time shifting operation (delay of the input discrete sequence). 

Then this impulse response, that is different for different delays, has to be made available to the filtering 

architecture; it needs to update its coefficients to reflect the new delay. To better understand the problem, 

let’s first have a look at the first problem, synthesis of a filter that approximates a generic and fixed delay 

value. Then, in the successive sections this filter will be upgraded to a fractional delay filter that accepts 

variable delays.  

4.3.2.1. Discrete filters for delay synthesis 

The filter has to compute a good approximate y[m] of a signal x(t) at the new desired sampling 

point ty[m]. The motivation for the use of delay filters is that they transform the interpolation operation into 

the problem of synthetizing a discrete filter h[n], that approximates a time shift; the shift in time instant, in 

which the continuous-time signal is sampled, is equivalent to the sampling of a shifted version y(t) of the 

signal x(t) by τ s. When τ is negative we call the shift operation “a delay by τ s”, otherwise “an advance by 

τ s”. When referring “a delay by τ s”, we hence normally provide the magnitude |τ| of the negative valued 

shift variable τ < 0 fed to the delay filter. This delay operation can be expressed as 



Application of the architecture to arbitrary SRC 

64 
 

(   ) ( –( ( )) )y t x t x t      Eq.( 4.9 ) 

with τ ϵ ℝ for the shift operation. This continuous-time shifting is a well-known operation that results from 

convolving the input signal x(t) with a Dirac delta with ideal impulse response hid(t) 

id δ( ) ( )h t t    Eq.( 4.10 ) 

By taking the Fourier Transform of the impulse response we obtain the continuous-time frequency 

response of the ideal delay operation 

id ( ) jH e     Eq.( 4.11 ) 

This filter Hid(Ω) corresponds to an all-pass filter with unitary magnitude. The linear phase is the 

term that contributes to the delay operation. We want to find an equivalent discrete-time version hid[n] for 

our discrete fractional delay filter h[n]. Recall that when sampling any real signal, as the ideal x(t) or y(t), 

we first bandlimit its spectral content with respect to the sampling frequency fs. We use for that antialiasing 

filters that have an ideal low-pass frequency response HLP(Ω). We can plug the anti-aliasing filter into our 

delay operation by setting a cut-off frequency Ωc = 2π·( f s / 2 ) for our ideal filter Hid(Ω). This transforms 

the desired frequency response to 

id LP c( ) ( ) 1 ·    forjH H e         Eq.( 4.12 ) 

This prototype low-pass filter removes the frequency components above the cut-off frequency Ωc 

without affecting the rest of the spectrum. It still observes group gdid(Ω) and phase pdid(Ω) delays that are 

constant in all the pass-band with value gdid(Ω) = pdid(Ω) = τ s. Note that as the cut-off frequency equals 

half of the sampling rate, the filter corresponds to the ideal filter used in reconstruction of discrete to 

continuous-time signals [89]. 

For the time being let’s ignore the linear phase term e-jΩτ. We develop only the magnitude and the 

frequency bands. We can compute the impulse response hLP(t) of the filter as the inverse Fourier Transform 

of the frequency response HLP(Ω), it becomes  

( ) c c
LP n  si c

π π
h t t

  
 
 

 Eq.( 4.13 ) 

with the sinc(x) function defined as 

( ) sin( π)
s

π
  inc

x
x

x
  Eq.( 4.14 ) 

The function equals zero for integer multiples of the variable x, and in the limit for x = 0 its value 

is one. Fig.  4.6 depicts the frequency response of Eq.( 4.12 ) and the impulse response of Eq.( 4.13 ) for a 



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

65 
 

fs = 1 Hz. This continuous-time impulse response is also known as the sinus cardinal [98]. It corresponds to 

an ideal bandlimited interpolator [98] that makes it a perfect reconstruction of bandlimited signals xr(t) 

possible from a sampled sequence x[n] 

( ) ( ) ( )r L s
c

P s
c[ ] [  ·] sinc

π
·

πk k

x k x k tx t h t k T k T
 

 


      

 
   Eq.( 4.15 ) 

This continuous-time impulse response is exact as the sinc(x) function is infinite and noncausal. 

We want to compute a discrete counterpart for our filter, but the sinc(x) cannot be made causal by shifting 

as it would require infinite shifting. It is only possible to obtain a finite-length approximation h[n] of the 

ideal filter hLP[n] by sampling a shifted and truncated version of the continuous-time impulse response 

hLP(t) [98]. For this, the intermediate approximation hs(t) first shifts the impulse response hLP(t) by ζ s with 

ζ ϵ ℝ 

( ) ( ) c c
s LP  sin c ( )

π
 

π
h t h t t 

    
 

   Eq.( 4.16 ) 

Then this shifted impulse response hs(t) is made finite by truncating it to a sufficient duration 

segment of Lseg s. This can be done by multiplying in the time domain hs(t) with a window function wLseg(t) 

that spans Lseg  

( ) ( ) c c
s ( ) sinc ( )   [ ]  fo 0

π
r  

π
, segLsegw t th t h t t L

     
 

 Eq.( 4.17 ) 

This results in a realizable impulse response h(t) that approximates the ideal response of the pure 

delay. The resulting impulse response can then be sampled to obtain the discrete impulse response 

counterpart 

1
c

0

c ] r[ ] sinc [  [ ] ] fo  0[  , 1
B

b
b

h q nn n BDn b
p p






 
     


 

   Eq.( 4.18 ) 

In Eq.( 4.18 ) D = ζ / Ts samples is the shifting term, B the number of coefficients in the impulse 

response, qb the value of the bth coefficient of the impulse response and t = n · Ts, with D and qb ϵ ℝ, and B 

Fig.  4.6.  (a) Frequency response HLP(Ω) of Eq.( 4.12 ). (b) Impulse response (π / Ωc) · hLP(t) of Eq.( 4.13 ).  

 

-1.5 -1 -0.5 0 0.5 1 1.5
Frequency     / 2    [Hz]

-1

0

1

2

(a)
Frequency Response

-6 -4 -2 0 2 4 6
Time    (

c
 / ) · t   [s]

-1

0

1

2

(b)
Impulse Response



Application of the architecture to arbitrary SRC 

66 
 

and n ϵ ℤ. We just need to incorporate the linear phase term e-jΩτ of Eq.( 4.12 ) and make ζ = τ  to obtain the 

discrete approximation of our required delay filter.  

When processing a discrete sequence x[n] with the computed impulse response h[n] we will obtain 

the sequence y[m] that approximates the input sequence shifted by τ: 

1

s
0

[ ] [ ] [ ] [ ]  wi[ ] [ ] th  /
B

b

y nm x D h h b x Dn x n n b T




        Eq.( 4.19 ) 

To conclude, recall that we have used as prototype filter an ideal low-pass with cut-off frequency 

equal to one half of the sampling frequency, and we have approximated the resulting impulse response by 

sampling a shifted and truncated segment of its infinite sinc(x) function. We will see in the next section that 

this method best reflects the required delay when the shifting term D results an integer multiple of the 

sampling period. The obtained discrete filter works by “implicitly” reconstructing the original bandlimited 

signal, shifting it in time and finally resampling the resulting continuous-time signal [98]. When the 

frequency response constraints of the filter are stringent, or D is not an integer, different methods [98] exist 

to obtain prototype impulse responses that better approximate the required filter response; Least Squares 

phase and/or delay approximation, Maximally Flat approximations, Weighted Least Squares methods…, 

however, that topic is out of scope of the Thesis. In section 4.4.2.1 we briefly present the method that we 

have used to compute the used prototype impulse response in the Thesis. In any case the presented process 

clearly illustrates the implications that the delay operation poses to achieve a realizable discrete impulse 

response for a delay filter; the need for truncation and shifting of an ideal prototype impulse response.  

4.3.2.2. Fractional Delay discrete filters 

We have just presented an ideal discrete filter synthetizing a delay ζ . We are, however, interested 

in using this delay filter as the interpolating element for the digital architecture; as a building block of the 

VFD filter. A realizable version of the VFD filter generates the samples y[m], depicted in Fig.  4.3 at 

arbitrary instants in time ty[m], Eq.( 4.2 ). Any of these arbitrary instants lie between the sampling instants 

tx[n], Eq.( 4.1 ), of the input sequence x[n]. Both originate the time difference τ of Eq.( 4.3 ). This time was 

translated to a delay term, dly in Eq.( 4.6 ), that is measured as a fraction of the input sampling period. We 

need thus to find the relation between this required fractional delay dly computed by the DIANA algorithm, 

the delay ζ (or D) synthetized by the filter in the previous section and a feasible architecture supporting the 

mapping of the filter.  

Note that the filter delay in the previous section can adopt any real value ζ s. This delay when 

divided by the sampling period Ts results in an integer part Di sample and a fractional part d sample: 

s i/D T D d    Eq.( 4.20 ) 

We use the low-pass prototype filter, Eq.( 4.18 ), of the previous section within an example to 

analyse the relations between the fractional delay dly and the integer and fractional parts of the term D for 

the two cases. For simplicity the sampling clock has a period Ts = 1 s. In the first case the required delay is 



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

67 
 

a pure integer multiple of the sampling clock, for instance D = Di = 7 sample. The second case requires a 

delay of ζ = 0.4 s that results in a D with only a fractional part d = 0.4 sample. We define our cut-off 

frequency again as Ωc = 2π·( fs / 2 ) radian/s. 

We start revisiting the ideal continuous-time impulse response of the prototype filter depicted in 

Fig.  4.7(a). This response is centred in the origin and thus not yet realizable, it corresponds with 

Eq.( 4.13 ). The sinc(x) in the time domain expands the width of the lobes when the cut-off frequency Ωc 

of the filter is reduced. In our case the cut-off frequency Ωc = 2π·( fs / 2 ) makes the impulse response to 

equal zero in time values t that are integer multiples of the sampling period 

c c
s s

s

2
integer 0with      and   

F t
t t f t n T

T
t n n

p
p p
 

            Eq.( 4.21 ) 

We now analyse the resulting impulse response when made it realizable for the first case, D = 7 

sample. We use an odd B tap FIR filter architecture to map the coefficients of the filter h[n]. In these FIR 

filters the latency L sample accounts for the number of clock cycles that a sample takes to reach the central 

tap [71] and it becomes  

1

2
L

B



 Eq.( 4.22 ) 

By making L = D we obtain a digital filter that exactly reproduces the required delay, and has  

B = 15 taps. The continuous-time impulse response is shifted by ζ = D · Ts = 7 s for a sampling period  

Ts = 1 s, depicted in Fig.  4.7(b) by the blue trace. We have enough information to define the window that 

we use to make the impulse response realizable; the duration of the window for a symmetric filter becomes 

Lseg = 2 · L · Ts = 14 s. The resulting discrete impulse response, Eq.( 4.18 ), that results from the sampling 

of the shifted continuous-time impulse response is depicted in the same figure by the red circles. 

In this case, the shifting operation preserves the zeros of the response matched with the sampling 

instants, and thus the discrete impulse response become a delta at n = D. Furthermore, note that when the 

shift operation uses as delay an integer multiple of the sampling period, only the coefficient corresponding 

to t = 0 s in the prototype filter is non zero. This results in a discrete filter that rather than approximating 

reproduces with no error the continuous-time prototype; the sampling of the sinc(x) does not need to extend 

to the infinite. The Z transform of this perfect delay operation can be expressed as  

( ) DH z z   Eq.( 4.23 ) 

And the discrete version of Eq.( 4.9 ) becomes 

][ []  x Dm ny    Eq.( 4.24 ) 



Application of the architecture to arbitrary SRC 

68 
 

 

 

Fig.  4.7.  Ideal impulse responses; (a) prototype filter, (b) shifted ideal response and sampled coefficients when  
the delay D = 7 sample, and (c) shifted ideal response and sampled coefficients when  

the delay d = 0.4 sample. 

We are, however, interested in VFD filters where the delay dly, Eq.( 4.6 ), contains only a fractional 

part, the term d in Eq.( 4.20 ). For these VFD filters Di is zero, but this is not a problem. We can use the 

same odd B tap FIR architecture as before to map the coefficients, setting Di = L to account for the filter 

latency. This will result in the required fractional shifting operation present at the output of the filter after 

a time t = L·Ts s, the latency of the filter. 

Take our second case in the example with dly = d = 0.4 sample; we will solve it with a VFD filter 

in which the desired fractional delay d = 0.4 sample appears at the output after a latency of 7 samples as 

introduced above. We compute an impulse response with Di = 7 samples and d = 0.4 sample, that 

corresponds to a shift of the prototype impulse response by ζ = 7.4 s, depicted by the blue trace in Fig.  

4.7(c). The duration of the window is again Lseg = 2·L·Ts = 14 s. The resulting discrete impulse response is 

depicted superimposed in the same figure with the red circles at the sampling instants. 

By inspecting the resulting impulse response in Fig.  4.7(c) we can realize that now the set of 

coefficients for the FIR filter (the sampled values of the sinc(x) in Eq.( 4.17 )) are not anymore matching 

the zeros of the sinc(x). The shifting operation does not preserve the correspondence between the zeros and 



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

69 
 

the sampling instants, that have an offset that equals the fractional part d of the delay. This brings as a 

consequence that now all the coefficients in the filter are different from zero. We would need an infinite 

number of samples to exactly reproduce the sinc(x) within a discrete impulse response, but we use only the 

subset lying within our window. This is acceptable for the implementation, but it results in a realizable 

discrete filter that now only approximates the continuous-time prototype. This approximation introduces 

an error in the frequency response H(ejω) that it also only approximates the ideal frequency response HLP(Ω) 

of Eq.( 4.12 ) within a certain error margin.  

4.3.2.3. Cut-off frequency relation to the resampling ratio 

We have used an ideal reconstruction filter as prototype whose frequency response is that of an 

ideal low-pass filter having a cut-off frequency equal to half the sampling rate. This is not normally the 

case, as the prototype filter (that sets the cut-off frequency) is defined based on the resampling ratio used 

[89]. We can understand better the characteristics of the reconstruction filter by examining the sampling 

rate conversion operation from an analog perspective [89]. This analog equivalent of the discrete operation 

involves a two-step process depicted in Fig.  4.8. First the original discrete sequence sampled at fs is 

reconstructed as an analog bandlimited signal xrc(t). This process includes pre-filtering of an intermediate 

reconstructed signal x0(t) to obtain xrc(t). This reconstruction filter hrc(t) is a low-pass filter that limits the 

spectrum of the analog signal x0(t) to the Nyquist frequency. It removes folded replications (images) of the 

sampled signal at multiples of the sampling frequency. Then, a second process samples the analog signal 

xrc(t) at the new output rate f’s to obtain the output sequence y[m]. This second process includes also filtering 

of the intermediate analog signal xrc(t). It uses an anti-aliasing low-pass filter haa(t), that limits the bandwidth 

of the signal according to the Nyquist rate.  

FPGA Front end

DAC
hrc(t) haa(t)

ADC

Front end
x[n] x0(t) xrc(t) y(t) y[m]

analog domain

RECONSTRUCTION SAMPLING AT OUTPUT RATE

[sample/s]

sampling rate

fs [sample/s]

sampling rate

f’s

FPGA

f’sfs

 

Fig.  4.8.  Schematic representation of sampling rate conversion with analog reconstruction. 

The Nyquist frequency in the reconstruction filter hrc(t) dictates the lower boundary at which images 

of the discrete spectrum appear folded in the reconstructed signal xrc(t). This is the highest frequency that 

can be coded at the sampling rate fs making full reconstruction of the signal possible. The Nyquist rate is 

the minimum sampling rate satisfying the sampling theorem (twice the bandwidth of the bandlimited signal) 

[103]. This rate, given the output sampling frequency f’s, sets an upper boundary in the spectral contents of 

the bandlimited signal xrc(t) for sampling without loss of information. This boundary dictates the cut-off 

frequency of the anti-aliasing filter haa(t). As the reader can observe in Fig.  4.8, these two filters are in 

series. They can thus be combined by using the most restrictive characteristics originating a new single 



Application of the architecture to arbitrary SRC 

70 
 

filter hc(t) that reduces the number of required operations and resources [89]. The frequency response of 

the new low-pass filter hc(t) combining both responses inherits thus the most restrictive cut-off frequency 

Ωc radian/s according to 

c s s
c c

c

’
with   min radian/s

1 for 2 2
( )    ,   

0 for 2 2

f f
H

p p    





       
 Eq.( 4.25 ) 

The resulting combined analog equivalent is depicted in Fig.  4.9, where hc(t) denotes the impulse 

response of the combined filter Hc(Ω).  

FPGA Front end

DAC
hc(t)

ADC
x[n] x0(t) y(t) y[m]

analog 
domain[sample/s]

sampling rate

fs [sample/s]

sampling rate
f’s

FPGA

f’sfs

  

Fig.  4.9.  Schematic representation of sampling rate conversion with analog reconstruction merging the two analog filters. 

We can think of this procedure as the method to define the cut-off frequency of our fractional delay 

filter. It makes it possible to tailor the filter response based on the most restrictive sampling rate at the input 

and output ports of the resampler, provided that the input signal is bandlimited below any of these two rates. 

In any case, the resulting continuous-time filter using these constraints or any other method needs to be 

made realizable as presented in the previous sections.  

4.3.2.4. Variable Fractional Delay discrete filters 

We have presented so far how to estimate the coefficients of our reconstruction filter based on a 

prototype frequency response. We know how to design a FD filter that has a fixed delay value, and we have 

developed the procedure to map it to an FIR architecture. We are, however, interested for our interpolator 

in a VFD with a variable delay. This implies a different impulse response dependent on each required delay 

value. We can think of our VFD as a reconfigurable FIR filter, in which we update the coefficient set based 

on the required delay. We, however, need to analyse the consequence of this coefficient update requirement, 

and sketch a strategy to obtain and update the coefficients of the FD filter based on the delay.  

Revisiting one more time the procedure to obtain the set of B coefficients, one realizes that it is 

always the same no matter what is the delay; we shift (based on the required delay) and sample the 

associated continuous-time impulse response within a window. One feasible option could be thus to store 

different sets of coefficients based on the different delay values that we will use. Unfortunately, as we 

introduced in section 4.3.1.2, our variable resampling ratio makes the possible values for the delay infinite. 

This, in practice, makes storing multiple sets of coefficients an inefficient approach. We would require 

infinite sets for an infinite delay precision.  



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

71 
 

This unfeasible approach is depicted in Fig.  4.10; in the example we present a VFD filter h[n] 

whose B coefficients are read from a table and updated, based on the required delay. The delay range spans 

between plus and minus half of an input sampling period, -0.5 sample ≤ dly ≤ 0.5 sample, and we want a 

delay resolution of 0.1 sample. This results in eleven possible configurable delays, dlyA = {-0.5, -0.4, …, 

0.4, 0.5} with A ϵ [0 , 10], and a coefficient set hA[n] per delay value. When implementing this filter, if we 

store the coefficient sets in a memory, we need as many rows as taps in the filter, B, and as many columns 

as delay slices, A; (BA) table. We read the memory based on a column index computed from the desired 

delay, extracting the rows in parallel. In the figure, following the examples of 4.3.2.2 we match the latency 

of filtering architecture Di = L, and we do d = dly.  

x

hA[0]

+x

hA[1]

x

hA[B-1]

+

x[n]

y[m]

h[n] FIR core

h0[0]

h0[1]

h0[B-1]

h1[0]

h1[1]

h1[B-1]

h10[0]

h10[1]

h10[B-1]

A

B

hA[n]table

A = 0 A = 1 A = 10

@
C
ol
u
m
n
 

p
o
in
t
e
r

d
hA[n]

Z-1

Z-1

VFD filter

 

Fig.  4.10.  Filtering architecture with the filter coefficients stored in a table accessed based on the delay value. 

Instead of storing multiple sets of coefficients (A → ∞), we can develop a method that lets the 

hardware implementing the VFD to compute the set based on the required delay. This replaces the infinite 

memory constraint with a requirement for an efficient and accurate coefficient calculator.  

The idea behind this calculator is to divide the continuous-time impulse response of the prototype 

filter in B segments (one per coefficient) that span for one sampling period, and are centred around the zero 

crossing of the sinc(x) response, as depicted in Fig.  4.11. Each segment is then approximated by a low 

order piecewise polynomial that is evaluated with the desired delay d as parameter. These polynomials are 

thus generators (the calculators based on the required delay) for each one of the B coefficients of the 

prototype filter of Eq.( 4.18 ) and Eq.( 4.19 ). The resulting coefficient set is passed to the filter core each 

time the delay is updated. For the sake of simplicity, in the following we disregard the latency of discrete-

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 SB-1

 

Fig.  4.11.  Prototype impulse response divided in B segments. 



Application of the architecture to arbitrary SRC 

72 
 

time implementation, we make Di = L = 0. The polynomials mapping the segments of the impulse response 

can be expressed as Taylor series [72] becoming 

0

[ ] ( ) ( , )
C

b
c

ch n b P d g db c


     Eq.( 4.26 ) 

with b the index of the coefficient in the FD filter h[n] (Eq.( 4.19 )), C the order of the polynomial, d the 

fractional delay value and g(b,c) the cth order coefficient of the polynomial originating the bth coefficient of 

the filter. The matrix g(b,c) corresponds to a matrix of B rows with C+1 columns. Each one of the B 

coefficients of the filter h[n] has hence a different set of C+1 polynomial coefficients (calculators). The 

first coefficient b=0 of the prototype filter h[n] (obtained from the polynomial approximation of the segment 

“S 0” in Fig.  4.11) is for instance computed by plugging the C+1 elements of the row b=0 in g(b,c) (Eq.( 

4.26 )) with the given delay d. 

Fig.  4.12 depicts the architecture implementing this approach. It contains the hardware core 

implementing the FIR reconstruction filter h[n], and for the coefficients the B polynomial generators of 

order C controlled by the delay d. 

x

h[0]

+x

h[1]

x

h[B-1]

+

x[n]

y[m]

Coeff 0 : Polynomial Generator  P0[d]

Coeff 1 : Polynomial Generator  P1[d]

Coeff B-1 : Polynomial Generator  PB-1[d]

d

h[n]

Z-1

Z-1

VFD filter

Coefficient calculators

h[n] FIR core

 

Fig.  4.12.  Filtering architecture with the filter coefficients approximated by piecewise polynomial.  

4.3.2.5. The Farrow Architecture 

The architecture presented in the previous point is a feasible solution for the VFD. However, it 

requires the computation of the reconstruction filter coefficients before the filtering operation. This requires 

some control and synchronization mechanism to properly synchronize the filtering stages. An alternative 

architecture was proposed in [77]. The architecture is known as the Farrow architecture. It combines the 

polynomials of the coefficients, Eq.( 4.26 ), within the convolution operation in the filtering architecture,  

Eq.( 4.19 ). This generates an efficient architectural alternative that does not require any computation of 

coefficients beforehand. Instead, the input samples are pre-filtered with a bank of filters resulting from the 

arithmetic manipulations on the convolution and the polynomials. The outputs of the bank are combined 

with the delay value in a Horner structure [79], that efficiently solves the evaluation of polynomials 

reducing the hardware resources needed and enables the real-time delay update. 

The Farrow architecture inserts Eq.( 4.26 ) in Eq.( 4.19 ) to obtain 



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

73 
 

1

0

1

0

1

0 0

[ ] [ ] [ ] [ ]

( ) [ ]

( , ) [ ]

B

b

B

C
c

b
b

B

b c

y n x D h b x n b

P d x n

b

n

d

b

g c x n b











 

   

  

 



 







 Eq.( 4.27 ) 

Reordering the summations, we can obtain 

1

0 0

1

0 0

[ ] 

( , ) [ ]

( , ) [ ]

B C

b c

B
c

C

c

c b

y n

g b c x n b

g bd c n b

d

x



 



 



  

 







 

 
Eq.( 4.28 ) 

We can define a new set of data u(n,c) based on the input sample x[n] and the matrix g(b,c) as 

1

0

( , ) ( , ) [ ]
B

b

u n c g b c x n b




   Eq.( 4.29 ) 

By examining Eq.( 4.29 ) we can realize that the data u(n,c) is a vector of C+1 elements linearly 

dependent on the input data x[n]. This input dependent vector results from C+1 parallel convolutions with 

the sequence x[n]. The B coefficients of each parallel convolution correspond to the columns of g(b,c) in 

Eq.( 4.26 ). Note that now the matrix g(b,c) is read by columns instead of rows. We thus use the same 

coefficients used in the polynomial generators but we read them by columns instead of by rows (Eq.( 4.26 

) and Fig.  4.12), and we use the input samples x[n] instead of the delay d. We can rewrite u(n,c) as vector 

of C+1 samples dependent on the input data x[n] 

1

0

[ ] ( , ) [ ] [ ] [ ] [ ]
B

c c c
b

u n u n c g b x n b x n g n




      Eq.( 4.30 ) 

This vector ūc[n] can be seen as the outputs of a bank of C+1 filters gc[n] pre-processing the input 

samples x[n]. By inserting Eq.( 4.30 ) in Eq.( 4.28 ) we obtain 

0

[ ] [ ·] [ ]c
C

c
c

y dn nx D nu


    Eq.( 4.31 ) 

This last equation is a Taylor series representation of the filtered output sequence y[n], that uses the 

vector ūc[n] as coefficients and evaluates the series with the delay value d [72].  

The Eq.( 4.31 ) can be expanded and results 

0 1 2
0

2[ ] [ ] [ ] [ ] [ ] [ ] ... [ ]· · · ·c C
C

c C
c

n dy dn x D u n u n u n u n ud d n


         Eq.( 4.32 ) 

Finally evaluating this series with the Horner [79] rule we obtain  

0 1 2[ ] [ ] [ ( )·( · ·( ·] [ ] [ ] ... [ ]))Cy n x D u n u n u nn d d dn d u        Eq.( 4.33 ) 



Implementation of the SRC architecture 

74 
 

The resulting VFD architecture, that is depicted in Fig.  4.13, does not need polynomial re-

computation of the interpolating coefficients for each output sample. Instead, it exploits the reordering of 

the filtering arithmetic operations within the Farrow architecture. It is composed of a bank of FIR sub-filters 

gc[n], which pre-processes the available input samples, x[n] in Eq.( 4.30 ), to generate intermediate filtered 

data ūc[n]. The filter bank coefficients gc[n] are static and pre-computed offline resulting from the matrix 

g(b,c), that approximates segments of the prototype impulse response with piecewise polynomials. A new 

output y[m] is computed combining the intermediate data ūc[n] with the delay value d = dly sample using 

the Horner rule. The output data is obtained by feeding the filter just with only the delay d and data x[n].  
F
I
R
 
f
i
l
te
r

g
C
[
n
]

F
I
R
 
f
i
l
te
r

g
C
-
1
[
n
]

F
I
R
 
f
i
l
te
r

g
C
-
2
[
n
]

F
I
R
 
f
i
l
te
r

g
0
[
n
]

+ + +
d

x[n]

y[m]

VFD 
filter

x + x x+ +

uC[n] uC-1[n] uC-2[n] u0[n]

Horner
 

Fig.  4.13.  VFD architecture based on the Farrow architecture and the Horner rule. 

4.4. Implementation of the SRC architecture 

The high-level architecture for implementation of the proposed resampler is presented in Fig.  4.14. From 

a logic point of view, only six signals constitute the interface of the architecture. These signals are the 

hardware equivalent to the functional ones presented in Fig.  4.1. At the input interface, the data-path input 

port feeds the available data samples; it contains the data_i bus signal and the valid_i qualification 

signal. The data_i bus signal corresponds to the x[n] and the valid_i qualification signal to new_spl 

in Fig.  4.1. A second input port receives the control signal T_out_n, that lets the resampler know the 

relation between output and input rates. This signal corresponds to the R signal in Fig.  4.1 and feeds the 

value (1/R) as presented in Eq.( 4.8 ). The third input port is a clock port, clk, driving the hardware. This 

clock is the processing clock in the convention followed in this document. At the output, only the data-path 

port is present, it contains the data_os bus signal and the valid_os qualification signal. The first 

corresponds to y[m], while the second to valid_out in Fig.  4.1. Looking at the internals of the resampler, it 

is composed of three functional blocks. The first entity, in red in Fig.  4.14, hosts the DIANA engine, which 

implements the algorithm presented in Fig.  4.5, for the computation of the time shift (dly signal). It also 

controls when an output data sample can be computed (op signal). The second block implements the VFD 

filter, in blue in Fig.  4.14. This hosts the bank of FIR filters to process the available samples, and the 

Horner chain of adders and multipliers combining these filter outputs as outlined in Fig.  4.13. Finally, the 

third block, in green in Fig.  4.14, contains the “Control Logic and Synchronization Memories”. This block 

handles the communication and synchronization between the entities of the resampler and the interface 

ports.  



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

75 
 

4.4.1. Decoupled data-path SSRC architecture with arbitrary variable ratio 

Sampling rate conversion architectures based on the use of a VFD and timing engine employ 

normally at least two clock domains, marked clk_x and clk_y in Fig.  4.15. They are better suited for 

arbitrary ratio ASRC implementations. The input clock domain is used to feed the data to the VFD filter 

bank. The output clock domain activates the Horner combiner when an output data sample is required. The 

timing unit computes the delay based on the difference of sampling instants between the clock domains. As 

presented in Chapter 2 and section 4.2.2 such an approach requires the output clock domain to sweep in 

frequency if the resampling ratio changes.  

x + +x
y[m]

clk_y

x[n]
clk_x

FIR 0

HORNER

FILTER 
BANK

VARIABLE FRACTIONAL DELAY

dly

VFD

TIME
DISTANCE

COMPUTATION

FIR 1FIR N

 

Fig.  4.15.  Arbitrary ratio SRC architecture based on a Farrow VFD with different input and output clock domains.  

In our case we focus on a SSRC architecture that accepts a variable resampling ratio. Our goal is 

to use a single processing clock, as depicted in Fig.  2.5. We thus use a decoupled data-path in the FPGA 

implemented on the FRANCISCO fabric. This combination makes it possible to have different sampling 

rates in the data-path using a single processing clock, and to vary sampling rates in real-time. From a 

functional point of view the VFD is the same element. It requires no architectural modifications for 

implementation within the FRANCISCO fabric. At implementation level, the registers in the taps of the 

filters use an enable signal as presented in Chapter 3 to propagate valid samples only. The common clock 

is used in both the filter bank and the Horner, however, the insertion of data in the filter is done based on 

the input data-path valid signal, and the validation after the Horner based on the output data-path valid 

qualification signal, valid_is and op (or its synchronized version valid_os) respectively in Fig.  4.14.  

The same applies to the timing unit; from a functional point of view the use of the FRANCISCO 

fabric is transparent. At the implementation level it infers the resampling ratio from an external signal as 

clk

valid_i

data_i

valid_is

data_is

DIANA
ENGINE

FIR
filter
bank

op

CONTROL AND SYNCRHONIZATION

fifo 
control

horner 
structure

fifo valid_os

data_os

T_out_n

dly

data_f data_fs

data_o

dly_s

T_out_n

fifo

VARIABLE FRACTIONAL DELAY

qualifi.
logic

alingment
logic

 

Fig.  4.14.  High-level architecture of the implementation of the resampler.  



Implementation of the SRC architecture 

76 
 

introduced in section 4.2, T_out_n in Fig.  4.14. This entity is the responsible for handling the different 

sampling rates in the data-path. It controls the incoming valid samples and modifies the valid signal of the 

decoupled data-path to reflect the change in ratio at the output of the resampler. The up-sampling ratio is 

limited by the relation between processing and sampling clock as presented in Chapter 3, section 3.3.3.  

The main problem to be addressed in this implementation is thus to synchronize the data-path 

signals among the different elements of the VFD, and with the delay in the time-distance engine. The 

following sections address these implementation issues.  

4.4.2. VFD implementation 

Introduced in Fig.  4.13, the VFD unit contains two functional elements: The bank of FIR filters 

gc[n] and the Horner combiner. The architecture of the VFD and the interfacing signals are as depicted in 

Fig.  4.16. In the filter-bank, the valid_is signal enables the tapped delay line registers of the bank when 

a valid data is present in the data-path. The data signal data_is feeds the filters of the bank with the new 

samples in parallel. In the Horner structure, the data_fs signals feed C+1 buses containing the outputs 

of the filter bank, ūc[n] vector. The dly_s signal contains the delay value used for the current output 

sample. These signals need synchronization among themselves, hence the postfix “s”. FIFO memories are 

used for this (in green in Fig.  4.16). The memories are part of the “Control Logic and Synchronization 

Memories” entity. 

The filters in the bank are FIR ones. They are implemented with enabled registers in the taps, to 

cope with the decoupled data-path architecture. Recall that the resampler is implemented in a FRANCISCO 

fabric, and not all the clock cycles contain valid data in the data-path, hence only the data of the valid 

processing slots needs to be inserted in the filter. The even filters (gc[n] with c even) have coefficients 

which are even symmetric while the odd filters (gc[n] with c odd) have also odd symmetric coefficients. 

The number of coefficients (B in Eq.( 4.29 )) is dependent of the desired precision in the interpolation 

process of the VFD. The filters are implemented benefiting from the coefficient symmetry, they are folded 

around the central tap. The coefficients of the filter are scaled to avoid overflow in the internals of the filter. 

This scaling factor is compensated by re-scaling  the data-path at the output of the filter.  

A chain of adders and multipliers following the Horner rule combine the outputs of the different 

filters of the bank with the delay parameter, Eq.( 4.33 ), signal dly_s in Fig.  4.16. There is one multiplier 

per filter bank branch, except for the last one. There is also one adder per branch except for the first one. 

The arithmetic elements, multipliers and adders, are pipelined with registers to segment the combinatorial 

path to ease the timing in the place and route process. The registers used in the pipeline and in the arithmetic 

operators do not have enable signal. This makes the propagation time between any of the data-path inputs 

and the output known. The inserted registers in the input data-path branches account for the pipelined 

arithmetic operators, and compensate the propagation of the signals in the arithmetic operators.  



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

77 
 

FIFO dly_s

FIR 
FILTER
BANK

HORNER
STRUCTURE

x

x

x +

+

x

x +

+

c0

c1

c2

cC

+

+

+

+

d
 
q

e
n
b

d
 
q

e
n
b

d
 
q

e
nb

d
 
q

e
nb

d
 
q

e
n
b

d
 
q

e
n
b

FIR 2

x

x

x +

+

x

x +

+

c0

c1

c2

cC

-

-

-

-

d
 
q

e
n
b

d
 
q

e
n
b

d
 
q

e
nb

d
 
q

e
nb

d
 
q

e
n
b

d
 
q

e
n
b

FIR 1

x

x

x +

+

x

x +

+

c0

c1

c2

cC

+

+

+

+

d
 
q

e
n
b

d
 
q

e
n
b

d
 
q

e
nb

d
 
q

e
nb

d
 
q

e
n
b

d
 
q

e
n
b

FIR 0

x

x

x +

+

x

x +

+

c0

c1

c2

cC

-

-

-

-

d
 
q

e
n
b

d
 
q

e
n
b

d
 
q

e
nb

d
 
q

e
nb

d
 
q

e
n
b

d
 
q

e
n
b

FIR C

F
I
F
O

F
I
F
O

F
I
F
O

F
I
F
O

data_f [C]

data_fs [C]

x x+ +x+dly

data_ips data_is

valid_is

data_o

d q

z-n

d q

z-n

clk

valid_ips

data_fs [2] data_fs [1] data_fs [0]

data_f [2] data_f [1] data_f [0]

pipelined arithmetic operators

gC[n] g2[n] g1[n] g0[n]

 

Fig.  4.16.  Architectural view of the VFD filter. In blue, the FIR bank of filters and the Horner architecture. In green, the 
synchronization memories, not part of the entity.  

4.4.2.1. The coefficients 

The coefficients of the Farrow-based VFD of Fig.  4.16 have been obtained using the Weighted-

Least-Square (WLS) method [104]. The delay signal dly takes values from -0.5 to 0.5 sample,  

dly ϵ [-0.5, 0.5]. For each value we want the response from the input to the output to approximate an exact 

delay. Let H(ejω,d) be this transfer function, with ω the normalized angular frequency in radian/sample and 

d the delay, the WLS computes the filter coefficients that minimize the cost function  

( ) 20.5

0 0.5
 =  , d dj j dJ H e d e d

p   


   

Eq.( 4.34 ) 

The parameter  is a fixed number, smaller than one, that specifies the pass-band (between 0 and 

π radian/sample) over which the cost is evaluated. The number of filters (C+1) and the filter length (B) must 

be chosen to achieve the required precision in the pass-band. In our design, we set = 0.6, and used six 

filters containing fifteen taps each. The resulting maximum square error for all values of d, in the pass-band 

is less than 5·10-9. This was found to be good enough for our application. The number of taps has a big 

effect. When reducing it to seven, without changing any other parameter, the maximum square error 

increases to 3·10-5. Further details are provided in Chapter 5. 

