
Breaking host-centric management of Task-Based Parallel

Programming Models

Jaume Bosch Pons

June, 2021

PhD Thesis

Breaking host-centric management of
Task-Based Parallel Programming Models

Jaume Bosch Pons

Supervisors Carlos Álvarez Martínez and
Daniel Jiménez González

June, 2021

Jaume Bosch Pons

Breaking host-centric management of Task-Based Parallel Programming Models

PhD Thesis, June, 2021

Supervisors: Carlos Álvarez Martínez and Daniel Jiménez González

Universitat Politècnica de Catalunya (UPC)

Departament d’Arquitectura de Computadors (DAC)

Carrer Jordi Girona, 1-3

08034, Barcelona

Barcelona Supercomputing Center (BSC-CNS)

OmpSs@FPGA Team from Programming Models Group

Carrer Jordi Girona, 31

08034, Barcelona

Abstract

Heterogeneous platforms have become popular to increase the computational power of
the systems within a constrained power budget. They are present in several systems,
from embedded platforms and mobile devices to high-end servers and clusters. However,
the co-processors are managed following a master-slave model where the general-purpose
CPU drives the rest of elements. This management limits the system possibilities as
not all application parts are suitable to be executed in an accelerator. This thesis
presents different proposals to enhance the usage of co-processors in task-based parallel
programming models, which are a powerful tool to easily program applications for
heterogeneous platforms.

The first proposal enhances the task-based systems with an asynchronous, concurrent,
and parameterizable behavior. The improvements go across the full-stack, from the
programming model level down to the low-level communications used between the libraries
and the co-processors. The evaluation shows that the implemented improvements boost
the applications’ performance as they can be easily tuned for the running platform.

The second proposal adds support for task spawn and synchronization in co-processors.
The offloaded tasks can create child tasks that target other architectures or remain inside
the co-processor. This allows the programmers to implement applications easily and
effectively. The evaluation shows the efficiency of the proposal implementation in terms
of latency and power consumption. The results show that applications can increase their
performance and optimize their power consumption by just moving the task spawn from
the host threads to the co-processor. This is thanks to the low-latency task management
inside the co-processors, which also reduces the communications between the host and
the co-processor.

The third proposal extends task-based programming models with concepts of recurrent
workloads. The regular task syntax has been extended with new clauses to label the
recurrent tasks and provide the needed information to the runtime. The evaluation shows
an application programmability increase thanks to the new syntax, which allows the
specification of recurrent systems with much less code and better accuracy. Also, the
direct management of task repetitions and periods in the co-processors allows an almost
zero-latency management that is able to manage any task granularity.

v

Acknowledgement

This thesis has been possible thanks to its directors, Carlos and Dani. They provided
their best with proposals, hints, and their knowledge. All of that became crucial for the
proposals’ definition and development. Also, it has been possible due to the institutional
support of Xavier and Eduard.

The BSC colleagues helped a lot with their motivation, the discussions, the coffee breaks,
and much more. The OmpSs@FPGA team has been crucial for the development of all
tool-chain, which is the baseline of all proposals. Without all these BSC people, the
thesis would not be the same.

This book would not exist without the constant pushing of Susanna, who persuaded me
to continue during the last three years. In addition, the thesis is thanks to all my friends
who probably were more excited about it than myself. Unquestionably, my family is the
base of all the work presented here.

This thesis has been partially supported by Spanish Government through grant BES-
2016-078046, project TIN2015-65316-P, and Severo Ochoa program SEV-2015-0493.
It has also been partially supported by Generalitat de Catalunya through contracts
2014-SGR-1051, 2014-SGR-1272, 2017-SGR-1414, and 2017-SGR-1328. Finally, it has
been partially supported by the European Union H2020 Research and Innovation Action
through the following projects:

• AXIOM Project (Grant agreement ID: 645496).

• Mont-Blanc 3 Project (Grant agreement ID: 671697).

• HiPEAC (Grant agreement ID: 687698).

• EuroEXA Project (Grant agreement ID: 754337).

• LEGaTO Project (Grant agreement ID 780681).

• EPEEC Project (Grant agreement ID: 801051).

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 4
1.3 Thesis publications and contributions 5
1.4 Thesis Structure . 8

2 State of the Art 9
2.1 OmpSs Programming Model . 9

2.1.1 Tasking model . 9
2.1.2 Heterogeneity support . 12

2.2 Mercurium . 14
2.2.1 HLS Source Code . 15

2.3 Nanos++ . 16
2.3.1 Task Life Stages . 18
2.3.2 DDAST . 19

2.4 xTasks Library . 21
2.4.1 API definition . 21
2.4.2 Communication Queues . 27

2.5 xdma Library . 29
2.6 FPGA Design . 29

2.6.1 Task Manager . 29
2.6.2 FPGA Task Accelerators . 31
2.6.3 Interface Protocols . 32

2.7 Related Work . 36

3 Proposal for Asynchronous, Concurrent and Parameterizable Task-
Based Systems 39
3.1 Proposal Design . 39
3.2 Programming model extensions . 40

3.2.1 Automatic type identifier . 40
3.2.2 Clause for Accelerator Replication 41

ix

3.2.3 Clauses for Data Caching in Accelerator HLS Wrapper 42
3.3 Compiler and FPGA design extensions 43

3.3.1 FPGA design configuration retrievement from bitinfo 43
3.3.2 Tuning memory interconnections 46
3.3.3 Shared wide Memory Port . 47

3.4 Execution model extensions . 49
3.4.1 Concurrent Offloading to Accelerators 50
3.4.2 Extrae Support for Device Instrumentation 51
3.4.3 Task Manager replacement by Hardware Runtime 55

3.5 Evaluation . 59
3.5.1 Environment . 60
3.5.2 Benchmarks . 60
3.5.3 DDAST Tuning . 64
3.5.4 DDAST Performance Comparison 68
3.5.5 Concurrent Offloading to Accelerators 71
3.5.6 Tuning memory interconnections 73
3.5.7 Shared wide Memory Port . 74

3.6 Conclusion . 77
3.7 Publications . 78

4 Proposal for Task Spawn in Co-processors 81
4.1 Proposal Design . 81
4.2 Programming model extension . 83
4.3 Mercurium Compiler Support . 84

4.3.1 Task Directive . 84
4.3.2 Taskwait Directive . 85
4.3.3 HLS Source Code . 86

4.4 Nanos++ Runtime Support . 90
4.4.1 New APIs . 90
4.4.2 FPGA Create WD Listener . 93
4.4.3 FPGA Instrumentation Listener 94

4.5 xTasks Library Support . 95
4.5.1 New APIs . 96
4.5.2 New Queues . 99

4.6 FPGA Design Support . 101
4.6.1 FPGA Task Accelerators . 102
4.6.2 Hardware Runtime . 104

4.7 Evaluation . 111
4.7.1 Experimental Setup . 111

x

4.7.2 Resources Utilization and Power Consumption 115
4.7.3 Scalability limits and overheads 116
4.7.4 Real benchmarks . 118

4.8 Conclusion . 125
4.9 Publications . 126

5 Proposal for Recurrent Tasks 129
5.1 Proposal Design . 129
5.2 Programming model extension . 130
5.3 Mercurium Compiler Support . 132

5.3.1 HLS Source Code . 132
5.4 Nanos++ Runtime Support . 136

5.4.1 New APIs . 137
5.5 xTasks Library Support . 138

5.5.1 New APIs . 138
5.6 FPGA Design Support . 139

5.6.1 FPGA Task Accelerators . 140
5.6.2 Hardware Runtime . 141

5.7 Evaluation . 142
5.7.1 Experimental Setup . 143
5.7.2 Synthetic benchmark . 143
5.7.3 Sensors Monitoring . 149
5.7.4 Face Detection . 154

5.8 Conclusion . 159
5.9 Publications . 160

6 Conclusion and Future Work 161
6.1 Thesis Contributions . 161
6.2 Future Work . 162

Bibliography 165

A Appendix 171

xi

List of Figures

1.1 Master-slave model for co-processors management in task-based program-
ming models . 2

2.1 Mercurium compiler structure . 15
2.2 Format of elements in the ready queue 27
2.3 Format of ready task information . 28
2.4 Format of elements in the finished queue 28
2.5 FPGA Bitstream design with the Task Manager 30
2.6 External interface of Ready Task Manager 30
2.7 External interface of Finished Task Manager 31
2.8 Internal structure of FPGA Task Accelerator 32
2.9 Handshake protocol example waveform 33
2.10 AXI-Stream protocol example waveform 34
2.11 BRAM protocol example waveform . 35
2.12 AXI protocol example waveform . 36

3.1 Format of task type identifier . 41
3.2 Bitinfo structure . 44
3.3 xTasks config file structure . 46
3.4 FPGA Bitstream design with the default data interconnections 47
3.5 OMPT execution trace of Matrix Multiply using two FPGA task accelerators

(figure 6.a from [61]) . 52
3.6 OMPT execution trace of Cholesky with overlap of host tasks and dgemm

and syrk FPGA tasks (figure 10 from [61]) 52
3.7 Extrae execution trace of Matrix Multiply using three FPGA task accelerators 53
3.8 Format of command head . 55
3.9 FPGA Bitstream design with the SOM Hardware Runtime 56
3.10 Format of execute task command . 57
3.11 Format of finished execute task command 58
3.12 External interface of CmdIn Manager . 58
3.13 External interface of CmdOut Manager 59
3.14 Speedup changing the MAX_DDAST_THREADS 65

xiii

3.15 Speedup changing the MAX_SPINS . 66

3.16 Speedup changing the MAX_OPS_THREAD 67

3.17 Speedup changing the MIN_READY_TASKS 68

3.18 Matrix Multiply scalability . 69

3.19 N-Body scalability . 70

3.20 SparseLU scalability . 70

3.21 Matrix Multiply performance comparison with concurrent offloading 71

3.22 Cholesky performance comparison with concurrent offloading 72

3.23 N-Body performance comparison with concurrent offloading 72

3.24 Execution trace of 3 FPGA task accelerators with the default memory
interconnection . 73

3.25 Execution trace of 3 FPGA task accelerators with a balanced memory
interconnection . 74

3.26 Performance comparison with different memory port widths 74

3.27 Task density comparison of Matrix Multiply execution traces with same
memory port (64 bits) and different block sizes 75

3.28 Execution traces of one Matrix Multiply coarse grain task with different
memory ports . 76

3.29 Matrix Multiply resources utilization variation with different memory port
widths . 76

4.1 Proposal design model for co-processors management with task spawn
capabilities . 82

4.2 Proposal design model for co-processors management with task spawn
capabilities and distributed runtime support 83

4.3 Format of new task message for HWR 88

4.4 Format of block message for Taskwait manager 90

4.5 New instrumentation structure . 95

4.6 Format of setup instrumentation command 98

4.7 Format of execute task command (v2) 99

4.8 Format of elements in the SpawnOut Queue 100

4.9 Format of elements in the SpawnIn Queue 101

4.10 Format of instrumentation events in the circular instrumentation buffers . 101

4.11 FPGA Bitstream design with the extended SOM Hardware Runtime 102

4.12 Internal structure of FPGA Task Accelerator with task spawn support . . . 103

4.13 External interface of Scheduler Manager 106

4.14 External interface of SpawnIn Manager 108

4.15 Format of finish message for Taskwait Manager 109

4.16 External interface of Taskwait Manager 109

xiv

4.17 External interface of CmdIn Manager (v2) 110
4.18 External interface of CmdOut Manager (v2) 111
4.19 Synthetic benchmark execution time with different configurations 117
4.20 Synthetic benchmark time per task with different configurations 118
4.21 Matrix Multiply GFLOPS with different approaches and block sizes 119
4.22 Execution traces of Matrix Multiply with 3 accels of 128x128 block size

and 512x512 matrix size . 120
4.23 N-Body GPairs/s with different approaches and block sizes 122
4.24 Cholesky GFLOPS with different approaches and block sizes 123
4.25 Cholesky execution traces of cFPGA approach (128x128 block size and

2048x2048 matrix size) . 124

5.1 Format of execute recurrent task command 133
5.2 Format of set lock message for Lock manager 135
5.3 Format of unset lock message for Lock manager 136
5.4 FPGA Bitstream design with the extended SOM Hardware Runtime (v2) . 140
5.5 Internal structure of FPGA Task Accelerator with task spawn support . . . 141
5.6 External interface of Lock Manager . 142
5.7 Effectiveness of synthetic benchmark for different task durations and periods

(microseconds scale) . 146
5.8 Execution traces of synthetic benchmark with 250 us period and 200 us

duration . 147
5.9 Effectiveness of synthetic benchmark for different task durations and periods

(nanoseconds scale) . 148
5.10 Effectiveness of synthetic benchmark for different FPGA frequencies and

periods with 1 nanosecond task duration 148
5.11 Tasks organization and memory regions of sensors monitoring benchmark

(cFPGA cri configuration) . 149
5.12 Tasks organization and memory regions of sensors monitoring benchmark

(cHost ncri configuration) . 150
5.13 Effectiveness of sensors monitoring benchmark among base periods 153
5.14 Effectiveness of sensors monitoring benchmark (only read) among number

of FPGA task accelerators . 154
5.15 Tasks organization and memory regions of LBP Face Detection 155
5.16 Output frame example with squares around detected faces 156
5.17 FPS of Face Detection . 157
5.18 Execution traces of Face Detection with 2 seconds period 158
5.19 Execution traces of Face Detection with 2 seconds period (43 ms zoom) . 158

xv

List of Tables

2.1 Signals of Handshake interface . 33
2.2 Signals of AXI-Stream interface . 34
2.3 Signals of BRAM interface . 35
2.4 Channels of AXI interface . 36

3.1 Matrix Multiply execution arguments . 61
3.2 FPGA configurations for Matrix Multiply benchmark 62
3.3 N-Body execution arguments . 63
3.4 FPGA configuration for N-Body benchmark 63
3.5 Sparse LU execution arguments . 63
3.6 Cholesky execution arguments . 64
3.7 FPGA configuration for Cholesky benchmark 64
3.8 DDAST parameters values . 65

4.1 FPGA configurations for Matrix Multiply benchmark 113
4.2 FPGA configurations for N-Body benchmark 114
4.3 FPGA configurations for Cholesky benchmark with full and mixed approaches115
4.4 Resources utilization and power estimation in ZCU102 116

5.1 Vivado resources utilization and power report for Zedboard (100 MHz) . . 145

A.1 FPGA commands information . 171

xvii

List of Listings

2.1 Inline OmpSs task example . 10
2.2 Outline OmpSs task example . 10
2.3 Outline OmpSs task with data dependence example 11
2.4 Taskwait example . 12
2.5 Outline OmpSs task with FPGA device example 12
2.6 OmpSs task with implements example 14
2.7 FPGA task accelerator wrapper example 17
2.8 xTasks APIs to initialize/finalize the library 22
2.9 xTasks APIs to retrieve the accelerators information 22
2.10 xTasks APIs for FPGA tasks management 23
2.11 xTasks APIs for accelerators instrumentation 25
2.12 xTasks APIs for FPGA memory management 26

3.1 Example of num_instances(N) clause . 41
3.2 Example of localmem(...) clause . 43
3.3 FPGA task accelerator wrapper example with original memory ports . . . 48
3.4 FPGA task accelerator wrapper example with new shared memory port . . 48
3.5 Type definitions for new Extrae APIs . 53
3.6 Function declarations of new Extrae APIs 54
3.7 Matrix Multiply pseudo-code . 62

4.1 OmpSs example with FPGA nested tasks 83
4.2 FPGA task accelerator wrapper example with global streams (non-valid

design) . 86
4.3 FPGA task accelerator wrapper example with global handshake ports . . . 87
4.4 Nanos++ FPGA API for task spawn . 92
4.5 Nanos++ FPGA API to retrieve current task information 92
4.6 Nanos++ FPGA API for task synchronization 93
4.7 Nanos++ FPGA API for task information registration 93
4.8 xTasks API for FPGA spawned tasks retrieval 97
4.9 xTasks API notify the finalization of tasks to HWR 98
4.10 New declaration of xTasks API for instrumentation events retrieval 98

xix

4.11 Synthetic benchmark pseudo-code . 112
4.12 Matrix Multiply pseudo-code . 113
4.13 N-Body pseudo-code . 114

5.1 OmpSs example with a recurrent task . 131
5.2 FPGA task accelerator wrapper example with recurrent loop 134
5.3 Nanos++ API to retrieve current task repetition 137
5.4 Nanos++ API to cancel remaining task repetitions 137
5.5 Nanos++ FPGA API to set recurrent task information 138
5.6 xTasks APIs for FPGA recurrent task creation 139
5.7 Recurrent synthetic benchmark pseudo-code 143
5.8 Recurrent synthetic benchmark pseudo-code without proposal extensions . 144
5.9 Sensors monitoring benchmark pseudo-code without proposal extensions . 151

A.1 xTasks general definition for all APIs of xtasks_stat type 171
A.2 HLS implementation for eOut Adapter 172
A.3 HLS implementation for eIn Adapter . 172
A.4 Main tasks of Face Detection benchmark 173

xx

Glossary

Bitstream Configuration file that defines the programming information for an FPGA.
15, 29, 39, 43–45, 47, 56, 60, 71, 73, 81, 101, 106, 111, 112, 129, 143

Helper thread Thread that is mainly devoted to offload/synchronize tasks for co-
processors. 50, 51, 71–73, 94, 95

IP block Unit of reusable logic which Intellectual Property (IP) owns to one party.
29–31, 55, 56, 58, 59, 88, 104, 106, 108, 109, 115, 116, 141

Lvalue Expression that refers to an object which occupies an identifiable memory
location. 10, 11, 14

Processing Element Representation of a SMP core or a FPGA accelerator inside the
Nanos++ runtime. xxiv, 50

Work Descriptor Representation of a task inside the Nanos++ runtime. It includes
all information that the runtime may need to schedule and handle the task among
its life. xxiv, 18, 19, 50, 93, 136, 138

Worker thread Thread that is mainly devoted to execute application tasks. 19–21, 50,
51, 70

xdma Library Linux library that exposes a high-level Application Programming Interface
(API) for FPGA memory management and streaming communication. 29

xTasks Library Linux library that exposes a common API for tasks and memory
management regardless of the FPGA and the underlying communication channel.
21, 28, 29, 43–45, 56–58, 93–95, 98–100, 105, 138

xxi

Acronyms

AI Artificial Intelligence. 1, 125

AIT Accelerator Integration Tool. 15, 29, 31, 41, 43, 45–47, 73, 102, 140, 142

API Application Programming Interface. xix–xxi, 15, 19, 21–27, 29, 37, 43, 45, 51–54,
57, 84–86, 88–90, 92, 93, 95–98, 132, 133, 135–139, 171

ASIC Application-Specific Integrated Circuit. 5, 125

BRAM Block Random Access Memory. 30–32, 35, 42, 43, 46, 47, 58, 59, 73, 77, 106,
108, 110, 120

CPU Central Processing Unit. v, 1–3, 125

DAST DAS Thread. xxiii, 19

DDAST Distributed DAST. 6, 19–21, 39, 50, 59, 60, 62–64, 66, 68–70, 77–79

DSP Digital Signal Processor. 1

FF Flip-Flop. 77

FPGA Field Programmable Gate Array. xiv, xv, 1–9, 12, 14–16, 18, 19, 21, 22, 26, 27,
29–32, 36–38, 40–47, 49–53, 55–64, 71–77, 79, 81, 84–90, 92–127, 129, 130, 132,
133, 135–150, 152, 153, 155–162

FPS Frames Per Second. xv, 157

GPGPU General-Purpose Graphics Processing Unit. 1, 37, 125

GPU Graphics Processing Unit. 1, 18, 19, 37, 41, 93

HLS High Level Synthesis. xx, 15, 77, 86, 88, 103, 104, 106, 108, 109, 133, 135, 136,
139–141, 172

HW HardWare. 37, 38

xxiii

HWR HardWare Runtime. 45, 55–57, 85–90, 93–96, 98–100, 102–105, 109, 125, 126,
130, 135, 136, 138, 139, 141, 154, 159, 162

ID Identifier. vii, 16, 28, 58, 88, 103, 104, 106–108, 142

IP Intellectual Property. xxi, 125, 126, 162

LBP Local Binary Patterns. 155, 156

LUT LookUp Table. 77

MPI Message-Passing Interface. 36

PCI Peripheral Component Interconnect. xxiv, 125

PCIe PCI Express. 125

PE Processing Element. 50

POM Picos OmpSs Manager. 45

SMP Symmetric Multi-Processing. 3, 14, 19, 40, 41, 50, 51, 71–73, 83, 93, 115, 116,
122, 124, 125, 130, 132, 136, 144, 149, 150, 155, 156, 159

SMT Simultaneous Multi-Threading. 60

SoC System on Chip. 50, 112, 115, 125, 143, 161

SOM Smart OmpSs Manager. xiii–xv, 45, 55–59, 102, 104–106, 115, 116, 140, 141

WD Work Descriptor. 18, 19, 50, 93, 136, 138

xxiv

Introduction 1
This chapter motivates the thesis research in section 1.1. Then, the main research
objectives are explained in section 1.2. Section 1.3 lists and briefly summarizes the thesis
contributions. Finally, section 1.4 describes the structure of the document.

1.1 Motivation

Multicore processors can be found in almost any electronic device, from small electrical
appliances to huge servers. They have become popular as a way to keep increasing the
computational power of general purpose processors after the end of Dennard scaling
law [1]. With these processors, parallel programming models have grown as a way to
easily define the applications parallelism and take advantage of these processors. Those
programming models also decouple the applications from the running platform, creating
a source code that can fit a wide range of hardware.

Heterogeneous platforms have also become popular to increase even more the compu-
tational power of the systems meanwhile the Moore law [2] keeps going. They allow
keeping power consumption restricted and enhancing the processors’ capabilities at the
same time. Heterogeneity is present in several systems:

• Cell phones. They usually contain a Central Processing Unit (CPU) with small
and big cores, a Graphics Processing Unit (GPU) (or General-Purpose Graphics
Processing Unit (GPGPU)), Digital Signal Processors (DSPs), Artificial Intelligence
(AI) accelerators.

• Embedded boards. They have the main processor and other co-processors like a
GPGPU or an Field Programmable Gate Array (FPGA).

• Machines in the Top500 ranking.

New parallel programming models appeared with native support for heterogeneous systems
(e.g., OpenACC [@3]). Also, some of the parallel programming models initially designed
for the multicore processors introduced new features to support heterogeneous systems
(e.g., OmpSs [4] and OpenMP [5]).

1

The master-slave management is commonly used for heterogeneous platforms, thereby the
co-processors/accelerators are driven by the main general purpose CPU. This has some
benefits from the programming model and runtime side. It simplifies the management
of accelerators because they cannot actively interact with the runtime, and they are
just passive components that operate over the memory under demand. However, the
master-slave model limits the system possibilities as not all parts of an application are
suitable to be executed in an accelerator.

Figure 1.1: Master-slave model for co-processors management in task-based programming
models

Figure 1.1 shows this master-slave model for co-processors management in task-based
programming models. The orange square with gears in the middle represents the host,
and the blue rockets the co-processors. The host is in the middle of the system with
point-to-point connections to the four co-processors. The communication lanes between
the host and the co-processors are detailed on the right side. There are two queues or
channels used to offload the tasks and retrieve the executed ones.

The case of FPGA devices is a clear example of the master-slave model limiting the
co-processor’s capabilities. A single FPGA device may contain several accelerators that
implement different operations. The fact of breaking the master-slave model implies the
possibility of avoiding numerous synchronization overheads. These overheads are due to
the host-centric management of accelerators and their reduction will lead to significant
performance gains. In addition, the host threads are not always able to adequately feed
the FPGA task accelerators in the FPGA device when dealing with fine-grained tasks.
By creating and executing the tasks directly in the FPGA, the application will avoid the

2 Chapter 1 Introduction

host-FPGA latency allowing a faster task creation, gaining CPU time for other application
activities, and increasing the resources productivity.

The programmability of tasks that become accelerators in the FPGA design is also
important. There are pieces of code that cannot be executed in the FPGA (like Operating
System code). Currently, if a task accelerator finishes processing some data and needs to
load or store data from/to disk, some synchronization code in the host needs to monitor
the task state and proceed adequately. With the proposed system, task accelerators
can autonomously launch a host task which performs the disk access. Once task is
completed and synchronized, the FPGA task accelerator can proceed. The same approach
could be used for complex pieces of code that are called from inside the accelerated
code but are executed infrequently and would consume several FPGA resources with a
small performance advantage. The real-time face detection is an example as the FPGA
efficiently processes the frames. However, the host CPU is responsible for coordinating
the actions when a face is detected, although most of the time no faces are detected on
frames. With an autonomous FPGA design, the algorithm in the FPGA can continually
scan the video frames, and trigger an Symmetric Multi-Processing (SMP) task that will
do the necessary actions in case of a positive detection. This approach does not need
a continuous monitoring from the host CPU. Besides, systems that want to monitor
a large set of signals also could benefit from an FPGA driven execution. Instead of
having several threads monitoring the signals and checking if some action must be done,
several monitoring FPGA task accelerators can be implemented. Those will occupy a
small portion of the area and only call an SMP task when some action from the host is
needed.

Last but not least, another interesting example involves the code compatibility between
different systems. When programming a code to be executed in a given FPGA device, it
usually is designed to operate over a given size of data related to the available resources.
However, the chosen FPGA task accelerator may not fit in a new hardware requiring
changing the host-FPGA communication interface. With an autonomous FPGA device,
an FPGA task accelerator with the same interface that spawns the work in smaller FPGA
task accelerators could be created. Even more, the new FPGA task accelerator could
reverse-offload the work back to the host, losing the performance gains but maintaining
the functionality. Given the vast design exploration space that FPGAs open for accelerator
design, this last point is more important than it seems as it allows to refactor the FPGA
task accelerators in a given FPGA after the application is compiled. The same solution
also applies to situations where a new FPGA task accelerator is incorporated to the
application or the application is executed concurrently with other applications that also
need some FPGA space.

1.1 Motivation 3

1.2 Objectives

This thesis aims to improve the current task-based parallel programming models ex-
tending them to enhance the use of co-processors/accelerators. The task-based parallel
programming models (like OpenMP and OmpSs) are one simple but powerful way to
express tasks (code regions) that can be executed in the accelerators. The main thesis
objectives are briefly explained in the following points.

Asynchronous, concurrent and parameterizable task management

The first objective is to demonstrate that the efficiency of task management in task-based
systems can be improved by asynchronous, concurrent, and flexible handling. The runtime
activities may be decoupled from the element that initiates or requires the runtime action.
Any thread must be able to perform data movements from/to co-processors, offload tasks,
manage the instrumentation, etc. Applications should be able to customize the task
management to fit their needs and maximize performance. This includes task definition
at programming model level and task handling at runtime level.

Task spawn in co-processors

The second objective is to demonstrate the feasibility of spawning tasks and synchronizing
them within the co-processors. The requirements for such capabilities are just a shared
memory region between the accelerator and the host. Then, the accelerator can write
there the required information to create a task in this memory region and continue.
On the host side, some thread will read that information and update the runtime
structures accordingly. This approach allows any co-processor to require runtime services
asynchronously.

The proposed design for this objective can be extended with a smarter approach for
FPGA devices that keeps the management of tasks inside the FPGA when possible. This
requires a minimal runtime support in the FPGA device that handles the requests from
the FPGA task accelerators and forwards them to the host runtime if needed. Otherwise,
the runtime inside the FPGA may handle the request without involving the host runtime
and save the communication latency.

4 Chapter 1 Introduction

Recurrent tasks

The third objective is extending task-based parallel programming models to support
recurrent tasks and define how they interact with the other directives. Recurrent tasks
process data in a dataflow manner alone or in cooperation with others. Those tasks are
periodically under execution, either after some time before the last launch or immediately
after the task returns from the user code. This kind of task is very valuable in real-time
systems, such as image processing or sensor monitoring, and it matches the behavior of
Application-Specific Integrated Circuits (ASICs) or small accelerators synthesized in an
FPGA.

1.3 Thesis publications and contributions

The articles published during the thesis development are:

• Exploiting Parallelism on GPUs and FPGAs with OmpSs.
Jaume Bosch, Antonio Filgueras, Miquel Vidal, Daniel Jiménez-González, Carlos
Álvarez, Xavier Martorell. ANDARE 2017. [6]
The publication presents the OmpSs approach to deal with heterogeneous program-
ming on GPU and FPGA accelerators, and it presents the performance obtained
implementing the Matrix Multiplication with OmpSs in a Xilinx Ultrascale+ FPGA.

• Asynchronous Task Creation for Task-Based Parallel Programming Runtimes.
Jaume Bosch, Xubin Tan, Carlos Álvarez, Daniel Jiménez-González, Xavier Mar-
torell, Eduard Ayguadé. OpenMPCon 2018. [7]
The publication presents a general design to support the asynchronous creation
and synchronization of tasks in parallel programming runtimes, and it analyzes the
requirements to support those in co-processors like FPGAs.

• Application Acceleration on FPGAs with OmpSs@FPGA.
Jaume Bosch, Xubin Tan, Antonio Filgueras, Miquel Vidal, Marc Mateu, Daniel
Jiménez-González, Carlos Álvarez, Xavier Martorell, Eduard Ayguadé, Jesus Labarta.
FPT 2018. [8]
The publication presents the evaluation of the OmpSs@FPGA environment with
the Matrix Multiplication, Cholesky and N-Body benchmarks, showing the internal
execution details and obtained performance.

• Supporting task creation inside FPGA devices.
Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González. BSC International Doctoral

1.3 Thesis publications and contributions 5

Symposium 2019. [9]
The publication presents the implementation of a system to support the creation
and synchronization of tasks inside the FPGA devices, it also presents an initial
performance evaluation of the system.

• Breaking master-slave model between host and FPGAs.
Jaume Bosch, Miquel Vidal, Antonio Filgueras, Carlos Álvarez, Daniel Jiménez-
González, Xavier Martorell, Eduard Ayguadé. PPoPP 2020. [10]
The publication extends the initial evaluation done in [9] with real benchmarks and
more insights of the implementation.

• Asynchronous Runtime with Distributed Manager for Task-based Programming
Models.
Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, Xavier Martorell, Eduard
Ayguadé. PARCO 2020. [11]
The publication presents and evaluates the DDAST Manager which is a distributed
runtime manager that reduces the task management overheads specially in many-
core processors.

• Task-based programming models for heterogeneous recurrent workloads.
Jaume Bosch, Antonio Filgueras, Miquel Vidal, Daniel Jiménez-González, Carlos
Álvarez, Eduard Ayguadé.
ARC 2021 [Accepted for publication]. [12]
The publication presents the full implementation to support recurrent workloads in
OmpSs and presents an extended evaluation with all performance results.

The thesis has been developed in the Programming Models Group, Computer Science
(CS) department, Barcelona Supercomputing Center (BSC). During the development of
the thesis, different collaborations with other groups have successfully used the knowledge
and tools developed in this thesis. The following list (ordered by date) presents the
publications related to this thesis and briefly describes its contribution:

• Picos, A Hardware Task-Dependence Manager for Task-Based Dataflow Program-
ming Models.
Xubin Tan, Jaume Bosch, Miquel Vidal, Carlos Álvarez, Daniel Jiménez-González,
Eduard Ayguadé, Mateo Valero. HPCS 2017. [13]
The publication presents Picos which is a hardware task dependence manager, it is
synthesized in an FPGA device and evaluated with different benchmarks.

• Hardware Heterogeneous Task Scheduling for Task-based Programming Models.
Xubin Tan, Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, Eduard
Ayguadé. OpenMPCon 2018. [14]

6 Chapter 1 Introduction

This publication presents an initial version of Picos++, which supports the data
dependence management and scheduling of tasks for heterogeneous systems, and
it presents a first performance evaluation.

• TaskGenX: A Hardware-Software Proposal for Accelerating Task Parallelism.
Kallia Chronaki, Marc Casas, Miquel Moretó, Jaume Bosch, Rosa M. Badia. ISC
2018. [15]
The publication presents the design and requirements of a hardware manager to
accelerate the task management in the software runtimes.

• A Hardware Runtime for Task-Based Programming Models.
Xubin Tan, Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, Eduard
Ayguadé, Mateo Valero. TPDS 2019. [16]
This publication presents Picos++ which fully supports the data dependence man-
agement and scheduling of tasks for heterogeneous systems where task may be
executed in different architectures.

• Adding Tightly-Integrated Task Scheduling Acceleration to a RISC-V Multi-core
Processor.
Lucas Morais, Vitor Silva, Alfredo Goldman, Carlos Álvarez, Jaume Bosch, Michael
Frank, Guido Araujo. MICRO 2019. [17]
This publication presents the integration of Picos with a RISC-V multicore processor,
and it evaluates the new processor synthesized in an FPGA.

• Design and implementation of an architecture-aware hardware runtime for hetero-
geneous systems.
Juan Miquel de Haro, Jaume Bosch, Daniel Jiménez-González, Carlos Álvarez.
BSC International Doctoral Symposium 2020. [18]
This publication presents the new Picos Daviu which integrates within the OmpSs@FPGA
ecosystem to directly handle the data dependences of tasks spawned inside the
FPGA devices.

• OmpSs@FPGA framework for high performance FPGA computing.
Juan Miquel de Haro, Jaume Bosch, Antonio Filgueras, Miquel Vidal, Daniel
Jiménez-González, Carlos Álvarez, Xavier Martorell, Eduard Ayguadé, Jesus Labarta.
TC 2021 [Accepted for publication]. [19]
This publication presents the analysis and optimization of a different benchmarks
in 2 FPGA boards using different optimizations and tweaks of OmpSs@FPGA
ecosystem.

• High Performance Computing particle-pair distance algorithms, to generate X-ray
spectra from 3D models.

1.3 Thesis publications and contributions 7

César González, Jaume Bosch, Juan Miguel de Haro, Maurizio Paolini, Antonio
Filgueras, Simone Balocco, Carlos, Álvarez, Ramon Pons. HPC 2021 [Under
review]. [20]
This publication presents the analysis and optimization of a chemical application
that simulates particles in an FPGA device.

1.4 Thesis Structure

The thesis is structured in different chapters that explain different parts of the developed
work. However, all developments are related and the improvements in one proposal are
needed, or used, in the others. Therefore, the work is presented by means of the different
thesis objectives summarized in section 1.2. Then:

• Chapter 1, this one, introduces the thesis motivation, objectives and contributions.

• Chapter 2 describes the previous work related to this thesis and the baseline
environment used to develop the thesis proposals.

• Chapter 3 presents the first thesis proposal that develops the asynchronous, con-
current, and parameterized concepts on task-based systems.

• Chapter 4 presents the second thesis proposal that develops the task spawn and
synchronization inside FPGA devices.

• Chapter 5 presents the third thesis proposal that introduces the key concepts of
recurrent systems into the task-based parallel programming models.

• Chapter 6 concludes the thesis, remarking the key contributions and summarizing
the future work.

8 Chapter 1 Introduction

State of the Art 2
The OmpSs@FPGA ecosystem is an upgrade of the OmpSs [4] infrastructure (Mercurium
source-to-source compiler and Nanos++ runtime) to incorporate FPGA support [8].
This ecosystem is the baseline of the proposals and development of this thesis. The
sections 2.1 to 2.6 describe the different elements/levels that compose the OmpSs@FPGA
ecosystem. Finally, section 2.7 describes the related work with the thesis components,
objectives and goals.

2.1 OmpSs Programming Model

OmpSs is a task-based parallel programming model that extends the OpenMP 3.1 [@21]
syntax and been an active forerunner of the current tasking capabilities available in
OpenMP 5.1 [@22]. It uses an implicit parallel region, in contrast to OpenMP which
requires an explicit parallel region. OmpSs supports different annotations for expressing
parallelism, but the task annotation is the one used for Heterogeneous systems [23].
The following sections explain the tasking and heterogeneity model of the programming
model.

2.1.1 Tasking model

The task paradigm is a widely used approach to express portions of code that are
asynchronously run. OmpSs has the task compiler directive to explicitly annotate code
regions that will be asynchronously executed by any available thread. It can be used
in two ways: 1) before a code region (inline tasks) as shown in listing 2.1; 2) before a
function declaration (outline tasks) as shown in listing 2.2. The body of inline tasks is
asynchronously executed when encountered, and the function body of outline tasks is
asynchronously executed every time the function is called.

9

1 double vec [10];
2 #pragma omp task
3 {
4 for (int i=0; i<10; i++) vec[i] = 0.0;
5 }

Listing 2.1: Inline OmpSs task example

1 #pragma omp task
2 void vec_init(double *vec);

Listing 2.2: Outline OmpSs task example

Task dependences

Tasks can be implicitly synchronized using task dependences. The dependences are
defined for each task by means of accessed memory regions and their directionality. The
following clauses are available in the task directive to specify the data and directionality
of accessed data:

• in(memory-reference-list). This clause defines a list of lvalues that are read
by the task. The task execution is postponed until all predecessor sibling tasks
with an out, inout, concurrent or commutative clause applying to some lvalue
from the list are executed [@24].

• out(memory-reference-list). This clause defines a list of lvalues that are
written by the task. The task execution is postponed until all predecessor sibling
tasks with an in, out, inout, concurrent or commutative clause applying to
some lvalue from the list are executed [@24].

• inout(memory-reference-list). This clause defines a list of lvalues that are
read and written by the task. The task execution is postponed until all predecessor
sibling tasks with an in, out, inout, concurrent or commutative clause applying
to some lvalue from the list are executed [@24].

• concurrent(memory-reference-list). This clause defines a list of lvalues
that are read and written by the task. The task execution is postponed until all
predecessor sibling tasks with an in, out, inout, or commutative clause applying
to some lvalue from the list are executed. In contrast to inout, this clause allows
tasks with same lvalue within it execute concurrently [@24].

• commutative(memory-reference-list). This clause defines a list of lvalues
that are read and written by the task. The task execution is postponed until all

10 Chapter 2 State of the Art

predecessor sibling tasks with an in, out, inout, or concurrent clause applying
to some lvalue from the list are executed. Moreover, the clause defines a mutex
for each lvalue on it. The mutex applies to all tasks with the same lvalue on the
clause, and it only allows one of those tasks to run in parallel [@24].

The format or lvalues in the memory references list can be one of those:

• Single elements. Discrete lvalue over some variable.

• Array section. Section of an array or pointed data. It can be done in two forms:

– a[lower : upper]. All elements of a from lower to upper (both included)
are referenced. If lower is not provided, it is assumed to be 0. If upper is not
provided and the expression refers to an array with a known size, the last
element of the array is assumed.

– a[lower ; size]. All elements of a from lower to lower+size-1 (both
included) are referenced.

• Shaping expression ([size]a). Reshapes a pointed data into an array of known
size whose elements are referenced.

Listing 2.3 shows an example of an outline task with an output data dependence. The
dependence is over the first ten elements pointed by the vec parameter.

1 #pragma omp task out(vec [0; 10])
2 void vec_init(double *vec);

Listing 2.3: Outline OmpSs task with data dependence example

Taskwait

The tasks can be explicitly synchronized using the taskwait directive. It ensures that,
after the directive, the tasks spawned in the same nesting level have finished their
execution. An example of this directive can be seen in listing 2.4. Before the taskwait,
the state of spawned tasks is not known, so it is not possible to know if vec has been
initialized or not. After the taskwait, the programming model ensures that tasks have
been synchronized, so vec variable has been initialized.

2.1 OmpSs Programming Model 11

1 double vec [10];
2 #pragma omp task
3 {
4 for (int i=0; i<10; i++) vec[i] = 0.0;
5 }
6 // vec[i] may not be initialized
7 #pragma omp taskwait
8 // vec[i] is initialized

Listing 2.4: Taskwait example

2.1.2 Heterogeneity support

The task directive can have a target directive associated that defines where the spawned
task will be executed. The architecture is specified through the device clause which
default value is smp (the one of general purpose processors). The main architectures
are: smp, gpu, opencl [23], fpga [6], etc. An example of a OmpSs task with the FPGA
architecture is shown in listing 2.5.

1 #pragma omp target device(fpga) onto (10)
2 #pragma omp task out(vec [0; 10])
3 void vec_init(double *vec) {
4 for (int i=0; i<10; i++) vec[i] = 0.0;
5 }

Listing 2.5: Outline OmpSs task with FPGA device example

The usage of the device(fpga) clause implies that the associated task will become an
FPGA task accelerator. All tasks that have the clause in the source code will be placed
together in the FPGA design.

Task type

One FPGA design may contain several FPGA task accelerators of different types, like
an application binary may contain serveral functions. In contrast to binaries, the FPGA
design cannot relay on memory pointers to determine which is the right function for a
given tasks. Instead, an integer identifier is assigned to each FPGA task, so the runtime
can match the created tasks with the right FPGA task accelerators.

The unique integer identifier for each FPGA task is assigned through the onto clause,
which usage is mandatory. The clause takes one numerical value, which must be unique
between all tasks with the device(fpga) clause in the same FPGA design. An example

12 Chapter 2 State of the Art

of clause’s usage is shown listing 2.5 (line 1) where the task is arbitrary labeled with a
10.

Task copies

The tasks may be executed in a device that does not have access to the host address
space. Therefore, data movements between devices may be required before and/or after
the execution of tasks with different architectures. OmpSs provides different clauses in
the target directive to define the task data copies. Those copies are the data regions
that must be mapped to device address space and where data must be copied before
and/or after the task execution. The clauses are:

• copy_in(shaping-expression-list). Defines a list of memory regions to be
copied into the device address space before the task execution.

