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ABSTRACT 

The starting point of this thesis is the failure of part of a quay wall under construction. The quay was 

divided in two phases, failure affected Phase 1 only. The failure and all the relevant associated 

information on quay design, construction and monitoring records are described in detail together with 

the results of a site investigation campaign carried out after the failure. Flow liquefaction of the 

hydraulic fill emplaced behind the quay wall was the main cause of the failure. The state of the 

hydraulic fill in the quay area is assessed in the light of the current understanding of the phenomenon 

and of a number of flow liquefaction criteria. In addition, an elastoplastic constitutive law is 

described that is capable to simulate the undrained brittleness behaviour that underlies the 

phenomenon of flow liquefaction. It is a critical-state model that incorporates the concept of state 

parameter. Subsequent finite element analyses are able to reproduce satisfactorily the behaviour of 

the quay during construction and the features and circumstances of the failure. Two possible 

triggering mechanisms are identified that can explain the failure: spontaneous liquefaction, or 

liquefaction of a limited zone caused by the concurrent construction of an embankment. A parametric 

study verifies the robustness of the simulation and the dependence of stability on the degree of 

brittleness of the hydraulic fill. The same type of analysis of quay Phase 2, not involved in the failure, 

revealed that the margin of safety was small if the hydraulic fill liquefied. Soil improvement measures 

were implemented and an extensive monitoring system was installed. Construction of quay Phase 2 

was completed applying the observational method that involved a continuous check of the monitoring 

data and its comparison with numerical simulation results. An additional site investigation confirmed 

that the soil improvement measures had succeeded in removing both the flow and the cyclic 

liquefaction potential of the hydraulic fill, according to currently accepted criteria. The Phase 1 quay 

involved in the failure was reconstructed with mainly terrestrial fill with no flow potential 

liquefaction, as confirmed by the corresponding site investigation.  

 

Based on the experience gathered in the case and on the research carried out, an operational scheme 

dealing with quays constructed with hydraulic fills susceptible to flow liquefaction is proposed. It 

consists of a protocol to evaluate liquefaction potential of hydraulic fills, the use of a constitutive law 

capable of simulating flow liquefaction, the implementation of soil improvement measures to reduce 

flow liquefaction potential and the employment of a monitoring system to control the quay wall 

behaviour during construction and to provide data for comparison with numerical analyses results.



  



 

 

RESUMEN 

El punto de partida de esta tesis es la rotura de parte de un muelle en construcción. El muelle estaba 

dividido en dos fases, la rotura solo afectó a la Fase 1. La rotura y toda la información relevante sobre 

el diseño, construcción y resultados de la auscultación se describen en detalle junto con los resultados 

de la campaña de reconocimiento efectuada después de la rotura. La licuefacción estática del relleno 

hidráulico colocado en el trasdós del muro del muelle fue la causa principal de la rotura. El estado 

del relleno hidráulico se estudia en el marco del conocimiento actual del fenómeno y de una serie de 

criterios de licuefacción existentes.  Además, se describe un modelo constitutivo elasto-plástico 

capaz de simular el comportamiento frágil no drenado que subyace al fenómeno de licuefacción 

estática. Es un modelo de estado crítico que incorpora el concepto de parámetro de estado. Los 

consiguientes análisis de elementos finitos reproducen satisfactoriamente el comportamiento del 

muelle durante la construcción, así como las características y circunstancias de la rotura. Se 

identifican dos posibles mecanismos desencadenantes que explican la rotura: licuefacción 

espontánea o licuefacción de una zona limitada del relleno hidráulico debido a la simultánea 

construcción de una mota. Un estudio paramétrico verifica la solidez de las simulaciones y la 

dependencia que presenta la estabilidad del grado de fragilidad del relleno hidráulico. Análisis 

similares de la Fase 2, no involucrada en la rotura, revelaron que el margen de estabilidad era 

reducido en caso de que el relleno hidráulico sufriera licuefacción. Se implementaron diversas 

medidas de mejora del terreno y se instaló un extenso sistema de monitorización. La construcción de 

la Fase 2 se completó usando el método observacional que implicaba una observación continua de 

los datos de instrumentación y su comparación con los resultados de las simulaciones numéricas.  Un 

reconocimiento del terreno adicional confirmó que las medidas de mejora del terreno habían 

conseguido eliminar el potencial de licuefacción, tanto estática como cíclica, del relleno hidráulico.  

La Fase 1 del muelle involucrada en la rotura se reconstruyó con relleno terrestre sin potencial de 

licuefacción de acuerdo con los datos del reconocimiento del terreno efectuado.  

 

En base a la experiencia y trabajos realizados en este caso, se propone un esquema de actuación para 

casos de muelles construidos con relleno hidráulico potencialmente licuefactable. Este esquema 

consta de un protocolo para evaluar el potencial de licuefacción de rellenos hidráulicos, el uso de una 

ley constitutiva capaz de simular apropiadamente la licuefacción estática, la implementación de un 

conjunto de medidas de mejora del terreno para eliminar el potencial de licuefacción estática y la 

instalación de un sistema de auscultación para controlar el comportamiento del muelle durante la 

construcción y proporcionar datos para comparar con los resultados de los análisis numéricos. 
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Chapter 1. Introduction 

1.1. Background 
Hydraulic fills are soils deposited by a flowing stream of water (van’t Hoff & van der Kolff, 2012). 

They are used to fill enclosures in a variety of engineering projects -such as quays and embankment 

dams-, or to create land reclamation -new islands, airports, harbours, industrial areas and roads-, as 

Palm Island Project in Dubai or Maasvlakte 2 in Rotterdam Europoort, The Netherlands. 

Hydraulic fills are often created by pumping dredged materials to the construction area. The mixture 

of water and soil are sprayed through the air into the enclosure, a technique frequently called 

rainbowing, see Figure 1.1. The hydraulic fills obtained in this way are similar to mining tailings in 

terms of soil structure, both are generally deposited in a loose state. 

 
Figure 1.1. The rainbowing technique. Royal Boskalis Westminster nv (2009). 

In recent decades, the volume of land reclamation has increased sharply due to the need of cities and 

facilities to grow towards the sea (Figure 1.2). Because of the difficulty of securing enough volumes 

of soils for reclamation, dredged materials deposited by hydraulic means is often the preferred option. 
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Figure 1.2. Reclamation contract volumes evolution, van’t Hoff & van der Kolff (2012). 

For instance, the Prat quay -part of the Barcelona Port enlargement-, was constructed using a volume 

of hydraulic fill close to 70M m3, it would have been probably impossible to obtain such volume 

from land soils. Figure 1.3 and Figure 1.4, shows the magnitude and importance of those type of 

works. 

 
Figure 1.3. Satellite image showing the future emplacement of Prat quay in 2001, source Google Earth. 
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Figure 1.4. Satellite image showing Prat quay in 2020, originally designed with hydraulic fill, source Google Earth. 

A drawback of the use of hydraulic fills is that very often they are susceptible to flow liquefaction. 

Soil liquefaction is most common in young soils, which do not have undergone a long stress history. 

These soils are likely to be composed by recently sedimented layers, which are not older than 

Holocene age deposits. In this context, the youth of soil layers is accentuated in hydraulic fill. Mostly, 

this type of fill is deposited as part of backfill operations in a very short time, usually a few months. 

Different catastrophic failures of different structures due to soil liquefaction have been reported or 

reviewed in the past by Bishop et al. (1969) and Bishop (1973), Olson and Stark (2002), Yamamuro 

and Lade (1999), Fourie (2003), Jefferies and Benn (2006), and Alonso and Gens (2006). For some 

time, there was a degree of confusion in the understanding of this phenomenon and about the correct 

terms to use. This confusion sometimes spilled over the wider public sphere. In the case of the Prat 

quay failure, a comic strip linked two mankind’s mysteries: soil liquefaction and the blood of San 

Gennaro (Figure 1.5).  

 

Figure 1.5. Mankind’s mysteries, Transporte XXI (2007). 
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The failure of Prat quay and subsequent related activities were the launching event for this PhD 

thesis. From 2001 to 2020, quay construction, partial failure of the quay wall, sites investigations, 

design changes and the final quay reconstruction have taken place. 

The present PhD thesis is the result of the research work performed within the Doctoral Programme 

in Geotechnical Engineering of Universitat Politècnica de Catalunya (UPC), which was mainly 

focused on the development of an assessment framework for hydraulic fill liquefaction, with special 

reference to flow liquefaction. This development is based on the simulations, tests and observations 

carried out after the failure of Prat quay, a landmark case of flow liquefaction. It takes advantage of 

the large scale site investigations, intense laboratory testing and extensive programme of numerical 

analyses that were carried out as a consequence of the failure. 

1.2. Motivation and objectives 
Soil liquefaction problems have been reported since Hazen (1918) who described a liquefaction event 

that caused failure in 1918. Many other catastrophic failures triggered by soil liquefaction have been 

reported afterwards. Soil liquefaction has often serious financial and public safety implications 

(Jefferies and Been, 2006). 

Casagrande (1936) defined the concept of critical void ratio and Terzaghi and Peck (1948) described 

spontaneous liquefaction two basic terms for soil liquefaction understanding. Afterwards, Schofield 

and Wroth (1968) postulated the critical state framework and models. Another important 

development was put forward by Been and Jefferies (1985) introducing the concept of state 

parameter. Those advances have allowed the formulation of constitutive models for soil liquefaction. 

At the same time, a number of tests were advocated to evaluate soil liquefaction by other pioneers 

such as Seed, Idriss and Robertson. From those studies, a number of soil liquefaction criteria have 

been defined. All those advances provide an adequate background for geotechnical engineering 

works involving hydraulic fills.  

In this context, the main aim of the thesis have the development of an operational scheme for actions 

in the presence of quays constructed with hydraulic fills susceptible to flow liquefaction. It would be 

based on the following items:  

i) Evaluation of the hydraulic fill in Prat quay using specific soil liquefaction criteria 

ii) Development of a suitable constitutive model to simulate flow liquefaction for 

hydraulic fills. 

iii) Demonstrating that the soil improvement procedures performed on the Prat quay 

hydraulic fill were successful in reducing its flow liquefaction potential. 

iv) Proposal of a protocol to assess and reduce flow liquefaction for hydraulic fills. 
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1.3. Thesis layout 
This Thesis is organized in six Chapters and six Appendices. Each Chapter contains its own 

introduction, summary and a list with cited references. The main contents of each Chapter are as 

follows: 

Chapter 2 presents the Phase 1 Prat quay failure. This includes the description of the 

construction of Phase 1 and Phase 2, the records of quay wall movements before the failure in both 

phases, the description of the failure itself, the subsequent site investigation, the properties and 

parameters obtained for each material with particular emphasis on soil strength, and, finally, 

evidences of flow liquefaction in the Prat quay failure. 

In Chapter 3, the phenomenon of hydraulic fill flow liquefaction is reviewed in the context 

of critical state and state parameter, undrained softening, critical/steady state, peak strength and 

different triggering mechanisms. Based on the test results obtained from the site investigation, the 

liquefied strength is estimated and the criteria for flow liquefaction are applied. Finally, a constitutive 

model for flow liquefaction is presented to simulate the behaviour of hydraulic fill. 

In Chapter 4, an account of the finite element (FE) analysis of the Prat quay failure is 

provided. The description of the analyses include the definition of a suitable constitutive model for 

each material, the geometry and the material distribution, the boundary conditions and the 

construction stages. Two different triggering mechanisms are considered; both result in a failure. A 

parametric study of selected material parameters is performed to check their effect on the prediction 

of quay failure. Finally, the results of the analyses are compared with field failure observations. 

Chapter 5 presents the designed construction of Prat quay -Phase 2 and Phase 1-, after the 

failure. In this sense, Phase 2 has to be improved and Phase 1 must be reconstructed. Two main 

analysis of Phase 2 are presented in this Chapter, a FE analysis before soil improvement and a FE 

analysis during and after soil improvements. Then, criteria evaluation for flow liquefaction before 

and after soil improvement are compared for the hydraulic fill of Phase 2. This is followed by a brief 

description of Phase 1 reconstruction. Lastly, a protocol to evaluate liquefaction potential for 

hydraulic fills is presented. 

Finally, Chapter 6 provides the conclusions reached, and gives recommendations for further 

research. 

Appendix A contains the methodology to compute the factor of safety for the FE analyses. 

Appendix B provides the results of the FE analysis of Prat quay Phase 1 according to initial 

hypothesis of total hydraulic fill liquefaction. Appendix C describes the results of the simulation of 

(i) Phase 2 up to the failure of Phase 1 and (ii) once Phase 2 quay was improved, both simulations 

were analysed in accordance with the initial hypothesis of hydraulic fill liquefaction. Barcelona 

seismic conditions are presented in Appendix D. Appendix E shows the results of the cyclic 

liquefaction criteria before and after soil improvement. Finally, the result of a settling column, using 

hydraulic fill from Prat quay is presented in Appendix F.  
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Chapter 2. Prat quay failure. Description and site 

investigation 

2.1. Introduction 
On the first of January 2007, the Prat quay failed catastrophically with significant consequences for 

the development plans of Barcelona Port. The failure led to economic losses of €75 million, and 

delayed the start of Prat terminal operations by two years, La Vanguardia (2009). The quay was part 

of the enlargement of the Barcelona Harbour towards the South that required the lengthening of the 

East breakwater and the construction of the South breakwater. To accommodate the enlargement, it 

was also necessary to change the final course of the Llobregat river. Figure 2.1 shows the location of 

the quay in relation with the new breakwaters and the old and new river mouths. 

(a) (b) 
Figure 2.1. (a) Satellite image showing the location of the Barcelona Port. (b) Satellite image showing the Prat 

quay, the new breakwaters and the original and new Llobregat river mouth, source Google Maps. 
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The new quay was intended to provide a working and storage area 1.58 km long 0.6 km wide 

extending from the quay to the original shoreline. The total length of the quay was divided in two 

parts: Phase 1, 1000 m long and Phase 2, 580 m long (Figure 2.1b). The quay comprised a concrete 

caisson wall founded on a rubble mound placed in a dredged trench. The ensemble was founded on 

soft deltaic deposits; dredged material provided the required fill. Construction started in July 2005 

and continued without interruptions until failure occurred. 

2.2. Geological and geotechnical profile of the site 
The Prat quay was founded on the Holocene deposits of the Llobregat pro-delta. The Llobregat delta 

is an important sedimentary formation that has been intensely studied. According to Marquès (1974), 

Bayó (1985), Ventayol (2003) and Lafuerza et al. (2005) the general architecture of the delta consists 

of six lithological units, which from bottom to top, are: (A) a lower unit of Pliocene blue clays 

(bedrock); (B) Pleistocene fluvial gravels; (C) delta front and delta plain gravels, sands and some 

silts, (D) transgressive sands; (E) Holocene pro-delta deposits made up of low permeability clayey 

silts and silty clays; and (F) a flood plain unit, Figure 2.2. 

 
Figure 2.2. General geological profile of the Llobregat delta (modified from Lafuerza et al., 2005). 

A more recent detailed stratigraphic study (Gamez, 2007 and Gamez et al., 2009) has identified four 

depositional sequences bounded by a minimum of three erosional surfaces corresponding to major 

glacial/interglacial sea‐level fluctuations. They result in erosion of previous deposits and their 

redeposition during sea level fall followed by erosion and resedimentation during sea level rise. The 

interglacial periods were also characterized by prodelta and delta front facies during highstand sea 

levels. The study produced a series of detailed geological profiles across the whole delta; Figure 2.3 

shows the cross section corresponding to the Prat quay location. 

A close-up of the geological profile in the specific area of the Prat quay is shown in Figure 2.4 in 

which the different materials are identified by their geotechnical terms. The most superficial unit is 

a sandy alluvial deposit that was in fact partially removed by the dredging of a trench in the first 

stage of construction. Consequently, the quay wall was founded on a thick deposit of soft silty clay 

corresponding to the Prodelta geological unit. It can be observed that this unit extends down to a 

depth of about 70 m where it is underlain by a permeable sand and gravel layer. Presence of biogenic 

gas in the soft silty clay layer, derived from organic matter, has been reported by Alonso et al. (1995), 
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Liquete et al. (2008) and Urgeles et al. (2007 and 2011). The presence of gas has also been detected 

by in situ tests performed during site investigations in the area (Tarragó and Gens 2018). 

 
Figure 2.3. Geological profile of the Llobregat delta. Depositional sequence I, Fp: flood plain, Fc: alluvial deposits, 
Df: delta front, P: Prodelta, Bs: sand beaches, Bg-Fc: gravel facies and alluvial deposits. Depositional sequence II, 
RW II: fine sediments, Bg-FC II: beach gravels and alluvial deposits. Depositional sequence III, RW III: fine 
sediments, Bg-FC III: beach gravels and alluvial deposits (modified from Gámez 2007). 

 

Figure 2.4. Soil profile at the Prat quay area indicating the quay location (modified from Gámez 2007). 
 

2.3. Construction 
The construction of the Prat quay was carried out in two Phases. The cross-section of Phase 1, the 

northern sector, is presented in Figure 2.5 and the cross section of Phase 2, the southern sector, is 

shown in Figure 2.6. Failure involved Phase 1 of the quay only. 

The quay wall was constructed with concrete caissons sitting on a rubble mound that was protected 

by a rip-rap layer on the seaward side. The building sequence for the quay was as follows: 



10                                                                                            Chapter 2.Prat quay failure. Description and site investigation 

1. Dredging of the natural soil from the initial elevation of -8 m down to -25 m for Phase 1 and 

-24.50 m for Phase 2 (elevations are referred to mean sea level). 

2. Construction of the rubble mound using quarry run material to elevation -16.0 m. The rubble 

mound material was dumped from barges. 

3. Emplacement of the caissons on top of the levelled rubble mound.  

4. Filling of the caissons with sand 

5. Emplacement of hydraulic fill in the area behind the caissons. 

In addition, a rock fill wedge was placed against the back of the caisson in Phase 2 but not in Phase 

1. The caissons were 41 m long and 17.5 m high. The caissons of Phase 1 were 18.5 m wide whereas 

the caissons of Phase 2 were 11.5 m wide. The larger width of the caissons of Phase 1 was due to the 

fact that the South breakwater was under construction when the caissons were emplaced, so they 

were designed to withstand possible storms until the protection breakwater was completed. 25 

caissons were used for Phase 1 and 15 for Phase 2.  For the hydraulic fill, the material dredged in the 

vicinity of the quay was used. It was mainly fine-grained corresponding to the silty clay Prodelta 

layer. It was deposited by a flowing stream of water using the rainbowing (or pumping ashore) 

technique (Figure 2.7). The material was sprayed into enclosures bounded by the quay and lateral 

embankments built for this purpose, as required by the progress of the works. The fill was variable 

in grading because of variations at source and because of the segregation that occurred as a result of 

the method of placement. 

 
Figure 2.5. Design cross section, Phase 1. 

 

Figure 2.6. Design cross section, Phase 2. 
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Figure 2.7. Rainbowing technique during construction, Prat quay. 

The time-history of Phase 1 construction is presented in Figure 2.8 that shows the increase of fill 

elevation with time. It can be noted that the fill emplacement spanned a period of approximately 8 

months. There was a short pause of about one month when the fill reached an elevation of +0 m. At 

that point, an earth bund was constructed on top of the caisson to elevation +4 m (Figure 2.9). In this 

way, the hydraulic fill could be deposited to an elevation higher than that of the top of the caisson 

(+1.5 m). The aim was to speed up the process of consolidation of fill and foundation ground. 

 
Figure 2.8. Evolution of the hydraulic fill level and deposited volume with time, Phase 1. 
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Figure 2.9. Earth bund constructed on top of the caissons (picture taken after the failure). 

Settlements and horizontal displacements of the caissons were monitored by surveying; the 

observations for Phase 1 caissons are plotted in Figure 2.10 and Figure 2.11. Caisson are numbered 

from South to North; caissons 10 to 24 were involved in the failure. As Figure 2.10 shows, most of 

the settlements occurred during the emplacement and filling of the caissons and immediate 

consolidation. Settlements reactivated when hydraulic filling started.  In contrast, horizontal 

movements (Figure 2.11) were small during emplacement and filling of the caissons -when the 

loading is basically vertical-, and increased significantly as fill elevation increased. The distribution 

of vertical and horizontal movements just before failure in the different caissons of Phase 1 are shown 

in Figure 2.12 and Figure 2.13. Settlements are largely uniformly distributed whereas the horizontal 

displacements of the caisson involved in the failure (10 to 24) were larger. It is possible that the 

larger horizontal movements were associated with a poorer quality of the fill material. It should be 

noted that the survey markers were placed at the top corners of the caisson; therefore, observed 

horizontal movements contain an unquantified caisson rotation effect.  

 
Figure 2.10. Vertical displacement of Phase 1 caissons during construction.  
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Figure 2.11. Horizontal displacements of Phase 1 caissons during construction. 

 

Figure 2.12. Settlements of Phase 1 caissons just before failure. Caissons 10 to 24 were involved in the failure. 
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Figure 2.13. Horizontal displacements of Phase 1 caissons just before failure. Caissons 10 to 24 were involved in 

the failure. 

2.4. The failure 
Immediately before failure, the construction of Phases 1 and 2 had reached the stage reflected in the 

cross sections of Figure 2.14 and Figure 2.15 were the presence of the earth bund on top of the 

caissons can be noted. Hydraulic fill elevation in Phase 1 was +3.00 m, higher than that of the top of 

the caisson. It was also higher than in Phase 2 because completion of Phase 1 was prioritised.  There 

was water on top of the fill reaching a +3.50 m elevation in Phase 1. 

 

Figure 2.14. Cross section of Phase 1 just before failure. 

 
Figure 2.15. Cross section of Phase 2 just before failure. 
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On January 1st 2007, there was only a person on the quay controlling the hydraulic filing that was 

taking place from discharge points located in the quay stretch between caissons 14 to 20 

approximately. The eyewitness reported that around 10 a.m. he saw five or six discharges of gas and 

sprayed water into the air next to the quay wall -he described them as “geysers”-, before any 

movement of the caissons were observed. Immediately afterwards failure took place along a length 

of 600 m involving caissons 10 to 24. The hydraulic fill liquefied and was able to drag the very heavy 

caissons for long distances, up to 90 m. The eyewitness had fled the area after observing the gas/water 

discharges and there was no direct observation of the failure itself. Figure 2.16 and Figure 2.17 show 

aerial photos where the geometry of the failure can be clearly seen.  The back of the failure (Figure 

2.18) displays the typical shape of a flow slide. Figure 2.19 depicts the sea level variation recorded 

in the vicinity. A large sea level variation occurred just after 10 a.m., the oscillations slowly 

dampening out over a period of one hour.  

 

Figure 2.16. Aerial photo of failure showing its length and the maximum distance travelled by the caissons. The 
locations of the South and East embankments are also shown, (Courtesy of Barcelona Port Authority). 

South and East 
embankments 
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Figure 2.17. Aerial photo of Phase 1 of the failure (Courtesy of Barcelona Port Authority). 

 

Figure 2.18. Aerial photo of Phase 1 of the failure (Courtesy of Barcelona Port Authority). 
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Figure 2.19. Sea level variation recorded in the Barcelona Port on January 1st 2007 from 9:55 a.m. to 11:10 a.m. 

Figure 2.20 presents the distribution of horizontal displacements undergone by the different caissons. 

The maximum movements involved caissons 14 and 15 and three was a second displacement peak 

corresponding to caisson 23. 

 

Figure 2.20. Horizontal failure movements of caissons. 

Figure 2.16 also shows the location of two embankments, South and East that were being built when 

the fill reached elevation +2.5 m. Their purpose was to bound an enclosure for preloading fill and 

foundation. Embankment South used sand fill and embankment East used rock rubble. Embankment 

South was constructed from the shore towards the quay; at the time of failure its leading edge was at 
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a distance of about 90 m from the quay wall in front of caisson 14 and 15. Embankment East was 

constructed from the northern end at a distance of about 60 m from the quay wall and had reached a 

length of 130 m at the time of failure. It should be noted that parts of the embankments -about 60 m 

in the case of the South embankment-, disappeared as a consequence of the failure and are not visible 

in Figure 2.16.  The method of construction consisted in dumping the embankment material and 

displacing the weak fill although not to full depth; thus, the embankments were at limiting 

equilibrium throughout. It is likely that the gas/water release in front of leading edge of the South 

embankment triggered its failure; the resulting disturbance caused the fill to liquefy providing the 

necessary unbalanced force to move the caissons over long distances.  Supporting evidence for this 

mechanism se presented in Chapter 4 that contains the relevant analyses of the failure. 

At the time, there was uncertainty about the specific mode of failure immediately after the failure. 

Preliminary analyses showed that the factors of safety corresponding to a deep-seated failure 

involving the natural ground and a caisson sliding failure were very similar. However, subsequent 

investigations found that the rubble mounds were largely intact (Figure 2.21), only a small part of 

the seaside edge was missing in a few sections.  Therefore, it was unambiguously established that 

the mode of failure was that of the caissons sliding on the foundation rubble mound. 

 
Figure 2.21. Shape of the rubble mound after the failure compared with the as-built profile. Caissons 14-15. 

2.5. Site investigation 

2.5.1. General 

A large-scale site investigation was launched after the failure. It involved drilling of boreholes, 

including SPT tests and sample extraction, Cone Penetrometer tests (CPTu), VAT permeameter tests 

and Flat Marchetti Dilatometer (DMT) tests. Laboratory testing on retrieved samples was also 

performed. The site investigation embraced the failed section, the rest of Phase1 quay and Phase 2 

quay. The overall layout of the site investigation is shown in Figure 2.22. There were five cross 

sections in the Phase 1 zone and two in the Phase 2 area. Only selected results of the site investigation 

are presented here. 
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Figure 2.22. Layout of the site investigation after the failure. 

Observations of the post-failure bathymetric survey, the borehole logs and the SPT and CPTu tests 

have been combined in the cross-sections depicted in Figure 2.23, Figure 2.24, Figure 2.25 and Figure 

2.26. Figure 2.23 shows Cross-section 14A that corresponds to the failed zone in the region of 

maximum caissons displacements where it can be observed that some of the material of the rubble 

mound was removed by the failure or by events after the failure. However, all the boreholes 

performed found the rubble mound material indicating that no deep-seated failure affecting the 

natural round had occurred. Similar observations were made in boreholes drilled at the original 

locations of displaced caissons. Naturally, the hydraulic fill has largely disappeared from this cross-

section. 

Cross-section CS-6A (Figure 2.24) is an important one because it corresponds to a non-failed section 

of Phase 1 and it probably provides the most reliable information of the hydraulic fill before failure. 

Natural ground and hydraulic fill can be easily distinguished in the results of CPTu test and in the 

borehole logs. For comparison, cross- sections of Phase 2 (CS-3B and CS-7B) are presented in Figure 

2.25 and Figure 2.26. 

 
Figure 2.23. Cross section 14A according to borehole records, CPTu and SPT tests results, Phase 1 affected by the 

failure. 
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Figure 2.24. Cross section 6A according to borehole records, CPTu and SPT tests results, Phase 1 affected by the 

failure. 

 

 

Figure 2.25. Cross section 3B according to borehole records, CPTu and SPT tests results, Phase 2.  
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Figure 2.26. Cross section 7B according to borehole records, CPTu and SPT tests results, Phase 2.  

During borehole drilling several gas escapes were recorded, mainly from natural ground. To clarify 

this issue, VAT permeameter tests were carried out at different depths from fill and natural ground. 

No trapped gas could be detected in the hydraulic fill for both Phase 1 and Phase 2 but biogenic gas 

identified in the silty clay layer of the natural ground, a specific article about this issue was presented 

in Tarrago and Gens (2018). 

 

2.5.2. In-situ testing 

2.5.2.1. CPTu tests 

Cone resistance, pore pressure and sleeve friction measured in the CPTu tests performed in the land 

area of Cross-section 6A are represented in Figure 2.27, Figure 2.28 and Figure 2.29. It is apparent 

that cone resistances (Figure 2.27) are very low in the hydraulic fill, the transition to the natural 

ground is clearly visible. Some excess pore water pressures were generated by cone penetration in 

the backfill areas of lower qc, as shown in Figure 2.28. A noticeable behaviour difference between 

hydraulic fill and in-situ ground is also apparent in the sleeve friction, small values of fs in the fill 

were measured, Figure 2.29.  
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Figure 2.27. Cone resistances in a non-failed section CS-6A of Phase 1. 

 
Figure 2.28. Cone pore pressures in a non-failed section CS-6A of Phase 1. 

 

Figure 2.29. Cone sleeve friction in a non-failed section CS-6A of Phase 1. 

Figure 2.30, Figure 2.31, Figure 2.32 and Figure 2.33 show in more detail CPTu observations of cone 

resistance (qc), pore pressure (u2) and sleeve friction (fs) at four different locations. Hydraulic fill 

appears largely homogenous at each location with very low value of cone resistance.  The CPTu 

results also show that the natural ground exhibits an interbedded sequence of low plasticity silty clays 

and silty fine sands. 
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Figure 2.30. CPTu results of sounding 6a12. 

  
Figure 2.31. CPTu results of sounding 3b11. 
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Figure 2.32. CPTu results of sounding 7b13. 

 

Figure 2.33. CPTu results of sounding 7b8. 
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Dissipation tests were performed systematically during the cone penetration tests. The horizontal 

coefficient of consolidation (ch) were estimated using Houlsby and Teh (1988) approach. The results 

for Phases 1 and 2 are shown in Figure 2.34. It can be observed that there is a larger scatter in the 

hydraulic fills results compared with the natural ground. Values of ch in the hydraulic fill are 

generally larger than those of the natural ground 

(a) (b) 

Figure 2.34. Dissipation tests results, ch in (a) natural ground and (b) hydraulic fill. 

 

2.5.2.2. DMT tests 

Marchetti Dilatometer tests (DMT) also performed, four in the Phase 1 area and two in the Phase 2 

area. The DMT soundings were always carried out next to a CPTu test location. The Standard DMT 

parameters P1 and P0 were obtained from test results. They are combined to obtain the soil index 

(IDMT) , the horizontal stress index (KDMT) and the coefficient of earth pressure at rest (K0): 

𝐼𝐷𝑀𝑇=(𝑃1−𝑃0) / (𝑃0−𝑢0)      [2.1] 

𝐾𝐷𝑀𝑇=(𝑃0−𝑢0) / 𝜎′𝑣0      [2.2] 

𝐾଴ ஽ெ் ൌ 0.47 ൉ ቀ௄ವಾ೅

ଵ.ହ
ቁ – 0.6     [2.3] 

Selected results are plotted in Figure 2.35, Figure 2.36 and Figure 2.37. 
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Figure 2.35. DMT results of sounding 6a12. 

 

Figure 2.36. DMT results of sounding 3b14.  
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Figure 2.37. DMT results of sounding 7b13. 

2.5.3. Laboratory tests 

Results of laboratory tests performed to determine properties of the hydraulic fill, natural ground and 

rubble mound. Because of its relevance in a failure investigation, strength parameters are discussed 

separately in the next section. 

