
 
 
 

 
 

 
 
 
 
 
 
 

 

 
 

Detection and classification of somatic structural 
variants, and its application in the study  

of neuronal development 
 

Mercè Planas Fèlix 
 
 
 
 
 

 
 
 
 
 
 

 
ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió 
d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat 
autoritzada pels titulars dels drets de propietat intelꞏlectual únicament per a usos privats emmarcats en activitats 
d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició 
des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra 
o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de 
la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La 
difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) 
ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en 
actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a 
disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza la presentación de su 
contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta reserva de derechos afecta 
tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado 
indicar el nombre de la persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  Spreading this thesis by the TDX 
(www.tdx.cat) service and by the UB Digital Repository (diposit.ub.edu) has been authorized by the titular of the intellectual 
property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not 
authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital Repository. Introducing 
its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not authorized (framing). Those 
rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis 
it’s obliged to indicate the name of the author. 



 0 

 
 
 
 



   

 1 

 

 

Facultat de Biologia 

Programa de Biomedicina (codi HDK05) 

Línia de recerca 101114 – Bioinformàtica 

 

Memòria presentada per Mercè Planas Fèlix per optar al grau de doctor/a per 
la Universitat de Barcelona 

 

Detection and classification of somatic structural variants, 
and its application in the study of neuronal development 

 

DOCTORANDA:  

Mercè Planas Fèlix 

 

DIRECTOR:  

Dr. David Torrents Arenales  

 

                                           TUTOR:  

Dr. Josep Lluis Gelpi Buchaca 

 

 

 



 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



   

 3 

 

 

 

 

 

 

 

 

This thesis was supported by  

“La Caixa” – Severo Ochoa International Ph.D. Programme 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



   

 5 

Agraïments 
Sóc conscient de que aquesta tesi esta signada al meu nom, però no puc pas 

concebre la idea de la seva existència sense el recolzament i la presencia de tota 

la gent que m’ha recolzat durant tot aquest llarg camí. Tinc tot el meu 

convenciment que sense valtros aquesta tesis mai hauria hagués estat possible, 

gràcies per haver format part d’aquesta etapa que aquí culmina. En especial 

però, m’agradaria agrair a aquelles persones que considero que han estat claus 

en aquesta etapa. 

 

En primer lloc voldria agrair al meu Director de tesi el Dr. David Torrents 

Arenales per donar-me l’oportunitat de poder cursar la tesi aquí present en el 

seu grup durant aquests anys, així com La Caixa per la beca que em van donar 

per poder cursar el meu doctorat.  

Tornant amb el David, desitjo agrair-li la confiança que diposita en les persones, 

com es permet veure més enllà de unes notes i creure en els valors de cadascun 

de naltrus, aquest tracte més humà i personal que ha tingut sempre amb tots 

els membres del nostre grup. No han estat poques les converses que he 

disfrutat no només de ciencia, sino també de motivació, de formes de pensar, 

tot i el nostre tarannà tan diferent, que m’emporto amb mi i que se que les 

tindre present al llarg de la meva carrera. Considero que en un món com és el 

de la ciencia hi hauria d’haver més directors que et donessin l'oportunitat de 

poder treballar d'allò que més t’entusiasma com ho ha fet ell amb tots natros. 

 

En aquest grup és on he pogut conèixer no només grans treballadors sinó 

també grans persones que he tingut el privilegi que han passat a formar part 

del meu cercle d’amistats. 



 6 

Voldria agrair a tots valtros haver format un grup com el que tenim, però no 

vull perdre l’oportunitat de poder-ho fer de forma més personal amb alguns 

d’ells. 

Al Txema, que no només va ser la primera persona que vaig conèixer del grup, 

sinó també el meu supervisor durant la meva etapa en metagenómica. Treballar 

amb ell m’ha ensenyat a ser constant, i tenir-ho tot controlat, però sobretot a 

esclatar de riure inclús en els moments més tensos de treball. El seu esperit 

jovial, el seu humor i la seva franquesa sempre ens ha contagiat a tots. Em 

quedo en el record el soroll de la brompton al entrar a la sala i els esmorzars 

gourmets que ens donem tot parlant de la vida. 

A la Silvia, la primera doctorant amb qui vaig compartir experiències del grup 

i que va tenir la santa paciencia d’ensenyar-me R. Gràcies per deixar-me 

treballar al teu costat i ensenyar-me valors com la eficiencia, i poder compartir 

la teva gran implicació en la ciencia que has demostrat sempre dia rere dia. Però 

sobretot gràcies per l’amistat tant sincera i mordaç que m’has ofert al llarg de 

tots aquests anys i que continua viva a dia d’avui, i per donar-me sempre aquella 

empenta en els meus moments més indecisos. 

A la Marta i l’Elias, amb els quals ha estat un plaer i privilegi poder compartir 

aquesta etapa d’inici a final tots tres plegats. Anar a treballar cada día al BSC es 

feia menys feixuc i es convertia en una festa sabent que els trobaria en la meva 

illa per poder petar la xerrada. Valoro l’amistat i la germanor que s’ha creat i que 

m’han permès poder compartir i disfrutar tant dels bons com els mal moments, 

aquelles converses que semblava que arreglaven el món o inclús les que ens 

sortia el “monocle”, les birres i els cafés a la FIB, els sopars, els viatges, les festes! 

Se que gràcies a ells recordaré aquesta etapa com una de les millors que hauré 

viscut, i que sense ells això no hauria estat mai com és ara. 

A la Montse, per no només ser la nostre informàtica i ensenyar-nos a tots amb 

una paciencia desmesurada, sinó també a adquirir autonomía en l’entorn més 



   

 7 

computacional. Gràcies també per tot l’afecte que m’has demostrat durant 

aquesta etapa compartint tants càfes i xerrades plegades. 

A la Romina que tot i no ser del nostre grup sempre ha estat allà per donar-nos 

un cop de mà sempre que el necessitavem, i ens ha alimentat amb els seus grans 

postres setmana rere setmana. 

 

Fora del nostre grup destacar al Jordà, el meu company en l’elaboració de 

SMuFin2. Treballar al seu costat ha estat un plaer no només a nivell de 

coneixements, sinó per ensenyar-me que encara que dues persones vinguin 

d’ambients i formes de raonar molt diferents la comunicació i els resultats 

poden ser fantàstics. 

 

Fora del meu entorn més laboral voldria destacar el gran paper de tots els meus 

amics, la meva petita “familia” que m’han donat tot el seu recolzament i la 

confiança per continuar endavant en aquesta etapa. Alguns d’ells de l’etapa del 

máster com l’Alba i l’Oihane, que han estat crucials per continuar amb la meva 

carrera d’investigació i que han fet possible la tesis aquí present. Altres de la 

carrera o de la infancia que sempre han i han celebrat tots els meus triomfs com 

si fossin els seus propis, gràcies per no deixar-me enfonsar i confiar en mi en 

els bons i mal moments. A l’Oriol que durant molts anys va haver de patir que 

la feina em tingués sempre tant segrestada pero no va deixar mai de confiar que 

tard o d’hora tota aquesta feina donaria els seus fruits. 

 

M’agradaria destacar sobretot a les meves amigues i companyes de pis Maria i 

Ari. Gràcies per tirar de mi, cuidar-me i aguantar-me sobretot en aquest últim 

tram de la tesis que ha suposat una muntanya russa d’emocions. Tinc molt clar 

que no estaria aquí de no ser per valtros, i no sabria com agrair-vos tot el 



 8 

recolzament que m’heu donat per continuar amb una de les meves passions que 

és la investigació, amb valtros em sento com a casa. 

 

Finalment a la meva família per sempre recolzarme i respectar-me en totes les 

decisions que he pres tot i no tenir molt clar a que em dedicava en alguns 

moments, gràcies pel vostre suport incondicional. En especial a la meva mare 

per haver-me ensenyat el vertader significat de la paraula resiliència. La seva 

forma d’afrontar qualsevol entrebanc, inclús les pitjors adversitats, amb el 

millor somriure, de no fer un pas enrere quan les coses van maldades, de la seva 

forma tant sincera i determinada de viure. Totes aquestes ensenyances m’han 

permès poder treure les forces necessàries per poder embarcar-me en la tesis i 

poder-la finalitzar, podent valorar tot el procés amb la millor de les actituds. 

Gràcies per haver estat el meu principal pilar. 

 

Per últim, m’agradria també agrair agrair als membres del tribunal haver 

acceptat la invitació a l'acte de defensa de la meva tesi. És un plaer i un honor 

per mi poder comptar amb la seva presència i experiència en la defensa de la 

tesis. 

 

 

-M- 

 

 
 
 
 
 
 



   

 9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 10 

 

 

 

 

 

 

 

 

 

 



   

 11 

 

 
Per la cosa més bonica 
de la capa de la terra. 

-M- 

 

 

 

 

 

 

 



 12 

 

 

 

 

 

 

 

 

 

 



   

 13 

Strategy and Trajectory 

of my thesis 

 
 

I would like to first provide context to the path and trajectory of my thesis, as 

this is essential for its assessment.  

My research was initially focused on metagenomics. Within this field, I 

actively collaborated within an existing research line of the group. In this 

study, we characterized and analyzed the metaregulome of three different 

environments: Acid mine, Whale Fall, and Waseca Farm, and their impact in 

the adaptation to particular variable physicochemical conditions. Our results 

highlighted the potential effects of gene regulation on the adaptation of 

bacteria through habitats, by distributing their regulatory potential among 

specific functions. My contribution there consisted in the analysis of 

transcription factor regulatory networks underlying bacterial adaptive 

changes, and in the drafting of the manuscript (Fernandez et al., 2014). 

Afterwards, and following the metagenomics line, I also participated in 

another project that aimed at assessing the impact of metformin, a common 

treatment of type 2, on the composition and dynamics of the gut microbiome 

of patients (Wu et al., 2017). This work was performed in collaboration with 

Dr. Josep Manuel Fernández from the Trueta Hospital in Girona. After this 

contribution, and considering the difficulty of accessing proper metagenomic 

data to continue this research line and answering questions regarding 
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microbiome composition in diseases, forced us to change the direction of the 

research line.  

For this reason, we redirected the thesis trajectory towards the identification 

and characterization of large-scale structural variants, which was, at that time, 

an emerging research line in the group with more possibilities of publication. 

Our lab, at that time, was devoting efforts to the analysis of structural variation 

associated to complex diseases, and to cancer, through the development of a 

novel algorithm for the identification of somatic structural variants, SMuFin 

(Moncunill et al., 2014), which has been applied since then to large-scale 

projects such as the ICGC and the PCAWG ICGC/TCGA Pan-Cancer 

(Consortium, 2020).  

In line with this, I first participated in a meta-analysis for type 2 diabetes based 

on the re-analysis of publicly available individual genetic data for up. There, I 

validated and interpreted small to medium-size insertions and deletions 

(Indels) that were identified via genotype imputation, using novel sequence-

based reference panels, such as the UK10K (Consortium et al., 2015) and 1000 

Genomes Project (Genomes Project et al., 2015). This study demonstrated the 

value of reanalyzing existing genetic datasets for GWAS through a deeper 

variant analysis, like expanding to indels and other structural variants.  

In parallel to this study, I already started to work on the second version of the 

SMuFin algorithm. My initial goal was to improve the detection capabilities 

and scalability of the original algorithm, by adding novel features and, at the 

same time, enhancing the computational performance, addressing those 

scenarios where SMuFin was offering poor results. During one year I tried to 

work on top of the original code but this strategy was not fruitful due to the 

obfuscation of the code, and the impossibility to communicate with the 

original developer. Thereafter, we decided to develop a new algorithm from 

scratch, SmuFin2, capable of identifying more efficiently a larger spectrum of 

somatic genetic variants and, at the same time, improving the scalability of the 
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code. The SMufin2 algorithm presented below is the result of the close 

collaboration with the Data-Centric Computing group from the Barcelona 

Supercomputing Cneter (BSC), particularly with postdoctoral fellow Jordà 

Polo, Ph.D. candidate Nicola Cadenelli, and the head of the group David 

Carrera. 

Finally, during the development of SMuFin2, I had the opportunity of 

collaborating with the research group led by Dr. Alex Kentsis from the 

Memorial Sloan Kettering (NY) together with my groupmate and Ph.D. student 

Elías Rodríguez-Fos. This collaboration was a continuation of a previous study 

towards uncovering the role of PGBD5, a transposase-like gene, in the 

generation of medium-size genomic deletions in cancer (Henssen et al., 2017a). 

This last study intends to characterize the role of PGBD5 in the generation of 

somatic structural variation during the development of neural tissues in the 

brain. Specifically, here I have applied different variant calling and 

interpretation strategies to define and describe the landscape of somatic 

variation in wild type and Pgbd5 knock-out mice. We expect to finalise the 

publication, of which I will share a first authorship. 

  

All the aforementioned articles can be consulted in the Publications section, 

with a brief note describing my particular contribution to them. 
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Abstract 

 
The identification and analysis of genomic variation across individuals has 

been central in biology, first through comparative genomics to answer 

evolutionary questions, and then in the context of biomedicine, where it is 

actually becoming central to the study of most diseases. Next generation 

sequence technologies are allowing the systematic analysis of thousands of 

different types of genetic variation, enhancing the identification of disease 

markers and the understanding of the molecular basis of disease. For the past 

years, there has been a burst of new methodology for genome analysis around 

diseases coming from hundreds of groups around the world. Specific 

computational methods and strategies are being designed and improved 

around the identification and interpretation of genomic variation. The 

identification and classification of different types of genomic variants in the 

context of biomedicine is a key and foundational step for the development of 

a personalized medicine. 

  

This has been particularly central in the field of cancer genomics, which has 

based the research of the past ten to fifteen years in the sequencing of genomic 

DNA, and the identification and interpretation of (mostly) somatic and 

germline variation. Throughout these years, a large number of methods for 

variant detection have been developed with different action ranges. Despite all 

these developments, the identification of genomic variants has still room for 

improvement, not only at the level of sensitivity and specificity, but also at the 

computational level. Given the emergence of many initiatives for personalized 
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medicine around the world, and the expected number of genomes that will 

have to be analyzed within health care systems, we require robust algorithms, 

designed together with a matching implementation that will minimize the 

computational costs of the analysis. With this aim, during this thesis, I have 

pushed and designed and implemented an algorithm for the efficient 

processing of genomic data, in close collaboration with computer scientists of 

our center that defined the implementation, focusing on lowering the energy 

and the time of the analysis. This methodology, which relies on a reference 

free approach of read classification, has been protected with a patent, and is 

being used as the foundation for the development of SMuFin2, a more accurate 

and computationally efficient version of the initial SMuFin from 2014. We 

here show that our method is able to process whole genome sequences very 

fast and with a minimal energy consumption, compared with existing 

methods, and that has great potential for the identification of all ranges of 

variants, including insertions of non-human DNA. Further developments on 

SMuFin2 are needed to finally assess its full variant calling capabilities.  

Despite their great importance and their clear role in the biology of the cell, 

somatic variation that occurs in healthy tissues has remained diffuse in their 

roles. In the case of development, some hypotheses have been proposed to 

explain the observed somatic DNA damage that occurs during brain 

development (e.g., replication stress). But the real impact and the underlying 

mechanisms of this somatic variation are not yet understood. In order to seed 

light on the type and potential functional impact of somatic variation in brain 

development, we established a new collaboration to identify, and describe 

somatic DNA rearrangements induced by Pgbd5 during brain development 

and adult state in 36 mice neural tissue samples. The detection of somatic 

variants in healthy tissues presents more challenges than in the cancer 

scenario, where a variant is present in a significant number of cells and is easier 

to detect. We have identified, classified and interpreted the landscape of 
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somatic variation in neural development and identified interesting differences 

between adult and embryonic variation load, and specific types of variants, as 

the potential result of the activity of these transposase-like genes. 
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INTRODUCTION 



   

Introduction 35 

The identification and analysis of genomic variation across individuals has 

been central in biology, first through comparative genomics to answer 

evolutionary questions, and then in the context of biomedicine, where it is 

actually becoming central to the study of most diseases. Next-generation 

sequence technologies (NGS) are allowing the systematic analysis of thousands 

of different types of genetic variation, enhancing the identification of disease 

markers and the understanding of the molecular basis of disease. For the past 

years, there has been a burst of new methodology for genome analysis around 

diseases coming from hundreds of groups around the world. Specific 

computational methods and strategies are being designed and improved 

around the identification and interpretation of genomic variation. This covers 

from Genome-Wide Association studies (GWAS) that aim at identifying risk 

polymorphic variants for complex diseases, to the analysis of rare germline and 

somatic mutations associated with rare diseases and cancer, respectively.  

Therefore, the identification of different types of genomic variants in the 

context of biomedicine is a key and foundational step for the development of 

personalized Medicine. Diagnosis, Prognosis and treatment protocols are 

starting to be designed around specific genomic changes, which makes their 

identification crucial. The way genomic variation can influence cellular 

function and cause disease is very heterogeneous, depending on the location 

and the type of variation. Therefore, it is very important to find variants, but it 

is also very important to be able to classify and interpret them.  

 

This thesis has contributed to the generation of genome analysis based strategy 

to identify somatic variants, as well as to the characterization of the landscape 

of somatic variants in healthy neural tissues during Neural development mice.   
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1. Somatic Genomic variation: Definition, incidence, 
and types 
 
 
In general terms, somatic genomic variation are defined as changes in the 

genome of somatic (non-germline) cells, and therefore are not transmitted onto 

the offspring. In contrast to germline variation, which occurs in germline cells 

and are passed to the offspring, somatic variants have not been so much 

studied, due to the technical difficulties at the identification and 

characterization level. With the appearance of the NGS and the possibility to 

systematically identify and classify somatic variants from tumors, their study 

has dramatically increased, being now one of the hot research topics in 

biomedicine. Among others, one of the differences between somatic variants 

compared to germline variants is the mutation rate. In the case of Single 

Nucleotide Variant (SNV), it has been observed that the somatic mutation rate 

is 2.8 x10-7 and 4.4 x10 per base pair per generation for humans and mice, 

respectively; and in the case of germline mutation rate is 1.2 × 10−8 and 5.3 × 

10−9 mutations per base pair (Milholland et al., 2017). This means that the 

somatic mutation rate is one order of magnitude higher than the germinal rate 

for these species. 

Although somatic variants comprise all types of possible changes in the 

genome and can be classified in many different ways and using different 

criteria, the main classification derives from the methodology developed and 

used for their detection (Escaramis et al., 2015; Weischenfeldt et al., 2013). As 

shown in Figure 1, for example, some variants can be balanced, i.e. with no loss 

or gain of genetic material, such as SNV, inversions, and translocations, while 

others are considered unbalanced, when a part of the genome is duplicated or 

lost, like deletions and duplications. 
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In general this classification starts to be very challenging when considering 

large and complex chromosomal rearrangements. Within the community, 

variants are normally classified based on their length, which also agrees with 

the general detection range of available methodology. Although there is no 

rule that clearly defines the division between "small" and "large" categories, 50 

base pairs (bp), is the cutoff currently considered in most studies (Guan and 

Sung, 2016; Sudmant et al., 2015; Tattini et al., 2015). Small variants include 

single nucleotide changes (SNVs), as well as short insertions or deletions 

(indels), and large variants, also known as chromosomal rearrangements or 

structural variation (SV), that include, from large deletions and insertions of 

DNA, to many types of complex variation, like multiple chromosomal 

rearrangements, transposition, copy of DNA, among others (Yi and Ju, 2018). 

Structural variants are defined by their breakpoints, which correspond to the 

points where the rearrangement occurs (Quinlan and Hall, 2012). Originally 

SVs were defined as insertions, deletions, and inversions higher than 1kb; with 

the arrival of the sequencing of the human genome, this varied to the current 

size and type (Alkan et al., 2011; Lupski, 2007).  

In summary, the standards for classifying somatic variants, which are 

necessary for the comparison and globalization of genomic research, are 

normally based on the length of the change and defined by current variant 

identification methodology. A more important functional classification of 

variants is growing within the community, in order to understand the 

functional impact of the genomic change and translate this knowledge into the 

understanding of the underlying process, which in the case of disease can 

ultimately be translated into the development of clinical protocols. 
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Figure 1. Diversity of genetic variation. Depending on the size of the DNA sequence 
of the variant, we can differentiate between SNVs , Indels and SV. 
 

An important characteristic of variants is the frequency, at which they are 

represented in a given sample. This, not only affects the possibilities of 

detection, as variants that are less represented (in less cells) of the sample are 

more challenging to find, but also is informative of the level of cellular 

mosaicism within that sample. Please, note that all somatic variants are 

expected and assumed to be heterozygous, involving less alleles and more 

difficulties for detection, compared to germline homozygous changes. The 

Variant Allele Frequency (VAF) is the parameter that measures and quantifies 

the relative abundance of a given mutated allele within the whole population 

of different alleles. This parameter follows the formula: 
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Where rmut,i are the reads containing the variant, and rref,i the reads of the 
reference allele.  

 

The VAF of a somatic mutation is conditioned by two factors: prevalence and 

heterogeneity (Figure 2). 

Prevalence refers to how widespread the variation is, which depends mainly 

on how early the mutation occurs during the development. On the other hand, 

heterogeneity refers to the tissue from which the sample was subtracted for 

further sequencing. 

For example, if a mutation occurs at the early stage of first cell division, and 

each cell produces the same number of offspring, the expected VAF value in 

an unbiased sample is around 0.25. On the other hand, if this mutation occurs 

uniquely in a post-mitosis cell, the VAF would be reduced to an infinitesimal 

value (Dou et al., 2018). In general terms, variations will have a higher VAF if 

they have occurred earlier compared to those that have happened later.  

Assuming clonal cellular growth, as in tumors for example, the VAF of a 

variant depends on when that variation happens, relative to the clonal 

expansion of cells. Genomic variations occurring in the first stages of tumor 

(clonal) growth will theoretically be present in all of the derived cells, and the 

VAF would be of 0,5 (assuming heterozygous states of somatic variants), with 

a cell fraction of 1. This is typical of variants that drive and trigger tumor 

formation. On the contrary, variants that appear at later stages of the clonal 

expansion, will have lower representation within the sample, and cover lower 

cell fractions. These variants with lower VAF values are more difficult to 

detect (they are represented by less sequencing reads) and are becoming very 

important to understand the evolution and progression of tumors, as they 

represent and indicate the existence of different clones that might have 

different reactions to treatment, and often determine the fate of the patient. 

The detection of different levels of variants, according to their VAF values, 
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depends on the sequencing coverage of the sample, that is, the number of times 

that a single base is represented across all sequencing reads. The sequencing of 

samples at coverage levels of 30x, or higher, ensures the possibilities of 

detecting founder and prevalent variants (high VAFs), as well as those that are 

represented in lower levels, normally up to levels of VAFs of 0,2, or even lower 

depending on the sensitivity of the analysis methods.    

 

Figure 2. An early mutation produces a higher proportion of mutant cells in the 
growing population than a later mutation. An earlier mutation (right) produces a 
larger population of mutant cells than a later mutation (left). Depending on when a 
mutation occurs, the size of the affected cell population differs. (Based on: An 
Introduction to Genetic Analysis. 7th edition; Griffiths AJF, Miller JH, Suzuki DT, et al.; 
2000). Created with Biorender.com 
 

 

1.1 The importance of studying somatic mutations 
Somatic mutations accumulate relentlessly in our cells as we age. The concept 

of accumulation of somatic changes was first proposed more than 50 years ago, 

and it was associated with aging and even death (Szilard, 1959). Although the 

majority of somatic variation have no functional consequences and accumulate 

passibly in cells. On the other hand, some somatic mutations can affect 

functional genomic regions, and have functional and cellular consequences, 

even leading to disease. Actually, the classification of variants can also follow 

functional criteria, as in the clinical context, where somatic variants are divided 

into: (i) those that confer a selective advantage to the cell, increasing survival 

or proliferation (so-called "driver" mutations, in the context of cancer), (ii) 
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those that are selectively neutral (iii) and those that are a disadvantageous, 

often leading to cell death (Martincorena et al., 2018). Important efforts are 

made in order to infer the potential functional impact of each of the variants 

detected in a certain study. These predictions are made with different types of 

programs that cross the location and the type of a variant, with the annotation 

of functional features in the same genomic region, such as genes, regulatory 

regions, epigenetic marks, among others. This functional classification of 

variants are currently used in the clinics for prioritizing those changes that 

possibly have a diagnosis or treatment value.  

