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“I believe that we learn by practice. Whether it means to learn to dance by
practicing dancing or to learn to live by practicing living, the principles are the
same. In each, it is the performance of a dedicated precise set of acts, physical or

intellectual, from which comes shape of achievement, a sense of one’s being, a

satisfaction of spirit.”

Martha Graham
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Abstract

During the last decades, the rapid development of fabrication technologies in
the electronics industry brought transistor feature sizes down to roughly 10 nm.
More recently, the advent of 2D materials, such as graphene and transition metal
dichalcogenides, has opened up the possibility of new devices with outstanding
properties and innovative concepts. In this context, it is clear that in order to
keep promoting the development of naoelectronics, a description at the atomistc
level is require to understand and tailor nanodevice properties. Computational
simulations are an ideal tool to address these studies from a theoretical point
of view. In particular density functional theory (DFT) and molecular dynamics
(MD) techniques can be used complementarily to provide a wide description of

the mechanisms operating in nanoelectronic devices, with atomic resolution.

The main focus of the work presented in this thesis is to provide atomistic
insights of specific structural factors that determine electronic transport in selected
information processing and storage devices (i.e., transistors and memories) for

“Beyond Moore” technologies.

Finite bias transport properties of 2D MoSy lateral metal-semiconductor
junctions were studied through non-equilibrium Green’s functions calculations,
aimed at contacting the 2D channel in a field effect transistor. The obtained results
contributed to the understanding of the electrostatics in 2D junctions. Besides,
the evaluation of different interface geometries allowed to predict the conditions
that provide better contacting properties. From these studies, we contributed with
an improved procedure to determine, experimentally or theoretically, emission

regimes in 2D metal-semiconducting junctions.

Also, HfOs-based RRAM cells were studied using MD simulations with an

extended charge equilibration method to describe external electric fields, which



allowed to characterize the forming, reset and set processes. The analysis of
the migration of oxygen ions and the change in the coordination of Hf atoms in
the dielectric was used to describe the formation and dissolution of conductive
filaments during the operation of the device with unprecedented detail. These
studies were completed with DFT calculations of formation energies and activation
barriers for the migration of oxygen vacancies, also obtained under the effect
of an external electric field. In order to achieve such purpose, a novel scheme
to perform calculations of slabs including a net charge and an electric field was
proposed.

Finally, resistive switching phenomena in MoSy monolayers sandwiched be-
tween Au electrodes was studied through DFT transport calculations, with the

intent to elucidate the structure responsable for the high and low resistance states.
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Resumen

Durante las ultimas décadas, el rapido desarrollo de las técnicas de fabricacion
asociadas a la industria electrénica hizo posible la reduccién del tamano carac-
teristico de los transistores a aproximadamente 10 nm. Mas recientemente, el
descubrimiento de los materiales 2D, tal como el grafeno y los dicalcogenuros de
metales de transicion, abri6 la posibilidad de nuevos dispositivos con propiedades

excepcionales y conceptos innovadores.

En este contexto, estd claro que para seguir promoviendo el desarrollo de la
nanoelectrénica, es necesario una descripcién a nivel atémico de los materiales para
comprender y adaptar las propiedades de los nanodispositivos. Las simulaciones
computacionales son una herramienta ideal para abordar estos estudios desde un
punto de vista tedrico. En especial, los métodos basados en la teoria del funcional
de la densidad electrénica (DFT-density functional theory) y las simulaciones de
dindmica molecular, pueden utilizarse de forma complementaria para proporcionar
una descripcién més amplia de los mecanismos que operan en los dispositivos

nanoelectréonicos con resolucion atémica.

El objetivo principal del trabajo presentado en esta tesis es proporcionar
una vision atomistica de los factores estructurales especificos que determinan el
transporte electrénico en elementos de procesado y almacenaje de informacién

(ie, transistores y memorias) basados en tecnologia “Beyond Moore”.

Las propiedades de transporte electrénico a voltaje finito, en uniones laterales
metal-semiconductor en MoSs, se estudiaron mediante funciones de Green de no
equilibrio, dentro del formalismo de DFT. Los resultados obtenidos contribuyeron
a comprender la electrostatica en uniones 2D. Ademas, la evaluacion de diferentes
geometrias de la interfaz metal-semiconductor permitié predecir las condiciones

que proporcionan mejores propiedades de contacto. Estos estudios dieron lugar al
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desarrollo de un nuevo procedimiento para determinar los regimenes de emision
en uniones 2D metal-semiconductoras, experimental o tedricamente.

Por otro lado, también se estudiaron dispositivos RRAM basados en HfO5 por
medio de simulaciones de dindmica molecular (MD) implementando un método
de equilibracion de carga que permite describir el efecto de un campo eléctrico
externo, con lo cual se pudo caracterizar el proceso de “forming”, “reset” y
“set”. A través del analisis de la migraciéon de iones de oxigeno y el cambio en la
coordinacion de los atomos de Hf en el dieléctrico se pudo describir la formacién
y disolucién de filamentos conductores durante el funcionamiento del dispositivo
a un nivel de detalle sin precedentes. Estos estudios fueron complementados con
calculos DFT de energias de formacién y barreras de activacion correspondientes a
la migracién de vacancias de oxigeno bajo el efecto de un campo eléctrico externo.
Para obtener estos resultados, se propuso un novedoso esquema con el que es
posible realizar calculos DFT en materiales 2D, introduciendo carga neta y un
campo externo.

Finalmente, el fendmeno de "resistive swithching" en celdas RRAM basadas en
MoSs con electrodos de oro se estudié por medio de calculos de transporte usando
primeros principios, con el objetivo de dilucidar las estructuras responsables de

los estados de alta y baja resistividad.
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Chapter 1

Introduction

Since the discovery of the transistor in 1947 [1, 2], the electronic industry has
constantly worked to keep diminishing its dimensions, following the goals proposed
by Moore’s Law, which forecasted that the number of transistors per unit area
would double every 24 months. By now, there has been a reduction of more than
6 orders of magnitude in 6 decades.

The integrated circuits, such as microprocessors and memories, available nowa-
days are silicon-based FinFET, fabricated with “5 nm” technology (corresponding
to the 18 nm according to NTRS/ITRS and IRDS nomenclature, where the length
indicates half metallic pitch) [3]. It is expected that feature scaling will reach
fundamental limits of around 7-8 nm (half metal pitch) by the end of this decade.
Therefore, in order to keep providing at least a functional scaling (this means
that the same process is performed with an alternative technology that improves
size, power, speed, or cost, without degrading any of the other features), novel

materials and device architectures are being explored.

1.1 Emerging materials for memory and logical appli-

cations

The advent of graphene in 2004 [4] and related two-dimensional (2D) materi-
als, synthesized [5] and proposed theoretically [6], opened up the possibility of
fabricating 2D channel transistors, as well as the opportunity for new device

concepts.
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Top gate Monolayer MoS,

Drain Source

Hfo, ——

Si0) —

Si substrate

Figure 1.1: Three-dimensional schematic view of a single-layer MoS,
transistors. Reprinted by permission from Springer, Nature
Nanotechnology [10]. Copyright 2011.

Graphene has especially attracted attention because its extremely high mo-
bility, achieving room temperature values close to 40,000 cm?/V-s [7] on SiOq,
or above 100,000 cm?/Vs [8] on hexagonal boron nitride (hBN). During the last
fifteen years many efforts have been dedicated to fabricate graphene-channel
transistors, but due to its lack of a bandgap, the ON/OFF current ratios obtained
are not high enough for digital applications.

Other 2D materials of great interest for the electronic industry are transition
metal dichalcogenide (TMDs). They are a family of materials with general
formula MXs, where M is a transition metal element and X is a chalcogen atom.
Among them, molybdenum disulfide, MoS,, is probably the most popular, whose
single layer was isolated for electrical measurements in 2005 [9]. Although single
layer MoSs-based transistors [10] and microprocessors [11] have been successfully
fabricated, these devices have still issues to overcome related to the formation
of Schottky barriers at the electrodes interfaces. Figure 1.1 shows a scheme of
single-layer MoS, transistors.

But the use of TMD is not restricted to field effect transistors, junction diodes
or tunneling devices, as memristive behavior has been recently observed in their
single layers sandwiched between two metallic electrodes [12].

Another material very promising for the development of “Beyond Moore”
technologies is hafnium dioxide (HfO2) that has been widely used as dielectric
in MOSFETs, and during the last decade started to be used in the fabrication



1.2. Why computational simulations?

of resistive random access memory (RRAM) devices, thanks to its possibility of
switching between high and low resistance states. The great potential of RRAM
devices is their capability of scaling down to 10 nm, leading at the same time
really high switching speed, below few nanoseconds [13].

However, because of the high investment that a change in the fabrication
technologies implies, the different problems that these materials face have to be

solved before they will be able to replace silicon.

1.2 Why computational simulations?

In the framework of emerging devices, the most difficult challenge for “Beyond
Moore” technologies is to control the properties of the materials that will enable
their operation at the nanoscale. This strong experimental goal requires contin-
uous support from theoretical modeling, since it allows reducing time and cost
during a typical technology development.

Computational simulations cover a wide range of approximation levels that al-
low modeling materials and its electronic properties from quantum to macroscopic
perspective [14]. The work presented in this thesis is based on first-principles
and molecular dynamics methods. Density functional theory and extensions,
such as Green’s function techniques, provide a quantum description free from
parameters. However, they are limited to systems with O(1,000) atoms at most,
and simulation times on the order of 1071% to 107!2 s. At the same time, with
molecular dynamic techniques multi-million atom simulations are possible, for
timescales from ps to ns, although it depends interatomic potentials developed
for specific atomic pairs. Considering all these pros and cons, both techniques
can be used complementarily to provide a more complete description of material

properties and processes; this is the work performed throughout this thesis.

1.3 Outline of the thesis

The present thesis is organized as follows. Chapters 2, 3 and 4 describe the
methodology used in this thesis. Starting by density functional theory and
electronic transport through Green functions in Chapters 2 and 3, respectively.

Then, the basics of molecular dynamics technique are presented in Chapter 4.
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Chapter 5 shows quantum studies of MoSy lateral metal/semiconductor con-
tacts, where transport properties of the system are studied with the Green’s
function formalism.

Chapter 6 includes studies of HfOs-based RRAM cells with molecular dynamics
simulations, where the operating mechanism based on the migration of oxygen
ions is described. Further studies of HfO9 structures are presented in Chapter 7,
where quantum calculations of oxygen vacancy formation and migration are
carried out.

Chapter 8 presents preliminary studies of MoSo-based RRAM devices, where
NEGF are used to evaluate transport properties of different structures, in order
to determine the origin of resistive switching behavior in these cells.

Finally, general conclusions of the thesis are presented in Chapter 9.



Chapter 2

Density functional theory

Density functional theory (DFT) is a quantum mechanical method broadly used
to calculate the electronic structure of molecules and condensed matter. It was
developed in 1964 by Pierre Hohenberg and Walter Kohn [15], and the latter
received the Nobel Prize in Chemistry in 1998 for his contribution to the elec-
tronic structure field [16]. DFT is based on the ground state electron density,
instead of the Schrédinger wave function, to solve the quantum mechanical
many body problem. The most rudimentary form of DFT is the Thomas [17]
and Fermi [18] model, proposed in 1927, which expresses the kinetic energy of

a homogeneous non-interacting electron gas as a functional of the electron density.

This chapter organizes as follows: it starts with an introduction of the quantum
mechanical many-body problem, then the basic theory of DFT, including the
Hohenberg-Kohn (HK) theorems, the Kohn-Sham (KS) single-particle equations
and the most common approximations used to calculate the exchange-correlation
functional. The last three sections are dedicated to discuss several important
aspects related to the implementation of DFT: the periodicity of the system, the
basis set commonly used to solve the KS equations and calculation of forces. For
a more detailed introduction in condensed matter theory and DFT schemes see
references [19, 20, 21, 22].
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2.1 The quantum mechanical many-body problem

The foundation of the quantum mechanical many-body problem is the solution

of the time-independent non-relativistic Schrodinger equation:

H|U(x,R)=E|¥(r,R)), (2.1)

where the Hamiltonian (ﬁ ) of a general system of N electrons with positions

r1,T9,...,7N, and M nuclei with positions R1, Ra, ..., Ry is described as:

FI = Tn + Te + Vn—n + ‘A/n—e + ‘76—6 (22)

Here T is the kinetic energy operator, V is the potential energy operator and the
subscript e and n refers to the electrons and nuclei, respectively. Each term can

be replaced by its definition, giving the following expression:

. Mh2 MY Z,Z5 No_n?_,
=
(; 2M 47?60 ;g ’R Rﬁ| Z szv
. (2.3)
1 e?
47’[‘60(]21221 47’[‘60;;|1‘i—r]‘|

Note that Eq. (2.3) assumes that the nuclei are point particles, characterized only
by mass and constant charge, and neglects any relativistic corrections, such as
spin—orbit interaction (SOI). The SOI can be added into the formalism, if needed,
at a computational cost.