The main physical and classification properties of the hydraulic fill are presented in Figure 2.38 and 

Figure 2.39. They are similar to those of the natural ground from which it derives. Gradings are quite 

variable with more sand present in the Phase 1 fill. Water contents in the clayey samples is close to 

the liquid limit. The material has a low plasticity with a plasticity index (IP) generally lower than 10. 

 
Figure 2.38. Fill properties in Phase 1 (red symbols) and Phase 2 (black symbols). 

0 2 4 6 8 10
K D

-35

-30

-25

-20

-15

-10

-5

0

5

e
le

va
tio

n 
(m

)

Hydraulic 
fill

Natural 
ground

-1 0 1 2 3 4
ID 

c
la

y

si
lt

s
an

d

DMT 7b13

0 0,25 0,5 0,75 1
K0

20 40 60 80
Passing 75m

-15

-10

-5

0

5

E
le

va
tio

n
 (

m
)

0 20 40 60
Passing 2m

0 10 20 30
wL (%)

0 10 20 30 40
IP(%)

S6a8

S6a9
S6a12

S3b13
S7b13



28                                                                                            Chapter 2.Prat quay failure. Description and site investigation 

 

Figure 2.39. Fill properties in Phase 1 (red symbols) and Phase 2 (black symbols). 

The grading of a hydraulic fill is often variable because it depends on the source material, the specific 

model of deposition and on the distance of a particular location from the discharge point. Figure 2.29 

illustrates this point by showing the range of grading curves obtained in samples retrieved from a 

single borehole, 6a8. In any case, the proportion of fine particles is generally high. 

 
Figure 2.40. Particle size distributions from samples of hydraulic fill recovered from borehole 6a8. 

The corresponding properties of the natural ground are presented in Figure 2.41. Index properties are 

similar to hydraulic fill values. Soils classify as low plasticity clays and silts or, locally, silty sands. 

Organic content is always below 1%.  
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Figure 2.41. Natural ground properties in Phase 1 (green symbols) and Phase 2 (black symbols). 

The mineralogical composition of the hydraulic fill was determined using powder X-Ray diffraction 

(XrD) (Figure 2.42). Results indicated that this soil contains typical mineral grains of sediment from 

the Llobregat River, mainly muscovite (32.7%), calcite (27.7%) and quartz (14.9%), but also halite 

(8.9%) kaolinite (5.9%), graphite (5.9%) and dolomite (4%), Tauler (2007). Clay minerals as 

muscovite and kaolinite are not active clay minerals or flocculants.  

Additionally, in order to compare the mineral composition of the natural ground (fine-grained) and 

hydraulic fills, both powder XrD results are represented in Figure 2.43. Results are similar, both in 

peaks location (2θ) and in peak intensities which imply the same mineral phases and the same mineral 

phases proportion. It results from the fact that dredged material placed in the hydraulic fill derives 

from the natural ground at the same location. 
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Figure 2.42. XRD powder diffraction and semi-quantitative analysis results from hydraulic fill soil. Mineral phases: 

Cal: calcite, Ms: muscovite, Dol: dolomite, Kln: kaolinite, Gr: graphite, Hl: halite and Qtz: quartz, Tauler (2007). 

 
Figure 2.43. XRD powder diffraction natural ground (blue) and hydraulic fill (red), Tauler (2007). 

Shelby samplers were used to obtain undisturbed specimens from the natural ground but they proved 

largely inadequate for the hydraulic fill where the Beguemann sampler was more successful.  

Oedometer tests were performed to obtain compression (CC) and swelling (CS) indices. They are 

plotted in Figure 2.44. Compression index values lie in the range of 0.12 to 0.21 for the natural 

ground, and 0.21 to 0.27 for the fill whereas the values of swelling index range from 0.002 to 0.004 

for both materials. The void ratio (e0) of the retrieved samples were higher in the hydraulic fill than 

in the natural ground silty clay.  
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Figure 2.44. Void ratio, compression index and swelling index for fill and natural ground in Phase 1. 

In addition, identification tests were performed on the quarry run used for the rubble mound. The 

grain size distribution presented in Figure 2.45 indicates that it is composed by more than 70% of 

gravels, 15 % of sand, 6% of silts and 4% of clay; D50 was close to 10 mm. This material is non 

plastic. 

 
Figure 2.45. Particle size distributions from samples of rubble mound recovered from borehole 6a8, CEDEX 2007. 

2.6. Soil strength 
In the failure case investigated, the undrained shear strength of the natural ground and hydraulic fill 

is the key parameter controlling stability. Its determination is mainly based on the results of in-situ 

tests, CPTU tests and DMT tests but laboratory tests of natural ground samples have also been 

considered.  

In the case of CPTu tests, the undrained shear strength, cu, is computed as: 
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 cu = (qt - σv) / Nkt  [1]

where qt is the total cone resistance, σv is the total vertical stress and Nkt is an empirical 

parameter. A standard value of Nkt equal to 15 has been adopted. σv  has been computed using 

an average saturated density value of 1.85 Mg/m3. 

For the DMT, cu was determined using the expression from Marchetti (1980): 

 cu DMT=0.22 σ’v0 (0.5ꞏKDMT)1.25   [2]

Again an average saturated density value of 1.85 Mg/m3 was used. 

Soil strength parameters for the rubble mound material was obtained from laboratory tests. 

2.6.1. Hydraulic fill  

Two typical profiles of undrained shear strength for the hydraulic fill are shown in Figure 2.46 and 

Figure 2.47. It can be noted that there are many records well below the usual range of 0.20-0.25 σ’v, 

where σ’v is the effective vertical stress. In some cases, the estimated value of cu is even close to 

zero. These observations point out towards the hydraulic fill being a brittle material susceptible to 

flow liquefaction (Monforte et al., 2021). In the sandy areas of the profile, significantly larger shear 

strengths are measured. The same low values of undrained shear strength and its variation from 

location to location are also apparent in the results of CPTu tests of the Phase 2 materials (Figure 

2.48). 

(a) (b) 

Figure 2.46. CPTu results in hydraulic fill (a) 6a12 and (b) 6a11, Phase 1. 
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(a) (b) 

Figure 2.47. CPTu results in hydraulic fill (a) 6a8 and (b) 6a14, Phase 1. 

(a) (b) 

Figure 2.48. CPTu results in hydraulic fill, (a) 3b12 and (b) 7b12, Phase 2. 
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The undrained shear strength derived from DMT tests in three soundings are represented in Figure 

2.49. Values lower than 0.20 - 0.25 σ’v are determined but the very low values of the CPTu tests are 

not apparent in this case. This is consistent with the fact that the cone penetration creates much more 

disturbance in the soil than the DMT test. 

(a) (b) 

Figure 2.49. Undrained shear strength from DMT results in hydraulic fill, (a) 6a12 and (b) 3b13 and 7b13. 

 

2.6.2. Natural ground 

Typical profiles of CPTu-derived undrained shear strength for the natural ground are presented in 

Figure 2.50. It can be observed that now the values lie in the range of 0.20 - 0.25 σ’v although some 

rather low values occasionally appear; a possible cause could be the presence of gas. The interbedded 

macrostructure of the material is also apparent in the profile. The undrained shear strength estimated 

from DMT tests confirms those results (Figure 2.51). The friction angle lies around 34º.  
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Figure 2.50. CPTu results, derived undrained shear strength, from CPTu 6a11, 3b12 and 7b13. 

 
Figure 2.51. DMT results, derived undrained shear strength (left) and friction angle (right), from DMT 6a12, 3b13 

and 7b13. 
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Simple shear tests on Shelby specimens were performed by the Norwegian Geotechnical Institute. It 

can be seen that the undrained strength results cluster around 0.25ꞏσ’v line although some values are 

noticeably larger. Similar results were also obtained in the site investigation of the South breakwater 

founded on the same material (Gens and Alonso, 2001), Figure 2.52. 

 
Figure 2.52. Results of simple shear tests soils of Prat quay and South breakwater, modified from Gens and 

Alonso (2001). 

2.6.3. Rubble mound 

The friction angle of the rubble mound material was measured in a large scale triaxial apparatus 

testing a 150 mm diameter reconstituted sample. A friction angle of 38º was obtained (Figure 2.53). 

The friction coefficient of the interface concrete - rubble mound material was also measured. A value 

of 0.42 was obtained that corresponds to a friction angle equal to 2/3 the friction angle of the rubble 

mound material. 

 
Figure 2.53. Quarry-run material of rubble mound. Triaxial CD –drained consolidated-test results, CEDEX 

(2007). 
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2.7. Evidence of flow liquefaction in Prat quay failure 

No previous signs of instability were recorded or described during the construction of the Prat quay. 

The first one was the gas/water discharges (“geysers”), immediately followed by overall failure, large 

caisson displacements and flow of the hydraulic fill to the sea. Failure occurred during a very short 

time lapse; this behaviour was clearly linked to flow liquefaction. Additional evidence was found 

during the fieldwork after the failure. A first evidence of liquefaction was the fact that, a set of 

repeated steps on the crust on top of the Phase 1 fill resulted in a loss of strength that led the person 

to sink in the fill. There was also anecdotal evidence that the fill was liquefiable because, on 

occasions, small fine sand or fine grained volcanos appeared when the fill was loaded (Figure 2.54 

and Figure 2.55). 

 
Figure 2.54. Fine sand volcanos from hydraulic fill  
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Figure 2.55. Fine grained soil volcanos from hydraulic fill  

It is also clear that some of recurrent actions that sometimes trigger the failure can be excluded. Thus, 

there was no evidence of cyclic loading before the failure because: (i) seismograph placed in 

Barcelona did not recorded any seismic event prior to the failure and (ii) the buoy of placed in the 

inner harbour detected a variation of wave height only just after the failure, as shown above.  The 

phenomenon that occurred was flow -sometimes called static-, liquefaction, not cyclic liquefaction.  

2.8. Summary 
A 600 m long section of a caisson quay failed catastrophically without apparent warning. Caissons 

were displaced long distances.  

The quay was founded on soft deltaic deposits but the failure did not involve the natural ground. The 

mechanism of failure was by sliding of the caissons on the rubble mound placed underneath. 

Failure involved the flow (static) liquefaction of the hydraulic fill deposited behind the caissons. 

Low values of the undrained shear strength of the hydraulic fill -derived from CPTU tests-, suggest 

that the undrained behaviour of the material is brittle and therefore it may develop flow liquefaction. 

There is additional observational evidence that the hydraulic fill was susceptible to flow liquefaction. 

Because of the key role played in the failure of the Prat quay, the phenomenon of flow liquefaction 

is examined in detail in the next Chapter together with an evaluation of the hydraulic fill liquefaction 

potential according to on some commonly used criteria. 
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Chapter 3. Hydraulic fill liquefaction 

3.1. Introduction 
The phenomenon of soil liquefaction entails the total or partial loses of strength or stiffness, usually 

over a short period of time (Jefferies and Been, 2016). This phenomenon is often associated with 

catastrophic failure. Although some confusion in liquefaction terminology existed in the past, it is 

now generally accepted that flow (or static) liquefaction must be considered separately from cyclic 

liquefaction or cyclic mobility, as indicated in Figure 3.1 (Robertson and Wride, 1998). 

 
Figure 3.1. Flow chart to evaluate liquefaction potential of soils (Robertson and Wride, 1998). 
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Flow (or static) liquefaction is linked to undrained softening behaviour. The term flow liquefaction 

is preferred to static liquefaction because this type of liquefaction can in fact be triggered by cyclic 

loading (Gens, 2019). 

Cyclic liquefaction or cyclic mobility results from the increment of water pore pressure during cyclic 

loading that can be due to various events such as earthquakes, vibrations or wave action during 

storms. In the case of cyclic liquefaction, the rise of pore pressure can take the soil to very low 

effective stresses where large deformations are produced. In contrast, cyclic mobility occurs at larger 

effective stresses and only small deformations are produced. 

In Figure 3.2, different idealized undrained behaviour of a non-plastic soil is summarized. Flow 

liquefaction is associated with a behaviour in which an abrupt reduction of undrained shear strength 

occurs after the peak, associated with a generation of large pore pressures (Gens, 2019). 

 
Figure 3.2. Typical undrained behaviour of non-plastic soils (Gens, 2019). 

3.2. Flow liquefaction 
Flow liquefaction behaviour is a recurrent failure cause. Reported failures of different civil and 

mining works mainly such as embankments, tailing dams, railways or hydraulic fills were triggered 

by static loading and earthquakes. In Table 3.1 and  

Table 3.2 different cases of engineering projects from 1889 to 1997 compiled from Olson and Stark 

(2002), Yamamuro and Lade (1999), Jefferies and Benn (2006), and Gens (2019) are shown. 

Important instances of failure are, the Aberfan spoil slide that killed 144 people, Bishop et al. (1969) 

and Bishop (1973), the Merriespruit embankment failure that caused 17 fatalities and high economic 

losses (Figure 3.3), Fourie et al. (2001), or the recent Brumadinho embankment failure that caused 

more than 250 fatalities (Figure 3.4), Robertson et al. (2020). 
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Figure 3.3. The failure of the slurry dam of Merriespruit due to flow liquefaction, Fourie et al. (2001). 

 
Figure 3.4. The failure of the tailings dam of Brumadinho due to  flow liquefaction, source Youtube. 
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Table 3.1. Real cases of flow liquefaction, reported by Olson y Stark (2002), Yamamuro and Lade (1999) and Jefferies and Benn (2006). 

Historical Structure  Year 
Involved soil and apparent failure 
cause 

References 

1 Wachusett Dam - North Dike 1907 During sand filling Olson et al. (2000) 

2 Calavera Dam 1918 Hydraulic fill Hazen and Metcalf (1918) and Hazen (1918) 

3 Sheffield Dam (earthen dams) 1925 Santa Barbara eq. (ML=6,3) Seed (1969) 

4 Helsinki Harbor 1936 Static liquefaction during construction Andresen and Bjerrum (1968) 

5 Fort Peck Dam 1938 Static liquefaction hydraulic fill Middlebrooks (1942); Casagrande (1965) 

6 
Finnvika fjord railway 
embankment 

1940 
Static liquefaction silty sand 
embankment construction fill

Bjerrum (1971) 

7 Solfatara Canal Dike 1940 Imperial Valley eq. (ML = 7,1) Ross (1968) 

8 Hemmelvika 1942 
Static liquefaction man-made 
submarine sandy fill 

Bjerrum (1971) 

9 Lake Merced bank 1957 San Francisco eq. (ML=5,3) Ross (1968) 

10 Kawagishi-Cho building 1964 Niigata eq. (Mw = 7,5) Yamada (1966); Ishihara and Koga (1981); Seed (1987) 

11 Uetsu Railway embankment  Niigata eq. (Mw = 7,5) Yamada (1966) 

12 El Cobre Tailings Dam 1965 Chile eq. (ML=7-7,25) Dobry and Alvarez (1967) 

13 Aberfan spoil Tip (Wales) 1966 Static liquefaction mine waste Bishop (1973) 

14 
Koda Numa highway 
embankment 

1968 Tokachi-Oki eq. (ML=7,9) Mishima and Kimura (1970) 

15 Metoki Road embankment 1968 Tokachi-Oki eq. (ML=7,9) Ishihara et al. (1990) 

16 Hokkaido Tailings Dam 1968 Tokachi-Oki eq. (ML=7,9) Ishihara et al. (1990); Ishihara (1993) 

17 Lower San Fernando Dam  1971 
After San Fernando eq.(MW=6,6) on 
silty sand of hydraulic fill

Seed et al. (1973); Castro et al. (1989); Seed et al. (1989); Vasquez-
Herrera and Dobry (1989); Marcuson et al. (1990); Castro et al. (1992) 

18 Tar Island Dyke 1974 Sand tailings Mittal and Hardy (1977); Plewes et al. (1989); Konrad and Watts (1995) 

19 Mochi-Koshi Tailings Dam 1978 Izu-Oshima-Kinkai eq. (ML=7,0) Marcuson et al. (1979); Okusa and Anma (1980); Ishihara et al. (1990) 

20 Nerlerk Berm failures 
1982 
1983 

Static liquefaction of sands and 
foundation clay failure 

Sladen et al. (1985a, 1985b, 1987); Been et al. (1987); Sladen (1989); 
Rogers et al. (1990); Konrad (1991); Hicks and Boughraruo (1998) 

21 Hachiro-Gata Road embankment 1983 Nihon-Kai-Chubu eq. (M=7,7) Ohya et al. (1985) 
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Table 3.2. Real cases of flow liquefaction, reported by Olson y Stark (2002), Yamamuro and Lade (1999), Jefferies and Benn (2006) and Gens (2019). 

Historical Structure Year Involved soil and apparent failure cause References 

22 Asele Road embankment 1983 Pavement repairs Ekstrom and Olofsson (1985); Konrad and Watts (1995) 

23 La marquesa Dam 1985 Chilean eq. (ML=7,8) de Alba et al. (1987) 

24 La Palma Dam 1985 Chilean eq. (ML=7,8) de Alba et al. (1987) 

25 Stava Mine 1985 Tailings Chandler and Tosatti (1995) 

26 Fraser River Delta 1985 Gas desaturation and low tide Chillarige et al. (1997a, 19976); Christian et al. (1997) 

27 
Lake Ackerman highway 
embankment 

1987 Seismic reflection survey Hryciw et al. (1990) 

28 Fill in Chonan Middle School 1987 Fill, Chiba-Toho-Oki eq. (M = 6,7) Ishihara et al. (1990) ; Ishihara (1993) 

29 Tailing dam 1988 Cerro Negro eq. on silty sand Troncoso (1988)? 

30 Tailing dam 1988 Veta del Agua eq. on silty sand Troncoso (1988)? 

31 Nalband Railway embankment 1988 Armenian eq. (ML = 6.8) Yegian et al. (1994) 

32 Sullivan Mine 1991 Static liquefaction tailings Davies et al. (2002) 

33 Shibecha-Cho embankment 1993 Kushiro-Oki eq. (ML = 7,8) Miura et al. (1998) 

34 Route 272 at Higashiarekinai 1993 Kushiro-Oki eq. (ML = 7,8) Sasaki (1994) 

35 Hydraulic fill 1994 Northridge eq. on silty sand Kerwin & Stone (1997) 

36 Merriespruit Dam 1994 Static liquefaction of tailings Wagener et al. (1998); Fourie et al. (2001) 

37 Alznalcollar Dam 1997 Static liquefaction tailings Alonso and Gens (2006) 
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3.2.1. Critical states and state parameter 

Flow liquefaction behaviour is best understood in the context of the critical state concept. The initial 

definition of critical state was proposed by Casagrande (1936), after observing that almost the same 

void ratio (critical void ratio, ess) is reached, when loose sand contracted and dense sand dilated in 

direct shear tests. No volume change was detected after critical void ratio.  

 
Figure 3.5. Critical void ratio for sands from direct shear tests, Casagrande (1975). 

Schofield and Wroth (1968) stablished the concept of critical state line (CSL) of a soil. This line is 

defined by different critical void ratios (ecs) reached during shear under different constant stress when 

no longer volume change occurs. Although vertical effective stress can be used, mean effective stress 

(p’) is frequently used to represent CSL, as shown in [3]. 

 ecs = e0 – 𝜆 log10ꞏ𝑝′ [3]

where the mean effective stress (p') is defined as: 

 𝑝′ = (𝜎1′ + 𝜎2′ + 𝜎3′) / 3 [4]
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σ'1, σ'2 and σ'3 are the principal effective stresses. Initial void ratio (e0) is a parameter of the 

soil. 

Although the critical state line in the former definition is assumed a straight line in (e - log10 p’) space 

(Figure 3.6), for real soils, the line is sometimes bilinear or curved as shown in Figure 3.7. This 

phenomenon is frequently associated with particle crushing. 

 
Figure 3.6. State diagram from Kogyuk 350/2 sand tests, Been and Jefferies (1985). 

 
Figure 3.7. Critical state line from Stava tailings tests, Carrera et al. (2011). 
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A relevant parameter to evaluate the soil character is the state parameter. It was defined in Been and 

Jefferies (1985) although it had been stated previously by Wroth and Basett (1965). The state 

parameter (ψ) is defined as the difference between the current void ratio and the void ratio in the 

critical state line (eSS) at the same value of mean effective stress (Figure 3.8). It is important to note 

that state points located above the CSL (i.e. in ψ > 0) are loose soils exhibiting contractive behaviour. 

In contrast state points located below the CSL ψ < 0. ) correspond to dense soils showing dilatant 

behaviour. 

 
Figure 3.8. State parameter (ψ) definition, Been et al. (1991). 

3.2.2. Undrained softening 

As indicated above for path A of Figure 3.2, the undrained stress path and deviator stress-axial strain 

of a soil exhibiting undrained softening are represented in Figure 3.9 and Figure 3.10. This path 

reaches a peak on deviator stress followed by a drastic reduction of deviator stresses reaching finally 

its critical state. Of course, void ratio and mean effective stresses at the CS (or SS) lie on CSL. 

 

Figure 3.9. Undrained softening, effective stress path, Gens (2019). 
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Figure 3.10. Undrained softening, stress-strain curve, Gens (2019). 

During flow liquefaction, a large generation of pore water pressures is observed due to the contractive 

soil character -i.e. Castro (1969) tests showed in Figure 3.11-, as corresponds to positive values of 

the state parameter. 

 
Figure 3.11. Results of a stress-controlled test on loose Banding sand, deviator stress-axial strain curve and pore 

pressure-axial strain curve. Bishop (1973), data from Castro (1969). 

Different magnitudes of deviator stress at CS are obtained according to the location on the CSL. For 

very low p’ values, high e0 values often exists, hence deviator stress could be null at CS, if the CSL 

is curved Figure 3.6. In that case, the phenomenon has been called true liquefaction (Carrera et al., 

2011). It is interesting to note that even if non-null values of deviator stress are reached, flow 
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liquefaction can also occur. However, failure consequences evidently will be more extreme in true 

liquefaction. 

In connection with the investigation of the Aberfan failure, Bishop (1973) defined a brittleness index 

(IB) to evaluate undrained softening in terms of undrained shear strength (cu), [5]. 

 𝐼஻ ൌ
𝑐௨ ௣௘௔௞ െ 𝑐௨ ௌௌ

𝑐௨ ௣௘௔௞
 [5]

Brittleness index indicates the susceptibility of a soil to reach flow liquefaction. The values of IB are 

in the range of 0 to 1, and ductile corresponds to IB = 0. True flow liquefaction would be associated 

with IB = 1. 

3.2.3. Critical /steady state 

This CS is sometimes also called steady state (SS), although it has been claimed that the two concepts 

are not exactly the same. Poulos (1981) defined the steady state of deformation of any mass of 

particles is that state in which the mass is continuously deforming at constant volume, constant 

normal effective stress, constant shear stress and constant velocity. The difference between critical 

state and steady state lies in the existence of constant velocity in SS definition which it is not present 

in critical state (Gens, 2019). Nevertheless, both concepts are in fact quite equivalent. 

Based on the ratio M = q / p' at critical state, a friction angle termed the critical state friction angle 

(φcs) can be derived. The deviator stress (q) is [6]. 

 𝑞 = 𝜎1 − 𝜎3 [6]

Where σ1 and σ3 are the major and minor principal total stresses, respectively. 

The deviator stress at critical state is also called liquefied or residual strength. Significant problems 

-out of the PhD thesis scope-, exists to reach the CS value under experimental conditions in the 

laboratory triaxial apparatus (Gens, 2019). 

3.2.4. Peak strength 

Two different proposals have been made connecting the line that joins the peak undrained strength 

points: (i) Collapse line that goes from peak strength to steady state -Sladen et al. (1985a) and Ishihara 

(1993)-, and (ii) Flow liquefaction line that goes from peak strength to the origin of p’- q’ space 

(Vaid and Chern, 1985 and Lade, 1993). The framework of state parameter has been proposed in 

Yang (2002) to merge both concepts. Gens (1982) has pointed out that peak strength depends on 

strain rate and consolidation stress path. Thus, it is better to consider peak strength as simply an 

undrained parameter unrelated to effective stress strength parameters. 

Isotropic consolidation stress paths for laboratory tests on flow liquefaction have been usually 

adopted. However, this assumption does not match up real field conditions and it tends to reduce 

peak strength, as Castro (1969) demonstrates for the same sand subject to different initial 

consolidation stresses (Figure 3.12).  
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Figure 3.12. Triaxial undrained tests with different initial anisotropically consolidation stress paths, (Bishop 1973, 

data from Castro 1969). 

Triaxial tests on isotropically and anisotropically consolidated samples were performed on tailings 

involved in the Merriespruit failure (Fourie and Tshabalala, 2005). Results showed that different 

stress ratios (η = q / p’) at peak strength were reached depending on whether the consolidation stress 

path was isotropic and anisotropic. Isotropic consolidated tests reached a peak stress ratio close to 

0.6 (Figure 3.13) whereas the stress ratio from anisotropic consolidated tests were, 0.9 (Figure 3.14). 

 
Figure 3.13. Undrained triaxial tests on isotropically consolidated samples (Fourie and Tshabalala, 2005). 

 
Figure 3.14. Undrained triaxial tests on anisotropically consolidated samples (Fourie and Tshabalala, 2005). 
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3.2.5. Triggering flow liquefaction  

Although the triggering of flow liquefaction could be “spontaneous” as Terzaghi (1957) suggested 

when soil liquefy due to its emplacement over a slope with large enough inclination, soil it is more 

likely undergo flow liquefaction after an external load is applied that acts as liquefaction precursor 

or trigger (Gens, 2019).  The applied deviator stress may be due associated with different total stress 

paths such as A or B in Figure 3.15. Path A is associated with an undrained rise of vertical stress, 

whereas path B corresponds to a reduction of horizontal stress. Gens (2019) indicated the all 

undrained total stress path are equivalent regarding the resulting effective stress path.   

 
Figure 3.15. Undrained increment of deviator stress triggers flow liquefaction (Gens, 2019). 

Another triggering event can be associated with a reduction of drained lateral (Figure 3.16). It is also 

possible in case of an increase of pore pressure from the variation in hydraulic conditions or from 

cyclic loading, as shown in Figure 3.17 and Figure 3.18 respectively, may also trigger flow 

liquefaction. Although peak strength is not attained in last three cases, the instability branch is 

reached and flow liquefaction follows. 

 
Figure 3.16. Drained unloading of lateral stress triggers flow liquefaction (Gens, 2019). 
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Figure 3.17. An increase of pore pressure by variation in hydraulic conditions triggers flow liquefaction (Gens, 

2019). 

 
Figure 3.18. An increase of pore pressure by cyclic loading triggers flow liquefaction (Gens, 2019). 

Gens (2019) linked the stress paths shown above with physical triggering mechanisms for flow 

liquefaction (Martin and McRoberts, 1999): 

i)  Path A (Figure 3.15) may be linked with an emplacement of material or construction. 

ii) Unloading of lateral paths -undrained path B (Figure 3.15) for rapid event and drained 

path from Figure 3.16 for slow event-, may be linked with foundation sliding, dam 

overtopping, toe erosion or excavation. 

iii) Variation in hydraulic conditions path (Figure 3.17) may be linked with increased pond 

levels, unfavourable weather conditions or pore pressure redistribution. 

iv) Cyclic loading path (Figure 3.18) may be linked with any type of action involving 

vibration (from earthquakes to traffic or blasting). 
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3.3. Evaluation of liquefied undrained strength 
High plasticity soils tend to have large strains to both peak and liquefied shear strength and therefore 

tend not to experience flow failures (Ladd et al., 1977), whereas, low plasticity soils tend to have 

smaller strains to both peak and residual strength. Most case histories of flow liquefaction -reported 

in Olson and Stark (2002)-, have occurred in low plasticity or non-plastic soils consistent with the 

small strain to peak strength and high brittleness. These cases have been back-calculated resulting in 

cu SS /σ’v (or cu liq /σ’v) values in the range of 0.04 to 0.12, Figure 3.19. According to reported cu peak, 

IB values are higher than 0.4. Thus, it has been suggested that soil with IB =0.4 can be called high 

brittleness soils (Robertson, 2017). 

 
Figure 3.19. Vertical effective stress vs. liquefied shear stress of different case histories, Olson & Stark (2002). 

 

From different study cases of flow liquefaction presented in Olson and Stark (2002), a relationship 

between qc from CPTU and yield strength ratio (cu yield /σ’v) or (cu peak /σ’v) was proposed by Olson 

and Stark (2003). 

௖ೠሺ௬௜௘௟ௗሻ

ఙᇱೡ
ൌ 0.205 ൅ 0.0143ሺ𝑞௖ଵሻ േ 0.04 for qc1 ≤ 6.5 MPa  [6] 

where:   𝑞௖ଵ ൌ  
ଵ.଼

଴.଼ା഑ᇲೡ
೛ೌ

൉ 𝑞௖      [7] 

where qc1 is the qt normalized for overburden stress (MPa) and pa atmospheric pressure 

(MPa). 
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The liquefied shear strength ratio was estimated by Olson and Stark (2002) to be: 
௖ೠሺ௅ூொሻ

ఙᇱೡ
ൌ 0.03 ൅ 0.0143ሺ𝑞௖ଵሻ േ 0.03 for qc1 ≤ 6.5 MPa  [8] 

Peak and liquefied shear strength ratios have been derived for hydraulic fill CPTu results (Figure 

3.20 to Figure 3.24). The obtained values of peak shear strength ratio lies close to 0.25. In contrast, 

the average of liquefied shear strength is lower, around 0.06. Results are similar in both Phases, 

although higher values due to the existence of sand layers are observed in Phase 2 fill. 

This relationship has limitations for determining liquefied shear strength ratio because the original 

database was obtained analysing cases in which there was a recognizable post-failure geometry for 

the failed mass (Olson and Stark, 2002). It is not the case for Prat quay, where such analysis would 

have been impossible as the material flowed nearly more than a hundred meters. Nonetheless, this 

liquefied ratio will be used in following constitutive model calibration. 

(a) (b) 

Figure 3.20. Results of peak and liquefied shear strength ratio from CPTu data, (a) 6a8 and (b) 6a12, Phase 1. 
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Figure 3.21. Results of peak and liquefied shear strength ratio from CPTu data, 6a14 Phase 1. 

 

(a) (b) 

Figure 3.22. Results of peak and liquefied shear strength ratio from CPTu data, (a) 3b11 and (b) 3b12, Phase 2. 
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(a) (b) 

Figure 3.23. Results of peak and liquefied shear strength ratio from CPTu data, (a) 7b8 and (b) 7b12, Phase 2. 

 

Figure 3.24. Results of peak and liquefied shear strength ratio from CPTu data, 7b13 Phase 2. 
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3.4. Criteria for flow liquefaction 
Most liquefaction criteria have been developed in relation to seismic actions. Although an earthquake 

was not the trigger for the Part quay failure, such criteria have been applied to the hydraulic fill using 

the Barcelona seismic conditions (Appendix D). The results, using the criteria for cyclic liquefaction 

(Appendix E.2) are presented in Appendix E.3. In this section, the application of four different 

criteria for flow liquefaction to the Prat quay hydraulic fill is described. One of criteria is based on 

laboratory tests whereas the other three are based on CPTu results. 