4.4.3. DIANA algorithmic engine 

The following section presents implementation details for the DIANA algorithmic engine. We first 

introduce the resulting features when implementing the DIANA engine with a decoupled data-path in the 

FRANCISCO fabric. Then we show the proposed implementation for the engine.  

4.4.3.1. Ratio limits 

We saw in section 4.2.3 that the use of a VFD as interpolating unit for resampling of a discrete 

sequence, results in a generic unit in the sense that it can be used for either up-sampling or down-sampling 

without modifications. The DIANA algorithm presented in section 4.3.1.2 is the solution in our architecture 

for the computation of the delay fed to such a VFD filter. This algorithm is also generic, it supports both 



Implementation of the SRC architecture 

78 
 

up-sampling and down-sampling, and solves our key concern; the capability to compute the delay with an 

arbitrary ratio value that changes in real-time. We focus in this section on the implementation of the 

algorithm; our main architectural decision is the use of the fixed processing clock to avoid clocking and 

synchronization problems related to the variable ratio. For this, we use the FRANCISCO fabric synthetizing 

a decoupled data-path, that copes with the variable sampling rate at the output port of the resampler, 

resulting from the variable ratio. This decoupled data-path brings, however, some implications in the 

performance that the algorithm can achieve once implemented.  

Another functional requirement in our solution is the feasibility to be used in a feedback loop, 

where processing in real-time is required. We insert the incoming samples directly in the VFD to be able 

to perform online resampling; we do not want to store this data in a buffer where to perform subsequent 

offline resampling reading that data on demand. We need hence a unit that receives, processes the data as 

it arrives, and outputs the new sequence. The objective of the decoupled data-path is to make the use of the 

fixed frequency processing clock feasible in the system responsible for that. When this clock has a higher 

frequency than the data sampling rate, we ensure more processing slots than available samples in the 

decoupled data-path. This avoids its overflow within some boundaries and partially solves our swept clock 

concern; we have now void processing slots to populate with new data and we can use a fixed frequency 

processing clock.  

The distribution of incoming samples in the data-path is also relevant. Note that all the input 

samples are inserted in the FIR filter bank as all of them are used in the interpolation process, however, not 

all of them are used as reference for an output when they reach the central tap. Take the case of down-

sampling, as presented in Fig.  4.2 or Fig.  4.17; the resulting time spacing in the output sequence between 

sampling instants of the subjacent analog signal is always larger than the input sampling period, and larger 

than the VFD input range, dly ϵ [-0.5, 0.5] sample. We will hence never use an input sample as delay 

n

y[m]

m

Sampled
at f’s

x[n]

Sampled 
at fs

x[n] x[n+1]

x[n+2]
x[n+3] x[n+4]

y[m+1]

y[m+2] y[m+3]

y[m]

x[n] x[n+1] x[n+2] x[n+3] x[n+4]

y[m] y[m+1] y[m+2] y[m+3]

Input 
sequence

Resampled 
sequence

Output
data-path 

Input
data-path 

- - - - -

- - - - --

 R =         < 1 
f’s

fs

x[n+4]x[n+3]x[n+2]x[n+1]x[n]

y[m+3]y[m+2]y[m+1]y[m]

  

Fig.  4.17.  Decrease in the number of populated slots in the data-path in the case of down-sampling.  



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

79 
 

reference for more than one output, and in some cases nor for one (the case when no output sample is 

calculated between two correlative input samples that result from a delay value larger than 0.5 sample).  

More void processing slots are thus found in the output sequence. This is depicted in Fig.  4.17 where we 

down-sample a sequence and we show the resulting distribution of samples populating the processing slots 

in the data-path (we neglect the processing time). The 0.5 sample delay window that the VFD accepts is 

depicted in the figure by the green vertical lines around each input sample. In this case, the sample x[n+2] 

is not used as reference to compute any output sample; y[m+1] is computed with x[n+1] and as the delay 

value is above 0.5 sample for x[n+2], the output y[m+2] is computed using as reference x[n+3].  

Any down-sampling ratio, R < 1, is hence suitable for the decoupled data-path as there is no way 

to overflow it, no matter what the distribution of input samples we receive is. The figure depicts also for 

this case the output data-path that contains less populated processing slots at the output than at the input. 

In the case of up-sampling, the decoupled-data (and the input distribution of valid samples) 

introduces some further considerations; we want to insert new valid samples in the output that alter the 

input distribution. The output spacing between sampling instants, that emulates the acquisition of the analog 

signal, is always smaller than the input sampling period, and hence smaller than the input delay range of 

the VFD (one input sampling period, from -0.5 to +0.5 sample). We will hence use each input sample, as 

delay reference, to compute at least one output and in some cases more than one. We need hence a data-

path with enough void processing slots where to fit this new data. Depending on the population of the input 

data-path we will be able to do it so or not. The up-sampling rate is hence linked to the relation between 

processing clock and sampling rate at the output of the MERCEDES Decouple interface, M = fp / fs, and to 

the input sample pattern (valids) dependent on the physical position of the resampler in the data-path. 

When the resampler is placed just after the MERCEDES Decouple interface, the activation rate of 

the data-path is arin = (1 / M) and the input pattern is a uniform and periodic distribution of valid samples 

x[n] x[n+1] x[n+2] x[n+3] x[n+4]

y[m] y[m+1] y[m+2] y[m+3]

- - - - -

- - - - --

x[n+4]x[n+3]x[n+2]x[n+1]x[n]

y[m+8]y[m+6]y[m+2]y[m] y[m+1] y[m+3] y[m+4] y[m+7]y[m+5] y[m+9]

y[m]

x[n]

Input 
sequence

Resampled 
sequence

Output
data-path 

Input
data-path 

 R =         = 2 
f’s

fs

Sampled
at f’s

Sampled 
at fs

x[n] x[n+1]

x[n+2]
x[n+3] x[n+4]

y[m+3]

y[m+2]

y[m+8]

y[m]
y[m+1]

y[m+4]
y[m+5]

y[m+6]
y[m+7]

y[m+9]

n

m

 

Fig.  4.18.  Increase in the number of populated slots in the data-path in the case of up-sampling.  



Implementation of the SRC architecture 

80 
 

without bursts. One out of M processing slots contains valid data and the others are void. We will represent 

and refer such a pattern as UPM : {1 0 0 … 0 1 0 0 … 0 1 0 0…}, with M - 1 zeros in between the ones. In 

this case, we have always free space, free processing slots, between input samples where to insert new 

outputs, and the DIANA engine has enough clock cycles to compute all the possible outputs for a given 

reference. The maximum possible up-sampling ratio for this configuration is hence R = M, as we can 

populate these M - 1 available processing slots in between. This is depicted in Fig.  4.18; the data-path has 

an M = 2 and we up-sample a sequence with a ratio R = 2, we show the input periodic pattern UP2 : {1 0 1 

0 … 1 0 1 0 … 1 0 …} and the resulting distribution in the data-path {1 1 1 1 … 1 1 1 1 … 1 1 …}.  

Another situation that we can find happens when we do not satisfy this periodic and uniform 

distribution of samples in the input data-path port of the resampler. Note that this does not mean that the 

samples have not been periodically sampled, it means that the sequence of samples arrives to the resampler 

with a non-periodic and/or uniform pattern (for instance, some further processing between the MERCEDES 

and the resampler alters the distribution). In that case we can have two consecutive samples arriving in a 

burst, but keeping still an average sampling rate arin = (1 / M), {1 0 … 1 0 1 1 0 0 1 0… }. In the middle of 

this burst, there are no free processing slot available. In this case, we cannot ensure that we will not overflow 

the output data-path of the resampler (and underflow the delay value in the DIANA engine). It might be the 

case that a new output sample needs to be inserted in a inexistent slot in the middle of the burst, or that the 

engine has no enough clock cycles to compute all the possible outputs for a given reference, resulting both 

in blocking of the architecture. When the input distribution is hence not known or not uniform and periodic 

(UPM), we cannot operate the resampler in up-sampling mode safely.  

An example is depicted in Fig.  4.19 where we up-sample a sequence with a ratio R = 2. The clock 

relation in the data-path is also M = 2, but now there is an input burst. With this ratio we compute two 

output samples per input reference, the maximum up-sampling value. We hence need an extra void 

x[n] - x[n+3] x[n+4]

y[m] - y[m+2] y[m+3]

- - - - -

- - - - --

x[n+4]x[n+3]x[n+2]x[n+1]x[n]

y[m+2]y[m] y[m+1]

y[m]

x[n]

Input 
sequence

Expected 
Resampled 
sequence

Output
data-path 

Input
data-path 

 R =         = 2 
f’s

fs

Sampled
at f’s

Sampled 
at fs

x[n] x[n+1]

x[n+2]
x[n+3] x[n+4]

y[m+3]

y[m+2]

y[m+8]

y[m]
y[m+1]

y[m+4]
y[m+5]

y[m+6]
y[m+7]

y[m+9]

n

mBurst

over
flow

over
flow

over
flow

over
flow

over
flow

over
flow

-

-

DIANA 
Accumulator

+0.9 -0.1 +0.4 +0.9 -0.1 -0.6 UF UF UF UF UF

 

Fig.  4.19.  Data-path overflow and accumulator underflow; the distribution of populated slots is altered and contains bursts.  



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

81 
 

processing slot per input sample. In the figure, we see the analog signal and the resulting periodically 

sampled sequence x[n]. We can observe as well the distribution of these samples in the processing slots of 

the input data-path, altered with respect to Fig.  4.18. The overflow event is depicted with a red ellipse. 

Take a look at the burst in the x[n+1] and x[n+2] samples; these arrive in consecutive processing clock 

cycles, with a delay value of 0.9 sample in the DIANA accumulator prior to the x[n+1] arrival. The algorithm 

updates the value resulting in 0.9 - 1 = -0.1 sample (arrival of a new sample but no valid output in the 

previous iteration). This value lets us compute y[m+2]. In the subsequent processing clock cycle, the 

algorithm updates again the value. If no new sample would arrive the result would be -0.1 + 0.5 = 0.4 

sample and we could hence compute y[m+3] as expected. However, x[n+2] arrives within the burst, this 

results in a final computed delay value of -0.1 + 0.5 - 1= -0.6 sample. As a result of the burst, the 

accumulator underflows the delay value (-0.6 < -0.5 sample, minimum VFD range value), and overflows 

the data-path as there is no available slot where to insert y[m+3]. The DIANA engine can detect this 

underflow condition when the delay adopts a value below -0.5 sample. Unfortunately, it cannot recover 

automatically as the only way to increment the accumulator delay is by computing new output samples; 

this is not any longer possible as the current value is under the valid range of the VFD, remaining thus 

blocked. 

The maximum up-sampling ratio is hence a function of the input sample pattern and the relation 

between processing and sampling clocks. When the relation between frequencies in the sampling and 

processing clocks is M, being the processing clock higher, and the input samples are equispaced with  

(M-1) samples between valid inputs, ar = 1/M satisfying UPM : {1 0 0 … 0 1 0 0 … 0 1 0 0…}, the maximum 

ratio value is R = M. When this is not the case, the activation rate is not uniform or it contains bursts, we 

cannot ensure available processing slots and thus the resampler should not be used for up-sampling.  

There are specific cases with this still being feasible; take for instance two up-samplers in series 

and a data-path with M = 4 at the input of the segment resulting from a MERCEDES Decouple interface as 

depicted in Fig.  4.20. In the input of the first resampler we have the uniform distribution UP4 : {1 0 0 0 1 

0 0 0 1 0 …} ensured by the MERCEDES interface. We first up-sample by R1 = 2 in the first stage; with  

clk_dcpl

FRANCISCO Adaptation Fabric
d_dcpl

valid

r_1

r_2

MERCEDES

Decouple

d_cpl

clk_cpl

processing 

clock clkp

sampling
rate   

fs_dcpl = A [sample/s] 
arA = (1/M)

fp_dcpl = M · A [Hz] 
signal clk_dcpl

Segment A (fixed fs)

processing 

clock clkp

sampling
rate   

fs_dcpl_b = R1·A [sample/s] 
arB = R1·(1/M)

fp_dcpl = M · A [Hz] 
signal clk_dcpl

Segment B (variable fs)

processing 

clock clkp

sampling
rate   

fs_dcpl_c = R2·R1·A [sample/s] 
arC = R2·R1·(1/M)

fp_dcpl = M · A [Hz] 
signal clk_dcpl

Segment C (variable fs)

processing 

clock clkp 
fp_cpl = A [Hz] 
signal clk_cpl

FPGA

sampling
rate   fs_cpl = A [sample/s] 

Hardware Fabric

d_dcpl

valid

R
es

am
pl

er

Pr
oc

es
si

ng d_dcpl

valid

d_dcpl

valid

R
es

am
pl

er

Pr
oc

es
si

ng d_dcpl

valid

Pr
oc

es
si

ng d_dcpl

valid

 
Fig.  4.20.  Data-path architecture with multiple resamplers.  



Implementation of the SRC architecture 

82 
 

fp_dcpl = 4 · A Hz and fs_dcpl = A sample/s this results in fs_dcpl_b = 2 · A sample/s. The output distribution of 

this first resampler will be {1 1 0 0 1 1 0 0 1 1 …}. Some processing after the first resampler rearranges the 

data-path pattern without altering the sampling rate resulting in {1 0 1 0 1 0 1 0 1 0 …}. In this situation 

we could still place a second up-sampler with again a feasible maximum up-sampling ratio of R2 = 2. Its 

input distribution is equispaced and has a pattern that makes it possible to insert the new second output 

sample per input sample without overflowing the maximum sampling rate fs_dcpl_c = 4 · A sample/s of the 

data-path. The resulting pattern would be {1 1 1 1 1 1 1 1 1 1 …}. We can generalize the result; for a given 

up-sampling ratio R = U with U ≤ M being M the relation between processing and sampling clocks in the 

data-path, we need at least v = ceil(U) - 1 void processing slots in between input samples to ensure the 

correct operation of the resampler. The ceil(X) operator results the least integer greater than or equal to X. 

 Table 4.1 lists the possible modes of operation for the resampler based on the pattern of valid 

samples at the input and for a relation between clocks M. 

Table. 4.1  Modes of operation for the SSRC architecture 

Mode 
Pattern of valid 

samples at the input 
Is the configuration accepted? Accepted ratio R 

Down-sampling Any Accepted R ϵ (0, 1) 

Up-sampling 
Periodic, valid 

sample following by 
(M-1) void slots  

Accepted R ϵ (1, M] 

Up-sampling Others Not accepted * - 

Transparent Any Accepted R = 1 

* As introduced in the section in some situations this configuration is also valid, however,  
it is not desirable as it requires further logic and/or constraints in the valid distribution or resampling ratio.  

To cope with burst resulting in a non-uniform input pattern a feasible solution is to use a FIFO 

memory in the input of the resampler. We can ensure the required valid pattern by first writing the input in 

the FIFO and then reading the samples inserting void processing slots in the middle. However, for our BSP 

Architecture this is not needed as we use two resamplers in a sandwich configuration where the input one 

is placed after a MERCEDES interface, thus ensuring the necessary input pattern, and the output resampler 

operates in down-sampling configuration, hence with no constraints on the received valid pattern.  

4.4.3.2. Engine implementation  

The proposed implementation for the DIANA functional unit, depicted in Fig.  4.21, has three input 

ports. The first one is the valid signal, valid_i, indicating the validity of the data present in the engine 

input data-path. This indicates a new input sample arriving at the resampler and corresponds to the variable 

new_spl in the algorithm of Fig.  4.5. The second input port is a bus signal, T_out_n which provides the 

information about the resampling ratio, equal to 1/R as presented in 4.3.1.2. It maps the variable dly_incr 

in the algorithm. The width of this bus is dependent on the performance (desired precision) of the resampler, 

this is elaborated in Chapter 5. Finally, a clock input port receives the processing clock.  



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

83 
 

At the output, the entity has two ports. The first is the computed delay, dly, implemented by means 

of a bus signal whose width is also dependent on the desired precision of the resampler. It maps the variable 

with same name, dly in the algorithm. The second port contains the op signal, which indicates that a new 

output sample can be computed using the delay value present in the delay bus. It corresponds to the variable 

valid_out in the algorithm. The DIANA algorithm of Fig.  4.5 is implemented by means of an accumulator 

(Fig.  4.21). Two multiplexers evaluate the accumulator step at each iteration. One is controlled by the 

valid_i signal, while the other is driven by feedback logic evaluating the op signal from the last iteration. 

The output of the multiplexor is accumulated by a dedicated DSP block.  

The op signal is activated when a comparator evaluating the magnitude of the accumulator 

indicates a value less than or equal to 0.5 (half an input sampling period). This corresponds to the hard-

coded variable vfd_range = 0.5. The T_out_n signal is evaluated at each iteration, for real-time variable 

and arbitrary ratio operation of the resampler. In case of a fixed ratio resampler, this signal could be hard-

wired for resource optimization. The registers do not incorporate enable signal, because the algorithm runs 

an iteration with each processing clock cycle.  

This engine implementing the algorithm exploits the decoupled data-path paradigm. It populates, 

in the case of an up-sampler, the void processing slots with new computed samples. For that to happen, the 

engine needs to run and evaluate the data-path at the processing clock rate, and not at the sampling rate. 

The algorithm can thus handle the delay computation as long as the processing clock frequency fp is higher 

than both input and output sampling clocks (fs and f’s), and as we have seen in the previous point, the input 

distribution in the data-path contains available processing slots between incoming samples where to insert 

new output data.  

As an example, take a case where the MERCEDES Couple interface is configure with M = 2, the 

processing clock operates at the double of the frequency of the sampling clock. A resampler is placed just 

after the interface. In that case the upper boundary for the resampling ratios is set by the data-path and the 

clock relation M resulting from the interface, being R = M = 2. We saw that there is no lower boundary for 

the resampling ratio. We nevertheless constrain it to R = 0.5 in our BSP Architecture. The resampling ratio 

can hence adopt values within the range R  [0.5, 2]. 

dly

d q

| |≤0.5

d q+

op

valid_i

T_out_n

DLY Accumulator

OP 

Logic

DIANA ENGINE
clk

d q

d q

d q

d q

+

0
1

1
0

0

-1

Accum.

Step

 

Fig.  4.21.  Implementation of the DIANA engine.  



Implementation of the SRC architecture 

84 
 

4.4.4. Synchronization 

This block contains glue logic and synchronization memories connecting the main entities of the 

architecture. Synchronization is understood as alignment, at processing-clock cycle level, between different 

propagating signals. This entity is therefore responsible for the management of the signals between the 

different functional blocks. It comprises registers, memories, and logic elements used for synchronization 

purposes.  

4.4.4.1. The signal paths 

All these signals propagate through three different paths, depicted schematically in Fig.  4.22. These 

paths cross the different functional units of the architecture. The first path, in blue, hosts the data-path from 

the input to the output interface. The second, depicted in red, contains the signals related to the resampling 

ratio. This ratio is fed at the input as T_out_n. That signal is internally translated to delay to be used in 

the VFD. Finally, the third path, in green, groups the internal control signals. The alignment between these 

different signal types is required at certain interfaces. These interfaces lie between the main entities of the 

resampler. The interfaces are depicted as vertical lines in the same figure.  

DIANA 
Engine

FIR Filter 
Bank

Data-Path 
FIR Bank
Alingment

Horner 
Structure

Data
Path

Delay 
Value

Control

Data-Path 
FIFO

Alingment

Delay FIFO
Alingment

Data-Path
Output
Qualif.

Input
Interface

Filter Bank
Interface

Horner
Interface

Output
Interface

Control
Alingment

 

Fig.  4.22.  Synchronization interfaces of the resampler (vertical lines), and signal paths (horizontal arrows).  

4.4.4.2. The interfaces 

The interfaces are hardware locations where the signals crossing the interface need to be aligned at 

clock cycle level. These are the results of the concurrent operation on data and control signals in the 

architecture. The signals follow therefore the different paths with different latencies. The first interface is 

placed at the input of the resampler. There the data-path signals data_i and valid_i, and the resampling 

ratio T_out_n must arrive aligned. The resampler operates at sample level, and the ratio signal specifies 

this quantity for each specific sample in the input data-path.  

The second interface lies at the input of the bank of filters. At that point alignment is required 

between the data-path (signals data_ips and valid_ips), the computed delay signal dly, and the op 

control signal.  



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

85 
 

The third interface lies at the input of the Horner structure. This interface requires alignment 

between the data-path buses data_fs, the delay value dly_s, and the internal control signals. The buses 

data_fs are the filtered output of each of the bank of filters branches. 

Finally, the fourth interface, is placed at the output of the resampler and it requires alignment 

between the data-path data_os, and the valid_os signal qualifying the output stream.  

4.4.4.3. Input interface alignment 

The input interface poses a constraint to the system hosting the resampler rather than to the 

resampler itself. It requires that the input signals arriving to the resampler and the clock are all aligned in 

phase and frequency.  

4.4.4.4. Filter Bank interface alignment 

The filter bank interface is used to align the computed delay to be applied at each sample, and the 

sample itself in the data-path. The synchronization problem is a trivial problem in this case, as the logic 

used for the computation of the delay is fully deterministic. This unit has been designed with a latency of 

three cycles, thus three registers are inserted in the data-path between data_i and data_ips, and 

between valid_i and valid_ips. Therefore, only glue logic (registers) is used to align the data-path 

to the output signals of the DIANA engine. The different data-path, delay and control path signals arriving 

to the Filter Bank Interface are depicted in Fig.  4.23. 

+

0
1

1
0

0

-1

d q

| |≤0.5

d q+

valid_i

T_out_n

DIANA 
ENGINE

d q

d q

dly

op

data_ips

valid_ips

data_i

clk

d q

d q

d q d q d q

d q d q d q

DATA-PATH
FIR BANK

ALIGNMENT

Input 
Interface

Filter Bank 
Interface

DATA-PATH

DELAY 
VALUE

DELAY 
VALUE

DATA-PATH

CONTROL

 

Fig.  4.23.  Hardware and signal propagation arriving to the Filter Bank Interface.  

4.4.4.5. Horner interface alignment 

The synchronization at the Horner interface, lying at the input of the Horner combiner, is the most 

complex element of the architecture. It ensures the synchronized arrival to the combiner of the signal pair 

composed of the filtered reference sample, data_fs signal buses, and the delay value, dly_s signal in  

Fig.  4.16. This pair of signals is used by the Horner when computing a new output sample. The 

synchronization mechanism also aligns the signal op_s for the qualification logic at the output.  



Implementation of the SRC architecture 

86 
 

The interface and the preceding hardware elements are depicted in Fig.  4.24. The synchronization 

mechanism needs hence to manage signals propagating in parallel within the three paths; data-path, delay 

and control. The segment of the data-path preceding the interface contains the VFD filter bank. The filtering 

that it performs has a variable latency when implemented within the FRANCISCO fabric. This makes the 

synchronized propagation of reference samples and delay a non-trivial problem.  

In the case of delay and control paths, the filter bank interface at the output of the previous stage 

provides the delay value dly, and the control signal op aligned at processing-clock cycle level. These 

signals have been generated by the DIANA engine. They contain the decision about the computation of a 

new output sample (algorithm in Fig.  4.5); if possible, the op signal is active, otherwise it remains low.  

In the same preceding interface, the incoming data-path (data_ips and valid_ips signals) 

is also aligned at clock cycle level with these delay and control paths. The latter signal,  valid_ips, flags 

when active that the data-path reference sample at the filter bank interface needs to be processed (inserted 

in the bank and filtered), otherwise the data-path remains halted.  

FIR FILTER BANK

x

x

x +

+

x

x +

+

c0

c1

c2

cC

+

+

+

+

d
 
q

e
nb

d
 q

e
n
b

d
 
q

e
n
b

d
 
q

e
nb

d
 
q

e
nb

d
 
q

e
nb

FIR 0

x

x

x +

+

x

x +

+

c0

c1

c2

cC

-

-

-

-

d
 
q

e
nb

d
 q

e
n
b

d
 
q

e
n
b

d
 
q

e
nb

d
 
q

e
nb

d
 
q

e
nb

FIR 1

x

x

x +

+

x

x +

+

c0

c1

c2

cC

-

-

-

-

d
 
q

e
nb

d
 q

e
n
b

d
 
q

e
n
b

d
 
q

e
nb

d
 
q

e
nb

d
 
q

e
nb

FIR C

F
I
F
O

data_f [0]data_f [1]data_f [C]

data_fs [0]data_fs [1]data_fs [C]

push

pop F
I
F
O

F
I
F
O

dly

FIFO

FIFO

FIFO

pop
empty

Horner 
Interface

DELAY 
VALUE

DATA-PATH

CONTROL

CONTROL
FIFO

BANK
push

Filter Bank 
Ready

op

FILTER 
FIFO

BANK

Filter Bank 
Interface

GLUE
LOGIC

DATA-PATH

DELAY 
VALUE

CONTROL

d q

d q
d q

d q

d q

d q

d q

set

d q

data_ips

valid_is

data_is

valid_ips

op_s

dly_s

gC[n] g1[n] g0[n]

 

Fig.  4.24.  Hardware and signal propagation arriving to the Horner Interface.  

As we have just introduced, when a new output needs to be computed, and a new sample needs also 

to be filtered, the synchronization mechanism needs to propagate and recover the alignment of the pair 

data_ips and dly at the input of the Horner combiner (data_fs and dly_s). It can also be the case 

that a new output needs to be computed but no new reference sample is available in the data-path (R > 1 

with valid_ips low in the filter bank interface). In these circumstances the last filtered input sample is 

used as reference. This filtered sample is already processed or being processed in the filter pipeline. In any 

case, the delay value dly that will be used in the new output needs to have synchronized its arrival at the 

input of the Horner structure together with its associated reference sample being filtered. The 

synchronization mechanism hence handles the filtering of the data-path and the arrival of the sample and 

the delay value to the Horner based on the control signals. The computation of a new sample requires 

therefore different mechanisms depending on the case. The possible scenarios are listed in Table 4.2. 



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

87 
 

 

Table. 4.2  Scenarios, control signals and actions to be done within the synchronization logic 

Scenario valid_ips op Actions of the VFD 
1 0 0 Do nothing 
2 0 1 Process new output 
3 1 0 Propagate data-path to filter bank 
4 1 1 Propagate data-path & process new output 

 

In the first scenario nothing has to be done. The delay value to be applied to a sample for the 

computation of a new output cannot be handled by the VFD, therefore the op signal is not active.  

Concurrently there is no new sample arriving to the filter bank interface as the valid_ips signal is low. 

No new sample needs to be filtered.  

Scenario two happens when a new output needs to be computed but there is no new sample arriving 

to the filter bank. In this case the delay value is within the limits of the VFD, and the last sample inserted 

in the filter bank pipeline needs to be reused as reference. The delay propagation needs hence to be 

synchronized with the filter bank output; the reference sample in the bank needs to be used twice.  

Scenario three is present when a new sample arrives at the filter bank and the delay required for a 

new output cannot be handled by the VFD. In this case the sample is inserted in the filter pipeline but no 

new output is computed.   

Finally, scenario four combines scenarios two and three. In that case a new sample has arrived at 

the filter bank. This sample needs to be filtered and propagated through the pipeline. Concurrently, a new 

output needs also to be computed with that sample; the DIANA engine has computed a delay value using 

that sample as reference that results within the VFD range. The alignment mechanism needs therefore to 

mimic the latency of the reference sample through the filter bank pipeline, and synchronize the propagation 

of the delay value with the same latency, to make it both to cross the Horner interface together.  

The estimation of this latency through a filtering architecture implemented with a coupled data-

path is a trivial problem. The signal advances one register in each clock cycle, as depicted in Fig.  4.25(a). 

In this case, for instance implementing the filter in the FPGA hardware fabric hosting BAP, the latency is 

a function of the architectural implementation of the filter, Eq.( 4.22 ). This makes the solution for the 

synchronization of the delay signal easy; the filtering latency can be mimicked by adding the same fixed 

number of pipeline registers to the delay path.  

This is not feasible for our filtering architecture, as we use a FRANCISCO decoupled data-path. In 

such a case, the filtering latency varies with the sampling rate and input pattern. This variation is a direct 

consequence of the decoupling and the valid signal: The data advances one register further in the filter’s 

tapped delay line only when the enables are active (valid signal in Fig.  4.25(b)). The data-path 

propagation through the taps is now driven by the valid signal, and the latency (in processing clock 

cycles) is dependent on its activation rate and distribution. In this case, the filtering latency for a given 

processing clock, is hence a function of the sampling rate, that dictates the activation ratio ar of the valid 



Implementation of the SRC architecture 

88 
 

signal as stated in Eq.( 3.2 ). If the sampling rate in the decoupled data-path is uniform, the propagation 

delay can still be mimicked with the same approach as before, adding registers to the delay path. As our 

architecture needs to handle different scenarios (a resampler accepting different input rates that result in 

different filtering latencies) and must be generic, the delay synchronization problem cannot be solved 

anymore by adding a fixed number of pipeline registers to the delay path.  

In the filter bank, the data advance through the taps is hence based on a “valid driven 

propagation”. Each delay value is computed and associated to its reference sample in the DIANA engine, 

arriving aligned to filter bank interface. Note now that the filtering of one sample requires several 

subsequent samples marked valid, the number depends on the tap length of the filter. With each valid 

sample, the data samples in the data-path advance one tap register in the filter, as depicted in Fig.  4.25(b). 

The process starts for a given reference sample with the active valid signal accompanying it; that valid 

signal triggers the filtering by inserting the sample in the first tap of the filter data-path. Then, the upcoming 

samples with the valid signal active, drive the sample through the filter. The new arriving samples are 

inserted in the pipeline and at the same time, the insertion propagates the precedent samples through the 

successive taps. A filtered sample is hence popped out of the filter only when a sufficient number of valid 

samples propagates it from the input of the filter to the central tap (we neglect here the latency and/or 

pipelining in the arithmetic hardware elements from that middle tap to the output of the filter).  

To cope with the propagation based on upcoming samples, and the variable filtering latency, the 

solution adopted is to use FIFO memories for synchronization of the different paths. Two banks are used: 

CONTROL FIFO BANK and FILTER FIFO BANK, depicted in Fig.  4.24 in green. The first stores the 

delay value dly, the op and the valid_ips control signals in the filter bank interface, the second stores 

the outputs of the filter bank data_f at the output of the filters. By managing the reading of these banks, 

the synchronization mechanism can handle the aligned arrival of the filtered sample-delay pair at the Horner 

interface.  

The first bank, CONTROL FIFO BANK (control signals), compensates (mimics) the propagation 

latency of the data-path through the filter bank pipeline. It acts handling the propagation latency of the 

dA

- in1 in2 in3 in4 in5 in6

- - in1 in2 in3 in4 in5

- - - in1 in2 in3 in4

in1 - in2 in3 - in4 -

clk

- in1 in1 in2 in3 in3 in4Tap 1

- - - in1 in2 in2 in3Tap 2
- - - - in1 in1 in2Tap 3

c0

d q
enb

x
c1

d q
enb

x

+

c2

d q
enb

x

+

c3
x

+

Tap 1 Tap 2 Tap 3
d_in
valid

d_out

d_in

valid

Tap 1

Tap 2

Tap 3

d_in

clk

c0

d q

x
c1

d q

x

+

c2

d q

x

+

c3
x

+

Tap 1 Tap 2 Tap 3
d_in

d_out

(a) (b)

dB dC dD dE dF dG

dA dB dC dD dE dF

dA dB dC dD dE

dA dB dC dD dA dA dB

dA dB dB dC

dA dA dB dC dC dD

dA dB dC dD

  

Fig.  4.25.  Propagation through the tapped delay line of a filter with (a) a non-decoupled and (b) a decoupled data-path.  

 



Chapter 4.   Arbitrary and real-time variable ratio resampling architecture  

89 
 

delay signal and control signals (current scenario) between the output of the DIANA engine (filter bank 

interface), and the input of the Horner structure (Horner interface). The scenario and delay are pushed in 

this bank, once the first valid data sample arrives at the filter bank interface. This associated reference 

sample is filtered in the parallel data-path and stored in the second FILTER FIFO BANK once ready. The 

filling level of this second memory bank is monitored by the synchronization mechanism. With this 

information this mechanism pops and validates that data out of the CONTROL FIFO BANK as long as the 

second bank is not empty.  

The second memory bank, FILTER FIFO BANK in the figure, stores the valid processed outputs 

of the filter bank. This makes the controlled extraction of filtered samples from the memory possible, 

reusing them when needed. The Filter Bank Ready block latches an active signal after initialization 

of the data-path pipeline in the filters; the taps of the filter bank are populated with valid data after the start 

of the system. After the latching of that signal, data is pushed into the FIFO bank when new valid samples 

arrive (signal valid_ips active). The bank pops out filtered data, signals data_fs, when the pop 

control signal becomes active. This signal, that is a synchronized version of the valid flag in the input data-

path, is extracted from the CONTROL FIFO BANK memory. It reproduces together with the delay value 

and the op signal the input scenario in the filter bank interface.  

Although in our sandwich configuration we will not have bursts arriving to a resampler configured 

in up-sampling mode, our synchronization mechanism can handle also such a case. As presented in 4.3.1, 

a same sample will be used as reference for several output values in up-sampling configurations. When a 

burst arrives (successive input samples marked valid arriving at the data-path input in the filter bank), the 

filter produces consecutive outputs in consecutive processing slots; this pops several filtered samples out 

of the filter based on the consecutive valid of the burst. These bursts at the output need to be handled 

properly by the synchronization mechanism, otherwise corruption may occur. This is the case if the first 

popped sampled of the burst was used in the DIANA engine as reference in two delay values; it needs to be 

re-used twice in the Horner structure, to produce two output samples, with the two delay values (scenario 

4 followed by scenario 2 at the filter bank interface). Imagine that a burst arrives at the input of the filter in 

such a circumstance, the precedent same sample needs to remain two consecutive cycles at the output of 

the filter. The filter will pop a second sample, making the needed one to remain only for one single slot at 

the output port. Without our memory-based mechanism this would violate the delay-sample combination, 

since the sample would only be available for the first of the two processing slots required. However, with 

the controlled extraction of the memories present in our mechanism, this would be safely handled.  

Combining hence the operation of the two memory banks, the scenarios can be safely passed from 

the filter bank interface to Horner interface. The delay and filtered sample signals are thus fed aligned to 

the Horner structure, and a new output can be produced.  

 



Conclusions 

90 
 

4.4.4.6. Output interface alignment 

The propagation between Horner interface and output interface, through the Horner structure, is 

deterministic. The Horner entity is composed of adders and multipliers which combine and propagate the 

filtered data with the delay value. Only arithmetic operators implemented in DSP macros are present, and 

no enable register is used in this data-path pipeline. The latency through them can thus be estimated and 

mimicked with a chain of registers in the op_s line: This signal is propagated in parallel to the data-path 

with pipeline registers reproducing the delay. At the output of the Horner structure, the synchronized op_s 

signal qualifies the result of the resampler (signals data_os and valid_os). These elements are 

depicted in Fig.  4.26.  

4.5. Conclusions 

The chapter has presented a new all-digital sampling rate conversion architecture with a fixed frequency 

system/processing clock. The output data port is synchronous to the input that also serves as reference. The 

resampling ratio is externally provided. The architecture supports both up-sampling and down-sampling. 

The resampler contains an interpolating unit based on a Variable Fractional Delay filter and timing unit 

based on an algorithmic engine implementing the DIANA algorithm. The range of values for this resampling 

ratio is defined by the relation between sampling clock and processing clock in the decoupled data-path in 

which it is included, and the position of the resampler in the data-path. It uses the FRANCISCO fabric 

presented in Chapter 3. The ratio can adopt arbitrary values within the range and accepts its modification 

in real-time. 

 

 

 

 

 

 

 

OUTPUT
INTERFACE

DELAY 
VALUE

DATA-PATH

CONTROL

HORNER
STRUCTURE

data_fs [0]

data_fs [1]

data_fs [C]

x +x +

data_os

valid_os

d q

enb

d qd q

z-n

dly_s

data_o

op_s

DATA-PATH

Horner
Interface

Output 
Interface

pipelined 
arithmetic 
operators

  

Fig.  4.26.  Hardware and signal propagation arriving to the Output interface.  



 

91 

Chapter 5  
 
Verification and Validation of the Resampler 
and the BSP Architecture 

 Abstract: This Chapter presents the results of the 
functional verification and validation of the main units 
of the proposed solution. The entities of the resampler, 

DIANA engine, VFD filter and Synchronization logic 
are first analysed. They are later studied combined 
within a resampler. Finally, the BSP Architecture 

containing two resamplers and application specific 
processing is tested. The results of Hardware tests in a 

laboratory setup are also presented.   

 

5.1. Introduction  

This chapter presents the functional verification of the resampler, its three functional units and the 

combination of two resamplers in a sandwich configuration originating the BSP Architecture. The chapter 

presents also the validation results of the tests that we have performed in the units affecting the final 

performance of the BSP Architecture.  

In the verification process we have checked the operation and behaviour of the resampler, its units, 

and the BSP Architecture against the functional specification that we have introduced in Chapters 3 and 4. 