• copy_out(shaping-expression-list). Defines a list of memory regions to be
copied from the device address space after the task execution.

• copy_inout(shaping-expression-list). Defines a list of memory regions to
be copied into and from the device address space, before and after the task
execution.

• copy_deps. Populates the copy clauses with the dependence clauses information.
For each in, generates a copy_in; for each out, generates a copy_out; and for
each inout, generates a copy_inout. This is the default behavior if no copy_in,
copy_out or copy_inout clause are provided.

• no_copy_deps. In contrast to copy_deps, do not use the dependence clauses
information to full-fill the copy clauses.

Taskwait

The taskwait directive supports a couple of clauses that enhance its behavior, specially
in Heterogeneous systems. The clauses are intended to finely tune the behavior of
the directive and maximize application performance. By default, the taskwait directive
synchronizes the child tasks, and it also synchronizes their output data copies from
devices address spaces to the main application address space. They are:

• noflush. Only synchronizes child tasks but not their output copies. Then, the
data its kept in the device address space, which could improve data locality in the
copies of following tasks.

2.1 OmpSs Programming Model 13

• on(memory-references-list). Defines a list of lvalues that must be synchro-
nized instead of all child tasks. The taskwait is ready when all previously created
child tasks with an out, inout, concurrent or commutative clause applying to
the some lvalue in the list have finished.

Implements

The tasks may target more than one device and have different implementations in each
one. This is achieved using the implements clause of target directive. The clause
value is the name of the function task (A) which is being implemented by the former (B).
Then, any call to task A may end in the execution of B. An example of an OmpSs task
with the implements clause is shown in listing 2.6. The example shows the task function
matmul_block, that has FPGA architecture, and task function matmul_block_smp, that
has SMP architecture and implements the first using a cblas call.

1 #pragma omp target device(fpga)
2 #pragma omp task in([BSIZE*BSIZE]a, [BSIZE*BSIZE]b) inout([BSIZE*BSIZE]c)
3 void matmul_block(const float *a, const float *b, float *c) {
4 //...
5 }
6
7 #pragma omp target device(smp) implements(matmul_block)
8 #pragma omp task in([BSIZE*BSIZE]a, [BSIZE*BSIZE]b) inout([BSIZE*BSIZE]c)
9 void matmul_block_smp(const float *a, const float *b, float *c) {

10 cblas_gemm(ROW_MAJOR , NO_TRANS , NO_TRANS , BSIZE , BSIZE , BSIZE , 1.0, a,
11 BSIZE , b, BSIZE , 1.0, c, BSIZE);
12 }

Listing 2.6: OmpSs task with implements example

2.2 Mercurium

Mercurium is a C/C++/Fortran source-to-source compilation infrastructure aimed at
fast prototyping developed by the Programming Models group at the Barcelona Super-
computing Center. [@25]

Mercurium is used, together with the Nanos++ Runtime Library, to implement the OmpSs
programming model [@24]. Both tools provide also an implementation of OpenMP 3.1.
More recently, Mercurium has been also used to implement the OmpSs-2 programming
model [@26] together with the Nanos6 Runtime Library [@27]. Apart from that, since
Mercurium is quite extensible it has been used to implement other programming models

14 Chapter 2 State of the Art

or compiler transformations, examples include Cell Superscalar, Software Transactional
Memory, Distributed Shared Memory or the ACOTES project. [@25]

C/C++
Frontend

Phase << >>

Phase OmpSs

Phase << >>

C++C++C++

BIT EXE

C/C++

Native
Compiler

AITFPGA Specific
Vendor Tools

nan s

HLS HLS HLS

Figure 2.1: Mercurium compiler structure

Figure 2.1 shows a simplified view of an application compilation and linkage using
Mercurium. The C/C++ source code files are provided to Mercurium profile, which first
parses them in the frontend creating an internal common high-level representation. The
following phases use this representation to analyze and modify the application code. It
is finally pretty-printed to a new C/C++ source file that is compiled and linked using
a native compiler. The different phases executed consecutively during the compilation
handle different parts and perform code transformations accordingly to their purpose.
For example, the OmpSs phase replaces the compiler directives by Nanos++ API calls.
In addition, the OmpSs phase generates intermediate C++ High Level Synthesis (HLS)
source code files for each FPGA task found in the source code. Those files are used by
Accelerator Integration Tool (AIT) (formerly autoVivado) [28] to generate the FPGA
bitstream, which includes the extra design stuff to allow the communication at runtime
with the FPGA task accelerators. AIT relies on the specific FPGA vendor tools (Xilinx
Vivado and Vivado HLS [@29] [30]) for the bitstream generation. Besides, the compiler
also uses an underlying native compiler to generate the application binary from the new
C/C++ source code. This binary is linked against the different libraries (Nanos++,
xTasks) that support the execution at run time.

2.2.1 HLS Source Code

Mercurium generates a C++ HLS source code file for each FPGA task. This HLS
source code includes the task function code, the symbols used in that function, and an

2.2 Mercurium 15

FPGA task accelerator wrapper. The wrapper is a function specifically generated by the
compiler for each FPGA tasks that wraps the user function code and implements the
communication protocol against the Task Manager. This communication is based on two
streams (input and output). The input stream is used to retrieve the task information
and arguments needed for launching the task function code. The output stream is used
to notify the finalization of task execution.

As an example, listing 2.7 shows a simplified version of the FPGA task accelerator wrapper
generated for the task shown in listing 2.5. The wrapper has a port to access the FPGA
task accelerator identifier, the two AXI-Stream interfaces connected to Task Manager,
and an AXI interface to access the data of vec parameter of the user function. The
wrapper can be divided into six parts:

1. Retrievement of ready task header words (lines 22-27).

2. Retrievement of task arguments (lines 30-24).

3. Read of input data. In the example there is no input data, then this part is not
generated by the compiler.

4. Execution of user function if compute flag is enabled (line 37).

5. Write of output data if the output flag is enabled (lines 40-42).

6. Submit of task Identifier (ID) in the output stream (line 49).

2.3 Nanos++

Nanos++ is a runtime library designed to serve as runtime support in parallel environ-
ments. The runtime is developed at the Barcelona Supercomputing Center within the
Programming Models group, and its main use is to support the OmpSs programming
model. Apart from OmpSs, Nanos++ also supports most of the OpenMP 3.1 features
and includes some additional extensions (some of them also introduced in following
OpenMP releases). [@31]

The runtime provides the required services to support task parallelism based on data
dependences. Data parallelism is also supported by means of services mapped on top of
its task support. Tasks are implemented as user-level threads when possible (currently
x86, x86-64, ia64, arm, ppc32 and ppc64 are supported). It also provides support for

16 Chapter 2 State of the Art

1 void vec_init (double * vec);
2
3 void vec_init_mcxx_hls_wrapper(
4 const ap_uint <5> mcxx_acceleratorID ,
5 hls_axis_t mcxx_inStream , hls_axis_t mcxx_outStream ,
6 double *vec_port)
7 {
8 #pragma HLS INTERFACE ap_ctrl_none port=return
9 #pragma HLS INTERFACE axis port=mcxx_inStream

10 #pragma HLS INTERFACE axis port=mcxx_outStream
11 #pragma HLS INTERFACE m_axi port=vec_port
12
13 float vec [10];
14 unsigned long long int _params [1];
15 unsigned char _paramFlags [1];
16 unsigned long long int _taskID , _tmp;
17 unsigned long long int _instr_timerAddr , _instr_bufferAddr;
18 unsigned int _compteFlags , _destinationID;
19 hls_axis_data_t _axisPkg;
20
21 // Read the ready task header words
22 _taskID = mcxx_inStream.read (). data;
23 _instr_timerAddr = mcxx_inStream.read (). data;
24 _instr_bufferAddr = mcxx_inStream.read (). data;
25 _tmp = mcxx_inStream.read (). data;
26 _compteFlags = tmp;
27 _destinationID = tmp >> 32;
28
29 // Read the task arguments
30 for (unsigned int i=0; i<1; i++) {
31 _tmp = mcxx_inStream.read (). data;
32 _paramFlags[tmp >> 32] = _tmp;
33 _params[_tmp >> 32] = mcxx_inStream.read (). data;
34 }
35
36 // Execute the task body
37 if (_compteFlags) vec_init(vec);
38
39 // Write the output data
40 if (_paramFlags [0]&0 x20 != 0x00) {
41 memcpy(vec_port + _params [0], vec , 10* sizeof(double));
42 }
43
44 //Sync the task execution in mcxx_outStream
45 _axisPkg.data = _taskID;
46 _axisPkg.last = 1;
47 _axisPkg.tid = mcxx_acceleratorID;
48 _axisPkg.tdest = _destinationID;
49 mcxx_outStream.write(_axisPkg);
50 }

Listing 2.7: FPGA task accelerator wrapper example

2.3 Nanos++ 17

maintaining coherence across different address spaces (such as with GPUs or cluster
nodes) by means of a directory/cache mechanism. [@31]

The main purpose of Nanos++ runtime library is to be used in research of parallel
programming environments. The runtime tries to enable easy development of different
parts, so researchers have a platform that allows them to try different mechanisms. As
such it is designed to be extensible by means of plugins. The scheduling policy, the
throttling policy, the dependence approach, the barrier implementations, slicers and
worksharing mechanisms, the instrumentation layer, and the architectural dependant level
are examples of plugins that developers may easily implement using Nanos++. [@31]

Those plugins isolate the different runtime services creating an internal interface to
exchange information between. Therefore, each plugin can be transparently replaced
without affecting the others. For example, the different instrumentation plugins generate
different types of traces with different application’ insights, or they use different underlying
instrumentation infrastructure (Extrae, OMPT, etc.). The architecture plugins also
provide a common interface for task management agnostic of the underlying device where
the task will be executed (GPU, FPGA, or a regular processor thread).

2.3.1 Task Life Stages

The tasks spawned by the application are internally represented by Work Descriptors (WD)
in Nanos++. This structure contains all information that runtime needs to correctly
handle the task among its life cycle. It includes task dependences, devices where the
task can be executed, task arguments, mappings of memory in device address space
(if any), and more. During the task life, it goes around runtime modules to handle its
requirements. The different stages that a Work Descriptor (WD) goes through during its
life are:

1. Task creation. The WD had been allocated and filled with the basic task informa-
tion.

2. Task submission. The task has been inserted into the task dependence graph and
is waiting for its predecessor tasks to finish. This stage is skipped if the task does
not have data dependences.

3. Task ready. Once the predecessor tasks finish, the task becomes ready and is
forwarded to the scheduler module. The task will wait until the assigned resource
for execution is available to start the task execution.

18 Chapter 2 State of the Art

4. Task memory allocation. Once the device where the task will be executed is
assigned, the runtime checks if some memory must be allocated in the device
address space to handle it. It may happen that the device memory contains the
data of other tasks, and the former has to wait until the previous ones finish. This
stage is skipped if the task does not have data copies.

5. Task input data copy. Once the memory for task copies has been allocated, the
runtime starts moving the input data to the mapped regions. These copies may be
asynchronously handled, so the task has to wait until they are finished. Also, it
may happen that data was moved to a device address space by a predecessor task
and has to be moved/copied into another address space. This stage is skipped if
the task does not have data copies.

6. Task running. Once all data is ready for task execution, the task execution starts.
It may be a synchronous execution if task is run in an SMP device by a regular
thread, or it may be asynchronously executed if the task is run in a GPU, FPGA,
etc. device where tasks are offloaded.

7. Task blocked. During the task execution, it may become blocked as a result of
some runtime API call. For example, a task becomes blocked when it has a taskwait
until its child tasks finish.

8. Task finished. Once the task execution finishes, the task dependences are released,
and successor tasks may become ready.

9. Task output data copy. The data generated by the task is moved back to the
original memory region, the mapping is invalidated, and the device memory region
is released. This stage is skipped if the task does not have data copies.

10. Task cleanup. Once the child tasks have finished, and all data copies have been
invalidated, the WD is deallocated.

2.3.2 DDAST

The Distributed DAST (DDAST) Manager [32] is a distributed vesrsion of the centralized
DAS Thread (DAST) [33]. The manager is responsible of executing the runtime code
that manages tasks at different critical points of their life. The aim of decoupling runtime
and application activities is avoiding the bottlenecks created when several threads try to
concurrently update some runtime structures. Then, the worker threads send messages
to the manager requesting some runtime operations instead of directly executing them.

2.3 Nanos++ 19

The distributed manager does not use dedicated threads to handle the messages. Instead,
any worker thread can become part of the manager and start executing only runtime
code. With this approach, all threads can cooperate to execute the pending runtime
operations when there are several of them. Correspondingly, all the threads can execute
application tasks when the number of pending runtime operations is small. The manager
design is based on general modules that can be extended to support other runtime
functionalities.

The messages (request of runtime operations) sent by the worker threads to the runtime
manager can be of two types: Submit Task Message and Done Task Message. The first
one, the Submit Task Message is sent when a worker thread wants to submit a new task
into the runtime structures to find out its predecessor tasks. The second one, the Done
Task Message is sent when a worker thread finishes the execution of a task and wants to
notify the successor tasks, scheduling them if they become ready.

Functionality Dispatcher

The Functionality Dispatcher is a module that mediates between different runtime
parts decoupling the computational resources from specific runtime functionalities. The
module allows using the idle threads to execute any runtime operation. Therefore, the
runtime functionalities can be handled without having computational resources exclusively
dedicated to them.

The runtime modules register a callback function in the Functionality Dispatcher during
the runtime initialization. Also, the worker threads notify the module when they do
not have tasks to execute, so they are idle. Therefore, the Functionality Dispatcher
tries to take advantage of those idle resources and uses them to execute the registered
callbacks.

DDAST Callback

The DDAST Manager is implemented using one callback function registered in the
Functionality Dispatcher. Therefore, the callback is executed when a worker thread
becomes idle and this thread starts handling the pending messages. An idle worker thread
usually means that the pending messages must be processed to submit more tasks into
the dependence graph or to schedule some new ready tasks.

The behavior of the DDAST callback is parametrized by different constants defined during
the runtime initialization. Here follows a brief list and explanation of these variables::

20 Chapter 2 State of the Art

• MAX_DDAST_THREADS. Maximum number of threads allowed to execute the DDAST
callback concurrently.

• MAX_SPINS. Number of times that the thread will try to get messages without
success before leaving the DDAST callback.

• MAX_OPS_THREAD. Maximum number of messages satisfied from the same worker
thread to force changing to another worker thread.

• MIN_READY_TASKS. Minimum number of ready tasks available to force exiting the
DDAST callback.

2.4 xTasks Library

The xTasks library is in charge of abstract Nanos++ from board dependent communication
protocols. It exposes an API where the main elements are accelerators, which internally
have associated a communication channel, and tasks, which can be sent to those
accelerators. It also provides some memory management APIs like allocating memory
in the FPGA address space and copy data from/to there. Finally, the library has
an instrumentation API to retrieve the tracing events generated by the FPGA task
accelerators. Those APIs are explained in section 2.4.1.

2.4.1 API definition

There are some general types and definitions which are shared across all APIs. For example,
the type returned type by all APIs is xtasks_stat (definition shown in listing A.1).
All APIs return the value XTASKS_SUCCESS if they successfully realized the operation,
otherwise they return XTASKS_ERROR or a more concrete error status.

Library Initialization

There is the xTasksInit API to initialize the library, which must be called before any
other API call; and the xTasksFini API to cleanup the library. Their declarations are
shown in listing 2.8.

2.4 xTasks Library 21

1 xtasks_stat xtasksInit ();
2 xtasks_stat xtasksFini ();

Listing 2.8: xTasks APIs to initialize/finalize the library

Accelerators Information

1 typedef uint32_t xtasks_acc_id;
2 typedef uint64_t xtasks_acc_type;
3 typedef const char *xtasks_acc_desc;
4
5 typedef struct {
6 xtasks_acc_id id; ///< Accelerator identifier
7 float freq; ///< Accelerator frequency (in MHz)
8 xtasks_acc_type type; ///< Accelerator type identifier
9 xtasks_acc_desc description; ///< Accelerator description

10 } xtasks_acc_info;
11
12 xtasks_stat xtasksGetNumAccs(size_t *count);
13
14 xtasks_stat xtasksGetAccs(
15 size_t const maxCount , xtasks_acc_handle *array , size_t *count);
16
17 xtasks_stat xtasksGetAccInfo(
18 xtasks_acc_handle const handle , xtasks_acc_info *info);

Listing 2.9: xTasks APIs to retrieve the accelerators information

The xtasksGetNumAccs retrieves the number of FPGA task accelerators in the currently
loaded design. The API declaration is shown in listing 2.9, and its parameters are:

• count. Pointer to a valid size_t variable that will be set with the number of
accelerators.

The xtasksGetAccs retrieves the accelerator handles for each accelerator in the FPGA
design. The API declaration is shown in listing 2.9, and its parameters are:

• maxCount. Maximum number of elements that can be set in array.

• array. Pointer to a valid array with at least maxCount elements of
xtasks_acc_handle opaque type. The first elements are set with the accel-
erator handles.

• count. Pointer to a valid size_t variable that will be set with the number of
handles set in array argument.

22 Chapter 2 State of the Art

The xtasksGetAccInfo retrieves the information related to an accelerator. The API
declaration is shown in listing 2.9, and its parameters are:

• handle. Accelerator handle which information will be retrieved.

• info. Pointer to a valid xtasks_acc_info that will be set with the accelerator
information.

Task management

1 #define XTASKS_ARG_FLAG_COPY_IN 0x10
2 #define XTASKS_ARG_FLAG_COPY_OUT 0x20
3
4 typedef void *xtasks_task_handle;
5 typedef uint64_t xtasks_task_id;
6 typedef uint64_t xtasks_arg_val;
7 typedef uint32_t xtasks_arg_id;
8 typedef uint8_t xtasks_arg_flags;
9 typedef enum {

10 XTASKS_COMPUTE_DISABLE = 0,
11 XTASKS_COMPUTE_ENABLE = 1
12 } xtasks_comp_flags;
13
14 xtasks_stat xtasksCreateTask(
15 xtasks_task_id const id, xtasks_acc_handle const accel ,
16 xtasks_comp_flags const compute , xtasks_task_handle *handle);
17
18 xtasks_stat xtasksAddArg(
19 xtasks_arg_id const id, xtasks_arg_flags const flags ,
20 xtasks_arg_val const value , xtasks_task_handle const handle);
21
22 xtasks_stat xtasksSubmitTask(xtasks_task_handle const handle);
23
24 xtasks_stat xtasksTryGetFinishedTaskAccel(
25 xtasks_acc_handle const accel , xtasks_task_handle *handle ,
26 xtasks_task_id *id);
27
28 xtasks_stat xtasksDeleteTask(xtasks_task_handle *handle);

Listing 2.10: xTasks APIs for FPGA tasks management

The xtasksCreateTask creates a task for an accelerator with the given identifier and
compute flags. The API declaration is shown in listing 2.10, and its parameters are:

• id. Task identifier that will be returned at finalization. An arbitrary identifier that
caller can use to uniquely identify a task.

• accel. Accelerator handle where task will be submitted.

• compute. Compute flags to enable/disable the execution of the task body.

2.4 xTasks Library 23

• handle. Pointer to a valid xtasks_task_handle that will be set with an opaque
task handle.

The xtasksAddArg adds an argument to an existing task. The API declaration is shown
in listing 2.10, and its parameters are:

• id. Argument identifier. The arguments are identified by its ordinal position in
the parameters.

• flags. Argument flags to enable/disable the accelerator wrapper copies.

• value. Argument value which may be a memory pointer or an scalar variable.

• handle. Task handle returned by xtasksCreateTask.

The xtasksSubmitTask submits the task for the accelerator into the ready queue. The
API declaration is shown in listing 2.10, and its parameter is:

• handle. Task handle returned by xtasksCreateTask.

The xtasksTryGetFinishedTaskAccel tries to retrieve a finished task from the finished
queue of the given accelerator. The API declaration is shown in listing 2.10, and its
parameters are:

• accel. Accelerator handle to retrieve the task from.

• handle. Pointer to a valid xtasks_task_handle that will be set with an opaque
task handle.

• id. Pointer to a valid xtasks_task_id that will be set with the task identifier
provided in xtasksCreateTask.

The xtasksDeleteTask cleans the task information and liberates the assigned memory.
The API declaration is shown in listing 2.10, and its parameters are:

• handle. Pointer to a valid xtasks_task_handle returned by xtasksCreateTask.
It is invalidated after the call.

24 Chapter 2 State of the Art

Instrumentation

There is the xtasksInitHWIns API to initialize the instrumentation support in the
library, and the xtasksFiniHWIns API to cleanup the instrumentation library part. The
initialization function must be called before any other instrumentation API call and
after xTasksInit. Both declarations are shown in listing 2.11. The xtasksInitHWIns

argument is:

• nEvents. Number of events that each instrumentation buffer should be able to
hold. There is an independent buffer for each submitted task.

1 typedef uint64_t xtasks_ins_timestamp;
2 typedef enum {
3 XTASKS_EVENT_TYPE_BURST_OPEN = 0,
4 XTASKS_EVENT_TYPE_BURST_CLOSE = 1,
5 XTASKS_EVENT_TYPE_POINT = 2,
6 XTASKS_EVENT_TYPE_INVALID = 0xFFFFFFFF
7 } xtasks_event_type;
8 typedef struct {
9 uint64_t value; ///< Event value

10 uint64_t timestamp; ///< Event timestamp
11 uint32_t eventId; ///< Event id
12 uint32_t eventType; ///< Event type (one of xtasks_event_type)
13 } xtasks_ins_event;
14
15 xtasks_stat xtasksInitHWIns(size_t const nEvents);
16 xtasks_stat xtasksFiniHWIns ();
17
18 xtasks_stat xtasksGetAccCurrentTime(
19 xtasks_acc_handle const handle , xtasks_ins_timestamp *timestamp);
20
21 xtasks_stat xtasksGetInstrumentData(
22 xtasks_task_handle const handle , xtasks_ins_event *events ,
23 size_t maxCount);

Listing 2.11: xTasks APIs for accelerators instrumentation

The xtasksGetAccCurrentTime returns the current time of an accelerator. This API
is useful to synchronize the host and accelerator times. The API declaration is shown in
listing 2.11, and its parameters are:

• handle. Accelerator handle which timestamp will be retrieved.

• timestamp. Pointer to a valid xtasks_ins_timestamp that will be set with the
accelerator timestamp.

The xtasksGetInstrumentData retrieves the instrumentation events generated by a
task. The API declaration is shown in listing 2.11, and its parameters are:

2.4 xTasks Library 25

• handle. Task handle which events will be retrieved.

• events. Pointer to a valid array with at least maxCount elements of
xtasks_ins_event type. The first elements are set with the task events. The
next event after last valid event has the XTASKS_EVENT_TYPE_INVALID type.

Memory management

1 typedef void *xtasks_mem_handle;
2 typedef enum {
3 XTASKS_HOST_TO_ACC , ///< From host memory to accelerator memory
4 XTASKS_ACC_TO_HOST ///< From accelerator memory to host memory
5 } xtasks_memcpy_kind;
6
7 xtasks_stat xtasksMalloc(size_t len , xtasks_mem_handle * handle);
8
9 xtasks_stat xtasksFree(xtasks_mem_handle handle);

10
11 xtasks_stat xtasksGetAccAddress
12 xtasks_mem_handle const handle , xtasks_arg_val * addr);
13
14 xtasks_stat xtasksMemcpy(
15 xtasks_mem_handle const handle , size_t offset , size_t len , void *usr ,
16 xtasks_memcpy_kind const kind);

Listing 2.12: xTasks APIs for FPGA memory management

The xtasksMalloc allocate a memory region in the FPGA address space that is accessible
by the accelerators. The API declaration is shown in listing 2.12, and its parameters
are:

• len. Size in bytes of the region to allocate.

• handle. Pointer to a valid xtasks_mem_handle that will be set with an opaque
memory region handle.

The xtasksFree liberates a previously allocated memory region. The API declaration is
shown in listing 2.12, and its parameter is:

• handle. Memory region handle returned by xtasksMalloc.

The xtasksGetAccAddress returns the memory address that can be sent to accelerators.
This address is only valid in the FPGA address space and allows the accelerators to access
the memory region. The API declaration is shown in listing 2.12, and its parameters
are:

26 Chapter 2 State of the Art

• handle. Memory region handle returned by xtasksMalloc.

• addr. Pointer to a valid xtasks_arg_val that will be set with the address.

The xtasksMemcpy copies data between the user address space and FPGA address space.
The API declaration is shown in listing 2.12, and its parameters are:

• handle. Memory region handle returned by xtasksMalloc.

• offset. Bytes to skip at the beginning of FPGA memory region. Starts to
write/read after those bytes.

• len. Bytes of data to copy between regions.

• usr. Memory pointer to user space data.

• kind. One of xtasks_memcpy_kind that define the copy directionality (to/from
FPGA).

2.4.2 Communication Queues

There are two communication queues to offloaded and retrieve tasks to/from the FPGA
task accelerators.

Ready Queue

The Ready Queue is intended to hold a pointer to tasks sent by the host runtime to the
FPGA task accelerators. The format of elements in that queue is shown in figure 2.2.
The entry information is filled with task information provided in the different API calls.
The arguments bitmask is always fixed to 0xFFFF in the current implementation, and it
was intended for future features. The task size is the number of words (64 bits) pointed
by the task pointer.

The queue is composed of 1024 entries of 128 bits, which are divided into 32 sub-queues
(one for each accelerator) of 32 entries. Each sub-queue is managed as a circular buffer
with a single-producer (xTasks library) single-consumer (Ready Task Manager).

Word 0

0 633231

Task Information Pointer

Word 1
Arguments

Bitmask

1615 4039 4847

Task
Size

Dest.
ID

5655

Valid

Figure 2.2: Format of elements in the ready queue

2.4 xTasks Library 27

The data pointed by the task information pointer has the format shown in figure 2.3.
The header words include the task identifier, instrumentation timer, instrumentation
buffer addresses, compute flags, and destination ID. The instrumentation words are only
set if instrumentation support is initialized. Otherwise, they contain zeros. The blue part
is repeated for each task argument with the argument flags, identifier, and value.

Word 0

0 63

Task ID

Word 1 Instrumentation Timer Address

Word 2 Instrumentation Buffer Address

Word 0 Flags

0 63323187

Argument ValueWord 1

Argument ID

Word 3 Destination ID

3231

Compute Flags

Figure 2.3: Format of ready task information

Finished Queue

The Finished Queue is intended to hold the identifiers of tasks which execution have
finished. The format of finished tasks is shown in figure 2.4. The entries contain the
task id sent in the ready task information and the accelerator identifier where the task
has been executed.

0 63

Task ID

5556

Valid

Word 0

Word 1
Accel.

ID

87

Figure 2.4: Format of elements in the finished queue

The queue is composed of 1024 entries of 128 bits divided into 32 sub-queues of 32
(one for each accelerator) entries. Each sub-queue is managed as a circular buffer with a
single-producer (Finished Task Manager) single-consumer (xTasks library).

28 Chapter 2 State of the Art

2.5 xdma Library

The xdma library is in charge of the low-level communication between the host and the
FPGA device. It hides the underlying board communication protocol, which may be PCI
transfers or memory mappings of some FPGA memory regions. On some platforms, the
library uses a custom Linux kernel module that performs the operations which require
elevated privileges. The main purpose is to read/write the communication queues available
in the Task Manager from the xTasks library and read/write the FPGA address space.
Besides, the xdma library has other APIs for stream communication, which may be an
alternative to Task Manager for the task offloading. However, the stream communication
showed a lower performance than Task Manager in previous works [28].

2.6 FPGA Design

The FPGA design is built by AIT tool. It includes all components needed to handle the
application execution: the Task Manager, the FPGA task accelerators, and different
adapters and interconnects. The following sections explain the main elements, protocols,
and interconnects placed in the FPGA bitstream.

2.6.1 Task Manager

The Task Manager is the IP block in charge of managing the tasks offloaded to the FPGA
task accelerators by the host. It interacts with the communication queues described in
section 2.4.2, and with all FPGA task accelerators. The communication between the
Task Manager and the FPGA task accelerators is done over two AXI-Stream interfaces,
one for each direction. Figure 2.5 contains the main elements of the FPGA bitstream
design for an example with two FPGA task accelerators.

The different IP blocks that compose the Task Manager are explained in the following
points.

2.5 xdma Library 29

FPGA

Memory

FPGA Task
Accelerator

Task Manager

Instrumentation Buffers

Host

Ready Task
Manager

Finished Task
Manager

Ready
Queue

Finished
QueueAccelerators State

FPGA Task
AcceleratorX X

BRAM Controller

Tasks Information

Figure 2.5: FPGA Bitstream design with the Task Manager

Ready Task Manager

Ready Task Manager

Accelerators
State

Ready
Queue

64
AXI-Stream

64
BRAM

64
BRAM

Out Stream

Task
Information

64
AXI

Figure 2.6: External interface of Ready Task Manager

The Ready Task Manager is an IP block developed in C++ using HLS tools. The
module reads the tasks from the Ready Queue and forwards them to the different FPGA
task accelerators. The module is connected as shown in figure 2.5. Its external interface
is detailed in figure 2.6, where the different ports and protocols to communicate the
module with the other components are shown. The ports are:

• Accelerators State. Block Random Access Memory (BRAM) port to access
the Accelerators State memory, which contains the state of each FPGA task
accelerator. This memory is read to check if the FPGA task accelerators can
receive a new task, and it is written to set the busy state.

30 Chapter 2 State of the Art

• Ready Queue. BRAM port to access the Ready Queue, which stores the task
pointers sent by the host runtime for each FPGA task accelerator. This memory is
mainly read but also written to invalidate entries.

• Out Stream. AXI-Stream port used to forward the ready task information to all
FPGA task accelerators.

Finished Task Manager

Finished Task Manager

Accelerators
State

Finished
Queue

64
BRAM

64
BRAM

64
AXI-Stream

In Stream

Figure 2.7: External interface of Finished Task Manager

The Finished Task Manager is an IP block developed in C++ using HLS tools. The
module is connected as shown in figure 2.5. Its external interface is detailed in figure 2.7,
where the different ports and protocols to communicate the module with the other
components are shown. The ports are:

• In Stream. AXI-Stream port used by all FPGA task accelerators to send finished
task identifiers.

• Accelerators State. BRAM port to access the Accelerators State memory,
which contains the state of each FPGA task accelerator. This memory is written
to set the FPGA task accelerator state to available after the task execution.

• Finished Queue. BRAM port to access the Finished Queue, which is used to
send the finished tasks to the host runtime.

2.6.2 FPGA Task Accelerators

The FPGA task accelerators are IP blocks created by AIT for each C++ HLS source code
that Mercurium generated. All FPGA task accelerators have two 64 bits AXI streams
connected to the Task Manager (sky-blue paths in figure 2.8). These streams are used to
receive ready tasks and send the task identifier of finished tasks. They also have an AXI

2.6 FPGA Design 31

FPGA

Memory

HLS Mercurium
IP

Task Manager

Instrumentation Buffers

Host

FPGA Task Accelerator

AcceleratorID

HW Counter

Tasks Information

X

X

Figure 2.8: Internal structure of FPGA Task Accelerator

port for each task parameter that allows reading/writing the task data (doted dark-green
arrows in figure 2.8). Moreover, they may have an additional AXI port to access the
instrumentation buffer in memory and a BRAM port to read the HW Counter, which is
a 64 bits memory that increments every clock cycle and is used as instrumentation event
timestamp. All interconnections are shown in figure 2.8.

2.6.3 Interface Protocols

The FPGA design uses different protocols to communicate the elements inside the Task
Manager, and communicate the FPGA task accelerators with the Task Manager. These
protocols are briefly explained in the following points.

Handshake Protocol

The handshake protocol is a point to point communication within two components
that synchronously wish to exchange data. The interface signals are summarized in
table 2.1.

The TVALID and TREADY handshake determines when information is passed across
the interface. A two-way flow control mechanism enables both the master and slave

32 Chapter 2 State of the Art

Signal Source Description
TVALID Master Indicates that master is providing a valid package in TDATA.
TREADY Slave Indicates that slave can accept the package in the current cycle.
TDATA Master Bus that contains the package data that is being sent. The

data width is an integer multiple of 8 (byte size).
Table 2.1: Signals of Handshake interface

to control the rate at which the data and control information is transmitted across the
interface. For a transfer to occur, both the TVALID and TREADY signals must be
asserted. Either TVALID or TREADY can be asserted first, or both can be asserted
in the same ACLK cycle. A master is not permitted to wait until TREADY is asserted
before asserting TVALID. Once TVALID is asserted, it must remain asserted until the
handshake occurs. A slave is permitted to wait for TVALID to be asserted before asserting
the corresponding TREADY. If a slave asserts TREADY, it is permitted to un-assert
TREADY before TVALID is asserted. [@34]

Figure 2.9 shows a waveform of an example where a data block is transmitted.

TVALID
TREADY
TDATA Data

Figure 2.9: Handshake protocol example waveform

AXI-Stream Protocol

The AXI4-Stream protocol is used as a standard interface to connect components
that wish to exchange data. The interface can be used to connect a single master,
which generates data, to a single slave, which receives data. The protocol can also be
used when connecting larger numbers of master and slave components. The protocol
supports multiple data streams using the same set of shared wires, constructing a generic
interconnect that can perform upsizing, downsizing, and routing operations. [@34]

The interface signals used in the OmpSs@FPGA designs are summarized in table 2.2.
The protocol defines more signals which are not used, and their information can be found
in [@34]. A package is defined as the set of interface signals and the data itself sent
together from the master to the slave. A transaction is defined as a set of packages sent
from the master to the slave which last package has the TLAST signal set to high.

The TVALID and TREADY handshake determines when information is passed across
the interface. A two-way flow control mechanism enables both the master and slave

2.6 FPGA Design 33

Signal Source Description
ACLK Clock source Global clock to sample other signals (on rising edge).
TVALID Master Indicates that master is providing a valid package in other

signals (TDATA, TID, TDES).
TREADY Slave Indicates that slave can accept the package in the current

cycle.
TDATA Master Bus that contains the package data that is being sent.

The data width is an integer multiple of 8 (byte size).
TLAST Master Indicates that the package is the last one of the transfer.
TID Master Source identifier of the package.
TDEST Master Destination identifier for the package used for package

routing.
Table 2.2: Signals of AXI-Stream interface

to control the rate at which the data and control information is transmitted across the
interface. For a transfer to occur, both the TVALID and TREADY signals must be
asserted. Either TVALID or TREADY can be asserted first, or both can be asserted
in the same ACLK cycle. A master is not permitted to wait until TREADY is asserted
before asserting TVALID. Once TVALID is asserted it must remain asserted until the
handshake occurs. A slave is permitted to wait for TVALID to be asserted before asserting
the corresponding TREADY. If a slave asserts TREADY, it is permitted to un-assert
TREADY before TVALID is asserted. [@34]

ACLK
TVALID
TREADY
TDATA D0 D1 D2 D3

TLAST
TID ID ID

TDEST ID ID

Figure 2.10: AXI-Stream protocol example waveform

Figure 2.10 shows a waveform of an example transaction with four packages that contain
D0, D1, D2, and D3. The figure shows that TDATA, TLAST, TID, and TDEST signals
are undefined when TVALID is low. It also shows that packages can be transmitted in
consecutive cycles (packages 1 and 2) or may take longer if TVALID or TREADY signals
are not high during the ACLK rising edge.

34 Chapter 2 State of the Art

BRAM Protocol

The BRAM protocol is a point to point interface used to access the Block Memories
(BRAMs). It supports read and write operations from master to slave (BRAM). The
protocol requires the slave to resolve the requests from the master in a fixed latency.
The interface signals are summarized in table 2.3.

Signal Source Description
ACLK Clock source Global clock to sample other signals (on rising edge).
EN Master Indicates that master is requesting a slave action.
WE Master Indicates the bytes of DIN that slave must write. The signal

width is the data width divided by 8.
ADDR Master Address to read/write.
DIN Master Bus with data sent from master to slave.
DOUT Slave Bus with data sent from slave to master.

Table 2.3: Signals of BRAM interface

Figure 2.11 shows a waveform of an example where a read request and a write request
are performed. The protocol latency of the example is one cycle. The example considers
a data width of one byte. Therefore the WE signal is 1 bit wide. The first request starts
at the first vertical line, and it is a read request for address 0x01. The request response
data is available in the DOUT signal at next clock cycle, which is the second vertical
line. The second request is a write request, the WE signal is not zero, to address 0x02
(ADDR) of data 0xFF (DIN). The write is assumed to be finished in the next clock cycle,
which is the fourth vertical line. The slave also writes the data available in ADDR, like a
read request.

ACLK
EN
WE 0x0 0x1

ADDR 0x01 0x02

DIN 0x00 0xFF

DOUT 0xAD 0xFF

Figure 2.11: BRAM protocol example waveform

AXI Protocol

The Advanced eXtensible Interface (AXI) is a master-slave communication interface
designed for high-bandwidth and low-latency data access. The key protocol features are:
separate channels for address/control and data phases, support for unaligned transfers,

2.6 FPGA Design 35

burst-based, and support for out-of-order transactions [@35]. The protocol is mainly
used to access the memory data in the FPGA modules. The channels defined by the
protocol are summarized in table 2.4.

Channel Source Description
Read address Master Address and control information of read transaction.
Read data Slave Data and response information to read transactions.
Write address Master Address and control information of write transaction.
Write data Master Data and strobe signal of the write transaction.
Write response Slave Response to the write transaction.

Table 2.4: Channels of AXI interface

Figure 2.12 shows a waveform of the AXI channels during two AXI transactions. The
fist transaction (first vertical line) is a read of four data blocks starting at address 0x00.
The second transaction (second vertical line) is a write transaction of four data blocks
starting at address 0x40.

Read address 0x00

Read data D0 D1 D2 D3

Write address 0x40

Write data D0 D1 D2 D3

Write response ACK

Figure 2.12: AXI protocol example waveform

2.7 Related Work

Several works exist about enhancing and improving parallel programming models. They
are over different models and working at different levels or with different approaches.
OmpSs is one of those, which is under constant development as several people use it as
a baseline to develop different prototypes or extend its capabilities.

There are efforts similar to OmpSs@FPGA ecosystem that also try to simplify the
usage of co-processors. The Vineyard project [@36] aims at facilitating heterogeneous
programming, based on OpenSPL [@37], OpenCL [@38] and SDSoC [@39]. The Ecoscale
project [40] targets applications written in MPI [@41] and OpenCL, to synthesize the
OpenCL kernels for the FPGAs, and support distributed and heterogeneous computing.
The LegUp high-level synthesis software [42] generates FPGA designs from C/C++
codes, which may also include pthreads or OpenMP parallelism [43]. All these works do

36 Chapter 2 State of the Art

not consider extending the co-processors’ capabilities, they try to facilitate their usage as
slaves.

There are several related works that also deal with runtime overheads reduction. Tur-
boBLYSK [44] is a framework that implements the OpenMP 4.0 with a custom compiler
and a highly efficient runtime scheduler of tasks with explicit data-dependence annota-
tions (requires extra information from application programmers). DAGuE framework [45]
offers an architecture aware scheduling and management of micro-tasks on distributed
many-core heterogeneous architectures. However, it auto-parallelizes the application
based on a static analysis of the application at compile-time, instead of dynamically
building a task dependence graph at runtime. TaPaSCo [46] is a framework that uses a
hardware/software-co-design to enable a high launch rate of FPGA-based accelerators.
This co-design is similar to our runtimes cooperation, but the support is application
transparent without explicitly calling the framework APIs in our approach. HPX (High
Performance ParalleX) [47] and STAPL (Standard Template Adaptive Parallel Library)
[48] are general purpose frameworks for parallel and distributed applications of any scale.
Both use the same asynchronous philosophy of the thesis proposal for task-based systems.
However, they tie the application implementation to the framework. Also, there are
OpenMP implementations over HPX but with a limited heterogeneity support: hpxMP
[49] and OMPX [50].

Other works propose using a hardware manager to implement some capabilities of software
runtime to reduce the overheads. Nexus [51], Nexus# [52], Picos [53] are examples
of dependence manager for task-based programming models. They focus on fine-grain
tasks that need a smart runtime management to obtain good application performance.
However, the proposed designs are host-centric as the managers are designed as slaves
to accelerate parts of the host runtime.

There are also previous efforts that try to extend the capabilities of accelerators in
heterogeneous systems. The most extended work is the CUDA Dynamic Parallelism [@54]
introduced by Nvidia in their GPUs to support the nested execution of CUDA kernels.
Vesely et al. [55] discuss the support of operating system calls in GPGPUs. In addition,
Chen et al. [56] propose to use the accelerators as a host and the regular processors
as accelerators for general purpose work offloading. These works propose extending
some capabilities of accelerators (GPUs and Intel Many Integrated Core) to allow a
more flexible programming. In contrast, this thesis proposes to add all these capabilities
for FPGAs with some extra extensions (like dual-side offloading) to obtain even more
functionality.

Other related efforts try to reduce the management overheads of the FPGA devices and
increase their programmability. Tan et al. [16] present a HardWare (HW) manager that

2.7 Related Work 37

supports task dependencies resolution and heterogeneous task scheduling for any parallel
task-based programming model. However, it does not allow interaction of the FPGA
task accelerators with the HW manager beyond the task offloading for their execution.
In a similar way to what OmpSs@FPGA does, Cabrera et al. [57] and Sommer et al. [58]
propose extensions in OpenMP to support the definition of a task that targets an FPGA
device. In contrast to the thesis objectives, none of them consider creating more tasks
within an FPGA task.