The criterion based on laboratory tests uses the values of plasticity index (IP), liquid limit (LL) and 

water content (wc). Seed et al. (2003) modified an existing Chinese criterion (Wang, 1979) to define 

three zones separating materials susceptible, moderately susceptible and not susceptible to 

liquefaction. The modified Chinese criterion indicates that zone A is limited by PI in the range of 0 

to 10 and LL in the range of 0 to 37, while zone B is bounded by 10 < IP < 12 and 37 < LL < 47. 

Additional soil conditions were imposed; materials in Zone A are prone to liquefaction if wc ≥ 0.85 

LL (red shadowed) while soils within Zone B are potentially susceptible to liquefaction if wc ≥0.80 

LL. The soils, which are not in Zone A or Zone B, are considered as no liquefiable. To simplify the 

application of the criterion, it was plotted by Bray et al. (2004) as in Figure 3.25 shows. Although 

the criterion was proposed for cyclic liquefaction, it is thought that it may also be applicable to flow 

liquefaction.  

 
Figure 3.25. Liquefaction criterion Bray et al. (2004). 

Since the extraction of undisturbed samples in hydraulic fill is difficult, soil characterization has been 

principally based on in-situ tests, especially cone penetration tests (Viana da Fonseca, 2013). 

Consequently, flow liquefaction potential evaluation has been mostly based on cone penetration 

results. To normalised parameters Fr: friction ratio, Qt: normalized cone resistance ratio, and Bq: Pore 

pressure ratio are used for this purpose (Wroth, 1984; Houlsby and Teh, 1988). They are defined as 
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obtain a screening tool, qc, fs and u2 were normalized as such as Qt: normalized cone resistance ratio, 

F: friction ratio, and Bq: Pore pressure ratio: 

 ( ) /t t vo voQ q     [7]

 / ( )s t voF f q   [8]

 
2( ) / ( )q o t voB u u q    [9]

 𝑄௧൫1 െ 𝐵௤൯ ൅ 1 ൌ ሺ𝑞௧ െ 𝑢ଶሻ/𝜎′௩௢ [10]

where qt is the total cone resistance, fs is the sleeve friction, u2 is the pore pressure measured 

at the cone shoulder and u0 is the initial pore pressure. 

As indicated above, the value of the state parameter can be used as an indicator for the potential for 

flow liquefaction. Contours of ψ are plotted in a Qtꞏ(1-Bq)+1 – F space. The state parameter is derived 

from Shuttle and Cunning (2008) that establishes the occurrence of flow liquefaction (ψ > -0.05). 

The plot also shows contours of soil index behaviour (Ic) as defined by Robertson (1990) and 

reformulated in Robertson and Wride (1998) as: 

 lc= [ (3.47 - log Qt)2 + (log F + 1.22)2 ]0.5 [11]

The soil index behaviour delimits the regions occupied by different sol types. 

However, the method designed by Plewes et al. (1992) is likely the most commonly applied method 

to evaluate ψ for fine-grained tailings (Shelbourn, 2010; Jefferies & Been, 2006 and Morgenstern et 

al., 2016). The Plewes et al. (1992) method is defined in following equations: 

 
𝜆ଵ଴ ൌ max ൤0.01;

minሺ𝐹 ; 7ሻ
10

൨ [12]

 
𝑘 ൌ 𝑀௧௖ ൬3 ൅

0.85
𝜆ଵ଴

൰ [13]

 𝑚 ൌ 11.9 െ 13.3 𝜆ଵ଴ [14]

 
𝑄ሺ௚௥௢௨௣ሻ ൌ ൬

3
1 ൅ 2 𝐾଴

൰ maxൣ𝑄 ൫1 െ 𝐵௤൯ ൅ 1 ; 0.01൧ [15]

 

𝜓௣௟௘௪௘௦ ൌ െ
𝑙𝑛 ൬

𝑄ሺ௚௥௢௨௣ሻ
𝑘 ൰

𝑚
 

[16]

where λ10 is the compressibility index on log10, Mtc is the critical friction ratio and, k and m 

values from an exponential trend line. Again, flow liquefaction is considered possible of the 

computed ψ > -0.05. 
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The flow liquefaction criterion of Robertson (2009) is based on the new concept of normalized cone 

resistance ratio, Qtn, that incorporates a variable stress exponent n -that varies with Ic-, from Zhang 

et al. (2002). The iteration process to evaluate Qtn is described in flow chart presented in Figure 3.26. 

 

Figure 3.26. Flow chart to evaluate Qtn (modified from Robertson, 2009). 

Robertson (2009) and (2016) adopted the space of normalized cone resistance, Qtn, vs friction ratio 

to distinguish the regions occupied with different material types (Figure 3.27): sand-like (S), 

transition materials (T) and clay-like material (C). The regions are also further distinguished 

depending on whether they are contractive (C) or dilatant (D). A special region is defined to 

accommodate sensitive contractive clay-like soils (CCS). Flow liquefaction is associated with soils 

with contractive behaviour that lie below the line defined by the equation (Qtn - 11)ꞏ(1 + 0.06ꞏF )= 

70. 
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Figure 3.27. Screening soil behaviour chart, Robertson (2016) criteria. 

The final flow liquefaction criterion to be considered has been defined in Mayne (2019) and Mayne 

and Sharp (2019). It is based on the yield stress ratio (YRS = σ’p / σ’v0 ), where σ’p is the yield stress 

and σ’v0  is the initial vertical effective stress. The contractive – dilative behaviour boundary is related 

to an excess pore pressure is zero in undrained shear. Then YSR at critical state line is [17]:  

 𝑌𝑆𝑅஼ௌ௅ ൌ ሺ2 cos 𝜙′⁄ ሻଵ ஃ⁄  [17]

where: ϕ’ is the effective stress friction angle, Λ is the plastic volumetric strain ratio (Λ=1-

(Cs/Cc)), Cs is the recompression index and Cc is the compression index.  A value of Λ =0.9 

is usually adopted for sensitive clays (Mayne, 2008), ϕ’ is derived from CPTu results 

according to expression [18] defined by Mayne (2007) for soft to firm clays restricted to 0.05 

≤ Bq ≤ 1.1 and 20° ≤ ϕ’≤ 45°. 

 ϕ’ = 29.5ꞏBq
0.121ꞏ(0.256 + 0.336ꞏBq + log Qt) [18]

The current YSR was related to normalized CPTu parameters for structured and sensitive clays. 

Three expression was derived using hybrid spherical cavity expansion and critical state soil 

mechanics (Mayne, 1991; Agaiby and Mayne, 2018 and Mayne et al., 2018). The following 

expression is used [19]:  
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𝑌𝑆𝑅஼௉்௎ ൌ ቈ

𝑄௧ െ ሺ𝑀௖ଵ 𝑀௖ଵሻ⁄ ൉ ሺ𝑈∗ െ 1ሻ
1.95 ൉ 𝑀௖ଵ ൅ ሺ𝑀௖ଵ 𝑀௖ଵሻ⁄

቉
ଵ ஃ⁄

 [19]

where: U* is normalized water pressure, U*=(u2-u0)/σ’v and Mc is the friction parameter in 

p’- q space, Mc = 6ꞏsin(ϕ’) / (3 - sin(ϕ’)). The Mc1 value is defined for the normally-

consolidated soil and [19] is the value for the intact structured soil. For non-structured soil, 

as hydraulic fills recently placed, will be supposed Mc1 =Mc2.  Soil behaves in a contractive 

way and flow liquefaction is possible, if YSRCPTU < YSRCSL. 

3.5. Application of flow liquefaction criteria 

The four criteria described above have been applied to results from the site investigation of Prat quay, 

Phases 1 and 2. To check the criteria based on CPTu tests, the observations obtained in tests 6a8, 

6a12 and 6a14 (Phase 1), 3b11, 3b12, 7b8, 7b12 and 7b13 (Phase 2) have been be used. They provide 

a representative set of the results obtained in the hydraulic fill. 

Additionally, cyclic liquefaction criteria are applied in Appendix E.3 using Barcelona seismic 

conditions (Appendix D). 

3.5.1. Bray et al. (2004) criterion 

The values of plasticity index and water content/Limit Liquid of a number of specimens extracted 

from the hydraulic fill are plotted in Figure 3.28. It can be noted that they classify as susceptible to 

liquefaction. To increase the database, a settling column was set up in the laboratory to simulate the 

deposition and settling process of the hydraulic fill (Appendix F). Samples were retrieved from the 

column and their results are also plotted in Figure 3.28. They lie in the moderately susceptible zone. 

 

Figure 3.28. Liquefaction criterion (Bray et al., 2004) for hydraulic fill specimens, labels indicate IL values for each 
specimen. 

IL values
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The criterion uses the same parameters of liquidity index (IL), LL, LP and w, that were related to 

remoulded undrained shear strength -equivalent to cu SS-, by Leroueil et al. (1983), with the following 

equation:  

 cu r = 1 / (IL-0,21)2 [20]

Results confirm that high values of IL are related with low values of cu SS, which also correspond with 

the zone of susceptible soils as delimited by the criterion. Direct shear tests on samples taken from 

the settling column were carried out. This peak shear strength were close to 80 kPa. As the IL was 

close to 1, cu SS is estimated as 1.6 from equation (16). Therefore, the resulting brittleness index is 

0.98. 

3.5.2. Plewes et al. (1992) criterion  

The state parameter evaluation based on Plewes et al. (1992) method has been applied to the same 

CPTu tests that were used to estimate the liquefied shear strength according to Olson and Stark 

(2002). The results corresponding to the hydraulic fill are shown in Figure 3.29 to Figure 3.33. It can 

be noted that large zones of hydraulic fill yield values of the state parameter larger than -0.05 and 

are therefore susceptible to flow liquefaction. State parameters values in contractive region (ψ > -

0.05), represent roughly half of derived values in both Phase 1 and Phase 2. Although, it is obvious 

existing heterogeneity on results. 

(a) (b) 

Figure 3.29.Results of applying Plewes et al. method for (a) 6a8 and (b) 6a12, Phase 1. 
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Figure 3.30. Results of applying Plewes et al. method for 6a14, Phase 1. 

 

(a) (b) 

Figure 3.31. Results of applying Plewes et al. method for (a) 3b11 and (b) 3b12, Phase 2. 
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(a) (b) 

Figure 3.32. Results of applying Plewes et al. method from (a) 7b8 and (b) 7b12, Phase 2.  

 

 

Figure 3.33. Results of applying Plewes et al. method for 7b13, Phase 2. 
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3.5.3. Robertson (2016) criterion  

The results of the same CPTu results are plotted in the Robertson (2016) charts in Figure 3.34 to 

Figure 3.38. Again, a large majority of points lie in the contractive, and therefore, potentially 

liquefiable zones. Approach indicate contractive soils essentially over the full depth. It is interesting 

to note that a substantial number of points correspond to the region of sensitive contractive clay-like 

soils (CCS). Punctually, F-Qtn values are out of the criterion range, however many points of a CPTu 

(Figure 3.37b) can not be characterized by this criterion, because extremely low Qtn and high F values 

are obtained. 

(a) (b) 

Figure 3.34. Location of the results of two CPTu tests in Roberson (2016) chart: a) CPTu 6a8 and CPTu 6a12 
from Phase 1. 

 
Figure 3.35. Location of the results of a CPTu test in Roberson (2016) chart: a) CPTu 6a14, from Phase 1. 
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(a) (b) 

Figure 3.36. Location of the results of two CPTu tests in Roberson (2016) chart: a) CPTu 3b11 (Phase 2) and b) 
CPTu 3b12, from Phase 2. 

 

(a) (b) 

Figure 3.37. Location of the results of two CPTu tests in Roberson (2016) chart: CPTu 7b8 and CPTu 7b12 from 
Phase 2. 
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Figure 3.38. Location of the results of a CPTu test in Roberson (2016) chart: CPTu 7b13 from Phase 2. 
 

3.5.4. Mayne (2019) criterion  

The screening method proposed by Mayne (2019) has also been applied to the same CPTu profiles 

in previous criteria, large parts of the hydraulic fill classify as potentially liquefiable (Figure 3.39 to 

Figure 3.43). It should be noted that some points indicate that the YSR<1, described by Mayne and 

Sharp (2019) as “a higher warning of soils in an under-consolidated state with more imminent risks 

of instability and failure”. 

(a) (b) 

Figure 3.39. Application of Mayne (2019) criterion: YSRCSL (red) and YSRCPTU (black), from (a) 6a8 and (b) 6a12, 
Phase 1. 
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Figure 3.40. Application of Mayne (2019) criterion: YSRCSL (red) and YSRCPTU (black), from 6a14, Phase 1. 

  
(a) (b) 

Figure 3.41. Application of Mayne (2019) criterion:  YSRCSL (red) and YSRCPTU (black), from (a) 3b11 and (b) 
3b12, Phase 2. 
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(a) (b) 

Figure 3.42. Application of Mayne (2019) criterion: YSRCSL (red) and YSRCPTU (black), from (a) 7b8 and (b) 7b12, 
Phase 2. 

 

 
Figure 3.43. Application of Mayne (2019) criterion: YSRCSL (red) and YSRCPTU (black), from 7b13, Phase 2.
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3.5.5. Criteria comparison 

For comparison, the results of applying the Plewes et al. (1992), Robertson (2016) and Mayne (2019) 

criteria results are plotted together. Note that the profile of Robertson (2016) criteria is plotted in a 

Qtn plot, with the boundary between dilative (D) and contractive (C) for CD=70. Thus, all three 

approaches indicate soils prone to flow liquefaction if: (i) ψ > -0.05, (ii) Qtn < Qtn for CD=70 and (iii) 

YSRCPTU < YSRCSL  for the Plewes, Robertson and Mayne criteria respectively. 

From Phase 1: 

o 6a8: Criteria of Plewes and Mayne delimited the same region (-6 to -7.5 m) as a contractive 

soil. In contrast, the deeper 6 meters from this profile are defined as contractive soil by 

Robertson criteria. 

o 6a12: Again, Plewes and Mayne criteria are roughly coincident, but in this case Robertson 

approach indicate contractive soils essentially over the full depth 

o 6a14: Although Plewes and Mayne criteria coincide on the general prediction of contractive 

behaviour, more contractive points from the Mayne criterion are obtained than for the Plewes 

criterion. As previously, the results of Robertson criterion tend to indicate a large number of 

contractive points in the profile. 

From Phase 2 

o 3b11: The values obtain with the Plewes method do not coincide with those from the Mayne 

criterion. However a small zone around z = -10 m is contractive. In contrast, Robertson 

criterion indicates contractive soils essentially over the full depth. 

o 3b12: In this case, the Plewes criterion provides contractive behaviour in zones that Mayne 

does not. Mayne criterion only defined as contractive soils the lower part of the fill. Unlike 

a number of other cases, Robertson criterion is quite similar to Plewes criterion. 

o 7b8: Plewes and Robertson criteria coincide only for the last meters of the profile. The top 

part of the soil exhibited friction ratios (Fr)  less than 10. Plewes criterion defines this region 

as dilative soil, in contrast Robertson as a contractive. Top part is identified as dilative by 

the Mayne criterion and the rest of the profile is placed between contractive and dilative 

region. 

o 7b12: The results of this hydraulic fill profile are different for each criterion. Plewes criterion 

indicates that over the full depth is contractive. Robertson give values for the lower part of 

the profile that indicate dilative soil, as Plewes and Mayne (YSR>10) also do. Results of 

Robertson are not present for full depth because upper part have Fr <10. In contrast, Mayne 

criterion does not provide values over 3 meters because the data are outside the criterion 
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scope. The top part of the profile, however, is classified as a transition zone from dilative to 

contractive. 

o 7b13: In this case, the results of the different criteria match quite well. Although Mayne 

criterion do not show values in the upper part of the profile, the estimated values of YSR are 

higher than 10. 

In summary, there are differences in the results obtained applying the various criteria to the same 

CPTu data. This is not surprising given the basic empirical bases on which they are founded. It 

appears that the Robertson criterion is more conservative than those of Plewes et al. and Mayne. In 

all cases, however, they all indicate large zones of hydraulic fill that can potentially undergo flow 

liquefaction if a triggering action occurs. It should be noted that the flow liquefaction potential is 

largely attributed to fine grained soils according to F-Q classification charts (Figure 3.44 to Figure 

3.51). 

 
Figure 3.44. (a) Plewes criterion, (b) Robertson criterion and (c) Mayne criterion for CPTu 6a8, Phase 1. 

 

 

Figure 3.45. (a) Plewes criterion, (b) Robertson criterion and (c) Mayne criterion for CPTu 6a12, Phase 1. 
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Figure 3.46. (a) Plewes criterion, (b) Robertson criterion and (c) Mayne criterion for CPTu 6a14, Phase 1. 

 

 
Figure 3.47. (a) Plewes criterion, (b) Robertson criterion and (c) Mayne criterion for CPTu 3b11, Phase 2. 

 

 
Figure 3.48. (a) Plewes criterion, (b) Robertson criterion and (c) Mayne criterion for CPTu 3b12, Phase 2. 
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Figure 3.49. (a) Plewes criterion, (b) Robertson criterion and (c) Mayne criterion for CPTu 7b8, Phase 2. 
 

 
Figure 3.50. (a) Plewes criterion, (b) Robertson criterion and (c) Mayne criterion for CPTu 7b12, Phase 2. 
 

 
Figure 3.51. (a) Plewes criterion, (b) Robertson criterion and (c) Mayne criterion for CPTu 7b13, Phase 2. 
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3.6. A constitutive model for flow liquefaction 
A substantial number of constitutive models exist that are capable of simulating undrained softening  

and therefore flow liquefaction (e.g. Jefferies 1993, Manzari and Dafalias 1997, Yu 1998, Pestana 

and Whittle 1999, Gajo and Wood 1999, Imam et al. 2005). Usually these models are isotropic, 

however, the MIT-S1 model can also represent anisotropic behaviour (Pestana et al., 2002). In this 

PhD thesis, the CASM model (Yu, 1998) will be used in a modified form to reproduce the hydraulic 

fill behaviour, including the phenomenon of flow liquefaction. 

 

The CASM model has a number of advantages: 

 It incorporates the state parameter concept in the model formulation. 

 It is consistent with the critical state concept. 

 It allows modelling a wide range of behaviour from strong undrained softening to ductile or 

dilatant material. 

 It is relatively simple, using only a single yield surface.  

 It assumes non-associated plasticity so that instability phenomena can be adequately 

reproduced. 

 Classical Cam-Clay models result if appropriate parameters are selected. 

 

The unified state parameter model for clay and sand (CASM) is based on a reinterpretation of the 

Cam-Clay model involving the state parameter (ξ), Yu (1998). In Figure 1, the definition of ξ is 

presented as the difference between the current specific volume and the specific volume on the 

critical state line (CSL) for identical effective mean stress (Figure 3.52).  

 
Figure 3.52. Definitions of state parameter, critical state constants, and reference state parameter (Yu, 1998). 
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At critical state, the following conditions prevail:  

 𝜕𝑝′
𝜕𝜀௤

ൌ
𝜕𝑞
𝜕𝜀௤

ൌ
𝜕𝜐

𝜕𝜀௤
ൌ 0 [21]

where: p’ is the effective mean stress, q is the deviatoric stress (σ1 - σ3 for triaxial conditions), 

v is the specific volume (v = e + 1), e is the void ratio and εq is the deviatoric strain.  

Under drained conditions if a positive value of ξ exists, a volume contraction is needed to reach the 

CSL. Similarly, under undrained conditions, CSL is reached after a pore water pressure increase 

(Figure 3.6). 

The critical state coincides with the peak deviatoric stress in Cam-Clay model -thus in CASM-, for 

undrained loading on the wet side of the yield surface. This behaviour is valid for many normally 

consolidated clays. However, in other cases, the increase of water pressures is still able to continue 

after peak strength. Thus, it can lead to a reduction on strength that continues until reaching the 

critical state (strength at CS, Figure 3.53).  

A general stress ratio-state parameter relationship to define the state boundary surface of soils is 

assumed by the CASM constitutive model to be used for both clay and sand.  By assuming a non-

associated flow rule, the model can reach critical state conditions beyond the peak strength and, 

therefore, flow liquefaction can be correctly simulated by the CASM model.  

 
Figure 3.53. Undrained softening, effective stress path. 
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always to effective stresses. The stress integration algorithm and the viscoplastic extension are 

described in Mánica (2020) and will not be discussed here. 

3.6.1. Elastic behaviour 

The model assumes an isotropic nonlinear elasticity in the yield surface, thus a linear behaviour is 

obtained in the υ  ̶  ln p space, where the slope is κ, a soil parameter. In equation [22], the bulk 

resulting modulus (K) expression is presented. 

 𝐾 ൌ
𝜈 ൉ 𝑝

𝜅
 [22]

In this case, a constant Poisson's ratio (υ) is assumed to define the full elastic stiffness matrix. 

3.6.2. Yield surface 

In terms of the state parameter, an expression for the yield function of the CASM constitutive model 

is given by 

 
𝑓 ൌ ቆ

√3 𝐽
𝑀ఏ𝑝

ቇ

௡

൅
𝜉

𝜉ோ
െ 1 [23]

where J is the second invariant of the deviatoric stress tensor, Mθ is the slope of the CSL in 

the q – p’ plane that depends on the Lode's angle θ, n is a parameter that controls the shape 

of the yield function, and ξR is the reference state parameter controlling the separation 

between the CSL and the reference consolidation line (Fig. 1).  

The yield function can also be represented in terms of the spacing ratio r, defined also in Figure 3.52,. 

The spacing ratio r defines the separation between the CSL and the reference consolidation line. In 

that case, the yield function becomes: 

 
𝑓 ൌ ቆ

√3 𝐽
𝑀ఏ𝑝

ቇ

௡

൅
1

ln 𝑟
𝑙𝑛

𝑝
𝑝଴

  [24]

The shape of the yield function is influenced by n; the effect is presented in Figure 3.54. As 

mentioned above, the critical state may not coincide with the maximum of the function (peak 

strength), thus undrained softening behaviour can be simulated depending on the selected parameters. 
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Figure 3.54. Normalised state boundary surfaces for different values of n, Manica (2020). 

It is important to note that the yield function (or steady state parameter) can be modified and adapted 

to impose the desired degree of undrained softening, Figure 3.55. However, the soil sensitivity is 

mainly controlled by r, the spacing ratio parameter (Figure 3.52) as depicted in Figure 3.56. 

 
Figure 3.55. CASM sensibility of steady state parameter (n), r=12. 
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Figure 3.56. CASM sensibility of spacing ratio parameter (r), n=10. 

In the original CASM model, the slope of the CSL was assumed constant and, therefore, it traces a 

circle in the deviatoric plane. Mθ is expressed as function of the Lode's angle, using the relationship 

proposed by Sheng et al. (2000), [25]. 
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where M is the slope of the CSL in the p’ - q plane under triaxial compression and α is a 

parameter that modifies the function shape in the deviatoric plane. It results in a different 

value of M between triaxial compression and extension, i.e. between θ = -30º and θ = 30º, 

respectively .  

Moreover, M and α can be selected to coincide with the Mohr-Coulomb envelope for triaxial 

compression and extension loading conditions (Gonzalez, 2011) [26] and [27].  

 
𝑀 ൌ

6 sin 𝜙௖௦

3 െ sin 𝜙௖௦
 [26]
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3 ൅ sin 𝜙௖௦
 [27]

where ϕcs is the friction angle at critical state for triaxial compression.  

The adopted function in the deviatoric plane is depicted in Figure 3.57, along with the Mohr-

Coulomb envelope and an envelope with α = 1. In the latter case, a constant value of Mθ is obtained 

and, therefore, a circular shape is recovered. 
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Figure 3.57. Shape of the yield function in the deviatoric plane, Gonzalez (2011). 

3.6.3. Plastic potential 

The plastic potential was derived by integrating the stress-dilatancy relationship of Rowe (1962) in 

the original CASM formulation (Yu, 1998). However, Rowe's (1962) stress-dilatancy relation is 

accurate for high stress ratios, but it is not particularly realistic for stress paths with low stress ratios 

such isotropic consolidation and 1D consolidation, Yu (2006). He suggested an alternative potential 

function, similar in shape to the CASM yield function, but resulting in null plastic volumetric strains 

at reaching critical state [28].  

 𝑑𝜀௩
௣

𝑑𝜀௤
௣ ൌ

𝑀ఏ
௡ െ 𝜂௡

𝑚𝜂௡ିଵ  [28]

where: εv
p is the volumetric plastic strains, εq

p is the shear plastic strains, n is a constant 

defined previously and m may be considered a material constant independent of n and r. m 

should be selected to ensure that flow rule predicts zero lateral strain for stress states 

corresponding to Jaky’s (1948) K0 condition: 

K0 = 1 – sin φcs = (6 - 2M) / (6 + M)     [29] 

In p - q’ plane, K0 condition induces the following expression in stress ratio: 

𝜂௄బ
ൌ

ଷ൉ሺଵି௄బሻ
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ൌ

ଷ൉ெ

଺ିெ
        [30] 

Otherwise, assuming lateral strain (ε3) as zero: 
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Taking into account a negligible elastic shear strains, equation [31] gives: 
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where: Λ ൌ 1 െ
఑

ఒ
. 
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The soil behaviour during hydraulic fill deposit will follow a K0 path during consolidation. The 

CASM implementation of Gonzalez (2011) defines an alternative plastic potential [33] that leads the 

following stress-dilatancy relation [34] slightly different from proposed by Yu (2006) equation [28]. 
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[34]

where εv
p is the volumetric plastic strains, εq

p is the shear plastic strains and m=n ln r (β)n. If 

β is 1 then the flow rule is associated and m=n ln r. 

The parameter to adjust the K0 is β when eq [34] is zero for Mθ=η. Therefore [35]: 
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 [35]

Gonzalez (2011) assumption involves that r and n control the anisotropic stress path during 

consolidation. This proposal give a K0 for a set of parameters that do not fulfil with stress-dilatancy 

relation [31] because stress-dilatancy relation equal to 2/3 corresponds with η=0.85 (Figure 3.58). 

The correct η would be 0.59 which is consistent with Jaky’s equation. 

 
Figure 3.58. Stress-dilatancy relation by stress ratio with prescribed CASM parameters. 
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 𝑑𝜀௩
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𝑤ሺ𝑀ఏ
௡ െ 𝑚𝜂௡ሻ

𝑚𝜂௡ିଵ  [36]

The new parameter w helps to obtain a relation between plastic shear strains and plastic volumetric 

strains of 2/3 for a specified value of K0. The effect of w parameter can be seen in Figure 3.59 where 

ηKo corresponds with dεv
p / dεq

p= 2/3.  

 
Figure 3.59. Stress-dilatancy relation by stress ratio with new parameter w and the prescribed CASM parameters. 

CASM model improvement parameters should simulate properly undrained shear strength, post-

liquefaction undrained shear strength, strain softening and K0. In Chapter 4 where Prat quay failure 

is simulated, the parameters calibration will be presented. 

3.6.4. Hardening rule 

The CASM constitutive model uses the same isotropic volumetric plastic strain hardening rule than 

the modified Cam-Clay model [37]. 

 𝜕𝑝଴

𝜕𝜀௩
௣ ൌ

𝜈𝑝଴

𝜆 െ 𝜅
 [37]

where εp
v is the volumetric plastic strain and λ is the slope of the CSL and reference 

consolidation line in the υ  ̶  ln p.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

η
=

q
 / 

p
'

d εp
q / d εp

p



Chapter 3.  Hydraulic fill liquefaction                                                                                                                               83 

 

3.7. Summary 
The general description of the flow liquefaction phenomenon is prompted by the clear evidence of 

its occurrence described in Chapter 2. The flow liquefaction susceptibility of the hydraulic fill has 

been verified using a number of proposed criteria. It appears that the Robertson criterion is more 

conservative than those of Plewes et al. and Mayne that identify a lower percentage of liquefaction-

susceptible soil. It is worth mentioning that the flow liquefaction potential was largely attributed to 

fine grained soils according to F-Q classification charts. In addition, the liquefied undrained strength 

(cu SS) and the cu peak for the hydraulic fill have been estimated. All these results are consistent with 

the tests results of Chapter 2, were brittle behaviour was detected. 

In addition, the unified state parameter model for clay and sand model (CASM) has been selected 

for the flow liquefaction simulation of the hydraulic fill. The parameters of CASM can be calibrated 

to obtain the specific brittle index derived from the values of cu SS and cu peak. A modification of the 

constitutive law (Gonzalez, 2011) to obtain a more realistic stress path for K0-consolidation has been 

incorporated into the formulation,  

Using the developments presented in this Chapter, it is now possible to undertake the simulation of 

the Prat quay Phase 1 and Phase 2, as described in the following Chapter 4 and Chapter 5 respectively. 
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Chapter 4. Pray quay failure analysis 

4.1. Introduction 

The failure of the Prat quay and additional background information covering the geotechnical 

properties of the materials involved have been described in previous chapters. The brittle nature of 

the fill and the characteristics of the failure indicate that flow liquefaction has played a relevant role 

in reducing the available quay wall stability. 

Further insight into the soil parameters, conditions and processes that led to the failure are presented 

in this Chapter. The starting point is a definition of suitable constitutive models and parameters for 

the simulation of the main materials properties specified in Chapter 2. Two dimensional numerical 

analyses using finite element methods (FEM) have been performed. Hypotheses derived from the 

information collected in Chapters 2 and Chapter 3 are implemented in these analyses. The as-built 

geometry and construction stages from quay are incorporated in the numerical model to examine the 

quay wall behaviour until failure. The results of FEM analyses allow the study of soil behaviour 

during the quay wall construction and can provide insights into the rupture mechanisms.  

Additionally, this Chapter seeks to explore two triggering mechanisms of flow liquefaction 

simulation that could trigger the failure. These analyses are complemented by a parametric study that 

provides additional information for the interpretation of the failure cause. 

Finally, the reasons leading to the failure are discussed in perspective by comparing them with two 

precursors used. 

4.2. Constitutive models and material properties 

The selected constitutive models and material parameters for hydraulic fill, natural ground, rubble 

mound, and concrete caissons are presented in the following sections.  
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4.2.1. Hydraulic fill 

The hydraulic fill constitutive model and associated parameters must provide an adequate simulation 

of flow liquefaction. For this purpose, the CASM constitutive model has been calibrated to obtain 

suitable values of K0, undrained shear strength at peak, undrained shear strength at CSL and 

compressibility. 

Thus, parameters β=0.73 and w=0.04 are selected to result in a value of K0=0.54, estimated from a 

friction angle of around 28º and Jaky’s (1948) formula. Parameters r=12 an n=10 have been 

calibrated to yield an undrained shear strength ratio at peak cu peak / σ’v  = 0.25 and an undrained shear 

strength ratio at the CSL cu SS / σ’v = 0.06 (Chapter 3.3). The results of a simulation of a triaxial test 

under anisotropic consolidation (K0=0.54) followed by undrained loading (triaxial CAU) are shown 

in Figure 4.1 and Figure 4.2. It can be noted that undrained softening is well reproduced in terms of 

stress path (p’- q) and of deviatoric stresses (q) versus axial strain (ε1). 