The field, in which somatic variants have a key role, and where they have been 

mostly studied is cancer genomics (see below), for which variation is assumed 

to be responsible for more than 90% of tumors (Martincorena and Campbell, 

2015). In 1914, Boveri (Boveri, 2008) proposed in his book two important 

concepts between somatic mutations and cancer: control of cell proliferation 

(proliferation as the default state of cells) and carcinogenesis (chromosomal 

aberrations/mutations) as the cause of cancer.  

Despite this clear implication in cancer, somatic variants are also known to be 

involved in other types of pathologies, like those related to other clonal based 

cell expansions, like in the hematopoietic system, such as Neurofibromatosis 1 

(NF1) (Kehrer-Sawatzki et al., 2004), atrial fibrillation (Gollob et al., 2006), and 

the Alport syndrome (Krol et al., 2008), or autoimmune disease. It is also 

known that somatic mutations can play an essential role in some neurological 

diseases, including autism spectrum disorders, epilepsy, and intellectual 

disability (Poduri et al., 2013). For some of these diseases, the presence of 

somatic mutations, even in a small fraction (10%) within specific cell types can 

trigger the disease (Lee et al., 2012). Finally, somatic variation has also been 

assigned to physiological (non-pathological) processes (Michikawa et al., 1999). 

Despite this, there are very few studies tackling somatic variation in non-

disease scenarios (see section 3 ).  
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1.2 Genome analysis in the era of Next-Generation 
Sequencing 
The NGS emerged at the end of the twentieth century, as a new and 

revolutionary sequencing approach to overcome the limitations of Sanger-

based sequencing technology. The impact of NGS in biomedicine is so 

enormous that it has revolutionized basal experimental designs, changing the 

paradigm behind biomedical research. The possibilities of including whole 

genome sequencing in most research studies in biomedicine, have changed the 

basic underlying strategy to identify biomarkers (genes) (ENCODE 

(Consortium, 2004)) associated with diseases. Before the NGS era, disease 

genes were identified using a function-to-genetic approach, where first, a 

candidate gene was hypothesized to be associated with a particular disease 

based on its function, and validated on DNA for a particular number of 

patients. But now, the possibilities of high-throughput sequencing of genomic 

DNA allows us to directly evaluate which are the variants (or genes) 

recurrently identified within large cohorts of patients, and statistically 

associated with the disease (Mardis, 2008; van Dijk et al., 2014). The 

identification of the statistically significant correlation of a particular variant 

with a specific trait using genome information of large disease and control 

cohorts is the common and underlying principle behind all modern genomic-

based studies in biomedicine. This approach has allowed the identification of 

genomic biomarkers at an unprecedented rate over the past years, setting up 

the basis for a personalized medicine, where the genomic profiles of patients 

will be considered for diagnosis, prognosis and treatment of disease. 

 

1.2.1 Emerging limitations 
The drop in prices of high throughput sequencing and the increasing access to 

basic computing facilities has allowed, even to small and medium laboratories, 

to become data generators (Marx, 2013). This still increasing generation of 
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biomedical data (mostly from sequencing, but also from other data types) has 

also placed bottlenecks on different parts of the study, mostly at the analysis 

side. As the ambition and scope of current biomedical projects increase, the 

need of large computing infrastructures are becoming limiting factors and are 

actually driving, together with the access to the data, the organization of 

current biomedical data-centric research. Data security and privacy are 

particularly important when handling sensitive data, such as patient clinical 

and genomic information (Datta et al., 2016). 

But these new bottlenecks and emerging challenges of data-centric strategies 

are not only found in the control of access, transfer, or management of data, 

but also, as mentioned, in the subsequent analysis of the data. The analysis of 

large datasets, not only requires large and powerful computing environments, 

but also a proper combination of algorithms and implementations that ensure 

an efficient processing of the data. For example, with such large data volumes, 

the scalability of a program is a crucial factor. This is the reason why 

bioinformaticians require close collaborations with computer scientists, in 

order to match the proper algorithm with an efficient implementation 

(Mattmann, 2013). 

 
2. Cancer 
Cancer is currently one of the major research topics in biomedicine, due to the 

great burden that represents at medical and social level. In 2018, According to 

the Cancer Research UK ( https://www.cancerresearchuk.org ), 17 million new 

cases had been reported, and among them, 9.6 million of patients died during 

2018. The incidence of cancer is heterogeneous around the world and depends 

on environmental factors (mutagens) and on the genetic background of each 

individual. This genetic background can determine the offset and the 

progression of the tumor, which in part explains the different incidence of 

different types of cancer within different populations and even between 
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genders. Economic development, social factors, and lifestyle are also factors 

involved in the incidence and treatment of cancer. In the case of men, for 

example, the most frequent tumor type is lung cancer, that presents the highest 

incidence of death, closely followed by liver and stomach cancer that present 

high mortality, and prostate and colorectal cancer, that present a severe 

incidence. For women, the most frequent cancer type is the one affecting 

breast, followed by lung cancer, as to mortality, and by colorectal cancer, as to 

the level of incidence (Bray et al., 2018). The rapid evolution of sequencing 

technologies, along with the increasing possibilities of genomic analysis, has 

changed the way tumors are nowadays classified and diagnosed, and is setting 

up the basis for a genomic and personalized oncology. The possibility of a deep 

genomic and molecular characterization of tumors are now allowing the 

gradual incorporation of more efficient and targeted treatment protocols, with 

the final aim of substituting traditional aggressive treatments based on 

chemotherapy and radiotherapy.  

 

At molecular level, tumors emerge from a deregulation or malfunction of genes 

that are involved in the growth and death of the cell, usually through somatic 

alterations in its genome. In particular, the loss of function of tumor suppressor 

genes, and the gain of function for oncogenes can trigger the formation of a 

tumor, as an uncontrolled growth of cells (Zhang et al., 2018; Zia et al., 2012). 

Tumor suppressor genes, such as TP53 (Varley et al., 1997), PTEN (Stambolic et 

al., 1998) , BRCA 1, BRCA 2 (Roy et al., 2011), are genes that regulate the cell 

during cell division and replication. If a mutation in a tumor suppressor gene 

results in a loss or reduction of its function, in combination with other genetic 

variations, this could lead to the cell growing abnormally and to cancer.  

On the other hand, oncogenes represent the opposite side of cell growth 

control, where genes are involved in abnormal cell proliferation as a result of 

genetic alterations that either enhance gene expression or lead to uncontrolled 
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activity of the proteins encoded by the oncogene some examples are RAS 

(Lievre et al., 2008), MYC (Chen et al., 2018), and ERK (Koutsioumpa et al., 

2018) . 

The number of somatic mutations among tumors varies according to the tissue 

and the molecular background of the cancer cells. This number usually ranges 

from 1.000 to 20.000 mutations, covering from single point mutations to large 

chromosomal rearrangements (Lawrence et al., 2013; Vogelstein et al., 2013). 

Several studies concluded that both endogenous and exogenous factors can 

contribute in different ways to the generation of somatic variation and the 

offset of tumors (Alexandrov et al., 2013; Alexandrov and Stratton, 2014; 

Martincorena and Campbell, 2015).  

 

 

2.1 General causes of somatic mutations 
A large fraction of somatic genomic variation appears during DNA replication, 

and derives from errors during the cell division that are not repaired. Some 

forms of DNA alterations that can lead to somatic variants are caused by 

endogenous factors, such as reactive oxygen species, aldehydes, and by 

exogenous factors, such as chemicals (like those from tobacco smoking), 

ultraviolet (UV) light, and ionizing radiation (Figure 3). Other sources of 

somatic genomic variation involve the infection of viruses, as well as 

endogenous retrotransposition events, which can trigger chromosomal 

alteration and alteration of gene function (Talbot and Crawford, 2004). A well-

known example is the human papillomavirus or Hepatitis B virus (HBV), 

which is involved in the origin of some types of cancer like Cervical Squamous 

Cell Carcinoma (CESC), Liver Hepatocellular carcinoma (LIHC), and Uterine 

Corpus Endometrial Carcinoma (UCEC). 
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Figure 3.  The descendant line of the mitotic cell divisions of a fertilized egg 
represented in a single cell showing the processes that can contribute to acquiring 
somatic mutation at different stages. Three different mutations are classified: 
passenger mutation (circles), driver mutation (stars), and Chemotherapy resistance 
mutation (triangle). Note that driver mutations tend to cause clonal expansion 
compared to the passenger mutations that do not affect the fitness of a clone but may 
be associated with clonal expansion. Another point to note is that in the field of relapse 
after chemotherapy, this phenomenon can be associated with resistance mutations 
before starting cancer therapy. Somatic mutations can be acquired during the normal 
cell lineage, due to cell division or by the effect of exogenous mutagens, or be 
generated by DNA repair defects during the development of cancer among other 
processes. Extracted from: (Stratton et al., 2009)  
 
 
Over the last half century, the development of new technologies and analysis 

methodology has facilitated the systematic characterization and interpretation 

of cancer genomes at increasingly precise levels of resolution (Figure 4). 

Almost 30 years ago, the first cancer-related genetic mutation was discovered, 

a point mutation in the HRAS gene (Reddy et al., 1982), that changed a glycine 

to valine in codon 12. Although the functional impact of this mutation was 

originally not clear, many years of research have actually turned this gene as 

one of the "resistance marker" for the tumor response to anti-epidermal 

growth factor receptor (EGFR) therapies. This marker is used to determine the 

step to follow in targeting EGFR therapy in patients with colon or lung 

adenocarcinomas (Chin et al., 2011; Lievre et al., 2008) exemplifying the 
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potential and the importance of identifying and characterizing somatic 

variation in modern oncology. 

 

 

 

Figure 4. Timeline showing the milestones in cancer genome research. Based on 
(Stratton, 2011). Created with Biorender.com 
 
 

There are different degrees of genome study, depending on the scope of the 

sequencing. Whole-genome sequencing (WGS) provides the sequence of the 

entire genome, in contrast to exome (only gene exons), or gene panels, which 

are the most frequent in hospitals and the way that genome sequencing is 

entering into current oncology protocols.  

 

2.2 National and International initiatives 
With the goal of understanding the role of genome variation in the biology of 

cancer, large efforts have taken place around the world. Some of these efforts 

in the form of large consortia. Among the most outstanding initiatives are the 

International Cancer Genome Consortium (ICGC) (https://icgc.org) (Figure 5) 

and The Cancer Genome Atlas (TCGA)( https://www.cancer.gov/tcga.). These 
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two initiatives have pushed the field of cancer research, setting up the basis for 

current and future studies within the community. The first stages of these 

projects involved the identification of cancer driver genes, and the generation 

of general maps for somatic variation across different tumor types. The 

following phases involve the functional interpretation of these variants and 

the applicability to the clinics to achieve better and more personalized 

diagnosis and treatment protocols. In addition. Thanks to the expansion of 

these studies, and as a second step of this global characterization, samples were 

unified to gain statistical power and organized in PCAWG studies. For 

example, the TCGA pan cancer initiative, comprised the study of up to 11,000 

tumor genomes, mostly exomes (Hoadley et al., 2018), the Pancancer Analysis 

of Whole Genomes (PCAWG) (https://dcc.icgc.org/pcawg) consortium was 

created with the goal of meta-analysing the genomic characteristics of the 

different types of tumors. This project, where our group has had a key role, has 

involved the collaboration of more than 1,300 researchers from 37 different 

countries, analyzing a total of more than 2,600 whole genomes, covering 38 

different types of tumors . The results of the project were presented in 

February 2020, completing the most exhaustive study of the entire cancer 

genome to date. The results described in the different publications 

(Consortium, 2020; Cortes-Ciriano et al., 2020; Gerstung et al., 2020; Li et al., 

2020), have helped to significantly improve the understanding of cancer and 

has provided new avenues for its diagnosis and treatment. 
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Figure 5. Map representation of countries and tumor types involved in The 
International Cancer Genome Consortium ICGC. Within the first part of the ICGC 
initiative, each one of the countries were committed to analyze and characterize the 
genomic variation associated to specific selected tumor types. Image extracted from: 
https://icgc.org 
 

These initiatives have, not only played a major role in the technological 

revolution in genomics, but also in the area of international collaboration by 

generating a standard of norms to ensure that all data follows a quality 

criterion. This means that all the data generated presents the minimum overlap 

and redundancy, and thus, the overall value of the data increases. In addition, 

in cancer research, the strategies used by the consortium have become the 

standard format. 

 
2.3 Analysis of somatic variation in cancer 
The detection, classification and interpretation of somatic genomic variants 

has become an essential component in the study of cancer genomes. 

Practically, all the studies targeting tumor genomes follow a common strategy 
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or protocol, in which normal (normally from blood) and tumor genomes are 

sequenced from the same patient.  

The first step of the analysis protocol (Figure 6) begins with the extraction of 

both normal and tumor samples from the same patient, whenever possible 

even from the same tissue, followed by the subsequent sequencing of the 

genome. This data is then analyzed to identify variations in the tumor sample, 

where the output is a potentially extensive list of somatic mutations. This list 

of variants is interpreted at the functional level to identify the genes that are 

affected and are part of the cancer biology. Subsequently, all those genes are 

analyzed at the molecular level to discover new drug targets and to design 

specific diagnosis and treatment protocols that will return to the patient. 

The sequencing step can be targeted by different sequencing methods: WGS, 

Whole-exome sequencing (WES), or gene panels. Each has advantages and 

cons. Although panel tests and WGS offered similar diagnostic performance, 

WGS offered the benefit of reanalysis along the way to incorporate advances 

in knowledge. Until recently, only Multi-Gene Panel testing was used in 

clinical care, while WGS is already quite commonly applied in research. Even 

if substantial experience is needed for genomic interpretation of WGS (Cirino 

et al., 2017), it is expected that WGS is included in basic cancer analysis 

protocols soon. 

Despite the technical and methodological challenges, these studies have also 

generated other more organizational adversities, as some steps of the analysis 

need to be conducted by different centres and communities. For example, the 

reception of the patient and the extraction of the corresponding samples 

happen in clinical environments, while the sequencing and analysis occur in 

sequencing and computing centres. More and more, the need of coordinating 

these efforts is driving the organization of large research environments, where 

sequencing and analysis technologies,are being developed close to clinical 

personalized medicine environments.  
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Figure 6. Common protocol for the identification of the genetic and molecular 
basis of tumorigenesis for the development of personalized therapies.  
 

Throughout past years, several methods for variant detection have been 

developed with different scopes and capabilities. Most of the published 

methods are usually focused on the detection of a specific type of mutation, 

ranging from point mutations to structural variants (Chen et al., 2009; 

Cibulskis et al., 2013), while others are able to detect multiple classes of 

mutations in a single run (Rausch et al., 2012; Wala et al., 2018). These methods 

have, not only different detection scope, but also different levels of sensitivity 

(measures the proportion of actual positives that are correctly identified) and 

specificity ( measures the proportion of true negatives that are correctly 

identified) (Guan and Sung, 2016), presenting their strengths and weaknesses 
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(Hurles et al., 2008) in the detection and the fact that it is the user who must 

decide which one best suits his needs. In the generation of pipelines to identify 

the full range of somatic mutation types in tumor samples, more than one 

program should be used to achieve the objective. Once the results of the 

different programs are obtained, filtering steps must be performed, which 

include information like: minimum coverage, mapping value, sequence quality, 

etc. for each of the mutations obtained. The selection of programs to generate 

this type of pipeline is a great challenge to achieve, both a good specificity and 

a good sensitivity for all kinds of variants. Notwithstanding, the VAF of 

somatic mutations in cancer usually has a higher value due to the selective 

advantage conferred by the mutations in cell proliferating. Accordingly, the 

vast majority of algorithms for specifics for cancer variant detection do not 

target low VAF values (Cibulskis et al., 2013). Therefore, the complete 

characterization of tumor genomes, as to their catalog of somatic variation, 

requires the development of complex and multimodular analysis pipelines 

gathering the results of different detection methods (Kosugi et al., 2019; Tattini 

et al., 2015), since no single method can detect each type of variant with high 

specificity and sensitivity.  

 
2.3.1 The calling pipeline 
The underlying principle behind somatic variant identification programs relies 

on the search and detection of genomics changes present in the tumor sample, 

relative to the healthy one from the same patient. The vast majority of variant 

calling methods analyze all the tumoral and normal sequencing reads, aligned 

onto the reference genome. In contrast to that, a few methods, use alternative 

approaches based on the direct comparison of tumor and normal reads, and are 

therefore called reference-free methods.  
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2.3.1.1 Reference-based methods 
Most of the available variant callers have been developed following the 

mapping based strategy, which is based on the accurate analysis of the reads 

aligned to the human reference genome, making this alignment step critical for 

the final sensitivity and specificity of the methods. In this direction, we can 

foresee some inherent limitations of reference-based methods. For example, 

this alignment process involves a high expenditure of resources and time. In 

addition, although there are several alternative alignment methods, like GEM 

(Marco-Sola et al., 2012), generally, this step is performed with the Burrows-

Wheeler Aligner (BWA) program (Li and Durbin, 2009). The major difference 

between GEM and BWA is that GEM is five times faster than BWA execution 

in its default heuristic mode, giving a similar number of reads aligned. But the 

community uses BWA almost exclusively. This makes the alignment 

information the same for all, which means that all the analyses that need this 

information will share the same type of errors and therefore can be compared. 

At the same time, BWA provides a binary file (BAM file) containing 

information regarding the quality, structure and position of the read alignment, 

together with a list of all the reads that could not be mapped. The fact that 

BAMs are ready-to-be-used files, and that it conserves all the original read 

information, has made this file the current form of exanching and storing 

genome sequencing data within databases.   

But most importantly, the complex nature of the human genome represents a 

technical challenge for alignment accuracy. A human genome contains 3.2 

billion bp, around 50-69% being repetitive sequences (de Koning et al., 2011), 

which includes transposable elements (i.e., LINES, SINES, and Long Terminal 

Repeats), low complexity regions (i.e., homopolymers), and pseudogenes. The 

complex nature of the human genomes presents significant challenges to 

achieve technical accuracy on alignments (Goldfeder et al., 2016). Larger 

insertions, deletions, and rearrangements within the genome are not 

represented in the reference genome and, therefore, adds additional 
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complexity to the alignment. Also, germinal variation does not only affect the 

accuracy of the alignment, as indeed, many of them are wrongly predicted as 

somatic mutations, increasing the number of false positives and lowering the 

specificity of the program. Finally, the impossibility to align reads with greater 

alignment complexity that cover large and complex genomic rearrangements 

(i.e. SVs), or that fall in polymorphic regions not included in the reference 

genome, will not be taken into account and will be disregarded as “unmapped 

reads”, which could indeed contain valid and important (Degner et al., 2009).      

In addition to these limitations, it is worth mentioning that those methods 

specifically designed for the identification of large SVs, are usually also more 

inaccurate at the breakpoint of the variation. In these cases, the variation is 

located within a range of genome that is possible to align, becoming a 

restriction for further studies. 

 

For the detection of point mutations or small indels, the alignment information 

is used within the read itself. In the case of SVs, the combination of 

information from mismatched reads is used (Figure 7; A1-A2). The four most 

common strategies are (Figure 7; B) (Guan and Sung, 2016): 

1. Clustering (CL): All the discordant reads surrounding a region are 

grouped. Some of the callers employing this strategy are: 

VariationHunter(Hormozdiari et al., 2010), GASV (Cameron et al., 

2019), and CLEVER. 

2. Split-reads alignment (SA): is divided into two subcategories; (i) 

indirect case: align soft-clipped reads and one-end-anchored reads to 

locate the breakpoints that match. (ii) Direct case: refine the breakpoints 

identified by discordantly mapped reads. In the first subcategory we 

encounter the callers: CREST(Wang et al., 2011), ClipCrop(Suzuki et al., 

2011), and Socrates (Schroder et al., 2014). In the second subcategory: 

Gustaf(Trappe et al., 2014), Prism(Jiang et al., 2012). 
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3. Contig Assembly (CA): anomalously mapped reads are de novo 

assembled to form longer consensus sequences (contigs) to identify the 

pairing breakpoints. Some of the callers using this strategy are 

TIGRA(Chen et al., 2014), and Cortex (Alekseyev and Pevzner, 2007). 

4. Statistical testing (ST): use the local variations of reads depth, often 

used to detect copy-number variations. Breakdancer (Chen et al., 2009) 

is one of the variant callers that use this strategy. 

 

Variant callers tend to use a combination of more than one of the above listed 

strategies for variant detection (Baker, 2012). A clear example is the variant 

caller DELLY (Rausch et al., 2012), that combines the detection and subsequent 

verification of mutations, using the information from discordant and one-end-

anchored reads, and optionally from soft-clipped reads.  
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Figure 7. A1 - A2) Types of mismatched reads used on SV calling in two different 
scenarios of variation: deletion and translocation. A1) Soft-clipped reads; In Smith-
Waterman alignment, the soft-clip readings are an unmatched fragment in a partially 
mapped read, within a sequence that is not aligned from the first residue to the last. 
Not to be confused with hard-clipping, they differ in that the subsequent clipping is 
not present in the alignment register. This clipped alignment is used to reconstruct 
those events that the read covers, as shown in the two scenarios: The read is mapped 
into two different fragments within the same chromosome with a separation between 
them due to the deletion caused. The read is mapped into two separate pieces of 
different chromosomes due to the translocation process. A2) Paired-end reads; The 
two reads of a paired-end are expected to be mapped into different strands of the 
same chromosome, and the distance between them will be consistent with the 
insertion size distribution. If SV callers detect pair reads mapped onto two different 
chromosomes, they will report a translocation or transposition event. If SV callers 
identify pair reads mapped with incorrect insertion sizes, they will indicate an insertion 
or deletion event; similarly for other types of SVs. 
B) SV calling techniques graphic representation of the methods: Clustering (CL), 
Split-reads alignment (SA), Contig Assembly (CA), and Statistical testing (ST). 
 
 

2.3.1.2 Reference free methods 
In order to overcome the above mentioned limitations of the mapping of reads 

that influence the rest of the analysis, a few alternative approximations have 

been developed using reference-free strategies. The following are some 

examples of these strategies: (i) the use of reference mapping combined with 

assembly-based methods (Chen et al., 2014); (ii) de novo assembly (Zhuang and 

Weng, 2015); and (iii) suffix tree approximations (Moncunill et al., 2014). While 

the first two strategies are based on the end-joining of reads in the tumor and 

normal genomes in order to identify discordant patterns, the latest is based on 

a suffix tree strategy, further developed in the next section. 
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2.3.1.2.1 Somatic Mutation Finder (SMuFin) 
SMuFin is a reference free-method, generated within the group (Moncunill et 

al., 2014), that relies on the use of a quaternary sequence tree structures to 

compare directly tumor and normal reads and identify all types of genomic 

changes (except copy number changes) (Figure 8). 

Some of the the advantages combined within SMuFiN for the detection of 

somatic variations include: (i) the direct comparison of normal and tumor 

readings without the need of using Binary Alignment Map (BAM) file 

alignment information; (ii) the single execution of the program to detect nearly 

all types of variants, including from SNV to SV, as well as inter- and intra-

chromosomal translocations, inversions, insertions and deletions of any size; 

(iii) the detection of variants is reported at base pair resolution; and (iv) the 

accurate reconstruction of the region around variations in the tumor genome, 

including the sequence around the SVs breakpoints. 

