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Abstract 

Representing the time-dependent plastic behaviour of geomaterials is a critical issue in the correct 

application of tunnelling design techniques such as the convergence-confinement method or 

numerical modelling. Furthermore, during underground excavations below the water table, the 

effect of seepage flow cannot be ignored, and the behaviour of the tunnel must be analysed in a 

coupled hydro-mechanical framework. 

The main objective of this thesis is to analyse the response of tunnels excavated in saturated 

time-dependent plastic rock masses. For this purpose, a time-dependent plastic constitutive model 

has been developed and implemented in the software CODE_BRIGHT to simulate the time-

dependent, strain-softening and creep-induced failure behaviour of geomaterials. Moreover, a 

coupled hydro-mechanical model is utilised to simulate the interaction between solid 

deformations and fluid flows. The obtained results provide relevant insights into the response of 

tunnels excavated in saturated time-dependent plastic rock masses. However, numerical 

difficulties might occur when modelling multi-stage excavations problems, when considering 

multi-physics coupled processes or non-linear mechanical material models, especially if the 

layers or pieces of the excavated material are relatively coarse. In order to mitigate these 

numerical difficulties, a smoothed excavation (SE) method has been proposed and implemented 

in the software CODE_BRIGHT, which can improve numerical efficiency and mitigate non-

convergence issues. 

Subsequently, to analyse the stability of tunnels with a combined support system, numerical 

solutions have been developed for tunnels excavated in strain-softening rock masses, considering 

the whole process of tunnel advancement, and the sequential installation of primary and 

secondary support systems. For this purpose, the actual compatibility conditions at both the rock-

support interface and the support-support interface are considered. This method provides a 

convenient alternative method for the preliminary design of supported tunnels. 
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Resumen 

La adecuada representación del comportamiento plástico y dependiente del tiempo de los 

geomateriales es una cuestión crítica en la correcta aplicación de técnicas de diseño de túneles 

como el método de convergencia-confinamiento o el modelado numérico. Por otro lado, durante 

las excavaciones subterráneas por debajo del nivel freático no se puede ignorar el efecto del flujo 

de filtración y, por tanto, el comportamiento del túnel debe analizarse en un marco hidromecánico 

acoplado. 

El principal objetivo de esta tesis es analizar la respuesta de túneles excavados en macizos 

rocosos plásticos saturados y dependientes del tiempo. Para este propósito, se ha desarrollado e 

implementado un modelo constitutivo plástico dependiente del tiempo en el software 

CODE_BRIGHT, que permite simular el comportamiento dependiente del tiempo, el de 

reblandecimiento por deformación y el inducido por fluencia de los geomateriales. Además, se ha 

utilizado un modelo hidromecánico acoplado para simular la interacción entre la deformación del 

sólido y el flujo de fluido. Los resultados obtenidos proporcionan información relevante sobre la 

respuesta de los túneles excavados en macizos rocosos plásticos, saturados y dependientes del 

tiempo. Sin embargo, pueden surgir dificultades numéricas al modelar problemas de 

excavaciones en varias etapas, al considerar procesos multifísicos acoplados o modelos de 

materiales mecánicos no lineales, especialmente si las capas o piezas de material excavado son 

relativamente gruesas. Para mitigar estas dificultades numéricas, se ha propuesto e implementado 

un método de excavación suavizada (SE) en el software CODE_BRIGHT, que puede mejorar la 

eficiencia numérica y mitigar los problemas de no convergencia. 

Posteriormente, para analizar la estabilidad de túneles con sistemas de sostenimiento 

combinado, se han desarrollado soluciones numéricas para túneles excavados en macizos con 

reblandecimiento por deformación, considerando todo el proceso de avance del túnel y la 

instalación secuencial de los sistemas de sostenimiento primario y secundario. Con este propósito, 

se han considerado las condiciones reales de compatibilidad tanto en la interfaz roca- 

sostenimiento como en la interfaz sostenimiento-sostenimiento. Este método proporciona un 

método alternativo conveniente para el diseño preliminar de túneles con sostenimiento. 
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Chapter 1. Introduction and literature review 

1.1. Research background 

In the field of geotechnical engineering, the socio-economic and technological development of 

several countries in the world has led to the need to increase the construction of underground 

structures (Rodriguez-Dono, 2011; Song and Rodriguez-Dono, 2021; Song et al., 2020; Wang et 

al., 2020a). This increase in exploitation and construction has created some social concerns 

related to both work accidents and environmental contamination, which should be dealt with not 

only during the exploitation and construction phases, but also during the operational and long-

term service phases of these engineering works, according to the application of the principles of 

sustainable development economy and the current environmental awareness and protection trends. 

From a purely economic point of view, many of these accidents result in collapses, hence 

stopping the works for a significant amount of time, at a great cost to the exploitation or 

construction company and delayed implementation for the use of the society (Rodriguez-Dono, 

2011). If all these observations are extended to a global scale is found that a large number of 

significant casualties, environmental issues and economic losses have been and will continue to 

be produced (Rodriguez-Dono, 2011). 

In a geomechanics framework, accidents are frequently related to fractures. The complexity 

of the different geomaterials makes the study of these fractures a critical topic for understanding 

their behaviour and, hence such a study constitutes a significant step in the mitigation of all these 

accidents that may occur in the working projects (Rodriguez-Dono, 2011; Song et al., 2020; 

Zhang et al., 2015). 

Besides, geomaterials undergo long-term time-dependency and progressive damage 

evolution during excavation and operation phases. Some underground structures show large 

delayed deformations that could lead to failure, i.e. creep-induced failure response, which may be 

relevant for many engineering cases, such as for some tunnels that do not fail during excavation 

but ultimately fail after a long-term operation (Fabre and Pellet, 2006; Sandrone and Labiouse, 

2010; Song et al., 2020). 
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Furthermore, many multi-physical processes, such as mechanical, hydraulic or even thermal, 

affect the behaviour of the geomaterials in a coupled way. During tunnelling below the water 

table, there may be some seepage flowing towards the tunnel, affecting the response of 

underground structures (Lee and Nam, 2004; Nam and Bobet, 2007; Nogueira et al., 2011). 

Consequently, the tunnelling below the water table should be analysed in a coupled hydro-

mechanical framework, considering the coupled interaction between solid deformations and fluid 

flows. There are still many aspects of interest in coupled behaviour to study, which will require 

more detailed investigations. 

In addition, the complexity in the estimation of underground structures behaviour is also 

tricky because, geomaterials have a marked effect of scale, so that frequently the behaviour 

observed in the laboratory cannot be extrapolated to the scale of the work. Thus a standard 

application of the scientific method is not valid for this field of engineering, in which heuristic 

methods, case studies and numerical modelling techniques are all necessary (Rodriguez-Dono, 

2011; Starfield and Cundall, 1988). 

 

1.2. State-of-art 

The support structures are usually needed to be constructed, in order to maintain the stability of 

tunnels (Dong, 2020; Song and Rodriguez-Dono, 2021; Song et al., 2020; Song et al., 2018a and 

2018b; Wang et al., 2020b). The art of tunnel design is to find right stiffness and right installation 

time of the support systems (Alonso et al., 2003). Too early installation time or too lower 

stiffness of support systems, may lead to uncontrolled convergences or over-stressing on the 

support system, which may result in collapse (Alonso et al., 2003; Song and Rodriguez-Dono, 

2021; Song et al., 2018a and 2018b). The design of supported tunnels can be tackled by various 

methods, such as theoretical approaches, numerical simulations, the convergence-confinement 

method (CCM) or field monitoring. 
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1.2.1. Theoretical solutions for supported tunnels 

Theoretical solution provides an efficient and quick approach to gain insights into the nature of 

the problem (Carranza-Torres and Fairhurst, 1999). Concerning the ground-support interaction, 

many researchers developed solutions for mechanical as well as hydro-mechanical problems. 

However, solutions for tunnels with more complex models (such as poromechanics, rock 

instabilities or non-linear constitutive models of geomaterials) are not easy to be developed 

(Dong et al., 2019; Song and Rodriguez-Dono, 2021).  

 

1.2.1.1. Solutions for mechanical problems 

Using the complex variable method, Li and Wang (2008) presented plane-strain elastic solutions 

for supported tunnels under isotropic initial stresses, accounting for the relative radius misfit and 

interaction between the circular tunnels and the support structures. Then, for plane-strain 

problems with anisotropic initial stresses, Wang and Li (2009) developed elastic solutions for 

stresses and displacements of supported circular tunnels due to ground loads and internal pressure. 

Lu et al. (2011) developed stress solutions for supported circular tunnels, considering the 

delayed installation of the support structure, and the displacement release coefficient was 

determined according to the distance between the working face and the supported section. For 

lined vertical boreholes in a homogeneous ground under non-axisymmetric loads, Lu et al. (2013) 

developed plane-stress elastic solutions, and two extreme boundary conditions (pure-bond and a 

pure-slip) on the ground-support interface have been considered. Additionally, based on the 

complex variable method and the optimization theory, Lu et al. (2019) developed analytical 

stresses solutions for supported circular tunnels, considering frictional-slip contact condition on 

the ground-support interface and the delayed installation of support. Theoretical elastic solutions 

were developed by Carranza-Torres et al. (2013) for more complex conditions, considering 

longitudinal excavation progress, the delayed installation of support structures and two different 

types of ground-support interface conditions. Besides, for non-circular supported tunnels, some 

researchers (Kargar et al., 2014; Lu et al., 2014a; Lu et al., 2014b; Lu et al., 2015) developed 
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analytical or semi-analytical solutions using the complex variable method and the conformal 

transformation method.  

In all above mentioned references, the surrounding rock masses are assumed as elastic 

materials. However, elastic material behaviour is quite different from that in real projects in 

which the rock masses exhibit strong time-dependency or plastic response (Alejano et al., 2010; 

Alejano et al., 2009; Alejano et al., 2012; Wang et al., 2020b). Actually, unlike linear elastic 

materials with constitutive algebraic equations, time-dependent viscoelastic materials have their 

constitutive relations expressed by a set of operator equations (Song et al., 2018a and 2018b; 

Wang et al., 2020b).  

Sulem et al. (1987) developed time-dependent solutions for tunnel wall displacements and 

support forces, and the Kelvin-Voigt viscoelastic model was utilized to describe the time-

dependent properties of geomaterials. Fahimifar et al. (2010) presented analytical solutions for 

circular tunnels excavated in time-dependent Burgers geomaterials under axisymmetric initial 

stresses, accounting for the longitudinal tunnelling advancement. By using Burgers viscoelastic 

model to predict ground behaviours, Nomikos et al. (2011) developed analytical solutions for 

circular tunnels with single support system under isotropic initial stresses, taking into account the 

stiffness and installation time of the support system. After that, Wang et al. (2013 and 2014a) 

presented analytical solutions for circular tunnels with two/n-support systems, considering the 

sequential excavation process of cross-section, sequential installation of the support systems, and 

viscoelastic properties of the surrounding rock masses. 

All above viscoelastic solutions were derived under isotropic initial stresses. For tunnels 

subjected to anisotropic initial stresses, Lo and Yuen (1981) developed closed-form solutions for 

time-dependent stresses and displacements of the surrounding rock masses and the support, 

considering two types of ground-support interface conditions, time-dependent properties of the 

surrounding rock masses and support, as well as the delayed installation of support. Wang et al. 

(2020b) presented time-dependent solutions of tunnels excavated in viscoelastic rock masses 

under non-hydrostatic initial stresses, two types of ground-support interface conditions (full-slip 

and no-slip) have been analysed. Using the complex variable method, the Laplace transformation 

technique and extension of the correspondence principle, Song et al (2018a and 2018b) developed 
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analytical solutions for tunnels excavated in time-dependent viscoelastic rock masses, and the 

sequential installation of the primary and the secondary support systems were accounted for. 

Furthermore, elastic-plastic, viscoplastic and viscoelastic-viscoplastic models have been 

utilized to predict the plastic response of geomaterials (Alejano et al., 2009; Alonso et al., 2003; 

Cui et al., 2019; Kabwe et al., 2020b and 2020c; Kargar, 2019; Wang et al., 2010; Zhang et al., 

2016; Zhang et al., 2012a; Zhang et al., 2019b; Zou et al., 2017a; Zou et al., 2017b; Zou et al., 

2017c). When considered plastic response of geomaterials, the design of supported tunnels 

usually tackled by the convergence-confinement method (CCM) or numerical simulations, as 

described in sections 1.2.2 and 1.2.3. Actually, some researchers developed plastic solutions for 

circular openings, which can be assumed as a type of ground reaction curves (GRC) in the CCM. 

 

1.2.1.2. Solutions for hydro-mechanical problems 

During underground excavations below the water table, there may be some seepage flow towards 

the tunnel, affecting its behaviour (Arjnoi et al., 2009; El Tani, 2003; Lee and Nam, 2004; Ming 

et al., 2010; Nam and Bobet, 2007; Nogueira et al., 2011; Park et al., 2008a). Consequently, the 

effect of seepage flow cannot be ignored, and the tunnelling responses must be analysed in a 

coupled hydro-mechanical (HM) framework (Nam and Bobet, 2007; Yuan and Harrison, 2005). 

Therefore, a proper simulation of the coupled HM behaviour and the entire excavation and 

operation phases is crucial to achieve an optimal design of tunnels. 

Regarding the ground-support interaction, Dong et al. (2019) presented analytical elastic 

solutions for stress distribution around deeply supported tunnels under the water table, using the 

complex variable method and the conformal mapping technique. Based on a generalized effective 

stress principle, Zareifard (2018) developed analytical elastic solutions for analysing and 

designing of pressure tunnels, covering various types of pressure tunnels, such as unlined, 

shotcrete lined, concrete lined, reinforced concrete lined and prestressed concrete lined pressure 

tunnels.  

Considering the plastic response of geomaterials, Carranza-Torres and Zhao (2009) 

investigated the effect of water pressure on the mechanical response of cylindrical lined tunnels 
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in the elastic and elastic-plastic porous ground that obeys Terzaghi’s effective stress principle. Li 

et al. (2014) presented plane-strain elastic-plastic solutions of the stress and displacements 

distributions around deeply circular tunnels in the isotropic saturated ground due to uniform 

ground loads and seepage forces, considering a gap between the ground and the support. 

 

1.2.2. The convergence-confinement method 

The convergence-confinement method (CCM) is an analytical-graphical procedure for designing 

support structures. The CCM developed in the 1930s (Fenner, 1938), and later refined by other 

researchers (Alejano et al., 2010; Alejano et al., 2012; Carranza-Torres and Fairhurst, 2000; 

Corbetta et al., 1991; Cui et al., 2015; Paraskevopoulou, 2016; Vlachopoulos and Diederichs, 

2009). It provides an efficient way to determine support forces by considering the ground-support 

interaction (Alejano et al., 2010 and 2012). 

As shown in Figure 1.1, the CCM consists of three basic components in the form of graphs: 

(1) the ground reaction curve (GRC) establishes the relationship between the decreasing inner 

pressure and the increasing radial displacements of the tunnel wall; (2) the longitudinal 

deformation profile (LDP) relates the radial displacements of an unsupported tunnel section with 

its longitudinal distance to the tunnel face; and (3) the support characteristic curve (SCC) 

represents the stress-strain relationship of a support system (Alejano et al., 2010; Alejano et al., 

2012; Cui et al., 2015). 

 

1.2.2.1. The ground reaction curves 

In practice, elastic-perfectly-plastic (EPP) behaviour models are often used to obtain the GRC 

(Carranza-Torres, 1998; Carranza-Torres and Fairhurst, 1999; Carranza-Torres and Fairhurst, 

2000). However, unless the rock mass is of very poor quality, the EPP models do not adequately 

represent the real post-failure behaviour of rock masses (Alejano et al., 2009; Hoek and Brown, 

1997). Some researchers (Jiang et al., 2019; Serrano et al., 2011; Wang et al., 2012a; Wang and 

Yin, 2011; Wang, 1996; Zhang et al., 2012b) presented solutions for circular openings excavated 

in elastic-brittle (EB) rock masses. Indeed, strain-softening (SS) models are more suitable for 
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simulating ground behaviour accurately, especially for average-quality rock masses (Alejano et 

al., 2009 and 2012). Moreover, both the EPP and the EB models are special cases of the SS 

model (Song and Rodriguez-Dono, 2021).  

 

 

Figure 1.1. Main elements of the convergence-confinement method (CCM). Typical graphs obtained 

for the longitudinal deformation profile (LDP) –above–, and for the ground reaction curve 

(GRC) and the support characteristic curve (SCC) –below. Based on the work of Alejano 

et al. (2009, 2010 and 2012), Song et al. (2020) and Song and Rodriguez-Dono (2021). 

 

Regarding rock masses exhibiting strain-softening (SS) behaviour, through defining a 

fictitious ‘time’ variable and re-scaling some variables, Carranza-Torres (1998a) and Alonso et al. 

(2003) presented self-similarity solutions of circular openings excavated in strain-softening 

geomaterials. Later, based on those solutions that developed in Alonso et al. (2003), Alejano et al. 
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(2009) presented the improved ground reaction curves, considering EPP, EB and SS behaviour 

models and increasingly realistic parameters. Furthermore, by using a simple stepwise procedure 

that successively determines the stresses and strains on the boundaries of a number of the annuli 

into which the plastic zone is divided, some researchers (Brown et al., 1983; Lee and 

Pietruszczak, 2008; Park et al., 2008b; Wang et al., 2012b; Wang et al., 2010; Zhang et al., 2012a; 

Zhang et al., 2018; Zou et al., 2017a) presented solutions for tunnelling in rock masses that 

exhibit strain-softening behaviour. Moreover, some researchers extended the application of the 

ground reaction curves to design non-circular tunnels (Kabwe et al., 2020b and 2020c), or 

viscoplastic problems (Kabwe et al., 2020c; Kargar, 2019; Ladanyi and Gill, 1988). 

Based on the framework of the ground reaction curves, many researchers developed hydro-

mechanical solutions for circular tunnels. Fahimifar and Zareifard (2013) developed analytical 

solutions for plane-strain and axial symmetry conditions of circular openings, considering elastic 

behaviour of ground and steady-state flow. Considering the effect of seepage forces, some 

researchers presented solutions for circular openings excavated in elastic-perfectly-plastic (Shin 

et al., 2010) or elastic-brittle (Lee et al., 2007; Zareifard and Fahimifar, 2014 and 2015) rock 

masses. Using the so-called stepwise procedure, some researchers (Fahimifar et al., 2015; 

Fahimifar and Zareifard, 2014; Yang and Huang, 2010; Zou and Li, 2015) developed solutions 

for circular openings considering seepage flow and strain-softening behaviour of surrounding 

rock masses. 

However, most of these studies only considered the completely steady-state drained 

conditions of the grounds. When considering a fully coupled hydro-mechanical model, Zhang et 

al. (2020a) and Zhang et al. (2020b) developed solutions for circular openings excavated in the 

elastic-brittle and the strain-softening rock masses, respectively. Additionally, Fang et al. (2015) 

developed stress solutions of an underwater tunnel in an elastic half-plane, using the complex 

variable method and conformal mapping method. Combining these obtained ground reaction 

curves with the CCM, the above solutions can be used for designing supported tunnels. 
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1.2.2.2. The longitudinal deformation profiles 

Regarding the longitudinal deformation profiles (LDP), many researchers developed solutions 

based on field measurements or numerical simulations. Corbeta et al. (1991) and Panet (1995) 

presented elastic solutions for the relationship between radial displacements and the distance to 

the tunnel face. Using numerical simulations, Unlu and Gercek (2003) proposed empirical 

equations for predicting normalized radial displacements ahead and behind the tunnel face, 

considering the effect of Poisson’s ratio. Additionally, based on field-measured data from a 

tunnel in the Mingtam Power cavern project (Chern et al., 1998), an empirical best-fit relationship 

of the LDP was presented for the elastic-plastic problems. After that, Vlachopoulos and 

Diederichs (2009) presented a robust formulation for the calculation of the LDP for plastic 

problems, which takes into account the significant influence of the ultimate plastic radius. 

Considering post-failure behaviour, Alejano et al. (2012) extended that approach from 

Vlachopoulos and Diederichs (2009) to the case of strain-softening rock masses, representing a 

wider range of rock masses, which can be used to obtain a more realistic approach to calculate the 

LDP. Considering time-dependent properties of rock masses, Paraskevopoulou (2016) and 

Paraskevopoulou and Diederichs (2018) presented LDP simulations for viscoelastic rock masses, 

based on the Burgers-creep viscous (CVISC) model introduced by Itasca (2007 and 2008). As a 

result of this review of the LDP, it turns out that there is still not a satisfactory general result 

considering the LDP for time-dependent plastic problems and, thus in this thesis, analysis and 

modelling of the LDP for tunnels excavated in time-dependent plastic rock masses are carried out, 

considering Mohr-Coulomb and Hoek-Brown strain-softening models. 

Nonetheless, the previously mentioned researches about the LDP were carried out without 

considering the coupled hydro-mechanical (HM) interactions. When tunnels excavated in 

saturated ground, the HM response of geomaterials is significantly important for estimating 

tunnelling responses (Guayacan-Carrillo et al., 2017; Nam and Bobet, 2007; Prassetyo and 

Gutierrez, 2018a and 2018b). Nam and Bobet (2007) proposed the empirical best-fit elastic 

solutions for the LDP for both dry and saturated ground with drained steady-state water flow 

condition. Considering coupled interactions between solid deformations and fluid flows that 

affect the HM response, Prassetyo and Gutierrez (2018b) proposed elastic solutions of the LDP 
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for predicting transient radial displacements along the tunnel axis under a fully coupled hydro-

mechanical framework. However, the surrounding rock masses were assumed as linear elastic 

materials in their research for HM problems (Prassetyo and Gutierrez, 2018b). By revising the 

references, it turns out that there is still not a satisfactory general result for the hydro-mechanical 

LDP solutions with more complex behaviour models. Therefore, the HM modelling of tunnels 

excavated in elastic-plastic and time-dependent plastic surrounding rock masses are carried out 

in this thesis. Moreover, the empirical best-fit solutions of the LDP are proposed for the elastic-

plastic saturated ground with drained steady-state seepage flow. 

 

1.2.2.3. The support characteristic curves 

Obtaining the support characteristic curves (SCC) for support system involves solving a structural 

load-displacement problem (Carranza-Torres and Engen, 2017). Closed circular type of supports 

is the most common type of support systems in the application of the CCM, and the analytical 

elastic or elastic-plastic stress-strain relationship of the SCC was usually utilized (Carranza-

Torres and Fairhurst, 2000; Song and Rodriguez-Dono, 2021; Timoshenko and Goodier, 1970; 

Wang et al., 2013; Wang et al., 2014). Furthermore, some researchers presented analytical 

expressions of the SCC for different types of supports, including rockbolts and cables and, steel 

sets used with and without wood blocks (Brady and Brown, 1993; Carranza-Torres and Fairhurst, 

2000; Hoek and Brown, 1980). Carranza-Torres and Engen (2017) developed the SCC for a 

combined support system consisting of closed circular steel sets linked to the periphery of the 

tunnel by equally spaced prismatic wood blocks. Lu and Sun (2020) developed the expressions of 

the SCC of concrete filled steel tubular arch with and without blocks.  

On the other hand, Oreste (2003) proposed the SCC for a compound support system, which 

extended the CCM in the application of tunnels with several different supports (Alejano et al., 

2009; Oreste, 2015; Oreste, 2003). However, in order to make more correct design of the 

secondary support system, the modified ground reaction curves (GRC) due to the influence of the 

primary support system is needed; research on this topic is a residual until now. To do that, the 

compatibility conditions at the rock-support and support-support interfaces should be considered. 

Therefore, at this point, the CCM meets one of its limitations. In the current research, solutions 
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for tunnels with two different support systems are developed, considering the real compatibility 

conditions on the rock-support and support-support interfaces, as well as the strain-softening 

post-failure behaviour of rock masses. 

 

1.2.3. Numerical modelling 

Numerical simulations have been widely used in the analysis of underground engineering projects, 

considering more complex geological conditions (Song and Rodriguez-Dono, 2021), due to the 

increasingly successful use of numerical techniques, such as Finite Element Method (FEM), 

Finite Difference Method (FDM), Discrete Element Method (DEM), Material Point Method 

(MPM), Smoothed Particle Hydrodynamics (SPH), and Particle Finite Element Method (PFEM), 

etc. 

Zhu et al. (2003) investigated the effect of the construction process mechanics principle on 

the stability of tunnels using the FEM and, analysed the deformation and failure of surrounding 

rock masses. Using an axisymmetric two-dimensional model in a FEM code, Bernaud et al. (1995) 

simulated the advancement of a bolt-supported tunnel and calculated its convergence as the 

excavation proceeds. Maghous et al. (2012) described a three-dimensional FEM theoretical and 

numerical model for the behaviour of tunnels reinforced by bolts. Funatsu et al. (2008) carried out 

numerical simulations using the DEM and, analysed the effect of supports and reinforcements on 

tunnel stability. Boon et al. (2015) illustrated a systematic approach of using the DEM to provide 

useful insights for tunnels support in moderately jointed rock masses.  

In order to simulate time-dependent behaviours of surrounding rock masses, 

Paraskevopoulou (2016) carried out modelling of tunnels excavated in viscoelastic rock masses, 

using the FDM software FLAC. Some other researchers investigated tunnelling response using 

viscoplastic model (Bonini et al., 2009; Careglio et al., 2016; Debernardi and Barla, 2009; Sterpi 

and Gioda, 2009; Zhu et al., 2013), three-stage creep model (Barla et al., 2011), Burger-creep 

visco-plastic model (CVISC) (Barla et al., 2011; Bonini et al., 2009; Debernardi and Barla, 

2009), Burgers-MC deterioration rheological model (Guan et al., 2009; Guan et al., 2008), 

viscoelastic viscoplastic with isotropic damage model (Kabwe et al., 2020a), or stress hardening 
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elastic viscous plastic model (SHELVIP) (Barla et al., 2011; Debernardi and Barla, 2009), etc. 

However, the tunnelling responses are not easy to be anticipated due to the use of inadequate 

geomaterial models, which is one of the largest limiting factors in numerical analyses (Lade, 

1993; Paraskevopoulou, 2016). Thus, in the current study, the coupled time-dependent plastic 

model is proposed, to simulate the mechanical behaviour of geomaterials. 

Considering hydro-mechanical coupling, tunnelling response would be more complex. Some 

researchers carried out hydro-mechanical modelling of tunnelling problems (Armand et al., 2014; 

Chen et al., 2015; Guayacan-Carrillo et al., 2017; Lisjak et al., 2015; Mánica, 2018; Moon and 

Fernandez, 2010; Seyedi et al., 2017; Shin et al., 2002). Although numerical simulations can 

provide some useful results, but without the benefit of the insight that can be gained from 

examining the relationship between the parameters (Alejano et al., 2010). Moreover, numerical 

simulations are usually carried out for some special projects, which may lead to difficulties in 

engineering applications. Additionally, few of these numerical simulations were used to estimate 

the LDP, which is critical to the design of tunnels based on the CCM. 

In this research, numerical approach is adopted to simulate longitudinal excavation of tunnels. 

Both the finite element method and the multi-stage excavation method (Gharti et al., 2012; 

Zienkiewicz and Taylor, 2000; Zienkiewicz and Taylor, 2005) have been adopted to obtain the 

LDP. Revising the literature so far on existing solutions for the LDP, research has mainly focused 

on purely mechanical problems or on HM problems but with linear elastic materials (as discussed 

in section 1.2.2). To overcome these limitations, in this thesis, the hydro-mechanical modelling of 

tunnels excavated in elastic-plastic and time-dependent plastic surrounding rock masses are 

carried out. 

However, numerical solutions for coupled non-linear problems may require high 

computational effort. Load application or construction of geotechnical structures can be easily 

smoothed by ramping in time the loads or the weight layers to be constructed. Excavation is more 

challenging because it is difficult to smooth the removal of pieces of soil or rock that occur 

instantaneously. Removal of very thin pieces of material can be a solution as it can avoid the 

sharp changes in stresses and fluid fluxes; however, it can lead to too refined meshes. To solve 

these numerical problems, in this thesis, a smoothed excavation (SE) method is proposed to 

simulate excavation so it takes place in a smooth way even for relatively coarse layers or pieces 
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of soil or rock, which can improve the numerical efficiency and the convergence of the numerical 

calculation. 

 

1.3. Research objectives and methodology 

The general objective of this doctoral thesis is to analyse the stability of tunnels and thus, 

improving the design ability of underground workings. The following aspects are addressed: 

 Propose a coupled time-dependent plastic mechanical model. In the proposed model, a 

viscous dashpot and the strain-softening model are coupled to simulate the progressive 

damage process and creep-induced failure behaviour of geomaterials. 

 Propose a smoothed excavation (SE) method and programme the SE method in the finite 

element method software CODE_BRIGHT. The SE method can improve the numerical 

efficiency and the convergence of the numerical calculation for multi-stage excavation 

problems. 

 Hydro-mechanical modelling of tunnels excavated in saturated rock masses with plastic or 

time-dependent plastic models. Meanwhile, propose the empirical plastic solutions of the 

longitudinal deformation profiles (LDP) for steady-state saturated problems. 

 Develop numerical solutions for supported tunnels constructed in strain-softening rock 

masses, considering longitudinal tunnelling advancement and sequential installation of the 

primary and secondary support systems, which can improve the design ability of supported 

tunnels. 

The finite element method and multi-stage excavation method are utilized to carry out 

numerical simulations of longitudinal tunnelling problems. The finite difference method is 

adopted to develop numerical solutions for supported tunnels constructed in strain-softening rock 

masses, considering longitudinal tunnelling advancement and sequential installation of different 

support systems. 
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1.4. Thesis outline 

This thesis is prepared as a compendium of publications, consisting of six chapters. It consists of 

four international journal articles and a conference abstract. Chapter 1 summarizes the research 

background, state-of-art, research objectives and research methodology. In chapter 6, the general 

conclusions of the thesis are presented, and the further works are recommended. Each chapter in 

chapters 2-5 corresponds to a journal article (published or to be submitted) and, thus each chapter 

can be read dependently. However, because of this, there will inevitably be some duplication. The 

contents of each chapter are briefly described in the following paragraphs. 

In chapter 2, a coupled time-dependent plastic mechanical model has been proposed, and the 

creep response and strain-softening model are coupled. Thus, the proposed mechanical model can 

simulate the progressive damage process and the creep-induced failure behaviour of geomaterials. 

Then, the time-dependent plastic model is utilized in analysing of the longitudinal deformation 

profiles (LDP). Parametric analyses are carried out, to analyse the sensitivity of the longitudinal 

deformation profiles to excavation rates, rock behaviour models selection, viscoelasticity and 

viscoplasticity. 

In chapter 3, a smoothed excavation (SE) method is proposed and programmed in the finite 

element method software CODE_BRIGHT, which can improve numerical efficiency and can 

eliminate numerical difficulties for excavation problems to some degree. The proposed SE 

method is then utilized in hydro-mechanical modelling of tunnels excavated in saturated rock 

masses with plastic response. Finally, the best-fitted empirical plastic solutions of the longitudinal 

deformation profiles for steady-state problems have developed, by fitting non-linear curves for 

the normalized radial displacements that occur ahead and behind the tunnel face. 

In chapter 4, considering a coupled solid-fluid interaction and a time-dependent plastic 

behaviour of rock masses, finite element analyses are performed to analyse tunnelling problems. 

To do that, the proposed mechanical model in chapter 2 is extended to a Burgers-viscoplastic 

strain-softening (BVSS) model, and the BVSS model can simulate the primary, secondary and 

creep-induced failure behaviour of geomaterials. Then, a coupled solid-fluid model is utilised, to 

simulate the interaction between solid deformations and fluid flows. Parametric analyses are 
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performed to analyse the influence on the tunnelling response of different time-dependent models, 

different standstill times and different excavation rates. 

In chapter 5, numerical solutions for supported tunnels excavated in strain-softening rocks 

are developed, considering the sequential construction of different support systems and 

longitudinal tunnelling process. Finite difference method is employed in the derivation, and the 

real compatibility conditions at rock-support and support-support interfaces are considered. 

Compared with the convergence-confinement method, the proposed method provides a safer 

design of tunnels with combined support systems. Finally, the application of the proposed 

solutions in the design of tunnels is presented, which provides a convenient alternative method 

for the preliminary design of tunnels. 

 

CHAPTER Equation Chapter (Next) Section 1Equation Chapter (Next) Section 1 
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Chapter 2. Analysis and modelling of longitudinal deformation 

profiles of tunnels excavated in strain-softening time-dependent rock 

masses 

Based on the published manuscripts of the following article and a conference abstract: 

Fei Song, Alfonso Rodriguez-Dono, Sebastia Olivella, Zhen Zhong. Analysis and modelling of 

longitudinal deformation profiles of tunnels excavated in strain-softening time-dependent rock 

masses [J]. Computers and Geotechnics, 2020, 125: 103643. 

https://doi.org/10.1016/j.compgeo.2020.103643  

Fei Song, Alfonso Rodriguez-Dono, Sebastia Olivella. A viscoplastic damage model combined 

with strain softening failure criterions for rock mass. 11th Workshop of CODE_BRIGHT Users: 

16th May 2019, Barcelona, Spain.  

https://deca.upc.edu/en/projects/code_bright/workshop/doc/abstracts 

 

Abstract 

Rock mass behaviour model selection, in particular, to represent the post-failure behaviour and 

time-dependent behaviour of rock masses, are critical issues in the correct application of 

tunnelling design techniques such as the convergence-confinement method or numerical 

modelling. This study provides a general numerical approach for predicting longitudinal 

deformation profiles using a coupled ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) 

model. A viscous dashpot and the strain-softening model are coupled to simulate the progressive 

damage process and creep failure behaviour of rock masses. Different failure criteria are 

considered to simulate the post-failure behaviour. As a verification step, numerical creep tests are 

carried out to analyse the coupled behaviour, and the basic viscoelastic and strain-softening 

results of the VEVP-SS model are compared with analytical solutions and numerical results. The 

proposed method is able to consider the coupling between post-failure behaviour and time-

dependent behaviour, thus providing a new alternative method for preliminary tunnel design. 
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Parametric analyses are then carried out to investigate the influence of different aspects on the 

longitudinal deformation profiles. The tunnel deformation based on the VEVP-SS model is larger 

than the corresponding elastic-plastic results due to the contribution of the creep behaviour, and 

the excavation rate becomes relevant when considering time-dependent behaviour. 

 

2.1. Introduction 

In a geomechanics framework, accidents are frequently related to fractures. The complexity of 

different geomaterials makes the study of these fractures a critical topic for the understanding of 

their behaviour; such a study constitutes a very important step in the mitigation of accidents that 

may occur in mining or civil engineering works such as tunnel excavation (Alejano et al., 2012; 

Zhao et al., 2015; Zhou et al., 2019). Rock masses undergo progressive damage and long-term 

viscous behaviour throughout excavation and construction. Some underground structures show 

large delayed displacements that could lead to failure (Fabre and Pellet, 2006). The effect of time 

on rock mass deformability and strength is a topic of considerable interest in rock mechanics 

(Damjanac and Fairhurst, 2010; Eberhardt et al., 1999). Therefore, a proper selection of rock 

mass behaviour models and a proper simulation of the entire process of excavation and 

construction are crucial to obtain a reliable tool to achieve the optimal design of tunnels. 

Most tunnel designs are currently based on empirical, analytical or numerical methods 

(Alejano et al., 2010; Alejano et al., 2009; Alejano et al., 2012; Alonso et al., 2003; Barla and 

Borgna, 2000; Barla et al., 2011; Carranza-Torres and Fairhurst, 1999; Carranza-Torres and 

Fairhurst, 2000; Conte et al., 2013; Cui et al., 2019; Cui et al., 2015; de la Fuente et al., 2019; 

Debernardi and Barla, 2009; Deng and Liu, 2020; Doležalová, 2001; Fabre and Pellet, 2006; 

Galli et al., 2004; Kitagawa et al., 1991; Mánica, 2018; Paraskevopoulou, 2016; Paraskevopoulou 

and Diederichs, 2018; Sainoki et al., 2017; Song and Rodriguez-Dono, 2021; Song et al., 2020; 

Song et al., 2018a and 2018b; Sterpi and Gioda, 2009; Sulem et al., 1987; Vlachopoulos and 

Diederichs, 2009; Wang et al., 2018a; Wang et al., 2020a; Wang et al., 2017a; Wang et al., 2019; 

Wang et al., 2013; Wang et al., 2020b; Wang et al., 2014; Wang et al., 2015; Wang et al., 2018c; 

Wang et al., 2018d; Wang et al., 2018e; Wang et al., 2017b; Yi et al., 2019; Zhao et al., 2015; 

Zhu et al., 2013; Zou et al., 2017a). Among all these methods, the convergence-confinement 
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method (CCM) is an analytical method that was developed in the 1930s (Fenner, 1938) and later 

refined by other researchers (Alejano et al., 2010; Alejano et al., 2012; Carranza-Torres and 

Fairhurst, 2000; Corbetta et al., 1991; Cui et al., 2015; Paraskevopoulou, 2016; Vlachopoulos and 

Diederichs, 2009). It provides an efficient way to determine supporting forces by considering the 

rock-support interactions (Alejano et al., 2010; Alejano et al., 2012). The CCM consists of three 

basic components in the form of graphs: 

1.  The longitudinal deformation profile (LDP) relates the radial displacements of an 

unsupported tunnel section with its longitudinal distance to the tunnel face. 

2.  The ground reaction curve (GRC) establishes the relationship between the decreasing 

inner pressure and the increasing radial displacements of the tunnel wall. 

3.  The support characteristic curve (SCC) represents the stress-strain relationship of the 

support system (Alejano et al., 2010; Alejano et al., 2012; Cui et al., 2015). Then, an adequate 

design of the required support system can be achieved by taking into account the distance from 

the tunnel face at which the support will be installed and the supporting forces to which the 

support will be subjected, which can be obtained by the intersection of the GRC and the SCC, as 

shown in Figure 2.1. 

The GRC has been studied by various researchers (Alejano et al., 2009; Alonso et al., 2003; 

Cui et al., 2019; Kabwe et al., 2020b; Wang et al., 2010; Zhang et al., 2012a; Zhang et al., 2019b; 

Zou et al., 2017a). Hoek and Brown initially presented the SCC for different types of support 

structures (Hoek and Brown, 1980), and then further research on the topic was carried out by 

other researchers (Carranza-Torres and Fairhurst, 2000; Oreste, 2008; Oreste, 2003). 

However, the main focus of this study also includes the longitudinal deformation profile 

(LDP). Many researchers have derived solutions for the LDP, most of which are based on the 

elastic (Corbetta et al., 1991; Panet, 1993; Panet, 1995; Unlu and Gercek, 2003) and elastic-

perfectly plastic (EPP) behaviour of rock masses (Carranza-Torres and Fairhurst, 1999; Carranza-

Torres and Fairhurst, 2000; Vlachopoulos and Diederichs, 2009). These models, nonetheless, do 

not seem to properly model the behaviour for average-quality rock masses (Alejano et al., 2012; 

Hoek and Brown, 1997). The response of rock masses will differ depending on the selected 

model. Considering post-failure behaviour, Alejano et al. (2012) extended the Vlachopoulos and 

Diederichs (2009) approach to the case of strain-softening rock masses, representing a wider 
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range of rock masses, which can be used to obtain a more realistic approach to calculate the LDP. 

In fact, the LDP and the GRC heavily depend on the behaviour model chosen for the rock mass 

(Alejano et al., 2012). 

 

 

Figure 2.1. Main elements of the convergence-confinement method (CCM). Typical graphs obtained 

for the longitudinal deformation profile (LDP) above and for the ground reaction curve 

(GRC) and the supporting characteristic curve (SCC) below. Different lines indicate 

different rock mass behaviour models: elastic-perfectly plastic (EPP) in the solid yellow 

line and strain-softening (SS) in the dashed green line. Based on the work of Alejano et al. 

(2012). 
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In Figure 2.1, the support design of a tunnel is estimated using CCM. For instance, if the 

support system is installed at a distance of 1.5 times the tunnel radius from the tunnel face, the 

support strength is enough to withstand the load when considering an EPP approach for the 

calculation of both the LDP and the GRC. However, at the same distance from the tunnel face, 

the support will collapse if the GRC and the LDP are calculated according to a strain-softening 

approach. Therefore, if the rock mass model cannot reproduce the actual behaviour of the rock 

mass, the resulting design may be unsafe. In the current research, a strain-softening model will be 

adopted to simulate the post-failure behaviour of rock masses. 

Nevertheless, the solutions mentioned above do not consider the time-dependent properties 

of rock masses. Most types of rock masses exhibit significant time-dependent characteristics (de 

la Fuente et al., 2019; Malan, 2002; Sainoki et al., 2017), which are known to induce gradual 

deformations over time that occur even after the completion of underground excavations. Some 

researchers presented solutions for tunnels excavated in viscoelastic geomaterials (Song et al., 

2018a and 2018b; Wang and Nie, 2010; Wang et al., 2015), but plastic behaviour cannot be 

accounted for in viscoelastic models. On the other hand, many researchers proposed elastic-

viscoplastic models (Conte et al., 2013; Debernardi and Barla, 2009; Desai and Zhang, 1987; 

Karim et al., 2013; Kutter and Sathialingam, 1992; Pellet et al., 2005; Sterpi and Gioda, 2009; 

Zhu et al., 2013), three-stage creep (3SC) model (Barla et al., 2011; Sterpi and Gioda, 2009) or 

Stress Hardening ELastic VIscous Plastic (SHELVIP) model (Barla et al., 2011; Debernardi and 

Barla, 2009) to simulate the creep and damage behaviour of geomaterials, but few of these 

models were used for the estimation of the LDP. 

Moreover, few of these models consider a Mohr-Coulomb/Hoek-Brown strain-softening 

model, which may be important to model tunnel behaviour, especially in average-quality rock 

masses (Alejano et al., 2009 and 2012). Based on the Burgers-creep viscoplastic (CVISC) model 

introduced by Itasca (2007 and 2008), Paraskevopoulou (2016) and Paraskevopoulou and 

Diederichs (2018) presented LDP simulations for viscoelastic rock masses. However, in the 

CVISC model, the plastic slider is not coupled with viscous dashpot plastic yielding, which 

means that the model behaves similarly to a viscoelastic body if the stress states are below the 

yielding threshold (Paraskevopoulou et al., 2018). However, in many engineering cases, it is 
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essential to consider the coupling between the plastic behaviour and the creep behaviour of the 

rock mass. 

In summary, research on this topic has been mostly concerned with elastic, plastic, 

viscoelastic, or viscoplastic problems. To overcome these limitations, in the current research, we 

present a new coupled ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model, which 

considers the following: 

1.  Time-dependent creep deformation. 

2.  Mohr-Coulomb and Hoek-Brown strain-softening models. 

3.  Progressive damage coupled with creep behaviour to simulate failure induced by creep and the 

subsequent progressive damage. This is the most significant part of the proposed model. 

4.  The existence of the ‘limited stress level’, which will be explained in section 2.2. Our 

approach intends to be a general numerical approach for obtaining the longitudinal deformation 

profile (LDP) of tunnels excavated in time-dependent strain-softening rock masses. 

    The coupled ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model is first introduced 

and implemented into the finite element software CODE_BRIGHT (Olivella et al., 2020). 

Numerical tests are carried out to calibrate the numerical implementation and to verify the 

coupled behaviour of viscous dashpot and strain-softening models. Then, the CODE_BRIGHT 

results are compared with analytical solutions and FLAC results to verify the viscoelastic and 

strain-softening behaviour in the VEVP-SS model, respectively. Finally, a comprehensive 

parameter analysis is provided to illustrate the sensitivity of the model to the excavation rate and 

rock mass behaviour model selection. 

 

2.2. Theoretical background 

2.2.1. Rock mass behaviour 

In many practical engineering problems, the actual behaviour of rock masses is governed by 

plastic and viscous effects (Perzyna, 1966). Many creep tests on soft rocks show that the time-
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dependent deformation generally accounts for a large amount of the total deformations (Chu et al., 

2019; Sulem et al., 1987; Tomanovic, 2006). Time dependency (also known as creep) results in 

delayed deformations and displacements, which must be taken into account to design 

underground projects more accurately and avoid safety issues in the working area 

(Paraskevopoulou and Diederichs, 2018; Paraskevopoulou et al., 2018). Moreover, the post-peak 

stress-strain behaviour of the rock mass may play a non-negligible role when a deep underground 

excavation is made (Alejano et al., 2012). Hoek and Brown (1997) provided particularly relevant 

post-peak strength guidelines. These guidelines are based on the geotechnical quality of the rock 

mass described by the geotechnical strength index (GSI): 

1.  For high-quality rock masses (GSI > 70), the rock mass behaves in a purely brittle manner. 

2.  For average-quality rock masses (25 < GSI < 70), the rock mass presents strain-softening (SS) 

behaviour, i.e. after achieving a maximum stress, the rock mass can still withstand some load. 

3.  For very weak rock masses (GSI < 25), perfectly plastic behaviour is assumed, as shown in 

Figure 2.2a. Note that these ranges are just a reference and they may vary in some cases. 

 

 

Figure 2.2. (a) Different post-failure behaviours of rock masses with different geological strength 

indexes (GSI); and (b) conceptual behaviour for a strain-softening model. Based on the 

work of Alejano et al. (2009) and Alejano et al. (2012). 
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Strain-softening behaviour can incorporate purely brittle behaviour (strain-softening with an 

infinite drop modulus, M, as shown in Figure 2.2a) and perfectly plastic behaviour (strain-

softening with a drop modulus, M, equal to zero, as shown in Figure 2.2a). M represents the drop 

modulus of the strain-softening model, as shown in Figure 2.2(a). Thus, perfectly plastic and 

purely brittle behaviours are just two particular cases of strain-softening behaviour. 