 
Figure 4.1. Stress path p’ - q for triaxial CAU consolidation and undrained shear. 

 
Figure 4.2. ε1 (εyy) vs. q curve during shear for triaxial CAU conditions. 
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Natural density, initial void ratio and compression index of the hydraulic fill were established 

according to values from laboratory tests (Chapter 2) and the settling column (Appendix F). To 

estimate an average value for permeability, the ch values from dissipation tests results were used. The 

parameters are provided in Table 4.1. An interface element is provided between the caisson and the 

hydraulic fill with a friction angle of 9º.  

Table 4.1.Parameters in CASM constitutive model. 

Properties 
Hydraulic 

fill 

Saturated unit weight (kN/m3) 18 / 19 

Poisson’s ratio (ν) 0.3 

Void ratio (e) 1 

Coefficient of earth pressure at rest (K0) 0.54 

Compression index (cc) 0.23 

Swelling index (cs) 0.07 

Permeability (m/s) 5ꞏ10-8 

Undrained shear strength ratio at peak (cu peak/σ’v) 0.25 

Undrained shear strength ratio at critical state (cu SS/σ’v) 0.06 

 

4.2.2. Natural ground 

The Soft soil model (Plaxis, 2020) is used to reproduce natural ground behaviour. The parameters 

adopted are given in Table 4.2. Natural density, initial void ratio and compression index were 

obtained from laboratory results. They resulted in a value of undrained shear strength cu  = 0.25ꞏσ’v. 

The permeability was obtained from dissipation tests results.  

Table 4.2. Parameters in Soft Soil constitutive model. 

Properties 
Natural 
ground 

Saturated unit weight (kN/m3) 19 

Poisson’s ratio (ν) 0.3 

Void ratio (e) 0.8 

Compression index (cc) 0.18 

Swelling index (cs) 0.05 

Permeability (m/s) 10-8 

Undrained shear strength ratio (cu /σ’v) 0.25 

 

4.2.3. Rubble mound and earth bund  

These materials are cohesion-less and coarse grained materials that was used in the foundations of 

the caissons and on the top of caissons. The Mohr-Coulomb (elastic perfectly plastic) model has been 
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adopted for these materials. Some parameters have been obtained from the site investigation; other 

parameters have been estimated from standards. In this way, shear strength parameter of the rubble 

mound was determined from test results but standard values of rigidity were chosen. There are no 

tests on the materials of the earth bund placed on the caissons that included uncompacted granular 

soil and dredged fill. Standard values of 18 kN/m3 for density and of 28° for friction angle (φ) have 

been used. The main parameters values are shown in Table 4.3. An interface element was provide 

between the caisson and the rubble mound with a friction angle of Rinterꞏ tan (φ). 

Table 4.3. Adopted parameters for cohesion less materials. 

Material  
[kN/m3] 

E 
[kN/m2] 

 
[°] 

R inter 
[ - ] 

Rubble mound 20 35000 38 0.6 

Earth bund & lateral trench fill  18 15000 28 - 

 

4.2.4. Concrete caissons 

Concrete caissons used in quay wall were not made of massive concrete but they contained 

cylindrical hollow cells inside. The floor view of a Phase 1 caisson is presented in Figure 4.3.  

When a caisson was installed with the cells full of water the overall density was 16 kN/m3. When the 

cells were subsequently filled with sand the density increased to 20.2 kN/m3. Caissons are assumed 

as nonporous material (i.e. no flow is allowed). 

The caisson was model with a linear elastic constitutive law based on concrete properties.  

 
Figure 4.3. Plan view of Phase 1 caisson. 

 

4.2.5. Parameters overview 

As a summary, the constitutive models and parameters used to simulate the behaviour each material 

are presented in Table 4.4.  
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Table 4.4. Material properties for FE analysis. 

Symbol & Units Natural 
ground 

Hydraulic fill Caissons  Rubble 
mound 

Earth bund 

Constitutive model Soft soil CASM Elastic M-C M-C 

γnat [kN/m3] 19 18.0 (1) / 19.0 (2) 20.2 (3) / 16.0 (4) 20 18 

e [-] 0.8 1    

cc 0.18 0.23 - - - 

cs 0.05 0.07 - - - 

E’ [kPa] - - 2ꞏ107 35000 15000 

ν [-] 0.3 0.3 0.3 0.3 0.3 

k [m/s] 10-8 5ꞏ10-8 - 10-2 10-3 

cu peak / σ’v - 0.25 - - - 

cu SS / σ’v 0.25 0.06 - - - 

φ [°] - - - 38 28 

R interface - 0.66 - 0.6 - 
(1) Upper part from fill; (2) Lower part from fill; (3) Filled caisson; (4) Empty caisson. 

 

4.3. Geometry and material distribution 

The geometry of the numerical model is based on the representative cross-section of the as-built 

project that had been presented previously in Figure 2.14. This geometry is presented in Figure 4.4. 

It has been discretized to simulate each quay construction stage. The domain of analysis is 250 m 

long and 64 m high and comprises by 9998 15-noded elements.  

 
Figure 4.4. Geometry of Prat quay Phase 1. 

 

It can be noted the horizontal lines corresponding to the various hydraulic fill levels. The resulting 

distribution of the materials is indicated in Figure 4.5. The same material has been assumed for the 

core and the rock armour in the rubble mound. According to the settling column result, the unit 

weight of the hydraulic fill depends on the vertical stress (or equivalently on depth). For this reason, 

a density of 18 kN/m3 in the upper part and of 19 kN/m3 in the lower part 19 kN/m3 have been used. 
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Figure 4.5. Geometry of hydraulic fill up to +3 m elevation, Phase 1. 

4.4. Boundary conditions 

The displacement boundary conditions are as follows: zero vertical and horizontal displacements are 

prescribed on the lower horizontal boundary whereas zero horizontal displacements are prescribed 

on the two vertical boundaries. A no-stress condition is applied to the top surface of the domain in 

all construction steps. 

Concerning water flow conditions, on the vertical boundary, a constant water head corresponding to 

an elevation of +0 m (mean sea level) has been applied. This water head elevation also applied on 

the land side while the hydraulic fill was below sea level. Subsequently, there was about 0.5 m of 

water above the hydraulic fill top elevation, i.e. when the hydraulic fill was at +2 m, water level was 

at +2.5 m and, of course, sea water remained at level +0 m, see Figure 4.6. In addition, the lower 

horizontal boundary down to -60 m, a constant water head corresponding to an elevation of +0 m 

(mean sea level) has been applied. The boundary is impermeable in the land side. 

 
Figure 4.6. Hydraulic conditions, water level in hydraulic fill +2 m. 
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4.5. Stages of analysis 

The analysis simulates the construction of the quay wall; it involved 14 stages until the hydraulic fill 

reached the level of +3 m. The name, the number and the time interval of the various stages are 

collected in Table 4.5. 

Table 4.5. Description of construction stages of Phase 1. 

Description Stage Time interval (day) 

 Initial K0 phase 0 - 

 Trench dredging 1 120 

 Construction of the rubble mound 2 180 

 Caisson placement and filling 3 86 

 Consolidation 4 127 

 Trench filling next to caissons 5 90 

 Hydraulic fill up to -13.5 m 6 4 

 Hydraulic fill up to -11 m 7 7 

 Hydraulic fill up to -8 m 8 10 

 Hydraulic fill up to -5.5 m 9 31 

 Hydraulic fill up to -3 m 10 44 

 Hydraulic fill up to +0 m 11 68 

 Hydraulic fill consolidation (+ 0m) 12 32 

 Hydraulic fill up to +2 m 13 27 

 Hydraulic fill up to +3 m 14 8 (up to failure) 

 

The first phase of analysis considers only the natural soil in order to establish the initial conditions 

of the analysis. Displacements generated up to stage 3 are reset to zero so that they do not interfere 

with the displacements computed and recorded during construction. Afterwards, the quay wall is 

constructed step-by-step following the actual construction sequence. For all phases, consolidation 

analyses are performed that incorporate the hydromechanical interactions and the time-dependent 

dissipation of pore pressures over the period considered. 

The final stage (14) of the calculation -”up to failure”-, corresponds to the period of 8 days prior to 

the failure. The only processes considered in this calculation stage are the hydraulic fill raising up to 

+3 m. 

4.6. Triggering flow liquefaction in Prat quay 

In Chapter 3, a number of potential flow liquefaction triggering mechanisms have been identified. 

For the Prat quay case, two different scenarios are possible. The first one simply involves the 

continuation of construction of the hydraulic fill until a sliding failure condition of the caisson is 

reached. At that moment, the caisson starts to displace laterally, reducing the horizontal stress in the 

backfill and thereby triggering undrained flow liquefaction. The second one postulates that 

liquefaction occurs locally that then propagates causing the liquefaction of most of the hydraulic fill 



98                                                                                                                                  Chapter 4. Pray quay failure analysis 

mass and the failure of the quay. A zone close to the tip of the South embankment being constructed 

at the time of failure is a likely location for the initiation of liquefaction if embankment instability 

was the initiation event.  

Both precursors of flow liquefaction have been implemented in the analysis. In fact, for the first 

hypothesis no changes in the simulation is required. For the second hypothesis a limited zone of the 

hydraulic fill has been assumed to have undergone liquefaction. To simulate this local liquefaction, 

the undrained shear strength of the material is reduced to the ultimate undrained shear strength ratio 

of 0.06 by changing the constitutive law to Soft Soil model (Plaxis, 2010) with the parameters 

presented in Table 4.6, the parameter determination is presented in Appendix B.2. 

Table 4.6. Liquefied hydraulic fill parameters in Soft soil constitutive model. 

Properties 
Liquefied 

hydraulic fill 

Saturated unit weight [kN/m3] 18 

Void ratio (e) 2 

Compression index (cc) 0.20 

Swelling index (cs) 0.02 

Permeability [m/s] 10-8 

Undrained shear strength (cu / σ’v) 0.06 

4.7. Results of Phase 1 analysis 

As described above, the numerical analyses performed incorporate the available information 

concerning soil behaviour, material parameters, geometry, hydraulic boundary conditions and 

construction history. 

4.7.1. Analysis before failure 

The analysis performed provides data relating to the evolution of water pressures and deformations. 

There were no piezometers installed in the works at the time of failure but surveying records provide 

useful information for comparison. Figure 4.7 shows the computed settlements compared with the 

observed settlements of Phase 1 caissons during construction. The agreement is quite satisfactory 

suggesting a good estimate of deformation parameters of the natural ground and rubble mound. The 

comparison between computed and observed horizontal displacements is presented in Figure 4.8. 

The magnitude and tendency of the calculated horizontal movements are similar to the field records. 

Nevertheless, there are differences regarding stages 11, 12 and 13. 
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Figure 4.7. Observed caisson settlements vs. computed settlements during quay wall construction. 

 

 
Figure 4.8. Observed caisson horizontal displacements vs. computed horizontal displacements during quay wall 

construction. 

The computed contours of excess pore pressures (EPP) are presented in Figure 4.9. Maximum excess 

pore pressures before the failure are reached in the natural ground below the hydraulic fill, although 

a secondary peak is visible under the caisson. Significantly, lower values of EPP (around 40 kPa) 

have been computed in hydraulic fill close to quay wall. 

Figure 4.9. Contour of excess pore pressures at the stage before the failure, Stage 13. 

Computed

Computed
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Figure 4.10 shows the mobilized shear stresses at stage 13, when the hydraulic fill had reached an 

elevation of +2.0 m. It can be noted that there is a higher mobilized shear stresses in the rubble mound 

below the caisson toe on the sea side, although this is insufficient to lead to a bearing capacity 

instability of the rubble mound.  

 
Figure 4.10. Mobilized shear stresses, stage 13, before failure. 

A check on the shear stress in the interface between caisson and rubble mound is performed for the 

same stage 13 (Figure 4.11). The blue area represents the mobilized shear stresses on the caisson 

base whereas the dashed line is maximum theoretical shear stresses along the interface. It can be 

observed that about, 13 meters (70%) have reached a failure condition; only the region from 13 m to 

18.5 m (30%) has not reached failure yet.  

 
Figure 4.11. Mobilized (red line) and maximum (dashed black line) shear stresses on backfill and caisson base, at 

the stage before the failure, 12. 

To examine the stability evolution during construction, factors of safety (FoS) have been computed 

using the phi-c reduction method. Although reduction on Mohr Coulomb and Soft Soil models could 

be directly applied in the software used, a special procedure had to be developed for the CASM 
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model, as described in detail in Appendix A. The computed values of FoS for the final stages of the 

analysis are presented in Table 4.7. 

Table 4.7. FoS of previous stages before the failure. 

Stage Identification 
FoS 

Manual φ - c reduction 

11 Hydraulic fill  up to 0m 1.12 

12 Hydraulic fill consolidation up to 0m - 

13 Hydraulic fill  up to +2.0m 1.08 

Quay stability is being reduced by the rise of the hydraulic fill. It is interesting to note that the two 

failure mechanisms, corresponding to stages 11 and 13, are quite similar in shape, see Figure 4.12  

and Figure 4.13, respectively. 

 
Figure 4.12. Phase displacements in FoS analysis of the stage with fill at elevation +0 m, stage 11. 

 
Figure 4.13. Phase displacements in FoS analysis at the stage before failure, stage 12. 

4.7.2. Liquefaction triggered by fill emplacement (Mechanism 1) 

This analysis attempts to simulate failure as a consequence of continuing the process of fill 

emplacement. A new computation stage (Stage 14) is performed where the hydraulic fill is raised 

from elevation +2.0 m to +3.0 m. This analysis predicts failure when the calculation reaches 75% of 

the total calculation stage. This would correspond to the hydraulic fill reaching a +2.75 m elevation, 
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a figure that agrees quite well with the fact that, at the time of failure, the hydraulic fill had reached 

an elevation of +2.50 m. 

The mechanism of failure is shown in Figure 4.14 in terms of incremental displacements. It involves 

an active pressure wedge behind the caisson where the fill has liquefied. Naturally, the liquefaction 

would progress landwards as more hydraulic fill becomes unstable and liquefies but this subsequent 

evolution of the failure is beyond the capabilities of the analysis.  In addition, a limited sinking of 

the caisson toe on the sea side can also be noticed. 

 

Figure 4.14. Contours of incremental displacements at the failure stage (14).  

The shear surface of the failure mechanism, identified by means of incremental shear strains, is 

shown in Figure 4.15. This surface crosses the hydraulic fill from top to bottom. In addition, a slightly 

small contour of incremental shear strains can be perceived in the rubble mound next to the caisson 

toe on the sea side possibly related to incipient bearing capacity. No incremental shear stains have 

been detected in the base of the caisson because of the interface presence. For this reason, it is 

important to check again the caisson interfaces for stage 14.  

 

Figure 4.15. Incremental shear strains at failure stage, 14.  
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The computer code does not plot the shear strain contour in the interface but the interface shear 

stresses are plotted directly in Figure 4.16. As in Stage 13, only 70% of the interface has reached the 

available strength. 

Observing the interface displacement directions in the final stage helps to understand the mechanism 

of the failure (Figure 4.17). It involves sliding along most of the interface combined with a downward 

movement around the sea side edge of the caisson.   

 
Figure 4.16. Shear strength at the caisson interface. Stage 14, hydraulic fill at elevation +3m. 

 
Figure 4.17. Displacements at the interface of the caisson. Stage 14, hydraulic fill at elevation +3m. 

For reference, the results just presented can be compared with those of a preliminary analysis in 

which the liquefied strength of the hydraulic fill was assumed throughout (Appendix B). It can 

observed that a similar failure mechanism is obtained. 
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4.7.3. Liquefaction triggered by local liquefaction (Mechanism 2) 

This failure mechanism is analysed assuming that, after the hydraulic fill has reached elevation +2.50 

m, a limited zone in the hydraulic fill undergoes liquefaction (Figure 4.18). This area is located 20 

m away from the rear part of the quay wall in an area near the end of the South embankment. 

 
Figure 4.18. Geometry of the new cluster defined to simulate liquefied material due to embankment failure. 

The analysis shows that a general quay failure ensues. The development of failure after the initial 

liquefaction is illustrated in Figure 4.19. It can be observed how the displacements associated with 

failure spread from the initial liquefaction region (a and b) until producing the complete failure of 

the caisson wall (f).  

 
a)                                         b) 

 
c)                                         d) 
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e)                                          f) 

Figure 4.19. Succession of computed displacements contours during failure. 

 

The vectors of computed displacements during failure are depicted in Figure 4.20. The kinematics of 

the failure can be clearly seen: the initial flow liquefaction mobilized the hydraulic fill wedge behind 

the caisson, part of the caisson interface undergoes partial sliding and a localised bearing capacity 

failure occurs at the sea side edge of the rubble mound. 

 

Figure 4.20. Vectors of computed displacements during failure. 

4.8. Parametric study 

A parametric study has been undertaken to examine how the variation on a single parameter can 

influence the quay wall failure. Furthermore, it will help to understand better the circumstances that 

may lead to instability in this particular case. 

Failure is the result of the interplay of the stabilizing and destabilizing forces. The main stabilising 

forces are the caisson weight and the friction on the caisson base whereas the main destabilising force 

is the thrust of the fill. The parametric study involves two cases modifying the stabilizing forces: (i) 

the caisson weight and (ii) rubble mound friction angle and on case that changes the destabilizing 

force by varying hydraulic fill parameters such as soil brittleness and soil weight. The analyses 

described above will be considered as the Base case for comparison. 
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4.8.1. Friction angle of rubble mound 

Result of parametric study for rubble mound shows that this variation produces a slightly change on 

the hydraulic fill level of the failure. A change of ± 3° in friction angle implies a variation of about 

0.4 m, as summarised in Table 4.8. 

Table 4.8. Results of friction angle of rubble mound parametric study. 

Material φ 
[°] 

Hydraulic fill level 
[m] 

Rubble mound* 38 +2.75 

Less resistant rubble mound 35 +2.41 

More resistant rubble mound 41 +2.86 

* Base case. 

4.8.2. Caisson weight 

An increment or a reduction of 1 kN/m3 in caisson weight involves changes on the failure hydraulic 

fill level on the order of 0.80 m, the results are presented in Table 4.9. It is expected that the caisson 

weight variation would be more influential than the change in friction angle of the rubble mound, 

because of the direct influence on stabilising forces. 

Table 4.9. Results of weight of caissons parametric study. 

Caisson material   
[kN/m3] 

Hydraulic fill level  
[m] 

Filled caisson* 20.2 +2.75 

Light filled caisson 19.2 +2.09 

Heavy filled caisson 21.2 > +3.00 

* Base case. 

4.8.3. Brittleness index of hydraulic fill 

Undrained shear strength ratio at steady state was determined by back analysis in Olson and Stark 

(2002) obtaining values lying in the range of 0.05ꞏσ’v to 0.12ꞏσ’v. Thus result in brittleness indices 

(IB) between 0.52 and 0.80 if cu peak/ σ’v=0.25 was assumed. In this parametric study, analyses were 

performed using values of brittleness index of 0.76 -the analysis already described-, 0.56 -upper 

boundary of liquefied shear strength-, 0.36 -a brittle soil but outside the usual range of liquefied shear 

strength-, and 0 (ductile behaviour). 

The sensitivity analyses have been performed considering the two alternative liquefaction triggers. 

The results of parametric study assuming Mechanism 1 indicate that failure is not reached for any of 

the values of brittleness index tried (0.56, 0.36 or 0). In contrast, Mechanism 2 results showed that 

failure is reached if IB is 0.56, but again it is not reached  if IB=0.36 or IB=0. It should be noted that 

a FoS= 1.25 is computed for a ductile hydraulic fill (IB=0) and cu peak/σ’v=0.25. A summary of the 

results of this set of analyses are presented in Table 4.10. 



Chapter 4. Pray quay failure analysis                                                                                                                                 107 

 

Table 4.10. Results of flow liquefaction susceptibility of hydraulic fill parametric study. 

Fill 
material 

Brittleness 
index 
(IB) 

Hydraulic fill 
cu / σ’v 

Mechanism
1 

Hydraulic 
fill level 

[m] 

Mechanism 
2 

Hydraulic 
fill level 

[m] 

High 
brittleness* 

0.76 
cu peak / σ’v = 0.25 
cu SS / σ’v = 0.06 

Failure 2.75 Failure +2.5 

Medium 
brittleness 

0.56 
cu peak / σ’v = 0.25 
cu SS / σ’v = 0.11 

Stable >+3 Failure +2.5 

Low 
brittleness  

0.36 
cu peak / σ’v = 0.25 
cu SS / σ’v = 0.16 

Stable >+3 Stable >+2.5 

No 
brittleness 

0 cu / σ’v = 0.25 Stable - Stable - 

*Base Case analysis. 

The shape of the failure for both Mechanism 1 (Figure 4.21) and Mechanism 2 are similar to those 

obtained in the Base Case analyses. However, the degree of brittleness has a strong influence on the 

value of FoS or the elevation level of hydraulic fill that can be reached. As expected, if brittleness 

reduces, the quay stability increases.  

 

Figure 4.21. Contours of incremental displacements at stage 14 in FoS analysis.  Hydraulic fill at elevation+3 m, 
IB=0, FoS=1.25. 

4.8.4. Saturated unit weight of hydraulic fill 

A distribution of hydraulic fill density was postulated in the Base case analyses. The upper layer 

(from the surface to -5m) was assigned a density of 18 kN/m3 and the lower layer (from -5 m to -16 

m) a density of 19 kN/m3.  

A set of analyses has been performed varying the density of the upper layer; values of 17 and 19 

kN/m3 have been used. The results are shown in Table 4.11. As expected, a lower fill density 

increases stability and vice versa. 
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Table 4.11. Results of saturated unit weight of hydraulic fill parametric study. 

Material Upper hydraulic fill  Lower hydraulic fill  Failure  
 

sat 

[kN/m3] 

Elevation  
[m] 

sat 

[kN/m3] 

Elevation 
[m] 

Elevation 
[m] 

Hydraulic fill* 18.0 Hydraulic fill level from 
top to -5 m 

19.0 -5 m to -16 m +2.75 

Dense hydraulic fill 19.0 Hydraulic fill level to -5 
m 

20.0 -5 m to -16 m +2.17 

Loose hydraulic fill 17.0 Hydraulic fill level to -5 
m 

18.0 -5 m to -16 m > +3.0 

*Base case. 

In addition, the elevation of the boundary between the upper and lower fill was also varied. It was 

changed from -5.0 m to -3 m (high level) and -8 m (low level). Results from high, medium and low 

levels achieved different elevations of failure +2.27 m, +2.75 m and 2.50 m, respectively, as shown 

in Table 4.12.  It is apparent that the fill elevation at which failure occurs, it is rather insensitive to 

the location of the boundary between upper and lower fill.  

Table 4.12. Results of level of hydraulic fill contact between layers’ elevation sensitivity. 

Level Upper hydraulic fill Lower hydraulic fill  Failure top level 

 sat 

[kN/m3] 

Elevation 
[m] 

sat 

[kN/m3] 

Elevation 
[m] 

Elevation 
[m] 

Medium* 18.0 Hydraulic fill level to -5 m 19.0 -5 m to -16 m +2.75 

Low 18.0 Hydraulic fill level to -8 m 19.0 -8 m to -16 m +2.50 

High 18.0 Hydraulic fill level to -3 m 19.0 -3 m to -16 m +2.27 

*Base Case analysis. 

4.9. Comparison with field failure observations 

The sequence of the failure includes: a flow liquefaction mechanism, the initiation of general failure 

initial instability and the final post-failure state of the quay wall. Leaving the flow liquefaction 

mechanism aside because it has been described in detail above, the initial instability and the final 

post-failure state of the quay wall will be discussed in this section. 

Regarding the initial instability, the profile of the rubble mound determined after the failure can be 

compared to the shape of the failure mechanism from numerical analysis.  The two results have been 

plotted together in Figure 4.22. It is interesting to note that the small portion of the rubble mound at 

the sea side edge that was missing in a number of sections corresponds to the computed shape of the 

failure surface in that area. Evidently, the final shape of the hydraulic fill after failure cannot be 

reached with this analysis.  
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Figure 4.22. Computed incremental displacements at failure and observed ground profiles before and after 

failure. 

A 3D post-failure analysis was carried out by Celigueta et al. (2007) using the Particle Finite Element 

Method (PFEM). Several hypothesis of liquefaction initiation were tried. The only analysis that 

resulted in caisson displacements similar to those observed in the field was the case in which 

liquefaction was initiated close to the tip of the South embankment followed by a second liquefaction 

episode close to the East embankment (Figure 4.23).  

 

Figure 4.23. Assumed locations of liquefaction initiation, Celigueta et al. 2007. 

Figure 4.24 shows the evolution of the distribution of the computed displacements of the caissons 

from the analysis. It can be seen that the final state is achieved after 41 seconds. The observed 

displacements are also plotted for reference.  
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Figure 4.24. Evolution of computed caisson displacements with time. Observed caisson displacements are added 

for reference, Celigueta et al. 2007. 

This analysis appears to suggest that the initial liquefaction of the backfill was associated with the 

failure of the South embankment. It also indicates that when liquefaction reached the zone of the East 

embankment, an additional failure provided a new liquefaction focus. It should be noted however, 

that the analyses performed is necessarily a quite simplified one but it is capable to provide a quite 

reasonable account of the movements of the caissons after failure. 

4.10. Summary 

The most significant conclusions from this Chapter are listed below. 

  (a) The simulation of the construction and failure of the Part quay based on the information 

presented in Chapter 2 and Chapter 3, provides a suitable framework to examine the events associated 

with the failure of the quay. Implementation of CASM model to simulate flow liquefaction has been 

a key feature.  

 (b) The simulation has reproduced satisfactorily the quay wall behaviour that includes the 

wall displacements before failure, the fill elevation at the moment of failure the shape of the initial 

failure surface. 

(c) Two possible mechanisms for flow liquefaction triggering have been considered: 

continuing fill emplacement (Mechanism 1) or the occurrence of a local liquefaction as precursor of 

the general failure (Mechanism 2). 

 (d) The parametric study shows that a number of parameters have an influence on the 

moment and characteristics of the failure. For instance, the saturated unit weight of caisson or 

hydraulic fill or the friction angle of rubble mound affect the degree of stability of the quay wall. 

However, the stronger effect corresponds to degree of brittleness of the hydraulic fill.  For 

Mechanism 1, if the brittleness index reduces, failure requires a higher level of fill emplacement to. 

In the case of Mechanism 2, failure still takes place if the ultimate strength is within the usual range 

of liquefied shear strengths. 
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 (e) Liquefaction of the hydraulic fill was not triggered by a conventional sliding failure 

underlying the site or by a pore pressure increase. On this occasion, it was the hydraulic fill 

liquefaction that initiated the horizontal sliding of the caissons. 

Results from this Chapter have made available a consistent explanation of Phase 1 failure of Prat 

Quay. Nevertheless, to study the reasons why Phase 2 did not fail in the same manner, require a 

detailed study and analysis that is presented in Chapter 5. The same Chapter also includes a 

consideration of the issues related to the completion of the construction of the Phase 2 quay and the 

reconstruction of Phase 1 quay.  
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Chapter 5. Completion of the construction of Phase 2 

and reconstruction of Phase 1 

5.1. Introduction 
This Chapter describes the changes in the design of Phase 2 incorporating the lessons derived from 

the study of the failure previously described. It also includes an account of the reconstruction of 

Phase 1. 

The design and construction that allow the completion of Phase 2 are presented in this Chapter. A 

2D FEM analysis of Phase 2 is presented first corresponding to the stages carried out up to the failure 

of Phase 1. This analysis is performed with the stages, geometry and materials defined in Chapter 2 

and Chapter 4. The results of analysis allow the study of soil behaviour during the quay wall 

construction and can suggest the suitability of soil improvement to avoid another failure.  

A summary of soil improvement used to mitigate soil liquefaction in practice is then presented. The 

implemented solution of soil improvement is described, as well as the monitoring system to check 

the quay wall behaviour. To check the results of the soil improvement, two additional site 

investigations have been before and after the implementation of the soil improvement measures.  

New design and construction stages are defined for the completion of the Phase 2 quay construction 

that are also incorporated in the analysis. The definition of these stages is closely linked with the 

application of the observational method until the end of the quay construction. This requires a 

constant comparison between analysis results and the observation from the monitoring system. 

The lessons learned from Phase 2 were used in the design of Phase 1 reconstruction that involved 

significant modifications.  

Finally, a protocol for the evaluation liquefaction potential for hydraulic fill is proposed that includes 

actions to be taken before, during and after fill emplacement. The aim is to provide a structured tool 

for use in practice.  
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5.2. Phase 2 analysis  
Although Phase 2 was not affected by failure, it was of some concern that this quay wall constructed 

with narrower caissons (11.5 m) had not failed in the same way as Phase 1 did. An insight into the 

reasons that led to a stable situation are presented in following sections. Again, 2D numerical 

analyses using FEM have been performed incorporating the new geometry and construction stages. 

Most constitutive models and parameters are the same as those presented in Chapter 4. The results 

of the analysis of Phase 2 quay allow to examine its behaviour before the failure and to check its 

degree of stability after the failure. The analysis is also used to define the soil improvement  measures 

and the constructions stages required to complete the Phase 2 construction safely. 

5.2.1. Constitutive models and material properties 

The constitutive model and material parameters for natural ground (Soft Soil), rubble mound, lateral 

trench or dike (Mohr-Coulomb) and hydraulic fill (CASM) were already established for Phase 1, 

(Chapter 4). However, new materials, such as rock fill material and natural ground sand have been 

incorporated in the analysis. These materials have been simulated according to Mohr-Coulomb (M-

C) model and the parameters are presented in Table 5.1. Rock fill had similar proprieties as the rubble 

mound defined above. In this case, an interface element was provided between the caisson and the 

rock fill with a friction angle of Rinterꞏ tan (φ). The parameters of the sands have been obtained from 

the site investigation. 

The densities of Phase 1 and 2 caissons were similar. Thus, this material parameter was not modified. 

Table 5.1. Adopted parameters for cohesion less materials. 

Symbol & Units Rock fill Sands (natural ground) 

Model M-C M-C 

γnat [kN/m3] 20 18 

E’ [kPa] 35000 15000 

υ 0.3 0.3 

k [m/s] 10-2 10-4 

φ [°] 38 28 

R interface 0.6 - 

 

5.2.2. Geometry and material distribution 

The geometry of numerical model is based on the representative cross-section of the as-built project 

that previously had been presented in Figure 2.15. This geometry has been discretized to simulate 

each construction stage of the quay, as shown in Figure 5.1. The analysis domain is 200 m long and 

64 m high and composed by 10012 elements of 15 nodes.  
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Figure 5.1. Geometry of Prat quay Phase 2. 

 

The resulting distribution of the materials is presented in Figure 5.2. 

 
Figure 5.2. Geometry with hydraulic fill at elevation +1.5 m, Phase 2. 