The first step towards the solution of Eq. (2.3) consists of applying the Born-
Oppenheimer approximation [23] and decouple the motion of nuclei and electrons.
Since the nuclei are much heavier than electrons, they can be considered fixed,
which implies that T, is zero, and Vir—n becomes constant. With this assumption,

the electronic part is calculated for fixed nuclei coordinates according to:

e—z +;Vemt r;) ZZ

=1 j5>1
where the external potential, V.., is the attractive potential between nucleus

(2.4)

l_r]|

and electrons. In order to reduce the computational cost, in DFT the external

potential is normally described by a pseudopotential which accounts for the nuclei
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and the inner (core) shells of electrons. This external potential might also include
the effect of an external electric field.
Finally, the problem reduces to solve the Schréodinger equation for the elec-
tronic part:
H.| . (r,R)) = E. | U(r,R)) , (2.5)

2.2 The Hohenberg-Kohn theorems

The theorems formulated by Hohenberg and Kohn (HK) in 1964 [15] are the
basis of the DFT and apply to any system of interacting particles in an external
potential V.., including the problem of electrons moving around a lattice with

fixed nuclei as described above.

The first HK-theorem proves that the electronic density (pg) of a non-
degenerate system in the ground state is uniquely determined by the external
potential (Vg,;). It also stands that this relation is injective, so V. is also
uniquely determined by pg. Hence, there is a one-to-one correspondence be-
tween the external potential, that determines ﬁe, the non-degenerate ground
state (| Up)) resulting from solving the Schrodinger Eq. (2.5), and the associated

ground state density:
Veat(r) <= |Wo) <= po(r) = (Yolp(r)[¥o) - (2.6)

Because of this correspondence, it is possible to write the ground state as a
functional of the ground state density. The existence of the functional |¥[po])
leads to the statement that any ground state observable is functional of the ground

state density. In particular, this is true for the ground state energy (E[po]).

The second HK-theorem proves that, for a non degenerate system under a
particular V., the exact ground state energy, F[po], is a global minimum when

p(r) is the correct ground state density, po(r):
Elpo] = min E[p] or Elpo] < E[pp], (2.7)

where po denotes the correct density and pf, is any other ground state density.
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2.3 The Kohn-Sham equations

The HK-theorems left us the idea that it is possible to determine the ground state
energy (Ep[p]) finding the correct ground state density, which can be obtained
through the variational method. However, they do not give any clue of the explicit
form of the functional Ey[p).

In 1965, one year after the publication of the HK-theorems, Walter Kohn
and Lu J. Sham (KS) introduced a scheme to solve the complex interacting
N-particle problem in terms of N single-particle problems [16]. The idea behind
this scheme consists of finding a potential for which the ground state density of the
interacting system is simultaneously the ground state density of a non-interacting
system, with a well known single-particle potential vgg. The Hamiltonian for

this auxiliary non-interacting system can be described as:

N 2 N
. . N h
Hygs =Tgs +Viks = —%V? +> vks(r) (2.8)
i=1 i=1
The corresponding non-interacting N-particle states |®) that solves the
Schrodinger equation Hpg|®) = E|®), is a Slater determinant constructed
with the orbitals ¢;, which are the solutions of the single-particle Schrodinger
equation:

h2
{_zmw + UKS(r)} i = €p; (2.9)

The resulting eigenvalues ¢; are assumed to be ordered as:

€1 <€ <..<eny=¢€F <enyl < ... (2.10)

where the Fermi energy, denoted as ep, is the highest occupied single-particle level.
Hence, the total energy (F) and the electronic density (p) for this non-interacting

system are given by:

E=) 0 (2.11)
i=1
p(r) = 6; | wi(r) |? (2.12)
=1

Where ©; is an occupational function, normally described with a step function.

This formulation can be extended to a system at finite temperature by simply
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replacing ©; for a Fermi distribution.

Applying the first HK theorem, the total energy of the non-interacting system

in the ground state can be written as the following functional:

EES[p] = (®[po] | Tres + Vies | @[po]) = Trslpo] + /'UKS(I')PO(I')dr (2.13)

where the non-interacting kinetic energy has been defined:

Txslpo] := (®lpo] | Ts | @[po]) (2.14)

Notice that Tk g[po] is not equal to the true kinetic energy of the system.

Applying the second HK theorem, the energy can be minimized with respect to
p(r) using the Lagrange multipliers method under the restriction [ p(r)dr = N:

1)
7 |[EESl = [ oty =0 (2.15)
0Tk s[p) _
o) T vgs(r) —p =0 (2.16)

Now, we can repeat the same procedure to build an energy functional for the

interacting system in the ground state:

Ey [ﬂ] =Tks [P] + EH[p] + Eeat [P] + Exc[lo] (217)

Here, the functional Epp] is the Hartree term expressed as Coulomb integral,
that consider the interaction between the N particles with density p, including

their self-interaction energy:
L orrpr)p) ., .,
E = — ——~drd . 2.18
nlol = 5 [ T dvde (2.13)
The term E.y¢[p] introduces the interaction between the electron density and the

potential generated by the fixed nuclei or any other external potential:

Eeutlp] = /vewt(r)p(r)dr . (2.19)

Finally, since for the interacting system there are exchange and beyond effects not

contained in Ex[p], we include the exchange-correlation energy functional, E,.[p],
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to account for this difference and other missing terms, such as the difference
between Tk s[p] and the real T'[p].

Applying the second HK theorem and minimizing the energy with respect
to the electronic density, using again the Euler-Lagrange method under the

restriction [ p(r)dr = N, we arrive to the following expression:

<5p6(r) [EO[P] — ,u/p(r)dr] =0 (2:20)
TR B
erveff(r)M:O (2.22)

Where the last three terms in left side were grouped in the potential v.ry and
p is the Lagrange undetermined multiplier. Since Eq. (2.22), for the interacting
system, has the same form that Eq. (2.16), for the auxiliary non-interacting system,
we deduce that their resolution must lead to the same p(r) when vigg = vesys.
Therefore, the ground state density of the interacting system can be obtained in

terms of the single-particle orbitals ¢; according to:

52
{—V2 + Ueff(r)} @i(r) = €ipi(r)

. 2m (2.23)
{—mVQ + Veat (r) + vi [p] (r) + vaclp] (r)} @i(r) = €ipi(r)

The set of the N equation expressed in (2.23)! are known as the Kohn-Sham
(KS) equations, whose solutions ¢;(r) and the corresponding eigenvalues €; have
no physical meaning, but they must be solved in order to compute the ground

state density, po(r), and calculate the total energy, Fy[p] in an iterative process.

2.4 Exchange-Correlation Energy Functional
The exchange-correlation functional is defined as:

Buelp] = (0[T.]®) — Tics[p] + (@]V;—|®) — Enlp] (2.24)

! Although v.c[p](r) has been written as local, it can be implicitly nonlocal.

10
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Where V,_, is the electronic interaction and |®) is the total wave function of
the non-interacting system with the same density of the interacting system,
constructed as a Slater determinant of the single particle states ;.

The expression for exchange-correlation functional is still unknown so it has
to be approximated according to a reasonable form. The simplest and most used
forms are the local density approximation (LDA) and the generalized gradient

approximation (GGA).

Local density approximation (LDA)

In the LDA the exchange correlation energy per particle and volume of a system
with density p(r) is locally approximated by the exchange correlation energy of

an homogeneous electron gas (HEG) with ground state density p(r):

EEPA = [ FC(p(x)) pir) dr (2.25)

Since €, depends on the local density, the main disadvantage of this method
is that it has an extremely short range, and as a consequence, it usually underes-

timates the dissociation energies.

Generalized Gradient Approximation (GGA)

In the GGA the FE,. is approximated as a function that depends on the density

and its gradient at each point:

ESS = [ f(p(x). Vp(x)) dr (2.26)

This approximation improves total energies, atomization energies and structural
energy differences. However, it expands and makes softer bonds, this effect
sometimes corrects and sometimes overcorrects the LDA predictions.

There are many forms for the function f, in this thesis the most used is the
one developed by Perdew, Burke and Ernzerhof in 1996 (PBE) [24].

2.5 Forces

The base for the calculation of forces and the the equilibrium geometries in DFT is

the Hellmann-Feynman theorem [25]. Considering an eigenvalue problem, where

11



Chapter 2. Density functional theory

the expectation value depends on a parameter A:
(Won | Hy| oy ) with Hy|Poy)=E\|Poyr) , (2.27)

the theorem demonstrates that the derivative of the energy with respect to the
parameter A can be expressed as the derivate of the operator H , as long as the

eigenstates | ¥ ») are orthogonal and normalized for all the A values:

8;;? 88)\ (oAl To,) A (2.28)
8;;\/\ = <6% A‘ H,\"I’o >\> + <\I’o,,\ @‘% >\> + <\Ifo,,\ 8\;';)\7,\> (2.29)
88]%\)\ = E) 88)\ <\I/0 A ‘\Ifo,x> + <\I/07)\ o ‘\IIO )\> (2.30)
8@% - <‘1’0’A o “I’OA> (2.31)

If the nuclear positions (R,) play the role of A\, one has a relation between the

forces on the nuclei, and the dependence of the electronic energy with (Ry,):

oF 0 1 Z/gZae2
F, = = E.n|+ = _ 2.32
OR, 8Ra( "] ﬂz?é;l | Ry, Rg!) ( )

where E.[n] = Ts[n] + Egn] + Eegt[n] + Eyc[n].
The electronic part is reduced to calculate the gradient of the term (W | Vot | ¥o),

since this is the only therm with an explicit dependence on R,. The derivative

of E. expressed in terms of the ground state p(r) is given by:

8E€wt ZaGZ(ROc B I')
= [ Lo BaT ) 2.
8Ra ~ R, / |R —r| ol dr = [ R, _rpp P (2:33)

On the other hand, the nuclear term gives:

o (1 ZgZ € 1 Z3Z €3
1 S I __Zp%e® (R, _R 2.34
oR, <2£|RQ—RM> %;\R ngi%( 5)  (234)

Finally, we arrive to the following expression for the forces:

0®(Rq — 1 232 €
OF _/W BLat (Ra—Rﬁ) (2.35)

R, J |Ro-r]3 ()dr"ZIR —Rg |3
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2.6. Periodicity

Equation (2.35) shows that the gradient of the total energy, i.e. the forces on
the nuclei, are completely determined by the explicit dependence of electronic

energy with R,.

2.6 Periodicity

Considering the problem of independent electrons in a solid, the effective potential
Vegr, used to solve the KS equations, must have the periodicity of the corresponding
Bravais lattice. As a result, the eigenstates of such operator must be invariant to

any translation defined as:
T(n) = nia1 + ngas + nzas (2.36)

where a; are the lattice vectors of the primitive cell, and n; are integers. We can
also define a translation operator T that act on the eigenfunction by displacing
the argument according to:

A

To(r) = o(r+T) = ¢(r + n1a; + nsas + nzas) (2.37)

The Bloch theorem [26] states that for any translation T, the eigenfunctions
resulting from a one-electron Hamiltonian, such as the one described in Eq. (2.23),
can be written as plane waves multiplied by a function (uyx) with the same

periodicity that the Bravais lattice:
u(r) (2.38)
with ug(r) = uk(r + T) so we can write:

Tor(r) = (e +T) = Dy (r) (2.39)

Distributing the exponential function and replacing by Eq. (2.38), we arrive to

an alternative expression for the theorem:
pr(r +T) = Ty (r) = e Ty (r) (2.40)

The reciprocal lattice vectors can be obtained imposing that e’¢T = 1, which

gives:

G-T=2mm (2.41)
G -na; =2mm (2.42)

13



Chapter 2. Density functional theory

and it is found that
G = mi1b1 + mobg + msbs (2.43)

with b; corresponding to the primitive vectors of the reciprocal lattice:

as X as

bi=2r—"F——
! \al . (ag X agﬂ

(2.44)

The other vectors can be derived by doing cyclical permutations.
The eigenstates (¢k), and their corresponding eigenvalues (ex), can be found

separately for each k in one primitive cell of the reciprocal lattice.