Related to the recurrent systems, Serrano et al. [59] analyze the usage of OpenMP
to develop critical real-time systems. They analyze the timing constraints, which are
not considered in this thesis but are fully compatible. They briefly introduce an event
clause that is used to define when a recurrent task must start executing. Besides, Pop et
al. [60] propose an OpenMP extension to define persistent tasks that work in a stream
fashion. Those tasks are similar to the recurrent tasks proposed in the thesis but they
are activated by the availability of input data instead of by a timer.

38 Chapter 2 State of the Art

Proposal for Asynchronous,
Concurrent and
Parameterizable Task-Based
Systems

3

The proposal objective is to demonstrate that the efficiency of task management in
task-based systems can be improved by asynchronous, concurrent, and flexible handling.
That kind of task management is the first step to break the host-centric systems because
it uses a distributed behavior that does not rely on dedicated elements.

As a demonstration, this chapter proposes a full-stack design using asynchronous runtime
operations. It goes from the programming model to the underlying libraries and tools.
Besides, the design is based on the parameterization and customization of all elements.
This flexibility is the baseline to allow developers to create applications that perfectly fit
the heterogeneous architectures. Moreover, the more flexible the model and the tools,
the more room for other proposals like the ones in chapters 4 and 5.

Section 3.1 describes the key ideas of the proposal design. Then, sections 3.2, 3.3 and
3.4 describe the extensions implemented to develop the proposal design at programming
model level, binaries and bitstreams level, and execution time level. After that, section 3.5
presents the evaluation environment, the benchmarks, and the results. Finally, section 3.6
concludes the chapter with the key contributions, and section 3.7 lists the publications
related to this chapter.

3.1 Proposal Design

The knowledge acquired during the design and initial development of DDAST Manager (in
Asynchronous Runtime for Task-Based Dataflow Programming Models master thesis [32])
has been used to model the desired behavior that a task-based parallel runtime should
have when dealing with co-processors. The design is based on the distributed, concurrent
management of the co-processors relying on the DDAST Functionality Dispatcher [11]
that asynchronously executes different runtime operations.

39

The first design goal is to allow any thread to interact with any co-processor. This
includes the data movements from/to the co-processors address space if needed, the
offloading of tasks to them, the management of tracing and instrumentation events
generated inside the co-processors, and any other handling operations. With this model,
the same thread may be concurrently executing regular SMP tasks and offloading others
to co-processors.

The second design goal is to parameterize as many parts as possible to allow the
customization and fine-tuning of applications to the underlying architecture and workload
needs. This goal involves all levels of design: starting from the programming model, going
through the compiler and linker, and the runtime/libraries that support the application
execution.

The third design goal is to simplify the development effort. Despite the possibility of
customizing the tools’ behavior, they should provide reasonable default values suitable
for the vast majority of workloads. Moreover, the efforts that can be automatized must
be automatically handled by the tools.

3.2 Programming model extensions

This section presents the extensions developed at the programming model level. The
extensions have been developed in OmpSs programming model [4] to extend its capabilities
and enhance the application programmability to better fit the underlying architecture or
hide undesired system requirements.

3.2.1 Automatic type identifier

The compiler has been modified to automatically generate unique type identifiers when
needed. These automatic identifiers supply the onto clause of the target directive, that
is no longer mandatory to uniquely identify each FPGA task accelerator type. However,
the programmers can still force the desired type identifier providing it to the compiler
using the onto clause as before.

The identifier type is defined as 64 bits wide, but the current implementation only uses
the lower 35 bits. The format is shown in figure 3.1. The first 32 bits are a hash of the
source code filename and the task’s function name. The bits 32 to 34 are a bitmask
that defines the devices that the task has support for. The current implementation only

40 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

considers three devices, but it can be easily extended using more bits (35, 36, etc.). Bit 32
is for FPGA architecture, bit 33 for SMP architecture and bit 34 for GPU architecture.

Hash

0 3231

Arch. Bits

Reserved

63

32 34

FPGA SMP GPU

33

Arch.
Bits

3534

Figure 3.1: Format of task type identifier

3.2.2 Clause for Accelerator Replication

The number of task accelerators in the FPGA design to execute one task type can be
modified using a new clause. The clause has been added to the OmpSs target directive.
The num_instances(N) clause must take only one value (N) which must be a positive
integer number. If the clause is not provided, only 1 task accelerator is created in the
FPGA design. The clause syntax has been added in the Mercurium compiler to allow the
FPGA phase to gather it and correctly forward the value to AIT.

1 #pragma omp target device(fpga) num_instances (2)
2 #pragma omp task in([1] src) out ([1] dst)
3 void foo(float *dst , const float *src) {
4 *dst = *src;
5 }
6
7 int main (...) {
8 for (int i=0; i<10; i++) {
9 foo(dst+i, src+i);

10 }
11 #pragma omp taskwait
12 }

Listing 3.1: Example of num_instances(N) clause

An example of the num_instances(N) clause is shown in listing 3.1. The example
creates two instances of foo task accelerator in the FPGA design. Then, the 10 task
instances (created every function call from line 9) are concurrently ran in both FPGA
task accelerators. This is because the different tasks access different dst indexes, so
they do not have any data dependence. The different instances of the same FPGA task
act like different threads that indistinctly execute tasks in the host.

3.2 Programming model extensions 41

3.2.3 Clauses for Data Caching in Accelerator HLS Wrapper

The OmpSs programming model promotes the task dependences to task copies by default.
Besides, the task copies are cached in the FPGA task accelerator wrapper to accelerate
the access. However, this behavior may be undesired due to the increasing amount of
resources needed (mainly BRAMs), and performing memory access each time may be
better. To allow application programmers explicitly define the desired behavior, three
new clauses have been introduced in the target directive:

• localmem_copies. This clause requires the compiler to generate a copy of the
data defined as task copies inside the FPGA task accelerator wrapper. This is the
default behavior.

• no_localmem_copies. This clause requires the compiler not generating a copy of
the data defined as task copies inside the FPGA task accelerator wrapper.

• localmem(...). This clause takes a list of shaping expressions that define the data
that must be copied inside the FPGA task accelerator wrapper. When this clause
is used, the task copies do not have a local copy inside the FPGA task accelerator
unless explicitly required with the localmem_copies clause. The element syntax
for this clause is the same one used for the task dependences and copies. However,
the region shape must be known at compile time (immediate values and constant
variables are allowed). Otherwise, the data region cannot be generated in the
FPGA bitstream.

The new clauses untie the copy of task data inside the FPGA task accelerator wrapper from
the task copies. Therefore, the application can rely on the OmpSs runtime (Nanos++)
to move the task data from the main host memory to FPGA address space memory,
but avoid the further copy of those data inside the FPGA task accelerator wrapper if
not desired. This approach was difficult to implement previously in the applications. It
required an explicit allocation of FPGA device memory and explicit data movements
to/from there.

As an example of localmem(...) clause usage, the listing 3.2 shows the source code
of a histogram task that processes 500 floats and maintains an histogram of observed
values. Since the number of entries in the histogram is huge (1000000), it does not
make sense (or it may not fit into BRAMs) to copy those data inside the FPGA task
accelerator wrapper.

42 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

1 #pragma omp target device(fpga) localmem ([500] input)
2 #pragma omp task in ([500] input) inout ([1000000] counters)
3 void histogram(const float *input , unsigned int *counters) {
4 for (unsigned int i = 0; i < 500; i++) {
5 unsigned int idx = hash(input[i]);
6 counters[idx] += 1;
7 }
8 }

Listing 3.2: Example of localmem(...) clause

3.3 Compiler and FPGA design extensions

This section presents the extensions developed at compiler and FPGA design generation
levels. The extensions have been developed in the OmpSs compilation tools: Mercurium
and AIT. The extensions are designed to hide undesired management stuff, which
increases ecosystem utilization and programmability. Also, they extend the current code
and design generation capabilities parameterizing the behavior of the tools and allowing
the application developers to better fit the underlying architecture.

3.3.1 FPGA design configuration retrievement from bitinfo

The available FPGA task accelerators in the loaded FPGA bitstream must be known
during the Nanos++ initialization. This information is used by the runtime to match
the types of created tasks with the FPGA task accelerators types and known where to
offload the tasks. To gather this information, Nanos++ uses the xtasksGetAccs API
from xTasks library (which declaration is shown in listing 2.9). In the baseline design, the
generation of that information in the xTasks library was done through a .xtasks.config
file that AIT creates in the design stage. However, this approach requires the usage
of XTASKS_CONFIG_FILE environment variable or a pre-arranged file name to find the
configuration file. The user is also responsible for matching the right configuration file
with the loaded bitstream. Otherwise, the execution may hang.

The best approach is to include this information in the FPGA bitstream and expose them
somehow to the xTasks library. This way, the system remains coherent, and users do not
need to take care of this critical aspect. To this end, AIT has been modified to add a
BRAM, accessible from the host through a BRAM controller, with the design information.
This memory is called bitinfo, and it is encoded in 32 bits wide words with the format
shown in figure 3.2. There are different fields with all relevant information. The fields
are separated by a special word which content is fixed to 0xFFFFFFFF.

3.3 Compiler and FPGA design extensions 43

AIT Call (ASCII string dump)

0xFFFFFFFF

0xFFFFFFFF

Hardware Runtime Version (ASCII string dump)

0xFFFFFFFF

Mercurium FPGA Task Accelerator Wrapper Version

AIT Minor Version AIT Major Version

0xFFFFFFFF

0xFFFFFFFF

Features Bitmap

xTasks Config File (ASCII string dump)

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF

Number of FPGA Task Accelerators

Bitinfo Version

0 3215 16

Figure 3.2: Bitinfo structure

The information contained in the bitinfo includes:

• Bitinfo version. Version of the bitinfo layout, which defines the structure of the
following words.

• Number of FPGA Task Accelerators. Integer that defines the number of FPGA
task accelerators in the FPGA bitstream.

• xTasks Config File. ASCII string dump of the xTasks library configuration file
(internal format shown in figure 3.3).

• Features Bitmap.

44 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

– Bit 0. FPGA instrumentation (1 if available, 0 otherwise).

– Bit 1. Communication with FPGA task accelerators using DMA engines (1 if
available, 0 otherwise).

– Bit 2. Optimization strategy used for interconnects. (1 if maximize perfor-
mance, 0 if minimize area).

– Bits 3-4. Accelerator interconnection mode.

– Bit 6. Hardware runtime (1 if available, 0 otherwise).

– Bit 7. Extended capabilities of hardware runtime (1 if available, 0 otherwise).

– Bit 8. SOM Hardware runtime (1 if available, 0 otherwise).

– Bit 9. POM Hardware runtime (1 if available, 0 otherwise).

• AIT Version. Two integers of 16 bits that define the minor and major versions of
AIT.

• Mercurium FPGA Task Accelerator Wrapper Version. Integer that defines the
version of wrappers generated for each FPGA task accelerator by Mercurium.

• Hardware Runtime Version. Version of the Hardware runtime in the bitstream (in
Xilinx style, "none" if no HardWare Runtime (HWR) instantiated).

The format of xTasks configuration file is detailed in figure 3.3. The words of 32 bits
from bitinfo are joined into lines formed by five words (160 bits in total). Each word
contains 4 ASCII characters. The first line is the header line, and its contents are always
the same (shown in gray). This header line contains the headings of the four information
columns. The different columns are separated by the \t character, either in the header
and in the following rows. Following the header, there are three lines for each FPGA task
accelerator type with the information of the four columns (blue part of figure 3.3). The
first 152 bits encode the integer that represents the FPGA task accelerator type. The
following field is the number of instances of such type codified in 24 bits. Then, there
are 248 bits that contain the accelerators’ name. Finally, there are 24 bits that encode
the accelerators’ frequency in MHz.

The xTasks library reads the information in the bitinfo during its initialization to con-
figure its internal structures and provide the information to Nanos++ through the
xtasksGetAccs API. The access to the bitinfo is done using different mechanisms
depending on the board and how it can be interfaced. In the Xilinx Zynq boards, the
access is done using a new Linux kernel module developed for that purpose.

3.3 Compiler and FPGA design extensions 45

FPGA Task Accelerators Type

't'

0 31

'y' 'p' 'e' '\t' '#' 'i' 'n' 's' '\t' 'n' 'a' 'm' 'e' '\t' 'f' 'r' 'e' 'q' '\t'

32 63 64 95 96 127 128 159

'\t'

Num. Instances '\t'

FPGA Task Accelerators Name II '\t' Freq. (MHz) '\t'

FPGA Task Accelerators Name I

0 31 32 63 64 95 96 127 128 159

Header Line

Acc. Line 0

Acc. Line 1

Acc. Line 2

Figure 3.3: xTasks config file structure

The kernel module exposes a set of character devices in the Linux sysfs that provide
the information available in the bitinfo at user level. The kernel module obtains the
physical memory address to access the BRAM controller from the devicetree. There-
fore, the mapping is transparent to the user and several errors (unavailable bitinfo,
unsupported bitinfo version) are managed by the kernel module. The devices’ structure
follows the same bitinfo organization with one device (or more) for each field. For
example, the xTasks configuration file can be read with the following command: cat
/dev/ompss_fpga/bitinfo/xtasks.

3.3.2 Tuning memory interconnections

The interconnection between all data ports of the different FPGA task accelerators
(generated by Mercurium) and main memory is balanced among the board’s available
ports. AIT tries to homogeneously distribute the ports exposed in the FPGA task
accelerators to balance the load in each of the board ports.

As an example, figure 3.4 shows an FPGA design with three instances of an FPGA task
accelerator that has two data ports. The interconnection between the memory ports of
FPGA task accelerators and the board memory ports in the FPGA (assuming four ports
and one interconnect for each port) is shown in dark green. In this case, AIT started
assigning the data ports from the top FPGA task accelerator to the left interconnect in
a round-robin way.

The default mapping results in two instances sharing the board memory ports and one
instance using the others in standalone. This causes that the standalone FPGA task
accelerator moves data faster than the others. This unbalance between the different
FPGA task accelerators may draw the application performance. Therefore, a mecha-
nism to customize the memory interconnection design could improve the application
performance.

The AIT capabilities have been extended to support the definition by users of mappings
between FPGA task accelerators data ports and the FPGA memory ports. To this end,

46 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

FPGA

Memory

HW Runtime

Circular Instrumentation Queues

Host

FPGA Task
Accelerator

FPGA Task
Accelerator

FPGA Task
Accelerator

X X XX

Figure 3.4: FPGA Bitstream design with the default data interconnections

a new flag (–datainterfaces_map <file>) that takes the path of a mappings file
have been added. The file should contain a line for each data port to connect with
a specific memory interface instead of one chosen by AIT. The tool checks the file
mappings during the generation of FPGA task accelerators interconnections. Then, the
user-defined mapping is used if the data port description is found. Otherwise, AIT selects
one interconnect based on the current utilization.

3.3.3 Shared wide Memory Port

The default interconnection of an FPGA task accelerator to the main memory uses a
dedicated memory port for each argument. It is needed due to some HLS limitations that
do not allow sharing a memory port to access different data types. Moreover, having a
dedicated port for each argument could allow concurrent data movements from main
memory to BRAMs or vice-versa. All the ports in the HLS source code are created by
Mercurium during the FPGA phase and wired in the FPGA design by AIT during the
bitstream generation.

The data width of each memory port is the same as the data type width. The AXI
protocol, used in the memory ports, only reads/writes one element in each memory access.
However, the width of the physical memory port to the DDR module is usually wider.
Therefore, the default interconnection is overloading the memory due to the generation
of small accesses instead of wide ones. Besides, the application performance could be
improved thanks to the faster data movements.

3.3 Compiler and FPGA design extensions 47

1 void histogram(const float *input , unsigned int *counters);
2
3 void histogram_mcxx_hls_wrapper(
4 hls_axis_t mcxx_inStream , hls_axis_t mcxx_outStream ,
5 float *input_port , unsigned int *counters_port)
6 {
7 float input [500];
8 unsigned long long int _params [2];
9

10 //Read arguments from mcxx_inStream into _params
11 //...
12 memcpy(input , input_port + _params [0], 500* sizeof(float));
13
14 histogram(input , counters_port + _params [1]/ sizeof(unsigned int));
15
16 //Sync the task execution in mcxx_outStream
17 //...
18 }

Listing 3.3: FPGA task accelerator wrapper example with original memory ports

As an example, listing 3.3 shows a simplified version of the wrapper that Mercurium
generated around the task function (same of listing 3.2) in the HLS source code. The
wrapper has the two synchronization streams (mcxx_inStream and mcxx_outStream)
and two memory ports (input_port and counters_port), one memory port for each
argument. After reading the function parameters from the input stream, the wrapper
reads the elements of input array into a local wrapper variable. Those local copies
are used to call the histogram function. In contrast, the counters parameter is not
copied, and the histogram function gets a reference to the memory region through the
dedicated memory port.

1 void histogram(const float *input , unsigned int *counters);
2
3 void histogram_mcxx_hls_wrapper(
4 hls_axis_t mcxx_inStream , hls_axis_t mcxx_outStream ,
5 ap_uint <128> *wrapper_mem_port , unsigned int *counters_port)
6 {
7 float input [500];
8 unsigned long long int _params [2];
9

10 //Read arguments from mcxx_inStream into _params
11 //...
12 unsigned int _n_lines = 500* sizeof(float)/ sizeof(ap_uint <128 >);
13 unsigned int _n_elems_line = sizeof(ap_uint <128 >)/ sizeof(float);
14 for (unsigned int _line =0; _line < _n_lines; _line ++) {
15 unsigned int _off_line = _params [0]/ sizeof(ap_uint <128 >) + _line;
16 ap_uint <128> _tmp_line = wrapper_mem_port[_off_line];
17 for (unsigned int _elem =0; _elem < _n_elems_line; _elem ++) {

48 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

18 input[_line*_n_elems_line + _elem] = _tmp_line.range(
19 _elem*sizeof(float)*8 + sizeof(float)*8 - 1,
20 _elem*sizeof(float)*8);
21 }
22 }
23
24 histogram(input , counters_port + __params [1]);
25
26 //Sync the task execution in mcxx_outStream
27 //...
28 }

Listing 3.4: FPGA task accelerator wrapper example with new shared memory port

A new option in Mercurium compiler changes how the data is read/write in the FPGA task
accelerator wrapper. The option is fpga_memory_port_width, and it takes a positive
integer value that defines the desired bit-width for the shared memory port created in the
FPGA wrapper. This option creates a shared memory port with the desired width in the
FPGA task accelerator wrapper for all task parameters that explicitly or implicitly appear
in the localmem clause. The shared memory port is not used for the parameters without
a copy inside the wrapper due to the HLS limitations mentioned before. Those limitations
do not apply to the parameters in localmem clause because the wrapper reads chunks
of a fixed size and forwards those bits to the corresponding local variable regardless of
their type. The width must be multiple of 8 and all task parameters widths.

Listing 3.4 shows the same example of listing 3.3 but with the new option enabled.
The new wrapper version has the memory port wrapper_mem_port, which replaces the
previous input_port, with a ap_uint<128> type, which basically is an unsigned integer
value of the specified width. The new port is read in line 17, and the retrieved data is
stored in the input array in line 19.

3.4 Execution model extensions

This section presents the extensions developed at the execution level. The extensions
have been developed in the OmpSs runtime environment. The extensions are designed
to boost the performance of the applications, reducing the runtime overheads through
an asynchronous behavior. Moreover, the extensions remove undesired limitations
among different execution tools that prevent performance and limit the other proposal
extensions.

3.4 Execution model extensions 49

3.4.1 Concurrent Offloading to Accelerators

The offloading of OmpSs tasks to the devices (GPU, FPGA, OpenCL, etc.) is managed
by a dedicated special thread. The Nanos++ runtime structures and logic were developed
with this restriction in mind. Therefore, the runtime was only allowing one helper thread
per accelerator, which only was used to send and retrieve tasks to its assigned device.
This model has different problems:

• The helper thread may be underutilized when device tasks are a few and long.

• The helper thread may not be fast enough to feed the device when device tasks
are a lot and fast.

• The processor may not have enough physical cores to run in parallel all helper
threads and regular worker threads. This is not a problem in big HPC nodes with
several physical cores, but it is in a SoC boards with a few cores.

The model was replaced by a flexible one, which allows any thread to deal with device
tasks. This modification required re-engineering the Nanos++ core because it was
designed in a way that one thread only can match one Processing Element (PE). The
new design keeps the relation of a thread with one PE to match the compatible WD
but allows any thread to change its PE and start dealing with tasks for those. This
change allows the concurrent offloading of tasks to the same accelerator from different
threads.

The number of helper threads that offload tasks to accelerators could be parameterized
after the modifications. Several helper threads share the same PEs to concurrently handle
the set of accelerators. Moreover, the avoid the underutilization of the FPGA helper
threads, the possibility of executing SMP tasks directly by them has been added using the
PE switch capability. The behavior of FPGA helper threads is handling FPGA tasks until
there are no actions to perform, spin a time, and if no actions to perform are found, the
thread tries to execute one SMP task. After that, the helper thread starts the loop again,
searching for FPGA tasks to offload and/or retrieve. This behavior makes the thread a
hybrid between an FPGA helper thread and an SMP worker thread, which prioritizes the
FPGA actions.

The integration of the DDAST core in the Nanos++ runtime, allows the use of idle
SMP worker threads to offload tasks to devices. During the runtime initialization, the
architecture plugins may register a callback in the Functionality Dispatcher. Those
callbacks may switch the PE of the caller thread to the accelerator one, try to find a
suitable WD, and offload the task if any is found. This capability was not possible before
due to the strong relation between PEs and threads. It was also not possible due to the

50 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

lack of a mechanism to take profit of idle worker threads. This makes worker threads to
have an hybrid behaviour between regular worker threads and regular helper threads but
always prioritizing SMP tasks.

The list of runtime options added to Nanos++ with the modifications explained in this
section is:

• ‘NX_FPGA_HELPER_THREADS‘ and ‘–fpga-helper-threads‘ to adjust the num-
ber of FPGA helper threads to use in the execution. By default, it is 1.

• ‘NX_FPGA_HYBRID_WORKER‘, ‘–fpga-hybrid-worker‘ and ‘–no-fpga-hybrid-
worker‘ to adjust whether the FPGA helper threads also may run SMP tasks. By
default, it is enabled.

• ‘–fpga-idle-callback‘ and ‘–no-fpga-idle-callback‘ to adjust whether the FPGA
callback is registered in the Functionality Dispatcher or not. By default, it is
enabled.

3.4.2 Extrae Support for Device Instrumentation

The instrumentation of the applications is crucial for understanding the obtained be-
havior/performance and improving their implementation. The Nanos++ runtime has
different instrumentation plugins that gather different kinds of information from the
application and the runtime internals. Moreover, the support for tracing FPGA task
accelerator was introduced in [61] and extended in [62]. The FPGA tracing was developed
using the OMPT interface, which was implemented in the Extrae library [@63].

The regular Extrae API is not suitable for device instrumentation due to two drawbacks.
First, the API assumes that the caller thread has generated the events. This assumption
is not true when instrumenting the FPGA task accelerators because they cannot directly
interact with the Extrae API. They rely on some host thread who forwards the events
to Extrae. Therefore, the system will require one thread per FPGA task accelerator,
exclusively dedicated to the forwarding, in order to obtain the desired schematic. The
dedicated helper thread per FPGA task accelerator has been removed in section 3.4.1
due to its performance drawbacks. Second, the Extrae API does not receive timestamps
for the events but gets the event timestamp during the API call. This is also a problem
because the events generated by FPGA task accelerators are forwarded to Extrae after
they happen, so the event timestamp must be different to the time when calling the
API.

3.4 Execution model extensions 51

The OMPT specification has a specific part for tracing the devices, the target directive
related events. This specification is tied to the OpenMP model and has limited possibilities
compared to the flexible Extrae API. For instance, user-defined events are not feasible, and
the events are mainly tied to task offloading and execution. However, the tracing of FPGA
task accelerators presented in [61] and [62] was based on a preliminary implementation
of OMPT specification in Nanos++ and Extrae.

The Paraver [64] traces with FPGA device events generated by the OMPT implemen-
tation are shown in figure 3.5 and figure 3.6). Each figure row represents a different
computational or communication component of the system. The colored regions along
the x-axis represent the different events in that component [61] among time. They were
useful to see the events inside the FPGA, but they present some limitations. On the
one hand, the implementation required using several trace threads for the same FPGA
task accelerator, one for each event type. Instead, using only one trace thread to join all
events happening in the same FPGA task accelerator would be more clear. On the other
hand, the limited set of OMPT event types limits the amount of information extracted
from the executions, in contrast to the wide range of statistics gathered when using the
Extrae API directly.

Figure 3.5: OMPT execution trace of Matrix Multiply using two FPGA task accelerators (figure
6.a from [61])

Figure 3.6: OMPT execution trace of Cholesky with overlap of host tasks and dgemm and syrk
FPGA tasks (figure 10 from [61])

An extension of the Extrae API has been designed to extend its capabilities and allow
a proper device tracing. Supporting these new APIs in Nanos++ runtime overcomes
the drawbacks of previous FPGA instrumentation through OMPT API. The key points
of new APIs are introducing the concept of device and allow the external definition of
timestamps for device events. For Extrae library, a device is just an extension of the

52 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

thread concept with only two extra properties: latency (delta of time between device
clock and host clock) and a lock (to coordinate different host threads emitting events
for the same device).

Figure 3.7: Extrae execution trace of Matrix Multiply using three FPGA task accelerators

Figure 3.7 shows how the traces look after the Extrae extension. All events generated in
the same FPGA task accelerator are displayed in the same line of the Paraver trace, and
their color recognizes the different events. The events emitted in the host threads are
synchronized and merged with the events emitted in the FPGA device. In the example,
the color meanings are:

• Light-green. Execution of main task.

• Red. Task offload to an FPGA task accelerator.

• Blue. Execution of a task into an FPGA task accelerator.

• Orange. Input data movement between the main memory and the local data
memories inside an FPGA task accelerator.

• Dark-green. Output data movement between the local data memories inside an
FPGA task accelerator and main memory.

New API definition

This section briefly describes the new Extrae APIs and types.

1 typedef unsigned long long extrae_time_t;

Listing 3.5: Type definitions for new Extrae APIs

The new extrae_time_t type is the type used to specify the timestamp of the events.
The value must be in nanoseconds. Therefore the caller must translate the device time
representation to nanoseconds if needed.

3.4 Execution model extensions 53

1 void Extrae_register_device(
2 const char *description ,
3 extrae_time_t (* get_device_time_fn)(void *),
4 void *get_device_time_arg);
5
6 void Extrae_nevent_device(
7 int device_id , unsigned count ,
8 extrae_type_t *types ,
9 extrae_value_t *values ,

10 extrae_time_t *times);

Listing 3.6: Function declarations of new Extrae APIs

The Extrae_register_device function registers the N device in the trace to allow
emitting its events where N is the number of previously registered devices and N becomes
the device_id of the new device. From the trace point of view, a device is just an extra
thread being traced. During the registration, Extrae computes the delta between the
host and device times. This delta will be applied to all timestamps emitted within the
device events. The function parameters are:

• description. Char array with the device description text that will be shown in
the trace files.

• get_device_time_fn. Pointer to function that returns the device time in extrae_time_t
format (nanoseconds) and takes 1 argument (get_device_time_arg). It will be
used during the registration to compute the delta between the host and device
times.

• get_device_time_arg. Argument for the get_device_time_fn function.

The Extrae_nevent_device function emits an array of events defined by the provided
types, values, and times. It is analogous to Extrae_nevent API but emits the events
in the trace thread representing the requested device, instead of the caller thread. The
function parameters are:

• device_id. Identifier of the device that generated the events. It must be an
integer within 0 and N-1 where N is the number of registered devices through
Extrae_register_device API.

• count. Number of events to emit.

• types. Array of extrae_type_t with count elements that contain the event
types.

54 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

• values. Array of extrae_value_t with count elements that contain the event
values.

• times. Array of extrae_time_t with count elements that contain the event
timestamps.

3.4.3 Task Manager replacement by Hardware Runtime

The Task Manager is intended to manage the tasks offloaded by the host runtime to
the different FPGA task accelerators. Considering the objectives of this thesis, the
Task Manager approach becomes a limit for the development as it is tied to the task
management concept. Therefore, a new design has been developed to keep in mind the
modularity and the possibility of extending the capabilities in the future.

The new design interface has been called Hardware Runtime (HWR), and this interface
has been implemented in the Smart OmpSs Manager (SOM). The interface and the
implementation have been distinguished into two separate parts to allow different imple-
mentations, which may have more or less features making each one more suitable for
different scenarios.

The new design is based on commands distinguished between them by an 8 bits command
code, which also defines the command length and format. The same format is used in
the communication queues and the stream messages sent between the HWR and the
FPGA task accelerators. This simplifies the management of IP blocks which only need
to generate a stream message for each command word. All commands are divided in
words of 64 bits, so the communication queues and the stream messages are always 64
bits wide.

Code

0 6387

Command Arguments

5655

Valid

Figure 3.8: Format of command head

All commands share the same structure in the head (first word, 64 bits) as shown in
figure 3.8. The head has the lower 8 bits reserved to encode the command code, and
the upper 8 bits reserved to encode the validity of the command (only meaningful in
the communication queues). The odd command codes are reserved for commands that
make the FPGA task accelerators become busy and do not accept further commands
until some message is sent back. In contrast, the even command codes do not block
the FPGA task accelerator, and other commands can be sent to it immediately after the
current one.

3.4 Execution model extensions 55

FPGA

Memory

FPGA Task
Accelerator

SOM

Circular Instrumentation Queues

Host

CmdIn
Manager

CmdOut
Manager

CmdIn
Queue

CmdOut
QueueAccelerators State

FPGA Task
Accelerator

X

BRAM Controller

X

Figure 3.9: FPGA Bitstream design with the SOM Hardware Runtime

Figure 3.9 shows the main elements in the FPGA bitstream design with the Smart OmpSs
Manager (SOM) implementation of the new HWR. The design is very similar to the
previous one (shown in figure 2.5) as the available features are the same but using a new
flexible design. The main differences are the queue and sub-queues lengths that have
been adjusted, and the tasks information memory region, which is no longer needed as
all task information is encoded in the commands directly.

The following points briefly describe the new queues and IP blocks.

CmdIn Queue

The CmdIn Queue is intended to hold the commands sent by the host runtime to the
FPGA task accelerators.

The queue is composed of 1024 words of 64 bits, which are divided into 16 sub-queues
(the maximum number of FPGA task accelerators supported in an FPGA design) of 64
elements. Each sub-queue is managed as a circular buffer with a single-producer (xTasks
library) single-consumer (CmdIn Manager in SOM implementation). The elements stored
in the queue may not have a fixed length as each command may have a different format
with more or less information. The execute task command does not have a fixed length
as it depends on the number of task arguments. Therefore, the elements can start at any

56 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

word of the queue, and their length is determined by the information in the first word
(head).

Word 0 0x01

0 63323187

Task IDWord 1

Num.
Args

1615 4039 4847

Comp.
Flags

Dest.
ID

5655

Valid

Parent Task IDWord 2

Instrumentation Buffer AddressWord 3

Word 0 Flags

0 63323187

Argument ValueWord 1

4039

Arg.
ID

Figure 3.10: Format of execute task command

The format of the execute task command is shown in figure 3.10. This command is
sent by xTasks library when the xtasksSubmitTask API is called, the command is
equivalent to the tasks sent to the Task Manager. The first four words of the command
are the command header. Then, there are nArgs groups of two words, each one with the
information of one argument (in blue). The command code of execute task command is
0x01, which is written in the bits 0-7 of command head word. The remaining command
data is the same as the encoded in the tasks wrote into the Ready Queue.

CmdOut Queue

The CmdOut Queue is intended to hold the commands sent to the host runtime from
the HWR.

The queue is composed of 1024 words of 64 bits, which are divided into 16 sub-queues
(the maximum number of FPGA task accelerators supported in an FPGA design) of 64
elements. Each sub-queue is managed as a circular buffer with a single-producer (CmdOut
Manager in the SOM implementation) single-consumer (xTasks library). The elements
stored in the queue may not have a fixed length as each command may have a different
format with more or less information. However, all finished execute task commands have
a fixed length of two words.

The format of the finished execute task command is shown in figure 3.11. This command
is sent by the HWR to the xTasks library when the execution of a task offloaded by the
host runtime with an execute task command finishes. The head word of the command

3.4 Execution model extensions 57

Word 0 0x03

0 6387

Task IDWord 1

Accel.
ID

1615 5655

Valid

Figure 3.11: Format of finished execute task command

contains the command code, which is 0x03, the accelerator ID that executed the task,
and the valid bits. The second word encodes the ID of the task whose execution finished
(the identifier is the one provided by xTasks library in the execute task command).

CmdIn Manager

CmdIn Manager

Accelerators
State

CmdIn
Queue

64
AXI-Stream

64
BRAM

64
BRAM

Out Stream

Figure 3.12: External interface of CmdIn Manager

The CmdIn Manager is an IP block of SOM implementation. It is developed in C++
using HLS tools. The module is connected as shown in figure 3.9. Its external interface
is shown in figure 3.12, where the different ports and protocols to communicate the
module with the other components are detailed. The ports are:

• Accelerators State. BRAM port to access the Accelerators State memory,
which stores the state of each FPGA task accelerator. This memory is read to
check if the FPGA task accelerators can receive a new command, and it is written
to update the state after sending a new command.

• CmdIn Queue. BRAM port to access the CmdIn Queue, which stores the com-
mands sent by the host runtime for each FPGA task accelerator. This memory is
mainly read but also written to invalidate entries.

• Out Stream. AXI-Stream port used to forward the commands to all FPGA task
accelerators.

58 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

CmdOut Manager

CmdOut Manager

Accelerators
State

CmdOut
Queue

64
BRAM

64
BRAM

64
AXI-Stream

In Stream

Figure 3.13: External interface of CmdOut Manager

The CmdOut Manager is an IP block of SOM implementation. It is developed in C++
using HLS tools. The module is connected as shown in figure 3.9. Its external interface
is shown in figure 3.13, where the different ports and protocols to communicate the
module with the other components are detailed. The ports are:

• In Stream. AXI-Stream port used by all FPGA task accelerators to send finished
execute task messages.

• Accelerators State. BRAM port to access the Accelerators State memory,
which stores the state of each FPGA task accelerator. This memory is written to
update the FPGA task accelerator state after the command execution.

• CmdOut Queue. BRAM port to access the CmdOut Queue, which is used to send
the finished execute task commands to host runtime.

3.5 Evaluation

This section presents the evaluation results of the proposed design and enhancements.
The results are presented for a set of the implementation modifications explained in this
chapter.

First, sections 3.5.1 and 3.5.2 present the environments and benchmarks used among the
evaluation. Then, sections 3.5.3 and 3.5.4 present the parameters tuning and performance
evaluation of DDAST Manager in a new architecture. Together with the previous ones,
these results result in a new dynamic parameter auto-tuning, which is architecture aware.
The core of DDAST Manager is the basis for developing some of the asynchronous and
concurrent operations in the other improvements, and its optimization is critical for
the overall runtime performance. Section 3.5.5 presents the results for the concurrent

3.5 Evaluation 59

offloading to accelerators extension described in section 3.4.1. Section 3.5.6 presents
the results for the tuning memory interconnections extension described in section 3.3.2.
Finally, section 3.5.7 presents the results for the shared wide memory port extension
described in section 3.3.3.

3.5.1 Environment

Two different environments have been used in the proposal evaluation. Both are described
in the following points.

Power9

The evaluation of DDAST Manager has been extended to a new many-core machine
with an IBM Power9 architecture [65]. The nodes used in the evaluation have 2 IBM
Power9 8335-GTG processors with 20 cores each. The executions only use 1 thread
per core because more than one thread does not benefit the evaluated benchmarks’
performance due to the Simultaneous Multi-Threading (SMT) core architecture [66].
The processors work at 3 Ghz of frequency and have 512 GiB of main memory available.
The compiler used to compile the applications and the runtimes natively is the GNU C
Compiler Collection (GCC) version 8.1.0.

ZCU102

The evaluation of extensions involving FPGA devices have been done in a Xilinx Zynq
UltraScale+ MPSoC ZCU102 board [@67], although the different extensions have been
used on different boards and in different projects. The system on chip (SoC) is composed
of 4 ARM Cortex-A53 cores, which run at 1.1 GHz, a Xilinx ZU9EG FPGA, and a main
DDR4 memory of 4 GiB. The board is booted using the Ubuntu Linux 16.04 operating
system. The tools used to generate the application bitstreams and binaries are Vivado
Design Suite 2019.2, GNU C/C++ Compiler 6.2.0, and PetaLinux Tools 2019.1.

3.5.2 Benchmarks

The used benchmarks are described in the following points. For each one, its execution
arguments are explained and provided with the number of created tasks in each configu-
ration and any other remarks that may be valuable for reproducibility. In all of them,
some timing instructions are added after the sequential initialization and after the final

60 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

global taskwait. The elapsed time between these two points is defined as the execution
time. Moreover, the times provided in this evaluation are the average value obtained
from different executions.

In some tests, different sets of execution parameters are used to create different task
granularities. Besides, the benchmark execution parameters are selected considering the
following:

• Problem size. Have a big enough problem size to gather significant results.

• Coarse grain (CG) task size. Smallest task size that has enough parallelism to
feed all computation units, delivering almost the best performance, and hiding the
runtime overheads.

• Fine grain (FG) task size. Solve the same problem with tasks that use half the
coarse-grain value.

Matrix Multiply

The Matrix Multiply (Matmul) benchmark [@68] computes the product of two blocked
matrices in parallel. The application takes two main arguments: the matrix dimension
(MSIZE) and the block dimension (BSIZE). Therefore, the matrices with MSIZE ∗
MSIZE elements are divided into sub-matrices with BSIZE ∗ BSIZE elements.
Consequently, each task uses three of these sub-matrices to compute the corresponding
multiplication. The task kernel implementation is based on OpenBLAS library [@69]
when they are executed in the host processor, and a simple C implementation when they
are executed in the FPGA. The task dependences follow a regular pattern with several
independent chains that group all tasks working with the same output block.

The used values for MSIZE and BSIZE arguments are summarized in table 3.1.

Environment Task granu-
larity

Matrix Size Block Size Num. Tasks

Power9 Coarse Grain 8 192 512 4 096
Fine Grain 8 192 256 32 768

ZCU102 Coarse Grain 4 096 256 4 096
Fine Grain 4 096 128 32 768

Table 3.1: Matrix Multiply execution arguments

In the FPGA device evaluations, the kernel implementation has been done using a simple
C implementation where the loops in the kernel task follow the k-i-j order as shown in
pseudo-code of listing 3.7. The k-i-j order has a better access pattern to the BRAMs

3.5 Evaluation 61

where the matrices are stored and results in a better performance. The instances number
of matmulBlock and the initiation interval (II) of the innermost loop are shown in
table 3.2 for the task granularities. In these evaluations, the kernel task accelerators
always run at 300 MHz. Also, different configurations are considered depending on where
tasks can be executed:

• SMP. Tasks are only run in the host processor.

• FPGA. Tasks are only run in the FPGA task accelerators.

• SMP+FPGA. Tasks are both run in the host processor and FPGA task accelerators.

1 #pragma omp target device(fpga)
2 #pragma omp task in([BSIZE*BSZIE]a, [BSIZE*BSIZE]b) inout([BSIZE*BSIZE]c)
3 void matmulBlock(const float *a, const float *b, float *c) {
4 for (unsigned int k=0; k<BSIZE; ++k) {
5 for (unsigned int i=0; i<BSIZE; ++i) {
6 for (unsigned int j=0; j<BSIZE; ++j) {
7 #pragma HLS pipeline II=LOOP_II
8 c[i*BSIZE + j] += a[i*BSIZE + k] * b[k*BSIZE + j];
9 }

10 }
11 }
12 }

Listing 3.7: Matrix Multiply pseudo-code

Task granularity Num. kernel accels Loop II
Coarse Grain 3 2
Fine Grain 3 1

Table 3.2: FPGA configurations for Matrix Multiply benchmark

N-Body

N-Body is a simulation among time of N physical bodies (particles) in a space that attract
between them as a result of their mass [@70]. The application takes three arguments:
the number of particles, the number of time steps to be simulated, and the number of
particles per block (BSIZE). Therefore, the particles are spread into blocks with BSIZE

particles, which are used as task input/output. The tasks follow a regular chained pattern
similar to the Matrix Multiply one, but this benchmark has nested tasks.

The task nesting makes more critical some of the requests to the DDAST Manager
because they may block the application parallelism until they are processed. The values for
the arguments used in the DDAST Manager evaluations are summarized in table 3.3.

62 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

Task granularity Particles Timesteps Block Size Tasks
Coarse Grain 16 384 16 256 65 568
Fine Grain 16 384 16 128 262 176

Table 3.3: N-Body execution arguments

In the FPGA device evaluations, the kernel implementations (calculate_forces and
update_positions) use the same C implementation like in the host. However, they have
some HLS directives to control the parallelism created in each FPGA task accelerators to
balance the resources-parallelism ratio. The instances number of kernel tasks and the
parallelism (Parallel particles) of the innermost loop are shown in table 3.4 for the
configurations. In this evaluations, the kernel task accelerators always run at 250 MHz.
Also, two configurations are considered depending on where tasks can be executed:

• SMP. Tasks are only run in the host processor.