In this study, strain-softening models are adopted to simulate the post-failure behaviour of 

rock masses (Alejano et al., 2010). The yield surfaces F(, ) for strain-softening models depend 

not only on the stress tensor  but also on the plastic or softening parameter η (Alejano et al., 

2009; Alonso et al., 2003), as shown in Figure 2.2(b). Strain-softening behaviour is characterized 

by a gradual transition from the peak failure surface to the residual failure surface, which is 

governed by the plastic or softening parameter η. In a strain-softening model, a softening regime 

occurs whenever 0 <  < *, and the residual regime takes place when  ≥ * (Alejano et al., 

2009; Alonso et al., 2003). * is the value of the softening parameter at which the softening phase 

ends and the residual phase begins. 

Figures 2.3(a) and 2.3(b) present the typical creep curves of a rock mass under a constant 

applied load based on experimental data (Ramírez Oyanguren, 1966) and a conceptual model, 

respectively. As shown in Figure 2.3(b), the typical creep curves can be characterized by three 

stages: 

1.  Elastic stage: the elastic strain appears instantaneously upon loading, and the associated strains 

are fully reversible and transient (Sterpi and Gioda, 2009). 

2.  Viscoelastic stage: the displacements are induced with time under a constant stress. In some 

research, the viscoelastic stage can also be divided into the primary creep stage (the strain rate 

decreases with time) and secondary creep stage (a constant strain rate with time). Note that 

although the load reversal would cause the specimen to return to the initial dimensions in the 

primary creep stage, the associated strain is irreversible in the secondary creep stage (Sterpi and 

Gioda, 2009). In this research, only secondary creep is considered, which is reasonable for some 

cases, such as rock salt (Günther et al., 2015; Olivella and Gens, 2002), rock masses under 

squeezing conditions (Sterpi and Gioda, 2009), tunnels excavated in weak or altered rock masses 

(Sainoki et al., 2017) or very deep excavations (Sterpi and Gioda, 2009). 
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3.  Viscoelastic-viscoplastic stage (accelerated or tertiary creep stage): the strain rate starts to 

accelerate once the material starts to yield (damage). Viscoplastic strain occurs only when the 

stresses achieve a critical state, which can be defined by a yield surface F = 0. Hence, only 

elastic/viscoelastic deformations occur when F < 0, and viscoelastic-viscoplastic strains occur 

when F ≥ 0 (Paraskevopoulou, 2016). 

 

 

Figure 2.3. (a) Typical creep curve based on experimental data (Ramírez Oyanguren, 1966) and (b) 

the conceptual model of creep curves. 

 

Figure 2.4(a) presents the typical stress-strain curves of creep tests (Paraskevopoulou, 2016): 

after some incremental stress  is applied (points A, C or E), the applied load is kept constant 

for a long period of time. Note that there exists a ‘limited stress level’: for stress values below the 

‘limited stress level’, no failure occurs, even with sufficient time (see line ‘A-B’ in Figure 2.4a). 

However, for stress states above the ‘limited stress level’, the stress state will result in failure. 

This failure will occur at different values of accumulated strain. In fact, the higher the stress is, 

the lower the value of the accumulated strain that leads to failure (see lines ‘C-D’ and ‘E-F’ in 

Figure 2.4a) and the faster this failure occurs (Barla and Borgna, 2000; Damjanac and Fairhurst, 

2010; Paraskevopoulou, 2016). 
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Figure 2.4. (a) Schematic representation of the long-term stress-strain response when subjected to 

constant stress conditions, and (b) yield surface evolution for a strain-softening rock mass. 

 

In the present study, a coupled ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model 

combined with strain-softening failure criteria (Mohr-Coulomb and Hoek-Brown) is proposed. As 

shown in Figure 2.5, these tentative approaches are needed if, as recommended by Starfield and 

Cundall (1988), we follow heuristic approaches to study, analyse and understand rock mechanics 

problems. 

 

2.2.2. A coupled ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model 

In rock mechanics, Hookean elastic springs, Newtonian viscous dashpots, and plastic sliders are 

used to model a variety of rock mass behaviours (Wang et al., 2013). The coupled ViscoElastic-

ViscoPlastic Strain-Softening (VEVP-SS) model consists of an elastic spring and a viscous 

dashpot in series with the Perzyna viscoplastic model. 
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Figure 2.5.    Comparison among five mechanical models for geomaterials. 

 

Figure 2.5 shows five common typical mechanical models of a rock mass, where E
M

 (G
M

) is 

the elastic (shear) modulus of the rock mass; 
c
 and 

vp
 represent the viscosities of the viscous 

dashpot and the Perzyna model, respectively; and the parameters for the plastic slider depend on 

the failure criteria chosen. As shown in Figure 2.5, four different models can be considered as 

particular cases of the VEVP-SS model: the viscoelastic model, by assigning a sufficiently large 

value to 
vp

; the elastic-viscoplastic model, by assigning a sufficiently large value to 
c
; the 

viscoelastic-plastic model, by assigning a sufficiently small value to 
vp

; and the elastic-plastic 

model, by assigning a sufficiently large value to 
c
 and a sufficiently small value to 

vp
. Note that 

the concepts of ‘sufficiently large’ and ‘sufficiently small’ denote infinite and zero, respectively, 

for practical numerical reasons that do not significantly affect the results. 

The total strain rate tensor 
εd

dt
 of the proposed VEVP-SS model can be decomposed into 

components describing the rock elasticity ( eεd

dt
) and inelasticity ( iεd

dt
), as shown in Eq. (2.1). 
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                                                         e iε εε d dd

dt dt dt
                                                         (2.1) 

where e and i represent the elastic and inelastic strain tensors, respectively. The elastic strain 

rate can be expressed in Eq. (2.2). 

                                        e

M M

1

3 2

ε m σ
m

d dp d dp

dt K dt G dt dt

 
   

 
                                  (2.2) 

where 
 

M
M

3 1 2

E
K





 and 

 
M

M
2 1

E
G





 represent the volumetric stiffness and deviatoric 

stiffness, respectively; v represents Poisson’s ratio; and  = pm + s, in which  (p) represents the 

stress (mean stress) matrix and m = [1 1 1 0 0 0]T. The inelastic strain (
i
) is the sum of the 

viscous (creep) strain 
c
 and the viscoplastic strain 

vp
, i.e., 

i 
= c + vp

. As shown in Figure 2.5, 

the viscous dashpot is adopted to simulate the creep behaviour of rock masses. The Perzyna 

model, consisting of a viscous dashpot in parallel with a plastic slider, can simulate the 

viscoplastic behaviour of rock masses. Thus, the inelastic strain rate can be expressed by Eq. (2.3), 

where  v

c  ( d

c ) represents the volumetric (deviatoric) viscosity of the viscous dashpot, 
vp

 

represents the viscosity of the viscoplastic model and F and G represent the overstress function 

and the viscoplastic potential, respectively, of the viscoplastic model. 

      
vpci

v d

c c vp

1 1
( ) (F)

3 2

εεε m
σ m

σ

ddd G
p p

dt dt dt   


      


              (2.3) 

                                                   
0, for 0

( )
( ), for 0

F
F

F F


  

 

         

  

                                    (2.4) 

The form of ( )F  can be defined by experimental data (Perzyna, 1966). For simplicity, (F) = 

F
m

 (m ≥ 1) is adopted in this research. Overstress theory (Mánica, 2018; Perzyna, 1966) has been 

adopted for the Perzyna viscoplastic model and is different from purely plastic theory. Overstress 

theory allows the stress point to exceed the yield surface. As shown in Figure 2.6, the yield 

surface sets the limits of two different regimes in the stress space: 
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1.  If the stress point is below the yield surface, the rock mass exhibits non-viscoplastic behaviour, 

i.e., elastic or viscoelastic behaviour in the proposed model. 

2.  If the stress point is between the yield surface and the viscoplastic limit, the rock mass will 

exhibit viscoplastic properties. The viscoplastic limit is related to the viscosity of the Perzyna 

viscoplastic model, i.e., 
vp

 in Eq. (2.3). As the viscosity 
vp

 is closer to zero, the viscoplastic 

limit will be closer to the yield surface F. It must be noted again that one can always ensure a 

viscoplastic solution as close as necessary to the ‘true’ purely plastic solution by sufficiently 

decreasing the viscosity 
vp

 of the viscoplastic formulation (Alonso et al., 2005). 

 

 

Figure 2.6. Overstress theory of the viscoplastic model.  

 

In rock masses, deviatoric stress states cause deviatoric strain rates that may produce 

significant long-term deformations, while the volumetric strain is less significant (Sulem et al., 

1987). Thus, only the deviatoric part of the viscosity (
d

c ) has been considered, and the 

volumetric viscosity (
v

c ) has not been considered. In the VEVP-SS model, the overstress 

function is assumed to be equal to the viscoplastic yield function (failure criterion). Thus, the 

total strain rate can be expressed by Eq. (2.5). 
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M M

m

d

c vp

1

3 2

1 1
( )

2

εε εε m σ
m

        σ m
σ

dd dd dp d dp

dt dt dt dt K dt G dt dt

G
p F

 

 
      

 


  



   (2.5) 

It should be noted that in our proposed VEVP-SS model, only the secondary creep stage is 

considered in the viscoelastic model; hence, the associated creep strain 
c
 is irreversible 

(Debernardi and Barla, 2009; Sterpi and Gioda, 2009). Then, it is reasonable to assume that 

failure may be reached by accumulated creep deformation (e.g., from point E to point F in Figure 

2.4). To make this failure depend on the stress history and the applied stress, the viscoplastic 

yield surface is assumed to evolve from a peak failure criterion to a residual one (which we refer 

to as softening). Furthermore, after failure, both creep strain 
c
 and viscoplastic strain 

vp
 

accumulate in the proposed model to account for the strain-softening behaviour (e.g., from point 

F to the residual stage in Figure 2.4). This coupling constitutes the most important part and the 

most significant novelty of the VEVP-SS model. Hence, the proposed VEVP-SS model can be 

used to simulate the creep-induced failure shown in Figure 2.4 and the coupled behaviour 

between creep deformation and damage evolution. 

In the VEVP-SS model, as shown in Figure 2.4(b), the peak and residual yield surfaces 

define 3 different fields in the stress space: 

1.  The viscoelastic field below the residual yield surface, where the strain rates are e cε εd d

dt dt
  

(e.g., stress point B in Figure 2.4b with a stress-strain behaviour represented by the line ‘0-A-B’ 

in Figure 2.4a). 

2.  The field between the peak and residual yield surfaces, where the deformations are initially 

viscoelastic (e.g., points C and E in Figure 2.4a) but will then become viscoelastic-viscoplastic 

when the yield surfaces eventually decrease to the stress point (e.g., points D and F in Figure 

2.4a). 



CHAPTER 2 

31 

 

3.  The viscoelastic-viscoplastic field on/above the peak yield surface (e.g., point H in Figure 

2.4a), where the deformations can be divided into elastic, creep and viscoplastic parts, 

vpe c
εε ε dd d

dt dt dt
  . 

In this study, a linearly decreasing function of the plastic parameters k() is adopted to 

represent the strain-softening behaviour (Alejano et al., 2009; Alonso et al., 2003), as shown in 

Eq. (2.6), where k
peak

 and k
res

 are the peak and residual values of k, respectively. If a Mohr-

Coulomb failure surface is considered, k represents the cohesion c and friction angle , while k 

represents the m
HB

 and s
HB

 parameters when considering the Hoek-Brown failure surface. 

     
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k k
k k , for 0
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 

 


 
      
  




                        (2.6) 

Note that when considering a Mohr-Coulomb failure criterion, the relationship between the 

friction angle  and its tangent (tan) can be assumed to be approximately linear for the typical 

range of friction angle values for rock masses (< 30 deg). Nevertheless, we selected a linear 

decrease in the friction angle to represent softening, following the work of other researchers that 

used a linearly decreasing function for the friction angle (Alejano et al., 2009; Alejano et al., 

2012; Alonso et al., 2003; Lee and Pietruszczak, 2008; Zhang et al., 2012a; Zou et al., 2017a). 

The softening parameter  is defined as shown in Eq. (2.7), where 
p
 (

p
) represents the 

accumulated plastic strain and  p p p p

m x y z

1

3
      . 

            
2 2 2

2 2 2
p p p p p p p p p

x m y m z m xy yz zx

3 1 1 1

2 2 2 2
         

      
              

       
      (2.7) 

The expression of the Mohr-Coulomb strain-softening failure criterion is shown in Eq. (2.8), 

where c() and () are the plastic strain-dependent cohesion and the friction angle, respectively. 
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p, J
2 (J3

) and θ represent the mean stress, the second (third) invariable stress, and the Lode angle, 

respectively. 

                        MC 2

1
sin cos sin sin cos

3
F p J c        

 
      

 
           (2.8) 

The expression of the Hoek-Brown strain-softening failure criterion is shown in Eq. (2.9), 

where m
HB

() and s
HB

() are the plastic strain-dependent parameters of the Hoek-Brown failure 

criterion and 
ci
 is the uniaxial compressive strength of the intact rock. 
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4 2
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   (2.9) 

The Mohr-Coulomb form of the potential has been considered in both the Mohr-Coulomb 

and Hoek-Brown strain-softening models (Alejano et al., 2009 and 2012), as expressed in Eq. 

(2.10), where  is a parameter for the potential (0 ≤  ≤ 1) and  is the dilatancy angle. 

                            2

1
sin cos sin sin

3
G p J    

 
   

 
                                      (2.10) 

The total number of constitutive parameters of the ViscoElastic-ViscoPlastic Strain-

Softening (VEVP-SS) model is 12, as shown in Table 2.1: 2 classical elastic parameters, 1 

viscous (creep) parameter, and 9 viscoplastic parameters. The only clear disadvantage of the 

VEVP-SS model is the inability to simulate the primary creep stage; thus, the use of the VEVP-

SS model should be limited to cases in which large deformation occurs due to secondary and 

accelerated creep and the primary creep-induced deformation is negligible, such as tunnelling 

excavation in weak, altered or hard rock masses or very deep tunnelling excavation (Sainoki et al., 

2017; Sterpi and Gioda, 2009). 
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Table 2.1.  Constitutive parameters of the VEVP-SS model. 

 

2.3. Numerical implementation 

The proposed ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model was implemented 

into the finite element method software CODE_BRIGHT. CODE_BRIGHT (Olivella et al., 2020) 

was developed at the Department of Civil and Environmental Engineering of the Technical 

University of Catalonia (UPC) and works in combination with the pre-/post-processor GID (Coll 

et al., 2018), developed by the International Centre for Numerical Methods in Engineering 

(CIMNE). If another code is adopted, the same constitutive model presented in this study can be 

utilized. The implementation of the proposed VEVP-SS model should consider the following 

aspects: (1) the existence of corners in the yield (and potential) surfaces at which the gradients are 

not uniquely defined, and thus requiring smoothing methods; (2) the development of strain-

softening and localization. 

 

2.3.1. Smoothing method of the failure criteria and the potential 

Due to the gradient discontinuities in both the Mohr-Coulomb and Hoek-Brown failure criteria, 

we found that the developed numerical implementations suffered from non-convergence issues as 

Elastic 
E

M
 (G

M
) Elastic (shear) modulus 

v Poisson’s ratio 

Viscous 
c
 The viscosity of the viscous dashpot 

Viscoplastic 


vp

 The viscosity of the Perzyna model 

m Stress power 

* The critical softening parameter 

 Dilatancy angle 

 Associativity parameter 

c
peak, cres, peak, res

 Parameters for the Mohr-Coulomb strain-softening model 

m
peak, mres, speak, sres

 Parameters for the Hoek-Brown strain-softening model 



CHAPTER 2 

 

34 

 

well as excessive CPU time consumption. Therefore, to overcome these problems, smoothing 

methods have been adopted to round both yield surfaces and the potential function. Expressions 

of both the Mohr-Coulomb failure surface and the potential function were based on a smoothing 

method described in the scientific literature (Abbo et al., 2011; Abbo and Sloan, 1995). On the 

other hand, it should be noted that the smoothed Hoek-Brown failure surface was derived in this 

study. 

The smoothed Mohr-Coulomb strain-softening yield surface (Abbo and Sloan, 1995) shown 

in Eq. (2.11) was adopted in the current research, where a = m
mc

c()cot(), and a is typically 

defined as 0.25. 

                            2 2 2

MC 2 MC sin sin cosF J K a p c                        (2.11) 

As the value of the hyperbolic parameter m
MC

 approaches zero, the yield surface approaches 

a hyperbolic shape (Abbo and Sloan, 1995). In addition, an alternative form of K
MC

() in the 

vicinity of the singularities was defined to round the failure surface function F (Abbo and Sloan, 

1995), as shown in Eq. (2.12), where 
T
 is a specified transition angle, typically defined as 25 deg. 
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Since the second derivative of the plastic potential should also be continuous, the C2 method 

(Abbo et al., 2011) was used to smooth the potential function. Following the method of Abbo et 

al. (2011), the smoothed potential was adopted, which can be expressed as shown in Eq. (2.13). 



CHAPTER 2 

35 

 

The alternative form of K
G
() in the vicinity of the singularities can be expressed as shown in Eq. 

(2.14), where 
T
 is a specified transition angle, typically defined as 25 deg. 
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These equations were adapted from Abbo et al. (2011) and Abbo and Sloan (1995). The 

reader is referred to the original source for a detailed description of the smoothed approximation 

(C1 and C2) to the Mohr-Coulomb failure surface. 

However, the smoothed approximation to the Hoek-Brown yield surface was derived in the 

current research and is presented in Eq. (2.15), and the alternative form of K
HB

(, ) in the 

vicinity of the singularities can be expressed as Eq. (2.16), where 
T
 is a specified transition angle, 

typically defined as 25 deg. The derivatives of K
HB

() with respect to  are shown in Eq. (2.17). 
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Note that the expressions of A
HB

 and B
HB

 were obtained by matching the zero and first 

derivatives for the rounded surface to those for the Hoek-Brown surface at 
T
 and 

T
, providing 

two linear equations, as shown in Eqs. (2.18) and (2.19). 

  2

HB HB T T 2 HB T

ci

4 2
A B sin 3 cos cos

63
J m


   



 
    

 
  (2.18) 

  HB T T 2 HB T

ci

8 2
3B cos3 cos sin sin

63
J m


    



 
    

 
  (2.19) 

Finally, the coefficients of A
HB

 and B
HB

 can be determined, and the corresponding 

expressions are shown in Eqs. (2.20) and (2.21). 
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2.3.2. The gradients of the yield surface and potential 

The gradients of the yield surface and the potential function with respect to the stresses play an 

essential role in the numerical implementation. The derivative of Eq. (2.1) with respect to the 

stress tensor can be expressed in Eq. (2.22), where the first derivative of the yield surface with 

respect to the stress, 
σ

F


, is expressed in Eq. (2.23); the first derivative of the potential with 

respect to the stress, 
σ

G


, is expressed in Eq. (2.24); and the second derivative of the potential 

with respect to the stress, 
2

2
σ

G


, is expressed in Eq. (2.25). 
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2.3.2.1. The first derivative expressions of the Mohr-Coulomb and Hoek-Brown failure 

criteria 

The first derivative of the failure surface is shown in Eq. (2.26).  
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For the Mohr-Coulomb failure criterion, 
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For the Hoek-Brown failure criterion, 
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2.3.2.2. The first and second derivative expressions of the potential function 

The first derivative of the potential function is presented in Eq. (2.38). 
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The second derivative of plastic potential function is presented in Eq. (2.43). 
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2.3.3. Strength parameter update and strain localization 

In the proposed VEVP-SS model, the strength parameters are the cohesion and friction angle if 

the Mohr-Coulomb failure surface is chosen or m
HB

 and s
HB

 if the Hoek-Brown failure surface is 

chosen. A specific implementation has been developed to compute the accumulated plastic 

(unrecoverable) strain 
p
, i.e., the sum of the viscous strain c and viscoplastic strain vp, in this 
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model. For the elements in the numerical model, the accumulated unrecoverable strain is updated, 

and then the softening parameter  is updated based on Eq. (2.7). Finally, the strength parameters 

are updated following the function of Eq. (2.6), and the failure surface is updated. 

As shown in Figure 2.4(b), the peak residual strength surfaces divide the stress space into 3 

fields: 

1.  For the elements where the stress state is below the residual strength, the accumulated 

unrecoverable strain (
p
) is equal to the viscous strain 

c
, i.e., 

p
 = 

c
. Therefore, the response will 

be only viscoelastic in this case, even if the strength parameters are updated. 

2.  For the elements where the stress state is between the peak and residual strength surfaces, 

the accumulated strain is equal to the viscous (creep) strain at the beginning of the simulation, 

and the strength parameters are updated with the increase in the accumulated creep strain (as well 

as the softening parameter ). Thus, the failure surface shrinks with increasing , and the stress 

state could then meet the failure surface if  is sufficiently large. After that, the accumulated 

unrecoverable strain is assumed to be a combination of viscous and viscoplastic strains (
p
 = 

c
 + 


vp

). 

3.  For the elements where the stress state is on/above the peak strength, the accumulated 

unrecoverable strain is assumed to be a combination of viscous and viscoplastic strains, i.e., 
p
 = 


c
 + 

vp
, and thus, their response would be viscoelastic-viscoplastic. The softening parameters can 

be updated based on Eq. (2.7), when the unrecoverable strain is obtained. 

Nonetheless, softening behaviour may introduce numerical difficulties. In some cases, 

instability occurs because softening concentrates at isolated elements, while other elements in 

their vicinity experience stress relaxation. However, the viscoplastic approach that is adopted for 

our strain-softening model is capable of homogenizing the spatial distribution of softening strain, 

which benefits the control of the size of the localized zone and thus allows avoidance of the 

dependency on the employed mesh (Günther et al., 2015; Mánica, 2018). In addition, from an 

engineering point of view, strain localization effects are not relevant when considered on an 

appropriately large spatial scale (Alejano et al., 2010), as would be the case of the tunnel 

excavation model in this research. In section 2.4.2, an analysis of the effect of mesh on the 

resulting tunnel deformation is carried out. 
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2.4. Numerical verification  

To verify the numerical implementation, an example of a creep test was first carried out to verify 

the coupled behaviour between the creep model and the strain-softening model. After that, a 

number of 2D axisymmetric numerical models were employed to assess the performance of the 

viscoplastic model in tunnel excavation, including a mesh-independence analysis. Finally, the 

viscoelastic part and the strain-softening part of the proposed VEVP-SS model were verified 

separately by comparison with analytical solutions (Wang et al., 2014; Wang et al., 2015) and 

FLAC numerical results (Alejano et al., 2012), respectively. 

 

2.4.1. Verification of the coupled behaviour 

As we explained in section 2.2, the most important novelty of the VEVP-SS model is the coupled 

behaviour between the creep model and the strain-softening model. Hence, a biaxial creep 

numerical test was carried out to analyse the coupled behaviour implemented in CODE_BRIGHT. 

Note that the analyses made do not represent any particular experiment, and the conditions and 

parameters adopted in the simulation were simply chosen to evaluate the key aspects of the 

coupled behaviour. 

The model used here is 2D axisymmetric with dimensions of 0.01 m  0.05 m. The normal 

displacements along the bottom and left boundaries were restrained, as shown in Figure 2.7(a). In 

addition, constant stresses were applied along the top boundary, with values of p
y
 = 20.0 MPa, 

respectively. A mesh with 2250 quadratic triangle elements was considered for the analysis, as 

shown in Figure 2.7(b). The calculation was stopped at 150 days. In this sub-section, the Mohr-

Coulomb strain-softening model was adopted for this example, and the parameters input into the 

numerical simulations are listed in Table 2.2. 
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Figure 2.7. Creep numerical test: (a) basic features and boundary conditions (not real scale), and (b) 

mesh (real scale). A mesh with 2250 quadratic triangle elements. 

 

In Figure 2.8, the results of the viscoelastic (VE) model and the ViscoElastic-ViscoPlastic 

Strain-Softening (VEVP-SS) model are compared. At the start of the simulation, stress point A 

(Figure 2.7a) is inside the viscoelastic domain, as shown in Figure 2.8(a), so only viscoelastic 

strain occurs. Hence, initially, a steady creep takes place under constant stress, with the 

viscoelastic strain in the x and y directions increasing similarly for both the VE and VEVP-SS 

models, with the chosen point A maintains a constant stress under the constant stress condition 

imposed. 
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Figure 2.8. (a) Normal strain in the x and y directions for the viscoelastic (VE) and ViscoElastic-

ViscoPlastic Strain-Softening (VEVP-SS) models at point A in Figure 2.7(a). (b) Strength 

parameters (cohesion and friction angle in the Mohr-Coulomb strain-softening model) 

versus the softening parameter () at point A in Figure 2.7(a). 

 

However, as the accumulated plastic (unrecoverable) strain increases, the yield surface 

decreases due to softening induced by creep (i.e. the softening parameter  develops due to the 

accumulated viscoelastic strain 
c
). Consequently, when the yield surface reaches the point of our 

analysis, the strain rate accelerates due to both the creep and viscoplastic contributions. Figure 
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2.8(b) presents the softening process in terms of the cohesion and friction angle. Based on the 

numerical analysis, it can be concluded that creep behaviour is coupled with plastic behaviour in 

the proposed VEVP-SS model. 

 

Table 2.2.  Mechanical properties of the rock mass in the numerical biaxial creep tests. 
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Figure 2.9.    Numerical examples of creep tests for five different applied stresses. 

 

For further calibration, a series of biaxial creep tests were carried out to analyse the 

relationship between the principal strain and the applied stress. The numerical geometry and 

mesh are the same as in the former example, as shown in Figure 2.7. In the biaxial creep tests, 

Input parameters for the ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model 
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five different applied stresses were considered, p
y = 10.0 MPa, 15.0 MPa, 20.0 MPa, 25.0 MPa, 

30.0 MPa and 35.0 MPa. The calculation was stopped at 150 days. The input parameters of 

materials are the same as those in Table 2.2, and these parameters were estimated with the intent 

of matching experimental data from the scientific literature. Figure 2.9 shows the time-dependent 

strains of the point B (see Figure 2.7). In Figure 2.9, it shows that different stresses result in 

different strains, and a higher applied stress will result in larger deformation, which is consistent 

with the conclusion of laboratory tests (Cristescu and Hunsche, 1998; Sterpi and Gioda, 2009). 

 

2.4.2. Mesh independency 

As previously mentioned in section 2.3, numerical analysis involving softening problems may 

exhibit a marked dependency on the finite element mesh employed. In this section, a number of 

2D axisymmetric models were developed to assess the performance of the viscoplastic approach 

in the simulation of softening problems. In these models, a deeply buried tunnel with a diameter 

of 5 m is excavated in an elastic-viscoplastic (
c  ) and low-quality rock mass (GSI

peak
 = 40, 

GSI
res

 = 27), exhibiting a strong strain-softening behaviour. The rock specific weight is 25 kN/m3 

and the rest of the input parameters concerning this low-quality rock mass are shown in Table 2.3. 

Moreover, two different values of viscosity were adopted (
vp 

= 10
2
 MPa

5
s and 

vp = 10
4
 MPa

5
s) 

to assess the influence of viscoplastic viscosity on mesh independency. 

Furthermore, the tunnel is presented as a rectangle with a length of 55 m (Figure 2.10) so that 

22 excavation steps of 2.5 m in length can be performed. The tunnel is excavated at a depth of 

1500 m, implying a field stress of 37.5 MPa. Hence, the normal displacements are fixed along the 

axisymmetric axis (x = 0) and on the bottom of the model (y = 0), and a pressure of 37.5 MPa is 

applied to the other boundaries of the model. As shown in Figure 2.11, four meshes with different 

qualities were adopted to analyse the effect of mesh on the resulting displacements. The meshes 

are composed of the following number of quadratic triangular elements (i.e., triangles with 6 

nodes): (a) 988, (b) 2016, (c) 3719, and (d) 6342. 
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Figure 2.10.    Basic features and boundary conditions for the 2D axisymmetric excavation model. 

 

 

 

Figure 2.11. Four different mesh qualities used in the numerical analysis. The meshes are composed of 

the following number of quadratic triangular elements: (a) mesh_01: 988 elements, (b) 

mesh_02: 2016 elements, (c) mesh_03: 3719 elements, and (d) mesh_04: 6342 elements. 
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Table 2.3.  Input parameters of the ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model. 

Input parameters of the ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model 

Different quality of rock masses  High Medium Low 

GSI 
Peak  60 50 40 

Residual  35 30 27 

Elastic parameters 
Elastic modulus E

M
 (MPa) 15400 8660 4870 

Poisson’s Ratio v 0.25 0.25 0.25 

Viscoelastic parameters Deviatoric viscosity  d

c
 (MPa s)    

Viscoplastic 

parameters 

Stress power m 5 5 5 

Viscosity of the Perzyna model 
vp (MPa

m
s) 10

2
 (*) 10

2
 (*) 10

2
 (*) 


T
 for F and G 

T (deg) 25 25 25 

Post-

failure 

behaviour 

Hoek-

Brown 

Peak values 

m
HB

 1.68 1.17 0.821 

s
HB

 0.0110 0.0039 0.0013 

Residual values 

m
HB

 0.687 0.575 0.516 

s
HB

 0.0007 0.0004 0.0003 

Mohr-

Coulomb 

Peak values 
c (MPa) 2.67 2.24 1.88 

 (deg) 25.7 23.1 20.6 

Residual values 
c (MPa) 1.71 1.54 1.43 

 (deg) 19.4 18.2 17.5 

Smoothing 

parameter 
a 0.25 0.25 0.25 

Critical softening parameters * 0.0062 0.0288 0.119 

Plastic 

potential 

Associativity parameter  1.0 1.0 1.0 

Dilatancy angle  (deg)  4.49 2.89 1.55 

(*) A sufficiently small value of 
vp

 to make the solution comparable to the purely plastic case 
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Finally, Figure 2.12 presents the radial deformation versus the distance to the tunnel face for 

the aforementioned four meshes (mesh_01, mesh_02, mesh_03 and mesh_04) and for two 

different values of the viscoplastic viscosity 
vp

 (
vp = 10

2
 MPa

5
s and 

vp = 10
4
 MPa

5
s). The good 

agreement shown among the results obtained with different mesh qualities verifies the mesh-

independency of the proposed strain-softening model in tunnel design applications. 
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Figure 2.12. Radial deformation u

 versus the distance to the tunnel face x

d
 for (a) 

vp
 = 10

2
 MPa

5
s and 

(b) 
vp

 = 10
4
 MPa

5
s. Four different mesh qualities (mesh_01, mesh_02, mesh_03 and 

mesh_04) are adopted for each case. 

 

 

2.4.3. Verification of the viscoelastic model 

The VEVP-SS model can be simplified to a viscoelastic model, as shown in Figure 2.5. To verify 

the viscoelastic model, an example of a circular tunnel excavated in a viscoelastic rock mass is 

carried out in CODE_BRIGHT. The numerical results are compared with the analytical solutions 

of Wang et al. (2014a and 2015), who presented analytical solutions for circular tunnels with a 

time-dependent boundary. The expressions for tunnels excavated in Maxwell viscoelastic 

geomaterials under isotropic initial stresses are shown in Eq. (2.48), where G
M

 and 
d

c  are the 
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deviatoric stiffness (shear modulus) and the deviatoric viscosity of the Maxwell viscoelastic 

model, respectively. R represents the time-dependent radius of the tunnel section; t represents 

time; p
0
 represents the initial stress; u represents the incremental radial displacements that 

occurred during the excavation along the radial axis; and  represents the radial location in polar 

coordinates (, ), where = 0 represents the location of the tunnel centre. 

      20

d0
M c

1 1

2

tp
u t t R d

G
    

 

 
    

 
                               (2.48) 

The numerical model developed using CODE_BRIGHT is consistent with the hypothesis 

made in the analytical model, and both of them are calculated under plane-strain conditions with 

small deformation. Only a quarter of the tunnel structure is analysed in the numerical model 

(Figure 2.13) because of the double symmetry of the geometry and the boundary conditions on 

both the x and y axes. Moreover, the normal displacements along the bottom (y = 0) and the left (x 

= 0) boundaries are restrained. Figure 2.14 shows the mesh of the numerical model in the vicinity 

of the tunnel. A mesh of 764 quadratic triangular elements was adopted, with finer elements near 

the excavation. The initial stresses in the model are p
0 

= 20 MPa. 

For the rock mass, G
M = 2000 MPa, and 

d

c = 8.64  10
8
 MPa.s. The first section of the 

tunnel was instantaneously excavated at time equal to zero, t = 0 day. The following sections of 

the tunnel were excavated step by step, and the radius of the tunnel cross-section can be 

expressed by Eq. (2.49). 

                                       

2 m, for  0 5 days

4 m, for  5 days 10 days

6 m, for  10 days 15 days

8 m, for  15 days

   

    

    

    

t

t
R t

t

t

 


 
 

 
 

                                (2.49) 

After the completion of all excavation steps, the calculation was stopped at t = 30 days. 
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Figure 2.13.    Basic features and boundary conditions for the plane-strain excavation model. 

 

 

Figure 2.14.    Mesh and geometry of the plane-strain excavation model. 
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A comparison of the time-dependent incremental radial displacements that occurred during 

the excavation along the radial axis (u) predicted by the analytical solutions and the numerical 

simulations is shown in Figure 2.15 for points A, B, and C (see Figure 2.13). A good agreement 

between the numerical and analytical results is observed, verifying the viscoelastic model in 

CODE_BRIGHT. 

 

 

Figure 2.15. Comparison between analytical solutions (Wang et al., 2014a and 2015) and 

CODE_BRIGHT results for the incremental radial displacements u

. 

 

 

2.4.4. Verification of the strain-softening model 

The VEVP-SS model can be simplified to the elastic-plastic strain-softening model by applying a 

sufficiently small 
vp

 and a sufficiently large 
c
, as shown in Figure 2.5. To verify the theory and 

implementation of the strain-softening model, the results of the longitudinal deformation profile 

(LDP) obtained from CODE_BRIGHT are compared with the FLAC results from Alejano et al. 

(2012). The numerical model developed using CODE_BRIGHT is made to be consistent with the 

one described by Alejano et al. (2012) and both of the models are solved using the elastic-plastic 

strain-softening model. 
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In the simulation, the geometry, boundary conditions, initial field stress and excavation 

process are the same as those described in section 2.4.2. The rock masses were weak intact rock, 

with m
i
 = 7 and 

ci
 = 35 MPa. Three rock masses with different geotechnical qualities (high, 

medium and low) were adopted in the comparison, and Table 2.3 shows the input parameters for 

these rock masses (Alejano et al., 2012). Considering the post-failure behaviour, simulations are 

performed using both perfectly plastic (PP) and strain-softening (SS) models. Moreover, both the 

Mohr-Coulomb and Hoek-Brown failure criteria are used. Mesh_02 (in Figure 2.11) is adopted in 

the following numerical analysis. 

The FLAC2D and FLAC3D results from Alejano et al. (2012) were used for the comparison 

with the CODE_BRIGHT results. Neumann boundary conditions were adopted in the FLAC2D 

numerical models, and the discretised area was 70 m  100 m (Alejano et al., 2012). Dirichlet 

boundary conditions were adopted in the FLAC3D numerical models, and the discretised domain 

was 60 m  60 m  60 m (Alejano et al., 2012). A more detailed description of the numerical 

models was provided by Alejano et al. (2012). In the comparison, the radial displacements u 

were normalized by the maximum radial displacements u max

 , and the distance to the tunnel face 

x
d
 were normalized by the radius of the tunnel R. 

Figures 2.16 and 2.17 show good agreement of the longitudinal deformation profile (LDP) 

obeying the Mohr-Coulomb perfectly plastic (MC-PP), Mohr-Coulomb strain-softening (MC-SS), 

Hoek-Brown perfectly plastic (HB-PP), and Hoek-Brown strain-softening (HB-SS) models 

between CODE_BRIGHT, FLAC2D and FLAC3D, verifying the implementation of the strain-

softening model. The slight differences in Figure 2.17 between the CODE_BRIGHT, FLAC2D 

and FLAC3D results when using the HB failure criterion may be caused by the different 

smoothing methods of the Hoek-Brown failure criterion (as shown in section 2.3) and the use of 

different types of boundary conditions (Dirichlet versus Neumann). 
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Figure 2.16. Comparison between FLAC results (Alejano et al., 2012) and CODE_BRIGHT results for 

the normalized longitudinal deformation profile for three different rock mass qualities, (a) 

high-quality rock mass (GSI
peak

 = 60, GSI
res

 = 35), (b) medium-quality rock mass (GSI
peak

 

= 50, GSI
res

 = 30), and (c) low-quality rock mass (GSI
peak

 = 40, GSI
res

 = 27), considering 

the Mohr-Coulomb perfectly plastic (MC-PP) and the Mohr-Coulomb strain-softening 

(MC-SS) behaviour models. 
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Figure 2.17. Comparison between FLAC results (Alejano et al., 2012) and CODE_BRIGHT results for 

the normalized longitudinal deformation profile for three different rock mass qualities: (a) 

high-quality rock mass (GSI
peak

 = 60, GSI
res

 = 35), (b) medium-quality rock mass (GSI
peak

 

= 50, GSI
res

 = 30), and (c) low-quality rock mass (GSI
peak

 = 40, GSI
res

 = 27), considering 

the Hoek-Brown perfectly plastic (HB-PP) and the Hoek-Brown strain-softening (HB-SS) 

behaviour models. 
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2.5. The application of the VEVP-SS model in the design of tunnels 

The creep-induced failure behaviour of rock may be relevant for many engineering cases, such as 

for some tunnels that do not fail during the process of tunnel excavation and support construction 

but ultimately fail after long-term operation (Fabre and Pellet, 2006; Sandrone and Labiouse, 

2010). This phenomenon may be caused by the coupling between the creep behaviour and the 

strain-softening behaviour of rock masses, which can now be simulated by the proposed 

ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model. 

 

 

Figure 2.18. The longitudinal deformation profile (LDP) in a ViscoElastic-ViscoPlastic Strain-

Softening (VEVP-SS) rock mass. 

 

As shown in Figure 2.18, if the VEVP-SS model is adopted to simulate the rock mass 

behaviour, the rock mass can be divided into two different zones: (1) viscoelastic zone and (2) 

viscoelastic-viscoplastic zone. In this section, an example is carried out to analyse the tunnelling 

excavation problems of deeply buried tunnels. The influence on the resulting longitudinal 

deformation profiles (LDPs) of several modelling features, such as the rock mass geotechnical 

quality (GSI), the post-failure behaviour model chosen, the viscosity introduced in the model, or 

the tunnel excavation rate, will be illustrated. Moreover, the examples show the potential 

applicability of the proposed VEVP-SS model. 
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The excavated tunnel is 5 m in diameter and buried approximately 750 m deep. The initial in 

situ stress is assumed to be p
0
 = 18.75 MPa. The numerical model geometry, boundary conditions, 

and excavation process (see Figure 2.10) are the same as those described in section 2.4.2. In the 

following numerical simulations, Mesh_02 with 2016 quadratic triangular elements is adopted, as 

shown in Figure 2.11(b). Three different (high, medium and low quality) rock masses are 

considered, and the parameters of the rock masses, including (1) the elastic parameters, (2) the 

stress power, (3) the post-failure behaviour and (4) the potential, are shown in Table 2.3. To 

simplify the analysis, the radial displacements u are normalized by the corresponding maximum 

displacements of the elastic model u max

,elastic , and the distance to the tunnel face x
d
 is normalized by 

the radius of the tunnel R
1
. For the sake of comparison, two special cases that do not consider the 

time-dependent behaviour of the rock mass are presented in all of the following parametric 

analyses: (1) elastic behaviour and (2) elastic-plastic behaviour (EP). 

 

2.5.1. Influence of the selection of rock mass behaviour models 

The longitudinal deformation profiles (LDPs) of four different post-failure behaviour models are 

investigated: (1) the Mohr-Coulomb perfectly plastic (MC-PP), (2) the Mohr-Coulomb strain-

softening (MC-SS), (3) the Hoek-Brown perfectly plastic (HB-PP), and (4) the Hoek-Brown 

strain-softening (HB-SS) models. In the example, the viscosities of the viscous and viscoplastic 

models are 
d

c  = 10
10

 MPa.s and 
vp = 10

4
 MPa

5
s, respectively. The excavation rate is 2.5 m/day. 

Without considering the time-dependent behaviour of rock masses, i.e., for the elastic and 

elastic-plastic (EP) models, Figure 2.19 shows the normalized longitudinal deformation profile 

along with the normalized distance to the tunnel face. For time-independent materials, the 

displacements first increase and then reaches a stable value when the distance to the tunnel face is 

large enough. 

The LDP obeying the Hoek-Brown failure criterion is, from an engineering point of view, 

similar to the LDP obeying the Mohr-Coulomb failure criterion. Furthermore, it should be noted 

that the difference between the LDP calculated for perfectly plastic (PP) rock masses and for 
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strain-softening (SS) rock masses increases as the GSI increases (Alejano et al., 2012). For high-

quality rock masses, the LDP obtained is significantly different if we consider perfectly plastic or 

strain-softening behaviour, while this difference can be negligible for lower-quality rock masses, 

as expected since PP behaviour accurately represents the behaviour of low-quality rock masses of 

GSI < 40 (Alejano et al., 2009). 

For viscoelastic-viscoplastic (VEVP) models, the displacements are caused not only by 

elastic and strain-softening processes but also by the creep behaviour of the rock mass; thus, the 

displacements keep increasing throughout the simulation, even at high x
d
/R ratios. This can be a 

reasonable assumption for some cases: rock salt (Tomanovic, 2006), rock masses under 

squeezing conditions (Sterpi and Gioda, 2009), tunnels excavated in weak or altered rock masses 

(Sainoki et al., 2017) or very deep excavations (Sterpi and Gioda, 2009). 

Figures 2.20 and 2.21 present the longitudinal deformation profiles determined by using the 

elastic, elastic-plastic (EP) and viscoelastic-viscoplastic (VEVP) models, obeying the Mohr-

Coulomb failure criterion and the Hoek-Brown failure criterion, respectively. The displacement 

results of the VEVP model are larger than the corresponding EP results, due to the additional 

contribution of the viscous (creep) behaviour. 

At a great depth, stress redistributions due to tunnel excavation may lead to so-called 

squeezing conditions, both in low- and high-quality rock masses (Debernardi and Barla, 2009). In 

this context, large deformations may develop due to secondary and tertiary creep, while the 

primary creep-induced deformation may be considered negligible (Sainoki et al., 2017). Thus, the 

proposed ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) model may be useful to 

reproduce the actual behaviour of rock masses under these conditions. 
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Figure 2.19. Normalized longitudinal deformation profiles along with the normalized distance to the 

tunnel face by using elastic and elastic-plastic (EP) mechanical models; the Mohr-

Coulomb (Hoek-Brown) perfectly plastic, i.e., MC-PP (HB-PP), post-failure behaviour 

model; and the Mohr-Coulomb (Hoek-Brown) strain-softening, i.e., MC-SS (HB-SS), 

post-failure behaviour model. Three different rock qualities are considered: (a) GSI
peak

=60, 

GSI
res

=35, (b) GSI
peak

=50, GSI
res

=30, and (c) GSI
peak

=40, GSI
res

=27. 
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Figure 2.20. Normalized longitudinal deformation profiles along with the normalized distance to the 

tunnel face by using the elastic, elastic-plastic (EP), and viscoelastic-viscoplastic (VEVP) 

mechanical models; the Mohr-Coulomb perfectly plastic (MC-PP) post-failure behaviour 

model; and the Mohr-Coulomb strain-softening (MC-SS) post-failure behaviour model. 

Three different rock qualities are considered: (a) GSI
peak

=60, GSI
res

=35, (b) GSI
peak

=50, 

GSI
res

=30, (c) GSI
peak

=40, and GSI
res

=27. 
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Figure 2.21. Normalized longitudinal deformation profiles along with the normalized distance to the 

tunnel face by using the elastic, elastic-plastic (EP), and viscoelastic-viscoplastic (VEVP) 

mechanical models; the Hoek-Brown perfectly plastic (HB-PP) post-failure behaviour 

model; and the Hoek-Brown strain-softening (HB-SS) post-failure behaviour model. 

Three different rock qualities are considered: (a) GSI
peak

=60, GSI
res

=35, (b) GSI
peak

=50, 

GSI
res

=30, (c) GSI
peak

=40, and GSI
res

=27. 
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2.5.2. Influence of the excavation rates 

To analyse the influence of the excavation rates on the resulting longitudinal deformation profiles 

(LDPs), three different excavation rates were considered: V = 0.83 m/day, V = 1.25 m/day and V 

= 2.5 m/day. The elastic, elastic-plastic (EP), and viscoelastic-viscoplastic (VEVP) models were 

considered. Both Mohr-Coulomb perfectly plastic (MC-PP) and Mohr-Coulomb strain-softening 

(MC-SS) post-failure behaviour models were adopted in this example. In the VEVP model, the 

viscosities of the viscous and viscoplastic models were  d

c  = 10
10

 MPa.s and 
vp

 = 10
4
 MPa

5
s, 

respectively. 

Figures 2.22 and 2.23 show the LDP obeying the MC-PP and the MC-SS post-failure 

behaviour models, respectively. For the elastic and elastic-plastic rock masses, the LDP is 

identical for different excavation rates, i.e., the elastic and elastic-plastic LDPs are only related to 

the distance to the tunnel face x
d
. However, for the viscoelastic-viscoplastic rock masses, the 

shapes of the LDPs are very different for different excavation rates, and the displacements do not 

achieve a steady state in this case due to the contribution of the creep deformation. Lower 

excavation rates may lead to larger displacements because there is more time for creep 

deformation to develop. The difference between the longitudinal deformation profiles (LDPs) 

calculated for elastic-plastic rock masses and for viscoelastic-viscoplastic rock masses increases 

with the GSI. 