2.7 Basis sets

In the practice, the Kohn—Sham single-particle equations (2.23) are solved by
performing a linear expansion of the orbitals ¢;. There are three different methods
that are normally used to perform such expansion: the plane wave method, the
localized atomic orbitals (LCAO) method and the atomic sphere method [19].
Each approach leads to a complementary way to understand electronic structure,
and each one has their advantages and disadvantages. Here, we will describe
briefly the first two methods, since plane waves expansion is the base of VASP [27]
code and LCAO is the base of SIESTA [28] and CP2K [29] codes, all of them
used in throughout this thesis.

Plane wave method

Using Eq. (2.38), and expanding the periodic functions u(r) as Fourier series:
=Y en(k)eSrnT =3 ¢ (k)G T (2.45)
m m
one can write the eigenfunctions as:

1 )
Pik(r) =Y cm(k) x —= ekFTGm)T (2.46)

VQ

where € is the total volume of the cell, ¢, are the expansion coefficients and the

sum goes over all the possible reciprocal vectors:

G,, = mi1by + maobsy + msbs (2.47)
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2.7. Basis sets

Although the sum over m should in principle extend to infinity, one can define a
cutoff energy for the plane wave that ensures the proper convergence of the DFT
calculation.

One of the advantages of this basis set is that they have naturally the
periodicity of the lattice, besides they are orthonormal and convergence is achieved
by simply extending the cutoff energy. On the other hand, disadvantages are the
volume dependence with the volume, that increaases the number of functions
with the size of the cell and that, sometimes, localized functions are difficult to

represent.

Localized atomic orbitals method

Alternatively, the KS orbitals (¢;) can be linearly expanded in a series of predefined

basis functions:

N
Pix(r) =Y cu(k)dux(r) (2.48)
I

attached to nuclear positions, i.e: ¢, k(r) = > g ¢u(r — Ry).
With this expansion,the KS Eq. (2.23) writes:

h?
{—2V + Ve s r(rs) }Zcu )P (r —e,Zcu )P x(r (2.49)

HKSZCH ),k (T _echﬂ )by (T (2.50)

Multiplying from the left by an arbitrary basis function v, and integrating

over space, we get N equations:

N N
> k) [ @IS Gue)de =63 k) [ G (251
H 1

The integral in the left side gives the elements of the KS matrix F&:

FAS0) = [ 050) S 6y (x)dr (2:52)

On the other hand, the integral in the right side is the overlap matrix, .S, whose

matrix elements are given by:

K) = [ 60 6a)dr (2:53)
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Chapter 2. Density functional theory

Using these two definitions, Eq. (2.51) writes as:

CFES = eCS | (2.54)

which is the basis of the tight-binding method.
The basis functions ¢ can be represented as a set of numerical atomic-like

functions centered on the atom sites. For each site k£ j, the basis functions can

be written as radial functions multiplied by spherical harmonics:

— ch
¢nlm(r - Ra) = an(|r - RaD Ylm(’i_R’a‘) (2'55)

Other type of localized basis functions are the Gaussian-type-orbitals (GTOs)
and the Slater-type-orbitals (STO) [19].
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Chapter 3
Electronic transport

In the previous chapter we demonstrated how DFT calculations can be used to
describe the electronic structure of systems in equilibrium, such as molecules,
atomic clusters or infinite periodic solids. In all these cases, the dimension of the
problem is finite, i.e. there is a finite number of Kohn-Sham equations to solve.
However, if we are interested in describing the electronic structure and transport
properties of systems out of equilibrium, where an external potential is applied

and a current is flowing, these equations cannot be used.

This chapter is dedicated to introducing the formalism used to perform ballistic
transport calculations. It starts with the description of the Landauer formula,
which expresses the conductance of a quantum system as a scattering problem.
Then, we will briefly describe the Green’s functions formalism, which is the basis
to compute the charge density in a non-equilibrium condition. Finally, we will
show how combining DFT with the Green’s function techniques one can obtain

the transport properties of a system.

3.1 Conductance from the Landauer Formula

In macroscopic systems not far from equilibrium, the electrical current flowing
through a conductor can be calculated through Ohm’s law, where the current is
proportional to the applied voltage. The constant that relate the current with

the voltage is the conductance:

17



Chapter 3. Electronic transport

Figure 3.1: Transport setup, where the system is divided into three parts: a
central region C, where the scattering events occurs, and the two semi-infinite
electrodes, L and R.

cA
G_T’

where o represents the conductivity of the material, L the length of the conductor

(3.1)

and A is its cross section area.

When the size of the system reduces, and W is about the size of the Fermi
wavelenght (Ar), quantum effects arise and Eq. (3.1) is not valid any more.
In such conditions, the conductance can be calculated through the Landauer
formula [30]:

2e?
G= TM(E)T(E), (3.2)

where T'(E) represents the average probability that an electron will be transmitted
and M (F) is the number of transverse modes (related to the conductor width). If
the transmission of a single mode is perfect, the transmission probability will be
1, and it will contribute exactly one quantum unit of conductance, Go = 2¢2/h.
Here, the factor 2 accounts for the spin degeneracy.

Considering the situation shown in Figure 3.1, where a nanoscaled sample
(scattering region) is connected to one or more semi-infinite electrodes, that act
as ideal electron reservoirs injecting current and fixing potential, we can use the
scattering approach to relate the transport properties to the transmission and
reflection probabilities for carriers incident on the sample. Using this framework,

the total current [(V) = I, ,pr — Ir—1, can be calculated as:

1= [" 1) - fup)] 5 (3.3)
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3.2. Equilibrium Green’s functions

where fr(E) and fr(E) are the Fermi distribution of the left and right electrodes,
respectively.

Therefore, the Landauer formalism tell us that in order to obtain current
vs. voltage characteristics, we need to calculate the transmission coefficients of
the system. This can be done by using Green’s functions technique applied to

tight-binding Hamiltonian.

3.2 Equilibrium Green’s functions

In this section we will briefly review Green’s function theory, we will start defining
the single particle Green’s function for a system in equilibrium. Then, the bulk
Green’s functions will be derived by including a single-particle perturbation.
Finally, will see how to apply the Green’s functions to tight binding Hamiltonian,
in particular when the Hamiltonian is obtained from DFT calculations. A

complete description of this topic can be found in Ref. [31] and [32].

3.2.1 Single particle Green’s function

Consider the problem of an electron in a one dimensional system under an
external potential V (z), described by the Srodinger equation H|W) = E|¥), the

single-particle Green’s function for this system is defined as:

A

[E — H(2)]G(z,2') = §(x — 2) , (3.4)
where ) ) 2 g2 g1

One can understand the Green’s functions G(z, 2’) as the wavefunction ampli-
tude of an electron traveling with energy E from the position 2’ to z. In the case

of a constant potential V(a:) = Uy, the problem can be solved exactly finding two

solutions:
GRE,z—1')=—i I giklo—a]
’ Rk
m , ) (3.6)
GA(Eg Xr — .’1:/) = 1 T]C eilk"mix ‘
h

where k = 2m+/E — Up/h. This equation is valid for all = values, except when

z=2a.
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Chapter 3. Electronic transport

The solution Gf(x,2’) corresponds to a wave that originates at the point of
excitation ', traveling to the right (z —a’ > 0) or to the left (x — 2’ < 0). On the
other hand, G# (z,2") is the time-reserved solution, corresponding to incoming
waves (from left or right) that disappear at the point of excitation. Both solutions
satisfy the same equation, but they correspond to different boundary conditions.
It is possible to include the boundary conditions implicitly in Eq. (3.4) by

introducing an infinitesimal imaginary part in the energy, thus, we would have:

lim [E +in — H(x)|GF(z,2') = 6(z — 2)
n—0 (3 7)
lim [E —in — H(x)|GMz,2') = 6(z — 2)

n—0
This definition can be generalized to any three dimensional problem, which
will give the retarded and advanced single-particle Green’s function, expressed in
the matricial form:
lim [(E +in)I—H] G4E) =1 (3.8)
n—0
where I is the identity matrix, and H has been generalized to a three dimensional
problem. Note that G4 has been written as an operator, independent of the

representation.

Considering H|;) = €;]1);), and using the relation Y_;|v;) (1;|= I, It is possible

to rewrite the Eq. (3.8) in terms of the eigenvalues ;.

This definition can be used to derive an expression for the local density of states

(LDOS): p(r, E) = 3;|(r[1:)|? 6(E — €;). Sandwiching (3.9) by (r|...|r):

R I

r|y))]?
ZEﬂ:m—q (3.11)
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3.2. Equilibrium Green’s functions

Using the relation [E —¢; £in] ! = P E;i Find(E — ¢;), where P is the

Cauchy principal value for contour integrals, the Green’s function can be written

as: GF/A(R) = ;\<r|wi>|2 P - i — T i (E - )] (3.12)
Taking the imaginary part of G4 (E):
I {GYA(E)} = Fr 3 | (xly) *6(E — i) . (3.13)
we finally arrive to:
p(r, B) =3 [(xli)[* 0(E — &) = qﬁ% Im{G"/4(E)} (3.14)

If we use a discrete basis of atomic orbitals, the LDOS writes:

1 R/A
plr. B) = ¥~ Im{G{{"(E)} (3.15)
where 7 indicates that the density of states has been projected onto the atom 1.
From here, we can also calculate the density of states (DOS) by summing over
all the atomic sites i:

A R/A 1

p(F) =Y % m{GEA(B) =5 Tim{GMAB)]  (316)

i=1
with N equal to the total number of orbitals. Note that integrating the DOS
in the full energy spectrum will always give a normalized quantity, N, as can
be inferred from the identity >, |v;)(¥;|= I. The total occupied orbitals can be

obtained by integrating a product of the Fermi function, f(E), and the density
of states, p(E).

3.2.2 Bulk Green’s function

Consider now the problem of an infinite system, the Green’s function derived in
Eq. (3.8) can’t be evaluated explicitly because it would imply inverting an infinite
matrix. A possible solution to this issue consists in describing the Hamiltonian
as:

H=Hy+V (3.17)
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Chapter 3. Electronic transport

where Hy is an unperturbed Hamiltonian whose single-particle Green’s functions
are known, and V is a single-particle perturbation. The corresponding perturbed
(G4 and unperturbed Green’s functions (g/4) will be:

G(E)=[(E+in)I—-Hy— V]! (3.18)
g(E) = [(E £ in)I — Ho| ! (3.19)
Here, for practicality, we have dropped the superindex R/A. The objective is

to express the Green’s function of the whole system in terms of the unperturbed

Green’s function:

[(E +in)I — Hy — V]G(E) =1 (3.20)
[(E +in)I — Hy]G(E) — VG(E) =1 (3.21)
[(E +in)I - Ho|G(E) =1+ VG (3.22)

G(E) = g(E) + g(E)VG(E)  (3.23)

where Eq. (3.23), known as Dyson’s equation, is used to calculate the Green’s

function.

Application to tight-binding Hamiltonian

The objective now is to demonstrate how the Dyson’s equation can be used to
calculate Green’s function for a tight-binding Hamiltonian. Consider the problem
of a semi-infinite atomic chain with coupling only between nearest neighbors.

The corresponding tight-binding Hamiltonian will be:

€ t 0
0

To solve the problem, the first step consists of choosing the unperturbed and
the corresponding perturbation. One could define the unperturbed system as
the atomic chain and the interaction between atoms as the perturbation, but
this would lead an infinite algebraic system. To avoid this problem, there is an

alternative way that consists of splitting the chain into the first atom, placed at
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3.2. Equilibrium Green’s functions

the beginning of the chain, and the rest of chain. Therefore, the perturbation

will be defined as the coupling between these two systems.