On the other hand, one of the limiting factors of using this approach for cancer 

genome analysis is the computational power that it requires. Quaternary 

sequence tree structures, also known as suffix-trees, are data structures that 

inherently demand blocking the access patterns to allow concurrent updates, 

thereby limiting the ability to implement these approaches efficiently in any 

high-performance parallel computing system for large scale analysis of 

genomes. This translates into a considerable memory requirement and makes 

it impossible to run the analysis of the genomes on any computer with a single 

node. 
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Figure 8. Representation of quaternary sequence tree structure from the SMuFin 
algorithm representing an SNV. The base containing the mutation and the bases 
following that generates a new branch on the quaternary sequence tree structure, 
are marked in red. We observe how from the SNV A --> C a new branch is generated 
in the tree structure. With this type of construction, it is possible to detect all those new 
branches that are candidates to contain a mutation. These branches will be later 
evaluated with different steps for its correct detection of variations. 
 

 
2.3.2 Variant caller virus 
Any research on cancer is incomplete without considering tumorigenic 

viruses. Several research groups are engaged in the search for therapeutic 

targets and novel vaccines to fight against these viruses (Sarid and Gao, 2011). 

The idea that viruses can cause cancer dates back more than a century (Javier 

and Butel, 2008). Nowadays, it has been unequivocally confirmed that several 

viruses are responsible for cancer in humans (Herrington et al., 2015; Moore 

and Chang, 2010). In fact, the World Health Organization (WHO) has estimated 

that 15.4% of all cancers are attributable to infections, 9.9% of which are linked 
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to viruses (Parkin, 2006; Plummer et al., 2016). The International Agency for 

Research on Cancer (IARC) classifies up to eleven pathogens as human 

carcinogens (Geisler et al., 2019). Moreover, it has been demonstrated that 

some viruses contribute to the biology of multi-step oncogenesis and are 

involved in many of the characteristics of cancer (Zapatka et al., 2020). To date, 

the four viruses that cause most of the infection-derived tumors, are the 

Human papillomavirus (HPV) (Munoz et al., 2006), that can cause cancer 

including anal, cervical, penile, throat, vaginal and vulvar; HBV (Bialecki and 

Di Bisceglie, 2005), is a leading cause of liver cancer; Hepatitis C virus (HCV) 

(Hermine et al., 2002) is a leading cause of liver cancer, and can cause non-

Hodgkin’s lymphoma; and Epstein–Barr virus (EBV) (Farrell, 2019), that can 

cause non-Hodgkin’s lymphoma, and stomach cancer. Thanks to the 

appearance of the NGS, including the WGS and the RNA-seq, it has been 

possible to determine the position in which a virus is integrated within the 

tumor genomes (Duncavage et al., 2011). Accordingly, several analysis tools 

have been developed based on paired-end Illumina NGS data to tackle the 

detection of viruses in the tumor genomes, not only their presence but also 

their integration site: Capsid, VirusSeq(Chen et al., 2013), Virus- Finder (Gao 

et al., 2018), ViralFusionSeq(Li et al., 2013); VERSE (Wang et al., 2015), Virus-

Clip (Ho et al., 2015) and Vy-PER(Forster et al., 2015) (Nguyen et al., 2018). 

The strategy for the detection of the viruses behind each program varies but 

all of them are based on a standard scheme: the usage of alignment information 

of the reads that map in both genomes being analyzed, the human and the viral. 

For this reason, it is not only essential to pre-align the samples but to 

previously construct a new genome that contains the human reference genome 

and all the viral genomes to be identified. Despite the existence of these 

methods, the identification of viral copies remains a challenge, as normally 

viruses tend to integrate in repeat-rich genomic regions, and the sequencing 

reads covering internal parts of the virus are not considered and disregarded 
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as unmapped reads on the BAM file. This phenomenon gives rise to frequent 

false positives, and accordingly new methodologies have been created to 

eliminate false positive detection of virus integration events in next-

generation sequencing data (Forster et al., 2015). 

Accordingly, the study of the relationship of viruses and human cancer has 

opened new fronts for the development of novel strategies for preventing the 

infections that can evolve into carcinogenesis. In treatments like 

chemotherapy and radiation, the inability of the drugs to specifically target 

cancer cells instead of all types of cells, including healthy ones, and the toxicity 

that generates for the patients results in a significant drawback. Therefore, the 

new strategies are based on the presence of viral products in the tumor cells, 

as a target for guided therapies in which the tumor cells can be differentiated 

explicitly from normal ones. Therefore, the therapies that target the viral agent, 

generate immune responses to prevent infection, or kill infected or cancer 

cells, prove great potential due to their more effective and tolerable nature 

(Liao, 2006). 

 

3. Somatic variation in non-disease scenarios 
After years in the shadows, recent studies changed the way of understanding 

somatic variations and their selection. The challenges associated with the 

study of somatic variation within healthy tissues, correspond to limitations in 

their detection, due to the high degree of tissue and cellular mosaicism in any 

targeted sample. It is now, when we can largely increase the sequencing 

coverage of genomes, when we can start studying the composition and 

potential role of somatic variation within physiological conditions. Therefore, 

proper sample collection protocols must be designed to ensure the success of 

this studies (Lupski et al., 2013). 

 
3.1 Somatic variation in Neurodevelopmental diseases 
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The genetic variations involved in neurodevelopmental diseases were 

traditionally considered either to derive from the germline of one of the 

parents, or a de novo germline variation. Instead, more and more frequently a 

role for somatic variations in diseases other than cancer have been described, 

including neurodevelopmental diseases and other pathogenesis generated by 

de novo mutations that occur post-zygotically and, therefore, only targets a 

subset of the individual's cells. 

During neurogenesis, where 105 neurons per minute are generated from an 

initial population of source cells (Workman et al., 2013), is when the human 

brain is most vulnerable to undergo somatic mutations. During the 

neurogenesis stage, neurons present a high mutation rate with about 5.1 point 

mutations per day (Bae et al., 2018), and some of these mutations may trigger 

neurological diseases. These diseases can be particularly sensitive to somatic 

mutations because even less than 10% of the cells carrying a mutation can 

affect phenotypes based on the distribution of these cells in the brain (Lee et 

al., 2012; Riviere et al., 2012). Furthermore, each neuron will continue 

accumulating somatic mutations linearly with age (Lodato et al., 2018), which 

could contribute to the development of neurodegenerative diseases (D'Gama 

and Walsh, 2018).  

To understand the role of somatic variations in neurodevelopmental disease, 

two main factors must be taken into consideration: (i) the temporal moment 

and the progenitor cell in which the somatic mutation has appeared, and (ii) 

the effect that the mutation can produce in the cell (e.g., if the mutation is very 

harmful, the cell is selected against it and the mutation will not lead to disease) 

(D'Gama and Walsh, 2018). Numerous studies have been carried out around 

neurological development disorders with visible focal lesions generated by 

somatic variations, such as Focal cortical dysplasia (FCD) and 

hemimegalencephaly (HME) (Blumcke et al., 2011; Poduri et al., 2012). 

However, it is important to highlight that the same mutations have been also 
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studied in relation to diseases that do not present such visible lesions as the 

previous ones. This group includes cases of intellectual disability and autism 

spectrum disorder and epileptic encephalopathies (Lee et al., 2012; Poduri et 

al., 2012) and a wide range of neuropsychiatric diseases. 

 

3.1.1 Neurodevelopmental genome analysis in the era of NGS 
Thanks to the appearance of NGS and single-sequencing techniques, the role 

of somatic variations in the development of the human brain has been 

understood in a more refined and extended way. These new technologies have 

allowed the scientific community to approach different hypotheses formulated 

thanks to the facilitation of a systematic analysis of all types of somatic 

mutations in both healthy and affected tissues. 

The detection of these variations presents more difficulties than in any of the 

previously mentioned cancer scenarios, due to the low VAF expected for non-

cancer somatic variation and the subsequent difficulty in detection. Therefore, 

in order to make a proper detection, the coverage of the sample being analyzed 

must be sufficiently high to ensure that the mutations are well represented 

(Jamuar et al., 2014; Lim et al., 2015) and are not considered sequencing errors 

during the analysis, as it usually happens with low VAF variants (D'Gama and 

Walsh, 2018). 

 

3.1.2 Somatic mosaicism in the normal human brain 
During the study of somatic variations and their role in neurological diseases, 

it has always been of particular interest to understand whether these variations 

may actually play an important role in the development and physiology of 

brain cells. Recently, several studies that glimpse the role that somatic 

variations have in the generation of neuronal diversity have been published. 

In 2010 Muotri and colleagues (Muotri et al., 2010), demonstrated the impact 

of L1 insertions, initially considered as “junk DNA” in the human brain, since 
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these represent approximately 25% of our genome. The rate of insertion of 

retrotransposons can cause the inactivation of genes or the change of the 

expression. Although the rate of these is still a subject of debate, the impact 

they have on the development of the human brain remains an essential area of 

study. It is in this area, of the role that somatic variations play in 

neurodevelopment, that I focus the study of the second part of the thesis 

presented here. 

 

3.1.3 Somatic activity on brain development 
During embryonic development, the brain undergoes rapid and sustained cell 

proliferation originating at the rostral end of the fetal neural tube. Brain 

cortical development is accomplished via a highly regulated sequence of 

neuroprogenitor cell division, migration, and differentiation. This 

neuroprogenitor cells divide asymmetrically, generating a progenitor stem cell 

and a neuron that migrates from the ventricles along the radial glia pathways 

to form a six-layered lamellar neocortex. Through this process, the neurons 

undergo DNA damage. This damage has been oberserved to reach a maximum 

between E11-E14.5 during development in mice and is mainly observed in 

postmitotic premigratory populations of the developing nervous system. It has 

been suggested that this DNA damage plays an influential role in the 

subsequent massive apoptotic event during development, an essential process 

for the elimination of overproduced neurons. Numerous hypotheses have been 

proposed to unravel the causes of somatic DNA damages during brain 

development (e.g., replication stress), nevertheless, it has not been established 

yet. Accordingly, in the present work we hypothesize that PGBD5, a 

transposase-like protein that presents nuclease activity, can produce double-

stranded DNA breaks in neurons, contributing to the generation of somatic 

DNA changes, enabling the survival of the mutated cells during the subsequent 

apoptotic selection. In a recent study where our group contributed, it has been 

shown that an active nuclease PiggyBac Transposable Element Derived 5 
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(PGBD5) has the ability to generate somatic mutations in human cancer cells 

(Henssen et al., 2017a). PGBD5 expression is presently high and almost 

confined to the brain area, specifically the neurons of the cortex, hippocampus, 

and cerebellum. This fact raises an interesting and long-standing question 

about the somatic DNA rearrangements in brain cells. However, the function 

of PGBD5 remains elusive. 
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4. Final considerations 
In brief, with the emergence of new sequencing technologies the study of 

somatic variants has experienced huge progress. In the area of cancer, it has led 

to the formation of research projects with a large number of samples to give a 

better picture of the role of mutations in the biology of tumor. These advances 

have come with numerous challenges; at the computational level to be able to 

analyze all those data, and at the level of analysis to formulate new methods to 

be able to make a more accurate detection of these mutations. 

Albeit it is true that research associated with somatic variants in healthy 

tissues is increasingly abundant, the detection methods used present 

limitations and further studies are needed. The present thesis is aimed at 

overcoming part of these limitations, focusing first in the development of a 

reliable new algorithm for the detection of somatic variations with special 

emphasis in the scalability and implementation of the method for large dataset 

analysis, and second in the detection of somatic variants in healthy tissue 

directly related to neuronal development. 
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The main goals of this thesis are: 
 

I. To design and implement a reference-free and scalable algorithm for 

the identification of somatic variants.  

 

II. To identify somatic DNA rearrangements induced by Pgbd5 (the mouse 

ortholog of human PGBD5) during brain development and adult state, that 

might enhances the survival of the mutated cell to the subsequent apoptotic 

selection. 
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The method section has been divided into two major blocks (Figure 9). 

The first block corresponds to all the resources and methodology for the 

development of SMuFin2.  

The second main block corresponds to the study of somatic DNA 

rearrangements induced by Pgbd5 (mouse orthologue of human PGBD5) 

during brain development and adult state. 

 

Figure 9. General workflow for the methods section. The white boxes correspond to 
the work carried out in the center; the yellow boxes correspond to those carried out 
in external centers. created with Biorender.com 
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1. Development of a computer-implemented and 
reference-free based strategy for identifying 
variants in nucleic acid sequences 

 
 
 

 

This strategy was conceived as a current reference-free algorithm-

implementation and a redesign of the original SMuFIn (Moncunill et al., 2014), 

a reference-free caller based on a suffix-tree strategy to identify somatic 

mutations on tumor genomes developed on Dr. Torrents group. 

 

SMuFin2 is a reference-free detection strategy based on polymorphic k-mer 

strategy that allows both discovery of homozygous and heterozygous 

variation in genomes. That strategy also granted us the identification of most 

types of sequence genomes variation, from single nucleotide substitutions to 

large structural variants in a single run. 

Polymorphic k-mer strategy is based on the sequential sub-selection of read 

regions, with a defined k-mer size, that will be compared to rely on the regions 

that contain variations. The core of the startegy relies on k-mers being 

managed as “dynamic entities” , this means that the k-mers suffer variations 

that make it possible for us to compare between two samples, and thus be able 

to hunt in a first pass the regions that are susceptible to contain a possible 

mutation. 

 

In this way, we generate a reduced group of candidate reads, easier to treat, and 

analyze since all the reads without information related to any mutation have 

been eliminated. 
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1.1 Polymorphic k-mer strategy 
SMuFin2 is based on a polymorphic k-mer strategy. 

For a full understanding, we detail below the main terms, structures, we have 

been used to develop the strategy for the detection of variants. 

 

1.1.1 Important terms 
K-mer 

In bioinformatics k-mers are all possible subsequences of length k contained 

within a biological sequence which have a length M. The total number of k-

mers in a sequence of length M is M-k+1. 

 

 
 

Stem 

The stem is a fragment of a k-mer. It can be a k-mer without a prefix, a k-mer 

without a suffix, a k-mer without an infinitive, or any combination of previous 

states.  

Example: 

K-mer with 30 nucleotides. To mark the base that was deleted from the original 

k-mer, we will use the character "-". 
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Inflection 
 
The inflection in the method refers to all the possible fragments resulting from 

completing a k-mer stem, taking into account that we work with four different 

bases that are the nucleotides: A C T G. 

If a stem only differs from the original k-mer in one base, we can obtain up to 

4 different inflections, one of which will be identical to the original k-mer. 

If instead of a single base, there were two bases, the total number of inflections 

would be 16 (42). 

E.g. 

 
We generated all its inflections: 
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We behaved as the fourth inflection corresponds to k-mer Id nº1 

 

Partial inflection 

The partial inflection is when we have a stem with a minimum of two 

positions removed from the original k-mer, and at least one of them is not 

extended to generate its inflections. 

Using the stem generated in the previous section that had neither prefix nor 

starting suffix one. 

 
 

We generate all the prefix inflections. To mark the position that has not been 

extended from the stem we will use the character ".". 

 
 

Polymorphic k-mer 

We refer with this term to that k-mer that from the stem of it can identify the 

totality of its inflections, as its partial inflections. 

With this strategy, we use the k-mers to see all their variations through their 

inflections and to be able to detect with them those that may be related to a 

variation in the genome and to be able to catch all the information around it. 

 

1.2 Calibrate algorithm 
In order to measure and calibrate the detection capabilities of the method 

algorithm, we executed it on a controlled system, consisting of modified 

sequences of chromosome 20. For testing proposes we selected a small 

chromosome (62.435.965 bp) that can be handled well on the calibration. We 
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use the same mutations as in the SMuFin method in order to make a direct 

comparison with it. 

For each step of the method, different scenarios have been made to check its 

effectiveness. All the data has been extracted within intermediate house 

scripts in python only included on the developers' code. 

 

1.2.1 Construction of the in-silico chromosome 20 
A personalized chromosome 20 has been extracted from the hg19 reference 

genome downloaded from UCSC (with no repeat-masking) 

(http://www.ucsc.edu) and modified to match a randomly chosen human 

haplotype. Personalized chromosome 20 contains 148,639 variants consisting 

of 96,935 SNPs and 51,704 deletions. The catalog of somatic variants further 

added to this personalized chromosome and constituting the target of the 

invention, was composed of: 168 SNVs, 26 Indels, 20 SVs and 1 viral insertion 

of KI polyomavirus (extracted from: 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=

4234),  

ART Illumina (Altschul et al., 1990) has been used to in-silico sequencing, 

sequencing parameters like variation or read length has been extracted from 

M004 sample of mantle cell lymphoma (MCL) (Bea et al., 2013). 

 

1.3 Analysis of the in silico chromosome 20 with the 
strategy of the invention 
Using an internal pipeline, we extracted all the candidate blocks to contain a 

variant to calibrate the first block from SMuFin2. 

Further details about the analysis of in-silico chromosome 20 can be found in 

the configuration file from this execution (Results chapter section 1.3.1).  
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1.4 PCAWG data 
PCAWG BAMs files were obtained from The International Cancer Genome 

Consortium (ICGC)/The Cancer Genome Atlas (TCGA) Pan-Cancer Analysis 

of Whole Genomes (PCAWG) project, accessed through the ICGC data portal's 

Data Repository tool (https://dcc.icgc.org). 

The PCAWG project enabled the study and characterization of the pattern of 

mutations of more than 2,700 cancer donors and 20 primary tumor sites.  

The dataset is constituted by a total of 5,789 whole genomes of tumors and 

matched healthy tissue encompassing 39 tumor types. The tumor/normal pairs 

came from a total of 2,834 donors collected and sequenced by 48 sequencing 

projects across 14 jurisdictions from the International Cancer Genome 

Consortium. 

Biorxiv preprint (Large-Scale Uniform Analysis of Cancer Whole Genomes in 

Multiple Computing Environments) 

(https://www.biorxiv.org/content/10.1101/161638v1) describes the 

generation of data and the phases of the uniform analysis of whole genomes 

where genomes are involved. 

For the selection of samples, we considered all those of known tumor-

associated viruses such as EBV, HBV, and several HPV types. 

The selected studies where the samples belong and with which we carry out 

the tests are: 

DCC Project Code ; Project Name ; Country 

CESC-US ; Cervical Squamous Cell Carcinoma - TCGA, US ; US 

LIHC-US ; Liver Hepatocellular carcinoma - TCGA, US ; US 

UCEC-US ; Uterine Corpus Endometrial Carcinoma- TCGA, US ; US 

The last access to all the data storage was in September 2018. 
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1.4.1 Running SMuFin2 to analyze PCAWG data  

Using an internal pipeline from SMuFin2, we extracted all the candidate blocks 

to contain a variant to select all those ones that could be involved in the 

integration of a virus on the tumoral sample. 

Further details about the analysis of PCAWG data can be found in the 

configuration file from this execution in the Results chapter 1.4 Identification 

of tumor-associated viruses.  

As a large part of this thesis was focused on the development of the algorithm 

of SMuFin2, detailed information about the algorithm can be found in the 

Results chapter 1.1 SMuFin2 Algorithm. 

 

1.4.2 Identification of viruses presence on sample 
To identify the presence of viruses within the samples, a program of alignment 

with those sequences filtered by the method described in results, was used 

against a virus genome database. 

The selected method was the command line version 2.6.0 of Basic Local 

Alignment Search Tool ; BLAST (Altschul et al., 1990).  

The virus base that was used was downloaded from 

https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi .  

The last access to all the data storage was in May 2018. 
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2. Landscape of somatic variation in neural 
development and the role of Pgbd5 
 
 
 
2.1 Experimental outline 
To provide experimental context of the data used in this analysis Dr. Luz 

Jubierre Zapater from the group of Dr. Alex Kentsis, at Memorial Sloan 

Kettering, produced the knockout (KO) mouse model of the Pgbd5 allele. 

 

In summary they generated: 

Pgbd5 -/wild type (wt) females were crossed to Pgbd5 -/wt males to obtain 

Pgbd5 wt/wt and Pgbd5 -/- (or KO) littermates. 

For the identification of neuron-specific Pgbd5 somatic DNA rearrangements 

in Pgbd5-wt and Pgbd5-KO mice models, was used Illumina high-coverage 

(80x) PCR-free paired-end genome-wide sequencing. 

 

Adult brains 

In the case of the detection of induced rearrangements by Pgbd5 in adult mice, 

3 Pgbd5 wt and 3 Pgbd5 KO littermates of 30 days of age were used. Just before 

the euthanasia, peripheral blood mononuclear cells (PBMC) was collected as a 

control for the experiment. As a case sample, three different neural tissues 

were collected: Olfactory bulb, Hippocampus, and Cerebellum. They extracted 

DNA using an Invitrogen DNA extraction kit (K1820-02) and quantified it 

using TapeStation Bioanalyzer. Genomics Core at Memorial Sloan Kettering 

made the library preparation and the Illumina sequencing.  
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Embryo developing brain 

In the case of the detection of induced rearrangements by Pgbd5 in the 

developing brain, were used 3 Pgbd5 wt and 3 Pgbd5 KO E14 (14 days post-

coitum) embryos from the same pregnancy. Just before the euthanasia, the 

embryos were extracted from the mother and spleen was collected as a control 

for the experiment.  

As a case sample, three different neural tissues were collected: the Forebrain 

(the part that will give rise to the cortex among other structures), Midbrain 

(this part will give rise to the midbrain), and Hindbrain (this part give rise to 

the cerebellum and spine bulb). As adult brain samples, They extracted DNA 

using an Invitrogen DNA extraction kit (K1820-02) and quantified it using 

TapeStation Bioanalyzer. Genomics Core at Memorial Sloan Kettering made 

the library preparation and the Illumina sequencing. 

 
2.2 Analysis of sequenced data 
2.2.1 Sequenced data alignment 
Once the data was generated we started by aligning the sequenced data to the 

mouse reference genome (GRCm38/mm10) downloaded from 

(https://genome.ucsc.edu) using Burrows-Wheeler Alignment (BWA) MEM 

algorithm (Li and Durbin, 2009). To improve the coverage for the detection, all 

the FASTQs corresponding to the same sample were merged in a single BAM 

file. We used bammarkduplicates to mark the duplicated reads. For the 

alignment summary metrics, we used Alfred v0.1.16 (Rausch et al., 2019). The 

last access to all the data storage was in January 2019. 

 
2.2.2 Variant calling 
To perform the detection of the rearrangements produced by Pgbd5, we run 

three different variant callers: Pindel (Raine et al., 2015)(version 2.2.3) (Ye et al., 

2009), and Delly (Rausch et al., 2012), detecting indels and structural variants, 
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and GATK (version 3.7) (McKenna et al., 2010) focusing on SNVs. In order to 

run the programs, we use the following reference files: the mouse reference 

genome (GRCm38/mm10) , the simple repeats file from mouse , and the coding 

exons file from (GRCm38/mm10) downloaded from 

(https://genome.ucsc.edu).  

The last access to all the data storage on (https://genome.ucsc.edu) was in 

January 2019 

Each of the methods for the detection was run on pooled libraries (normal and 

tumor) using default settings except for the following parameters:  

 Delly2 

Predictions obtained with Delly2 were considered with the following 

parameters: -c 0.05 , -a 0.05 and -m 15. 

 

2.2.2.1 Joining and filtering of variant calling results 
Once we obtained the results, for each sample from each variant caller, we join 

the results from the different callers in order to increase our sensitivity and we 

filtered out the duplicates within and between callers, to avoid redundancy, 

considering a similarity window of 300bp . In case a mutation was found to be 

duplicated, we kept the one with the highest detection quality, VAF (Variant 

allele Frequency), or ultimately, we give more weight to the deletions. In the 

final step, in order to maintain specificity, we filter for those that had the 

default PASS quality filter for further analysis. 

 

2.2.3 Variant allele Frequency calculus 
VAF is the relative frequency of a variant at a particular locus, expressed as a 

percentage or fraction. 