The validation procedures assessed the performance of these entities; we look at the key elements and the 

implications they have, that affect the quality of the results of the BSP Architecture when in operation. This 

analysis is closely related to the implementation details of the Architecture; it is defined by parameters such 

as the number of bits used in the data-path, the coefficients of the filter bank, or the delay/ratio data-path, 

the number of taps in the filters, the architecture of the VFD, etc. They all influence the final performance 

of the BSP Architecture. The optimization of all these parameters is out of the scope of the Thesis; we 

however present some guidelines that should be taken into account by the reader as an illustration on how 

all these trade-offs affect the performance when tailoring the Architecture to other implementations.  



Verification 

92 
 

The methodology that we have followed in the development, implementation, verification and 

validation procedures is as follows. We have first studied the resampling algorithm with MATLAB 

simulations, regardless of any implementation details. Then a functional Simulink model was used for 

architectural exploration and its verification. The algorithmic operations and control structures were 

grouped by functionalities, and translated into system level blocks. These were integrated into a functional 

system level model of the resampler. Then two resamplers in “sandwich configuration” were connected to 

study the BSP Architecture. These simulations included the latency of the hardware blocks mapping the 

data-path and the control structures. No signal quantization constraints were incorporated at this stage, the 

only error source came from the coefficients of the VFD that approximates the response of a pure delay. 

This functional model was migrated to Xilinx System Generator primitives within our hardware 

implementation for verification and validation with simulations and also in real hardware in the laboratory. 

These hardware primitives and the System Generator suite make possible the simulation of the Architecture 

and its internal signals with an accuracy of a processing clock cycle. We run several simulations with test 

benches mimicking real scenarios and applications of the resampler and the BSP Architecture. These 

verified the feasibility of the solution. Finally, the resampler and the BSP Architecture have been migrated 

to a uTCA crate for test in the laboratory and real hardware.  

5.2. Verification 

The section presents the verification of the BSP Architecture against the functional specification. We first 

briefly present the procedure that we have followed to verify the resampler entities and the resampler as a 

whole. Then we concentrate on the BSP Architecture verification; its results implicitly double-confirm that 

the verification was also successful for the internal entities and single resampler. We use in all the 

verification and validation processes the same clocking configuration for the FRANCISCO fabric and the 

MERCEDES interfaces; the data stream at the input of the decouple interface arrives at sampling rate  

fs  = 62.5·106 sample/s, we configure the interfaces with M = 2 (section 3.3.7), this results in a processing 

clock in the decoupled data-path at a frequency of 125 MHz. These values are also the ones that will be 

used in the OTFB application tests of Chapter 6 (the recovered WR clock is also a signal at 125 MHz). 

5.2.1. Entities and resampler verification 

We present in first place the verification procedure for the DIANA engine, the synchronization logic 

and the VFD. We have used System Generator instead of the Very high-speed integrated circuit Hardware 

Description Language (VHDL) for the hardware implementation of the resampler and BSP Architecture, 

this eases the design and also the verification process of a DSP hardware architecture. This graphical 

language instantiates hardware primitives present in Xilinx FPGAs and accepts easily parametric 

configuration of the hardware elements; we can play with different architectural configurations and, at the 

same time, System Generator makes possible computer simulation of the synthetized final hardware in the 

time domain. We prepared different test benches for the verified entities where we instantiated the System 



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

93 
 

Generator models of the hardware entities and excited them with signals generated in a computer 

workspace.  

In the case of the DIANA engine verification, we have simulated the System Generator 

implementation of the entity depicted in Fig.  4.21 against the algorithmic specification (section 4.3.1.2). 

We studied different input stimulus; the different sampling rates in the input data-path of the resampler are 

defined by the valid signal. We have simulated different activation ratios and different distributions in the 

tests. The resampling ratio R (mapped as 1/R in the signal T_out_n as presented in Eq.( 4.8 )) also 

reproduces different scenarios; we performed tests with the ratio as a static signal, and dynamic scenarios 

where the ratio changed with time. The functional behaviour of the resampler is also controlled with this 

signal; we tested scenarios where it was configured in up-sampling mode and others were the resampler 

was configured in down-sampling mode. We analysed the correct generation and synchronization of the 

output signals op and dly according to the algorithm diagram of Fig.  4.5.  

The VFD interpolating unit of the resampler was the next entity verified. It estimates the value of 

an analog subjacent signal at the requested instants by shifting (filtering) the available samples. These new 

sampling instants are defined by an amount of time (the delay) with respect to the reference handled by the 

DIANA. We have verified that our VFD satisfies the delay ranges (section 4.4.2.1) and the dynamic 

modification of its value. We performed this preliminary verification in the time domain, and we let the 

frequency-domain analysis for the validation study. The data-path of the VFD is implemented in the 

FRANCISCO fabric and uses hence a decoupled data-path. In the verification we do not focus on the data-

path implementation issues that are tackled when verifying the synchronization logic between different 

elements of the resampler, among them the filter bank and the Horner. Moreover, from a functional point 

of view the use of a coupled or decoupled data-path is transparent.  

We have performed simple tests on the VFD that had as objective the verification of the correct 

signal shift or “estimation”, both for “past” and “future” sampling instants with respect to the reference, as 

presented in 4.3.1.1; the “delay by τ s” operation was modelled in the continuous-time in Eq.( 4.10 ) as the 

impulse response hid(t). This impulse response is a shift operation of magnitude |τ| s, being τ negative 

valued. The discrete counterpart h[n] was presented in Eq.( 4.18 ), where the total delay D measured in 

samples (Eq.( 4.20 )) contains an integer part Di that accounts for the latency of the filter and the fractional 

one d. We were interested in this fractional contribution; it defines towards what time direction and how 

much we shift our reference to obtain the estimated output sample. Note that as the contribution of the 

integer part (the hardware latency) is always larger than the fractional contribution, the total magnitude of 

the delay will always be D < 0. When d is also negative, d < 0, the VFD estimates the value of the signal in 

past sampling instants (looking “backwards”) with respect to the reference x[n], that lies in the central tap 

of the filter. When the fractional delay value is positive, the VFD estimates the value of the signal in future 

sampling instants (looking “forward”) with respect to the reference x[n]. The test to verify this correct 

behaviour for positive and negative values fed fixed negative (-d) and positive (d) fractional delay values 



Verification 

94 
 

to the VFD. Then the resulting delayed and advanced signals were post-processed; the latency Di of the 

VFD was removed and the resulting signal aligned with the reference one. The VFD successfully passed 

all the tests. We performed more complex tests with the delay value modified in real-time. Note that the 

filter does not need any reconfiguration time, nor flushing of the internal pipeline and/or taps when changing 

the delay value. The Farrow-based VFD does not require re-computation of the filter coefficients as a 

function of the delay as presented in 4.3.2.5, instead it prefilters the input samples x[n] in the parallel static 

branches that contain the sub-filters gc[n] of the filter bank. This results in a parallel set of pre-filtered data 

based on the single input of the VFD. These pre-filtered data are the coefficients ūc[n] (Eq.( 4.30 )) of the 

Taylor polynomial (Eq.( 4.32 )), with the delay value d  as the variable in this case. We were able to change 

the delay value in real-time and obtain the estimate y[n] of the signal at the sampling instant pointed by this 

delay value.  

The glue logic and synchronization elements connecting the main entities of the architecture have 

also been verified. The process checked that the signals crossing the interfaces presented in section 4.4.4 

arrive aligned at processing-clock cycle level to the following interface. The entities are the DIANA engine, 

and the VFD filter that contains the FIR filter bank and the Horner combiner. The DIANA engine requires 

alignment between data-path and resampling ratio. In the VFD, the filter bank interface requires alignment 

between the data-path and the delay value resulting from the engine. The Horner, that combines the 

processed data-path and the delay, requires also alignment among them, and with the control signal op of 

the engine, that flags when these signals will produce a valid output sample. The synchronization 

mechanism performed correctly. 

After verification of the entities as isolated elements, we studied the entire resampler. We resampled 

different input signals and verified the output to properly represent the underlaying analog signal of the 

input. The ratio was configured in up-sampling mode, in down-sampling mode and to perform no operation, 

being transparent, i.e., R = 1. We also checked that the resampler operates as expected when modifying its 

input resampling ratio signal in real-time. We depict in Fig.  5.1 a summary plot of one of these tests with 

varying ratio in real-time, that implicitly also verifies the simpler cases. We used as input a sinusoidal signal 

at a frequency of 1.5 kHz. The ratio starts adopting a down-sampling value R = 0.5, then is modified towards 

up-sampling values according to R = 0.7, R = 0.9, R = 1.1, R = 1.3 and R = 1.5. We then decrease the 

resampling ratio towards down-sampling ratios; R = 1.3, R = 1.1, R = 0.9, R = 0.7 and  

R = 0.5. After each modification of the resampling ratio, the resampler operates in steady state for 0.1 ms. 

We have decimated the stored reference signal, the resampled signal and the ratio signal to better depict the 

results; we plot one sample in the figure per one-thousand-five-hundred samples in the simulation. In Fig.  

5.1(a) we depict the input reference samples fed to the resampler and its subjacent analog signal. In Fig.  

5.1(b) we depict the resulting signal that follows the resampling ratio, that it is also depicted in the third 

trace, Fig.  5.1(c). We observe at the beginning of the simulation, in the first steady period, that we have 

more samples in the reference trace than in the output trace. The reference trace contains six depicted 

samples while the resampled trace only three. This is coherent for R = 0.5. Then the ratio starts to grow and 



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

95 
 

around the simulation time 0.3 ms, it changes from down-sampling to up-sampling values. We see how in 

each segment, the number of samples in the resampled trace is larger than in the reference. Then, between 

0.5 ms and 0.7 ms, the resampler operates at R = 1.5, we can observe how in the refence trace we have nine 

depicted samples while in the resampled one this value is increased up to thirteen depicted samples, this is 

again coherent for R = 1.5. We finally start to decrease the ratio, and at the end of the simulation it reaches 

the starting value R = 0.5, with again six depicted samples in the reference and three in the resampled trace. 

We can hence conclude that according to this functional test, the resampler is verified, and all the units and 

entities that integrate it and provide support for the implementation, operate as expected with static and 

dynamic ratios.  

 

Fig.  5.1.  Functional verification of the sweeping dynamic resampling ratio. (a) Reference signal. (b) Resampled signal. 
(c) Resampling ratio. 

5.2.2. BSP Architecture verification 

The verification of the BSP Architecture that we present in this point checked that the tuning 

between signal and BSP algorithm was achieved for spectral contents that vary with time. This requires 

dynamic reconfiguration of the resampling ratios in the sandwich. We assessed that our BSP Architecture 

effectively maps the signal spectrum to the BSP processing (filtering), and at the output recovers the original 

sampling rate, in a test bench emulating different scenarios found in LLRF applications.  

The test bench that we used instantiates the segment of the data-path that contains the BSP 

Architecture implementation presented in Chapter 3. It spans between the input and output MERCEDES 

interfaces of Fig.  3.9. The data-path is decoupled before the first resampler and coupled back after the 

second. We used the presented clocking configuration in the introduction with M = 2. The valid signal 



Verification 

96 
 

present after the MERCEDES Decouple interface has a uniform activation ratio ar = 0.5. The BSP region 

between the two resamplers in sandwich configuration is implemented in the FRANCISCO fabric. It 

contains the application-specific processing. The MERCEDES Decouple interface implements also in 

System Generator the proposed architecture of Fig.  3.19, and the MERCEDES Couple interface does the 

same with the architecture of Fig.  3.24. As the test bench aims to mimic LLRF applications, the BAP 

processing block (Fig.  3.9) in our application would be the responsible for the down-conversion of the 

digitized RF signal.  

In the BSP region, we used for the verification a static processing filter inserted between the two 

resamplers. The first resampler increases the sampling rate of the discrete signal. The resampling ratio is 

modified in real-time proportionally to the instantaneous frequency of the signal. This operation tunes the 

discrete representation of the sweeping spectral components of the processed signal to fixed normalized 

frequencies according to Eq.( 3.6 ). Finally, the filtered signal is brought back to the original sampling rate 

by the second resampler. The ratio is modified in real-time in this resampler with the inverse value of the 

input one. The BSP filter was also implemented in System Generator primitives. The stimulus and other 

auxiliary system blocks were implemented using Simulink blocks for simplicity. The tests were conducted 

without and with quantization of the signals to fixed-point arithmetic. We present here the quantized case; 

the data-paths at the input and output of the MERCEDES interfaces, BAP and BSP regions are sixteen bits 

wide, with fifteen fractional bits. The coefficients of the VFD filter within the resamplers and the BSP filter 

are twenty-seven bits wide, with twenty-six fractional part bits. The resampling ratio signals are thirty-two 

bits wide words, with twenty-nine fractional part bits, two integer part bits and one sign bit. The computed 

delay value is an eighteen bits wide word, with seventeen fractional bits and one sign bit.  

5.2.2.1. Notching filter scenario 

The use case scenario that we present in this section emulated an RF signal with harmonic and 

variable spectral content that needs to be processed. The stimulus signal at the input of the data-path test 

bench represents this harmonic signal after down-conversion to base-band: It contains a DC level and a 

tone at a frequency that changes with time. The DC level remains at that fixed position in the normalized 

spectrum during the whole simulation. The real frequency of the tone changes with time but we use the 

BSP Architecture to tune the sweeping tone to the processing, both at a fixed position in the normalized 

discrete spectrum. The signal processing is hence static, it is not reconfigured, and has a fixed frequency 

response addressing the harmonic content. We use for that a static periodic filter whose notches cancel the 

DC level and the variable frequency tone. In the test bench an extra line at a fixed static frequency is added 

as witness of the proper BSP behaviour. When the system performs as expected, the output of the simulation 

contains the witness line only.  

In the simulation, at the beginning, the sweeping tone has a frequency Ftone = 5.375 MHz (ωtone = 

2π·0.086 radian/sample). At the end of the simulation the tone has increased by 18.6%, its frequency 

reaching Ftone = 6.375 MHz (ωtone = 2π·0.1020 radian/sample). The witness tone remains at 3.375 MHz 



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

97 
 

during the whole simulation time, 500 ms. Digital frequencies are normalized to the 62.5·106 sample/s input 

sampling rate. 

The Z Transform of the implemented notch filter within the BSP has been normalized to have unit 

gain outside the notches and is presented in Eq.( 5.1 ). 

( ) 1 1 z
 

2 1 z

N

N

a
H z

a





 
 


 Eq.( 5.1 ) 

The parameter values are a = 31/32 and N = 12. The normalized frequency response notches are 

located at ωnotch_k=k·(2π/12) = k·2π·0.0833 radian/sample. There are 12 notches (k [0, 11]) from DC to 

the resampling frequency. Fig.  5.2 depicts the magnitude response of the filter with respect to the 

normalized BSP sampling frequency f’s. The filter (encapsulated within the resampler sandwich) operates 

only on valid samples in the data-path. These valid samples are the data samples with the valid flag asserted. 

The filter thus processes samples in the BSP region of the sandwich at a rate f’s and operates with a system 

clock at fp. After tuning the spectral content of the signal to the filter frequency response (up-sampling with 

the first resampler), the DC notch (k = 0) cancels the DC component, and the first notch (k = 1) cancels the 

sweeping tone. The witness line should remain unaltered as it does not match any of the filtered frequencies.  

   

Fig.  5.2.  Magnitude of the frequency response of the periodic notch filter normalized to the BSP sampling frequency f’s. 

The ratio of the input resampler tracks in real-time the instantaneous frequency Ftone of the sweeping 

tone. This resampling ratio is computed based on this known instantaneous sweeping frequency of the 

signal, according to the presented procedure in section 3.3.9. As a computation example, take the start of 

the simulation; the normalized frequency of the first peak in the notch filter above DC is  

( )notch_1 1 · 2π /12  [radian/sample]    Eq.( 5.2 ) 

It corresponds to the processing frequency to which we want to tune the signal. The resampling 

ratio according to Eq.( 3.8 ) is therefore 

( )( )6 6
init tone_init notch_1 s /  ·  5.375·10 /  1 / 12  · 62.5·10   1.032( )R F f f    Eq.( 5.3 ) 

At the end of the simulation, the resampling ratio is now 

( )( )6 6
end tone_end notch_1 s /  ·  6.375·10 /  1 / 12  · 62.5·10   1.224( )R F f f    Eq.( 5.4 ) 

The ratio of the output resampler is just the inverse ratio of the input. 



Validation 

98 
 

The test was successfully completed; Fig.  5.3 shows the spectrogram of the input stimulus signal 

(a) and the output processed signal (b). The x axis shows the normalized frequency contents of the signal 

spectrum, the y axis shows the simulation time. In Fig.  5.3(a) one clearly identifies the DC component, the 

witness line at 0.054 sample-1 and the sweeping tone changing with time during the simulation. All lines 

have similar magnitudes in the order of 70 decibel (dB) above the noise floor. Then in Fig.  5.3(b) after 

filtering the input signal within the BSP region, the DC component of the resulting output signal is removed. 

The sweeping tone has been also tracked and cancelled by the notch filter, with its magnitude reduced down 

to the noise floor value. The witness line is not affected by the filtering as it is not tuned to any notch of the 

filter. The test hence verifies that the BSP Architecture operates as expected, from a functional point of 

view. It tunes the sweeping spectrum of the signal to the BSP processing, by modifying in real-time the 

sampling rate of the signal.   

5.3. Validation 

This section presents the validation of the BSP Architecture, the resampler and the internal entities. We 

study how the implementation affects the resampler and BSP Architecture performance. We analyse how 

the finite precision of the fixed-point arithmetic signals degrades the performance. 

5.3.1. Entities and resampler validation 

5.3.1.1. DIANA engine validation 

We start with the DIANA engine analysis, as it lies just after the Input interface of the resampler 

(section 4.4.4). Besides the monitoring of new samples arriving to the architecture, the DIANA does not 

perform arithmetic operations directly on the data-path signals (composed by data_i and the valid_i 

in that segment, Fig.  4.23); it only tests the state of the valid_i signal. The engine hence does not use 

or operate the data_i signal that contains the fixed-point sampled values; it does not directly act in the 

data-path processing (arithmetic operations on the data_i signal and the associated sampled values). 

Nonetheless, the engine computes the delay value (dly signal) based on the resampling ratio signal 

Fig.  5.3.  Spectrograms at the input (a) and output (b) of the BSP Architecture.  



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

99 
 

T_out_n that it receives. Both signals, dly and T_out_n, deal with real-valued numbers and will 

therefore present some quantization error. The delay results from the time distance between the input 

reference and desired output, and it is later multiplied with the filter bank output samples in the Horner. 

The delay error, difference between the quantized value and its real counterpart, will hence influence the 

resampler performance. This error can be modelled, when looking at resampler level, as time jitter in the 

output sampling instant. This jitter shifts the time at which the output is estimated with respect to the real 

instant at which it should be. However, the delay value changes for each output sample, it does not therefore 

accumulate. Note that we will later present in section 5.3.1.2.1 that this jitter can also be modelled as an 

error in the frequency response of the VFD.  

We can estimate the error and this time jitter for our fixed-point implementation. The inaccuracy, 

or shift in time, for a given data sample, is governed by the number of bits used in the fixed-point word 

representing the delay. We use rounding to deal with the truncation error; the maximum delay error will 

hence be in this case one half of an LSB. The objective is to dimension this fixed-point word to trade-off 

between hardware resources and error. The delay signal is used in the Farrow architecture to evaluate the 

polynomial that is composed of the different outputs of the VFD filter bank, as presented in Eq.( 4.33 ), and 

depicted in Fig.  4.13. This evaluation is implemented within the Horner combiner by products between the 

delay and the outputs of the filter bank. The limiting factor will hence be the input width of the multipliers 

that deal with the delay. We use DSP blocks with hardware multipliers to increase the frequency 

performance of the resampler. In FPGAs, these DSP blocks usually offer a multiplicand input of eighteen 

bits and a second multiplicand input with a larger number of bits. For instance, the DSP48E2 block in the 

Xilinx Ultrascale devices contains a 18 x 27 bit hardware multiplier [105]. Our concern is now which of 

the two inputs of the multiplier to use to achieve better global performance within the architecture. We have 

two signals, the data-path and the delay, but only the first contains information directly related to the 

samples that represent the analog signal. It makes hence more sense to use the larger input of the multiplier 

with these discrete values that directly handle the samples of the analog signal. The delay will therefore be 

quantized to a maximum of eighteen bits in our implementation that makes use of a Xilinx FPGA.  

Looking now at the time error, this delay value is normalized to the input sampling period Ts ( Eq.( 

4.6 ));  a delay value dly = 1 corresponds to one input period. The maximum delay value accepted by the 

VFD is plus or minus half of a sampling period; the maximum delay magnitude that a valid sample will use 

is therefore |dly|= 0.5. We can use all the bits in the discrete word, besides the sign bit, to represent this 

fractional valued delay. If we use Xilinx FPGAs with DSP48E2 blocks, the word width will result in a 

fixed-point signal with eighteen bits, one sign bit plus seventeen fractional bits. The magnitude of the 

maximum quantization error (half of an LSB) results hence in this case in 3.8147·10-6 sampling periods.  

It is possible to translate this value in sampling periods to time jitter for any clock frequency; if we 

use a sampling clock at the input of the resampler with a sampling rate of 62.5 ·106 sample/s (16 ns sampling 

period), the error in sampling periods results in that case a time jitter of 6.1035·10-14 seconds. The effect 



Validation 

100 
 

that this instantaneous time jitter has in the computed sampling instant is hence negligible when compared 

to the delay error that results from the frequency response of the VFD filter (section 5.3.1.2.2). The latter 

approximates an ideal delay with a certain precision and the magnitude of the error in this approximation 

is larger than the error that the time jitter will induce. In any case, in our final application (Chapter 6) we 

limit the regulation bandwidth to 5 MHz per sideband around the RF. If we take for instance a tone at a 

frequency of 3 MHz, this time jitter will create a very small and negligible phase error of 6.5918·10-5 

degrees for such a signal.  

There is a second error source in the DIANA engine related also to the quantization process. We 

have already presented in section 3.3.6 the problem that discrete systems present when dealing with fixed-

point implementations of the resampling ratio signals in our BSP Architecture; the quantization errors in 

the ratio (signal T_out_n in our resampler implementation as presented in section 4.3.1.2 and Eq.( 4.8 )) 

result in a slightly different output sampling frequency in the resampler.  

Take the case of an ideal resampler whose ratio signal T_out_n is not quantized; in this case the 

output sampling frequency matches the requested value f’s = R · fs = (1/T_out_n) · fs. We now quantize the 

ratio into the signal T_out_nq (we define T_out_nq = Quant[ (T_out_n ) ], where Quant[x] is the quantized 

value of x). In this second case the resulting sampling frequency f’s_q = Rq · fs = (1/T_out_nq) · fs incorporates 

a frequency deviation coming from the quantization error in the value of the ratio Rq. This error can be 

computed as eq = T_out_nq – T_out_n. These T_out_n and T_out_nq signals are processed in the DIANA 

engine. The engine settles hence the deviation of the output sampling frequency in the resampler. We define 

Δf’s = ( f’s_q – f’s ) as the absolute frequency deviation in sample/s. We are interested in an estimate of the 

deviation based on the word width used in the fixed-point implementation of this ratio signal. We use again 

rounding for the implementation of these signals; the magnitude of the error will be at most half an LSB. 

For instance, if the fixed-point width of the ratio signal is thirty-two bits with twenty-nine fractional bits, 

the magnitude of the largest possible error eMAX results 

29 1 10
MAX 1 / 2 9.3132·10e     Eq.( 5.5 ) 

We can compute the resulting quantized ratio value and the output sampling frequency if we know 

the error in the ratio signal. For this we incorporate the quantization error term into Eq.( 4.8 ) as 

s_q s s
q

s s q q

’ ’ ’ 1 1

_ _ _ _

f f f
R

f f T out n T out n e

 
   


 Eq.( 5.6 ) 

We define also the deviation with respect to the requested output sampling frequency as  

s_q q s qs

s s s

q q q q

’ ·’
1 1 1

’ ’ ·

_ _ _ _ (1 / ) 1
       1 1 1 1

_ _ _ _ (1/ ) 1

f R f Rf

f f R f R

T out n T out n R

T out n T out n e R e R e


      

       
   

 Eq.( 5.7 ) 



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

101 
 

Recall that we use M = 2 for the MERCEDES interfaces, this results in ratios R ϵ [0.5 , 2]; the 

frequency deviation that these ratios would induce if its quantization error adopts that maximum value, 

eMAX, would result in |Δf’s /f’s| = 4.6566·10-10 and |Δf’s /f’s| = 1.8626·10-9 , respectively. Note that the T_out_n 

values resulting for R = 2 and R = 0.5 can be represented without error in fixed-point arithmetic, the example 

intends however just to settle some boundaries for the deviation based on the ratios of the resampler.  

This frequency deviation in the resampler is only relevant if we use it within a sandwich 

configuration, or if the real frequency or phase of the resampled signal is of importance; the different output 

sampling frequency will result in a phase slippage in the resampled sequence with respect to the ideal one. 

This phase slippage is proportional to the signal frequency; take for instance the up-sampling by a ratio  

R = 1.4 of the same tone at 3 MHz sampled at 62.5·106 sample/s with our fixed-point implementation as 

before, thirty-two bits with twenty-nine fractional bits. The quantization error in this case results in  

eq = T_out_nq - T_out_n = 2.6609·10-10. The frequency deviation would result in this case Δf’s = -0.0326 

sample/s and |Δf’s /f’s| = 3.7253·10-10. The achieved output sampling frequency would be 87,499,999.9674 

sample/s instead of 87.5·106 sample/s. The resampler would take 30.67 s to slip by one sample in the output 

(to produce one less sample) due to this quantization error in the ratio. If we reconstruct the analog signal 

using the resampled sequence with a clock at the exact output sampling frequency of 87.5·106 sample/s the 

resulting tone will be at 3,000,000.0011 MHz. For the resampler case, this frequency deviation of 0.0011 

Hz will be the error in the mapping of the signal discrete representation to the processing. The slippage in 

terms of the reconstructed signal would result in an error of 90º in 223.6 s when compared against an exact 

reference. Note that this effect on the phase is hardly noticeable in a computer simulation; with relatively 

large sampling rates the simulation times used cannot be very long, otherwise the outputs of the simulation 

require large volume of memory making the treatment complex. If the simulation lasts for 1 ms, the phase 

slippage in the reconstructed signal would be 4.023·10-4 degree that is a value very difficult to notice with 

a Fast Fourier Transform (FFT) as it would require a large number of samples.  

The good news is that we can cope with this problem; in section 3.3.7 we presented a solution that 

keeps the resampling ratio in a “resampling sandwich” stable at a desired given value, the JOAQUINA 

Frequency Locked Loop. That solution, that is valid for our final resampler sandwich, can be generalized 

with a similar approach for a single resampler; the resampled data can be stored in a memory, and then read 

with a clock whose frequency is the ideal output sampling rate to which the resampler transforms the input 

sequence. The fluctuation in the filling level of this memory can be used to correct on average the quantized 

resampling ratio of the resampler. Fig.  5.4 depicts a sketch of the concept; we want to resample a sequence 

x[n] to a new sequence y[m] according to the ratio R. For this we connect in series a resampler and a 

memory. The sequence x[n] is fed into the resampler that outputs y[m]according the ratio Rq_corr that it 

receives. This ratio contains corrections from a feedback loop, depicted in red around the resampler. The 

loop monitors the filling level of the memory against a reference value and generates a difference signal 

corr_R based on it. The resulting sampling rate f’s_q at the output of the resampler includes the frequency 

deviation caused by the quantization of R in Rq, and the corrections of the feedback loop that on average 



Validation 

102 
 

cancel this deviation. This sampling rate f’s_q of the signal y[m]oscillates around f’s and on average it 

matches its value < f’s_q> = f’s. The input sampling rate region is depicted in yellow in the left of the figure, 

while the output region is depicted in blue in the right of the figure. 

+

DIANA

Resampler

level

MEMORY

Rq

x[n] y[m] y[m]

clk_dcpl clk_cpl

corr_R

fs

Input sampling rate

coupled
data-path

decoupled
data-path

 <f’s_q> ≅ f’s

Output sampling rate

Rq_corr

Hardware Fabric

FRANCISCO Adaptation Fabric

VFD

FPGA

 

Fig.  5.4.  JOAQUINA inspired feedback loop around the resampling ratio for a single resampler. 

The input and resampled data streams use a decoupled data-path that has a processing clock 

clk_dcpl. This clock is also used to write the resampled sequence y[m] to the memory at the biased 

sampling rate f’s_q. In the output port of the memory, we use a coupled data-path. This data-path uses a 

clock clk_cpl at a frequency Fclk to read the memory.  This frequency exactly matches the desired output 

rate Fclk = f’s Hz. The resulting signal y[m] in the output port of the memory contains hence samples at an 

average sampling rate < f’s_q> = f’s sample/s and is clocked with at an exact frequency f’s Hz. 

We can hence conclude that the errors arising from the implementation in fixed-point of the DIANA 

engine are not relevant to affect the operation of the engine. The jitter in the sampling instant is masked by 

the VFD frequency response error and the error in output sampling frequency can be corrected with a 

feedback loop if needed.  

5.3.1.2. VFD Filter Validation 

This section presents the validation of the Variable Fractional Delay filter unit, the interpolator, of 

the resampler. This study analyses how well the filtered signal matches an ideal shifted signal (quality of 

the interpolation process), and how the different parameters of the VFD architecture affect the performance 

of the filter. The optimization of the data-path and the VFD filter-bank is out of the scope of the Thesis, 

however we present in the study some guiding results providing information to tailor the hardware resources 

of the VFD according to the required performance of the resampler. The study is based on a frequency-

domain analysis, with the VFD optimized with = 0.6 in Eq.( 4.34 ). This entity is the interpolating core 

of the resampler, whose performance will be deeply influenced by the VFD performance.  



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

103 
 

5.3.1.2.1. The VFD model 

The discrete-time model HVFD(ejω,d) used in the study of the fixed-point VFD is depicted in Fig.  

5.5. It includes the errors that make the resulting frequency response of the FIR filter bank (section 4.3.2) 

deviate from the ideal delay Hid(ejω,d). The model has a data-path input port X(ejω), a data-path output port 

Y(ejω,d) and a delay input d. The VFD receives reference samples X(ejω) with a certain spectral content ω 

and filters them according to the delay d  with which it is configured.  

+

Nq_dpo

+

Nq_dpi

+

HCP(ejω,d)

Y(ejω,d)

+

Data-
path

output

Quantized Coefficient VFD

fs
+

Computed VFD

HQC(ejω,d)

fs
+

+
d

Nq_dpi

Nq_dly

X(ejω)

Data-
path
input

Delay input

dq

Xq(e
jω)

Nq_dpo

Implemented VFD HI(ejω,dq)

VFD Model    HVFD(ejω,d)

+

Conceptual model of the 
VFD Filter

as parallel filter

HVFD(ejω,d)

X(ejω)

fs

Y(ejω,d)

 fs 

d

With e(ejω,d) accounting for the errors present in 
the simulation configuration.

Hid(e
jω,d)

ec(e
jω,d)

eqc(e
jω,d)

Hid(e
jω,d)

e(ejω,d)

 

Fig.  5.5.  Model of the VFD in the study. 

Our analysis is based on the modelling of the deviation as noise added to the filtered output signal. 

The core of the model is composed by the discrete-time filter Hid(ejω,d) (Eq.( 5.8 )) that is the ideal delay 

response (whose continuous-time frequency response introduced in Chapter 4 was presented in  

Eq.( 4.11 )), and the internal filter ec(ejω,d) that models the deviation error induced by the coefficients 

resulting from the optimization (section 4.4.2.1). The discrete-time frequency response of these time-

dependent filters depends on ω, the normalized angular frequency in radian/sample, and d, the fractional 

delay in sample (that varies with time). 

id ( , ) 1j j dH e d e    Eq.( 5.8 ) 

We call the addition of the two parallel filters Hid(ejω,d) and ec(ejω,d) the Computed VFD filter 

HVFD(ejω,d) = HCP(ejω,d) = Hid(ejω,d) + ec(ejω,d). The parallel error filter ec(ejω,d) is not the only noise 

contribution present in the output Y(ejω,d); the coefficients of the filter bank within the VFD are also 

quantized and implemented in fixed-point arithmetic. The quantization is modelled as an error term added 

to the coefficient value that also distorts the response of the VFD. The quantization is also present in the 

arithmetic signals of the architecture (input, output, delay and all the filter internal signals) implemented in 

fixed-point arithmetic, being also modelled as additive noise components. We rearrange the contribution 

of these quantization errors according to their effect in the frequency response. The quantization of the 

coefficients is modelled by the error filter/term eqc(ejω,d) in the model in parallel to HCP(ejω,d), and results 

in a deviation in the filter frequency response that is different for each delay and frequency combination. 

The quantization in the delay signal, modelled in the DIANA engine (section 5.3.1.1) as time jitter in the 

sampling instant, is here analysed looking at the frequency response. We can think of this delay error as 

another deviation in the frequency response of the filter; it results from the difference between the real delay 



Validation 

104 
 

value d and the quantized delay value dq received by the internals in HVFD(ejω,d). We model the delay error 

as the additive noise source Nq_dly that acts biasing the delay value that the filters receive, dq = d + Nq_dly, 

and hence the filter response. Recall that the magnitude of the maximum quantization error in the delay 

signal for our reference architecture results in 3.8147·10-6 sampling periods (section 5.3.1.1); we can 

anticipate that such small value will not influence enough the filtered signal to notice this error. The last 

quantization effect comes from the truncation and/or rounding in the data-path. When this error is present 

in the input port, resulting from the sampling and processing in the precedent stages, we model it as the 

additive noise Nq_dpi that originates Xq(ejω) = X(ejω) + Nq_dpi. The filter HVFD(ejω,d) processes hence a signal 

that contains a noise term that is also filtered. In the output this contribution is again an additive component 

Y(ejω,d) = (Xq(ejω) + Nq_dpi)·HVFD(ejω,d) = (Xq(ejω) + Nq_dpi)·(Hid(ejω,d) + eVFD(ejω,d)). To cope with the 

increment and propagation of this error, we have extended the word width in the internals of the filter after 

each arithmetic operation in the FIR bank and the Horner. This resulting extended word is only truncated 

in the output stages to the width of the input port. Our data-path also normalizes a full-scale input to a 

maximum magnitude of one; this lets us handle efficiently the quantization error by removing the excess 

LSBs in these output stages of the processing blocks. We include the quantization effects in the internals 

of the data-path (if any) as a second additive noise Nq_dpo at the output of the filter. This second component 

also accounts for the effect when the output data-path width is different from the input one. We call this 

model that incorporates all the quantization effects in signals and coefficients the Implemented VFD filter  

HVFD(ejω,d) = HI(ejω,dq) whose output signal results Y(ejω,d) = (Xq(ejω) + Nq_dpi)·HI(ejω,dq) + Nq_dpo = (Xq(ejω) 

+ Nq_dpi)·(Hid(ejω,dq) + eI(ejω,dq)) + Nq_dpo, where the term eI(ejω,dq) models globally the errors in the 

implemented filter besides the data-path quantization error.  

We performed analysis of the different error terms iteratively and we found that the data-path 

quantization is the most relevant contribution. We present here only the results for the Computed Filter 

HCP(ejω,d), the optimal frequency response approximating the ideal Hid(ejω,d), and for the Implemented 

Filter HI(ejω,dq), that incorporates all the errors present in the final implementation.  

5.3.1.2.2. The computed filter 

The Computed Filter (FIR bank architecture with six filters (C = 5) and fifteen taps each  (B = 15) 

presented in section 4.4.2) whose pass-band has been optimized up to = 0.6 is referred as  

( ) 06
0

( , )
6 06

CP
 0. 6( ) | mag ( ,, , )

jj e djj je e dH e d H ed
  

 
    Eq.( 5.9 ) 

This optimization corresponds to a cut-off frequency of ωc =  · π = 1.885 radian/sample 

(equivalent to fc = 0.3 sample-1), normalized with respect to the input sampling frequency. The error ec(ejω,d) 

resulting from the optimization when no other quantization effect is present can be obtained as  

( ) ( ) ( ) ( )c 06 06 id
0.6

,  = ,  = , ,j j j je d e d H d H de e e e 



 


  Eq.( 5.10 ) 



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

105 
 

The magnitude of the error is a clear indicator of the degradation in the filter. The analysis of the 

phase is more complex; we instead study the group delay defining the group delay error function as the 

difference between the group delay of the computed filter τ06(ejω,d) and the group delay d of the reference  

( )06 06, = ( , )  j je de d e d 
    Eq.( 5.11 ) 

In Fig.  5.6 we depict the resulting magnitude (a) of the error function in Eq.( 5.10 ) and the group 

delay error (b) of Eq.( 5.11 ) in the optimized pass-band region for our VFD. The coordinates in the 

horizontal plane are the delay d in sample and the angular frequency ω normalized by 2π radians (resulting 

into a discrete frequency f in sample-1). The resulting errors in magnitude and group delay are the surface 

whose magnitude is mapped to the z coordinate. The magnitude of the error function presents dependency 

with the frequency axis and is below 1.25·10-5 in the most part of the optimized pass-band, and only for 

frequencies close to the cut-off, and for delay values close to d = ±0.5 sample does it reach 7·10-5. The 

surface presents soft wavy pattern/oscillations along the frequency axis, increasing at higher frequencies. 