Hy, 01 V:lo vm]

(3.25)
0 Ho Vor O

H, [
where Hy1 = € , Hoo = H, because removing an atom doesn’t change the fact
that the chain is still semi-infinite, and Vi = V51 = t, because we consider
coupling only between first neighbors. With this selection, the unperturbed

Green’s function will be:

g(E) = [g (1)1 9(2)2] (3.26)

where g1 = [E +in — ¢]7!, and go is nothing but the Green’s function of the
whole chain G. The perturbed Green’s function obtained from the matrix product

in the Dyson’s equation (3.23) is:

G = (3.27)

911 + 911V12G21 911 V12G22 ]
922V21G 11 922 + g22V21G12

Suppose we want to calculate the perturbed Green’s function G711, correspond-

ing to the first atom in the chain:
Gu(E) = g11(E) + g11(E)V12Ga1 (E) (3.28)
Replacing Go; by the result obtained in Eq. (3.27) :
G11(E) = g11(E) + g11(E)Vi2g22(E)V21G11(E) (3.29)

Now, we can define the self-energy as X11(E) = Viagoa(E)Vo1 = t2ga2(E),
which describes how the properties of the atom 1 are modified via the interaction

with the second atom.

G11(E) = gn(E) + gn(E)Xu(E)Gu(E)  (3.30)
Gu(E) — g (E)X11(E)G1i(E) = gu(E) (3.31)
Gu(E) = gn(E)[1 - gn(E)Su ()™ (3.32)
Gu(B) = [1/gu(E) — S (B)] ™ (3.33)
Gu(E)=[E+in—e— X1 (E)] ! (3.34)
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Chapter 3. Electronic transport

From Eq. (3.34) we can extract a couple of conclusions about the self-energy
i) its real part can be understood as a re-normalization of the energy (é =
e — Re{X11(F)}) due to presence of the chain, ii) its imaginary part describes
the broadening of the energy due to the interaction between the particle 1 and
the rest of the chain. This equation also shows that the solution of an infinite
system defined as a finite system under an external perturbation, can be solved
using a one-particle basis and the self energy of the perturbation. Of course we

still have to calculate the self energies of an infinite system.

Non-orthogonal basis set

The equations described above can be generalized for non-orthogonal basis set,
such as the localized orbitals centered in different atoms. In this case, instead
of the identity matrix (I), we will have an overlap matrix (S), whose matrix

elements are calculated as:
Sij = (¢iloj) (3.35)

The corresponding single particle Green’s function will be:

GFA = [(E+in)S—H" (3.36)

3.3 Combining DFT with Green’s functions

In the first section it was shown that the current through a microscopic con-
ductor can be calculated using the Landauer formula, which only requires the
transmission coefficients of the conductor. The aim of this section is to show how
combining Green’s function techniques with DFT, it is possible to describe the
electronic properties and transmission coefficients of an open quantum system in

a non-equilibrium situation.

To perform electronic transport with NEGF, the system must be separated
into a scattering region and two (or more) semi-infinite electrodes, as shown in
Figure 3.1. For simplicity, the equation will be derived for two electrodes, and
then generalized for the case of N electrodes.

Using the same scheme performed in section 3.2.2, the Hamiltonian of the

whole system can be described in terms of the unperturbed Hamiltonian of the
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3.3. Combining DFT with Green’s functions

three regions and the perturbation caused by the interaction between them:

H, Vic 0
H=Ho+V= |V, Hc Vi, (3.37)
0 Vge Hg

The retarded/advanced Green’s function of the central, G(E), part can be

calculated through the Dyson’s equation:
GMAE) = [(E +in)Sc — He — BL(E) — SR(E)) ™ (3.38)
where S¢ is the overlap matrix of the central part and 3(F) are the electrode

self-energies defined previously:

SHAE) =VgW BV and =VYE) =vVegAE)VE  (3.39)

Here, we used V;, = Vo = VEL and Vg = Vgo = VTCR. The unperturbed

Green’s function of the left and right electrodes are given by:

E+in— ¢y,

g/ w(B) = [(E+in)Sy/p+Hy ™ =)

l/r

(3.40)

where the index [/r runs over all the states in the left /right electrode, and |4°)

are the unperturbed eigenstates.
As it was seen in the previous chapter, in section 2.7, within the LCAO
approach the states can be expressed in terms of the atomic orbitals : |t;/,) =
L cw/T](Z)l), so the unperturbed Green’s functions can be referred to the local

basis functions p and v:

R/A ‘) 1/ ¢ Uyr
E = BT BT 3.41
{gL/R( >}MV Z E:tln _ el/r ( )
l/r

Note that during the division of the system we assume that the electrodes
are not perturbed by the central part. Therefore, the unperturbed Hamiltonian
of the electrodes, Hy, /g, and their corresponding Green’s function, gz;lR, can be
obtained from a separate bulk-like calculation. This assumption implies that the
potential at the electrodes must be equal to their bulk potential. In the practice,
this requirement defines the size of the central part, and depends on the screening

capability of the electrodes.
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Input density matrix from
standard DFT calculation

Compute the Hamiltonian
of the electrodes
from bulk DFT calculations

Solve Poisson and calculate
the Hartree potential

l

Compute the Hamiltonian
of the device

|

v

Solve NEGF for the system
and compute the density matrix

Self-consistent loop

'

Calculate transmission
coefficients and current

Figure 3.2: Flowchart of the self-consistent scheme used to calculate the

electronic density and the transport properties from NEGF. The process in

black can be performed with conventional DFT calculations, as explained in

Chapter 2, while the ones in blue must be done using NEGF formalism. The

output of NEGF calculations are written in purplish red.

Finally, the problem reduces to obtain a self-consistent description for the
electronic density and the Kohn-Sham Hamiltonian of a scattering region coupled

to two (or more) semi-infinite electrodes. The complete process is described in

Figure 3.2.

3.3.1 Density matrix from Green’s functions

The density matrix in the scattering region can be calculated from the incoming

states of the left and right electrodes, filled up to their corresponding electro-

chemical potential:

p(E) =l il flee — ) + D |we) (@rl f(er — pir)
l T
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where the perturbed left /right states (|1;/.)) can be expressed in term of the

unperturbed states according to:

W) = [60) + GV g [¥)),) (3.43)

Here, for simplicity reasons, we have dropped the explicit energy dependence of
the Green’s function.
Similarly, the elements of the density matrix can be calculated from the

scattering coefficients:
Puv = Z c,u,lcz,l f(El - Ml) + Z Cu,rcz,r f(fr - NT) (3'44)
l r
with the perturbed coefficients calculated as:

Cutfr = Cpise + GV LR & = (GV LR €y (3.45)

since unperturbed coefficients Cg’l Jr vanish in the scattering region because they
are purely electrode states.
Now, we will introduce the spectral density of the electrodes, 4;/., whose

matrix elements are calculated as:

,u,ul/r ZC/J, 1/r€ Ml/r 6l/7“)
v (3.46)
Apiyr = (GVLR)w ) ul/r (VL/RG Juw O(E — €1/y)
l/r

Using the relation that we already know: E:I:inl—el/,. = PE_lq/ Find(E — €y,),

and the Eq. (3.41) for the unperturbed Green’s function, we arrive to:

Im[g;/r — gTL/R]

_ i

Apijr = {GVL/R i Vi, rG (3.47)

1%
i[Srr -2 g]

Apijr = {G o GT} (3.48)

uv
1
Ay = 7T{GFL /rGI }W (3.49)
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Where it was defined the broadening matrix I' = i[¥ — X1]/2. Using the spectral

function, the density matrix can be expressed as:

p= [ 4B [AE) $(B— )+ 4,(E) (E - )] (3.50)
p=— [ ABGILGI (B~ )+ GIaGl (B —p)]  (51)

For a general case with N electrodes (e), the density matrix writes:

1o X
p= 7/ dE Y GI.G'f(E — pc) (3.52)

T J_so .

Equilibrium density

In the case that the system is in equilibrium, and all chemical potentials are

equal, Eq. (3.52) rewrites:

1 oo X
p— ;/ dES GI.G! f(E) (3.53)
p= i /oo dE G[Z, — 2I|GT f(E) (3.54)

Isolating the self energies from Eq. (3.38), we arrive to the following expression:

p= i /OO dE G[-(G)™ '+ (GN) ™! + 2inS|GT f(E) (3.55)
p= % jo dE [-G" + G + 2inGSG'] f(E) (3.56)

Considering that n — 0, we rewrite:

p i/oo dE [G — GTf(E) (3.57)

:27T oo

For the I' point, we have i[G — G| = —2Im G and the equilibrium density

reduces to:

P —;/_O; dE Tm[G]f(E) | (3.58)

which is the expression obtained in Eq. (3.14).
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3.3. Combining DFT with Green’s functions

3.3.2 Calculation of transmission coefficients

The transmission functions can be calculated using the scattering formalism
through the Fisher-Lee relation [33], where the scattering elements are calculated
as:

V(B (3.59)

e

Seer = —0per + DY (E)G(E)T

Hence, the transmission coefficients from electrode e to €’ is given by:

T(E) = Tr[see/sle,] with e #¢€ (3.60)
T(E) = To[T(B)G(E)Tw (B)G' (B)] (3.61)
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Chapter 4

Molecular dynamics

Density functional theory calculations, explained in Chapter 2, are widely used
to obtain equilibrium structures and energies of molecules and solids. However,
as they come at the expense of a high computational cost, they are restricted to
systems with few thousands of atoms. Molecular dynamics (MD) is a classical
technique used to compute thermodynamics and dynamic properties of large-scale
atomistic systems (in the range of 10° to 10? atoms, depending on the force field

used) with significantly reduced computational cost.

This method integrates Newton’s equations of motion to determine the system
evolution in time, where the forces are calculated from interatomic potentials,
often referred to as force fields. The result of a MD simulation is a set of
atomic positions and velocities for each timestep, which can be transformed into
macroscopic information (temperature, internal energy, pressure, etc.) using
statistical mechanics. Figure 4.1 shows a schematic describing the fundamental

loop that allows time evolution in a molecular dynamics simulation.

This chapter describes general aspects of the MD, starting with the description
of the force field used in the thesis, then the explanation of the most common
integration algorithms for the equations of motion, and finally, the basic statistical
ensemble concepts that relate the microscopic information with macroscopic

properties of interest.
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Initial conditions
ri(tzo), Vi (t:O)

A4
Calculate forces, fi(t),
from r;(t)

v

Integrate equations of motion
and evolve positions and velocities
ri(t)— rj(t+At)

vi(t)— vi(t+At)

v
Calculate properties

# while t<t, .
t=t+At }

Figure 4.1: Description of the standard molecular dynamics simulation

algorithm.

4.1 Force fields

The force field is the core of a MD simulation, because it defines how the
particles interact each other. Force field parameters are usually estimated from
experimental data or quantum mechanics calculations, and optimized to reproduce
materials properties.

Pair potentials, such as Lennard-Jones [34] or Buckingham [35, 36, 37|, de-
scribe all bonds between the same atomic pair equally, and can be used to study
systems near equilibrium with fixed properties. Although these potentials are
computationally cheap, they have limited transferability, i.e. the parameters
determined for specific types of crystals (or molecules) can not be used to describe
range of crystal structures. As result, they are not suitable for the study of
chemical reactions where the materials modify their reactivity and charges during
the simulation.

On the other hand, many-body force fields normally introduce the concept of
bond order (BO), that depends on the local chemical environment, to describe

different bonding states of an atom. Hence, they are much more transferable
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and can be used to study formation and dissociation of chemical bonds. Some
examples are REBO [38], Tersoff [39, 40], COMB [41] and ReaxFF [42]. Besides
the use of BO to describe covalent interactions [|, some potentials, such as COMB
and ReaxFF, also include charge equilibration schemes [] to evolve the atomic
charges according the local environment at each step of the simulation.

In this thesis, we perform MD simulations to study resistive switching process
in HfO2-based memories, that occurs through a redox mechanism. We have
chosen the ReaxFF because it allows us to reproduce chemical reactions under the
effect of an external potential thanks to the addition of electrochemical dynamics
with implicit degrees of freedom (EChemDID) [43].

ReaxFF

The general formula of ReaxFF [42] counts the following therms in the force

calculation:
Esystem = Ebond + Eover + Eangle + Eiors + Evdw + Ecoul (41)

Where FEp,pnq is a function of the interatomic distance that describes the energy
associated with the formation of bonds between atoms. FEg,g. and Ei,s are
three and four-body energy therms, associated to the valence angle strain and
torsional angle strain, respectively. Fyyer is an energy penalty that prevents the
over coordination of atoms. F ., and FE,q4, are Coulomb and Van deer Waals
therms, respectively. A detailed explanation of each energy therm can be found
in Ref. [42].