 

2.5.3. Influence of the viscosity 

As shown in Figure 2.5, the viscoelastic-viscoplastic model can be simplified to an elastic-

viscoplastic model by assigning a sufficiently large value to 
c
, while it can be simplified to a 

viscoelastic-plastic model when 
vp

 is close to zero. To analyse the effect of viscosity, including 

the viscosity of the viscous (creep) model  d

c
 and the viscosity of the viscoplastic model 

vp
, on 

the resulting longitudinal deformation profile (LDP), an example is presented herein. In this 

numerical simulation, three different excavation rates are considered: V = 0.83 m/day, V = 1.25 

m/day and V = 2.5 m/day. In this sub-section, the proposed VEVP-SS model is adopted, and the 
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post-failure behaviour is described by the Mohr-Coulomb strain-softening (MC-SS) model. It 

should be noted that some of the values of  d

c
 and 

vp
 in this sub-section maybe not realistic but 

are useful to perform a sensitivity analysis of viscosity. 

 

-6 -3 0 3 6 9 12 15
0

1

2

3

4

5

6

7

8

9

10(a)

GSI
peak

=60

GSI
res  

=35

u

/u

m
a
x


e

la
st

ic

x
d
/R

                          2.5 m/day   1.25 m/day  0.83 m/day

VEVP,MC-PP                                 

EP,MC-PP                                          

Elastic                                              

-6 -3 0 3 6 9 12 15
0

1

2

3

4

5

6

7

8

9

10(b)

GSI
peak

=50

GSI
res   

=30

u

/u

m
ax


e

la
st

ic

x
d
/R

                          2.5 m/day   1.25 m/day  0.83 m/day

VEVP,MC-PP                                 

EP,MC-PP                                          

Elastic                                              

 

-6 -3 0 3 6 9 12 15
0

1

2

3

4

5

6

7

8

9

10(c)

GSI
peak

=40

GSI
res   

=27

u

/u

m
ax


e

la
st

ic

x
d
/R

                          2.5 m/day   1.25 m/day  0.83 m/day

VEVP,MC-PP                                 

EP,MC-PP                                          

Elastic                                              

 

Figure 2.22. Normalized longitudinal deformation profiles along the normalized distance to the tunnel 

face for three different excavation rates (0.83 m/day, 1.25 m/day and 2.5 m/day) and for 

three different rock qualities: (a) GSI
peak

=60, GSI
res

=35, (b) GSI
peak

=50, GSI
res

=30, and (c) 

GSI
peak

=40, GSI
res

=27. Three different rock mass behaviour models are adopted: elastic 

model; the elastic-plastic and Mohr-Coulomb perfectly plastic (EP, MC-PP) model; and 

the viscoelastic-viscoplastic and Mohr-Coulomb perfectly plastic (VEVP, MC-PP) model. 
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Figure 2.23. Normalized longitudinal deformation profiles along the normalized distance to the tunnel 

face for three different excavation rates (0.83 m/day, 1.25 m/day and 2.5 m/day) and for 

three different rock qualities: (a) GSI
peak

=60, GSI
res

=35, (b) GSI
peak

=50, GSI
res

=30, (c) 

GSI
peak

=40, GSI
res

=27. Three different rock mass behaviour models are adopted: the 

elastic model; the elastic-plastic and Mohr-Coulomb strain-softening (EP, MC-SS) model; 

and the viscoelastic-viscoplastic and Mohr-Coulomb strain-softening (VEVP, MC-SS) 

model. 
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Figure 2.24. Normalized longitudinal deformation profiles along with the normalized distance to the 

tunnel face by using the Mohr-Coulomb strain-softening (MC-SS) rock mass behaviour 

model for three different viscosities of the viscous model 
d

c , for three different 

excavation rates: (a) 0.83 m/day, (b) 1.25 m/day, and (c) 2.5 m/day. 
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Figure 2.25. Normalized longitudinal deformation profiles along the normalized distance to the tunnel 

face by using the Mohr-Coulomb strain-softening (MC-SS) rock mass behaviour model 

for three different viscosities of the viscoplastic model 
vp

 and for three different 

excavation rates: (a) 0.83 m/day, (b) 1.25 m/day, and (c) 2.5 m/day. 

 

Figure 2.24 shows a sensitivity analysis of the viscosity on the viscous (creep) part,  d

c
. 

Three different viscosities are adopted for the viscous model,  d

c
 = 1010 MP s, 510

10
 MP s, and 

10
11

 MP s, and the viscosity of the viscoplastic model is adopted as 
vp = 10

2
 MPa

5
s. The larger 

the value of  d

c
 is, the smaller the displacement. Figure 2.25 shows a sensitivity analysis of the 
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viscosity on the viscoplastic part, 
vp

. Three different viscosities are considered for the 

viscoplastic model, 
vp = 10

2
 MPa

5
s, 10

5
 MPa

5
s, and 10

8
 MPa

5
s, and the viscosity of the viscous 

model is adopted as  d

c
 = 10

11 MPa s in this case. The smaller the value of 
vp is, the larger the 

displacement. In both Figures 2.24 and 2.25, lower excavation rates produce larger displacements, 

caused by larger creep displacements during the excavation process. 

 

2.6. Conclusions 

This study provides a general coupled ViscoElastic-ViscoPlastic Strain-Softening (VEVP-SS) 

model. This VEVP-SS model has been implemented into the finite element method software 

CODE_BRIGHT. In the VEVP-SS model, creep behaviour and strain-softening models are 

coupled, which can be used to simulate the creep-induced failure and subsequent damage of rock 

masses. 

The viscous dashpot and the Perzyna models are adopted to simulate the creep and 

viscoplastic behaviours of rock masses, respectively. Both the Mohr-Coulomb and Hoek-Brown 

failure criteria, as well as the strain-softening post-failure behaviour of rock masses, are 

considered. By using a smoothing approximation method, the yield surfaces and the potential are 

smoothed in the numerical implementation. The numerical model is verified by a comparison 

between the CODE_BRIGHT results and other analytical or numerical results. 

Finally, an example is carried out to predict the longitudinal deformation profile (LDP) used 

in the convergence-confinement method (CCM). The effects of the rock mass behaviour model 

selection, the geotechnical quality of the rock mass, the viscosity, and the excavation rates on the 

longitudinal deformation profile (LDP) are investigated. The proposed approach can be used in 

the preliminary design of tunnels excavated in time-dependent strain-softening rock masses. 

Some conclusions can be obtained from the parametric analysis: 

1.  Elastic-plastic, elastic-viscoplastic, viscoelastic, viscoelastic-plastic models can be considered 

special cases of the VEVP-SS model, so they can be modelled using the proposed model. In 
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addition, strain-softening post-failure behaviour or a simpler perfectly plastic or purely brittle 

post-failure behaviour can be selected for any case. 

2.  The LDP varies according to the selected rock mass behaviour model. For instance, the 

displacement results of the VEVP model are larger than the corresponding elastic-plastic results 

due to the contribution of the viscous (creep) behaviour. In addition, the results of the elastic and 

elastic-plastic models are identical for different excavation rates, while the excavation rate 

becomes relevant when taking into account time-dependent behaviour. 

3.  When using the VEVP model, the obtained LDP obeying the Hoek-Brown failure criterion is, 

from an engineering point of view, similar to the obtained LDP obeying the Mohr-Coulomb 

failure criterion. Moreover, the difference between the LDPs calculated for perfectly plastic rock 

masses and for strain-softening rock masses grows as the GSI increases. Furthermore, when 

choosing the viscoelastic-viscoplastic rock mass behaviour model, the model is more sensitive to 

the excavation rate in comparison to the sensitivity of the elastic-plastic behaviour model. 

4.  The proposed VEVP model is very sensitive to the input values of viscosity. For the VEVP 

model, the greater the values of 
c
 or 

vp
 are, the smaller the displacements. 

Even if the proposed model can reproduce many different rock mass behaviours, there are 

still some limitations in the proposed VEVP-SS model. For instance, the strain rate is constant 

under a constant stress in the Maxwell viscoelastic model, which may reproduce only a limited 

number of practical cases. In chapter 4, the Burgers viscoelastic model has been coupled with the 

Perzyna model to consider the influence of primary creep and thus improve the applicability of 

the numerical approach to real engineering. 
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Chapter 3. Hydro-mechanical modelling and analysis of multi-stage 

tunnel excavations using a smoothed excavation method 

Based on the published manuscript of the following article: 

Fei Song, Alfonso Rodriguez-Dono, Sebastia Olivella. Hydro-mechanical modelling and analysis 

of multi-stage tunnel excavations using a smoothed excavation method. Computers and 

geotechnics [J]. Computers and Geotechnics, 2021, 135: 104150. 

https://doi.org/10.1016/j.compgeo.2021.104150 

 

Abstract 

The main objective of this study is to provide a general numerical approach for the hydro-

mechanical (HM) modelling of tunnels excavated in saturated rock masses exhibiting plastic 

behaviour, considering a multi-stage excavation process. First, a smoothed excavation (SE) 

method has been proposed and implemented in the software CODE_BRIGHT, based on the finite 

element method. In this method, the stresses in the excavation elements are reduced smoothly. As 

verification, the principle of uniqueness has been tested for multi-stage excavation. Then, 

numerical studies have been carried out to verify the advantages of the proposed excavation 

method in the numerical calculation, showing that the proposed method improves computational 

efficiency and mitigates convergence issues. Hence, this method can solve the usual numerical 

difficulties related to excavation problems and, therefore, it allows a more in-depth analysis of the 

HM behaviour of rock masses during tunnel excavation.  

Moreover, the results obtained in CODE_BRIGHT using the proposed method are compared 

with existing solutions for longitudinal deformation profiles (LDP), including elastic-plastic 

solutions for mechanical problems and elastic solutions for HM problems. Furthermore, this 

study presents the HM modelling of tunnels excavated in saturated rock masses, analysing the 

sensitivity of the LDP to the HM conditions and to the rock mass quality. Finally, based on a 

large amount of data obtained from numerical simulations, empirical solutions for the LDP of 

tunnels excavated in saturated rock masses –in a steady-state HM framework– have been 



CHAPTER 3 

 

70 

 

obtained by fitting non-linear curves for the normalised radial displacements that occur ahead and 

behind the tunnel face. Hence, the current research attempts to provide a convenient set of 

alternatives for the preliminary design of tunnels excavated in saturated rock masses. 

 

3.1. Introduction 

Tunnelling in several stages is a common process in many geotechnical engineering constructions. 

There may be some seepage flowing towards the tunnel during excavations below the water table, 

affecting its behaviour (Lee and Nam, 2004; Nam and Bobet, 2007; Nogueira et al., 2011). 

Consequently, the effect of seepage flow cannot be ignored in tunnel design and the response of 

the rock mass must be analysed in a hydro-mechanical (HM) framework (Figure 3.1) (Nam and 

Bobet, 2007; Yuan and Harrison, 2005). Therefore, a proper simulation of the HM behaviour and 

the entire multi-stage excavation process is crucial to obtain a reliable tool in order to achieve an 

optimal tunnel design. 

 

 

Figure 3.1. Conceptual model of a tunnel excavated in a hydro-mechanical framework. Seepage 

flowing towards the tunnel –above–; and its longitudinal deformation profile –below. 
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Tunnel design can be approached by analytical, numerical or empirical methods (Alejano et 

al., 2010; Alejano et al., 2009; Alejano et al., 2012; Alonso et al., 2003; Barla et al., 2011; 

Carranza-Torres and Fairhurst, 1999; Carranza-Torres and Fairhurst, 2000; Carranza-Torres et al., 

2013; Carranza-Torres and Zhao, 2009; Cui et al., 2019; de la Fuente et al., 2019; Mánica, 2018; 

Paraskevopoulou, 2016; Paraskevopoulou and Diederichs, 2018; Song et al., 2018a and 2018b; 

Sterpi and Gioda, 2009; Vlachopoulos and Diederichs, 2009; Wang et al., 2020a; Wang et al., 

2017a; Wang et al., 2019; Wang et al., 2013; Wang and Nie, 2010; Wang et al., 2020b; Wang et 

al., 2014; Wang et al., 2015; Wang et al., 2018d; Wang et al., 2017b; Yi et al., 2019; Zhang et al., 

2012a; Zhang et al., 2019b; Zhao et al., 2015; Zhou et al., 2019; Zhu et al., 2013; Zou et al., 

2017a). One such analytical method is the convergence-confinement method (CCM), developed 

in the 1930s (Fenner, 1938), and later refined by other researchers (Alejano et al., 2010; Alejano 

et al., 2012; Carranza-Torres and Fairhurst, 2000; Corbetta et al., 1991; Cui et al., 2015; 

Paraskevopoulou, 2016; Vlachopoulos and Diederichs, 2009). It provides an efficient way to 

determine support forces by considering ground-support interactions (Alejano et al., 2010; 

Alejano et al., 2012). The CCM consists of three graphs (Figure 3.2). The ground reaction curve 

(GRC) establishes the relationship between the decreasing inner pressure and the increasing 

radial displacements of the tunnel wall. The support characteristic curve (SCC) represents the 

stress-strain relationship of the support system. Furthermore, the longitudinal deformation profile 

(LDP) relates the radial displacements of an unsupported tunnel section with its longitudinal 

distance to the tunnel face (Alejano et al., 2010; Alejano et al., 2012; Cui et al., 2015).  

Hence, using the CCM, an appropriate tunnel design can be achieved, taking into account the 

distance from the tunnel face where the support will be installed and the corresponding forces to 

which the support will be subjected until it reaches equilibrium with the ground (point E; Figure 

3.2) (Song and Rodriguez-Dono, 2021). 

This study focuses on the analysis of longitudinal deformation profiles (LDP) in a hydro-

mechanical (HM) framework with plastic response. Regarding the LDP, many researchers 

derived solutions based on field measurements or numerical simulations. Corbeta et al. (1991) 

and Panet (1995) presented elastic solutions for the relationship between radial displacements and 

the distance to the tunnel face. Using numerical simulations, Unlu and Gercek (2003) proposed 

empirical equations for predicting normalised radial displacements ahead and behind the tunnel 
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face, considering the effect of Poisson’s ratio. Additionally, based on field-measured data from a 

tunnel in the Mingtam Power cavern project (Chern et al., 1998), an empirical best-fit relationship 

was presented for the LDP of elastic-plastic problems.  

 

 

Figure 3.2. Main elements of the convergence-confinement method (CCM). Typical graphs obtained 

for the longitudinal deformation profile (LDP) –above–, and for the ground reaction curve 

(GRC) and the support characteristic curve (SCC) –below. Based on the work of Alejano 

et al. (2009, 2010, 2012), Song et al. (2020) and Song and Rodriguez-Dono (2021). 

 

After that, Vlachopoulos and Diederichs (2009) presented a robust formulation for the 

calculation of the LDP that takes into account the significant influence of the ultimate plastic 
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radius. Considering post-failure behaviour, Alejano et al. (2012) extended that approach from 

Vlachopoulos and Diederichs (2009) to the case of strain-softening rock masses, representing a 

wider range of rock masses, which can be used to obtain a more realistic approach to calculate the 

LDP. Moreover, based on the Burgers-creep viscous (CVISC) model introduced by Itasca (2007 

and 2008), Paraskevopoulou (2016) and Paraskevopoulou and Diederichs (2018) presented LDP 

simulations for viscoelastic rock masses. Recently, Song et al. (2020) presented analysis and 

modelling of LDP for tunnels excavated in strain-softening time-dependent rock masses. 

Nevertheless, the studies mentioned above on LDP were conducted without considering HM 

conditions, yet the majority of deep tunnels are excavated below the groundwater table (Nam and 

Bobet, 2007). However, as explained above, when tunnelling in saturated ground, we must 

consider not only the purely mechanical response, but the HM response of the geomaterials in the 

estimation of displacements.  

Furthermore, Nam and Bobet (2007) and Prassetyo and Gutierrez (2018b) proposed 

empirical best-fit solutions for the normalised radial displacements ahead and behind the tunnel 

face for saturated ground with water flow, and rock masses were assumed as linear elastic 

materials in their research. However, the response of rock masses will differ depending on the 

selected model, as have been demonstrated by other researchers considering the post-failure 

behaviour of rock masses in purely mechanical models (Alejano et al., 2010; Alejano et al., 2012; 

Alonso et al., 2003). To deepen in this analysis, HM modelling of tunnels for plastic geomaterials 

has been carried out in the current research. 

Both the finite element method (FEM) and the multi-stage excavation method (Gharti et al., 

2012; Zienkiewicz and Taylor, 2000; Zienkiewicz and Taylor, 2005) have been adopted in this 

research to obtain the LDP. During the multi-stage excavation process, certain parts of the model 

–corresponding to the tunnel excavation– are removed systematically. Hence, new boundaries are 

being created, which need the appropriate boundary conditions so that the stresses and pressures 

are properly redistributed (Gharti et al., 2012; ISHIHARA, 1970). 

The typical conception in the numerical simulation of excavations has been to cancel the 

contributions of the nodes belonging to the excavated elements and to leave the boundary surface 

of the tunnel free of stress (Borja et al., 1989; Brown and Booker, 1985; Christian and Wong, 
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1973; Comodromos et al., 1993; Desai and Sargand, 1984; Ghaboussi and Pecknold, 1984; Gharti 

et al., 2012; ISHIHARA, 1970; Olivella et al., 2020). However, most of these simulations are 

limited to a purely mechanical (M) phase or to hydro-mechanical (HM) models for linear elastic 

materials. Unlike these cases, HM modelling of excavations for non-linear geomaterials may 

encounter numerical difficulties, being time-consuming or even suffering from non-convergence 

issues, due to the complex coupling between HM boundary conditions and non-linear constitutive 

models. To solve these numerical problems, we propose a smoothed excavation (SE) method to 

improve the efficiency and the convergence of the numerical calculation. 

In summary, research on LDP has mainly focused on purely mechanical problems or HM 

problems but with linear elastic materials. To overcome these limitations, in this study we present 

a numerical approach for the hydro-mechanical (HM) modelling of tunnels excavated in saturated 

rock masses showing plastic behaviour, using the proposed SE method. The hydro-mechanical 

theory used in this study is described below, and the proposed SE method has been implemented 

in the finite element method software CODE_BRIGHT (Olivella et al., 2020). Numerical studies 

have been carried out to perform computational efficiency and convergence analyses for the 

proposed SE method. Then, the CODE_BRIGHT results have been compared to previous LDP 

elastic-plastic solutions for mechanical problems (Alejano et al., 2012; Vlachopoulos and 

Diederichs, 2009) and to previous LDP elastic solutions for HM problems (Nam and Bobet, 2007; 

Prassetyo and Gutierrez, 2018b), for verification purposes. Subsequently, numerical analyses 

related to the LDP of tunnels excavated in saturated rock masses showing plastic behaviour have 

been carried out. Finally, based on the large amount of data obtained by these numerical 

simulations, we have proposed an empirical best-fit solution of the LDP for saturated rock masses 

with plastic response under steady-state conditions, with the aim of facilitating its use in 

engineering practice. 
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3.2. Theoretical background 

3.2.1. The coupled hydro-mechanical theoretical formulation 

In this study, rock masses are composed of rocks and water –i.e. saturated conditions–. In 

CODE_BRIGHT, saturated rock masses are treated, from a modelling perspective, as an 

equivalent porous medium. In saturated rock masses, subjected to hydraulic and mechanical 

conditions, hydro-mechanical (HM) coupled phenomena takes place. 

Hydraulic and mechanical aspects are considered, including the coupling between them in 

both directions, as shown in Figure 3.3. Changes in hydraulic conditions influence the 

stress/strain field through changes in pore water pressure. Moreover, changes in the volume of the 

pores (or joints) caused by volumetric strains influence pore (or joint) pressure distributions. 

 

 

Figure 3.3.    Conceptual model of the hydro-mechanical coupled behaviour. 
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Figure 3.4.    The two existing phases in saturated rock masses. 

 

As illustrated in Figure 3.4, the problem is formulated in a multi-phases approach. In this 

problem, the water component is always in the liquid phase (l), and the rock component is always 

in the solid phase (s). Conceptually, this means that the water is considered to be in the joints of 

the rock mass, which are the main vector of water seepage. The theoretical HM formulation used 

herein is a special case of the general formulation presented in Olivella et al. (1996). However, 

for the sake of clarity, a brief description is presented here. More detailed finite-element 

formulation utilised in CODE_BRIGHT, including the weak forms of the governing equations 

and explicit definitions of the resulting matrices and vectors, can be found in Olivella et al. 

(1996). 

 

3.2.1.1. Mass balance of the solid phase 

Total solid phase per unit volume of rock mass can be expressed as in Eq. (3.1). 

  s 1    (3.1) 

where 
s
 represents the solid phase density –the density of the rock– and  represents the porosity 

(understood as the volume of the joints per unit volume of rock mass), as shown in Figure 3.4. V
S
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and V
l
 represent the volumes of the solid and liquid phases, respectively; V = V

S
 + V

l
. The mass 

balance of the solid phase present in the rock mass can be expressed as in Eq. (3.2). 

     s s1 0j
t


   


  (3.2) 

  s s 1
u

j
d

dt
     (3.3) 

where j
s
 represents the mass flux of the rock with respect to a fixed reference system, as shown in 

Eq. (3.3); and 
ud

dt
 is the velocity field due to the deformation of the rock. From Eqs. (3.2) and 

(3.3), an expression can be obtained for the variation of the porosity –Eq. (3.4)– using the 

material derivative with respect to the solid –Eq. (3.5)–. Eq. (3.4) expresses the variation of 

porosity caused by volumetric deformation and solid density variation (Olivella, 1995). 

 
 

 
1

1
us s s

s

D D d

Dt Dt dt

 





      (3.4) 

 
   

 
usD d

Dt t dt

  
   


  (3.5) 

 

3.2.1.2. Mass balance of the liquid phase 

The total mass balance of water is expressed as shown in Eq. (3.6). 

 
  u

q
l w

l l l

d
f

t dt

 
  

  
   

  
  (3.6) 

where q
l
, l represent liquid flux and liquid density, respectively; f 

w
 is a source/sink term. 

Porosity multiplied by density gives the mass of water per unit volume of rock mass. 

After using the material derivative, Eq. (3.6) can lead to Eq. (3.7). 
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 

 
u

q
s l ws

l l l l

D D d
f

Dt Dt dt

 
           (3.7) 

Then, combining Eq. (3.7) with Eq. (3.4), we can obtain Eq. (3.8). 

 
   

 s l ws s
l l l l

s

1 u
q

D D d
f

Dt Dt dt

  
   




       (3.8) 

 

3.2.1.3. Stress equilibrium equation 

The balance of momentum for the rock mass can be expressed as in Eq. (3.9). 

 0σ b     (3.9) 

where  represents the stress tensor and b represents the vector of body forces. 

 

 

3.2.2. Constitutive theory 

3.2.2.1. Phase and species fluxes 

The liquid advective flux related to phase motion is governed by the generalised Darcy’s law, as 

shown in Eq. (3.10). 

  rl
l l l

l

k
q g

k
p 


      (3.10) 

where p
l
 represents the liquid pressure; k represents the intrinsic permeability tensor, which 

depends on the joint structure of the rock mass; k
rl
 and 

l
 represent the relative permeability and 

dynamic viscosity of the fluid, respectively; g represents the vector of gravity forces.  
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3.2.2.2. Mechanical constitutive equations 

Experimental results have shown that an elastic-viscoplastic approach is more adequate than an 

elastic-plastic approach to reproduce the yielding behaviour of geomaterials (Olivella, 1995). In 

addition, the viscoplastic approach facilitates the control of the size of the localised area and, 

therefore, avoids dependence on the mesh used (Alonso et al., 2005; Mánica, 2018; Song et al., 

2020). The elastic-viscoplastic model has been frequently applied to reproduce the time-

dependent effect of geomaterials (Mánica, 2018). The total strain rate 
εd

dt
 can be decomposed 

into instantaneous elastic elasticεd

dt
 and time-dependent viscoplastic 

perzynaεd

dt
 components, as 

shown in Eq. (3.11). 

 
perzynaelastic
εεε ddd

dt dt dt
    (3.11) 

where elasticεd

dt
= e σ

C
d

dt
 is the generalised Hooke’s law, and C

e
 represents the inverse of the elastic 

tangent stiffness matrix. Perzyna’s model consists of a viscous Newtonian dashpot in parallel 

with a plastic slider, as shown in Figure 3.5. The strain rate of the Perzyna’s model can be 

expressed as in Eq. (3.12). 

 
perzyna

perzyna

1
( )

ε

σ

d G
F

dt 


 


  (3.12) 

where F and G represent failure criterion and plastic potential, respectively; and the symbol 

(F) can be expressed as in Eq. (3.13). The function (F) can be chosen from experimental 

results (Perzyna, 1966). For the sake of simplicity, (F) = F
 m

 (m ≥ 1) is adopted in the present 

research, where m represents the stress power. 

 
( ) if ( ) 0

( )
0  if ( ) 0

F F
F

F

  
    

 

    

           
  (3.13) 
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Figure 3.5. The elastic-viscoplastic model. 

 

 

Figure 3.6. The overstress theory scheme. Based on the work of Perzyna (1966) and Manica (2018). 

 

Moreover, the overstress theory has been considered in Perzyna’s viscoplastic model 

(Mánica, 2018; Perzyna, 1966). Unlike the purely plastic theory, the overstress theory allows the 

stress points to exceed the yield surface. As shown in Figure 3.6, the yield surface establishes the 

limit between two different regimes in the stress space:  

1.  If the stress point is below the rate-independent yield surface, the geomaterial exhibits elastic 

behaviour; 
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2.  If the stress point is between the rate-independent yield surface and the viscoplastic limit, the 

geomaterial exhibits elastic-viscoplastic properties. The viscoplastic limit is related to the 

viscosity of the Perzyna viscoplastic model, i.e. 
perzyna

 in Eq. (3.12). As the viscosity value 


perzyna

 approaches zero, the viscoplastic limit will be closer to the yield surface F. It should be 

noted that a viscoplastic solution as close as necessary to the ‘true’ purely plastic solution can 

always be ensured by sufficiently lowering the value of the viscosity 
perzyna

 in the viscoplastic 

formulation (Alonso et al., 2005). 

For the sake of numerical efficiency and convergence, a smoothed hyperbolic Mohr-

Coulomb failure criterion is adopted in this study (Abbo and Sloan, 1995), as shown in Eq. (3.14). 

 
  2 2 2

MC 2 2 MC MC

MC MC

, , sin sin cos

  cot

F p J J K a p c

a m c

   



   


 (3.14) 

where p, J
2
 and  represent the mean stress, the second invariant of the deviatoric stress tensor 

and the Lode angle, respectively; c and  represent cohesion and friction angle; m
MC

 represents 

the hyperbolic parameter of the smoothed failure criterion, to control the hyperbolic shape; K
MC

 

can be expressed as in Eq. (3.15). 
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where: 
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where 
T
 is the transition angle (usually, 25 deg). These equations have been adapted from Abbo 

and Sloan (1995). The reader is referred to the original source for a detailed description of the 

smoothed approximation to the Mohr-Coulomb failure surface. 

    The plastic potential G can be expressed as in Eq. (3.16). 

 2 2 2

2 G G sin sin cosG J K a p c        (3.16) 

where a
G = m

G
 c cot ;  represents the dilation angle; m

G
 represents the hyperbolic parameter of 

the smoothed potential surface (Song et al., 2020). The alternative form of K
G
 can be expressed as 

in Eq. (3.17). 

 

G G T
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where: 

 G T T T T T

1 1
cos 3 tan tan 3 tan 3 3tan sin

3 3
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 
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 
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T
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sin sin cos

3cos3 3
B    



 
   

 
. 

The strain rate of the Perzyna’s model can be obtained as shown in Eq. (3.18). 

 
perzyna m 2

perzyna perzyna 2

1 1
( )

ε
=

σ σ σ σ

d JG G p G G
F F

dt p J



  

      
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  (3.18) 
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3.3. Numerical approach to the smoothed excavation method 

A multi-stage excavation has been modelled in the finite element method (FEM) software 

CODE_BRIGHT (Olivella et al., 2020) to obtain longitudinal deformation profiles (LDP) of 

saturated rock masses that show plastic behaviour. CODE_BRIGHT has been developed by the 

Department of Civil and Environmental Engineering of the Technical University of Catalonia 

(UPC), and works in combination with the pre/post-processor GID (Coll et al., 2018), developed 

by the International Centre for Numerical Methods in Engineering (CIMNE). 

Since the HM modelling of excavations –especially in the case of geomaterials with non-

linear behaviour– usually encounters numerical difficulties, an alternative smoothed excavation 

(SE) method is proposed in this study to improve the efficiency of numerical calculation in 

excavation problems (section 3.3.1). The proposed SE method, implemented in the FEM software 

CODE_BRIGHT, is described in section 3.3.2. Finally, the implementation of the SE method will 

be verified in sections 3.3.3 and 3.3.4. Note that the same method presented in this study could be 

used in case of utilising other code.  

The numerical approach employed in CODE_BRIGHT to solve the resulting system of 

partial differential equations includes a spatial and a temporal discretisation. For spatial 

discretisation, the finite element method is used, while for temporal discretisation the finite 

difference method is used. The discretisation in time is linear, and the implicit scheme uses two 

intermediate points, t
k+

 and t
k+

 between the initial t
k
 and final t

k+1
 times. In order to solve non-

linear problems, the Newton-Raphson (N-R) method has been adopted to find an iterative scheme. 

A more detailed description of this numerical approach can be found in the work of Olivella 

(1995), Olivella et al. (1996) and Olivella et al. (2020). 

 

3.3.1. Conceptual scheme 

The typical conception for numerical simulation of excavations, including the former excavation 

method used in CODE_BRIGHT, is to instantly remove the excavated elements from the mesh, 

so that the surface of the excavated tunnel is stress-free (this excavation method is named 
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‘inactive’ in this study, because excavated elements become inactive). However, when modelling 

the excavation of tunnels, if simply using this typical approach –deleting the elements of the 

excavated material–, it may result in numerical problems. 

As shown in Figure 3.7, there are different possible stress unloading paths during an 

excavation stage (e.g. Line 1, 2 or 3). The typical excavation method used so far in 

CODE_BRIGHT was to remove the excavated elements from the mesh instantly, so that the 

surface of the excavated tunnel was stress-free (i.e., line 1 in Figure 3.7). However, this sudden 

change in boundary conditions can lead to numerical problems that could cause not only a 

dramatic increase of central processing unit (CPU) time, but sometimes also non-convergences 

issues (probably due to divergence from the expected solution) and, as a result, the simulation 

stops. 

 

 

Figure 3.7.    Evolution of the stresses in the elements excavated during an excavation stage. 
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Alternatively, using the same method, we can smooth the stress changes in the tunnel 

boundary by dividing each excavation stage into n phases, applying staggered boundary 

conditions at the successive surfaces of the excavated tunnel, as it is represented by Line 3 in 

Figure 3.7, which can eliminate non-convergence issues to some extent. However, to model 

excavations in this way, it can be a tedious process, resulting in excavations with a large number 

of phases, each of them with different boundary conditions to be applied. On the contrary, the SE 

method is a numerical approach that allows to reduce the stresses in the surfaces of the tunnel 

smoothly (e.g. Line 2 in Figure 3.7), so this tedious process is done automatically, hence reducing 

numerical difficulties. 

As mentioned above, due to the sudden change in boundary conditions and the sudden 

removal of elements, the numerical simulation may experience numerical difficulties during 

excavation, especially in the initial time step of the excavation stage (time interval during which 

excavation is carried out on the model), as well as excessive CPU time consumption. In order to 

overcome these limitations, a smoothed excavation (SE) method for finite element analysis is 

presented here. As a first step in the proposed SE method, it is considered that the elements that 

are being excavated behave elastically. In addition, the stresses of the corresponding excavation 

elements will be reduced smoothly, according to Eq. (3.19).  

            initial

n

tt initial

final initial

A B
t t

t t
 

  
    

   

                                            (3.19) 

where t represents time; t and tinitial represent the stress at time t and the stress at the initial time 

of the excavation stage, respectively; t
initial

 and t
final

 represent the initial time and the final time of 

the excavation stage; A and B are user-defined parameters that take values between 0 and 1, 

while n is a user-defined  power. The main utility of Eq. (3.19) is to smooth the process of stress 

unloading during excavation to mitigate numerical difficulties. 

A is related to the stress at the beginning of the excavation, B is related to the stress at the 

end of the excavation, and n is related to the shape of the unloading function. For instance, if A = 

1, then the stresses in the excavated elements are relaxed from their current stress; whereas if A < 

1, then the excavated elements are relaxed from a lower stress level. On the other hand, if B = 1, 
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the excavated material is relaxed until it is stress-free (usual case); whereas if B < 1, then the 

excavated elements are relaxed to a stress level greater than zero. Finally, if n = 1, the stresses of 

the excavated elements are relaxed linearly; whereas if n > 1 (or n < 1), the stresses are relaxed in 

an accelerated (or decelerated) manner during the excavation stage. Figure 3.8 presents three 

examples of the stress reduction process in excavated elements, according to Eq. (3.19). After the 

excavation stage ends, the excavated material is completely removed from the model at the next 

excavation stage –if any– (using the aforementioned ‘inactive’ method). 

In fact, to capture the correct tunnel excavation response, it is important to correctly resemble 

the real stress unloading path in the numerical models because a dynamic unloading condition is 

often created in some excavation methods (Cai, 2008). Compared with the ‘inactive’ method, the 

SE method provides an option to simulate the unloading stress path more realistic, even though it 

needs more research to define the most adequate unloading function. 
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Figure 3.8.    Examples of the process of stress relaxation in the elements being excavated. 

 

Moreover, the proposed SE excavation method may be useful in modelling tunnelling 

problems using 2D plane-strain models. In this case, the unloading function may provide a 

possibility of simulating approximately the evolution of the fictitious support forces (Cui et al., 

2015; Song and Rodriguez-Dono, 2021). Thus, it would be possible to set their value in the 
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moment when the support is installed –i.e. not relaxing the stresses to zero, but to a particular 

value of stress that would be case-dependent (we can do this changing the value of B in Eq. 

(3.19))–.  Anyway, although it may be interesting to analyse the influence of the values of A, B 

and n in Eq. (3.19) for simulating more realistically the fictitious support forces, it would require 

much further analysis, exceeding considerably the objectives of this study. 

Furthermore, a multitude of numerical tests carried out during this research have shown that 

volumetric deformation creates enormous pore pressures due to changes in porosity, constituting 

one of the main causes of the numerical issues found in HM models. Hence, if the effects of the 

volumetric deformation on the hydraulic behaviour were neglected, the numerical performance of 

the HM simulations would be improved. Thus, an option has been implemented in 

CODE_BRIGHT that allows ignoring the effects of volumetric deformation on the hydraulic 

behaviour of the excavated elements during the excavation stage. We consider that this option 

does not significantly affect the resulting displacements in the tunnels. However, it could provide 

numerical advantages. 

 

3.3.2. Numerical implementation 

As mentioned above, using the proposed SE method in those elements that are being excavated, 

the stresses are smoothly decreased, and the effects of volumetric deformation changes on 

hydraulic behaviour are avoided. To implement the proposed excavation method, it is necessary 

to calculate the smoothness factor f
smooth

 and the stress tensor  for each element. The Newton-

Raphson (N-R) iteration algorithm is used at each time step during numerical calculation. The 

stress tensor  of the elements can be updated as described in Algorithm 3.1. The algorithm first 

checks whether the current element belongs to the excavated region –where ex(iel) = 2–. If true, 

the algorithm identifies the smoothness factor f
smooth

 and then updates the stress tensor following 

the method proposed in section 3.3.1. After the excavation stage ends, the smoothness factor 

f
smooth

 is set to zero and then, the excavated elements are completely removed from the model 

(‘inactive’ method). 

 



CHAPTER 3 

 

88 

 

Algorithm 3.1.  Algorithm for the stress tensor () update procedure in the elements 

Input: numel, old (iel), ex(iel), t
initial

, t
final

, t, A, B, n 

do iel = 1, numel 

     if ex(iel)  2, then 

          non-excavated region. Return  t (iel) = tinitial(iel) 

     end if 

     if ex(iel) = 2, then 

          if t ≥ t
initial

 and t  t
final

, then 

      f
smooth

 = A-B[(t - t
initial

)/(t
final

 - t
initial

)]n and an option is prepared to not consider the effects of the   

                                                                         volumetric deformation in hydraulics. 

          else if t > t
final

, then 

               f
smooth

 = 0  and stress-free surface 

          else 

               f
smooth

 = 1 

          end if 

          t (iel) = f
smooth 

tinitial(iel) 

     end if 

end do 

numel: the total number of elements; iel: the number of the current element; 

ex(iel): excavation flag, where ex(iel) = 2 represents that the element is being excavated; 

t
initial

, t
final

: the initial and final time in the excavation stage; 

t(iel), tinitial(iel): the stress of an element at the current time and at the initial time, respectively; 

A, B, n: the parameters in Eq. (3.19); t: the current time. 
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3.3.3. Preliminary numerical verification of the implementation 

An example is presented here for the preliminary verification of the implementation of the SE 

method. In this example, the rock mass is considered to be an elastic material with an elastic 

modulus E = 1150 MPa and a Poisson’s ratio  = 0.25. Using CODE_BRIGHT, a 2D 

axisymmetric model with a discretised area of 100 m  150 m is considered and the axisymmetry 

axis is the y-axis (see Figure 3.9). The tunnel is modelled as a rectangle of 100 m in length, in 

such a way that 40 excavation stages of 2.5 m in length can be performed. The radius of the 

tunnel is 2.5 m in this example. 

 

 

Figure 3.9.    Conceptual model of the excavation problem. Basic features of the 2D axisymmetric model. 

 

Figure 3.10 presents the mesh of the numerical model. A mesh with 5439 quadrilateral 

elements is adopted, i.e. 4 nodes quadrilateral mesh type. Note that the generalised selective 
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integration procedure, implemented in CODE_BRIGHT, can eliminate locking mesh and hour 

glassing issues of linear quadrilateral elements (Olivella et al., 1996). The mesh size is gradually 

reduced towards the tunnel area (see Figure 3.10). Regarding initial and boundary conditions, an 

isotropic initial stress of 28 MPa is considered. The normal displacements are fixed on the axis of 

symmetry (x = 0) and at the bottom (y = 0) of the model, and a normal pressure of 28 MPa is 

applied to the rest of the boundaries of the model –i.e. Neumann boundary conditions–. 

Three different points belonging to different excavation stages have been selected, to observe 

their stress evolution over time (Figure 3.11). For the sake of simplicity, the values of A, B, and n 

in Eq. (3.19) have been taken all equal to 1.0 in this example, i.e. the stresses in the elements 

being excavated are linearly reduced from their initial values –their current stress at the moment 

when their excavation starts- to zero. Note that, at time t = 0 (before the first excavation stage), 

the stresses in all three points (points 1, 2 and 3) are equal to the value of the initial stress. As it 

can be observed, the radial stress –stress in the x direction– (Figure 3.11a) of point 1 

(corresponding to an element being excavated in the first excavation stage) decreases linearly 

from the initial field stress to zero –as expected– in 1 day (the duration of each excavation stage). 

The radial stress evolution of points 2 and 3, corresponding to different excavation stages, is 

similar. Nonetheless, it can be observed that their radial stress increases slightly before 

excavation, due to the nearby excavation of previous stages, before being decreased to zero 

during their excavation. Concerning the axial stress –stress in the y direction– (Figure 3.11b), it 

can be observed a similar behaviour, although the axial stress decreases slightly before the 

corresponding excavation stage. 

Furthermore, Figure 3.11(c) presents the radial displacements –displacements in the x 

direction- for two different points located at the tunnel crown. It can be observed that the 

displacements are suddenly changed at the beginning of each excavation stage when using the 

‘inactive’ excavation method. Instead, the radial displacements increase smoothly when using the 

SE method, which may be more realistic in some cases. In fact, dynamic unloading conditions 

often exist during excavation (Cai, 2008). Note that the final displacements are equal using either 

method; the difference is just the displacements evolution during the excavation process. 

However, note that the final displacements may be different when considering time-dependent 

behaviour, although is not the aim of this study to analyse that effect. 
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Figure 3.10. Mesh of the 2D axisymmetric numerical model (far-boundaries at distances x = 100 m and 

y = 150 m; quadrilateral elements –5439 elements, 4 nodes each one–; 40 excavation 

stages in total –one day for each one). 
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Figure 3.11. Evolution over time of (a) radial stresses for points 1, 2 and 3, (b) axial stresses for points 

1, 2 and 3, and (c) radial displacements at the tunnel crown for points 4 and 5.  

SE represents the smoothed excavation method. Coordinates of the points: Point 1 (1.25, 

1.25), point 2 (1.25, 6.25), point 3 (1.25, 11.25), point 4 (2.5, 6.25) and point 5 (2.5, 

11.25). 
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3.3.4. Verification of the principle of uniqueness 

The principle of uniqueness, which means that the solutions obtained by different excavation 

strategies (e.g. different number of excavation stages) are all equal for a time-independent linear 

elastic material, was proposed using the virtual work theorem (ISHIHARA, 1970). In this section, 

a number of numerical examples are performed to verify that the proposed SE method satisfies 

this principle. The numerical models chosen are the same as those already introduced in section 

3.3.3, and the elastic parameters are chosen are E = 1150 MPa and v = 0.25. 

Thus, seven numerical simulations have been performed with a different number of 

excavation stages (1, 2, 4, 8, 10, 20, 40). Information regarding geometry, boundary conditions 

and mesh type is the same as in section 3.3.3 (see Figures 3.9 and 3.10). Figure 3.12 shows the 

radial displacements (displacements in the x direction) along the section x = 2.5 m (tunnel crown), 

and the axial displacements (displacements in the y direction) along the section y = 100 m (tunnel 

face). It can be observed that the displacements are independent of the number of excavation 

stages for linear elastic materials. Hence, the uniqueness of the proposed SE method has been 

verified. 
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Figure 3.12. (a) Radial displacements along the section x = 2.5 m (tunnel crown); (b) Axial 

displacements along the section y = 100 m (tunnel face). 
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3.4. Convergence analysis and computational efficiency for tunnelling 

problems 

As mentioned in section 3.3, using the inactive excavation method, simulations may experience 

numerical difficulties or even non-convergence problems during excavation, especially in the 

initial time step of the excavation stage. Excavation takes place on the model instantaneously, and 

the first time step receives the full effect. In addition, the central processing unit (CPU) could 

take excessive time in the calculation. A numerical scheme with automatic time step calculation 

tends to reduce the time step in order to reduce displacement variations. However, it could be 

unable to obtain a value that resolves the numerical issues due to the instantaneous removal of 

elements –i.e. non-convergence–. 

In this section, numerical analyses of computational efficiency and convergence for 

excavation problems have been carried out comparing the inactive (instantaneous removal) 

method and the proposed smoothed excavation (SE) method. The numerical efficiency using both 

excavation methods has been analysed for both mechanical (M) and hydro-mechanical (HM) 

problems (sections 3.4.1 and 3.4.2, respectively). 

In the CODE_BRIGHT simulations used for this purpose, the information regarding 

geometry and boundary conditions for mechanical problems is the same as in section 3.3.3 (see 

Figure 3.9). Concerning HM problems, in addition to that, a liquid pressure p
l
 is applied to the 

right boundary of the model (Figure 3.13a). After excavation, atmospheric pressure is prescribed 

on the tunnel surface (0.1 MPa in these examples).  

For these analyses, three excavation stages are considered, so that the tunnel is modelled as a 

rectangle of 7.5 m in length, in such a way that 3 excavation stages of 2.5 m in length could be 

performed in the numerical model (one day for each excavation stage). As for the mesh, it is 

composed of 5439 quadrilateral elements –i.e. 4 nodes quadrilateral mesh type– and the size of 

the elements is gradually reduced towards the tunnel area (see Figure 3.13b). It should be noted 

that all input information is identical for both models in the comparison. The only difference is 

the excavation method used. 
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Figure 3.13. (a) Basic features and boundary conditions for the 2D axisymmetric excavation model 

under hydro-mechanical conditions; (b) Mesh of the mechanical and hydro-mechanical 

models (far-boundaries at distances x = 100 m and y = 150 m; quadrilateral element mesh 

–5439 elements, 4 nodes each one–; 3 excavation stages in total –one day for each one). 

 

 

3.4.1. Convergence analysis and computational efficiency for mechanical 

models 

In this section, numerical analyses of computational efficiency and convergence are carried out 

for the mechanical models. Six different quality rock masses (GSI = 25, 35, 45, 48, 60, 74) are 

considered, and Table 3.1 shows their input parameters. Two different excavation methods are 
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compared: the proposed SE method (with A = B = n = 1) and the so-called ‘inactive’ excavation 

method.  

The numerical simulations have been executed on a desktop computer with Intel(R) 

Core(TM) i7-8700K CPU of 3.70 GHz and 32 GB RAM memory. The absolute and normalised 

CPU times of each numerical model are presented in Table 3.2. Note that the CPU time 

consumed using the inactive excavation method is normalised by dividing it by the CPU time 

consumed in the case of the rock mass with GSI = 74 and using the same method (t
inactive, GSI=74

). 

As it can be observed, the CPU time depends on the GSI, being almost 18 times slower for the 

lowest quality rock mass (GSI = 25) compared to the highest quality rock mass (GSI = 74). Then, 

the CPU time using the SE method is analysed and compared to the CPU time required using the 

inactive excavation method, for each rock mass quality.  