• FPGA. Tasks are only run in the FPGA task accelerators.

Task granularity Num. calculate
forces accels

Parallel particles Num. update po-
sitions accels

Coarse Grain 3 10 1
Table 3.4: FPGA configuration for N-Body benchmark

Sparse LU

The Sparse LU benchmark [@68] computes the Lower Upper (LU) decomposition of a
sparse matrix in parallel. The application takes two arguments: the matrix dimension
(MSIZE) and the block dimension (BSIZE). Therefore, the matrix with MSIZE∗MSIZE
elements is divided into sub-matrices with BSIZE∗BSIZE elements. The task dependences
follow a much more complex and irregular pattern than the Matrix Multiply and N-Body
benchmarks.

The used values for MSIZE and BSIZE arguments in the DDAST Manager evaluations
are summarized in table 3.5.

Task granularity Matrix Size Block Size Num. Tasks
Coarse Grain 8 192 128 11 472
Fine Grain 8 192 64 89 504

Table 3.5: Sparse LU execution arguments

3.5 Evaluation 63

Cholesky Factorization

The benchmark implements the cholesky matrix factorization using a blocked algorithm.
The application takes two arguments: the matrix dimension (MSIZE) and the block
dimension (BSIZE). Therefore, the matrix with MSIZE∗MSIZE elements is divided into
sub-matrices with BSIZE∗BSIZE elements. The task dependences have a non-regular
pattern like in SparseLU factorization. The task kernel implementation is based on
OpenBLAS library when they are executed in the host processor. The values for the
arguments used in the evaluations are summarized in table 3.6.

Task granularity Matrix Size Block Size Num. Tasks
Fine Grain 2 048 64 5 984

Table 3.6: Cholesky execution arguments

The implementation has 4 kernel tasks: potrf, trsm, gemm and syrk. The number
of instances of each FPGA task accelerator is shown in table 3.7. The potrf has an
execution pattern that makes the FPGA task accelerator in the FPGA device either
consume a lot of resources or be very slow. Therefore, this has been considered in the
configurations:

• SMP. Tasks are only run in the host processor.

• FPGA. Tasks are only run in the FPGA task accelerators.

• MIX. potrf kernel tasks are run in the host processor and other kernel task in
FPGA task accelerators.

Task granularity Num. potrf
accs

Num. trsm
accs

Num. gemm
accels

Num. syrk
accs

Fine Grain 1 1 3 1
Table 3.7: FPGA configuration for Cholesky benchmark

3.5.3 DDAST Tuning

The tuning analysis to find good default values for DDAST parameters has been repeated
in the Power9 architecture like was done in the previous work [32]. This way, the
previously established default values can be validated for the new architecture, or better
ones could be found. Table 3.8 shows the initial values, the previous tuned values, and
the new tuned values.

64 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

Parameter Initial Value Prev. Tuned Value Tuned Value
MAX_DDAST_THREADS ∞ ∞ dnum_threads/8e
MAX_SPINS 20 4 1
MAX_OPS_THREAD 6 8 8
MIN_READY_TASKS 4 4 4

Table 3.8: DDAST parameters values

The speedup over the initial parameter value is shown in all plots of figure 3.14, figure 3.15,
figure 3.16 and figure 3.17 (y-axis). The first chart of each figure shows the aggregated
speedup results from the previous tuning, which was realized on other architectures. These
charts are of boxplot type as the aggregation of different benchmarks and architectures
may create a huge variability that is relevant for the parameter tuning. The other charts
on each figure show the speedup for the three benchmarks with two amounts of threads
and the two task granularities. These charts are simple line charts as results are not
aggregated and they do not have a big variability.

1 2 4 8 16 32 64
MAX_DDAST_THREADS

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

(a) Prev. results

1 2 4 8 16 32 64
MAX_DDAST_THREADS

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

FG (20 t)
FG (40 t)
CG (20 t)
CG (40 t)

(b) Matrix Multiply

1 2 4 8 16 32 64
MAX_DDAST_THREADS

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

FG (20 t)
FG (40 t)
CG (20 t)
CG (40 t)

(c) N-Body

1 2 4 8 16 32 64
MAX_DDAST_THREADS

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

FG (20 t)
FG (40 t)
CG (20 t)
CG (40 t)

(d) SparseLU

Figure 3.14: Speedup changing the MAX_DDAST_THREADS

3.5 Evaluation 65

Figure 3.14 shows the speedup evolution when changing the MAX_DDAST_THREADS value.
The previous results (shown in figure 3.14a) do not report a clear benefit of limiting
the amount of threads, so the previous tuned value was established at ∞. In contrast,
figures 3.14c and 3.14d show an improvement of around a 10 % when reducing the value
of MAX_DDAST_THREADS. The better results come from a better data locality achieved
when the runtime activity is restricted to some threads.

The tuned value has been updated to dnum_threads/8e. This amount guarantees
enough threads to manage all runtime requests without losing the data locality benefits
found in the new architecture. In fact, correlating the parameter value to the number of
threads in the execution seems reasonable as it determines the DDAST pressure during
the executions.

1 2 4 8 16 32 64 128
MAX_SPINS

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

(a) Prev. results

1 2 4 8 16 32 64 128
MAX_SPINS

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)
FG (20 t)
FG (40 t)
CG (20 t)
CG (40 t)

(b) Matrix Multiply

1 2 4 8 16 32 64 128
MAX_SPINS

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

FG (20 t)
FG (40 t)
CG (20 t)
CG (40 t)

(c) N-Body

1 2 4 8 16 32 64 128
MAX_SPINS

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

FG (20 t)
FG (40 t)
CG (20 t)
CG (40 t)

(d) SparseLU

Figure 3.15: Speedup changing the MAX_SPINS

Figure 3.15 shows the speedup evolution when changing the MAX_SPINS value. The
previous results (shown in figure 3.15a) report that the parameter value does not
significantly impact the execution time, then the tuned parameter value was set to 4.
The motivation was to retain the idle threads as little as possible in the DDAST callback,

66 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

considering the future scenario where the Functionality Dispatcher is used for several
services. However, the same motivation can be used to set the new tuned value to 1
instead of 4.

1 2 4 8 16 32 64 128
MAX_OPS_THREAD

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

(a) Prev. results

1 2 4 8 16 32 64 128
MAX_OPS_THREAD

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

FG (20 t)
FG (40 t)
CG (20 t)
CG (40 t)

(b) Matrix Multiply

1 2 4 8 16 32 64 128
MAX_OPS_THREAD

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

FG (20 t)
FG (40 t)
CG (20 t)
CG (40 t)

(c) N-Body

1 2 4 8 16 32 64 128
MAX_OPS_THREAD

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

FG (20 t)
FG (40 t)
CG (20 t)
CG (40 t)

(d) SparseLU

Figure 3.16: Speedup changing the MAX_OPS_THREAD

Figure 3.16 shows the speedup evolution when changing the MAX_OPS_THREAD value.
The previous results (shown in figure 3.16a) report that the parameter value significantly
impacts the execution time, but not in the same way for all the benchmarks. This
behavior is also observed in the new results where the good values for N-Body are larger
than 16, and the ones for SparseLU are smaller than 4. Therefore, the predefined tuned
value has been kept to 8 because it seems to be a reasonable intermediate point.

Figure 3.17 shows the speedup evolution when changing the MIN_READY_TASKS value.
The previous results (shown in figure 3.17a) report that the parameter value significantly
impacts the execution time, but not in the same way for all the benchmarks. This
behavior is also observed in the new results where the best values are not compatible
between benchmarks or granularities in the same benchmark. Therefore, the predefined
tuned value has been kept to 4 because it seems to be a reasonable intermediate point.

3.5 Evaluation 67

1 2 4 8 16 32 64 128
MIN_READY_TASKS

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

(a) Prev. results

1 2 4 8 16 32 64 128
MIN_READY_TASKS

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

FG (20 t)
FG (40 t)
CG (20 t)
CG (40 t)

(b) Matrix Multiply

1 2 4 8 16 32 64 128
MIN_READY_TASKS

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

FG (20 t)
FG (40 t)
CG (20 t)
CG (40 t)

(c) N-Body

1 2 4 8 16 32 64 128
MIN_READY_TASKS

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Sp
ee

du
p

(o
ve

r i
ni

tia
l v

al
ue

)

FG (20 t)
FG (40 t)
CG (20 t)
CG (40 t)

(d) SparseLU

Figure 3.17: Speedup changing the MIN_READY_TASKS

3.5.4 DDAST Performance Comparison

The performance comparison of the DDAST runtime against the baseline runtime has
been repeated for the Power9 architecture like it was done in the previous work. The
results are shown for different runtime versions/configurations:

• GOMP. OpenMP implementation with the same task structure using the GNU
Compiler runtime. This is a production runtime which performance can be used as
a reference of the potential of our approach.

• Nanos++. Baseline OmpSs runtime (version 0.11a).

• DDAST. Runtime with the DDAST Manager and using the new tuned values for
the DDAST parameters. The values are summarized in table 3.8 and are the same
for all the runs. This version is implemented on top of Nanos++ runtime (version
0.11a).

68 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

• DDAST tuned. Same runtime as DDAST but with the best values of the DDAST
parameters found during the tuning for each combination of benchmark, task
granularity, and architecture.

The speedup over the sequential version of each benchmark is shown in all plots of
figure 3.18, figure 3.19 and figure 3.20 (y-axis). All of them show strong scalability of
Nanos++ and DDAST runtimes for Matrix Multiply, Sparse LU, and N-Body benchmarks.
Therefore, the performance evolution when the runtimes must manage more computational
resources can be seen. Each plot’s label describes the architecture and the task granularity
(fine-grain, FG, or coarse-grain, CG) of those results. DDAST tuned results are included
because they show the potential of the proposal. Also, although it is out of the scope of
this work, DDAST Manager parameters may be dynamically tuned at runtime to fit each
application as shown in [71].

2 4 8 16 32 40
Number of Threads

0

4

8

12

16

20

24

28

32

Sp
ee

du
p

(o
ve

r s
eq

ue
nt

ia
l)

GOMP
Nanos++
DDAST
DDAST tuned

(a) Coarse Grain

2 4 8 16 32 40
Number of Threads

0

4

8

12

16

20

24

28

32

Sp
ee

du
p

(o
ve

r s
eq

ue
nt

ia
l)

GOMP
Nanos++
DDAST
DDAST tuned

(b) Fine Grain

Figure 3.18: Matrix Multiply scalability

Figure 3.18 shows the Matrix Multiply scalability for the different runtime versions. In this
benchmark, all runtimes behave very close (including GOMP) in both task granularities
because Nanos++ does not suffer from management contention in this configuration.
Then, the results show that the DDAST design is also capable under circumstances that
are not its design target.

Figure 3.19 shows the N-Body scalability for the different runtime versions. The coarse-
grain results (figure 3.19a) show that all Nanos++ based runtimes scale up to the
maximum amount of threads. However, the DDAST versions improve the baseline
runtime performance when the number of threads is larger than 16. The fine-grain
results (figure 3.19b) show that Nanos++ scales up to 16 threads, and then it stalls.
DDAST keeps increasing the performance up to 32 threads, and then also stalls. The
difference between both runtimes is the cost of task submission, which is smaller in

3.5 Evaluation 69

2 4 8 16 32 40
Number of Threads

0

4

8

12

16

20

24

28

32

36

Sp
ee

du
p

(o
ve

r s
eq

ue
nt

ia
l)

GOMP
Nanos++
DDAST
DDAST tuned

(a) Coarse Grain

2 4 8 16 32 40
Number of Threads

0

4

8

12

16

20

24

28

32

36

Sp
ee

du
p

(o
ve

r s
eq

ue
nt

ia
l)

GOMP
Nanos++
DDAST
DDAST tuned

(b) Fine Grain

Figure 3.19: N-Body scalability

DDAST due to its asynchronous approach. This allows the application to create a huge
amount of tasks faster in the new runtime model than in the baseline implementation. In
both granularities, GOMP creates tasks faster than Nanos++ based runtimes for small
amounts of worker threads (up to 16 threads) but suffers great contention from the idle
worker threads when tasks are executed faster than created, which happens with 32-40
threads.

2 4 8 16 32 40
Number of Threads

0

4

8

12

16

20

24

28

32

36

Sp
ee

du
p

(o
ve

r s
eq

ue
nt

ia
l)

GOMP
Nanos++
DDAST
DDAST tuned

(a) Coarse Grain

2 4 8 16 32 40
Number of Threads

0

4

8

12

16

20

24

28

32

36

Sp
ee

du
p

(o
ve

r s
eq

ue
nt

ia
l)

GOMP
Nanos++
DDAST
DDAST tuned

(b) Fine Grain

Figure 3.20: SparseLU scalability

Figure 3.20 shows the SparseLU scalability for the different runtime versions. Regardless
of the task granularity, all runtimes provide very good scalability. The data dependences
in this benchmark create an irregular task graph that usually requires processing multiple
requests from different worker threads to discover a single ready task. This creates a
challenging situation for the DDAST Manager where all possible ready tasks depend

70 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

on a message hidden by several other requests in a queue. However, the results show
that even with this type of applications DDAST can achieve a performance similar to
Nanos++ and similar, or even better, to GOMP.

3.5.5 Concurrent Offloading to Accelerators

Figures 3.21, 3.22 and 3.23 show the performance (x-axis) of Matrix Multiply, Cholesky
and N-Body when changing the ratio between SMP workers and FPGA helper threads
(x-axis). For each ratio, different configurations are considered to see the performance
impact of the different improvements. The configurations labeled with w_cb have
the FPGA idle callback enabled, and the ones with n_cb have it disabled. Also, the
configurations with w_hb have the FPGA hybrid worker enabled, and the one with n_hb

have it disabled. All executions are done in the ZCU102 board, which has 4 ARM cores.

Figure 3.21 shows the Matrix Multiply performance in GFLOPS. The results are shown
for different configurations described in the legend. In these configurations, SMP, FPGA
and SMP+FPGA label the available architectures of tasks. All configurations use the same
bitstream with 3 fine-grain FPGA task accelerators.

4/0 3/1 2/2 1/3
SMP Workers/FPGA Helpers

0
6

12
18
24
30
36
42
48
54

GF
LO

PS

SMP w_cb w_hb
FPGA n_cb w_hb
FPGA w_cb w_hb
SMP+FPGA n_cb w_hb
SMP+FPGA n_cb n_hb
SMP+FPGA w_cb w_hb
SMP+FPGA w_cb n_hb

Figure 3.21: Matrix Multiply performance comparison with concurrent offloading

The results in figure 3.21 show that the performance with only SMP architecture is
constant regardless the workers/helpers ratio. This means that the hybrid behavior of
FPGA helper threads successfully helps to execute SMP tasks, as they pick SMP tasks
when no FPGA tasks are ready for offloading. The same happens for FPGA architecture
when the idle callback is enabled, as the SMP workers help to offload the FPGA tasks. In
contrast, two or more FPGA helper threads are needed to effectively feed the FPGA task
accelerators without the idle callback. Finally, the performance changes proportionally
to the number of tasks executed in the SMP workers and the FPGA task accelerators
when both are available. The used implementation depends on the workers/helpers ratio

3.5 Evaluation 71

and their configuration. Again, at least two FPGA helper threads are needed to feed the
FPGA task accelerators correctly. Moreover, the hybrid behavior of FPGA helper threads
causes a performance drop as the FPGA helper threads start executing SMP tasks after
offloading the maximum number of tasks to the different FPGA task accelerators. Those
SMP tasks take so long to finish that FPGA task accelerators consume all their work and
become idle. This behavior can also be modified by increasing the maximum number of
offloaded FPGA tasks, but it is not shown as it goes out of scope.

4/0 3/1 2/2 1/3
SMP Workers/FPGA Helpers

0
6

12
18
24
30
36
42
48
54

GF
LO

PS

SMP w_cb w_hb
FPGA n_cb w_hb
FPGA w_cb w_hb
MIX n_cb w_hb
MIX n_cb n_hb
MIX w_cb w_hb
MIX w_cb n_hb

Figure 3.22: Cholesky performance comparison with concurrent offloading

Figure 3.22 shows the Cholesky performance in GFLOPS. The results are shown for
different configurations described in the legend. In these configurations, SMP, FPGA and
MIX label the architectures of tasks. In contrast to Matrix Multiply, the tasks do not
have more than one available architecture. Therefore, the tasks of MIX configuration are
run in the FPGA except portf tasks which are run in the host.

4/0 3/1 2/2 1/3
SMP Workers/FPGA Helpers

0
80

160
240
320
400
480
560
640

M
Pa

irs
/s

SMP n_cb n_hb
SMP w_cb n_hb
SMP n_cb w_hb
SMP w_cb w_hb
FPGA n_cb w_hb
FPGA w_cb w_hb

Figure 3.23: N-Body performance comparison with concurrent offloading

The results in figure 3.23 show that the idle callback helps to sustain the application
performance regardless of the workers/helpers ratio. They also show that one helper
thread without the idle callback is not enough to get good performance with FPGA tasks.
In addition, the hybrid FPGA helper thread helps to improve the application performance

72 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

when most of the threads are FPGA helpers. In this case, the SMP tasks are executed in
SMP workers or FPGA helper threads.

Figure 3.23 shows the N-Body performance in MPairs/s. The results are shown for
different configurations described in the legend. In these configurations, SMP and FPGA

label the architectures of tasks. In this case, multiple task architectures are not considered
as the performance gap between them is quite large, as results show.

3.5.6 Tuning memory interconnections

Figures 3.24 and 3.25 show the execution traces of Matrix Multiply with 3 coarse-grain
FPGA task accelerators and with a 128-bit memory port. The traces show the different
operations realized, with different colors, by the FPGA task accelerators among time
(x-axes). The orange color means that data is being read from memory into the local
BRAMs, the blue color means that the task code is being executed, and green means
that data is being written to memory. Both traces show the same duration to facilitate
their comparison.

Figure 3.24 is from a bitstream that uses the default memory interconnections generated
by AIT. It has two memory ports per FPGA task accelerators, and they are connected as
shown in figure 3.4. The default memory interconnection unbalances the performance of
the different FPGA task accelerators. The two that share the memory interconnect spent
293 and 95 microseconds reading and writing the task data. Meanwhile, the FPGA task
accelerator with a non-shared memory interconnect only requires 147 and 71 microseconds
on average for the same actions. However, the task execution is homogeneously between
all FPGA task accelerators, and it elapses 437 microseconds on average.

Figure 3.24: Execution trace of 3 FPGA task accelerators with the default memory intercon-
nection

Figure 3.25 is from a bitstream that uses the new AIT capabilities to allow users to
customize the design and define the interconnection of memory ports. It also has two
memory ports per FPGA task accelerator, but each pair are connected to the same
memory port interconnect, which are only used by one FPGA task accelerator. This way,
each one uses a different memory interconnect. In this second execution, all FPGA task
accelerators perform the memory movements more homogeneously. On average, they

3.5 Evaluation 73

Figure 3.25: Execution trace of 3 FPGA task accelerators with a balanced memory intercon-
nection

spent 192, 137, and 111 microseconds reading the data, executing the task, and writing
the data, respectively.

The possibility of tuning memory mappings is essential to avoid unbalance and performance
degradation due to the creation of a bottleneck. The default round-robin interconnection
mechanism may be good enough for a wide range of applications. However, some
applications, or some configurations of those, may have a memory access pattern that,
combined with the number of memory ports, require the user handling to optimize
performance.

3.5.7 Shared wide Memory Port

Figure 3.26 shows the speedup over the default memory interconnection mode (y-axis)
of FPGA task accelerators. The results are for different bit widths (x-axis) of the shared
memory port explained in section 3.3.3. The different series correspond to different
benchmarks and task granularities (labeled in the legend). The Matrix Multiply results
are for the FPGA configuration. The Cholesky results are for the fine-grain tasks and the
MIX configuration.

32 bits 64 bits 128 bits 256 bits
Memory Port Width

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

ov
er

 d
ef

au
lt

po
rts

Matrix Multiply (FG)
Matrix Multiply (CG)
Cholesky (FG)

Figure 3.26: Performance comparison with different memory port widths

74 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

The results in figure 3.26 show that the best performance is achieved when the shared
memory port width is near to the physical width of the memory port (128 bits in the
ZCU102 board). The smallest width (32 bits) corresponds to the data type width. Then,
the shared memory port is equivalent to the default memory port; therefore, the speedup
is one. After that, the speedup increases with the memory port width. The different
improvement values are due to:

• The percentage of execution time spent in data transfers. The major the percentage,
the more room for improvement.

• The possibility of executing more tasks in the saved time. If there are no ready
tasks for execution in the FPGA task accelerators, the fastest data transfers will
not benefit the overall execution time.

Figures 3.27 and 3.28 show different execution traces of Matrix Multiply in the FPGA
task accelerators. The different color regions (orange, blue, green) represent different
activities (copying data from memory, executing task code, copying data to memory).

Figure 3.27: Task density comparison of Matrix Multiply execution traces with same memory
port (64 bits) and different block sizes

Figure 3.28 shows two Matrix Multiply execution traces. Both use the same 64 bits
memory port but for different task granularities. The traces only show a portion of
the benchmark execution, but both have the same duration. In the fine-grain trace, a
42 % of trace time is spent on data movements (orange and green regions), an 18 %
in task execution (blue regions), and a 40 % of the time the FPGA task accelerators
are IDLE (white regions). In the coarse grain trace, a 52 % of trace time is spent on
data movements, a 47.5 % in task execution, and a 0.5 % of the time the FPGA task
accelerators are IDLE (white region). Although both traces spent most of the time in
data transfers, the improvement when using a larger memory port is only noticed in the
coarse grain due to the lack of ready tasks for execution in the smaller block size. This

3.5 Evaluation 75

behavior is noticed in figure 3.26 where the 128-bit memory port has a larger speedup
for coarse-grain than fine-grain tasks.

Figure 3.28: Execution traces of one Matrix Multiply coarse grain task with different memory
ports

Figure 3.28 shows five execution traces of one Matrix Multiply task in one FPGA task
accelerator. Each trace uses a different memory port, but all of them have represented
the same duration (x-axis is time). From top to bottom, the configurations are: default
memory ports, 32-bit shared memory port, 64-bit shared memory port, 128-bit shared
memory port, and 256-bit shared memory port. The traces clearly show the reduction of
time spent in data movements (orange and green regions) when the memory port width
increases. They also show that the task execution time (blue regions) is not affected by
the new logic.

32 bits 64 bits 128 bits 256 bits
Memory Port Width

5

4

3

2

1

0

1

To
ta

l %
 v

ar
ia

tio
n

ov
er

 d
ef

au
lt

po
rts

BRAM
DSP
FF
LUT

Figure 3.29: Matrix Multiply resources utilization variation with different memory port widths

Figure 3.29 shows the variation of total resources utilization percentage (y-axis) over the
utilization in the default ports. The variation is shown for different widths of the shared

76 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

memory port width. Also, the different resources available in the FPGA are considered:
BRAM, DSP, Flip-Flop (FF), and LookUp Table (LUT).

The results show that the utilization of resources decreases with the shared memory
port. The first reason is the possibility of joining all memory ports into a single one,
which is used to read the data of different task parameters. This is not possible when
the parameters have different data types due to a HLS limitation. The single shared
port simplifies the FPGA design interconnection and requires less logic. In the Matrix
Multiply, the tasks have three parameters; thereby, the new design saves two of the three
memory ports. On the other hand, the wider the memory port, the more logic needed
to split the retrieved data into the different parameter type elements. This split logic is
reflected in figure 3.29, because of the resource utilization increase with the memory port
width. However, the task performance benefits of the wide memory port, as it increases
the data read/write throughput.

3.6 Conclusion

This chapter presents several enhancements to achieve asynchronous, concurrent, and
parameterized management for task-based systems. The runtime infrastructure developed
for the DDAST Manager has been used to concurrently manage the co-processors
in the Nanos++ runtime. The management has also been developed by means of
asynchronous operations, which present a better resource utilization. On the one hand,
the num_instances, localmem, localmem_copies and no_localmem_copies clauses
have been introduced into the programming model to better define the desired behavior
and improve resource utilization. On the other hand, some programming model clauses
(e.g., onto) and usage constraints (e.g., FPGA configuration retrievement) have been
updated to become transparent to application programmers. Moreover, other compiler
and runtime options have been added to parameterize the internal behavior of the tools.
For example, a compiler option to aggregate memory operations into wider ones or
a runtime option to define the number of host threads that manage the FPGA task
accelerators.

The proposal evaluation demonstrates the better efficiency of systems with asynchronous,
concurrent, and flexible task management. Moreover, that approach allows a better
expression of application requirements, leading to a performance increase. The results
show how the parameterizable behavior, which may be tuned for each application, drove
to a more efficient task management. Besides, the application tuning is easier thanks
to the enhancements in the co-processors instrumentation, which allow clearly see the

3.6 Conclusion 77

different activities. All these improvements have been incorporated (or at least influenced)
into the new versions of Nanos++ runtime, especially for the OmpSs@FPGA version.

The main lesson learned is that performance-oriented runtimes should be developed as
a set of simple interacting actors. The complex behavior arises from the interaction
of simple actors, and not from the interface that a single module exposes. This leads
to a system that is simple to maintain and that provides, at the same time, great
flexibility to adapt to different scenarios. A second lesson, one that is common knowledge
though, is that memory accesses and their correct management are key to accelerators
performance.

3.7 Publications

The list of thesis publications related to the explained in this chapter is:

• Exploiting Parallelism on GPUs and FPGAs with OmpSs.
Jaume Bosch, Antonio Filgueras, Miquel Vidal, Daniel Jiménez-González, Carlos
Álvarez, Xavier Martorell. ANDARE 2017. [6]
In this work, some of the OmpSs improvements are proposed and evaluated.

• Application Acceleration on FPGAs with OmpSs@FPGA.
Jaume Bosch, Xubin Tan, Antonio Filgueras, Miquel Vidal, Marc Mateu, Daniel
Jiménez-González, Carlos Álvarez, Xavier Martorell, Eduard Ayguadé, Jesus Labarta.
FPT 2018. [8]
In this work, more OmpSs improvements are proposed, and the evaluation is
extended to more benchmarks.

• Asynchronous Runtime with Distributed Manager for Task-based Programming
Models.
Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, Xavier Martorell, Eduard
Ayguadé. PARCO 2020. [11]
In this work, the complete DDAST proposal and evaluation are discussed.

The list of publications related to collaborations with the work presented in this chapter
is:

• Picos, A Hardware Task-Dependence Manager for Task-Based Dataflow Program-
ming Models.
Xubin Tan, Jaume Bosch, Miquel Vidal, Carlos Álvarez, Daniel Jiménez-González,
Eduard Ayguadé, Mateo Valero. HPCS 2017. [13]

78 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

In this work, the DDAST implementation has been used as a baseline to develop
the software runtime that communicates with Picos to resolve the task data
dependences.

• Hardware Heterogeneous Task Scheduling for Task-based Programming Models.
Xubin Tan, Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, Eduard
Ayguadé. OpenMPCon 2018. [14]
In this work, the DDAST implementation has been used as a baseline to develop
the software runtime that communicates with Picos using different communica-
tion queues. Also, the OmpSs enhancements have been used in the FPGA task
accelerators.

• TaskGenX: A Hardware-Software Proposal for Accelerating Task Parallelism.
Kallia Chronaki, Marc Casas, Miquel Moretó, Jaume Bosch, Rosa M. Badia. ISC
2018. [15]
In this work, the DDAST implementation has been used to characterize the software
runtime overheads and define the hardware manager requirements.

• A Hardware Runtime for Task-Based Programming Models.
Xubin Tan, Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, Eduard
Ayguadé, Mateo Valero. TPDS 2019. [16]
In this work, the DDAST implementation has been used as a baseline to develop
the software runtime that communicates with Picos using different communica-
tion queues. Also, the OmpSs enhancements have been used in the FPGA task
accelerators.

• Adding Tightly-Integrated Task Scheduling Acceleration to a RISC-V Multi-core
Processor.
Lucas Morais, Vitor Silva, Alfredo Goldman, Carlos Álvarez, Jaume Bosch, Michael
Frank, Guido Araujo. MICRO 2019. [17]
In this work, the DDAST implementation has been used as a baseline to develop
the software runtime that communicates with Picos using RISC-V instructions.

• OmpSs@FPGA framework for high performance FPGA computing.
Juan Miquel de Haro, Jaume Bosch, Antonio Filgueras, Miquel Vidal, Daniel
Jiménez-González, Carlos Álvarez, Xavier Martorell, Eduard Ayguadé, Jesus Labarta.
TC 2021 [Accepted for publication]. [19]
In this work, the OmpSs@FPGA ecosystem enhancements have been used to
program the applications and tune their performance to each system.

• High Performance Computing particle-pair distance algorithms, to generate X-ray
spectra from 3D models.

3.7 Publications 79

César González, Jaume Bosch, Juan Miguel de Haro, Maurizio Paolini, Antonio
Filgueras, Simone Balocco, Carlos, Álvarez, Ramon Pons. HPC 2021 [Under
review]. [20]
In this work, the OmpSs@FPGA ecosystem enhancements have been used to
program the application and tune its performance.

80 Chapter 3 Proposal for Asynchronous, Concurrent and Parameterizable
Task-Based Systems

Proposal for Task Spawn in
Co-processors

4

The proposal objective is to demonstrate the feasibility of spawning tasks and synchroniz-
ing them within the co-processors. The baseline OmpSs programming model considers
the non-SMP tasks as leaf tasks. That means those tasks do not create child tasks, and
they can only have sibling tasks that depend on them. Therefore, the tasks offloaded to
devices should take long enough to overcome the device communication latency, which
may change depending on the interconnection. Moreover, that limitation makes the
devices slaves of the master host, and it can become a bottleneck due to the host-centric
approach.

This chapter proposes an extension of OmpSs programming model to demonstrate that
task-based parallel programming models can support the creation and synchronization
(either implicit or explicit) of child tasks within co-processors. The extension design
is implemented over baseline OmpSs tool-chain, but the design could be used for
other task-based programming models. Moreover, the flexibility of the proposal allows
directly managing tasks within co-processors without involving the host runtime, saving
communication time and increasing application performance.

Section 4.1 describes the key ideas of the proposal design. Then, sections 4.2 to 4.6
describe the modifications done starting from the OmpSs programming model, up to
the FPGA bitstream design. After them, section 4.7 shows an evaluation of different
benchmarks using the new capabilities. Finally, section 4.8 concludes the chapter with
the key contributions, and section 4.9 lists the publications related to this chapter.

4.1 Proposal Design

The proposed design is a system architecture that allows the co-processors to interact
with the runtime to create tasks and synchronize them. The design only requires an
accelerator-runtime communication channel and a unique identifier to determine in which
context the tasks are being created (usually, it is the parent task identifier). The co-
processor can then put the required information in the communication channel to spawn

81

the task and continue. On the runtime side, some manager will read that information
and update the runtime structures accordingly. This approach allows the co-processors
to create tasks asynchronously.

A way to allow the co-processors synchronizing the spawned tasks is also considered,
which is the main functionality of the taskwait directive. The co-processor has only to
send the taskwait information in the communication channel and wait until the runtime
fulfills the request. On the runtime side, the runtime manager notifies the co-processor
when all required tasks have finished.

Figure 4.1: Proposal design model for co-processors management with task spawn capabilities

Figure 4.1 shows the structure of the proposal design. Over figure 1.1, two new
communication channels have been added between the host and the co-processors. Those
channels handle the tasks spawned by the co-processors or the synchronization requests
to the runtime.

This design allows some optimization on the co-processor side if the spawned tasks can
be retained inside the co-processor, and the host does not need to be aware of them.
Therefore, minimal runtime support can be introduced in the co-processor to handle
those tasks without involving the host runtime (as shown in figure 4.2). In the case of a
task spawn, the tasks without data dependences could be directly forwarded into the
input queue, as if the host submitted them. In the case of a task synchronization, the
co-processor has to store the number of tasks executed in each task context (parent task
identifier used in the task spawn) and the number of tasks internally created for that
identifier. Note that the amount of executed tasks must count for tasks directly handled
in the co-processors and tasks forwarded to the host runtime.

82 Chapter 4 Proposal for Task Spawn in Co-processors

Ru
nt
im
e

Ru
nt
im
e

Host Co-processor

Figure 4.2: Proposal design model for co-processors management with task spawn capabilities
and distributed runtime support

The proposed design is flexible enough to move some key functionalities from co-processors
to host or vice-versa. It just requires replacing some components. For example, the
co-processor may internally handle the spawned tasks without involving the host runtime
or just forward the information to the host runtime. This flexibility enables the option to
fit the proposal in a wide range of co-processors, from small ones in embedded systems
to big ones in HPC servers or clouds.

4.2 Programming model extension

The extension of the OmpSs programming model [4] defines the application behavior
when a programming model directive is found in the body of a task annotated with the
device(fpga) clause of a target directive. By default, the current behavior is kept
(like when those programming model directives are found inside an SMP task). However,
the scope of the extension has been limited to outline tasks and not considered inline
tasks. The outline tasks have a more clear data-scope, as all data must be accessed
through the function parameters.

1 #pragma omp target device(fpga) copy_inout ([BSIZE]array) \
2 num_instances (3)
3 #pragma omp task
4 void update_array_fpga(int *array , const int val) {
5 for (int i=0; i<BSIZE; ++i) array[i] += val;
6 }
7
8 #pragma omp target device(fpga) copy_inout ([SIZE]array)
9 #pragma omp task

10 void update_array_blocked(int *array , const int SIZE) {
11 for (int i=0; i<SIZE; i+=BSIZE) {
12 update_array_fpga(array+i, 2020);
13 }

4.2 Programming model extension 83

14 #pragma omp taskwait
15 }
16
17 int main (...) {
18 int array[NUM_BLOCKS*BSIZE];
19 update_array_blocked(array , NUM_BLOCKS*BSIZE);
20 #pragma omp taskwait
21 }

Listing 4.1: OmpSs example with FPGA nested tasks

Listing 4.1 shows an example of a synthetic benchmark implemented with nested FPGA
tasks. It just updates an array of integers with a fixed value using a blocking approach to
obtain task parallelism. The code shows the possibility of calling a task and synchronizing
the created tasks with a taskwait, all of it inside an FPGA task.

4.3 Mercurium Compiler Support

The support of new OmpSs capabilities has been integrated into Mercurium compiler.
The changes involved the OmpSs and the FPGA device translation level phases and
changes in the compiler core to extend some representations.

The first major change involved the compiler core in order to store the creation context
where a task is being created. A new member has been added in the task_environment
elements called creation_ctx. It contains the information of parent task_environment
if known. The task statements are walked to fill this new member, and the current
environment is forwarded to inner task calls found during the walk. This way, the compiler
decides whether the programming model directives must be handled regularly or handled
depending on the enclosing device phase.

Using the specific device phase to handle the programming model directives allows
them to decide whether the default transformation suits the device or a device-specific
transformation must be used. Those transformations usually mean placing a runtime API
call, therefore the device decides whether to support the default runtime API call or use a
device custom API. Indeed, the device can ignore some information in the programming
model directives to fit the device’s capabilities.

4.3.1 Task Directive

The task directive is the one that represents the task spawn in the programming model.
The support of such directive has been reduced to a subset of all available clauses when

84 Chapter 4 Proposal for Task Spawn in Co-processors

found inside an FPGA task. However, future implementations could extend those support.
The list of supported features is:

• Dependences clauses: in, out and inout.

• Extension through target directive.

– Device clauses: device

– Copies clauses: copy_in, copy_out, copy_inout, copy_deps and
no_copy_deps.

– Localmem clauses: localmem, localmem_copies and no_localmem_copies.

The default transformation into a runtime API call has not been used due to its large
number of arguments and non-desired features. A new Nanos++ API has been added
with a compact format that better suits the FPGA device needs. The new API is
nanos_fpga_create_wd_async which is further detailed in section 4.4.1 and has been
declared as shown in listing 4.4.

The unique task type identifier allows the HWR and Nanos++ to identify the task being
spawned uniquely. This identifier can be compared with the struct nanos_const_wd_
definition_t which is a parameter of default task spawn API. The HWR uses the type
identifier to schedule the task in the FPGA device, whether choosing which accelerator
in the FPGA will execute the task, or deciding to reverse-offloading the task to the host
runtime. When the task is reverse-offloaded, the host runtime uses the type identifier
value to retrieve the nanos_const_wd_definition_t information.

The association between a task type identifier and the nanos_const_wd_definition_t
information is done during the runtime initialization. The compiler uses the nanos_

post_init functionality of Nanos++ runtime, which allows defining a set of functions
to be executed after the runtime initialization. This functionality is used to execute a
set of functions from the application binary that call a new runtime API to provide the
information associated with all existing types in the application. The new Nanos++ API
is nanos_fpga_register_wd_info which is explained in section 4.4.1.

4.3.2 Taskwait Directive

The explicit task synchronization is done using the taskwait directive. The support
of such directive has been implemented using a new API which has a similar dec-
laration to the default API but with different parameter types. The new API is
nanos_fpga_wg_wait_completion which is further detailed in section 4.4.1.

4.3 Mercurium Compiler Support 85

4.3.3 HLS Source Code

The intermediate HLS source code files will have calls to new Nanos++ APIs when
the FPGA task wants to spawn or synchronize child tasks. Therefore, the wrapper
generated by Mercurium must include an implementation of those APIs when the FPGA
task may call them. The main goal of those APIs in the FPGA task accelerator is to
generate a message for the HWR runtime, which contains the needed information. Also,
retrieve from the HWR the needed information (for example, when the child tasks have
finished).

The existing input and output streams are declared as arguments of the top-level function
in the HLS source code. In the baseline, they are only used in the body of the top-
level function. However, they may be needed at any point of the source code to
spawn/synchronize tasks with the new capabilities. Therefore, those streams must be
available at any point of the source code, which may be possible in two ways:

• Argument forwarding. This mechanism consists on adding two arguments (input
and output streams) to any function of the HLS source file. It includes user-defined
functions like the function annotated with the target FPGA directive and any other
function called in its body. This is a recursive walk of the functions to alter the
user code, which is not easy to handle and may end in side effects.

• Global variable declaration. Instead of declaring the input and output stream as
arguments of the top level function, they could be declared as global variables
which scope includes all the HLS source file.

1 hls_axis_t mcxx_inStream;
2 hls_axis_t mcxx_outStream;
3
4 void histogram(const float *input , unsigned int *counters)
5 {
6 //...
7 }
8
9 void histogram_mcxx_hls_wrapper(

10 float *input_port , unsigned int *counters_port)
11 {
12 #pragma HLS INTERFACE ap_ctrl_none port=return
13 #pragma HLS INTERFACE axis port=mcxx_inStream
14 #pragma HLS INTERFACE axis port=mcxx_outStream
15
16 //...
17 }

Listing 4.2: FPGA task accelerator wrapper example with global streams (non-valid design)

86 Chapter 4 Proposal for Task Spawn in Co-processors

The argument forwarding was discarded due to the complex handling in the compiler
and the possibility of side effect that may result in invalid code. The global variable
declaration was tried as shown in listing 4.2 but the source code is invalid due to the
HLS limitations that do not allow the declaration of AXI-Stream interfaces on global
variables.

1 ap_uint <8> mcxx_eInPort;
2 ap_uint <70> mcxx_eOutPort;
3
4 void mcxx_write_eout_port(
5 const unsigned long long int data , const unsigned short dest ,
6 const unsigned char last)
7 {
8 #pragma HLS INTERFACE ap_hs port=mcxx_eOutPort register
9 ap_uint <72> tmp = data;

10 tmp = (tmp << 6) | ((dest & 0x1F) << 1) | (last & 0x1);
11 mcxx_eOutPort = tmp;
12 }
13
14 ap_uint <8> mcxx_read_ein_port ()
15 {
16 #pragma HLS INTERFACE ap_hs port=mcxx_eInPort
17 ap_uint <8> data = mcxx_eInPort;
18 return data;
19 }
20
21 void histogram(const float *input , unsigned int *counters)
22 {
23 //...
24 }
25
26 void histogram_mcxx_hls_wrapper(
27 hls_axis_t mcxx_inStream , hls_axis_t mcxx_outStream ,
28 float *input_port , unsigned int *counters_port)
29 {
30 #pragma HLS INTERFACE ap_ctrl_none port=return
31 #pragma HLS INTERFACE axis port=mcxx_inStream
32 #pragma HLS INTERFACE axis port=mcxx_outStream
33 #pragma HLS INTERFACE hs port=mcxx_eInPort
34 #pragma HLS INTERFACE hs port=mcxx_eOutPort
35
36 //...
37 }

Listing 4.3: FPGA task accelerator wrapper example with global handshake ports

The solution has been the declaration of new input and output ports that use the
handshake protocol instead of the AXI-Stream protocol (show in listing 4.3). The input
port has been declared 8 bits wide as it is enough for the type of data that HWR sends
to the FPGA task accelerators. The output port has been declared 70 bits wide to

4.3 Mercurium Compiler Support 87

compress the 64 data bits, 5 destination ID bits, and the last word bit. Those ports
can be easily converted from/to AXI-Stream outside the HLS IP block and routed like
the regular streams. The new ports are only added to FPGA task accelerators that
need the new functionalities. The others are kept with the baseline interface. Then, the
mcxx_inStream and mcxx_outStream AXI-Stream ports are always created.