To calculate VAF, we divided the number of reads with the presence of the 

variant by the total number of reads of all the alleles. 
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Formula 1. Where rmut,i are the reads containing the variant, and rref,i the reads as 
reference allele (normal) for the mutation i. 
 
 
2.2.4 Identification and analysis of genes 
For the detection of genes affected by mutations we used the BEDTOOLS 

package (Quinlan, 2014) and the annotation of NCBI genes for mouse 

downloaded from (https://genome.ucsc.edu).  

To study the effect of the different subsets of mutations we use the ENSEMBL 

Variant Effect Predictor (https://www.ensembl.org/Tools/VEP) (VEP) 

(McLaren et al., 2016). with default settings except for the following 

parameters: 

Species: Mouse (mus musculus ; GRCm38.p6) 

Transcript database: RefSeq transcripts 

Filtering by the most severe consequence per variant. In the case of obtaining 

more than one result, we kept the one that was more deleterious. 

 

2.2.5 Identification and analysis of genomic intervals 
For the detection of genomic intervals, the regions have been created 

dynamically through the list of mutations contained in each group, with a 

static window size of 3Mb. For each mutation entry we had in the file, we 

generated the window, and we observed how many mutations those windows 

covered.  

We filter through those windows that contain a minimum of two mutations, 

and we remove those windows composed of subgroups of mutations that 

come from larger windows. This results in a single list for each group selected. 
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For the study of overlaps, we crossed the files of each group with the option 

Intersect from bedtools (Quinlan, 2014). 

 

2.2.6 Detection of motifs 
For the discovery and analysis of motifs around the breakpoints of the 

mutations that were affecting genes or highly mutated regions: (i) We 

reconstructed the sequence around both breakpoints of the selected deletions 

with a length of 20bp around each breakpoint, (ii) we executed the meme suite 

tool, specifically the tool MEME to discover possible motifs in each of the 

different subgroups (Bailey et al., 2009; Bailey and Elkan, 1994). With the 

following parameters: maximum number of motifs: 25, minimum width: 4bp, 

maximum width: 12bp 

 

2.2.7 Study of genetic ontology 
We perform the gene ontology analysis using the online tool: The Database for 

Annotation, Visualization and IntegratedDiscovery; DAVID (version 6.8) ( 

https://david.ncifcrf.gov) (Huang da et al., 2009a, b) (Huang da et al., 2009b) in 

the set of genes that were uniquely associated (mutated) to each of the different 

subgroups of samples. P < 0.05, the threshold level for all gene ontology, was 

considered statistically significant. 
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Following the hierarchy of topics in the method section, the results have been 

split into two blocks; the first one is related to the development of SMuFin2, 

an standalone based strategy for the reference-free identification of somatic 

genomic variation, and the second is focused on the study of somatic DNA 

rearrangements induced by Pgbd5 during brain development and adult state. 
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1. Design of the algorithm of the Somatic Mutation 
Finder, version 2 (SMuFin2) 
 

 

 

SMuFin2 is an algorithm designed for the identification and classification of 

somatic variation in cancer, and other normal-case genome pairs. SMuFin2 

represents the second version of the original SMuFin program published in 

2014, and was planned and designed in response to the limitations of the first 

version, mostly concerning the scalability and computing efficiency, limited 

by its underlying suffix-tree data structure. For the design of SMuFin2, we 

focused on computing efficiency and scalability, keeping the original qualities 

and capabilities of SMuFin: high sensibility and specificity, reference-free 

detection, detection of all variation types in a single execution, and base-pair 

resolution. From a close collaboration with Jordà Polo, from the David 

Carrera’s group at the Computer Science Department at the BSC, we have 

ensured the combination of an efficient algorithm with a proper 

implementation and hardware integration. My specific activity has been 

centered in the design of that algorithm.  

 
Following and adapting to the different computing needs across the general 

analysis of genomes, we have divided the algorithm into two blocks:  

1. A first block that processes all raw data, and therefore is 

computationally (I/O) more intensive. This part starts by reading the 

raw genomic sequence data (thousands of millions of reads), to finally 

provide small sequence blocks that are candidates to contain a 

mutation. Due to the high computational requirements generated 

mainly by the genome lectures, this part was done in collaboration with 

David Carrera’s group. 
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2. The second block consists of the detection and classification of the 

different variants within these blocks, and the subsequent alignment to 

the genome to provide their exact genomic coordinates. This step also 

includes the detection of the presence and insertion of non-human 

genetic material in the tumor sample 

 
As the first block is suitable to be used for other types of sequence analysis, 

like for transcriptomics, it was decided to describe and protect this part 

through the submission of a patent (PATENT: A computer-implemented and 

reference-free method for identifying variants in nucleic acid sequences. 

NUM: WO 2018/007034). The patent was accepted by the European Pattent 

Office and was published on Espacenet and Google patents. We are currently 

in the process of applying for the US patent.  

The positive overall performance results of this first block, makes it potentially 

useful for the design of large scale infrastructures for genome analysis, in 

relation to the expected demand coming from Personalized Medicine 

initiatives.  

Currently, the entire program and functionality of SmuFin2 is still not 

complete, as only the first block is finished and frozen. The second part is still 

under progress (see below).  

 

1.1 SMuFin2 Algorithm 
The new algorithm is based on the direct comparison of genomic sequences 

coming from two genomes, normally tumor and normal from the same 

individual, in the case of cancer, to finally identify all the changes 

corresponding to somatic variation occurring in one of them. As explained 

below in more detail, this direct comparison is done by converting all the read 

sequences into k-mers, which are then scanned, searching for differences 

between the two genomes. As for the first version of SMuFin that used sufix-
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tree organization of the data to identify tumor reads that had no counterpart 

in the normal, and therefore could potentially point to a somatic mutation, 

SMuFin2 uses the k-mer approximation with the same aim. We directly 

compare all the reads of tumor and normal sequences to identify candidate 

regions having a variation. From these reads, we then reconstruct, in the form 

of aligned sequence blocks, a specific candidate region of the genome with the 

corresponding reads of both normal and tumor genomic sequences that should 

contain the variation. In the second part of the algorithm, we analyze these 

sequence blocks to identify and classify the variation, to finally map it onto the 

reference genome to provide the type of variation and the exact genomic 

coordinates. In order to clarify the description of the algorithm, we have 

defined different steps, represented in Figure 10 with section reference from 

results chapter on each step. 
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Figure 10. Schematic representation of SMuFin2’s Algorithm with chapter section 
from results block for each step. SMuFin2 is divided into two blocks according 
computing needs across the general analysis of genomes, the first block was 
patented. SMuFin2’s algorithm starts with sequenced data (FASTQ) or aligned data 
(BAM), finishing with a vcf file and a website of somatic variants detected on tumoral 
sample. created with Biorender.com 
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1.1.1 Inputting two sets of nucleic acid reads 
In the first (1) step, SMuFin2 processes the input sequence files to start 

building a hashtable of k-mers. As input, the method accepts FASTQ files 

(Cock et al., 2010) and BAM files (Li et al., 2009), which contain all the reads 

with mapping coordinates onto the reference genome. This is important, as 

many databases and datasets of sequences are only in BAM format, from which 

one can easily extract all the reads and reconstruct the original FASTQ. For 

each read, we also extract the corresponding sequence quality score and the 

sequence identifier. 

 

1.1.2 Quality filtering of the raw sequenced data 
Preliminary, to start processing the reads, we perform the filtering of low 

quality and potentially erroneous reads. This is done, at different levels:  

 

Phred quality score 

A sequence is included if the input contains a minimum of bases with a Phred 

quality score (Ewing and Green, 1998; Ewing et al., 1998) greater than 20 (Q20), 

this means that the base call accuracy is 99%. For example, If this value is set 

to 80, it means that all those reads with more than 20% of their bases with a 

Phred quality lower than 20 will be eliminated. Therefore, we only keep those 

that at least 80% of their bases are of higher quality. 

 
Undefined nucleotides 

If the sequence contains undefined nucleotides, represented by "N", these will 

be eliminated, generating independent sub-sequences from the read at both 

sides of the N (Figure 11). 
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Figure 11. Sub-sequences generated from an original read containing an 
undefined nucleotide “N”. Original Sequence 1 with a length of 100 nucleotides and 1 
undefined nucleotide generates two sub-sequences: 1A with a length of 34 
nucleotides, and 1B with a length of 65 nucleotides. 
 

Minimum read k-length 

We discarded all the sequences whose length does not cover the k-mer size 

established to make the analysis, due to the fact that k-mers could not be 

generated for the detection of variants. Hence, we eliminate the sequences that 

come from the raw data as well as those resulting from the formation of sub-

sequences explained in the previous section. 

 

1.1.3 Generating a hash table structure 
After the quality filtering step, the algorithm next, (3) generates a hashtable 

with all the k-mers from both samples. This step is divided into two major 

processes: (1) generate the k-mers and (2) build a hash table structure. 

 

1.1.3.1 Generation and analysis of k-mers 
The purpose of the k-mer analysis is to be able to hunt and bring together, 

ideally, all the reads that correspond to the same region in the genome. For that 

reason, k-mer should be shared among the reads but unique along the genome 

in order not to gather information from different regions. On the basis of 

(Paszkiewicz and Studholme, 2010) the approximate minimum sequence 

length that would allow the reconstruction of a whole genome is around 30nt. 

Therefore, taking this into account, and considering that a short k-mer would 

allow us to better explore the sequence space through the reads, we chose 30nt, 
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as the default value for the k-mer. Even Though we recommend this value, the 

program accepts other sizes of k-mers [28-32] to adjust to different genomes 

and situations. 

 

After defining the k-mer size, we next counted the number of k-mers across 

all sequencing reads. As shown in section 1.1.1 k-mer from methods section, 

for each of the reads, we start from the beginning of the sequence moving base 

by base to annotate and count all possible 30nucleotide (nt) long k-mers. In this 

way, we make sure we cover the whole extent of the read, to capture any 

possible variation that can be found in it. Thanks to this procedure, we can 

generate kmers that will be common between the normal and tumoral samples 

and kmers that we will only find in the tumoural sample, which will be those 

susceptible to contain a variation (Figure 12).  
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Figure 12. Representation of k-mers generation on mutated scenarios. For each 
scenario A and B , we have a read from the normal sample, and a read from the 
tumor sample that contains a variation that is marked by red characters. We observe 
how the generation of k-mers covers the whole sequence, and both common reads 
between the two samples and unique reads containing the mutation are generated. 
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1.1.3.2 Building a hashtable structure 
After analyzing and counting all the k-mers present in our datasets, we 

designed a form of having all this data accessible to be able to make different 

types of queries. For that, we stored this information in a hashtable structure 

that allows us easy and quick access to the data with reduced memory 

requirements, despite the large number of k-mers generated from both normal 

and tumour genome sequences. For each k-mer stored with their frequency on 

normal and tumor samples, information related to the read and the position in 

it is also . To provide the possibility of performing different queries to the 

hashtable, for each k-mer, we also store the information corresponding to the 

reverse complement of each particular k-mer.  

 

To detect the mutations, the first step is to generate the stem with prefix one 

and suffix one for each of our kmers. Please, see section 1.1.1 of Methods for a 

better understanding of the generation of the stem through the kmer and its 

prefixes and suffixes. The objective is to find the beginning and end of the 

mutation. The stem is shared between the mutated and non-muted reads, and 

the inflection belongs to the beginning and /or end of the variation between 

the two, which allows us to collect all the reads of both samples for the same 

region and reconstruct it. By creating the inflection at the beginning and end 

of the kmer, we can cover the entire sequence and detect the mutation 

throughout the read. 

 

Once all the k-mers of both samples are computed, a summary of the hashtable 

is generated (Figure 13) that includes, for example, the data for the creation of 

a histogram of k-mers frequency, k-mer counters, between others. In addition 

to directly pointing to candidate reads having the mutation, and to bring 

together normal and tumor reads of the same genomic region, we can also 

evaluate other useful information regarding, for example, the quality of the 
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sample. For instance, knowing the number of k-mers only seen once within a 

sample gives an estimation of the rate os sequencing errors within the sample. 

 

Figure 13. Storage and generation of hashtable. Sample hashtable summary 
generated by each node where the generated k-mers are processed. created with 
Biorender.com 
 
 
1.1.4 Detecting candidate somatic variants with k-mers 
Once the hashtable is generated, with all the k-mers, their recurrence within 

the normal and tumor samples and information about the corresponding reads 

associated, the next step is to select those kmers that are likely to contain a 

variant. For this, we expect to find k-mers with different counts. For example, 

k-mers that have been found at the same rate in both samples, are expected to 

cover identical regions within both genomes, and therefore are not expected 

to contain mutations. On the other side, k-mers that have been found in tumor 

samples, but not in normal samples, are expected to cover somatic variants, and 

are actually the target of our analysis. 
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To identify the k-mers that can contain a variant, we ask the following 

questions to the hashtable:  

(i)An inflection based on the stem of a k-mer must have at least Y1 reads with 

the same variation in the tumor sample, and a maximum of Y2 reads in the 

normal sample. (ii) If this criterion is met, we consult the complementary 

reverse of the same infection, which should have at least Y3 reads with the 

same variation in the tumor sample and a maximum of Y4 reads in the normal 

sample (Figure 14). 

 
Figure 14. Representation of a hashtable for a candidate mutation. Hashtable 
representation with the k-mers inflections of the mutations represented in previous 
"figure 10 ". The bases containing the mutation are marked in red. The left column 
represents all the stems of the k-mers, the head of the following columns represent all 
the possible inflections E.g (A-A) inflation with suffix and prefix with the base A. Below 
are the counters for each of them, where the first position corresponds to the normal 
counters and the second position to the tumors. We can see how the first k-mers are 
shared by the two samples (k-mer). The last k-mers belong only to the tumoural 
sample and are candidates for mutations since they are only found in it.  
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With this criterion, we make sure that: 

• The mutation is covered in both directions (forward & reverse) and by 

a minimum of tumor reads; variables Y1 - Y3. 

• The normal sample can contain a maximum of readings from the tumor 

sample, due to contamination; variables Y2 and Y4. 

• We detect those k-mers that, with their inflection, there are differences 

between normal and tumoural. 

• We detect those k-mers whose own stem contains a variation  

  
These variables can be modified by the user in the configuration file in the 

following fields:  

max-normal-count-a = __MAX_NC_A__ 

min-tumor-count-a = __MIN_TC_A__ 

max-normal-count-b = __MAX_NC_B__ 

min-tumor-count-b = __MIN_TC_B__  

 

A and B represent an arbitrary direction, since, as mentioned above, we do not 

know the real direction compared to the reference genome.  

At this stage, besides selecting the candidate breakpoints with k-mers, we also 

keep additional information that will be necessary for the next steps: (i) the 

selection of all relative reads, (ii) the position of the k-mers within the reads, 

and (iii) a map of the k-mers.  

The selection of the relative reads is based on the stem and the checking when 

any inflection meets the criteria described above, in this way we get both the 

reads that contain the mutation and the reads that pass through the same 

region without the mutation. 
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1.1.5 Clustering and filtering candidate somatic variants to build 
blocks with candidate variants 
To this step we arrive with all the tumor-specific or tumor-enriched k-mers 

potentially having a variant, and the information of the read they belong to. 

From these data, the method next identifies and extracts the matching tumor 

reads, together with the normal reads ideally corresponding to the same 

genomic region. These tumor and normal reads are then piled-up to form a 

sequence block that will be analyzed more in detail, to define the final variant. 

For this, we first make a selection of the so-called leading reads, which are 

defined as those reads that cover the mutations as efficiently as possible to 

collect all the required information. This read is called “leading read”. 

The criteria to select the leading reads is that it has to contain a minimum of 

(Y5) candidate k-mers, and (ii) the distance between these minimum k-mers 

must not be further than (Y6) nucleotides (Figure 15). 

 

 
 
Figure 15. Leading reads for SNV and SV scenarios. Example of positive read leader 
selection with the variables Y5 = 7 and Y6 = 10.  
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With this criterion, we ensure that the leading read has created a minimum 

number of candidate k-mers in a range of nucleotides, a sign that the mutation 

is well covered. 

Next, taking each leader as a seed, we start adding other reads that share the 

same stem, and are therefore expected to derive, a priori, from the same 

genomic region. Using sequence information (stem), we also fetch the 

corresponding reads coming from the normal sample, and construct the block. 

We will also use the stem in reverse complement in order to reconstruct the 

region in both directions, forward and reverse (Figure 16). 

 
Figure 16. Reconstruction of block. From a read lead, we extract all the candidate k-
mers that it contains, generating the stem of each one of them to be able to collect all 
the reads both mutated and not mutated of the normal and tumoral samples and to 
build the block that contains the somatic mutation. 
 
With this approach a single candidate mutation can generate more than one 

block. This is because more than one read covering the mutation can become a 

read leader. The next step is to remove redundancy, by filtering out those 

blocks that contain the same reads, or that are already included in another 

block.  

Then we pile-up the reads taking the stem from the read leader as an anchor to 

add the other reads. For each sequence collected through the read leader's k-

mers, we look for the root that has been called and that is common with the 
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read leader sequence. Then, each read is successively positioned so that its 

inflection or partial inflection coincides with the central read. For the reverse 

direction of the block we use the same read leader but in a complementary 

reverse direction so that the k-mers match and could be pile-up. 

The results of this section correspond to a collection of blocks reproducing 

approximately 150bp-long genomic regions (with original read size of 100bp), 

if original read size is 100bp, that are expected to contain a somatic variation. 

These blocks, finally are expected to contain, for each candidate region, reads 

covering both alleles of the normal sample, reads covering the same region of 

the non-mutated tumor allele, and reads covering the mutated allele with the 

mutation (see Figure 17). 
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1.2 SMuFin2-algorithm implementation 
SMuFin was deployed on 16 nodes of MareNostrum 3, where, per each patient, 

it costs around 10 hours and 56 kWh to complete a single analysis. With 

improvements on algorithm, accelerators , and NVM used as main memory 

extension, SMuFin2 can be executed on one single enterprise-node with 

512GB of main memory, and process a 30x coverage genome pair in 9 hours 

and as few as 4.3 kWh, which means a 13.1x improvement. Nevertheless, we 

were able to run SMuFin2 on a desktop machine only by adopting NVMe as 

an alternative to main memory. Running SMuFin2 in an affordable node with 

a 6-core i7 and only 32 GB of main memory, required 22.4hours, a significant 

slowdown, but in consuming only 2.4KWh, a 23.3x improvement over the 

original deployment. 

If we compare the single enterprise node against the desktop machine this last 

one supposes only ¼ of the cost, and it requires approximately half of energy 

for each execution . As a result, a cluster of multiple desktop machines costs 

half as much as a cluster of servers, and consumes half the energy while 

maintaining similar performance. These results (Figure 18) demonstrate that 

hardware/software co-design allows significant reduction in the total cost of 

ownership of data intensive genomics methods, facilitating their adoption in 

large genome repositories. 

  

More detailed information can be found in Dr. Cadenelli thesis, as this was the 

result of a collaboration, and on papers (Cadenelli et al., 2017 ; Cadenelli et al., 

2019). 
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Figure 18. Aggregate node time and energy-to-solution of all SMuFin2 versions on 
the different hardware configurations. 
 

1.3 Algorithm validation 
In summary, at this stage, we have developed a comprehensive methodology 

for the processing and classification of sequence reads, according to their 

potential coverage of somatic variants, and using a k-mer-based methodology. 

The algorithm, and its implementation in an High-performance computing 

(HPC) environment, allows a complete processing of entire whole genome 

sequences very quickly, and at low computational cost. Driven by the novelty 

of this methodology, and because of its potential use for other specific 

sequence analysis, provided a different and adjusted processing of the 

sequence blocks, we decided to patent this algorithm (EP16178577.9). To 

validate the potential of this algorithm to identify somatic variants, and to 

develop the second part of the entire program, we performed extensive 

assessments as described below.  

 

1.3.1 Generation of an in silico test sample for initial validation 
To validate the technique and verify that the expected prediction of the 

mutation was met, we perform calibration in parallel to the development of 
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the method. To verify that the algorithm works as expected in each step, we 

need to create controlled reference set containing all the elements to be 

analyzed. 

In the case of the variant caller, an in-silico sample is used to control the totality 

of mutations and to know exactly all the sequences with or without mutation 

that pass through it. It is not recommended to use an in-vivo sample because 

it is not known with certainty the total mutations that it contains. 

 

The sequences, both mutated and non-mutated, covering the mutations, are 

marked and selected. In the steps where the program executes a filter, which 

are: Detecting candidate breakpoints with k-mers, and Clustering and filtering 

candidate breakpoints to build candidate blocks, we extract all the reads that 

have passed the criterion, and in this way, we can check if a mutation is 

represented. Finally, in the block alignment step, those blocks that contain 

mutation sequences are marked. This marking allows us to check later in the 

final block what the mutations look like. 

To emulate the steps taken by the algorithm, we re-create all potential/possible 

scenarios, most of them manually. This allowed knowing firsthand the failures 

and improvements that could be generated. The calibration sets of this step 

consisted of small regions of the genome (between 200-500 bp) that contained 

a unique mutation. 

Once the algorithm was validated on different types of mutations, we 

proceeded to build a chromosome in-silico to exclusively validate the method 

against it.  

For the creation of the in-silico (see methods section 1.2.1), we used the 

program ART-Illumina that allows us, on the one hand, to simulate the 

sequencing of a sample and on the other hand, thanks to a secondary file we 

know all the reads that pass through each position with the information of the 



   

Results 105 

sequencing errors they contain. We selected the chr20 since, by size, it is more 

manageable to control along with all the steps of the program. In the in-silico, 

we added a profile of germinal mutations in both normal and tumor samples. 

In the tumoural sample, a wide range of mutations was chosen, from SNV to 

SV . This added variation was composed of: 168 SNVs, 26 Indels, 20 SVs, and 

1 viral insertion 

These mutations were the same used for the SMuFin test so that we could 

compare it with its predecessor. Besides, a virus fragment was inserted, namely 

Ki polyomavirus, at position 56.398.700. Detailed information about the 

potential of SMuFin2 for the identification of tumor-associated virus can be 

found in section 1.4. 

The test with the first block from the algorithm was done with the variables 
on config.file:  

 

KMER_LENGTH=28 
MAX_NORMAL_COUNT_A=1 
MIN_TUMOR_COUNT_A=4 
MAX_NORMAL_COUNT_B=1 
MIN_TUMOR_COUNT_B=1 
WINDOW_MIN=7 
WINDOW_LEN=10 

  
The results for this test were: 100% for SNVs, 100% for Small SVs, 100% for 

Large SVs, and 100% for virus Insertion (Table 1). In the table, we can check 

the results in the two checkpoints mentioned above, after the filter by 

candidate k-mers, and after the cluster to build the block. 
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 Mutations After filtering %sensitivity After clustering %sensitivity 

SNV 168 168 100% 168 100% 

Small SVs 26 26 100% 26 100% 

Large SVs 20 20 100% 20 100% 

Virus 1 1 100% 1 100% 
 

Table 1. Results from chr20 test. In each filtering step we evaluate the number of 
detected mutations classified by type. 
  
It is remarkable the capacity of detecting large structural variants with such a 

high sensitivity, even the insertion of a virus (Figure 19).  
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1.4 Identification of tumor-associated viruses 
To test the virus detection role of the first block from SMuFin2, we explored the 

WGS of PCAWG Consortium (Consortium, 2020) generated by the ICGC and 

the Cancer Genome Atlas projects. 

For the selection of samples, we considered those where infection-related 

causes of cancer were estimated to be viral, such as Hepatitis B virus (Bialecki 

and Di Bisceglie, 2005), and several Human papillomaviruses (Munoz et al., 

2006) types. 