5.2.3. Boundary conditions 

The displacement boundary conditions are as follows: zero vertical and horizontal displacements are 

prescribed at the lower horizontal boundary whereas zero horizontal displacements are prescribed on 

the two vertical boundaries. A no-stress condition is applied to the surface of the domain in all 

construction steps. 

Concerning water flow conditions, on the vertical boundary, a constant water head corresponding to 

an elevation of +0 m (mean sea level) has been applied.. As done in Phase 1, this water head elevation 

also applied for the land-side material while the hydraulic fill was below sea level. Subsequently, 

there was about 0.5 m of water above the hydraulic fill top elevation, i.e. when the hydraulic fill was 

at +1.5 m, water level was at +2 m and, of course, sea water remained at level +0 m, see Figure 5.3. 

In addition, the lower horizontal boundary down to -60 m, a constant water head corresponding to 

an elevation of +0 m (mean sea level) has been applied. The boundary is impermeable in the land 

side 

Natural ground 
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Figure 5.3. Hydraulic conditions, water level in hydraulic fill at elevation +1.5 m. 

5.2.4. Stages of analysis 

The analysis simulates the 10 construction stages until the time of the failure of Phase. They are listed 

in Table 5.2 together with the time corresponding to each stage. There is an additional stage that 

includes the reduction of the water level in the fill to +0 elevation and fill removal to elevation -3.5 

m. 

Table 5.2. Description of construction stages of Phase 2. 

Description Stage Time interval (days)  

 Initial K0 phase 0 - 

 Trench excavation 1 60 

 Rubble mound and rock fill sea side 2 105 

 Caisson anchoring and filling   3 30 

 Rock fill  4 20 

 Rock fill and hydraulic fill -12.5 m 5 10 

 Rock fill and hydraulic fill -9 m 6 10 

 Hydraulic fill -6 m and dike over the caissons  7 10 

 Hydraulic fill -3 m 8 20 

 Hydraulic fill 0 m 9 25 

 Hydraulic fill +1.5 m 10 30 (up to failure) 

 Reduction of water level to +0 and fill -3.5 m (a day after Phase 1 
failure) 

11 15 

As established in Phase 1 simulation, the stage 0 of analysis considers only the natural soil in order 

to establish the initial conditions of the analysis. Displacements generated during stage 0, 1, 2 and 3 

are reset to zero so that they do not interfere with the displacements computed during construction. 

Afterwards, the quay wall is constructed step-by-step following the actual construction sequence. 

For all phases, consolidation analyses are performed that incorporate the hydromechanical 

interactions and the time-dependent dissipation of pore pressures over the period considered. The 

stage (10) of the calculation -”up to failure”-, corresponds to a period of 30 days before the failure. 
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5.2.5. Results of Phase 2 analysis 

As described previously, the numerical analyses performed incorporate the available information 

concerning soil behaviour, material parameters, geometry, hydraulic boundary conditions and 

construction history. 

5.2.5.1. Analysis before failure 

The analysis supplies data regarding to the evolution of water pressures and deformations. As in 

Phase 1, topographic surveys were used to provide caissons displacements. The comparison between 

observed (blue lines) and computed (red line) settlements of Phase 2 caissons during construction 

are presented in Figure 5.4. The agreement is quite good. 

 
Figure 5.4. Caissons settlements along the quay wall during construction of Phase 2. 

The computed contours of excess pore pressure during stage 10 -just before failure of Phase 1-, and 

11 -after failure of Phase 1-, are presented in Figure 5.5 and Figure 5.6. At stage 10, as occurred in 

Phase 1, maximum excess pore pressures are reached in natural ground below the hydraulic fill, 

although a secondary peak is noted under the caissons. Lower values of EPP (around 20 kPa) have 

been computed in the hydraulic fill close to quay wall due to the presence of the rock fill. In contrast, 

a significant reduction on EPP is visible in stage 11. It is important to note that, now, the maximum 

computed EPP in the hydraulic fill is negligible. 
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Figure 5.5. Contours of excess pore pressure at the stage before failure, Stage 10. 

 
Figure 5.6. Contours of excess pore pressure at the stage after reduction of water level to +0 and fill to elevation     

-3.5 m, Stage 11. 

5.2.5.2. Stability analysis 

A stability check has been performed for Stage 10. As indicated above, the hydraulic fill is modelled 

using the CASM constitutive law. In this way, a potential for fill liquefactions is included in the 

analysis. This is the same hypothesis made for Mechanism 1 (Chapter 4) in Phase 2. In Phase 2, there 

were not embankments being constructed as in Phase 1; so, Mechanism 2 is not applicable. 

As described in Chapter 4, FoS calculation was performed following the manual phi-c reduction 

method (Appendix A). The computed value of FoS for Stage 10 -once failure of Phase 1 had 

occurred-, is 1.12. The displacement contours presented in Figure 5.7 indicate that a deep failure has 

been obtained. It is interesting to realise that the 25% of the failure surface go through the hydraulic 

fill. Although it has been assumed that the hydraulic fill was liquefied, the quay wall failure 

mechanism of Phase 2 involves mainly the natural ground. 

 
Figure 5.7. Contour of stage displacements in FoS analysis of Stage 10, FoS=1.12. 
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Further insight into quay wall stability is gained, if the same analysis is performed assuming that the 

hydraulic fill has not liquefied, i.e. the undrained shear strength is cu/σ’v = 0.25. Under those 

conditions, the value of FoS is 1.25. Stability is marginal only if the hydraulic fill liquefies.  

These results are reinforced by the simulation results using the initial hypothesis of soil liquefaction 

from the beginning of construction presented in Appendix C.2. 

5.3. Soil improvement  
The results of the analyses presented in the previous section showed that the Phase 2 quay stability 

was rather precarious in case of hydraulic fill liquefaction. It was thus necessary to undertake soil 

improvement procedures to increase the resistance of the fill to liquefaction. A number of different 

techniques were used as described below. 

There are numerous procedures for soil improvement (Phear & Harris, 2008), a number of them are 

in fact suitable for liquefaction mitigation. For instance, Yang (2002), Carrera et al. (2011), Castro 

(1969), Yamamuro & Lade (1998) and Fourie & Tshabalala (2005) argued that some soil 

improvement methods could avoid flow liquefaction due to enhanced drainage or improvement of 

the undrained shear strength. In this context, case histories or experiments of soil improvement used 

for liquefaction mitigation have been reported, e.g. Priebe (1989) & (1991), Seed and Booker (1977), 

Baez and Martin (1995), Boulanger et al., (1998), Andrus and Chung (1995), Seed et al. (2003), 

Yasuda et al. (1996), Adalier and Elgamal (2004) and Simpson et al. (2008). They involve a variety 

of procedures:  (i) compaction grouting, (ii) permeation grouting, (iii) jet grouting, (iv) in-situ or 

deep soil mixing, (v) compaction with vibratory probes, (vi) dynamic consolidation, (vii) compaction 

piles, (viii) deep densification by blasting, (ix) drains (gravel drains, sand drains, prefabricated strip 

drains), (x) surcharge pre-loading or (xi) structural fills. The cases of liquefaction mitigation by soil 

improvement are more limited in the case of fine grained soils: (i) stone columns -Adalier et al. 

(2003) for non-plastic silts-, (ii) dynamic compaction, (iii) permeations techniques and (iv) 

electrokinetic injection of grouts, Thevanayagam and Martin (2002). 

New soil improvement techniques have been developed for soil liquefaction mitigation, although 

during Prat quay remediation project many of these techniques were not readily available. Examples 

are: (i) nanomaterials as colloidal silica (Hamderi and Gallagher, 2015), bentonite (Santagata et al., 

2014; Ochoa-Cornejo et al. 2014; Drnevich et al., 2014; Mohtar et al. 2008 and 2012) or laponite 

(p.e. Huang and Wang, 2016), (ii) short synthetic fibers (p.e. Karakan et al., 2018; Liu et al., 2011; 

Ibraim et al., 2010; Noorzad and Amini, 2014) and (iii) Recycled materials (p.e. Bahadori and 

Manafi, 2015; Bahadori and Farzalizadeh, 2016; Kaneko et al., 2013; Hazarika et al., 2010; Otsubo 

et al., 2016), (iv) Biological materials (p.e. DeJong et al., 2013; Xiao et al.,,2018), (v) Chemical 

grouting (p.e. Porcino et al., 2015), Microfine cement (p.e. Yao et al. 2018; Pantazopoulos & 

Atmatzidis, 2012), (vi) Partial saturation method (p.e. He et al., 2013; Yegian et al., 2007), also other 

materials as p.e. biochar (Pardo et al., 2019). 
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In spite of this large number of soil improvement methods, three key factors limited the feasibility 

of soil improvement implementation in Prat quay Phase 2: (i) the material is mainly fine-grained 

hydraulic fill, (ii) instability of the quay wall has to be avoided and (iii) a large surface area ( 540000 

m2 ) had to be treated. Finally, three methods were selected: stone columns by vibro-replacement, 

prefabricated strip drains and surcharge pre-loading. The objective was twofold: to increase 

resistance against liquefaction and to increase the undrained shear strength of the hydraulic fill and 

the natural ground.  

Installation of stone columns by vibro-replacement (Figure 5.8) can reduce or remove the 

liquefaction potential: (i) by increasing the density of surrounding soil, (ii) by allowing drainage for 

the control of pore pressures, (iii) by introducing stiff elements (stone columns) which can potentially 

transmit higher stresses causing reduction in stress levels in the surrounding soil (Priebe, 1989 and 

1991), and (iv) by providing a deformation restricting effect. 

 

Figure 5.8.  Gravel drain construction by vibro-replacement, Adalier and Elgamal (2004). 

The application of prefabricated vertical drains (PVD) provides considerably shortened horizontal 

drainage paths for pore water flow, thereby accelerating soil consolidation (Hansbo, 1981). 

Prefabricated strip drains usually consist of a core of plastic and a filter sleeve or jacket of nonwoven 

geotextile, paper, fibrous material, or porous material, Yeung (1997). Some designs include a loose 

sleeve enclosing the core while others are fixed to the core. Detailed evaluations of laboratory and 

field performance of different types of prefabricated vertical drains are readily available in the 

literature (Atkinson and Eldred 1981; Davis and Humpheson 1981; McGown and Hughes 1981; 

Nicholson and Jardine 1981; Hansbo 1983; Long and Hover 1984; Robertson et al. 1988; Holtz et 

al. 1991; Kamon et al. 1992; Long and Fontaine 1992; Long et al. 1994; Indraratna and Redana, 

2000; Bergado et al., 2002; Arulrajah et al. 2004; Arulrajah and Bo, 2008 and Almeida et al. 2010). 

Precompression is the deliberate act of compressing the ground under an applied pressure prior to 

placing or completing the permanent load. It is described as surcharging where the stress intensity 

from the preloading (or precompression) is greater than the intensity from the permanent loading 
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(Mitchell and Jardine, 2002). Since the earliest recorded uses of pre-compression ground 

improvement in the UK (Tomlinson, 1956), this type of improvement has been carried out in civil 

works around the world. In this context, a detailed study for improving fine-grained dredged material 

after hydraulic fill deposition using consolidation was described in Bishop and Vaughan (1972). 

They clearly demonstrated the suitability of a hydraulic clayey fill as construction material. An 

appropriate case to prove the efficiency of the surcharge pre-loading was provided by the pre-loading 

embankments located in two areas close to Prat quay esplanade presented in Alonso et al. (2000) and 

(2010). They described the capabilities of well instrumented preloading trials: (i) to investigate 

consolidation in deltaic soils and (ii) to determinate the variation of secondary settlement rates with 

the OCR.  

In practice, it is frequent to use PVD, horizontal drainage layer and surcharging preloading together 

to reduce the time of consolidation. Thus, the excess pore-water pressures, created by preloading, 

lead to preferential flow in the horizontal direction towards the PVD and along it vertically into the 

permeable drainage layers, i.e. Holtz (1987), Bergado et al. (2002) and Ma et al. (2011), as shown in 

Figure 5.9. 

 
Figure 5.9. Improvement using PVD, horizontal drainage layer and surcharging preloading, source 

greencosmos.com. 

This leads to an increase in soil density, undrained shear strength (Ladd et al., 1972 and Lad, 1991) 

and the rate of pore pressure dissipation. All these effects contribute to soil liquefaction mitigation. 

The layout of the prefabricated strip drains, horizontal drainage layer, surcharge pre-loading and the 

zone improved with stone columns is shown in Figure 5.10. It was obtained from two studies out of 

the scope of this PhD thesis:  
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(i) A trial embankment in the storage area of Phase 2 (latterly shown in Figure 5.12.) to 

obtain a prelaminar idea of the effect of the proposed soil improvement (Alonso et al. 2008 

and Gens et al. 2009b). 

(ii) Different calculations to reach an optimal design for stone columns treatment and spatial 

arrangement of surcharge preloading (Gens et al., 2009a).  

 

The stone columns by vibro-replacement were implemented in the backfill of the quay-wall, limited 

by the rock fill, and up to 20 m inland. The designed columns were 30 m long -or until to reach the 

rock fill-, and 0.5 m diameter, placed in a triangular grid with a spacing of 2 m. From the inland limit 

of stone columns to the end of the esplanade, 30 m long PVD were installed in a square grid with 1.5 

m spacing. The designed preloading is composed by different embankments heights in different areas 

of the quay: quay line 3 m, manoeuvring 4.5 m and storage areas 8 m, it will be described later in 

Chapter 5.6.3. In addition, the preloading is composed by 0.5 m thick horizontal drainage layer, a 

water discharge system and geo-membrane sheet between terrestrial fill and drainage layer to avoid 

its contamination.  

 

Figure 5.10. Cross section of Phase 2 including soil improvement measures, modified from Tarragó et al. (2012). 

The improvement work was carried out in the following chronological order: (i) an initial land 

levelling, (ii) installation of PVDs, (iii) sequential placing of preload embankments and installation 

of stone columns. 

5.4. Monitoring system 
After the Phase 1 failure, the monitoring system of Phase 2 was significantly reinforced. In addition 

to providing useful information on the behaviour of the quay, the instrumentation was aimed towards 

the use of the observational method (Peck, 1969) to ensure a safe completion of the construction.  

The monitoring system included inclinometers, clinometers, piezometers, sliding extensometers and 

settlement plates. These instruments were implemented in two stages: (i) just after the failure of 
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Phase 1 quay and (ii) once the esplanade had been levelled. The installed instrumentation is presented 

in the cross-section shown in Figure 5.11. Topographic markers were installed at the four top corners, 

of all the caissons together with a clinometer on the seaside face in order to control movements. Open 

piezometers were installed in the rock fill at the back of the every caisson to record a variation of 

pore pressures as a result of fill liquefaction. Chains of fixed inclinometers down to an elevation of 

-60 m, were installed in alternating caissons, together with chains of settlement gauges and chains of 

piezometers down to an elevation of -40 m.  

 
Figure 5.11. Cross section of Phase 2 with soil improvement measures and monitoring system, modified from 

Tarragó et al. (2012). 

A general view of the monitoring system layout is presented in Figure 5.12. The esplanade 

instrumentation consisted of: (i) settlement plates with a grid spacing of 80 m, (ii) piezometers chains 

placed at distances of 30 m from each other, (iii) piezometers chains and sliding extensometers 

separated 160 m. Each piezometer chain had 4 piezometers and reached down to an elevation to -40 

m the same as the sliding extensometers. The Phase 2 instrumentation also incorporated the 

monitoring system used in the performance of the trial embankment.  
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Figure 5.12. Layout of monitoring system of Phase 2, modified from APB (2008). 

Monitoring results were fully described in Tarragó et al. (2012). It is important to note the results 

consistency according to improvement sequence. 

5.5. Evaluation of hydraulic fill improvement 

Soil improvement performed to enhance the resistance of the hydraulic fill was a key aspect towards 

completing the construction of Phase 2 safely. To assess the change in the state of the hydraulic fill, 

two additional site investigations were carried out before and after the soil improvement measures. 

The evaluation of the results obtained from these additional site investigations are presented in 

following sections. The degree of improvement is assessed in terms of undrained shear strength 

increase and of flow liquefaction criteria. 

5.5.1. Additional site investigations 

After the failure and subsequent land levelling to elevation +2 m, a site investigation based on more 

than 50 CPTu tests was carried out before any soil improvement was performed. The site 

investigation carried out after soil involved drilling of boreholes and the performance of 40 CPTu 

tests. On purpose, some of the new CPTu tests were placed in the same locations as CPTu tests 

performed before soil improvement. The distribution of CPTu tests performed before and after soil 

improvement is presented in Figure 5.13.  

 

 

TRIAL

40 m 
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Figure 5.13. Location of additional CPTu tests in Phase 2 esplanade, APB (2008). 

 

Results from two representative CPTu tests (3b11 and r5) before and after soil improvement are 

presented together in Figure 5.14 and Figure 5.15. The zones corresponding to dumped fill, hydraulic 

fill and natural ground are indicated. Only the results concerning the hydraulic fill are discussed here. 

It is apparent that soil improvement was effective in the hydraulic fill. A large increase of cone 

resistance is obtained whereas sleeve frictions are also much higher than before. Pore water pressures 

generated in the hydraulic fill, u2, also show an increase in some cases responding to the higher cone 

resistance. 
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Figure 5.14. CPTu results from 3b11 before and after preloading surcharge. 

 

Figure 5.15. CPTu results from r5 before and after preloading surcharge. 

5.5.2. Hydraulic fill strength 

Representative profiles of undrained shear strength for the hydraulic fill before and after soil 

improvement are shown in Figure 5.16, Figure 5.17 and Figure 5.18. All records are above 0.25 σ’v 
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which is consistent with an overconsolidation state induced by preloading, Ladd (1991). The very 

low values of undrained shear strength in some zones of the hydraulic fill before soil improvement 

reflect the brittle liquefiable nature of the material. It is noteworthy, that those very low values have 

disappeared after the soil improvement measures. 

Figure 5.16. CPTu results from 3b11 (left) and r5 (right) before and after preloading. 

Figure 5.17. CPTu results from r9 (left) and r2 (right) before and after preloading. 
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Figure 5.18. CPTu results from x2 and x6 before and after preloading. 

5.5.3. Application of flow liquefaction criteria  

The improvement in liquefaction resistance can be assessed more readily applying well-known flow 

liquefaction criteria. The same ones already applied in Chapter 3 -Bray et al. (2004), Plewes et al. 

(1992), Robertson (2016) and Mayne (2019)-, will be applied now. 

5.5.3.1. Bray et al. (2004) criterion  

The values of plasticity index and water content/Limit Liquid of a number of specimens extracted 

from the hydraulic fill after soil improvement are plotted in Figure 5.19. For the state of the fill before 

improvement, results from settling column samples -from Figure 3.28 in Chapter 3-, are used. It can 

be noted that the results without soil improvement lie in the moderately susceptible zone. In contrast, 

after soil improvement, the wc/LL values have reduced and the corresponding points move to non-

susceptible zone. 

The existence of sand layers in the hydraulic fill limited the representatively of the results with 

respect to this criterion. There were non-plastic specimens (PI=0) that have not been represented in 

the plot. 
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Figure 5.19. Liquefaction screening (Bray et al., 2004) of fill specimens before and after soil improvement, IL 

values are indicated for each specimen 

The results of some simple direct shear tests from hydraulic fill specimens of which soil index were 

presented above (before soil improvement). They are included in Figure 5.19 together with the results 

obtained after soil improvement. The values of cu peak and of remoulded undrained shear strength (or 

cu SS), computed from the IL according to (Leroueil et al. 1983) before and after soil improvement are 

represented in Figure 5.20. In addition, the brittleness indexes are calculated, and included in Figure 

5.20. It is apparent that, soil brittleness was eliminated by soil improvement.  

 
Figure 5.20. Peak and remoulded undrained shear strength vs. liquidity index before and after soil improvement. 
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5.5.3.2. CPTu criteria  

The criteria of Plewes et al. (1992), Robertson (2016) and Mayne (2019) have been applied to a 

representative set of CPTu observations. The results are plotted side by side in Figure 5.21 to Figure 

5.26, in which Figures (a) corresponds to tests performed before soils improvement, and (b) 

corresponds to tests performed after soil improvement. 

The Plewes criterion results indicate that, after soil improvement, the state parameters are lower than 

-0.05 or at least close to that value although there are three profiles ( 

Figure 5.22, Figure 5.24 and Figure 5.25) in which ψ reduction is more evident. 

Although a significant increase of Qtn values were obtained after soil improvement, using 

Robertson’s chart, many points remain on the contractive region close to normally consolidated line 

after soil improvement (Figure 5.21 to Figure 5.24). 

Profiles of YSR before improvement from Mayne criterion show that contractive behaviour is 

restricted to localized zone in some profiles (Figure 5.22 to Figure 5.24 and Figure 5.26). In contrast, 

after soil improvement, the criterion indicates that dilative soils are present over the full depth of the 

profile. It is important to note that YSRCPTU after the improvement is generally higher than 10 and it 

is not represented in the plot. 

As expected, results of the different criteria are not coincident. Whereas Plewes and Mayne criteria 

yield similar results, Robertson criterion seems to be more conservative. The beneficial effects of the 

soil improvement can be clearly seen in the comparison in the F-Q chart between the CPTu tests 

performed before and after preloading shown Figure 5.27. It can be noted that the points in the 

contractive area (SC-TC-CC) zone have moved much closer to the contractive/dilation boundary. 

Also, only a few points remain in the sensitive contractive clays (CCS) zone. It is also worth 

remembering that a contractive behaviour is a necessary but not a sufficient condition for undrained 

brittle behaviour. 
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(a) 
 

(b)
 

Figure 5.21. Plewes criterion (ψ), Robertson criterion (Qtn) and Mayne criterion (YSR) for CPTu test 3b11, (a) 
before and (b) after soil improvement. 
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(a) 
 
 

(b)

 

Figure 5.22. Plewes criterion (ψ), Robertson criterion (Qtn) and Mayne criterion (YSR) for CPTu test r5 (a) before 
and (b) after soil improvement. 
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(a) 
 
 

(b) 
 
 
 

Figure 5.23. Plewes criterion (ψ), Robertson criterion (Qtn) and Mayne criterion (YSR) for CPTu test r9, (a) 
before and (b) after soil improvement. 
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(a) 
 

 

(b) 
 
 
 

Figure 5.24. Plewes criterion (ψ), Robertson criterion (Qtn) and Mayne criterion (YSR) for CPTu test r2, (a) 
before and (b) after soil improvement. 
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(a) 
 

(b) 
 
 
 

Figure 5.25. Plewes criterion (ψ), Robertson criterion (Qtn) and Mayne criterion (YSR) for CPTu test x2, (a) 
before and (b) after soil improvement. 
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(a) 
 
 

(b) 
 
 
 

Figure 5.26. Plewes criterion (ψ), Robertson criterion (Qtn) and Mayne criterion (YSR) for CPTu test x6, (a) 
before and (b) after soil improvement. 
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Figure 5.27. Application of Robertson criterion before (left) and after (right) soil improvement. 

 

5.6. Analysis of Phase 2 after soil improvement 
Firstly, the design of the construction process with observational method during soil improvement 

implementation in Phase 2 was originally performed with the numerical analysis presented in 

Appendix C.3. Although hydraulic fill had a constrained volume after emptying (Stage 11), flow 

liquefaction had to be avoided during soil improvement. As occurred in Appendix C.2, the initial 

hypothesis of soil liquefaction was again established in the analysis. Thus, hydraulic fill was under 

liquefied state from the beginning of construction. However, according to tests results, liquefaction 

criteria results and soil behaviour during construction, the removing of flow liquefaction potential of 

the hydraulic fill can be accepted after the soil improvement. 

Further insights into new inputs for materials behaviour that led to the hydraulic fill improvement 

are presented in this section. The modified section and the new design of construction process are 

incorporated in the numerical analysis to evaluate the quay wall behaviour and final stability.  It is 

important to note that the analysis presented in this section is used to confirm the performed design 

of the construction process using CASM model for hydraulic fill simulation. 

5.6.1. Constitutive models and materials properties 

The only constitutive model and associated parameters that are modified for this analysis correspond 

to the hydraulic fill after improvement. The CASM model was used before to be able to represent 

brittle behaviour and flow liquefaction. As shown in the previous section, it is concluded that flow 

liquefaction is no longer possible. The material is assumed ductile with an undrained shear strength 

of 0.25ꞏσ‘v. In that case, the Soft Soil constitutive model (Plaxis, 2010) is adopted. The corresponding 

model parameters are given in Table 5.3.  
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While the fill is undergoing consolidation during preloading, it is still assumed liquefiable, probably 

a conservative hypotheses at least in the later stages of pore pressure dissipation.  

The effects of prefabricated strip drains and geotextile membrane on strength have been neglected. 

This hypothesis can be considered conservative, because both tend to induce strength increase, see 

for instance Rowe and Li (2002) or recently in Da Silva (2017). Note that, although effective stress 

strength parameters of hydraulic fill are not modified during preloading, hydraulic fill permeability 

have been calibrated from results of piezometers installed into hydraulic fill obtained during the 

preloading. This piezometer was likely to be located in the less permeable hydraulic fill making the 

parameter probably conservative. 

A new material is also defined to represent the hydraulic fill from the failed zone that ended outside 

in an area outside the caissons. There were not tests performed in this material but divers described 

it as an extremely soft mud. 

Table 5.3. New hydraulic fill properties for FE analysis. 

Symbol & Units Hydraulic fill with 
vertical strip drains 

Improved hydraulic fill Hydraulic fill from 
Phase 1 (sea side) 

Constitutive model CASM Soft Soil Soft Soil 

γnat [kN/m3] 18.5 19 16 

e [-] 1 0.8 2 

cc 0.23 0.23 0.4 

cs 0.07 0.07 0.02 

ν [-] 0.3 0.3 0.3 

k [m/s] 2ꞏ10-7 2ꞏ10-7 5ꞏ10-8 

cu peak / σ’v 0.25 - - 

cu SS / σ’v 0.06 0.25 0.06 

 

In addition, the Mohr-Coulomb constitutive model has been adopted for a set of coarse grained 

materials that have been used to improve stability conditions: sandy dumped fill, upper rock fill, 

stone columns and preloading material. Some parameters have been obtained from the site 

investigation; other parameters have been estimated from calibration or standards. Thus, shear 

strength and rigidity parameters of the dumped fill that was placed by land means was determined 

from in-situ tests results. There are no tests on the materials of the upper rock fill, soil with stone 

columns and preloading material. The same properties than for rubble mound are selected for the 

upper rock fill. The parameters of soil with stone columns were adjusted according to the equivalent 

area method (Tan et al., 2008). Standard values of 18 kN/m3 for density and of 30° for friction angle 

have been used for simulating preloading material. The main parameters values are shown in Table 

5.4. 
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Table 5.4. Adopted parameters for cohesion less materials. 

Symbol & Units Preloading 
material 

Dumped  
fill 

Upper  
rock fill 

Improved soil with 
stone columns  

γnat [kN/m3] 18 18 20 19 

E’ [kPa] 10000 15000 35000 30000 

ν [-] 0.3 0.3 0.3 0.3 

φ [°] 30 28 38 27 

R interface - - 0.6 - 

5.6.2. Geometry and material distribution 

The original geometry for Phase 2 above (Figure 5.1) is modified to take into account the 

modifications implemented in the section in Figure 5.10. The new geometry is presented in Figure 

5.28. The domain of analysis is 200 m long and 70 m high and comprises by 12307 elements of 15 

nodes. 

 

 

 

Figure 5.28. Preloading elevations. Deposit zone up to +10 m, manoeuvring zone up to +6.5 m and +5 m, and 
caissons up to +3 m for numerical simulation. 

It is worth noting that the preloading geometry was specified to provide the loading distribution 

defined for each stage. The deposit and the manoeuvring zones preloading are simulated by material; 

whereas a simple line surface simulates caisson preloading. 

Finally, note that a conservative assumption is when the effect of the gravel columns in the sand layer 

is not considered. 
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5.6.3. Phases of analysis 

The model simulates all the events before and after the failure including soil improvement activities. 

The model is continued until the end of construction and includes the application of service loads. It 

involves 11 stages before the failure (Table 5.2) and 23 stages after the failure. The stages 

corresponding to the events after the failure after the failure are listed in Table 5.5. The sequence and 

stages after the failure were established using to observational method. It can be observed that, to 

ensure quay stability, the preload was applied sequentially. in two steps: (i) preloading of caissons 

and deposit zones (stage 17 to stage 25), and (ii) preloading of manoeuvring and deposit zones (stage 

26 to stage 31).  

Table 5.5. Description of construction stages of Phase 2 after Phase 1 the failure.  

Description Stage Time (days)

Removal of the earth bund over the caissons  12 80 

Granular Fill  up to -0.5 m  (placement by terrestrial means) 13 50 

Granular Fill  up to +1 m  (placement by terrestrial means) 14 30 

Drainage layer up to +1.5 m  15 50 

Vertical prefabricated strip drains installation (+1.5 m)  16 110 

Deposit zone preloading up to +6.5 m  17 20 

Deposit zone preloading consolidation 18 45 

Preloading up to +8.5 m, in part of the deposit zone. Caisson preloading with 6 
layers of 0.5 m of soil 

19 15 

Preloading up to +10 m, in part of the deposit zone. Caisson preloading with 6 
layers of 0.5 m of soil 

20 20 

Deposit zone and caissons preloading consolidation  21 45 

Deposit zone preloading consolidation. Caissons preloading with 7 layers of 0.5 m 
of soil 

22 4 

Deposit zone and caissons preloading consolidation. Stone columns installation  23 55 

Deposit zone and caissons preloading consolidation. 24 85 

Deposit zone preloading consolidation. Unloading caissons preloading reduced to 
3 layers of 0.5 m soil 

25 10 

Deposit zone and caissons preloading consolidation. 26 50 

Deposit zone and caissons preloading consolidation. Manoeuvring zone preloading 
up to +5 m and +3 m.  

27 10 

Deposit zone, manoeuvring zone and caissons preloading consolidation 28 15 

Deposit zone and caissons preloading consolidation. Manoeuvring zone preloading 
up to +6.5 m and +5 m. 

29 20 

Manoeuvring zone and caissons preloading consolidation. Unloading deposit zone 
preloading  

30 60 

Manoeuvring zone and caissons preloading consolidation 31 60 

Preloads unloading to final height, 3m 32 30 

Pavement, capping beam construction and dredge in the sea side to -16.5 m 33 360 

Service loads  34 90 
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5.6.4. Results of the analysis 

From a general perspective, it can be stated that the numerical analysis performed exhibited any 

convergence difficulties.  

5.6.4.1. Construction 

This analysis provides results of the evolution of deformations and water pressures. The monitoring 

system recorded data from piezometers and surveying that is useful to check the quay behaviour. The 

results of the instrumented section of a representative caisson are compared. 

Figure 5.29 shows the computed vertical and horizontal displacements compared with the observed 

displacements of Phase 2 during various stage constructions. Caisson observations (red and black 

lines) and computed (blue line) of vertical and horizontal displacements are presented in Figure 5.29 

for the main preloading stages, 17, 20, 27 and 29. The agreement is good in both terms of 

displacements at the end of construction. Nevertheless, stone columns performance generated 

movements that are not simulated. 