For convenience, two auxiliary functions have been defined to write mcxx_eOutPort

(mcxx_write_eout_port) and read mcxx_eInPort (mcxx_read_ein_port). The write
function takes as arguments the three values that are concatenated in a word and wrote
using the handshake port.

nanos_fpga_create_wd_async

The wrapper generated in the HLS intermediate file implements the nanos_fpga_

create_wd_async API to support calling it from the FPGA task accelerator code.
The implementation forwards the information of the new task to the HWR, using the
mcxx_eOutPort that communicates all FPGA task accelerators with the HWR.

Package 1

0x0Last (1 bit)

Dest. ID (5 bits)

ID (5 bits)

Data (64 bits) Parent Task ID
Num.
Copies

0 633231 0 63

0x1

Last package

87 1615 2423

Num.
Deps

Num.
Args Task Type

0 63

...

HWR_SCHED_ID || HWR_DEPS_ID

Accelerator ID

Header package 1 Header package 2 Header package 3

Data (64 bits)

0 635655

Dependences package 1

Dependence Address

Data (64 bits) Copy Size

0 63 0 63 0

Copies package 1 Copies package 2 Copies package 3

323187 1615

Arg.
Index

FlagsCopy Address Accessed Length

633231

Offset

Data (64 bits)

0 63

Arguments package 1

Argument Value

Flags

Figure 4.3: Format of new task message for HWR

The format of the AXI-Stream message sent to the HWR can be seen in figure 4.3. The
gray part shows the protocol information that includes 1 bit to define if the package is the
last of the message and two identifiers (5 bits wide) for the destination and the source.
The destination changes between HWR_SCHED_ID, if the task does not have dependences
and is ready for execution, and HWR_DEPS_ID, if the task has data dependences. Then,
the blue part shows the data part of the packages. The data information is spitted into
four groups: the header, the dependences, the copies, and the arguments (the last three

88 Chapter 4 Proposal for Task Spawn in Co-processors

groups are repeated according to the number of dependences, copies, and arguments,
respectively). Three packages compose the header: the first contains the number of task
arguments, dependences, and copies; the second package contains the identifier of the
task that is spawning the child task; and the third package contains the type identifier of
the child task. Each dependence uses one package containing the dependence memory
address in the lower 55 bits and the dependence flags in the upper 8 bits. Each copy uses
three packages: the first contains the memory address of the copy region; the second
contains the copy flags, the argument index that the copy refers to, and the size of the
region to copy; the third package contains the offset not accessed at the beginning of the
copy and the accessed length after the copy. Finally, each argument uses one package
that contains the argument value, which may be a memory pointer or a scalar value.

After sending the message, the FPGA task accelerator waits for an acknowledge message
in the mcxx_inStream. If the data message is a 0x00, the HWR could not handle the
task spawn, and the message must be resent. In contrast, if it is a 0x01, the task has
been successfully created. This acknowledge is the key to avoid deadlocks between several
FPGA task accelerators creating tasks concurrently. The acknowledge ensures liveness
in the interconnection between the FPGA task accelerators and the HWR because no
message will remain in that channel waiting for being processed by the HWR. Instead, it
will loop between the FPGA task accelerator and the HWR but allowing others to insert
their messages in the middle.

nanos_fpga_wg_wait_completion

The wrapper generated in the HLS intermediate file implements the nanos_fpga_wg_

wait_completion API to support calling it from the FPGA task accelerator code.
The implementation forwards the information of the blocking task and the number of
child tasks that must be synchronized to the HWR. The communication is done over
mcxx_eOutPort that communicates all FPGA task accelerators with the HWR.

The AXI-Stream format of the message sent to HWR can be seen in figure 4.4. The gray
part shows the protocol information that includes 1 bit to define if the package is the
last of the message and two identifiers (5 bits wide) for the destination and the source.
The data part of the message is shown in blue and it encodes: 32 bits for the number
of child tasks to synchronize, a 0x1 in the 32th bit that defines that the task wants to
block until the children finish, and 64 bits for the task identifier that is blocking.

After sending the message, the FPGA task accelerator waits until the HWR sends a
response through mcxx_inStream. This response notifies that the tasks spawned in the
requested context have finished. Therefore, the taskwait has been accomplished.

4.3 Mercurium Compiler Support 89

Package 1

0x0 0x1

Package 2

Last (1 bit)

Dest. ID (5 bits)

ID (5 bits)

Data (64 bits)

HWR_TASKWAIT_ID

Accelerator ID

Task IDNum. Child Tasks

0 633231

0x01

0 634039

Figure 4.4: Format of block message for Taskwait manager

4.4 Nanos++ Runtime Support

The support for task spawn in FPGA devices requires coordination between Nanos++
(host runtime) and the HWR in the FPGA device. Both runtimes need to cooperate
and exchange information when needed to guarantee the correctness of the application
execution. This communication can be restricted as much as possible to avoid non-
necessary round-trips. The goal is to keep the management near the action as much
as possible. Sections 4.4.2 and 4.4.3 explain the new two callbacks registered in the
Functionality Dispatcher [11] to poll the communication queues with the HWR. Before,
section 4.4.1 describes the new APIs introduced in the runtime to support the new
capabilities.

4.4.1 New APIs

The Nanos++ API has been extended with four new APIs. nanos_fpga_current_wd,
nanos_fpga_wg_wait_completion and nanos_fpga_create_wd_async can only be
called from the FPGA task accelerators, they will throw an error if called in the host.
nanos_fpga_register_wd_info is the other new API which is used to provide the host
runtime with information about tasks that FPGA may create.

nanos_fpga_create_wd_async

The nanos_fpga_create_wd_async API asynchronously creates a new task with the
provided arguments, data copies and dependences. The API can only be called from the
FPGA task accelerators, and it throws an error if called in the host. The API declaration
is shown in listing 4.4 and its parameters are:

• type. Unique identifier of task type (64 bits wide).

90 Chapter 4 Proposal for Task Spawn in Co-processors

• numArgs. Number of task arguments pointed by args.

• args. Pointer to the numArgs arguments of the task. Each argument (64 bits
wide) may be a pointer or a scalar.

• numDeps. Number of task dependences pointed by deps.

• deps. Pointer to the numDeps dependences of the task. Each dependence (64 bits
wide) is a memory pointer.

• depsFlags. Pointer to the numDeps flags for the task dependences. Each flag
(8 bits wide) defines the directionality of the corresponding dependence with the
codes defined by nanos_fpga_argflag_t.

• numCopies. Number of task copies pointed by copies.

• copies. Pointer to the numCopies copies of the task. Each copy (196 bits wide)
packages the following information:

– address. Base memory address of the copy region (64 bits wide).

– flags. Copy flags that define the copy directionlity using the nanos_fpga_

argflag_t codes (8 bits wide).

– ard_idx. Index of the argument that the copy refers to (64 bits wide).

– size. Amount of bytes to be copied (32 bits wide).

– offset. Amount of bytes not accessed at the beginning of the region (32
bits wide).

– accessed_length. Amount of bytes accessed after offset (32 bits wide).

4.4 Nanos++ Runtime Support 91

1 typedef enum {
2 NANOS_ARGFLAG_DEP_OUT = 0x08 ,
3 NANOS_ARGFLAG_DEP_IN = 0x04 ,
4 NANOS_ARGFLAG_COPY_OUT = 0x02 ,
5 NANOS_ARGFLAG_COPY_IN = 0x01 ,
6 NANOS_ARGFLAG_NONE = 0x00
7 } nanos_fpga_argflag_t;
8
9 typedef struct __attribute__ ((__packed__)) {

10 unsigned long long int address;
11 unsigned char flags;
12 unsigned char arg_idx;
13 unsigned short _padding;
14 unsigned int size;
15 unsigned int offset;
16 unsigned int accessed_length;
17 } nanos_fpga_copyinfo_t;
18
19 void nanos_fpga_create_wd_async(
20 const unsigned long long int type ,
21 const unsigned char numArgs , const unsigned long long int * args ,
22 const unsigned char numDeps , const unsigned long long int * deps ,
23 const unsigned char * depsFlags ,
24 const unsigned char numCopies , const nanos_fpga_copyinfo_t * copies);

Listing 4.4: Nanos++ FPGA API for task spawn

nanos_fpga_current_wd

The nanos_fpga_current_wd API returns a 64 bits long integer with the identifier of
the task being executed in the FPGA task accelerator. The API can only be called
from the FPGA task accelerators, and it throws an error if called in the host. The API
declaration is shown in listing 4.5.

1 unsigned long long int nanos_fpga_current_wd ();

Listing 4.5: Nanos++ FPGA API to retrieve current task information

nanos_fpga_wg_wait_completion

The nanos_fpga_wg_wait_completion API synchronizes the child tasks, blocking the
caller until the execution of child tasks have finished. The API can only be called from the
FPGA task accelerators, and it throws an error if called in the host. The API declaration
is shown in listing 4.6 and its parameters are:

• uwg. Identifier of the task which child tasks will be synchronized (64 bits wide).

• avoidFlush. Boolean that requires skipping the task data flush into the parent
task address space.

92 Chapter 4 Proposal for Task Spawn in Co-processors

1 nanos_err_t nanos_fpga_wg_wait_completion(
2 unsigned long long int uwg , unsigned char avoidFlush);

Listing 4.6: Nanos++ FPGA API for task synchronization

nanos_fpga_register_wd_info

The nanos_fpga_register_wd_info API stores the information that the runtime will
need to create the WD for a given task type code. Those task types are sent by the
HWR to identify the type of task being reverse offloaded. The API declaration is shown
in listing 4.7 and its parameters are:

• type. Unique identifier of task type (64 bits wide).

• numDevices. Number of devices pointed by devices.

• devices. Pointer to the numDevices devices information that points to the used
code function.

• translate. Function pointer for task arguments translation between host and
device address spaces.

1 nanos_err_t nanos_fpga_register_wd_info(
2 uint64_t type ,
3 size_t num_devices , nanos_device_t * devices ,
4 nanos_translate_args_t translate);

Listing 4.7: Nanos++ FPGA API for task information registration

4.4.2 FPGA Create WD Listener

The FPGA task accelerators can spawn tasks that cannot be directly executed in the FPGA
device, due to a different architecture (SMP, GPU, etc.) or due to data dependences
which HWR may not be able to solve. This tasks are retrieved from the FPGA device
through the xtasksTryGetNewTask xTasks library API. The API returns a package with
the information of one FPGA spawned task, if any. Then, the runtime can create a WD
with the retrieved information and the extra information provided to the runtime through
nanos_fpga_register_wd_info.

4.4 Nanos++ Runtime Support 93

The poll of xtasksTryGetNewTask is done at two points: 1) From a new callback
registered in the Functionality Dispatcher. 2) From the yield epilogue in the loop of the
FPGA helper threads. All points are coordinated by an exclusion lock, which ensures
only one thread retrieves tasks concurrently, and others skip the handling. This is needed
as far as FPGA device can send tasks with dependences which must be handled in order.
Besides, a thread starts retrieving tasks until the xTasks library returns an invalid task
information or until the throttling policy does not allow the creation of more tasks.

4.4.3 FPGA Instrumentation Listener

The new task spawn capabilities in the FPGA devices required re-engineering the FPGA
instrumentation support. The baseline support was done using an event buffer per FPGA
task, which means every task offloaded to an FPGA accelerator has its own buffer. This
approach allows each task to safely write its buffer, which will remain untouched until
the host synchronizes the task when the events in the buffer are handled (forwarded to
the instrumentation library). However, keeping this approach has two main drawbacks:
1) The need to reserve a memory region for instrumentation buffers used by FPGA
spawned tasks, which also has to be managed by the HWR. 2) The requirement of a
hard synchronization to flush the buffers in the host instrumentation library. Therefore,
the FPGA instrumentation has been re-implemented to use an instrumentation buffer
per FPGA task accelerator, which has the following benefits:

• The FPGA task accelerators can generate instrumentation events regardless of the
origin of the running task.

• Instrumentation setup is not sent for every task. The baseline implementation
sends the instrumentation buffer address with every task, which is only sent once
with the new implementation. This modification is managed by xTasks library, and
it is further explained in section 4.5.1.

• Each buffer can be larger. The number of FPGA task accelerators is smaller than
the number of alive tasks, so the instrumentation buffer size can be larger using
the same amount of memory.

The structure of the components involved in the FPGA device instrumentation is shown
in figure 4.5. The components are the same as the baseline structure, only replacing
the instrumentation buffer per-task by circular queues per-accelerator. The change in
the queue format is transparent to the runtime because the underlying xTasks library
manages it. Nanos++ uses the xtasksGetInstrumentData (explained in section 2.4)
which copies into a user-level buffer the number of required events.

94 Chapter 4 Proposal for Task Spawn in Co-processors

FPGA

Host

Memory

xTasks Library

Nanos++

Extrae Instrumentation Library

FPGA Task
Accelerator

HW Runtime

Circular Instrumentation Queues

FPGA Instrumentation Listener

Instrumentation Plugin

Figure 4.5: New instrumentation structure

The changes in the Nanos++ runtime to support the new instrumentation are about
when the instrumentation events are retrieved from the instrumentation buffers. The
baseline implementation retrieves the events after synchronizing each task executed in
an FPGA task accelerator. The new implementation periodically polls the xTasks API to
check if new events from any FPGA task accelerator are available. The poll has been
implemented registering a new callback in the Functionality Dispatcher and introducing
it in the loop of FPGA helper threads. Moreover, a final check has been added in the
FPGA plugin cleanup to ensure that all events remaining in the buffers are handled. Only
one thread can handle the same accelerator at any time. This is intended to avoid the
contention at xTasks API when several threads try to retrieve events for the same FPGA
task accelerator.

4.5 xTasks Library Support

The communication between the host runtime (Nanos++) and the FPGA device runtime
is done through the xTasks library. To support the new functionalities, the library added
new APIs available for Nanos++ runtime (described in section 4.5.1) which interface
the new communication queues read by the HWR (described in section 4.5.2). Also,
the instrumentation API have been updated to support the new instrumentation, which
provides an instrumentation buffer for each FPGA task accelerator instead of for each
task.

4.5 xTasks Library Support 95

4.5.1 New APIs

The xTasks API has been extended with two new APIs and one API has been updated.
The following points detail those APIs.

xtasksTryGetNewTask

The xtasksTryGetNewTask API tries to retrieve a task that FPGA spawned and it has
been offloaded back to the host. The caller must ensure that tasks with dependences are
handled in order. Otherwise, their execution order may be reversed. The API declaration
is shown in listing 4.8, and its parameters are:

• task. Pointer to a valid xtasks_newtask pointer that will be set if a task is
retrieved. If the pointer already points a valid task information, it can be reallocated
to ensure enough space for all task information (header, arguments, dependences,
and copies). Although the pointer is to a xtasks_newtask struct, the allocated
memory region will be large enough to contain all task information. The caller is
responsible for freeing the pointer memory region after using the data.

• Returns XTASKS_SUCCESS if task has been updated and points to a valid task,
and returns XTASKS_PENDING if not task has been retrieved.

Each call to xtasksTryGetNewTask checks if the word in the reading head has the
valid bits set. If it has, the reading head is set to the next head word. Then the task

pointer is set to a large enough memory region, and the data is copied there from the
communication queue. After reading each word from the queue, they are set to zero,
leaving them available again for another task. The head word is not set to zero after
reading, but its valid bits are clean after the whole task has been processed.

The retrieved task identifiers (taskId and parentId) in the xtasks_newtask structure
must be provided to xtasksNotifyFinishedTask after the task finished its execution.
The taskId is an identifier generated by the HWR once the new task message is received.
The parentId may be an identifier of a task sent by xTasks to the FPGA device, if the
host offloaded the task that spawned the new task; or it may be another task identifier
generated by the HWR, if there are more nesting levels.

96 Chapter 4 Proposal for Task Spawn in Co-processors

1 typedef uint64_t xtasks_newtask_arg;
2
3 typedef struct {
4 uint64_t address; ///< Dependence address
5 uint8_t flags; ///< Dependence flags
6 } xtasks_newtask_dep;
7
8 typedef struct {
9 uint8_t flags; ///< Copy flags

10 void *address; ///< Copy address
11 size_t size; ///< Size of the region (in bytes)
12 size_t offset; ///< Offset not accessed (in bytes)
13 size_t accessedLen; ///< Accessed length (in bytes)
14 } xtasks_newtask_copy;
15
16 typedef struct {
17 tasks_task_id taskId; ///< Task identifier inside HWR
18 xtasks_task_id parentId; ///< Parent task identifier
19 uint64_t typeInfo; ///< Identifier of the task type
20 size_t numArgs; ///< Number of arguments
21 xtasks_newtask_arg *args; ///< Arguments array
22 size_t numDeps; ///< Number of dependences
23 xtasks_newtask_dep *deps; ///< Dependences array
24 size_t numCopies; ///< Number of copies
25 xtasks_newtask_copy *copies; ///< Copies array
26 } xtasks_newtask;
27
28 xtasks_stat xtasksTryGetNewTask(xtasks_newtask **task);

Listing 4.8: xTasks API for FPGA spawned tasks retrieval

xtasksNotifyFinishedTask

The xtasksNotifyFinishedTask API notifies the finalization of a task offloaded from
the FPGA device to the host runtime. The API declaration is shown in listing 4.9, and
its parameters are:

• parent. Identifier of the parent task which child task execution has finished. The
identifier must be the one returned by xtasksTryGetNewTask.

• id. Identifier of the task which execution has finished. The identifier must be the
one returned by xtasksTryGetNewTask.

• Returns XTASKS_SUCCESS if the notification has been sent, and returns
XTASKS_ENOENTRY if the queue to send the notification is full.

4.5 xTasks Library Support 97

Each call to xtasksNotifyFinishedTask tries to reserve the needed slots in the SpawnIn
queue and write the task information if the space is available.

1 xtasks_stat xtasksNotifyFinishedTask(
2 xtasks_task_id const parent , xtasks_task_id const id);

Listing 4.9: xTasks API notify the finalization of tasks to HWR

xtasksGetInstrumentData

The xtasksGetInstrumentData API has been updated to support the new instrumenta-
tion approach based on a buffer for each FPGA task accelerator. The new API declaration
can be seen in listing 4.10. The new version takes a xtasks_acc_handle instead of a
xtasks_task_handle (as shown in baseline declaration, listing 2.11). The semantics of
the API and the other arguments remain as before.

1 xtasks_stat xtasksGetInstrumentData(
2 xtasks_acc_handle const accel ,
3 xtasks_ins_event *events ,
4 size_t const maxCount);

Listing 4.10: New declaration of xTasks API for instrumentation events retrieval

In the new implementation, the xTasks library sends a command to each FPGA task
accelerator during the xtasksInitHWIns (only if the feature is available). The command
format is shown in figure 4.6 and its main goal is to provide the FPGA task accelerators
the circular buffer information. The first word (the command header word) contains the
command code in the lower 8 bits, and the following 24 bits define the size (in events) of
the circular queue for the FPGA task accelerator. The second word contains the memory
address of the circular queue.

Word 0 0x02

0 63323187

Number of Slots

Circular Queue AddressWord 1

Figure 4.6: Format of setup instrumentation command

The new instrumentation approach reduces the length of the execute task command
sent to HWR on calls to xtasksSubmitTask. The updated command format is shown
in figure 4.7. The format is the same as before (shown in figure 3.10) but removing the
word with the instrumentation buffer address in the command header.

98 Chapter 4 Proposal for Task Spawn in Co-processors

Word 0 0x01

0 63323187

Task IDWord 1

Num.
Args

1615 4039 4847

Comp.
Flags

Dest.
ID

Parent Task IDWord 2

Word 0 Flags

0 63323187

Argument ValueWord 1

4039

Arg.
ID

Figure 4.7: Format of execute task command (v2)

4.5.2 New Queues

The communication between the xTasks library and the HWR is done using different
communication queues accessible by both parts. This section describes the format and
management of the added or modified queues to support the new functionalities. All
queues are implemented like the previously available to communicate commands to the
FPGA device.

SpawnOut Queue

The SpawnOut queue is intended to hold tasks offloaded from the FPGA device to the
host runtime. They are offloaded if the task execution cannot directly be handled by the
HWR. It may be due to a non-FPGA architecture task, non-availability of the FPGA task
accelerator type, or because the task has data dependences and they cannot be managed
by the HWR.

The queue is composed of 1024 words of 64 bits, and it is managed as a circular buffer
with a single-producer (HWR) single-consumer (xTasks library). The elements stored in
the queue do not have a fixed length as it depends on the number of task arguments,
dependences, and copies. Therefore, an element can start at any word of the queue and
its length is determined by the information in the first word (head).

The format of an element is shown in figure 4.8. The first four words are the task header.
Then, there are nDeps words with the dependences information. After that, there are
nCopies groups of 3 words, each one with the information of one task copy. Finally,
there are nArgs words with the task arguments.

4.5 xTasks Library Support 99

Word 0

Parent Task ID

Num.
Copies

0 63323187 1615 2423

Num.
Deps

Num.
Args

Task Type

0 635655

Dependence Address

0 63

Copy Address

0 63

Argument Value

Flags

Task ID

Valid

5655

Word 1

Word 2

Word 3

Copy Size

323187 1615

Arg.
Index

Flags

Accessed LengthOffset

Word 0

Word 1

Word 2

Word 0

Word 0

Figure 4.8: Format of elements in the SpawnOut Queue

The elements format is almost the same as the one shown for the new task message
(figure 4.3). The differences are the valid bits, which are added in the top bits of the
head word, and the Task ID, which is the word number 1 of the header. The valid
bits mean that the following words in the queue are formatted according to the head
information.

SpawnIn Queue

The SpawnIn queue is intended to hold task finalization notifications from host runtime
to FPGA device. The queue is composed of 1024 words of 64 bits, and it is managed as
a circular buffer with a single-producer (xTasks library) single-consumer (HWR). The
elements stored in the queue always use three words: the header, the finished task
identifier, and the parent identifier of the finished task. The format of an element is
shown in figure 4.9.

The library keeps a count of available slots in the queue. It is decreased in every write
to make it coherent. Then, if the number of available words is not enough, it tries to
increase the number of available slots looking at the oldest wrote entries and see if they
have been invalidated by the HWR.

100 Chapter 4 Proposal for Task Spawn in Co-processors

0 63

Task ID

5556

Valid

Parent Task ID

Word 0

Word 1

Word 2

Figure 4.9: Format of elements in the SpawnIn Queue

Instrumentation Buffers

The instrumentation buffers are a set of memory buffers allocated during the
xtasksInitHWIns with the requested size as it was previously done but with task-
level buffers. The requested size defines the number of instrumentation events that the
queue of each FPGA task accelerator can hold. Each event occupies 192 bits with the
format shown in figure 4.10.

Word 0

0 633231

Value

TimestampWord 1

Word 3 TypeID

Figure 4.10: Format of instrumentation events in the circular instrumentation buffers

The circular buffer management has been implemented considering that it is a single
consumer and single producer buffer. This allows a distributed state of the buffer, where
the writer and the reader are implicitly coordinated, and they only need to share the
data container. During the initialization, all buffer slots are set to the invalid type (as
defined in listing 2.11). Each call to xtasksGetInstrumentData copies the number of
requested events (or the number of remaining events until the sub-buffer end) from the
circular buffer to the buffer provided by the caller. Then, it starts iterating the retrieved
events, and if they are valid, the corresponding entry in the circular buffer is set to invalid,
which makes it available for the FPGA task accelerator again.

4.6 FPGA Design Support

The support of the new features directly involves the design of the FPGA bitstream.
The goal is to extend the capabilities of FPGA devices. Therefore, the components
instantiated in the FPGA design must change to handle the new functionalities. The main

4.6 FPGA Design Support 101

parts in the FPGA design are the FPGA task accelerators and the Hardware Runtime. The
FPGA task accelerators have been modified as explained in section 4.6.1 to add support
for spawning tasks. Also, the HWR has been extended as explained in section 4.6.2 to
handle the new messages sent by the FPGA task accelerators.

FPGA

Memory

FPGA Task
Accelerator

SOM

Circular Instrumentation Queues

Host

CmdIn
Manager

CmdOut
Manager

CmdIn
Queue

CmdOut
Queue

Accelerators State

FPGA Task
Accelerator

X

BRAM Controller

X

SpawnIn
Queue

SpawnOut
Queue

Taskwait
Manager

Scheduler
Manager

SpawnIn
Manager

Int. CmdIn
Queue

FPGA Task
Accelerator

FPGA Task
Accelerator

X
X

X

Bitinfo

Figure 4.11: FPGA Bitstream design with the extended SOM Hardware Runtime

Figure 4.11 shows the elements in the system, focused in the FPGA part. The figure
extends the baseline design shown in figure 3.9. The elements shown in the figure and
their interconnections are explained in the following sections.

4.6.1 FPGA Task Accelerators

The FPGA task accelerators have been extended, if needed, to support the new capabilities.
AIT checks if the HLS source code generated by Mercurium has the additional ports
(mcxx_eOutPort and mcxx_eInPort) used to communicate the FPGA task accelerator
with the HWR. Due to the HLS restrictions, the regular input and output streams cannot
be used to send/retrieve the new messages. When the new ports are found, AIT adds
the needed adapters to convert the AXI-Stream protocol used in the interconnections
between the HWR and the FPGA task accelerators to the handshake protocol used by
the new ports. Those adapters are briefly explained in the following points.

102 Chapter 4 Proposal for Task Spawn in Co-processors

FPGA

Memory

HLS Mercurium
IP

HW Runtime

Circular Instrumentation Queues

Host

eOut
Adapter

AcceleratorID

eIn
Adapter

Instr.
Adapter

FPGA Task Accelerator HW Counter

X

Figure 4.12: Internal structure of FPGA Task Accelerator with task spawn support

The update of FPGA task accelerators using adapters has been used to improve the FPGA
instrumentation capabilities (which also were affected as explained in section 4.4.3). An
extra adapter has been created to handle the instrumentation events generated by each
FPGA task accelerator and write them into the circular instrumentation queue.

eOut Adapter

The eOut Adapter converts the mcxx_eOutPort that uses the handshake protocol to
a AXI-Stream port. The handshake port has 70 data bits, 1 valid bit, and 1 ready bit.
These 70 data bits compress the following AXI-Stream bits: 64 data bits, 5 destination
ID bits, and 1 last bit. The valid and ready bits from both protocols can be directly
mapped. Finally, the source ID bits of the AXI-Stream are filled with the data read from
the accelerator ID constant. Listing A.2 shows the HLS implementation of the adapter.

eIn Adapter

The eIn Adapter converts the AXI-Steam protocol that arrives to the FPGA task accelera-
tor from the HWR into the handshake protocol used by the mcxx_eInPort generated by
Mercurium. The adapter forwards the 8 bits of data, the valid signal, and the ready signal
from one protocol to another. The other signals of AXI-Stream protocol (destination

4.6 FPGA Design Support 103

ID, source ID and last signal) are not used, so they are discarded. Listing A.3 shows the
HLS implementation of the adapter.

Instrumentation Adapter

The instrumentation Adapter reads the mcxx_instrPort that uses the handshake proto-
col and writes the received instrumentation events in the circular instrumentation queue.
The handshake port has 104 data bits, and 1 type bit. If the type bit is 1, the data bits
contain an instrumentation event generated by the FPGA task accelerator. Then, the
data is composed by: the instrumentation event value (64 bits), the instrumentation
event id (32 bits), and the instrumentation event type (8 bits). If the type bit is 0, the
data bits contain the memory address of the instrumentation circular queue and the
number of words (64 bits wide) that the queue has. The data is then composed of the
memory address (64 bits), the number of elements (24 bits), and other unset bits.

The adapter is the single producer of data in the circular queue. This allows it to know
the number of available slots in the circular queue at any time. When there is only
one available slot, the adapter writes there a runtime event with a predefined identifier,
and the value is the number of events lost. The event value starts at one, and it is
incremented every time the adapter reads an event if only one slot is available. Before
writing this special event, the adapter checks if the oldest events have been read and
increases the number of available slots. In the regular case, when there are more than
one available slots, the adapter writes the read event information in the circular buffer
with the format shown in figure 4.10.

4.6.2 Hardware Runtime

The SOM implementation of the HWR has been extended with new streams, new modules,
and new communication queues to support the new features. The new design is shown in
figure 4.11 which extends the design shown in figure 3.9. The figure contains two extra
FPGA task accelerators with task spawn capabilities (the two at left) and two regular
FPGA task accelerators (the two at right), which do not have creation capabilities.

The interconnection between the HWR and the FPGA task accelerators have been
extended with two new AXI-Stream interconnects, one in each direction. The stream
from the HWR is only 8 bits wide and is used to acknowledge or respond the messages
sent by the FPGA task accelerators. It is connected to the eIn_Adapter as shown in
figure 4.12 and by the HLS IP block after the protocol conversion. The stream to the
HWR is 64 bits wide and is used to communicate the messages from the FPGA task

104 Chapter 4 Proposal for Task Spawn in Co-processors

accelerator when it spawns or synchronizes child tasks. It is connected to eOut_Adapter

as shown in figure 4.12. They have been kept aside from regular communication streams
due to their different purposes/destinations and avoiding starvation between different
FPGA task accelerators.

Two new communication queues between the HWR and xTasks library have been added
to support the spawn of tasks to the host runtime (SpawnOut Queue) and synchronize
their finalization (SpawnIn Queue). Their format is already explained in section 4.5.2.
They are managed as circular queues with a non-fixed number of words for each element.
The HWR writes the SpawnOut Queue and polls it for invalidated elements when there
is not enough space. Also, the HWR polls the SpawnIn Queue searching for finished
task notifications sent by the host.

Three new modules and one internal queue have been added in the SOM implementation
to handle the FPGA spawned tasks (all shown in figure 4.12). The new internal queue
is called Internal CmdIn Queue. The new modules are called: Scheduler Manager,
SpawnIn Manager and Taskwait Manager. Moreover, some updates have been done in
already available modules: CmdIn Manager and CmdOut Manager. They are explained
in the following points.

Internal Command In Queue

The internal command in queue, abbreviated as Int. CmdIn Queue in figure 4.12, is
intended to hold execute task commands for tasks spawned inside the FPGA.

The queue is composed of 1024 words of 64 bits, which are divided into 16 sub-queues
(the maximum number of FPGA task accelerators supported in an FPGA design) of
64 elements. Each sub-queue is managed as a circular buffer with a single-producer
(Scheduler Manager) single-consumer (CmdIn Manager). The elements stored in the
queue do not have a fixed length as it depends on the number of task arguments.
Therefore, an element can start at any word of the queue and its length is determined by
the information in the first word (head).

The format of an element is the same used in the execute task command of CmdIn Queue.
The format of the execute task command has been updated with the new capabilities,
and its format is shown in figure 4.7.

4.6 FPGA Design Support 105

Scheduler Manager

The Scheduler Manager is an IP block developed in C++ using HLS tools. Its external
interface is shown in figure 4.13, where the different ports and protocols to communicate
the module with the other components are detailed. Those ports are connected as shown
in figure 4.11 and they are:

• In Stream. AXI-Stream port used by all FPGA task accelerators to send new task
messages.

• Bitinfo. BRAM port to access the Bitinfo memory, which stores the configuration
of FPGA task accelerators in the bitstream. This port is only read.

• Int. CmdIn Queue. BRAM port to access the Int. CmdIn Queue, which
buffers the execute task commands sent to the CmdIn Manager. This memory is
mainly written but also read to look for invalidated entries.

• SpawnOut Queue. BRAM port to access the SpawnOut Queue, which is used to
offload tasks to the host runtime. This memory is mainly written but also read to
look for invalidated entries.

• Out Stream. AXI-Stream port to send the acknowledge messages to FPGA task
accelerators.

Scheduler Manager

64
AXI-Stream

In Stream

Bitinfo
Int. CmdIn
Queue

SpawnOut
Queue

8
AXI-Stream

32
BRAM

64
BRAM

64
BRAM

Out Stream

Figure 4.13: External interface of Scheduler Manager

The purpose of the Scheduler Manager is scheduling the tasks spawned by the FPGA
task accelerators. The SOM implementation routes all new task messages to this IP
block, regardless they have or not data dependences (destination ID of the AXI-Stream
will be HWR_DEPS_ID or HWR_SCHED_ID, respectively). Then, the Scheduler Manager

forwards the task information, with the data dependences, to the host runtime for its
handling.

The available types and instances of FPGA task accelerators are read during the module
initialization, triggered by the reset signal. The module starts reading words of the Bitinfo

106 Chapter 4 Proposal for Task Spawn in Co-processors

memory (which is formatted as explained in section 3.3.1) until the end of xtasks.config
file is reached. The retrieved information is used to match the tasks with the different
FPGA task accelerators based on their type word and then decide where a given task will
be executed. For each FPGA task accelerator type, the module stores: the type, the first
ID of such type, the number of IDs of such type, and the last ID where a task has been
sent. With this information, the Scheduler Manager implements a round-robin policy.
However, the policy could be updated as all this information is packed in a struct, and
the stage of deciding where the task will be executed is isolated. Then, both parts could
be easily modified in the source code.

The task information arrives through in stream encoded as explained in section 4.3.3
and shown in figure 4.3. First, the Scheduler Manager assigns a new identifier to the
task, which is just an increasing odd number. This identifier is needed to keep track of
the task among its life, and it is an odd number to distinguish tasks spawned in the host
against the ones in the FPGA. Following, the module checks if the new task has any
data dependences or if it is not an FPGA task. If it is, the task information is written
into the SpawnOut Queue. Intently, this queue has almost the same format of the data
in a new stream message, which allows an easy forward of the data. On the other hand,
if the task does not have data dependences and is an FPGA task, the module searches
the received type in the types list (fulfilled during the initialization). Then, it selects
the FPGA task accelerator where the task will be executed and updates the last ID
information of the entry. Once the task has been scheduled to an FPGA task accelerator,
the task information is written into the Int. CmdIn Queue following the queue format.
Finally, the module sends the acknowledge message to the FPGA task accelerator that
sent the message.

The acknowledge message purpose is to allow the manager rejecting the messages to
ensure progress when several FPGA task accelerators create tasks concurrently. The
rejection of messages causes the sender to re-send the message. However, other FPGA
task accelerator may send their own messages between one rejected messages and its
re-sending. This mechanism avoids blocking the manager when processing a message
if the output queue, where the current task has to be written, is full. Blocking the In

Stream until the output queue has enough space may end in deadlocks when different
FPGA task accelerators create tasks concurrently.

The format differences between a new task message and an element of the Int. CmdIn

Queue are managed by the Scheduler Manager. The main differences are:

• The command code (bits 0-7 of header word) are fixed to 0x01, which is the
command code for an execute task command.

4.6 FPGA Design Support 107

• The computation flags are fixed to 0x01, which enables the kernel execution.

• The destination ID is fixed to HWR_CMDOUT_ID, which makes the FPGA task
accelerator notify the CmdOut Manager the finalization of the task.

• The task ID is the new identifier generated by the IP block.

• The parent task ID is the identifier received in the new task message.

• The argument flags are set to 0x31 by default (in and out wrapper copies enabled,
and private mode). However, the IP block checks the copies directionality received
in the new task message and updates the flags of the argument that the copy
refers too.

SpawnIn Manager

The SpawnIn Manager is an IP block developed in C++ using HLS tools. Its external
interface is shown in figure 4.14, where the different ports and protocols to communicate
the module with the other components are detailed. Those ports are connected as shown
in figure 4.11 and they are:

• SpawnIn Queue. BRAM port to access the SpawnIn Queue, which is used to
notify the finalization of tasks offloaded using the SpawnOut Queue. This memory
is mainly read but also written to invalidate entries.

• Out Stream. AXI-Stream port to send the finalization notification to other mod-
ules.

SpawnIn Manager
SpawnIn
Queue 64

AXI-Stream
64

BRAM

Out Stream

Figure 4.14: External interface of SpawnIn Manager

The purpose of the SpawnIn Manager is to poll the SpawnIn Queue for new elements,
read them and invalidate them. The module generates an AXI-Stream message for the
Taskwait Manager for every element found in the queue. The format of those messages
is shown in figure 4.15. The current implementation always sets the number of child
tasks to 1 (bits 0-31 of the first package) because the host runtime inserts an element for
each finished task. However, the message syntax allows merging some of those messages
in the future. The finalization code is 0x10, and it is set in bits 32-39 of the first package.

108 Chapter 4 Proposal for Task Spawn in Co-processors

Finally, the second package contains the task identifier of the parent which child task
has finished.

Package 1

0x0 0x1

Package 2

Last (1 bit)

Dest. ID (5 bits)

ID (5 bits)

Data (64 bits)

HWR_TASKWAIT_ID

Parent Task IDNum. Child Tasks

0 63

0x10

0 633231 4039

Figure 4.15: Format of finish message for Taskwait Manager

Taskwait Manager

The Taskwait Manager is an IP block developed in C++ using HLS tools. Its external
interface is shown in figure 4.16, where the different ports and protocols to communicate
the module with the other components are detailed. Those ports are connected as shown
in figure 4.11 and they are:

• In Stream. AXI-Stream port used by all FPGA task accelerators to send block
messages, and by other HWR modules to send finish messages.

• Out Stream. AXI-Stream port to send the acknowledge of block messages to
FPGA task accelerators.

Taskwait Manager
In Stream

8
AXI-Stream

Out Stream
64

AXI-Stream

Figure 4.16: External interface of Taskwait Manager

The purpose of the Taskwait Manager is keeping track of the number of child tasks
per parent, and sending a wake-up message when all child tasks have finished. To this
end, the module has an internal table with the number of tasks for each identifier. The
module can receive two types of messages in the input stream: block messages (format
shown in figure 4.4) and finish messages (format shown in figure 4.15). Whenever it
receives a new message, it looks for the task identifier in the internal table and increases
(block messages) or decreases (finish messages) the balance with the notified number of
tasks. The balance may be positive or negative, depending on the messages ordering. If
the identifier is not found, the IP block initializes a new entry with balance zero in the

4.6 FPGA Design Support 109

table and proceeds with the regular increment/decrement. If the balance becomes 0 after
the update, the module sends a wake-up message to the FPGA task accelerator that sent
the block message for that identifier, and it invalidates the entry in the internal table.

CmdIn Manager

The CmdIn Manager has been extended to retrieve commands from the Int. CmdIn

Queue and forward them to the FPGA task accelerators. The new module version tries to
retrieve a command as usual from the CmdIn Queue and, if there is no available command,
it looks into the Int. CmdIn Queue. Besides, the stat written into Accelerators

State includes the information about the origin of the running command, that is later
used by the CmdOut Manager. The new external interface is shown in figure 4.17, where
the different ports and protocols to communicate the module with the other components
are detailed. The new port is connected as shown in figure 4.11 and it is:

• Int. CmdIn Queue. BRAM port to access the Int. CmdIn Queue, which buffers
the execute task commands sent by the Scheduler Manager. This memory is
mainly read but also written to invalidate entries.

CmdIn Manager

CmdIn
Queue

Int. CmdIn
Queue

64
AXI-Stream

64
BRAM

64
BRAM

Out Stream

Accelerators
Stats

64
BRAM

Figure 4.17: External interface of CmdIn Manager (v2)

CmdOut Manager

The CmdOut Manager has been extended to notify the finalization of tasks to the
Taskwait Manager. The new module version gets the parent task identifier received in
the input stream and sends it in the finish message (with the format shown in figure 4.15)
if the Accelerators State reports that the command was send from the Int. CmdIn

Queue The new external interface is shown in figure 4.18, where the different ports and
protocols to communicate the module with the other components are detailed. The new
port is connected as shown in figure 4.11 and it is:

110 Chapter 4 Proposal for Task Spawn in Co-processors

• Out Stream. AXI-Stream port to send finish messages to Taskwait Manager.

CmdOut Manager

Accelerators
Stats

CmdOut
Queue

64
AXI-Stream

64
BRAM

64
BRAM

Out Stream
64

AXI-Stream

In Stream

Figure 4.18: External interface of CmdOut Manager (v2)

4.7 Evaluation

This section presents the evaluation results of the new capabilities. It has been done in a
Xilinx Zynq ZCU102 board and considering different benchmarks. For each benchmark,
different approaches have been developed to manage the kernel tasks that really compute
the solution. Some of those approaches do not use the proposed extensions to obtain
the baseline potential and compare it with the extended mode.

Section 4.7.1 describes the experimental setup used in the evaluation, section 4.7.2
describes the FPGA resources and power consumption, section 4.7.3 describes the
performance results of the synthetic benchmark used to see the limits and overheads of
the extension, and section 4.7.4 describes the performance of real benchmarks.

4.7.1 Experimental Setup

The evaluation of the modifications has been done in a real environment and with real
executions. The tools used to generate the application bitstreams and binaries are:
Vivado Design Suite 2017.3, GNU C/C++ Compiler 6.2.0, and PetaLinux Tools 2019.1.
The modifications have been developed on top of OmpSs@FPGA release 1.4.0.

The following points detail the machine and benchmarks used during the evaluation.
The benchmarks have been chosen by availability and by their different characteristics
(computation/memory intensity, regular or heterogeneous task parallelism). Therefore,
the evaluation is done over different scenarios that better shown the overall extension
capabilities.

4.7 Evaluation 111

ZCU102

All executions have been done in a Xilinx Zynq UltraScale+ MPSoC ZCU102 [@67]. The
System on Chip (SoC) is composed of 4 ARM Cortex-A53 cores, that run at 1.1 GHz, a
Xilinx ZU9EG FPGA and a main DDR4 memory of 4 GiB. The board is booted using
the Ubuntu Linux 16.04 operating system.