Additionally, Figure 3.14 shows the comparison of the computational efficiency (normalised 

CPU time) between the inactive method and the proposed SE method. It can be observed in both 

Table 3.2 and Figure 3.14 that the SE method is able to reduce CPU time in all cases. Therefore, 

the efficiency of the numerical calculation has improved using the SE method. 

 

Table 3.1. Input parameters of elastic-viscoplastic behaviour models. Based on the work of 

Vlachopoulos and Diederichs (2009) and Alejano et al. (2012). 

GSI 25 35 45 48 60 74 

E (MPa) 1150 2183 4305 7500 11215 27647 

c (MPa) 1.16 1.45 1.75 2.14 3.25 5.76 

 (deg) 18.52 21.12 23.71 27.08 33.43 38.98 

For all cases:  (deg) ≈ 0; v  = 0.25; 
T
 (deg) = 25; 

perzyna
(MPa

m s) = 10
2 

(*)

; m = 5; R
1
 (m) = 2.5 

* Sufficiently small value of 
perzyna

 so that the solution is comparable to the purely plastic case. 
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Table 3.2. Absolute and normalised CPU time for six different models with rock masses of different 

quality. 

GSI t
inactive 

(s) t
inactive

 / t
inactive, GSI=74

 t
smooth

 / t
inactive

 (t
inactive - tsmooth

) / [( tinactive + tsmooth
)/2] 

25 535.13 17.9 0.868 14.2 % 

35 373.11 12.5 0.737 30.3 % 

45 257.89 8.6 0.863 14.7 % 

48 210.56 7.0 0.904 10.0 % 

60 161.88 5.4 0.592 51.3 % 

74 29.91 1.0 0.921 8.2 % 

t
smooth

: absolute CPU time for the smoothed excavation method. 

t
inactive

: absolute CPU time for the inactive excavation method. 
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Figure 3.14. Comparison of (a) normalised CPU times and (b) normalised CPU time reduction
(*)

, for 

six different quality rock masses. *Normalised CPU time reduction is defined as (t
inactive - 

t
smooth

) / [( tinactive + tsmooth
)/2]. 
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Furthermore, during the calculation process in CODE_BRIGHT, the time step (Δt) is based 

on the Newton-Rapson (N-R) iteration method (Olivella, 1995; Olivella et al., 1996; Olivella et 

al., 2020). In the case of the examples presented here, the time step is controlled based on the 

number of N-R iterations iter (Olivella, 1995; Olivella et al., 2020), according to the 

multiplication factor f shown in Eq. (3.20). Note that for different time step control protocols, 

absolute CPU time and time step values may be different from the current example. However, the 

comparative advantages of the proposed SE method would be similar. 

 

0.25

1 ; 0.5k k niter
t f t f

iter

  
     

 
  (3.20) 

Note that f = 1 when iter = niter, and then the new time step Δt k+1 does not change. In 

general, niter is recommended to have a value between 2 and 4, and it is chosen according to the 

expected numerical difficulties. It is recommended to use niter = 4 if no numerical difficulties are 

expected (in that case it would be enough, due to the quadratic convergence of N-R method), but 

a stricter time step control can be used –niter = 3 or even 2– for models with strong nonlinearities, 

path dependency and other convergence issues. If e.g. niter = 4, the time step decreases when 

iter > 4 and increases when iter < 4. Thus, the value of Δt can be related to the numerical 

efficiency: very small values of Δt represent systematic numerical difficulties (i.e. f < 1) that may 

result in non-convergence. On the other hand, larger values of Δt represent fewer numerical 

difficulties (i.e. f > 1) and thus, a shorter computational time. The method tends to produce an 

average number of N-R iterations close to the target value niter defined for each calculation. 

Figure 3.15 shows the values of Δt versus time for both excavation methods and for six rock 

masses of different quality. It can be observed that the greatest numerical difficulties –minimum 

values of Δt– are reached at the beginning of each excavation stage (time = 0, 1 and 2 days), for 

both excavation methods. However, due to the sudden removal of elements, the inactive 

excavation method concentrates its numerical inefficiency at the beginning of each excavation 

stage. On the contrary, it can be seen that the initial time step is much higher using the SE method, 

especially in poor quality rock masses that show plastic behaviour. Nevertheless, when using the 

SE method, there is still some numerical inefficiency at the end of each excavation stage (time = 

1, 2 and 3 days in this case), since the excavated elements are removed from the model at that 
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time, although the relative change in boundary conditions caused by that removal has been 

smoothed. 

Regarding the rest of the excavation stage –apart from the initial time step–, the time step (Δt) 

of the SE method is normally a little lower than that of the inactive excavation method, since by 

then, the inactive excavation method has solved most of its numerical inefficiencies –provided it 

had not experienced non-convergence issues, so that the calculation would have stopped–. 

Therefore, the SE method is not only numerically more efficient, but also more reliable –non-

convergence issues are less likely to occur. 

Note that quite simple models are performed in this analysis. Even so, the SE method has 

demonstrated that it can improve numerical efficiency significantly, saving computational time 

and –more importantly– eliminating non-convergence issues, compared with the ‘inactive’ 

method. However, when dealing with complex behaviour models and HM couplings, especially 

in models with complex geometries or very fine meshes containing thousands –or even millions– 

of elements, then the current computers can take days –or even weeks– to complete the 

calculation. In these cases, the SE method may save a great amount of time, compared with the 

inactive method. 

 

 

3.4.2. Convergence analysis and computational efficiency for hydro-

mechanical models 

In the case of HM models, both hydraulic and mechanical boundary conditions change during the 

multi-stage excavation process, which may result in even greater numerical difficulties. An 

example is carried out herein to perform numerical analyses of computational efficiency and 

convergence for HM problems. 
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Figure 3.15. Log (t) versus time for six rock masses of different quality and using both inactive and 

SE excavation methods (with niter = 4): (a) GSI= 25, (b) GSI=35, (c) GSI=45, (d) 

GSI=48, (e) GSI= 60, (f) GSI=74. 
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In these analyses, both elastic and elastic-viscoplastic material models are assessed: (1) for 

the elastic material model: E = 7500 MPa,  = 0.25, (2) for the elastic-viscoplastic material model: 

E = 7500 MPa,  = 0.25, c = 2.14 MPa,  = 27.08 deg,  = 0 deg, 
T = 25 deg, m = 5, and 

perzyna 

= 10
2
 MPa

5
s. Moreover, two different cases regarding HM boundary conditions are considered: 

(1) Case A: p
0 = 10 MPa, p

l 
= 4 MPa, and (2) Case B: p

0 = 10 MPa, p
l 
= 5 MPa. The intrinsic 

permeability is 10-15 m2 for all cases. In addition, during the excavation stage, the effect of 

volumetric deformation on hydraulic behaviour –through changes in porosity–, is neglected on 

the elements being excavated, as described in section 3.3. 

Table 3.3 presents the absolute CPU time using the inactive method, the normalised CPU 

time and the time reduction (in %) using the SE method, for all cases. Note that the normalised 

CPU time has been obtained dividing it by the CPU time using the inactive excavation method 

(t
inactive

) for each case. Hence, the normalised CPU time consumed by the inactive excavation 

method is always 1. Note that values lower than one represent an improvement in CPU time, in 

comparison with the inactive method. It can be observed that there is a significant improvement 

in CPU time consumption in viscoplastic cases, whereas no improvement is achieved in elastic 

cases. Anyway, the CPU runtime for elastic cases is quite low, since no numerical difficulties 

have been encountered. 

 

Table 3.3.  CPU time for hydro-mechanical problems. 

Cases Model t
inactive 

(s) t
smooth 

/ tinactive
 ( t

inactive - tsmooth
) / [( tinactive + tsmooth

)/2] 

A Elastic 51.06 1.156 -14.476 % 

B Elastic 53.09 1.079 -7.642 % 

A Elastic-viscoplastic 1270.03 0.600 49.998 % 

B Elastic-viscoplastic 1136.97 0.815 20.350 % 

 

On the other hand, Figures 3.16 and 3.17 present the values of time step Δt versus time for 

elastic and elastic-viscoplastic models, respectively. As shown in Figure 3.16, the calculation 

does not have significant numerical difficulties for HM problems with elastic materials and the 

proposed SE method exhibits a calculation efficiency similar to the inactive excavation method in 
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this case. However, as shown in Figure 3.17, for rock masses with plastic response, the SE 

method improves numerical efficiency. 
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Figure 3.16. Log (t) versus time for two different hydro-mechanical boundary conditions and using 

the elastic model (with niter = 4): (a) p
0
 = 10 MPa, p

l
 = 4 MPa and (b) p

0
 = 10 MPa, p

l
 = 5 

MPa. 
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Figure 3.17. Log (t) versus time for two different hydro-mechanical boundary conditions and using 

the elastic-viscoplastic model (with niter = 4): (a) p
0
 = 10 MPa, p

l
 = 4 MPa, (b) p

0
 = 10 

MPa, p
l
  = 5 MPa. 
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3.5. Comparison with the previous solutions 

In this section, the obtained results using CODE_BRIGHT are compared with previous solutions. 

First, in section 3.5.1, CODE_BRIGHT results of the longitudinal deformation profiles (LDP) for 

mechanical problems with plastic response are compared with previous solutions (Alejano et al., 

2012; Vlachopoulos and Diederichs, 2009). Then, steady-state hydro-mechanical (HM) problems 

and transient coupled HM problems with elastic materials are carried out in sections 3.5.2 and 

3.5.3, respectively, and the obtained CODE_BRIGHT results are compared with the previous 

solutions (Nam and Bobet, 2007; Paraskevopoulou and Diederichs, 2018). 

 

3.5.1. Elastic-plastic solutions of the LDP for mechanical problems 

This section presents the LDP results for mechanical problems with elastic-plastic materials, 

using CODE_BRIGHT. These results have been compared with the solutions of Vlachopoulos 

and Diederichs (2009), and with the numerical results –using FLAC2D and FLAC3D– of Alejano 

et al. (2012). For the sake of consistency with the elastic-plastic model, the viscosities 
perzyna

 in 

CODE_BRIGHT are considered small enough (
perzyna

= 10
2
 MPa

5
s in this example) to be able to 

assume that the model behaves like an elastic-purely-plastic model and, hence, the rock mass 

does not show a time-dependent behaviour (Alonso et al., 2005; Song et al., 2020). 

Regarding the CODE_BRIGHT numerical models, the information regarding geometry, 

boundary conditions, excavation process and mesh type is the same as in section 3.3.3 (see 

Figures 3.9 and 3.10). The isotropic initial stress adopted is p
0
 = 28 MPa. The results of six rock 

masses of different quality have been compared, with GSI = 25, GSI = 35, GSI = 45, GSI = 48, 

GSI = 60, GSI = 74, as shown in Table 3.1. It is considered that the rock masses behave in an 

elastic-perfectly-plastic manner, obeying the Mohr-Coulomb failure criterion. 
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Based on the approach of Vlachopoulos and Diederichs (2009), the LDP can be obtained 

from tunnel geometry and the plastic radius, as shown in Eq. (3.21). 

 

p d
d

1 1
r

r,max
p d

d

1 p

1
exp 0.15 exp , 0

3

31
1 1 exp 0.15 exp , 0

3 2

R x
x

R R
u

u R x
x

R R

    
      

   
 

    
            
      

  (3.21) 

where u
r
 and u

r,max represent the radial displacements and the maximum radial displacements of 

the tunnel wall, respectively; R
p
 represents the maximum plastic radius, R

1
 represents tunnel 

radius and x
d
 represents the distance to the tunnel face. In these examples, R

p
 is determined 

through self-similarity solutions (Carranza-Torres, 1998). 

As stated above, the results of CODE_BRIGHT have been compared with the results –using 

FLAC2D and FLAC3D– of Alejano et al. (2012). Neumann boundary conditions were adopted in 

the FLAC2D numerical models, and the discretised area was 70 m × 100 m. In the FLAC3D 

numerical models, Dirichlet boundary conditions were adopted, being the discretised domain 60 

m  60 m  60 m. A more detailed description of the numerical models (FLAC2D and FLAC3D) 

can be found in Alejano et al. (2012). 

Figure 3.18 shows a good agreement between the LDP of CODE_BRIGHT, FLAC2D 

(Alejano et al., 2012), FLAC3D (Alejano et al., 2012) and Vlachopoulos and Diederichs’ 

solutions (Vlachopoulos and Diederichs, 2009) for rock masses of different qualities, which can 

serve as a verification of our CODE_BRIGHT models for plastic problems. 
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Figure 3.18. Longitudinal deformation profiles of rock masses of different quality according to 

different methods (CODE_BRIGHT, FLAC2D (Alejano et al., 2012), FLAC3D (Alejano 

et al., 2012) and the solutions of V&D (Vlachopoulos and Diederichs, 2009)): (a) GSI = 

25, (b) GSI = 35, (c) GSI = 45, (d) GSI = 48, (e) GSI = 60, (f) GSI = 74. V&D represents 

Vlachopoulos and Diederichs’ solutions. 
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3.5.2. Elastic solutions of the LDP for steady-state hydro-mechanical problems 

In this section, numerical simulations of the LDP are performed for HM problems with elastic 

materials, and the CODE_BRIGHT results are compared with the solutions of Nam and Bobet 

(2007). The LDP expressions for deep circular tunnels excavated in saturated elastic rock masses 

were developed by Nam and Bobet (2007) through a series of numerical simulations under 

steady-state conditions, which can be expressed as in Eq. (3.22) (Nam and Bobet, 2007). 

 

d d l
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1 1

r

2
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r0 r0
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r,max r,max d 1

0.28exp 1.05 0.2exp 1 exp , 0
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0.75
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0.75
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u u
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u u x R

       
          

       


 
     
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  (3.22) 

where 

l

'
r0

r,max

0.28 0.19 1

p

pu
e

u

 
   
 
 

; p
l
 represents the liquid pressure in the far-field, p’ represents 

the effective stress in the centre of the tunnel; u
r0

 represents the radial displacements of the tunnel 

wall at the tunnel face; u
r,max represents the maximum radial displacements of the tunnel wall. A 

more detailed description of the LDP for tunnels excavated in saturated elastic rock masses can 

be found in Nam and Bobet (2007). 

The tunnel has been modelled in CODE_BRIGHT as a rectangle of 100 m in length, in such 

a way that 40 excavation stages of 2.5 m in length can be performed in the numerical model. 

Each stage of excavation takes one day and, thus, the entire multi-stage excavation process takes 

40 days. The dimensions and boundary conditions of the numerical model in CODE_BRIGHT 

are those shown in Figure 3.13(a). A mesh with 5439 quadrilateral elements is adopted, i.e. 4 

nodes quadrilateral mesh type. The mesh size has been gradually reduced towards the tunnel area 

(see Figure 3.19). Table 3.4 presents the input parameters –rock mass properties and tunnel 

geometry– for the steady-state saturated problems. The intrinsic permeability chosen is 10
-10

 m
2
 

(a value large enough to ensure steady-state drained conditions). 
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Figure 3.19. Mesh in the vicinity of the excavation area (far-boundaries at distances x = 100 m and y = 

150 m; mesh of quadrilateral elements –5439 elements, 4 nodes each one–; 40 excavation 

stages in total –one day for each one). 

 

Table 3.4.  Rock mass properties and tunnel geometry for saturated problems with elastic response. 

Cases E (MPa) v R
1
 (m) p

0 
(MPa) p

l 
(MPa) p’ (MPa) p

l 
/ p’ 

V1 1000 0.15 2.5 7.5 2.45 5.05 0.485 

V2 1000 0.15 2.5 11.5 4.9 6.6 0.742 

V3 1000 0.15 2.5 11.5 2.45 9.05 0.271 
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Figure 3.20 presents the comparison of the LDP of a saturated rock mass between the 

CODE_BRIGHT results and the solutions of Nam and Bobet (2007). There is a good agreement 

between both results, which verifies the LDP results for HM problems with elastic materials 

under steady-state conditions, using CODE_BRIGHT. 
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Figure 3.20. Comparison of the longitudinal deformation profiles for three different hydro-mechanical 

cases (p
l
 / p’ = 0.485, 0.742, 0.271), according to CODE_BRIGHT (C_B in the figure) 

and Nam and Bobet’s solutions (Nam and Bobet, 2007): (a) ahead (x
d
 < 0) and (b) behind 

(x
d
 > 0) the tunnel face. 

 

 

3.5.3. Analysis of tunnelling in transient coupled hydro-mechanical conditions 

In tunnelling, drained consolidation is time-dependent during the standstill period until the 

steady-state pore pressure distribution is reached (Prassetyo, 2017; Prassetyo and Gutierrez, 

2018b; Ramoni and Anagnostou, 2011). In this section, time-dependent LDPs are compared 

between CODE_BRIGHT results and Prassetryo and Gutierrez’s solutions (Prassetyo and 

Gutierrez, 2018b).  
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Considering the transient nature of the consolidating ground, Prassetryo and Gutierrez 

(2018b) proposed time-dependent LDP solutions for the saturated ground with elastic response, 

as shown in Eq. (3.23). 
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  (3.23) 

where:  

u
r0

/u
r,max 

= 0.28 + 0.028[1-exp(-0.56logt*)] 

A = -ln[-(u
r0

/u
r,max

-0.305]/0.028]/2.4 

B = 0.85-2.105exp[-47 u
r0

/u
r,max

] 

u
r,max

/ R
1
 = 2.0 – 0.3exp(-0.005t*)  

t* represents the normalized consolidation time (Giraud and Rousset, 1996; Li, 1999; Prassetyo 

and Gutierrez, 2018b). 

In the CODE_BRIGHT numerical models performed in this analysis, the tunnel is presented 

as a rectangle of length 50 m, with 40 excavation steps of length 1.25 m. The radius of the tunnel 

is 2.5 m. The excavation rate is 5 m/day (Prassetyo and Gutierrez, 2018b) and thus, a total of 10 

days for the whole excavation process. The dimensions and boundary conditions of the 

CODE_BRIGHT numerical model are shown in Figure 3.21(a). A mesh with 5795 four nodes-

quadrilateral elements is adopted. Figure 3.21(b) presents the mesh of the numerical model. Input 

parameters of ground properties are: hydraulic conductivity k
H
 = 5.010-10 m/s, porosity  = 0.39, 

Young’s modulus E = 292.5 MPa and Poisson’s ratio  = 0.125 (Prassetyo and Gutierrez, 2018b). 

To be consistent with the assumptions in Prassetryo and Gutierrez’s solutions (Prassetyo and 

Gutierrez, 2018b), no pressure is prescribed on the tunnel surface after excavation. 

Figure 3.22 shows the comparison of LDP for the coupled HM problems between the 

CODE_BRIGHT results and the time-dependent solutions of LDP found in Prassetyo and 
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Gutierrez (2018b). A good agreement between both results is observed. This can serve as a 

verification of the CODE_BRIGHT results for transient HM coupled problems. 

 

 

Figure 3.21. Mesh of the numerical model (far-boundaries at distances x = 50 m and y = 100 m; mesh 

of quadrilateral elements –5795 elements, 4 nodes each one–; 40 excavation stages in total 

–the excavation rate is 5 m/day). 
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Figure 3.22. Comparison of the longitudinal deformation profiles for four different standstill times (t* = 

5, 10, 20, 100), according to CODE_BRIGHT and Prassetyo and Gutierrez’s solutions 

(Prassetyo and Gutierrez, 2018b): (a) t* = 5, (b) t* = 10, (c) t* = 20 and (d) t* = 100. P&G 

represents the solutions of Prassetyo and Gutierrez (2018b). 
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3.6. Hydro-mechanical modelling of tunnels excavated in saturated ground 

with plastic response 

The main objective of this section is the analysis of longitudinal deformation profiles (LDP) of 

tunnels excavated in saturated rock masses with plastic behaviour. When tunnelling in saturated 

rock masses under hydro-mechanical coupled conditions, short-term and time-dependent 

responses occur. The short-term response represents the HM response induced immediately after 

the excavation (i.e. the start of the standstill period) (Prassetyo, 2017; Prassetyo and Gutierrez, 

2018b), which may be critical to the safety during excavation progress. The consolidation is then 

continued towards the total standstill period until the long-term HM response of the tunnel is in 

steady-state condition (Prassetyo, 2017; Prassetyo and Gutierrez, 2018b), which may be 

important for the long-term period safety condition. 

 

3.6.1. Analyses of longitudinal deformation profiles for saturated problems 

with plastic response 

In this section, parametric analyses are carried out to extend Nam and Bobet’s conclusions (Nam 

and Bobet, 2007) to plastic problems. Thus, a series of deep tunnels are excavated in an infinite 

isotropic elastic-plastic medium. Six rock masses of different quality are considered (see Table 

3.1) to analyse the effect of the geotechnical quality (GSI) of the rock mass on the resulting LDP. 

Three different cases have been considered: 

(1) Mechanical (M) problem: p
0
 = 15 MPa; 

(2) Hydro-mechanical (HM) problem with: p
l
 = 4 MPa, p

0
 = 15 MPa, i.e. p

l
/p’ = 0.364;  

(3) Hydro-mechanical (HM) problem with: p
l
 = 7 MPa, p

0
 = 15 MPa, i.e. p

l
/p’ = 0.875.  

p’ represents the effective stresses (p
0
 - p

l
). The results have been obtained for saturated 

conditions, and the intrinsic permeability adopted for the analyses is 10
-15

 m
2
, which may be a 

realistic value for some rock masses. 
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The information regarding geometry, boundary conditions, excavation process and mesh type 

for M and HM problems, is the same as in section 3.3.3 (see Figures 3.9 and 3.10) and section 

3.5.2 (see Figures 3.13a and 3.19), respectively. Figures 3.23 and 3.24 show the normalised radial 

displacements of tunnels excavated in saturated rock masses versus the normalised distance to the 

tunnel face, ahead (x
d  < 0) and behind (x

d > 0) the tunnel face, respectively. As expected, the 

normalised radial displacements increase first and then reach a stable value when the distance to 

the tunnel face is large enough. 

It can be observed (Figure 3.23) that there is a difference in the normalised radial 

displacements ahead of the tunnel face (x
d
 < 0) between the three cases –one M case and two HM 

cases– (in line with the previous findings of Nam and Bobet (2007) for elastic geomaterials). 

Extending these findings, it has been found in our analysis that this difference grows as the GSI 

of the excavated rock masses increases. In fact, for very low quality rock masses the difference 

seems to be very small, except near the tunnel face. 

However, unlike in Nam and Bobet (2007), we have found a difference in normalised radial 

displacements behind the tunnel face (x
d
 > 0) between the three aforementioned cases. In fact, 

Figure 3.24 shows that this difference decreases when the GSI increases. Nevertheless, this 

difference appears to be relevant only for low quality rock masses, which on the other hand, 

develop larger plastic strains.   

Hence, according to these results, it can be assumed that the resulting LDP is affected by 

both HM conditions and plastic behaviour. Therefore, performing HM coupled models that 

reproduce the plastic behaviour of rock masses may be relevant to achieve a safe design of 

tunnels in some cases. 

Nonetheless, note that even if the normalised values are similar, the actual magnitudes of the 

displacements may be significantly different, since the value of the maximum radial 

displacements u
r,max

 changes for different HM conditions. This is caused by the forces exerted by 

the seepage that flows into the tunnel, causing different pore pressures that will result in different 

deformations (Nam and Bobet, 2007) (see Figure 3.1). 
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Figure 3.23. Normalized radial displacements along the tunnel wall (r = R
1
) versus normalized distance 

to the tunnel face (x
d / R1

), ahead of the tunnel face (x
d
 < 0): (a) GSI = 25; (b) GSI = 35; (c) 

GSI = 45; (d) GSI = 48; (e) GSI = 60; and (f) GSI = 74. M and HM represent mechanical 

and hydro-mechanical problems, respectively. 
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Figure 3.24. Normalized radial displacements along the tunnel wall (r = R
1
) versus normalized distance 

to the tunnel face (x
d / R1

), behind the tunnel face (x
d 
> 0): (a) GSI = 25; (b) GSI = 35; (c) 

GSI = 45; (d) GSI = 48; (e) GSI = 60; and (f) GSI = 74. M and HM represent mechanical 

and hydro-mechanical problems, respectively. 
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In addition, for a better understanding of the deformation patterns in the surrounding rock 

masses, Figure 3.25 presents the contours of the radial displacements (displacements in the x 

direction) at the moment after completion of the final tunnel face excavation (i.e. standstill time 

(Prassetyo and Gutierrez, 2018b) equal to 0). Since the deformation patterns are similar for 

different rock mass qualities, only the results corresponding to GSI = 25 (see Table 3.1) are 

presented. In Figure 3.25, it can be observed that the radial displacements increase with the 

increase of the distance to the tunnel face (x
d
), due to the decreasing fictitious support forces from 

the tunnel face (Cui et al., 2015; Song and Rodriguez-Dono, 2021). Moreover, the maximum 

radial displacements (u
r,max

) are different between different HM conditions, since bigger liquid 

pressures (p
l
) can result in bigger u

r,max
, because bigger seepage forces occur. 

 

 

Figure 3.25. Contours of radial displacements at the end of the excavation, for (a) mechanical 

problems, (b) hydro-mechanical problems, p
l
 = 4 MPa, and, (c) hydro-mechanical 

problems, p
l
 = 7 MPa. Rock masses type: GSI = 25 in Table 3.1. Isotropic initial stresses: 

p
0
 = 15 MPa. 
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3.6.2. Empirical solutions of the LDP for saturated problems with plastic 

response 

This study shows a numerical approach of obtaining LDP for saturated ground with plastic 

response. However, it should be noted that the numerical modelling procedure may be 

complicated and may pose difficulties for use in tunnelling design. Therefore, by fitting the large 

number of data obtained from numerical simulations, this section presents empirical solutions of 

LDP for steady-state problems with plastic response. 

In these numerical simulations, the information regarding geometry, boundary conditions, 

excavation process and mesh type is the same as in section 3.5.2 (see Figures 3.13 and 3.19). A 

wide range of material properties, initial stresses (p
0
) and liquid pressures (p

l
) have been adopted: 

in total, eight different HM cases (see Table 3.5) and six rock masses of different quality (see 

Table 3.1) are considered. The intrinsic permeability chosen is 10
-10

 m
2 (a big enough value and, 

thus, steady-state drained conditions). 

 

Table 3.5.  Hydro-mechanical conditions. 

Cases p
0 
(MPa) p

l 
(MPa) p’

 
(MPa) p

l
/p’ 

1 20 4 16 0.25 

2 15 4 11 0.364 

3 15 5 10 0.5 

4 10 3.5 6.5 0.538 

5 11 4 7 0.571 

6 15 6 9 0.667 

7 15 7 8 0.875 

8 10 5 5 1 

 

Note that the LDP expressions in this section are developed under steady-state pore pressure 

conditions, which means that consolidation involving dissipation of pore pressure is not 

considered (Nam and Bobet, 2007; Paraskevopoulou, 2016; Paraskevopoulou and Diederichs, 
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2018). Although the steady-state LDP solutions may oversimplify the excavation-induced 

coupled hydro-mechanical interaction, it may be meaningful to the preliminary design of tunnels 

(Nam and Bobet, 2007) and to the improvement of the CCM. 

 

3.6.2.1. Fitting variables chosen and their normalisation 

Vlachopoulos and Diederichs (2009) developed an expression of the LDP for mechanical 

problems with plastic response (see Eq. (3.21)) in which the normalised radial displacements 

(u
r
/u

r,max
) depend on the normalised maximum plastic radius (R

p
/R

1
) and the normalised distance 

to the tunnel face (x
d
/R

1
), where R

1
 is the tunnel radius. On the other hand, Nam and Bobet (2007) 

proposed an expression of the LDP for steady-state saturated problems with elastic response (see 

Eq. (3.22)), in which the normalised radial displacements (u
r
/u

r,max
) depend on the normalised 

distance to the tunnel face (x
d
/R

1
) and the normalised liquid pressure (p

l
/p’), where p’ represents 

the effective stresses. 

Instead, in this study, empirical solutions of LDP for steady-state saturated problems with 

plastic response have been developed. Therefore, the expressions of the normalised radial 

displacements (u
r
/u

r,max
) for this problem can be obtained through introducing p

l
/p’ into the LDP 

expressions of Vlachopoulos and Diederichs (2009), or through introducing R
p
/R

1
 into the LDP 

expressions of Nam and Bobet (2007). After that, three normalised fitting variables –
*

lp : p
l
/p’; 

*

pR : R
p
/R

1
; 

*

dx : x
d
/R

1
– have been taken as the key variables to represent the normalised radial 

displacements (u
r
/u

r,max
) for steady-state HM problems with plastic response. 

 

3.6.2.2. Steps taken to obtain the LDP expression 

In order to obtain the LDP expressions for steady-state problems with plastic response, a 

theoretical analysis of the LDP expressions found in the literature (Nam and Bobet, 2007; 

Vlachopoulos and Diederichs, 2009) have been carried out. Meanwhile, a multitude of tests have 
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been performed to investigate the effect of the three independent variables ( *

lp : p
l
/p’;  *

pR : R
p
 /R

1
; 

*

dx : x
d
/R

1
) to the dependent variable (u

r
/u

r,max
). 

Ahead of the tunnel face (x
d
 < 0), the LDP for mechanical problems with plastic response can 

be expressed as in Eq. (3.21), while the LDP for steady-state HM problems with elastic response 

can be expressed as in Eq. (3.22) (Nam and Bobet, 2007). 

Note that Eq. (3.21) can be expressed in the following form (M-P stands for mechanical-

plastic):  

 M-P M-P * M-P *

1 2 d 3 pA exp A Ax R   

While Eq. (3.22) can be expressed in the following form (HM-E stands for hydro-mechanical-

elastic): 

     HM-E HM-E * HM-E HM-E * HM-E *

1 2 d 3 5 l 4 dA exp A A 1 exp A exp Ax p x  
 

 

Combining Eqs. (3.21) and (3.22), and then introducing a new term to account for coupling 

effect between plastic behaviour and liquid pressures, the LDP expression for saturated problems 

with plastic response can result as that shown in Eq. (3.24). Note that, when working on elastic 

conditions, then *

pR  = 1 (i.e.  *

7 p 7exp A AR   = 1) and, hence, the proposed LDP can be reduced 

to the expression of Nam and Bobet (2007) for elastic problems. 

         * * * * *

1 2 p 3 d 4 5 l 6 d 7 p 7A exp A A A 1 exp A exp A exp A AR x p x R    
    (3.24) 

Regarding the LDP behind the tunnel face (x
d
  0), the LDP for mechanical problems with 

plastic response can be expressed in the following form: 

 
*

M-P M-P * M-P d
1 2 p 3 *

p

1 1 B exp B exp B
x

R
R

 
       

 

. Then, taking this expression and adding new terms to 

account for the effect of 
*

lp , the LDP expression for saturated problems with plastic response has 

been proposed, as shown in Eq. (3.25). Note that, when working on dry conditions, then 
*

lp  = 0 
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(i.e.  *

7 lexp B p  = 1) and, hence, the proposed LDP can be reduced to the expression of 

Vlachopoulos and Diederichs (2009) for mechanical problems. 

    
6

3

B
*

B
* * *d

1 2 p 4 l 5 7 l*

p

1 1 B exp B + B exp B exp B
x

R p p
R

                   

  (3.25) 

In summary, through theoretical analysis and tests, the LDP expression of Eq. (3.26) is 

proposed for steady-state saturated problems with plastic response. Moreover, the proposed 

expression have been verified afterwards (see Figure 3.27 in section 3.6.2.3). 

        

   
6

3

* * * * * *

1 2 p 3 d 4 5 l 6 d 7 p 7 d

B
*

B
* * * *dr,

l
max

1 2 p 4 l 5 7 d*

p

A exp A A A 1 exp A exp A exp A A , 0

1 1 B exp B + B exp B exp B , 0               

r

R x p x R x

u

xu
R p p x

R

      
 


                       

 (3.26) 

where R *

p
, x

*

d , and p
*

l  represent the normalised maximum plastic radius, the normalised distance 

to the tunnel face and the ratio between the liquid pressure and the effective stress, respectively; 

A
i
 and B

i
 (i=1–7) are undetermined coefficients in the empirical solutions of the LDP. 

 

3.6.2.3. Fitting procedure and results of the empirical solutions 

To get the undetermined coefficients (A
i
, B

i
, with i = 1–7) in Eq. (3.26), we have made a 

multitude of numerical models in CODE_BRIGHT with different material properties (Table 3.1) 

and different HM boundary conditions (Table 3.5), finally obtaining 2016 data sets (named 

training data hereinafter). Substituting all training data (dots in Figure 3.26) into Eq. (3.26), and 

doing a data regression analysis using the least squares method (data fit), 14 parameters (A
i
 and 

B
i
, i =1–7) have been determined with minimum fitting errors. Table 3.6 provides the fitting 

results of the coefficients of Eq. (3.26). Figure 3.26 illustrates the comparison between the 

normalised LDP from numerical simulations and the proposed empirical formula –Eq. (3.26)–. 
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In the fitting procedure, the indicator 2R  (the adjusted coefficient of determination), is 

introduced to evaluate the fitting accuracy. 2R  is the statistical measure that shows the proportion 

of variation explained by the estimated regression line. The closer 2R  is to 1.0, the closer the 

fitted formulas are to the training data (Song et al., 2018b). Comparing the lines obtained by 

empirical solutions and the dots obtained from the numerical simulations (Figure 3.26), a good 

agreement between them can be found ( 2R  ≅ 0.993 for the case of x *

d  < 0, while 2R  ≅ 0.997 for 

the case of x *

d  ≥ 0).  

It should be noted that in the fitting procedure, the normalised liquid pressure (p
l
/p’) varies 

from 0.25 to 1.0, the normalised maximum plastic radius (R
p,max

/R
1
) varies from 1.0 to 6.46, and 

the normalised distance to the tunnel face (x
d
/R

1
) varies from -22.0 to 20.0, approximately. Hence, 

the accuracy of the proposed empirical formulas –Eq. (3.26)– would be acceptable in this range 

of input parameters. In summary, the calibrated parameters of Eq. (3.26) correspond to a set of 

different rock quality types (Table 3.1) and tunnel conditions (Case 1 to 8, Table 3.5). Note that 

the proposed empirical solutions in Eq. (3.26) are developed for steady-state saturated conditions. 

In order to further investigate the deviation between the proposed empirical solutions of the 

LDP and other numerical results, we have randomly adopted some data (named test data) 

different from the set used in the fitting procedure, and compared the result with that of Eq. (3.26) 

–in the form of lines–. Figure 3.27 compares the test data obtained from the numerical 

simulations (dots) with the proposed empirical solutions (lines). As it can be observed, the 

predictions from the proposed empirical solutions compare reasonably well with the numerical 

results, both behind (x
d
 > 0) and ahead (x

d
 < 0) of the tunnel face. Therefore, it can be concluded 

that the proposed empirical solutions of the LDP exhibit almost the same accuracy as the 

numerical simulations for predicting the longitudinal deformation profiles of tunnels excavated in 

the HM framework under steady-state drained condition. Hence, for practical use in engineering, 

these empirical solutions provide a convenient alternative method for calculating the LDP in 

saturated rock masses showing plastic behaviour, given the aforementioned range of parameters. 
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Figure 3.26. Comparison between the normalized longitudinal deformation profiles from numerical 

simulations (C_B: CODE_BRIGHT) and the proposed equation for cases 1 – 8 in Table 

3.5: (a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) case 5, (f) case 6, (g) case 7 and (h) 

case 8. Six different quality rock masses (shown in Table 3.1) are considered for every 

case. These numerical results are adopted in the function fitting. 
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Figure 3.27.  Comparison between the normalised longitudinal deformation profiles from numerical 

simulations (C_B: CODE_BRIGHT) and the proposed empirical equations (Eq. (3.26)): 

(a) ahead of the tunnel face (x
d
 < 0) and (b) behind the tunnel face (x

d
 > 0). The input 

parameters are randomly selected (different from the training data). 
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Table 3.6.  Coefficients in Eq. (3.26). 

A1 A2 A3 A4 A5 A6 A7 

0.1439 0.5344 1.1661 0.1435 -1.6493 0.1177 -0.6785 

B1 B2 B3 B4 B5 B6 B7 

0.3422 -0.1982 1.0120 0.2071 -1.4456 0.8658 -0.0107 

 

 

3.7. Summary and discussion 

This study aims to provide a general and robust numerical approach to the geomechanical 

analysis of tunnels excavated in saturated ground with plastic behaviour. For the sake of 

numerical reliability and efficiency, a smoothed excavation (SE) method has been firstly 

introduced and implemented into the finite element method software CODE_BRIGHT. Then, 

hydro-mechanical (HM) modelling and analyses of the longitudinal deformation profiles (LDP) 

in saturated rock masses with plastic behaviour have been carried out. Finally, empirical solutions 

of the LDP have been proposed using data fit, which can conveniently predict the tunnel radial 

deformations for steady-state hydro-mechanical problems. 

The generalised Darcy’s law and the elastic-viscoplastic material model have been adopted 

to simulate the hydraulic and mechanical behaviour of rock masses, respectively. Furthermore, 

the Mohr-Coulomb failure criterion and a non-associated plastic flow rule have been considered. 

After that, the SE method is used in the excavation process, and thus, the stresses of the 

corresponding excavation elements are reduced smoothly. As a verification step, the uniqueness 

principle of the proposed excavation method for multi-stage excavation has been checked. The 

analysis made shows that the proposed SE method benefits the numerical convergence and 

improves computational efficiency, especially for problems with material models and boundary 

conditions that are relatively complex. 

After that, the CODE_BRIGHT results for the LDP using the proposed SE method have been 

compared with elastic-plastic solutions for mechanical (M) problems, and with elastic solutions 

for HM problems. Then, HM modelling and analysis of the LDP for saturated rock masses with 
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plastic behaviour has been carried out. The effects of the rock mass geotechnical quality (GSI) 

and the HM conditions on the resulting radial tunnel deformations have been analysed. We have 

observed that the difference in normalised radial displacements ahead of the tunnel face (x
d
 < 0) 

between the three cases studied –one M case and two HM cases– grows as the GSI increases. 

However, behind the tunnel face (x
d
 > 0), this difference decreases when the GSI increases. 

Therefore, to achieve a safe tunnel design, it might be important to take into account both the 

plastic and the HM response. 

Finally, based on a large amount of numerical data corresponding to a wide range of rock 

mass qualities and HM conditions, the empirical solutions of the LDP for steady-state HM 

problems with plastic response have been obtained by function fitting. A good agreement 

between the empirical prediction and the results from CODE_BRIGHT simulations has been 

obtained. Therefore, the proposed empirical solutions for LDP may constitute an alternative and 

convenient method for preliminary tunnel analysis and design. 

Note that, even if the proposed method in this study can simulate different cases of tunnels 

excavated in hydro-mechanical saturated rock masses with plastic response, it still has some 

limitations. For instance, the numerical analyses are carried out through homogeneous material 

models and the proposed empirical solutions of LDP are only useful for steady-state conditions. 
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Chapter 4. Coupled solid-fluid response of tunnels excavated in 

saturated rock masses with a time-dependent plastic behaviour 

Based on the submitted manuscript: 

Fei Song, Alfonso Rodriguez-Dono, Sebastia Olivella, Antonio Gens. Hydro-mechanical 

analyses of longitudinal deformation profiles for tunnels excavated in saturated Burgers-

viscoplastic strain-softening rock masses. Submitted to <Applied Mathematical Modelling>. 

 

Abstract 

This study provides a general numerical approach for modelling the response of tunnels 

excavated in saturated time-dependent plastic rock masses, considering a coupled solid-fluid 

interaction and time-dependent plastic behaviour. In order to do that, a Burgers-viscoplastic 

strain-softening model has been developed and implemented into the finite element method 

software CODE_BRIGHT, and a coupled solid-fluid model is used to simulate the interaction 

between solid deformations and fluid flow. Parametric analyses are then performed to analyse the 

influence on the tunnelling response of different time-dependent models, different standstill times 

and different excavation rates. It has been observed that the time-dependent model selection is 

crucial to simulate the response of underground excavations. Additionally, the coupled solid-fluid 

results are significantly different from the purely mechanical ones. The liquid pressure build-up 

in the vicinity of the tunnel face and the overpressure dissipation with time due consolidation can 

be accounted for. Moreover, the higher the excavation rate, the larger build-up of liquid pressures 

occurs. 

 

4.1. Introduction 

The multi-physics multi-phases coupling problems concerning mass transport, fluid flow and 

solid deformations are of significance in engineering applications, such as nuclear waste 

repositories, geological carbon storage, geothermal energy or underground excavation. Multi-
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stage underground excavation in saturated ground is a characteristic process in many geotechnical 

applications. In some cases, the surrounding rock masses can deform gradually, showing large 

delayed deformations that may lead to creep-induced failure (Damjanac and Fairhurst, 2010; 

Eberhardt et al., 1999; Fabre and Pellet, 2006; Song et al., 2020). A better understanding of the 

time-dependency, damage evolution and creep-induced failure response is a topic of considerable 

interest in rock mechanics. Furthermore, the effect of the coupled solid-fluid response cannot be 

ignored when a underground excavation is performed below the water table (Guayacan-Carrillo 

et al., 2017; Nam and Bobet, 2007; Prassetyo and Gutierrez, 2018b; Yuan and Harrison, 2005). 

Therefore, a comprehensive analysis of the entire process of multi-stage excavation incorporating 

time-dependent plastic behaviour of geomaterials and the coupled solid-fluid interaction is crucial 

to perform a proper numerical simulation of underground excavation problems. 

Empirical, analytical or numerical methods has been widely used in tunnelling design 

(Alejano et al., 2012; Bobet, 2009; Cai, 2008; Chen et al., 2019; Debernardi and Barla, 2009; Do 

et al., 2020; Galli et al., 2004; Kargar and Haghgouei, 2020; Lin et al., 2019; Lin et al., 2020; 

Paraskevopoulou and Diederichs, 2018; Sakurai, 2010; Shin et al., 2002; Song and Rodriguez-

Dono, 2021; Song et al., 2020; Song et al., 2018a and 2018b; Unlu and Gercek, 2003; 

Vlachopoulos and Diederichs, 2009; Vu et al., 2013; Wang et al., 2019; Wang and Nie, 2010; 

Wang et al., 2018e; Zareifard, 2018). Among all these methods, the convergence-confinement 

method (CCM) provides an efficient way to determine support forces by considering the ground-

structure interaction (Alejano et al., 2010; Alejano et al., 2012). The CCM consists of three basic 

components in the form of graphs: the ground reaction curve (GRC), the longitudinal deformation 

profile (LDP) and the support characteristic curve (SCC) (Alejano et al., 2010; Carranza-Torres 

and Fairhurst, 2000; Song and Rodriguez-Dono, 2021; Song et al., 2020). The main focus of this 

study is to analyse solid deformations (i.e. LDP) and fluid flows in longitudinal multi-stage 

excavation problems, considering the coupled solid-fluid interaction, and time-dependent plastic 

behaviour of geomaterials. 

Some researchers have studied the LDP based on field measurements or numerical 

simulations, but most of them are based on elastic constitutive models (Corbetta et al., 1991; 

Panet, 1993; Panet, 1995; Unlu and Gercek, 2003). Based on the field measured data of a tunnel 

in the Mingtam Power cavern project, Chern et al. (Chern et al., 1998) presented an empirical 
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solution of the LDP for the elastic-plastic problems. Then, by using numerical simulations, 

Vlachopoulos and Diederichs (2009) proposed the elastic-plastic empirical solutions of LDP that 

consider the influence of the ultimate plastic radius. However, these models do not seem to model 

correctly the post-failure behaviour for average-quality rock masses (Alejano et al., 2012; Hoek 

and Brown, 1997). Subsequently, considering the post-failure behaviour, Alejano et al. (2012) 

extended the approach of Vlachopoulos and Diederichs (2009) to the case of strain-softening rock 

masses representing a wider range of rock masses. 

However, in all the above references, the geomaterials exhibit time-independent properties. 

This condition is quite different from that in real projects in which the rock masses exhibit strong 

time-dependent creep properties, such as in squeezing rock masses (Paraskevopoulou, 2016; 

Paraskevopoulou and Diederichs, 2018; Song et al., 2020; Wang et al., 2020b). Based on the 

Burgers-creep viscous (CVISC) model introduced by Itasca (2007 and 2008), Paraskevopoulou 

(2016) and  Paraskevopoulou and Diederichs (2018) presented LDP simulations for time-

dependent viscoelastic rock masses, but no plastic yield was considered. Moreover, in the CVISC 

model, the plastic slider is not coupled with the viscous dashpot, which means that the CVISC 

model cannot simulate creep-induced failure behaviour (Paraskevopoulou, 2016; Song et al., 

2020). Recently, Song et al. (2020) proposed a viscoelastic-viscoplastic strain-softening model 

and programed it in a finite element method software CODE_BRIGHT (Olivella et al., 2020); 

this model considers the coupled behaviour of viscous and strain-softening models, which can 

simulate creep-induced failure response. Then, Song et al. (2020) presented analysis and 

modelling of the LDP for tunnelling in time-dependent plastic rock masses, but the primary creep 

stage behaviour cannot be simulated by their model. Thus, the proposed viscoelastic-viscoplastic 

strain-softening model in Song et al. (2020) cannot represent adequately the response of 

geomaterials with high strength or subject to low stresses. 