The bond order (BOj;) between two atoms i, j is calculated from the inter-

atomic distance (7;;) according to the following empirical equation:

BO'" = BOy; + BO[; + BOJT
o\ P2 i\ Pa re: \ P6 (4.2)
p0'=epln(g) [ reln(2) | ele(52) ]
TO TO TO
where 7, are equilibrium bond lengths for each kind of bonding and p, are
empirical parameters. The final bond orders (BO) are obtained by multiplying
the BO' from Eq. (4.2) by correction factors [42]. Once the BO are computed,

FEpona is calculated according to:

Ebond = —De BOZ‘J’ exp [pbe,l(l — BOZJE’1 )} s (4.3)
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with D, being a bond dissociation energy.

The nonbonded Coulomb interactions are calculated for all atomic pairs as:

q:q;
ECoulomb =C T a2 . _311/2 (44)
3 + %‘jg]l/g
where C' is the Coulomb constant and +;; is a shield parameter, to avoid collapse
between attractive charges [44]. The atomic charges g; ; are calculated using the
electron equilibration method (EEM) approach [44, 45, 46].

EchemDID

As mentioned above, we simulate the effect of an external electrochemical potential
required for forming, set and reset of HfO2-based RRAM cells via EChemDID [43].
The modifies the electronegativity of the atoms in one electrode to xo — ®/2 and
Xo + ®/2 on the other, with yo corresponding to the force field value, and ®
being the potential applied. The electronegativity propagates and equilibrates

through the metallic ions in contact with electrodes according to:
d=kVD . (4.5)

where k is a diffusive constant. This equation is solved numerically on-the-fly
using atoms as a grid through the following expression:
. D;(t) — (¢t
b=k PO () pve, (4.6)
=z Ryl
where 7 is the relaxation rate, F'(W) is a switch function that turns on when a
metallic ion detaches from the other metallic atoms contacting the electrode, W;

is the total coordination of the atom i, and w(R;;) is a weight function, calculated

m@p{thﬁﬁzﬁ%<%& (4.7)
0 otherwise

as:

Here N is a normalization constant, and R¢ is a cut-off radius below which
two atoms are considered part of the same metallic cluster, and therefore, have
the same electronegativity. The calculated potential ®; is then added to the
atomic electronegativity of the metallic ions, x;(t) = xo + P;(t), used in charge

equilibration to adjust the energy of valence electrons.
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4.2 Equations of motion

The equations of motion [47] are expressed as:

Pi
m (4.8)
b = £ = ~VVi(r)

r; =

Where the forces are calculated from the interatomic potential (V) described in
the previous section.

One of the simplest and most used methods to integrate Eq. (4.8) is the Verlet
algorithm. It can be derived by doing Taylor expansion of the atomic position

around a given time:

r;(t+ At) =ri(t) + vi(t) At + fn(l) Ath T (t )A;‘g + O(At4) (4.9)
and
. 2 3
ri(t — At) = ri(t) — vy(t) fﬁ) ATt T(t )A?j + O(At4) (4.10)

Summing these two equations, we obtain:
f;(t
I‘Z'(t — At) + I‘i(t + At) = QI‘Z'(t) + T;)AtQ + O(At4) (4.11)

Therefore, we can compute the position for an advanced time as:
£i(t) 2
I‘i(t + At) =~ —I'i(t — At) + QI'Z'(t) + —2At . (412)
m

As can be seen in Eq. (4.12), the Verlet algorithm estimates a new position
using the positions at two previous timesteps (At), and involves an error on the
order of O(At*). Although the Verlet algorithm does not use the velocity to

compute the new position, it can derive by doing:

ri(t — At) —ri(t + At) = 2v;(t) At + O(AL?) (4.13)
vi(t) ~ ri(t — At)zgtri(t + At) (4.14)

Besides Verlet, there are other algorithms that are also based on a truncated
Taylor expansion, such as the Leap Frog algorithm and the velocity Verlet
algorithm [47, 48]. The Euler algorithm is similar to Verlet, but it uses the
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forward difference approximation instead of central difference. As consequence, it
requires a single position evaluation per timestep, instead of two, increasing the
error. For this reason, this approximation is not used in MD, besides, it can be

numerically unstable.

4.3 Statistical Ensembles

The thermodynamic state of a macroscopic system can be defined by a small set
of parameters, such as temperature (7'), pressure (P), volume (V'), energy (E)
and number of particles (V). The collection of all possible systems with different
microscopic states (microstates), that correspond to the same thermodynamic
state is defined as an statistical ensemble. From statistical mechanics, it is
possible to calculate a macroscopic observable (Agys) by averaging the value of

such observable over the ensemble:
Aops = (Aens - (4.15)

In MD, the sequence of atomic positions and velocities (or momenta), that
defines the phase space with 6/N dimensions, belongs to the same statistical
ensemble. For a particular point in the phase space, denoted as I'(r(t), v(t)), we
can write an instantaneous value of a property A(I'(t)). Since in MD the system
evolves in time, the property will also change throughout the simulation. Hence,
it is reasonable to assume that the macroscopic observable A, can be calculated

from the time average of the property A, taken over a long time interval:

Agps = (A)pime = lim / A(D(t)) dt (4.16)

tobs—>00 tObS =0
Which can be alternatively expressed in a discrete form:

1 Tobs

Agps = <A>time = lim

Tobs —>00 Tobs —

AT (7)) (4.17)

where 7 is a timestep, instead a continue variable.

Some of the ensembles are: i) microcanonical ensemble, characterized
by a fixed number of atoms, energy and volume (NVE), where the systems are
isolated and evolve independently; ii) canonical ensemble characterized by

a fixed number of atoms, temperature and volume (NVT), where the system
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exchange energy with a thermostat to maintain the temperature constant; and iii)
isobaric/isothermal ensemble which fixes the number of atoms, the pressure
and temperature (NPT). The simulations performed in the thesis are in the NVT
and NPT ensembles. We used Nosé-Hoover [49, 50] thermostat and barostat
since it allows to perform simulations at constant the temperature and pressure,

reproducing at the same time the fluctuations of the corresponding ensemble.
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Chapter 5

MoS»- lateral

metal-semiconductor junctions

Adapted from:
M Laura Urquiza and Xavier Cartoixa, “Schottky barriers, emission regimes
and contact resistances in 2H-1T° MoSs lateral metal-semiconductor junctions

from first-principles”, 2D Mater. 7 045030, DOI:10.1088,/2053-1583/ aba449.

Ultrathin transition metal dichalcogenides (TMDs) have emerged as prom-
ising semiconductors to overcome the short channel effects that arise with the
miniaturization of field effect transistors (FETs) [10]. Due to their 2D geometry
and wide bandgap (in the range of 1-2 eV), these materials would reduce the
direct source-drain tunnelling current and could improve the transport properties
of the channel [51]. Moreover, the absence of dangling bonds outside the 2D plane
gives a perfect interface with the gate and the substrate, which, together with the
atomically thin structure, allows an excellent electrostatic gate control. TMDs are
also very promising for the new generation of flexible electronics; in fact, flexible
and transparent FETs have been already demonstrated using semiconducting
MoS; channel [52]. But TMDs in electronics are not restricted to single devices,
as complex circuitry such as a MoSy microprocessors has also been reported [11].

Despite the novel properties of these materials, the performance of TMD-

based FETs is normally limited by the formation of Schottky barriers at the
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Chapter 5. MoSs lateral metal-semiconductor junctions

interfaces between the 2D channel and the metallic electrodes, which translates
into a high contact resistance (R.), in the range of 10* to 10 Q- um [53]. Some
of the attempts to reduce the negative effects of the Schottky barrier include the
use of metals with low work function [54], metals with high chalcogenide (S, Se,
Te) affinity, able to provide a strong hybridization between the channel and the
electrode [55, 56], and the use of substitutional doping [57].

So far, the most promising solution for the contact resistance issue seems to
be the use of phase engineering to build contacts between the semiconducting
(2H) and the metallic phase of TMDs [58]. This metallic phase can be either the
1T, where one of the chalcogenide planes is rotated 60 degrees and the structure
acquires inversion symmetry; or the 1T’, which is a distortion/structural relaxation
of the 1T phase with a lower energy [59, 60, 61]. Experimentally, the presence
of the 1T’ phase has been observed by Eda et al. [62] and Lin et al. [63]. The
1T’ phase is used to connect the 2H channel to the metallic pads, in the same
way that p™ or n~ doped regions are implemented in the traditional silicon-based
FETs to connect the Si channel to the metallic electrodes. With this strategy, it
was possible to achieve record low R, values of 200-300 €2 - um in MoSs-based
FETs [64]. These FETs also demonstrated good performance, with mobility
values of 50 cm?/ Vs, subthreshold swing values of 90-100 mV and on/off ratios
greater than 107 [64].

In this chapter, the finite bias transport properties of MoS, lateral metal-
semiconductor junction are studied using density functional theory (DFT) and
non-equilibrium Green’s functions calculations, where the effect of the electrostatic
gating on the semiconducting phase was emulated including electrostatic doping.
The chapter is organized as follow: it starts explaining the methods used to
perform the calculations and the model for emulating the electrostatic doping.
Then it introduces the transport properties of 2H-1T and 2H-1T’ interfaces,
including the effect of the doping, and the study of the emission regimes through
the Schottky barriers formed at the interface. It finishes with the study of Schottky
barrier heights, and contact resistances under different doping concentrations and

external voltages.
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5.1 Methods

5.1.1 System description and computational details

Electronic structure and transport calculations are performed within the DFT
(Chapter 2) and NEGF (Chapter 3) formalisms, as implemented in the SIESTA [28]
and TRANSIESTA [65] codes.

The exchange correlation functional was approximated with the General-
ized Gradient Approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE)
parametrization [24]. Although for 2D materials the GGA gaps often match
experimental optical gaps despite the well known DFT underestimation of band
gaps, this is because the experimental gaps are subject to strong excitonic effects
that reduce the single particle gaps [66]. Since band alignments and carrier injec-
tion are expected to depend on the single particle band structure, the limitation of
plain LDA/GGA still stands. This might affect the overall value of the Schottky
barrier heights (SBHs) provided, but relative differences in SBHs should be more
accurate [67].

We use norm-conserving pseudopotentials [68] to describe the core electrons
and a double-( polarized basis set for the valence electrons. The Brillouin zone
was sampled using a grid of 9x16x1 k-points for the 6-atom orthogonal unit cell
of the 2H phase, and its equivalent for supercell calculations. The real space grid
cutoff was set to 250 Ry.

Ionic positions were relaxed using a force tolerance of 0.03 eV/ A for the
SIESTA calculation and 0.05 eV /A for TRANSIESTA calculations. In the case of
structures with interfaces, the cell was also optimized until the strains were lower
than 0.1 GPa (1 kbar).

MoSs heterostructures

The interfaces studied consist of a single layer MoSsy heterostructure, where the
semiconducting phase (2H) is contacted laterally to the metallic or semimetallic
phase (1T or 1T’). Figure 5.1 shows the band structure of the three phases: 2H,
1T and 1T". In order to avoid interactions between images in the non-periodic
direction, a vacuum of 20 A was included. Two different orientations for the
semiconducting-metallic interface, armchair (ac) and zigzag (zz), were considered.

Figure 5.2 shows the device setup for transport calculations. The scattering
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Figure 5.1: Band structure of the fully relaxed MoSs 2H, 1T and 1T’ phases

region is 13 nm (16.5 nm) long for the armchair (zigzag) device. We also performed
preliminary calculations to decide the optimal MoSs heterostructures, where we
used structures with scattering regions of 1.6 nm (2.7 nm) for ac (zz) interfaces.
Since the system has dissimilar electrodes, we added buffer regions of pristine 2H
and 1T/1T’ structures after each electrode to provide a bulk-like environment to

the electrode atoms.