Synthetic Benchmark

Listing 4.11 shows the pseudo-code of the synthetic benchmark. It updates all elements
of an array in parallel using a block decomposition. The benchmark execution time can
be analyzed when changing the task size but keeping the total work constant, as the
array length and the block length are parameterized. Different configurations with 1, 2, 4,
8, and 15 instances of update_array_fpga accelerator inside the FPGA have been used.
This pattern allows an exploration of the runtime limits (it is embarrassingly parallel)
with different task granularities. Although the board supports higher frequencies, all
bitstreams have been generated with FPGA task accelerators running at 100 MHz for
the sake of comparison.

1 #pragma omp target device(fpga) num_instances (15) copy_inout ([BSIZE]array)
2 #pragma omp task
3 void update_array_fpga(int *array , int BSIZE , int val) {
4 for (int i=0; i<BSIZE; ++i) array[i] += val;
5 }
6 #pragma omp target device(fpga) copy_inout ([SIZE]array)
7 #pragma omp task
8 void update_array_blocked(int *array , int BSIZE , int SIZE) {
9 for (int i=0; i<SIZE; i+=BSIZE) {

10 update_array_fpga(array+i, 2020);
11 }
12 #pragma omp taskwait
13 }
14 int main (...) {
15 int array[NUM_BLOCKS*BSIZE];
16 update_array_blocked(array , BSIZE , NUM_BLOCKS*BSIZE);
17 #pragma omp taskwait
18 }

Listing 4.11: Synthetic benchmark pseudo-code

112 Chapter 4 Proposal for Task Spawn in Co-processors

Matrix Multiply

Matrix Multiply implements the multiplication of two matrices using a blocked algorithm
with the accumulation of the result in a third matrix. The implementation has been
done using a simple C implementation where the loops in the kernel task follow the
k-i-j order as shown in pseudo-code of listing 4.12. The k-i-j order has a better access
pattern to the BRAMs where the matrices are stored and results in a better performance.
To test the extensions, an FPGA task accelerator that spawns all tasks for the kernel
task accelerators has been added. Then, the host has to offload a single task into
the FPGA device to launch the multiplication of the two matrices regardless their size.
Three different configurations have been used depending on the block size of the kernel
task (BSIZE). The instances number of matmulBlock and the initiation interval (II) of
the innermost loop are shown in table 4.1 for the 3 configurations. The kernel task
accelerators always run at 300 MHz, and the matrices used in all executions contain
4096x4096 elements.

1 #pragma omp target device(fpga) copy_in ([BSIZE*BSZIE]a, [BSIZE*BSIZE]b) \
2 copy_inout ([BSIZE*BSIZE]c)
3 #pragma omp task
4 void matmulBlock(const float *a, const float *b, float *c) {
5 for (int k=0; k<BSIZE; ++k) {
6 for (int i=0; i<BSIZE; ++i) {
7 for (int j=0; j<BSIZE; ++j) {
8 #pragma HLS pipeline II=LOOP_II
9 c[i*BSIZE + j] += a[i*BSIZE + k] * b[k*BSIZE + j];

10 }
11 }
12 }
13 }

Listing 4.12: Matrix Multiply pseudo-code

Block Size Num. kernel accels Loop II
64x64 7 1
128x128 3 1
256x256 3 2

Table 4.1: FPGA configurations for Matrix Multiply benchmark

N-Body

N-Body is a simulation among time of N physical bodies (particles) in a space that
attract between them as a result of their mass. The implementation uses two main kernel

4.7 Evaluation 113

tasks that define the kernel task accelerators in the FPGA device: calculate_forces-
_block, which updates a block of particles considering the particles of another block,
and update_positions_block, which updates the position of the particles in a block
based on the calculated forces. Using these two kernel tasks, two more tasks that also
can become FPGA task accelerators have been defined: calculate_all_forces, which
iterates over all combinations of particle blocks and calls to calculate_forces_block,
and update_all_positions, which iterates over all particle blocks and calls update-
_positions_block. Finally, a top level task called solve_nbody have beed defined.
It spawns calculate_all_forces and update_all_positions tasks and it also can
become an FPGA task accelerator. The pseudo-code of the tasks organization defined in
top of kernel tasks is shown in listing 4.13.

1 void calculate_forces_block(forceBlock1 , partBlock1 , partBlock2);
2 void update_positions_block(forceBlock , partBlock);
3
4 void calculate_all_forces(forces , particles , numBlocks) {
5 for i in {0.. numBlocks}
6 for i in {0.. numBlocks}
7 calculate_forces_block(forces[j*BS],
8 particles[j*BS], particles[i*BS])
9 }

10
11 void update_all_positions(forces , particles , numBlks) {
12 for i in {0.. numBlocks}
13 update_positions_block(forces[j*BS], particles[j*BS])
14 }
15
16 void solve_nbody(forces , particles , numBlocks , numTimesteps) {
17 for t in {0.. numTimesteps} {
18 calculate_all_forces(forces , particles , numBlocks)
19 update_all_positions(forces , particles , numBlocks)
20 }
21 }

Listing 4.13: N-Body pseudo-code

Table 4.2 3 different configurations depending on the block size of kernel tasks. The
FPGA task accelerators run at 250 MHz, and all executions are simulating 32 768 particles
during 16 timesteps.

Block Size Num. calculate
forces accels

Parallel particles Num. update posi-
tions accels

128 4 8 1
256 3 10 1
512 1 10 1

Table 4.2: FPGA configurations for N-Body benchmark

114 Chapter 4 Proposal for Task Spawn in Co-processors

Cholesky Factorization

Cholesky implements the cholesky factorization of a matrix using a blocked algorithm.
The implementation has 4 kernel tasks: potrf, trsm, gemm and syrk. The first one,
potrf, has an execution pattern that makes the FPGA task accelerator in the FPGA
device either consume a lot of resources or be very slow. Therefore, two approaches
have been defined: full, which contains all kernel task accelerators in the FPGA design,
and mixed, which implements the potrf kernel task in the SMP threads and the rest
of kernel tasks in the FPGA design as task accelerators. The full approaches contain
a non-optimized potrf accelerator that consumes few FPGA resources and the mixed
approaches use the OpenBLAS library to implement the potrf task in the host processor.
For both approaches and for the three considered block sizes, the num_instances of each
kernel task accelerators are shown in table 4.3. In all cases, the FPGA task accelerators
run at 250 MHz.

As can be seen in table 4.3, the FPGA device resources freed by the potrf accelerator
in mixed approach are used to increase the number of instances of remaining kernel task
accelerators in comparison to full. For the 64x64 and 128x128 block sizes, the number
of gemm instances, which implements the Matrix Multiply, has been increased as it is the
most used. For the 32x32 block size, the number of trsm instances has been increased
as there are already 6 gemm accelerators and the performance gain was better with an
extra trsm accelerator.

Block Size Approach Num.
potrf
accels

Num.
trsm ac-
cels

Num.
gemm
accels

Num. syrk
accels

32x32 full 1 2 6 1
mixed 0 3 6 1

64x64 full 1 1 3 1
mixed 0 1 4 1

128x128 full 1 1 1 1
mixed 0 1 2 1

Table 4.3: FPGA configurations for Cholesky benchmark with full and mixed approaches

4.7.2 Resources Utilization and Power Consumption

Table 4.4 shows a summary of available resources in the FPGA chip of ZCU102 SoC, the
power consumption of each A53 core reported by Vivado, and the resources utilization
and power consumption of the implemented IP blocks as reported by Vivado. The
resource utilization values of SOM show that the manager uses a tiny part of the FPGA

4.7 Evaluation 115

resources. The same report for SOM with the proposed extensions in this chapter shows
that the new IP block uses some more resources, which are needed to support the new
features. Nevertheless, it still uses a small portion of total resources. In contrast, the
power estimation of the extended SOM is 5x the baseline SOM power due to the 3 extra
queues (∼ 20 mW for each), the new IP blocks inside the manager (∼ 50 mW) and the
extra interconnections (∼ 50 mW). Finally, resource usage and power consumption of
the new FPGA task accelerators with task spawn capabilities (Acc. Spawn) are also a
small portion of the total budget. This leaves the bulk of FPGA resources available to
implement application kernels.

Name BRAM DSP FF LUT Power
ZCU102 912 2 520 548 160 274 080 -
ARM A53 Core - - - - 800 mW
SOM 10 (1 %) 0 (0 %) 1 350 (0.2

%)
3 929 (1.4
%)

40 mW

Ext. SOM 25 (2.7 %) 0 (0 %) 2 967 (0.5
%)

8 796 (3.2
%)

200 mW

Acc. Spawn 3 (0.3 %) 0 (0 %) 2 225 (0.4
%)

4 008 (1.4
%)

30 mW

Table 4.4: Resources utilization and power estimation in ZCU102

Host SMP threads are free when the FPGA device creates the tasks directly targeting
itself. In contrast, they are busy when the host SMP threads create the FPGA tasks,
offloading the tasks and retrieving the finalization messages to synchronize the executions.
With the new capabilities, a small task accelerator in the FPGA that consumes ∼ 30mW
replaces the general-purpose ARM cores that consume 800 mW each (3.2 W in total).
This reduces the power consumption of the application or increases the computational
capabilities because host cores can be used to execute useful application code instead of
runtime management code. Based on power estimation reported by Vivado and shown
in table 4.4, the implementation of an application with the new features reduces the
power consumption of the baseline version by 2.21 W (switching off 3 host threads and
considering the extra power used in the FPGA design).

4.7.3 Scalability limits and overheads

Figure 4.19 shows the average execution time of the synthetic benchmark (y-axis) when
increasing the number of instances of update_array_fpga task accelerator (x-axis).
The evolution is shown for two task spawn approaches (cHOST and cFPGA) and different
block sizes (values are shown in each label). The total amount of application work
remains constant for all the executions. Thereby, the number of array blocks is increased

116 Chapter 4 Proposal for Task Spawn in Co-processors

when the block size is decreased. In contrast, the number of array blocks is constant
regardless of the number of FPGA task accelerators. The cHOST and cFPGA approaches
are equivalent in application terms, and the only difference between them is where the
tasks are spawned.

1 acc 2 accs 4 accs 8 accs 15 accs
Number of FPGA task accelerators

10 1

100

101

Ex
ec

. t
im

e
(s

ec
on

ds
 -

lo
g.

)

cHOST (10K)
cFPGA (10K)

cHOST (1K)
cFPGA (1K)

cHOST (100)
cFPGA (100)

cHOST (10)
cFPGA (10)

Figure 4.19: Synthetic benchmark execution time with different configurations

The ideal behavior would be that the execution time proportionally decreases when the
number of FPGA task accelerators increases. This happen in cFPGA (10K), cFPGA
(1K), and almost in cHOST (10K). In contrast, the execution time remain constant
in cHOST (1K), cHOST (100) and cHOST (10). In those task granularities, the host
runtime cannot feed the FPGA device due to the runtime overheads in the task spawn
and the communication latency of offload tasks. Also, cFPGA (100) and cFPGA (10)
only scale up to 8 FPGA task accelerators. After that, the execution time does not
improve with the larger amount of execution resources. For both task spawn approaches,
the tasks are executed faster than created when the time stops decreasing.

Results show that the creation and management of FPGA tasks directly inside the FPGA
are faster than when done from the host. Moreover, performance gain increases with
small task sizes and/or large numbers of FPGA task accelerators. The better execution
time is because of the lower task spawn and task managing overheads in cFPGA compared
to cHost. In fact, cFPGA is able to obtain the best absolute performance using two
different block sizes, while the cHost approach needs a careful size tuning to obtain
the sweet point that delivers a performance that approaches but not reaches the ideal
one. Consequently, FPGA creation can discover more parallelism, increase the resources
utilization, and reduce overall execution time while simplifying programmability.

Figure 4.20 shows the same results of figure 4.19 but dividing the execution time between
the number of FPGA tasks created at each block size. Therefore it shows the wall clock

4.7 Evaluation 117

1 acc 2 accs 4 accs 8 accs 15 accs
Number of FPGA task accelerators

100

101

102

Ex
ec

. t
im

e
pe

r t
as

k
(m

icr
os

ec
on

ds
 -

lo
g.

)

cHOST (10K)
cFPGA (10K)

cHOST (1K)
cFPGA (1K)

cHOST (100)
cFPGA (100)

cHOST (10)
cFPGA (10)

Figure 4.20: Synthetic benchmark time per task with different configurations

time per task in the y-axis. This way, the minimum task size that cHost and cFPGA can
manage is clearly shown.

In the largest block size (10K), cHost and cFPGA behave almost identically except when
a large number of FPGA task accelerators is used. In this block size, the time per task
decreases with the major number of FPGA task accelerators. In the others, cHost stands
at ∼ 19.5 µs per task meanwhile cFPGA keep decreasing (at least until 8 FPGA task
accelerators). As time remains constant regardless of the number of executors, the entire
execution time is spent creating and managing tasks. Therefore, ∼ 19.5 µs approximates
the mean task creation and management time for a task in the host runtime. The same
approximation can be made for cFPGA with the smallest block size (10) and 8-15 FPGA
task accelerators. In this case, the mean task creation and management time is ∼ 0.73 µs,
which is a 26.7x speedup. In addition, the cFPGA times will decrease proportionally with
a higher frequency, and the cHost times will remain almost constant (due to the runtime
management overheads). This will make a higher dent in the potential performance.

4.7.4 Real benchmarks

Matrix Multiply

Figure 4.21 shows the average GFLOPS (y-axis) obtained by different approaches and
with three different block sizes of kernel tasks (x-axis). The considered approaches are:

• OpenBLAS. Same application taskification as the other approaches, but using the
OpenBLAS [@69] library to compute the block-by-block kernel task.

118 Chapter 4 Proposal for Task Spawn in Co-processors

• cHost. Creates the tasks for the kernel task accelerators in the host. This approach
is the normal master-slave approach previously used.

• cFPGA. Creates the tasks for the kernel task accelerators using one extra FPGA
accelerator. This approach breaks the master-slave model using the proposed
extensions.

• cHost (warm-up). Same as cHost but with a previous warm-up execution that
pre-fetches the data into the FPGA memory space.

• cFPGA (warm-up). Same as cFPGA but with a previous warm-up execution that
pre-fetches the data into the FPGA memory space.

64x64 128x128 256x256
Block size

0

20

40

60

80

100

120

140

GF
LO

PS

OpenBLAS (GOMP)
OpenBLAS (Nanos++)
cHost
cFPGA
cHost (warm-up)
cFPGA (warm-up)

Figure 4.21: Matrix Multiply GFLOPS with different approaches and block sizes

Performance of fine-grain tasks (64x64 block size) in figure 4.21 shows that cFPGA
outperforms the cHost. The considerable performance gap is due to the smaller overheads
in the task creation like in the synthetic benchmark. However, the data movements
between the host address space and the FPGA address space also enlarge the overheads
of cHost in this case. The runtime has to check and satisfy the task data requirements
before offloading it into the FPGA. This check has only to be done once in the application
implementation used by cFPGA as just one task is offloaded to the FPGA. The runtime
can pre-fetch the data into the FPGA address space to avoid those overheads. This can
be achieved using previous tasks that already require the movement of the data into the
FPGA address space or some hint for the runtime places in the application code. The
same performance of cHost and cFPGA but using previous warm-up tasks is shown in
cHost (warm-up) and cFPGA (warm-up). As can be seen, both approaches improve the
performance, but cHost (warm-up) is more benefited than cFPGA (warm-up) because
the first has more tasks to handle.

4.7 Evaluation 119

The performance of coarse-grain tasks (256x256 block size) in figure 4.21 shows the
opposite behavior of fine-grain tasks and is cHost that gets better performance than
cFPGA. Despite the small overheads of cFPGA, the approach used to implement the
Matrix Multiply requires a large data movement for the full matrices before the unique
FPGA task can be offloaded. In contrast, the cHost approach allows doing the data
movements block by block and offloading tasks to the FPGA in the middle. These
movements of data between the address spaces are not relevant in cHost (warm-up) and
cFPGA (warm-up), and both approaches obtain the same performance. The results for
the coarse-grain tasks with the warm-up tasks show that cFPGA (warm-up) can achieve
the same performance of the baseline under configurations that use huge accelerators.

(a) cHost

(b) cFPGA

Figure 4.22: Execution traces of Matrix Multiply with 3 accels of 128x128 block size and
512x512 matrix size

Figure 4.22 shows two execution traces of Matrix Multiply for the 128x128 block size,
figure 4.22a for cHost and figure 4.22b for cFPGA. The x-axes represent the time, and
the y-axes the different computational resources (each line). The different colors in each
line represent what is happening in that resource at that time: light-green is for data
movements between address spaces, red is for FPGA task offloading, dark blue is for
the execution of tasks in the FPGA task accelerators, and orange/dark-green are for
input/output data movements between main memory and FPGA BRAMs. Both traces
are scaled to represent the same period of time in the x-axis. Note that figure 4.22b has

120 Chapter 4 Proposal for Task Spawn in Co-processors

one more compute place (one line) than figure 4.22a at the bottom, which represents the
FPGA accelerator implementing the full Matrix Multiply task. This pair of executions
has the same performance gap as described for cHost and cFPGA in the 256x256 block
size and it can be seen in figure 4.21.

Traces in figure 4.22 clearly show that:

1. The offloading of tasks into the FPGA is delayed in cFPGA due to the sequential
large data movement.

2. The data movements in cHost are done in parallel with the execution of tasks in
the FPGA accelerators.

3. The cFPGA approach can occupy the FPGA accelerators much better than cHost.

4. The cHost is not able to feed the FPGA accelerators fast enough to make the
most of them.

5. The cFPGA only uses one host thread to do the data movements and offload the
FPGA task. The rest are idle all the execution time and could be switch off with a
power-saving around 2W.

N-Body

Figure 4.23 shows the average execution time of 3 executions (y-axis, truncated at 100
s) obtained by each approach in the 3 different block sizes of kernel tasks (x-axis). The
considered approaches are:

• cHost. Creates the tasks for the base kernel accelerators in the host. solve_nbody,
calculate_all_forces and update_all_positions are executed in the host.
This is the baseline approach without using the proposed extensions.

• cFPGA calc. Creates the tasks for calculate_forces_blocks using an extra
FPGA accelerator. calculate_all_forces is an FPGA accelerator but solve-
_nbody and update_all_positions are executed in the host.

• cFPGA calc + updt. Creates the tasks for the base kernel accelerators using an
extra FPGA accelerator. calculate_all_forces and update_all_positions

are FPGA accelerators but solve_nbody is executed in the host.

• cFPGA solve. Same as cFPGA calc + updt but also uses an extra FPGA task
accelerator for solve_nbody task.

4.7 Evaluation 121

128 256 512
Block size

0

1

2

3

4

5
GP

ai
rs

/s

SMP (GOMP)
SMP (Nanos++)
cHost
cFPGA calc
cFPGA calc + updt
cFPGA solve

Figure 4.23: N-Body GPairs/s with different approaches and block sizes

The cHost times in figure 4.23 show the complexity of managing such small FPGA tasks
from the host size. The only possible block size to get a reasonable overall execution time
is 512, which has long kernel task accelerators (∼ 140 µs for calculate_forces_block
accelerators and ∼ 188 µs for update_positions_block accelerators). When using a
block size of 256 or 128 particles, the cHost time increases as there is a major number
of tasks to manage and they are executed faster. The calculate_forces_block tasks
take ∼ 36 µs and ∼ 77 µs for update_positions_block, with 256 block size; and ∼
17 µs and ∼ 27 µs for both tasks with 128 block size, respectively. Note that the total
amount of work is the same in the three configurations, and the only difference is the
task granularity used to execute the application. Despite the bad performance of cHost,
the execution time is even larger when the kernel tasks target the SMP host threads
instead of the FPGA device, and therefore the results are not shown in figure 4.23.

The shorter execution times of all cFPGA approaches are due to the better utilization
of kernel task accelerators thanks to the smaller task creation overheads. Moreover,
performing synchronization between stages inside the FPGA device removes host-FPGA
latencies. Consequently, the cFPGA solve approach reduces the execution time of cFPGA
calc and cFPGA calc + updt as more task synchronizations are done inside the FPGA
device. In addition, cFPGA solve shows the capability of nesting multiple levels of FPGA
tasks with the programming model extension.

The best overall configuration is the 256 block size with the cFPGA solve approach.
Due to a high resources consumption, the 512 configuration can only fit 1 calculate-

_forces_block accelerator. Despite the better data locality, the execution of a task
in the 512 configuration is not faster than the execution in three task accelerators of

122 Chapter 4 Proposal for Task Spawn in Co-processors

the 256 configuration, which has a better ratio between execution time and consumed
FPGA resources. In the 128 block size, four calculate_forces_block accelerators
fit into the design, but the time spent doing memory accesses by task accelerators in
the FPGA increases too much, which decreases the overall performance. In all the
configurations, the calculate_all_forces and update_all_positions accelerators
can feed the kernel task accelerators without problems. Indeed, the fastest kernel task
accelerator, calculate_forces_block with 128 block size lasts ∼ 17 µs meanwhile
the creation FPGA accelerators can spawn one task every ∼ 0.45 µs.

Cholesky Factorization

The same cHost and cFPGA approaches as in the other benchmarks are considered.
Those approaches result in 4 combinations that mix mixed and full FPGA target devices
and the device where tasks are created (cHost and cFPGA). The cFPGA mixed approach
shows the programmability and performance improvements of the proposal when creating
tasks from the FPGA device but using the general-purpose processor to execute some
application code not suitable for the FPGA device. Also, results contain the OpenBLAS
approach that uses the same application taskification as the other approaches but using
the OpenBLAS [@69] library to compute the block-by-block kernel task in the host.

32x32 64x64 128x128
Block size

0

4

8

12

16

20

24

28

32

GF
LO

PS

OpenBLAS (GOMP)
OpenBLAS (Nanos++)
cHost full
cFPGA full
cHost mixed
cFPGA mixed

Figure 4.24: Cholesky GFLOPS with different approaches and block sizes

Figure 4.24 shows the average execution time of 3 executions (x-axis) for the different
approaches with 3 blocks sizes. The size of the input matrix is 2048x2048 in all the
results. The cFPGA approach always has the same or better execution time than cHost.
Even for the larger task size the cFPGA approach is faster (around a 20 %) than the
cHost alternative. Also, note that the absolute fastest solution is the 64x64 size cFPGA

4.7 Evaluation 123

approach (around a 40 % faster than the fastest cHost) due to the better resource
balance that the smaller kernel sizes offer. This solution is unreachable without the
proposed extensions.

The 128x128 block size results also show that the full approach is worse than OpenBLAS.
The execution of the potrf tasks in the slow task accelerator enlarges the execution
time. As it can be seen, the combination of the other kernel task inside the FPGA device
with the execution of potrf tasks in the host processor boost the performance by a
5x. This improvement is due to the faster execution of potrf tasks and the increase
of 1 gemm accelerator in the FPGA device. Figure 4.25 shows execution traces of this
case. Traces show the state of the different resources (y-axes) among the execution time
(x-axis). Different colors represent different states: red, offloading a task into the FPGA
device; light-green, executing a potrf task in the SMP; and blue, executing a task in
FPGA task accelerator.

(a) cFPGA mixed

(b) cFPGA full

Figure 4.25: Cholesky execution traces of cFPGA approach (128x128 block size and 2048x2048
matrix size)

The same execution time trend of potrf 128x128 block size can be seen in the 64x64
block size results of figure 4.24, but with smaller differences. This is because the potrf
kernel tasks take a smaller percentage of execution time, making it less critical. On the
other hand, the 32x32 block size results show that cHost cannot efficiently handle the
fine-grain kernel tasks. The runtime overheads in the task creation and a large number
of required host-FPGA synchronizations harm the performance. Despite that, cFPGA
can manage a large number of tasks and occupy all the task accelerators.

124 Chapter 4 Proposal for Task Spawn in Co-processors

4.8 Conclusion

This chapter presents an extension of the OmpSs@FPGA ecosystem to support task
creation and synchronization directly inside the FPGA devices, breaking the master-
slave model and demonstrating the feasibility of such model. The proposed design and
implementation includes novel modules in the HWR, like the Scheduler Manager and
the Taskwait Manager. These modules cooperate with the host runtime to avoid useless
host-FPGA round trips. The optimizations are transparent to the programmers, increasing
programmability and productivity. The modifications allow FPGA task accelerators to
interact with the runtime and create children tasks and synchronize them regardless of
the target architecture.

This extension enables a new dimension of possibilities for application programmers as
they can mix tasks for different devices and nest them without restrictions. For example,
a system call can be done inside the FPGA wrapping it inside an SMP task. This child
task will be reverse offloaded to the host where the task will execute.

The evaluation results show that the new distributed model reaches higher performance
than the master-slave model. Moreover, the peak is achieved using fine-grained tasks
which deliver a smaller performance in the baseline model. The improvement is obtained
reducing the runtime overheads and eliminating non-needed host-FPGA synchronizations.
This allows a faster task creation with less energy consumption. Moreover, the creation
and synchronization of FPGA tasks directly inside the FPGA device allows the use of
host CPUs to execute real application code instead of runtime code.

The proposal has been firstly implemented in a SoC with an integrated FPGA device.
However, the same design has been successfully used in discrete FPGAs connected
through PCI Express (PCIe). Thanks to the modular design of the software stack and
the FPGA IP blocks, the support for this platforms only requires minimal changes in the
low level communication libraries and IPs.

FPGAs are an excellent platform to develop concepts due to their flexibility to incorporate
new hardware. However, the proposal design can be easily extended to other heterogeneous
systems like GPGPUs or AI specific accelerators. Small ASIC modules dedicated to
runtime tasks can help all these systems to have better programmability and obtain
better performance at a very low cost. These benefits will even increase for large systems
where several accelerators are directly connected between them through the network.
Indeed, the proposed design provides a distributed management that avoids bottlenecks
in the host and enables applications to scale up.

4.8 Conclusion 125

4.9 Publications

The list of thesis publications related to the work explained in this chapter is:

• Asynchronous Task Creation for Task-Based Parallel Programming Runtimes.
Jaume Bosch, Xubin Tan, Carlos Álvarez, Daniel Jiménez-González, Xavier Mar-
torell, Eduard Ayguadé. OpenMPCon 2018. [7]
This publication analyzes the initial requirements to support the task spawn inside
co-processors and how to integrate the capabilities in the baseline system.

• Supporting task creation inside FPGA devices.
Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González. BSC International Doctoral
Symposium 2019. [9]
This publication proposes a first implementation to support the task spawn inside
FPGA devices and presents the initial results of the synthetic benchmark.

• Breaking master-slave model between host and FPGAs.
Jaume Bosch, Miquel Vidal, Antonio Filgueras, Carlos Álvarez, Daniel Jiménez-
González, Xavier Martorell, Eduard Ayguadé. PPoPP 2020. [10]
This publication presents the full implementation to allow the task spawn inside
the FPGA devices over OmpSs. It also presents an extended evaluation with all
performance results.

The list of publications related to collaborations with the work presented in this chapter
is:

• Design and implementation of an architecture-aware hardware runtime for hetero-
geneous systems.
Juan Miquel de Haro, Jaume Bosch, Daniel Jiménez-González, Carlos Álvarez.
BSC International Doctoral Symposium 2020. [18]
In this work, the extension of OmpSs@FPGA ecosystem to support the task spawn
inside FPGA devices has been used. Moreover, the modular design of HWR has
been used to integrate the Picos Daviu IP module creating a new HWR called
POM.

• OmpSs@FPGA framework for high performance FPGA computing.
Juan Miquel de Haro, Jaume Bosch, Antonio Filgueras, Miquel Vidal, Daniel
Jiménez-González, Carlos Álvarez, Xavier Martorell, Eduard Ayguadé, Jesus Labarta.
TC 2021 [Accepted for publication]. [19]
In this work, the extension of OmpSs@FPGA ecosystem to support the task spawn
inside FPGA devices has been used.

126 Chapter 4 Proposal for Task Spawn in Co-processors

• High Performance Computing particle-pair distance algorithms, to generate X-ray
spectra from 3D models.
César González, Jaume Bosch, Juan Miguel de Haro, Maurizio Paolini, Antonio
Filgueras, Simone Balocco, Carlos, Álvarez, Ramon Pons. HPC 2021 [Under
review]. [20]
In this work, the extension of OmpSs@FPGA ecosystem to support the task spawn
inside FPGA devices has been used.

4.9 Publications 127

Proposal for Recurrent Tasks 5
Periodic systems (i.e., recurrent workloads) are a common workload in several industry
environments and real-time systems. Those workloads use the task concept to define
the different activities that must be executed periodically (after some amount of time).
Thereby, task-based parallel programming models are a great candidate to support
recurrent workloads that may afterward be parallelized and handled with the current
programming model features. The proposal aims to demonstrate that task-based parallel
programming models can be easily extended to efficiently support recurrent workloads.

Section 5.1 describes the key ideas of the proposal design. Then, sections 5.2 to 5.6
describe the modifications done starting from the OmpSs programming model, up to
the FPGA bitstream design. After them, section 5.7 shows an evaluation of different
benchmarks using the proposal enhancements. Finally, section 5.8 concludes the chapter
with the key contributions, and section 5.9 lists the publications related to this chapter.

5.1 Proposal Design

The following points summarize the design goals of the proposal:

• Integrate the concept of a recurrent task in the OmpSs programming model, as
an example of how the task-based parallel programming models can express a
recurrent system.

• Use the low-power and high-throughput capabilities of FPGA task accelerators to
implement the recurrent tasks management.

• Support new synchronization mechanisms between independent FPGA task accel-
erators.

The extension of the baseline task-based parallel programming model to allow the
expression of recurrent tasks is the first design goal. The point is to extend the
current task syntax to allow the definition of a recurrent system by means of a period
and a repetitions number. The task starts executing every time the defined period is
accomplished, not before. However, the start may be delayed if the previous repetition

129

has not finished. The recurrent tasks do not become accomplished until a number of
repetitions are executed or aborted due to some conditions explicitly programmed in the
application code. The proposal does not consider some of the features that a real-time
recurrent system may need, like task deadlines, but it does not limit their future support
or their explicit handling in the application code. In this sense, it is a first step open to
future extensions.

The proposal allows a compact, easy and intuitive expression of a recurrent system.
Although a recurrent system could be implemented at application level with the baseline
programming model, the programming effort is much smaller thanks to the proposed
extensions.

The handling of application recurrent tasks requires some runtime support to continuously
monitor them and schedule the task repetitions after the different periods expire. This
continuous monitoring is very suitable for FPGA devices. As demonstrated in the previous
chapter, they have task creation capabilities with a lower-power consumption and a high
throughput. In both metrics, FPGA tasks outperform the equivalent SMP tasks in the
host.

As a complementary enhancement, a new synchronization mechanism has been developed
for FPGA tasks. The synchronization between tasks is usually performed through data
dependences or explicitly using the taskwait directive. However, this approach requires
a common task context that performs the synchronization. This may not be suitable
for the recurrent tasks that are executed periodically without coordination. The critical
clause can perform such coordination. Therefore, the proposal design includes critical
regions to coordinate different FPGA task accelerators. The critical regions are supported
by the HWR using the infrastructure of the previous proposal.

5.2 Programming model extension

The extension of the OmpSs programming model [4] defines two new clauses in the task
directive used to label a task as a recurrent one. The new clauses are optional. If they
are not used, the created task is a regular task; and if any of both are present, the task
becomes a recurrent task. The clauses are:

• period(N). This clause defines the minimum amount of time between the beginning
of two task executions. By default, the time is expressed in microseconds, but
this may be changed at compile time (currently, using a compiler option). The
value is 32 bits wide, and it is evaluated at runtime, so it may be unknown at

130 Chapter 5 Proposal for Recurrent Tasks

compile time. When the period clause is not provided in a recurrent task, the
default (implicit) value is 0, which makes the task body execution restarts just
after finishing. The same happens when the task execution takes longer than the
period: the next repetition starts just after the former. Therefore, the task will not
be under execution twice. However, this behavior could be changed in the future
with extra clauses or by a runtime option. Other approaches could be: aborting
the current repetition, aborting the next repetition, schedule both repetitions in
parallel.

• num_repetitions(N). This clause defines the maximum number of times that
the task body will be executed. The value is 32 bits wide, and it is evaluated at
runtime, so it may be unknown at compile time. When the num_repetitions

clause is not provided, the default (implicit) clause value in a recurrent task is
an unlimited number of repetitions. Since 0 repetitions may be a valid amount
of repetitions, the unlimited number of repetitions is represented with the largest
representable value in an unsigned 32 bits number (0xFFFFFFFF, or 4 294 967 295
in base 10).

The semantics of other task clauses in a recurrent task remain equal to a regular task.
The same criteria apply to the interaction of a recurrent task with other programming
model directives (like the taskwait). The recurrent tasks will not become finished until
all repetitions have been run. Therefore, a taskwait after a recurrent task will not
be accomplished until all the recurrent task repetitions have been run. Also, the data
dependences in a recurrent task only postpone the execution of the first repetition but not
the others, and the successor tasks of a recurrent task are not ready until all repetitions
are executed.

1 #pragma omp task inout ([10] array) num_repetitions(reps) period (1000000)
2 void recurrent_task(int *array , const int reps);
3
4 #pragma omp task inout ([10] array)
5 void regular_task(int *array);
6
7 int main (...) {
8 int array [10];
9 regular_task(array);

10 recurrent_task(array , 100);
11 regular_task(array);
12 #pragma omp taskwait
13 }

Listing 5.1: OmpSs example with a recurrent task

5.2 Programming model extension 131

Listing 5.1 shows an example of a recurrent task (recurrent_task) and a regular task
(regular_task). The main function calls the regular task, then the periodic task, and
finally the regular, creating a chain of three task instances due to its data dependence.
The recurrent task has the num_repetitions clause, which defines that the task body
will be executed reps times (in this case, the argument value is 100), and the period

clause, which defines that the task will begin the execution every 1 second (1000000
microseconds). The first regular task becomes ready when created as its data dependences
are satisfied. In contrast, the other two are postponed. The recurrent task is postponed
until the first regular task finishes, and the second regular task is postponed until the
100 repetitions of the recurrent task have been executed.

5.3 Mercurium Compiler Support

The support of new OmpSs capabilities has been integrated into Mercurium compiler.
The changes involved the OmpSs and the FPGA device translation level phases but also
changes in the compiler core to extend some representations.

The first change involved the compiler core in order to store the expressions contained
in the new clauses. This information is checked during the replacement of OmpSs task
directives into runtime API calls. If the task directive does not contain neither period
clause nor num_repetitions, the compiler emits the regular API calls and generates the
user function code as before. In contrast, the compiler forwards the period and number of
repetitions information to the runtime during the task creation if any of the clauses appear.
The information is provided to the runtime using the new nanos_set_wd_recurrent

API.

The support of critical regions inside the FPGA task accelerator uses the already existing
runtime API for the regular SMP threads. Therefore, the compiler performs the already
existing code transformations regardless of the architecture of the enclosing task. The
transformation is based on a mutual exclusion lock acquired at the beginning of the
critical region and released after the region body.

5.3.1 HLS Source Code

The wrapper generated by the compiler must support a new FPGA command for the
execution of a recurrent task. The command format is similar to the regular execute task
command (figure 4.7) but with an extra word that contains the period and number of

132 Chapter 5 Proposal for Recurrent Tasks

repetitions information. The format of the new command is shown in figure 5.1. The
new word is shown in blue, and the others are in gray.

Word 0 0x05

0 63323187

Task IDWord 1

Num.
Args

1615 4039 4847

Comp.
Flags

Dest.
ID

Num. RepetitionsWord 3

Word 0 Flags

0 63323187

Argument ValueWord 1

4039

Arg.
ID

Parent Task IDWord 2

Period

Figure 5.1: Format of execute recurrent task command

The proposal just requires a loop around the call to the user function in the wrapper
source code. This loop iterates as many times as the number of repetitions the task has,
and it adds a delay after the user function call. The delay implementation depends on the
time unit of period clause, which is microseconds by default. A simplified pseudo-code
version of this wrapper logic is shown in listing 5.2 for the example of listing 5.1.

The intermediate HLS source code files may have calls to new Nanos++ APIs when the
FPGA task is recurrent. Therefore, the wrapper generated by Mercurium must include
an implementation of those APIs when the FPGA task may call them. The main goal of
those APIs in the FPGA task accelerator is to control the repetitions of recurrent tasks.
They are listed following and further detailed in section 5.4:

• nanos_get_periodic_task_repetition_num. The implementation returns the
current repetition number which is being executed. Note that the first repetition
is the number 1, since 0 is returned when the task is non-recurrent.

• nanos_cancel_periodic_task. The implementation cancels the remaining repe-
titions of the current recurrent task. This does not cancel the remaining task code
after the API call.

The support of critical regions inside FPGA task accelerators uses the already defined
Nanos++ APIs in the intermediate HLS source code. The compiler analyzes the task
body looking for critical regions and adapts the intermediate source code generation
according to the task needs. The following points describe the new supported APIs.

5.3 Mercurium Compiler Support 133

1 extern const ap_uint <5> mcxx_acceleratorID;
2 extern const ap_uint <64> mcxx_hwCounter;
3 extern const ap_uint <10> mcxx_acceleratorFreq;
4 unsigned int mcxx_period;
5 unsigned int mcxx_numReps;
6
7 void recurrent_task(int *array , const int reps)
8 {
9 //...

10 }
11
12 void recurrent_task_mcxx_hls_wrapper(
13 hls_axis_t mcxx_inStream , hls_axis_t mcxx_outStream ,
14 int *array_port)
15 {
16 #pragma HLS INTERFACE ap_ctrl_none port=return
17 #pragma HLS INTERFACE axis port=mcxx_inStream
18 #pragma HLS INTERFACE axis port=mcxx_outStream
19 #pragma HLS INTERFACE m_axi port=array_port
20
21 unsigned long long int _tmp;
22 //...
23
24 _tmp = mcxx_inStream.read (). data;
25 mcxx_period = _tmp;
26 mcxx_numReps = _tmp >> 32;
27
28 //...
29
30 for (unsigned int rep=0; rep <numReps; rep ++) {
31 _tmp = mcxx_get_current_time ();
32 recurrent_task (...);
33 _tmp = mcxx_get_current_time () - _tmp;
34 if (_tmp < mcxx_period) usleep(mcxx_period - _tmp);
35 }
36
37 //...
38 }

Listing 5.2: FPGA task accelerator wrapper example with recurrent loop

134 Chapter 5 Proposal for Recurrent Tasks

nanos_set_lock

The wrapper generated in the HLS intermediate file implements the nanos_set_lock API
to support calling it from the FPGA task accelerator code. The implementation forwards
the information of the lock that will be acquired to the HWR. The communication is done
over mcxx_eOutPort that communicates all FPGA task accelerators with the HWR.

The AXI-Stream format of message sent to HWR can be seen in figure 5.2. The gray
part shows the protocol information that includes 1 bit for the last package information
and two identifiers (5 bits wide) for the destination and the source. The data part of the
message is shown in blue, and it encodes: 8 bits fixed to the code 0x4 that define that
the task wants to acquire the lock, and 24 bits for the identifier, or hash, of the lock to
be acquired.

Package 1

0x1Last (1 bit)

Dest. ID (5 bits)

ID (5 bits)

Data (64 bits)

HWR_LOCK_ID

Accelerator ID

Lock ID

0 633231

0x04

8 7

Figure 5.2: Format of set lock message for Lock manager

After sending the message, the FPGA task accelerator waits until the HWR sends a
response through mcxx_inStream. This response notifies whether the lock has been
acquired or not. If the response is successful, the lock has been acquired, and the critical
region can be executed. Otherwise, the acquire is retried as the API is blocking.

nanos_unset_lock

The wrapper generated in the HLS intermediate file implements the nanos_unset_lock
API to support calling it from the FPGA task accelerator code. The implementation
forwards the information of the lock that will be released to the HWR. The communication
is done over mcxx_eOutPort that communicates all FPGA task accelerators with the
HWR.

The AXI-Stream format of message sent to HWR can be seen in figure 5.3. The gray
part shows the protocol information that includes 1 bit for the last package information
and two identifiers (5 bits wide) for the destination and the source. The data part of the
message is shown in blue, and it encodes: 8 bits fixed to the code 0x6 that define that

5.3 Mercurium Compiler Support 135

the task wants to release the lock, and 24 bits for the identifier, or hash, of the lock to
be released.

Package 1

0x1Last (1 bit)

Dest. ID (5 bits)

ID (5 bits)

Data (64 bits)

HWR_LOCK_ID

Accelerator ID

Lock ID

0 633231

0x06

8 7

Figure 5.3: Format of unset lock message for Lock manager

In contrast to nanos_set_lock, this API is non-blocking and it does not wait for
any response. Then, the lock release is performed asynchronously as the FPGA task
accelerator sends the release message and keeps executing the task body.

nanos_try_lock

The wrapper generated in the HLS intermediate file implements the nanos_try_lock API
to support calling it from the FPGA task accelerator code. The implementation forwards
the information of the lock that will be acquired without blocking. The communication
is done over mcxx_eOutPort that communicates all FPGA task accelerators with the
HWR.

The AXI-Stream format of message sent to HWR is the same of nanos_set_lock and
can be seen in figure 5.2. However, the FPGA task accelerator does not retry acquiring
the lock if the HWR response to the lock message is non-successful. The result is
returned to the caller context in order to allow the application code to decide what to
do, considering if the lock has been acquired or not.