The error dependency in the delay axis is symmetric around the origin, d = 0 sample, and presents the 

maxima for delay values around d = ±0.35 sample, with exception in the frequencies very close to the cut-

off where the error explodes for d = ±0.5 sample. The group delay error presents the same dependencies in 

the frequency and delay axes but is larger in the lower frequency range instead reaching a value of 1·10-4 

sample.  

We can also observe that in the lower frequencies the error magnitude decreases to zero for delay 

values close to the accepted VFD range, +/- 0.5 sample. For frequencies larger than 0.1 sample-1 the error 

grows also for these corner delays, and the contribution of the frequency axis becomes more relevant than 

the delay parameter in the response. It is also clearly noticeable that the error becomes zero for all 

frequencies, when the delay value is d = 0. That is sure expected; the Farrow architecture in which the VFD 

is implemented is based on a Taylor series. It evaluates the series with the delay value d as variable, as 

presented in Eq.( 4.33 ). When the delay is d = 0, only the first coefficient (filtered data resulting in the 

coefficient u0[n] in Fig.  4.13) is present in the output. All the other filter branches are multiplied by powers 

of zero. Furthermore, the sub-filter g0[n] in the u0[n] branch has as impulse response a Dirac delta; the 

 

Fig.  5.6.  Error function and group delay error function for the computed filter with = 0.6. Zoom in the pass-band region. 
(a) Magnitude of the error function. (b) Fractional group delay error. 

E
rr

or
 m

ag
ni

tu
de

 

D
el

ay
 e

rr
or

 [
sa

m
pl

e]



Validation 

106 
 

output is a replica of the input. The error becomes zero in this case as this is the only sub-filter contributing 

to the bank output.  

We have also computed the achievable Signal to Noise Ratio (SNR) as figure of merit when we 

scan the filter with a pure tone that has a magnitude of 1 Vpeak. We use a 1 Vpeak signal as this value is the 

full-scale input magnitude of our quantized data-path, and hence the test signal that in the VFD will achieve 

the maximum SNR. The noise term σ2
N_RMS(ejω,d) contains only the coefficient optimization error for 

HCP(ejω,d), with SNR defined as  

( ) ( )
2

X_RMS

2
N_RMS

,
(

= 
,

)
 j

j

j

e
S

d
e

e
NR d








 Eq.( 5.12 ) 

The resulting surface is presented in Fig.  5.7. The lowest SNR value results in 95 dB close to the 

cut-off frequency for a delay d = 0.5. In the rest of the pass-band it reaches peak values of SNRMAX = 130 

dB, with an average value SNRAVG = 110 dB. The surface keeps the wavy pattern along the frequency axis. 

These large SNR values make our Computed Filter acceptable for our DSP application of Chapter 6.    

5.3.1.2.3. The implemented filter 

We have conducted a similar study with the coefficients and the delay quantized to fixed-point 

arithmetic; no significant degradation was found in the filter response. We hence present here the 

Implemented Filter VFD filter, HI(ejω,dq), that uses fixed-point arithmetic with rounding in all the signals. 

The width of the data-path is sixteen bits wide at both the input and output ports; one sign bit and fifteen 

fractional bits. This word is a commonly used value inherited from the many analog to digital converters 

in the market that use this width. The delay value has been quantized to eighteen bits as presented in 5.3.1.1, 

the resulting error will induce (as presented when describing our VFD model) a shift in the achieved 

frequency response with respect to the ideal filter. The coefficients have been quantized to a fixed-point 

word width of twenty-seven bits; one sign bit and twenty-six fractional bits.  

We present the resulting error magnitude of our filter in Fig.  5.8 when we scan it with a full-scale 

input, a 1Vpeak (we iterate different frequency-delay pairs (ejω,d)). The first significative difference that we 

Fig.  5.7.  SNR at the output of the computed filter when excited with a 1 Vpeak tone with = 0.6. (a) First Nyquist zone. 
(b) Zoom in the pass-band region. 

0

50

0.5

100

150

(a)
Computed filter SNR - 1Vpeak input tone

Delay [sample]

0 00.1

Norm. frequency  / 2  [sample-1]

0.20.30.4-0.5 0.5

80

100

0.5

120

140

160

(b)
Computed filter SNR (optimized region)

Delay [sample]

0 0

Norm. frequency  / 2  [sample-1]

0.10.2-0.5 0.3



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

107 
 

notice with HCP(ejω,d) is the larger error magnitude that now reaches in the optimized region a value that 

fluctuates around 2·10-5. The largest contribution to this error is coming from the quantization of the data-

path. Note that the largest quantization error, one half of an LSB, results in MAX(eq[n]) = ± 1.52·10-5 V; 

our error is larger as the input quantization noise is also being filtered by the VFD. Our fixed-point data-

path masks hence the error of the HCP(ejω,d) within almost all the optimized pass-band. Only in the high 

frequency region, very close to the cut-off frequency, and in the corner delays |d| = 0.5 sample, is the error 

in the frequency response of the filter larger than the quantization error. In this case it is the computed filter 

response and not the fixed-point implementation of the data-path that degrades the VFD. These corner cases 

are however very irrelevant compared to all the rest of flat optimized region. We can hence assume as error 

a flat surface visible in the enlargement of Fig.  5.8(b); the quantization noise contribution, uncorrelated 

with the input signal, is at least twice larger in magnitude than the worst peaks and in general several orders 

of magnitude larger than the average value that we had in HCP(ejω,d). The error seems different when the 

input signal has frequency of 0 sample-1 (a DC signal). In this case the error increases from 2·10-5 to 3·10-5 

and seems unrelated to the rest of the error surface.   

This result is expected; first recall that we use in the test a full scale 1 Vpeak input that is quantized 

to a signed fixed-point arithmetic word. The number of quantizer levels in such a signed word might not be 

even; the positive range might have one less level. An input value with 0 V, that is neither positive nor 

negative, already consumes a discrete word that is formed with all the bits set to 0. Normally the missing 

level lies in the upper limit of the representable values. The error for a positive full-scale value (Vpeak = 1V 

in our data-path) is hence 1LSB instead of ½ LSB. This is the case for the System Generator implementation 

of the quantizer, it maps the 0 V input to the middle word composed of all the bits set to 0. The error for a 

full-scale input is hence one LSB instead of just one half of an LSB. The DC error depicted in Fig.  5.8(b) 

verifies this adopting a constant value of 3.052·10-5 consistent with our sixteen bits data-path word. 

The last significant difference with HCP(ejω,d) is that now when using a delay value d = 0, the error 

is no longer 0 but the quantization error of the input signal. Recall that the frequency response error of the 

computed filter for this delay value is 0. However, if the input signal is quantized, this error will unavoidably 

be present at the output of the VFD.  

 

Fig.  5.8.  Error function for the implemented filter with = 0.6 and sixteen-bit data-path. (a) Magnitude of the error function. 
(b) Zoom in the pass-band region. 

E
rr

or
 m

ag
ni

tu
de

E
rr

or
 m

ag
ni

tu
de

 



Validation 

108 
 

The resulting peak SNR for the implemented (quantized) filter can be seen in Fig.  5.9; it decreases 

to an average value close to 94 dB in the same flat surface independent of the frequency. The implemented 

filter therefore degrades the SNRAVG by 16 dB when compared to the computed filter in 5.3.1.2.2. The 

contribution of the VFD optimization error in the resampler is negligible in the optimized bandwidth 

compared to the data-path quantization error for the presented fixed-point implementation. However, the 

maximum achievable SNR is still very close to the limit Signal-to-Quantization-Noise-Ratio (SQNR) of 

98.09 dB (sixteen bits). Note that the design data-path SQNR at the input of the VFD contains only noise 

coming from the quantization noise, while at the output the SNR includes the contribution of the 

Implemented VFD, 4 dB, that mainly result from the filtering of the input quantization noise. 

  

Fig.  5.9.  SNR at the output of the implemented filter with = 0.6 and sixteen-bit data-path when excited with a 1 Vpeak tone 
with = 0.6. (a) First Nyquist zone. (b) Zoom in the pass-band region. 

5.3.1.3. Resampler Validation 

We present in this section the validation of the resampler as a whole entity, that includes the DIANA 

engine, the VFD filter and the Synchronization elements implemented in the FRANCISCO fabric. We study 

how well these units operate together, and how well the resampler estimates the resulting values of the 

subjacent analog signal sampled at the output rate.  

5.3.1.3.1. The resampler model 

Fig.  5.10 depicts our reference model for the resampler, that makes use of the hardware architecture 

and functional units presented so far, and is also filter-inspired. We will study how the quantization error 

of the arithmetic operations within the data-path and the delay computation degrades the performance. It is 

based on the VFD model of Fig.  5.5, but we now incorporate also the DIANA engine, and the 

S
N

R
 [

dB
]

S
N

R
 [

dB
]



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

109 
 

characterization uses the frequency ω of the signal and the resampling ratio R, instead of the delay d, as 

input parameters. Our results are hence now based on the ratio-signal frequency pair (ejω,R). 

The VFD response presented in 5.3.1.2 is always reproducible for a given frequency-delay pair 

(ejω,d). This is not any longer the case for the resampler; it uses a delay value (and a reference) that changes 

from one sample to the next (except for very specific cases as R = 1 or R = 0.5). The frequency response 

of the resampler might even be different for two identic ratio-signal frequency pairs; the input sample 

history and the ratio history determine the reference sample used in the computation of the delay value. We 

have hence a response that depends on the past. To cope with this memory effect in the resampler, we 

characterize statistically the ratio-signal frequency pairs; we average different iterations with the same 

configuration. We anticipate that the delay/reference variations have not much influence when averaging 

the performance of the implemented resampler. This assumption is based on the fact that the frequency 

response of the implemented VFD in the optimized region is uniform. The oscillations in the frequency and 

delay axis are only noticeable when we do not quantize the data-path. We hence expect results in the 

quantized implementation of the resampler very similar to the implemented VFD performance.  

Looking at the internals of the resampler model we see that the VFD entity is the same as discussed 

in section 5.3.1.2. The only difference is now that the delay dq is computed in the DIANA engine using the 

resampling ratio R. In the resampler model the data-path port receives reference samples X(ejω) with a 

sampling rate fs, the ratio input receives the ratio signal R with a rate fp, the DIANA computes the delay 

based on the ratio and the output of the resampler provides the resampled signal Y(ejω) at a sampling rate 

f’s after filtering in the VFD. The quantization noises are depicted again as additive components Nq in red. 

The only new noise component is Nq_r, that is incorporated to the ratio input when we use a quantized 

implementation (section 5.3.1.1). In this filter-based model, the reader has to bear in mind that the input 

and output rates of the resampler are different (except for the case R = 1). This brings some mathematical 

inconsistencies to the figure. We however do not intend to obtain a precise mathematical model, but just a 

qualitative simple model that let us identify conceptually the contribution of the different errors present in 

the resampler.  

+

HCP(ejω,d)

Y(ejω)

+ Data-
path

output

Quantized Coefficient VFD

f’s = R · fs

+

Computed VFD

HQC(ejω,d)

fs
+

Nq_dpi

X(ejω)

Data-
path
input

Delay input
dq

Xq(e
jω)

Nq_dpo

Implemented VFD HI(ejω,dq)

VFD Model    HVFD(ejω,d)

+d

Nq_dly

DIANA
engine

Nq_r

R

DIANA

Ratio
input

Delay
outputRq+

DETAILED 
RESAMPLER

Model

HRSP(ejω,R)
Hid(e

jω,d)

ec(e
jω,d)

eqc(e
jω,d)

 

Fig.  5.10.  Detailed model of the resampler in the study. 

 



Validation 

110 
 

We will now analyse the differences that the DIANA errors introduce in the resampler model. We 

recall the results presented in 5.3.1.1; the quantization effects on the engine will influence the resampler 

twofold. The ones in the delay value d create a time jitter in the output sampling instant. This jitter results 

in a misconfiguration of the delay value used by the VFD, and deviation on the frequency response of the 

VFD. On the other hand, the quantization error in the ratio signal R will create a deviation in the output 

sampling frequency. The achieved resampling ratio might differ slightly from the desired one; this will 

result in a phase slippage when the time-domain signal is compared to an ideal reference at the ideal output 

sampling frequency. We also saw in Chapter 3 that when using two resamplers in sandwich configuration 

these errors in the ratio can lead to a misconfiguration between its inverse ratios. We offered solutions to 

both problems based on the JOAQUINA feedback loop; in the sandwich it keeps on average inverse ratios, 

and in the resampler it keeps on average the exact sampling frequency at the output. However, we analyse 

and simulate in this section the resampler in open-loop; we do not correct the errors resulting from the 

quantization of the ratio. As we anticipated already in the DIANA study, this error has a very small influence 

in the quantitative results (as opposed to the functional problems that it supposes for the sandwich). It 

depends on the value of the ratios and the resulting largest sampling frequency deviation for our 

implemented architecture remains below |Δf’s /f’s| = 2·10-9. Note also that the phase slippage results also in 

very small values for short simulations times, as this is the case. We can hence run the simulations in open-

loop and consider the results as acceptable, as long as the simulation time last for a few ms, disregarding 

the influence of this sampling frequency offset.  

As in the VFD case, we have studied the influence of these error sources by gradually incorporating 

them to our model. We present here however only the most relevant results. We call Computed Resampler 

HCPR(ejω,R) the resampler model that incorporates the HCP(ejω,d) VFD filter and does not quantize ratio or 

delay signals; its only error source comes from the computed coefficients of the VFD. This model lets us 

understand the effect (if any) of the different delays used by the VFD for a single ratio-frequency pair. 

When we include quantization to the model (additive noise sources in the data-path, delay and ratio signals, 

and also the frequency deviation due to the quantized coefficients) we call this model the Implemented 

Resampler HIR(ejω,R). To make the results more readable we simplify the detailed model of Fig.  5.10 to 

the simplified filter-based version of Fig.  5.11, that has a frequency response HRSP(ejω,R) and models as an 

average the delay time-dependent response of the resampler for a given frequency ω and ratio R based on 

several iterations of the simulation. Again, this is just a conceptual representation of the resampling process, 

+

Nq_dpo

+

Nq_dpi

+

HRSP(ejω,R)

X(ejω)

fs

Y(ejω)

f’s = R · fs

R

With er(e
jω,R) accounting for the errors present in 
the simulation configuration.

Hid_r(e
jω,R)

er(e
jω,R)

Ratio 
input Rq

+
R

Nq_r

+

HCPR(ejω,R)

Y(ejω)

+

Data-
path

output

f’s = R · fs
+

Computed RSP

fs

+

Nq_dpi

X(ejω)

Data-
path
input Xq(e

jω)

Nq_dpo

Implemented 
RSP

HIR(ejω,Rq)

SIMPLIFIED RESAMPLER Model HRSP(ejω,R) Conceptual model of the 
RESAMPLER as parallel filter

ec_r(e
jω,R)

Hid_r(e
jω,R)

eqc_r(e
jω,R)

 
Fig.  5.11.  Simplified model of the resampler in the study. 



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

111 
 

that does not intend to be mathematically rigorous. The core of the model, includes two parallel filters. One 

models the ideal response of a resampler Hid_r(ejω,R), as a noiseless resampling process. The second 

ec_r(ejω,R) models the error in the output of the resampler due to the computed coefficients of the VFD (it 

averages several simulations for a given ratio). Then, when quantization is added to the model, we include 

the additive noise sources Nq_dpi and Nq_dpo in the data-path, Nq_r in the ratio and the parallel filter eqc_r(ejω,R) 

that accounts for quantization in the VFD coefficients. This eqc_r(ejω,R) filter also processes the input when 

present. All these resampler filters have as input parameter the ratio R instead of the delay d. In the time-

domain simulations of the resampler, we use the SSRC hardware architecture presented in Chapter 4, that 

has been elaborated for each unit in the previous sections. The accepted ratios are hence for down-sampling, 

transparent and up-sampling modes R ϵ [0.5 , 1), R = 1 and R ϵ (1, 2] (MERCEDES configuration, M = 2). 

5.3.1.3.2. The computed resampler 

We first present the results for the Computed Resampler HCPR(ejω,R), that uses the VFD of 5.3.1.2.2. 

The error in the output of the resampler in this situation comes only from the frequency response deviation 

of the VFD as the delay and ratio signals are exact. This lets us identify the effect that the changing different 

delay values have in the resampler for each output sample. For sake of clarity, we present results and error 

surfaces differentiating simulations for down-sampling and up-sampling ratios using static values. These 

different configurations let us better relate the results with the limit bandwidth for the input signal presented 

in section 3.3.10. In any case we saw that both the VFD and the DIANA engine support ratio variations in 

real-time, that will not degrade the response of the resampler. Further simulations are presented in Chapter 

6 where the entire BSP Architecture is operated with variable rates.  

We first depict in Fig.  5.12 the error surface |er(ejω,R)| with a down-sampling configuration (note 

that in this case er(ejω,R) = ec_r(ejω,R)). One of the axes of the response presents the frequency ω at which 

we evaluate the resampler while the other depicts the ratio R. We observe in Fig.  5.12(a) that the resampler 

response is very flat in the optimized pass-band region of the VFD. When analysing in detail this optimized 

region in Fig.  5.12(b), we observe that for each frequency the error response is almost independent of the 

resampling ratio. However, when looking at the response for a given ratio, we can still identify the periodic 

 

Fig.  5.12.  Error function for the computed resampler, down-sampling ratios. (a) Magnitude of the error function. 
(b) Zoom in the pass-band region. 

E
rr

or
 m

ag
ni

tu
de

E
rr

or
 m

ag
ni

tu
de

 



Validation 

112 
 

oscillations dependent with the frequency that we introduced in the ideal VFD. The magnitude of the error 

in the surface is of the same order as the one of its VFD (Fig.  5.6) with an average value below 1·10-5 for 

frequencies below f < 0.2 sample-1. In the upper frequencies of the pass-band the error increases to values 

around 3·10-5, with a spike for a ratio value of R = 0.85. In this simulation, the error with R = 1 goes to 0; 

there is no resampling and the delay value d = 0 is predominant in the iterations run with this configuration. 

It is also the case for R = 0.5 that again presents a predominance of d = 0. This value results when the input 

and output sequences have the sampling instants aligned; the first output is sampled at the same time instant 

as the input, resulting in a delay d = 0, with the successive delay values repeating periodically the pattern  

d = {2 1 0 2 ...}. We have intentionally configured the resampler and test bench for this to happen as a 

sanity check in the simulations. With further characterization of the resampler (giving more randomness to 

the reference history to achieve a delay d ≠ 0 for R = 1) the resulting error would be an averaged value in 

the order of the rest of the surface; it would use other constant delay values averaged.  

Note also that according to section 3.3.10, the bandwidth of the input signal cannot exceed  

ω = 2π·f = 2π·0.25 when the ratio is R = 0.5 (with a clocking relation M = 2), increasing linearly up to ω 

= 2π·f = 2π·0.3 in R = 0.6. However, the simulation has been run with frequencies spanning up to ω = 2π·f 

= 2π·0.5. The results seem to be valid as the SNR value is in the same order of magnitude than for the valid 

frequencies. However, this is an artifact resulting from a folded image of the input tone in the second 

Nyquist zone. This image lies back folded to the first Nyquist zone in the sampling (or resampling) process. 

This artefact is present in both the resampler and our resampled reference signal. The error signal for these 

frequencies results then false with apparently no error (or a very low value) as the reference and resampled 

signal contains the identic artifacts. We will better depict this in the entire BSP Architecture verification. 

In any case, the resulting surface has to be considered only in the input frequency ranges of section 3.3.10. 

We made the assumption that the resampler error response for a given ratio is an average of the 

responses of its different delays. Comparing Fig.  5.12 with Fig.  5.6(a), we verify that the magnitude of the 

resampler error (i.e., below 1·10-5 for frequencies below f < 0.2 sample-1) for each frequency is indeed in 

this same order of magnitude as the average of the VFD, and very flat for a given frequency. The oscillations 

of the error along the frequency axis adopt also the same previous VFD pattern.  

 

Fig.  5.13.  Magnitude of the square error function for the computed resampler in down-sampling configuration. Zoom in the 
pass-band region. (a) Slices along the ratio axis. (b) Slices along the frequency axis. 

 

S
qu

ar
e 

er
ro

r 
m

ag
ni

tu
de

S
qu

ar
e 

er
ro

r 
m

ag
ni

tu
de



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

113 
 

In Fig.  5.13 we slice the square error in ratio and frequency traces. We clearly identify the periodic 

oscillations along the frequency axis in the ratio slices and the flatness of the response for each ratio in the 

frequency slices. We can therefore conclude that our resampler response assumption, as an average of the 

error response of the VFD, was right.  

Fig.  5.14 presents the results for up-sampling ratios with identical conclusions. 

 

We finally depict in Fig.  5.15 the achieved SNR surface (note that the surface depicts results with 

the same folded artifacts presented before). We achieve SNR ratios above 115 dB for frequencies below  

f < 0.2 sample-1 with an SNRAVG = 110 dB, and in any case for the cut-off frequencies our SNR decreases 

to 95 dB only. The SNR surfaces for ratios R = 1 and R = 0.5 tend to infinite as the error tends to 0, and 

hence are omitted in the plot. Note that the SNR presents again the same periodic oscillations along the 

frequency axis and remains flat for a given frequency along the ratio axis averaging the VFD response of 

the different delays as expected. The degradation of the resampler with respect to the VFD is hence 

negligible, and the varying delays can be neglected.  

Fig.  5.15.  SNR at the output of the computed resampler, both down-sampling and up-sampling ratios, when excited with 
a 1 Vpeak tone. (a) First Nyquist zone. (b) Zoom in the pass-band region. 

 

S
N

R
 [

dB
]

S
N

R
 [

dB
]

Fig.  5.14.  Error function for the computed resampler, up-sampling ratios. (a) Magnitude of the error function. 
(b) Zoom in the pass-band region. 

E
rr

or
 m

ag
ni

tu
de

E
rr

or
 m

ag
ni

tu
de

 



Validation 

114 
 

5.3.1.3.3. The implemented resampler 

We now present the results of the Implemented Resampler HRSP(ejω,R) = HIR(ejω,Rq) in which the 

signals are quantized to fixed-point arithmetic. The study is analogous to the Computed Resampler and we 

present only the more remarkable results. We use a width of thirty-two bits with twenty-nine fractional bits 

for the fixed-point signal representing the ratio; the resampling ratio and the computed delay are hence not 

exact. Recall that in the DIANA engine validation in 5.3.1.1 we computed the sampling frequency deviation 

error for such a ratio signal implementation using a resampling ratio R = 1.4 with a 3 MHz input signal. 

The error in the quantized ratio was eq = T_out_nq - T_out_n = 2.6609·10-10 and the frequency deviation 

resulted in this case Δf’s = -0.0326 sample/s and |Δf’s /f’s| = 3.7253·10-10. By examining the frequency 

response of the computed resampler in Fig.  5.14, the deviation resulting from this error seems negligible; 

the response does not vary very abruptly around that resampling ratio. We can hence run safely the 

simulation in open-loop as we did in the previous section even with the fixed-point implementation.  

We depict slices of the magnitude of the square error function in down-sampling and up-sampling 

configurations respectively in Fig.  5.16 and Fig.  5.17. These slices are traces along the ratio axis in the 

left plots and slices along the frequency axis in the right plots of these two figures. We can observe that the 

implemented resampler response remains flat in the optimized pass-band region of the VFD; independent 

Fig.  5.16.  Magnitude of the square error function for the implemented resampler in down-sampling configuration. Zoom in the 
pass-band region. (a) Slices along the ratio axis. (b) Slices along the frequency axis. 

Fig.  5.17.  Magnitude of the square error function for the implemented resampler in up-sampling configuration. Zoom in the 
pass-band region. (a) Slices along the ratio axis. (b) Slices along the frequency axis. 

S
qu

ar
e 

er
ro

r 
m

ag
ni

tu
de

S
qu

ar
e 

er
ro

r 
m

ag
ni

tu
de

S
qu

ar
e 

er
ro

r 
m

ag
ni

tu
de

S
qu

ar
e 

er
ro

r 
m

ag
ni

tu
de



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

115 
 

of the resampling ratio. However, now the data-path quantization noise effect dominates the ripples of the 

frequency response error; we do not see any more the periodic oscillations fluctuating in the frequency axis 

that were induced by the VFD. The magnitude of this square error, that we modelled as the error filter 

er(ejω,R) in Fig.  5.11 adopts a value around 3·10-10. This value is as expected larger than the one in the 

Computed Resampler, which was below 1·10-10. Note also that the error with R = 1 and for R = 0.5 is now 

no longer zero, it is close to the quantization noise of the data-path (with these ratios the delay value d = 0 

is still predominant in the different iterations performed).  

We finally present the maximum achieved SNR surface (full scale input, 1Vpeak tone) in Fig.  5.18. 

The achieved value in the final implemented resampler remains similar to the one of the VFD. We obtain 

a flat surface with SNR in the order of 95 dB that is very close to the limit SQNR of 98.09 dB of the data-

path. Particularly, the SNR for ratios R = 1 and R = 0.5 adopts a value that matches the SQNR of the data-

path. We can hence generalize our conclusions presented so far, but now for the entire optimized pass-band 

region; the contribution of the VFD frequency response error, and other quantization errors, besides the 

data-path, have a negligible effect. These effects are masked by the data-path quantization error when using 

a sixteen-bit implementation, but the result still reaches a value only 3 dB below the limit SQNR. In any 

case, the obtained SNR is an accurate average of the SNR of the different delay values of the VFD being 

used with a given resampling ratio R. Note that the surfaces are plotted for all the ratio values along the 

entire first Nyquist region, however the valid frequency ranges of the surface must be interpreted according 

to section 3.3.10. 

   

Fig.  5.18.  SNR at the output of the implemented resampler, both down-sampling and up-sampling ratios, when excited with 
a 1 Vpeak tone. (a) First Nyquist zone. (b) Zoom in the pass-band region. 

5.3.2. BSP Architecture validation 

This section presents the validation of the Beam Synchronous Processing Architecture, what we 

call the resampler sandwich. We study how well the BSP performs the double sampling rate conversion 

processes by studying the SNR at the output of the sandwich, when no application specific processing is 

performed within the BSP sandwich. In this situation the input signal crosses the Architecture being only 

up-sampled in the input resampler and down-sampled in the output resampler without any intermediate 

S
N

R
 [d

B
]

S
N

R
 [d

B
]



Validation 

116 
 

degradation. We hence analyse the decrease in the spectral purity for the processed signal crossing the BSP 

Architecture that is implemented using two instances of the resampler presented in 5.3.1.3. 

5.3.2.1. The BSP Architecture model 

In Fig.  5.19 we present our sandwich model HSND(ejω,Rin) based upon the one for the resampler in  

Fig.  5.11. Now it incorporates an output stage with a second resampler. Our results are averages of time 

simulations computed for different signal frequency-input resampling ratio pairs (ejω, Rin) (note that the 

output ratio must be the configured with the inverse Rout = 1 / Rin). We perform statistical averaging to cope 

with the dependence of the sandwich on the past history of the input signal and ratio. Recall that for the 

single resampler case, the quantization noise in the input data-path is filtered once, while now in the BSP 

Architecture case, this noise is filtered twice (double resampling process that includes a second output 

resampler). The second resampler filters also all the noise contributions present at the output of the input 

resampler, plus the noise added in the BSP processing region (if any). We depict this in the model; the first 

resampling stage modifies the sampling rate of X(ejω) resulting in the intermediate signal Y(ejω) at a 

sampling rate f’s that is propagated to the BSP region. The output resampler recovers, using the inverse 

ratio Rout, an output signal Z(ejω) that (ideally) has the original sampling rate f’’s = fs of the signal X(ejω). If 

no errors are present in the double resampling process, the input and output signals would hence be 

identical. This is not the case for ratios different than R = 1, as for instance, the approximation error of the 

computed VFD will always be present.  

++

HRSP(ejω,R)Nq_dpi

X(ejω)
+

Nq_dpo

VFD + 
DIANA

Data-
path
input

Ratio inputRin_q

Xq(e
jω)

+
Rin

Nq_r

RESAMPLER

er(e
jω

,R)

Quant.VFD + DIANA

Y(ejω)Y(ejω) Z(ejω)

BSP 
Region

ω

R

DETAILED
RESAMPLING 
SANDWICH

1/R

fs

f’s = Rin · fs

f’’s = 
Rin·Rout·fs = 

fs 

Hid_r(e
jω

,R)

HSND(ejω,R)
Data-
path

output
++

HRSP(e
jω,R)Nq_dpi

+

Nq_dpo

Ratio inputRin_q

Xq(e
jω)

+
Rout

Nq_r

RESAMPLER

er(e
jω,R)

Quant.VFD + DIANA

Hid_r(e
jω

,R)

VFD + 
DIANA

 

Fig.  5.19.  Detailed model of the BSP sandwich Architecture in the study. 

We will run the tests without the feedback loop around the ratio signals (in open-loop); the 

recovered output sampling frequency will incorporate an offset when quantizing the input and output 

resampling ratios. The magnitude of these errors is very small, and they impact the functional behaviour 

rather than the performance as we have already presented in the DIANA and the resampler verification 

(sections 5.3.1.1 and 5.3.1.3). Note also that our simulation iterations do not last for very long, the 

simulation time is less than a ms, and hence the phase slippage is almost negligible in this case. However, 

by including these effects, the resulting characterization of the final performance of the BSP Architecture 

is complete and sets a lower boundary for the performance when using a feedback loop. For this reason, we 

do not include the MERCEDES interfaces in this model, but just the decoupled data-path segment of the 

BSP region. These MERCEDES interfaces have no influence on the performance of the resampling process, 

they are just needed from a logic and physical point of view, hence not biasing our results.  



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

117 
 

In the DIANA engine validation, section 5.3.1.1, we presented an example with figures for these 

ratio quantization errors in the case of a single resampler when no regulation loop was used (we introduced 

these results as the DIANA engine performance). Consider that resampler as the input stage of the BSP test 

bench in Fig.  5.19. We can compute the resulting sampling frequency offset in the BSP sandwich output 

incorporating the output resampler to the analysis when there is no regulation around the ratios.  

In the ideal case (when no quantization is performed), the inverse ratio for the output resampler 

would be Rout = 1 / Rin = 1 / 1.4 = 0.7143, with Rin = 1.4 the ideal input ratio. However, we are interested in 

the quantization effects on the ratio (signal T_out_n in our resampler implementation as presented in section 

4.4.3.2 and Eq.( 4.8 )). We will call T_out_nin = 1 / Rin and T_out_nout = 1 / Rout. After quantization, the first 

stage receives hence T_out_nin_q = Quant[ T_out_nin ] while the output stage receives  

T_out_nout_q = Quant[ T_out_nout ]. We will call the sampling frequency at the output of the input resampler 

resulting from T_out_nin_q as f’s_q, in contrast with f’s that results from T_out_nin when there is no 

quantization error in the ideal case. Note also that the T_out_nout_q value does not include the error in 

T_out_nin_q.  

What the regulation loop does is to act on average on the output resampler ratio; it bears in mind 

the error in T_out_nin_q to properly recover the original sampling rate fs at the output of the sandwich,  

f’’s = fs, when the input sampling frequency in the output resampler is f’s_q instead of f’s. In closed-loop the 

output resampler hence uses T_out_nclosedloop that results on average in the inverse of the quantized value 

fed to the input resampler T_out_nclosedloop =  1/ T_out_nin_q instead of T_out_nout_q.  

We can hence compute the error eopenloop in our quantized open-loop simulation;  

eopenloop = T_out_nout_q - T_out_nclosedloop = 8.9407·10-10. Using this error with Eq.( 5.7 ) we can compute the 

output sampling frequency f’’s = 62,499,999.9601 sample/s, instead of the supposed fs = 62.5·106 sample/s, 

that results in |Δf’’s /f’’s| = 6.3862·10-10.  

Continuing the example, if we reconstruct the input 3 MHz tone after processing, using a clock at 

the exact fs = 62.5·106 sample/s behind the output of the sandwich, we will get a signal whose frequency is 

3,000,000.0019 MHz due to the deviation error in the output sampling frequency. This frequency deviation 

induces a phase slippage of 90º in 130.5 s and for a simulation lasting 1 ms, the slippage would be  

6.8971 ·10-4 degree,  again hardly noticeable in a computer simulation.  

As these numbers indicate, we expect a performance at the output of the sandwich similar to the 

performance with the single resampler. The BSP Architecture will not induce notable further degradation 

coming from this second stage, the output resampler. This is due to the fact that the main noise contribution, 

the data-path quantization, is an additive source already considered in the input signal of the input 

resampler. This means that this noise is not doubled with the second resampler, that uses the same quantized 

data-path, but filtered a second time with no significative increase due to the already present error with the 

same order of magnitude. We now present the results that validate our statements.  



Validation 

118 
 

As we did for the resampler, we have gradually incorporated the errors to our sandwich model; we 

started studying the unquantized sandwich, that incorporates the HCP(ejω,d) VFD filters in the HCPR(ejω,R) 

resamplers. This BSP sandwich is what we call the Computed Sandwich HCPS(ejω,Rin) and it averages 

different time-domain simulations for a given input ratio-frequency pair (ejω,Rin). The input resampler 

contains only as error the frequency response deviation caused by the computed coefficients of the VFD. 

Recall that now the output resampler receives that error within its input signal, and it also filters it. This 

model lets us understand the effect (if any) of the double resampling process, this is, the propagation of the 

input resampler error and subsequent filtering by the output resampler. We later incorporated the 

quantization to the model; additive noise sources in the data-path, delay and ratio signals, and also the 

frequency deviation due to the quantized coefficients. We call this model the Implemented Sandwich 

HIS(ejω,Rin_q). 

We evolve our sandwich model without intermediate processing as a filter that performs the double 

resampling process. It is depicted in Fig.  5.20. This is again just a conceptual representation and it does 

not intend to be mathematically rigorous. We define the ideal response of the sandwich Hid_s(ejω,R) as the 

one that lets us reconstruct the input signal at the output without error and with the exact same sampling 

rate, when no processing is performed between resamplers. The added noise in the sandwich is represented 

by the parallel error filter es(ejω,R), that encompasses the frequency deviation of the VFDs, the quantization 

of the coefficients (filters ec_s(ejω,R) and eqc_s(ejω,R) in Fig.  5.20), the quantization of the ratio signals and 

the data-path, and the filtering by the output resampler of the noises in the output of the first resampler. The 

resulting implemented filter that models the sandwich, HSND(ejω,Rin), results from the combination of the 

contributions of these two filters, Hid_s(ejω,R) and es(ejω,R). The response includes averaging of the 

simulations to include the different variable delays computed based on the ratios.  

++

HCPS(ejω,R)
Nq_dp

X(ejω)
+

Nq_dp

Implemented
VFDs + 
DIANAs

Data-
path

output

Ratio inputs

Rin_q

Xq(e
jω)

Rin

Nq_r

RESAMPLERS

Comp.VFDs + DIANAs

Rout

Z(ejω)

ω

R

SIMPLIFIED
RESAMPLING 
SANDWICH

1/R

fs f’’s = 
Rin·Rout· fs = 

fs 

Nq_r

HSND(ejω,Rin)

Rout_q

+

Conceptual model of the RESAMPLING SANDWICH 
as parallel filter

HSND(ejω,Rin)

X(ejω)

fs

Z(ejω)

f’’s = 
Rin · Rout · fs =

 fs Rin+

+

Data-path 
input

es(e
jω,R)

Hid_s(e
jω,R)Hid_s(e

jω,R)

ec_s(e
jω,R)

With es(e
jω,R) accounting for the errors present in 
the simulation configuration.

+

Nq_dpi

+

Nq_dpo

eqc_s(e
jω,R)

 

Fig.  5.20.  Simplified model of the BSP sandwich Architecture in the study. 

This new model let us hence compute the degradation in the signal that is caused by the sandwich; 

the added noise that comes from the error es(ejω,Rin) = HSND(ejω,Rin)  - Hid_s(ejω,Rin) in the double resampling 

process. Note that the simulations span the entire first Nyquist zone for the frequency of the input signal 

xω[n]. However, the reader must understand that the accepted input frequencies must span the ranges 

presented in section 3.3.10 only. In any case, the artefacts that we saw in the resampler are now not present. 