Therefore, we randomly selected some patients from the following studies: 

(DCC Project Code; Project Name; Country) 

CESC-US ; Cervical Squamous Cell Carcinoma - TCGA, US ; US 

LIHC-US ; Liver Hepatocellular Carcinoma - TCGA, US ; US 

UCEC-US ; Uterine Corpus Endometrial Carcinoma- TCGA, US ; US 

We ran SMuFin2 first block with the following variables: 

KMER_LENGTH=32 
MAX_NORMAL_COUNT_A=1 
MIN_TUMOR_COUNT_A=3 
MAX_NORMAL_COUNT_B=1 
MIN_TUMOR_COUNT_B=2 
WINDOW_MIN=7 
WINDOW_LEN=10 

 

Thanks to the summary information obtained in the hashtables, we were able 

to verify that in some patients, the normal sample had lower coverage than the 

tumor sample. We were also able to extract that the sequencing errors were 

low in the sample, and therefore we continued with the k-mer at a start of 32. 
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Our objective was to detect the presence of viruses in the samples, and 

therefore, we focused on the groups that did not contain reads from the normal 

sample. Following the detection strategy explained in the section 1.1.6 . 

 

Detection of HBV 

In the patients of the LIHC-US project, we found positive results in virus 

detection. The most frequently detected virus was HBV. We also observed 

cases where the presence of HERV-K117 was detected. 

Detection of HPV 

On patient samples from the CESC-US and UCEC-US projects, we found 

results favorable to the presence of viruses. The virus that appears most 

frequently is HPV16 in both samples. In the case of the UCEC-US project, the 

presence of the HPV18 virus was also found. 

 

The results of the virus presence obtained are in agreement with those 

presented in the recent paper published by the working group of pathogens of 

the PCAWG consortium (Zapatka et al., 2020).  

 
1.5 Cataloguing and annotating blocks 
This second part of the algorithm consists of the detection of the different 

variants within the blocks and the subsequent alignment against the genome 

identifying its exact position.  

It is an interim strategy that we are currently implementing. This strategy is 

based on the detection of somatic mutations from SNV to SV. One point to 

note is that it addresses not only the detection but also the insertion point of 

non-human genetic material such as viruses. 
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Once we have all the candidate breakpoint blocks aligned from the previous 

step (section 1.1.5), we proceed to the detection and identification of variants 

for each of them. 

We use the alignment information to observe the differences in each group: 

tumor, non-tumor, and both. 

The first step consists of joining both directions, forward and reverse, of each 

block in one, to obtain a greater coverage of the region. For each position in 

the block, a value is given according to the variability within that position. As 

a result, we get a representation of all the variability within the block. This 

variability is calculated for the three different groups: tumor, non-tumor, and 

both.  

These alignment scores are compared recursively to identify differences in 

both samples, tumor and non-tumor. With these scores, we first evaluate a 

consensus for each sample, to avoid false positives and misalignments.  

We then look for all variants that are completely included within the 

comparand block. These variations will be SNV and small SV, which will 

consist of: insertions, deletions, and inversions. All blocks that do not meet 

this criterion will be candidates to contain a large SV, which means that the 

block only covers one of the breakpoints of possible large insertions, deletions, 

inversions, or intra- or inter-chromosomal translocations.  

Once all types of variations are defined, we move on to identify the coordinate 

of the mutation. We generate a consensus of the normal block, for which we 

have stored the position where the mutation occurs and aligned it against the 

reference genome. Using the consensus, we obtain a sequence with a longer 

length than the original read, which allows a better alignment. In addition, we 

avoid possible alignment problems due to the presence of the mutation that 

we are questioning, as it usually happens in those non-reference-free methods 

that are based on references. 
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For the blocks containing an SV, the tumor consensus carrying the mutation 

will also be generated and aligned against the reference genome to know the 

chromosome that cause the SV and the coordinates of the variation. This same 

process of tumor consensus will be done by mapping this time against non-

human databases to locate which viruses are inserted and the exact insertion 

position.  

For the detection of non-human insertions in the genome, the user can choose 

against which database he wants to perform the alignment of the groups 

susceptible to contain an insertion of non-human material. In the test runs 

(section 1.4) a database of all viruses described in the methods section 1.4.2 was 

used. This guarantees that the user can make a more general or more specific 

search according to his criteria. 

As mentioned before, the method is also able to detect the non-human 

sequences present in the sample. To do this, we rely on the knowledge that the 

sequences that come from viruses that are not homologous with the normal 

sample generate groups that only contain tumor reads. Following this 

criterion, we use the blocks that only contain tumor sequences, and we make 

a consensus and map them against a selected database.  

Knowing which viruses are in the sample beforehand helps us to determine 

when we find a breakpoint with a virus insertion as the sequence is shorter to 

go towards a more targeted search. 

 

1.6 Output files 
The results of the program are presented in two formats: Variant Call Format 

(VCF), a standard file of the detection methods, and an interactive web page. 

 

 

 



 112 

The VCF will provide the eight mandatory columns:  

1; CHROM         The chromosome on which the mutation is being 

called.  

2; POS   The position of the mutation on the reference genome. 

3; ID      The identifier of the variation 

4; REF    The reference base (or bases in the case of a small deletion) at 

the given position of the non-mutated sequence. 

5; ALT    The mutated base or bases at this position. 

6; QUAL A quality score associated with the mutation. 

7; FILTER            A flag indicating the filters the mutation has passed. 

8; INFO An extensible list of key-value pairs (fields) describing the 

variation 

 

The website consists of: 

• Home page with a list of all the blocks lined up. 

• Each block/group will be given the following information that has 

composed it:  

o Overview consisting of Number of k-mers (A), Number of k-

mers (B), K-mers distance (A), K-mers distance (B), Number of 

reads (N), Number of reads (T) , and Number of reads (N+T) 

o Lead read 

o List of K-mers in direction A with respective counters for 

normal an tumoral sample 

o List of K-mers in direction B with respective counters for 

normal an tumoral sample 

o List of Normal reads ; ID + sequence 
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o List of Tumoral reads ; ID + sequence 

o Alignment for the direction A 

o Alignment for the direction B 

• On the block alignment page the user can interact with the data: 

o Rearranging the alignment by type of read or by alignment 

position 

o Marking with color by base type, by read type or without color. 

 
1.7 SMuFin2 first block execution 
SMufin2 has been conceived as a reconfigurable set of checkpointable stages 

(Figure 20), developed C++ , and Python programming language. 

Depending on where the hardware is running, SMuFin2 supports different 

modes of execution to suit it: from scale-out executions in large data centers 

to scale-up solutions that take advantage of accelerators and storage-class 

memory in a single machine. 

 

1.7.1 Compile  

Compiling the first block from SMuFin2 requires make, a compiler such as gcc 
with C++11 support (>= 4.8), and the following libraries: 

• sparsehash (>= 2.0) 

• boost (>= 1.55): Property trees and string algorithms 

• ConcurrentQueue and ReaderWriterQueue: MPMC and SPSC queues 

• libbf (<= v0.1-beta): Bloom filters 

• RocksDB (>= 4.9): Key-value store for flash storage 

• htslib: Parse BAM files 

 



 114 

 
Figure 20. SMuFin2 execution command graph. The graph shows the dependencies 
between SMuFin2 commands and all checkpointables stages: (i) prune, (ii) count, (iii) 
filter, (iv) merge and (v) group.  
 

Run 

A configuration file (Supp Figure 1) with all the necessary variables and paths 

is required to run the method. 

 
Commands 

The argument passed to the --exec flag or the configuration option in core.exec, 

must be a list of stage commands separated by semicolons. The commands are 

prepared with a stage name followed by a colon and chained in a comma-

separated list. For example, count:run,dump or count:restore;filter:run,dump.  

Note that the commands must follow a specific order, and some stages cannot 

be executed without running the previous stages first. 

The following list contains all available steps and commands represented on 

Figure 16: 

• prune 

o run: generates a bloom filter of stems that have been observed 

in the input more than once; optional stage that can be run first 

to save memory during count. 
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• count: build frequency table. 

o run: counts frequency of normal and tumoral k-mers in input 

sequence, ignoring k-mers whose stem is only seen once; 

counters hold values up to 2^16. 

o dump: serialize k-mer frequency as sparsehash tables indexed 

by stem, for checkpointing and/or later analysis. 

o restore: unserialize dumped frequency tables from disk. 

o stats: display frequency stats, including size of different tables, 

and histograms for normal and tumoral counts. 

o export: serialize frequencies as plain CSV table files containing 

k-mers along with normal and tumoral counters; rows can be 

limited to k-mers that meet certain criteria through 

configuration options export-(Altschul et al., 1990). 

• filter: select breakpoint candidates and build indexes. 

o run: build filter normal and tumoral (mutated and non-mutated) 

indexes containing candidate reads, along with their IDs and 

positions of candidate k-mers. 

o dump: finalize writing filter indexes to disk; when using 

RocksDB indexes, force a compaction. 

o stats: display sizes of the different filters. 

• merge: combine multiple filter indexes. 

o run: read and combine filter indexes from different partitions 

into a single, unified index in RocksDB. Merges all possible 

indexes, sequentially one at a time. 

o run_{seq,k2i,i2p}_{nn,tn,tm}: read and combine specific filter 

indexes from different partitions into a single RocksDB 

instance. 
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o stats: display sizes of the merged filters. 

o to_fastq: convert indexed reads to FASTQ format. 

• group: match candidates that belong to the same region. 

o run: window-based group leader selection and retrieval of 

related reads. 

o stats: display number of groups generated by each thread. 
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2. Landscape of somatic variation in neural 
development and the role of Pgbd5 
 

 

 

The next project is an ongoing study. The results reported here are preliminary, 

and the results of Dr. Kentsis group, collaborating in this project, are not 

published yet.  

In brief, this part of the thesis aims to answer the hypothesis that gbd5 is active 

as a nuclease and produces DNA double-strand breaks (DSB). This activity 

produces DNA rearrangements in neurons during brain development, which 

allows them to survive subsequent apoptotic selection. The interest on Pgbd5 

is preceded by (Henssen et al., 2017a) that unveils the role of DNA transposase 

PGBD5 that, by acting as a nuclease in human cells, underlies cell 

transformation by inducing site-specific genomic rearrangements. We seek to 

compare Knockout (KO) and wild-type (WT) individuals to determine Pgbd5-

induced somatic rearrangements in neural tissues. To understand the role of 

Pgbd5, we divided the project into two parts: 1) the characterisation of somatic 

variation for neural tissues, and 2) the study of those variations associated with 

Pgbd5. 

 

This project required collaboration between multidisciplinary teams. On one 

side, a wet lab focused on KO mice, led by Dr.Kentsis lab from the Memorial 

Sloan Kettering (MSK) New York (NY); and a dry lab, focused on the 

computational side, led by Dr.Torrents lab from Barcelona Supercomputing 

Center (BSC). My contribution here is the characterization of the landscape of 

somatic variation in neural tissues of adult and embryonic mice, and the 

contribution of Pgbd5 (mouse orthologue of human PGBD5) during brain 
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development and adult state, together with my groupmate and Ph.D. student 

Elías Rodríguez-Fos. In particular, my contribution was on the data processing 

of FASTQ data received and the posterior detection and classification of 

somatic variants on neural samples; the preparation of the data for the 

characterization of the different type of variants on adult and embryo mice; 

and the identification of genes and genomic intervals specific related in each 

highlighted group. 

 

The detection of somatic variants on non-tumoral samples was a 

methodological challenge. This new scenario, compared to the pattern of 

somatic mutations in cancer, is presented as a variation with a non-clonal 

profile, and a somatic variation with a lower VAF. These characteristics made 

its detection more complicated when using the conventional methods 

designed for a tumor mutation profile. Initially, when the study started we 

didn't know if we could detect variations, stating that the detection of somatic 

variants was something fundamental to the project.  

 

To determine whether Pgbd5 could be responsible for somatic rearrangements 

on neural samples, Dr.Kentsis group produced the KO mouse model of the 

Pgbd5 allele. Then Pgbd5 -/wt females and Pgbd5 -/wt males were crossed to 

obtain Pgbd5 wt/wt and Pgbd5 -/- (or KO) littermates. For the identification 

of neuron-specific Pgbd5 somatic DNA rearrangements in Pgbd5-wt and 

Pgbd5-KO mice models, Illumina high-coverage (80x) PCR-free paired-end 

genome-wide sequencing was used. 

 

Two groups of mice were studied in parallel, adult and embryo, to analyze the 

effect of Pgbd5 at different growth stages. We expected to study the effect in 

its origins on embryo samples to unravel the causes of DNA damages during 
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brain development, and follow the mutation to the adulthood to analyze how 

these rearrangements have turned out: 

Adults brain: The number of samples was: 3 Pgbd5 wild types and 3 Pgbd5 KO 

littermates of 30 days of age. Just before the euthanasia, Peripheral blood 

mononuclear cells (PBMC) were collected as a control for the experiment. 

PBMCs are non-neural cells that undergo RAG1 recombination in the 

Immunoglobulin locus, serving as a prefect quality control for the subsequent 

analyses. As a case sample, three different neural tissue samples were collected: 

Olfactory bulb, Hippocampus, and Cerebellum. 

Embryo developing brain: The number of samples was: 3 Pgbd5 wild types and 

3 Pgbd5 KO E14 (14 days post-coitum) embryos from the same pregnancy. Just 

before the euthanasia, the embryos were extracted from the mother, and 

spleen was collected as a control for the experiment. The spleen is a 

hematopoietic organ during embryogenesis, and together with the liver, is 

where lymphocytes mature. As with PBMCs in adults, the spleen serves as a 

suitable control for this experiment. Structural differences exist between E14 

developing and adult brains. As a case sample, three different neural tissue 

samples were collected: the Forebrain (the part that will give rise to the cortex 

among other structures), Midbrain (this part will give rise to the midbrain), and 

Hindbrain (this part give rise to the cerebellum and spine bulb). 

In total, we studied rearrangements in 36 samples of neuronal tissue, 18 for 

each adult and embryonic group. Nine of them belong to the KO group and the 

other nine to the WT group. 
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Figure 21. General workflow for the study of somatic DNA rearrangements induced 
by Pgbd5 during brain development and adult state. The first section represents the 
selection of the mouse samples obtained by Dr. Alex Kentsis' group, a total of 36 case 
samples and 12 controls that were analyzed during the study. The second represents 
the detection, and subsequent analysis of the variants carried out in our group, which 
include: the identification of somatic variants within non-tumoral tissues, the study of 
Pgbd5 KO mice vs. WT mice, the characterization of the deletions on wild-type mice, 
the identification and analysis of genes and genomic intervals, and the study of 
genetic ontology. Created with Biorender.com 
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2.1 Identification of somatic variants within neural tissues 
Our aim in this part was to identify somatic variants. This was a particularly 

challenging task because, having experience in detecting variants in cancer 

tumor samples, we did not know a priori whether the methods used in that 

area would work for detection in normal tissues. The first question was if we 

were able to identify somatic variations from non-clonal tissue growth. Our 

first approach was to increase the coverage for the proper detection of somatic 

variants. This parameter is essential because the role that we hypothesized for 

Pgbd5 would involve rearrangements that diversify the genomic content, 

leading to polyclonal rearrangements with reduced allele fractions, albeit 

sharing features that may lead to recurrent alignments. The higher the 

coverage rate, the higher the detection probability of these variants at such low 

fractions. 

As we showed in Figure 21 we obtained the FASTQ data from the 48 samples 

sequenced. The first step in the data analysis pipeline was the alignment of the 

obtained sequences to the reference genome using BWA (Li and Durbin, 2009). 

To improve the coverage for the detection, all the FASTQs corresponding to 

the same sample were merged in a single BAM file.  
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Figure 22. Boxplot for level of coverage sample before and after the merge step. 
Notice the increment on level of coverage on samples before merge, particularly on 
embryo samples.   
 
Figure 22 shows that in the case of the embryo samples, merging the data 

considerably increased the level of coverage from a median of 55 to an average 

coverage of 90. In the case of the adult samples, this increase was not seen in 

such an acute way, that increased only from an average of 90 to 91.5. It is worth 

emphasizing those samples that had very little initial coverage and that 

represented a greater challenge for the detection of variants. In the case of the 

embryos, we found an initial sample with only a coverage 1 that was increased 

to 13 thanks to the merge. In the case of the adults, the sample with the lowest 

coverage was a sample with only a coverage 8, since no more samples were 

available, its level of coverage could not be increased. 

 

At the time of this study, the majority of variant callers variant callers are 

dedicated to the detection of somatic mutations in the clonal profile of cancer. 

Finally to perform the landscape of somatic variation in neural development 

and the role of Pgbd5, we chose three methods that allow the detection of 
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mutations at a very low VAF: Pindel, and Delly2, focusing on indels and large 

structural variants, and GATK focusing on SNVs. To perform the mutation 

detection, we follow the profiles previously indicated in the methods section 

2.2.2. In this study, we did not include SMuFin because It did not produce 

convincing results during trial analysis, as it is quite conservative and 

disregards variants supported by a few reads. In one of the tests performed, 

specifically on a sample of Olfactory bulb from a healthy mouse, SMuFin 

detected only a Large SVs, zero small SV, and 90 SNVs.  

In order to increase sensitivity, we joined the results for each sample obtained 

from the different callers We filtered out the duplicates within and between 

callers to avoid redundancy, considering a similarity window of 300bp. In case 

a mutation was found to be duplicated, we kept the one with the highest 

detection quality, VAF, or ultimately, we gave more weight to the deletions. In 

the final step, in order to maintain specificity, we selected those variations that 

had the default PASS quality filter for further analysis. 

Altogether, we confirmed the ability to identify somatic variants on neural 

tissues despite the above-mentioned factors. 

 

2.2 Comparative analysis of somatic variation between 
adult and embryo 
With the current results we had a first overview of the landscape of somatic 

mutations in neural tissues in embryo and adult samples (SNVs are currently 

being detected and will be included next in the study). Based on the observed 

variation we found a total of 32,190 somatic mutations in adults (18,194 on 

WT sample; 13,996 on KO sample) and 9,795 on embryos, (3,816 on WT 

sample; 5,979 on KO samples). As shown in the pie-chart (Figure 21), 

deletions were the most represented variants on adults wild-type mice with 

(86.96%) , followed by insertions (5.45%), duplications (3.95%), inversions 

(2.32%), and others (1.32%). In the case of embryos wild-type mice, deletions 
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were the most represented variants with (73.36%), followed by duplications 

(19.52%), inversions (4.64%), insertions (1.77%) and others (0.71%).  

Given the predominant profile of the deletions in both adult and embryonic 

samples in the WT group, and based on previous studies (Henssen et al., 

2017b) we focused our attention on deletions. 

 

 

 
Figure 23. Landscape of mutations in wild-type mice. A) Representation of somatic 
variants detected on Adults wild-type mice. B) Representation of somatic variants 
detected on Embryos wild-type mice. Of note, the most prevalent type of 
intrachromosomal mutations acquired in WT mice were deletions, representing 
86.39% of mutations in embryos, and 86.97% in adults 
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2.3. Characterization of the deletions on wild-type mice 
To check if there was any deviation that could affect the total count of the 

samples and to analyze the differences between tissues and their  possible 

relationship with Pgbd5 activity, we studied the distribution of the deletions 

through the different tissues from neuronal samples.  

As the first exploration on wild-type mice, we observed that the number of 

deletions was not dependent on tissue type in either adult or embryo samples 

(Figure 24). In conclusion, we can indicate that no sample or mouse could 

deviate our statistics since the distribution is presented relatively 

homogeneously; and that a priori there is no significant difference between 

tissues due to the possible activity of Pgbd5. 

 

 

Figure 24. Number of deletions for each tissue on A) Adult sample and B) Embryo 
samples. The X-axis is divided at the top by the mouse sample, and below it lists the 
three tissues for each one: Cerebellum tissue, hippocampus and olfactory bulb in the 
case of Adults, and Anterior brain, Posterior brain and Midbrain in the case of 
Embryos. On the X axis it represents the number of deletions, which ranges from 0 to 
3,000 in both bar graphs, A and B. 
 
 

Then, we examined the VAF of the deletions to confirm if the high detection 

observed in the samples could be correlated with a higher VAF compared to the 

rest of the variants. In the analysis of the VAF profile (Figure 25), we observed 

that the vast majority have a VAF of less than 0.5 . This profile, which is similar 
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in both groups, is an indicator that the mutations occur in a low fraction. 

Furthermore, the profile of mutations that we expected to find in our hypothesis 

was corroborated by these low results in the VAF. 

 

 

 

Figure 25. VAF profile for the total of deletions on A) Adult sample and B) embryo 
sample. X- axis represents the VAF that goes from 0 to 1, and the Y axis represents 
the number of deletions, that ranges from 0 to 2,500 in both barplots, A and B.  
 
 
We further investigated the length distribution to determine if the deletions 

revealed a particular pattern in this area. The results (Figure 26) showed how 

the vast majority of the deletions were around 0-500bp. Within this range, two 

peaks of deletions were observed in the case of adults in the fields around 0-

25 bp and 200 bp; this last peak was also present in the case of embryos. Both 

samples, with a higher degree in adults due to the accumulation of mutations 

along time, showed a drastic drop in the number of deletions around 500bp.  

Based on our experience in the field of detecting somatic mutations in cancer, 

we presumed that some peaks may be due to methodological reasons 

(i.e.,library size or read length), as some information is used by most callers to 

make predictions of mutations. Therefore we have compared our results with 

the ones reported by the same variant callers from Chronic lymphocytic 

leukemia (CLL) samples, that reported approximately a similar library size and 
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read length. A similar peak pattern was also observed in CLL samples. 

Therefore we confirmed their presence for methodological reasons. 

 

 

 

 
Figure 26. Length distribution for the total of deletions on A) Adult sample and B) 
embryo sample. X- axis represents the length of deletions in pairs of bases (bp) that 
goes from 0 to 1,000; and the Y axis represents the number of deletions, that ranges 
from 0 to 200 in both barplots, A and B. 
 
 
To detect if there was any over-mutated region in the genome, in addition to 

the distribution of the start of the deletions, we also studied the recurrence of 

the deletions across the samples (Figure 27). We could observe how there is a 

considerable accumulation of mutations showing a more significant 

recurrence in the sample of adults than in embryos. The highest value is six 

samples of the nine totals in the case of adults, while in embryos, we found a 

case that is up to seven samples out of the nine. 
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Figure 27. Circular genome representation (Krzywinski et al., 2009) of the 
recurrency of deletions for each tissue on A) Adult sample and B) Embryo samples. 
The red lines mark the deletions that we find in each of the three tissues that we 
analyze for each wild-type mouse. The blue histogram represents the total number 
of deletions detected across the entire genome in the different tissues, a total of nine. 
We can see how the number of variations is higher in adults than in embryos, as well 
as the recurrence of specific deletions, without reaching an event that is in the total of 
all tissues. 
 
 
 

2.4 Study of Pgbd5 KO mice vs WT mice 
Following what we know about Pgbd5 related to deletion variants we 

expected to find deletions that integrate two motifs on each point of 

breakpoint. For this reason we focused our analysis on deletions higher than 

24bp. 

Centring our attention on the length of deletions, we observed a significant 

difference between the distribution of the length of deletions in WT vs. KO 

mice, in adults and embryos. In the case of adults (Supp. Figure 2), we worked 

with a total of 27,856 mutations between the two KO and WT groups. We 

observed that there was a significant difference in the window range of 50-

400 bp. This difference leads to an increase in the number of mutations in 
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favour of the WT samples. In the case of the embryos (Supp. Figure 3), the 

number of mutations studied was 8.313, which is lower than in the adult 

scenario. In this group, we found a significant difference in the window range 

of 150 to 550 bp. Unlike the adults, this difference was unexpectedly in favor 

of the KO samples. 

  

In summary, through this analysis, we found significant differences in the total 

length distribution of deletions between WT and KO groups, and an 

enrichment of deletions with lengths around 200-300 bp following what was 

previously known about PGBD5-related deletions. 

For the subsequent analysis of these deletions we decided to choose a length 

of deletion that would encompass these significant results for all the samples. 