5.4 Nanos++ Runtime Support

The support for recurrent tasks requires some support by Nanos++ runtime. The WD
has been extended to store the period and number of repetitions information if needed.
Then, the runtime uses that information to implement the desired behavior. In the case
of recurrent SMP tasks, the runtime handles the recurrent task execution with the needed
delay in the midtime. In the case of recurrent FPGA tasks, the runtime offloads the task

136 Chapter 5 Proposal for Recurrent Tasks

to the FPGA device using the new xTasks API (explained in section 5.5). Section 5.4.1
describes the new APIs introduced in the runtime to support the new capabilities.

5.4.1 New APIs

The Nanos++ API has been extended with three new APIs. nanos_get_periodic_

task_repetition_num and nanos_cancel_periodic_task can be called at any device
and from any task. nanos_set_wd_recurrent is the other new API which is used to
set the recurrent information of a newly created task before its submission.

nanos_get_periodic_task_repetition_num

The nanos_get_periodic_task_repetition_num API returns an unsigned integer
with the current repetition number of the recurrent task being executed. The first
repetition number is 1, and the highest repetition number is 4 294 967 295 (0xFFFFFFFF).
After the highest number, the count will overflow and start again from 0. In addition,
the repetition number 0 is returned when the API is called from a non-recurrent task.
The API declaration is shown in listing 5.3.

1 unsigned int nanos_get_periodic_task_repetition_num ();

Listing 5.3: Nanos++ API to retrieve current task repetition

nanos_cancel_periodic_task

The nanos_cancel_periodic_task API cancels the remaining repetitions (if any) of
the current recurrent task being executed by the caller. The API call does not abort the
remaining user code after the API call for the current task repetition. The API will not
have any effect when called outside a recurrent task. The API declaration is shown in
listing 5.4.

1 void nanos_cancel_periodic_task ();

Listing 5.4: Nanos++ API to cancel remaining task repetitions

5.4 Nanos++ Runtime Support 137

nanos_set_wd_recurrent

The nanos_set_wd_recurrent API synchronizes the child tasks, blocking the caller
until the execution of child tasks have finished. The API can only be called from the
FPGA task accelerators, and it throws an error if called in the host. The API declaration
is shown in listing 5.5 and its parameters are:

• wd. WD which recurrent information will be set.

• period. Minimum period (in microseconds) between task beginnings.

• repetitions. Number of times that task body will be executed before the task
becomes finished.

1 nanos_err_t nanos_set_wd_recurrent(
2 nanos_wd_t wd, unsigned int period , unsigned int repetitions);

Listing 5.5: Nanos++ FPGA API to set recurrent task information

5.5 xTasks Library Support

The offload of recurrent tasks from both runtimes, Nanos++ and HWR, is done through
xTasks library. To support the new functionalities, the library added new APIs available
for Nanos++ runtime (described in section 5.5.1) which interface the already existent
communication queues. The new API is used to create the recurrent task, while the
other task operations (delete, submit, etc.) can be done through the already existent
API.

5.5.1 New APIs

The xTasks API has been extended with one new API which is detailed in the following
point.

138 Chapter 5 Proposal for Recurrent Tasks

xtasksCreatePeriodicTask

The xtasksCreatePeriodicTask creates a recurrent task for an accelerator with the
given identifier, compute flags, period and number of repetitions. Most of the parameters
and types are shared with xtasksCreateTask, which is explained in section 2.4.1. The
API declaration is shown in listing 5.6, and its parameters are:

• id. Task identifier that will be returned at finalization. Arbitrary identifier that
caller can use to identify a task uniquely.

• accel. Accelerator handle where task will be submitted.

• compute. Compute flags to enable/disable the execution of the task body.

• numReps. Number of task body repetitions to execute.

• period. Time between the execution beginning of two repetitions.

• handle. Pointer to a valid xtasks_task_handle that will be set with an opaque
task handle.

1 xtasks_stat xtasksCreatePeriodicTask(
2 xtasks_task_id const id, xtasks_acc_handle const accel ,
3 xtasks_comp_flags const compute , unsigned int const numReps ,
4 unsigned int const period , xtasks_task_handle *handle);

Listing 5.6: xTasks APIs for FPGA recurrent task creation

5.6 FPGA Design Support

The support of the new features only requires minor changes in the FPGA task accelerators
and HWR. The main change is the new command that must be supported by the HLS
wrapper, which is generated by Mercurium, and by the HWR that must understand the
new command and correctly move it from queues to the streams. Section 5.6.1 describes
the changes done in the FPGA task accelerators and section 5.6.2 the ones in HWR.

Figure 5.4 shows the elements in the system, focused in the FPGA part. The figure
extends the chapter 4 proposal design shown in figure 4.11. The new elements shown in
the figure are explained in the following sections.

5.6 FPGA Design Support 139

FPGA

Memory

FPGA Task
Accelerator

SOM

Circular Instrumentation Queues

Host

CmdIn
Manager

CmdOut
Manager

CmdIn
Queue

CmdOut
Queue

Accelerators State

FPGA Task
Accelerator

X

BRAM Controller

X

SpawnIn
Queue

SpawnOut
Queue

Taskwait
Manager

Scheduler
Manager

SpawnIn
Manager

Int. CmdIn
Queue

FPGA Task
Accelerator

FPGA Task
Accelerator

X
X

X

Bitinfo

Lock
Manager

Figure 5.4: FPGA Bitstream design with the extended SOM Hardware Runtime (v2)

5.6.1 FPGA Task Accelerators

The FPGA task accelerators have been extended, if needed, to support the new recurrent
capabilities. AIT checks if the HLS source code generated by Mercurium has the
additional ports (mcxx_hwCounter and mcxx_acceleratorFreq). They are used to
delay the requested time between repetitions by accounting for the number of cycles
based on the FPGA task accelerator frequency. When the new ports are found, AIT adds
and connects an instance of a hardware counter (HW Counter) and a constant variable
with the accelerator frequency (Frequency). The interconnection and new elements of
a recurrent FPGA task accelerator are shown in figure 5.5 together with the previous
elements.

The acquire and release messages sent to support the critical regions on the FPGA task
accelerators are forwarded through the existing interconnections. These interconnections
are the ones that go through the eIn Adapter and eOut Adapter as shown in figure 5.5.
They were introduced and handled in the previous proposal.

140 Chapter 5 Proposal for Recurrent Tasks

FPGA

Memory

HLS Mercurium
IP

HW Runtime

Circular Instrumentation Queues

Host

AcceleratorID

FPGA Task Accelerator

X

Frequency

eIn
Adapter

eOut
Adapter

Instr.
Adapter

HW Counter

Figure 5.5: Internal structure of FPGA Task Accelerator with task spawn support

5.6.2 Hardware Runtime

The SOM implementation of the HWR has been extended to support the new execute
recurrent task command. The update only involved the CommandIn manager, which
needs to recognize the new command to correctly compute the number of words following
the command header. The format of those commands is shown in figure 5.1.

One new module has been added in the SOM implementation to handle the acquire and
release messages for locks. The new module is the Lock Manager, and it uses the HWR
interconnections added in the proposal of chapter 4.

Lock Manager

The Lock Manager is an IP block developed in C++ using HLS tools. Its external
interface is shown in figure 5.6, where the different ports and protocols to communicate
the module with the other components are detailed. Those ports are connected as shown
in figure 5.4 and they are:

• In Stream. AXI-Stream port used by all FPGA task accelerators to send the
acquire/release messages.

5.6 FPGA Design Support 141

• Out Stream. AXI-Stream port to send the acknowledge of acquire messages to
FPGA task accelerators.

Lock Manager
In Stream

8
AXI-Stream

Out Stream
64

AXI-Stream

Figure 5.6: External interface of Lock Manager

The purpose of the Lock Manager is keeping the state of different locks that may be
concurrently acquired and released by the FPGA task accelerators. To this end, the
module has an internal table with the state of each lock. The module can receive two
types of messages in the input stream: acquire messages (format shown in figure 5.2)
and release messages (format shown in figure 5.3). Whenever it receives a new message,
it looks for the lock identifier in the internal table and sets or clears the lock state. The
response is successful in the acquire messages when the lock was not previously set and
fail when the state is unchanged.

The number of entries in the internal lookup table is fixed during the AIT design stage.
The current implementation has a direct mapping in the table for each lock ID. However,
this could be changed and implement an N-way table. There must be enough entries
in the table to ensure that nested locks do not map to the same entry. Otherwise, the
system will enter in a deadlock state due to the impossibility of acquiring the inner
lock.

5.7 Evaluation

The evaluation of the proposed design and implementation of recurrent tasks has been
done in terms of programmability and productivity, limitations of tasks management, and
power savings. Section 5.7.1 presents the experimental setup used among the evaluation.
Section 5.7.2 presents the evaluation of the limitations and management overheads of the
proposed design using a synthetic benchmark. Section 5.7.3 shows the results for a sensor
monitoring use case in embedded systems. Finally, section 5.7.4 presents the evaluation
of the proposal for a face detection application. This face detection application is made
over a stream of images.

142 Chapter 5 Proposal for Recurrent Tasks

5.7.1 Experimental Setup

The evaluation of the proposal modifications has been done in an embedded board and
with real executions. The tools used to generate the application bitstreams and binaries
are: Vivado Design Suite 2020.1, GNU C/C++ Compiler 6.2.0, and PetaLinux Tools
2019.2. The modifications have been developed on top of OmpSs@FPGA release 2.3.0.

Zedboard

All executions have been run in a Zedboard, which contains a Xilinx Zynq-7000 All
Programmable SoC [@72]. The board is commonly used in embedded industrial systems
as it offers high versatility with reduced power consumption and budget. The SoC is
composed of 2 ARM Cortex-A9 cores, that run at 667 MHz, a Xilinx Zynq-7000 FPGA
and a main DDR3 memory of 512 MB. The board is booted using the Ubuntu Linux
16.04 operating system. All FPGA bitstreams have been generated and executed at 100
MHz, or 200 MHz if mentioned.

5.7.2 Synthetic benchmark

Listing 5.7 shows the pseudo-code of the synthetic benchmark using the proposal
extensions. The benchmark does nothing but its execution time can be analyzed when
changing the task size, task period and number of repetitions. This pattern allows an
exploration of the runtime limits to manage fine-grain periodic tasks. The benchmark
executes a task called foo which is a periodic task that gets executed num_reps times
every period microseconds. The task lasts for duration microseconds.

1 #pragma omp target device(fpga) \
2 num_repetitions(num_reps) period(period)
3 #pragma omp task
4 void foo(int duration) {
5 usleep(duration);
6 }
7
8 int main (...) {
9 foo(duration);

10 #pragma omp taskwait
11 }

Listing 5.7: Recurrent synthetic benchmark pseudo-code

5.7 Evaluation 143

The same benchmark behavior can be achieved without using the proposal extensions.
However, it requires an extra effort from the programmers side and additional code to
manage the periodic task. Listing 5.8 shows the pseudo-code for the same synthetic
benchmarks but without the proposal extensions. The benchmark requires an extra task
(foo_manager) that manages all executions of recurrent task (foo). The manager task
runs in the SMP host threads, and it has to launch and synchronize the recurrent task
every period microseconds. During the wait, the taskyield directive [@73] (line 16) is
used to avoid blocking the host thread that executes the manager task.

1 #pragma omp target device(fpga)
2 #pragma omp task
3 void foo(int duration) {
4 usleep(duration);
5 }
6
7 #pragma omp task
8 void foo_manager(int duration , int num_reps , int period) {
9 for (unsigned int rep=0; rep <num_reps; rep++) {

10 const double t_ini = wall_time_us ();
11 foo(duration);
12 #pragma omp taskwait
13 while ((wall_time_us () - t_ini) < (double)period &&
14 rep < (num_reps - 1))
15 {
16 #pragma omp taskyield
17 }
18 }
19 }
20
21 int main (...) {
22 foo_manager(duration , num_reps , period);
23 #pragma omp taskwait
24 }

Listing 5.8: Recurrent synthetic benchmark pseudo-code without proposal extensions

The comparison of both synthetic benchmark implementations shows the programmability
enhancement that the proposal adds. The baseline system requires one extra task of 13
lines for each recurrent task in the application as shown in listing 5.8. Moreover, the
extra manager task consumes resources in the host threads and adds pressure to the
host runtime, which may create a new bottleneck. In contrast, the proposal moves the
management complexity in the FPGA task accelerator that only needs to receive the task
to execute with the number of repetitions and the period. It has a minimal footprint in
the resources used by the FPGA task accelerator as shown in table 5.1 (for a 100 MHz
build). In terms of power consumption, the proposal removes the need to use an A9 core
for recurrent task management, which consumes 277 mW. Indeed, it only increases the

144 Chapter 5 Proposal for Recurrent Tasks

FPGA task accelerator power in 1 mW doing the same work. Both powers are reported
by Vivado in the post-implementation power summary.

Name BRAM DSP FF LUT Power
Zedboard 280 220 106 400 53 200 -
ARM A9 Core - - - - 277 mW
foo baseline 0 (0 %) 2 (0.9 %) 593 (0.6 %) 478 (0.9 %) 7 mW
foo proposal 0 (0 %) 4 (1.8 %) 921 (0.9 %) 792 (1.5 %) 8 mW

Table 5.1: Vivado resources utilization and power report for Zedboard (100 MHz)

The time devoted to each repetition is period, or duration if the task execution lasts
more than task’s period (concurrent repetitions are not allowed). Then, the optimal
execution time is defined by num_reps per the time devoted to each repetition but the
last one which only needs to consider the task execution (duration) as the benchmark
can immediately finish. Equation 5.1 defines the optimal execution time given the
duration, num_reps and period parameters.

Timeoptimal = (num_reps− 1) ∗max(duration, period) + duration (5.1)

Then, the effectiveness of an execution is defined by the ratio between the optimal
execution time and the real execution time. The resulting value is a percentage that
ideally would always be a 100 %. Equation 5.2 shows the formula to compute the
effectiveness of an execution.

Effectivenessexec = Timeoptimal/T imeexec (5.2)

Figure 5.7 shows the effectiveness (y-axis) of the synthetic benchmark when changing
the task period (x-axis). The chart has different series that correspond to different task
durations. The task durations are labeled in the legend and are only shown for periods
equal or larger than them. The number of repetitions is constant in all the results, and
its value is 10 000. The FPGA device is configured at 100 MHz. The blue series show the
effectiveness of synthetic benchmark implemented with the proposal enhancements and
having the recurrent task management in the FPGA task accelerator. On the other hand,
the orange series show the effectiveness of baseline implementation using a manager task
in the host threads. These baseline series are labeled in the legend with (host).

The effectiveness results in figure 5.7 show that the proposal implementation (blue)
always obtains higher effectiveness than the baseline implementation (orange). The host
management of the recurrent task always has the same pattern. First, the effectiveness

5.7 Evaluation 145

1 10 20 30 40 50 60 70 80 100 120 140 160 180 200 220 240 260 280 300
Period (us)

0

20

40

60

80

100
Ef

fe
ct

iv
en

es
s %

1 us
1 us (host)
50 us

50 us (host)
100 us
100 us (host)

150 us
150 us (host)

200 us
200 us (host)

Figure 5.7: Effectiveness of synthetic benchmark for different task durations and periods
(microseconds scale)

is poor when the period is equal to the task duration. Then, the effectiveness starts
increasing with the higher periods until the difference between the period and the task
duration is at least 70 microseconds. After that, the effectiveness is stable near to 99.4
%. These 70 microseconds’ need to effectively handle the recurrent task are due to the
communication round-trip between the host and the FPGA task accelerator. In contrast,
the proposal implementation is able to effectively handle all task durations and periods
as the management is done inside the FPGA task accelerator itself. Therefore, the
communication between the host and the FPGA task accelerator is only needed twice:
at the beginning of the recurrent task and after all task repetitions.

Figure 5.8 shows two execution traces for a portion of benchmark execution (same
duration in both). The recurrent task parameters are 200 microseconds for task duration
and 250 microseconds for task period. Figure 5.8a contains the trace for the baseline host
management and figure 5.8b contains the equivalent one with the proposal enhancements.
In both traces, the different colors represent the activities being done in the different
computational elements among time (x-axes). Pink regions represent the offload of foo
task to the FPGA. Brown regions represent the execution of foo_manager task. Blue
regions represent the execution of one foo repetition in the FPGA task accelerator.

The elapsed time shown in traces is about 7 900 microseconds, which could fit ∼31
repetitions of foo task. Although, the baseline host trace only contains 8 repetitions of
the recurrent task due to the task communication and instrumentation overheads. In
contrast, the proposal trace contains 30 repetitions of the recurrent task launched every
250 microseconds.

The performance gap between both managements is 4x in figure 5.8, however the
real performance gap is 1.1x (as shown in figure 5.7). The difference comes from the

146 Chapter 5 Proposal for Recurrent Tasks

(a) Baseline host management

(b) Proposal management

Figure 5.8: Execution traces of synthetic benchmark with 250 us period and 200 us duration

instrumentation overheads that are huge for those fine-grain tasks. In the proposal
management, the host threads are not doing any activity after the initial offload which
puts less stress in the instrumentation system. Considering the 90 % effectiveness shown
in figure 5.7 the baseline host management should contain 28 repetitions of the recurrent
tasks. The difference between the expected trace and the real obtained trace increases
the importance of efficient task management like the proposal one.

The power savings of the proposal can be estimated based on the traces of figure 5.8.
Assuming a large number of task repetitions, which is the expected behavior in a real-time
system, the proposal allows freeing the ARM cores 100 % of the execution time. In
contrast, one host thread is at least needed in the baseline host management. This
management difference makes the new proposal design consume 276 mW less than the
baseline implementation.

To further analyze the proposal limits and overheads, figure 5.9 shows the effectiveness of
the synthetic benchmark like figure 5.7 but with task durations and periods at nanoseconds
scale. The number of repetitions is constant in all the results to 10 000 000, which is
proportionally equivalent to the 10 000 value of microsecond results. The FPGA device
is also configured at 100 MHz. The host management effectiveness (yellow line) is only
shown for one nanosecond task duration as it remains around 1 % in all periods. For all
periods shown in figure 5.9, any task duration larger than one nanosecond results in an
effectiveness below the shown line for the host management.

The effectiveness results in figure 5.9 confirm that the proposal implementation (blue) is
the only option to effectively manage fine-grain periodic tasks. The FPGA management
results show a pattern similar to the previously seen in host management results in
figure 5.7. For a given duration, the effectiveness notably increases with the higher

5.7 Evaluation 147

1 100 200 300 400 500 600 700 800 900 1000
Period (ns)

0

20

40

60

80

100
Ef

fe
ct

iv
en

es
s %

1 ns
100 ns
200 ns

300 ns
400 ns
500 ns

600 ns
700 ns
800 ns

900 ns
1 ns (host)

Figure 5.9: Effectiveness of synthetic benchmark for different task durations and periods
(nanoseconds scale)

periods until the difference between the period and the task duration is at least 60
nanoseconds. After that, the effectiveness stabilizes and slowly increases with higher
periods. The need for these 60 nanoseconds to effectively handle the recurrent task is
due to the minimal management in the FPGA task accelerator to check the number
of remaining repetitions and whether the period has elapsed or not. Despite that, the
results with a duration above 900 nanoseconds show that the proposal management is
very efficient without matter if the task period is equal to the task duration. This is
thanks to the thin overheads of the proposal, which are 1167x smaller than the ones in
the baseline approach.

1 100 200 300 400 500 600 700 800 900 1000
Period (ns)

0

20

40

60

80

100

Ef
fe

ct
iv

en
es

s %

50 MHz 100 MHz 200 MHz

Figure 5.10: Effectiveness of synthetic benchmark for different FPGA frequencies and periods
with 1 nanosecond task duration

Figure 5.10 shows the effectiveness of the synthetic benchmark (y-axis) among different
periods (x-axis) but for different FPGA frequencies. The number of repetitions is
10 000 000, like in figure 5.9 as both use the nanoseconds scale. In all results, the task
duration is fixed to 1 nanosecond. The results show that the frequency of FPGA device

148 Chapter 5 Proposal for Recurrent Tasks

also affects the effectiveness. The major the frequency, the fastest the execution of
recurrent tasks in the FPGA task accelerators, and the lower the management overheads.
All the results in this section have been computed at 100 MHz, which is pretty conservative
for a modern FPGA (that can easily reach 300 or more MHz). The hardware management
is too effective that it does not even need to work at these higher frequencies to cover
nearly all the possible working periods.

5.7.3 Sensors Monitoring

The sensors monitoring is a common workload in industrial environments. Its purpose is
collecting information from any kind of sensors with a given frequency to know the state
of the elements and keeping track of it, or even reacting if some irregularity is detected.
The workload is a perfect example of a recurrent system with tasks that correspond to
the different actions performed every some time. A task may read the sensor’s input
value, check the latest registered value for a sensor, and (maybe) trigger some action,
analyze a bunch of collected data, write the latest values to disk, etc.

Buffer 0

Read
sensor 0

Merged sample

Merge

Process Check
errors

Write to
disk

Handle
sample

Read
sensor 1

Read
sensor N. . .

Buffer 1 Buffer N
Taskwait
R/W memory access

LEGEND

Figure 5.11: Tasks organization and memory regions of sensors monitoring benchmark (cFPGA
cri configuration)

Figure 5.11 shows the tasks and memory regions used to implement the benchmark
with the proposal enhancements. The blue boxes represent FPGA tasks and the orange
box the SMP task (Write to disk). The blue boxes with a blue background are the
recurrent tasks, the other (white background) are regular tasks. Moreover, the recurrent
Handle sample task invokes different child tasks, which are grouped into a dashed box.
The execution of those child tasks is ordered by a taskwait directive, which is represented
by a doted sky-blue arrows in figure 5.11. The olive-green boxes represent the main

5.7 Evaluation 149

memory regions accessed by the tasks, and the green arrows the information flow between
tasks through the regions. The green arrows with a key on top of them denote that this
access is done using a critical region to ensure the atomicity of read/write operations.

Buffer 0

Read
sensor 0

Merged sample

Merge

Process Check
errors

Write to
disk

Handle
sample

Read
sensor 1

Read
sensor N. . .

Buffer 1 Buffer N

Recurrent
manager

Task dependence
Taskwait
R/W memory access

LEGEND

Figure 5.12: Tasks organization and memory regions of sensors monitoring benchmark (cHost
ncri configuration)

The same benchmark has been implemented without using the proposal enhancements:
the support for recurrent tasks and the critical regions in FPGA task accelerators. The
support of recurrent tasks has been replaced by one additional task (either SMP task or
FPGA task) that monitors the recurrent tasks and spawns them periodically (Recurrent
manager). The critical regions that ensure the atomic access to shared buffers (Buffer
0, Buffer 1, etc.) have been replaced by task dependences in the child tasks (Read
sensor and Handle sample) or explicit taskwaits in the Recurrent manager task. The
synchronization between the recurrent tasks requires a single complex monitor task, in
contrast to the several monitor tasks used in the synthetic benchmark. The pseudo-code
of the SMP manager task is shown in listing 5.9. Also, the tasks and memory regions
for the implementation with an SMP manager task and task dependences (cHost ncri

configuration) are shown in figure 5.12. The figure uses the same color meanings of
figure 5.11, but it adds the solid sky-blue arrows that represent the ordering of tasks due
to data dependences.

150 Chapter 5 Proposal for Recurrent Tasks

1 #pragma omp task
2 void Recurrent_manager(buffer_sensor[N+1], merged_sample ,
3 num_reps[N+1], periods[N+1])
4 {
5 double last_start[N+1];
6 int reps_count[N+1];
7 int num_finished = 0;
8 for (unsigned int idx =0; idx <(N+1); idx++) {
9 last_start[idx] = 0;

10 reps_count[idx] = 0;
11 }
12 while (num_finished < (N+1)) {
13 const double now = wall_time_us ();
14 if ((now - last_start [0]) > periods [0] &&
15 reps_count [0] < num_reps [0])
16 {
17 Read_sensor0_task(buffer_sensor [0]);
18 last_start [0] = now;
19 reps_count [0]++;
20 num_finished += reps_count [0] >= num_reps [0] ? 1 : 0;
21 }
22 if ((now - last_start [1]) > periods [1] &&
23 reps_count [1] < num_reps [1])
24 {
25 Read_sensor1_task(buffer_sensor [1]);
26 last_start [1] = now;
27 reps_count [1]++;
28 num_finished += reps_count [1] >= num_reps [1] ? 1 : 0;
29 }
30
31 // The if code -block is repeated for the N sensors.
32 // ...
33
34 if ((now - last_start[N]) > periods[N] &&
35 reps_count[N] < num_reps[N])
36 {
37 Handle_sample(buffer_sensor [0] ... buffer_sensor[N-1], merged_sample);
38 last_start[N] = now;
39 reps_count[N]++;
40 num_finished += reps_count[N] >= num_reps[N] ? 1 : 0;
41 }
42 #pragma omp taskwait
43 #pragma omp taskyield
44 }
45 }

Listing 5.9: Sensors monitoring benchmark pseudo-code without proposal extensions

5.7 Evaluation 151

The manager to implement the recurrent support without the proposal extensions requires
some significant extra logic, as shown in listing 5.9. The Recurrent manager task
has as parameters all other task parameters and two extra arrays with the number of
repetitions (if they apply) and the different periods for each recurrent task. Then, the
manager has to keep track of the last submit timestamp and the number of repetitions
executed for each recurrent task. Also, a finalization condition (num_finished) has
to be maintained to know when all recurrent tasks have finished and then break the
manager loop. The loop iterations check if the current timestamp is behind the last start
timestamp plus the specified period for each recurrent task. If so, the task is launched,
and their state inside the manager is updated. Once all recurrent tasks have been checked,
the manager waits for them and yields until more tasks have to be submitted.

The management without the proposed capabilities assumes that the duration of recurrent
tasks is smaller than the smallest period. This is due to the taskwait after the task spawns
(line 39 of listing 5.9). For durations larger than the smallest period, the management
will delay some task spawns. In contrast, the proposal implementation does not have
such limitation as the recurrent task are managed independently. Also, the host manager
can only ensure the period between task spawns but not task starts, which may be
delayed by the runtime when no executors are available or due to runtime overheads. The
recurrent tasks management implemented in the proposal has a good period precision
as the repetitions management is kept together with the executor (the FPGA task
accelerator).

The different benchmark configurations considered in the comparison are:

• cHost ncri. Recurrent tasks management in host threads using the Recurrent

manager task with data dependences to synchronize the child tasks. The ncri

label stands for non-critical.

• cHost cri. Recurrent tasks management in host threads using the Recurrent

manager task (like cHost ncri), but using the proposal critical regions instead of
task data dependences to synchronize the child tasks.

• cFPGA ncri. Recurrent tasks management centralized in an FPGA task similar
to Recurrent manager, but with an additional taskwait before Handle samples

that orders the child tasks execution. This configuration requires the proposal
enhancements to account time in the FPGA task accelerators.

• cFPGA cri. Recurrent tasks management implemented in each FPGA task accel-
erator and tasks synchronization through critical regions.

152 Chapter 5 Proposal for Recurrent Tasks

The sensors data is simulated in all executions to avoid the complexity of underlying
communication protocols that are out of the thesis and proposal scope. Also, the period
of handle_sample is fixed to one second, which is enough to handle the write to disk
of sensor traces. The other periods are parameterized, and they take values between a
base period and two times this base period.

Due to the different period precision of each configuration and the unconstrained duration
of Handle sample, the effectiveness of an execution (Effectivenessexec) is computed
against the real execution time of the same configuration but with a period of 1 second
for all Read sensor tasks (Timeref). In the optimal case, both executions of the
configuration should have the same execution time, as it is mainly determined by the
one second period of Handle sample task that remains constant. Equation 5.3 shows
how the effectiveness of an execution is computed.

Effectivenessexec = Timeref/T imeexec (5.3)

Figure 5.13 shows the effectiveness (y-axis) for the four configurations among different
base periods (x-axis). The number of repetitions for Handle sample task is fixed to
10, and there are two sensors in all executions. The results show two groups the cFPGA

(blue lines) and the cHost (orange lines). The host configurations only maintain the
effectiveness above 1 millisecond base period. In contrast, the FPGA configurations
maintain the effectiveness above 10 microseconds base period, which is 100 times
smaller. Moreover, the host configurations fail to execute with base periods below 100
microseconds due to an excessive memory consumption generated by the huge number
of created tasks in Nanos++ runtime.

1 us 10 us 100 us 1 ms 10 ms 100 ms
Base period

0

20

40

60

80

100

Ef
fe

ct
iv

en
es

s %

cFPGA ncri cFPGA cri cHost ncri cHost cri

Figure 5.13: Effectiveness of sensors monitoring benchmark among base periods

5.7 Evaluation 153

The configurations that use the critical regions show better effectiveness in figure 5.13
than the configurations without it. The use of critical regions creates a fine-grain
synchronization between the tasks, which has a low overhead thanks to the proposal
support in the HWR. In addition, it can be seen that the support of the critical region
adds more effectiveness the smaller the base period. This emphasizes their usefulness for
the HWR approach.

2 4 6 8 10 12
Number of sensors

0

20

40

60

80

100

Ef
fe

ct
iv

en
es

s %

1 us (cFPGA cri)
10 us (cFPGA cri)

100 us (cFPGA cri)
100 us (cHost ncri)

1 ms (cFPGA cri) 1 ms (cHost ncri)

Figure 5.14: Effectiveness of sensors monitoring benchmark (only read) among number of
FPGA task accelerators

Figure 5.14 shows the effectiveness (y-axis) for the small base periods of figure 5.13,
where the configurations start to lose effectiveness, among different amounts of read
sensor tasks. Figure 5.14 helps to see how the proposal and the baseline behave with
different amounts of recurrent tasks (the read sensors in this case). The results confirm
the 100x difference between both configurations seen in previous results. The host results
are shown for 1 ms and 100 us base periods as the smaller ones fail to execute.

The proposal implementation effectively handles all amounts of read sensors for 1 ms and
100 us base periods. Meanwhile, the baseline host management loses some effectiveness
with 12 recurrent tasks for 1 ms base period and suffers with the 100 us base period.
The behavior observed for cHost ncri with base period 100 us is similar to the cFPGA

cri with base period 1 us.

5.7.4 Face Detection

The detection of faces on pictures is a common workload in several scenarios and with
different approaches. It is done offline in millions of smartphones to analyze the photos
taken by users and cluster them by means of detected faces. Also, it is done in real-time

154 Chapter 5 Proposal for Recurrent Tasks

(in-place or off-place in data centers) to analyze and process a stream of pictures. This
real-time approach is related to the proposal enhancements and could benefit from the
new FPGA capabilities.

Several algorithms exist to detect faces on pictures using a wide range of techniques.
The implementation used in this evaluation is based on Local Binary Patterns (LBP) [74],
which searches local patterns in the picture and allows discarding regions very fast. The
baseline implementation with OmpSs tasks was developed in the context of the AXIOM
project [75] by one of the project partners. The implemented algorithm is iterative and
realizes up to 1000 filters to each pixel. During the first 90 filters, an early prune is
performed, and all pixels that do not have enough score after each filter are discarded.
All pixels that pass the first prune go through the other 910 filters and obtain a final
score, which determines if the pixel is the base coordinates of a face or not.

LBP Block
First

LBP Pixel
Tail

LBP Face
Trigger

Alive Pixels
Lists

LBP Face
Detection

Detected Faces
List

Frame
Buffer

Figure 5.15: Tasks organization and memory regions of LBP Face Detection

Figure 5.15 shows an overview of task organization for the implementation developed
with recurrent tasking (a portion of the source code is shown in listing A.4). The
blue boxes represent the FPGA architecture tasks, the orange box (LBP Face Trigger)
represents the host SMP architecture task. Moreover, the blue box with a light-blue
background (LBP Face Detection) represents the recurrent task, which is periodically
executed and spawns the other regular tasks. The olive-green boxes represent the main
memory regions where tasks exchange information. Frame Buffer contains the color
information for each pixel of the frame, and it is updated autonomously simulating a
physical camera directly connected to the FPGA board. Alive Pixels Lists are a
set of lists that contain the coordinates and the relevant information for each pixel that
potentially contains a face. Detected Faces List is a list of face coordinates and
scores that passed all LBP filters and obtained a minimum score.

5.7 Evaluation 155

Regarding tasks, the implementation is block-based and uses a wave approach where
N LBP Block First tasks are spawned. Meanwhile, the results of the previous wave
are check to launch the needed LBP Pixel Tail tasks. After a wave of task spawns,
a taskwait is used to synchronize the executions and ensure that the next wave can be
spawned without overwriting the data. Both tasks operate at different granularities (block
of pixels and pixel) as it is more efficient in terms of performance per FPGA resource
due to the sparsity of tail tasks. At the end of all LBP processing, a host SMP task is
spawned if some faces are detected in the frame. The provided information contains the
face coordinates and can be used to generate images like the frame shown in figure 5.16
(the faces have been pixelized to preserve people’s privacy).

Figure 5.16: Output frame example with squares around detected faces

In all executions, the block size has been fixed to 96x96 effective pixels, which is increased
to 144x144 pixels due to the padding needed by some filters. Also, the number of
parallel blocks in each wave has been fixed to 4 blocks that may spawn up to 2304 alive
pixels in the tail pass. More parallel blocks do not increase the performance but require
more memory for the intermediate information in Alive Pixels Lists. The number
of frames processed in each execution is 30, and they have been extracted from an input
video that contains three people walking in a row (as can be seen in figure 5.16). This
amount of frames provides long enough executions to gather significant executions for
the performance analysis. Finally, 2 instances of LBP Block First could be placed
together with 1 instance of LBP Pixel Tail and 1 instance of LBP Face Detection.
In contrast to all previous benchmarks that also spawn task in the FPGA device, the
recurrent LBP Face Detection does conditional task spawn based on the information
read from memory (generated by the previous wave tasks).

156 Chapter 5 Proposal for Recurrent Tasks

Figure 5.17 shows the Frames Per Second (FPS) (y-axis) handled by the proposed
recurrent implementation (cFPGA) and by an equivalent implementation without the
FPGA task spawn support (cHost). The values are shown for different period values
of LBP Face Detection task (x-axis). The maximum FPS value for each period
(FPSmax(period) = 1/period) is also shown by the Maximum series.

0 1 2 3 4 5
Period (s)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

FP
S

Maximum cFPGA cHost

Figure 5.17: FPS of Face Detection

The results show that the cHost is not a performant option to handle the frames as
the best rate does not arrive at 0.5 FPS. This means that LBP Face Detection lasts
for 2 seconds on average, which is due to the data movements required to spawn the
tail tasks. In contrast, the cFPGA implementation reaches up to 1.79 FPS. The peak is
achieved with a 0.3 seconds period, which is approximately the duration of LBP Face

Detection when there are no active pixels for the tail pass. The cFPGA performance
is the maximum value for periods above 0.7 seconds, which is the average duration of
LBP Face Detection. Between 0.3 and 0.7 seconds for the period, some frames are
processed within the period time and some are not. Therefore, the performance scales
but not at the maximum values.

Figure 5.18 shows two execution traces of Face Detection for cHost (figure 5.18a) and
cFPGA (figure 5.18b) for a 2 seconds period. Both have the same elapsed time (x-axes)
and show the activities in the different computing elements. The brown and red regions
represent the offload of LBP Block First and LBP Pixel Tail tasks to the FPGA
device correspondingly. The pink regions represent the execution of LBP Face Trigger

task. Finally, the orange, blue and green regions represent the following activities in the
FPGA trace lines: copying data into the FPGA task accelerator wrapper, executing the
task statements and copying data back to FPGA memory.

5.7 Evaluation 157

(a) Baseline host management

(b) Proposal management

Figure 5.18: Execution traces of Face Detection with 2 seconds period

Traces in figure 5.18 clearly show the sparsity of FPGA tasks in cHost and that they are
compacted in cFPGA. The huge overheads in the case of host management result in an
under-utilization of FPGA task accelerators and a poor frame rate. The cHost requires
all the trace time (approximately 2.25 seconds) to handle the frame which is above the
desired period. In contrast, the cFPGA lasts for 700 milliseconds, and the system remains
idle until the next repetition is launched. Another relevant fact is that the host threads
are not needed almost all the time. This optimizes the application power budget without
impacting the overall performance.

(a) Baseline host management

(b) Proposal management

Figure 5.19: Execution traces of Face Detection with 2 seconds period (43 ms zoom)

158 Chapter 5 Proposal for Recurrent Tasks

Figure 5.19 shows the same two execution traces of figure 5.18 with the same color
meanings but for a small portion of elapsed time (43 milliseconds). At that scale, the
rendering interpolation does not hide the real activities at each computing element and
allows to see the duration of each color region. In both cases (cHost and cFPGA), the
tasks in the FPGA task accelerators last the same, but they are compacted in the case
of proposal management and sparse in the baseline approach. Also, figure 5.19a shows
the usage of 2 SMP threads to offload the FPGA tasks.

5.8 Conclusion

This chapter discuses an extension of task-based programming models with recurrent work-
loads concepts. The proposal introduces two clauses (period and num_repetitions)
in the task directive to efficiently model recurrent workloads. Those clauses allow the
applications to be developed with less effort, increase their maintainability and their
accuracy. The FPGA task accelerators have been extended to internally handle the
repetitions of recurrent tasks with minimal latency and maximum precision. In addition,
the HWR and the host libraries have been updated to support the new features.

The proposal implementation includes the novel Lock Manager in the modular HWR to
support the critical regions inside the FPGA tasks. That support provides a fine grain
synchronization between independent tasks, which is very useful for recurrent workloads.
Moreover, the locking capabilities led to a whole new set of possible programming features
and optimizations. Although not presented here, internal FPGA locks have successfully
been used to synchronize memory accesses in systems that require coordinated memory
accesses for better throughput.

The evaluation shows the performance enhancements in terms of code lines, application
throughput, and power efficiency. The evaluation of different workloads shows that
applications can be easily programmed with the proposal extensions, and it shows the
huge reduction of application complexity compared to the equivalent implementation
with baseline capabilities. The direct management of repetitions in the FPGA task
accelerators allows recurrent tasks of nanoseconds duration, which are not possible in
the baseline, and accurate timing between repetitions. Besides, the proposal increases
the power efficiency as management is kept near to the action, optimizing the execution
time and reducing the communications.

5.8 Conclusion 159

5.9 Publications

The list of thesis publications related to the work explained in this chapter is:

• Towards recurrent tasks in OmpSs@FPGA.
Jaume Bosch. HiPEAC CSW Autumn 2020. [76]
This publication proposes a first implementation to support recurrent workloads in
OmpSs and presents the initial results of the synthetic benchmark.

• Task-based programming models for heterogeneous recurrent workloads.
Jaume Bosch, Antonio Filgueras, Miquel Vidal, Daniel Jiménez-González, Carlos
Álvarez, Eduard Ayguadé.
ARC 2021 [Accepted for publication]. [12]
This publication presents the full implementation to support recurrent workloads
in OmpSs and presents an extended evaluation with all performance results.

The list of publications related to collaborations with the work presented in this chapter
is:

• OmpSs@FPGA framework for high performance FPGA computing.
Juan Miquel de Haro, Jaume Bosch, Antonio Filgueras, Miquel Vidal, Daniel
Jiménez-González, Carlos Álvarez, Xavier Martorell, Eduard Ayguadé, Jesus Labarta.
TC 2021 [Accepted for publication]. [19]
In this work, the support for critical regions in the FPGA task accelerators has
been used to tune some applications’ performance.

160 Chapter 5 Proposal for Recurrent Tasks

Conclusion and Future Work 6
This chapter concludes the thesis with a final remark of its main contributions in
section 6.1 and the future work in section 6.2.

6.1 Thesis Contributions

Heterogeneous platforms have become a key part of several computing environments
to increase performance without increasing the power budget. Most of them are based
on accelerators used by the main computation unit to offload specific parts of code.
Task-based parallel programming models are a powerful tool to develop high-performance
applications on top of such systems without the need to deal with the underlying
details. This thesis goes beyond by enhancing the capabilities of heterogeneous systems
and breaking some of the constraints established in the baseline task-based parallel
programming models.

The overall thesis contribution is the enhancement of task-based parallel programming
models capabilities. The thesis proposes breaking the master-slave model for co-processors
management. This improves the applications’ programmability, which can nest tasks
regardless of the target architectures of parent and children tasks. Also, the programming
model extension enlarges the range of supported workloads. Although the work is
evaluated on SoC platforms, the contributions are suitable for other environments like
discrete or network connected FPGAs. The proposals have been successfully tested and
deployed in other environments for different thesis collaborations.

The first thesis proposal develops and analyzes several improvements to achieve an
asynchronous, concurrent, and parameterizable behavior in task-based systems. On
the one hand, the improvements allow the simpler and better expression of application
requirements leading to a performance increment. For example, the localmem clause
effortlessly defines the data cached in the FPGA task accelerators and the wide shared
memory port feature in Mercurium compiler transparently increases the memory bandwidth.
On the other hand, the proposal improvements allow more efficient management at
runtime and a parameterizable behavior that may be tuned to each application. This
has reduced the task management overheads increasing the accelerators utilization and

161

decreasing the importance of task granularity. All improvements could be analyzed in
detail thanks to the new instrumentation capabilities implemented in the proposal.

The second thesis proposal extends the task-based parallel programming models with
task spawn and synchronization support in co-processors. The implementation introduces
the Scheduler Manager and Taskwait Manager IP blocks in the HWR. They are
coordinated with the host runtime to ensure executions’ correctness but optimizing the
communications between runtimes to avoid the host-FPGA latency. The results show
that the task spawn in FPGA devices can boost the applications’ performance and reduce
the power consumption as the host is exempt from management activities. Even more,
the low-latency task spawn in FPGAs opens the possibility to use fine-grain tasks in the
applications without hurting performance.