 
Figure 5.29. Vertical vs. horizontal displacements during Phase 2 quay construction. Results from topographic 

survey and numerical analysis. 

The computed and measured excess pores pressures are represented in the quay cross-section in 

Figure 5.30. Excess pore pressure in hydraulic fill and natural ground are compared for the most 
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critical stages, 29 and 30. The water pressure dissipation in the hydraulic fill is faster than in the 

simulation. This behaviour is likely to be due to hydraulic fill heterogeneities. 

In summary, a quite good agreement between analysis and monitoring results has been obtained 

indicating that the hydro-mechanic conditions during construction have been properly simulated.  

 
Figure 5.30. Excess pore pressure profiles from piezometers and numerical analysis results- Phase 2 quay 

construction. 

5.6.4.2. Stability analysis 

The factors of safety obtained with the hydraulic fill modelled using CASM are higher than 1.25. 

Unfortunately, with the manual φ – c reduction required when using the CASM model, it is not 

possible to calculate higher values of FoS and the failure mechanisms cannot be visualised. Once the 

CASM model is replaced by the soft soil model (i.e. after the end of the preloading), the service 

loading stage (34) is computed using the manual φ – c reduction (Appendix A). The computed FoS 

is 1.28. The full list of computed FoS during construction stages and service loading (bollard, crane 

and deposit loads) are presented in Table 5.6. 

 Additional stability analyses in critical stages were performed using the conservative initial 

hypothesis of complete hydraulic fill liquefaction as described in Appendix C.3. The results obtained 

in this way met the design requirements that FoS ≥ 1.25. Therefore, the design is likely to be 

conservative because the total liquefaction of the fill is quite an extreme assumption. 
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Table 5.6. FoS for construction stages and service loading. 

Description Stage FoS 
Manual φ – c 

reduction 

Deposit zone preloading up to +6.5 m  17 >1.25 

Deposit zone preloading up to +10m, using a trench up to +6.5m.  Caissons 
preloading consolidation with 6 layers of 0.5m of soil  

20 >1.25 

Deposit zone preloading consolidation. Caissons preloading with 7 layers of 
0.5m of soil 

22 >1.25 

Deposit zone preloading consolidation. Unloading caissons preloading 
reducing to 3 layers of 0.5m soil (2.7 t/m2). 

25 >1.25 

Deposit zone and caissons preloading consolidation. Manoeuvring zone 
preloading up to +5m and +3m.  

27 >1.25 

Deposit zone and caissons preloading consolidation. Manoeuvring zone 
preloading up to +6.5m and +5m. 

29 >1.25 

Service loads  34 1.28 

 

The mechanism of failure during service loading (Figure 5.31) crosses the zone improved with stone 

columns, rock fill, rubble mound and natural ground. It is interesting to note that there is a 

considerable change of failure shape between stage 11 without soil improvement and the service 

loading stage. In addition, a failure shape similar to that obtained for Phase 1 (Figure 4.14) can be 

observed. 

 
Figure 5.31. Contours of incremental displacements in stability analysis at stage 34, FoS=1.28. 

In summary, the numerical analyses indicate an adequate stability of the Phase 2 of Prat quay under 

both construction and service conditions. 

5.7. Phase 1 reconstruction 
The construction of Phase 2 quay provided relevant information for the rebuilding the Phase 1 quay 

after the failure. The Phase 1 reconstruction was carried out in two stages: (i) Stage 1 involving the 

9 caissons not affected by the failure, (ii) Stage 2 involving the part of the quay that had been directly 
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affected by the failure. Stage 1 started immediately after finishing the construction of the Phase 2 

quay while Stage 2 started during the preloading of Stage 1. Stage 2 used the caissons that could be 

recovered, new caissons were built to replace those that could not be retrieved. 

 

The design of the Stage 1 of Phase 1 had substantial changes with respect to the original cross-section 

design. The main ones are:  

(i) Part of the already emplaced hydraulic fill was dredged out from the zone depicted in 

Figure 5.32. 

(ii) The construction of a new dike. 

(iii) A rock-fill wedge was emplaced behind the quay wall. 

(iv) The raising of the fill up to elevation +2 m using dry coarse grained soil. 

(v) Installation of prefabricated vertical strip drains.  

(vi) Surcharge preloading improvement (Figure 5.33). 

 
Figure 5.32. Plan view of Stage 1 of Phase 1 reconstruction, APB (2009). 

 
Figure 5.33. Cross-section of Stage 1 of Phase 1 reconstruction, APB (2009). 

To check the characteristics of the new fill, four additional CPTu test were carried out before 

preloading. The new backfill is composed mainly by coarse grained soils. Excess water pore 
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pressures (u2) were not generated and high values of qc (>10 MPa) and fs (>0.08 kPa) are measured 

in the CPTu soundings, as shown in Figure 5.34. 

  
Figure 5.34. Representative CPTu in backfill of Stage 1 of Phase 1 reconstruction. 

Derived undrained shear strength values from CPTu are generally much higher than 0.25 ꞏ σ’v apart 

from a few localised points, as it can be observed Figure 5.35.  

 
Figure 5.35. CPTu results for cu from terrestrial fill of Stage 1 of Phase 1 reconstruction. 
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Figure 5.36 shows the CPTu results of the new fill plotted on Robertson (2016) Fr-Qtn screening 

chart. It can be noted that points correspond to the region of dilative sand-like (SD) and transition 

soils (TD). Therefore, there is no flow liquefaction potential. 

 
Figure 5.36. Location of the observations in four CPTu tests in Roberson (2016) Fr-Qtn charts, backfill of Stage 1 

of Phase 1 reconstruction. 

Equivalent results are obtained from Plewes et al. and Mayne criteria. (Figure 5.37 to Figure 5.40). 

All state parameter values correspond to dilatant behaviour. 

 
Figure 5.37. Results of Plewes et al. and Mayne criteria for CPTu 1, backfill of Stage 1 of Phase 1 reconstruction. 
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Figure 5.38. Results of Plewes et al. and Mayne criteria for CPTu 2, backfill of Stage 1 of Phase 1 reconstruction. 

 

 

Figure 5.39. Results of Plewes et al. and Mayne criteria for CPTu 3, backfill of Stage 1 of Phase 1 reconstruction. 
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Figure 5.40. Results of Plewes et al. and Mayne criteria for CPTu 4, backfill of Stage 1 of Phase 1 reconstruction. 

Two-dimensional numerical analysis using FEM were performed for the Stage 1 of Phase 1 

reconstruction. In accordance with the previous liquefaction assessment, no flow liquefaction was 

assumed in this case. The geometry and materials distribution are shown in Figure 5.41. 

 
Figure 5.41. Geometry of Stage 1 of Phase 1 reconstruction. 

Finally, Figure 5.42 presents the design of the Stage 2 of Phase 1 reconstruction that has many 

similarities to that of Stage 1. The designed was geared to avoiding any potential problem of soil 

liquefaction. The zone against the caisson was backfilled with a rock fill wedge and, subsequently, a 

larger region over 30 m wide was filled with coarse-grained placed by terrestrial means. After the 

reconstruction, only a small wedge of the initial hydraulic fill remained at the bottom of the quay fill. 

In addition, a surcharge preloading with prefabricated strip drains was applied as depicted in Figure 

5.42. In any case, no evidences of flow liquefaction potential in the fill were identified from CPTu 

results even before the preloading. In fact, the main objective of the preloading was to reduce 

eventual settlements that could affect quay operations.  
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Figure 5.42. Cross section of Stage 2 of Phase 1 reconstruction, APB (2009). 

As expected, the designs of both stated amply fulfilled the required stability conditions. No special 

difficulties arise during the Phase 1 quay reconstruction. The information collected from the 

monitoring system and the final round of CPTu tests are outside the scope of this PhD thesis. 

 

5.8. Proposed protocol to evaluate liquefaction potential for 
hydraulic fills 

Based on the experience gathered in the Prat quay case reported in this PhD thesis, a new protocol to 

improve the identification of hydraulic fill with liquefaction potential is proposed. Both flow and 

cyclic (Appendix E) liquefaction are considered. 

The protocol encompasses different requirements for the three phases hydraulic fill deposition: 

before, during and after emplacement. 

5.8.1. Before hydraulic fill emplacement 

This phase is likely to be the most important because part of the final conditions can be evaluated. 

The main points to be studied are the following: 

 General assessment of volumes. 

 Type of dredge and placement system. 

 Description of the soils to be dredged. 

 Lab tests: soil identification with LL, LP, particle size determination (PSD), fine content % 

and mineral identification, X-ray diffraction. 

 Settling columns. 

These studies shall be used for performing preliminary assumptions of the hydraulic fill and to 

propose future soil improvement if required. 

5.8.2. During hydraulic fill placement 

At the beginning of this phase the quay wall is constructed and it can not be modified easily of 

difficulties arise. The proposal for tests to be performed is: 
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 Soil samples from the dredged soil. 

 Settling columns. 

 Lab tests: soil identification with LL, LP, particle size determination (PSD), fine content %, 

and mineral identification, X-ray diffraction. 

The results should confirm the results obtained before fill placement and, in this way, confirm design 

assumptions. 

5.8.3. After hydraulic fill emplacement 

Once the hydraulic fill is emplaced, a certain amount of time is required for soil settling and 

formation. That time depends fundamentally on soil type, particle size, fine content and presence of 

flocculants minerals. It can be evaluated from the information gathered in the tests performed during 

emplacement.  Once the material has settled, in-situ tests and lab tests should be performed. 

 In-situ testing. 

The CPTu and the seismic CPTu tests is likely to be the most appropriated due to the continuous and 

complete recording of soil parameters and suitability to liquefiable soils. Seismic CPTu is capable to 

provide the soil shear velocity, particularly useful for the evaluation of cyclic liquefaction potential. 

Currently, the offshore site investigation industry has developed new tools such as the T-Bar and 

Ball penetrometers to characterize very soft soils. They are collectively known as full-flow 

penetrometers. There are a number of advantages in the use of full-flow penetrometers with respect 

to CPTu tests as discussed in Einav and Randolph (2005), Yafrate et al. (2009) and DeJong et al. 

(2011): 

- The larger probes require minimal correction for the overburden pressure (or ambient 

water pressure in offshore investigations) in order to provide a net resistance and higher 

accuracy in soft soils. 

- Since the resistance is primarily due to flow around the probe, rather than insertion of 

additional volume (of cone shaft) into the ground, the resistance should be less affected 

by secondary soil characteristics such as the rigidity index or the in-situ stress ratio. 

- A well-defined failure mechanism may be postulated -essentially plane strain for the T-

bar and axisymmetric for the ball-, thus providing a more robust theoretical basis for 

deriving factors relating penetration resistance and shear strength. 

- Improved accuracy in very soft soils since a larger volume of soil is engaged during 

penetration as compared to the CPTu. 

- Corrections for overburden are minimized since the overburden stress is nearly equal 

above and below full-flow penetrometers. 

- Penetration resistance is less affected by soil rigidity and stress anisotropy because the 

resistance measured is a result of soil flow around the probe rather than of complete soil 

displacement as is the case with the cone penetration test CPT. 
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Therefore, it is strongly recommended the use of full-flow penetrometers to evaluate strength and 

soil sensitivity for very soft soils.  

Additionally, other in-situ tests as DMT, SDMT, shear velocity or SPT are also useful to perform 

cyclic liquefaction assessments. Field Vane tests (FVT) and SPT test may also provide useful 

information. 

 Laboratory testing 

Continuous undisturbed samples from boreholes should be extracted from boreholes although the 

operation may present difficulties for very soft materials and special sampling techniques may be 

required. Sampling and in-situ test should be performed in close proximity to facilitate comparison. 

 Soil identification tests involving the determination of LL, LP, particle size distribution (PSD), fine 

content %, mineral identification, X-ray diffraction as well as settling columns should be performed. 

Results should be compared with results from tests carried out before and during hydraulic fill 

emplacement.  

It shall be suitable to evaluate soil liquefaction potential as soil index tests, oedometer tests, direct 

simple shear tests and triaxial CAU tests with monotonic and cyclic loading provide important 

information for the assessment of liquefaction potential, if suitable samples are available. The lab 

results shall be used for: 

- Comparison between in-situ and lab tests to obtain a robust soil characterization. 

- Application of liquefaction potential criteria. 

Finally, flow and cyclic liquefaction criteria shall be applied depending on location conditions. Flow 

liquefaction potential will have to be performed in all hydraulic fills, thus state parameter and soil 

sensitivity should be precisely characterized. In addition, seismic conditions (amax and Mw) must be 

known to assess the cyclic liquefaction of a particular site. 

The proposed protocol for liquefaction potential evaluation for hydraulic fills is summarised in the 

flow chart shown in Figure 5.43.  

 

 



152                                                       Chapter 5. Completion of the construction of Phase 2 and reconstruction of Phase 1 

 
Figure 5.43. Protocol for the evaluation of hydraulic fill liquefaction potential. 

 

5.9. Summary 
The main points of this Chapter are summarised here: 

Phase 2 quay construction was simulated assuming the possibility of a general liquefaction of the 

hydraulic fill that was represented by the CASM constitutive model. Under those conditions, the 

numerical analysis showed the stability of Phase 2 quay was marginal. 

There is a wide range of remedial measures that can be applied to reduce liquefaction potential. The 

proposal of hydraulic fill improvement procedure for Phase 2 involved surcharge preloading with 

prefabricated strip drains and installation of stone columns in part of the section. The results of the 

hydraulic fill improvement procedure were checked by two extensive geotechnical investigations 

that included CPTu and laboratory tests, before and after soil improvement. The results of the site 

investigation after soil improvement showed a significant increase of the undrained shear strength of 

the hydraulic fill, and a condition of no flow liquefaction potential according to the Plewes et al. and 

the Mayne criteria. This is contrast to the results of the site investigation before preloading when 

significant flow liquefaction potential had been found. 

It can thus be concluded that the performed soil improvement was effective to remove the flow 

liquefaction potential of the hydraulic fill. It can also be stated that the CPTu results have provided 

good and consistent information on liquefaction potential and its variation due to preloading, 

although a more comprehensive programme of laboratory tests on good quality samples would have 

been advisable. 
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Although it is not described in this Chapter, the cyclic liquefaction potential has been evaluated 

(Appendix E) according to the Spanish seismic regulations. It is concluded that no cyclic liquefaction 

can be triggered under those seismic conditions of the Barcelona area. 

The new Phase 2 design and construction was analysed using finite elements.  The numerical analysis 

was instrumental to define the construction stages in conjunction with monitoring data -observational 

method-, in order to obtain an adequate FoS. A good agreement of observations and numerical results 

increased the confidence of having a good understanding of the quay behaviour. When soil 

improvement was completed, the possibility of liquefaction was removed from the analysis. 

For the reconstruction of Phase 1 quay, most of the hydraulic fill placed in Phase 1 was removed to 

exclude the possibility of fill liquefaction. This was confirmed from site investigations carried out 

after construction. 

Finally, the lessons learned during the study of the Prat quay have led to the proposal of a protocol 

to evaluate the liquefaction potential for hydraulic fills. This protocol involves liquefaction 

evaluation before, during and after hydraulic fill emplacement. For each stage, specific tests to be 

performed to be applied are proposed. 
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Chapter 6. Conclusions and future research 

6.1. Conclusions 
The Phase 1 of Prat quay failed catastrophically due to the flow liquefaction of the hydraulic fill. The 

failure involved large displacements of the quay wall caissons. The flow liquefaction potential of the 

hydraulic fill has been established from several sources: the characteristic features of the failure, field 

observations after the failure, test results from the subsequent site investigation and the application 

of existing liquefaction criteria, based mainly on CPTu test results. 

A suitable modified state parameter elasto-plastic constitutive law has been selected to reproduce the 

undrained brittle behaviour of liquefiable hydraulic fills. It has been used in the simulation of the 

construction and failure of the Phase 1 quay. In the modelling, failure occurs with the hydraulic fill 

at the same elevation as in the real case. Two different triggering mechanisms are identified that 

equally explain the failure: spontaneous liquefaction, or liquefaction of a limited zone associated 

with the location of the embankment being built at the time of failure. The behaviour of the quay 

wall prior to the failure is also adequately reproduced. A parametric study has verified the robustness 

of the simulation and the dependence of stability on the brittleness of the hydraulic fill.  It is important 

to note that liquefaction of the hydraulic fill was not triggered by a conventional sliding failure in the 

ground  underlying the site or by a pore pressure increase. On this occasion, it was the fill liquefaction 

that initiated the horizontal sliding of the caissons. 

 

After the failure, it was found that the Phase 2 of Prat quay had only a marginal degree of stability in 

case of hydraulic fill liquefaction, although, in this case, the critical failure mechanism was a deep 

sliding involving the natural ground. Therefore, remedial measures were adopted to reduce the flow 

liquefaction potential. Soil improvement consisted of surcharge preloading with prefabricated strip 

drains and the installation of stone columns in part of the cross-section. Additional site investigation 

performed after soil improvement provides valuable data for the assessment of the reduction of flow 

liquefaction potential achieved. The results clearly indicated an increase of undrained shear strength 
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and a condition of no flow liquefaction potential according to available flow liquefaction criteria, 

based on mainly in CPTu results. It can be therefore concluded that the flow liquefaction potential 

was removed due to the soil improvement operations performed. An additional evaluation of cyclic 

liquefaction using Spanish seismic standards (Appendix E) also indicated no cyclic liquefaction 

potential remaining after soil improvement. Although the CPTu results have provided good and 

consistent information on liquefaction potential and its variation due to preloading, a more 

comprehensive programme of laboratory tests on good quality samples would have been also 

advisable. 

The completion of the construction of Phase 2 was based on the observational method whereby the 

sequence and duration of the different construction stages depended on the monitoring information 

while supported by the comparisons with the results of the numerical analysis. In the stability 

calculations, it was assumed that the hydraulic fill was potentially liquefiable until the full sequence 

of soil improvement  operations was concluded. The Phase 1 quay wall was reconstructed with 

mainly terrestrial fill with no flow potential liquefaction, as confirmed by the corresponding CPTu 

tests. 

Based on the experience gathered in the Prat quay case, it is possible to propose an operational 

scheme for the case of quays constructed with hydraulic fills potentially susceptible to flow 

liquefaction. The scheme includes:  

(i) A protocol to evaluate liquefaction potential for hydraulic fills,  

(ii) An appropriate numerical analysis in which soil liquefaction is adequately simulated,  

(iii) Soil improvement procedures to reduce flow liquefaction potential of a hydraulic fill. 

(iv) A monitoring system to control and check the behaviour of the quay during construction.  

 

(i) A protocol to evaluate liquefaction potential for hydraulic fills has been proposed in Chapter 5 

using information before, during and after fill emplacement. For each phase, specific tests to be 

performed are suggested. The same protocol can be used to assess liquefaction potential after soil 

improvement. No specific liquefaction criteria are prescribed because those criteria are still under 

intense development. However, criteria based on CPTu test appear to be the most robust and reliable.   

 

(ii) The numerical analysis has to incorporate a constitutive model capable of reproducing the 

undrained brittle behaviour characteristic of materials capable of undergoing flow liquefaction. A 

modified CASM constitutive model, as described in this PhD thesis, has proved capable of simulating 

satisfactorily a failure caused by the flow liquefaction of a hydraulic fill. 

 

(iii) A soil improvement procedures should be used to remove liquefaction potential. The preloading 

surcharge with PVD provides excellent results for fine grained soils (Chapter 5), but, other solutions 



162                                                                                                                       Chapter 6.  Conclusions and future research 

may be required for coarse grained soils. Preliminary trial of soil improvement procedures should be 

used to check its efficiency and to optimize design.  

 

(iv) A monitoring system should be designed to provide suitable data for understanding the quay 

behaviour. The monitoring system is the key component of an observational approach aimed to 

ensure a sufficient margin of stability in all construction stages. Constant comparison with the 

numerical simulation results should be used to detect anomalous behaviour that may require a change 

in the design and/or the construction programme. Reliance on a monitoring system, however, should 

be tempered by the knowledge that, often, failures involving brittle material give scant warning. For 

this reason, the prior evaluation of flow liquefaction potential for hydraulic fills is always a matter 

of crucial importance.  

6.2. Future work 
The recommendation for future work is classified in three categories: (i) the improvement of the 

proposed protocol for liquefaction potential evaluation, (ii) additional developments of the 

constitutive law and (iii) the applicability for the proposed operational scheme. 

Additional tests on hydraulic fill samples can be added to the protocol. Basically, four additional test 

sets can be defined:  

i) Anisotropically consolidated triaxial tests with undrained shear under compression and 

extension (Trx-CAUc and Trx-CAUe) to obtain of cu SS and cu peak.   

ii) The definition of the CSL and the RCL position from: (i) Trx-CAUc and Trx-CAUe tests 

(ii) oedometer tests and (iii) anisotropically consolidated triaxial tests with drained shear 

under compression and extension (Trx-CADc and Trx-CADe). 

iii) The characterization of the soil rate dependence from Trx-CAUc and Trx-CAUe tests using  

different shear strain rates. 

iv) Hollow cylinder tests under different loading conditions to describe the anisotropic 

behaviour of hydraulic fills. Some tests were in fact carried out in the UPC Geotechnical 

Laboratory on Prat quay hydraulic fill. However, the enormous difficulties to obtain 

adequate specimens prevented the performance of more tests. 

As a matter of fact, there is still material from the hydraulic fill of Prat quay in the UPC Geotechnical 

Laboratory. It could be interesting to perform further tests for a better understanding of the hydraulic 

fill behaviour. For that purpose, the slurry deposition technique in a settling column can be used to 

try to obtain good quality soil specimens for testing (following the procedure described in Appendix 

F). 
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New developments can improve the constitutive law to simulate flow liquefaction, as, for instance, 

the incorporation of rate effect recently implemented in CASM, Mánica (2020). Other potential 

advances are:  

i) Soil anisotropy could be implemented in the CASM model. Although there are not yet 

conclusive experimental results, hydraulic fills are likely to exhibit an anisotropic behaviour 

due to the type of soil formation. 

ii) Incorporate in the CASM model the possibility of considering the changes of fabric and 

undrained brittleness due to soil improvement operations. 

iii) Automatic φ - c reduction method should be developed for CASM model. 

iv) The implementation of a suitable model that simulates liquefaction due to cyclic loading. 

The operational scheme presented above for dealing with hydraulic fill is quite general and it can be 

applied to a variety of problems other than quays.  The following lines of work can be mentioned: 

 Hydraulic fill, is used in a wide range of engineering projects. Thus, apart from quay walls, 

the scheme can be applied, for instance, to embankments and land reclamation projects. 

Currently a catastrophic failure involving a tailings dam is being studied using the same 

tools. 

 Assessment and, if required, retrofitting of projects constructed using hydraulic fills in which 

liquefactions is possible. Priority should be given to structures that have the potential of 

causing the largest damage.  

 In addition to those examined in the PhD thesis, there are other causes that may trigger flow 

liquefaction. A comprehensive list of potential causes could provide a useful guideline for 

good practice. 

 Specific standards for potentially liquefiable hydraulic fills should be developed.   
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Appendix A. Factor of Safety 

1. Introduction 

Terzaghi (1929), Felleniius (1936), Taylor (1937) and Bishop (1955) developed stability analysis 

during the study of real cases histories of failures or construction processes. The stability assessment 

is generally quantified using Factor of Safety in which is roughly associated with the reliability of a 

particular design. Bishop (1955) gave a general definition of FoS in geotechnical engineering terms: 

“F (or FoS) is defined as the ratio of the available strength of the soil to that required to maintain 

equilibrium”, and proposed the following expression: 

 
𝑠 ൌ

1
𝐹

൉ ሾ𝑐ᇱ ൅ ሺ𝜎௡ െ 𝑢ሻ ൉ tanሺ𝜑′ሻሿ [38]

Where: shear strength mobilized is s, c’ denotes cohesion, φ’ denotes friction angle, σn, 

denotes total normal stress, u denotes water pore pressure. 

This concept has been widely implemented in numerical analysis due to the engineering 

requirements. In this PhD thesis, FoS is calculated to evaluate quay wall stability. However, the same 

methodology can be applied to other cases. 

2. FoS in FEM analysis 

FEM programs for geotechnical engineering usually have implemented the method of φ - c reduction 

proposed in Brinkgreve and Bakker (1991). This method resembles the system of calculating FoS as 

conventionally adopted in slip-circle analyses according to equation [39]. 
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ൌ

𝑐௜௡௣௨௧

𝑐௥௘ௗ௨௖௘ௗ
ൌ

𝑐௨ ௜௡௣௨௧

𝑐௨ ௥௘ௗ௨௖௘ௗ
 [39]

 

Lately, the safety factor total multiplier was renamed by partial material factor (γm). This term was 

discussed by Simpson (2000) and (2007), Bauduin et al. (2003), Cheung et al. (2010) and Potts & 
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Zdravkovic (2012) in order to know what was the influence of FoS analysis in advance numerical 

analysis.  

In the last decade, some improvements of FoS have been performed because of the new Eurocode 7 

(EC7) for geotechnical design. EC7 imposes two different ways to design according to FoS obtained 

from partial material factors on soil strength. These are DA1 and DA3 design approaches, Potts & 

Zdravkovic (2012).  

3. Manual φ - c reduction method 

The method of φ - c reduction is an automated calculation option in the commercial FEM programs. 

However, it cannot be used in analyses using CASM model because the strength of CASM model -

described in Chapter 3-, does not depend on φ - c values. Therefore, although some of the defined 

materials in the analyses can be computed according to automatic φ - c reduction method, a set of 

materials with prescribed strength reduction have to be defined using [39].  

The strength reduction of materials is performed for a specific stage of the analysis; at one point the 

strength reduction applied generates an instability. The obtained FoS is defined in accordance with 

the last converged step or the percentage of converged steps (Mstage) of the calculation. It is important 

to note that the upper boundary of the proposed FoS for CASM is 1.25 due to CASM limiting factors 

described below. 

The materials to obtain different FoS for Prat quay analyses are Soft-Soil (Plaxis, 2010), CASM and 

Mohr-Coulomb constitutive models. 

3.1. Soft soil φ – c reduction 
The Soft Soil model is a modified Cam-Clay type model; nevertheless, the failure is controlled by 

Mohr-Coulomb yield. Therefore, φ – c parameters control the soil strength, as it is represented in 

Figure A1. 

 
Figure A1. Yield surface of the Soft Soil model in p’-q plane, Plaxis 2010. 

The manual φ – c reduction method in Soft Soil model should be used according some restrictions 

under undrained conditions in terms of undrained shear strength (cu). Thus, some numerical analyses 

of triaxial CAU are simulated to define control the real reduction of cu according to FEM program φ 
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– c reduction and obtained FoS. Triaxial test analyses have been performed with the same 

consolidation stress path of σ’v=100 kPa and K0=0.66. Soft soil model has been used to simulate 

natural ground therefore initial undrained shear strength has to yield the law cu = 0.25 σ‘v (from 

laboratory tests results Chapter 2). The manual reduction of undrained shear strength for different 

FoS is presented in Table A1. 

Table A1. Soft soil values of friction angle, strength ratio and FoS cu under triaxial conditions. 

c
u /σ’v

 FS c
u T-CAU

 

0.25 1 

0.23 1.08 

0.22 1.13 

0.21 1.18 

0.20 1.24 

0.19 1.33 

3.2. CASM φ – c reduction 
CASM model was previously described (Chapter 3), it is important to note that cu cannot be directly 

modified. 

To perform a reliable strength reduction, n -defined in Chapter 4-, is changed to maintain cu peak. In 

addition, K0 is modified by adjusting w and β to avoid stress path inconsistencies. Note that defined 

K0 is reasonably close to failure. The adopted K0 is 0.63 (ηKo=0.49), which tolerates a 1.25 reduction 

on cu peak, corresponding to a FoS=1.25. 

A set of materials with different n are implemented to reach static liquefaction according different cu 

peak, 0.25 σ’v, 0.24 σ’v, 0.23 σ’v, 0.22 σ’v, 0.21 σ’v, 0.20 σ’v, respectively, it is shown in Table A2. 

Table A2. Additional CASM material parameters. 

Material r n β w 

Hyd. Fill cu peak =0.25 σ’v 12 10 0.73 0.003 

Hyd. Fill cu peak =0.24 σ’v 12 8 0.69 0.012 

Hyd. Fill cu peak =0.23 σ’v 12 7 0.67 0.025 

Hyd. Fill cu peak =0.22 σ’v 12 6 0.64 0.050 

Hyd. Fill cu peak =0.21 σ’v 12 5 0.60 0.10 

Hyd. Fill cu peak =0.20 σ’v 12 4 0.56 0.20 

The p’- q stress paths for undrained triaxial test with anisotropic consolidation (Trx-CAU) numerical 

simulations are presented in Figure A2. Additionally, vertical strains versus q are plotted in Figure 

A3. The defined materials satisfy the expected K0 and undrained softening behaviour. 
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Figure A2. Effective stress paths for triaxial CAU simulations. 

 
Figure A3. ε1 vs. q curves during shear for triaxial CAU simulations. 

Proposed materials for hydraulic fill reach the following FoS, see Table A3.  

Table A3. FoS reached with the CASM materials. 

Material FoS 

Hyd. Fill cu = 0.25 σ’v 1 

Hyd. Fill cu = 0.24 σ’v 1.04 

Hyd. Fill cu = 0.23 σ’v 1.09 

Hyd. Fill cu = 0.22 σ’v 1.14 

Hyd. Fill cu = 0.21 σ’v 1.19 

Hyd. Fill cu = 0.20 σ’v 1.25 
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3.3. Mohr-Coulomb φ – c reduction 
The manual Mohr-Coulomb φ – c reduction is presented in Table A4 for the strength parameters of 

the M-C materials. 

Table A4. Reduction of Mohr-Coulomb materials. 

FoS Rubble mound, rock-fill 
and upper rock-fill 

Dumping 
ground-fill 

Improved soil with 
stone columns 

 
[°] 

 
[°] 

 
[°] 

1 38 28 27 

1.04 36.9 27.1 26.1 

1.09 35.6 26.0 25.1 

1.14 34.4 25.0 24.1 

1.19 33.3 24.1 23.2 

1.25 32.0 23.0 22.2 

1.33 30.4 21.8 21.0 
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Appendix B. Prat quay failure FEM analysis – Initial 

hypothesis 

1. Introduction 

Different assumptions of the failure causes were studied just after the failure. Hydraulic fill 

liquefaction assumption was identified as a major factor of the failure by the Technical expert’s 

Committee that had been advising APB after the failure. 

2. Hypothesis for hydraulic fill liquefaction 

In order to perform a conservative modelling of soil liquefaction, an assumptions was implemented 

for the hydraulic fill. Specifically, a material was defined to simulate liquefied undrained shear 

strength (cu LIQ). Thus, flow liquefaction is assumed for the hydraulic fill from the beginning. This 

type of analysis can be quite conservative, but at the same time, it is very robust. 