Furthermore, the previously mentioned research about the LDP was carried out without 

considering the coupled solid-fluid interaction. However, when tunnels are excavated in saturated 

ground, the coupled solid-fluid response of geomaterials is important for estimating the 

tunnelling behaviour (Guayacan-Carrillo et al., 2017; Nam and Bobet, 2007; Paraskevopoulou 

and Diederichs, 2018). Nam and Bobet (2007) proposed empirical best-fit solutions for the LDP 

for saturated ground with steady-state flow condition. Furthermore, considering coupled 
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interactions between solid deformations and fluid flows, Prassetyo and Gutierrez (2018) proposed 

a LDP for predicting time-dependent radial displacements along the tunnel axis. However, the 

surrounding rock masses were assumed as linear elastic materials for the coupled solid-fluid 

problems (Prassetyo and Gutierrez, 2018b). In chapter 3 of this thesis, we presented empirical 

best-fit solutions of the LDP for tunnelling in saturated ground using an elastic-perfectly-plastic 

constitutive model and assuming a steady-state fluid flow, but without considering time-

dependent behaviour. However, the LDP heavily depends on both the behaviour model selected 

(Alejano et al., 2012; Paraskevopoulou, 2016; Paraskevopoulou and Diederichs, 2018; Song and 

Rodriguez-Dono, 2021; Song et al., 2020) and the coupled solid-fluid interaction (Nam and Bobet, 

2007; Prassetyo, 2017; Prassetyo and Gutierrez, 2018b). 

In summary, research on the underground excavation problems has been mostly concentrated 

on purely mechanical problems, or the coupled solid-fluid problems but with simpler constitutive 

models. Instead, in this article, we present the coupled solid-fluid modelling of multi-stage 

underground excavation in time-dependent plastic geomaterials, with consideration of (1) time-

dependent creep properties of geomaterials, including the primary, secondary and accelerated 

creep responses, (2) post-failure behaviour models, which can represent elastic-perfectly, elastic-

brittle and strain-softening behaviour, (3) the coupling between creep and damage evolution, thus 

simulating creep-induced failure behaviour, and (4) coupled interaction between solid 

deformations and fluid flows. 

 

 

4.2. Theoretical background 

4.2.1. Theoretical background for solid deformations 

4.2.1.1. Rock mechanics 

Experimental creep tests show that the time-dependent behaviour deformation of rocks accounts 

for a large amount of the total displacements (Chu et al., 2019; Paraskevopoulou, 2016; 

Paraskevopoulou and Diederichs, 2018; Song et al., 2020; Song et al., 2018a and 2018b; Sulem et 
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al., 1987). Time dependency (or creep behaviour) results in delayed deformation, which must be 

taken into account to design underground projects more accurately and safely (Paraskevopoulou, 

2016; Paraskevopoulou and Diederichs, 2018).  

Moreover, the creep-induced failure behaviour of geomaterials may be relevant, as some 

underground structures do not fail during the excavation process, but ultimately fail after a long-

term (Fabre and Pellet, 2006; Sandrone and Labiouse, 2010; Song et al., 2020). Thus, time-

dependent plastic behaviour, especially the creep-induced failure response of geomaterials, is a 

topic of considerable interest in rock mechanics.  

As shown in Figure 4.1, the typical creep response of rocks may usually be characterised by 

four stages under a constant applied load (Paraskevopoulou, 2016; Paraskevopoulou and 

Diederichs, 2018; Song et al., 2020; Sterpi and Gioda, 2009): 

1.  Instantaneous elastic response: the reversible elastic strain occurs instantaneously upon 

loading. 

2.  The primary creep stage: the strain rate decreases with time. 

3.  The secondary creep stage: a constant strain rate with time occurs. 

4.  The accelerated (or named as tertiary) creep stage: the strain rate starts to accelerate once the 

material reaches the yield surface. 

Furthermore, the post-failure behaviour of geomaterials may play a significant role in the 

performance of underground excavations (Alejano et al., 2010; Alejano et al., 2009; Alejano et al., 

2012; Song et al., 2020). For instance, different quality rock masses may exhibit different post-

failure behaviour, as shown in Figure 4.2(a) (Alejano et al., 2012; Hoek and Brown, 1997), and 

the response of rock masses will differ depending on the selected model (Alejano et al., 2010; 

Alejano et al., 2012; Alonso et al., 2003). Note that these ranges in Figure 4.2(a) are just a 

reference and they may vary in some cases. The strain-softening model is adopted in this study, 

which can be easily simplified to purely brittle behaviour or perfectly plastic behaviour (Song et 

al., 2020), if  desired. 
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Figure 4.1. Creep response: (a) a conceptual model, and (b) experimental results specimens at 

different applied stresses. Based on the work of Dubey and Gairola (2008) and Ramírez 

Oyanguren (1966). 

 

 

 

Figure 4.2. Conceptual post-failure behaviour model: (a) with different geological strength index 

(GSI), and (b) with a strain-softening model. Based on the work of Alejano et al. (2009, 

2012), Song et al. (2020) and Song and Rodriguez-Dono (2021). 
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In a strain-softening model, as shown in Figure 4.2(b), the yield surfaces F(, ) depend on 

both the stress tensor  and the softening parameter . The softening parameter  describes the 

gradual transition from the peak yield surface to the residual failure surface, being * the value of 

the softening parameter at which the softening phase ends and the residual phase begins (Alejano 

et al., 2012; Song et al., 2020). 

Song et al. (2020) proposed a viscoelastic-viscoplastic strain-softening model (named 

Maxwell-viscoplastic strain-softening or MVSS model in the following), combining the Maxwell 

model and the rate-dependent viscoplastic model in series. Due to the coupling between the creep 

deformation and the strain-softening model, the MVSS model can represent creep-induced failure 

(Song et al., 2020). However, the primary creep stage was neglected in the MVSS model (Song et 

al., 2020). However, the primary creep-induced deformations may be relevant for rock masses 

with high strength or subjected to low stresses (Song et al., 2018a). Hence, in the current research, 

by introducing the Kelvin model to the MVSS model, a new Burgers-viscoplastic strain-softening 

(BVSS) model has been developed. Section 4.2.1.2 shows the detailed description of the 

proposed BVSS model. Section 4.3 presents the numerical implementation method of the BVSS 

model in a finite element method (FEM) software, CODE_BRIGHT (Olivella et al., 2020). 

 

4.2.1.2. The Burgers-viscoplastic strain-softening constitutive model 

In rock mechanics, the Hookean elastic springs and the Newtonian viscous dashpot can be 

coupled in series or in parallel to model the time-dependent behaviour (Wang et al., 2013; Weng 

et al., 2010). Moreover, a plastic slider or a viscoplastic model can be used to simulate the plastic 

response (Paraskevopoulou, 2016; Song et al., 2020). 

In the current research, a coupled Burgers-viscoplastic strain-softening (BVSS) model is 

proposed, consisting of a Burgers model in series with the Perzyna viscoplastic model, with the 

aim of representing rock behaviour more realistically. The Mohr-Coulomb strain-softening model 

is selected in this research. These tentative approaches are needed if, as recommended by 

Starfield and Cundall (1988), heuristic approaches are followed to research, analyse and 

understand rock mechanics problems. 
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Note that the BVSS model is developed to capture the critical aspects of geomaterials, which 

include: 

1.  Time-dependent properties, including the primary, secondary and accelerated creep responses. 

2. Post-failure behaviour, including perfectly-plastic, strain-softening and purely-brittle models. 

3.  Coupled behaviour between creep response and damage evolution, so that creep-induced (or 

delayed) failure can be simulated. 

As shown in Figure 4.3, some simpler models can be considered as particular cases of the 

proposed BVSS model. For example, the Burgers model can be simplified to the Maxwell model, 

the Kelvin model and the Generalised Kelvin model. Similarly, the rate-dependent viscoplastic 

model can be simplified to the purely plastic slider. Thus, the Maxwell-viscoplastic strain-

softening (MVSS) model proposed in Song et al. (2020) is just a particular case of the proposed 

BVSS model. Figure 4.4 presents the creep response corresponding to three different mechanical 

models.  

The total strain rate tensor of the proposed BVSS model (
εd

dt
) can be decomposed into 

components describing viscoelasticity ( veεd

dt
) and viscoplasticity (

vpεd

dt
), as shown in Eq. (4.1). 

The viscoelasticity consists of two components: Maxwell ( Mεd

dt
) and Kelvin ( Kεd

dt
) parts, and the 

Maxwell part can be decomposed into elastic spring (
e

Mεd

dt
) and viscous (

v

Mεd

dt
) parts. 

 

vpve VPM K

e v

VPM M K

εε εε εε
= =

εε ε ε
     =

dd dd dd

dt dt dt dt dt dt

dd d d

dt dt dt dt

  

  

  (4.1) 
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Figure 4.3.  The proposed Burgers-viscoplastic strain-softening (BVSS) model for geomaterials. 

 

 

The strain rates corresponding to Maxwell, Kelvin and viscoplastic models can be expressed 

as in Eqs. (4.2)-(4.4), respectively. 

  
e v ' ' ' '

1
e eM M M
M M

M M

ε ε ε σ σ σ σ
= =C = D

d d d d d

dt dt dt dt dt 



     (4.2) 

  
1

v ' v 'K
K K K K( ) ( )

ε
C σ ε D σ ε

d

dt



      (4.3) 

 
vp

'

vp

1
( )

ε

σ

d G
F

dt 


 


  (4.4) 

where D
e

i  (or C
e

i ) and D
v

i  (or C
v

i ) represent the tangent stiffness matrices (or the compliance 

matrices) of the elastic spring and of the viscous dashpot in the i model (i = M or K represents the 
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Maxwell model or the Kelvin model); 
M

 (or 
K
) is the viscosity of the viscous dashpot in the 

Maxwell (or the Kelvin) model;  
vp

 is the viscosity of the viscoplastic model; F and G represent 

the overstress function and the viscoplastic potential, respectively, of the viscoplastic modelThe 

symbol (F) can be expressed as in Eq. (4.5) and (F) = F
m

 (m ≥ 1) (Mánica, 2018; Perzyna, 

1966; Song et al., 2020) is adopted in this research. 

 
( ) if ( ) 0

( )
0  if ( ) 0

    

           

F F
F

F

  
    

 
  (4.5) 

 

 

Figure 4.4.  Creep response considering three different mechanical models. Based on the work of 

Wang et al. (2014).  

 

 

The expression of the Mohr-Coulomb strain-softening model is shown in Eq. (4.6), where 

c() and () are cohesion and friction angle, respectively. p’, J
2
 and θ represent the mean 
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effective stress, the second invariant of the deviatoric stress tensor, and the Lode angle, 

respectively. 

        '

2

1
sin cos sin sin cos

3
F p J c        

 
     

 
  (4.6) 

The viscoplastic potential G is expressed as in Eq. (4.7), where  is a parameter for the 

viscoplastic potential (0 ≤  ≤ 1) and  is the dilatancy angle. 

    '

2

1
sin cos sin sin

3
G p J      

 
   

 
  (4.7) 

A piecewise linear plastic parameter functions of the plastic parameters k() is adopted 

(Alejano et al., 2009; Alonso et al., 2003; Song et al., 2020), as shown in Eq. (4.8),  where k can 

represent the cohesion c, the friction angle  and the dilatancy angle . k
peak

 and k
res

 are the peak 

and residual values of k, respectively. The softening parameter  is defined in Eq. (4.9), where 
p
 

(or 
p
) represents the accumulated plastic strain and  p p p p

m x y z

1

3
       (Mánica, 2018; Song et 

al., 2020). 

  

peak

res peak *

peak *

*

res

k , for 0

k k
k k , for 0

k , for

                                             

         

                                 



   


 

 


 
      
  




  (4.8)

      
2 2 2

2 2 2
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2 2 2 2
         

      
              

       

  (4.9) 
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Figure 4.5. Coupling between the creep behaviour and the strain-softening behaviour in the BVSS model. 

 

 

The strains developed in the viscous dashpot of the Maxwell model (
v

M ) and in the 

viscoplastic model (
vp

) are accumulated to account for the softening evolution, as shown in 

Figure 4.5. In that way, although the rock mass behaviour may be inside the yield surface initially, 

eventually it may reach failure. This is due to the yield surface shrinkage caused by the increase 

of the accumulated plastic strain ( v

M ) (Song et al., 2020). Thus, creep-induced failure behaviour 

can be simulated using the proposed BVSS model. 

Moreover, regarding the creep-induced failure behaviour, some experimental results show 

that the creep response differ according to the applied load level (Figure 4.1b). In addition, for 

stress values below the so-called ‘limited stress level’, i.e. stress points inside the residual failure 

surface domain (see Figure 4.5 and line 1 in Figure 4.6b), no failure occurs even in the long term 

(Barla and Borgna, 2000; Paraskevopoulou, 2016; Song et al., 2020), because the yield surface 

would never be reached. 

 



CHAPTER 4 

139 

 

 

Figure 4.6. Conceptual representation of the long-term stress-strain response (lines 1, 2 and 3) at 

different constant stress levels, based on the work of Paraskevopoulou (2016) and Song et 

al. (2020). 

 

 

As shown in Figure 4.6(b), after some stress increment  is applied up to points A, C and E, 

the applied stress is kept constant for a long period of time. It shows that the stress state will 

result in failure response for stress states above the so-called ‘limited stress level’ (lines 2 and 3). 

This failure will happen at different accumulated plastic strain values: for lines 2 and 3, failure 

initiates at points D and F, respectively. Based on Eq. (4.2), higher applied stresses would result 

in bigger values of 
v

Mεd

dt
 and thus, earlier failure times will occur due to the faster softening 

evolution. Hence, different stress levels will result in a different creep response in the proposed 

BVSS model. 
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4.2.2. The multi-physics multi-phases theory 

4.2.2.1. The coupled solid-fluid interaction 

In this study, the problem is formulated in a multi-physics (hydro-mechanical) multi-phases 

(solid-fluid) approach. From a modelling perspective, saturated rock masses are treated as an 

equivalent porous medium (Olivella et al., 1996 and 2020). The adopted generalised effective 

stress expression is that in Eq. (4.10). 

 
'

l Bσ σ Ip    (4.10) 

where  is the total stress tensor,  is the effective stress tensor, p
l
 is the liquid pressure, B is 

Biot’s coefficient and I is the identity tensor. 

As shown in Figure 4.7, two aspects (hydraulic and mechanical) and two phases (solid and 

fluid), are considered, including the coupling between them in both directions. Changes in 

hydraulic conditions influence the stress/strain field through changes in pore water pressure. 

Moreover, changes in the volume of the pores (or joints) caused by volumetric strains influence 

pore (or joint) liquid pressure distributions. 

In this case, saturated rock masses are composed of two phases -rocks and water–. The water 

component is always in the liquid phase (l), and the rock component is always in the solid phase 

(s). Conceptually, this means that the water is considered to be in the joints of the rock mass, 

which are the main vector of water seepage. 

The mass balance of the solid phase is expressed in Eq. (4.11). 
s
 represents the solid phase 

density, i.e. the density of the rock;  represents the porosity, which can be understood as the 

volume of the joints per unit volume of rock mass; j
s
 represents the mass flux of the rock 

concerning a fixed reference system. 

     s s1 0j
t


   


  (4.11) 
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Figure 4.7. Conceptual model of the hydro-mechanical coupled behaviour. Based on the work of 

Olivella et al. (2020). 

 

 

The mass balance of the liquid phase is expressed in Eq. (4.12). q
l
, 

l
 represent the liquid 

flux and liquid density, respectively; f 
w
 is a source/sink term. 

 
  u

q
l w

l l l

d
f

t dt

 
  

  
   

  
  (4.12) 

The stress equilibrium equation is expressed in Eq. (4.13).  represents the stress tensor and 

b represents the vector of body forces. 

 0σ b     (4.13) 

Using the material derivative with respect to the solid –Eq. (4.14)–, the mass balance of solid 

phase becomes that in Eq. (4.15).  

 
   

 s uD d

Dt t dt

  
   


  (4.14) 

 
 

 s s s

s

1
1

uD D d

Dt Dt dt

 





      (4.15) 

Combining Eq. (4.15) with the mass balance of the liquid phase and then making use of the 

material derivative –Eq. (4.14)– again, Eq. (4.16) can be obtained. 
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   

 s l ws s
l l l l

s

1 u
q

D D d
f

Dt Dt dt

  
   




       (4.16) 

The theory of the coupled multi-physics multi-phases formulation used herein is a particular 

case of the general formulation presented in Olivella (1995) and Olivella et al. (1996). More 

details on the finite-element formulation employed in CODE_BRIGHT, including the weak 

forms of the governing equations and explicit definitions of the resulting matrices and vectors, 

can be found in (Olivella, 1995; Olivella et al., 1996). 

 

4.2.2.2. Fluid flow 

The liquid advective flux related to phase motion is governed by the generalised Darcy’s law, as 

shown in Eq. (3.10). 

  rl
l l l

l

k
q g

k
p 


      (4.17) 

where p
l
 represents the liquid pressure; k represents the intrinsic permeability tensor, which 

depends on the joint structure of the rock mass; k
rl
 and 

l
 represent the relative permeability and 

dynamic viscosity of the fluid, respectively; g represents the gravity forces vector. 

 

 

4.3. Numerical implementation of the Burgers-viscoplastic strain-softening 

model 

The Burgers-viscoplastic strain-softening (BVSS) model is programmed in a finite element 

method software CODE_BRIGHT (Olivella et al., 2020). If another code is adopted, the same 

constitutive model presented in this study can be used. The programming of the proposed BVSS 

model should consider the following aspects:  
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1.  The existence of corners in the yield and potential surfaces at which the gradients are not 

uniquely defined.  

2.  The strain localisation and the development of strain-softening behaviour. 

3.  The coupled behaviour between creep response and softening evolution. 

4.  The fact that the development of the Kelvin model depend not only on the current state of 

stress and strain, but also on the full history of their variation.  

The first three aspects are already addressed in Song et al. (2020), from which the same 

approaches of the smoothing method for the yield and potential surfaces, strength parameters 

update for the strain-softening model and the viscoplastic model for strain localisation have been 

assumed for this study. Thus, this section concentrates on the fourth aspect, presenting the 

implementation of the proposed BVSS model. The numerical calculation and implementation of 

the Kelvin model involve theoretical difficulties, because this model depends on the full history 

of its development (Zienkiewicz and Taylor, 2000) and thus, history variables (Olivella et al., 2020) 

are required in the numerical implementation. 

The strain rate of the Maxwell model only depends on the current stress state and the 

material properties, as shown in Eq. (4.18) . 

 
k

k k

'
e v 'kM
M M t t

t t t t

ε σ
C C σ

d d

dt dt 
 

    (4.18) 

C
e

M  and C
v

M  are shown in Eq. (4.19).  
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M
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. 

Moreover, the elastic spring in the Maxwell model is characterised by an elastic modulus E
M

, 

a Poisson’s ratio 
e

M , a shear modulus G
M

 = 
 

M

e

M2 1

E


 and a volumetric modulus K

M
 = 

 
M

e

M3 1 2

E


. 

v

M  (or 
d

M ) represents the volumetric (or deviatoric) viscosity of the viscous 

dashpot in the Maxwell model. 

The strain rate of the Kelvin model depends on the current stress state and the material 

properties and the full history of their development (Olivella et al., 2020; Zienkiewicz and Taylor, 

2000), as shown in Eq. (4.20).  
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where 
kK t t
 and 

k 1K t t 
 are the accumulated strains of the Kelvin model at time t = t

k
 and t = 

t
k+1

, respectively. C
v

K  is shown in Eq. (4.22). History variables (Olivella et al., 2020) are applied 

to store the accumulated strain of the Kelvin model. 
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where M
Kv = 
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. 

    The strain rate of the viscoplastic model is Eq. (4.4). The derivative of Eq. (4.4) with respect 

to the stress tensor can be expressed in Eq. (4.23). 
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4.4. Numerical verification and comparison with other solutions 

4.4.1. Creep tests  

Uniaxial creep numerical tests are carried out to analyse the response of different mechanical 

models. Firstly, CODE_BRIGHT viscoelastic results are compared with analytical solutions. 
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After that, creep tests are carried out to analyse the creep-induced failure behaviour of the 

proposed Burgers-viscoplastic strain-softening (BVSS) model. Five different models are adopted 

in the comparison: three different viscoelastic models, including Maxwell, Kelvin and 

Generalized Kelvin models; two different Burgers-viscoplastic models, including Burgers-

viscoplastic perfectly-plastic (BVPP) model and Burgers-viscoplastic strain-softening (BVSS) 

model. 

The numerical model used here is 2D axisymmetric with dimensions of 0.01 m  0.05 m. 

The normal displacements along the bottom and left boundaries have been restrained, as shown in 

Figure 4.8(a). A mesh with 2250 quadratic triangle elements has been considered for the analysis, 

as shown in Figure 4.8(b). In the numerical simulations, a constant stress p
y
 is applied along the 

top boundary at time t = 0. The calculation is stopped at 150 days. 

The analytical solutions of creep strains are shown in Eq. (4.24) for three different 

viscoelastic models. The rock mass is considered incompressible and the input material 

parameters are shown in Table 4.1. No dilatancy is considered in the perfectly-plastic behaviour 

model. Note that the analyses do not represent any particular experiment. 
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  (4.24) 

Figure 4.9(a) shows that the responses of different viscoelastic models (at Point A; see 

Figure 4.8a) differ and, hence, the selection of time-dependent models might be relevant. 

Moreover, a good agreement is observed between analytical solutions and CODE_BRIGHT 

results, which verifies the correctness of the implementation of the CODE_BRIGHT viscoelastic 

models. 
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Table 4.1.  Input parameters for the uniaxial creep tests. 

Viscoelastic model Maxwell model E
M

 6000 MPa 
M

 7.776  10
9
 MPa.s 

 Kelvin model E
K
 3000 MPa 

K
 1.296  10

9
 MPa.s 

Viscoplastic model Cohesion c
peak

 10 MPa c
res

 5 MPa 

 Friction angle 
peak

 50 deg 
res

 20 deg 

 Dilatancy  1 
peak 

= 
res

 5 deg 

 Perzyna model m 5 
vp

 10
10 MPa

m
s 

 

 

 

Figure 4.8. Creep numerical test: (a) basic features and boundary conditions; (b) mesh (2250 

quadratic triangle elements). 
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Figure 4.9. Axial strains of point A versus time: (a) comparison between analytical solutions and 

CODE_BRIGHT results for three different viscoelastic models; (b) comparison between 

Burgers, BVPP and BVSS models. Note that C_B represents the CODE_BRIGHT results. 

 

 

For further verification, another group of creep tests is performed to analyse creep-induced 

failure behaviour. The numerical geometry, mesh and input parameters are the same as in the 

former example (see Figure 4.8). In Figure 4.9(b), the resulting strains of the Burgers model are 

the same as those of the BVPP model, which means that the viscoplastic part of the BVPP model 

is not engaged in this case. 

In the case of the BVSS model, the resulting strain is the same as that of Burgers at the start 

of the simulation –i.e. when there is only viscoelastic response–. However, when the stress 

reaches the yield surface at point A, the geomaterial starts to fail, given that the yield surface 

shrinks due to creep-induced softening (see Figure 4.5), and hence the strain rate accelerates 

(Song et al., 2020). Therefore, the proposed BVSS model can simulate creep-induced failure 

behaviour. 
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4.4.2. Comparison with tunnelling results based on the viscoelastic model 

The proposed BVSS model can be simplified to a viscoelastic model (see Figure 4.3). In order to 

verify the BVSS model for tunnelling in viscoelastic rock masses, examples of circular tunnels 

excavated in rock masses using the Generalised Kelvin model and the Burgers model are carried 

out using CODE_BRIGHT. The numerical results are compared with the analytical solutions of 

Wang et al. (2013). The expressions for tunnels excavated in the Generalised Kelvin and Burgers 

viscoelastic geomaterials under isotropic initial stresses are shown in Eqs. (4.25) and (4.26), 

respectively. 

        20
r

0
K K M

G1 1
exp

2 G

t
Kp

u t t t R d
r

    
 

  
       
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   (4.25) 
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M K K M

G1 1 1
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t
Kp

u t t t R d
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    
  

  
        

  
   (4.26) 

where R(t) represents the time-dependent radius of the tunnel cross-section; t represents time; p
0
 

represents the isotropic initial stress; u
r
 represents the incremental radial displacements occurring 

during the excavation; r represents the radial location in polar coordinates (r, ), where r= 0 

represents the location of the tunnel centre. 

The numerical model developed using CODE_BRIGHT is consistent with the hypothesis 

made in the analytical solutions, and both of them are calculated under plane-strain conditions 

with small deformations. Only a quarter of the domain is analysed in the numerical model (see 

Figure 4.10) because of the double symmetry of the geometry and the boundary conditions on 

both the x and y axes. In addition, the normal displacements along the bottom (y = 0) and the left 

(x = 0) boundaries are restrained. Figure 4.10(b) shows the mesh of the numerical model. A mesh 

of 1560 quadratic triangular elements is adopted, with smaller elements near the excavation. The 

isotropic initial stress in the model is p
0 

= 20 MPa. 

First, the model is run for a sufficiently long time (100 days in this example) before 

excavation, to reach the equilibrium stress-strain conditions before starting the excavation, 

ensuring that we only consider the incremental deformations induced by excavation. 
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Subsequently, the first section of the tunnel is instantaneously excavated. That time will be 

considered zero (t = 0 day) in this study. The following sections of the tunnel are excavated step 

by step, and the radii of the tunnel cross-section can be expressed by Eq. (4.27). After the 

completion of all excavation steps, the calculation is stopped at t = 60 days. 

  

2 m, for  0 5 days

4 m, for  5 days 10 days

6 m, for  10 days 15 days

8 m, for  15 days

   

    

    

    

t

t
R t

t

t

 


 
 

 
 

  (4.27) 

In the comparison, for both the Generalised Kelvin and Burgers models, three different 

groups of material properties are considered for each model, as shown in Table 4.2. The rock 

masses are assumed as incompressible, i.e. Poisson’s ratio is close to 0.5. A comparison of the 

time-dependent incremental radial displacements that occurred during the excavation along the 

tunnel wall (r = 8 m,  = 0 deg) predicted by the analytical solutions and the numerical 

simulations is shown in Figure 4.11. A good agreement between the numerical and analytical 

results is observed, hence verifying the viscoelastic models implemented in CODE_BRIGHT. 

 

Table 4.2.  Input parameters of the viscoelastic models. 

  E
M

 (MPa) E
K
 (MPa) 

d

M   (MPa.day) 
d

K  (MPa.day) 

Generalised Kelvin 

model 

Case 1 2000 2000 - 10000 

 Case 2 2000 5000 - 20000 

 Case 3 5000 100 - 5000 

Burgers model Case 1 5000 2000 50000 10000 

 Case 2 2000 500 10000 20000 

 Case 3 2000 1000 20000 30000 


v

M    and 
v

K   . 
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Figure 4.10. 2D plane-strain excavation model: (a) Basic features and boundary conditions (conceptual 

model). (b) Mesh in the vicinity of the excavation zone (far-boundaries at distances x = 50 

m and y = 50 m; quadratic triangular mesh –1560 elements, 6 nodes each one–; 4 

excavation steps in total). 
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Figure 4.11. Comparison between analytical solutions (Wang et al., 2013) and CODE_BRIGHT results 

for the incremental radial displacements u
r
 along the tunnel wall (r = 8 m,  = 0 deg): (a) 

Generalized Kelvin model, and (b) Burgers model. Note that C_B represents 

CODE_BRIGHT results.  

 

4.4.3. Comparison with the elastic solutions of the LDP for hydro-mechanical 

problems 

Numerical simulations of the LDP for the coupled solid-fluid problems with elastic materials are 

carried out in this section. The CODE_BRIGHT results are compared with the solutions for 

steady-state problems found in Nam and Bobet (2007) and the solutions for coupled solid-fluid 

problems found in Prassetyo and Gutierrez (2018b). A more detailed description of the steady-

state and the time-dependent coupled solutions of the LDP for tunnels excavated in saturated rock 

masses can be found in the aforementioned references (Nam and Bobet, 2007; Prassetyo and 

Gutierrez, 2018b). 

Considering tunnels below the water table with drainage towards the tunnel under steady-

state conditions, Nam and Bobet (2007) proposed the steady-state empirical solutions for 

normalised radial displacements ahead (x
d < 0) and behind (x

d  0) the tunnel face, as shown in 

Eqs. (4.28) and (4.29). 
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 r 0 l

'
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0.28 0.19 1 exp
u p

u p

  
     
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where p
l
, p’ represent the far-field liquid pressure and effective stress at the centre of the tunnel, 

respectively; u
r0

 represents the radial displacement of the tunnel wall at the tunnel face; and u
r,max 

represents the maximum radial displacement of the tunnel wall. 

Considering the effect of the coupled solid-fluid interaction, Prassetyo and Gutierrez (2018) 

proposed the transient coupled solutions of LDP shown in Eqs. (4.30)- (4.34). 
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where t* represents the normalised consolidation time (Giraud and Rousset, 1996; Li, 1999; 

Prassetyo and Gutierrez, 2018b). 

 

 

Figure 4.12. 2D axisymmetric excavation model: (a) Basic features and boundary conditions; (b) mesh 

(5640 quadratic triangular elements). 

 
Table 4.3. Rock mass properties and tunnel geometry for the hydro-mechanical problems. Based on 

the work of Prassetyo and Gutierrez (2018). 

Cases E (MPa) v R
1
 (m) p

0 
(MPa) p

l 
(MPa) Porosity K

 
(m2) 

Steady-state 292.5 0.125 2.5 4.5 2.25 0.39 10-10 

Coupled 

interaction 
292.5 0.125 2.5 4.5 2.25 0.39 5.12  10-17 
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Figure 4.13. Comparison of the longitudinal deformation profiles for steady-state saturated problems, 

according to CODE_BRIGHT results and Nam and Bobet’s analytical solutions (Nam and 

Bobet, 2007). 
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Figure 4.14. Comparison of the longitudinal deformation profiles for two different standstill times 

(t
stand

 = 5 days, 80 days), according to CODE_BRIGHT and Prassetyo and Gutierrez’s 

solutions (P&G in the figure) (Paraskevopoulou and Diederichs, 2018): (a) t
stand

 = 5 days, 

(b) t
stand

 = 80 days. 
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In the CODE_BRIGHT numerical model, the tunnel is represented as a rectangle of length 

50 m, excavated in 40 excavation steps 1.25 m long. The excavation rate selected is 5 m/day, as 

recommended by Prassetyo and Gutierrez (2018) and therefore, the whole excavation process 

takes 10 days. The dimensions and boundary conditions of the CODE_BRIGHT numerical model 

are shown in Figure 4.12(a). A mesh with 5894 quadratic triangle (six nodes) elements is adopted. 

Figure 4.12(b) presents the mesh of the numerical model. Table 4.3 contains the input parameters 

–rock mass properties and tunnel geometry. For the steady-state case, the intrinsic permeability 

chosen is 10
-10

 m
2
, which is a big enough value to ensure drained conditions; while for the 

coupled solid-fluid case the intrinsic permeability adopted is 5.12  10
-17

 m
2
, the same used by 

Prassetyo and Gutierrez (2018). No pressure is prescribed on the tunnel surface after excavation 

to be consistent with the numerical models found in Prassetyo and Gutierrez (2018). 

Figure 4.13 presents the comparison between the CODE_BRIGHT results and the solutions 

of Nam and Bobet (2007) of the LDP for tunnels excavated in saturated elastic rock masses under 

steady-state conditions. Similarly, Figure 4.14 shows the comparison of time-dependent LDP 

considering the coupled solid-fluid interaction between the CODE_BRIGHT results and the 

solutions of Prassetyo and Gutierrez (2018). A good agreement between is observed for all the 

cases analysed. Therefore, the use of CODE_BRIGHT for representing the LDP considering the 

solid-fluid interaction and elastic materials has been verified. 

 

 

4.5. Application in the design of tunnels 

In this section, several analyses are carried out to examine the coupled solid-fluid response of 

tunnels excavated in time-dependent plastic rock masses (Figure 4.15). The time-dependent 

deformation of a tunnel depends on the creep response of the geomaterial and on the tunnel 

advancement rate (Paraskevopoulou, 2016; Paraskevopoulou and Diederichs, 2018; Song et al., 

2018a and 2018b). In addition, the coupled solid-fluid interaction also affects the deformation of 

the tunnel (Prassetyo, 2017; Prassetyo and Gutierrez, 2018b and 2020). In this respect, the effects 

of selecting different time-dependent models is analysed in section 4.5.1 and the influence of the 



CHAPTER 4 

157 

 

standstill time and of the excavation rate on the tunnelling response is analysed in sections 4.5.2 

and 4.5.3. 

The tunnels analysed in this section have a radius 2.5 m. The selected initial stress (p
0
 = 4.5 

MPa), initial liquid pressure (p
l
 = 2.25 MPa), intrinsic permeability (K = 5.12  10

-17
 m

2
) and 

initial porosity (0.39) values are taken from the work of Prassetyo (2017 and 2020) and Prassetyo 

and Gutierrez (2018). The numerical model geometry, boundary conditions, excavation process 

and mesh, are the same as those described in section 4.4.3 (see Figure 4.12). After excavation, 

atmospheric pressure (0.1 MPa) is prescribed on the tunnel surface. Note that no hydraulic 

boundary conditions were applied for the purely mechanical problems. If not specified, the 

implied excavation rate is 5 m/day (Prassetyo, 2017; Prassetyo and Gutierrez, 2018b). Two rock 

masses (set#1 and set#2) with different input parameters are considered (Table 4.4). Set#1 mainly 

consists of sandstones and schists under extreme squeezing conditions (Barla et al., 2010), while 

Set#2 is mostly composed of gray to black shale, Marl and calcareous Shale (Sharifzadeh et al., 

2013). 

 

 

Figure 4.15. Conceptual solid-fluid coupled model for longitudinal deformation profiles (LDP). 
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Table 4.4. Sets of input parameters for the modelled rock masses. Based on previous work (Alejano 

et al., 2010; Barla et al., 2010; Barla and Borgna, 2000; Barla et al., 2011; Bonini and 

Barla, 2012; Paraskevopoulou, 2016; Sharifzadeh et al., 2013). 

 Set #1 Set #2 

E
M

 1415 1870 


M

 0.25 0.26 

E
K
 1494 1800 

 d

M
  (MPa.s) 8.82  108 5.05  1014 

 d

K
 (MPa.s) 1.34  108 9.46  109 

c
peak

 (MPa) 0.61 0.3 


peak

 (deg) 28 29.7 

c
res

 (MPa) 0.5 0.29 


res

 (deg) 25.8 29.3 


peak

=
res

 (deg) 1.0 0.1 

* 0.0177 0.0043 

T
K
 (s) 2.69  105 1.58  107 

 v

M
  ;   v

K
  ;  

K
 = 0.5;  m = 5;  

vp
 = 1.25  104 MPa

m
s;   = 1; G

 K
 =  E

K
/3;   for both sets. 

 

 

4.5.1. Influence of the rock mass behaviour model selection 

This sub-section focuses on analysing the effect of rock mass behaviour model selection on the 

resulting radial displacements of tunnels. Three different cases are investigated:  

1.  MVSS-M: a mechanical problem (M) using the Maxwell-viscoplastic strain-softening (MVSS) 

model.  

2.  BVSS-M: a mechanical problem (M) using the Burgers-viscoplastic strain-softening (BVSS) 

model. 

3.  BVSS-HM: a hydro-mechanical (HM) coupled problem using the BVSS model. 
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Note that the MVSS model is the same as the proposed model by Song et al. (2020), which is 

a particular case of the BVSS model. Moreover, to investigate the long-term response of 

tunnelling, two different standstill times (t
stand

 = 0 and 1 year) are considered. The reader can find 

more information about the concept of standstill time in previous work (Prassetyo, 2017; 

Prassetyo and Gutierrez, 2018b and 2020). 

Unlike the MVSS-M model, the BVSS-M model incorporates the Kelvin model, which can 

simulate the primary creep behaviour of geomaterials. Furthermore, the BVSS-HM model 

considers the coupled solid-fluid interaction. However, the MVSS-M and BVSS-M models can 

only analyse mechanical problems. Regarding the Kelvin model, the displacements increase over 

time under a constant applied stress, while the strain rate progressively decreases to zero. 

Therefore, after a long enough standstill period, the Kelvin model will have no contribution to the 

induced deformations. Note that T
K
 =  d

M
 / G

 K
 denotes the retardation time, which is the delayed 

response to an applied stress and can be described as ‘delay of the elasticity’. As the value of T
K
 

decreases, the less time is needed for the Kelvin model to achieve a very low strain rate i.e. the 

response of the rock mass to an applied stress will be faster.  

The first rock mass (set#1 in Table 4.4) is expected to exhibit a stronger primary and 

secondary creep response, because the Maxwell ( d

M
) and Kelvin ( d

K
) viscosities are lower. At 

time t
stand

 = 0, the resulting deformations using the BVSS-M model are significantly higher than 

those using the MVSS-M (Figure 4.16), due to the additional contribution of the Kelvin model. 

However, with increasing standstill time, the response of the Kelvin model may achieve a stable 

condition. Hence, after that, the difference between MVSS-M and BVSS-M results may be 

caused only by the creep response of the Maxwell model. This may be the reason why the 

difference between MVSS-M and BVSS-M results is smaller, although still significant, at t
stand

 = 

1 year. On the other hand, at both t
stand

 = 0 and t
stand

 = 1 year, the BVSS-HM and the BVSS-M 

results are significantly different. This is caused by the additional contribution of the coupled 

solid-fluid response. 

Regarding the second rock mass (set#2 in Table 4.4), its secondary creep response is 

expected to be residual, given the large value of  d

M
 considered. Moreover, the retardation time of 
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set#2 has a higher value (T
K
 = 1.58  10

7
 s), which means that the primary creep develops during 

a longer time than in the case of set#1. In the short-term (t
stand

 = 0), both MVSS-M and BVSS-M 

results are similar (Figure 4.16), probably because there is not enough time to develop a 

significant primary creep (or creep of the Kelvin model), given the aforementioned high value of 

T
K
. On the contrary, at t

stand
 = 1 year, there is a considerable difference between MVSS-M and 

BVSS-M results, probably due to the additional contribution of the Kelvin model, which now has 

had enough time to induce deformations. Furthermore, it can be observed that BVSS-HM and 

BVSS-M results are significantly different, due to the coupled solid-fluid effect, both for short-

term (t
stand

 = 0) and long-term (t
stand

 = 1 year) cases. 

Hence, the MVSS model may represent the response of some tunnels in which large 

deformations occur due to secondary and accelerated creep and in which the primary creep-

induced deformation is marginal. For example, this may be the case of tunnels excavated in weak 

or altered rock masses, or the case of hard rock masses excavated very deep, or the case of rock 

masses with significant values of  d

K
 (Olivella and Gens, 2002; Sainoki et al., 2017; Song et al., 

2020; Sterpi and Gioda, 2009). 

However, in some other cases, where the primary creep-induced deformations should be 

relevant, the proposed BVSS model may be able to represent more accurately the time-dependent 

behaviour and hence, it may contribute to a safer and more efficient tunnel design than the MVSS 

model. This is the case of tunnels excavated in rock masses exhibiting high strength or subjected 

to low stresses (Song et al., 2018a). In addition, note that the MVSS model is actually a particular 

case of the BVSS model (as described in section 4.2). 

Additionally, hydro-mechanical (HM) results are significantly different from the purely 

mechanical results. Therefore, both the selected rock mass behaviour model and the coupled 

solid-fluid interaction may be relevant in the preliminary design of tunnels. 
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Figure 4.16. Radial displacements of the tunnel wall along the normalized distance to the tunnel face 

for three (MVSS-M, BVSS-M and BVSS-HM) models and two different standstill times 

(0 and 1 years): (a) set #1 and t
stand

 = 0, (b) set #1 and t
stand

 = 1 year, (c) set #2 and t
stand

 = 0, 

(d) set #2 and t
stand

 = 1 year. 
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4.5.2. Time-dependent responses of tunnels during the standstill period 

Some tunnels do not fail during excavation but ultimately fail after a long period of operation 

(Fabre and Pellet, 2006; Sandrone and Labiouse, 2010). This phenomenon might be caused by the 

creep-induced failure behaviour and/or by the pore pressure time-dependent dissipation process 

due to the coupled solid-fluid interaction. In this section, the tunnelling response for four different 

standstill times (t
stand

 = 0, 0.1, 1 year and 2 years) is presented. Two different rock masses (set#1 

and set#2) are considered. The BVSS-HM model has been used for this analysis. 

 

 

Figure 4.17. Contours of liquid pressure for two different rock masses (set#1 and set#2) and four 

different standstill times (t
stand

 = 0, 0.1, 1 year and 2 years) for: (a) set#1, and (b) set#2. 
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Concerning the pore pressure evolution, it can be observed that the liquid pressure builds up 

just ahead of the tunnel face (Figure 4.17) in the short term after the excavation (t
stand

 = 0), 

increasing around 5% and 7% for set#1 and set#2, respectively. This phenomenon may be due to 

the fact that the liquid pressure dissipation rate is lower than the excavation rate (Prassetyo, 2017; 

Prassetyo and Gutierrez, 2018b and 2020). Then, with the increase of the standstill time, this 

overpressure dissipates and, eventually, the liquid pressure achieves a steady-state condition, after 

a long enough period (Prassetyo, 2017; Prassetyo and Gutierrez, 2018b and 2020), as it can be 

observed in Figure 4.17. 

Moreover, although the hydro-mechanical boundary conditions are the same for both cases, it 

can be observed that the fluid responses are different for set#1 and set#2 (Figure 4.17). This 

difference is due to the coupled solid-fluid interaction (see Figure 4.7), that may cause different 

solid deformations for different geomaterials, in turn affecting fluid flow differently. 

Figures 4.18 and 4.19 show the liquid pressure profile along the normalised distance to the 

tunnel face (x
d
/R

1
). Note for reference that the liquid pressure is taken at a radius of 4.5 m. For 

both sets #1 and #2, it can be observed that the liquid pressure profile is initially higher all along 

the tunnel, and then it experiences a certain dissipation as the standstill time increases. In addition, 

Figures 4.18 and 4.19 show that there is some overpressure just ahead of the tunnel face, as it has 

been commented above. This overpressure seems to dissipate relatively fast. Certainly, the liquid 

pressure profiles are similar after a standstill time of 1 year, which means that most of this 

dissipation process has been completed. Moreover, note that the dissipation rate decreases with 

the standstill time, according to the results. Finally, it can be observed that this dissipation is 

much slower as we move away from the tunnel face in the tunnel advance direction (e.g. x
d
/R

1
 = -

15). These effects may be caused by the coupled solid-fluid interaction.  
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Figure 4.18. 2D liquid pressure profile evolution over four different standstill times (t
stand

 = 0, 0.1, 1, 2 

years) for two different rock masses: (a) set#1 and (b) set#2. 

 

 

Finally, Figures 4.20 and 4.21 show the longitudinal deformation profile evolution. For set#1, 

the induced displacements increase linearly even after a long standstill time, which indicates that 

the displacements may be fundamentally induced by secondary creep (Maxwell part of the 

Burgers model). This phenomenon may be consistent with some reported engineering cases 

(Olivella and Gens, 2002; Sainoki et al., 2017; Song et al., 2020; Sterpi and Gioda, 2009). 

In contrast, for set#2, it can be observed that the incremental rates of induced displacements 

decrease along the standstill time (Figures 4.20 and 4.21), which indicates that the induced 

displacements by secondary creep may not be significant. Furthermore, the results show that the 

primary creep induced displacements (Kelvin part of the Burgers model) are more relevant at a 

shorter term and less significant afterwards, as could be expected. This response may represent 

the behaviour of rock masses exhibiting high strength or subjected to low stresses (Song et al., 

2018a).  
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Figure 4.19. 3D liquid pressure profile evolution for two different rock masses: (a) set#1 and (b) set#2. 
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Figure 4.20.  2D longitudinal deformation profile evolution over four different standstill times (t
stand

 = 0, 

0.1, 1, 2 years) for two different rock masses: (a) set#1 and (b) set#2. 

  

 

4.5.3. Influence of the excavation rate 

During the excavation process, solid deformations and liquid flows are coupled, and thus, 

tunnelling responses become more complex and difficult to anticipate. The excavation rate may 

heavily affect the creep response of tunnels (Song et al., 2020) and the pressure dissipation of the 

fluid phase. In this section, three different excavation rates (5 m/day, 10 m/day and 20 m/day) are 

adopted to analyse the influence of the excavation rate on the tunnelling response. The liquid 

pressure is taken at a radius of 4.5 m in these examples. All presented results in this section 

assume a standstill time t
stand

 = 0, i.e. just after the excavation of the tunnel face. 

During excavation, the high undrained loads experienced by the rock mass near the tunnel 

face, causes the liquid pressure to increase from its initial value (2.25 MPa). This phenomenon 

can be called overpressure. Figure 4.22 shows contours of liquid pressure for two different rock 

masses (set #1 and #2) and three different excavation rates (5 m/day, 10 m/day and 20 m/day). It 

can be observed that different excavation rates result in different overpressure values. Table 4.5 

presents the maximum overpressure reached during the different simulations, both in absolute 
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value and in percentage increment from the initial liquid pressure value. It can be observed that 

overpressure increases with the excavation rate, being slightly higher for set#2. 

 

 

 

Figure 4.21. 3D longitudinal deformation profile evolution for two different rock masses: (a) set#1 and 

(b) set#2.  

 

 



CHAPTER 4 

 

168 

 

 

 

Figure 4.22. Contours of liquid pressure for three different excavation rates (5 m/day, 10 m/day, 20 

m/day) and two different rock masses: (a) set#1, and (b) set#2. A standstill time t
stand = 0 

is assumed. 

 

Furthermore, Figure 4.23 plots the profiles of liquid pressure along the normalised distance 

to the tunnel face (x
d
/R

1
). Behind the tunnel face (x

d
 > 0), faster excavation rates results in larger 

liquid pressures. Moreover, ahead of the tunnel face (x
d
 < 0), the faster the excavation rate, the 

more significant build-up values of liquid pressures occur in the vicinity of the tunnel face, due to 
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the shorter time available for dissipation. In addition, note that the maximum values of liquid 

pressure are attained at points closer to the tunnel face, as the excavation rate increases. However, 

there is no significant effect of the excavation rate on the liquid pressure as we move away from 

the tunnel face in the tunnel advance direction. 