Electrostatic doping

The charge density induced by a gate voltage (V,) was simulated by adding
a specific fixed charge in the 2H region, with the total number of electrons
chosen to satisfy global charge neutrality. The electrons in the system will

then self-consistenly respond to the dopant-like fixed charges when Poisson’s

Left Scattering region Right
electrode electrode
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Figure 5.2: Device set-up for transport calculations, the structure shown
corresponds to armchair 2H-1T" interface. Yellow and grey spheres represent

sulphur and molybdenum atoms, respectively.
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Figure 5.3: Electrostatic potential along the transport coordinate (z) for

armchair interface with different doping concentration in the semiconducting

phase.

equation is solved. This scheme is very similar to the one used by Stradi et
al. [69], with the difference that they used compensation charges localized around
the semiconductor atoms to ensure overall charge neutrality, while here the
compensation is uniformly distributed over a rectangular box tightly surrounding
the semiconducting region. The overall effect is that there is a drive for the
Fermi level to be rigidly shifted, as sometimes imposed in electronic transport
calculations mimicking dopant effects [70]. On the other hand, while this approach
cannot account for the capacitive effects induced by the gate, or the gate-induced
electric field perpendicular to the channel [71], it does have the advantage of
not depending on the particular distribution of the atomistic impurities or the
geometry of the system [69]. In this work, we considered channel charge densities
of 5x10'2 cm~2 and 5x10'® ecm~=2. We refer to p-doped (n-doped) system when

the mobile charge added into the channel is positive (negative).

For an accurate description of the electrostatics with NEGF, it is required
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Figure 5.4: Voltage drop scheme for the device set-up. Here, L and R
represent the left and right contacts, and S; represents the different phases

present in the scattering region.

that the electrodes behave as bulk, meaning that the electrostatic potential should
have reached its bulk behavior at the boundary between the scattering region
and the semi-infinite bulk electrodes. Therefore, we plotted the potential profile
along the transport direction for devices with different doping concentration, as
shown in Figure 5.3. Here, it can be seen that for the undoped structure, the
dipole formed at the interface is not screened in the 2H phase, as a consequence,

we did not carry out transport calculations for this case.

5.1.2 Contact resistance extraction

The large signal contact resistance of an interface can be obtained from the ratio
between the voltage drop across the junction and the current flowing through it.
Using NEGF it is possible to calculate the current that flows through a device
when a potential is applied at the semi-infinte contacts. In these calculations,
however, the applied voltage (Vi) is distributed between the interface present
in the scattering region, (Vs,_s,), and the interface between the semi-infinite

contacts with the device (Vz_g, and Vs,_g), as shown in Figure 5.4. Therefore,

44



5.1. Methods

the total applied voltage can be expressed as:
Viot = Vi—s, + Vsa—s5 + Vsp—r, (5.1)
from where
Riot = Rr—s, + Rs,—s; + Rsz—nR- (5.2)

Here R;, represents the total series resistance, and it can be obtained from
the I-V curves of the whole device. On the other hand, R;_s, and Rg,_pr are
the resistances between the contacts and the electrodes, which are obtained from
I-V reference curves of pristine devices, all of the same phase. Since pristine
devices include two electrode-contact junctions, the value extracted for each
reference calculation must be divided by two to consider the contribution of a

simple electrode-contact interface:

1 Vs,—s4
2 1

1 Vg,
RL—SA = and RSB—R = 5 %, (5.3)
where Vg, _g, and Vs, _g, are the potentials applied in the pristine devices to
obtain the same current value as in the whole device.

Finally, Rs, s, which is the resistance corresponding to the junction between
the two phases, can be calculated from the other terms by replacing Eq. (5.3)

into Eq. (5.2) and reordering:

Vi 1 Vsy—s, 1 Vsu_gy

1
1 2 1 2 1

Rs,—s5 = (5.4)

A similar analysis can be performed to obtain the small signal contact resis-
tance, but in this case, instead of taking the ratio between voltage and current at
each point, we take the derivative of the voltage with respect to the current to

compute the resistance. Carrying this process out we have

6‘Qm
ol

aVSA—SA

1 8VSB—SB
2 ol

1
}meﬂ -
2 ol

Sa—SB

, (5.5)
Io

Io Iy Io

where derivatives are evaluated at the bias that provides a current I, correspond-

ing to the bias Vj of interest for the whole device.
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Figure 5.5: Specific conductance, in units of Gy over the transverse lattice
parameter (ag), for 2H-1T and 2H’-1T” MoS, structures with armchair and
zigzag interfaces.

5.2 Transport properties of MoS; heterojunctions

To understand the transport properties of MoSy heterojunctions, we calculated
the specific conductance (i.e. conductance per unit of channel width) using the

Landauer formula [30], explained in Sec. 3.1:

G(E)a; = 222 T(E) = Gy T(E) (5.6)

where T'(E) are the transmission coefficients averaged over all the k|, obtained
from the NEGF calculations, and a; is the width of the computational cell along

the direction perpendicular to transport.

Conductance of 2H-1T and 2H’-1T’ interfaces

Although DFT calculations have predicted that the 1T phase is unstable and
undergoes a distortion that naturally leads the 1T’ phase [59], experimental
results report that the 1T phase can be stabilized by the presence of adsorbates,
vacancies defects, or under specific environmental conditions [64].

In our calculations the 1T phase could not be stabilized without including

external constraints. However, in order to predict which phase of MoSy could
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Figure 5.6: Specific conductance at zero bias, in units of Gg over the
transverse lattice parameter (ap), for armchair and zigzag 2H-1T’ interfaces
with different doping concentration (left), and armchair 2H-1T” and 2H-2H

MoS; interfaces with different doping concentration (right).

be more convenient for contacting the semiconducting 2H phase, we performed
preliminary calculations to compare the conductance of 2H-1T and 2H’-1T"
structures (2H’ means 2H distorted to match the cell parameter of the 1T7).
Figure 5.5 shows the results for armchair (ac) and zigzag (zz) geometries, where
we observe superior conductance when using the 1T’ phase. Although these
results are not enough data to support the statement that 1T’ should make a
better contact than 1T, the higher conductance, plus the superior structural
stability of the 1T’ phase, led us to use 2H’-1T" interfaces for our study. From
now, it will be referred as 2H-1T" to avoid confusing the reader with the notation

of the phases.

Conductance of armchair and zigzag interfaces

We compared the transport properties of zigzag and armchair structures in order
to predict which is the most promising configuration for transport. In Figure 5.6

(left) we show the specific conductance as a function of the energy of the incoming
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Figure 5.7: Conductance of pristine 2H and 1T’ phases. The orientation in

the legend corresponds to the transport direction.

particle, for armchair and zigzag 2H-1T’ interfaces. The results show that the ac
interface has an enhanced transmission for the injection of both holes and electrons.
The difference in the transport across the ac and zz interfaces comes essentially
from the asymmetrical behaviour of the 1T’ phase, as can be seen in Figure 5.7,
which has higher conductance when transport direction is perpendicular to the ac
interface. As for the 2H phase, it can be noticed that there is a small difference in
the bandgap of the zz and ac structures, which is caused by the different strains
induced along the armchair and zigzag directions to lattice match with the 1T’

phase.

In Figure 5.6 (right) we show the specific conductance for armchair 2H-1T’

2 and

and 2H-2H interfaces with p and n-doping concentration of 5x10'? cm™
5x10™ ecm™2. Comparing the transmission for the 2H-1T’ device to the 2H-
2H reference device, which provides the maximum attainable transmission, a
notable reduction of the conductance is observed, mainly for the structures with
intermediate doping concentration. The results also show that the injection of
holes is slightly favored due to the higher number of transmission channels in the

valence band.
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Figure 5.8: Current vs. voltage curve of n-doped (left) and p-doped (right)
2H-1T’ armchair structures.

5.3 Emission regimes

For armchair interfaces, we also performed NEGF calculations at finite bias,
showing the resulting current vs. voltage (I-V) characteristics in Figure 5.8.
For the highly doped structures, we observe a slight asymmetry at forward and
reverse biases, specially in the n-doped structure, but overall there is an ohmic
behavior in the I-V curve. For intermediate doping concentrations, we observe
an exponential increase of the current at forward bias, indicative of a Schottky
regime, and a poor rectifying behavior, also typical of Schottky contacts. In this
regime, the transport mechanism can be (a) thermionic emission (TE) over the
Schottky barrier (SB), (b) field emission (FE) with electrons around the Fermi
level tunneling through the SB, or (c) thermionic-field emission (TFE), where the
tunneling electrons contributing to the current are quite above the semiconductor
Fermi level, but still below the top of the SB [72].

In order to determine which of these mechanisms dominates in 2H-1T" junc-
tions, we performed a temperature study of the forward I-V characteristics.
The results are shown in Figure 5.9. Plots a) and c) show the forward bias
-V characteristic for n and p-doped structures, respectively, at different tem-
peratures, while plots b) and d) show the energy Fy extracted from a fit of
the I-V curves to J o exp(¢V/Ey). When FE or TFE dominate, we have
Ey = Ey coth(Ego/kT) [72], where Eyg is an energy related to how fast the trans-
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Figure 5.9: Forward I-V curves of a) n-doped and c) p-doped structures at
different electronic temperatures, and Ey values as a function of the

temperature for b) n-doped and d) p-doped structures.

mission coefficient through the barrier increases as the forward bias is increased.
If KT <« Eyo, then FE will dominate, while when kT ~ Eyy TFE is the main
mechanism [73]. On the other hand, if kT > Eyp then TE dominates, and we
will have Fy ~ nkT', where 7 is an ideality factor accounting for the variation of
the SBH with the applied bias.

All these considerations can be summarized into the following prescription,
which can also be applied to experimental measurements, allowing the determina-
tion of the dominating transport mechanism: for a range of temperatures 7', fit
the I-V curves to J x exp[qV/Ey(T)]; then fit Eo(T) to

Eo(T) = Eoo coth(Eoo/nkT) (5.7)

and finally compare Eyg to kT to determine whether FE, TFE or TE dominates,
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5.3. Emission regimes

obtaining the ideality factor n as a by-product. Performing this analysis prior
to an activation-energy study should be required in order to ensure that TE
dominates transport across the junction, since that is the regime assumed in the
activation-energy study. Otherwise, a too strong dependence of the SBH with
the metal-semiconductor bias might ensue, even leading to unphysical negative
values for the SBH [74]. Further information within the tunneling regime can be
obtained with the analysis by Mouafo et al. [75].

We have fitted the n-doped structure in Figure 5.9.b) to Eq. (5.7), obtaining
FEgp = 60.72 meV and 1 = 1.33. So, for this case we are in the FE regime, with a
small temperature assistance. The p-doped case is more complicated. We see in
Figure 5.9.c) how, specially at low temperatures, the curves present two regions
with separate temperature dependence; at small bias the T' dependence is weak,
becoming stronger at bias 2 0.25 V. Figure 5.9.d) shows Ej extracted from a fit
in the forward bias [0.3, 0.4] V range, where we see that, at low T', we have some
contribution of TFE current, overwhelmed by TE current at medium and large

temperatures (the fitted parameters are Ep = 16.25 and n = 2.04).

It is desireable to find FEgy by other means in order to check the consistency
of the treatment and have further validation for the claimed transport regime.
In the case of a 3D structure and a parabolic barrier, Fyy can be easily eval-
uated from the metal-semiconductor (MS) junction parameters, finding that
FEoo = q\/ Nph?/4egm* [72], where Np is the 3D dopant concentration, ¢, is the
semiconductor dielectric constant and m* is its effctive mass, under the parabolic
dispersion assumption. For the 2D MS junction, the barrier profile is no longer
parabolic [76], difficulting the obtaining of an analytical expression. However,
FEop can be numerically estimated noting that the transmission coefficient for

carriers coming at the Fermi level Er may be written as [77]:
T(Er) = exp[=q(Ve — Er —V)/Eoo] , (5.8)

where Vp is the Schottky barrier height in the semiconductor side and V is
the applied bias. We have carried out this approach, plotting the transmission
coefficient as a function of the applied bias in Figure 5.10 for the n,p = 5 x
10" e¢m~2 doping at an incoming electron energy of Er + 6E eV! and fitting to

!The incoming energy with respect to the Fermi level must be increased (decreased) for
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Figure 5.10: Logarithm of the transmission coeficients (T), at the indicated

carrier incoming energies, as a function of the applied bias (dots), and linear

regression with slope S = 1/Eyy (dashed lines), for a) n-doped and ¢) p-doped

structures. Plots b) and d) show the slope as a function of the excess energy
0F and its extrapolation to dFE = 0.