Thus, we selected the consensus length of 150-400bp for both adult and 

embryo.With this criterion, we obtained: 9,149 mutations on adult wild-type, 

7,440 mutations on adult KO, 1,625 mutations on embryo wild-type, and 3,172 

embryo KO. 

 

2.5 Identification and analysis of genes and genomic 
intervals 
In an attempt to elucidate the role of the selected rearrangements, we 

investigated the genes and genomics intervals that are somatically rearranged 

in wild-type versus knockout tissues. 

On the side of genes, we first crossed the selected mutations with genomic 

annotations - NCBI genes (see methods section 2.2.4), using the intersect 

command from the bedtools suite. Furthermore , we studied those genes that 

are found exclusively in WT to determine ifDNA rearrangement affects genes 

that occur recurrently in independent individuals and diverse brain regions. 

To do this, we filtered down genes that are rearranged in at least two out of 
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the three individual mice and loci that are rearranged in at least two out of the 

three brain regions. Through this analysis, we found genes that are exclusively 

mutated in WT and KO, for both groups , on the three scenarios (Figure 28). 

 

 

 
Figure 28. Venn diagram plots of mutated genes in A) Total samples , B) At least 
two mice ,and C) At least two tissues. 
 

We focus the attention on those genes that have at least one rearrangement 

affecting their exons (Figure 29).  

Only 31 mutated genes were found affecting coding regions. Among the ten 

genes with exonic rearrangements present in exclusivity on WT samples , we 

found four that were related to cell development (Dazl), nervous system 

development (Ntng2, Traf3ip1) and embryo development (Prkra). 
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Figure 29. Venn diagram plot for mutated genes only affecting on coding regions 
 
On the side of genomics intervals, following the same procedure as in the 

previous section with the genes, we studied those genes that were exclusively 

found in WT. We also studied if its DNA rearrangement affecting genes occur 

recurrently in independent individuals and diverse brain regions (Figure 30). 

Through this analysis, we found genomic intervals exclusively mutated in WT 

and also KO, for both groups, and three scenarios. The regions have been 

created dynamically through the list of mutations contained in each group, 

with a static window size of 3Mb. For each mutation entry we had in the file 

we generated the window, and we observed how many mutations those 

windows covered. 
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Figure 30. Venn diagram plots of mutated regions in A) Total samples , B) At least 
two mice and, C) At least two tissues. The results for each group should be read 
clockwise. Example: graph A group Adult KO + Adult WT, have the values 513/622. This 
means that the result 513 belongs to the group Adult Ko and the 622 to the group Adult 
WT. 
 

Below we turned our attention on those unique groups, both genes and of 

region intervals, for WT and KO within the adult and embryonic groups. With 

this, we observed not only the differentiation between WT and KO within 

each group, but also the unique characteristics of the embryonic groups that 

had continuity and were present in the adult group too. 

  

The first objective was to look at the overall picture of how both genes and 

regions were distributed or linked to a particular tissue or mouse. The heatmap 

graphs were divided by tissue and mouse sample; thanks to the mutation rate 

described at the top of the graphs, we could verify that for both cases, genes 
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and regions, there was no clear relationship either by the tissue or by a 

particular mouse. It is worth mentioning that we didn’t get any result for one 

of the adult KO mice olfactory bulb sample due to low coverage. 

We then centered our attention on the top 20 genes and genomic regions of 

each group and studied their effect thanks to the variant effect predictor.  

First of all, in the study of the genes (Supp. Figure 4 ; Supp. Figure 5 ; Supp. 

Figure 6 ; Supp. Figure 7) , we checked that when comparing the Adult and 

embryonic samples, both for KO and WT, there is no gene that is prolonged 

between the groups. In this scenario, we also analyzed the effect of the 

mutation thanks to the effect predictor of the We were able to observe that 

most of the mutations were in intronic areas. These also didn't cover any 

relationship with a particular tissue or mouse. Secondly, we studied the 

genomic region intervals (Supp. Figure 8 ; Supp. Figure 9 ; Supp. Figure 10 ; 

Supp. Figure 11). A key point to take into account for the evaluation of the 

results is that the coordinates are not the same across the groups due to the 

practice for the formation of the regions, discussed above. When we observe 

the regions highlighted in adults and in embryos, for each KO and WT group, 

we observed that in this case there are regions that are shared between them. 

In the case of the KO group, there are a total of 4 regions composed by: 

chr5:18,000,000- 21,000,000, chr8:20,000,000-24,000,000 , chr3:5,200,000-

8,200,000 ,and chr16:54,000,000-57,000,000 . In the case of the WT group we 

see that they are a total of 5 regions composed of: chr9:28,000,000-32,000,000; 

chr5:6,216,000-9,216,000, chr3:140,000,000-143,000,000 , chr11:8,500,000-

11,500,000 ,and chr5: 6,200,000-9,200,000.  

Accordingly, we developed a functional analysis with the variant effect 

predictor to study regions scenario. The results showed that most of the 

regions were in intronic areas, and also not cover any relationship with a 

particular tissue or mouse. 
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2.6 Detection of motifs around breakpoints 
As mentioned in the previous study, deletions related to Pgbd5 revealed 

significant enrichment of PGBD5-specific signal sequences motifs at the 

breakpoints of PGBD5-induced tumor structural variants. When we studied if 

the mutations that affected the above mentioned genes show any different 

sequence motifs at their breakpoints, no significant results were found.  

 
2.7 Functional enrichment analysis of genes affected by 
pgbd5-dependent deletions 
To test if rearranged mouse brain genomic loci exhibited distinct Pgbd5-

dependent and/or independent functional associations, we took the genes that 

are only mutated from each group and performed a functional analysis. 

Through this analysis, we found that there is a neuronal development gene 

ontology related to WT mutated genes in contrast with KO mutated genes, this 

scenario is only represented on adult samples. 
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Following the flow of the methods and results sections, the discussion has 

been also split into two blocks; the first one is related to the development of 

SMuFin2, an standalone reference-free strategy for the identification of 

somatic genomic variation; and the second is focused on the study of somatic 

DNA rearrangements induced by Pgbd5 during brain development and adult 

state. Following the same structure, this thesis contributes to science in two 

different ways: one corresponds to the generation and improvements of 

approaches for genome analysis, which can help the community to have a more 

accurate methodology for the incorporation and interpretation of genomic 

analysis in basic research and clinical practice. ; and the application of these 

methodologies to characterize and understand the landscape and the role of 

somatic variation in neuronal development in mammals. 
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1. Development of a computer-implemented and 
reference-free strategy for identifying variants in 
nucleic acid sequences 
 

 

 

As described in the introduction, the identification and interpretation of the 

broad spectrum of potential variation within genomes, affecting from single 

nucleotides to large chromosomal rearrangements, requires a myriad of 

different variant callers. As each variation type and size impose different 

searching strategies through the sequencing reads.To this end, this PhD project 

proposes SMuFin2 algorithm as a comprehensive and highly scalable solution 

with the following advantages: (i) identifies a wider range of genetic variants 

in a single execution; (ii) achieves base-pair resolution; (iii) and detects the 

presence and insertions of non-human sequences, such as viruses. 

 

This PhD includes the design and implementation of a computationally highly 

efficient reference-free strategy (described in Patent: A computer-

implemented and reference-free method for identifying variants in nucleic 

acid sequences. NUM: WO 2018/007034) to process NGS reads from two 

different samples (states) to identify and isolate all potential changes between 

them in the form of aligned read blocks of aproximately 250 nt long. This 

constitutes a highly efficient and independent module, where different 

algorithms can be plugged providing different types of outputs. For example, 

also as part of this thesis, a preliminary module has been added for the 

identification of somatic variants from the comparison of normal and tumor 

genomes. These two modules together constitute SMuFin2, which 

demonstrates great potential for the accurate identification of all types of 
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somatic variation, including the exact insertion position for cancer-related 

viruses. But the versatility that this strategy confers opens path to additional 

implementations in scenarios besides the identification of somatic genetic 

variants, by processing these blocks differently. For example, for the analysis 

of RNAseq data, a researcher would need to change the internal thresholds, 

and add a module to answer specific questions regarding the differential 

expression of genes, and/or the detection of different forms of splicing. This 

NGS analysis platform has easy access to tune and change the different 

thresholds and decisions made during the process, making the adaptation to 

other needs more feasible.  

 

Of note, the development of this NGS read analysis platform and SMuFin2 

represent an efficient example of close collaboration between computer and 

life-science groups. With the goal of developing an application with the 

intention of maximizing the efficiencies of algorithm and implementation, 

Jordà Polo (from the group of David Carrera, BSC) was devoted to the 

computational efficiency of the process, whereas my specific contribution to 

this project has been the design of the algorithm, and its validation in the form 

of SMuFin2 against real cancer and normal genome sequences. This close 

collaboration has proven to be crucial to address the development of 

applications that require a close interplay between implementation and 

algorithm.  

As to computer efficiency, this analysis platform excels in minimizing time and 

energy consumption. Scalability is one of the main limiting factors in genomic 

research considering the current amount of petabytes of data that we are 

already facing up and even further, with the expected wide deployment of 

sequencing to millions of genomes that we will experience in the following 

decade. At this point scalability becomes from a highlight to a necessity in the 

life-science community, which is not addressed by many commonly used 
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programs for genome analysis. Consistent with this notion, SMuFin2 

performance in a median sample patient with 30x coverage, using 8 nodes of 

Marenostrum 4, requires 14,7 CPU hours and 4,9 kWh consumption (section 

1.3 SMuFin2 implementation). Variant identification in the complete PCAWG 

dataset (2,856 pairs of healthy-tumor samples) was performed on the group 

using 16 nodes of Marenostrum 3 and entailed a 425,280 CPU hours and 

148,848 kWh consumption. The exact same analysis but implemented with the 

novel SMuFin2 algorithm generated in this project would have encompassed 

a total expense of 39,072.6 CPU hours and 13,024.2 kWh. Thereafter, SMuFin2 

represents a giant leap in computational scalability by providing a 12-folds 

reduction in computational resources and, as SMuFin2, constitutes the most 

appropriate tool for genetic variant identification in large-scale consortiums. 

To facilitate the broad deployment of SMuFin2 , we considered alternative 

scenarios besides cloud or HPC computing. As a result, it can be implemented 

and executed in a workstation computer, which is a relevant framework taking 

into account privacy policies in genomic data. Of note, anticipating the current 

trend to promote clinical translation of genomic research, our workstation 

version could be implemented in small laboratories or clinics. The 

computational efficiency of the methods used in variant identification is in 

response to the growing demand for genome analysis, a crucial factor not 

found in all current variant callers.  

 

The strategy behind SMuFin2 is expected to contribute with additional 

advantages for the identification and classification of somatic variants, 

compared with other available variant callers. On one hand, SMuFin2, 

although it accepts aligned BAM files as input, uses the reads directly, as in 

FASTQ files. In this way, the method is not subjected to any pre-aligned file 

with an specific format or program performance (in this case BWA for the 

BAM file), which makes it less dependent on changes of these alignment 
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programs, as it happened with the most recent of the BWA program, with 

changes that required adjustments in all reference-dependent variant callers. 

In addition, this pre-alignment step involves further limitations: (i) it requires 

time and computing resources. On average, BWA takes approximately 2d ays 

to align a 30x NGS sequenced whole genome, using 4 CPUs (Yung et al., 2017), 

(ii) the state-of-art and most widely tool used for pre-alignment is BWA, and 

hereby all variant callers, despite of their particular features, suffer from the 

same alignment errors, limiting the availability of alternative strategies to 

combine with, and to increase the efficiency of approaches that use multiple 

variant callers. (iii) the alignment of reads containing somatic or polymorphic 

variants relative to the reference genome, are expected to align with low 

quality or to be misaligned, depending on the type and size of the variant. In 

particular, reads with structural variants are poorly mapped by BWA, 

compared with reads covering one single nucleotide variant. (iv) Following the 

previous point, non-human DNA sequences (viruses, for example) present on 

the sequenced genome, will not be aligned to the reference genome, and will 

not be considered in the study, unless is specifically captured. On the other 

hand, reference-free methods do not depend on prior pre-alignment steps and 

therefore are not subjected to these limitations.  

In order to gain detection and classification resolution , the strategy behind 

SMuFin2 pays particular attention to the alignment region where the variant 

is represented. Having a complete and properly aligned catalogue of the reads 

around a given variant is key for its identification and proper classification 

(Figure 17). Alignment is performed considering the consensus sequence of the 

block against that of a single read. This gain in alignment quality occurs, not 

only for the blocks that contain mutations in regions that belong to the 

reference human genome, but also for those not present in the reference 

genome, mainly corresponding to viral genomes. Of note, considering the large 
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genetic variability in viruses, this advantageous strategy sets SMuFin2 apart 

from its competitors. 

 

Indeed, SMuFin2 shows a high potential performance in the identification of 

virus presence and insertions as our preliminary analysis shows (see 2.1 of the 

results section). In both in-silico genome and in Pan-Cancer data, SMuFin2 

was capable of delineating the inclusion of a virus genome but also provided 

the actual insertion point in the same single execution on an in-silico model. 

To detect viruses, SMuFin2 does not use reference virus genomes as an 

additional step. Insertion detection is done directly, and then those blocks that 

do not align with the human reference genome are aligned against the virus 

database of the user's selection. This approach avoids two of the most common 

issues reported in virus identification tools: (i) the additional alignment of the 

entire sample against a reference genome containing the virus sequence, or the 

creation of a new reference genome with all the viruses, as it is required for 

VERSE (Wang et al., 2015) ; and (ii) the viruses in the real sample have to be 

quite similar to the reference sequence of the viruses, and given their high 

variability, they will not always be able to be detected, this also includes the 

possibility of detecting new viruses that are not contained in the database. 

Based on the last big study published by the working group of pathogens 

within the PCAWG (Zapatka et al., 2020), the strategy used was based on two 

major steps: (1) Virus Detection, using three independently developed 

pathogen detection pipelines that rely on the: 'Computational Pathogen 

Sequence Identification' (CaPSID) (Borozan et al., 2012), 'Pathogen Discovery 

Pipeline' (P-DiP) b (https://github.com/mzapatka/pdip) and 'Searching for 

Pathogens' (SEPATH) to generate a large compendium of viral associations 

across 38 cancer types.; (2) Virus integration sites analysis: A subset of viral 

candidates identified to be present in tumor samples by the CaPSID analysis 

pipeline was selected for the detection of viral integration events using the 
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VERSE algorithm. SMuFin2’ functionality would cover and provide additional 

information within these two steps, incorporating new ones. For example, 

SMuFin2 can use the original sample without having to first filter for those 

reads misaligned with the reference genome. Importantly, in general, SMuFin2 

would fulfill the two steps of the strategy in a single execution, by evaluating 

the hash table of SMuFin2, we can directly detect reads (k-mers) in the tumor 

sample that have no match on the normal genome, likely corresponding to 

non-human sequences. This allows us to potentially identify the entire viral 

sequence that has integrated adn, by adding additional features, be able to 

assemble those fragments into complete integrated (viral) sequences. On the 

other hand, manual inspection of the results of the preliminary module for 

block processing, show that the identification of reads that contain human and 

non-human k-mers allow are informative of the exact insertion point within 

the genome. Therefore, SMuFin2 is potentially useful to complement current 

efforts towards the characterization of viral integrations in tumor genomes 

and to investigate their role in tumor formation and progression.  

 

The organization of the data within SMuFin2, in the form of hashtables, results 

in highly efficient storing of the k-mers and their corresponding reads. This 

format enables us to save other read features along with the read id. The 

analysis of the structure of these hashtables, beyond providing direct variant 

candidates in the form of blocks, can also provide additional information 

regarding the sample. A prevalent scenario is that researchers have an 

imprecise knowledge about the coverage and sequencing errors, as these are 

strongly dependending on the quality of the biological sample. This 

information is usually obtained using external software that is based on a pre-

alignment step of the sample, such as BWA or Alfred (used in the mouse 

project, see Section 2.1). By calculating the frequency of occurrence of k-mers 

across the entire hashtable, SMuFin2 is able to have a quite precise estimate of 
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the real coverage of the sample. Moreover, we can estimate the sequence error 

rate of a particular sample by counting the fraction of unique k-mers, which is 

expected, in most cases to correspond to sequencing errors. This estimation 

will also be dependent on the sample, as tumor samples with a high degree of 

heterogeneity can have a larger fraction of variants corresponding to low cell 

fractions and can be taken as sequencing errors. These observations not only 

give a much comprehensive overview of the input data being analysed, but 

they are also crucial to apply the most appropriate filters to precisely identify 

the genetic variants that we are interested in.  

Potential users of SMuFin2 cover a broad range of expertise in computational 

analysis. We addressed this by generating a versatile set of output results that 

should attain the needs of our diverse candidate users. On one hand, we 

provide output files in the formats accepted and used within the community, 

e.g.VCF format. Thus, the results can be easily compared with the rest of the 

variant callers available in the field. As a very useful feature, SMuFin2 is able 

to also generate an equivalent output file in html format, reconstructing the 

region that contains the somatic variant, as well as other types of sequence 

information, counters, etc. that enabled its particular identification. This 

provides an intuitive and alternative way of evaluating the quality and 

confidence of the variant call, which is particularly relevant in clinical contexts. 

  

In summary, SMuFin2 excels in enlarging the landscape of genetic variants 

identified without computationally compromising the viability and costs of 

the analysis, that suits for current and upcoming large volumes of sequencing 

data within biomedical research and, slowly, also within the clinical practice. 

In this last environment, the low cost, as to time and computing resources 

provided by SMuFin2 is also crucial to give a rapid clinical response to the 

patient. Furthermore, Introducing a new strategy for the detection of somatic 

variants makes SMuFin2 well suited for evaluation for greater accuracy for 
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overlapping calls. The recall of overlapping calls varies depending on the 

combinations of the specific algorithms and not the combinations of the 

methods used in the algorithms (Kosugi et al., 2019). 
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2. Landscape of somatic variation in neural 
development and the role of Pgbd5 
 
 
 
Non-cancer-related somatic mutations that occur during development may 

affect cell proliferation, as is the role of cancer, or may alter cell function 

without causing a proliferative or any other nocive effect. Recent literature 

suggests that somatic mutations might also occur during brain development 

without resulting in a disease status. This poses the question of whether this 

somatic genetic diversity could foster functional diversity among brain cell-

types. Although it is known that somatic variation can play a role on neuronal 

development no extensive analysis has been done to characterise the landscape 

of somatic variation in mammal neural tissue. In this thesis we have covered 

part of this area by studying the landscape of variations in mammals on 

neuronal development, in order to understand, in particular, those arising from 

the activity of the PGBD5 gene. 

 

The characterisation of somatic variants in neural tissues is particularly 

challenging, when compared to the tumor genomes. This is due to the expected 

high tissue heterogeneity, and the consequent low coverage (VAF) of somatic 

variants, which are expected to be represented in low fraction of cells.  By 

combining extensive sequencing and deep variant calling analysis we have 

partially overcome these limitations. 

We first ensured that this methodology was able to detect different types of 

somatic variants from healthy, non-tumoral, tissue. Although our 

methodology does not capture a large fraction of somatic variants, represented 

by undetectable low cell fractions, we were able to identify an extensive 
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catalog of somatic variants, likely representative of the entire landscape of 

variation within this tissue.  The variant calling and classification results on wt 

samples, as representative of the landscape of somatic variation in neural 

tissues in mice, show a wide range of types of variants, covering from indels, 

to large structural variants (analysis for SNVs is, at this moment, in progress). 

From the comparison of the different fractions of variant types, adult and 

embryo show deletions, as the most predominant type of variant with (86.96%) 

and (73.36%) of all the detected variation, respectively. The types of variants 

are also  different in the two groups. In the case of adults, we detected 

insertions (5.45%), duplications (3.95%), and inversions (2.32%); while 

in  embryos, we have duplications (19.52%), inversions (4.64%), and insertions 

(1.77%). It is important to note that the percentage of duplications that we find 

in the embryo samples is 5 times greater than what we find in the adult 

samples, being the number of mutations higher in embryos (929) than in adults 

(749) when we have previously mentioned that the number of total mutations 

was higher in the last ones.These results start giving us an overview of the 

landscape of somatic variation in neural tissues, and the differences 

between  embryos and adults. For example, the number of mutations was 

three-fold higher in adult tissue samples (32.190) than in embryos (9.795). This 

phenomenon may be due to the accumulation of somatic variations over time 

that the adult tissues have undergone. Further studies are needed to evaluate 

whether these differences imply that the mechanisms for genome remodeling 

during embryogenesis are different from those present in later stages of the 

organism. Alternatively, this difference can also derive from our detection 

possibilities, i.e. to the different forms of clonal expansion of different cell 

types, accumulating specific forms of somatic variation.   After having an 

overview of the general landscape of somatic variation in neural tissues, and 

the potential differences between different stages of the organism, our next 

goal was to determine which fraction of this variation was due to the activity 
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of Pgbd5 gene, using the comparison between the Pgbd5-Knock-out and wt 

samples.  

 

We focused on the deletions for the comparison of wild-type and knockout 

samples to determine the role of Pgbd5 in the catalog of somatic variation. This 

decision was due to the predominant profile presented in both adult and 

embryonic samples in the WT group, and  the previous study related to Pgbd 

activity 5 (Henssen et al., 2017b) of the type of variant associated with its 

activity. As the first exploration on wild-type mice, we observed that a priori 

there is no significant difference between tissues or samples (Figure 22). With 

this, we conclude that the deletions are not associated with a specific tissue, 

and we corroborate that no mouse specimen causes a deviation of these results. 

Regarding the VAF profile(Figure 23), it was similar in both groups. The 

majority of the deletions were below the value of 0.25, which corresponds to 

the pattern we expected from somatic variability in non-tumoral tissues. We 

then investigated the length distribution and concluded that the profile in both 

groups was similar, with a drastic drop in the number of deletions of 500bp 

(Figure 24). This last, we could confirm that it was due to methodological 

causes because a similar peak pattern was also observed in CLL samples that 

reported approximately a similar library size and read length. On the other 

hand, we did not find any region of the genome that was highly recurrent 

(Figure 25). 

On the Study of Pgbd5 KO mice vs WT mice, we observed  statistically 

differences in the total distribution of the length of deletions between WT and 

KO. Surprisingly, these differences were opposite in the groups. While in 

adults the increase in variation was in favor of WT (Supp. Figure 2), in embryos 

it was just the opposite and was in favor of the KO group (Supp. Figure 3), in a 

similar windows length. Also, we found an enrichment in deletions of  around 

200-300 bp, in concordance with preliminary data available for PGBD5-related 
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deletions (Henssen et al., 2017b) For the subsequent analysis of these deletions 

we decided to select a consensus length of deletion  of 150-400bp for  both 

adult and embryo. 

With this group of significant deletions, we identified those genes affected by 

the variations and those genomic intervals with more presence of variations 

for each one of the groups (Adult-KO, Adult-WT, Embryo-KO, and Embryo-

WT). We were able to identify those that were exclusive to each group, as well 

as to analyze those that were common among the groups and see their 

dynamics. Note that of the total only 31 mutated genes were found affecting 

coding regions. Among the ten genes with exonic rearrangements present in 

exclusivity on WT samples, we found four that were related to cell 

development (Dazl), nervous system development (Ntng2, Traf3ip1) and 

embryo development (Prkra). Even follow up analysis was carried out to 

identify the mutated regions and genes, no correlation was found among the 

deletion profiles and any particular tissue or mouse.  