Similarly, Figure 4.24 presents the radial displacements of the tunnel wall (r = R
1
) along the 

normalised distance to the tunnel face (x
d
/R

1
), i.e. the longitudinal deformation profiles, for three 

different excavation rates and two different rock masses. It can be observed that lower excavation 

rates may lead to larger deformations, since there is more time for creep deformations to develop 

(Song et al., 2020) and for pore pressures to dissipate (Prassetyo, 2017; Prassetyo and Gutierrez, 

2018b). Moreover, the radial displacements ahead of the tunnel face do not seem to be affected 

by the excavation rate. However, behind the tunnel face, the radial displacement difference 

corresponding to different excavation rates grow as we move away from the tunnel face. 

In summary, the different excavation rates can result in different fluid flows for two reasons: 

(1) the faster the excavation rate, the slower dissipation of liquid pressure ahead of the tunnel face 

and thus, the higher liquid pressure build-up; (2) different excavation rates result in different 

periods of time for the development of creep deformations, in turn affecting the fluid flow. 
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Figure 4.23. Profiles of liquid pressure for two different rock masses: (a) set#1 and (b) set#2. Three 

different excavation rates (5 m/day, 10 m/day, 20 m/day) are considered. 
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Figure 4.24. Profiles of radial displacements for two different rock masses: (a) set#1 and (b) set#2. 

Three different excavation rates (5 m/day, 10 m/day, 20 m/day) are considered. 

 

 

Table 4.5. Maximum overpressure reached for two different rock masses (set #1 and #2) and three 

different excavation rates (5 m/day, 10 m/day and 20 m/day). 

Excavation rate 

[m/day] 

Maximum liquid pressure [MPa] Percentage increment of P
l
 [%] 

Set#1 Set#2 Set#1 Set#2 

5 2.36 2.41 5 7 

10 2.45 2.5 9 11 

20 2.59 2.58 15 15 
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4.6. Conclusions 

This study provides an alternative approach for modelling multi-stage excavation in saturated 

time-dependent plastic rock masses, considering a coupled solid-fluid interaction and a time-

dependent plastic behaviour. To do that, a Burgers-viscoplastic strain-softening (BVSS) model 

has been proposed and implemented into the finite element method software CODE_BRIGHT to 

be able to simulate the time-dependent behaviour and the plastic behaviour (stress-induced or/and 

creep-induced) of geomaterials. In addition, a coupled solid-fluid model is used to simulate the 

interaction between solid deformations and fluid flows. 

Firstly, the Burgers viscoelastic model and the viscoplastic model are combined in series, to 

simulate the mechanical response of geomateirals. The Mohr-Coulomb strain-softening model 

and a non-associated plastic flow rule have been used. The creep deformations are coupled with 

the strain-softening model to simulate the damage evolution, and hence, the creep-induced failure 

behaviour can be simulated. The generalised Darcy’s law has been adopted in the simulation of 

fluid flow. 

The numerical results are verified by comparing the CODE_BRIGHT results with other 

analytical or numerical results. Finally, parametric analyses are performed to analyse the effects 

of the selection of different constitutive model, the standstill time and the excavation rate on 

tunnelling response. Some conclusions can be drawn from this study: 

1. The proposed Burgers-viscoplastic strain-softening (BVSS) model provides the possibility of 

modelling rock masses in which both plastic and time-dependent responses take place.  

2. The results obtained considering the coupled solid-fluid interaction are significantly different 

from the purely mechanical results. Liquid pressure builds up just ahead of the tunnel face in 

the short term after the excavation. Afterwards, this overpressure dissipates with the increase 

of the standstill time, and the dissipation rate decreases with the standstill time. Moreover, 

over pressure dissipation is much slower as we move away from the tunnel face in the tunnel 

advance direction. 

3. Excavation rate is relevant to tunnelling response. Behind the tunnel face, a higher 

excavation rate results in a higher liquid pressure. Also, ahead of the tunnel face, the higher 
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the excavation rate, the more significant build-up values of liquid pressure occur in the 

vicinity of the tunnel face, due to the shorter time available for dissipation. In addition, as the 

excavation rate increase, the maximum values of liquid pressure are attained at points closer 

to the tunnel face. 

Note that, even if the proposed method in this study can simulate different cases of coupled 

solid-fluid response for tunnelling in saturated rock masses with time-dependent plastic behaviour, 

it still has some limitations. For instance, the numerical analyses are carried out through 

homogeneous material models. In future research, three-dimensional numerical models will be 

utilised to model tunnels excavated in non-homogeneous geomaterials, thus improving the 

applicability of the numerical approach to real engineering. 

Equation Chapter (Next) Section 1
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Chapter 5. Numerical solutions for tunnels excavated in strain-

softening rock masses considering a combined support system 

Based on the published manuscript of the following article: 

Fei Song, Alfonso Rodriguez-Dono. Numerical solutions for tunnels excavated in strain-softening 

rock masses considering a combined support system [J]. Applied Mathematical Modelling, 2021, 

92: 905-930. https://doi.org/10.1016/j.apm.2020.11.042 

 

Abstract 

In this study, an alternative numerical procedure to calculate displacements and stresses of 

supported circular tunnels is proposed, considering the whole process of tunnel advancement, and 

sequential installation of the primary and secondary support systems. In the derivation, the plastic 

area of the rock mass is divided into a large number of annuli around the tunnel, and then the 

Finite Difference Method (FDM) is employed. First, the strain-softening behaviour model is 

taken to simulate the post-failure behaviour of the rock mass. Furthermore, the Mohr-Coulomb or 

the Hoek-Brown failure criteria can be chosen, a non-associated plastic flow rule is assumed and 

the dilatancy of the rock mass is considered. After that, the fictitious support forces concept is 

used to simulate the process of tunnel advancement, and thus, the three-dimensional effect of the 

tunnel face is considered. Finally, the solutions of displacements and stresses for the rock mass 

and the supports can be obtained, by using the compatibility conditions of stresses and 

displacements at both rock-support and support-support interfaces. The results obtained from 

these solutions agree well with those of the self-similar solutions for circular openings, and the 

compatibility conditions of supported tunnels were verified. The proposed method has been 

compared with the convergence-confinement method. Parametric analyses are then carried out to 

investigate the sensitivity of support forces and displacements to the rock mass behaviour model 

selection. Then, the application of the proposed solutions in the design of tunnels is presented. 

The proposed method provides a convenient alternative method for the preliminary design of 

tunnels. 
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5.1. Introduction 

The tunnels supported with a system comprising several supports are in high demand due to the 

increasing demands of transportation, geological disposal, hydraulic and mining engineering. The 

primary support system is usually put in place to seal the rock and withstand the loads that may 

arise during the excavation, while the secondary support system is installed to ensure the long-

term stability of tunnels (Leca and Clough, 1992; Oreste, 2003; Song et al., 2018b). Thus, a 

reliable analysis of the secondary support system constitutes a critical topic to the long-term 

stability of tunnels. At the same time, the acting support forces at the support-support interface 

directly affect the stability of the secondary support system. 

In addition, many accidents are related to fractures when dealing with mining or civil 

engineering underground projects. Therefore, the complexity of the behaviour of the different 

geomaterials is a critical topic in the mitigation of the accidents that may occur in works such as 

tunnel excavation (Song et al., 2020; Zhao et al., 2015). Thus, both rock mass behaviour model 

selection and the design method of the support system are crucial topics in the design of tunnels. 

A proper simulation of the whole process of tunnelling and support installation is critical to 

achieving an optimal design of tunnels. 

The design of tunnels can be tackled by various different methods, such as analytical 

solutions, numerical simulations or the convergence-confinement method (CCM) (Alejano et al., 

2010; Alejano et al., 2009; Alejano et al., 2012; Alonso et al., 2008; Alonso et al., 2003; 

Carranza-Torres and Fairhurst, 1999; Carranza-Torres and Fairhurst, 2000; Carranza-Torres et al., 

2013; Carranza-Torres and Zhao, 2009; Chu et al., 2019; Cui et al., 2020; Cui et al., 2019; Cui et 

al., 2015; Do et al., 2020; Fahimifar and Ranjbarnia, 2009; Fahimifar et al., 2010; Kabwe et al., 

2020b and 2020c; Kargar, 2019; Lu et al., 2011; Maghous et al., 2012; Nomikos et al., 2011; 

Oreste, 2003; Paraskevopoulou and Diederichs, 2018; Prassetyo and Gutierrez, 2018a and 2018b; 

Song et al., 2020; Song et al., 2018a and 2018b; Wang et al., 2018a; Wang et al., 2020a; Wang et 

al., 2019; Wang et al., 2013; Wang and Nie, 2010; Wang et al., 2020b; Wang et al., 2014; Wang 

et al., 2015; Wang et al., 2018b; Wang et al., 2018c; Wang et al., 2018e; Wang et al., 2017b; 

Wang and Li, 2009; Wang et al., 2010; Zeng et al., 2019; Zhang et al., 2015; Zhang et al., 2016; 

Zhang et al., 2012a; Zhang et al., 2019b; Zou et al., 2017a). Numerical simulations have been 
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widely used in the analysis of underground projects, considering more complex geological 

conditions. Although numerical simulations can provide some useful results, usually they require 

long runtimes and sometimes meet numerical difficulties, especially when complete parametric 

analyses need to be performed (Song et al., 2018b). On the other hand, analytical solutions 

provide an efficient and quick approach to gain insights into the nature of the problem (Carranza-

Torres and Fairhurst, 1999). However, solutions for plastic problems are not easy to develop. The 

CCM provides an efficient way of determining support forces by considering the ground-support 

interactions (Alejano et al., 2010; Alejano et al., 2012). Although the CCM has been widely used 

in the design of tunnels, the application of the CCM including two different support systems is 

limited (Song et al., 2018b). In addition, it is not possible to use the CCM in the design of a 

tunnel support system if ground reaction curves, support characteristic curves or longitudinal 

deformation profiles are not available (Prassetyo and Gutierrez, 2018a). As an alternative, a 

simple stepwise approach has been adopted to obtain solutions for tunnels excavated in strain-

softening rock masses in this study, considering the sequential installation of two different 

support systems, as explained below. 

Moreover, revising the literature so far on existing solutions for supported tunnels, some 

researchers presented elastic solutions for their stresses and displacements (Carranza-Torres et al., 

2013; Li and Wang, 2008; Wang and Li, 2009). Some other researchers presented solutions for 

supported tunnels constructed in time-dependent viscoelastic rock masses (Song et al., 2018a and 

2018b; Wang et al., 2013; Wang et al., 2014). However, no plastic behaviour is considered in 

these references, ergo the solutions obtained may lead to an unsafe design of tunnels, since plastic 

behaviour is common in many real engineering projects. On the other hand, many researchers 

developed so far various approaches for the plastic problems of tunnelling in rock masses, but 

mostly for elastic-perfectly-plastic (EPP) or elastic-brittle (EB) behaviour of rock masses (Shen et 

al., 2019; Vrakas and Anagnostou, 2014; Yu, 1992; Zhang et al., 2016; Zhang et al., 2012a). 

Nonetheless, the average quality rock masses behave in a strain-softening (SS) manner and thus, 

it is important to study the response of tunnels in rock masses exhibiting SS behaviour (Alejano 

et al., 2010; Alejano et al., 2009; Alejano et al., 2012; Alonso et al., 2003). Note that both EPP 

and EB models are special cases of the SS model. 
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Regarding rock masses exhibiting strain-softening behaviour, through defining a fictitious 

‘time’ variable and re-scaling some variables, Carranza-Torres (1998a) and Alonso et al. (2003) 

presented self-similarity numerical solutions of circular openings excavated in strain-softening 

geomaterials. Later, based on those solutions in Alonso et al. (2003), Alejano et al. (2009) 

presented ground reaction curves considering EPP, EB and SS behaviour models and increasingly 

realistic parameters.  

Furthermore, by using a simple stepwise procedure that successively determines the stresses 

and strains on the boundaries of a number of annuli into which the plastic zone is divided, some 

researchers (Brown et al., 1983; Lee and Pietruszczak, 2008; Park et al., 2008b; Wang et al., 

2012b; Wang et al., 2010; Zhang et al., 2012a; Zhang et al., 2018; Zou et al., 2017a) presented 

numerical solutions for tunnelling in rock masses that exhibit strain-softening behaviour. 

Combining them with the CCM, the above plastic solutions can be used for designing supported 

tunnels. However, the application of the CCM is limited to tunnels with a single support (Song et 

al., 2018b). 

On the other hand, Oreste (2003) proposed support characteristic curves for a combined 

support system, which extended the CCM in the application of tunnels with several different 

supports (Alejano et al., 2009; Alonso et al., 2008; Oreste, 2015; Oreste, 2003). However, in 

order to make a correct design of the secondary support system, the modified ground reaction 

curve due to the influence of the primary support system is needed; research that was missing 

until now. To do that, the compatibility conditions at the interface between supports should be 

considered. Therefore, at this point, the CCM meets one of its limitations. 

In summary, the solutions of supported tunnels were mostly concerned with elastic or 

viscoelastic problems, and rarely geomaterial-support/support-support coupled interaction is 

considered in the plastic solutions. Instead, in this research, we have proposed solutions for 

tunnels with two different support systems constructed in rock masses showing strain-softening 

behaviour. In these solutions, we consider: (1) the tunnel advancement, (2) the sequential 

installation of primary and secondary support systems, (3) different rock mass post-failure 

behaviour models: elastic-perfectly-plastic (EPP), strain-softening (SS) and elastic-brittle (EB), 

and (4) both displacements and stress compatibility conditions on the rock-support and support-

support interfaces. 
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In our approach for unsupported circular tunnels, the numerical solutions for the stresses and 

displacements are first derived for the strain-softening rock masses. Then, based on the coupled 

model at both rock-support and support-support interfaces, the solutions for the supported circular 

tunnels are presented, considering the tunnel advancement and different installation time of the 

primary and secondary support systems. Finally, the sensitivity of support forces and deformation 

of tunnels to the rock mass behaviour model selection are analysed, and an application example is 

presented to illustrate the application of the proposed method in the design of tunnels. 

 

 

5.2. State of the problem 

5.2.1. Assumptions and description of the problem 

This study considers the design of tunnels with two different support systems constructed in rock 

masses showing strain-softening (SS) post-failure behaviour. The process of tunnel advancement 

and the sequential installation of primary and secondary support systems have been considered. 

Throughout the analyses, the following assumptions have been made: 

1.  The surrounding rock is homogeneous and isotropic, and exhibits an elastic-plastic mechanical 

behaviour. The strain-softening (SS), the elastic-perfectly-plastic (EPP) as well as the elastic- 

brittle (EB) models are adopted to simulate the post-failure behaviour of rock masses.  

2.  The initial isotropic stress field around the tunnel is idealized as an axisymmetric condition, 

and the stresses in the far field can be assumed as P
0
. 

3.  Both the primary and secondary support systems are assumed to behave linearly elastic. The 

primary and secondary supports are instantaneously installed at a distance from the tunnel face x
d 

= x
1
 and x

d = x
2
, respectively. The outer and inner radii of the primary (secondary) support system 

are R
1
 (R

2
) and R

2
 (R

3
), respectively, and thus, the thickness of the primary (secondary) support is 

d
1 = R

1 - R2
, d

2 = R
2 - R3

, as shown in Figures 5.1 and 5.2. 
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4.  The excavation rate is slow enough that it may be assumed that it does not induce any 

dynamic stress. Small strain theory is considered. 

 

 

Figure 5.1. The three-dimensional effect of the tunnel advancement, including the boundary 

conditions in the rock mass and in the primary and secondary support systems. 

 



CHAPTER 5 

179 

 

Considering the tunnel advancement, the analysis of the distribution of the stresses and 

displacements near the periphery of the tunnel is a three-dimensional (3D) problem. As shown in 

Figure 5.1, the support forces from the tunnel face (named fictitious support forces in this study), 

P
f
, progressively decrease along with the increased distance to the tunnel face, from the initial 

stress P
0
 (ahead of point A), to zero (behind point D) when the tunnel face is at a distance where 

it has no influence on the considered section.  

Moreover, after the installation of the primary support system (behind point B in Figure 5.1), 

both the fictitious support forces P
f
 and the interaction support forces between the rock mass and 

the primary support system 1 j

SP  (j = 1, 2 represents the primary or secondary support stage, 

respectively) act on the periphery of the tunnel. At last, with the advancement of the tunnel face, 

P
f
 will eventually decrease to zero while 

1 j

SP  will increase from zero to a constant value. Before 

the installation of the secondary support (between point B and C), only the support forces 
11

SP  act 

on the outer boundary of the primary support; after the installation of the secondary support 

(behind point C), 
12

SP  and 
22

SP  act on the outer and inner boundaries of the primary support, while 

22

SP  acts on the outer boundary of the secondary support (Figures 5.1 and 5.2).  

 

 

Figure 5.2. Geometry and boundary conditions for: (a) rock mass and support systems; (b) rock mass; 

(c) the primary support system; (d) the secondary support system. 
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By introducing the fictitious support forces P
f
, to account for the effect of the tunnel face, the 

3D problem can be treated as an equivalent plane-strain one (Carranza-Torres et al., 2013; Sulem 

et al., 1987), as shown in Figure 5.2. This infinite plane, subjected to uniform isotropic far field 

stresses and made of an elastic-plastic medium, contains a circular tunnel with primary and 

secondary support systems sequentially installed. Figure 5.2 presents the mechanical models of 

the tunnel and the support system. R
p
 and R

s
 represent the peak and residual plastic radii of the 

rock mass, respectively. Polar coordinates (r, ) will be employed in the derivation of the 

solutions. The sign convention is defined as positive for compression and negative for tension. 

 

5.2.2. Rock mass behaviour models 

Some researchers (Alejano et al., 2009; Hoek and Brown, 1997) provided post-peak strength 

guidelines. These guidelines are based on the geotechnical quality of the rock by means of the 

geotechnical strength index (GSI). According to these guidelines, (1) for high quality rock masses 

(GSI > 60), the rock mass behaves in an elastic-brittle (EB) manner; (2) for average quality rock 

masses (40 < GSI < 60), the rock mass presents a strain-softening (SS) behaviour, which can also 

be referred to as strength-weakening behaviour; (3) for weak rock masses (GSI < 40), elastic-

perfectly-plastic (EPP) behaviour is assumed (Figure 5.3). Note that these ranges are just a 

reference and they may vary in some cases. 

SS behaviour can accommodate EB behaviour (the SS model with a drop modulus, M, equal 

to infinite) and EPP behaviour (the SS model with a drop modulus, M, equal to zero). Thus, EPP 

and EB behaviours are just two particular cases of SS behaviour. In the current research, the SS 

model will be adopted to simulate the post-failure behaviour of rock masses. 
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Figure 5.3. Different post-failure behaviour of rock masses with different geological strength indexes 

(GSI). Based on the work of Alejano et al. (2009 and 2010). 

 

One of the main features of the SS behaviour model is that the yield surfaces depend not only 

on the stress tensor , but also on the plastic or softening parameter  (Alejano et al., 2010; 

Alejano et al., 2009), as shown in Figure 5.4. The failure criterion is defined as shown in Eq. (5.1). 

 ( , ) 0σF     (5.1) 

The SS behaviour model is characterized by a gradual transition from the peak failure surface 

to the residual failure surface, which is governed by the plastic or softening parameter . In a SS 

model, a softening regime occurs whenever 0 <  < *, and the residual regime takes place when 

 ≥ *, as shown in Figure 5.4. * is the value of the softening parameter whereon the softening 

phase ends, beginning the residual phase. The softening parameter  is defined as shown in Eq. 

(5.2), where 
p
 (

p
) represents the accumulated plastic strain (Alejano et al., 2009; Alonso et al., 

2003). 

 
p p

r      (5.2) 
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Figure 5.4.  (a) Theoretical strain-softening model for a triaxial test performed on a rock sample.  

(b) Yield surface evolution for a rock mass with strain-softening behaviour. Based on the 

work of Alejano et al. (2009 and 2010) and Song et al. (2020). 

 

   In this study, a linear decrease function of the plastic parameters k() is adopted to 

represent the strain-softening behaviour (Alejano et al., 2009; Alonso et al., 2003), as shown in 

Eq. (5.3), where k
p
 and k

s
 are the peak and residual values of k, respectively. If a Mohr-Coulomb 

strain-softening model is adopted, k represents cohesion c, friction angle  and dilatancy angle , 

while k represents the m
HB

, s
HB

, a
HB

 and  when considering the Hoek-Brown strain-softening 

model. 

  

p

p *

p *

*

, for 0

, for 0

, for

                                          

          

                             

s

s

k

k k
k k

k



   


 

 


 
      
  




  (5.3) 

The Mohr-Coulomb strain-softening model can be shown in Eq. (5.4) (Alonso et al., 2003). 

    MC rF N S        (5.4) 
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where      1 sin 1 sin=N             ,      2S c N   . The peak and residual Mohr-

Coulomb failure criteria can be expressed as in Eqs. (5.5) and (5.6), respectively. 

 
MC,p p prF N S      (5.5) 

 
MC,s s r sF N S      (5.6) 

where i i i1 sin 1 sin=N          , 
i i i2S c N , and i = p (or s) represent the peak (or 

residual) parameters in the Mohr-Coulomb strain-softening model. 

The Hoek-Brown strain-softening model is represented by Eq. (5.7), where m
HB

(), s
HB

() 

and a
HB

() are the plastic strain-dependent parameters in the Hoek-Brown strain-softening model 

(Hoek et al., 2002). 

    
HBa ( )

r
HB ci HB HB

ci






    



 
    

 
rF m s   (5.7) 

where 
GSI-100

28-14D
HB im m e ,  

GSI-100

9-3D
HB s e   and 

GSI 20

15 3
HB

1 1

2 6

  
   

 
a e e ; D is a disturbance factor 

for rock masses. From an engineering point of view, the tunnel deformations obtained using the 

Hoek-Brown model and the Mohr-Coulomb model are similar (Alejano et al., 2012; Song et al., 

2020) and thus, we think it is reasonable to use the equivalent Mohr-coulomb model to represent 

the tunnel deformation of the Hoek-Brown model. Hence, in this study, if a Hoek-Brown strain-

softening model is chosen, the equivalent cohesion and friction angle for each rock mass and 

stress range will be determined through the fitting process. Then, the equivalent Mohr-Coulomb 

parameters will be used in the process of derivation. Based on the work of Hoek et al. (2002) the 

equivalent cohesion and friction angle can be obtained from Eqs. (5.8) and (5.9). 

 

  
HB

'

3max
HB HB HB HB

ci1

1
'

3max
HB HB HB HB HB HB

ci

6

sin

2 1 2 6














 
 

  
    

  
     

  

a

a m s m

a a a m s m

  (5.8) 
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   

     

HB

HB

1
' '

3max 3max
ci HB HB HB HB HB HB
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   


  
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a

a

a s a m s m

c

a a a m s m a a

  (5.9) 

where '

3max  is the upper limit of the confining stress over which the relationship between the 

Hoek-Brown and the Mohr-Coulomb criteria is considered. The equivalent method has been 

adapted from Hoek et al. (2002). The reader is referred to the original source for a detailed 

description of the equivalent method between the Hoek-Brown and Mohr-Coulomb failure 

criteria. 

The plastic potential in the form of Eq. (5.10) has been adopted, and () is the plastic 

strain-dependent dilatancy angle. 

       rG K   (5.10) 

where      = 1 sin 1 sinK             . 

 

 

5.3. Numerical solutions for supported tunnels 

In this work, the process of construction of the supported circular tunnel is divided into 3 stages:  

1.  The unsupported circular tunnel stage: which extends from x
d = 0 to x

d = x
1
, with x

1
 being the 

distance to the tunnel face where the primary support system is installed;  

2.  The primary support stage: which extends from x
d = x

1
 to x

d = x
2
, where x

2
 represents the 

distance to the tunnel face where the secondary support system is installed;  

3.  The secondary support stage:  which extends from x
d = x

2
 onwards, where the tunnel is 

supported by the primary and secondary support systems.  
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Both displacements and stress compatibility conditions on the interface between the rock 

mass and the primary support system (rock-support interface), and the interface between the 

primary and secondary support systems (support-support interface) should be satisfied. Section 

5.3.1 introduces the basic theory of the Finite Difference Method (FDM) used in the current 

research for solving the strain-softening problems. Section 5.3.2 presents the method of 

determination of the fictitious support forces P
f
. Sections 5.3.3 and 5.3.4 present the derivation of 

the solutions for the unsupported circular tunnel stage and the primary/secondary support stage, 

respectively. 

 

5.3.1. The Finite Difference Method (FDM) for strain-softening problems 

The Finite Difference Method (FDM) (Lee and Pietruszczak, 2008) has been used for deriving 

the solutions of strain-softening problems. In the FDM, the plastic zone of the rock mass 

(including softening and residual area) has been divided into a set of annuli, and the total number 

of annuli is assumed as n, as shown in Figure 5.5. The outer radius of the first annulus is the 

radius of plastic zone, i.e. r
(0) 

= R
p
, where R

p
 represents the radius of the plastic zone; the inner 

radius of the n-th annulus is the radius of the tunnel wall, i.e. r
(n) 

= R
1
, where R

1
 represents the 

radius of tunnels. The outer and inner radii of the i-th annulus are r
(i-1)

 and r
(i)

, respectively. In 

each annulus, the material properties are assumed as isotropic, uniform and unchangeable: the 

material parameters in the i-th annulus are equal to the one at the outer boundary of the i-th 

annulus, i.e. k
i 
= k

(i-1)
, where k represents the material parameters. 
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Figure 5.5. The radii of the different n annuli used in the numerical procedure. 

 

 

5.3.2. The determination of the fictitious support forces Pf 

In this study, the fictitious support forces P
f
 are adopted to simulate the effect of the tunnel face. 

The expression of P
f
 can be determined by combining the ground reaction curve (GRC) and the 

longitudinal deformation profile (LDP), and the method to determine P
f
 has been introduced in 

detail in Cui et al. (2015). For unsupported tunnels, no interaction support forces act on the 

tunnels (
1 j

SP  equal to 0), so only the fictitious support forces P
f
 act on the tunnel wall (r = R

1
). As 

e.g. shown in Figure 5.6, at a specific distance to the tunnel face, x
d = (i)

kx  (i = 1, 2), the radial 

displacements u
r 
=  i

ru  (i = 1, 2) for unsupported tunnels can be determined by using the LDP; 
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then, combining it with the GRC, the corresponding fictitious support forces (i)

fP  (i = 1, 2) can be 

determined. 

 

 

Figure 5.6. Determining of the support forces from tunnel face P
f
, by combining the ground reaction 

curves (GRC) and the longitudinal deformation profiles (LDP). Based on the work of Cui 

et al. (2015). 

 

To determine the fictitious support forces P
f
, the LDP and the GRC should be presented first. 

A numerical procedure to calculate the GRC, considering the strain-softening behaviour model of 

rock masses, is presented in the sub-section 5.3.3 (solutions for unsupported tunnels). The 

solutions for LDP found in Vlachopoulos and Diederichs (2009) have been adopted in this study. 

Vlachopoulos and Diederichs (2009)  presented the LDP for elastic-plastic rock mass shown in 

Eq. (5.11), with respect to the tunnel geometry, the distance to the tunnel face x
d
 and the 

maximum plastic radius max

pR . Initially, the empirical formula by Vlachopoulos and Diederichs 

(2009) has been developed for rock masses exhibiting EPP behaviour. Furthermore, by 

comparison with numerical simulations in FLAC (Itasca, 2007 and 2008), Alejano et al. (2012) 

and Rodriguez-Dono (2011) have proved that the empirical formula of Eq. (5.11) by 

Vlachopoulos and Diederichs (2009) can be also used for strain-softening rock masses, although 
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the plastic radius used would be the strain-softening one. Therefore, it is reasonable to choose the 

empirical formula of Eq. (5.11) by Vlachopoulos and Diederichs (2009) in this research. 

        
 
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 
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   

＜

                         (5.11) 

where Rock

r,maxu  represents the maximum radial displacements and 
Rock

ru  represents the radial 

displacements of unsupported tunnels at a distance of x
d
. Figure 5.7 presents the flow chart for 

determining the fictitious support forces. 

 

 

Figure 5.7. The flow chart in determining of the support forces P
f
, by combining the ground reaction 

curves (GRC) and the longitudinal deformation profiles (LDP). 
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5.3.3. Solutions for the unsupported circular tunnels 

5.3.3.1. Elastic solutions 

Based on the theory of elasticity, the stresses and strains in the elastic area can be expressed as in 

Eqs. (5.12) and (5.13), respectively. 
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  (5.12) 
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 
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  (5.13) 

where 
e

r  (or 
e

 ) and 
e

r  (or 
e

 ) represent elastic radial (or hoop) stresses, and incremental 

radial (or circumferential) strains, respectively; 
pR

  represents radial stresses at the elastic-plastic 

boundary (r = R
p
). Note that the strains are the incremental strains occurred after the excavation 

of the tunnel and the stresses are the total stresses. 

It should be noted that if the acting force P
inner

 along the tunnel wall is bigger than the critical 

support force P
critical

, the whole region of the circular opening will exhibit elastic behaviour, i.e. 

no plastic zone is formed. For the Mohr-Coulomb model, P
critical

 can be expressed in Eq. (5.14) 

(Lee and Pietruszczak, 2008). 

 
0 p
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5.3.3.2. Plastic solutions for circular openings 

The outer boundary of the 1-st annulus is the elastic-plastic interface (see Figure 5.5). By 

substituting r = R
p
 into Eqs. (5.12) and (5.13),  the stresses, strains at the outer boundary of the 1-

st annulus can be expressed as in Eqs. (5.15) and (5.16). 

 
 

 

0

00
2

     
p

p

Rr

R
p





 

  
   

   
   
   

  (5.15) 
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  (5.16) 

where 
pR

  represents the radial stresses along with the elastic-plastic interface (r = R
p
). 

Based on the FDM described in the section 5.3.1, in the 1-st annulus, the material parameters 

should be equal to the material parameters at the outer boundary of the 1-st annulus (plastic zone), 

i.e. the peak values of plastic parameters. And thus, the properties of the 1-st annulus should 

satisfy the peak failure criterion, which can be expressed as in Eq. (5.17). 

 
       MC

1 0 0rF N S        (5.17) 

where    0
1 sin 1 sin= p p pN N           , 

   0
2 p pS c N  .  

Combining the expressions of stresses (5.15) and the peak failure criterion (5.17), the radial 

stresses in the elastic-plastic interface 
pR

  can be expressed as in Eq. (5.18). 

                                  
   

   
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
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
                                                        (5.18) 

No plastic strain occurs in the outer boundary of the 1-st annulus, i.e. 
   0 0

0p p

r 
   . The 

failure criterion in the i-th annulus, can be expressed as in Eq. (5.19). 
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where 
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i i i
S c N  

  
 ; 

   1i
c 


 

and 
   1i

 


 represents the cohesion and friction angle at the outer boundary of the i-th annulus. 

A constant radial stress increment, r , is assumed for each annulus, and thus, the radial 

stress increment can be expressed as in Eq. (5.20). 

 
inner

pR

r

P

n





    (5.20) 

On the other hand, the radial stresses at the inner boundary of the i-th annulus 
 r i

 , can be 

expressed by the radial stresses at the outer boundary 
 1r i




, as shown in Eq. (5.21). 

 
   1 rr i r i

  
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    (5.21) 

And thus, the hoop stresses are expressed as in Eq. (5.22). 

 
       1 1i i r i i

N S


 
 

    (5.22) 

In the derivation, both the radius r and displacements u
r
 are normalized by dividing by the 

peak plastic radius R
p
, i.e., 

pr r R  and 
pu u R , where x  represent the normalized variable of 

x. And thus, the normalized peak plastic radius is equal to 1, i.e.,
 p 0

1r r  . For the 

axisymmetric problem, the equilibrium equation in the i-th annulus can be expressed as in Eq. 

(5.23). 

 ri iri 0
d

dr r

  
    (5.23) 

The strain in the i-th annulus can be obtained by geometric relations, as shown in Eq. (5.24). 
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





  (5.24) 

The strain can be decomposed into an elastic and a plastic parts, as shown in Eq. (5.25). 

 

e p

ri ri ri

e p

i i i  

  

  

     
     

      
          

  (5.25) 

where the elastic strain can be expressed as in Eq. (5.26), and the plastic strains satisfy the flow 

rule as shown in Eq. (5.27). 

 

   

   

2
e

ri ri 0 i 0

2
e

ri i 0 ri 0

1

1

1

1

P P
E

P P
E





 
  



 
  



  
     

 

  

     
 

  (5.26) 

 
 

p p

ri ii-1
0K 

     (5.27) 

where 
           i-1 i-1 i-1

1 sin 1 sinK


         
   

. 

The boundary conditions can be expressed as in Eq. (5.28). 

 
   

   

ri r i-1 i-1

ri r i-1 i-1

, for

, for

  

    

r r

u u r r

   


  


  (5.28) 

In the i-th annulus, combining the failure criterion equation (5.19), the equilibrium equation 

(5.23), and the stress boundary conditions equations (5.28), the stresses can be expressed as in Eq. 

(5.29). 

 

 

   

 

 

 

 

   

i 1 1

i 1 i 1i
ri r i 1

i 1 i 1 i 1

i rii 1 i 1

1 1

N

S Sr

N r N

N S

 

 

 

 



  

 

    
             

  


  (5.29) 
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Thus, the corresponding elastic strain in the i-th annuli can be obtained by substituting Eq. 

(5.29)  into Eq. (5.26). Combining Eqs. (5.21) and (5.29), the inner radius of the i-th annuli can 

be expressed as in Eq. (5.30). 

 
   

 
 

 

 
 

 

 i 1

1

1
i 1

rr i 1

i 1

i i 1

1

r i 1

1

1

1

N

i

i

S

N
r r

S

N

 



 














 
   

 
  

 
 
 

  (5.30) 

By combining Eqs. (5.24), (5.25) and (5.27), the differential equation of the normalized 

radial displacements iu  can be expressed as in Eq. (5.31). 

    
i i

i 1 i 1

du u
K f

dr r
  

    (5.31) 

where 
   

e e

ri ii 1 i 1
f K 

 
 
  . Combining it with Eq. (5.31) and the compatibility condition of 

displacements (5.28), the displacements in the i-th annuli can be expressed as shown in Eq. (5.32). 

 
 

 
 

 

 
 

 

i 1

i 1 i 1

i 1

i 1

i i 1 i 1

K

rK K

r

r
u u r f r dr

r



 



 





 

 
   

 
 

   (5.32) 

Substituting Eq. (5.32) into Eq. (5.24), and combining it with Eqs. (5.25) and (5.26), the 

plastic strain in the i-th annulus can be expressed as in Eq. (5.33). 

 

 

p ei
i i

i

p p

ri ii 1

=

=

u

r

K

 



 

 










  (5.33) 

And thus, the softening parameter at r = r
i
 can be expressed as in Eq. (5.34). 

 
p p

i i ri      (5.34) 
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Consequently, the material parameters of the rock mass can be updated by substituting Eq. 

(5.34) into Eq. (5.3). For the case of 
i
 =*, the corresponding radius ir  represents the 

normalized residual plastic radius sr . 

Repeating the numerical calculation procedure for n times, the stress on the last annulus 
r(n)

 

reach the value of the inner pressure acting on the surface of the circular opening with r = R
1
 

(P
inner

=P
f 
+ 1 j

SP ). Then, the peak plastic radius can be expressed as in Eq. (5.35). 

 
 

1

n

p

R
R

r
   (5.35) 

The radial displacements and the residual plastic radius can be expressed as in Eqs. (5.36) 

and (5.37), respectively. 

 
i i pu u R   (5.36) 

 
s s pR r R   (5.37) 

where the normalized displacements iu  can be obtained from Eq. (5.32). Algorithm 5.1 presents 

the calculation procedure for the elastic-plastic solutions for circular openings in rock masses. 

 

Algorithm 5.1. Calculation procedure to obtain the elastic-plastic solutions for circular openings in rock 

masses 

Input: R
1
, P

0
, n, P

inner
, material parameters, x

d 

Calculate the fictitious support forces P
f 
(x

d
), following section 5.3.2 and Figures 5.6 and 5.7 

For unsupported tunnels, P
inner

= P
f 
(x

d
); for supported tunnels P

inner
= P

f 
(x

d
) + P

1 j

S (x
d
) 

Calculate P
critical

 using Eq. (5.14) 

if Hoek-brown model, then 

     Calculate the equivalent Mohr-Coulomb parameters, based on Eqs. (5.8) and (5.9) 

end if 
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if P
inner

 > P
critical

, then                 

     typical elastic solutions 

else  

     
(0)

= 
p
 ( represents plastic parameters) 

     
Rp 

= (2P
0
-S

(0)
)/(1+N

(0)
), 

r
=(P

inner
-Rp

)/n 

     
r(0)

= Rp
, 

(0)
= 2P

0
-

Rp
 

     
r(0)

=(
Rp

 -P
0
)/(2G), 

(0)
=(P

0
-Rp

)/(2G) 

     
 

p

r 0
=0, 

 
p

0
=0, 

 
p

0
=0 

     
0
=1, 

r(0)u =
   r(0) 0 0pu R


   

     do i=1, n 

          r
(i)

={[
r(i-1)

+
r
-S

(i-1)
/(1-N

(i-1)
)]/[

r(i-1)
-S

(i-1)
/(1-N

(i-1)
)]}^[ 1/(N(i-1)-1)] 

          
r(i)

=
r(i-1)

+
r
, 

(i)
=N

(i-1)


r(i)
+S

(i-1)
 

                
2

0 0

1

1

e

r i r i i
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E


 
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e
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 

 
  



 
    

 
 

          
   

 
 

 

     

 

1

1 1

1

1

1

i

i i

i

K

rK Ki

i i ir

r
u u r f r r dr

r



 



 







 
   

 
 

 ;
         1

 
e e

i r i i i
f r K

 
 


   for 

 
i

r r  

           

 

 
 

=
 
 




ip e

i i

i

u
,      1

=
p p

r i i i
K
 

 


  

               
p p p

i i r i
     

          if 0 < 
 

 p

i
 < *, then 

               
   *

p s p

pi i

 
  




  , r

s
= r

(i)
 

          else 

               
   si

 

          end if 
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     end do 

end if 

Output: R
p
= R

1
/ r

(i)
,
 
R

s
= r

s
 R

1
/ r

(i)
 , 

rock

ru (r=R
1
)=

 i
u R

1
/ r

(i) 

 

5.3.4. Solutions for the tunnel with supports 

5.3.4.1. Mechanical analysis of the supports 

For supports of the type of shotcrete or concrete rings, the parameters of the supports are: shear 

moduli G
L1

 and G
L2

, and Poisson’s ratios 
L1

 and 
L2

. According to the theory of elasticity, the 

radial displacements and the stresses of the primary support under the boundary conditions (see 

Figure 5.2) can be expressed as in Eqs. (5.38) and (5.39), respectively (Wang et al., 2013). 

 

 
 

   
   

2 112 2
1 S d11 1 2 L1

S d 1 d 22 2 2 2

L1 1 2 L1 1 2

r L1 d
2 12 2 222 2

1 S d 2 S d12 22 1 2 L1
S d S d d 22 2 2 2

L1 1 2 L1 1 2

1 21
,

2 2
,

1 21
,

2 2

R p xR R
p x r x x x

G r R R G R R
u r x

R p x R p xR R
p x p x r x x

G r R R G R R





   
    

   
 
   
          

 

 (5.38) 
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r R R
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r R R r R R

R R
p x x x x

r R R
r x

R R R
p x

r R R
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



 
   

 
 
   

      
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 
   

 


 
   

 
 

2 2
222
S d d 22 2 2

1 2

,
R

p x x x
r R R









 
 
 


  

  
 

  (5.39) 

where 
1 j

Sp  represents the support forces acting on the outer boundary of the primary support in 

the j support stage, and j = 1, 2 represent the primary and secondary support stage, respectively; 
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22

SP  represents the support forces acting on the outer boundary of the secondary support (r = R
2
) 

in the secondary support stage. The radial displacements and stresses of the secondary support 

system under the boundary conditions in Figure 5.2 can be expressed as in Eqs. (5.40) and (5.41) 

(Wang et al., 2013). 

    
 2 222 2

2 S d22 2 3 L2
r L2 d S d d 22 2 2 2

L2 2 3 L2 2 3

1 21
, ,

2 2

R P xR R
u r x P x r x x

G r R R G R R

  
   

  
  (5.40) 

 

   

   

2 2
223 2

rL2 d S d d 22 2 2

2 3

2 2
223 2

2 d S d d 22 2 2

2 3

, 1 ,

, 1 ,L

R R
r x P x x x

r R R

R R
r x P x x x

r R R






  
    

 

  

    
 

  (5.41) 

5.3.4.2. Determination of the solutions in the primary support stage, x1 ≤ xd < x2 

The primary support was installed at the distance of x
d = x

1
. Only the fictitious support forces P

f
 

(x
d
) act on the tunnels before the installation of the primary support system, and the support force 

acting on the rock mass along the tunnel face is equal to P
f 
(x

1
) at the moment of installation. 

After the installation of the primary support system, both P
f 
(x

d
) and the interaction support forces 

11

SP (x
d
) act on the tunnel wall. Then, with tunnel advancement, the fictitious support forces P

f 
(x

d
) 

decrease, while the interaction support forces 
11

SP (x
d
) increase. Thus, the compatibility conditions 

of stresses at the rock-support interface (r = R
1
) are satisfied. In the derivation, the additional 

compatibility conditions of displacements should also be satisfied, as shown in Eq. (5.42). 

      Rock Rock

r 1 d r 1 1 rL1 1 d, , ,u R x u R x u R x  , for x
1 ≤  xd ≤ x

2
 (5.42) 

where    
Rock Rock

r 1 d 1 n
, =u R x R


 ,      11 Rock

s d f dr n
=p x p x  . Then, Eq. (5.42) can be simplified to Eq. 

(5.43). 

        
2 2 3

Rock Rock Rock1 2 1
1 r 1 1 f dn r n2 2 2 2

1 2 1 2

1 21
, 0

2 2
=L

L L

R R R
R u R x p x

G r R R G R R



 

 
         

  (5.43) 
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Below is shown the procedure to obtain the support forces 11

Sp (x
d
): 

1. Assume that both 
11

SP  and P
f
 are 0, to obtain the maximum displacements of the tunnel Rock

r,maxu  

and the maximum peak plastic radius max

pR  of the unsupported tunnels; 

2. Substitute x
d = x

1
, Rock

r,maxu  and max

pR  into Eq. (5.11), to obtain the displacements at the moment 

of installation of the primary support  Rock

r 1 1,u R x ; 

3. Follow the method presented in section 5.3.2, to obtain the fictitious support forces P
f 
(x

d
); 

4. Find the specific stress and strain at x = x
d
, 

 
Rock

r n
  and 

 
Rock

r n
 , that can satisfy Eq. (5.43).  

The fictitious support forces P
f
(x

d
), and the interaction support forces  11

S dP x =
 

Rock

r n
 - P

f 
(x

d
), 

can be obtained through the above steps (1)-(4). In the primary support stage, the forces acting on 

the rock masses are P
f 
(x

d
) +  11

S dP x , while the forces acting on the outer and inner boundaries 

of the primary support are 
11

SP (x
d
) and 0, respectively. Then, the stresses and displacements of the 

rock mass can be obtained through the method in section 5.3.3; the stress and displacements of 

the primary support can be obtained by substituting 
11

SP (x
d
) into Eqs. (5.38) and (5.39). It should 

be noted that the Eq. (5.43) cannot be solved directly, but it can be easily determined by using a 

numerical calculation method such as the dichotomy method (Atkinson, 2008; Sastry, 2012). 

Algorithm 5.2 presents the calculation procedure for the elastic-plastic solutions of supported 

tunnels in the primary support stage. 

 

Algorithm 5.2. Calculation procedure to obtain the solutions for tunnels in the primary support stage 

Input: R
1
, R

2
, P

0
, n, P

inner
, material parameters, x

1
, x

d
, f (error limit of f) 

Obtain  Rock

r 1 1,u R x , from Algorithm 5.1 

Calculate the fictitious support forces P
f
(x

d
), following section 5.3.2 and Figures 5.6 and 5.7 

  f(  
Rock

r n
 )=        

2 2 3
Rock Rock Rock1 2 1

1 r 1 1 f dn r n2 2 2 2

1 2 1 2

1 21
,

2 2



 

 
         

L

L L

R R R
R u R x p x

G r R R G R R
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P
inner

_a=0, P
inner

_b=P
0
 

 P
inner

 = P
inner

_a, 
 

Rock

r n
  = P

inner
 

Obtain fa=f(a), from Algorithm 5.1  

 P
inner

 = P
inner

_b, 
 

Rock

r n
  = P

inner
 

Obtain fb=f(b), from Algorithm 5.1  

do while (fa – fb  f) 

     P
inner

_c=(P
inner

_a + P
inner

_b)/2 

     P
inner

 = P
inner

_c, 
 

Rock

r n
  = P

inner
 

     Obtain fc=f(c), from Algorithm 5.1  

     if fafc  0 then 

          fa = fc, a=c 

     else 

          fb = fc, b=c 

     end if 

end do 

Output:  
11

sP (x
d
)= P

inner
(x

d
) - P

f
(x

d
),    

Rock Rock

r 1 d 1 n
, =u R x R


  

 

5.3.4.3. Determination of the solutions in the secondary support stage, xd ≥ x2 

The secondary support system is installed at the distance of x
d = x

2
. At the moment of installation 

of the secondary support (x
d 

= x
2
), the support forces acting on the tunnel wall (r = R

1
) are 

assumed to be P
f 

(x
2
) and  11

S 2P x , while the support forces acting on the outer and inner 

boundary of the primary support system are  11

S 2P x  and 0, respectively. After the installation of 

the secondary support (x
d ≥ x2

), both the fictitious support forces P
f 

(x
d
) and the interaction 

support forces 
12

SP  (xd
) act on the tunnel wall, while 

12

SP  (xd
) and 

22

SP  (xd
) act on the outer and 

inner boundaries of the primary support system, respectively. Moreover, 
22

SP  (xd
) acts on the outer 
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boundary of the secondary support, meanwhile, at its inner boundary, the acting force is equal to 

0. 