3. FEM analysis 

The analysis entailed the geometry and construction stages implemented in the analysis of Phase 1 

that have been presented in Chapter 4. In this case, the Soft Soil model was established for simulating 

the hydraulic fill as well as the fine grained natural ground. In this sense, undrained shear strength 

obtained from model was adjusted to reach cu =0.06ꞏσ’v for the hydraulic fill and cu =0.25ꞏσ’v for the 

natural ground. Both adjusted models for hydraulic fill and natural ground -using parameters from 

Chapter 4-, reproduce correctly direct simple shear tests simulations performed in FEM analysis, see 

Figure B1. 
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Figure B1. Undrained strength vs. effective vertical stress results for direct simple shear simulations. 

The Soft Soil model parameters and properties for hydraulic fill are presented in Table B1. An 

interface element was provided between the caisson and the hydraulic fill with a friction angle of 9º. 

Table B1. Parameters for liquefied hydraulic fill in Soft Soil constitutive model. 

Properties 
Liquefied 

hydraulic fill 

Saturated unit weight [kN/m3] 18 / 19 

Poisson’s ratio (ν) 0.3 

Void ratio (e) 2 

Compression index (cc) 0.20 

Swelling index (cs) 0.02 

Permeability [m/s] 10-8 

Undrained shear strength ratio (cu /σ’v) 0.06 

The failure is reached for hydraulic fill up to +3m (stage 14), in this case at Mstage=0.07. 

 
Figure B2. Incremental shear strains at failure, stage 14. 
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Additionally, Factors of Safety are computed for Stage 11 and 13 before the failure (Table B2). FoS 

are evaluated according to FoS methodology presented in Appendix A. Results point out that failure 

could occur during stage 14 because FoS in stage 13 was close to 1. 

Table B2. FoS of preceding stages before the quay failure. 

Stage Identification 
FoS 

Manual φ -c reduction 

11 Hydraulic fill  up to +0 m >1.25 

12 Hydraulic fill consolidation (+0 m) - 

13 Hydraulic fill  up to +2 m 1.02 

14 Failure - Hydraulic fill  up to +3 m < 1 
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Appendix C. Prat quay Phase 2 FEM analysis – Initial 

hypothesis 

1. Introduction 
The Prat quay Phase 2 stability is analysed using hydraulic fill simulation according to the 

liquefaction hypothesis proposed in Appendix B. Thus, only an adjustment to the soil model used 

for hydraulic fill is performed. The rest of the analysis has the same geometry and constructions 

stages that was described in Chapter 5. In the following sections, the stability analyses of Phase 

2 quay are presented: (i) until the failure of Phase 1 and (ii) with soil improvement. 

2. Prat quay Phase 2, until the failure of Phase 1 

2.1. Stability evaluation 

The analysis of the different construction stages from 0 to 11 (Chapter 5.2) has been calculated. 

Computed factor of safety for stage 11 is 1.08 according to manual φ – c reduction -as it was 

described in Appendix A-, are shown in Table C1. 

Table C1. Factor of safety for stage 11 of the Prat quay Phase 2. 

Description Stage FoS 
Manual φ – c reduction 

Hydraulic fill up to +1.5m 10 1.08 

FoS for the hydraulic fill level increase up to +1.5 m is consistent with the fact that Phase 2 of 

quay Prat had not developed instability. At this point, failure involves the hydraulic fill and natural 

ground, as it is presented in Figure C1. The failure passes below the rubble mound and the rock-

fill. 
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If the quay wall construction would have continued, preloading improvement would have been 

carried out. Preloading stage generates the quay wall failure, in which an abrupt reduction in FoS 

(<1) is generated. 

 
Figure C1. Contours of incremental shear strains at stage 10, FoS=1.08. 

3. Prat quay Phase 2, after soil improvement. 
The simulation after soil improvement for Phase 2 (Chapter 5.6) is performed. Although the entire 

stages of Phase 2 construction are simulated, only the stages after soil improvement are discussed. 

3.1. Hypothesis for hydraulic fill 

Fundamentally, hydraulic fill assumptions are related to liquefaction potential as presented in 

Appendix B. Thus, liquefied hydraulic fill are simulated according to cu=0.06 σ’v. Nevertheless, 

cu=0.25 σ’v in hydraulic fill material is used once the preloading was unloaded, as presented in 

Chapter 5.6. Summarized strength assumptions of the hydraulic fill for each calculation stage are 

presented in Table C2. 

Table C2. cu ratio for the hydraulic fill during stages 12 to 34.  

Description Stage 
Time 
(days) 

Hydraulic 
fill strength

Removal of the earth bund over the caissons  12 80 0.06ꞏσ’v 

Granular Fill  up to -0.5 m  (placement by terrestrial means) 13 50 0.06ꞏσ’v 

Granular Fill  up to +1 m  (placement by terrestrial means) 14 30 0.06ꞏσ’v 

Drainage layer up to +1.5 m  15 50 0.06ꞏσ’v 

Vertical prefabricated strip drains installation (+1.5 m)  16 110 0.06ꞏσ’v 

Deposit zone preloading up to +6.5 m  17 20 0.06ꞏσ’v 

Deposit zone preloading consolidation 18 45 0.06ꞏσ’v 

Preloading up to +8.5 m, in part of the deposit zone. Caisson preloading 
with 6 layers of 0.5 m of soil 

19 15 0.06ꞏσ’v 

Preloading up to +10 m, in part of the deposit zone. Caisson preloading with 
6 layers of 0.5 m of soil 

20 20 0.06ꞏσ’v 
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Deposit zone and caissons preloading consolidation  21 45 0.06ꞏσ’v 

Deposit zone preloading consolidation. Caissons preloading with 7 layers of 
0.5 m of soil 

22 4 0.06ꞏσ’v 

Deposit zone and caissons preloading consolidation. Stone columns 
installation  

23 55 0.06ꞏσ’v 

Deposit zone and caissons preloading consolidation. 24 85 0.06ꞏσ’v 

Deposit zone preloading consolidation. Unloading caissons preloading 
reduced to 3 layers of 0.5 m soil 

25 10 0.06ꞏσ’v 

Deposit zone and caissons preloading consolidation. 26 50 0.06ꞏσ’v 

Deposit zone and caissons preloading consolidation. Manoeuvring zone 
preloading up to +5 m and +3 m.  

27 10 0.06ꞏσ’v 

Deposit zone, manoeuvring zone and caissons preloading consolidation 28 15 0.06ꞏσ’v 

Deposit zone and caissons preloading consolidation. Manoeuvring zone 
preloading up to +6.5 m and +5 m. 

29 20 0.06ꞏσ’v 

Manoeuvring zone and caissons preloading consolidation. Unloading 
deposit zone preloading  

30 60 0.06ꞏσ’v 

Manoeuvring zone and caissons preloading consolidation 31 60 0.06ꞏσ’v 

Preloads unloading to final height, 3m 32 30 0.25ꞏσ’v 

Pavement, capping beam construction and dredge in the sea side to -16.5 m 33 360 0.25ꞏσ’v 

Service loads  34 90 0.25ꞏσ’v 

 

Soil parameters were defined in Chapters 4 and Chapter 5. However, Soft Soil constitutive model 

parameters that simulates liquefied hydraulic with PVD installation are listed in Table C3. 

Table C3. Parameters for hydraulic fill with prefabricated vertical drains in Soft Soil constitutive model. 

Properties 
Liquefied hydraulic fill improved 

using vertical drains 

Saturated unit weight (kN/m3) 18 / 19 

Poisson’s ratio (ν) 0.3 

Void ratio (e) 1 

Compression index (cc) 0.23 

Swelling index (cs) 0.07 

Permeability (m/s) 2ꞏ10-7 

Undrained shear strength ratio (cu/σ’v) 0.06 

 

3.2. Stability evaluation 

Stages during deposit zone preloading and manoeuvring zone preloading and service loads-, are 

calculated with both φ – c reduction methods described in Appendix A.  

Computed factors of safety values for deposit zone preloading are presented in Table C4. These 

values are higher or equal than 1.25, enough to avoid any failure during this preload, taking into 

account the worst FoS obtained with manual φ - c’ reduction. 
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Table C4. FoS of selected stages of Prat quay Phase 2. 

Description Stage FoS 
Manual φ – 
c reduction 

Deposit zone preloading up to +6.5 m  17 1.27 

Preloading up to +10 m, in part of the deposit zone. Caisson preloading with 
6 layers of 0.5 m of soil 

20 1.27 

Deposit zone preloading consolidation. Caissons preloading with 7 layers of 
0.5 m of soil 

22 1.26 

Deposit zone preloading consolidation. Unloading caissons preloading 
reduced to 3 layers of 0.5 m soil 

25 1.41 

Deposit zone and caissons preloading consolidation. Manoeuvring zone 
preloading up to +5 m and +3 m.   

27 1.34 

Deposit zone and caissons preloading consolidation. Manoeuvring zone 
preloading up to +6.5 m and +5 m. 

29 1.25 

Service loads  34 1.28 

 

The failure mechanism in stage 20 (Figure C2) is the most representative. This failure is 

fundamentally triggered by the caissons preloading. The failure surface crosses the stone columns 

treatment and it passes, as far as possible, thorough the natural ground just below the rubble 

mound.  

 
Figure C2. Contours of incremental shear strains at stage 20, FoS=1.38. 

The lowest computed FoS is 1.25, it corresponds to the last preloading step of the manoeuvring 

zone, stage 29. The failure mechanism for stage 29 is presented in Figure C3. This failure is 

clearly generated by the emplacement of the preloading in the manoeuvring zone. The failure 

mechanism is a deep sliding that begins 40 m away from the quay wall. 

 
Figure C3. Contours of incremental shear strains at stage 29, FoS=1.25. 
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Appendix D. Barcelona seismic conditions 

To evaluate the Barcelona Port liquefaction susceptibility due to cyclic liquefaction, it is 

necessary to bear in mind the range of maximum peak accelerations that an earthquake could 

generate in that area. 

Seismic risk assessment studies in Barcelona have been common during last years. Authors, as 

Secanell (1999) and Cid et al. (2001) have implemented different methodologies to zone 

Barcelona city using a database of approximately 2000 earthquakes and other aspects as the soil 

type or the distance to the focus. Barcelona Port is placed inside Zone I according the zonation 

presented in Figure D.1. 

 
Figure D.1. Seismic zoning of Barcelona city according to local effects (Cid et al. 2001). 

Irizarry (2004) calculated PGA (peak ground acceleration) for Barcelona zonation as it is shown 

in Figure D.2. Deterministic methodology and Probabilistic methodology had been performed to 

obtain PGA. Values of PGA for the Port of Barcelona are 0.14g for the Deterministic method and 

PGA=0.19g for the Probabilistic method.  
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Figure D.2. The deterministic and probabilistic peak ground acceleration (g) according to soil effects in 

Barcelona city, Irizarry (2004). 

Lantada et al. (2010) and Pujades et al. (2012) have used Irizarry (2004) assumption to perform 

seismic analysis in Barcelona buildings. However, Spanish seismic Standard NCSE-02 (2002) 

proposes other values of PGA or amax. PGA values are performed using NCSE-02 procedure 

according to following equation: 

𝑃𝐺𝐴 ൌ 𝜌 ൉ 𝑃𝐺𝐴଴ ൉ 𝐶        [40] 

where: PGA0 is peak ground acceleration for rigid material, C is the correction according 

to soil type and ρ is the magnification due to the construction importance, 1 or 1.3.  

The NCSE-02 standard establishes the assumption of Barcelona city with PGA0=0.04g. The C 

value depends on shear wave (Vs) propagation into the soil type. There are correlations of C 

between the zones and Vs, Cid et al. (2001) and NCSE-02 Standard presented in Table D.1. 

Table D.1. Equivalence of NCSE-02 type soil and Barcelona soil zoning (Cid et al., 2001). 

NCSE-02 Cid et al. (2001) 

NCSE-02 
soil type 

C  VS,30 (m/s) 
Corresponding 

Barcelona soil zone 
VS,30 (m/s) 

I 1 VS>750 R 800 

II 1.286 750≥VS>400 III 405 

III 
1.595 400≥VS>200 

II 384 

III I 225 

IV 1.976 VS≤200 - - 

 

Regarding NCSE-02 soil type and Barcelona soil zone, Barcelona Port is placed in zone III of 

NCSE-02 soil type. 
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PGA values calculations are performed with NCSE-02 Standard. These values obtained for 

NCSE-02 for soil type III and IV are 0.067g and 0.083g respectively, using magnification for 

high importance construction (ρ=1.3), see Table D.2. 

Table D.2. Barcelona PGA values analysed according to soil type and ρ. 

NCSE-02 soil type PGA NCSE-02 PGA* Deterministic PGA* Probabilistic 

I 0.042g 0.07g 0.10g 

II 0.054g 0.12g 0.17g 

III 
0.067g 

0.17g (average) 0.19g (average) 

III 0.14g 0.19g 

IV 0.083g - - 

* from Irizarry (2004) 

Pujades (2012) -by means of a personal communication-, advised that PGA values from NCSE-

02 could be used as a minimum; in contrast, PGA values of the Probabilistic method from Irizarry 

(2004) could be used as the maximum.  

Although design earthquake magnitude in Barcelona is not specifically defined because of its 

complexity. A moment magnitude (Mw) equal to 5.25 is generally a good agreement (Pujades, 

2012) and it is consistent regarding earthquake date base of Spain (IGME, 2014).  
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Appendix E. Cyclic Liquefaction potential evaluation 

for the hydraulic fill 

1. Introduction 
Cyclic loading could trigger cyclic liquefaction, cyclic mobility or flow liquefaction as it was 

described above in Chapter 3. The different criteria for cyclic liquefaction are described and 

evaluated in this Appendix.  

2. Cyclic liquefaction criteria 
Although different types of cyclic loading are able to produce liquefaction, the criteria have 

particularly focussed on earthquakes. The methodology was initially developed using disastrous 

earthquake events in Alaska and Japan, Seed & Idriss (1971). This methodology has been 

upgraded gradually since that time, by Seed and colleagues, Robertson and Campanella (1985), 

Robertson (1990), Jeffereis & Davies (1993), Stark and Olson (1995), Robertson and Wride 

(1998). 

Youd and Idriss (2001) defined a landmark in terms of summary report on evaluation of 

liquefaction resistance of soils. At that point, the basic evaluation for:  

(i) Cyclic stress ratio (CSR) for an earthquake was described 

(ii) Cyclic resistance ratio (CRR) was evaluated from different in-situ tests (SPT, CPT 

or VS). 

(iii) Magnitude scaling factors (MSF) were recommended to evaluate cases for different 

earthquake magnitudes.  

Afterwards, high progresses on CPTu liquefaction criteria have been performed in Zhang et al. 

(2002), Robertson (2004), (2009a) and (2009b), Jefferies and Been (2006) or Shuttle and Cunning 

(2007). In addition, for the same period, criteria for flat dilatometer Marchetti test (DMT) have 

been developed.  
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Later on, frequent developments from Seed and Idriss (1971) have been upgrading the initial 

methodology, Boulanger & Idriss (2006). This methodology is based on laboratory testing results 

and various theoretical assumptions, to obtain CRR for soils. 

2.1. Cyclic stress ratio 
Seed and Idriss (1971) presented stress calculation for a soil column. The cyclic stress ratio 

(CSR)peak is induced by shear stresses from an earthquake, normalized by effective vertical stress 

[41]. 

ሺ𝐶𝑆𝑅ሻ௣௘௔௞ ൌ
ఛ೛೐ೌೖ

ఙᇱೡ
      [41] 

where: τpeak is the peak horizontal shear stress.  

CSRpeak has to be normalized by two factors re and rd to obtain (CSR)M [42].  

ሺ𝐶𝑆𝑅ሻெ ൌ 𝑟ௗ ൉ 𝑟௘ ൉
ఛ೛೐ೌೖ

ఙᇱೡ
     [42] 

where re is the necessary reduction to obtain a representative percentage of the earthquake 

shear stress, usually 65% of the τpeak (re=0.65). rd is the stress reduction factor which is 

dependent on depth. 

Some approaches have been developed to calculate rd, however the most commonly used is the 

approach of Liao and Withman (1986) [43], [44], [7] and [46] in which the rd evaluation depends 

on the ground depth (z). 

rd = 1 – 0.00765 z            z ≤ 9.15 m   [43] 

rd = 1.174 – 0.0267 z           9.15 m < z ≤ 23 m  [44] 

rd =0.744-0.008 z  23 m < z ≤ 30 m  [45] 

rd =0.5       z > 30 m   [46] 

Even then, Idriss (1999) estimated stress reduction coefficient as [47], [48] and [49] depending 

on earthquake magnitude. It is compared to rd values from Liao and Withman (1986) in Figure 

E.1. Afterwards, Youd et al. (2001) proposed these new equations to evaluate rd. 

rd = exp (α (z) + β (z)ꞏM     [47] 

α (z)= –1.012 – 1.126ꞏsin ቀ
௭

ଵଵ.଻ଷ
൅ 5.133ቁ   [48] 

β (z)= 0.106 + 0.118ꞏsin ቀ
௭

ଵଵ.ଶ଼
൅ 5.142ቁ   [49] 

where: M, moment magnitude of the earthquake and z, depth in meters. 
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Figure E.1. Stress reduction coefficient according Liao and Withman (1986) and Idriss (1999). 

The peak shear stress (τpeak) is derived from vertical and horizontal forces of a soil column and the 

resulting equation is [50]. 

𝜏௣௘௔௞ ൌ 𝜎௩
௔೘ೌೣ

௚
     [50] 

where: σv is total vertical stress, amax is the maximum possible acceleration of the study 

area due to an earthquake and g is the gravity acceleration. 

Finally, the equation, which resumes the procedures, is the following, [51]. 

ሺ𝐶𝑆𝑅ሻெ ൌ
ఛೌೡ

ఙᇱೡ
ൌ 0.65 ൉ ቀ

௔೘ೌೣ

௚
ቁ ൉ ቀ

ఙೡ

ఙᇱೡ
ቁ ൉ 𝑟ௗ    [51] 

It is likely to depend on the maximum acceleration of Mw=7.5 earthquake.  

2.2. Cyclic resistance ratio 
Cyclic resistance ratio (CRR) is cyclic resistance normalized by vertical effective stresses of the 

soil. In the literature, some procedures were developed to obtain CRR according a specific CSR. 

The different criteria described below develop a methodology to derive CRR. 

2.3. Magnitude Scaling Factors 
To normalize the CRR or CSR for a particular earthquake magnitude (Mw), magnitude scaling 

factor (MSF) was defined Seed et al. (1975b). 

𝑀𝑆𝐹 ൌ
஼ோோ

஼ோோಾసళ.ఱ
      [52] 
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Various MSF equations were presented in Arango (1996), Andrus and Stokoe (1997), Youd and 

Noble (1997) and Idriss (1999). The defined equations uniquely depend on earthquake magnitude 

(Mw). MSF resulting values are quite similar, although Youd et al. (2001) proposed a 

recommended range to use in practice, as it is shown in Figure E.2. 

A boundary range was defined by Andrus and Stokoe (1997), [53]. Nevertheless, after, Youd et 

al. (2001) proposed [54]. 

𝑀𝑆𝐹 ൌ ሺ𝑀௪ 7.5⁄ ሻିଶ.ହ଺     [53] 

𝑀𝑆𝐹 ൌ
174

𝑀2.56  [54]

 
Figure E.2. MSF proposed by different authors, Youd and Noble (1997). 

From a MSF revision presented in Idriss and Boulanger (2004), upgraded MSF was proposed for 

liquefaction analyses of sand-like soils that had been previously presented in Idriss (1999). Last 

proposal will be described below (Appendix E 2.5.1) because it has become fundamental part of 

a criterion for clay-like and sand-like soils, Boulanger and Idriss (2004). 

In practice, engineers would like to know how far the soil is from liquefaction. Thus, MSF is 

likely to be used as function of factor of safety [55] (Youd et al., 2001). 

𝐹𝑆 ൌ
஼ோோಾసళ.ఱ

஼ௌோಾసళ.ఱ
ൌ

஼ோோಾసళ.ఱ

஼ௌோ
൉ 𝑀𝑆𝐹              [55] 

2.4. In-situ tests criteria 
In-situ testing holds an important role because of the extremely complex process to extract 

undisturbed soil samples.  
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First criterion for in-situ tests were defined for SPT results in Seed and Idriss (1971). Following 

upgrades extended the SPT results database, but also introduced newer and more complex in-situ 

tests -as CPT or CPTu, DMT, shear wave tests-, using the same framework. 

However, although SPT criterion is supported by the largest database, testing conditions produce 

differences on results that the author do not believe precise enough to be used in the evaluation 

for the hydraulic fill of Prat quay. 

Mentioned tests parameter were correlated with normalized CRR, from normalized cone 

resistance (qc), friction resistance (fs) and pore pressure (u) from CPTu, KD from DTM and vS1 

from shear wave tests.  

2.4.1. Cone penetration test 

Although the Robertson CPTu criterion described above in Chapter 3 and Chapter 5 could 

evaluate static liquefaction, this criterion was also recommended for cyclic liquefaction 

susceptibility in Robertson and Cabal (2012). 

In this case, coarse grained soils (I c < 2.5) and fine-grained soils (I c > 2.7) regions have a specific 

behaviour against cyclic loading. Cyclic liquefaction could be reached depending on different 

conditions in four depicted regions: 

- Dilative coarse-grained soils, level and duration of cyclic loading 

- Contractive coarse-grained soils, loading and ground geometry 

- Dilative fine-grained soils, level and duration of cyclic loading 

- In contractive fine-grained soils, sensitivity, loading and ground geometry 

Alternatively, CRR can be evaluated from CPTu profiles based on normalized cone resistance. 

Cyclic liquefaction potential criteria based on CPTu-based case-history liquefaction correlations, 

triggered by earthquakes have been developed by Roberston and Campanella (1985), Robertson 

& Wride (1998), Zhang et al., (2002) and (2004) and Robertson (2009b).  

Criterion progresses from the original one presented in Robertson and Wride (1998) have been 

developed due to a number of contributions, Juang et al. (2003) and (2008), Idriss and Boulanger 

(2004), Moss et al. (2006) and Boulanger and Idriss (2006) proposal. Lately, this criterion was 

adapted in Robertson (2009b) by using the index Ic. Afterward, some changes were also 

performed in Robertson and Cabal (2012). It is in this last configuration of the criterion that three 

types of soil are defined:  

(i) Fine-grained soils where Ic>2.7 

(ii) Coarse-grained soils where Ic ≤ 2.5  

(iii) Transition zone that Ic lies on the range of 2.5 to 2.7. 
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Normalized cone resistance from Chapter 3 is used for evaluate this criterion. Also new 

parameters and assumptions were defined. Firstly, the factor regarding grain characteristics, Kc. 

was defined. This factor is related with Ic, as it is shown in equation [56] and [57]. 

If Ic ≤ 1.64, Kc=1.0       [56] 

If Ic>1.64 Kc= -0.403ꞏIc
4+5.581ꞏIc

3-21.63ꞏIc
2+33.75ꞏIc-17.88 [57] 

Then, the equivalent clean sand normalized penetration resistance (qc1N)cs is generally calculated 

according equation [58]: 

(qc1N)cs= (Qtn)cs=qc1NꞏKc      [58] 

Robertson (2009b) proposed different equations to achieve cyclic resistance ratio (CRR) for an 

earthquake of M=7.5 for fine-grained [59]. Different assumptions were implemented to evaluate 

Qtn,cs for coarse-grained soils [60], [23], [24], [25] and transition soils [26] and [27] to calculate 

CRR7.5 according to [28] for a specific Qtn,cs range. 

Fine-grained soils,  

  𝐶𝑅𝑅଻.ହ ൌ 0.053 ൉ 𝑄௧௡ ൉ 𝐾ఈ     [59] 

Coarse-grained soils,  

Qtn,cs = KcꞏQtn      [60] 

where:  
 Kc = 1, for Ic ≤ 1.64 [61]

 Kc = -0.403 Ic
4 + 5.581 Ic

3 - 21.63 Ic
2 + 33.75 Ic -17.88, for 1.64 < Ic ≤ 2.5 [62]

 Kc = 1, for 1.64 < Ic ≤ 2.36 and Fr<0.5  [63]

      Transition soils,  

 Qtn,cs = KcꞏQtn        [64] 

    where: Kc = 6ꞏ10-7.(Ic)16.76       [65] 

 
𝐶𝑅𝑅7.5 ൌ 93 ൉ ൤

𝑄𝑡𝑛 ,𝑐𝑠

1000
൨

3

൅ 0.08 
 

[66]

(for sand-like and transition soil) where: 50 ≤ Qtn,cs ≤ 160. 

 
𝐶𝑅𝑅7.5 ൌ 0.833 ൉ ൤

𝑄𝑡𝑛 ,𝑐𝑠

1000
൨ ൅ 0.05

 
[67]

 (for sand-like and transition soil)  where: Qtn,cs < 50. 

It is important to note that it is important to test high quality samples with cyclic laboratory testing 

for high risk projects, Boulanger and Idriss (2007) and Robertson (2009b). 

2.4.2. Flat Dilatometer test (DMT) 

The KD parameter -defined in Chapter 2-, is adequate to evaluate liquefaction because it is 

representative of stress state/history (σh, OCR), aging, prestraining, cementation and structure, all 

factors increasing liquefaction resistance (Monaco et al. 2005). Thus, evaluation of liquefaction 
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criterion for an Mw=7.5 earthquake in a clear sand was developed for CRR-KD by Marchetti 

(1982), Robertson and Campanella (1986), Reyna and Chameau (1991). 

Later on, Monaco et al. (2005) presented a new curve that bounds the liquefaction potential using 

CRR-KD, from a translation of CRR-CPT and CRR-SPT correlations using DR as an intermediate 

parameter. The correlation curve is represented by the following equation: 

where: CRR = 0.0107 KD
3 – 0.0741 KD

2 + 0.2169 KD – 0.1306    [68] 

Different upgrades and last curves are presented in Figure E.3. 

 
Figure E.3. KD-CRR curves to evaluate cyclic liquefaction using DMT results, Monaco et al. (2005). 

TC16 (2001) proposed a preliminary criterion of liquefaction for different seismic zones and KD 

values. No liquefaction could occur if KD values are higher than defined KD according seismic 

zone, Table E.1. 

Table E.1. Identification of the minimum KD values which allow the clean sand liquefaction during an M=7.5 
earthquake. 

Seismic zone KD 

No seismic >1.7 

Low (amax/g=0.15) >4.2 

Middle (amax/g=0.25) >5.0 

High (amax/g=0.35) >5.5 

Liquefaction potential criteria for DMT allow discriminate clean sands, thus ID values for sand-

like soils, higher than 1.8.  

2.4.3. Shear wave tests 

The methodology to evaluate the liquefaction potential using shear wave velocity (VS) values 

started with Andrus and Stokoe (1997). Various steps had to be followed. The first step, VS values 
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should be corrected according to vertical effective stress [69] adapted from Sykora (1987). As a 

result of this correction VS1 is obtained.  

Secondly, CSR should be set, as described above, using rd and amax. Finally, the definition of CRR 

in terms of VS1 derived according [70], Andrus and Stokoe (1997).  

VS1 = VS (100 / σ’v0)ꞏ0.25                                       [69] 

CRR7.5= a (VS1/100)2 + b [1/(VS1* –VS1) – 1/ VS1*]                               [70] 

where: VS1: overburden stress-corrected shear wave velocity, σ’v0: effective vertical 

stress, a and b: curve fitting parameters and VS1*: limiting upper value of VS1 for 

liquefaction occurrence. 

A large number of case history information -liquefaction or no liquefaction-, is presented in Figure 

E.4. Those points were used for the adjustment of a and b values from [70]. Indeed, different 

curves were set for soils with ≥ 35 %, 20 % and ≤ 15 % fine content respectively. These curves 

are bounded the liquefaction potential condition for an M=7.5 earthquake, thus the VS 

methodology results allow discriminating with reliability whether a soil liquefies or not. For 

uncemented soils, Holocene-age soils a and b values are 0.022 and 2.8 respectively. 

 

Figure E.4. Liquefaction potential evaluation according to VS1 from different uncemented soils during an 
earthquake of Mw=7.5, Andrus & Martin (2000). 

The VS tests can be performed differently, usually via borehole. In addition, there are some in-situ 

test -SCPTu and SDMT-, which incorporate VS receptor. The criterion is included in the Guide 

for Shear-Wave-Based Liquefaction Potential Evaluation, Andrus et al. (2004). 
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2.5. Laboratory tests 
Research during decades has created a large database of results from different soils. These results 

allowed the implementation of different criteria using tests that require undisturbed or disturbed 

samples. 

These tests are separated in two types: (i) soil index tests, and (ii) cyclic and monotonic tests. The 

soil index tests are used in Bray et al. 2004 criterion that was presented in Chapter 3. Although 

these latest tests, are useful to evaluate the cyclic soil liquefaction. Tests results reliability depend 

fundamentally on sample quality. Notwithstanding the above, CRR can be obtained from 

laboratory test. 

2.5.1. Semi-empirical criterion 

Although first semi-empirical criterion based on relative density tests results was proposed in 

Seed and Idriss (1971) framework. A criterion for advanced cyclic tests on laboratory regarding 

this framework was not developed until Boulanger and Idriss (2004) because of low expectations 

on sample quality of coarse grained soils.  

Meanwhile, laboratory apparatus -as cyclic simple shear test (DSS) or cyclic triaxial test (TrX)-, 

were progressively developed to obtain suitable results. Loading of cyclic tests can exactly impose 

CSR conditions with cyclic shear strength (τcyc), average shear strength (τave) and number of 

uniform loading cycles (Neq), see Figure E.5. 

 

Figure E.5. Cyclic stresses applied in a conventional cyclic test. 
 

Cyclic shear strength (τcyc) is defined in equation [71], average shear strength (τave) in equation 

[72]. 

 𝜏௖௬௖ ൌ
𝜏௠௔௫ െ 𝜏௠௜௡

2
 [71]

 𝜏௔௩௘ ൌ
𝜏௠௔௫ ൅ 𝜏௠௜௡

2
 [72]

The results interpretation of cyclic tests were stablished with interaction diagram, which 

represents the number of uniform cycles (Neq) to trigger liquefaction because of cyclic shear ratio 

and average shear ratio during loading. It was initially used for Drammen clay in Andersen et al. 

t

τ

τave

τcyc
Neq 
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(1980) in which twelve cyclic direct simple shear tests were carried out, Figure E.6. It is important 

to note that constant N lines were interpolated from results (red points). 

 
Figure E.6. Interaction diagram for Drammen clay cyclic DSS results, modified from Andersen et al. (1980). 

If this interpretation is performed, the number of cycles could be used for calculating the 

liquefaction potential reached for an equivalent uniform cyclic loading of any soil. However, it 

was not directly linked with seismic loading -an irregular stress time series originated during an 

earthquake-. Thus, the method presented in Idriss (1999) and Boulanger and Idriss (2004) allowed 

to connect cyclic loading from laboratory tests for sand-like or clay-like specimens with seismic 

loading from earthquakes. At the same time, results from new cyclic testing provided feedback 

on data base to evolve the new method. 