The double resampling process implicit in the reference signal of the sandwich avoids these folding 

artifacts. As for the VFD and resampler, we included the noise and error sources in different steps; we first 

analysed what we called the Computed Sandwich HSND(ejω,Rin) = HCPS(ejω,Rin). This sandwich results when 



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

119 
 

no quantization is present in the data-path nor in the ratio/delay or the VFD coefficients. Then we added 

quantization and called this the Implemented Sandwich HSND(ejω,Rin) = HIS(ejω,Rin_q) 

5.3.2.2. The computed BSP Architecture 

We start presenting the results for the Computed Sandwich HSND(ejω,Rin) = HCPS(ejω,Rin). We first 

depict in Fig.  5.21 the error surface |es(ejω,R)| at the output of this unquantized sandwich configured with 

down-sampling ratios Rin ϵ [0.5, 1]. One of the axes of the response presents the frequency ω at which we 

evaluate the sandwich while the other depicts the ratio Rin. We observe in Fig.  5.21(a) that the sandwich 

response is now very flat in the optimized pass-band region in contrast to the resampler and VFD. When 

analysing in detail this optimized region in Fig.  5.21(b), we observe that for each frequency, the error 

response is independent of the resampling ratio. There is only a slight decrease in the error magnitude when 

the ratio adopts values close to Rin = 1. Note that the error for that ratio tends to 0; both resamplers are in 

transparent mode and there is no resampling in either of the two. Again, in these simulations, the delay 

value d = 0 is predominant in the iterations run with this configuration. It is also the case for Rin = 0.5 that 

again presents a predominance of d = 0.   

 

Fig.  5.21.  Error function for the computed sandwich, down-sampling ratios in the input resampler. (a) Magnitude of the error 
function. (b) Zoom in the pass-band region. 

Fig.  5.22.  Error function for the computed sandwich, up-sampling ratios in the input resampler. (a) Magnitude of the error 
function. (b) Zoom in the pass-band region. 

E
rr

or
 m

ag
ni

tu
de

E
rr

or
 m

ag
ni

tu
de

 

E
rr

or
 m

ag
ni

tu
de

E
rr

or
 m

ag
ni

tu
de

 



Validation 

120 
 

The magnitude of the error in the surface is in the same order of magnitude as the one of its VFD, 

Fig.  5.6, and the resampler, Fig.  5.12, with an average value clearly below 1·10-5 in the optimization, only 

increasing for frequencies close to the upper input bandwidth of the sandwich. We saw how the resampler 

error response averages the VFD responses combining different delays for a given ratio. In the present case 

we combine delays in two resamplers with inverse ratios, this, as the reader will notice, completely smooths 

the combined response for a given input ratio Rin within the sandwich. The oscillations of the error along 

the frequency axis are now modified. These oscillations are still present in the response of an isolated 

resampler. However now the normalized frequency of the signal at the input of each of the resamplers is 

different. This results in a combined response that does not present the previous characteristic oscillatory 

pattern of the VFD. In any case we can still see some reduced oscillations resulting from the mixed 

response. Fig.  5.22 depicts the results for up-sampling ratios with identical conclusions.   

Fig.  5.23 depicts the achieved SNR surface.  The first thing that we clearly observe in the figure is 

that the SNR is now also flat without any pattern in ratio or frequency axis (the spikes present in the 

simulation result from the numerical simulation). In the optimized region we achieve a SNR above 90 dB 

for any ratio, reaching for frequencies below f < 0.2 sample-1 in up-sampling configurations 110 dB with 

peaks up to 120 dB. The SNR surfaces for ratios R = 1 and R = 0.5 tend to infinite as the error tends to 0, 

and hence are omitted from the plot. The performance of the BSP Architecture is therefore well balanced 

and with enough spectral purity at the output when we use the H06(ejω,d) VFD filter in the resamplers. The 

double processing and resampling do not degrade the performance with respect to a single resampler.  

   

Fig.  5.23.  SNR at the output of the computed sandwich, both down-sampling and up-sampling ratios in the input resampler, 
when excited with a 1 Vpeak tone. (a) First Nyquist zone. (b) Zoom in the pass-band region. 

5.3.2.3. The implemented BSP Architecture 

We now present the results of the Implemented BSP Sandwich HSND(ejω,Rin) = HIS(ejω,Rin_q) 

including quantization noise. The used resamplers have the same fixed-point configuration as the one 

presented in 5.3.1.3.3. Recall that in the BSP model presented in 5.3.2.1 we computed the sampling 

frequency deviation error for such a ratio signal implementation using an input value Rin = 1.4 with a 3 

MHz input signal. The sampling frequency deviation at the output of the BSP sandwich resulted in this case 

Δf’’s = -0.0399 sample/s and |Δf’’s /f’’s| = 6.3862·10-10. By examining the error response of the computed 

S
N

R
 [

dB
]

S
N

R
 [

dB
]



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

121 
 

sandwich in Fig.  5.22, the deviation resulting from this error seems negligible; the response does not vary 

very abruptly and the response of the sandwich is qualitatively equivalent. We can hence run the simulations 

in open-loop and consider the results as acceptable, as long as the simulation time lasts for a few ms, 

disregarding the influence of this sampling frequency offset and the phase slippage in the processed signal. 

We present on Fig.  5.24 and Fig.  5.25 plots with slices of the square of the error magnitude, in the 

first figure for down-sampling ratios and in the second for up-sampling ratios. These traces are slices along 

the ratio axis in the left plots and slices along the frequency axis in the right plots. The square error 

magnitude, that we modelled as the error filter es(ejω,R), adopts a value around 4·10-10 in the pass-band 

region; the quantization error is larger than the VFD frequency response error and masks all the other errors 

and deviations in the implemented sandwich. We do not see the fluctuations in the frequency axis either. 

Note also that the error with R = 1 is now no longer zero, it is instead a value close to the quantization noise 

of the data-path (the delay value d = 0 is still predominant in the different iterations performed). We can 

clearly observe the accepted input bandwidth of the sandwich (Fig.  3.30 in section 3.3.10); in Fig.  5.24, 

where we have a down-sampling configuration, we observe how the bandwidth increases as the value of 

the resampling ratio does. For Rin = 0.5 the bandwidth reaches ω = 2π·0.15, the design limit, and when the 

ratio reaches Rin = 1 the bandwidth has increased up to ω = 2π·0.3, the design bandwidth for this ratio.   

 

Fig.  5.24.  Magnitude of the square error function for the implemented sandwich with down-sampling ratios in the input 
resampler. Zoom in the pass-band region. (a) Slices along the ratio axis. (b) Slices along the frequency axis. 

 

Fig.  5.25.  Magnitude of the square error function for the implemented sandwich with up-sampling ratios in the input resampler. 
Zoom in the pass-band region. (a) Slices along the ratio axis. (b) Slices along the frequency axis. 

S
qu

ar
e 

er
ro

r 
m

ag
ni

tu
de

S
qu

ar
e 

er
ro

r 
m

ag
ni

tu
de

S
qu

ar
e 

er
ro

r 
m

ag
ni

tu
de

S
qu

ar
e 

er
ro

r 
m

ag
ni

tu
de



Validation 

122 
 

We finally present the achieved SNR surfaces (full scale input with a 1Vpeak tone) in Fig.  5.26 and 

Fig.  5.27, the first as a 3D surface and the second as a 2D colour coded surface. In this SNR plot, we can 

observe that the Implemented Sandwich response remains flat in the bandwidth of the sandwich. The 

achieved value in the final implemented sandwich remains similar to the one of the VFD and resampler. 

We observe a flat surface on the order of 93 dB that is very close to the limit SQNR of 98.09 dB of the 

input data-path. Particularly, the SNR for R = 1 adopts a value that matches the SQNR of the data-path. In 

Fig.  5.27 we can clearly observe that the SNR degrades drastically for frequencies larger than the upper 

limit of the input bandwidth of the sandwich (section 3.3.10). With this configuration this upper limit is a 

straight line between ω = 2π·f = 2π·0.15 radian/sample for Rin = 0.5 and ω = 2π·0.3 radian/sample for  

Rin = 1. The colour coded spaces denote the regions where the SNR is poor, in dark bluish colours, and 

where the SNR is large in bright colours.  

We can hence conclude that for our VFD coefficient optimization and sandwich implementation 

the data-path quantization is the major noise contribution in the Architecture. The contribution of the VFD 

frequency response error, and other quantization errors besides the data-path, have negligible effects. These 

effects are masked by the latter when using a sixteen-bit data-path. However, the result still reaches a value 

Fig.  5.26.  SNR at the output of the implemented sandwich, for both down-sampling and up-sampling ratios in the input 
resampler, when excited with a 1 Vpeak tone. (a) First Nyquist zone. (b) Zoom in the pass-band region. 

Fig.  5.27.  2D colour coded plot of the SNR surface at the output of the implemented sandwich, for both down-sampling and up-
sampling ratios in the input resampler, when excited with a 1 Vpeak tone. (a) First Nyquist zone. (b) Zoom in the pass-band 

region. 

S
N

R
 [

dB
]

S
N

R
 [

dB
]

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5

Norm. frequency  / 2  [sample-1]

(a)
Snd. SNR - 1Vpeak input tone - Implem.

0.5

1

1.5

2

0 0.1 0.2 0.3

Norm. frequency  / 2  [sample-1]

(b)
Snd. SNR - (optimized region)



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

123 
 

only 5 dB below the limit SQNR, SNR = 93 dB. This value is largely sufficient for our intended application 

presented in Chapter 6. The resulting SNR error surface is very flat in the optimized region making the 

response of the sandwich very uniform.   

5.3.2.4. The BSP Architecture optimization 

We finally analyse the influence that the FIR filter bank architecture, and the size of the data-path 

have on the performance of the BSP Architecture. The SNR at the output of the sandwich is the parameter 

that we use to measure the performance; we study first how it is degraded by different architectures using 

an unquantized data-path. We have performed time-domain simulations of the sandwich in which we 

change the VFD architecture; different number of FIR filters in the bank, C, and different number of taps, 

B, per FIR filter. We use as reference performance the one achieved by the architecture used in the VFD 

validation (5.3.1.2), six FIR filters in the bank and fifteen taps per FIR. For each one of the simulations in 

this section, we first modify the architecture, and then we recompute the coefficients of the filter with the 

WLS method [104]. Finally, we simulate that architecture and analyse how that affects the SNR. We 

emulate the non-quantized data-path by setting the fixed-point word widths to a large value of fifty-eight 

bits. The resampling ratio was set to Rin = 1.4. We depict traces that span the sandwich input frequency 

along the first Nyquist zone with the different architectural configurations. 

In Fig.  5.28 we first depict the results for the Computed Sandwich. The reference architecture has 

performance baseline between 110 dB and 100 dB, with only the peaks being softened with respect to the 

resampler and VFD. The results show that when reducing the number of filters in the bank, C parameter, 

the cut-off frequency of the sandwich is degraded, and the SNR becomes hence worse for the high 

frequency components. This is especially relevant when we compare the results against the reference 

architecture that is configured with the largest number of taps, B = 15; if we reduce the number of filters 

from six to five, we decrease the cut-off frequency by 33%, and when reducing the number of filters down 

to four it decreases the frequency by 66%. When we instead reduce the number of taps B, the resulting 

effect is a degradation of the achieved SNR value, but without significant degradation of the cut-off 

Fig.  5.28.  SNR at the output of the BSP sandwich Architecture for = 0.6 with resampling ratio Rin = 1.4. SNR vs filter bank 
architecture and data-path without quantization error.  

S
N

R
 [

dB
]



Implementation results 

124 
 

frequency. In this case the entire trace lowers the SNR value. We lose around 20 dB when changing the 

configuration from B = 15 to B = 11, and additional 20 dB also when going from B = 11 to B = 7.  

We now analyse how the data-path width affects the performance to be able to select a width that 

offers a trade-off between the resources used and the achieved SNR including the entire model of the 

sandwich. We have benchmarked the sandwich degradation in terms of output SNR for different data-path 

widths between twelve bits and twenty bits. The resampler and VFD architecture remains the reference one, 

a FIR bank composed of six filters with fifteen taps each.  

Fig.  5.29 presents the results of the analysis; the maximum reference SNR at the output remains 

the same of Fig.  5.28 between 110 dB to 100 dB in the optimized pass-band region, when the data-path is 

not quantized. When the data-path is quantized, the reference SNR trace is achievable only using a fixed-

point word of at least twenty bits width. The performance begins to degrade around the periodic maxima 

using eighteen bits, and for values below this width the quantization error limits the SNR in the bandwidth 

of the resampler, below ω = 2π·0.3 radian/sample. The purple trace in Fig.  5.29 that implements a data-

path with sixteen bits (the value used in all previous studies) is close to the maximum SNR value in the 

entire sandwich bandwidth without excessive degradation. We can hence confirm that the data-path width 

used in our simulations, sixteen-bit width, is a good choice that masks the error of the sandwich in its 

processing bandwidth and offers a SNR value very close to the ideal SQNR of 98.09 dB balancing the 

hardware resources and resampler SNR performance.  

   

Fig.  5.29.  SNR at the output of the BSP sandwich Architecture for = 0.6 with resampling ratio Rin = 1.4. SNR vs Data-path 
width and reference architecture, six filters with fifteen taps each.  

5.4. Implementation results 

In this section we present the hardware implementation results of the principal building blocks of the BSP 

Architecture. We target FPGA as technology, however they can also be easily implemented in ASICs. We 

first present the results for the case of a single resampler; the implementation and Place and Route (PAR) 

has been successfully performed using the Vivado software suite available from the FPGA manufacturer 

Xilinx. We have selected two devices, one representing the low-cost commercial segment, cheap and 

S
N

R
 [

dB
]



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

125 
 

accessible for the general market. The second one is a high-performance FPGA, not affordable for simple 

applications. The goal is to demonstrate how the resampler can be used as a feasible IP in both segments of 

the market. The high-grade FPGA is a Xilinx Kintex-7 XCKU040-1FFVA1156C and the small device is a 

Xilinx Artix-7 XC7A75T-1FGG676. The Kintex Ultrascale device is the FPGA in which the hardware tests 

of our Architecture will be performed. The resampler has been packed as single IP without any of the 

MERCEDES interfaces. We used a target 125 MHz processing clock for the two devices. The 125 MHz 

frequency of the clock results from the hardware configuration in which the design will be evaluated in the 

laboratory, the uTCA card SIS8300-KU [106] from Struck that contains the Kintex Ultrascale FPGA. We 

will use this card with a system clock recovered from a White Rabbit link. 

The System Generator sources map the presented design stressing the readability of the 

Architecture, even when this might result in a penalty in performance. The VFD architecture uses the 

configuration presented in this chapter; it contains six FIR sub-filters with fifteen coefficients each. The 

FIR architecture is folded around the central tap resulting in eight coefficient multipliers per filter. The 

widths of fixed-point implementation of the signals are as presented above in this chapter; the data-paths at 

the input and output of the resampler are sixteen bits wide, with fifteen fractional part bits and one sign bit. 

The FIR filter bank coefficients are twenty-seven bits wide, with twenty-six fractional bits and one sign bit. 

The data-path is extended to forty-eight bits, and truncated back to twenty bits at the output in the internals 

of each of the sub-filters. In the internals of the Horner chain the data-path is constrained to twenty-seven 

bits, with twenty-three fractional bits and one sign bit. The resampling ratio signal of the resampler is a 

thirty-two bits wide word, with twenty-nine fractional part bits, two integer part bits and one sign bit. The 

computed delay value is an eighteen bits wide word, with seventeen fractional bits and one sign bit. The 

low-end device offers DSP48E1 macros instead of the DSP48E2 of the Kintex Ultrascale. The two inputs 

of the multiplier of the DSP48E1 are eighteen bits and twenty-five bits wide, respectively, while the 

DSP48E2 supports eighteen bits and twenty-seven bits. For this reason, the FIR filter bank coefficients and 

the Horner internal data-path have been reduced in the low-end device design to twenty-five bits wide 

signals, keeping the same integer width and reducing fractional part bits accordingly.  

The timing constraints were met for the high-performance FPGA, and the timing report shows that 

the maximum achievable clock is 171.03 MHz. The achievable clock for the low-end device was 130.2 

MHz. The PAR strategy for the synthesis and implementation was “Flow_AreaMultThresholdDSP” and 

“Area_ExploreWithRemap”, respectively. The first strategy enforces the use of DSP blocks increasing the 

performance of the results. The latter enforces the optimization of the logic to reduce the used resources. 

No optimization of the Architecture has been done to increase the achievable frequency. The objective is 

to proof the feasibility of the design and its implementation, not to optimize the operating frequency. Table 

5.1 shows resource utilization after the PAR. The used glue logic and memory requirements are very limited 

and negligible for both devices. The DSP blocks are mainly consumed by the bank of filters of the VFD; 

six FIR filters with eight multipliers per filter. The other five DSP blocks are used in the Horner architecture 



Implementation results 

126 
 

multipliers. The DSP consumption reaches 30% in the low-grade FPGA (XC7A75T) that is a considerable 

value but remains around 3% in the high-performance FPGA (XCKU040).  

We then performed the synthesis for the entire BSP Architecture. Now the sandwich contains a 

MERCEDES Decouple interface, an up-sampling resampler, a periodic IIR comb filter, a down-sampling 

resampler and the MERCEDES Couple interface. These blocks have been again packed as single IP. The 

PAR process has also been successfully completed for the same two FPGAs with the same constraints and 

IP configuration. The data-path in the MERCEDES interfaces has the same dimensions as in the input and 

output ports of the resampler. The data-path within the processing between resamplers is sixteen bits wide, 

with fifteen fractional part bits and one sign bit. The periodic IIR comb coefficients have a twenty-seven 

bits wide word, with twenty-six fractional part bits and one sign bit. The report shows that the maximum 

achievable clock is 169.5 MHz for the high-grade device and 128.2 MHz for the low-end one. Table 5.2 

presents the resource utilization results after the PAR. The used glue logic and memory requirements are 

again very limited and negligible for the Kintex device. The Artix however reaches around 10% utilization 

for memory, 15% for logic and around 65% for the DSP blocks. These blocks are mainly consumed by the 

two resamplers, two times 53 DSP blocks. The other six DSP blocks in the Kintex device are used for data-

path scaling in the IIR comb filter and for the ratio Frequency Locked Loop scaling in the MERCEDES 

Couple interface. The Artix implementation requires four additional DSP blocks resulting from the 

inappropriate dimensioning of the IIR coefficients that does not suit well the DSP48E1 multiplier 

architecture, twenty-seven bits vs twenty-five bits per multiplier.    

 

Table. 5.1  FPGA resource utilization after PAR for a single resampler 
 

 XC7A75T XCKU040 
Resource Available Used % Available Used % 

Slice Registers 94400 4878 5.16 484800 4945 1.02 

LUT as  

Logic 
47200 3107 6.8 242400 3285 1.35 

LUT as Memories 19000 105 0.55 112800 121 0.1 

Block Ram Tiles 105 3.5 3.33 600 3.5 0.58 

DSP blocks 180 53 29.4 1920 53 2.76 

 
 

Table. 5.2  FPGA resource utilization after PAR for the BSP Architecture 
 

 XC7A75T XCKU040 
Resource Available Used % Available Used % 

Slice Registers 94400 12346 13.07 484800 12446 2.56 

LUT as  

Logic 
47200 6668 14.12 242400 6745 2.78 

LUT as Memories 19000 2499 13.15 112800 2531 2.24 

Block Ram Tiles 105 8 7.61 600 8 1.33 

DSP blocks 180 116 64.4 1920 112 5.83 

 



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

127 
 

5.5. Hardware tests 

The Architecture has been validated in real hardware in the laboratory. We placed a filter within the 

resampler sandwich and observed its frequency response when modifying the resampling ratio; the response 

tracked the sampling rate in the sandwich. We leave for Chapter 6 a more detailed analysis of the functional 

behaviour of the BSP Architecture when used for TBLC as in the intended application. Then the 

performance of the implementation has been analysed looking at the spectral purity of the output when no 

processing is placed within the BSP sandwich; in this way we observe only the degradation due to the BSP 

Architecture. We present in this section the results and the measured performance.  

5.5.1. The crate 

The test setup has been implemented in a uTCA crate. The input and output analog RF front-ends 

use a Rear Transition Module (RTM) card, the DS8VM1 from Desy/Struck [107]. The sampling and 

processing are implemented in the SIS8300-KU card [106], also from Struck, that contains the Kintex 

Ultrascale FPGA presented in 5.4. The system is controlled from a desktop PC via Python scripts. Two 

channels, the In-phase and in-Quadrature, I/Q, perform the processing in parallel (complex or Cartesian 

processing). The fixed frequency clock, the analog LOs and the input RF stimulus signals are synthetized 

by signal generators feeding the crate. The RF is close to 200 MHz, as the one used in the SPS. We require 

a processing bandwidth of 5 MHz per sideband around the RF, similar to the SPS OTFB requirements. This 

processing bandwidth is the frequency region that needs to effectively tune the processing in the BSP and 

the spectral content of the signal. In the input, the front-end performs direct sampling at fs = 125 MHz and 

exploits the aliasing of the signal for base-band down-conversion. The frequency of the input RF signal lies 

in the fourth Nyquist zone, between 187.5 MHz and 250 MHz, and appears folded down in the first Nyquist 

zone at around 50 MHz. This folded component is digitally down-converted to base-band in the FPGA with 

a digital mixer, whose LO is variable to keep the demodulated RF in base-band. In the output stage a vector 

modulator is used to synthetize the RF signal with the processed base-band I/Q pair. First a digital mixer 

brings the base-band processing to an IF frequency. This mixer uses a variable digital LO synthetized in 

the FPGA with the information about the RF frequency value, the frequency tuning word. The resulting 

digital LO adopts a frequency value computed as the difference between the instantaneous value of the RF 

and the analog LO of the vector modulator. This second analog modulator brings the IF back to the nominal 

RF value. It uses an analog LO with fixed frequency at 223.5 MHz. The complete implementation contains 

further processing, however from a functional point of view all that processing is transparent for the test 

purposes. 

5.5.2. The processing 

In the digital signal processing stages, after demodulation and conditioning, the MERCEDES 

Decouple interface at the input of the BSP Architecture receives a data stream at fs = 62.5·106 sample/s. At 

the output of the interface the data-path remains at the same sampling frequency but the processing clock 



Hardware tests 

128 
 

operates at fp =125 MHz, that results from M = 2 in the MERCEDES interface. The valid line is now 

present in the data-path that is fed to the resampling sandwich. The sandwich implements the BSP 

Architecture presented in Chapter 3; it first up-samples the data, then comes the processing (if any) and it 

finally recovers the original sampling rate. The tuning between the processing and the fundamental 

frequency is managed by the resampling ratio of the sandwich, that sets a sampling rate within the sandwich 

at fs = R · 62.5·106  sample/s. The value of R for both resamplers is controlled within the FPGA that receives 

the FTW from a White Rabbit link. The resampling sandwich and processing data-path is implemented 

with the same digital word widths presented in 5.4 for the Kintex Ultrascale device.  

5.5.3. Performance tests 

We now present the results of the measured performance in the LLRF setup. The parameters used 

as key performance indicators are the spectral purity and phase noise. Note that these are also dependent of 

the analog front-end of the LLRF system, but we just want to see if the BSP sandwich degrades the 

performance. The measurements are performed in the RF domain, including the whole uTCA crate, from 

RF input to RF output. 

In the test setup, the results have been measured with a Spectrum Analyzer (SA). The RF input of 

the uTCA crate (the antenna input of the LLRF) is connected to a clean synthesizer. The output drive signal 

of the crate is connected to the SA input. The RF frequency value to which the uTCA crate is tuned is 

provided to the test setup via a discrete frequency tuning word coming from the White Rabbit link. The 

synthesiser output, the analyser centre frequency and the uTCA crate are configured and centred at an RF 

value of 200.2 MHz. We present in Fig.  5.30 the measured spectrum when there is no processing within 

the resampler sandwich. The span in the analyser is set to 2 MHz in Fig.  5.30(a), and to 100 kHz in Fig.  

Fig.  5.30.  Spectrum of the LLRF drive. BSP and synthesizer tuned to 200.2 MHz. Span of (a) 2 MHz and (b) 100 kHz. 

Fig.  5.31.  Phase noise measurement. BSP tuned to 200.2 MHz, bandwidth of 1 MHz. 



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

129 
 

5.30(b). We observe that the noise floor adopts a value around -85 dBm. This measurement shows that 

there is no significant noise added by the two resamplers.  

We now perform a phase noise measurement in the processing chain of this setup. The measurement 

includes the whole LLRF chain as above. The RF input of the uTCA crate remains connected to a clean 

synthesizer and the output of the system is measured by a phase noise analyser.  

The synthesiser, analyser and the BSP in the uTCA crate remain tuned to a frequency of 200.2 

MHz. The results are presented in Fig.  5.31. The covered bandwidth is 1 MHz and the phase noise is -98 

dBc/Hz. Similar measurements have been performed exciting the system at different frequencies with the 

setup on tune with the input signal, and with signals whose frequency is not the one tunned in the BSP, but 

still within the processing bandwidth (5 MHz). The results were similar with the noise floor remaining at a 

value around -85 dBm, and with phase noise floor at -98 dBc/Hz, hence validating the RF front-end and 

system performances. 

5.6. Conclusions 

The chapter has presented the verification and validation results of the proposed Beam Synchronous 

Processing Architecture and the elements that compose it, with special attention to the VFD and resampler. 

In the verification process we have presented the results that show how the functional behaviour and 

capabilities of the Architecture satisfy the requirements. These needs were defined for the BSP Architecture 

in Chapter 3 and the resampler in Chapter 4. They match the requirements and give solutions to the 

problems introduced in Chapter 1 and Chapter 2. The validation process has studied if the performance of 

the Architecture and its units is sufficient to implement the new One Turn FeedBack control system for 

Transient Beam Loading Compensation that will be presented in Chapter 6. All the elements of the 

Architecture successfully passed all the qualitative tests. The VFD has been found as the bottleneck of the 

Architecture. The ultimate performance of the resampler and the BSP sandwich is related and limited by 

the performance of this interpolator and its implementation (namely the data-path width). 

The DIANA engine has proven feasible both as functional solution for the timing unit of a resampler, 

and qualitatively achieving enough performance to be used in our final application. It computes the required 

delay for the VFD interpolator and it handles modifications of the ratio in real-time. The errors in the delay 

signal resulting from the DIANA will not induce performance problems to the resampler and the BSP 

Architecture. We use a fixed-point implementation for the resampling ratio signal with thirty-two bits wide 

word, twenty-nine fractional part bits, two integer part bits and one sign bit, and for the delay signal with 

eighteen bits, one sign bit plus seventeen fractional bits. 

The functional verification of the VFD has assessed the operation of the filter for the specified input 

delay range, plus or minus half of an input sampling period. The verification also demonstrated that the 

VFD clearly distinguishes between positive and negative delay values. This delay value, that can be 



Conclusions 

130 
 

modified in real-time, is tracked by the VFD according to the specification. The validation study has 

analysed the performance of the VFD filter when implemented in fixed-point arithmetic and for different 

hardware configurations related to architectural decisions. We conclude that the optimization of the filter 

H06(ejω,d), that is our target filter for the application presented in Chapter 6, is well balanced when using a 

data-path with sixteen bits word width, coefficients with twenty-seven bits word width, and a bank 

architecture composed of six filters and fifteen taps per filter. With these parameters, the SNR at the output 

of the VFD reaches, for a full-scale input signal, a value around 94 dB in the entire optimized region. The 

limiting factor is the data-path quantization noise, that is close but above the noise power added by the 

frequency response deviation of the filter.  

The MERCEDES interfaces handle the transfer between the FRANCISCO fabric and the FPGA 

fabric. The Architecture is generic in the sense that it can host almost any processing algorithm within the 

resamplers, and adapt the clocking architecture to the user needs, limited only by technology constraints 

and not by functional requirements of the Architecture.  

The verification of the resampler has assessed the feasibility and suitability of the proposed 

resampling architecture for BSP processing. The DIANA engine, together with the VFD filter and the 

synchronization elements fulfil the need for a resampling solution where the resampling ratio can be 

modified in real-time, while accepting different input and output sampling rates. It performs according to 

the specification. The performance of the resampler is limited by the performance of the interpolating unit, 

the VFD, that depends on the computed coefficients and the used data-path width. With the presented 

implementation we achieve a flat surface with SNR = 95 dB. This limit is achieved with the sixteen bits 

VFD. The achieved SNR is suitable for the intended application detailed in Chapter 6.  

The BSP Architecture has demonstrated its feasibility as a functional solution for the processing of 

periodic signals with known but possibly varying fundamental frequency. The resampler sandwich can tune 

the representation of the processed signal (in the discrete domain) to the desired normalized frequency in 

real-time. For this, the input resampler modifies the sampling rate of the input sequence of samples. It does 

it by using a fixed frequency processing clock. The validation study has analysed the performance of the 

BSP sandwich Architecture for different hardware configurations related to architectural decisions in the 

VFD and the resampler. With the presented fixed-point implementation for the resampler sandwich we 

achieve a flat SNR surface in the order of 93 dB, very close to the SQNR. Again, the limiting factor is the 

data-path quantization noise. The frequency deviation resulting from the quantization in the ratio signal is 

negligible from a qualitative point of view for our BSP Architecture. However, if the exact sampling 

frequency at the output of the resampler is of importance, a JOAQUINA inspired feedback loop can solve 

the issue. From a functional point of view, this feedback loop is not necessary for a single resampler, but 

mandatory in the BSP Architecture that uses two resamplers in a sandwich configuration. It deals with the 

sampling frequency deviation that can misconfigure the resampling sandwich.  



Chapter 5.   Verification and Validation of the Resampler and the BSP Architecture  

131 
 

The proposed Architecture has also been tested in real hardware. A laboratory test setup has verified 

and validated the functionality and performance of the BSP Architecture implemented on a uTCA platform. 

The implementation successfully passed the Place and Rout process and was mapped to a high performance 

FPGA. No processing was placed within the sandwich; the objective was to validate the degradation in the 

resampling chain. The noise floor in the uTCA implementation went down to -85 dBm and the measured 

phase noise was -98 dBc/Hz.





 

133 

Chapter 6  
 
Beam Synchronous Processing Architecture 
for Transient Beam Loading Compensation in 
the CERN SPS Accelerator 

 Abstract: This Chapter presents the results of the 
verification and validation of the BSP Architecture 
when used to implement a One Turn FeedBack for 
Transient Beam Loading Compensation. We first 

present the implemented OTFB, then the simulations 
verifying the proposed Architecture and finally the 
validation of the results in hardware tests in a real 

CERN SPS cavity.   

 

6.1. Introduction  

The CERN LLRF system in the SPS synchrotron has historically used a master-slave architecture clocking 

the digital electronics with a reference synchronous with the RF [10]. This sweeping clock locked the 

processing to the beam by design. A classic example of this method is the TBLC by means of the One Turn 

FeedBack algorithm installed in the SPS in the mid-1980s [15]. This algorithm implements the feedback 

loop filtering the revolution frequency harmonics and an exact one turn delay in the processing path. The 

variable sampling period resulting from the swept clock automatically tunes the frequency response of the 

filter and the one turn delay to the beam velocity. With the new fixed frequency clock extracted from the 

WR, a novel solution is required for TBLC, and in general for BSP, which reconfigures the processing as 

a function of the beam energy. This chapter presents the application of the BSP Architecture presented in 

Chapter 3 to satisfy these needs; the chapter proposes a new implementation of the OTFB by means of the 

BSP Architecture using a fixed frequency clocking scheme. We present the verification results of the 

solution with simulations and the validation in real hardware. This architectural solution automatically tunes 

the processing response to the beam parameters (as the swept clock did in the original solution) and avoids 



The SPS 

134 
 

the real-time reconfiguration of the processing elements (solution employed in other engineering fields for 

variable frequency responses) [5], [37], [38]. The solution is based on the resampling sandwich of Chapter 

3 in which the BSP is encapsulated. The Architecture is targeted at FPGA technologies and the solution has 

been implemented in a Xilinx Kintex-7 FPGA as proof of concept.  

The chapter is structured as follows: We first review the characteristics of the SPS accelerator, and 

we depict the proposed LLRF system at high-level. We present the conceptual network architecture that is 

now based on deterministic protocols. Then we show the partitioning of the LLRF system; we present at 

logical level the different modules that compose it, and then at physical level we analyse the architecture 

of the nodes and stations. We continue with the description of the OTFB implementation making use of the 

BSP Architecture. Then we show the results of the functional verification with simulations of the LLRF 

system. Finally, we present the measured results in the test-stand mimicking the LLRF system with one 

SPS cavity.  

6.2. The SPS 

The Super Proton Synchrotron, switched on in 1976, is the second largest accelerator in the CERN complex 

injecting beams to the LHC. It has a circumference of nearly seven kilometres, with more than a thousand 

magnets and lies between France and Switzerland, Fig.  6.1. In his early years, the SPS beams probed the 

inner structure of protons and investigated about antimatter and exotic forms of matter. In 1983 running as 

a proton-antiproton collider it made possible the discovery of W and Z particles [108]. The SPS operates at 

up to 450 GeV, and it has handled many different kinds of particles: Sulphur and oxygen nuclei, electrons, 

positrons, protons and antiprotons [109].  

6.2.1. The RF and LLRF systems  

The protons arriving in the SPS have very relativistic energy levels (26 GeV). The SPS accelerates 

them further to 450 GeV; the increase in speed is small, but still relevant to the RF system. This system 

uses a swept RF frequency harmonic to the revolution period to cope with the change in speed. The 

revolution period Trev of the SPS beams results in approximately 23 µs, and the revolution frequency Frev is 

 
Fig.  6.1.  Aerial view of the CERN SPS layout (left), and BA3 location detail in the tunnel hosting the SPS RF cavities (right). 



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

135 
 

approximately of 43 kHz. The RF system is composed of two types of TWC cavities that operate at  

200 MHz and 800 MHz. Each group of cavities has an associated sub-system [18]. These frequencies result 

from the use of harmonic number h = 4620 in the 200 MHz sub-system, that is the main RF sub-system. It 

is responsible for the acceleration and used with all types of beams. Before the LIU-SPS upgrade this sub-

system was composed of four cavities, two of them with five-sections and two with four-sections. After the 

upgrade, it will contain four three-sections cavities and two four-sections cavities [12], [14]. The second  

800 MHz sub-system is used for beam stabilization against longitudinal single- and multi-bunch 

instabilities. It is composed of two cavities with three-sections [12], [14]. Both configurations are depicted 

in Fig.  6.2, where we present on the left the old configuration, and on the right the new layout after the 

LIU upgrade. All cavities are located in the same machine straight section of the accelerator within the SPS 

tunnel, the BA3 location in Fig.  6.1. The transmitters and the LLRF system are also placed in that location 

but on the surface.  

The LLRF system has been upgraded several times. The original LLRF system was commissioned 

in 1975 using NIM modules. The SPS operated with low beam intensities at that time and there was no 

schema or algorithm to compensate beam loading. This original system was composed by a cavity controller 

based on narrowband feedback amplitude/phase loops, that were implemented at a 10.7 MHz IF, a 

technology common at the time in the field of Radio-Transmission. In the 1980s the beam proton intensity 

was increased and the first problems with beam loading appeared. As a solution, the first OTFB [10] was 

proposed in a dedicated 6U Europa crate in 1984. In the early 1990s the SPS accelerated Pb ions and other 

species. The Fixed Frequency Acceleration (FFA) [110] system was then implemented in analog NIM 

modules to extend the accelerating frequency range of the SPS to lower frequencies. One significant 

machine development step came in the late 1990s with the preparation of the SPS as LHC injector. This 

upgrade comprised among others objectives the mitigation of longitudinal Coupled-Bunch instabilities. A 

new feedforward system and a longitudinal damper were added [50], and the OTFB was also upgraded 

reducing the cavity impedance at the fundamental. In the early 1980s an 800 MHz Landau system had been 

developed. It was also upgraded in the late 1990s. All these systems were developed in dedicated 6U Europa 

crates. In the early 2000s there was an upgrade of the SPS beam control for transfers to the LHC. Some of 

the electronic modules developed for the LHC LLRF were re-used and new ones were developed based on 

a VME platform. Lately, in 2015 the 800 MHz Cavity Controller was upgraded to the VME platform. The 

launch of the SPS LLRF upgrade as a part of the LIU project was started and the first functional 

specifications were released. The complete renovation of LLRF was confirmed in 2017; it will adopt an 

TWC 800MHz, 
1 section

TWC 200MHz, 
1 section

200MHz 
SSPA

800MHz 
IOT

200MHz 
Tetrodes

BeamBeam

(b)(a)

200MHz 
Tetrodes

LLRF LLRF LLRF LLRF LLRF LLRF LLRFLLRF LLRFLLRF LLRF LLRF LLRF LLRF

Fig.  6.2.  Schematic representation of the SPS RF System; (a) prior to LIU SPS upgrade, (b) after the LIU SPS upgrade. 
Reproduced from [18]. 