With tunnel advancement, the fictitious support forces P
f 

(x
d
) decrease to 0, and the 

interaction support forces 
12

SP  (xd
) and 22

SP  (xd
) increase to the constant values. The compatibility 

conditions of stresses at both the rock-support interface (r = R
1
), and the support-support interface 

(r = R
2
), are satisfied. In the derivation, the additional compatibility conditions of displacements 

should be satisfied, as shown in Eqs. (5.44) and (5.45). 

      Rock Rock

r 1 d r 1 1 rL1 1 d d 2, , , ,u R x u R x u R x x x    (5.44) 

      rL1 2 d rL1 2 2 rL2 2 d d 2, , , ,u R x u R x u R x x x     (5.45) 

where    
Rock Rock

r 1 d 1 n
, =u R x R


 ,      12 Rock

s d f dr n
=p x p x  . Moreover,  r L1 1 d,u R x ,  r L1 2 d,u R x  

and  r L2 2 d,u R x  can be expressed as in Eqs. (5.46), (5.47) and (5.48), respectively. 

      12 22

r L1 1 d S d S d, A Bu R x p x p x      (5.46) 

      12 22

r L1 2 d S d S d, C Du R x p x p x      (5.47) 

    22

r L2 2 d S d, Eu R x p x    (5.48) 

where A=
2 3

1 2 1 1

2 2 2 2

1 1 2 1 1 2

1 21

2 2

L

L L

R R R

G R R G R R

 
 

  
, 

B=
2 2

1 2 1 1 2

2 2 2 2

1 1 2 1 1 2

1 21

2 2

L

L L

R R R R

G R R G R R

 
 

  
, 

C=
2 2

1 2 1 1 2

2 2 2 2

1 1 2 1 1 2

1 21

2 2

L

L L

R R R R

G R R G R R

 
 

  
,  

D=
2 3

1 2 1 2

2 2 2 2

1 1 2 1 1 2

1 21

2 2

L

L L

R R R

G R R G R R

 
 

  
,  
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E=
2 3

2 3 2 2

2 2 2 2

2 2 3 2 2 3

1 21

2 2

L

L L

R R R

G R R G R R

   
  

   
. 

Substituting Eqs. (5.46)-(5.48) into Eqs. (5.44) and (5.45), then Eqs. (5.44) and (5.45) can be 

simplified into Eqs. (5.49) and (5.50).  

            
 11

S 2Rock Rock Rock Rock

1 r 1 1 f d f dn r n r n

B CB C
, A

D+ E D E

P x
R u R x p x p x


  

 
         
    

 (5.49) 

  
   12 11

S d S 222

S d

C

D E

P x P x
p x

  
 


  (5.50) 

Here is the procedure to obtain the support forces 
12

SP (x
d
) and 

22

SP (x
d
): 

1.  11

S 2P x  and  Rock

r 1 1,u R x  can be obtained from sub-section 5.3.4.2; 

2. Follow the method presented in section 5.3.2, to obtain the fictitious support forces P
f 
(x

d
); 

3. Obtain the specific stress and strain at x = x
d
 (x

d
 ≥ x

2
), finding 

 
Rock

r n
  and 

 
Rock

r n
 , that can 

satisfy Eq. (5.49). Then, the support forces acting on the outer boundary of the primary 

support  12

S dP x  can be obtained through 
12

SP (x
d
) =

 
Rock

r n
  fP

 
(x

d
); 

4. Obtain 
22

SP
 
(x

d
) by using Eq. (5.50). 

For a specific value of x
d
, P

f 
(x

d
), 

12

SP
 
(x

d
) and 

22

SP
 
(x

d
) can be obtained through the above 

steps (1)-(4), and thus, we can determine the forces acting on the rock mass and on the boundaries 

of the supports. Then, the stresses and displacements for the rock mass can be obtained through 

the method shown in section 5.3.3. Moreover, the stresses and displacements of the primary and 

secondary support systems can be calculated by substituting 
12

SP
 
(x

d
) and 

22

SP
 
(x

d
) into Eqs. (5.38)

-(5.41). It should be noted that Eq. (5.49) cannot be solved directly, but it can be easily 

determined by using a numerical calculation method such as the dichotomy method (Atkinson, 

2008; Sastry, 2012). Algorithm 5.3 presents the calculation procedure for the elastic-plastic 

solutions of supported tunnels in the secondary support stage. 
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Algorithm 5.3. Calculation procedure to obtain the solutions for tunnels in the secondary support stage 

Input: R
1
, R

2
, R

3
, P

0
, n, P

inner
, material parameters, x

1
, x

2
, x

d
, f (error limit of f), g (error limit of g) 

From algorithms 5.1 and 5.2, obtain  11

S 2P x  and  Rock

r 1 1,u R x  

Calculate the fictitious support forces P
f
(x

d
), following section 5.3.2 and Figures 5.6 and 5.7 

A=

2 3

1 2 1 1

2 2 2 2

1 1 2 1 1 2

1 21

2 2

L

L L

R R R

G R R G R R

 
 

  
 

B=

2 2

1 2 1 1 2

2 2 2 2

1 1 2 1 1 2

1 21

2 2

L

L L

R R R R

G R R G R R

 
 

  
 

C=

2 2

1 2 1 1 2

2 2 2 2

1 1 2 1 1 2

1 21

2 2

L

L L

R R R R

G R R G R R

 
 

  
 

D=

2 3

1 2 1 2

2 2 2 2

1 1 2 1 1 2

1 21

2 2

L

L L

R R R

G R R G R R

 
 

  
 

E=

2 3

2 3 2 2

2 2 2 2

2 2 3 2 2 3

1 21

2 2

L

L L

R R R

G R R G R R

   
  

   
 

g(
 

Rock

r n
 )=            

 11

S 2Rock Rock Rock Rock

1 r 1 1 f d f dn r n r n

B CB C
, A

D+ E D E

P x
R u R x p x p x


  

 
         
    

 

P
inner

_d=0, P
inner

_e=P
0
 

P
inner

 = P
inner

_d, 
 

Rock

r n
  = P

inner
 

Obtain gd=g(d), from Algorithm 5.1  

P
inner

 = P
inner

_e, 
 

Rock

r n
  = P

inner
 

Obtain ge=g(e), from Algorithm 5.1  

do while (gd – ge  g) 

     P
inner

_m=(P
inner

_d + P
inner

_e)/2 

     P
inner

 = P
inner

_m,  
Rock

r n
  = P

inner
 

     Obtain gm=g(m), from Algorithm 5.1  

     if gdgm  0 
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          gd = gm, d=m 

     else 

          ge = gm, e=m 

     end if 

end do 

Output:     
Rock Rock

r 1 d 1 n
, =u R x R


 ,  12

S dP x =
 

Rock

r n
  f dP x ,  

   12 11

S d S 222

S d

C

D E

P x P x
p x

  
 


 

 

5.3.4.4. Reliability analysis of the supported tunnels 

Concerning the support systems, the failure happens when the equivalent stress exceeds the 

allowable stress of the constitutive material (Do et al., 2020; Song et al., 2018a). The equivalent 

stress F
L
 of the primary (L1) and secondary (L2) support systems are defined as shown in Eqs. 

(5.51) and (5.52), respectively (Do et al., 2020). We assume that the support system will fail in 

case F
L
 ≤ 0.  

 L1

cL1 L1 r L1F        (5.51) 

 L2

cL2 L2 r L2F        (5.52) 

where 
cL1

 and 
cL2

 represent the compressive strength of the primary and secondary support 

system, respectively. Following the conclusions in Song et al. (2018a), the points at the inner 

boundary of the concrete liners are the most critical points of the supports, i.e. the first points that 

would start to fail. In this research, the safety factor of the primary and secondary support 

systems are defined as shown in Eqs. (5.53) and (5.54), respectively. 

 
L1 cL1

safety 2

L1 r L1

,F r R




 
 


  (5.53) 

 
L2 cL2

safety 3

L2 r L2

,F r R 




 
  (5.54) 
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Consequently, the safety factor of the combined support system can be defined as shown in 

Eq. (5.55). 

 L1 L2

safety safety safetymin ,F F F      (5.55) 

where min [x1, x2] represents the minimum value of x1 and x2. 

For a simplified case on which the support forces (P
S
) only act on the outer boundary of the 

liner (R
outer

) and no support forces act on the inner boundary of the liner (R
inner

), e.g. the case of 

the secondary support system, combining the Eqs. (5.39), (5.41) and (5.51), (5.52), the equivalent 

stress F
L
 can be simplified to Eq. (5.56). 

 
2

L outer
cL S 2 2

outer inner

2
R

F P
R R

 


  (5.56) 

Thus, by assigning F
L
 equal to 0 in Eq. (5.56), the maximum support forces that the support 

system can accept (P
max

S ) can be expressed as in Eq. (5.57) and its safety factor ( L

safetyF ) can be 

expressed as in Eq. (5.58). 

 
2

max inner
S cL 2

outer

1
1

2

R
P

R


 
  

 
  (5.57) 

 
2

L cL inner
safety 2

S outer

1
2

R
F

P R

  
  

 
  (5.58) 

It should be noted that the expressions of the maximum support forces P
max

S  and the safety 

factor L

safetyF  are consistent with those used in the CCM for the above simplified case (Oreste, 

2003). 

However, for tunnels with a combined support system, the support forces not only act on the 

outer boundary but also on the inner boundary of the primary support system, and thus, the 

support forces and the safety factor should be determined by the compatibility conditions of the 

tunnels. Therefore, at this point, the CCM meets one of its limitations: the design of tunnels with 

a combined support system. 
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5.3.5. Application in the design of non-circular tunnels 

Although the obtained solutions are rigorously applicable only for the supported circular tunnels, 

the solutions are meaningful for a much wider range of non-circular tunnels (Bonini et al., 2009; 

Kabwe et al., 2020b and 2020c; Zhang et al., 2019a). By using the equivalent radius (R
eq

), the 

proposed solutions may be used to approximate estimate the mechanical response of non-circular 

tunnels. The equivalent radius (R
eq

) function can be determined based on the equal area method 

(Kabwe et al., 2020b and 2020c; Zhang et al., 2019a), as shown in Eq. (5.59). 

 
eq

A
R


   (5.59) 

where A represents the cross-section area. The reader is referred to the original source for a 

detailed description of the equivalent method and its application in the design of non-circular 

tunnels. 

 

 

5.4. Verification of the proposed method 

5.4.1. Verification of the solutions for unsupported circular tunnels 

Alonso et al. (2003) proposed self-similar solutions for the ground reaction curves (GRC) of 

unsupported circular tunnels. In this sub-section, the results obtained with our proposed 

numerical solution are compared with those obtained with self-similar solutions (Alejano et al., 

2009; Alonso et al., 2003). In the calculation process, the number of annuli n adopted is 500. To 

be consistent with the assumptions of Alonso et al. (2003), no supports and no tunnel 

advancement have been considered. The Mohr-Coulomb strain-softening behaviour model has 

been adopted for the rock mass, and the input data is shown in Figure 5.8. In this figure, we can 

observe a good match between the proposed numerical solutions and the self-similar solutions for 

the ground reaction curves and the peak and residual plastic radii, which can serve as a 

verification of the proposed strain-softening solutions for unsupported tunnels. 
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5.4.2. Verification of the solutions for supported tunnels 

The support forces acting on the rock mass are assumed to be the fictitious support forces P
f
 and 

the interaction support forces  1j

S 1 d,P R x . The support forces acting on the outer and inner 

boundaries of the primary support system are  1j

S 1 d,P R x  and  22

S 2 d,P R x , while those acting on 

the outer and inner boundaries of the secondary support system are  22

S 2 d,P R x  and 0. The strain-

softening solutions of the ground reaction curves have been verified in the section 5.4.1, and thus, 

as long as the expressions of P
f
, 

1 j

SP  and 
22

SP  are correct, the solutions for supported tunnels will 

be acceptable. The adopted method for determining the fictitious support forces P
f
 has been 

verified in Cui et al. (2015). Thus, in this sub-section, only the interaction support forces 
1 j

SP  and 

22

SP , as well as the compatibility conditions at the rock-support interface (r = R
1
) and the support-

support (r = R
2
) are checked to verify the correctness of the derivation. 

In this sub-section, an example is carried out to verify the compatibility conditions. A tunnel 

with radius R
1 = 7 m is excavated in a strain-softening rock mass. Table 5.1 presents the input 

parameters of the rock mass (Alejano et al., 2009). The primary and secondary support systems 

present elastic moduli of E
L1 = 29400 MPa and E

L2 = 33300 MPa, respectively, and the same 

Poisson’s ratio (v
L1 = v

L2 = 0.25) (Carranza-Torres and Fairhurst, 2000). The thickness of the 

primary and secondary supports is considered:  d
1 = 0.20 m and d

2 = 0.25 m. The installation 

distance of the supports from the tunnel face is considered as x
1 = 2.0 m, x

2 = 7.0 m. In the 

calculation process, the number of annuli n adopted is 500. 

Figure 5.9 shows a good agreement between the incremental displacements occurring on the 

rock mass after the installation of the primary support system (x
d
 ≥ x

1
; u

rock

r (R
1
, x

d
) - u

rock

r (R
1
, x

1
) ) 

and the absolute displacements of the primary support at the rock-support interface (r = R
1
; 

u
rL1

(R
1
, x

d
)). In addition, it can be observed a good agreement between the incremental 

displacements of the primary support system –occurring after the installation of the secondary 

support system (x
d
 ≥ x

2; u
rock

r (R
2
, x

d
) - u

rock

r (R
2
, x

2
) )– and the absolute displacements of the 
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secondary support system at the support-support interface (r = R
2; urL2

(R
2
, x

d
) ). It can be noted 

that the solutions perfectly satisfy the compatibility conditions of both rock-support interface (r = 

R
1
) and support-support interface (r = R

2
). Therefore, we can confirm that the solutions for the 

supported circular tunnels are correct. 
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Figure 5.8. Comparison of (a) normalized displacements, (b) normalized peak and residual plastic 

radii, and (c) absolute displacements, for the circular openings between the proposed 

solutions and the self-similar solutions. 
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Figure 5.9. Comparison of incremental displacements on the surrounding rock mass occurring after 

the installation of supports, and the displacements of supports. 

 

Table 5.1.  Input parameters of the rock mass. 

 

 

 

Input parameters of the rock mass 

GSI 

peak 55 

Dilatancy 


p
 [deg] 3.1 

residual 33 
s
 [deg] 3.1 

Cohesion 

c
p
 [MPa] 0.744 Softening parameters * 0.017 

c
s
 [MPa] 0.397 Initial stress P

0
 [MPa] 12 

Friction angle 


p
 [deg] 24.81 Elastic modulus E [MPa] 3837 


s
 [deg] 15.69 Poisson’s ratio  0.25 
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5.5. Comparison between the proposed method and the convergence-

confinement method 

In this section, the results obtained from between the proposed method and the convergence-

confinement method (CCM) for designing of tunnels with the primary and two support systems 

are compared in sections 5.5.1 and 5.5.2, respectively.  The CCM consists of three basic graphs:  

1.  The longitudinal deformation profile (LDP), which relates the radial displacements of an 

unsupported tunnel section with its longitudinal distance to the tunnel face; 

2.  The ground reaction curve (GRC), which establishes the relationship between the decreasing 

inner pressure and the increasing radial displacements of the tunnel wall in plane-strain problems; 

3.  The support characteristic curve (SCC), which represents the stress-strain relationship of the 

support system. 

At the distance x
d = x

1
 to the tunnel face, i.e. point A in Figure 5.10, the radial displacements 

of the tunnel  rock

r 1 1,u R x , can be determined by the LDP. Thus, we could obtain the inner 

pressure at that distance from the GRC (point C). Moreover, the support system is installed at 

point B, when some convergence has already occurred and, thus, a part of fictitious support 

forces from the tunnel face P
f
 has been dissipated and will not be loaded by the support. Point D 

represents the failure point of the support system. The intersection between the GRC and the SCC 

in Figure 5.10 represents the equilibrium of the rock-support system, when the load on the 

support matches the inner pressure in the tunnel (i.e. support forces from the tunnel face P
f
 equal 

to 0). The detailed description of the CCM can be found in the scientific literature (Alejano et al., 

2010; Carranza-Torres and Fairhurst, 2000; Oreste, 2003). 
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Figure 5.10. Main elements of the convergence-confinement method (CCM). Typical graphs obtained 

for the longitudinal deformation profile (LDP) –above–, and for the ground reaction curve 

(GRC) and the support characteristic curve (SCC) –below. Based on the work of Alejano 

et al. (2009, 2010 and 2012). 

 

In tunnel engineering projects, the primary and secondary support systems are put in place at 

different times to ensure the temporary and long-term stability of the tunnel, respectively. Oreste 

(2003) proposed support characteristic curves for a compound support system, extending the 

application of the CCM for the design of tunnels with a combined support system. Nonetheless, 

for tunnels with two different support systems, the support forces not only act on the outer 

boundary but also on the inner boundary of the primary support system, and thus, the support 

forces and the safety factor should be determined by the compatibility conditions of the tunnels. 
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However, no compatibility conditions at the interface between supports are considered in the 

CCM. Therefore, at this point, the CCM meets one of its limitations in the design of secondary 

support systems. The reason is that the ground reaction curve is modified by the primary support 

system, and thus, we should use this modified GRC for the correct application of the CCM in the 

design of the secondary support system. In our proposed method, the real compatibility 

conditions at both the rock-support interface and the support-support interface are considered, and, 

hence, the safety factors obtained using our method are probably closer to reality than those 

obtained using the CCM. 

 

5.5.1. Design of the primary support system 

In this sub-section, the results for the design of the primary support system obtained with our 

proposed method are compared with those from the CCM. In our method, the support forces 

acting on the rock mass are the sum of the fictitious support forces P
f 
(x

d
), and the support forces 

caused by the interaction between the support and the tunnel  1 j

S 1 d,P R x  (hereinafter referred to as 

interaction support forces), while only interaction support forces  1 j

S 1 d,P R x  act on the primary 

support system. 

However, in the CCM, as shown in Figure 5.10, at the equilibrium point E, the support forces 

acting on the rock mass are equal to the support forces acting on the primary support system. In 

fact, when the distance to the tunnel face x
d
 tends to a big enough value, the fictitious support 

force from the tunnel face P
f 
(x

d
) is zero and, in that case, our solutions are consistent with the 

solutions of the CCM. Thus, the solutions of the CCM constitute a particular case of the solutions 

of this study.  

To explain it better, an example is carried out herein. The geometry and the material 

properties are the same as those used in section 5.4.2. The primary support system is installed at a 

distance x
1 

= 10 m from the tunnel face. Based on the CCM, as shown in Figure 5.11, the 

equilibrium solutions (Point E in Figure 6.10) between the support forces and the displacements 

on the surrounding rock mass are P
inner

=  11

S 1 ,P R  = 0.638 MPa, and 
rock

ru = 0.434 m, respectively. 



CHAPTER 5 

 

212 

 

In this study, however, we present the equilibrium solutions for the whole process of tunnel 

advancement, as shown in Figure 5.12. In the calculation process of the proposed solutions, the 

number of annuli n adopted is 500. With the advancement of the tunnel, the fictitious support 

force P
f 
(x

d
) decreases from the initial stress to zero, while the support force acting on the primary 

support system P 11

S (R
1
, x

d
) increases from zero to a constant value at a big enough distance to the 

tunnel face. In CCM, only the solution for P
f
(x

d
)=0 –i.e. big enough distance from tunnel face– is 

presented. However, the equilibrium solutions of displacements and support forces during the 

whole process of excavation and advancement are significantly important, especially for the 

design of the secondary support system. 
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Figure 5.11. (a) The longitudinal deformation profile (LDP), (b) the ground reaction curve (GRC) and 

the support characteristic curve (SCC), for a medium quality rock mass using the strain-

softening model. 
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Figure 5.12. (a) The displacements of tunnels along with r = R1 for supported and unsupported tunnels, 

(b) support forces act on the rock mass (P
f 
(x

d
)+P

11

S (R
1
, x

d
)) and support forces acting on 

the primary support system (P
11

S (R
1
, x

d
)), versus the distance to the tunnel face x

d
. 

 

5.5.2. Design for tunnels with two support systems 

Regarding the design of tunnels with a combined support system, in this sub-section, we show a 

comparison between the results obtained with our proposed method and those from the CCM. 

Thus, an example is carried out herein, where the geometry and the properties of the rock mass 

are the same as those used in section 5.4.2 (Table 5.1). In the calculation process of the proposed 

solutions, the number of annuli n adopted is 500. Concerning the thickness d of the support 

systems, we have selected d
1 = 0.15 m for the primary support and d

2 = 0.20 m for the secondary 

support. In addition, two different cases have been considered: 

- Case (1): In this case, we consider steel fibre reinforced shotcrete as the primary support system 

(L1) and a concrete liner as the secondary support (L2). Moreover, their corresponding 

parameters are: E
L1 = 37 GPa, E

L2 = 8 GPa, v
L1 = v

L2 = 0.2, 
cL1 = 45 MPa, 

cL2 = 16 MPa. The 

primary and secondary support systems are installed at a distance x
1 = 1 m and x

2 = 1.2 m from 

the tunnel face, respectively.   
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- Case (2): In this case, unreinforced shotcrete have been considered for the primary (L1) support 

system and a concrete liner for the secondary (L2). Their parameters are E
L1 = 8000 MPa, E

L2 = 

10000 MPa, v
L1 = v

L2 
= 0.2, 

cL1 = 16 MPa, 
cL2 = 20 MPa. The primary and secondary support 

systems are installed at a distance x
1 = 10 m and x

2 = 10.5 m from the tunnel face, respectively.  

Hence, following our method, and through a number of calculations, we can obtain the 

maximum value of the support forces acting on the support systems –when the fictitious support 

forces P
f
 are equal to 0 at a certain distance from the tunnel face–, as well as the safety factor.   

In this example, according to the proposed method in this study, the maximum values of the 

support forces (P 12

S,max
 and P 22

S,max
) and the minimum safety factors of the primary (F L1

safety
) and 

secondary (F
L2

safety ) support systems can be obtained for case (1) and case (2), as shown in Table 

5.2. According to Eqs. (5.53)-(5.55), the safety factor of the combined support system (F L1-L2

safety
) for 

case (1) and case (2) are 0.9 and 1.4, respectively. Regarding the maximum displacements for the 

tunnel wall u
rock

r,max , for case (1) and case (2) we obtain 0.18 m and 0.44 m, respectively (Table 5.3). 

In any case, it must be kept in mind that the maximum displacements obtained –especially in case 

(2)– might not be tolerable, depending of the project. 
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Figure 5.13. Ground reaction curves (GRC) and support characteristic curves (SCC), in the 

convergence-confinement method (CCM); (a) for case (1), and (b) for case (2). 
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Furthermore, following Oreste (Alejano et al., 2009; Oreste, 2015; Oreste, 2003), Figure 5.13 

presents the results obtained by the CCM for tunnels with a combined support system. In Figure 

5.13, the final support forces that act on the tunnel wall reach a value of around 1.30 MPa for 

case (1), and around 0.62 MPa for case (2). On the other hand, the maximum tunnel deformations 

are around 0.19 m for case (1) and around 0.45 m for case (2). Based on the CCM, the safety 

factors for case (1) and case (2) would be 1.1 and 1.5, respectively, which are different from the 

safety factors obtained by the method proposed in this study: safety factor: 0.9 for case (1), and 

1.4 for case (2). 

Table 5.3 shows a comparison between the results obtained with our proposed method and 

the CCM in terms of maximum displacements on the tunnel wall (u
rock

r,max ) and safety factors of the 

combined support system (F L1-L2

safety
). We can observe that the maximum displacements obtained 

with our method are similar, but slightly lower than those obtained with the CCM. However, the 

safety factors obtained with our method are significantly lower than those obtained using the 

CCM. The difference in the results between both methods is due to the fact that, unlike the CCM, 

our method considers the real compatibility conditions at both the rock-support interface (r = R
1
) 

and the support-support interface (r = R
2
). Instead, no compatibility conditions between the 

primary and secondary support system are considered in the CCM. In consequence, because of an 

overestimation of the safety factor, the use of the CCM can lead to an unsafe design of tunnels 

with combined support systems. 

 

Table 5.2.  Safety factors (F
L1-L2

safety
) obtained using our proposed method. 

 The maximum support forces The minimum safety factors of the 

Cases P
12

S,max  [MPa] P
22

S,max  [MPa] F
L1

safety  F
L2

safety  

Case (1) 1.33 0.30 0.9 (failure) 1.5 

Case (2) 0.63 0.39 1.4 1.4 
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Table 5.3. Safety factors (F
L1-L2

safety
) obtained using our proposed method and the convergence-

confinement method (CCM). 

 

 

5.6. Analysis and discussion 

5.6.1. Discussion on the selection of rock mass behaviour models 

In this section, the results of our proposed numerical solutions are analysed using an example. In 

this example, three different models have been used, including the elastic-perfectly-plastic (EPP), 

strain-softening (SS) and elastic-brittle (EB) behaviour models. Nonetheless, note that the SS 

model can be simplified to the EPP model by assigning a big enough value of * (in this example, 

* = 1.0), or to the EB model by assigning a small value of * (in this example, * = 0). In 

addition, four different quality rock masses have been considered in the analysis. Table 5.4 

presents the parameters of the different rock masses considered. In the calculation process, the 

number of annuli n adopted is 500. 

On the other hand, the primary and secondary support systems are installed at the distance x
1 

= 2.5 m, and x
2 = 10 m, respectively. The primary and secondary support systems are assumed to 

behave as elastic materials. The elastic properties (elastic modulus and Poisson’s ratio) of the 

primary (L1) and secondary (L2) supports systems are: E
L1 = 8000 MPa, E

L2 = 12000 MPa, and 

v
L1 = v

L2 = 0.15. The tunnel has a diameter of 5 m and its depth of 1500 m implies a field stress of 

37.5 MPa (Alejano et al., 2012). Rock mass specific weight is 25 KN/m3 and the Poisson’s ratio 

is 0.25 (Alejano et al., 2012). The radii related to the primary and secondary support systems (see 

Figures 5.1 and 5.2) are: R
1 = 2.5 m, R

2 = 2.4 m and R
3 = 2.25 m. 

 The maximum displacements, u
rock

r,max   [m] The safety factor, F
L1-L2

safety
 

Cases Our method CCM Our method CCM 

Case (1) 0.18 0.19 0.9 (failure) 1.1 

Case (2) 0.44 0.45 1.4 1.5 
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Table 5.4.  Input parameters of four different quality rock masses. 

Input parameters of four different quality rock masses 

Different quality rock masses   A2 B2 C2 D2 

GSI 
Peak value GSI

peak
 75 60 50 40 

Residual value GSI
res

 40 35 30 27 

Elastic 

parameters 

Elastic modulus E (MPa) 36500 15400 8660 4870 

Passion’s Ratio v 0.25 0.25 0.25 0.25 

Post-failure 

behaviour 

Peak values 
Cohesion (MPa) 3.637 2.67 2.24 1.88 

Friction angle (deg) 29.52 25.7 23.1 20.6 

Residual values 
Cohesion (MPa) 1.878 1.71 1.54 1.43 

Friction angle (deg) 20.64 19.4 18.2 17.5 

Dilatancy angle 
peak

=
res

 (deg) 7.38 4.49 2.89 1.55 

Critical softening 

parameter 
* 0.0011 0.0062 0.0288 0.119 

 

Figure 5.14 shows the displacements (u rock

r ) along the tunnel wall (r = R
1
) versus the distance 

to the tunnel face (x
d
) for a variety of cases, i.e. the longitudinal deformation profiles. These 

results meet the same conclusion of Alejano et al. (2012): there are significant differences in the 

displacements of unsupported tunnels when using different behaviour models (EPP, SS or EB), 

and the difference between the displacements of tunnels calculated for EB rock masses and for SS 

rock masses grows as the GSI decreases.  

In addition, in this study, it can be found that the behaviour model selection also makes a 

significant effect on the behaviour of supported tunnels. It is therefore important to note that SS 

behaviour plays a role in the behaviour of tunnels, and hence, in the design and installation of 

supports. In Figure 5.14, it can be observed that, initially, the displacements gradually increase 

with the tunnel advancement, as expected (e.g. Alejano et al., 2012 (Alejano et al., 2012)). 
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However, after the installation of the support system, the displacement rate decelerates suddenly 

and the maximum displacement achieved is significantly lower. 

The support forces acting on the tunnel wall are the sum of the fictitious support forces P
f
 

and the interaction support forces at the rock-support interface P
1 j

S  (j = 1, 2 represent the primary 

and secondary support stages, respectively). Moreover, the support forces acting on the outer 

boundary of the primary support system (r = R
1
) are P 1 j

S  and the support forces at the support-

support interface (r = R
2
) are P 22

S . 

Figure 5.15 and 5.16 respectively present the acting forces on the tunnel wall and on the 

support systems versus the distance to the tunnel face. In Figure 5.15, we can observe that the 

support forces acting on the tunnel wall (P
f 
+ P

1 j

S ) decrease with the increasing distance to the 

tunnel face, and eventually reach a constant value. P
f
 represents the fictitious support forces from 

the tunnel face for unsupported tunnels. Figure 5.16 presents the variety of support forces 
1 j

SP  and 

P
22

S  versus the distance to the tunnel face x
d
: the support forces ( 1 j

SP , P 22

S ) firstly increased and 

then achieve a constant value when the distance to the tunnel face is large enough. 

Moreover, in Figures 5.15 and 5.16, there are significant differences in the fictitious support 

forces (P
f
) as well as the support forces calculated by different behaviour models (EPP, SS or EB), 

and the difference between the displacements of tunnels calculated for EPP rock masses and for 

SS rock masses grows as the GSI increases. The differences of stresses and displacements 

calculated by SS and EPP models can be negligible for lower quality rock masses, as expected, 

since the EPP behaviour represents well the behaviour of low quality rock masses (Alejano et al., 

2012). Furthermore, there is a significant difference between displacements and support forces 

for unsupported and supported tunnels. 
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Figure 5.14. Tunnel displacements along the cross-section r = R
1
, versus the distance to the 

tunnel face, for four different quality rock masses: (a) A2 (GSI
peak = 75, GSI

res = 

40), (b) B2 (GSI
peak = 60, GSI

res = 35), (c) C2 (GSI
peak = 50, GSI

res = 30), and (d) 

D2 (GSI
peak 

= 40, GSI
res = 27). 
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Figure 5.15. Support forces acting on the tunnel wall, P
f  

+ P
1 j

S , and fictitious support forces from the 

tunnel face P
f
 (see Figures 5.1 and 5.2), versus the distance to the tunnel face x

d
, for four 

different quality rock masses: (a) A2 (GSI
peak = 75, GSI

res = 40); (b) B2 (GSI
peak = 60, 

GSI
res = 35); (c) C2 (GSI

peak = 50, GSI
res = 30); and (d) D2 (GSI

peak = 40, GSI
res = 27). 
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Figure 5.16. Support forces acting on the outer boundary of the primary support system, P
1 j

S , and 

support forces acting on the outer boundary of the secondary support system, P
22

S  (see 

Figures 5.1 and 5.2), versus the distance to the tunnel face x
d
, for four different quality 

rock masses: (a) A2 (GSI
peak = 75, GSI

res = 40); (b) B2 (GSI
peak = 60, GSI

res = 35); (c) C2 

(GSI
peak = 50, GSI

res = 30); and (d) D2 (GSI
peak = 40, GSI

res = 27). 
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5.6.2. Application in the design of tunnels 

Due to the process of tunnel excavation and construction of supports, the final support forces 

applied on the outer boundary of the secondary support system are significantly affected by the 

installation distance of support system, as well as the stiffness of the support system (Song et al., 

2018a and 2018b). Early installation of the secondary support system leads to larger final support 

forces acting on the secondary support system and thus, may result in failure of the secondary 

support system (Song et al., 2018a and 2018b). 

In this sub-section, an example is carried out to present the application of our method to 

tunnel design in terms of installation distance of the secondary support system from the tunnel 

face (x
2
) and thickness of the secondary support system (d

2 = R
2 

- R
3
). 

The tunnel is excavated in a strain-softening rock mass with a radius of 7 m. The properties 

of the rock mass are the same as those in Table 5.1. In all the cases, the elastic modulus of the 

primary (L1) and secondary (L2) support systems are E
L1 = 8000 MPa and E

L2 = 12000 MPa, 

respectively. The Poisson’s ratio of the support systems is v
L1 = v

L2 = 0.15. The installation 

distance of the primary support system is x
1 = 1 m, and the thickness of the primary support 

system is d
1 = R

1 
- R

2 = 0.1 m.  In this example, the unconfined compressive strength of the 

secondary support system is assumed as 
cL2 = 24 MPa. In the calculation process, the number of 

annuli n adopted is 500. 

The equivalent stress of the secondary support system F
L2

 can be obtained, following Eq. 

(5.52). We assume that the secondary support system will fail in case F
L2

 ≤ 0, so as to 

approximately predict the initial failure in the secondary support system. For the sake of tunnel 

stability, the secondary support system is not expected to fail, and thus the equivalent stresses 

(F
L2

) should be positive in the tunnelling design. 

In the application example, Figure 5.17 presents the equivalent stresses (F
L2

) as a function of 

the installation distance of the secondary support system to the tunnel face (x
2
), and the thickness 

of the secondary support system (d
2
), where the dash lines represent zero equivalent stress. In 

Figure 5.17(a), the smallest allowable values for the installation distance from the tunnel face (x
2
) 
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of the secondary support system are obtained when the equivalent stress becomes smaller than 

zero. It should be noted that the bigger is the value of the support thickness, the smaller will be 

the recommended values of x
2
. Moreover, for a constant installation distance to the tunnel face 

(x
2
), increasing the thickness of liners benefits the stability of tunnels although the cost of the 

support would increase, which is also shown in Figure 5.17(b), where the economic limit 

regarding the thickness of the secondary support system (d
2
) is obtained when the equivalent 

stress is zero. Note that the aforementioned economic limit corresponds to a safety factor of 1.0. 

Therefore, with the proposed method, the optimization design on both distance from the tunnel 

face and thickness of the secondary support system can be conducted conveniently.  
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Figure 5.17. Equivalent stresses of the secondary support system, F
L2

, versus: (a) installation distance 

of the secondary support system, for various thickness of the support system; (b) thickness 

of the secondary support system for various installation distances. 

 

5.7. Conclusions 

This study provides numerical solutions for supported tunnels excavated in strain-softening rock 

masses, which can be used in tunnelling for the design of the sequential installation of two 

different support systems in terms of strength and installation distance. In our approach, primary 

and secondary support systems are sequentially installed. The fictitious support forces have been 
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adopted to reflect the three-dimensional face effect. The solutions for displacements and stresses 

at the whole phases of tunnel excavation and installation of supports have been presented, 

considering the tunnel advancement and real continuity conditions between rock-support 

interface and support-support interface are considered. The Finite Difference Method (FDM) has 

been employed in the derivation of the solutions. 

As a verification step, a good agreement between the proposed solutions and the results from 

the self-similar solutions has been obtained, and the compatibility conditions of the supported 

tunnels have been checked. Then, the proposed solutions have been compared with the 

convergence-confinement method (CCM). Unlike the CCM, our method considers the real 

compatibility conditions at both the rock-support interface and the support-support interface. 

Consequently, the safety factors obtained using our method are probably closer to reality than 

those obtained using the CCM, which may be overestimated, leading to an unsafe design of 

tunnels with combined support systems. Therefore, our proposed method may be used with 

greater confidence in the design of supported tunnels. 

Furthermore, for the sake of comparison, elastic-perfectly-plastic (EPP), strain-softening (SS) 

and elastic-brittle (EB) material models have been adopted to analyse the effects of the post-

failure behaviour model selection on tunnel deformations and support forces. We have observed 

significant differences in the displacements and the support forces considering the different 

behaviour models. In general, these differences grow as the quality of the rock mass decreases.  

Finally, the proposed solutions have been used for the assessment of the design and 

optimization of the secondary support system, taking into account the distance from the tunnel 

face and the thickness of the secondary support system. Therefore, the proposed approach 

constitutes an alternative method for preliminary tunnel analysis and design, providing a greater 

confidence and assessment capability. 

The obtained solutions are applicable only for the supported circular tunnels, although the 

solutions are meaningful for a much wider range of non-circular tunnels. In the future research, 

numerical and analytical solutions for the non-circular tunnels will be considered to improve the 

applicability of the solutions in real engineering. 

CHAPTER
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Chapter 6. Summary and recommendations 

6.1. Summary 

This doctoral thesis aims to develop numerical and theoretical approaches for preliminary 

analysis and design of underground workings, thus providing greater confidence and assessment 

capability. The main contributions of this thesis are summarized below: 

 Time-dependent plastic mechanical model (chapters 2 and 4) 

A coupled time-dependent plastic constitutive model has been developed and implemented 

into the finite element method software CODE_BRIGHT, to be able to simulate the time-

dependent behaviour and the plastic behaviour (stress-induced or/and creep-induced) of 

geomaterials. Firstly, the Burgers model and the viscoplastic model are combined in series. 

Both the Mohr-Coulomb and Hoek-Brown failure criteria, and the strain-softening post-

failure behaviour model are considered. In the programming, the yield surfaces and the 

viscoplastic potential are smoothed for numerical efficiency. Moreover, the creep 

deformations are coupled with the strain-softening model to simulate the damage evolution, 

and hence, the creep-induced failure behaviour can be simulated. 

 A smoothed excavation method (chapter 3) 

Numerical solutions for coupled non-linear problems may require a high computational effort. 

Load application or construction of geotechnical structures can be easily smoothed by 

ramping in time the loads or the weight layers to be constructed. Excavation is more 

challenging because it is difficult to smooth the removal of pieces of soil or rock that occur 

instantaneously. Removal of very thin pieces of material can be a solution as it can avoid the 

sharp changes in stresses and fluid fluxes; however, it can lead to too refined meshes. For the 

sake of numerical reliability and efficiency, a smoothed excavation (SE) method has been 

introduced, so it takes place in a smooth way even for relatively coarse layers or pieces of soil 

or rock. The proposed SE method is a benefit to numerical calculation of the multi-stage 

excavation problems. 
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 Hydro-mechanical modelling of tunnels excavated in saturated time-dependent plastic rock 

masses (chapters 3 and 4) 

The hydro-mechanical modelling of tunnels excavated in saturated ground and, at the same 

time, showing plastic response has been addressed in this thesis. In chapter 3, parametric 

analyses of longitudinal deformation profiles (LDP) obtained under different hydro-

mechanical conditions and different geomechanical qualities (GSI) are performed. In chapter 

4, parametric analyses are performed to analyse the effects on tunnelling response of selecting 

different constitutive models, different standstill times or different excavation rates. 

Furthermore, empirical solutions have been developed under drained steady-state conditions 

(chapter 3). The results and conclusions obtained from this thesis are meaningful for the 

preliminary design of tunnelling in saturated ground with plastic response. 

 Solutions for supported tunnels with a combined support system (chapter 5) 

Numerical (or semi-analytical) solutions have been developed for supported tunnels 

excavated in strain-softening rock masses, and the finite difference method has been 

employed in the derivation of the solutions. The sequential installation of primary and 

secondary support systems in terms of strength and installation distance are considered. The 

tunnel advancement and real continuity conditions between rock-support interface and 

support-support interface are considered. The safety factors obtained using the proposed 

method are probably closer to reality than those obtained using the convergence-confinement 

method, which may be overestimated, leading to an unsafe design of tunnels with combined 

support systems. Therefore, the proposed method may be used with greater confidence in the 

design of supported tunnels. 

 

6.2. Future research recommendations 

Further research topics that may be worth investigating are summarised below: 

 Multi-physics multi-phases modelling 

Many multi-physical processes (mechanical, hydraulic, thermal and chemical) affect the 

behaviour of the rock masses in a coupled way, and there are still many aspects of interest to 
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study, which will require more detailed investigations. This thesis concentrates on the coupled 

modelling of hydro-mechanical problems; in the future, the research may be extended to a 

coupled thermal-hydraulic-mechanical-chemical (THMC) framework. 

 Numerical simulations using realistic anisotropic or heterogeneous 3D models 

Even if the proposed method in this thesis can simulate different cases of tunnels excavated in 

hydro-mechanical saturated rock masses with time-dependent plastic response, it still has 

some limitations. For instance, numerical analyses are carried out through homogeneous 

material models. Actually, geomaterials are frequently anisotropic and inhomogeneous. If an 

anisotropic geomaterial is assumed to be isotropic, significant errors in stresses and 

displacements may be introduced in the analysis. In future research, time-dependent plastic 

responses of tunnelling in anisotropic or/and heterogeneous geomaterials should be analysed 

using 3D numerical models. 

 Improved longitudinal deformation profiles for time-dependent geomaterials 

This thesis provides numerical approaches to obtain longitudinal deformation profiles (LDP) 

in the convergence-confinement method (CCM) framework. However, one of the limitations 

of the CCM is its application in time-dependent geomaterials. In the future, LDP expressions 

for tunnels excavated in time-dependent rock masses can be developed and combined with the 

CCM, to extend its application in time-dependent geomaterials. 

 

Chapter 

Equation Chapter (Next) Section 1
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Appendix A. FORTRAN scripts 

The time-dependent plastic mechanical models presented in chapters 2-4 have been implemented in 

CODE_BRIGHT. The CODE_BRIGHT program can be downloaded from the official website: 

https://deca.upc.edu/en/projects/code_bright.  

Instead, scripts in this appendix deal with the implementation of tunnelling in strain-softening rock 

masses (related to chapter 5), considering the longitudinal tunnelling advancement and sequential 

installation of the primary and secondary support systems. 