The Idriss and Boulanger method is based on a magnitude scaling factor. MSF provides a rough 

representation of the effects of shaking or equivalent number of stress cycle. The values of MSF 

are derived from: (i) correlations of the number of equivalent uniform cycles taking into account 

earthquake magnitude and (ii) laboratory based relations between cyclic stress ratio required to 

cause liquefaction and the number of uniform stress cycles, Idriss & Boulanger (2006).  

To carry out the conversion of irregular cyclic stress time to an equivalent uniform cyclic time 

series, Seed et al. (1975) proposed equation [73]. It is defined to approximate CRR of sand-like 

and clay-like soils, and the number of uniform stress cycles. 

𝐶𝑅𝑅 ൌ 𝑎 ൉ 𝑁ି௕     [73] 

where: b is the slope of CRR – N and a is the CRR for N=1. 

The CRR normalization was performed for N=15 because it is the number of cycles that generates 

liquefaction obtained for an Mw=7.5 earthquake and re=0.65 in clean sands (Idriss, 1999), see 

Figure E.7. From different tests results on clay-like and sand-like soils they obtained 
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representative b values. Clay-like b values were obtained after the normalization of cyclic DSS 

and Triaxial tests results, evaluating at 1 Hz loading and ± 3% shear strain to N=15. And Sand-

like b values came from cyclic DSS for frozen samples. Representing b value for sand-like is 

0.337 and b value for clay-like is 0.135, it is presented in Figure E.7. 

 
Figure E.7. Defined b values according to different normalized tests, Boulanger & Idriss (2004). 

Additionally, they proposed [74] to allow the conversion an individual cycle at some stress level 

to an equivalent N at a different stress level by assuming equal N and equal fraction of N to failure. 

ேಲ

ேಳ
ൌ ቀ஼ோோಲ

஼ோோಳ
ቁ

ଵ
௕ൗ

ൌ
ଵ ௖௬௖௟௘

௑ಲ ௖௬௖௟௘௦
     [74] 

Then, sand-like soils with re=0.65, b=0.337, and the assumption of ¾ cycle provided equation 

[75], because it fits to MSF=1.8 for an Mw=5.25 earthquake. MSFmax is limited by equation [76] 

defined by Idriss (1999). The new MSF re-evaluated from Idriss (1999) was equation [77]. 

N୫୧୬ ୱୟ୬ୢ ൌ ቀ
ଵ

଴.଺ହ
ቁ

ଵ
଴.ଷଷ଻ൗ

൉  ቀ
ଷ

ସ
 𝑐𝑦𝑐𝑙𝑒ቁ = 2.69   [75] 

MSF୫ୟ୶ ୑୵ ஸ ହ.ଶହ ൌ ቀ
ଵହ

ଶ.଺ଽ
ቁ

଴.ଷଷ଻
ൌ 1.8   [76] 

MSF ൌ 6.9 ൉ eቀ
ష౉

ర
ቁ െ 0.058     [77] 

MSF ൑ 1.8 

Extensive study for 124 horizontal acceleration time series recorded at NEHRP class D soil sites 

in 13 different earthquakes -magnitudes in the range of 7 to 8- was performed to obtain the 

relationship of the number of equivalent uniform loading cycles. For sand-like and clay-like soil 

behaviour considering re=0.65 (Boulanger and Idriss, 2007).  

The results confirms that sand usually presents N=15 for M=7.5 and re=0.65 (Seed et al. 1975), 

in contrast for clay, N=30 when re=0.65 (Boulanger and Idriss 2004), as shown in Figure E.8. 
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Figure E.8.N vs. re according to Mw=7.5 earthquakes for sand-like and clay-like soils, from Boulanger and 

Idriss (2004). 

The MSF for clay-like soils is quite different. They proposed the same argumentation previously 

described because in this case N is 30. Moreover, it was suggested ½ cycle for equation [78] 

because of the lower value of b and clay-like soil representative N=30. Then, MSFmax was 

calculated from [79]. The resulting MSF for clay-like soils was [80], Boulanger & Idriss (2004).  

N୫୧୬ ୡ୪ୟ୷ ൌ ቀ
ଵ

଴.଺ହ
ቁ

ଵ
଴.ଵଷହൗ

൉ ቀ
ଵ

ଶ
 𝑐𝑦𝑐𝑙𝑒ቁ = 12.2    [78] 

MSF୫ୟ୶ ୑୵ ஸ ହ.ଶହ ൌ ቀ
ଷ଴

ଵଶ.ଶ
ቁ

଴.ଵଷହ
ൌ 1.13  [79] 

MSF ൌ 1.12 ൉ eቀ
షಾೢ

ర
ቁ ൅ 0.828     [80] 

MSF ൑ 1.13 

Results of equations [77] and [80] are plotted in Figure E.9. 

 

Figure E.9. Proposed MSF for clay-like and sand-like behaviour, Idriss (1999). 
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CRR proposal for fine grained soils can be estimated using equation [45] Boulanger and Idriss 

(2007). 

𝐶𝑅𝑅ெ ൌ 𝐶ଶ஽ ൉ ቀ
ఛ೎೤೎

௖ೠ
ቁ

ெୀ଻.ହ
൉

௖ೠ

ఙᇱೡ
൉ 𝑀𝑆𝐹 ൉ 𝐾ఈ   [81] 

where: C2D: correction factor of cyclic loading, estimated around 0.96 (Boulanger and 

Idriss, 2004), ቀ
𝜏௖௬௖

𝑐௨
ൗ ቁ ெୀ଻.ହ : cyclic strength ratio for 30 cycles and Mw=7.5, 

௖ೠ

ఙᇱೡ
 : 

undrained strength shear ratio for NC soil (OCR=1), and Kα: static shear stress ratio 

correction, which lies on the range of 0.4 to 1 for NC clay. 

The criterion for clay-like soils proposed in Boulanger and Idriss (2007) can be performed to 

obtain MSF and CRR Mw=5.25 using tests results of the hydraulic fill of Prat quay. 

3. Application of cyclic liquefaction criteria  
The four cyclic liquefaction criteria described above have been applied to results of in-situ tests 

and laboratory tests from Prat quay, Phase 1 and Phase 2. The Barcelona seismic conditions 

described previously in Appendix D are established for those criteria: amax (0.083g, 0.14g and 

0.19g) and Mw=5.25. The criteria are only performed for the hydraulic fill. 

3.1. In-situ tests criteria 
The results of CPTu, DMT and VS criteria are described in following sections. 

3.1.1. CPTu 

The screening method proposed by Robertson and Cabal (2012) has been applied to representative 

CPTu tests (previously presented in Chapter 3). The results are presented according soil profile 

of (a) CRR7.5 & CSR5.25/MSF and (b) factor of safety (FoS) in Figure E.10, Figure E.11 and Figure 

E.12. In addition, clay-like, transition and sand-like soils are distinguished. It can be noted that 

large zones of hydraulic fill CRR values lower than CSR derived values for amax=0.14g and are 

susceptible to cyclic liquefaction. Although there are different soils in the soil profiles, the results 

indicate that three soils can be classified as potentially liquefiable. 
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(a) (b)  

Figure E.10. Robertson and Cabal (2012) criterion, (a) CRR7.5 & CSR5.25/MSF and (b) FoS for CPTu 6a12. 

 

(a) (b)

Figure E.11. Robertson and Cabal (2012) criterion, (a) CRR7.5 & CSR5.25/MSF and (b) FoS for CPTu r5. 
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(a) (b)

Figure E.12. Robertson and Cabal (2012) criterion, (a) CRR7.5 & CSR5.25/MSF and (b) FoS for CPTu 3b11. 

3.1.2. SDMT 

The seismic flat dilatometer (SDMT) provides cyclic liquefaction potential evaluation according 

to: (i) TC16 (2001) and Monaco et al. (2005) criteria for KD values and (ii) Andrus et al. (2004) 

criterion for shear wave velocity (Vs) values.  

It is important to note that KD values are filtered according to ID >1.8 to distinguish, as far as 

possible, sands from hydraulic fill for both KD criteria.  

The TC16 (2001) criterion results are presented in Figure E.13. Two seismic ranges could 

represent Barcelona seismic conditions amax values (Appendix D): no seismic (amax=0.083g) and 

low seismicity (amax=0.14g and amax=0.19g) zones. It should be noted that large part of hydraulic 

fill is susceptible to cyclic liquefaction for a low seismicity zone. Nevertheless, for no seismic 

zone only 30% of points are susceptible to liquefy (KD < 1.7).  

 

Alternatively, the performance of Monaco et al. (2005) criterion based on the KD parameter is 

presented in Figure E.14. In this case, CSR lines are defined for Mw = 5.25 earthquake according 

to amax=0.083g and amax = 0.19 g assumptions. 

The results indicate that there is an evident difference between Phase 1 and Phase 2 results. Phase 

1 results present poor CRR values, meanwhile Phase 2 values are quite better. Therefore, 

hydraulic fill of Phase 1 can reach cyclic liquefaction for amax = 0.083 g, whereas hydraulic fill of 

Phase 2 broadly needs amax > 0.19 g to generate cyclic liquefaction. 
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(a) (b) 

Figure E.13. TC16 (2001) criterion for (a) Phase 1 DMT and (b) Phase 2 DMT. 

 
(a) (b) 

Figure E.14. Monaco et al. (2005) criterion for (a) Phase 1 DMT and (b) Phase 2 DMT. 

Finally, Andrus et al. (2004) criterion is applied for VS1 values from Phase 1 (five tests) and Phase 

2 (one test) according an Mw=5.25 earthquake with amax=0.19 g and amax=0.083g. It is important 

to note that criterion has been extended to VS1 values lower than 100 m/s. 

The results are shown in Figure E.15a and Figure E.15b. The approach indicates susceptible soils 

to cyclic liquefaction for a number of points.  
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It is worth mentioning that zero values of VS1 were recorded in hydraulic fill possibly due to the 

‘liquefied state’ of the soil during test, although the testing contractor considered that those values 

were invalid. 

(a) (b) 

Figure E.15. Andrus et al. (2004) criterion for (a) amax=0.19 g and (b) amax=0.083g. 
 

3.2. Idriss and Boulanger (2006) criterion 
A set of 12 cyclic DSS tests were performed to specimens of remoulded hydraulic fill from Prat 

quay Phase 1 (NGI, 2008a), obtained from settling column presented in Appendix F. The 

interaction diagram for cyclic shear tests results is presented in Figure E.16. The agreement is 

quite good, although, there is a test (N=17) that does not fit as well as it should. This result could 

be related with some non-homogeneity detected in the hydraulic fill index properties. 

 

Figure E.16. Interaction diagram for hydraulic fill using results of cyclic shear tests. 
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The cyclic liquefaction criterion of Idriss and Boulanger (2006) has been applied to laboratory 

tests results. Therefore, the number of cycles (N) is normalized to 3% of strain and cyclic shear 

stress (τcyc) is increased 9% because of the period normalization.  

To perform an objective normalization, some tests results are removed due to heterogeneities. 

The corresponding mean values of soil index are presented in Table E.2. All specimens satisfy 

the criterion assumptions as fine-grained soil (clay-like soil), PI ≥ 7 and FC% >20. 

Table E.2. Soil index properties for hydraulic fill. 

Sample PI LL clay% <2μm FC% <75μm 

CSB 21.8 43.8 35 99 

CSI 13.4 31.2 18.7 72 

CSA 14.8 33.5 24.5 83 
 

The normalized values and ‘a’ and ‘b’ adjustments [73] are shown in Figure E.17.  

 
Figure E.17. Normalized τcyc/cu vs. N values for hydraulic fill. 

Last normalization is calculated according cu / σ‘v ratio of 0.25 -from cu peak presented in Chapter 

2 for the hydraulic fill-, and N=30. The corresponding values are presented in Table E.3. 

Table E.3. Values of a, b, τcyc/cu for hydraulic fill. 

Sample σ'v test 
[kPa] 

a b (τcyc/cu) N=30 

CSB 149,8 1 0,13 0,64 

CSI 149,8 0,8 0,14 0,50 

CSA 149,8 0,6 0,16 0,35 
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In Table E.4, results of MSF and CRR for an M=5.25 earthquake are shown. CRR values are 

analysed for: (i) non-explicit measurements to obtain Kα were performed, thus Kα=1 and Kα=0.6 

are used, (ii) C2D is 0.96 and (iii) undrained shear strength ratio, again 0.25. 

Table E.4. Cyclic stress ratio, magnitude scale factor (MSF) and cyclic resistance ratio according Idris and 

Boulanger criterion for hydraulic fill. 

Sample MSF M=5.25 clay CRR M=5.25 Kα=1 CRR M=5.25 Kα=0.6 

CSB 1,05 0,15 0.09 

CSI 1,09 0,12 0.07 

CSA 1,17 0,08 0.05 

The CSR values for Barcelona seismic conditions are calculated at two different elevations 

rd=0.90 (z≈5 m) and rd=0.62 (z≈15 m) and according to 3 different amax assumptions: 0.083g from 

NCSE-02 (2002), 0.14g and 0.19g from Irizarry (2004). The CSR values are given in Table E.5. 

Table E.5. Cyclic stress ratio for seismic conditions of Barcelona Port. 

rd 

CSR 
M=5.25 

amax=0.083g 

CSR 
M=5.25 

amax=0.14g 

CSR 
M=5.25 

amax=0.19g

0,90 0.07 0.12 0.16 

0,62 0.05 0.08 0.11 

Regarding the six values of CSR and the six values of CRR, the performed assumptions provide 

36 values of FoS. The corresponding data is presented in Table E.6. 

Table E.6. FoS for hydraulic fill. 

Sample rd Kα FS 
amax=0.083g 

FS 
amax=0.14g

FS 
amax=0.19g 

CSB 0,90 1 2.31 1.37 1.01 

CSI 0,90 1 1.87 1.11 0.82 

CSA 0,90 1 1.41 0.84 0.62 

CSB 0,62 1 3.37 2.00 1.47 

CSI 0,62 1 2.73 1.62 1.19 

CSA 0,62 1 2.06 1.22 0.90 

CSB 0,90 0.6 1.39 0.82 0.61 

CSI 0,90 0.6 1.12 0.67 0.49 

CSA 0,90 0.6 0.85 0.50 0.37 

CSB 0,62 0.6 2.02 1.20 0.88 

CSI 0,62 0.6 1.64 0.97 0.72 

CSA 0,62 0.6 1.23 0.73 0.54 

 



Appendix E                                                                                                                                                                   201 

 

4. Application of cyclic liquefaction criteria after hydraulic fill 
improvement of Phase 2 

The Robertson (2012) and Idriss and Boulanger (2006) criteria have been applied to results from 

site investigation Pray quay Phase 2 after soil improvement. The in-situ test results of the site 

investigation after soil improvement in Phase 2 -that were previously described in Chapter 5-, and 

additional laboratory tests performed during that site investigation are used. Unfortunately, DMT 

or shear velocity tests were not performed after soil improvement. 

The aim of this chapter is to evaluate the effect of the preloading and prefabricated strip drains 

for cyclic liquefaction potential mitigation. The Barcelona seismic conditions described in 

Appendix D amax: 0.083g, 0.14g and 0.19g and Mw=5.25 are assumed for those criteria. 

4.1. Robertson and Cabal (2012) criterion 
The criterion of Robertson and Cabal (2012) has been performed to CPTu test sounded at the 

same place that had been performed the previous CPTu (Appendix E.3.1.1). The corresponding 

results are shown in Figure E.18. Clay-like, transition and sand-like soils are distinguished to 

provide insight into interpretation. 

The results indicate that cyclic liquefaction is possible for amax >0.14 g seismic condition. It is 

important to note that there are sand-like and transition soils, clay-soils are not detected. 

  
(a) (b) 

Figure E.18. Application of Robertson and Cabal (2012) criterion for hydraulic fills after soil improvement. 

In Figure E.19, the FoS values for previous CSR and CRR results are presented. The derived FoS 

values in the soil profile are close to 1 for amax=0.19 g. 

g 

g 
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Figure E.19. Factor of safety for Robertson and Cabal (2012) criterion for hydraulic fills after soil 

improvement. 

4.2. Idriss and Boulanger (2006) criterion 
A set of 15 cyclic DSS tests were performed from specimens of hydraulic fill from Prat quay 

Phase 2 (NGI, 2008b). The interaction diagram for cyclic shear tests results is performed, see 

Figure E.20. The cyclic shear stress ratio value of 0.2 is mainly inside the zone enclosed by N=30. 

 
Figure E.20. Interaction diagram for hydraulic fill after soil improvement using results of cyclic shear tests. 

The cyclic liquefaction criterion of Idriss and Boulanger (2006) (I&B) has applied to laboratory 

tests results. Therefore, the number of cycles (N) was normalized to 3% of strain and cyclic shear 

stress (τcyc) was increased 9% because of the period normalization.  
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To perform an objective normalization, some tests results are removed due to heterogeneities. 

The corresponding mean values of soil index are presented in Table E.7. All specimens satisfy 

the criterion assumptions as fine-grained soil (clay-like soil), PI ≥ 7 and FC% >20. 

Table E.7. Soil index properties of improved hydraulic fill. 

Sample PI LL Clay % 
<2μm 

FC% 
<75μm 

s01MDG_SH1 9.6 27.2 15.4 77.0 

s01MDG_SH3 15 33 20 90 - 58 

s01MDG_SH4 9 25 12.5 52.5 

s01MDG_SH5 10 28 16 49 

s02_SH6 15.5 33.5 21.4 70 

s02MDG_SH4_A_1 18 39 31 85 

 

The normalized values and ‘a’ and ‘b’ adjustments [73] are shown in Figure E.21.  

 
Figure E.21. Normalized τcyc/cu vs. N values for hydraulic fill after soil improvements. 

The final normalization is calculated according cu / σ‘v ratio of 0.25 -from cu peak presented in 

Chapter 2 for the hydraulic fill-, and N=30. Results of s01MDG_SH3 are neglected. The 

corresponding values are presented in Table E.8. 

Table E.8. Values of a, b, τcyc/cu for improved hydraulic fill. 

Sample σ'v test  [kPa] a b (τcyc/cu) N=30 

s01MDG_SH1 140 0,9 0,09 0,63

s01MDG_SH4 165 1,3 0,20 0,67 

s01MDG_SH5 185 1,3 0,20 0,62 

s02_SH6 185 0,8 0,18 0,45 

s02MDG_SH4_A_1 194,9 1,1 0,15 0,69 
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The results of MSF and CRR for an M=5.25 earthquake are presented in Table E.9. CRR values 

are derived according: (i) non-explicit measurements to obtain Kα were performed, thus Kα=1 and 

Kα=0.6 are used, (ii) C2D is 0.96 and (iii) undrained shear strength ratio is 0.25. 

Table E.9. Cyclic stress ratio, Magnitude scale factor (MSF) and cyclic resistance ratio according I&B criterion 
for the improved hydraulic fill. 

Sample MSF M=5.25 clay CRR M=5.25 Kα=1 CRR M=5.25 Kα=0.6 

s01MDG_SH1 0.91 0.14 0.08 

s01MDG_SH4 1.36 0.22 0.13 

s01MDG_SH5 1.36 0.20 0.12 

s02_SH6 1.26 0.14 0.08 

s02MDG_SH4_A_1 1.13 0.19 0.11 

The CSR values for Barcelona seismic conditions for elevation z≈5 m and z≈15 that were 

previously presented in Table E.5 are used. Afterwards, factors of safety are calculated, 

corresponding data are presented in Table E.10. 

Table E.10. FoS performed for the improved hydraulic fill. 

Sample rd Kα FS 
amax=0.083g

FS 
amax=0.14g 

FS 
amax=0.19g 

s01MDG_SH1 0.89 1 1.99 1.18 0.87 

s01MDG_SH4 0.89 1 1.06 0.63 0.46 

s01MDG_SH5 0.89 1 3.17 1.88 1.39 

s02_SH6 0.89 1 2.94 1.74 1.28 

s02MDG_SH4_A_1 0.89 1 1.98 1.17 0.86 

s01MDG_SH1 0.62 1 2.86 1.70 1.25 

s01MDG_SH4 0.62 1 1.52 0.90 0.66 

s01MDG_SH5 0.62 1 4.56 2.71 1.99 

s02_SH6 0.62 1 4.22 2.50 1.84 

s02MDG_SH4_A_1 0.62 1 2.85 1.69 1.24 

s01MDG_SH1 0.89 0.6 1.19 0.71 0.52 

s01MDG_SH4 0.89 0.6 0.63 0.38 0.28 

s01MDG_SH5 0.89 0.6 1.90 1.13 0.83 

s02_SH6 0.89 0.6 1.76 1.04 0.77 

s02MDG_SH4_A_1 0.89 0.6 1.19 0.70 0.52 

s01MDG_SH1 0.62 0.6 1.72 1.02 0.75 

s01MDG_SH4 0.62 0.6 0.91 0.54 0.40 

s01MDG_SH5 0.62 0.6 2.74 1.62 1.20 

s02_SH6 0.62 0.6 2.53 1.50 1.11 

s02MDG_SH4_A_1 0.62 0.6 1.71 1.01 0.75 

 

Hydraulic fill results of Idriss and Boulanger criterion shows that cyclic liquefaction susceptibility 

exists for some cases according to amax= 0.14g (38%) and 0.19g (75%). It is important to note that 

only two results (Kα=0.6 and rd=0.89 and 0.62) indicate liquefaction susceptibility for amax=0.083g 

assumption.  



Appendix E                                                                                                                                                                   205 

 

5. Results comparison before and after soil improvement in Phase 
2 
The comparison of criteria results for cyclic liquefaction is performed to evaluate the soil 

improvement. 

5.1. Robertson and Cabal (2012) criterion 
The criteria comparison indicates that different effects of the soil improvement are achieved, as 

shown in Figure E.22. Meanwhile, there are no evident changes in the soil profile of sand-like 

soil (Figure E.22a), for the fine grained soil profile (Figure E.22b) the CRR has increased 

significantly. Therefore, after soil improvement clay-like soil -that has changed to transition soil-

, can cope with CSR loading higher than amax=0.19 in the vast majority of results. 

 
(a) (b) 

Figure E.22. Robertson and Cabal (2012) criterion comparison before and after soil improvement of Phase 2 
(a) sand-like soil and (b) fine grained or transition soils. 

5.2. Laboratory tests  
The most notable parameters from tests are compared: τcyc/ σ’v – N, OCR - τcyc/ σ’v and N - cu post-

liq/σ’v. The results of cyclic shear tests before and after soil improvement are presented in Figure 

E.23. A significant increase of τcyc/ σ’v is achieved for a constant N after the soil improvement of 

the hydraulic fill. 
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Figure E.23. Cyclic test results, τcyc / σ’v vs. number of cycles, before and after soil improvement. 

In this way, τcyc / σ’v - OCR comparison is performed in Figure E.24. There is an increase of τcyc 

/ σ’v and evidently OCR due to the effect provided by the preloading surcharge. 

 

Figure E.24. τcyc / σ’v vs. OCR due to soil improvement, labels indicate fines content %. 

Finally, the comparison for post liquefaction undrained shear strength – N is presented in Figure 

E.25. The results indicate that higher cu post_liq / σ’v values are observed after the soil improvement. 

Thus, the soil improvement could lead to the reduction of soil sensitivity. Nevertheless, the tested 

specimens after improvement contained less fines content that could increase those resistances. 
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Figure E.25. cu post_liq/ σ’v vs. N, labels indicate fines content %. 

 

The interactions diagrams performed before and after soil improvement are shown in Figure E.26a 

and Figure E.26b respectively. It can be noted the improvement of soil due to the increase of 

cyclic shear for a constant number of cycles. However, this change is quite small for low values 

of τave/σ’v and N=30.  

(a) (b) 

Figure E.26. Interaction diagrams for results of cyclic shear tests: (a) before and (b) after soil improvement. 

The soil improvement can be observed by comparing previous Figures of laboratory tests results. 

Nevertheless, in order to quantify the mitigation of soil liquefaction, it is important to compare 

the cyclic liquefaction potential criteria results previously presented. 
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5.2.1. Idriss and Boulanger (2006) criterion 

The results of the methodology proposed by Idriss and Boulanger (I&B) regarding Rd=0.90 and 

Kα=1 are compared in Table E.11. Although τcyc/σ’v values were generally increased, FoS 

calculated do not significantly change because of the mentioned low improvement for N=30. 

Table E.11. FoS performed for the hydraulic fill before and after soil improvement. 

Sample FS 
amax=0.083g 

FS 
amax=0.14g

FS 
amax=0.19g

BEFORE SOIL IMPROVEMENT 

CSB 2.31 1.37 1.01 

CSI 1.87 1.11 0.82 

CSA 1.41 0.84 0.62 

AFTER SOIL IMPROVEMENT

s01MDG_SH1 1.99 1.18 0.87 

s01MDG_SH4 1.06 0.63 0.46 

s01MDG_SH5 3.17 1.88 1.39 

s02_SH6 2.94 1.74 1.28 

s02MDG_SH4_A_1 1.98 1.17 0.86 

 
 

6. Summary 
The criteria of Robertson and Cabal, TC16, Monaco et al., and Andrus et al. and Idriss and 

Boulanger indicated that cyclic liquefaction of the hydraulic fill was possible before soil 

improvement. Although criteria were evaluated for different soil behaviour type, the results are 

consistent. 

The results of the criteria evaluation after soil improvement showed a condition of no cyclic 

liquefaction potential -for Spanish seismic standards-, according to the Robertson & Cabal and 

Idriss & Boulanger criteria.  

It can thus be concluded that the performed soil improvement was effective to reduce the cyclic 

liquefaction potential of the hydraulic fill according the NCSE-02 standard, especially for fine 

grained soils.  

It can also be stated that the seismic loading is a point to investigate together with seismic experts 

and authorities, because a slightly variation of those assumptions changes sharply the soil 

response, as presented in Table E.12.  
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Table E.12. FoS for Robertson & Cabal (2012) and FoS for Idriss & Boulanger (2006) criteria, before and after 
soil improvement of Prat quay Phase 2. 

Criterion Assumption amax FoS before FoS after 

Robertson (2009) NCSE-02 0.083g >0 to 1.7 ≥2.2 

 Deterministic* 0.14g ≤1 ≥1.4 

Idriss & Boulanger (2006) NCSE-02 0.083g 1.04 1.48 

 Deterministic* 0.14g 0.62 0.88 

* from Irizarry (2004) 
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Appendix F. Settling column 

1. Introduction 

Different authors -including Yamamuro and Wood (2004) and Jefferies and Been (2006)-, presented 

some techniques used in laboratories to remould non cohesive soils getting similar in-situ properties. 

Deposition techniques of sandy silts or silts are: dry deposition, water deposition, slurry deposition, 

mixed dry deposition and air pluviation. Nevertheless, Patrask and Puri (2003) concluded that the 

most adequate technique for silty soil is the slurry deposition (Figure F.1). This technique consists in 

mixing soil with water to make slurry. The slurry should be sufficiently liquid to deposit inside a 

sampler. After that, it has to drain and settle, after that it can be considered as soil. 

 

Figure F.1. Slurry deposition technique, Wood et al. (2008) 

Although hydraulic fill of Prat quay is not strictly a silt, it can be accepted that the hydraulic fill of 

Prat quay is deposited in a loose state. Thus, the technique of slurry deposition should be suitable. 

In this way, a guidance for project confined dredge materials were presented in US army Corps of 

Engineers (1987). It includes an extensive document of confined disposal of dredged material, in 

which the settling test is defined. It described the used apparatus and the process to evaluate the 

sedimentation (Figure F.2). Some ideas have been adopted to carry out the settling column tests for 
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the hydraulic fill of Prat quay including: (i) the slurry poured into a transparent (8” diameter) pipe. 

(ii) there was a porous stone at the bottom of the pipe, which allowed the soil consolidation. 

 
Figure F.2. Schematic of apparatus for settling tests. US Army Corps of Engineers (1987). 

Different aspects that control the behaviour were also described: settling type, sedimentation 

governing factors and the salinity function during settling. There were four types of settling defined: 

discrete settling, flocculent settling, zone settling and compression settling. Flocculent settling and 

zone settling occur during the initial part of the test. If an interface is formed within one day of the 

test the slurry mass, it means that the zone settling is formed. In case that no interface is detected on 

the first day, the slurry mass reveals flocculent settling. If there are not changes in the particles during 

the settling process, it indicates that the discrete settling is developing. Finally, the compression 

settling is defined by the compression of the slurry-soil structure. 

It is important to remark that the existence of certain types of clay minerals may produce a flocculent 

behaviour. This behaviour is generally produced as a natural reaction of the  montmorillonite clay 

group. It produces a colloid with clays, forming a floc and the posterior sedimentation. This process 

reduces the sedimentation time and facilitates the consolidation of the new soil. However, high 

salinity of water frequently changes the flocculent behaviour. The use of X-ray diffraction (XRD) 
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has been established to characterize those mineral phases. In the hydraulic fill and the natural ground 

of Prat qua, as presented in Chapter 2, there are not flocculent minerals. 

Although the settling test is capable to determine the settling types, the test uses a small cylinder. 

Therefore, the results are not acceptable for the use in design because wall effects affect the settling. 

Nevertheless, this test provides high quality soil samples to be tested afterwards in the laboratory. 

2. Hydraulic fill settling column 

A small-scale settling column using slurry deposition was developed to create soil specimens for 

hydraulic fill of Prat quay. However, this column was also focused on the natural density 

measurement during sedimentation.  

The stages of the column is described in following points: 

i) Hydraulic fill was mixed with seawater using a concrete mixer. 

ii) The slurry was deposited inside a methacrylate tube. This tube had a diameter of 20 

mm and 2 m long, with a porous stone at the bottom.  

iii) During a period of 110 days the slurry consolidated.  

iv) The height of the tube was reduced.  

v) An increase of vertical stress (45 kPa, equivalent to 5 m depth) was applied on the top 

(Figure F.3). There was a porous stone between the slurry and the loading head. 

vi) During a period of 92 days the slurry consolidated.  

vii) The loading head and the base was removed. 

viii) The tube was prepared to be sent to NGI. 

 
Figure F.3. Sedimentation test of hydraulic fill after the application of 45 kPa. 
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The results of the settling column in terms of density are presented in Figure F.4. Initially, the natural 

density was 1.35 Mg/m3 when the slurry was placed in the tube. After 110 days, it increased up to 

1.74 Mg/m3. Once the top of the tube was loaded, density increased up to 1.83 Mg/m3. 

 
Figure F.4. Natural density evolution of the hydraulic fill in the settling column. 

The results of this chapter were used in the interpretation of hydraulic fill weight. Furthermore, the 

obtained soil specimens were at NGI, results (NGI, 2008) are presented in Chapter 3, Chapter 5 and 

Appendix E. 

It is important to note that, on the first day, an interface was observed. Therefore, no flocculent 

behaviour was revealed which was consistent with the XRD results. In this way, the inexistence of 

flocculants did not facilitate the consolidation of the hydraulic fill. 
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