The SPS 

136 
 

alternative synchronization method based on deterministic protocols using COTS as much as possible 

[111]. We present on the left-hand side of Fig.  6.3 some of the VME controllers of the LLRF prior to the 

LIU SPS upgrade; with that technology and the old NIM modules several crates were required for the 

regulation. The new uTCA crates, introduced in Chapter 5 in which we tested our Architecture are depicted 

on the right-hand side of Fig.  6.3; one of the crates handles now 6 Cavity Controllers and the second hosts 

the Beam Control module. 

6.2.2. The SPS 200 MHz TWC cavity 

The TWC cavities of the SPS, as the one of Fig.  6.4, are waveguides loaded with stems and drift 

tubes in order to reduce the phase velocity of the accelerating mode, and terminated into a matched load 

[13]. The beam crosses these TWC cavities along its longitudinal axis, and receives energy from a wave 

fed by the RF transmitter that propagates in the structure. The SPS cavity was designed to have a centre 

frequency of 200.222 MHz. Depending on the beam, the synchrotron ramps the RF from 199.950 MHz at 

injection up to 200.395 MHz at extraction to the LHC. The phase velocity of the RF wave and the speed of 

the particles crossing the cavity are only identical when the RF matches the centre frequency of the cavity. 

At other frequencies the different velocities result in some slippage, and hence less effective accelerating 

voltage [13], [50]. This effective accelerating voltage V seen by the beam upon one traversal of a n-cell 

TWC, is the sum of the contributions from all cells. Similarly, the beam-induced voltage must be summed 

on all cells. The result is not trivial as it strongly depends on the phase slip between the beam and the 

accelerating wave travelling in the cavity [13]. Let Ig and Ib be the generator current and beam current 

respectively, the effective voltage V(F) for excitation at frequency F is given by  

( ) ( ) ( ) ( ) ( )g g b bV F Z F I F Z F I F   Eq.( 6.1 ) 

In a standing wave cavity, the two impedances, Zg being the impedance seen by the generator, and 

Zb being the impedance seen by the beam, are proportional [112]. This is not the case for these TWCs. For 

the generator-induced accelerating voltage we have the impedance  

  

Fig.  6.3.  Image of the SPS 200 MHz LLRF system in the Faraday cage: the pre-LIU SPS upgrade configuration (2018) (left), 
and the new configuration after the LIU SPS upgrade (right). 

 



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

137 
 

( ) ( ) ( ) ( ) ( ) 0 0

g 1 0 0sinc sincj F F j F FZ F R F F e F F ep  p                 Eq.( 6.2 ) 

For the beam-induced voltage the impedance becomes 

( ) ( ) ( ) 
( )

( )
( )

( )

2 2
b 2 0 0

0 0

2
0 0

sinc sinc

1 sinc 2 1 sinc 2
             

Z F R F F F F

F F F F
jR

F F F F

 

 
p p

           

              
   

 Eq.( 6.3 ) 

In Eq.( 6.2 ) and Eq.( 6.3 ) F0 is the cavity centre frequency, τ is the cavity filling time, and the 

sinc(x) function is the normalized sinc(x) defined as in Eq.( 4.14 ). For additional details, refer to [112]. 

The two impedances are plotted on Fig.  6.5 around the central frequency of the cavity; in the left, Fig.  

6.5(a), we find the generator impedance Zg, and in the right, Fig.  6.5(b), the beam impedance Zb. After 

compensation for the delay τ/2, the impedance Zg is purely real but it presents zeros and sign inversions. 

This is caused by the slippage between particle velocity and wave velocity in the structure. At the first zero 

the slippage results in a 2π/n phase shift of the voltage seen by the particle in two consecutive cells resulting 

in zero total voltage over the n-cell structure. The series impedance of the accelerating structure is  

27.1 kOhm/m2, the generator impedance of the cavity at its central frequency is 13.2 kOhm and the beam 

loading impedance of the cavity at its central frequency is 876 kOhm [13], [50]. On the SPS cavities we 

have one antenna per cell. A passive RF summing network (rectangular box visible on Fig.  6.4) adds the 

individual contributions with delays inserted (orange cables), equal to the particle transit time. The result 

is a measurement of the effective voltage V(F), Eq.( 6.1 ), for the LLRF [10].  

 

Fig.  6.5.  (a) Impedance Zg (real part in blue and imaginary part in red) after compensation of the τ/2 delay, around the central 
frequency of the cavity. (b) Impedance Zb (real part in blue and imaginary part in red). Four-section cavity. 

 

Fig.  6.4.  CERN SPS travelling wave cavity in BAF3 test-stand during the Long Shutdown 2, before installation in tunnel. 

 



Synchronization and fixed-frequency clocks 

138 
 

6.3. Synchronization and fixed-frequency clocks 

The LLRF system that implements the BSP Architecture of Chapter 3 results from the two paradigm 

changes that we incorporate: Distributed topology and fixed frequency system clock. In the presented 

system the deterministic protocol, White Rabbit in the SPS case, is the enabling element for the LLRF 

synchronization between machines, nodes and sub-systems at accelerator complex level. The BSP 

Architecture presented in Chapter 3 is in the other hand what enables and extends the life of the OTFB 

algorithm with a new implementation that now uses a fixed frequency processing clock, at node level. We 

now present the main concepts and elements (for which we have developed a simulation model) of this 

LLRF system with emphasis around the BSP Architecture for TBLC.  

6.3.1. The synchronization, and the distribution of clocks and data 

Traditional LLRF systems rely on dedicated distribution systems (coaxial cables or fibres) to 

transmit the RF frequency of an analog RF signal to the various stations, and for fine synchronization [22]. 

Our test system for BSP relies nevertheless on new distributed topologies that have been adopted at CERN 

for data-broadcasting and synchronization [24], [55], [113]. The use of White Rabbit [25] in our network 

architecture motivates the need for our BSP solution to treat beam related signals.  

These deterministic protocols ensure known propagation delays between nodes easing 

synchronization schemes; they calibrate the propagation time of the different paths at initialization of the 

Cavity
Controller B

A
pp

lic
at

io
n

In
te

rf
ac

e

Damper
Pick Up

Cavity BCavity A

N
et

w
or

k
In

te
rf

ac
e

Cavity
Controller A

A
pp

lic
at

io
n

In
te

rf
ac

e

N
et

w
or

k
In

te
rf

ac
e

Beam phase 
module

A
pp

li
ca

tio
n

In
te

rf
ac

e

N
et

w
or

k
In

te
rf

ac
e Damper

A
pp

li
ca

tio
n

In
te

rf
ac

e

N
et

w
or

k
In

te
rf

ac
e

Beam
Controller

N
et

w
or

k
In

te
rf

ac
e

A
pp

lic
at

io
n

In
te

rf
ac

e

Local
Oscillator

Local
Oscillator

Local
Oscillator

Local
Oscillator

WR network

Local Clock

Application LinksWhite Rabbit Network

Analog Signals

Synchronous NCO Asynchronous NCO

Legend:

Local
Oscillator

 

Fig.  6.6.  Schematic representation of the network architecture in a synchrotron that uses White Rabbit for synchronization. The 
nodes use local free running oscillators for the clocking of the hardware. 



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

139 
 

system. Thanks to this, it is possible to ensure a certain time precision and accuracy among all the nodes of 

the network. This time certainty makes the information and reference signals to arrive at the same absolute 

time instant to all the nodes. Fig.  6.6 is a simplified schema of the different elements and systems in a 

synchrotron. These are implemented in the figure in dedicated nodes and sub-systems that are synchronized 

at accelerator level thanks to the deterministic network. Note however that the local computations, for 

instance, the phase of a signal between different nodes, are not yet synchronous. Each node runs with its 

own local oscillator and hence the initial conditions among them are random.  

The problem is not new [24], [55]; take the case for instance of two Direct Digital Synthesis (DDS) 

synthesizers that regenerate the RF in two distant cavities. Its internals are schematically depicted in Fig.  

6.7, and contain a phase accumulator, a look-up table converting phase to amplitude and a DAC. All these 

synthesizers use as control parameter a Frequency Tuning Word (FTW), and an optional instantaneous 

phase offset φi. They are digital systems and as such they need a system clock. The phase and frequency 

tuning word of the phase accumulator remain synchronous among all the nodes of the accelerator, this is 

ensured by WR. Unfortunately, the clocking schema in Fig.  6.6, which uses local versions of free running 

oscillators, is not locked among the different nodes. In this case, these different DDSs run hence 

asynchronously, making it impossible to have the phase of the RF signal aligned between nodes [24], [113]. 

To cope with this, WR provides a fixed frequency system clock extracted from the data stream. 

The concept was presented in the schematic representation of Fig.  1.1 where each node includes a unit 

responsible for the WR clock recovery. The clock is hence extracted from the same single fibre used for 

data distribution and synchronization. The absolute time reference and control signals synchronized among 

nodes, and the fixed frequency clock that is now also locked among all the nodes, make it now possible 

that different systems or accelerators can be played in phase; during filling, acceleration and transfer 

different sub-systems or machines are now in sync.  

All these elements can be located in different places thanks to the WR determinism. This makes 

the acquisition of synchronous data at distant points of the accelerator possible. It also enables the 

distributed processing and/or control of the accelerator elements and parameters. We can now place cavities 

in distant places that will synchronously accelerate the beam. Although this is not relevant to the SPS (with 

all cavities in the same machine straight section), it can be very attractive for the Future CERN Collider 

(FCC) with a one-hundred kilometre circumference and cavities in two opposite locations [21]. This 

clk

xa(t)x[n]
DAC+ +FTW

f(φ)

φ

φi
Look-Up 

Table 
Or

CORDIC

Phase Accumulator

Numerically Controlled Oscillator Direct Digital 
Synthesis

LPF x(t)

q d

 

Fig.  6.7.  Schematic representation of a signal synthesizer based on Direct Digital Synthesis.  

 



Synchronization and fixed-frequency clocks 

140 
 

distributed control is not new, similar approaches are implemented at GSI [30] and BNL [60], however 

there the fixed clock is transmitted on a separated dedicated link from the data and timings, whereas WR 

avoids that limitation at CERN. However, now the clocking architecture is asynchronous to the beam; we 

use a fixed-frequency system clock. This brings the new problem that the use of deterministic protocols 

introduces; how to perform the BSP.  

This is solved by our BSP Architecture; we can now use the fixed frequency clock derived from 

the WR for the sampling and system clocks, while the resampler sandwich in the Architecture performs the 

tuning of the processing to the beam. We resample the data acquired with the fixed frequency periodic 

sampling to a variable rate that is proportional to the beam revolution period and hence beam synchronous. 

We also exploit the synchronized arrival of the FTW and references to the nodes to locally compute the 

required resampling ratio of the sandwich. The BSP Architecture of Chapter 3 suits seamless this distributed 

network topology with fixed frequency system clock.  

6.3.2. Node and station hardware architecture 

At physical level, the nodes of the network refer to the locations in the accelerator that contain one 

or more dedicated stations. Each station is a physical hardware element that hosts one or more functional 

modules. We use the uTCA standard for implementation of the hardware stations [19]. These stations are 

composed of a crate manager computer and one or multiple processing platforms. In the uTCA standard 

these processing platforms are the so-called Advanced Mezzanine Cards (AMC) that commonly implement 

as processing devices FPGAs. The station has also communication interfaces. These interfaces are, for 

instance, the Rear Transition Modules (RTM) in the uTCA standard, that are application specific front-ends 

dealing with the node antennas, pick-ups, dampers, cavities… The uTCA crate backplane serves also as 

interface; in this case, it links different AMC and RTM cards among them, and also with the network 

interfaces (White Rabbit and the system links).  

We depict in Fig.  6.8 a schematic representation of the interrelations and partition of the elements 

presented so far in an uTCA station that could host our OTFB implementation. We focus on the AMC card, 

the FPGA, and the processing as it is the element that hosts our BSP Architecture. This FPGA contains the 

digital region of two RF front-ends, the application interfaces. The first front-end acquires signals from the 

accelerator plant, and the second front-end regenerates the output signals that are fed back to the accelerator 

after processing. The figure depicts also the analog part of these two application interfaces implemented in 

two different RTM cards of the uTCA crate. In the FPGA, we can see also the different units performing 

housekeeping tasks, and implementing network interfaces dealing with both the system links and the WR 

deterministic network. The core of the FPGA in the AMC card hosts the BSP processing enabled by the 

WR fixed clock and the FTW received via the deterministic protocol. The uTCA backplanes communicate 

the different elements of the station besides the direct connections they might have between them, as for 

instance between RTMs and AMC.  



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

141 
 

6.4. The BSP Architecture implementing the OTFB 

The OTFB is the LLRF feedback loop selected to demonstrate the feasibility of the proposed BSP 

Architecture within the CERN SPS LLRF. This algorithm is implemented in the Cavity Controller of the 

LLRF system to deal with TBLC. In the SPS case it is present in the 200 MHz and 800 MHz sub-systems, 

but we focus only in the 200 MHz in this chapter. This section presents its implementation within the LLRF 

architecture [114].  

6.4.1. The SPS 200 MHz LLRF System, Beam and Cavity Controllers 

The LLRF logical schema of the SPS in the post-LIU project is presented in Fig.  6.9 [18], [115]. 

The system is composed of an RF-Synchro module, a Beam Phase module, a Radial Position module and 

six Cavity Controllers for the 200 MHz sub-system plus for Cavity Controllers for the 800 MHz sub-system. 

It contains also WR network infrastructure and receivers.  

The module responsible for the acceleration is the Beam-Control. This module computes the RF 

frequency of the accelerating field based on the measurements of the magnetic field in the bending magnets 

of the accelerator. This magnetic field value is sent to the module over the WR network. The module is 

implemented in an AMC card within an uTCA station. This module also receives the cavity voltage 

measurements, the bunch-by-bunch phase, and the intensity and radial position measurements. Based on 

this information, the module also computes corrections to the RF that is widespread to the LLRF network 

Algorithm 
X

Beam
Asynchronous

Processing

Payload - Processing Region

White Rabbit
Interface

System links
Housekeeping

Network Interface

FPGA

Algorithm 
Z

A
pp

li
ca

ti
on

 I
n

te
rf

ac
e

A
pp

li
ca

ti
on

 I
n

te
rf

ac
e

Algorithm 
Y

R
es

am
pl

er

Beam
Synchronous

Processing

R
es

am
pl

er

Beam
Asynchronous

Processing

uTCA Backplanes

A
pp

li
ca

ti
on

 I
n

te
rf

ac
e

AMC

RTM RTM

A
pp

li
ca

ti
on

 I
n

te
rf

ac
e

Housekeeping

CRATE
CONTROLLER

INTERFACE

White Rabbit
Interface

System links

Network Interface

 

Fig.  6.8.  Schematic representation of a uTCA station.  

 



The BSP Architecture implementing the OTFB 

142 
 

in numerical format as the FTW. The RF-Synchro module is used for synchronization of the SPS with other 

machines at injection and extraction of the beam.  

The Cavity Controllers are the modules responsible for the regulation of the accelerating RF field 

inside the cavity [50], and there is one per cavity. It probes the cavity voltage using one or several 

antennas(s) that couple(s) to the accelerating field, processes the signal and generates the drive sent to the 

amplifier. This node receives the FTW, the voltage set-point and other machine data from the beam 

controller via the WR link.  

The core of the Cavity Controller module in the SPS is the OTFB algorithm, that settles the steady 

field in the cavity and also mitigates Transient Beam Loading. The regulation bandwidth extends 5 MHz 

on each sideband around the RF, covering around 116 revolution frequency lines per sideband [18]. The 

processing part of the module is implemented in the AMC card SIS8300-KU from Struck, while the RF 

front-ends span between this card and the RTM DS8VM1 from DESY/Struck. The hardware station is 

located in the SPS Faraday cage that is not very far from the cavities, in the underneath tunnel. This 

configuration results in a cabling delay between the cavity and the LLRF of 850 ns.  

6.4.2. The OTFB algorithm 

The OTFB is a feedback around the cavity-amplifier. First introduced in the early 1980s for the 

SPS [10] it has since been installed on many machines, sometimes as a complement to a Direct RF feedback 

[16], [112]. The algorithm performs two main actions; processing of the cavity field signal with a filter 

Node

Station

uTCA

Processing

Interface

Processing

Module

Interface

Processing

IOT

Cavity 
Controller

Beam Control 

SPS
RF-Synchro

co
ax

ia
l

Beam

TWC800

SPS Tunnel   

TWC800 TWC200



TWC200

Surface building BA3
(faraday cage)

co
ax

ia
l

co
ax

ia
l

w
a

ve
gu

id
e

IOT

Cavity 
Controller

co
ax

ia
l

w
a

ve
gu

id
e

TX

Cavity 
Controller

co
ax

ia
l

co
ax

ia
l

TX

Cavity 
Controller

co
ax

ia
l

co
ax

ia
l

Radial
Pick-up(s)

Phase
Pick-up(s)

Surface building BA3

SPS lowlevel RF

WR
RX
TX

WRRX
TX

Radial 
position

TXWR

Beam 
phase

TXWR

WR
Switch

WR
FTWs, 
Setpoints

RX

RX

  RX
  TX

WR WR

WR

fREV
CPS

RF-synchro

WR
fREVinj

fRFinj

Ref magnet
B-field

WR

ADC

Rbeam

ΔΦ(RF, RF ext )

RF Diagnostic

WR

fREV

fRF

RF triggers

6x

Fibers to/from CPS

f C
, E

X
T

f R
F

, 
E

X
T

(BQM, MR, ...)

RX
TX

RX
TX

Ibeam

dV, dP

RX
TX

RX
TX

≥ 13

fRF

WCM

Ibeam, 
φbeam

co
ax

ia
l

1.25Gbps

>6.4Gbps

≥ 
2

.5
 G

b
p

s

coaxial

8

WR
Switch

WRB-field 
1.25Gbps

Master clock
10MHz

TDC ΔT(frev ,fC ext)fC,ext

fRF,ext coaxial

8x

Σ Vcav

4

>6.4Gbps

Fibers to SPS BA’s

 

Fig.  6.9.  SPS Low Level RF schematic architecture. Reproduced from [18]. 



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

143 
 

tuned to the revolution frequency harmonics, and extension of the loop delay to properly match the 

corrective action to the RF field in the cavity with the next passage of the same beam portion. The extended 

loop delay matches one revolution period of the beam, one exact turn. 

A schematic representation of the algorithm is presented in Fig.  6.10. The time τ plant is the time 

it takes the signals to travel from the output of the LLRF back to the input of the LLRF, after crossing the 

transmitter, the cavity, and the cabling between cavity and the LLRF. The time τ DSP is the processing 

time in the platform that comprises down and up-conversion, filtering… The addition of these two times,  

τ plant + τ DSP, is what we referrer as the loop delay; the measured time from the output of the OTFB 

algorithm to the input of the One Turn Matching block. This block is the responsible to increase (by adding 

the time τ match ) and match the loop delay (τ plant + τ DSP + τ match) to exactly one revolution period of 

the beam, 1 TURN. The loop controller, block Revolution Frequency Filter in the figure, is the filter with 

its gain limited to narrow frequency bands around the revolution frequency harmonics [15]. Thanks to this 

combination, the OTFB algorithm reduces the beam loading, including the transients caused by the gaps in 

beam current, thereby equalizing the bunch parameters (length) and increasing the longitudinal  

coupled-bunch instability threshold [116].  

6.4.3. Partitioning of the OTFB between BSP and BAP 

We have presented in the previous sections that the old SPS LLRF uses a swept RF resulting from 

the velocity increase of the beam. We have also introduced that the OFTB contains a filter matching the 

revolution frequency harmonics. We need hence to tune the filter to the varying harmonics resulting from 

the variable revolution frequency; the harmonics change in position and spacing in the signal of the cavity 

that contains the voltage perturbation caused by the beam. More complex processing schemes or algorithms 

can require also more operations that need to track the beam revolution frequency. There is hence a need 

in LLRF systems for real-time reconfiguration of parameters to tune varying signals as the revolution 

frequency. 

With the new fixed frequency clock that it is fed to the uTCA stations after extraction from WR, 

we use our BSP solution to tune the processing elements (the filter in our case) to the beam revolution 

frequency (and to the spectrum of the sampled signal). The processing platform in the Cavity Controller 

+

OTFB PLANT

+

-

One Turn 
Matching

Revolution
Frequency 

Filter

Ampli.

Cabling

Cavity

Set-Point

1 
T

U
R

N

1 TURN

τ plantτ DSP τ match

τ plant + τ DSP + τ match = 1 TURN 
 

Fig.  6.10.  Schematic representation of the One Turn FeedBack algorithm.  

 



The BSP Architecture implementing the OTFB 

144 
 

needs to deal with BAP also in the same single device, for instance in the RF front-ends. The BSP 

Architecture of Chapter 3 is an alternative offering flexibility to implement both types of processing inside 

the same FPGA, BSP and BAP. It avoids the burden of algorithm reconfiguration, or the need for 

differentiated hardware elements for BAP and BSP.  

In the case of the OTFB, we need to partition its two elements between the BSP region, the 

sandwich between resamplers in the FRANCISCO fabric on top of the FPGA fabric, and the BAP region, 

the rest of the device. We implement the one-turn delay in the BAP region of the processing platform; any 

delay can be efficiently synthesized with a fixed clock using the FTW information. This region is depicted 

in blue in the schematic representation of Fig.  6.11. The filter is implemented in the BSP region of the 

processing Architecture, in red in the figure; the frequency response of the filter needs to track the beam 

energy ramping. The BSP Architecture, thanks to the resampler sandwich, performs automatically this 

tuning between the filter in the processing and the processed beam signal.  

6.4.4. The clocking architecture in the BAP and BSP 

We depict in Fig.  6.12 a schematic representation of the OTFB implementation mapped to the 

processing regions within the FPGA. We present also the data-path related signals and clocks. The green 

entities in the figure, the MERCEDES interfaces presented in Chapter 3, are the boundaries of the data-path 

between the FRANCISCO fabric implementing the BSP, and the FPGA fabric implementing the BAP. They 

handle the data-path clock domain crossing. The clock relation M in the interfaces is defined by the 

frequencies of the clocking architecture in the BAP and BSP. In our case the system clock clk extracted 

from the WR network, is a fp = 125 MHz signal. This clock is used in ADCs and DACs for acquisition and 

regeneration of the analog signals (cavity antenna and amplifier drive signal). The system clock of the 

FPGA is also this 125 MHz signal. Within the processing, the sampled data stream of the cavity field results, 

after conditioning in the RF front-end (blue BAP region in the figure), in an I/Q pair. This I/Q channels 

have a sampling rate of fs_cpl = 62.5·106 sample/s each one.  

They cross the hardware fabric within two parallel coupled data-paths that use a  

sub-multiple clk_cpl of the system clock at fp_cpl = 62.5 MHz. The OTFB lies in the FRANCISCO fabric. 

The MERCEDES interfaces, configured with M = 2, decouple and couple back the data-path; in the 

One Turn FeedBack

One Turn 
MatchingRevolution

Frequency 
Filter

Beam Synchronous Processing

Beam
Asynchronous

Processing

Network Interface FPGA

+

Set Point

–

+

In Ratio Out Ratio

Amplifier

Cavity

R
F 

F
ro

nt
-e

nd

R
es

am
pl

er

R
F 

F
ro

nt
-e

nd

R
es

am
pl

er

 

Fig.  6.11.  Partitioning of the OTFB units between the BSP and BAP regions of the processing device.  



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

145 
 

M
E

R
C

E
D

E
S

D
ec

ou
pl

e

M
 =

 2

pr
oc

es
si

ng
 c

lo
ck

 c
lk

p 
f p

_c
pl
 =

 A
 =

 6
2.

5·
10

6  [
H

z]
 

si
gn

al
 c
l
k
_
c
p
l

d
_
d
c
p
l

v
a
l
i
d

F
PG

A

sa
m

pl
in

g 
ra

te
   

f s_
cp

l =
 A

 =
  6

2.
5·

10
6  [

sa
m

pl
e/

s]
 

pr
oc

es
si

ng
 c

lo
ck

 c
lk

p

sa
m

pl
in

g 
ra

te
   

f s_
dc

pl
 =

 A
 =

 6
2.

5·
10

6 
[s

am
pl

e/
s]

 
ar

ba
p 

=
 (

1/
M

) 
= 

(1
/2

)

FP
G

A
 C

lo
ck

 
M

an
ag

er

H
ar

dw
ar

e 
Fa

br
ic

M
E

R
C

E
D

E
S

C
ou

pl
e

M
 =

 2

B
A

P
P

ro
ce

ss
in

g

c
l
k
_
d
c
p
l

d
_
c
p
l

c
l
k
_
c
p
l

d
_
c
p
l

d
_
i
n

d
_
o
u
t

c
l
k
_
c
p
l

c
l
k
_
d
c
p
l

B
SP

P
ro

ce
ss

in
g

d
_d
cp
l

v
a
l
i
d

d
_
d
c
p
l

v
al
id

r
_
i
n

r
_
o
u
t

pr
oc

es
si

ng
 c

lo
ck

 c
lk

p 

f p
_d

cp
l =

 M
 · 

A
 =

 1
25

·1
06  [

H
z]

 
si

gn
al

 c
l
k
_
d
c
p
l

sa
m

pl
in

g 
ra

te
   

f s_
dc

pl
 =

 R
 · 

A
 =

 R
 · 

62
.5

·1
06  [

sa
m

pl
e/

s]
 

ar
bs

p =
 R

 · 
(1

/M
) 

=
 R

 · 
(1

/2
)

+
c
o
r
r
_
R

Resampler Resampler

FR
A

N
C

IS
C

O
 A

da
pt

at
io

n 
F

ab
ri

c

f p
_d

cp
l =

 M
 ·

 A
 =

 1
25

·1
06 

[H
z]

 
si

gn
al

 c
l
k
_
d
c
p
l

r
_
o
u
t

 =
 R

r
_
i
n

 =
 1

 / 
R

F
un

da
m

en
ta

l F
re

qu
en

cy
 I

nf
or

m
at

io
n

S
ub

-r
eg

io
n 

I 
(f

ix
ed

 f s
)

S
ub

-r
eg

io
n 

II
 (v

ar
ia

bl
e 

f s)

C
om

b
Fi

lt
er

V
F

D

D
IA

N
A

V
FD

D
IA

N
A

X
IF

B
B

D
ig

ita
l U

p
 /

D
ow

n 
C

on
ve

rt
er

X
IF

B
B

D
ig

ita
l U

p
 /

D
ow

n
 C

on
ve

rt
er

C
on

tr
ol

 In
te

rf
ac

e

N
C

O
N

C
O

R
at

io
s

(1
/R

)  
  R

Output Signal

d
_
d
c
p
l

v
a
l
i
d

Input Signal
ADC DAC

f p
 =

 1
25

·1
06  [

H
z]

 
si

gn
al

 c
l
k

XIF RF

LO

Analog Mixer

O
ne

 T
ur

n 
D

el
ay

M
em

or
y

M
 
=
 
2

M
 
=
 
2

1 
Tu

rn
 D

el
ay

1
T
_
d
e
l
a
y

T
he

 d
ou

bl
e 

lin
e 

ar
ro

w
s 

   
   

   
   

   
   

   
   

re
pr

es
en

t a
n 

I/
Q

 s
ig

na
l 

pa
ir

 

Fig.  6.12.  Simplified representation of the OTFB implementation, and the clocking architecture in the processing device.  



The BSP Architecture implementing the OTFB 

146 
 

FRANCISCO fabric the clock clk_dcpl runs at a frequency fp_dcpl = 125 MHz, with a sampling rate  

fs_dcpl = 62.5·106 sample/s in the sub-region I (BAP), and fs_dcpl = R · 62.5·106 sample/s in the sub-region II 

(BSP) between resamplers.   

6.4.5. The 1T Delay in the BAP 

We have presented in section 6.4.2 the different delays in the LLRF-Amplifier-Cavity chain. The 

cabling, amplifiers and the LLRF DSP have a fixed latency. The One Turn Matching block synthesized by 

the LLRF is, on the other hand, a variable delay component; it is added to match the variable revolution 

frequency. In the original system this was easily done using a FIFO memory clocked with the swept clock 

of the system, whose frequency was a harmonic of the revolution frequency. The FIFO memory, with L 

memory positions, resulted in the variable delay proportional to the revolution frequency. And more 

important, a swept clock multiple of the revolution frequency makes the delay L a constant integer. The 

fixed-depth FIFO implemented hence the variable delay,  

 ( )  LH z z   Eq.( 6.4 ) 

The fixed delay was compensated in the RF front-end mixers by inserting a delay between the LO 

used in the demodulator and modulator mixers [10]. 

In our BSP fixed clock solution this is no longer applicable. We use instead a dual-port memory 

but now clocked with a fixed frequency signal. This memory is placed, as presented in the partitioning of 

the OTFB, in the BAP region. The one turn delay is achieved by updating the read and write pointer offset 

dynamically according to the revolution period (considering the known fixed delay).  

To compute this offset, the FPGA implements an algorithm that divides the current variable delay 

needed by the BAP sampling clock period. The revolution frequency information is received in the node 

via the WR. The resulting value contains an integer part and a fractional part, the integer part is 

synthesizable with the memory achieving a time accuracy of a clock cycle (maximum error of half a clock 

cycle, i.e., 0.5 · 16 ns = 8 ns at 62.5 MHz). The fractional part is synthesized with a VFD filter placed 

behind the memory, with an architecture similar to the one used in the resampler. This VFD filters the 

corrective signal and modifies its value recreating the fractional delay contribution that adopts a value 

between -0.5 and 0.5 clock cycle. 

6.4.6. The comb filter in the BSP and the regulation 

The frequency response of the filter in the OTFB tracks the revolution frequency harmonics of the 

beam in the demodulated signal of the cavity. This filter is therefore a comb filter, with large gain on the 

revolution frequency harmonics; we have implemented the Z Transform shown in Eq.( 6.5 ). The parameter 

a in the equation governs the bandwidth of the filter around each revolution frequency harmonic, and G is 

the gain of the filter on the resonances. The filter has zero phase shift on the revolution frequency 

harmonics, and the magnitude of the filter frequency response is depicted in Chapter 2, Fig.  2.8, for a unit 



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

147 
 

gain with a = 31/32 which gives around 36 dB peak to valley gain. The figure uses N = 24 which results in 

twelve harmonics per Nyquist zone. 

 ( ) 1
 (1 )

1 N
H z G a

a z
   


  Eq.( 6.5 ) 

In the old system, the implementation of the tuning to the revolution frequency harmonics was very 

easy with the ratio of sampling clock to revolution frequency being the integer number N [15]. The swept 

system clock, which is a multiple of the revolution frequency, results in a delay N that is a constant integer.  

That is not the case when the clock is fixed, our WR fixed frequency clock. In this case, the 

parameter N is not an integer anymore and it should be changed continuously during the acceleration ramp, 

so that N fixed clock cycles equal one varying revolution period. The solution that we propose using the 

BSP Architecture is different.  

We implement the comb filter in the BSP region with a fixed frequency response, while we exploit 

the resampling of the incoming data to a sampling rate f’s that is a multiple of the revolution frequency, and 

hence matches the response of the filter. The data stream to the filter has therefore a variable sampling rate, 

as in the old swept clock solution. The system therefore reproduces the old behaviour, but our 

implementation uses a fixed system clock, with a fixed filter (N does not need to be updated). We thereby 

avoid a clock tracking the beam revolution frequency and any reconfiguration in the processing system as 

in the original solution [15].  

The frequency response of the BSP is normalized to the peak value to avoid saturation of the  

data-path. The recursive architecture of the filter is presented in Fig.  6.13. The filter is implemented using 

a decoupled data-path, with the valid flag signal controlling the enable input of the filter recursive register.  

We need to choose the parameter N in conjunction with the resampling parameters in this fixed 

clock implementation as presented in section 3.3.9 or the example of Chapter 5; the resampler modifies the 

sampling period of the input according to the resampling ratio R. It generates an output signal with sampling 

rate f’s (Eq.( 2.2 )) tuned to the filter response defined in the resampled domain. There, the filter response 

in Eq.( 6.5 ) has peaks at the normalized angular frequencies 

q  d

enb

a

(1-a)G

valid_in

data_out

-Nz

data_in
x x +

x

valid_out

Comb Filter

 

Fig.  6.13.  IIR comb filter. 



Functional validation 

148 
 

k    with   0,  1,  , –  .2π 1k
k

N
N    Eq.( 6.6 ) 

As the filtering is done after resampling by frequency f’s, the absolute positions of the peaks are 

k s’   with   0,  1,  , –  1.k
k

F f N
N

   Eq.( 6.7 ) 

We want these peaks on the harmonics of the revolution frequency Frev 

k rev   with   0,  1,  , –  1. · F k F k N   Eq.( 6.8 ) 

Now merging Eq.( 2.2 ), Eq.( 6.7 ) and Eq.( 6.8 ), we get 

  rev

s

F
R N

f
  Eq.( 6.9 ) 

In any resampler the error grows significantly when the input signal frequency approaches the 

Nyquist rate. N must be chosen depending on the filtering bandwidth, that is, it must be at least twice the 

number of revolution harmonics to be filtered (N > 232, two times 116 revolution frequency harmonics in 

the 5 MHz regulation bandwidth). We selected N to be 1442 sampling periods so that the frequency band 

of interest (5 MHz) extends to about one sixth of the Nyquist rate (31.25 MHz), and remains within the 

accepted input bandwidth for the resampling architecture (18.75 MHz section 3.3.10).  

As the acceleration proceeds, the revolution frequency increases and so does the resampling ratio. 

At the output of the BSP region the second resampler, in the bottom of Fig.  6.12, recovers the original 

sampling rate by performing down-sampling. This down-sampling ratio is the inverse value of the  

up-sampling.  

We count on the OTFB to regulate the voltage set-point. The filter and the one turn delay have unit 

gain in base-band; the static field in the cavity will hence reach, for G = 10 for instance, the value 

cav set_p set_p set_p

1 10 10

1 1 10 11
V V V V

G
  

 
 Eq.( 6.10 ) 

6.5. Functional validation 

The validation of the BSP solution implementing the OTFB for TBLC has been performed in first place by 

means of simulations of an accelerator plant. It represents part of the CERN SPS 200 MHz  

post-LIU accelerating system. It includes a model of the cavity, the amplifiers and the part of the LLRF 

responsible for the OTFB. Ancillary systems as the WR receiver and the associated blocks for local 

regeneration of the LO and other auxiliary signals used in the RF front-ends have also been included as 

functional models. The test bench reproduces also the RF modulation architecture with the input and output 

front-ends. This modulation architecture is staged in different IFs to match the frequency at which the 



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

149 
 

transfer function of the different elements of the model are described. This aims at being as close as possible 

to the real SPS. The system can reproduce the beam energy ramping with swept RF.   

In the model, a pick-up measures the field in the cavity, an RF front-end down-converts the signal 

to base-band and feeds the LLRF. There the signal is compared against the reference value and the error 

signal is filtered and delayed (OTFB) to apply a correction to the RF field in the next bunch passage through 

the cavity. The objective is the reduction of the field perturbation induced by the beam passage. When the 

system behaves as expected, the field in the cavity in closed-loop shows rejection of the induced beam 

voltage, and the total voltage in the cavity approximates the set-point voltage. The OTFB uses a fixed 

frequency processing clock and the BSP Architecture for tuning. 

6.5.1. The test bench model 

The test bench used for validation is presented in Fig.  6.14. It emulates the LLRF regulation around 

a SPS 200 MHz cavity. The specification for the regulation bandwidth is that it must cover 5 MHz on each 

sideband around RF; this results in around 116 revolution frequency lines per sideband. The simulation can 

be programmed to reproduce a given accelerating cycle. The central frequency of the cavity is set to 200.242 

MHz and the maximum and minimum values of the RF within a cycle are parameters of the simulation.  

The blocks directly synthetizing the BSP region, and the OTFB, are implemented in Xilinx System 

Generator hardware primitives. The remaining elements of the model, used for validation of the solution 

have been modelled in Simulink. In the development process of the test bench, all the presented accelerator 

plant blocks have been first validated with MATLAB simulations. Complex elements as the cavity, 

amplifier and filters have been studied and modelled first as single blocks and later integrated into the 

system level model. The transfer function of these elements has been validated and the results have shown 

that the models behave as expected. The BSP region has also been modelled first in MATLAB, to assess 

the functional behaviour of the blocks.  

Later, after deep understanding of the behaviour of all the elements, the blocks were integrated into 

a functional system level solution. These simulations included the processing latency of the blocks mapping 

the different elements, together with other latencies of the model, as cable delays. The functional model of 

the BSP elements was then migrated to Xilinx System Generator primitives for hardware verification. The 

hardware primitives make possible the simulation of the hardware architecture and its internal signals with 

a processing clock cycle accuracy.  

Finally, the BSP Architecture has been integrated into the system level simulation test bench 

reproducing the TBLC with the new OTFB.  