300

Eq. (5.8), for several E. The obtained slopes have been extrapolated to 0E = 0

with a cosh function, and from there we have obtained for the n =5 x 10" cm™

case Fgg = 61.0 meV, in excellent agreement with the value obtained from the

temperature analysis, thus corroborating the assignation to the FE regime. For

the p = 5 x 10'2 cm™2 case we have obtained Eyy = 15.7 meV, which, being quite

smaller than k7" at room temperature, corroborates the assignment to the TE

regime.

electrons (holes) to ensure that the incoming carriers have allowed energies.
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Figure 5.11: Arrhenius plots of In(Iz,/T7%/?) vs. 1/T at different gate
voltages for a) n-doped and ¢) p-doped ac-2H-1T’ suctures, and Schottky

barrier height (®p) for b) n-doped and d) p-doped structures extracted from

the activation energy method at different bias.

5.4 Schottky barriers of 2H-1T" interfaces

In this section we discuss two different approaches used to obtain Schottky barriers

in metal-semiconducting junctions. One of them is the standard activation energy
method (AEM) performed on I-V curves calculated with NEGF formalism, and

the other uses energy resolved local density of state to describe the band alignment

and extract the barrier height.
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Chapter 5. MoSs lateral metal-semiconductor junctions

Activation energy method

In experiments, Schottky barrier heights (®p) are normally obtained through the
activation-energy method (AEM), which uses the thermionic emission equation
to extract ®p from the In(I/T) vs. 1/T plot. Here « is an scaling exponent
equal to 2 for 3D systems and 3/2 for lateral 2D lateral heterostructures [78].
While this method can be applied to the intermediate p-doped case at high
bias, it is not suitable for the intermediate n-doped and low bias p-doped cases
because the doping concentrations we considered are high enough to observe
transport governed by FE or TFE. Nevertheless, we applied the activation energy
method to illustrate its failure to provide a definite value for the Schottky barrier
height in the intermediate doping structures. The results are shown in Figure 5.11,

from which we extract ®p = 0.28 ¢V for the p-5x10'? cm™2 structure.

Local density of states

As an alternative to the AEM, we studied the effect of the gate bias on the Schottky
barriers using local density of states (LDOS) plots. Although penetration of the
metallic states into the semiconductor gap renders the direct determination of
the SBH difficult, we can use the macroscopic average of the Hartree portential,
which traces quite closely the conduction and valence band profile [69], to extract

the n-doped and p-doped barrier according to:

g, =q(Vi — Vu) + (Ecpr — E3) — (B — E2H) (5.9)
5, =qViur — Vi) + (E¥ — Eypp) — (B3 — EFY), (5.10)

where Vp,i is the average Hartree potential at the semiconductor side far from the
influence of the interface, V; is the average Hartree potential at the interface, and
Feopg and Fypg are the conduction band and valence band edges, respectively,
extracted from the LDOS. Finally, in order to take into account the case of an
applied bias across the junction, we define E};T’ and E%H as the respective Fermi
levels.

The LDOS plot for 2H-1T" armchair (zigzag) interfaces at zero bias and dif-
ferent doping concentrations are shown in Figure 5.12 (5.13). The barrier heights
and the depletion layer width (W) extracted from the LDOS plots are presented
in Table 5.1. From the plots for the undoped structures, it can be seen that ®p
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Figure 5.12: Energy-resolved local density of states (LDOS) of ac-2H-1T"
structures with different p and n doping concentrations. The red and yellow

lines denote the Fermi level and the average Hartree potential, respectively.

for the injection of holes is lower than for electrons, the values being 0.6 (0.7 €V)
and 0.97 (1.0 eV), respectively. This result is in good agreement with other

theoretical values reported in literature, where the height of the p and n-barriers
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were found to be 0.71 eV and 0.96 eV, respectively [79]. We also observe that the
Schottky barrier decreases when the electrostatic doping increases, and it slightly

varies for ac and zz interfaces. This evidence indicates that Schottky-Mott Rule
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5.4. Schottky barriers of 2H-1T" interfaces

n-doped p-doped
dq [em ]
Op ., [eV] W [nm] ®p, [eV] W [nm]
0 0.97 (1.0) >8.6 (8.6) 0.58 (0.7) >8.6 (8.6)
5x10'2 0.78 (0.8) 4.5 (4.1) 0.39 (0.4) 2.9 (3.2)
5x10%3 0.60 (0.3) 1.3 (1.1) 0.04 (0.3) 0.9 (1.0)

Table 5.1: Schottky barriers ® 5 and depletion layer widths (W) for n and
p-doped ac (zz) interfaces extracted from the LDOS shown in Fig. 5.12 (5.13).

does not apply in these highly doped 2H-1T’ semiconductor-metal juctions, as
expected for non-ideal systems [80]. A similar behavior was also observed in DFT
studies of a Ag/Si 3D junction, where increase of the semiconductor doping level
led to a reduction of the SBH [69] by similar amounts. Note that this dependence
of the SBH on the doping level is qualitatively different from that reported in
graphene-silicon contacts [81], because there the variation in electrostatic doping
was applied to the graphene “metallic” component of the junction, thus changing
the metal workfunction. Additionally, our results point to the possibility that the
2H-1T" junction is free from Fermi level pinning, a possibility already hinted at by
Katagiri et al. [82], since the Fermi level position at the interface spans most of the
semiconductor gap region (cf. the two 5x10'3 cm™3 plots in Figure 5.12 for the
two extreme cases). This is opposite to junctions with 3D metals, where pinning
of the Fermi level was found [83, 84, 85]. This might open up the possibility of
ambipolar injection into MoSs, similarly to what has been observed in MoTes

under weak Fermi level pinning conditions [86].

To understand the effect of the applied voltage on the band alignment of the
2H-1T" interfaces, we also represented the LDOS of the ac structures under finite
bias. In Figures 5.14 and 5.15 we show the results for n- and p-doped structures,
respectively. The ®p calculated according to Egs. (5.9) and (5.10) are presented
in Table 5.2 for different biases.

In all cases we observe ®p slightly reduces (increases) when the 2H-1T’

junction is reverse (forward) biased, again by amounts similar to what was
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Figure 5.15: LDOS of p-doped ac-2H-1T" structures at different applied
voltage. The colorbar indicates the density of states. The red line is the
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yellow line is average potential of the structure with the applied voltage.

Negative (positive) voltage indicates forward (reverse) bias.

59



Chapter 5. MoSs lateral metal-semiconductor junctions

H1T n-dop 5x10™2 n-dop 5x10'3 p-dop 5x102 p-dop 5x10'3

-0.4 eV 0.85 — 0.32 —
-0.2 eV 0.82 0.64 0.35 0.03
0.0 eV 0.79 0.58 0.39 0.15
0.2 eV 0.77 0.53 0.44 0.27
0.4 eV 0.74 — 0.49 —

Table 5.2: Schottky barriers ® g for structures with different doping
concentrations under finite bias, extracted from the LDOS plots shown in
Figure 5.14 and Figure 5.15.

observed in the Ag/Si junction [69], where this variation was attributed to the
effect of image forces [73]. For the case of intermediate n(p)-doping concentrations,
5x10" cm™2, when the 2H side is forward biased with respect to the 1T’ phase,
V>0 (V<0) in Figures 5.14 and 5.15, the 2H band edge raises (lowers) and the
effective barrier is reduced, increasing the current. When the junction is reverse
biased the band bending increases, and so does the depletion layer; as result,
only a small leakage current flows. On the other hand, when the transport is
ohmic (high doping concentrations 5x10'3 cm~2), the band bending is almost
imperceptible and the current flows independently of the bias polarization in

both types of doping.

5.5 Contact resistance of 2H-1T’ interfaces

We calculate the large and small signal contact resistance (R.), relevant for digital
applications, of the 2H-1T" interfaces (Roy_177) at 300 K using Eqs. (5.4) and
(5.5), respectively, explained in Sec. 5.1.2:

1 Vop_ 1 AT
Rt 170 = VtIot -2 QHI 2H : VITI i (5.11)
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where the voltages Vio, Vorr—om and Vipr_17v have been extracted from the I-V

curves shown in Figure 5.16 at the same current value. Note that the deviations

from linearity observed in the reference electrode I-V curves reflect features of

the underlying density of states.

The resulting large- and small-signal contact resistances for different elec-

trostatic dopings as a function of Vj;g/5ys are shown in Figure 5.17, finding a

qualitatively similar behavior for both cases.

As expected from the I-V curves in Figure 5.16, positive doping yields lower
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Figure 5.17: Small and large signal contact resistances as a function of Vg
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0.2

for ac-2H’-1T’ contacts with different doping concentration.

contact resistance than negative doping by a factor of ~10 (~4) in the intermedi-
ate (high) doping case. We also observe that in the intermediate-doping/Schottky
case the contact resistance has an exponential dependence with Vj,g, very clear
at forward bias. Having established in Sec. 5.3 that the junction operates in the
FE (TE) regime for the n (p) case, the exponential decrease of R, at forward bias
is due to the narrowing and lowering of the barrier seen from the semiconducting
side (V4;, see Figure 5.12). In the reverse bias, the lowering of Rop 17 is due
to the narrowing of the tunnel barrier for a fixed energy of the carrier coming
from the metal side. In the high-doping/ohmic case, a linear drop in Ry 177 is

observed at forward bias. This is due to the (linearly) increased transmission as

bias is raised.
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5.6. Summary

Houssa et al. also performed calculations of contact resistances for 2H-1T—
as opposed to 1T’—lateral heterojunctions but without including electrostatic
doping. They obtained R, values on the order of 40 and 30 k2 - pum for armchair
and zigzag interfaces, respectively, using the transfer length method [87]. These
values are much lower than our results for intermediate doping; however, the
differences may be related to the procedure of computation of the R.. They used
the transfer length method, with semiconductor lengths up to 4.8 nm. As we can
see in Figure 5.3, the depletion width for the undoped case is > 8 nm, meaning
that they treated the fully depleted case, with some amount of indirect doping
from the metal contacts.

We also compared our results to experimental measurements of MoSs-based
FETs with metal-semiconductor junctions. Nourbakhsh et al. reported R, values
of 1 kQ) - um at gate voltages of 3.5 V, i.e. for sufficiently high negative charge
induced in the channel [88]. This result is in agreement with our calculations for
negative 5x10' ecm ™2 doping concentration at forward bias. On the other hand,
Kappera et al. reported R, values of 0.24 kQ) - um at zero gate voltage [64]. This
extreme low value, obtained without inducing any charge in the channel, has been
explained by considering the functionalization of 1T’ phase with chemical dopants
(H, Li, or H3O), present during the local transformation of semiconducting 2H

phase into metallic 1T’ phase [87].

5.6 Summary

We used non-equilibrium Green’s function formalism to perform transport cal-
culations at finite voltage of armchair and zigzag 2H-1T" interfaces, where an
electrostatic doping was added to the semiconducting 2H phase to emulate the
gate voltage on the channel. It was observed that armchair interfaces provide
better conductance as result of the anisotropic transport behavior of the 1T’
phase. Besides, from the I-V analysis it was found that (i) electronic transport
follows ohmic and Schottky regimes in highly and intermediate doped structures,
respectively, (ii) for the Schottky case, the transmission occurs by tunneling in
the intermediate n-doped structure and by thermionic emission in the p-doped

structure.
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Chapter 5. MoSs lateral metal-semiconductor junctions

The Schottky barrier heights of structures under different doping concentration
and finite bias were obtained through their LDOS, observing that the barrier
heights in 2H-1T’ structures are sensitive to the applied voltage, both at the
gate and at the semiconductor, and there was no indication of the presence of
Fermi level pinning. We also computed the contact resistance for different dopant
types and concentrations as a function of the voltage applied across the junction,
finding a lower 2H-1T" contact resistance for the p-doped 2H phase.

Finally, we have also pointed out a method that can be used to experimentally
identify the emission regime (i.e. tunnel or thermoionic), prior to a possible use

of the activation-energy method.
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Chapter 6

Molecular dynamics

simulations of HfOs-based
RRAM devices

Resistive random-access memories (RRAM) are considered the most promising
candidates for the next generation of high scaling, ultrafast and low power
consumption memories [89, 90, 91]. RRAM cells, that typically consist of a metal-
insulator-metal (MIM) stack, store bits by reversibly changing the resistivity of
the insulator between a high resistance state (HRS) and a low resistance state
(LRS).

In most of RRAM devices the switching between LRS/HRS originates from
the formation/rupture of a nanoscaled conductive filament (CF) in the dielectric
layer. This is the case of memories operating through electrochemical metalization
mechanism (ECM), where the CF consists of metallic atoms injected from an
active electrode into the dielectric, and valence change mechanism (VCM), where
the filament is a conductive region in the dielectric with a high concentration of
oxygen vacancies [92]. In this thesis we focused on HfOz-based RRAM devices
that operate through a VCM.