Once the deletions of interest were selected, further studies focused on the 

functional analysis to better understand how the underlying biological 

processes correlated to the mutations. Accordingly, we selected the genes that 

were only mutated from each group (Adult-KO, Adult-WT, Embryo-KO, and 

Embryo-WT) (Figure 26). We found that there is a neuronal development gene 

ontology related to the genes that are mutated in the WT samples in contrast 

with the genes mutated for the KO. Interestingly, this scenario is only 

represented on adult samples and not in embryos. This phenomenon may be 

due to the fact that when embryo samples are collected, they are in the primary 

development stage, where the cells are actively dividing and the amount of 

cells increases drastically. Thus, many of the cells carrying the mutations 

observed in the adult mice are actually eliminated on embryos during this 

stage. It is  interesting to highlight that the genetic classification that 
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accompanies the production of neuronal cells during embryogenesis is part of 

the neuronal selection process.   

Taking the whole analysis as a unit, we cannot decide on either of the two 

models intended for such a physiological process. Model1; the mechanism 

would be analogous to RAG1/2-mediated rearrangements of the 

immunoglobulin receptor genes, where Pgbd5 would induce deletions or 

inversions of exons in one or few genes, leading to the production of new 

exon-exon junctions. Model 2; Pgbd5 would act on a diverse set of genetic loci, 

including genes or intergenic regulatory sequences, which would be identified 

by the presence of conserved sequence features. The second model is 

analogous to Barbara McClintock's Activator-Dissociator transposition 

mechanism, and may indeed involve specific mouse sequences that are 

mobilized or rearranged by Pgbd5 (Comfort, 2001) (McClintock B, 1947). The 

genomic loci, genes and SV features may be diverse, but would all share a 

common set of DNA sequence substrates, such as for example transposon 

inverted terminal repeats (ITRs). 

 

In summary, the objective of the detection and analysis of somatic DNA 

rearrangements induced by Pgbd5 has been fulfilled with promising results. 

Dr. Kentsis group is currently re-sequencing a list of candidate genes and 

regions in more than ten new samples to confirm the findings and gain 

statistical power. In particular, next steps will include the design of a custom 

Nimblegen hybrid capture probe set to re-sequence the samples at high depth, 

as well as to continue working with RNA-seq results to see if there is any 

correlation with the above described rearrangements. 

 

Considering the promising results that we obtained with the deletions, we 

decided to expand the spectrum of mutations to be analyzed and not just 

concentrate on the deletions. Another question that remains unclear is why 
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the mice brain exhibits more somatic rearrangements than control tissue 

(blood/liver). To answer this question we will consider running the same 

variant callers but inverting the cases by controls, which would allow us to 

verify if the neuronal tissue presents a higher number of mutations than the 

blood samples. This could be due to two hypotheses: i) methodological because 

we cannot detect it due to its low cell-fraction, or ii) biological, because one of 

the tissues has less amount of variations. Normal preliminary results for blood 

sample deletions indicate that we have been able to corroborate that the 

number of deletions identified so far is lower than in neural tissues. 

At the same time, by carrying out a characterization of all the samples (cases 

and controls), we will be able to confirm that all the mutations that we find in 

the samples of neural tissue are exclusive to this tissue, and we have no false 

positives in our results. In this approach, the procedure we will start by 

characterizing all the tissues. Following this, we will validate if the variations 

detected in the neuronal samples do not contain false positives. Once we have 

the variant landscape, we will reanalyze all types of variants with the same 

pipeline shown in the results section to identify all those variations that may 

be significantly associated with Pgbd5 activity. 
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Development of a computer-implemented and reference-free 
strategy for identifying variants in nucleic acid sequences  
(i)A reference-free and scalable algorithm, called SMuFin2, has been developed 

for the identification of somatic variants in tumoral samples.  

 

(ii)SMuFin2, a reference-free based startegy, is scalable and high efficient. It 

can be implemented into the normal research activity of cancer genomics, in 

contrast to what was believed due to the high computing demand generated 

by current sizes of data and expecting larger datasets.  

 

(iii) The preliminary tests done with in SMuFin2 has shown the potential to 

detect a wide range of somatic variation, including insertions of non-human 

DNA on tumoral sample. 

 

Landscape of somatic variation in neural development and the role of 
Pgbd5  

(i) The application of current tools for the identification of somatic variation in 

cancer can be applied to study somatic physiological modifications in neuronal 

tissues. 

(ii) WT and Pgbd5 KO present a difference in the total distribution of the 

deletion lengths, increasing in number of mutations in adult mice and 

embryos, respectively. 

(iii) The study of genetic ontology on selected genes shows a neuronal 

development gene ontology related to WT on Adult samples. 

 (iv) Taken together we identify a Pgbd5 dependent somatic activity in 

different neural tissues. 
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[core] 
# Length of k-mers, which is the size of the substrings that reads will be 
# split into in order to be analyzed. The recommended value is in the range of 
# [28, 32]; currently only k-mers of up to length 32 are supported. 
k = __K-MER_LENGTH__ 

# Partitioning is the scaling mechanism that allows distributing the 
# computation, splitting data into different chunks that can be processed 
# independently. Partitions can be adapted to run sequentially or in parallel, 
# in a single or multiple machines. While increasing the number of partitions 
# lowers the peak amount of memory, it also increases the amount of duplicate 
# data during the filter stage, which in turn may incur in slower merging. 
# 
# «num-partitions» represents the total number of partitions, while «pid» is 
# the current partition that will is processed in a particular execution, in 
# the range [0, num-partitions). 
num-partitions = __NUM_PARTITIONS__ 
pid = 0 
num-loaders = 8 
num-storers = 16 
num-filters = 28 
num-mergers = 16 
num-groupers = 16 
# Input format for normal and tumoral samples. Two formats are available: 
# - fastq: gzipped FASTQ files (recommended) 
# - bam: aligned BAM files with corresponding BAI index (experimental). 
input-format = bam 
# Paths to normal and tumoral input files. For multiple files, wildcard 
# expansion is supported, e.g. «file-*.fq.gz». 
#filter quality check 
input-normal = /path/to/normal/input/files 
input-tumor = /path/to/tumor/input/files 
output = /path/to/output/dir 
data = ./data 
check-quality = false 
 
[prune] 
# Desired false-positive (FP) probability for both bloom filters, «all» and 
# «allowed». Lower FP rates involve a higher number of hash functions to be 
# calculated, which translates into additional computation to create and 
# access the bloom filters. Note that this is only used as a performance 
# tradeoff; a lower rate doesn't have any impact in the results since later 
# filters address and discard FPs. 
false-positive-rate = 0.05 
 
# Number of expected items in the bloom filters. Higher capacity translates 
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# into additional memory. The «all» bloom filter should be approximately an 
# order of magnitude larger than the «allowed» bloom filter. 
all-size = 100000000000 
allowed-size = 10000000000 
 
 
[count] 
# The count cache keeps track of k-mers that are seen only once so as to not 
to 
# include them in the tables, reducing the overall memory footprint. It's 
# enabled by default and recommended when running standalone counts, but it 
# can be disabled when running with prune. 
enable-cache = false 
 
# Total number of expected items in the cache and table; generally speaking, 
# the cache contains stems seen once or more, while the table contains stems 
# seen more than once (so it's smaller). Sizes may need to be adjusted 
# depending on the input so as to not to over or under-provision the memory. 
# E.g. an input with ~4,250 million 80bp reads with a coverage of 60x 
# requires a cache of size 106240000000 and a table of size 12800000000. 
cache-size = 106240000000 
table-size = 12800000000 
 
# Limit exported rows to a particular subset of k-mers that match the following 
# minimum/maximum frequencies. That is, either the normal count or the 
tumoral 
# count of the k-mer is strictly greater than «export-min» and less than 
# «export-max» (both excluded). 
export-min = 0 
export-max = 131072 
max-conversions = 4 
output = __OUTPUT_COUNT__ 
prefilter = true 
 
# Format used to store filtering indexes. Two kinds of formats are supported: 
# - plain: In-memory hashtables that are dumped to disk as simple 
#  space-separated plain text files. 
# - rocks:RocksDB-backed databases, optimized for writing, then compacted for 
#  later stages. 
index-format = rocks 
 
# Number of indexes built for each partition. Increasing the number of indexes 
# can speed up the filter stage, potentially slowing down the merge stage. 
# Should be smaller or equal to the number of filter threads, 
# «core.num-filters». 
num-indexes = 2 
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# Candidate k-mer filtering/selection based on imbalanced absolute counts with 
# the following criteria: at most «max-normal-count» normal k-mers, and at 
# least «min-tumor-count». 
max-normal-count-a = __MAX_NC_A__ 
min-tumor-count-a = __MIN_TC_A__ 
max-normal-count-b = __MAX_NC_B__ 
min-tumor-count-b = __MIN_TC_B__ 
 
# Maximum number of reads per k-mer; k-mers seen in more than «max-reads» 
# different reads are discarded when building the filter indexes. 
max-reads = 2000 
output = __OUTPUT_FILTER__ 
 
[merge] 
output = __OUTPUT_MERGE__ 
 
 
[group] 
# Groups are generated after finding "leader" reads using a window-based 
# technique. A read becomes a "leader" if it contains at least «window-min» 
# candidate k-mers in a window of «window-len» bases. 
window-min = __WINDOW_MIN__ 
window-len = __WINDOW_LEN__ 
 
# Maximum number of reads per k-mer; reads from k-mers with more than 
# «max-reads» reads are dropped from the groups file and marked as such in 
the 
# results. Note that only reads are dropped, no k-mers will be removed. This 
# value should be lower than «filter.max-reads». 
max-reads = 2000 
 
# Estimate number of candidate lead reads, which identify groups. For best 
# performance, this value should be slightly higher than the actual number of 
# candidate leads. 
leads-size = 12800000 
output = __OUTPUT_GROUP__ 
 
[rocks] 
# Number of RocksDB background threads. High priority threads flush 
memtables 
# to disk, while low priority threads compact sstables. 
num-threads-high = 10 
num-threads-low = 10 
block-cache-size = 12884901888 
block-size = 16384 
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# vim: ft=dosini 
-------- 
Supp Figure 1. SMuFin2 configuration file. All the paths and variables are configured 
in advance to facilitate the user. 
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Supp. Figure 2. Comparison of number of deletions per length between WT and 
KO Adults samples. 
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Supp. Figure 3. Comparison of number of deletions per length between WT and 
KO embrionary samples. 
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Supp. Figure 4. Mutation rate and Heatmap for Top20 genes mutated 
only in Adult KO.  
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Supp. Figure 5. Mutation rate and Heatmap for Top20 genes mutated only in 
Embryo KO. 
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Supp. Figure 6. Mutation rate and Heatmap for Top20 genes mutated 
only in Adult WT.  
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Supp. Figure 7. Mutation rate and Heatmap for Top20 genes 
mutated only in Embryo WT.  
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Supp. Figure 8. Mutation rate and Heatmap for Top20 mutated 
regions only in Adult KO.  
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Supp. Figure 9. Mutation rate and Heatmap for Top20 mutated 
regions only in Embryo KO.  



   

Supplementary material 167 

 

Supp. Figure 10. Mutation rate and Heatmap for Top20 mutated regions 
only in Adult WT. 
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Supp. Figure 11. Mutation rate and Heatmap for Top20 mutated regions 
only in Embryo WT.  

 

 

 

 

 

 



   

Supplementary material 169 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 170 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
PUBLICATIONS 



   

Publications 171 

COLLABORATION 1  
  

Title: Adaptation to environmental factors shapes the organization of 

regulatory regions in microbial communities 

 

Authors: Leyden Fernandez, Josep M Mercader, Mercè Planas-Fèlix, David 

Torrents 

Journal: BMC Genomics 

Impact factor: 3.986 

Citations: 9 

  

Contribution: Ph.D. Candidate Mercè Planas-Fèlix contribution to this study 

involved the regulatory network analysis of transcription factor binding sites, 

and has been involved in drafting the manuscript.  

 

 

 

 

 

 

 

 

 

 

 



 172 



   

Publications 173 



 174 



   

Publications 175 



 176 



   

Publications 177 



 178 



   

Publications 179 



 180 



   

Publications 181 



 182 



   

Publications 183 

 
 
 
 
 



 184 

COLLABORATION 2 
  

Title: Metformin alters the gut microbiome of individuals with treatment-

naive type 2 diabetes, contributing to the therapeutic effects of the drug 

  

Authors: Hao Wu, Eduardo Esteve, Valentina Tremaroli, Muhammad Tanweer 

Khan, Robert Caesar, Louise Mannerås-Holm, Marcus Ståhlman, Lisa M 

Olsson, Matteo Serino, Mercè Planas-Fèlix, Gemma Xifra, Josep M Mercader, 

David Torrents, Rémy Burcelin, Wifredo Ricart, Rosie Perkins, José Manuel 

Fernàndez-Real, Fredrik Bäckhed 

  

Journal: Nature medicine 

Impact factor: 32.621 

Citations:392 

  

Contribution: Ph.D. Candidate Mercè Planas-Fèlix contribution to this study 

involved the study and analysis of 16s data from patients. This involved, the 

design and subsequent analysis of the study with the 16s samples, the results 

of which led to the new focus of the article. 

  

  

 

 

 

 

 



   

Publications 185 



 186 



   

Publications 187 



 188 



   

Publications 189 



 190 



   

Publications 191 



 192 



   

Publications 193 



 194 



   

Publications 195 



 196 

 

 
 
 
 



   

Publications 197 

COLLABORATION 3  
  

Title: Re-analysis of public genetic data reveals a rare X-chromosomal variant 

associated with type 2 diabetes 

  

Authors: Sílvia Bonàs-Guarch, Marta Guindo-Martínez, Irene Miguel-

Escalada, Niels Grarup, David Sebastian, Elias Rodriguez-Fos, Friman Sánchez, 

Mercè Planas-Fèlix, Paula Cortes-Sánchez, Santi González, Pascal Timshel, 

Tune H Pers, Claire C Morgan, Ignasi Moran, Goutham Atla, Juan R González, 

Montserrat Puiggros, Jonathan Martí, Ehm A Andersson, Carlos Díaz, Rosa M 

Badia, Miriam Udler, Aaron Leong, Varindepal Kaur, Jason Flannick, Torben 

Jørgensen, Allan Linneberg, Marit E Jørgensen, Daniel R Witte, Cramer 

Christensen, Ivan Brandslund, Emil V Appel, Robert A Scott, Jian’an Luan, 

Claudia Langenberg, Nicholas J Wareham, Oluf Pedersen, Antonio Zorzano, 

Jose C Florez, Torben Hansen, Jorge Ferrer, Josep Maria Mercader, David 

Torrents 

  

Journal: Nature Communications 

Impact factor: 11.878 

Citations:27 

  

Contribution: Ph.D. Candidate Mercè Planas-Fèlix contribution to this study 

involved structural variant analyses. This involved the hand check and 

validation of each of the structural variants detected, in the BAM files of the 

selected patients. She also participated in the generation of the data to be 

analyzed for the pathways analysis. 

 



 198 



   

Publications 199 



 200 



   

Publications 201 



 202 



   

Publications 203 



 204 



   

Publications 205 



 206 



   

Publications 207 



 208 



   

Publications 209 



 210 



   

Publications 211 

 
 
 
 
 



 212 

PATENT 
 
Application number: EP16178577.9  

Publication number: WO 2018/007034 

Publication date: January 11th, 2018 

 

Title: A computer-implemented and reference-free method for indetifying 

variants in nucleic acid sequences 

 

Applicant: Barcelona Supercomputing Center – Centro Nacional de 

Supercomputación, Institució Catalana de Recerca i Estudis Avançats, 

Universitat Politècnica de Catalunya. 

 

Inventor: David Carrera Perez, Jordà Polo, Nicola Cadenelli, David Torrents 

Arenales, Mercè Planas 

 

The patent successfully passed the European assessment with the number 

EP17714441.7. 

 

 

 

 

 

 

 



   

Publications 213 



 214 



   

Publications 215 



 216 



   

Publications 217 



 218 



   

Publications 219 



 220 



   

Publications 221 



 222 



   

Publications 223 



 224 



   

Publications 225 



 226 



   

Publications 227 



 228 



   

Publications 229 



 230 



   

Publications 231 



 232 



   

Publications 233 



 234 



   

Publications 235 



 236 



   

Publications 237 



 238 



   

Publications 239 



 240 



   

Publications 241 



 242 



   

Publications 243 



 244 



   

Publications 245 



 246 



   

Publications 247 



 248 



   

Publications 249 



 250 



   

Publications 251 



 252 



   

Publications 253 



 254 



   

Publications 255 



 256 



   

Publications 257 



 258 



   

Publications 259 



 260 



   

Publications 261 



 262 



   

Publications 263 



 264 

 

 



   

References 265 

REFERENCES 

 
Alekseyev, M.A., and Pevzner, P.A. (2007). Colored de Bruijn graphs and the 
genome halving problem. IEEE/ACM Trans Comput Biol Bioinform 4, 98-107. 
Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Aparicio, S.A., Behjati, S., Biankin, 
A.V., Bignell, G.R., Bolli, N., Borg, A., Borresen-Dale, A.L., et al. (2013). Signatures 
of mutational processes in human cancer. Nature 500, 415-421. 
Alexandrov, L.B., and Stratton, M.R. (2014). Mutational signatures: the patterns of 
somatic mutations hidden in cancer genomes. Curr Opin Genet Dev 24, 52-60. 
Alkan, C., Coe, B.P., and Eichler, E.E. (2011). Genome structural variation discovery 
and genotyping. Nat Rev Genet 12, 363-376. 
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local 
alignment search tool. J Mol Biol 215, 403-410. 
Bae, T., Tomasini, L., Mariani, J., Zhou, B., Roychowdhury, T., Franjic, D., Pletikos, 
M., Pattni, R., Chen, B.J., Venturini, E., et al. (2018). Different mutational rates and 
mechanisms in human cells at pregastrulation and neurogenesis. Science 359, 550-
555. 
Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, 
W.W., and Noble, W.S. (2009). MEME SUITE: tools for motif discovery and 
searching. Nucleic Acids Res 37, W202-208. 
Bailey, T.L., and Elkan, C. (1994). Fitting a mixture model by expectation 
maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol 
Biol 2, 28-36. 
Baker, M. (2012). Structural variation: the genome's hidden architecture. Nat 
Methods 9, 133-137. 
Bea, S., Valdes-Mas, R., Navarro, A., Salaverria, I., Martin-Garcia, D., Jares, P., Gine, 
E., Pinyol, M., Royo, C., Nadeu, F., et al. (2013). Landscape of somatic mutations and 
clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A 110, 18250-
18255. 
Bialecki, E.S., and Di Bisceglie, A.M. (2005). Clinical presentation and natural 
course of hepatocellular carcinoma. Eur J Gastroenterol Hepatol 17, 485-489. 
Blumcke, I., Thom, M., Aronica, E., Armstrong, D.D., Vinters, H.V., Palmini, A., 
Jacques, T.S., Avanzini, G., Barkovich, A.J., Battaglia, G., et al. (2011). The 
clinicopathologic spectrum of focal cortical dysplasias: a consensus classification 
proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. 
Epilepsia 52, 158-174. 
Borozan, I., Wilson, S., Blanchette, P., Laflamme, P., Watt, S.N., Krzyzanowski, P.M., 
Sircoulomb, F., Rottapel, R., Branton, P.E., and Ferretti, V. (2012). CaPSID: a 



 266 

bioinformatics platform for computational pathogen sequence identification in 
human genomes and transcriptomes. BMC Bioinformatics 13, 206. 
Boveri, T. (2008). Concerning the origin of malignant tumours by Theodor Boveri. 
Translated and annotated by Henry Harris. J Cell Sci 121 Suppl 1, 1-84. 
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). 
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality 
worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394-424. 
Cameron, D.L., Di Stefano, L., and Papenfuss, A.T. (2019). Comprehensive 
evaluation and characterisation of short read general-purpose structural variant 
calling software. Nat Commun 10, 3240. 
Chen, H., Liu, H., and Qing, G. (2018). Targeting oncogenic Myc as a strategy for 
cancer treatment. Signal Transduct Target Ther 3, 5. 
Chen, K., Chen, L., Fan, X., Wallis, J., Ding, L., and Weinstock, G. (2014). TIGRA: a 
targeted iterative graph routing assembler for breakpoint assembly. Genome Res 
24, 310-317. 
Chen, K., Wallis, J.W., McLellan, M.D., Larson, D.E., Kalicki, J.M., Pohl, C.S., 
McGrath, S.D., Wendl, M.C., Zhang, Q., Locke, D.P., et al. (2009). BreakDancer: an 
algorithm for high-resolution mapping of genomic structural variation. Nat 
Methods 6, 677-681. 
Chen, Y., Yao, H., Thompson, E.J., Tannir, N.M., Weinstein, J.N., and Su, X. (2013). 
VirusSeq: software to identify viruses and their integration sites using next-
generation sequencing of human cancer tissue. Bioinformatics 29, 266-267. 
Chin, L., Andersen, J.N., and Futreal, P.A. (2011). Cancer genomics: from discovery 
science to personalized medicine. Nat Med 17, 297-303. 
Cibulskis, K., Lawrence, M.S., Carter, S.L., Sivachenko, A., Jaffe, D., Sougnez, C., 
Gabriel, S., Meyerson, M., Lander, E.S., and Getz, G. (2013). Sensitive detection of 
somatic point mutations in impure and heterogeneous cancer samples. Nat 
Biotechnol 31, 213-219. 
Cirino, A.L., Lakdawala, N.K., McDonough, B., Conner, L., Adler, D., Weinfeld, M., 
O'Gara, P., Rehm, H.L., Machini, K., Lebo, M., et al. (2017). A Comparison of Whole 
Genome Sequencing to Multigene Panel Testing in Hypertrophic 
Cardiomyopathy Patients. Circ Cardiovasc Genet 10. 
Cock, P.J., Fields, C.J., Goto, N., Heuer, M.L., and Rice, P.M. (2010). The Sanger 
FASTQ file format for sequences with quality scores, and the Solexa/Illumina 
FASTQ variants. Nucleic Acids Res 38, 1767-1771. 
Comfort, N.C. (2001). From controlling elements to transposons: Barbara 
McClintock and the Nobel Prize. Endeavour 25, 127-130. 
Consortium, E.P. (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. 
Science 306, 636-640. 
Consortium, I.T.P.-C.A.o.W.G. (2020). Pan-cancer analysis of whole genomes. 
Nature 578, 82-93. 
Consortium, U.K., Walter, K., Min, J.L., Huang, J., Crooks, L., Memari, Y., McCarthy, 
S., Perry, J.R., Xu, C., Futema, M., et al. (2015). The UK10K project identifies rare 
variants in health and disease. Nature 526, 82-90. 
Cortes-Ciriano, I., Lee, J.J., Xi, R., Jain, D., Jung, Y.L., Yang, L., Gordenin, D., 
Klimczak, L.J., Zhang, C.Z., Pellman, D.S., et al. (2020). Comprehensive analysis of 



   

References 267 

chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat 
Genet 52, 331-341. 
D'Gama, A.M., and Walsh, C.A. (2018). Somatic mosaicism and 
neurodevelopmental disease. Nat Neurosci 21, 1504-1514. 
Datta, S., Bettinger, K., and Snyder, M. (2016). Corrigendum: Secure cloud 
computing for genomic data. Nat Biotechnol 34, 1072. 
de Koning, A.P., Gu, W., Castoe, T.A., Batzer, M.A., and Pollock, D.D. (2011). 
Repetitive elements may comprise over two-thirds of the human genome. PLoS 
Genet 7, e1002384. 
Degner, J.F., Marioni, J.C., Pai, A.A., Pickrell, J.K., Nkadori, E., Gilad, Y., and 
Pritchard, J.K. (2009). Effect of read-mapping biases on detecting allele-specific 
expression from RNA-sequencing data. Bioinformatics 25, 3207-3212. 
Dou, Y., Gold, H.D., Luquette, L.J., and Park, P.J. (2018). Detecting Somatic 
Mutations in Normal Cells. Trends Genet 34, 545-557. 
Duncavage, E.J., Magrini, V., Becker, N., Armstrong, J.R., Demeter, R.T., Wylie, T., 
Abel, H.J., and Pfeifer, J.D. (2011). Hybrid capture and next-generation sequencing 
identify viral integration sites from formalin-fixed, paraffin-embedded tissue. J 
Mol Diagn 13, 325-333. 
Escaramis, G., Docampo, E., and Rabionet, R. (2015). A decade of structural 
variants: description, history and methods to detect structural variation. Brief 
Funct Genomics 14, 305-314. 
Ewing, B., and Green, P. (1998). Base-calling of automated sequencer traces using 
phred. II. Error probabilities. Genome Res 8, 186-194. 
Ewing, B., Hillier, L., Wendl, M.C., and Green, P. (1998). Base-calling of automated 
sequencer traces using phred. I. Accuracy assessment. Genome Res 8, 175-185. 
Farrell, P.J. (2019). Epstein-Barr Virus and Cancer. Annu Rev Pathol 14, 29-53. 
Fernandez, L., Mercader, J.M., Planas-Felix, M., and Torrents, D. (2014). Adaptation 
to environmental factors shapes the organization of regulatory regions in 
microbial communities. BMC Genomics 15, 877. 
Forster, M., Szymczak, S., Ellinghaus, D., Hemmrich, G., Ruhlemann, M., Kraemer, 
L., Mucha, S., Wienbrandt, L., Stanulla, M., Group, U.F.O.S.C.w.I.-B.S., et al. (2015). 
Vy-PER: eliminating false positive detection of virus integration events in next 
generation sequencing data. Sci Rep 5, 11534. 
Gao, S., Hu, X., Xu, F., Gao, C., Xiong, K., Zhao, X., Chen, H., Zhao, S., Wang, M., Fu, 
D., et al. (2018). BS-virus-finder: virus integration calling using bisulfite 
sequencing data. Gigascience 7, 1-7. 
Geisler, J., Touma, J., Rahbar, A., Soderberg-Naucler, C., and Vetvik, K. (2019). A 
Review of the Potential Role of Human Cytomegalovirus (HCMV) Infections in 
Breast Cancer Carcinogenesis and Abnormal Immunity. Cancers (Basel) 11. 
Genomes Project, C., Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, 
H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean, G.A., et al. (2015). A global 
reference for human genetic variation. Nature 526, 68-74. 
Gerstung, M., Jolly, C., Leshchiner, I., Dentro, S.C., Gonzalez, S., Rosebrock, D., 
Mitchell, T.J., Rubanova, Y., Anur, P., Yu, K., et al. (2020). The evolutionary history 
of 2,658 cancers. Nature 578, 122-128. 