 

A.1. Solutions of the ground reaction curves 

!****************************************************************************** 

!Determining of the ground reaction curves (GRC)for tunnelling in strain-softening rock masses * 

!****************************************************************************** 

!************************************************************* 

!INPUT PARAMETERS                                                                                 * 

!P_0: initial stresses                                                                                         * 

!E, v: elastic modulus and Poisson's ratio of geomaterials                              * 

!cohesion_0, cohesion_r: peak and residual values of cohesion                      * 

!friction_0, friction_r: peak and residual values of friction angle (deg)          * 

!dilatancy_0, dilatancy_r: peak and residual values of dilation angle (deg)    * 

!a_n_p_star: critical values of softening parameter                                         * 

!r: location coordinate                                                                                      * 

!n: the number of annuli for the FDM                                                              * 

!radius: the radius of  tunnel wall                                                                     * 

!************************************************************* 

!************************************************ 

!OUTPUT PARAMETERS                                                   * 

!sig_r_i: acting stresses on the tunnel wall                            * 

!u_i*radius/r_i: displacements at the tunnel wall                  * 

!radius/r_i, r_s*radius/r_i: peak and residual plastic radii     * 

!************************************************ 

https://deca.upc.edu/en/projects/code_bright
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PROGRAM MAIN 

    IMPLICIT REAL(A-H,O-Z) 

    INTEGER I,J,K,L,M,N     

dimension p_i(51)     

 

READ(222,*) P_0,E,v,cohesion_0,cohesion_r,friction_0,friction_r,dilatancy_0, 

  .                         dilatancy_r,a_n_p_star,r,n,radius 

     

    Pi=3.141592653 

    G=E/(2.0*(1.0+v)) 

    friction_0=friction_0*Pi/180.0 

    friction_r=friction_r*Pi/180.0 

    dilatancy_0=dilatancy_0*Pi/180.0 

    dilatancy_r=dilatancy_r*Pi/180.0 

     

    do k=1,51 

       xk=(k-1)/50.0 

       p_i(k)=0.0     

       R_p=1.0 

     

       !material parameters for the 1-st annuli 

       a_N_0=(1.0+sin(friction_0))/(1.0-sin(friction_0)) 

       S_0=2.0*cohesion_0*sqrt(a_N_0) 

     

       !radial stress at the plastic-elastic interface 

       sig_R_p=(2.0*p_0-s_0)/(1.0+a_N_0) 

       delta_sig_r=(P_i(k)-sig_R_p)/N 

     

       !initial values of stresses/strain in the outer boundary of the i-th annulus 

       sig_r_0=sig_r_p 

       sig_theta_0=2.0*p_0-sig_r_p 

       strain_p_r_0=0.0 

       strain_p_theta=0.0 

       a_n_p_0=0.0 

       strain_theta_0=(p_0-sig_r_p)/(2.0*G) 
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       U_0=strain_theta_0 

       cohesion_i=cohesion_0 

       friction_i=friction_0 

       dilatancy_i=dilatancy_0 

       a_n_p_i=a_n_p_0 

       sig_r_i=sig_r_0 

       r_i=r_p 

       u_i=u_0 

     

    Do i=1,n 

        !non-updated material parameters 

        r_i_1=r_i 

        a_N_i=(1.0+sin(friction_i))/(1.0-sin(friction_i)) 

        S_i=2.0*cohesion_i*sqrt(a_N_i) 

        a_k_dilatancy_i=(1.0+sin(dilatancy_i))/(1.0-sin(dilatancy_i)) 

         

        !to update the normalized radial 

        r_i=r_i*((sig_r_i+delta_sig_r-S_i/(1.0-a_N_i))/(sig_r_i-S_i/(1.0-a_N_i)))**(1.0/(a_N_i-1.0)) 

         

        !stress and displacements in the i-th annulus 

        if ((r .gt. r_i) .and. (r .le. r_i_1)) then 

            !expression of the stresses 

            sig_r=(S_i)/(1.0-a_N_i)+(sig_r_i-S_i/(1-a_N_i))*(r/r_i_1)**(a_N_i-1.0) 

            sig_theta=a_N_i*sig_r+S_i 

            strain_e_r=(1.0-v*v)/E*((sig_r-P_0)-v/(1.0-v)*(sig_theta-p_0)) 

            strain_e_theta=(1.0-v*v)/E*((sig_theta-P_0)-v/(1.0-v)*(sig_r-p_0)) 

             

            !expression of the displacements 

            F_r=strain_e_r+a_k_dilatancy_i*strain_e_theta 

             

            Call INTE(SUM1,r_i_1,r,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

            U=U_i*(r_i_1/r)**a_k_dilatancy_i+SUM1*r**(-a_k_dilatancy_i) 

        end if 
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        !to update the stresses in the inner boundary of the i-th annulus 

        sig_r_i=sig_r_i+delta_sig_r 

        sig_theta_i=a_N_i*sig_r_i+S_i 

         

        !to update the elastic strain in the inner boudary of the i-th annulus 

        strain_e_r_i=(1.0-v*v)/E*((sig_r_i-P_0)-v/(1.0-v)*(sig_theta_i-p_0)) 

        strain_e_theta_i=(1.0-v*v)/E*((sig_theta_i-P_0)-v/(1.0-v)*(sig_r_i-p_0)) 

         

        !to update u_i 

        Call INTE(SUM2,r_i_1,r_i,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

        U_i=U_i*(r_i_1/r_i)**a_k_dilatancy_i+SUM2*r_i**(-a_k_dilatancy_i) 

         

        !to update plastic strain in the inner boundary of the i-th annulus 

        strain_p_theta_i=u_i/r_i-strain_e_theta_i 

        strain_p_r_i=-a_k_dilatancy_i*strain_p_theta_i 

         

        !to update the plastic parameter a_n_p 

        a_n_p_i=strain_p_theta_i-strain_p_r_i 

         

        !to update the material parameters 

        if (a_n_p_i .lt. a_n_p_star .and. a_n_p_i .ge. 0.0) then 

            cohesion_i=cohesion_0-(cohesion_0-cohesion_r)/(a_n_p_star)*a_n_p_i 

            friction_i=friction_0-(friction_0-friction_r)/(a_n_p_star)*a_n_p_i 

            dilatancy_i=dilatancy_0-(dilatancy_0-dilatancy_r)/(a_n_p_star)*a_n_p_i 

            r_s=r_i 

        else 

            cohesion_i=cohesion_r 

            friction_i=friction_r 

            dilatancy_i=dilatancy_r 

        end if 

    end Do 

    write(111111,*) xk,sig_r_i,u_i*radius/r_i,radius/r_i,r_s*radius/r_i 

    write(222222,*) r*radius/r_i,U*radius/r_i,sig_r 

    end do     

    END 
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    SUBROUTINE INTE(SUM,A,B,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

    N_inte=100000 

    SUM=0.0 

    X=A 

    H=(B-A)/N_inte 

     

    sig_r=(S_i)/(1.0-a_N_i)+(sig_r_i-S_i/(1.0-a_N_i))*(B/A)**(a_N_i-1.0) 

    sig_theta=a_N_i*sig_r+S_i 

    strain_e_r=(1.0-v*v)/E*((sig_r-P_0)-v/(1.0-v)*(sig_theta-p_0)) 

    strain_e_theta=(1.0-v*v)/E*((sig_theta-P_0)-v/(1.0-v)*(sig_r-p_0)) 

     

    Fx=strain_e_r+a_k_dilatancy_i*strain_e_theta 

    F=Fx*X**A_K_dilatancy_i 

     

    DO I=1,N_inte 

        SI=F*H 

        SUM=SUM+SI 

        X=X+H 

         

        sig_r=(S_i)/(1.0-a_N_i)+(sig_r_i-S_i/(1.0-a_N_i))*(B/A)**(a_N_i-1.0) 

        sig_theta=a_N_i*sig_r+S_i 

        strain_e_r=(1.0-v*v)/E*((sig_r-P_0)-v/(1.0-v)*(sig_theta-p_0)) 

        strain_e_theta=(1.0-v*v)/E*((sig_theta-P_0)-v/(1.0-v)*(sig_r-p_0)) 

     

        Fx=strain_e_r+a_k_dilatancy_i*strain_e_theta 

        F=Fx*X**A_K_dilatancy_i 

    END DO 

    END 
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A.2. Solutions in the primary support stage 

!*************************************************** 

!Determining of the solutions during the primary support stage * 

!***************************************************  

!**************************************************************************** 

!INPUT PARAMETERS                                                                                                                 * 

!P_0: initial stresses                                                                                                                          * 

!E, v: elastic modulus and Poisson's ratio of geomaterials                                                              * 

!cohesion_0, cohesion_r: peak and residual values of cohesion                                                      * 

!friction_0, friction_r: peak and residual values of friction angle (deg)                                          * 

!dilatancy_0, dilatancy_r: peak and residual values of dilation angle (deg)                                    * 

!a_n_p_star: critical values of softening parameter                                                                         * 

!r: location                                                                                                                                        * 

!n: the number of annuli in the FDM                                                                                               * 

!radius: the radius of  tunnel wall                                                                                                     * 

!G_L1, v_L1, R_2: material and geometry parameters of the primary support system                   * 

!P_fictitious,ur_x1: the fictitious support forces                                                                               * 

!ur_x1: the displacements along tunnel wall at the moment of installation of the primary support * 

!****************************************************************************** 

!******************************************************************** 

!OUTPUT PARAMETERS                                                                                           * 

!sig_r_i: acting stresses on the tunnel wall                                                                    * 

!u_i*radius/r_i: displacements at the tunnel wall                                                          * 

!radius/r_i, r_s*radius/r_i: peak and residual radii                                                        * 

!p1_xx: support forces at the rock-support interface                                                     * 

!u_L1: displacements of the primary support system at the rock-support interface     * 

!******************************************************************** 

 

PROGRAM MAIN 

    IMPLICIT REAL(A-H,O-Z) 

    INTEGER I,J,K,L,M,N 

    READ(111,*) P_0,E,v,cohesion_0,cohesion_r,friction_0,friction_r,dilatancy_0, 

  .                        dilatancy_r,a_n_p_star,r,n,radius 

    READ(222,*) G_L1,R_2,v_L1 

    READ(333,*) P_fictitious,ur_x1 
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    Pi=3.141592653     

    G=E/(2.0*(1.0+v)) 

    friction_0=friction_0*Pi/180.0 

    friction_r=friction_r*Pi/180.0 

    dilatancy_0=dilatancy_0*Pi/180.0 

    dilatancy_r=dilatancy_r*Pi/180.0 

  

      p1_11=0.0 

      p1_22=p_0  

10  p1_xx=(p1_11+p1_22)/2.0  

      p_i=p1_xx+p_fictitious 

      R_p=1.0 

     
    !material parameters for the 1-st annulus 

    a_N_0=(1.0+sin(friction_0))/(1.0-sin(friction_0)) 

    S_0=2.0*cohesion_0*sqrt(a_N_0) 

     
    !radial stress at the plastic-elastic interface 

    sig_R_p=(2.0*p_0-s_0)/(1.0+a_N_0) 

    delta_sig_r=(P_i-sig_R_p)/N 

     
    !initial values of stresses/strain in the outer boundary of the i-th annulus 

    sig_r_0=sig_r_p 

    sig_theta_0=2.0*p_0-sig_r_p     

    strain_p_r_0=0.0 

    strain_p_theta=0.0 

    a_n_p_0=0.0     

    strain_theta_0=(p_0-sig_r_p)/(2.0*G) 

    U_0=strain_theta_0     

    cohesion_i=cohesion_0 

    friction_i=friction_0 

    dilatancy_i=dilatancy_0 

    a_n_p_i=a_n_p_0     

    sig_r_i=sig_r_0     

    r_i=r_p 

    u_i=u_0 
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    Do i=1,n 

        !non-updated material parameters 

        r_i_1=r_i 

        a_N_i=(1.0+sin(friction_i))/(1.0-sin(friction_i)) 

        S_i=2.0*cohesion_i*sqrt(a_N_i) 

        a_k_dilatancy_i=(1.0+sin(dilatancy_i))/(1.0-sin(dilatancy_i)) 

         

        !to update the normalized radial 

        r_i=r_i*((sig_r_i+delta_sig_r-S_i/(1.0-a_N_i))/(sig_r_i-S_i/(1.0-a_N_i)))**(1.0/(a_N_i-1.0)) 

         

        !stress and displacements in the i-th annulus 

        if ((r .gt. r_i) .and. (r .le. r_i_1)) then 

            !expression of the stresses 

            sig_r=(S_i)/(1.0-a_N_i)+(sig_r_i-S_i/(1-a_N_i))*(r/r_i_1)**(a_N_i-1.0) 

            sig_theta=a_N_i*sig_r+S_i 

            strain_e_r=(1.0-v*v)/E*((sig_r-P_0)-v/(1.0-v)*(sig_theta-p_0)) 

            strain_e_theta=(1.0-v*v)/E*((sig_theta-P_0)-v/(1.0-v)*(sig_r-p_0)) 

             
            !expression of the displacements 

            F_r=strain_e_r+a_k_dilatancy_i*strain_e_theta 

             
            Call INTE(SUM1,r_i_1,r,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

            U=U_i*(r_i_1/r)**a_k_dilatancy_i+SUM1*r**(-a_k_dilatancy_i)          

        end if 

         

        !to update the stresses in the inner boundary of the i-th annulus 

        sig_r_i=sig_r_i+delta_sig_r 

        sig_theta_i=a_N_i*sig_r_i+S_i 

         

        !to update the elastic strain in the inner boudary of the i-th annulus 

        strain_e_r_i=(1.0-v*v)/E*((sig_r_i-P_0)-v/(1.0-v)*(sig_theta_i-p_0)) 

        strain_e_theta_i=(1.0-v*v)/E*((sig_theta_i-P_0)-v/(1.0-v)*(sig_r_i-p_0)) 

         

        !to update u_i 

        Call INTE(SUM2,r_i_1,r_i,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

        U_i=U_i*(r_i_1/r_i)**a_k_dilatancy_i+SUM2*r_i**(-a_k_dilatancy_i) 
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        !to update plastic strain in the inner boundary of the i-th annulus 

        strain_p_theta_i=u_i/r_i-strain_e_theta_i 

        strain_p_r_i=-a_k_dilatancy_i*strain_p_theta_i 

         

        !to update plastic parameter np 

        a_n_p_i=strain_p_theta_i-strain_p_r_i 

         

        !to update the material parameters 

        if (a_n_p_i .lt. a_n_p_star .and. a_n_p_i .ge. 0.0) then 

            cohesion_i=cohesion_0-(cohesion_0-cohesion_r)/(a_n_p_star)*a_n_p_i 

            friction_i=friction_0-(friction_0-friction_r)/(a_n_p_star)*a_n_p_i 

            dilatancy_i=dilatancy_0-(dilatancy_0-dilatancy_r)/(a_n_p_star)*a_n_p_i 

            r_s=r_i 

        else 

            cohesion_i=cohesion_r 

            friction_i=friction_r 

            dilatancy_i=dilatancy_r 

        end if 

    end Do 

  

residual_1=radius*radius*R_2*R_2/(2.0*G_L1*Radius)/(Radius*radius-R_2*R_2)+(1.0-  

  .                    2.0*v_L1)*radius*radius*radius/(2.0*G_L1)/(Radius*radius-R_2*R_2) 

    residual_xx=(strain_p_theta_i+strain_e_theta_i)*radius-ur_x1-residual_1*(sig_r_i-p_fictitious) 

    p_i=p1_11+p_fictitious 

 

    !material parameters for the 1-st annulus 

    a_N_0=(1.0+sin(friction_0))/(1.0-sin(friction_0)) 

    S_0=2.0*cohesion_0*sqrt(a_N_0) 

     

    !radial stress at the plastic-elastic interface 

    sig_R_p=(2.0*p_0-s_0)/(1.0+a_N_0) 

    delta_sig_r=(P_i-sig_R_p)/N 

     

    !initial values of stresses/strain in the outer boundary of the i-th annulus 

    sig_r_0=sig_r_p 

    sig_theta_0=2.0*p_0-sig_r_p 
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    strain_p_r_0=0.0 

    strain_p_theta=0.0 

    a_n_p_0=0.0     

    strain_theta_0=(p_0-sig_r_p)/(2.0*G) 

    U_0=strain_theta_0     

    cohesion_i=cohesion_0 

    friction_i=friction_0 

    dilatancy_i=dilatancy_0 

    a_n_p_i=a_n_p_0     

    sig_r_i=sig_r_0     

    r_i=r_p 

    u_i=u_0 

     
    Do i=1,n 

        !non-updated material parameters 

        r_i_1=r_i 

        a_N_i=(1.0+sin(friction_i))/(1.0-sin(friction_i)) 

        S_i=2.0*cohesion_i*sqrt(a_N_i) 

        a_k_dilatancy_i=(1.0+sin(dilatancy_i))/(1.0-sin(dilatancy_i)) 

         
        !to update the normalized radial 

        r_i=r_i*((sig_r_i+delta_sig_r-S_i/(1.0-a_N_i))/(sig_r_i-S_i/(1.0-a_N_i)))**(1.0/(a_N_i-1.0)) 

         
        !stress and displacements in the i-th annulus 

        if ((r .gt. r_i) .and. (r .le. r_i_1)) then 

            !expression of the stresses 

            sig_r=(S_i)/(1.0-a_N_i)+(sig_r_i-S_i/(1-a_N_i))*(r/r_i_1)**(a_N_i-1.0) 

            sig_theta=a_N_i*sig_r+S_i 

            strain_e_r=(1.0-v*v)/E*((sig_r-P_0)-v/(1.0-v)*(sig_theta-p_0)) 

            strain_e_theta=(1.0-v*v)/E*((sig_theta-P_0)-v/(1.0-v)*(sig_r-p_0)) 

             
            !expression of the displacements 

            F_r=strain_e_r+a_k_dilatancy_i*strain_e_theta 
             

            Call INTE(SUM1,r_i_1,r,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

            U=U_i*(r_i_1/r)**a_k_dilatancy_i+SUM1*r**(-a_k_dilatancy_i)             

        end if 
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        !to update the stresses in the inner boundary of the i-th annulus 

        sig_r_i=sig_r_i+delta_sig_r 

        sig_theta_i=a_N_i*sig_r_i+S_i 

         

        !to update the elastic strain in the inner boudary of the i-th annulus 

        strain_e_r_i=(1.0-v*v)/E*((sig_r_i-P_0)-v/(1.0-v)*(sig_theta_i-p_0)) 

        strain_e_theta_i=(1.0-v*v)/E*((sig_theta_i-P_0)-v/(1.0-v)*(sig_r_i-p_0)) 

         

        !to update u_i 

        Call INTE(SUM2,r_i_1,r_i,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

        U_i=U_i*(r_i_1/r_i)**a_k_dilatancy_i+SUM2*r_i**(-a_k_dilatancy_i) 

         

        !to update plastic strain in the inner boundary of the i-th annulus 

        strain_p_theta_i=u_i/r_i-strain_e_theta_i 

        strain_p_r_i=-a_k_dilatancy_i*strain_p_theta_i 

         

        !to update plastic parameter np 

        a_n_p_i=strain_p_theta_i-strain_p_r_i 

         

        !to update the material parameters 

        if (a_n_p_i .lt. a_n_p_star .and. a_n_p_i .ge. 0.0) then 

            cohesion_i=cohesion_0-(cohesion_0-cohesion_r)/(a_n_p_star)*a_n_p_i 

            friction_i=friction_0-(friction_0-friction_r)/(a_n_p_star)*a_n_p_i 

            dilatancy_i=dilatancy_0-(dilatancy_0-dilatancy_r)/(a_n_p_star)*a_n_p_i 

            r_s=r_i 

        else 

            cohesion_i=cohesion_r 

            friction_i=friction_r 

            dilatancy_i=dilatancy_r 

        end if 

    end Do 

  

 residual_1=radius*radius*R_2*R_2/(2.0*G_L1*Radius)/(Radius*radius-R_2*R_2)+(1.0- 

  .                    2.0*v_L1)*radius*radius*radius/(2.0*G_L1)/(Radius*radius-R_2*R_2) 

    residual_11=(strain_p_theta_i+strain_e_theta_i)*radius-ur_x1-residual_1*(sig_r_i-p_fictitious) 

   



APPENDIX 

 

240 

 

    p_i=p1_22+p_fictitious 

    R_p=1.0 

     

    !material parameters for the 1-st annulus 

    a_N_0=(1.0+sin(friction_0))/(1.0-sin(friction_0)) 

    S_0=2.0*cohesion_0*sqrt(a_N_0) 

     

    !radial stress at the plastic-elastic interface 

    sig_R_p=(2.0*p_0-s_0)/(1.0+a_N_0) 

    delta_sig_r=(P_i-sig_R_p)/N 

     

    !initial values of stresses/strain in the outer boundary of the i-th annulus 

    sig_r_0=sig_r_p 

    sig_theta_0=2.0*p_0-sig_r_p     

    strain_p_r_0=0.0 

    strain_p_theta=0.0 

    a_n_p_0=0.0     

    strain_theta_0=(p_0-sig_r_p)/(2.0*G) 

    U_0=strain_theta_0     

    cohesion_i=cohesion_0 

    friction_i=friction_0 

    dilatancy_i=dilatancy_0 

    a_n_p_i=a_n_p_0     

    sig_r_i=sig_r_0     

    r_i=r_p 

    u_i=u_0 

     

    Do i=1,n 

        !non-updated material parameters 

        r_i_1=r_i 

        a_N_i=(1.0+sin(friction_i))/(1.0-sin(friction_i)) 

        S_i=2.0*cohesion_i*sqrt(a_N_i) 

        a_k_dilatancy_i=(1.0+sin(dilatancy_i))/(1.0-sin(dilatancy_i)) 

         



APPENDIX 

241 

 

        !to update the normalized radial 

        r_i=r_i*((sig_r_i+delta_sig_r-S_i/(1.0-a_N_i))/(sig_r_i-S_i/(1.0-a_N_i)))**(1.0/(a_N_i-1.0)) 

         

        !stress and displacements in the i-th annulus 

        if ((r .gt. r_i) .and. (r .le. r_i_1)) then 

            !expression of the stresses 

            sig_r=(S_i)/(1.0-a_N_i)+(sig_r_i-S_i/(1-a_N_i))*(r/r_i_1)**(a_N_i-1.0) 

            sig_theta=a_N_i*sig_r+S_i 

            strain_e_r=(1.0-v*v)/E*((sig_r-P_0)-v/(1.0-v)*(sig_theta-p_0)) 

            strain_e_theta=(1.0-v*v)/E*((sig_theta-P_0)-v/(1.0-v)*(sig_r-p_0)) 

             

            !expression of the displacements 

            F_r=strain_e_r+a_k_dilatancy_i*strain_e_theta 

             

            Call INTE(SUM1,r_i_1,r,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

            U=U_i*(r_i_1/r)**a_k_dilatancy_i+SUM1*r**(-a_k_dilatancy_i)             

        end if 

         

        !to update the stresses in the inner boundary of the i-th annulus 

        sig_r_i=sig_r_i+delta_sig_r 

        sig_theta_i=a_N_i*sig_r_i+S_i 

         

        !to update the elastic strain in the inner boudary of the i-th annulus 

        strain_e_r_i=(1.0-v*v)/E*((sig_r_i-P_0)-v/(1.0-v)*(sig_theta_i-p_0)) 

        strain_e_theta_i=(1.0-v*v)/E*((sig_theta_i-P_0)-v/(1.0-v)*(sig_r_i-p_0)) 

         

        !to update u_i 

        Call INTE(SUM2,r_i_1,r_i,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

        U_i=U_i*(r_i_1/r_i)**a_k_dilatancy_i+SUM2*r_i**(-a_k_dilatancy_i) 

         

        !to update plastic strain in the inner boundary of the i-th annulus 

        strain_p_theta_i=u_i/r_i-strain_e_theta_i 

        strain_p_r_i=-a_k_dilatancy_i*strain_p_theta_i 
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        !to update plastic parameter np 

        a_n_p_i=strain_p_theta_i-strain_p_r_i 

         

        !to update the material parameters 

        if (a_n_p_i .lt. a_n_p_star .and. a_n_p_i .ge. 0.0) then 

            cohesion_i=cohesion_0-(cohesion_0-cohesion_r)/(a_n_p_star)*a_n_p_i 

            friction_i=friction_0-(friction_0-friction_r)/(a_n_p_star)*a_n_p_i 

            dilatancy_i=dilatancy_0-(dilatancy_0-dilatancy_r)/(a_n_p_star)*a_n_p_i 

            r_s=r_i 

        else 

            cohesion_i=cohesion_r 

            friction_i=friction_r 

            dilatancy_i=dilatancy_r 

        end if 

    end Do 

  

R_sidual=(radius*radius*R_2*R_2/(2.0*G_L1*Radius)/(Radius*radius-R_2*R_2)+(1.0- 

  .                  2.0*v_L1)*radius*radius*radius/(2.0*G_L1)/(Radius*radius-R_2*R_2)) 

    residual_22=(strain_p_theta_i+strain_e_theta_i)*radius-ur_x1-R_sidual*(sig_r_i-p_fictitious) 

  

    if (sign (residual_xx,residual_11) .eq. residual_xx) then 

        p1_11=p1_xx 

        residual_11=residual_xx 

    else 

        p1_22=p1_xx 

        residual_22=residual_xx 

    end if 

  

    if ((abs(residual_11-residual_22).gt.20e-6) .and. abs(residual_xx).gt.20e-6) goto 10  

    if(abs(residual_xx).gt.1e-6) p1_xx=(p1_11+P1_22)/2.0     

    u_L1=p1_xx*R_sidual 

     

    write(1111111,*) residual_xx,p1_xx,u_L1,u_i*radius/r_i,sig_r_i,radius/r_i,r_s*radius/r_i 

    END 
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    SUBROUTINE INTE(SUM,A,B,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

    N_inte=100000 

    SUM=0.0 

    X=A 

    H=(B-A)/N_inte 

     

    sig_r=(S_i)/(1.0-a_N_i)+(sig_r_i-S_i/(1.0-a_N_i))*(B/A)**(a_N_i-1.0) 

    sig_theta=a_N_i*sig_r+S_i 

    strain_e_r=(1.0-v*v)/E*((sig_r-P_0)-v/(1.0-v)*(sig_theta-p_0)) 

    strain_e_theta=(1.0-v*v)/E*((sig_theta-P_0)-v/(1.0-v)*(sig_r-p_0)) 

     

    Fx=strain_e_r+a_k_dilatancy_i*strain_e_theta 

    F=Fx*X**A_K_dilatancy_i 

     

    DO I=1,N_inte 

        SI=F*H 

        SUM=SUM+SI 

        X=X+H 

         

        sig_r=(S_i)/(1.0-a_N_i)+(sig_r_i-S_i/(1.0-a_N_i))*(B/A)**(a_N_i-1.0) 

        sig_theta=a_N_i*sig_r+S_i 

        strain_e_r=(1.0-v*v)/E*((sig_r-P_0)-v/(1.0-v)*(sig_theta-p_0)) 

        strain_e_theta=(1.0-v*v)/E*((sig_theta-P_0)-v/(1.0-v)*(sig_r-p_0)) 

     

        Fx=strain_e_r+a_k_dilatancy_i*strain_e_theta 

        F=Fx*X**A_K_dilatancy_i 

    END DO     

    END 
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A.3. Solutions in the secondary support stage 

!***************************************************** 

!Determining of the solutions during the secondary support stage * 

!***************************************************** 

!****************************************************************************** 

!INPUT PARAMETERS                                                                                                                   * 

!P_0: initial stresses                                                                                                                           * 

!E, v: elastic modulus and Poisson's ratio of geomaterials                                                                * 

!cohesion_0, cohesion_r: peak and residual values of cohesion                                                        * 

!friction_0, friction_r: peak and residual values of friction angle (deg)                                            * 

!dilatancy_0, dilatancy_r: peak and residual values of dilation angle (deg)                                      * 

!a_n_p_star: critical values of softening parameter                                                                           * 

!r: location                                                                                                                                          * 

!n: the number of annuli for the FDM                                                                                                * 

!R_1: the radius of  the tunnel wall                                                                                                    * 

!G_L1, v_L1: material parameters of the primary support system                                                   * 

!G_L2,v_L2: material parameters of the secondary support system                                                 * 

!R_2, R_3: geometry parameters of supports                                                                                    * 

!P_fictitious: the fictitious support forces                                                                                          * 

!ur_x1: the displacements along tunnel wall at the moment of installation of the primary support  * 

!P_s_11_x2: the support forces on the outer boundary of the primary support                                 * 

!                    at the moment of installation of the secondary support                                                * 

!****************************************************************************** 

!**************************************************************** 

!OUTPUT PARAMETERS                                                                                   * 

!sig_r_i: acting stresses on the tunnel wall                                                            * 

!u_i*R_1/r_i: displacements at the tunnel wall                                                     * 

!R_1/r_i, r_s*R_1/r_i: peak and residual plastic radii                                           * 

!p1_xx: support forces at the rock-support interface                                             *  

!p_s_22: support forces acting on the outer boundary of the secondary support  *  

!ur_L1_R1,ur_L1_R2,ur_L2_R2: displacements of supports                               * 

!**************************************************************** 
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PROGRAM MAIN 

    IMPLICIT REAL(A-H,O-Z) 

    INTEGER I,J,K,L,M,N 

    READ(222,*) P_0,E,v,cohesion_0,cohesion_r,friction_0,friction_r,dilatancy_0, 

  .                        dilatancy_r,a_n_p_star,r,n,R_1 

    READ(111,*) G_L1,G_L2,v_L1,v_L2,R_2,R_3,P_fictitious 

 

cof_A=R_1*R_2*R_2/(2.0*G_L1*(R_1*R_1-R_2*R_2))+(1.0- 

  .             2.0*v_L1)*R_1*R_1*R_1/(2.0*G_L1*(R_1*R_1-R_2*R_2)) 

cof_B=R_1*R_2*R_2/(2.0*G_L1*(R_1*R_1-R_2*R_2))+(1.0- 

  .             2.0*v_L1)*R_1*R_2*R_2/(2.0*G_L1*(R_1*R_1-R_2*R_2)) 

cof_C=R_1*R_1*R_2/(2.0*G_L1*(R_1*R_1-R_2*R_2))+(1.0- 

  .             2.0*v_L1)*R_1*R_1*R_2/(2.0*G_L1*(R_1*R_1-R_2*R_2)) 

cof_D=R_1*R_1*R_2/(2.0*G_L1*(R_1*R_1-R_2*R_2))+(1.0- 

  .             2.0*v_L1)*R_2*R_2*R_2/(2.0*G_L1*(R_1*R_1-R_2*R_2)) 

cof_E=R_2*R_3*R_3/(2.0*G_L2*(R_2*R_2-R_3*R_3))+(1.0- 

  .             2.0*v_L2)*R_2*R_2*R_2/(2.0*G_L2*(R_2*R_2-R_3*R_3)) 

 

    Pi=3.141592653     

    G=E/(2.0*(1.0+v)) 

    friction_0=friction_0*Pi/180.0 

    friction_r=friction_r*Pi/180.0 

    dilatancy_0=dilatancy_0*Pi/180.0 

    dilatancy_r=dilatancy_r*Pi/180.0 

  

      p1_11=0.0 

      p1_22=p_0  

10  p1_xx=(p1_11+p1_22)/2.0   

      p_i=p1_xx+p_fictitious    

      R_p=1.0 

     

    !material parameters for the 1-st annulus 

    a_N_0=(1.0+sin(friction_0))/(1.0-sin(friction_0)) 

    S_0=2.0*cohesion_0*sqrt(a_N_0) 
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    !radial stress at the plastic-elastic interface 

    sig_R_p=(2.0*p_0-s_0)/(1.0+a_N_0) 

    delta_sig_r=(P_i-sig_R_p)/N 

     

    !initial values of stresses/strain in the outer boundary of the i-th annulus 

    sig_r_0=sig_r_p 

    sig_theta_0=2.0*p_0-sig_r_p     

    strain_p_r_0=0.0 

    strain_p_theta=0.0 

    a_n_p_0=0.0     

    strain_theta_0=(p_0-sig_r_p)/(2.0*G) 

    U_0=strain_theta_0     

    cohesion_i=cohesion_0 

    friction_i=friction_0 

    dilatancy_i=dilatancy_0 

    a_n_p_i=a_n_p_0     

    sig_r_i=sig_r_0     

    r_i=r_p 

    u_i=u_0 

     

    Do i=1,n 

        !non-updated material parameters 

        r_i_1=r_i 

        a_N_i=(1.0+sin(friction_i))/(1.0-sin(friction_i)) 

        S_i=2.0*cohesion_i*sqrt(a_N_i) 

        a_k_dilatancy_i=(1.0+sin(dilatancy_i))/(1.0-sin(dilatancy_i)) 

         

        !to update the normalized radial 

        r_i=r_i*((sig_r_i+delta_sig_r-S_i/(1.0-a_N_i))/(sig_r_i-S_i/(1.0-a_N_i)))**(1.0/(a_N_i-1.0)) 

         

        !stress and displacements in the i-th annulus 

        if ((r .gt. r_i) .and. (r .le. r_i_1)) then 

            !expression of the stresses 

            sig_r=(S_i)/(1.0-a_N_i)+(sig_r_i-S_i/(1-a_N_i))*(r/r_i_1)**(a_N_i-1.0) 

            sig_theta=a_N_i*sig_r+S_i 
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            strain_e_r=(1.0-v*v)/E*((sig_r-P_0)-v/(1.0-v)*(sig_theta-p_0)) 

            strain_e_theta=(1.0-v*v)/E*((sig_theta-P_0)-v/(1.0-v)*(sig_r-p_0)) 

             
            !expression of the displacements 

            F_r=strain_e_r+a_k_dilatancy_i*strain_e_theta 

             
            Call INTE(SUM1,r_i_1,r,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

            U=U_i*(r_i_1/r)**a_k_dilatancy_i+SUM1*r**(-a_k_dilatancy_i)             

        end if 

         

        !to update the stresses in the inner boundary of the i-th annulus 

        sig_r_i=sig_r_i+delta_sig_r 

        sig_theta_i=a_N_i*sig_r_i+S_i 

         

        !to update the elastic strain in the inner boudary of the i-th annulus 

        strain_e_r_i=(1.0-v*v)/E*((sig_r_i-P_0)-v/(1.0-v)*(sig_theta_i-p_0)) 

        strain_e_theta_i=(1.0-v*v)/E*((sig_theta_i-P_0)-v/(1.0-v)*(sig_r_i-p_0)) 

         

        !to update u_i 

        Call INTE(SUM2,r_i_1,r_i,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

        U_i=U_i*(r_i_1/r_i)**a_k_dilatancy_i+SUM2*r_i**(-a_k_dilatancy_i) 

         

        !to update plastic strain in the inner boundary of the i-th annulus 

        strain_p_theta_i=u_i/r_i-strain_e_theta_i 

        strain_p_r_i=-a_k_dilatancy_i*strain_p_theta_i 

         

        !to update plastic parameter np 

        a_n_p_i=strain_p_theta_i-strain_p_r_i 

         

        !to update the material parameters 

        if (a_n_p_i .lt. a_n_p_star .and. a_n_p_i .ge. 0.0) then 

            cohesion_i=cohesion_0-(cohesion_0-cohesion_r)/(a_n_p_star)*a_n_p_i 

            friction_i=friction_0-(friction_0-friction_r)/(a_n_p_star)*a_n_p_i 

            dilatancy_i=dilatancy_0-(dilatancy_0-dilatancy_r)/(a_n_p_star)*a_n_p_i 

            r_s=r_i 

        else 

            cohesion_i=cohesion_r 
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            friction_i=friction_r 

            dilatancy_i=dilatancy_r 

        end if 

    end Do  

        

residual_x=cof_A*(sig_r_i-p_fictitious)-cof_B*cof_C/(cof_D+cof_E)*(sig_r_i- 

  .                    p_fictitious)+cof_B*cof_C*P_s_11_x2/(cof_D+cof_E) 

    residual_xx=(strain_p_theta_i+strain_e_theta_i)*R_1-ur_x1-residual_x 

    p_i=p1_11+p_fictitious  

 

    !material parameters for the 1-st annulus 

    a_N_0=(1.0+sin(friction_0))/(1.0-sin(friction_0)) 

    S_0=2.0*cohesion_0*sqrt(a_N_0) 

     

    !radial stress at the plastic-elastic interface 

    sig_R_p=(2.0*p_0-s_0)/(1.0+a_N_0) 

    delta_sig_r=(P_i-sig_R_p)/N 

     

    !initial values of stresses/strain in the outer boundary of the i-th annulus 

    sig_r_0=sig_r_p 

    sig_theta_0=2.0*p_0-sig_r_p     

    strain_p_r_0=0.0 

    strain_p_theta=0.0 

    a_n_p_0=0.0     

    strain_theta_0=(p_0-sig_r_p)/(2.0*G) 

    U_0=strain_theta_0     

    cohesion_i=cohesion_0 

    friction_i=friction_0 

    dilatancy_i=dilatancy_0 

    a_n_p_i=a_n_p_0     

    sig_r_i=sig_r_0     

    r_i=r_p 

    u_i=u_0 

     

    Do i=1,n 
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        !non-updated material parameters 

        r_i_1=r_i 

        a_N_i=(1.0+sin(friction_i))/(1.0-sin(friction_i)) 

        S_i=2.0*cohesion_i*sqrt(a_N_i) 

        a_k_dilatancy_i=(1.0+sin(dilatancy_i))/(1.0-sin(dilatancy_i)) 

         

        !to update the normalized radial 

        r_i=r_i*((sig_r_i+delta_sig_r-S_i/(1.0-a_N_i))/(sig_r_i-S_i/(1.0-a_N_i)))**(1.0/(a_N_i-1.0)) 

         

        !stress and displacements in the i-th annulus 

        if ((r .gt. r_i) .and. (r .le. r_i_1)) then 

            !expression of the stresses 

            sig_r=(S_i)/(1.0-a_N_i)+(sig_r_i-S_i/(1-a_N_i))*(r/r_i_1)**(a_N_i-1.0) 

            sig_theta=a_N_i*sig_r+S_i 

            strain_e_r=(1.0-v*v)/E*((sig_r-P_0)-v/(1.0-v)*(sig_theta-p_0)) 

            strain_e_theta=(1.0-v*v)/E*((sig_theta-P_0)-v/(1.0-v)*(sig_r-p_0)) 

             

            !expression of the displacements 

            F_r=strain_e_r+a_k_dilatancy_i*strain_e_theta 

             

            Call INTE(SUM1,r_i_1,r,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

            U=U_i*(r_i_1/r)**a_k_dilatancy_i+SUM1*r**(-a_k_dilatancy_i)             

        end if 

         

        !to update the stresses in the inner boundary of the i-th annulus 

        sig_r_i=sig_r_i+delta_sig_r 

        sig_theta_i=a_N_i*sig_r_i+S_i 

         

        !to update the elastic strain in the inner boudary of the i-th annulus 

        strain_e_r_i=(1.0-v*v)/E*((sig_r_i-P_0)-v/(1.0-v)*(sig_theta_i-p_0)) 

        strain_e_theta_i=(1.0-v*v)/E*((sig_theta_i-P_0)-v/(1.0-v)*(sig_r_i-p_0)) 

         

        !to update u_i 

        Call INTE(SUM2,r_i_1,r_i,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

        U_i=U_i*(r_i_1/r_i)**a_k_dilatancy_i+SUM2*r_i**(-a_k_dilatancy_i) 
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        !to update plastic strain in the inner boundary of the i-th annulus 

        strain_p_theta_i=u_i/r_i-strain_e_theta_i 

        strain_p_r_i=-a_k_dilatancy_i*strain_p_theta_i 

         

        !to update plastic parameter np 

        a_n_p_i=strain_p_theta_i-strain_p_r_i 

         

        !to update the material parameters 

        if (a_n_p_i .lt. a_n_p_star .and. a_n_p_i .ge. 0.0) then 

            cohesion_i=cohesion_0-(cohesion_0-cohesion_r)/(a_n_p_star)*a_n_p_i 

            friction_i=friction_0-(friction_0-friction_r)/(a_n_p_star)*a_n_p_i 

            dilatancy_i=dilatancy_0-(dilatancy_0-dilatancy_r)/(a_n_p_star)*a_n_p_i 

            r_s=r_i 

        else 

            cohesion_i=cohesion_r 

            friction_i=friction_r 

            dilatancy_i=dilatancy_r 

        end if 

 

    end Do 

  

residual_1=cof_A*(sig_r_i-p_fictitious)-cof_B*cof_C/(cof_D+cof_E)*(sig_r_i- 

  .                    p_fictitious)+cof_B*cof_C*P_s_11_x2/(cof_D+cof_E) 

    residual_11=(strain_p_theta_i+strain_e_theta_i)*R_1-ur_x1-residual_1 

    

    p_i=p1_22+p_fictitious 

    R_p=1.0 

     

    !material parameters for the 1-st annulus 

    a_N_0=(1.0+sin(friction_0))/(1.0-sin(friction_0)) 

    S_0=2.0*cohesion_0*sqrt(a_N_0) 

     

    !radial stress at the plastic-elastic interface 

    sig_R_p=(2.0*p_0-s_0)/(1.0+a_N_0) 

    delta_sig_r=(P_i-sig_R_p)/N 
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    !initial values of stresses/strain in the outer boundary of the i-th annulus 

    sig_r_0=sig_r_p 

    sig_theta_0=2.0*p_0-sig_r_p     

    strain_p_r_0=0.0 

    strain_p_theta=0.0 

    a_n_p_0=0.0     

    strain_theta_0=(p_0-sig_r_p)/(2.0*G) 

    U_0=strain_theta_0     

    cohesion_i=cohesion_0 

    friction_i=friction_0 

    dilatancy_i=dilatancy_0 

    a_n_p_i=a_n_p_0     

    sig_r_i=sig_r_0     

    r_i=r_p 

    u_i=u_0 

     

    Do i=1,n 

        !non-updated material parameters 

        r_i_1=r_i 

        a_N_i=(1.0+sin(friction_i))/(1.0-sin(friction_i)) 

        S_i=2.0*cohesion_i*sqrt(a_N_i) 

        a_k_dilatancy_i=(1.0+sin(dilatancy_i))/(1.0-sin(dilatancy_i)) 

         

        !to update the normalized radial 

        r_i=r_i*((sig_r_i+delta_sig_r-S_i/(1.0-a_N_i))/(sig_r_i-S_i/(1.0-a_N_i)))**(1.0/(a_N_i-1.0)) 

         

        !stress and displacements in the i-th annulus 

        if ((r .gt. r_i) .and. (r .le. r_i_1)) then 

            !expression of the stresses 

            sig_r=(S_i)/(1.0-a_N_i)+(sig_r_i-S_i/(1-a_N_i))*(r/r_i_1)**(a_N_i-1.0) 

            sig_theta=a_N_i*sig_r+S_i 

            strain_e_r=(1.0-v*v)/E*((sig_r-P_0)-v/(1.0-v)*(sig_theta-p_0)) 

            strain_e_theta=(1.0-v*v)/E*((sig_theta-P_0)-v/(1.0-v)*(sig_r-p_0)) 
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            !expression of the displacements 

            F_r=strain_e_r+a_k_dilatancy_i*strain_e_theta 

             

            Call INTE(SUM1,r_i_1,r,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

            U=U_i*(r_i_1/r)**a_k_dilatancy_i+SUM1*r**(-a_k_dilatancy_i)             

        end if 

         

        !to update the stresses in the inner boundary of the i-th annulus 

        sig_r_i=sig_r_i+delta_sig_r 

        sig_theta_i=a_N_i*sig_r_i+S_i 

         

        !to update the elastic strain in the inner boudary of the i-th annulus 

        strain_e_r_i=(1.0-v*v)/E*((sig_r_i-P_0)-v/(1.0-v)*(sig_theta_i-p_0)) 

        strain_e_theta_i=(1.0-v*v)/E*((sig_theta_i-P_0)-v/(1.0-v)*(sig_r_i-p_0)) 

         

        !to update u_i 

        Call INTE(SUM2,r_i_1,r_i,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

        U_i=U_i*(r_i_1/r_i)**a_k_dilatancy_i+SUM2*r_i**(-a_k_dilatancy_i) 

         

        !to update plastic strain in the inner boundary of the i-th annulus 

        strain_p_theta_i=u_i/r_i-strain_e_theta_i 

        strain_p_r_i=-a_k_dilatancy_i*strain_p_theta_i 

         

        !to update plastic parameter np 

        a_n_p_i=strain_p_theta_i-strain_p_r_i 

         

        !to update the material parameters 

        if (a_n_p_i .lt. a_n_p_star .and. a_n_p_i .ge. 0.0) then 

            cohesion_i=cohesion_0-(cohesion_0-cohesion_r)/(a_n_p_star)*a_n_p_i 

            friction_i=friction_0-(friction_0-friction_r)/(a_n_p_star)*a_n_p_i 

            dilatancy_i=dilatancy_0-(dilatancy_0-dilatancy_r)/(a_n_p_star)*a_n_p_i 

            r_s=r_i 

        else 

            cohesion_i=cohesion_r 
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            friction_i=friction_r 

            dilatancy_i=dilatancy_r 

        end if 

    end Do 

  

residual_2=cof_A*(sig_r_i-p_fictitious)-cof_B*cof_C/(cof_D+cof_E)*(sig_r_i- 

  .                    p_fictitious)+cof_B*cof_C*P_s_11_x2/(cof_D+cof_E) 

    residual_22=(strain_p_theta_i+strain_e_theta_i)*R_1-ur_x1-residual_2 

  

    if (sign (residual_xx,residual_11) .eq. residual_xx) then 

        p1_11=p1_xx 

        residual_11=residual_xx 

    else 

        p1_22=p1_xx 

        residual_22=residual_xx 

    end if 

  

    if ((abs(residual_11-residual_22).gt.35e-6) .and. abs(residual_xx).gt.35e-6) goto 10 

    if(abs(residual_xx).gt.1e-9) p1_xx=(p1_11+P1_22)/2.0 

         

    P_s_22=cof_C*(p1_xx-P_s_11_x2)/(cof_D+cof_E)     

 ur_L1_R1=(p1_xx-p_s_22)*R_1*R_1*R_2*R_2/(2.0*G_L1*R_1*(R_1*R_1-R_2*R_2))+((1.0- 

  .                    2.0*v_L1)*R_1*R_1*p1_xx*R_1- (1.0-2.0*v_L1)*R_2*R_2*p_s_22*R_1)/ 

  .                    (2.0*G_L1*(R_1*R_1-R_2*R_2)) 

 ur_L1_R2=(p1_xx-p_s_22)*R_1*R_1*R_2*R_2/(2.0*G_L1*R_2*(R_1*R_1-R_2*R_2))+((1.0- 

  .                    2.0*v_L1)*R_1*R_1*p1_xx*R_2- 

  .                    (1.0-2.0*v_L1)*R_2*R_2*p_s_22*R_2)/(2.0*G_L1*(R_1*R_1-R_2*R_2)) 

 ur_L2_R2=p_s_22*R_2*R_2*R_3*R_3/(2.0*G_L2*R_2*(R_2*R_2-R_3*R_3))+((1.0- 

  .                    2.0*v_L2)*R_2*R_2*p_s_22*R_2)/(2.0*G_L2*(R_2*R_2-R_3*R_3)) 

     

    write(111111,*) residual_xx,u_i*R_1/r_i,sig_r_i,R_1/r_i,r_s*R_1/r_i   

    write(222222,*) p1_xx,p_s_22,ur_L1_R1,ur_L1_R2,ur_L2_R2 

    END 
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    SUBROUTINE INTE(SUM,A,B,A_K_dilatancy_i,v,E,S_i,a_N_i,sig_r_i,P_0) 

    N_inte=100000 

    SUM=0.0 

    X=A 

    H=(B-A)/N_inte 

     

    sig_r=(S_i)/(1.0-a_N_i)+(sig_r_i-S_i/(1.0-a_N_i))*(B/A)**(a_N_i-1.0) 

    sig_theta=a_N_i*sig_r+S_i 

    strain_e_r=(1.0-v*v)/E*((sig_r-P_0)-v/(1.0-v)*(sig_theta-p_0)) 

    strain_e_theta=(1.0-v*v)/E*((sig_theta-P_0)-v/(1.0-v)*(sig_r-p_0)) 

     

    Fx=strain_e_r+a_k_dilatancy_i*strain_e_theta 

    F=Fx*X**A_K_dilatancy_i 

     

    DO I=1,N_inte 

        SI=F*H 

        SUM=SUM+SI 

        X=X+H 

         

        sig_r=(S_i)/(1.0-a_N_i)+(sig_r_i-S_i/(1.0-a_N_i))*(B/A)**(a_N_i-1.0) 

        sig_theta=a_N_i*sig_r+S_i 

        strain_e_r=(1.0-v*v)/E*((sig_r-P_0)-v/(1.0-v)*(sig_theta-p_0)) 

        strain_e_theta=(1.0-v*v)/E*((sig_theta-P_0)-v/(1.0-v)*(sig_r-p_0)) 

     

        Fx=strain_e_r+a_k_dilatancy_i*strain_e_theta 

        F=Fx*X**A_K_dilatancy_i 

    END DO     

    END 
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