Functional validation 

150 
 

 

One Turn Delay

VFD

ONE TURN FEEDBACK

P
hase 

R
otator

H
C

A
V

F
ilter

Dual Port 
RAM

X
IF

IF

D
igital U

p /
D

ow
n C

onverter

+

Beam Synchronous 
Processing

Comb
Filter

+

–

VFD

Resampler

DIANA

VFD

Resampler

DIANA

Cavity

B
ea

m

X

IFRF

LO

Analog Mixer

X

IF RF

LO

Analog Mixer Cabling
Delay

WHITE 
RABBIT 

RECEIVER

NCO NCO

Amplif

DACADC

Clock
Recovery

Info
Processing
01011010

Network
Interface

NCO NCO

Resampling 
Ratio

Ru

Resampling 
Ratio

Rd

Set Point
1 Turn Delay

Dint dfrac

F
P

G
A

X
IF

IF

D
ig

it
al

 U
p 

/
D

ow
n 

C
on

ve
rt

er

Application Interface

Payload
P

ha
se

 
R

ot
at

or

IQ Phase
phi

RTM

AMC

RTM

Fig.  6.14.  Test bench architecture. 

 



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

151 
 

6.5.1.1. Modulation architecture 

The LLRF control algorithms perform the processing in base-band. The OTFB, as one of such 

algorithms, performs the computation of the error signal in the cavity field after down-conversion of the 

RF signals. Machines operating in the lower radio-frequency range can sample the RF signals directly. 

Above few hundreds MHz, demodulation is used first, preferably in I/Q coordinates where beam loading 

is an issue. In these machines, one or multiple mixing stages down-convert a narrowband RF signal to base-

band. The down-conversion process brings also to base-band some revolution frequency harmonics 

(depending on the regulation bandwidth) present in the sidebands around the RF. The resulting signal is 

sampled as an I/Q pair that after processing is up-converted back to the required RF.  

In communication systems, where the RF is fixed, or accelerators, that use also fixed RF as 

LINACs, these modulation stages are often simple. This is not the case of the SPS where the RF is swept 

to accelerate the beam. In our case, a varying LO frequency is required to bring the sweeping RF to  

base-band. This LO is reconstructed locally in the processing nodes with the clock and information 

extracted from the deterministic link (FTW). Down and up-conversion can be implemented by means of an 

analog RF front-end (the acquired signal is mixed with a real analog swept LO), or digitally by means of a 

digital mixer driven from an NCO. We use both solutions in the SPS 200 MHz system.  In the input RF 

front-end we perform direct-sampling of the RF signal followed by numerical down-conversion to  

base-band. The output RF front-end uses a vector modulator with an IF intermediate stage.  

The simplified modulation architecture of the SPS, present also in our test bench model of Fig.  

6.14, follows the schematic representation of Fig.  3.8 in Chapter 3. There the input direct-sampling stage 

has been replaced by a combination of two mixers, one analog and one digital, to ease the understanding of 

the different stages. In the schema, several IF frequency regions are defined to host different processing 

elements. In the LLRF region IF2, where the BSP hosts the OTFB, the goal is to process the RF in  

base-band. The region that performs BAP, IF3, contains the HCAV filter, that will be presented in 6.5.1.4,  

and the amplifier model. This region aims at demodulating the centre frequency of the cavity to  

base-band. The region containing the cavity model modulates the RF and cavity to its nominal values. Note 

that we use a base-band model of the amplifier in contrast with Fig.  6.14 that places the amplifier in the 

RF region as in the real SPS. The LO2 and LO3 are swept according to the RF ramping.  

6.5.1.2. The cavity model  

The accelerating structure can be configured to match any SPS TWC cavity configuration in 

number of sections and cells. The present simulation uses a single four-section cavity. Our mathematical 

model of the Travelling Wave Cavity is defined in 6.2.2. As presented in [112], we have incorporated two 

I/Q mixers excited by an LO at a frequency fc, one at the input and the other at the output, so that the model 

can be placed in any IF region.  This results in the I/Q frequency-domain model of Eq.( 6.11 ).  



Functional validation 

152 
 

 g,s g,c g,II b,Ib,s b,c

g,c g,s g,QQ b,Qb,c b,s

Z Z IV IZ Z

Z Z IV IZ Z

        
        

       
  Eq.( 6.11 ) 

The diagonal C terms in the impedance matrices denote the cross coupling between I and Q 

channels, while the S terms denote the direct contribution of the channel. Then the frequency responses are 

transformed into the impulse responses of Eq.( 6.12 ) and implemented in the Matlab simulation as FIR 

filters. The generator impulse responses hg,s(t) and hg,c(t), and the beam impulse responses hb,s(t) and hb,c(t) 

of Eq.( 6.12 ) are respectively presented through equation Eq.( 6.13 ) to Eq.( 6.16 ).   

( ) ( )
( ) ( )

( ) ( )
( ) ( )

g,I g,I b,Ig,s g,c b,s b,c

g,Q g,Q b,Qg,c g,s b,c b,s

v i ih t h t h t h t

v i ih t h t h t h t

         
           

       
 Eq.( 6.12 ) 

( ) ( )1
g,s 0

1
cos 2π

2

R t
h t f t

 
      
 

 Eq.( 6.13 ) 

( ) ( )1
g,c 0

1
sin 2π

2

R t
h t f t

 
       

 
 Eq.( 6.14 ) 

( ) ( ) ( )b,s 2 0 0

1
cos 2π sgn cos 2π

t t
h t R f t f t

  
                 

     
 Eq.( 6.15 ) 

( ) ( ) ( )b,c 2 0 0

1
sin 2π sgn sin 2π

t t
h t R f t f t

  
                

     
 Eq.( 6.16 ) 

In the equations, the fixed difference Δf between demodulation frequency fc and cavity centre 

frequency f0 is defined as in Eq.( 6.17 ). Refer to [50], [112] for more details on the cavity model. 

 c 0f f f    Eq.( 6.17 ) 

6.5.1.3. The TX driver 

The amplifier block models the base-band response of one of the tetrode amplifiers of the SPS 

around its centre frequency. It is implemented with a Butterworth filter having single-sided pass-band and 

stop-band edge frequencies at 1.5 MHz and 4 MHz respectively. The attenuation is 3 dB at the pass-band 

edge and 15 dB at the start of stop-band.  

The loop delay including cables, amplifier, cavity and LLRF is modelled according to the real 

conditions; we use 850 ns as delay between LLRF and cavity that results in 1.6 µs round-trip delay.   

6.5.1.4. The HCAV filter 

The 5 MHz regulation bandwidth covers several zeros of the frequency response of the cavity [50], 

[112]. The first side lobes of this response have a phase shift of 180 degrees, and for stability, the feedback 

frequency response must also change sign at these frequencies. A filter HCAV is included in series with 



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

153 
 

the OTFB, which adds 180 degree extra phase shift to these lobes. HCAV is implemented in base-band, 

with the same response as Zg to properly match the cavity zeroes.  

6.5.1.5. The beam model 

The beam is modelled as a DC current lasting for part of the turn (the populated buckets). This 

current is modulated at the RF frequency and injected into the cavity model (beam impedance). The 

simulation is performed for zero-degree stable phase (synchrotron convention). The cavity voltage and RF 

component of beam current are therefore in quadrature. As the feedback is implemented in I/Q coordinates, 

performances in term of beam loading compensation do not depend much on the stable phase. This beam 

model ignores longitudinal beam dynamics and is therefore valid in static conditions only (no oscillation 

of the beam in the RF potential). It is not valid during the injection transient caused by phase, momentum 

and bucket mismatch between the Proton Synchrotron (PS) injector and SPS buckets. The current intensity 

is adjusted in the simulations so that the beam-induced voltage equals the generator-driven voltage.  

6.5.2. The simulations 

We now present the simulation results of the implemented OTFB algorithm using the BSP 

Architecture. In the simulation the RF frequency ramps from 200.242 MHz to 200.342 MHz in four 

thousand turns lasting 92 ms. According to the RF values and given the use of a harmonic number equal to 

4620, the revolution frequency of the simulated beam ramps from 43.342 kHz to 43.364 kHz. This is much 

faster than any SPS ramp but the limit is caused by the computation load. The ramping is linear with steps 

of 25 Hz per turn, which gives a dF/dt of 1.08 MHz/s, a value more than seven times faster than the 

maximum SPS ramping rate of 142 kHz/s. The simulation calls for 1 MV set-point in the cavity. The RF 

component of the beam current is set at 1.14 A so that the beam-induced voltage also equals 1 MV. The 

stable phase set to 0 degrees for simplicity (synchrotron convention) is a non-realistic value for acceleration 

(above transition) but eases the simulation analysis. The parameters are in accordance with the 

specifications after the LIU upgrade [12] (total voltage of 6 MV at injection, set-point of 1 MV per cavity), 

but the RF component of the beam current will peak at 2 A in the HL-LHC era. 

6.5.2.1. Open-loop response of the regulation  

The magnitude of the open-loop transfer function of the model is presented in Fig.  6.15, after phase 

alignment of the system. The model is excited with an impulse (delta) injected in the I channel only. The 

Fig.  6.15.  (a) Open-loop transfer function of the feedback system, RF at base-band. (b) Zoom of the first 1.6 MHz.  

M
ag

ni
tu

de
 [d

B
]

M
ag

ni
tu

de
 [d

B
]



Functional validation 

154 
 

open-loop response (I and Q channels) is measured. Then the transfer function of the model is computed 

with the Fourier Transform of the response. This response is obtained with an RF frequency at the cavity 

centre frequency (the plot depicts the I to I+jQ open-loop response with a sampling frequency of 62.5·106 

sample/s). The zeroes of the cavity are located at 1.6 MHz and its multiples, as shown on Fig.  6.15(a). Fig.  

6.15(b) enlarges the low frequency part of the response to show the comb filter peaks at the revolution 

frequency harmonics. The spacing is 43.342 kHz.  

The Nyquist plot of the transfer function is presented in Fig.  6.16. The 30 dB gain of the comb 

filter can be clearly seen in the real axis. The red circle depicts the unit circle. 

6.5.2.2. The cavity voltages and TBLC compensation  

After the alignment and verification of the response of the system, we close the feedback loop 

around the cavity and study the Transient Beam Loading Compensation performance of the OTFB with the 

 

Fig.  6.16.  Nyquist plot of the open-loop transfer function of the simulation.  

Im
ag

in
ar

y 
pa

rt

Fig.  6.17.  Cavity voltage during the simulated ramp, zoom around simulation time 64 ms. (a) RF instantaneous frequency,  
(b) Cartesian I component and (c) Cartesian Q component.  

 

63.95 63.96 63.97 63.98 63.99 64 64.01 64.02 64.03 64.04
Time [ms]

200.3116

200.3118

200.312

(a)
RF instantaneous frequency

63.95 63.96 63.97 63.98 63.99 64 64.01 64.02 64.03 64.04
Time [ms]

0.85

0.9

0.95

(b)
Total cavity voltage - Real component

63.95 63.96 63.97 63.98 63.99 64 64.01 64.02 64.03 64.04
Time [ms]

-0.5

0

0.5

(c)
Total cavity voltage - Imaginary component



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

155 
 

BSP Architecture. We start in Fig.  6.17 depicting the measured voltage in the cavity and the update ratio 

of the RF frequency ramp, once per revolution period. The figure is zoomed around simulation time 64 ms, 

some turns after the start. The beam spans one third of the ring (6.6 s). The gaps in the signal correspond 

to the empty buckets spanning the remaining two thirds of the ring. When the beam crosses the structure 

the voltage in the cavity is perturbed by the beam loading. The steps of the linear frequency ramp are shown 

in Fig.  6.17(a), the real component of the cavity voltage is presented in Fig.  6.17(b) and the imaginary 

component in Fig.  6.17(c). The cavity filling time is 620 ns, for a revolution period around 23 s. Therefore, 

the full voltage is induced at each turn and does not accumulate over the turns.  

The voltage in the cavity is depicted in Fig.  6.18 for the first 1.1 ms. The left column depicts the 

real component (I) and the right column the imaginary (Q). Fig.  6.18(a1) and Fig.  6.18(a2) show the beam-

induced voltage. The beam is injected after 0.48 ms, inducing -1.061 MV in the reactive Q channel. 

Fig.  6.18(b1) and Fig.  6.18(b2) show the voltage in the cavity driven by the generator. The set-

point is set to 1 MV and the regulation is closed after 0.07 ms. The voltage magnitude reaches a stable value 

equal to 0.909 MV after 0.2 ms. This value is consistent with Eq.( 6.10 ). The different steps correspond to 

the response of the OTFB turn after turn. After one turn, the voltage in the cavity reaches a value around 

0.65 MV. The time constant of the regulation in this case is hence one turn, 0.023 ms. This validates the 

regulation as this reaction time is much smaller than the synchrotron period, in the order of 2.5 ms.  

Fig.  6.18(c1) and Fig.  6.18(c2) depict the total voltage in the cavity, being the addition of both the 

generator and the beam-induced voltage. At the first passage, the beam induces -1.061 MV reactive (Q 

 
Fig.  6.18.  Cavity voltage for the first 1.1 ms of the simulation in Cartesian I (left) and Q (right) components: (a) Beam-induced 

voltage, (b) Generator-induced voltage, (c) Total cavity voltage. RF in the beginning at 200.242 MHz. 

0 0.2 0.4 0.6 0.8 1
Time [ms]

0

0.05

0.1

M
ag

ni
tu

de
 [

M
V

]

(a1)
Beam-induced voltage - Real comp.

0 0.2 0.4 0.6 0.8 1
Time [ms]

-1

-0.5

0

M
ag

ni
tu

de
 [

M
V

]

(a2)
Beam-induced voltage - Imaginary comp.

0 0.2 0.4 0.6 0.8 1
Time [ms]

0

0.5

1

M
ag

ni
tu

de
 [

M
V

]

(b1)
Generator-induced voltage - Real comp.

0 0.2 0.4 0.6 0.8 1
Time [ms]

0

0.5

1

M
ag

ni
tu

de
 [

M
V

]

(b2)
Generator-induced voltage - Imaginary comp.

0 0.2 0.4 0.6 0.8 1
Time [ms]

0

0.5

1

M
ag

ni
tu

de
 [

M
V

]

(c1)
Total cavity voltage - Real comp.

0 0.2 0.4 0.6 0.8 1
Time [ms]

-1.5

-1

-0.5

0

0.5

M
ag

ni
tu

de
 [

M
V

]

(c2)
Total cavity voltage - Imaginary comp.



Functional validation 

156 
 

channel). The beam current is in quadrature with the cavity voltage (zero-degree stable phase). At the 

beginning of the simulation the cavity is on tune (RF frequency equal to the cavity centre frequency) so 

there is no beam loading in the I channel. The first correction of the OTFB arrives on the second turn. After 

five turns the beam-induced voltage has been reduced to -0.1 MV in the middle of the beam batch. The 

factor ten reduction is consistent with the feedback gain at low offset frequencies (G = 10). Larger transients 

remain at the head and tail of the beam batch, caused by the reduced gain at large offset frequencies. As 

visible on Fig.  6.15(b), the open-loop gain has dropped to 0 dB at 1.2 MHz offset from cavity centre 

frequency. 

The voltage in the cavity for the last 0.25 ms of simulation is depicted in Fig.  6.19. Fig.  6.19(a1) 

and Fig.  6.19(a2) show the demodulated beam-induced voltage, which now reaches 0.14 MV and  

-1.047 MV in the I and Q channels respectively, in the middle of the beam batch. The RF is now offset by 

100 kHz with respect to the cavity centre frequency resulting in beam loading in both channels.  

Fig.  6.19(b1) and Fig.  6.19(b2) show the generator-induced voltage in the cavity set by the regulation. 

When the beam crosses the cavity, the regulation reduces the voltage in the I channel from the 0.9 MV to 

0.78 MV to compensate the beam loading in the I channel. The same behaviour is observed in the Q channel, 

the regulation increases the voltage from 0 MV to 0.95 MV in the middle of the beam batch. The total 

voltage in the cavity, addition of the beam and generator-induced voltages is depicted in Fig.  6.19(c1) and 

Fig.  6.19(c2). When there is no beam crossing the cavity, the regulation sets 0.9 MV in the I channel. In 

the middle of the beam batch, the I channel reaches 0.92 MV while the Q channel has -0.1 MV. Again, 

Fig.  6.19.  Cavity voltage for the last 0.25 ms of the simulation in Cartesian I (left) and Q (right) components: (a) Beam-induced 
voltage, (b) Generator-induced voltage, (c) Total cavity voltage. RF in the end at 200.342 MHz. 

91.75 91.8 91.85 91.9 91.95 92
Time [ms]

0

0.05

0.1

M
ag

ni
tu

de
 [M

V
]

(a1)
Beam-induced voltage - Real comp.

91.75 91.8 91.85 91.9 91.95 92
Time [ms]

-1

-0.5

0

M
ag

ni
tu

de
 [M

V
]

(a2)
Beam-induced voltage - Imaginary comp.

91.75 91.8 91.85 91.9 91.95 92
Time [ms]

0

0.5

1

M
ag

ni
tu

de
 [M

V
]

(b1)
Generator-induced voltage - Real comp.

91.75 91.8 91.85 91.9 91.95 92
Time [ms]

0

0.5

1

M
ag

ni
tu

de
 [M

V
]

(b2)
Generator-induced voltage - Imaginary comp.

91.75 91.8 91.85 91.9 91.95 92
Time [ms]

0

0.5

1

M
ag

ni
tu

de
 [M

V
]

(c1)
Total cavity voltage - Real comp.

91.75 91.8 91.85 91.9 91.95 92
Time [ms]

-1.5

-1

-0.5

0

0.5

M
ag

ni
tu

de
 [M

V
]

(c2)
Total cavity voltage - Imaginary comp.



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

157 
 

there is a factor ten reduction of the beam-induced transients, consistent with the feedback gain at low offset 

frequencies (G = 10).  

6.5.3. Hardware tests 

We performed tests with the implementation of the OTFB in real hardware after the simulations. 

This section presents the results of these tests using a SPS cavity and a uTCA station hosting the OTFB; 

the algorithm has been successfully implemented in the AMC FPGA SIS8300-KU from Struck, targeting 

a 125 MHz processing clock for its high-grade Xilinx Kintex-7 XCKU040-1FFVA1156C. No hardware 

optimization has been done, resulting in a maximum achievable FPGA clock of 200.8 MHz. The data-path 

at the input and output of the system has the same width as the one presented in Chapter 5 for the resampler 

sandwich, which remains unmodified; sixteen bits wide, with fifteen fractional part bits and one sign bit.  

6.5.3.1. The hardware setup 

The setup is placed in the CERN BAF3 building where the SPS LLRF and power plant are placed. 

The test uses a real SPS cavity and the pre-driver of the power plant. The system responses have been 

measured with a Vector Network Analyzer (VNA). The stimulus output of the VNA is connected to the 

antenna input of the LLRF (uTCA crate). The output drive signal of the crate is connected to the VNA 

input. The analog LO signal of the crate is generated with an external precision RF synthesizer. For 

spectrum measurements we replace the antenna signal by a clean synthesizer, and we acquire the output of 

the system with a SA. The RF frequency value to which the uTCA crate is synchronized, is provided to the 

test setup via a discrete FTW coming from the White Rabbit link. 

6.5.3.2. Open-loop response  

We have first performed functional tests to verify the tuning capabilities and functionality of the 

BSP Architecture within the OTFB. We study the open-loop response of the LLRF with the comb filter in 

the processing chain. It needs to adapt the spacing between peaks to the revolution frequency, sub-multiple 

of the tuned RF. We have configured the setup with the SPS harmonic number h = 4620.  

We measure the transfer function with different RF frequencies and spans in the RF domain, 

including the whole uTCA crate, from RF input to RF output. We present here the most relevant results of 

these measurements; in Fig.  6.20 the RF frequency is set to 200.2 MHz and the span covers 2 MHz, twenty-

Fig.  6.20.  Transfer function of the OTFB processing chain. The BSP, analyser and measurement are tuned to 200.2 MHz with 2 
MHz span. 



Functional validation 

158 
 

three revolution frequency harmonics on each side of the RF, spaced by the corresponding 43.3 kHz. The 

BSP effectively tunes the comb response to the revolution frequency harmonics; the spacing between peaks 

matches the revolution frequency at which the harmonics repeat. The BSP filter is configured with 30 dB 

peak to valley gain in the resonances, a = 15 / 16. The global gain is set to a linear factor G = 4 that results 

in 12 dB gain in the peaks of the filter response. The measurement agrees with the simulations, Fig.  6.15, 

and theory Eq.( 6.5 ). 

We present in Fig.  6.21(a) an enlargement around the centre frequency with a span of 100 kHz, 

that covers the first harmonics around the RF spaced by the revolution frequency, 43.33 kHz. We modified 

the filter gain G and bandwidth parameter a without changing the RF; in Fig.  6.21(b) the coefficient  

a = 7 / 8 increases the bandwidth of the resonances without affecting its position. In Fig.  6.21(c) the 

parameter a is reconfigured back to a = 15 / 16 with the analyser covering a 100 kHz span, but we use a 

linear factor G = 1.5 instead of 4. This results in 4 dB global gain for the normalized filter response, as 

presented in the figure, with the spacing between peaks remaining unaltered at 43.33 kHz. Fig.  6.21(d) is 

centred on the harmonic h100 at 204.533 MHz with the harmonics h101 at 204.576 MHz and h99 at  

204.49 MHz. The BSP effectively tunes the comb response to the beam revolution frequency in all the 

regulation bandwidth. The test has been repeated with different fixed and swept RF frequencies with 

satisfactory results.  

We continue depicting in Fig.  6.22 the Nyquist plot of the system response. Note that in this 

hardware measurement we set the global gain G = 4 instead of G = 10 as in Fig.  6.16. The BSP remains 

tuned to an RF frequency of 200.2 MHz with a span of 500 kHz in the instrument. The comb filter (without 

the global gain G) and the LLRF input to output response have been designed to have unit gain at DC. In 

the figure however, G = 4 displaces the crossing with real axis in the right plane to Real[H(F)] = 3.75. The 

difference with respect to 4 is due to the fast sweep configured in the analyser. In the left side crossing with 

Fig.  6.21.  Enlargements of the OTFB magnitude transfer function: (a) RF frequency at 200.2 MHz and span covering the first 
harmonics. (b) Bandwidth modified with a = 7 / 8. (c) Gain modified to G = 1.5. (d) RF frequency of 200.2 MHz and zoom 

around harmonic h100.  

M
ag

ni
tu

de
 [d

B
]

M
ag

ni
tu

de
 [d

B
]

M
ag

ni
tu

de
 [d

B
]

M
ag

ni
tu

de
 [d

B
]



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

159 
 

the real axis, the one turn delay in series with the comb filter shifts the circle from the point  

Real[H(F)] = 0.129 to the depicted Real[H(F)] = -0.129. The value results from the bandwidth parameter 

that remains at a = 15 / 16. This configures a peak to valley linear factor of value 31 and hence the quotient 

between peak and valley results 4 / 31 = 0.129.  

We now perform measurements of the spectral purity of the RF signal at the output of the OTFB. 

Fig.  6.23(a) shows the spectrum of the RF output (amplifier drive) when we excite the system with a clean 

signal and measure the output with a SA. The analyser is centred on the RF value of 200.2 MHz, with a 

span of 2 MHz. The noise floor adopts a value of -88 dBm for a 0 dBm input. This measurement is consistent 

with the simulations of Chapter 5 and shows that there is no significant noise added by the BSP. In  

Fig.  6.23(b) we present an enlargement around the RF with the span reduced to 100 kHz and with no 

spurious present around the RF.  

We continue with a phase noise measurement on this RF signal. The synthesiser, analyser and the 

BSP in the uTCA crate are tuned to a frequency of 200.2 MHz. The results are presented in Fig.  6.24. The 

bandwidth covered is 1 MHz and the measured phase noise is -98 dBc/Hz at 10 Hz offset from the carrier.   

 

Fig.  6.23.  Spectrum of the RF signal at the output of the OTFB, RF at 200.2 MHz. Span of (a) 2 MHz and (b) 100 kHz. 

 

Fig.  6.24.  Phase noise measurement. BSP tuned to 200.2 MHz, bandwidth of 1 MHz. 

 

Fig.  6.22.  Measured open-loop response, Nyquist plot. 

-2 0 2 4
Real part

-3

-2

-1

0

1

2

3

Im
ag

in
ar

y 
pa

rt

Nyquist plot



Functional validation 

160 
 

6.5.3.3. Closed-loop response  

We now close the feedback around the cavity to perform measurements of the accelerating voltage 

inside the structure and to study the compensation of the Transient Beam Loading. The cavity is placed in 

a test-stand that uses as amplifier the 1 kW pre-driver of the SPS amplifier. We could not use the full 1 MW 

amplifier as the cavity was not conditioned to high field yet. The measurements are obtained with the sum 

of antennas from all cells (RF summing network) [50]. The first measurement is the spectral purity of the 

field when no beam is present. Fig.  6.25 shows the measured spectrum by the SA in the cavity when the 

regulation sets 0 dBm as defined by the voltage set-point (Fig.  6.14). The analyser and the RF are centred 

at a value of 200.347 MHz, with a span of 2 MHz in Fig.  6.25(a) and 100 kHz in Fig.  6.25(b). The noise 

floor remains similar to the open-loop measurement (Fig.  6.23) of the RF signal at a value of -85 dBm. 

We present in Fig.  6.26 a spectrogram acquired when the RF is swept following a linear ramp 

between 199.8 MHz and 200.4 MHz in 250 ms and then back to 199.8 MHz in the same time (sawtooth  at 

2 Hz repetition rate). The regulation and the BSP follow in real-time the frequency ramp while tuning the 

processing to the RF signal as expected.  

The SPS accelerator was initially stopped till April 2021, and after the CoVid-19 pandemic its 

restart has been further delayed, so beam test was not possible. The beam was therefore emulated by 

injecting a perturbation, periodic at the revolution frequency, into the cavity drive signal. The OTFB is then 

expected to reduce the effect of this beam loading perturbation.  

Fig.  6.25.  Spectrum of the measured cavity field, RF frequency at 200.347 MHz. Span of (a) 2 MHz and (b) 100 kHz.  

 

Fig.  6.26.  Spectrogram of the measured cavity field; the RF is swept following a linear sawtooth pattern (600 kHz peak-peak).  



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

161 
 

We start presenting in Fig.  6.27 time-domain measurements of the voltage in the cavity for a bit 

more than two turns, 50 µs. The top trace, Fig.  6.27(a), shows the beam-induced voltage when the 

regulation is open and the set-point requires 0 MV. The emulated beam passage induces a perturbation that 

reaches 0.05 MV peak. The beam segment lasts for 6.6 µs with gaps that correspond to the empty buckets, 

it repeats at a revolution frequency of 43.268 kHz for an accelerating RF of 199.89 MHz. The full voltage 

is induced at each turn and does not accumulate over the turns because the cavity filling time, 718 ns, is 

much shorter than the revolution period, 23 µs [13]. In Fig.  6.27(b) the regulation remains open but the 

set-point is now configured to 0.15 MV peak. The plot depicts the total voltage in the cavity that results 

from the addition of the beam-induced voltage and the generator-induced voltage when the beam is present. 

The perturbation after the initial transitory remains flat at 0.18 MV peak. In the last trace, Fig.  6.27(c), the 

regulation is closed. The field in the cavity approaches the required 0.15 MV and the beam perturbation is 

significatively reduced to 0.03 MV peak, that corresponds to a reduction factor G = 20.  

Fig.  6.28 presents the demodulated cavity voltage when the set-point is configured to 0.4 MV with 

a phase of 45º, that corresponds to 0.28 MV in the real and imaginary components of the set-point. In  

Fig.  6.28(a1) and Fig.  6.28(a2) the regulation is off and the RF remains tuned to 199.89 MHz, the plots 

depict respectively the real and imaginary components of the measurement.  The voltage induced by the 

generator in open-loop contains some error caused by improper gain in the feedforward, that prepares the 

field in cavity before closing the regulation. The measured real component reaches a value of 0.1 MV and 

the imaginary component 0.25 MV. When the beam crosses the cavity, the beam-induced voltage is added 

Fig.  6.27.  Measured RF field in the cavity. (a) Beam-induced voltage, (b) total cavity voltage in open-loop, (c) total cavity 
voltage in closed-loop. 

0 5 10 15 20 25 30 35 40 45 50
Time [ s]

-0.2

0

0.2

M
ag

ni
tu

de
 [M

V
]

(a)
Beam-induced voltage

0 5 10 15 20 25 30 35 40 45 50
Time [ s]

-0.2

0

0.2

M
ag

ni
tu

de
 [M

V
]

(b)
Total cavity voltage - Open-loop

0 5 10 15 20 25 30 35 40 45 50
Time [ s]

-0.2

0

0.2

M
ag

ni
tu

de
 [M

V
]

(c)
Total cavity voltage - Closed-loop



Functional validation 

162 
 

to the generator one reaching 0.23 MV and 0.29 MV respectively for the real and imaginary components. 

When we close the regulation, the voltage in the cavity, when the beam does not cross it, reaches 0.26 MV 

and 0.28 MV respectively for the real and imaginary components (Fig.  6.28(b1) and Fig.  6.28(b2)). In this 

situation, with no beam, the regulation sets in the cavity a field close to the desired set-point. When the 

beam crosses the cavity, the measured voltage in the real component reaches 0.274 MV and the imaginary 

0.29 MV. The reduction in beam loading is consistent with the gain G = 4 as the RF is not matched to the 

centre frequency of the cavity. These measurements agree with the simulations shown in Fig.  6.19.  

We finally present in Fig.  6.29 a frequency-domain measurement of the Transient Beam Loading 

Compensation. The figure corresponds to an RF at 199.898 MHz (centre frequency of the Spectrum 

Analyzer span). It shows the main accelerating frequency (at the centre) and sidebands at the revolution 

harmonics induced by the beam signal (43.3 kHz spacing). The traces in red were captured when the 

compensation was not active (OTFB Off), while the blue traces have the OTFB active. The reduction in the 

revolution harmonics reaches 20 dB for the first few harmonics, a figure consistent with the gain set in the 

system (linear factor of 10).  

 

Fig.  6.28.  Cavity voltage measured during 65 µs in Cartesian I (left) and Q (right) components: (a) Open-loop measurement, (b) 
closed-loop measurement. RF at 199.89 MHz. 

0 20 40 60
Time [ s]

-0.2

0

0.2

0.4
M

ag
ni

tu
de

 [M
V

]

(a1)
Open-loop cavity voltage - Real comp.

0 20 40 60
Time [ s]

-0.2

0

0.2

0.4

M
ag

ni
tu

de
 [M

V
]

(a2)
Open-loop cavity voltage - Imaginary comp.

0 20 40 60
Time [ s]

-0.2

0

0.2

0.4

M
ag

ni
tu

de
 [M

V
]

(b1)
Closed-loop cavity voltage - Real comp.

0 20 40 60
Time [ s]

-0.2

0

0.2

0.4

M
ag

ni
tu

de
 [M

V
]

(b2)
Closed-loop cavity voltage - Imaginary comp.

 

Fig.  6.29.  Performance of the beam loading compensation: Spectrum of the cavity voltage with OTFB OFF (red trace) and 
OTFB ON (blue trace). The RF frequency is at 199.898 MHz so that the revolution harmonics induced by the beam are spaced 

by 43.3 kHz. 



Chapter 6.   BSP Architecture for Transient Beam Loading Compensation in the SPS  

163 
 

6.6. Conclusion 

The chapter has presented the use of the Beam Synchronous Processing solution for Transient Beam 

Loading Compensation implementing the One Turn Feedback algorithm. The solution is well suited for 

new distributed network architectures, such as the one being commissioned at CERN for the SPS upgrade. 

The SPS architecture exploits deterministic protocols for data distribution and uses a network synchronous 

clock extracted from the deterministic link for network wide synchronization and synchronous processing.  

This new OTFB implementation incorporates both BSP and Beam Asynchronous Processing 

(BAP) regions. The BAP contains filters whose functionalities are not related to the beam (compensation 

of amplifier frequency responses, calibrations of antenna, etc.), while the BSP tunes the algorithms to the 

beam revolution frequency automatically. The BSP and BAP regions support the porting of any new or 

existing algorithms, requiring no specific modifications of such algorithms. The BSP region adapts the data 

sampling rate to the beam revolution frequency. This avoids the reconfiguration of BSP algorithms in  

real-time. The data-path interfaces the BSP region by means of two resamplers. The input resampler 

performs the conversion of the fixed sampling rate, at which the data arrives into this BSP region, to a new 

rate proportional to the beam revolution frequency. At the output port, a second resampler brings the signal 

back to the original fixed rate. The resampling ratios of the resamplers are reciprocal (inverse) and vary 

dynamically during the acceleration ramp. 

The new OTFB has been validated with system level simulations first. The filter is implemented in 

the BSP while the one-turn delay is in the BAP region. The performance is similar to the classic swept 

clock implementation. The resampler sandwich and the one-turn delay have also been validated in 

hardware. A new uTCA platform has been used, and laboratory tests have validated the correct tuning of 

the processing to the RF instantaneous value. No significant degradation of the signals spectral purity was 

observed as a consequence of the two resamplers. The CERN SPS accelerator is stopped till spring 2021 

and no test with real beam will be possible before mid-2021. The beam was therefore emulated by injecting 

a perturbation, periodic at the revolution frequency, into the drive signal of a spare CERN SPS cavity, 

demonstrating the compensation of Transient Beam Loading with performances that agree with the 

simulations. 

 

 

 

 

 

 





 

165 

Chapter 7  
 
Conclusions and Future Work 

 Abstract: This chapter presents conclusions that the 
author has achieved after the study, design, 

implementation, validation and verification of the  
BSP Architecture. Suggestions for future work are also 

mentioned.  

 

 
 
 

7.1. Conclusions 

A novel Beam Synchronous Processing Architecture that makes the treatment of periodic signals with 

known and varying fundamental frequency possible has been developed in this Thesis. The work responds 

to the BSP needs in the field of Particle Accelerators, especially at CERN, where the LLRF needs to 

accommodate the processing to the slow energy ramps found in hadron machines. The Architecture is a 

feasible alternative to the reconfiguration of the treatment algorithms; our technique performs resampling 

in the input data to tune the signal to the processing.  

The Architecture suits seamless the two technological paradigm changes adopted for the new SPS 

LLRF system; the instantaneous value of the RF frequency is transmitted as a numerical word, the 

Frequency Tuning Word, using a deterministic network, the White Rabbit, and the reference signal is now 

a fixed frequency clock recovered from the WR. The Architecture uses the FTW to compute the ratio needed 

to resample the incoming signal. This operation results in a discrete signal spectrum matching the frequency 

at which the processing has been defined. The original sampling rate is recovered after processing. Thanks 

to the fixed frequency clock we can fully exploit State-Of-the-Art technologies such as the high-

performance FPGAs in the new uTCA platform currently deployed in the new SPS LLRF systems. 



Conclusions 

166 
 

We have demonstrated the new solution by implementing the One Turn FeedBack Algorithm; a 

simulation model of the SPS RF plant was used as a test bench for verification of the proper BSP operation. 

The simulations demonstrated the compensation of the Transient Beam Loading resulting from the beam-

cavity interaction successfully. Then the uTCA implementation was validated with a real SPS cavity in a 

test stand. The system was successfully commissioned regulating the field in the cavity and compensating 

the perturbations of a simulated beam. The applications and results of the work are not limited to the One 

Turn FeedBack: The Architecture is also being commissioned in the Beam and Cavity controllers to 

interface and process data between beam synchronous and asynchronous domains. 

7.1.1. Tangible contributions 

We presented a few of the many tangible contributions and benefits that the new Architecture 

introduces for LLRF problems. Among these, RF gymnastics is now made simple; without the need for a 

swept clock, and with an absolute time reference at accelerator complex level, we can now compute the 

phase of the beam easily. This simplifies the synchronization and beam transfer and enables complex RF 

manipulations. The fixed frequency clock makes it possible to improve the spectral purity of the signals, as 

more precise PLL based architectures can be used to clean the references and clocks. This also improves 

the RF derived from these systems. In line with that, we can now exploit all the features of State-Of-the-

Art FPGAs; we do not need the swept clock tuning the processing, that is performed by the BSP 

Architecture. We can also use any hardware macro or primitives, as for instance differential serial 

interfaces, that include or are based on PLLs that may unlock with swept clocks. This also facilitates the 

use of modern ADCs and DACs. We avoid the negative effects of phase jumps and interruptions in the 

LLRF. Many other use cases appear day after day enabled by the BSP Architecture and the paradigm 

changes that it makes possible to adopt.  

7.1.2. Resampler 

The Thesis has developed a new All-Digital Synchronous Sampling Rate Conversion Architecture. 