 268 

Goldfeder, R.L., Priest, J.R., Zook, J.M., Grove, M.E., Waggott, D., Wheeler, M.T., 
Salit, M., and Ashley, E.A. (2016). Medical implications of technical accuracy in 
genome sequencing. Genome Med 8, 24. 
Gollob, M.H., Jones, D.L., Krahn, A.D., Danis, L., Gong, X.Q., Shao, Q., Liu, X., 
Veinot, J.P., Tang, A.S., Stewart, A.F., et al. (2006). Somatic mutations in the 
connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med 354, 2677-2688. 
Guan, P., and Sung, W.K. (2016). Structural variation detection using next-
generation sequencing data: A comparative technical review. Methods 102, 36-49. 
Henssen, A.G., Koche, R., Zhuang, J., Jiang, E., Reed, C., Eisenberg, A., Still, E., 
MacArthur, I.C., Rodriguez-Fos, E., Gonzalez, S., et al. (2017a). Erratum: PGBD5 
promotes site-specific oncogenic mutations in human tumors. Nat Genet 49, 1558. 
Henssen, A.G., Koche, R., Zhuang, J., Jiang, E., Reed, C., Eisenberg, A., Still, E., 
MacArthur, I.C., Rodriguez-Fos, E., Gonzalez, S., et al. (2017b). PGBD5 promotes 
site-specific oncogenic mutations in human tumors. Nat Genet 49, 1005-1014. 
Hermine, O., Lefrere, F., Bronowicki, J.P., Mariette, X., Jondeau, K., Eclache-
Saudreau, V., Delmas, B., Valensi, F., Cacoub, P., Brechot, C., et al. (2002). 
Regression of splenic lymphoma with villous lymphocytes after treatment of 
hepatitis C virus infection. N Engl J Med 347, 89-94. 
Herrington, C.S., Coates, P.J., and Duprex, W.P. (2015). Viruses and disease: 
emerging concepts for prevention, diagnosis and treatment. J Pathol 235, 149-152. 
Ho, D.W., Sze, K.M., and Ng, I.O. (2015). Virus-Clip: a fast and memory-efficient 
viral integration site detection tool at single-base resolution with annotation 
capability. Oncotarget 6, 20959-20963. 
Hoadley, K.A., Yau, C., Hinoue, T., Wolf, D.M., Lazar, A.J., Drill, E., Shen, R., Taylor, 
A.M., Cherniack, A.D., Thorsson, V., et al. (2018). Cell-of-Origin Patterns 
Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. 
Cell 173, 291-304 e296. 
Hormozdiari, F., Hajirasouliha, I., Dao, P., Hach, F., Yorukoglu, D., Alkan, C., 
Eichler, E.E., and Sahinalp, S.C. (2010). Next-generation VariationHunter: 
combinatorial algorithms for transposon insertion discovery. Bioinformatics 26, 
i350-357. 
Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009a). Bioinformatics 
enrichment tools: paths toward the comprehensive functional analysis of large 
gene lists. Nucleic Acids Res 37, 1-13. 
Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009b). Systematic and 
integrative analysis of large gene lists using DAVID bioinformatics resources. Nat 
Protoc 4, 44-57. 
Hurles, M.E., Dermitzakis, E.T., and Tyler-Smith, C. (2008). The functional impact 
of structural variation in humans. Trends Genet 24, 238-245. 
Jamuar, S.S., Lam, A.T., Kircher, M., D'Gama, A.M., Wang, J., Barry, B.J., Zhang, X., 
Hill, R.S., Partlow, J.N., Rozzo, A., et al. (2014). Somatic mutations in cerebral 
cortical malformations. N Engl J Med 371, 733-743. 
Javier, R.T., and Butel, J.S. (2008). The history of tumor virology. Cancer Res 68, 
7693-7706. 



   

References 269 

Jiang, Y., Wang, Y., and Brudno, M. (2012). PRISM: pair-read informed split-read 
mapping for base-pair level detection of insertion, deletion and structural variants. 
Bioinformatics 28, 2576-2583. 
Kehrer-Sawatzki, H., Kluwe, L., Sandig, C., Kohn, M., Wimmer, K., Krammer, U., 
Peyrl, A., Jenne, D.E., Hansmann, I., and Mautner, V.F. (2004). High frequency of 
mosaicism among patients with neurofibromatosis type 1 (NF1) with 
microdeletions caused by somatic recombination of the JJAZ1 gene. Am J Hum 
Genet 75, 410-423. 
Kosugi, S., Momozawa, Y., Liu, X., Terao, C., Kubo, M., and Kamatani, Y. (2019). 
Comprehensive evaluation of structural variation detection algorithms for whole 
genome sequencing. Genome Biol 20, 117. 
Koutsioumpa, M., Chen, H.W., O'Brien, N., Koinis, F., Mahurkar-Joshi, S., Vorvis, 
C., Soroosh, A., Luo, T., Issakhanian, S., Pantuck, A.J., et al. (2018). MKAD-21 
Suppresses the Oncogenic Activity of the miR-21/PPP2R2A/ERK Molecular 
Network in Bladder Cancer. Mol Cancer Ther 17, 1430-1440. 
Krol, R.P., Nozu, K., Nakanishi, K., Iijima, K., Takeshima, Y., Fu, X.J., Nozu, Y., Kaito, 
H., Kanda, K., Matsuo, M., et al. (2008). Somatic mosaicism for a mutation of the 
COL4A5 gene is a cause of mild phenotype male Alport syndrome. Nephrol Dial 
Transplant 23, 2525-2530. 
Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, 
S.J., and Marra, M.A. (2009). Circos: an information aesthetic for comparative 
genomics. Genome Res 19, 1639-1645. 
Lawrence, M.S., Stojanov, P., Polak, P., Kryukov, G.V., Cibulskis, K., Sivachenko, 
A., Carter, S.L., Stewart, C., Mermel, C.H., Roberts, S.A., et al. (2013). Mutational 
heterogeneity in cancer and the search for new cancer-associated genes. Nature 
499, 214-218. 
Lee, J.H., Huynh, M., Silhavy, J.L., Kim, S., Dixon-Salazar, T., Heiberg, A., Scott, E., 
Bafna, V., Hill, K.J., Collazo, A., et al. (2012). De novo somatic mutations in 
components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat 
Genet 44, 941-945. 
Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 1754-1760. 
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., 
Abecasis, G., Durbin, R., and Genome Project Data Processing, S. (2009). The 
Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079. 
Li, J.W., Wan, R., Yu, C.S., Co, N.N., Wong, N., and Chan, T.F. (2013). 
ViralFusionSeq: accurately discover viral integration events and reconstruct 
fusion transcripts at single-base resolution. Bioinformatics 29, 649-651. 
Li, Y., Roberts, N.D., Wala, J.A., Shapira, O., Schumacher, S.E., Kumar, K., Khurana, 
E., Waszak, S., Korbel, J.O., Haber, J.E., et al. (2020). Patterns of somatic structural 
variation in human cancer genomes. Nature 578, 112-121. 
Liao, J.B. (2006). Viruses and human cancer. Yale J Biol Med 79, 115-122. 
Lievre, A., Bachet, J.B., Boige, V., Cayre, A., Le Corre, D., Buc, E., Ychou, M., Bouche, 
O., Landi, B., Louvet, C., et al. (2008). KRAS mutations as an independent 
prognostic factor in patients with advanced colorectal cancer treated with 
cetuximab. J Clin Oncol 26, 374-379. 



 270 

Lim, J.S., Kim, W.I., Kang, H.C., Kim, S.H., Park, A.H., Park, E.K., Cho, Y.W., Kim, S., 
Kim, H.M., Kim, J.A., et al. (2015). Brain somatic mutations in MTOR cause focal 
cortical dysplasia type II leading to intractable epilepsy. Nat Med 21, 395-400. 
Lodato, M.A., Rodin, R.E., Bohrson, C.L., Coulter, M.E., Barton, A.R., Kwon, M., 
Sherman, M.A., Vitzthum, C.M., Luquette, L.J., Yandava, C.N., et al. (2018). Aging 
and neurodegeneration are associated with increased mutations in single human 
neurons. Science 359, 555-559. 
Lupski, J.R. (2007). Structural variation in the human genome. N Engl J Med 356, 
1169-1171. 
Lupski, J.R., Gonzaga-Jauregui, C., Yang, Y., Bainbridge, M.N., Jhangiani, S., Buhay, 
C.J., Kovar, C.L., Wang, M., Hawes, A.C., Reid, J.G., et al. (2013). Exome sequencing 
resolves apparent incidental findings and reveals further complexity of SH3TC2 
variant alleles causing Charcot-Marie-Tooth neuropathy. Genome Med 5, 57. 
Marco-Sola, S., Sammeth, M., Guigo, R., and Ribeca, P. (2012). The GEM mapper: 
fast, accurate and versatile alignment by filtration. Nat Methods 9, 1185-1188. 
Mardis, E.R. (2008). The impact of next-generation sequencing technology on 
genetics. Trends Genet 24, 133-141. 
Martincorena, I., and Campbell, P.J. (2015). Somatic mutation in cancer and normal 
cells. Science 349, 1483-1489. 
Martincorena, I., Raine, K.M., Gerstung, M., Dawson, K.J., Haase, K., Van Loo, P., 
Davies, H., Stratton, M.R., and Campbell, P.J. (2018). Universal Patterns of 
Selection in Cancer and Somatic Tissues. Cell 173, 1823. 
Marx, V. (2013). Biology: The big challenges of big data. Nature 498, 255-260. 
Mattmann, C.A. (2013). Computing: A vision for data science. Nature 493, 473-475. 
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., 
Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The Genome Analysis 
Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing 
data. Genome Res 20, 1297-1303. 
McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R., Thormann, A., Flicek, P., 
and Cunningham, F. (2016). The Ensembl Variant Effect Predictor. Genome Biol 
17, 122. 
Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G., and Attardi, G. (1999). 
Aging-dependent large accumulation of point mutations in the human mtDNA 
control region for replication. Science 286, 774-779. 
Milholland, B., Dong, X., Zhang, L., Hao, X., Suh, Y., and Vijg, J. (2017). Differences 
between germline and somatic mutation rates in humans and mice. Nat Commun 
8, 15183. 
Moncunill, V., Gonzalez, S., Bea, S., Andrieux, L.O., Salaverria, I., Royo, C., 
Martinez, L., Puiggros, M., Segura-Wang, M., Stutz, A.M., et al. (2014). 
Comprehensive characterization of complex structural variations in cancer by 
directly comparing genome sequence reads. Nat Biotechnol 32, 1106-1112. 
Moore, P.S., and Chang, Y. (2010). Why do viruses cause cancer? Highlights of the 
first century of human tumour virology. Nat Rev Cancer 10, 878-889. 
Munoz, N., Castellsague, X., de Gonzalez, A.B., and Gissmann, L. (2006). Chapter 
1: HPV in the etiology of human cancer. Vaccine 24 Suppl 3, S3/1-10. 



   

References 271 

Muotri, A.R., Marchetto, M.C., Coufal, N.G., Oefner, R., Yeo, G., Nakashima, K., and 
Gage, F.H. (2010). L1 retrotransposition in neurons is modulated by MeCP2. 
Nature 468, 443-446. 
Nguyen, N.D., Deshpande, V., Luebeck, J., Mischel, P.S., and Bafna, V. (2018). ViFi: 
accurate detection of viral integration and mRNA fusion reveals indiscriminate 
and unregulated transcription in proximal genomic regions in cervical cancer. 
Nucleic Acids Res 46, 3309-3325. 
Parkin, D.M. (2006). The global health burden of infection-associated cancers in 
the year 2002. Int J Cancer 118, 3030-3044. 
Paszkiewicz, K., and Studholme, D.J. (2010). De novo assembly of short sequence 
reads. Brief Bioinform 11, 457-472. 
Plummer, M., de Martel, C., Vignat, J., Ferlay, J., Bray, F., and Franceschi, S. (2016). 
Global burden of cancers attributable to infections in 2012: a synthetic analysis. 
Lancet Glob Health 4, e609-616. 
Poduri, A., Evrony, G.D., Cai, X., Elhosary, P.C., Beroukhim, R., Lehtinen, M.K., 
Hills, L.B., Heinzen, E.L., Hill, A., Hill, R.S., et al. (2012). Somatic activation of AKT3 
causes hemispheric developmental brain malformations. Neuron 74, 41-48. 
Poduri, A., Evrony, G.D., Cai, X., and Walsh, C.A. (2013). Somatic mutation, 
genomic variation, and neurological disease. Science 341, 1237758. 
Quinlan, A.R. (2014). BEDTools: The Swiss-Army Tool for Genome Feature 
Analysis. Curr Protoc Bioinformatics 47, 11 12 11-34. 
Quinlan, A.R., and Hall, I.M. (2012). Characterizing complex structural variation in 
germline and somatic genomes. Trends Genet 28, 43-53. 
Raine, K.M., Hinton, J., Butler, A.P., Teague, J.W., Davies, H., Tarpey, P., Nik-Zainal, 
S., and Campbell, P.J. (2015). cgpPindel: Identifying Somatically Acquired Insertion 
and Deletion Events from Paired End Sequencing. Curr Protoc Bioinformatics 52, 
15 17 11-15 17 12. 
Rausch, T., Hsi-Yang Fritz, M., Korbel, J.O., and Benes, V. (2019). Alfred: interactive 
multi-sample BAM alignment statistics, feature counting and feature annotation 
for long- and short-read sequencing. Bioinformatics 35, 2489-2491. 
Rausch, T., Zichner, T., Schlattl, A., Stutz, A.M., Benes, V., and Korbel, J.O. (2012). 
DELLY: structural variant discovery by integrated paired-end and split-read 
analysis. Bioinformatics 28, i333-i339. 
Reddy, E.P., Reynolds, R.K., Santos, E., and Barbacid, M. (1982). A point mutation 
is responsible for the acquisition of transforming properties by the T24 human 
bladder carcinoma oncogene. Nature 300, 149-152. 
Riviere, J.B., Mirzaa, G.M., O'Roak, B.J., Beddaoui, M., Alcantara, D., Conway, R.L., 
St-Onge, J., Schwartzentruber, J.A., Gripp, K.W., Nikkel, S.M., et al. (2012). De novo 
germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a 
spectrum of related megalencephaly syndromes. Nat Genet 44, 934-940. 
Roy, R., Chun, J., and Powell, S.N. (2011). BRCA1 and BRCA2: different roles in a 
common pathway of genome protection. Nat Rev Cancer 12, 68-78. 
Sarid, R., and Gao, S.J. (2011). Viruses and human cancer: from detection to 
causality. Cancer Lett 305, 218-227. 
Schroder, J., Hsu, A., Boyle, S.E., Macintyre, G., Cmero, M., Tothill, R.W., Johnstone, 
R.W., Shackleton, M., and Papenfuss, A.T. (2014). Socrates: identification of 



 272 

genomic rearrangements in tumour genomes by re-aligning soft clipped reads. 
Bioinformatics 30, 1064-1072. 
Stambolic, V., Suzuki, A., de la Pompa, J.L., Brothers, G.M., Mirtsos, C., Sasaki, T., 
Ruland, J., Penninger, J.M., Siderovski, D.P., and Mak, T.W. (1998). Negative 
regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. 
Cell 95, 29-39. 
Stratton, M.R. (2011). Exploring the genomes of cancer cells: progress and promise. 
Science 331, 1553-1558. 
Stratton, M.R., Campbell, P.J., and Futreal, P.A. (2009). The cancer genome. Nature 
458, 719-724. 
Sudmant, P.H., Rausch, T., Gardner, E.J., Handsaker, R.E., Abyzov, A., Huddleston, 
J., Zhang, Y., Ye, K., Jun, G., Fritz, M.H., et al. (2015). An integrated map of structural 
variation in 2,504 human genomes. Nature 526, 75-81. 
Suzuki, S., Yasuda, T., Shiraishi, Y., Miyano, S., and Nagasaki, M. (2011). ClipCrop: 
a tool for detecting structural variations with single-base resolution using soft-
clipping information. BMC Bioinformatics 12 Suppl 14, S7. 
Szilard, L. (1959). On the Nature of the Aging Process. Proc Natl Acad Sci U S A 
45, 30-45. 
Talbot, S.J., and Crawford, D.H. (2004). Viruses and tumours--an update. Eur J 
Cancer 40, 1998-2005. 
Tattini, L., D'Aurizio, R., and Magi, A. (2015). Detection of Genomic Structural 
Variants from Next-Generation Sequencing Data. Front Bioeng Biotechnol 3, 92. 
Trappe, K., Emde, A.K., Ehrlich, H.C., and Reinert, K. (2014). Gustaf: Detecting and 
correctly classifying SVs in the NGS twilight zone. Bioinformatics 30, 3484-3490. 
van Dijk, E.L., Auger, H., Jaszczyszyn, Y., and Thermes, C. (2014). Ten years of next-
generation sequencing technology. Trends Genet 30, 418-426. 
Varley, J.M., Evans, D.G., and Birch, J.M. (1997). Li-Fraumeni syndrome--a 
molecular and clinical review. Br J Cancer 76, 1-14. 
Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Jr., and 
Kinzler, K.W. (2013). Cancer genome landscapes. Science 339, 1546-1558. 
Wala, J.A., Bandopadhayay, P., Greenwald, N.F., O'Rourke, R., Sharpe, T., Stewart, 
C., Schumacher, S., Li, Y., Weischenfeldt, J., Yao, X., et al. (2018). SvABA: genome-
wide detection of structural variants and indels by local assembly. Genome Res 
28, 581-591. 
Wang, J., Mullighan, C.G., Easton, J., Roberts, S., Heatley, S.L., Ma, J., Rusch, M.C., 
Chen, K., Harris, C.C., Ding, L., et al. (2011). CREST maps somatic structural 
variation in cancer genomes with base-pair resolution. Nat Methods 8, 652-654. 
Wang, Q., Jia, P., and Zhao, Z. (2015). VERSE: a novel approach to detect virus 
integration in host genomes through reference genome customization. Genome 
Med 7, 2. 
Weischenfeldt, J., Symmons, O., Spitz, F., and Korbel, J.O. (2013). Phenotypic 
impact of genomic structural variation: insights from and for human disease. Nat 
Rev Genet 14, 125-138. 
Workman, A.D., Charvet, C.J., Clancy, B., Darlington, R.B., and Finlay, B.L. (2013). 
Modeling transformations of neurodevelopmental sequences across mammalian 
species. J Neurosci 33, 7368-7383. 



   

References 273 

Wu, H., Esteve, E., Tremaroli, V., Khan, M.T., Caesar, R., Manneras-Holm, L., 
Stahlman, M., Olsson, L.M., Serino, M., Planas-Felix, M., et al. (2017). Metformin 
alters the gut microbiome of individuals with treatment-naive type 2 diabetes, 
contributing to the therapeutic effects of the drug. Nat Med 23, 850-858. 
Ye, K., Schulz, M.H., Long, Q., Apweiler, R., and Ning, Z. (2009). Pindel: a pattern 
growth approach to detect break points of large deletions and medium sized 
insertions from paired-end short reads. Bioinformatics 25, 2865-2871. 
Yi, K., and Ju, Y.S. (2018). Patterns and mechanisms of structural variations in 
human cancer. Exp Mol Med 50, 98. 
Yung, C.K., O’Connor, B.D., Yakneen, S., Zhang, J., Ellrott, K., Kleinheinz, K., 
Miyoshi, N., Raine, K.M., Royo, R., Saksena, G.B., et al. (2017). Large-Scale Uniform 
Analysis of Cancer Whole Genomes in Multiple Computing Environments. 
bioRxiv, 161638. 
Zapatka, M., Borozan, I., Brewer, D.S., Iskar, M., Grundhoff, A., Alawi, M., Desai, 
N., Sultmann, H., Moch, H., Pathogens, P., et al. (2020). The landscape of viral 
associations in human cancers. Nat Genet 52, 320-330. 
Zhang, Y., Yang, L., Kucherlapati, M., Chen, F., Hadjipanayis, A., Pantazi, A., 
Bristow, C.A., Lee, E.A., Mahadeshwar, H.S., Tang, J., et al. (2018). A Pan-Cancer 
Compendium of Genes Deregulated by Somatic Genomic Rearrangement across 
More Than 1,400 Cases. Cell Rep 24, 515-527. 
Zhuang, J., and Weng, Z. (2015). Local sequence assembly reveals a high-resolution 
profile of somatic structural variations in 97 cancer genomes. Nucleic Acids Res 
43, 8146-8156. 
Zia, Z., Thurley, P.D., Pollock, J.G., DeNunzio, M., Bungay, P., and Whitaker, S.C. 
(2012). The diagnosis and endovascular management of superior mesenteric artery 
(SMA) branch pseudoaneurysms after appendicectomy. Vasc Endovascular Surg 
46, 54-57. 
Cadenelli, N ., Polo, J ., and Carrera, D (2017) Accelerating K-mer frequency 
counting with GPU and non-volatile memory. IEEE 19th International 
Conference on High Performance Computing and Communications; IEEE 15th 
International Conference on Smart City; IEEE 3rd International Conference on 
Data Science and Systems (HPCC/SmartCity/DSS) 
Cadenelli, N ., Jaksić, Z ., Polo J ., and Carrera D (2019) Considerations in using 
OpenCL on GPUs and FPGAs for throughput-oriented genomics workloads. 
Future Generation Computer Systems 
 
 
 

 

 

 

 

 



 274 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

References 275 

 


	MPF_COVER
	tesi_Merce_planas_felix_juny-1