Finally, the third thesis proposal extends the task-based programming models with
recurrent workloads concepts. The proposal introduces two clauses in the task directive
(period and num_repetitions) to efficiently model recurrent workloads. Moreover,
the implementation has been extended to support critical regions between FPGA task
accelerators to synchronize independent recurrent tasks. The benchmarks evaluation
shows a huge gap in the application programmability against an equivalent implementation
without the novel capabilities. Besides, the evaluation shows the efficient management of
recurrent tasks when performed in FPGA devices. This management perfectly suits the
necessities of new cyber-physical and embedded devices in terms of power consumption
and high throughput.

6.2 Future Work

All the work done in the thesis has been contributed to the main OmpSs@FPGA ecosystem,
and it will be used in different European projects. Then, a future work line is porting
and tuning the applications available in the European projects. Those applications could
benefit from the new FPGA task accelerators capabilities and obtain a performance that
was not possible before. Moreover, the new workloads with new task patterns could
reveal bottlenecks in the proposed designs that must be addressed.

The baseline OmpSs@FPGA ecosystem has support for multi-node executions using a
network communication layer based on GASNet [77]. Although, it is a host-centric
implementation as all data transferred between nodes is managed in the host runtime.
The new capabilities added to the FPGAs could be further extended to manage network
data transfers between nodes. Then the FPGAs could exchange tasks and offload tasks
between them without involving the host runtimes. This FPGA to FPGA communication

162 Chapter 6 Conclusion and Future Work

will also benefit the data exchange on step-based benchmarks, like N-Body. In general, all
benchmarks that need to synchronize the data scattered among all nodes periodically.

The proposal for recurrent workloads does not develop the timing constraints for the
model. The real-time systems, a sub-set of recurrent workloads, have strong timing
constraints that must be accomplished to assure that the systems will behave correctly.
Those constraints have been analyzed and developed in different related works, but this
thesis focused on recurrent task management instead. Therefore, the current support
could be enhanced with new capabilities that improve the real-time constraints and
robustness. As an example, the programming model could be further extended with
deadline information and how the system must behave in those cases.

The proposals in this thesis have been evaluated over the OmpSs programming model,
which is an OpenMP forerunner. The mid-term goal is to use all the developed infras-
tructure for the OmpSs-2 programming model which is replacing OmpSs. However, the
long-term goal is to contribute the ideas and the knowledge of this thesis to the OpenMP
programming model. This would benefit a wider range of people as the proposals will be
in an established and standard programming model. The end goal is developing an imple-
mentation of those extensions over some of the open-source OpenMP implementations.
Therefore, the proposals could be extensively and intensively tested by the community in
a broader range of applications and systems.

6.2 Future Work 163

Bibliography

[1]R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc. “Design of
Ion-Implanted MOSFET’S with very small physical dimensions”. In: Solid-State Circuits,
IEEE Journal of 9 (Nov. 1974), pp. 256–268. doi: 10.1109/JSSC.1974.1050511.

[2]Gordon Moore. “Cramming More Components Onto Integrated Circuits”. In: Electronics
38 (Apr. 1965).

[4]Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, et al. “Ompss: a Proposal for Program-
ming Heterogeneous Multi-Core Architectures.” In: Parallel Processing Letters 21 (June
2011), pp. 173–193. doi: 10.1142/S0129626411000151.

[5]Leonardo Dagum and Ramesh Menon. “OpenMP: An Industry-Standard API for Shared-
Memory Programming”. In: Computational Science & Engineering, IEEE 5 (Feb. 1998),
pp. 46–55. doi: 10.1109/99.660313.

[6]Jaume Bosch, Antonio Filgueras, Miquel Vidal Piñol, et al. “Exploiting Parallelism on
GPUs and FPGAs with OmpSs”. In: Proceedings of the 1st Workshop on AutotuniNg
and aDaptivity AppRoaches for Energy efficient HPC Systems. Sept. 2017, pp. 1–5. isbn:
978-1-4503-5363-2. doi: 10.1145/3152821.3152880.

[7]Jaume Bosch, Xubin Tan, Carlos Álvarez, et al. “Asynchronous Task Creation for Task-
Based Parallel Programming Runtimes”. In: OpenMP Developers Conference. 2018.

[8]Jaume Bosch, Xubin Tan, Antonio Filgueras, et al. “Application Acceleration on FPGAs
with OmpSs@FPGA”. In: 2018 International Conference on Field-Programmable Technology
(FPT). IEEE. Dec. 2018. doi: 10.1109/FPT.2018.00021.

[9]Jaume Bosch Pons, Carlos Álvarez Martínez, and Daniel Jiménez-González. “Supporting
task creation inside FPGA devices”. In: Book of abstracts. Barcelona Supercomputing
Center. 2019, pp. 34–35.

[10]Jaume Bosch, Miquel Vidal Piñol, Antonio Filgueras, et al. “Breaking master-slave model
between host and FPGAs”. In: Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. Feb. 2020, pp. 419–420. doi: 10.1145/
3332466.3374545.

[11]Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, Xavier Martorell, and Eduard
Ayguadé. “Asynchronous Runtime with Distributed Manager for Task-based Programming
Models”. In: Parallel Computing (2020). doi: 10.1016/j.parco.2020.102664.

[12]Jaume Bosch, Antonio Filgueras, Miquel Vidal Piñol, et al. “Task-based programming
models for heterogeneous recurrent workloads”. In: Proceedings of the 2021 International
Symposium on Applied Reconfigurable Computing [Accepted for publication]. June 2021.
isbn: 978-3-030-79024-0.

165

https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1109/99.660313
https://doi.org/10.1145/3152821.3152880
https://doi.org/10.1109/FPT.2018.00021
https://doi.org/10.1145/3332466.3374545
https://doi.org/10.1145/3332466.3374545
https://doi.org/10.1016/j.parco.2020.102664

[13]Xubin Tan, Jaume Bosch, Miquel Vidal Piñol, et al. “Picos, A Hardware Task-Dependence
Manager for Task-Based Dataflow Programming Models”. In: International Conference
on High Performance Computing & Simulation (HPCS). July 2017, pp. 878–880. doi:
10.1109/HPCS.2017.134.

[14]Xubin Tan, Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, and Eduard Ayguade.
“Hardware Heterogeneous Task Scheduling for Task-based Programming Models”. In:
OpenMP Developers Conference. 2018.

[15]Kallia Chronaki, Marc Casas, Miquel Moreto, Jaume Bosch, and Rosa M. Badia. “TaskGenX:
A Hardware-Software Proposal for Accelerating Task Parallelism”. In: International Confer-
ence on High Performance Computing. Jan. 2018, pp. 389–409. isbn: 978-3-319-92039-9.
doi: 10.1007/978-3-319-92040-5_20.

[16]Xubin Tan, Jaume Bosch, Carlos Álvarez, et al. “A Hardware Runtime for Task-Based
Programming Models”. In: IEEE Transactions on Parallel and Distributed Systems 30 (Mar.
2019), pp. 1932–1946. doi: 10.1109/TPDS.2019.2907493.

[17]Lucas Morais, Vitor Silva, Alfredo Goldman, et al. “Adding Tightly-Integrated Task
Scheduling Acceleration to a RISC-V Multi-core Processor”. In: Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture. Oct. 2019, pp. 861–872.
isbn: 978-1-4503-6938-1. doi: 10.1145/3352460.3358271.

[18]Juan Miguel de Haro, Jaume Bosch, Daniel Jiménez-González, and Carlos Álvarez. “Design
and implementation of an architecture-aware hardware runtime for heterogeneous systems”.
In: Book of abstracts. Barcelona Supercomputing Center. 2020, pp. 58–59.

[19]Juan Miguel de Haro, Jaume Bosch, Antonio Filgueras, et al. “OmpSs@FPGA framework
for high performance FPGA computing”. In: IEEE Transactions on Computers [Accepted
for publication] Compiler Optimizations for FPGA-Based Systems (2021). doi: 10.1109/
TC.2021.3086106.

[20]Cesar González, Jaume Bosch, Juan Miquel de Haro, et al. “High Performance Com-
puting particle-pair distance algorithms, to generate X-ray spectra from 3D models”. In:
International Journal of High Performance Computing Applications [Under review] (2021).

[23]Florentino Sainz, Sergi Mateo, Vicenc Beltran, et al. “Leveraging OmpSs to Exploit
Hardware Accelerators”. In: Proceedings - Symposium on Computer Architecture and High
Performance Computing (Dec. 2014), pp. 112–119. doi: 10.1109/SBAC-PAD.2014.26.

[28]Miquel Vidal-Piñol. “Synchronization/communication techniques for OmpSs@FPGA”. 2017.

[30]Stephen Neuendorffer and Fernando Martinez-Vallina. “Building zynq® accelerators with
Vivado® high level synthesis”. In: Proceedings of the ACM/SIGDA international symposium
on Field programmable gate arrays. Feb. 2013, pp. 1–2. doi: 10.1145/2435264.2435266.

[32]Jaume Bosch. “Asynchronous Runtime for Task-Based Dataflow Programming Models”.
2017.

[33]Jaume Bosch, Xubin Tan, Carlos Álvarez, et al. “Characterizing and Improving the Per-
formance of Many-Core Task-Based Parallel Programming Runtimes”. In: Proceedings of
the 2017 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). May 2017, pp. 1285–1292. doi: 10.1109/IPDPSW.2017.32.

166 Bibliography

https://doi.org/10.1109/HPCS.2017.134
https://doi.org/10.1007/978-3-319-92040-5_20
https://doi.org/10.1109/TPDS.2019.2907493
https://doi.org/10.1145/3352460.3358271
https://doi.org/10.1109/TC.2021.3086106
https://doi.org/10.1109/TC.2021.3086106
https://doi.org/10.1109/SBAC-PAD.2014.26
https://doi.org/10.1145/2435264.2435266
https://doi.org/10.1109/IPDPSW.2017.32

[40]Iakovos Mavroidis, Ioannis Papaefstathiou, Luciano Lavagno, et al. “ECOSCALE: Recon-
figurable Computing and Runtime System for Future Exascale Systems”. In: Proceedings
of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE). Jan.
2016, pp. 696–701. doi: 10.3850/9783981537079_1021.

[42]Andrew Canis, Jongsok Choi, Mark Aldham, et al. “LegUp: An Open-Source High-Level
Synthesis Tool for FPGA-Based Processor/Accelerator Systems”. In: ACM Transactions on
Embedded Computing Systems (TECS) 13 (Sept. 2013). doi: 10.1145/2514740.

[43]Jongsok Choi, Stephen Brown, and Jason Anderson. “From Pthreads to Multicore Hardware
Systems in LegUp High-Level Synthesis for FPGAs”. In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 25 (Aug. 2017), pp. 1–14. doi: 10.1109/TVLSI.2017.
2720623.

[44]Artur Podobas, Mats Brorsson, and Vladimir Vlassov. “TurboBŁYSK: scheduling for
improved data-driven task performance with fast dependency resolution”. In: Using and
Improving OpenMP for Devices, Tasks, and More. Springer, 2014, pp. 45–57. isbn:
978-3-319-11454-5. doi: 10.1007/978-3-319-11454-5_4.

[45]George Bosilca, Aurelien Bouteiller, Anthony Danalis, et al. “DAGuE: A generic distributed
DAG engine for High Performance Computing”. In: Parallel Computing 38 (May 2011),
pp. 1151–1158. doi: 10.1016/j.parco.2011.10.003.

[46]Carsten Heinz, Jaco Hofmann, Lukas Sommer, and Andreas Koch. “Improving Job Launch
Rates in the TaPaSCo FPGA Middleware by Hardware/Software-Co-Design”. In: Proceed-
ings of 2020 IEEE/ACM International Workshop on Runtime and Operating Systems for
Supercomputers (ROSS). Nov. 2020, pp. 22–30. doi: 10.1109/ROSS51935.2020.00008.

[47]Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and Dietmar Fey.
“HPX: A Task Based Programming Model in a Global Address Space”. In: Proceedings
of the 8th International Conference on Partitioned Global Address Space Programming
Models. Oct. 2014, p. 6. isbn: 978-1-4503-3247-7. doi: 10.1145/2676870.2676883.

[48]Ioannis Papadopoulos, Nathan Thomas, Adam Fidel, et al. “Asynchronous Nested Paral-
lelism for Dynamic Applications in Distributed Memory”. In: Languages and Compilers for
Parallel Computing. Feb. 2016, pp. 106–121. isbn: 978-3-319-29777-4. doi: 10.1007/978-
3-319-29778-1_7.

[49]Tianyi Zhang, Shahrzad Shirzad, Patrick Diehl, et al. “An Introduction to hpxMP: A
Modern OpenMP Implementation Leveraging HPX, An Asynchronous Many-Task System”.
In: Proceedings of the International Workshop on OpenCL. May 2019, pp. 1–10. isbn:
978-1-4503-6230-6. doi: 10.1145/3318170.3318191.

[50]Jeremy Kemp and Barbara Chapman. “Mapping OpenMP to a Distributed Tasking Run-
time”. In: Evolving OpenMP for Evolving Architectures. Jan. 2018, pp. 222–235. isbn:
978-3-319-98520-6. doi: 10.1007/978-3-319-98521-3_15.

[51]Cor Meenderinck and Ben Juurlink. “A Case for Hardware Task Management Support for
the StarSS Programming Model”. In: Proceedings of the 13th Euromicro Conference on
Digital System Design, Architectures, Methods and Tools. Sept. 2010, pp. 347–354. doi:
10.1109/DSD.2010.63.

Bibliography 167

https://doi.org/10.3850/9783981537079_1021
https://doi.org/10.1145/2514740
https://doi.org/10.1109/TVLSI.2017.2720623
https://doi.org/10.1109/TVLSI.2017.2720623
https://doi.org/10.1007/978-3-319-11454-5_4
https://doi.org/10.1016/j.parco.2011.10.003
https://doi.org/10.1109/ROSS51935.2020.00008
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1007/978-3-319-29778-1_7
https://doi.org/10.1007/978-3-319-29778-1_7
https://doi.org/10.1145/3318170.3318191
https://doi.org/10.1007/978-3-319-98521-3_15
https://doi.org/10.1109/DSD.2010.63

[52]Tamer Dallou, Nina Engelhardt, Ahmed Elhossini, and Ben Juurlink. “Nexus#: A Distributed
Hardware Task Manager for Task-Based Programming Models”. In: 2015 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). May 2015, pp. 1129–1138. doi:
10.1109/IPDPS.2015.79.

[53]Xubin Tan, Jaume Bosch, Miquel Vidal Piñol, et al. “General Purpose Task-Dependence
Management Hardware for Task-Based Dataflow Programming Models”. In: 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). May 2017, pp. 244–
253. doi: 10.1109/IPDPS.2017.48.

[55]Jan Vesely, Arkaprava Basu, Abhishek Bhattacharjee, et al. “Generic System Calls for
GPUs”. In: ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA). June 2018, pp. 843–856. doi: 10.1109/ISCA.2018.00075.

[56]Cheng Chen, Wenxiang Yang, Fang Wang, et al. “Reverse Offload Programming on
Heterogeneous Systems”. In: IEEE Access 7 (Jan. 2019), pp. 10787–10797. doi: 10.1109/
ACCESS.2019.2891740.

[57]Daniel Cabrera, Xavier Martorell, Georgi Gaydadjiev, Eduard Ayguade, and Daniel Jiménez-
González. “OpenMP extensions for FPGA accelerators”. In: International Symposium on
Systems, Architectures, Modeling, and Simulation. Aug. 2009, pp. 17–24. doi: 10.1109/
ICSAMOS.2009.5289237.

[58]Lukas Sommer, Jens Korinth, and Andreas Koch. “OpenMP device offloading to FPGA
accelerators”. In: IEEE 28th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). July 2017, pp. 201–205. doi: 10.1109/ASAP.2017.
7995280.

[59]Maria A. Serrano, Sara Royuela, and Eduardo Quiñones. “Towards an OpenMP Specification
for Critical Real-Time Systems”. In: Evolving OpenMP for Evolving Architecture. Jan.
2018, pp. 143–159. isbn: 978-3-319-98520-6. doi: 10.1007/978-3-319-98521-3_10.

[60]Antoniu Pop and Albert Cohen. “A Stream-Comptuting Extension to OpenMP”. In:
Proceedings of the 6th International Conference on High Performance and Embedded
Architectures and Compilers (HiPEAC ’11). Jan. 2011, pp. 5–14. doi: 10.1145/1944862.
1944867.

[61]Germán Llort, Antonio Filgueras, Daniel Jiménez-González, et al. “The Secrets of the
Accelerators Unveiled: Tracing Heterogeneous Executions Through OMPT”. In: International
Workshop on OpenMP. Oct. 2016, pp. 217–236. isbn: 978-3-319-45549-5. doi: 10.1007/
978-3-319-45550-1_16.

[62]Michael Wagner, Germán Llort, Antonio Filgueras, et al. “Monitoring Heterogeneous
Applications with the OpenMP Tools Interface”. In: Tools for High Performance Computing
2016. July 2017. doi: 10.1007/978-3-319-56702-0_3.

[64]Departament Computadors, Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona.
“PARAVER: A tool to visualize and analyze parallel code”. In: World occam and Transputer
User Group Technical Meeting (WoTUG-18) 44 (Mar. 1995).

[65]Satish Kumar Sadasivam, Brian Thompto, Ron Kalla, and William Starke. “IBM Power9
Processor Architecture”. In: IEEE Micro 37 (Mar. 2017), pp. 40–51. doi: 10.1109/MM.
2017.40.

168 Bibliography

https://doi.org/10.1109/IPDPS.2015.79
https://doi.org/10.1109/IPDPS.2017.48
https://doi.org/10.1109/ISCA.2018.00075
https://doi.org/10.1109/ACCESS.2019.2891740
https://doi.org/10.1109/ACCESS.2019.2891740
https://doi.org/10.1109/ICSAMOS.2009.5289237
https://doi.org/10.1109/ICSAMOS.2009.5289237
https://doi.org/10.1109/ASAP.2017.7995280
https://doi.org/10.1109/ASAP.2017.7995280
https://doi.org/10.1007/978-3-319-98521-3_10
https://doi.org/10.1145/1944862.1944867
https://doi.org/10.1145/1944862.1944867
https://doi.org/10.1007/978-3-319-45550-1_16
https://doi.org/10.1007/978-3-319-45550-1_16
https://doi.org/10.1007/978-3-319-56702-0_3
https://doi.org/10.1109/MM.2017.40
https://doi.org/10.1109/MM.2017.40

[66]Fabio Banchelli, Marta Garcia-Gasulla, Guillaume Houzeaux, and Filippo Mantovani.
“Benchmarking of State-of-the-Art HPC Clusters with a Production CFD Code”. In:
Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’20.
June 2020, pp. 1–11. isbn: 9781450379939. doi: 10.1145/3394277.3401847.

[71]Xiaoming Li, María Garzarán, and David Padua. “A Dynamically Tuned Sorting Library.”
In: International Symposium on Code Generation and Optimization, 2004. CGO 2004. Mar.
2004, pp. 111–122. doi: 10.1109/CGO.2004.1281668.

[74]Timo Ojala, Matti Pietikäinen, and Topi Mäenpää. “Gray Scale and Rotation Invariant
Texture Classification with Local Binary Patterns”. In: Computer Vision - ECCV 2000.
June 2000, pp. 404–420. isbn: 978-3-540-67685-0. doi: 10.1007/3-540-45054-8_27.

[75]Antonio Filgueras, Paolo Gai, Stefano Garzarella, et al. “The AXIOM Project: IoT on
Heterogeneous Embedded Platforms”. In: IEEE Design & Test PP (Nov. 2019), pp. 1–1.
doi: 10.1109/MDAT.2019.2952335.

[76]Jaume Bosch. “Towards recurrent tasks in OmpSs@FPGA”. In: HiPEAC CSW Autumn
2020. 2020.

[77]Dan Bonachea and Jaein Jeong. “GASNet: A portable high-performance communication
layer for global address-space languages”. In: CS258 Parallel Computer Architecture Project,
Spring (2002).

Webpages

[@3]OpenACC Board. OpenACC Application Program Interface. 2011. url: https://www.
openacc.org/sites/default/files/inline-files/OpenACC_1_0_specification.
pdf (visited on June 1, 2020).

[@21]OpenMP Architecture Review Board. OpenMP Application Program Interface - Version
3.1. 2011. url: https://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf
(visited on Feb. 20, 2021).

[@22]OpenMP Architecture Review Board. OpenMP API Specification: Version 5.1. 2020. url:
https://www.openmp.org/spec-html/5.1/openmp.html (visited on Feb. 20, 2021).

[@24]Programming Models Group BSC. OmpSs Specification. 2018. url: https://pm.bsc.
es/ftp/ompss/doc/spec/ (visited on June 1, 2020).

[@25]Programming Models Group BSC. Mercurium C/C++/Fortran source-to-source compiler.
2018. url: https://github.com/bsc-pm/mcxx (visited on Apr. 2, 2020).

[@26]Programming Models Group BSC. OmpSs-2 Specification. 2020. url: https://pm.bsc.
es/ftp/ompss-2/doc/spec/ (visited on May 4, 2021).

[@27]Programming Models Group BSC. Nanos6 Runtime. 2020. url: https://github.com/
bsc-pm/nanos6 (visited on May 4, 2021).

[@29]Inc. Xilinx. Vivado High-Level Synthesis. 2017. url: https://www.xilinx.com/hls
(visited on May 20, 2020).

Webpages 169

https://doi.org/10.1145/3394277.3401847
https://doi.org/10.1109/CGO.2004.1281668
https://doi.org/10.1007/3-540-45054-8_27
https://doi.org/10.1109/MDAT.2019.2952335
https://www.openacc.org/sites/default/files/inline-files/OpenACC_1_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_1_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_1_0_specification.pdf
https://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf
https://www.openmp.org/spec-html/5.1/openmp.html
https://pm.bsc.es/ftp/ompss/doc/spec/
https://pm.bsc.es/ftp/ompss/doc/spec/
https://github.com/bsc-pm/mcxx
https://pm.bsc.es/ftp/ompss-2/doc/spec/
https://pm.bsc.es/ftp/ompss-2/doc/spec/
https://github.com/bsc-pm/nanos6
https://github.com/bsc-pm/nanos6
https://www.xilinx.com/hls

[@31]Programming Models Group BSC. Nanos++ Runtime Library. 2018. url: https://
github.com/bsc-pm/nanox (visited on Apr. 2, 2020).

[@34]ARM. AMBA® 4 AXI4-Stream Protocol. 2010. url: https://static.docs.arm.com/
ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf (visited on
May 20, 2020).

[@35]ARM. AMBA® AXI™ and ACE™ Protocol Specification. 2011. url: https://static.
docs.arm.com/ihi0022/d/IHI0022D_amba_axi_protocol_spec.pdf (visited on
May 20, 2020).

[@36]Vineyard Consortium. Objectives and Rationales of the Project. 2017. url: http://www.
vineyard-h2020.eu/en/project/objectives-and-rationale-of-the-project/
(visited on May 20, 2020).

[@37]Inc. Maxeler. The Open Spatial Programming Language. 2014. url: https://openspl.
org (visited on May 20, 2020).

[@38]Inc. Khronos Group. OpenCL. 2018. url: https://www.khronos.org/opencl (visited
on May 20, 2020).

[@39]Inc. Xilinx. SDSoC Development Environment. 2020. url: https://www.xilinx.com/
sdsoc (visited on May 20, 2020).

[@41]MPI Forum. MPI 4.0. 2020. url: https://www.mpi-forum.org/mpi-40/ (visited on
Dec. 2, 2020).

[@54]NVIDIA. CUDA Dynamic Parallelism Programming Guide. 2019. url: https://docs.
nvidia.com/cuda/pdf/CUDA_Dynamic_Parallelism_Programming_Guide.pdf
(visited on June 15, 2020).

[@63]BSC Tools Group. Extrae. 2020. url: https://tools.bsc.es/extrae (visited on
Jan. 13, 2021).

[@67]Xilinx, Inc. ZYNQ UltraScale+ MPSoC Overview. 2019. url: https://www.xilinx.
com/products/boards-and-kits/ek-u1-zcu102-g.html (visited on June 1, 2020).

[@68]Programming Models Group BSC. BSC Application Repository. 2017. url: https://pm.
bsc.es/projects/bar/ (visited on Apr. 28, 2018).

[@69]Zhang Xianyi, Wang Qian, and Werner Saar. OpenBLAS: An optimized BLAS library.
2020. url: https://www.openblas.net/ (visited on June 1, 2020).

[@70]Programming Models Group BSC. BAR-Benchmarks [at] INTERTWinE. 2017. url:
https://pm.bsc.es/gitlab/ompss/bar-benchmarks/ (visited on Apr. 28, 2018).

[@72]Avnet. ZedBoard Technical Specifications. 2020. url: http://zedboard.org/content/
zedboard-0 (visited on Sept. 25, 2020).

[@73]OpenMP Architecture Review Board. OpenMP API Specification: Version 5.0 | taskyield
Construct. 2018. url: https://www.openmp.org/spec-html/5.0/openmpsu49.html
(visited on Sept. 29, 2020).

170 Bibliography

https://github.com/bsc-pm/nanox
https://github.com/bsc-pm/nanox
https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf
https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf
https://static.docs.arm.com/ihi0022/d/IHI0022D_amba_axi_protocol_spec.pdf
https://static.docs.arm.com/ihi0022/d/IHI0022D_amba_axi_protocol_spec.pdf
http://www.vineyard-h2020.eu/en/project/objectives-and-rationale-of-the-project/
http://www.vineyard-h2020.eu/en/project/objectives-and-rationale-of-the-project/
https://openspl.org
https://openspl.org
https://www.khronos.org/opencl
https://www.xilinx.com/sdsoc
https://www.xilinx.com/sdsoc
https://www.mpi-forum.org/mpi-40/
https://docs.nvidia.com/cuda/pdf/CUDA_Dynamic_Parallelism_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Dynamic_Parallelism_Programming_Guide.pdf
https://tools.bsc.es/extrae
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://pm.bsc.es/projects/bar/
https://pm.bsc.es/projects/bar/
https://www.openblas.net/
https://pm.bsc.es/gitlab/ompss/bar-benchmarks/
http://zedboard.org/content/zedboard-0
http://zedboard.org/content/zedboard-0
https://www.openmp.org/spec-html/5.0/openmpsu49.html

Appendix A
Code Description Size (words)
0x01 Execute task command 3 + 2 x NUM_ARGS
0x02 Setup instrumentation command 2
0x03 Finished execution task command 2
0x05 Execute recurrent task command 4 + 2 x NUM_ARGS

Table A.1: FPGA commands information

1 typedef enum {
2 XTASKS_SUCCESS = 0, ///< Operation finished successfully
3 XTASKS_ENOSYS , ///< Function not implemented
4 XTASKS_EINVAL , ///< Invalid operation arguments
5 XTASKS_ENOMEM , ///< Not enough memory to execute the operation
6 XTASKS_EFILE , ///< Operation finished after fail a file operation
7 XTASKS_ENOENTRY , ///< Operation failed as no entry could be reserved
8 XTASKS_PENDING , ///< Operation not finished yet
9 XTASKS_ENOAV , ///< Function/operation not available

10 XTASKS_ERROR ///< Operation finished with some error
11 } xtasks_stat;

Listing A.1: xTasks general definition for all APIs of xtasks_stat type

171

1 typedef ap_uint <72> portData_t;
2 typedef ap_axis <64,1,8,5> axiData_t;
3 typedef hls::stream <axiData_t > axiStream_t;
4
5 extern const unsigned char accID;
6
7 void eOut_Adapter(volatile portData_t& in , axiStream_t& out) {
8 #pragma HLS INTERFACE ap_ctrl_none port=return
9 #pragma HLS INTERFACE ap_hs port=in bundle=in

10 #pragma HLS INTERFACE axis port=out
11 #pragma HLS PROTOCOL fixed
12 portData_t inTmp = in;
13 axiData_t outTmp = {0, 0, 0, 0, 0, 0, 0};
14 outTmp.keep = 0xFF;
15 outTmp.id = accID;
16 outTmp.last = inTmp & 0x3;
17 inTmp = inTmp >> 2;
18 outTmp.dest = inTmp & 0x3F;
19 inTmp = inTmp >> 6;
20 outTmp.data = inTmp;
21 out.write(outTmp);
22 }

Listing A.2: HLS implementation for eOut Adapter

1 typedef ap_uint <8> portData_t;
2 typedef ap_axis <8,1,1,5> axiData_t;
3 typedef hls::stream <axiData_t > axiStream_t;
4
5 void eIn_Adapter(axiStream_t& in, portData_t& out) {
6 #pragma HLS INTERFACE ap_ctrl_none port=return
7 #pragma HLS INTERFACE axis port=in
8 #pragma HLS INTERFACE ap_hs port=out
9 portData_t inTmp = in.read (). data;

10 out = inTmp;
11 }

Listing A.3: HLS implementation for eIn Adapter

172 Appendix A Appendix

1 #pragma omp target device(fpga) num_instances (2) \
2 copy_in(\
3 [4* CONST_LBP_NUMSTAGES_FIRST_PASS]lbp_filters , \
4 [CONST_LBP_NUMSTAGES_FIRST_PASS*CONST_LBP_NUMALPHAS]lbp_alphas , \
5 [CONST_LBP_NUMSTAGES_FIRST_PASS]lbp_ths \
6) \
7 copy_out(\
8 [CONST_MAX_DET_ALIVEPX]alive_xx , \
9 [CONST_MAX_DET_ALIVEPX]alive_yy , \

10 [CONST_MAX_DET_ALIVEPX]alive_score , \
11 [1] alive_count \
12) \
13 localmem(\
14 [4* CONST_LBP_NUMSTAGES_FIRST_PASS]lbp_filters , \
15 [CONST_LBP_NUMSTAGES_FIRST_PASS]lbp_ths , \
16 [CONST_MAX_DET_ALIVEPX]alive_xx , \
17 [CONST_MAX_DET_ALIVEPX]alive_yy , \
18 [CONST_MAX_DET_ALIVEPX]alive_score , \
19 [1] alive_count \
20)
21 #pragma omp task label(lbp_face_detection_first)
22 void lbp_face_detection_first(unsigned char* frame ,
23 const int x, const int y, const int width , const int height ,
24 const char* lbp_filters , const float* lbp_alphas , const float* lbp_ths ,
25 unsigned char* alive_xx , unsigned char* alive_yy , float* alive_score ,
26 int* alive_count);
27
28
29 #pragma omp target device(fpga) num_instances (1) \
30 copy_in(\
31 [1]score , \
32 [4* CONST_LBP_NUMSTAGES_TAIL_PASS]lbp_filters , \
33 [CONST_LBP_NUMSTAGES_TAIL_PASS*CONST_LBP_NUMALPHAS]lbp_alphas \
34) \
35 copy_inout(\
36 [CONST_MAX_DET_FACES]f_list_faces , [1] f_list_size \
37) \
38 localmem(\
39 [1]score , \
40 [4* CONST_LBP_NUMSTAGES_TAIL_PASS]lbp_filters \
41)
42 #pragma omp task label(lbp_face_detection_tail)
43 void lbp_face_detection_tail_px(unsigned char* frame ,
44 const int x, const int y, const int width , const int height ,
45 float* score , const char* lbp_filters , const float* lbp_alphas ,
46 const float threshold , struct face* f_list_faces , int* f_list_size);
47
48
49 #pragma omp target device(smp) \
50 copy_in(\
51 [CONST_MAX_DET_FACES]f_list_faces , \
52 [1] f_list_size \
53)
54 #pragma omp task

173

55 void lbp_facedetection_trigger(struct face* f_list_faces , int* f_list_size);
56
57
58 void lbp_face_detection_tail_block(unsigned char* frame ,
59 const int x, const int y, const int width , const int height ,
60 const char* lbp_filters , const float* lbp_alphas , const float threshold ,
61 unsigned char* alive_xx , unsigned char* alive_yy , float* alive_score ,
62 int* alive_count , struct face* f_list_faces , int* f_list_size)
63 {
64 #pragma HLS INLINE
65
66 // Iterate all alive pixels
67 int xx, yy, idx , num_px;
68 num_px = *alive_count;
69 //NOTE: Sanity check that ensures there are no more px than possible
70 num_px = num_px <= MAX_DET_ALIVEPX_FIRST_PASS ? num_px : 0;
71 for (idx = 0; idx < num_px; idx++) {
72 xx = alive_xx[idx];
73 yy = alive_yy[idx];
74 lbp_face_detection_tail_px(frame , x + xx, y + yy, width , height ,
75 alive_score + idx , lbp_filters , lbp_alphas ,
76 threshold , f_list_faces , f_list_size);
77 }
78 }
79
80
81 #pragma omp target device(fpga) period(PERIOD) num_repetitions (30) \
82 copy_in(\
83 [4* CONST_LBP_NUMSTAGES]lbp_filters , \
84 [CONST_LBP_NUMSTAGES*CONST_LBP_NUMALPHAS]lbp_alphas , \
85 [CONST_LBP_NUMSTAGES_FIRST_PASS]lbp_ths , \
86 [CONST_LBP_PAR_BLOCKS*CONST_MAX_DET_ALIVEPX]alive_xx , \
87 [CONST_LBP_PAR_BLOCKS*CONST_MAX_DET_ALIVEPX]alive_yy , \
88 [CONST_LBP_PAR_BLOCKS*CONST_MAX_DET_ALIVEPX]alive_score , \
89 [CONST_LBP_PAR_BLOCKS]alive_count , \
90 [CONST_MAX_DET_FACES]f_list_faces , [1] f_list_size \
91)
92 #pragma omp task label(lbp_face_detection_task)
93 void lbp_face_detection_task(unsigned char* frame , int width , int height ,
94 const char* lbp_filters , const float* lbp_alphas , const float* lbp_ths ,
95 const float threshold ,
96 unsigned char* alive_xx , unsigned char* alive_yy , float* alive_score ,
97 int* alive_count ,
98 struct face* f_list_faces , int* f_list_size)
99 {

100 int x2, x, y2, y, n;
101 unsigned int first_pass = 1;
102 int n_x[LBP_PAR_BLOCKS];
103 int n_y[LBP_PAR_BLOCKS];
104
105 f_list_size [0] = 0;
106 n = 0;
107 // Iterate the blocks with jumps to avoid peaks of alive pixels
108 for(x2 = 0; x2 < (width -LBP_RESOLUTION)/4; x2 += LBP_BSIZE)
109 {

174 Appendix A Appendix

110 for(x = x2; x < width -LBP_RESOLUTION; x += (width -LBP_RESOLUTION)/4)
111 {
112 for(y2 = 0; y2 < (height -LBP_RESOLUTION)/2; y2 += LBP_BSIZE)
113 {
114 for(y = y2; y < height -LBP_RESOLUTION; y += (height -LBP_RESOLUTION)/2)
115 {
116 unsigned char* n_alive_xx = alive_xx + n*MAX_DET_ALIVEPX;
117 unsigned char* n_alive_yy = alive_yy + n*MAX_DET_ALIVEPX;
118 float* n_alive_score = alive_score + n*MAX_DET_ALIVEPX;
119 int* n_alive_count = alive_count + n;
120
121 lbp_face_detection_first(frame , x, y, width , height ,
122 lbp_filters , lbp_alphas , lbp_ths ,
123 n_alive_xx , n_alive_yy , n_alive_score , n_alive_count);
124
125 if ((n+1) == CONST_LBP_PAR_BLOCKS /2 ||
126 (n+1) == CONST_LBP_PAR_BLOCKS)
127 {
128 if (first_pass) {
129 first_pass = 0;
130 } else {
131 // Iterate the half previous block chunk which can be handled in
132 // parallel with current half block chunk
133 int nn;
134 const int offset_nn = (n+1) == CONST_LBP_PAR_BLOCKS ?
135 0 : CONST_LBP_PAR_BLOCKS /2;
136 for (nn = 0; nn < CONST_LBP_PAR_BLOCKS /2; nn++) {
137 //Get the score and alive arrays for the block
138 unsigned char* nn_alive_xx = alive_xx +
139 (offset_nn + nn)* MAX_DET_ALIVEPX;
140 unsigned char* nn_alive_yy = alive_yy +
141 (offset_nn + nn)* MAX_DET_ALIVEPX;
142 float* nn_alive_score = alive_score +
143 (offset_nn + nn)* MAX_DET_ALIVEPX;
144 int* nn_alive_count = alive_count + (offset_nn + nn);
145
146 lbp_face_detection_tail_block(frame ,
147 n_x[offset_nn + nn], n_y[offset_nn + nn], width , height ,
148 lbp_filters + 4* LBP_NUMSTAGES_FIRST_PASS ,
149 lbp_alphas + LBP_NUMALPHAS*LBP_NUMSTAGES_FIRST_PASS ,
150 threshold , nn_alive_xx , nn_alive_yy , nn_alive_score ,
151 nn_alive_count , f_list_faces , f_list_size);
152 }
153 #pragma omp taskwait
154 }
155 }
156 n_x[n] = x;
157 n_y[n] = y;
158 n = (n+1) == CONST_LBP_PAR_BLOCKS ? 0 : (n+1);
159 }
160 }
161 }
162 }
163 if (n != 0 && n != (CONST_LBP_PAR_BLOCKS /2)) {
164 // Launch lbp_face_detection_tail_block for the half previous block

175

165 //...
166 #pragma omp taskwait
167 }
168 // Launch lbp_face_detection_tail_block for the last blocks
169 //...
170 #pragma omp taskwait
171
172 if (f_list_size [0]) {
173 lbp_facedetection_trigger(f_list_faces , f_list_size);
174 #pragma omp taskwait
175 }
176 }

Listing A.4: Main tasks of Face Detection benchmark

176 Appendix A Appendix

Colophon

This thesis was typeset with LATEX2ε. It uses the Clean Thesis style developed by Ricardo
Langner. The design of the Clean Thesis style is inspired by user guide documents from
Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

	Cover
	Titlepage
	Abstract
	Acknowledgement
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis publications and contributions
	1.4 Thesis Structure

	2 State of the Art
	2.1 OmpSs Programming Model
	2.1.1 Tasking model
	2.1.2 Heterogeneity support

	2.2 Mercurium
	2.2.1 HLS Source Code

	2.3 Nanos++
	2.3.1 Task Life Stages
	2.3.2 DDAST

	2.4 xTasks Library
	2.4.1 API definition
	2.4.2 Communication Queues

	2.5 xdma Library
	2.6 FPGA Design
	2.6.1 Task Manager
	2.6.2 FPGA Task Accelerators
	2.6.3 Interface Protocols

	2.7 Related Work

	3 Proposal for Asynchronous, Concurrent and Parameterizable Task-Based Systems
	3.1 Proposal Design
	3.2 Programming model extensions
	3.2.1 Automatic type identifier
	3.2.2 Clause for Accelerator Replication
	3.2.3 Clauses for Data Caching in Accelerator HLS Wrapper

	3.3 Compiler and FPGA design extensions
	3.3.1 FPGA design configuration retrievement from bitinfo
	3.3.2 Tuning memory interconnections
	3.3.3 Shared wide Memory Port

	3.4 Execution model extensions
	3.4.1 Concurrent Offloading to Accelerators
	3.4.2 Extrae Support for Device Instrumentation
	3.4.3 Task Manager replacement by Hardware Runtime

	3.5 Evaluation
	3.5.1 Environment
	3.5.2 Benchmarks
	3.5.3 DDAST Tuning
	3.5.4 DDAST Performance Comparison
	3.5.5 Concurrent Offloading to Accelerators
	3.5.6 Tuning memory interconnections
	3.5.7 Shared wide Memory Port

	3.6 Conclusion
	3.7 Publications

	4 Proposal for Task Spawn in Co-processors
	4.1 Proposal Design
	4.2 Programming model extension
	4.3 Mercurium Compiler Support
	4.3.1 Task Directive
	4.3.2 Taskwait Directive
	4.3.3 HLS Source Code

	4.4 Nanos++ Runtime Support
	4.4.1 New APIs
	4.4.2 FPGA Create WD Listener
	4.4.3 FPGA Instrumentation Listener

	4.5 xTasks Library Support
	4.5.1 New APIs
	4.5.2 New Queues

	4.6 FPGA Design Support
	4.6.1 FPGA Task Accelerators
	4.6.2 Hardware Runtime

	4.7 Evaluation
	4.7.1 Experimental Setup
	4.7.2 Resources Utilization and Power Consumption
	4.7.3 Scalability limits and overheads
	4.7.4 Real benchmarks

	4.8 Conclusion
	4.9 Publications

	5 Proposal for Recurrent Tasks
	5.1 Proposal Design
	5.2 Programming model extension
	5.3 Mercurium Compiler Support
	5.3.1 HLS Source Code

	5.4 Nanos++ Runtime Support
	5.4.1 New APIs

	5.5 xTasks Library Support
	5.5.1 New APIs

	5.6 FPGA Design Support
	5.6.1 FPGA Task Accelerators
	5.6.2 Hardware Runtime

	5.7 Evaluation
	5.7.1 Experimental Setup
	5.7.2 Synthetic benchmark
	5.7.3 Sensors Monitoring
	5.7.4 Face Detection

	5.8 Conclusion
	5.9 Publications

	6 Conclusion and Future Work
	6.1 Thesis Contributions
	6.2 Future Work

	Bibliography
	A Appendix
	Colophon