We have verified and validated its operation in both simulations and real hardware. Its resampling ratio 

accepts arbitrary values that can be modified in real-time. It can be configured for both up-sampling and 

down-sampling and to operate in transparent mode, being possible to change among any of these 

configurations dynamically. The hardware implementation uses a single fixed frequency system clock, 

making its implementation feasible for FPGA and ASICs. The accepted limits for the resampling ratio are 

dependent on the relation between the input sampling rate and the processing clock; if the frequency of the 

clock is the double of the input sampling rate, the ratio range is R ϵ [0.5, 2]. The input and output port 

signals are synchronous to this clock, and as the data-path is decoupled (it is implemented with the 

FRANCISCO fabric presented in Chapter 3), its sampling rate can be modified also in real-time, both at the 

input and output ports.  



Chapter 7.   Conclusions and Future Work  

167 
 

The resampler’s multi-rate operation is based on the DIANA Algorithm implemented in the timing 

unit, that controls the interpolator unit, a Variable Fractional Delay filter. The DIANA computes the output 

sampling instant from the input reference and the resampling ratio. The VFD, implemented using a Farrow 

architecture, filters the input data with the required delay shift, in the plus or minus half a sampling period 

range. The input bandwidth of the VFD filter implementation has been optimized up to one third of the 

sampling rate because this was the required bandwidth for the targeted SPS OTFB application, but this can 

be customized. With the OTFB optimization, this same input bandwidth is accepted by the resampler for 

up-sampling and down-sampling ratios down to R = 0.6, decreasing monotonically to one fourth of the 

input sampling rate for R = 0.5.  

The fixed-point implementation of the resampler using a sixteen bits data-path provides a  

SNR = 95 dB (very close to the theoretical SQNR = 98 dB) for a full-scale input. This performance is 

limited by the truncation error in the data-path. It could be upgraded to 110 dB by using eighteen bits 

without being limited by the current optimization of the VFD. The truncation in the ratio signal, 

implemented in thirty-two bits with twenty-nine fractional bits, results in a negligible maximum deviation 

in the output sampling frequency of |Δf’s /f’s| = 3.7253·10-10. 

7.1.3. The BSP Architecture 

Two resamplers have been combined in the so-called resampling sandwich. The application 

algorithm requiring synchronism with the input signal is placed in the middle defining the BSP 

Architecture. We have verified the sandwich functionality and validated its feasibility to tune the signal to 

the beam frequency and the static processing algorithm. The variable rate of the signal in the sandwich is 

controlled by the input resampler and recovers the original rate after the second resampler. It can easily be 

implemented in either FPGA or ASIC technology, as it only requires a fixed frequency system clock and 

the decoupled data-path, the FRANCISCO fabric. The MERCEDES interfaces handling the data-path 

clocking and the JOAQUINA loop controlling the inverse resampling ratios of the sandwich have also been 

validated. The combined operation of the sandwich and these entities performs the tuning of the processing 

in real-time. In the data-path region, between the MERCEDES interfaces and the resamplers, the 

Architecture can also host a BAP region to perform beam asynchronous processing. The combination of 

the BSP and BAP regions makes possible the implementation of any algorithms, including adaptive ones.  

Very similar performance with a SNR = 93 dB is obtained at the output of the sandwich after the 

double resampling process when no algorithm is hosted in the BSP region. This fixed-point implementation 

uses the same quantization widths of the resampler and is still limited by the noise resulting from 

quantization of the data-path. The JOAQUINA loop around the resampling ratios corrects its value making 

them exactly inverse on average. The error in open-loop is very small and results in deviation in the 

recovered sampling frequency at the output of the sandwich of |Δf’’s /f’’s| = 6.3862·10-10. However, the loop 

is needed to prevent the de-synchronization in the MERCEDES interfaces arising from the truncation errors. 

As the correction magnitudes are in the order of one ratio LSB no modulation is observed in the output of 



Future work 

168 
 

the sandwich. The implementation was tested also in a real system, implemented in a uTCA crate with a 

real SPS cavity. The operation and control of the Architecture were validated and it completed all the tests 

successfully.   

7.1.4. The application of the BSP Architecture in the CERN SPS OTFB 

The BSP Architecture has been benchmarked in a real application in the CERN SPS LLRF system. 

The OTFB algorithm was first simulated, then implemented in the new Architecture and finally 

commissioned in a uTCA crate controlling a real SPS cavity. The algorithm used both, the BSP and the 

BAP regions of the data-path, validating their combined operation. The controller operated as expected 

regulating the field in the cavity according to the configured regulation parameters. The regulation, and the 

BSP, were able to track in real-time an energy ramp with sweeping RF frequency. The system implemented 

the two architectural paradigms triggering the Thesis work, the distribution and synchronization of the 

instantaneous RF frequency of the LLRF with WR, and the use of a fixed frequency clock at 125 MHz 

regenerated from the WR. We simulated a beam by injecting a periodic perturbation at the revolution 

frequency in the drive signal of the cavity. The field in the cavity was measured with the regulation both in 

open and closed-loop; when the regulation was closed the beam loading was reduced as expected. The 

entire BSP Architecture and the complete uTCA implementation successfully passed all the functional 

validation and qualitative tests performed.  

7.2. Future work 

On the hardware side, future work needs to evaluate the performance obtained in the resampler when using 

other optimization methods for the VFD coefficients such as the Offset Window method [117], [118]. The 

implementation can be also optimized; the current VFD is implemented using the Direct-Form folded 

around the centre tap for the FIRs and the delay as the control parameter. Other architectures for the FIRs 

or in general for the entire VFD, such as the modified or transposed Farrow [89], could offer some 

optimization in the hardware implementation and computation.  

On the application side, further algorithms can benefit from the BSP Architecture; longitudinal and 

transverse damper applications, for instance, as the solution facilitates the migration of any existing 

solution. In the case of the OTFB, we performed the test with the most basic comb filter at the revolution 

frequency. More complex filters such as triple comb of the SPS 800 MHz system dealing with the 

synchrotron sidebands to increase the beam stability could be tested.  

The use of the BSP Architecture can also be extended to other fields of Science, where a frequency-

sweeping signal needs to be processed such as in audio processing, mechanical noise removal, biomedical 

signal filtering, communications, etc. In these fields, the problem is normally addressed by reconfiguring 

the processing elements in real-time. The alternative solution presented here keeps all processing static 

avoiding the burden of real-time reconfiguration by using resampling to cope with the change in frequency. 



 

 





 

171 
 

References 
[1] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing. Englewood Cliffs, NJ, USA: 

Prentice-Hall, 1989. 
[2] ‘Algorithm definition’, Cambridge Dictionary. 
 https://dictionary.cambridge.org/dictionary/english/algorithm 
[3] H. L. Krauss, C. W. Bostian, and F. H. Raab, Solid state radio engineering. New York, NY, USA: 

Wiley, 1980. 
[4] B. Widrow and S. D. Stearns, Adaptive signal processing. Englewood Cliffs, NJ, USA: Prentice-Hall, 

1985. 
[5] B. Widrow et al., ‘Adaptive noise cancelling: Principles and applications’, Proceedings of the IEEE, 

vol. 63, no. 12, pp. 1692–1716, 1975, doi: 10.1109/PROC.1975.10036. 
[6] B. Widrow and M. E. Hoff, ‘Adaptive Switching Circuits’, IRE WESCON Convention Record, pp. 

96–104, 1960. 
[7] H. Wiedemann, Particle Accelerator Physics. Cham, Germany: Springer International Publishing, 

2015. 
[8] S. Y. Lee, Accelerator physics. New Jersey, NJ, USA: World Scientific, 2019. 
[9] P. Baudrenghien, ‘Low level RF systems for synchrotrons: part I and II’, presented at the CAS - 

CERN Accelerator School: Specialised Course on Radio Frequency Engineering, Seeheim, Germany, 
2000, doi: 10.5170/CERN-2005-003.175. 

[10] D. Boussard and G. Lambert, ‘Reduction of the Apparent Impedance of Wide Band Accelerating 
Cavities by RF Feedback’, IEEE Transactions on Nuclear Science, vol. 30, no. 4, pp. 2239–2241, 
Aug. 1983, doi: 10.1109/TNS.1983.4332774. 

[11] S. Chatrchyan et al., ‘Observation of a new boson at a mass of 125 GeV with the CMS experiment at 
the LHC’, Physics Letters B, vol. 716, no. 1, pp. 30–61, Sep. 2012, doi: 
10.1016/j.physletb.2012.08.021. 

[12] J. Coupard et al., ‘LHC Injectors Upgrade. Technical Design Report Vol. I: Protons’, CERN, Geneva, 
Switzerland, CERN-ACC-2014-0337, 2014.  

 [Online]. Available: https://cds.cern.ch/record/1976692 
[13] G. Dôme, ‘The SPS acceleration system travelling wave drift-tube structure for the CERN SPS’, 

CERN, Geneva, Switzerland, CERN-SPS-ARF-77-11, 1976.  
 [Online]. Available: https://cds.cern.ch/record/319440 
[14] J. Coupard et al., ‘LHC Injectors Upgrade. Technical Design Report Vol. II: Ions’, CERN, Geneva, 

Switzerland, CERN-ACC-2016-0041, 2016.  
 [Online]. Available: https://cds.cern.ch/record/2153863 
[15] D. Boussard, ‘Control of Cavities with High Beam Loading’, IEEE Transactions on Nuclear Science, 

vol. 32, no. 5, pp. 1852–1856, Oct. 1985, doi: 10.1109/TNS.1985.4333745. 
[16] P. Baudrenghien, G. Hagmann, and J. Molendijk, ‘The LHC Low Level RF’, CERN, Geneva, 

Switzerland, CERN-LHC-Project-Report-906, 2006.  
 [Online]. Available: https://cds.cern.ch/record/971742 
[17] P. Baudrenghien, J. Galindo, G. Hagmann, J. Noirjean, D. Stellfeld, and D. Valuch, ‘Commissioning 

of the Linac4 Low Level RF and Future Plans’, CERN, Geneva, Switzerland, CERN-ACC-2014-375, 
2014.  

 [Online]. Available: https://cds.cern.ch/record/2062609 
[18] G. Hagmann et al., ‘The CERN SPS Low Level RF upgrade Project’, presented at the Int. Particle 

Accelerator Conf. IPAC2019, Melbourne, Australia, 2019, doi: 10.18429/jacow-ipac2019-thprb082. 
[19] PICMG, ‘MicroTCA PICMG Specification MTCA.4.1 R1.0’. 2016. 



References 

172 
 

[20] A. Abada et al., ‘FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report 
Volume 3’, The European Physical Journal Special Topics, vol. 228, no. 4, pp. 755–1107, Jul. 2019, 
doi: 10.1140/epjst/e2019-900087-0. 

[21] F. Zimmermann, ‘Status and Challenges for FCC-ee’, CERN, Geneva, Switzerland, CERN-ACC-
2015-111, 2015.  

 [Online]. Available: https://cds.cern.ch/record/2057706 
[22] B. G. Taylor, ‘Timing Distribution at the LHC’, presented at the 8th Workshop on Electronics for 

LHC Experiments, Colmar, France, 2002, doi: 10.5170/CERN-2002-003.63. 
[23] J. M. Byrd, L. R. Doolittle, A. Ratti, J. W. Staples, and R. B. Wilcox, ‘Timing Distribution in 

Accelerators via Stabilized Optical Fiber Links’, presented at the LINAC 2006, Knoxville, Tennessee, 
USA, 2006. 

 [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.463.2836 
[24] J. Gill, ‘RF distribution over White Rabbit. WR2RF - a replacement board for the BOBR.’, presented 

at the High Precision Timing Distribution - Meeting #4, Geneva, Switzerland, 2018.  
 [Online]. Available: 
 https://indico.cern.ch/event/771447/contributions/3205240/attachments/1764135/2863327/wr2rf_hp

td_03_12_2018.pdf 
[25] J. Serrano et al., ‘The White Rabbit project’, presented at the Int. Conference on Accelerator and 

Large Experimental Physics Control Systems ICALEPCS2009, Kobe, Japan, 2009. 
 [Online]. Available: https://accelconf.web.cern.ch/icalepcs2009/papers/tuc004.pdf 
[26] M. Lipinski et al., ‘White Rabbit Applications and Enhancements’, in 2018 IEEE International 

Symposium on Precision Clock Synchronization for Measurement, Control, and Communication 
ISPCS2018, Geneva, Sep. 2018, pp. 1–7, doi: 10.1109/ISPCS.2018.8543072. 

[27] ‘Brookhaven National Laboratory’.  
 https://www.bnl.gov 
[28] F. Severino, M. Harvey, T. Hayes, G. Narayan, and K. S. Smith, ‘Distributed feedback loop 

implementation in the RHIC Low Level Platform’, presented at the Int. Conference on Accelerator 
and Large Experimental Physics Control Systems ICALEPCS2013, San Francisco, CA, USA, 2014. 
[Online]. Available: https://accelconf.web.cern.ch/icalepcs2013/papers/frcobab05.pdf 

[29] ‘Helmholtzzentrum für Schwerionenforschung’.  
 https://www.gsi.de 
[30] H. Klingbeil, U. Laier, K.-P. Ningel, S. Schäfer, C. Thielmann, and B. Zipfel, ‘New digital low-level 

rf system for heavy-ion synchrotrons’, Physical Review Special Topics - Accelerators and Beams, 
vol. 14, no. 10, Oct. 2011, doi: 10.1103/PhysRevSTAB.14.102802. 

[31] S. Baird, ‘Accelerators for pedestrians’, CERN, Geneva, Switzerland, AB-Note-2007-014, 2007. 
[Online]. Available: https://cds.cern.ch/record/1017689 

[32] H. Klingbeil, U. Laier, and D. Lens, Theoretical Foundations of Synchrotron and Storage Ring RF 
Systems. Cham, Germany: Springer International Publishing, 2015. 

[33] J. W. Staples, ‘Beam signal spectra, signal sampling, and noise’, Univ. California, Santa Cruz, US 
Particle Accelerator School-Microwave Measurement and Beam Instrumentation Laboratory, 2008. 
[Online]. Available: https://uspas.fnal.gov/materials/08UCSC/mml18_beam_signals.pdf 

[34] D. Boussard, ‘Beam Loading’, presented at the CAS - CERN Accelerator School: Course on 
Advanced Accelerator Physics, Rhodes, Greece, 1993, doi: 10.5170/CERN-1995-006. 

[35] R. Garoby, ‘Beam loading in RF cavities’, in Frontiers of Particle Beams: Intensity Limitations, vol. 
400, M. Dienes, M. Month, and S. Turner, Eds. Berlin, Germany: Springer International Publishing, 
1992, pp. 509–541. 

[36] F. J. Galindo Guarch, J. M. Moreno Aróstegui, and P. Baudrenghien, ‘An Architecture for Real-Time 
Arbitrary and Variable Sampling Rate Conversion with Application to Processing of Harmonic 
Signals’, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 5, pp. 1653–
1666, May 2020, doi: 10.1109/TCSI.2019.2960686. 

[37] A. Nehorai and B. Porat, ‘Adaptive comb filtering for harmonic signal enhancement’, IEEE 
Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 5, pp. 1124–1138, Oct. 1986, 
doi: 10.1109/TASSP.1986.1164952. 

[38] M. Niedźwiecki and M. Meller, ‘Generalized adaptive comb filters/smoothers and their application 
to the identification of quasi-periodically varying systems and signals’, Automatica, vol. 49, no. 6, 
pp. 1601–1613, Jun. 2013, doi: 10.1016/j.automatica.2013.02.037. 



References 

173 
 

[39] S.-C. Pei, Y.-D. Huang, S.-H. Lin, and J.-J. Shyu, ‘Design of variable comb filter using FIR variable 
fractional delay element’, Signal Processing, vol. 92, no. 10, pp. 2409–2421, Oct. 2012, doi: 
10.1016/j.sigpro.2012.03.001. 

[40] A. Gamp, W. Ebeling, W. Funk, J. R. Maidment, C. W. Planner, and G. H. Rees, ‘The Radio 
Frequency System for Protons in HERA’, presented at the 1st European Particle Accelerator 
Conference EPAC88, Rome, Italy, 1988. 

 [Online]. Available: https://accelconf.web.cern.ch/e88/PDF/EPAC1988_1105.pdf 
[41] F. J. Galindo Guarch, J. M. Moreno Aróstegui, and P. Baudrenghien, ‘Compensation of Transient 

Beam Loading in Ramping Synchrotrons using a Fixed Frequency Processing Clock’, Journal of 
Physics: Conference Series, vol. 1067, p. 072033, Sep. 2018, doi: 10.1088/1742-
6596/1067/7/072033. 

[42] M. E. Angoletta et al., ‘CERN’s LEIR Digital LLRF: System Overview and Operational Experience’, 
presented at the 1st Int. Particle Accelerator Conf. IPAC2010, Kyoto, Japan, 2010.  

 [Online]. Available: https://accelconf.web.cern.ch/IPAC10/papers/TUPEA057.pdf 
[43] J. Molendijk, ‘Digital Receiver and Modulator Architecture for Multi-harmonic RF Finemet 

Operation’, presented at the Low Level RF Workshop LLRF15, Shanghai, China, 2015. 
[44] F. Bertin, Y. Brischetto, H. Damerau, A. Jibar, and D. Perrelet, ‘Impedance reduction of the High-

frequency Cavities in the CERN PS by Multi-harmonic Feedback’, presented at the Low Level RF 
Workshop LLRF19, Chicago, IL, USA, 2019.  

 [Online]. Available: http://arxiv.org/abs/1910.06874 
[45] J. Molendijk, ‘Introducing Fixed Frequency Clock Operation on the CERN VXS LLRF Platform’, 

presented at the Low Level RF Workshop LLRF17, Barcelona, Spain, 2017. 
 [Online]. Available: https://public.cells.es/workshops/www.llrf2017.org/pdf/Orales/O-22.pdf 
[46] F. Tamura et al., ‘Multiharmonic vector rf voltage control for wideband cavities driven by vacuum 

tube amplifiers in a rapid cycling synchrotron’, Physical Review Accelerators and Beams, vol. 22, no. 
9, Sep. 2019, doi: 10.1103/PhysRevAccelBeams.22.092001. 

[47] ‘Japan Proton Accelerator Research Complex’.  
 https://j-parc.jp 
[48] J. Dey, I. Kourbanis, J. Reid, and J. Steimel, ‘53 MHz Feedforward beam loading compensation in 

the Fermilab main injector’, presented at the 2003 Particle Accelerator Conference, Portland, OR, 
USA, 2003, doi: 10.1109/PAC.2003.1289912. 

[49] ‘Fermi National Accelerator Laboratory’.  
 https://www.fnal.gov 
[50] P. Baudrenghien and G. Lambert, ‘Reducing the impedance of the Travelling Wave Cavities Feed-

forward and one turn delay feed-back’, presented at the 10th Workshop on LEP-SPS Performance, 
Chamonix, France, 2000. 

 [Online]. Available: https://cds.cern.ch/record/485863 
[51] W. Hofle, ‘Towards a transverse feedback system and damper for the SPS in the LHC era’, presented 

at the Workshop on High Brightness Beams for Large Hadron Colliders, Montreux, Switzerland, 
1996.  

 [Online]. Available: https://cds.cern.ch/record/326868 
[52] W. Hofle et al., ‘Impact of a Wideband Feedback Prototype System on TMCI in the SPS’, presented 

at the 9th Int. Particle Accelerator Conf., Vancouver, BC, Canada, 2018, doi: 10.18429/JACOW-
IPAC2018-TUZGBD4. 

[53] G. Apollinari, I. Béjar Alonso, O. Brüning, M. Lamont, and L. Rossi, ‘High-Luminosity Large 
Hadron Collider (HL-LHC) Preliminary Design Report’, CERN, Geneva, Switzerland, CERN-2015-
005, 2015.  

 [Online]. Available: http://cds.cern.ch/record/2116337 
[54] H. Abramowicz and R. Forty, ‘Physics Briefing Book : Input for the European Strategy for Particle 

Physics Update 2020’, CERN, Geneva, Switzerland, CERN-ESU-004, 2019.  
 [Online]. Available: https://cds.cern.ch/record/2691414 
[55] T. Wlostowski, J. Serrano, G. Daniluk, M. M. Lipinski, and F. Vaga, ‘Trigger and RF Distribution 

Using White Rabbit’, presented at the 15th Int. Conf. on Accel. and Large Experimental Control 
Systems, ICALEPCS2015, Melbourne, Australia, 2015, doi: 10.18429/JACoW-ICALEPCS2015-
WEC3O01. 



References 

174 
 

[56] R. Garoby, ‘RF gymnastics in synchrotrons’, presented at the CAS - CERN Accelerator School: 
Specialised Course on RF for Accelerators, Ebeltoft, Denmark, 2010, doi: 10.5170/CERN-2011-
007.431. 

[57] A. W. Chao, Ed., Handbook of accelerator physics and engineering. Hackensack, New Jersey, USA: 
World Scientific, 2013. 

[58] D. Quartullo, T. Argyropoulos, and A. Lasheen, ‘Momentum Slip-Stacking Simulations for CERN 
SPS Ion Beams with Collective Effects’, presented at the 61st ICFA ABDW on High-Intensity and 
High-Brightness Hadron Beams, HB2018, Daejeon, Korea, 2018, doi: 10.18429/jacow-hb2018-
tup2wa02. 

[59] T. Ferrand, H. Klingbeil, and H. Damerau, ‘Synchronization of Synchrotrons for bunch-to-bucket 
Transfers’, CERN, Geneva, Switzerland, CERN-ACC-NOTE-2015-0025, 2015.  

 [Online]. Available: https://cds.cern.ch/record/2053285 
[60] T. Hayes, F. Severino, and K. S. Smith, ‘A Deterministic, Gigabit Serial Timing, Synchronization 

and Data Link for the RHIC LLRF’, presented at the Particle Accel. Conf PAC11, New York, NY, 
USA, 2011. 

 [Online]. Available: https://inspirehep.net/literature/1187389 
[61] T. Hayes, M. Harvey, G. Narayan, F. Severino, K. S. Smith, and S. Yuan, ‘A High Performance 

DAC/DDS Daugther Module for the RHIC LLRF Platform’, presented at the Particle Accel. Conf 
PAC11, New York, NY, USA, 2011. 

 [Online]. Available: https://inspirehep.net/literature/1187387 
[62] XILINX, ‘UltraScale Architecture Clocking Resources User Guide’, User Guide UG572, 2018. 
[63] M. E. Angoletta et al., ‘CERN’s PS Booster LLRF Renovation: Plans and Initial Beam Tests’, 

presented at the 1st Int. Particle Accelerator Conf. IPAC2010, Kyoto, Japan, 2010. 
 [Online]. Available: https://cds.cern.ch/record/1287908 
[64] T. Hentschel, Sample rate conversion in software configurable radios. Norwood, MA, USA: Artech 

House, 2002. 
[65] F. Sheikh and S. Masud, ‘Efficient sample rate conversion for multi-standard software defined 

radios’, in Proc IEEE International Conf. Acoustics, Speech and Signal Processing, ICASSP 2007, 
Honolulu, HI, USA, 2007, vol. 2, p. II–329. 

 [Online]. Available: http://ieeexplore.ieee.org/abstract/document/4217412 
[66] Long and Torres, ‘High Throughput Farrow Re-samplers Utilizing Reduced Complexity FIR Filters’, 

presented at the IEEE Military Comms Conf. MILCOM12, Orlando, FL, USA, 2012. 
 [Online]. Available: https://ieeexplore.ieee.org/document/6415616 
[67] B. Markovic and J. Certic, ‘FPGA realization of Farrow structure for sampling rate change’, Serbian 

Journal of Electrical Engineering, vol. 13, no. 1, pp. 83–93, 2016, doi: 10.2298/SJEE1601083M. 
[68] A. Tkacenko, ‘Variable sample rate conversion techniques for the Advanced Receiver’, 

Interplanetary Network (IPN) Progress Report, vol. 42, p. 168, 2007. 
[69] M. A. Siddiqi, N. Samad, S. Masud, and F. Sheikh, ‘FPGA-based Implementation of Efficient Sample 

Rate Conversion for Software Defined Radios’, in Proc. 10th IEEE Int. Conf. Comp. Info. Tech, 
Bradford, UK, Jun. 2010, pp. 2387–2390, doi: 10.1109/CIT.2010.410. 

[70] ALTERA, ‘Using the DSP Builder AdvancedBlockset to Implement Resampling Filters’, Altera 
Application Note AN 623, 2010. 

[71] U. Meyer-Baese, Digital signal processing with field programmable gate arrays. Berlin, Germany: 
Springer, 2007. 

[72] F. Harris, Multirate signal processing for communication systems. Upper Saddle River, NJ, USA: 
Prentice Hall PTR, 2004. 

[73] M. Blok and P. Drózda, ‘Variable Ratio Sample Rate Conversion Based on Fractional Delay Filter’, 
Archives of Acoustics, vol. 39, no. 2, Jan. 2015, doi: 10.2478/aoa-2014-0027. 

[74] R. Adams and T. Kwan, ‘Theory and VLSI Architectures for Asynchronous Sample-Rate 
Converters’, J. Audio Eng. Soc., vol. 41, no. 7/8, 1993. 

 [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=6993 
[75] G. Evangelista, ‘Design of digital systems for arbitrary sampling rate conversion’, Signal Processing, 

vol. 83, no. 2, pp. 377–387, Feb. 2003, doi: 10.1016/S0165-1684(02)00421-8. 
[76] A. Chinaev, P. Thune, and G. Enzner, ‘Low-Rate Farrow Structure with Discrete-Lowpass and 

Polynomial Support for Audio Resampling’, presented at the 26th European Signal Processing 
Conference, EUSIPCO, Rome, Italy, 2018, doi: 10.23919/EUSIPCO.2018.8553469. 



References 

175 
 

[77] C. W. Farrow, ‘A continuously variable digital delay element’, in IEEE International Symposium on 
Circuits and Systems, 1988, pp. 2641–2645. 

 [Online]. Available: http://ieeexplore.ieee.org/abstract/document/15483 
[78] T. I. Laakso, V. Valimaki, M. Karjalainen, and U. K. Laine, ‘Splitting the unit delay [FIR/all pass 

filters design]’, IEEE Signal Processing Magazine, vol. 13, no. 1, pp. 30–60, Jan. 1996, doi: 
10.1109/79.482137. 

[79] D. E. Knuth, Evaluation of polynomials, in The art of computer programming. Boston, MA, USA: 
Addison Wesley, 1997. 

[80] A. Gamp, ‘Servo Control of Cavities under Beam Loading’, presented at the CAS - CERN Accelerator 
School: Specialised Course on RF for Accelerators, Seeheim, Germany, 2000. 

 [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1303/1303.1358.pdf 
[81] F. Tamura et al., ‘Multiharmonic rf feedforward system for compensation of beam loading and 

periodic transient effects in magnetic-alloy cavities of a proton synchrotron’, Physical Review Special 
Topics - Accelerators and Beams, vol. 16, no. 5, May 2013, doi: 10.1103/PhysRevSTAB.16.051002. 

[82] F. Tamura et al., ‘Multiharmonic rf feedforward system for beam loading compensation in wide-band 
cavities of a rapid cycling synchrotron’, Physical Review Special Topics - Accelerators and Beams, 
vol. 14, no. 5, May 2011, doi: 10.1103/PhysRevSTAB.14.051004. 

[83] M. Lonza, ‘Multi-bunch feedback systems’, presented at the CAS - CERN Accelerator School: 
Course on Digital Signal Processing, Sigtuna, Sweden, 2007. 

 [Online]. Available: https://cds.cern.ch/record/1100539 
[84] J. Fox and E. Kikutani, ‘Bunch Feedback Systems and Signal Processing’, in Join US-CERN-Japan-

Russia School on Particle Accelerators, Montreux, Switzerland, 1998, pp. 579–620. 
[85] T. Schilcher, ‘RF applications in digital signal processing’, presented at the CAS - CERN Accelerator 

School: Specialised Course on Digital Signal Processing, Sigtuna, Sweden, 2007. 
 [Online]. Available: https://cds.cern.ch/record/1100538 
[86] R. Garoby, ‘Low-Level RF and feedback’, Joint CERN-US-Japan Accelerator School: Course on 

Frontiers of Accelerator Technology: RF Engineering for Particle Accelerators, 1997. 
[87] F. Tamura et al., ‘Multiharmonic vector rf voltage control for wideband cavities driven by vacuum 

tube amplifiers in a rapid cycling synchrotron’, Physical Review Accelerators and Beams, vol. 22, no. 
9, Sep. 2019, doi: 10.1103/PhysRevAccelBeams.22.092001. 

[88] D. G. Manolakis and V. K. Ingle, Applied digital signal processing: theory and practice. New York, 
NY, USA: Cambridge University Press, 2011. 

[89] A. Franck, K. Brandenburg, J. O. Smith III, and V. Välimäki, ‘Efficient algorithms for arbitrary 
sample rate conversion with application to wave field synthesis’, Univ.-Verl. Ilmenau, Ilmenau, 2012. 

[90] A. V. Oppenheim, A. S. Willsky, and S. Hamid Nawab, Signals and systems. Harlow, Essex, UK: 
Pearson Education, 2013. 

[91] J. Belleman, ‘From analog to digital’, presented at the CAS - CERN Accelerator School: Specialised 
Course on Digital Signal Processing, Sigtuna, Sweden, 2007. 

 [Online]. Available: https://cds.cern.ch/record/1100535 
[92] M. Bellanger, ‘Multirate digital signal processing’, IEEE Transactions on Acoustics, Speech, and 

Signal Processing, vol. 32, no. 4, pp. 941–941, 1984. 
[93] W. Kester, ‘What the Nyquist Criterion Means to Your Sampled Data System Design’, Analog 

Devices MT-002 Tutorial, 2008. 
[94] J. Serrano, ‘Introduction to FPGA design’, presented at the CAS - CERN Accelerator School: 

Specialised Course on Digital Signal Processing, Sigtuna, Sweden, 2007. 
 [Online]. Available: https://cds.cern.ch/record/1100537 
[95] A. DeHon and J. Adams, Design Patterns for Reconfigurable Computing, FCCM 2004: 12th Annual 

IEEE Symposium on Field-Programmable Custom Computing Machines. Los Alamitos, CA, USA, 
2004. 

[96] XILINX, ‘7 Series DSP48E1 Slice User Guide’, User Guide UG479, 2018. 
[97] K. Pearson, ‘The Problem of the Random Walk’, Nature, vol. 72, no. 1865, pp. 294–294, Jul. 1905, 

doi: 10.1038/072294b0. 
[98] V. Valimaki, ‘Discrete-Time Modeling of Acoustic Tubes Using Fractional Delay Filters’, Helsinki 

University of Technology, Helsinki, Finland, 1995. 
[99] G. M. Phillips, Interpolation and approximation by polynomials. New York, NY, USA: Springer, 

2003. 



References 

176 
 

[100] R. E. Crochiere and L. R. Rabiner, Multirate digital signal processing. Englewood Cliffs, NJ, USA: 
Prentice-Hall, 1983. 

[101] R. E. Crochiere and L. R. Rabiner, ‘Interpolation and decimation of digital signals—A tutorial 
review’, Proceedings of the IEEE, vol. 69, no. 3, pp. 300–331, 1981. 

[102] P. P. Vaidyanathan, Multirate systems and filter banks. Englewood Cliffs, NJ, USA: Prentice Hall, 
1993. 

[103] C. E. Shannon, ‘Communication in the Presence of Noise’, Proceedings of the IRE, vol. 37, no. 1, pp. 
10–21, Jan. 1949, doi: 10.1109/JRPROC.1949.232969. 

[104] T.-B. Deng and Y. Lian, ‘Weighted-Least-Squares Design of Variable Fractional-Delay FIR Filters 
Using Coefficient Symmetry’, IEEE Transactions on Signal Processing, vol. 54, no. 8, pp. 3023–
3038, Aug. 2006, doi: 10.1109/TSP.2006.875385. 

[105] XILINX, ‘UltraScale Architecture DSP Slice’, User Guide UG579, 2019. 

[106] Struck, ‘SIS8300-KU MTCA.4 Digitizer’.  

 [Online]. Available: https://www.struck.de/sis8300-ku.html 

[107] Struck, ‘DS8VM1 MTCA.4 Direct Sampling/Vector Modulator RTM’.  

 [Online]. Available: https://www.struck.de/ds8vm1.html 

[108] ‘The Nobel Prize in Physics 1984’.  

 https://www.nobelprize.org/prizes/physics/1984/press-release 

[109] ‘The CERN SPS’.  

 https://home.cern/science/accelerators/super-proton-synchrotron 

[110] D. Boussard, J. M. Brennan, and T. Linnecar, ‘Fixed Frequency Acceleration in the SPS’, CERN, 
Geneva, Switzerland, CERN-SPS-89-49-ARF, 1989.  

 [Online]. Available: https://cds.cern.ch/record/204684 

[111] P. Baudrenghien, ‘The new SPS LLRF’, Geneva, Switzerland, 2020. 

 [Online]. Available: https://indico.cern.ch/event/895500 

[112] P. Baudrenghien and T. Mastoridis, ‘I/Q Model of the SPS 200 MHz Travelling Wave Cavity and 
Feedforward Design’, CERN, Geneva, Switzerland, CERN-ACC-NOTE-2020-0032, 2020.  

 [Online]. Available: https://cds.cern.ch/record/2719232 

[113] J. Gill, ‘RF signal distribution over White Rabbit.’, Geneva, Switzerland, 2019. 

 [Online]. Available:  

 https://indico.cern.ch/event/865008/attachments/1949767/3236439/BE_seminar_WR_Applications-
RFoWR.pdf 

[114] F. J. Galindo Guarch, P. Baudrenghien, and J. M. Moreno Arostegui, ‘A new beam synchronous 
processing architecture with a fixed frequency processing clock. Application to transient beam 
loading compensation in the CERN SPS machine’, Nuclear Instruments and Methods in Physics 
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 988, p. 
164894, Feb. 2021, doi: 10.1016/j.nima.2020.164894. 

[115] P. Baudrenghien et al., ‘SPS Architecture’, CERN, Geneva, Switzerland, BE-RF-FB Internal Report, 
2020. 

[116] P. Baudrenghien and T. Mastoridis, ‘Fundamental cavity impedance and longitudinal coupled-bunch 
instabilities at the High Luminosity Large Hadron Collider’, Physical Review Accelerators and 
Beams, vol. 20, no. 1, Jan. 2017, doi: 10.1103/PhysRevAccelBeams.20.011004. 

[117] A. Yardim, G. D. Cain, and P. Henry, ‘Optimal two-term offset windowing for fractional delay’, 
Electronics Letters, vol. 32, no. 6, pp. 526–527, 1996. 

[118] Blok, ‘Fractional delay filter design with extracted window offsetting’, presented at the 19th 
International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2012, Warsaw, 
Poland, May 2012. 

 [Online]. Available: https://ieeexplore.ieee.org/document/6226239 



 

 

 

 

 



 

In Particle Accelerators, the Low-Level RF (LLRF) is the control system of 

the RF, and in the end, of the purpose of the machine, that is the energy 

transfer and acceleration of particles. It implements algorithms synchronizing 

the RF conveying the energy to the beam and tailoring its longitudinal 

parameters. For this, the LLRF uses beam-related signals whose spectral 

content changes during the acceleration. The increase in energy results in 

an increase of the beam velocity, and for circular accelerators (Synchrotrons) 

a decrease in revolution period. This is especially relevant for Hadron 

machines whose injection energy is low resulting in a significant increase of 

their velocity before reaching relativistic speeds. Hence, the LLRF needs to 

continuously tune its processing to the beam; we call this technique  

Beam Synchronous Processing. 

 

The Thesis presents a novel Beam Synchronous Processing Architecture, 

using a fixed frequency clocking, and capable of treating periodic signals with 

known and varying fundamental frequency. The Architecture is an alternative 

to the burden of reconfiguration in processing algorithms; it tunes the 

spectrum to the processing by resampling the input data. Two Resamplers 

are combined in the so-called resampling sandwich. The application 

algorithm requiring synchronism with the input signal is placed in the middle. 

The key element is a novel All-Digital Farrow-based Resampler, that accepts 

arbitrary resampling ratios that can be modified in real-time. The hardware 

uses a single fixed frequency system clock, making its implementation 

feasible in State-Of-the-Art FPGAs, ASICs and systems such as the new 

uTCA platform currently being deployed in the CERN SPS LLRF system. 

The input and output ports of the Resampler, and all the processing within 

the Architecture, are synchronous to this fixed frequency clock and accept 

data streams whose sampling rate can be variable and modified in real time. 

 

The Architecture suits seamless the two technological paradigm changes 

adopted for the new CERN SPS LLRF system; first, the instantaneous value 

of the RF frequency is transmitted as a numerical word (used to set the 

resampling ratio), via a deterministic network, the White Rabbit. And second, 

the reference signal is now the fixed frequency clock recovered from this 

network. Both paradigms benefit from the all-digital Resampler and the 

Beam Synchronous Architecture that fulfil the techniques and technological 

needs for its implementation enabling novel LLRF algorithms and solutions. 

 
 

  