In the valence change mechanism, the CF formation is triggered by the
migration of oxygen anions from the oxide towards the active electrode, driven
by an external electric field. The subsequent reduction of the oxide, expressed

as a change in the valence of the Hf atoms, is responsible for the electronic
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conductivity in the LRS [93, 94].

Depending on the choice of electrode materials, the devices can be operated
through unipolar or bipolar switching mode. For a bipolar behaviour, metals
with high oxygen affinity are chosen as the active electrode (AE), meanwhile
inert metals are preferred for the inactive electrode (IE). The AE plays an
important role in the operation of VCM cells because it acts as an oxygen ex-
change layer, creating a substoichiometric region at the oxide interface that
contributes significantly to reduce the forming voltage and improve the endurance
and retention of the cell [95, 96, 97]. The most used AE materials are Ti, Hf and

Ta due to their oxygen scavenging ability and good electrical performance [96, 98].

In this chapter we present an atomistic study of the forming, reset and
set processes in HfOs-based RRAM cells through molecular dynamics (MD)
simulations, using an extended charge equilibration method to describe the
external electric field. We will start explaining the schemes used to perform the
MD simulations, then the substoichiometric layer generated at the HfO9/AE
interface, and finally the operation of the RRAM cells.

6.1 Simulation details

The MD simulations have been performed using LAMMPS code [99], with a time
step of 0.2 fs, which leads to good energy conservation under NVE conditions.
For the NVT and NPT simulations we used Nose-Hoover [49, 50] thermostat
and Parrinello-Rahman [100] barostat, with relaxation times of 10 fs and 100 fs,

respectively.

6.1.1 Force field

The interatomic interactions are described with ReaxFF, explained in Sec. 4.1,
parameterized for Hf-O systems. In this section we will detail the structural
information predicted by the force field, such as lattice parameters of Hf/HfOq

systems, atomic distances and oxygen coordination.
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6.1. Simulation details

DFT (this work) ReaxFF (this work) Experimental

a [A] 3.19 3.1375 3.1964
c [A] 5.05 5.1248 5.0511
Cohesive energy [eV] -6.47 -6.33 -6.99

Table 6.1: Comparison of the lattice parameter and cohesive energy of
hep-Hf obtained in this work with experimental results and DFT calculations.

Structural parameters

We calculated the lattice parameters and cohesive energy of metallic hafnium
(hep-Hf), finding good agreement with experimental and first principle calculations
results, as shown in Table 6.1. We also tested the parameters for amorphous
hafnia (aHfO3), obtained through melt/quench process. The Hf-Hf, Hf-O and
O-O bond distances, were extracted from the radial distribution function (RDF)
shown in Figure 6.1, and summarized in Table 6.2, where we compare the results

with values from experiments, DFT calculations and other MD simulations.

Oxygen coordination

The coordination distribution of Hf and O in aHfO5 was computed at 300 K. We
determined the coordination number by counting the number of neighbour atoms

of the opposite specie inside a cutoff radius equal to 2.7 A, which corresponds

Hf-Hf distance [A] Hf-O distance [A] Denisty [g/cm?®]

MD (this work) 2.0 and 2.5 3.3 and 3.9 10.44
Experimental [101] 2.13 3.38 and 3.89 7.69
DFT [102] 2.10 3.0 and 4.3 8.63
MD [103] 2.1 3.6 —
MD [104] 2.112 3.41 and 3.86 8.60

Table 6.2: Comparison of amorphous HfO, parameters.
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Figure 6.1: Radial function distribution of amorphous HfO2 at 300 K.
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Figure 6.2: Coordination histogram of hafnium and oxygen atoms in
amorphous HfO5 at 300K.
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6.1. Simulation details

to the minimum between the 2nd and the (very small) 3rd peak at 2.9 A in the
Hf-O RDF. The resulting histograms are shown in Figure 6.2, where it can be
seen that Hf atoms are mainly seven and eight-fold coordinated, and O atoms
are mostly 4-fold coordinated. These values are slightly higher than the obtained
by Broglia et. al., who reported a coordination average of 6.92 for Hf and
3.07 for oxygen [104]. However, our results are in agreement with the expected
coordination in monoclinic hafnia, where Hf atoms are seven-fold coordinated,

and O atoms are three and four-fold coordinated.

6.1.2 Atomistic device model

The simulated RRAM cells consist of an amorphous HfOy layer sandwiched
between an active and an inactive electrode. We use metallic Hf as active electrode
to induce the formation of a substoichiometric HfO,, layer at the HfO4 /Hf interface.
To simplify the simulations, the inert electrode is also described by Hf atoms, but
the positions of these atoms are fixed throughout the simulation to mimic their
unreactive character.

To consider the natural device-to-device variability of the real cells, five differ-
ent aHfOq structures were obtained through a melt/quench process and attached
to metallic electrodes. The melt was obtained by increasing the temperature
up to 3300 K, corresponding to the melting point temperature of hafnia, and
equilibrating the systems for 100 ps. To obtain statistically independent amor-
phous structures, we performed the quench of the liquid every 5 ps decreasing the
temperature to 1 K in 100 ps. During the entire process, the volume was allowed
to change in z axis to maintain the pressure at 1 atm. The cross section of amor-
phous samples is kept at 2.5x2.5 nm? to match the Hf electrodes. The system
sizes were selected to result in an initial dielectric thickness of approximately

1.5 nm.

6.1.3 Filament description

In order to characterize the formation and dissolution of the CF, it is necessary
to identify and track the oxygen vacancies and the related change in valence of
the Hf atoms that allow electronic conductivity. In monoclinic hafnia (mHfO,),

vacancies are normally defined as point defects with respect to the perfect crystal
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structure [105, 106, 107], since each atom has a specific atomic site, with a fixed
number of bonds, or coordination. In aHfOy this is not possible because there is
no reference structure, and the Hf atoms have a coordination distribution instead
of a single value, as demonstrated in Figure 6.2. To overcome this issue, we study
the evolution of the CF using as reference conductive Hf atoms, instead of oxygen

vacancies.

First-principles transport calculations have demonstrated quantized conduc-
tance in metal/mHfOy/metal structures with single vacancy filaments [108],
consisting of Hf atoms bridging two oxygen vacancies (i.e. five-fold coordinated
hafnium). Therefore, we define conductive Hf those atoms with an oxygen

coordination number equal to or lower than 5.

In order to visualize the filament formation and disruption, we computed the
oxygen coordination through the MD simulations using a cutoff for inclusion of
2.7 A, corresponding to the minimum in the Hf-O RDF 6.1. Then, Hf atoms
with coordination equal to or lower than 5 were considered for cluster analysis,
using a cutoff radius of 3.9 A to compute the connectivity between the metallic

electrodes, which corresponds to 30% of the bond order for two isolated Hf atoms.

6.1.4 External electrochemical potential

The external electrochemical potential applied during forming, reset and set
processes was simulated through EchemDID method, described in Sec 4.1. The
diffusion equations were integrated 10 times per MD time step, while the atoms
are maintained fixed, using a diffusion constant of 6 A?/fs and n=0. The cutoff
radius used to determine the connectivity with the electrode was chosen of 3.9A

with a normalization factor (N) equal to 0.5.

Since the character of the atoms evolves during the reactive simulation, as
conductive filaments form and break, and the coordination of Hf atoms changes,
the group of metallic ions over which EchemDID propagates the potential was
updated every 50 ps. Defining metallic ions as Hf atoms with coordination < 5.
Updating the electronegativity as the simulations proceeded is necessary to obtain

robust reset events, or set events at all.
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6.2 Generation of oxygen vacancy profiles

As mentioned in the introduction, a robust switching in VCM devices requires
some amount of oxygen deficiency in the dielectric film. These vacancy profiles
can be generated by an oxygen reactive electrode [94, 95, 98], or by other methods
[97, 109]. In our simulations, the relaxation of the HfO2/Hf interface naturally
leads to the generation of a suboxide layer and a high concentration of vacancies
in the initial stoichiometric dielectric. The interface relaxation was performed
isothermal-isobaric (NPT) ensemble at 300 K and 1 atm for 100 ps, to generate a
fully relaxed HfOy/Hf interface. The time considered is enough to ensure that

further oxygen migration towards the active electrode be negligible.

In our samples, the diffusion of oxygen atoms toward the active electrode
increases the thickness of the oxide layer by approximately 0.5 nm. Although
there are no experimental data for the thickness of the interlayer formed between
Hf and HfOs, our result is similar to the 1.3 nm measured with XRD for the
TiOx layer at a HfO9/Ti interface [110]. This provides an important, if indirect,

validation of our approach.

Figures 6.3a) and 6.3b) show snapshots of the initial and relaxed structures
of one of the samples generated through melt/quench process (sample A). In
Figure 6.3c) we plot the planar average of the O/Hf ratio (stoichiometry) along
the z axis, for the two states. Here, it can be seen that the initial stoichiometry,
corresponding to HfOs, evolves to a profile HfO,, with x ranging from 2 at the
inert electrode interface, to 0.5 at the active electrode interface. The stoichiometry
plots for the five different samples generated are shown in Figure 6.4, obtaining

similar results for all cases.

Figures 6.3d) and 6.3e) show the atomic charges corresponding to same initial
and final structures mentioned above, and Figure 6.3f) displays the planar average
of the hafnium charge along the z coordinate. The figures demonstrate how self-
consistent charge equilibration results in neutral electrodes and positively charged
Hf ions in the oxide and sub-oxide layer. The atomic charge evolution of Hf atoms
after the relaxation clearly evidences the oxidation of Hf atoms at the active

electrode, and the consequent reduction of the HfOs.

The suboxide layer formed as consequence of the oxidation/reduction process

results in a change of the Hf valence. Given the importance of the valence change
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Figure 6.3: Atomic structure of MIM-1 at a) the initial state and b) after
the interface relaxation. c¢) Stoichiometry profile of the cell along the z axis at
time 0 and 100 ps. d) Initial charge distribution. e) Final charge distribution.
f) Hf charge profile along the z coordinate for the initial and relaxed structures.
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Figure 6.4: Stoichiometry profiles along the oxide thickness at the end of the

interface relaxation.

in Hf ions during the switching of the devices, we characterized it through the
oxygen coordination of Hf atoms, as explained in Sec. 6.1.3. The results are
shown in Figure 6.5a) and Figure 6.5b) with the snapshots corresponding to
the initial and fully relaxed state, respectively. In the images, the color code
ranges from blue representing Hf atoms with no oxygen neighbors (i.e. 100%
metallic hafnium) to red representing Hf atoms with at least 7 oxygen bonds
(i.e. fully oxidized). Before relaxation, Hf atoms from the oxide are mostly
seven-fold coordinated, as expected for the HfOq structure. When the interface
relaxation occurs, this value reduces, generating high concentration of Hf with
metallic behavior, mainly at the active electrode interface. This trend agrees with
DFT calculations, which predict that the formation energy of an oxygen vacancy
decreases towards the interface, suggesting that it is thermodynamically more
favorable remove an oxygen atom from the interface region than from the bulk
region [113]. In Figure 6.5¢) we display only Hf atoms with coordination equal or
lower than 5, considered as metallic. The representation of dynamic bonds shows

that the interface relaxation does not lead to formation of the CF.
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Figure 6.5: Snapshots of Hf atoms colored according their coordination
number for a) the initial structure, b) the relaxed structure and c) the relaxed
structure plotting only undercoordinated Hf atoms. The snapshots were
generated with VMD software [111, 112].

6.3 Device operation

When operating RRAM cells, the resistivity of the oxide layer change between a
HRS and LRS. The transition from the HRS to the LRS is called SET operation,
and the reverse transition is called RESET. However, in order to enable a
reversible change between these two states, the devices normally require an initial
and irreversible process called electroforming, or simply FORMING, which is
basically a current-controlled breakdown of the pristine highly resistive oxide
layer [92, 114, 115]. In this section we present MD simulation of these three
processes, aimed at contributing with an atomistic description of the mechanisms

involved.

6.3.1 Forming

Simulating the forming process requires the application of an external field between
the metallic electrodes. In the experiments, the magnitude of the field applied

during the forming depends on the original amount of oxygen vacancies, i.e. the
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Figure 6.6: Switching dynamics of the five samples considered, performed
through cluster analysis of conductive Hf atoms, using a cutoff of 3.9 A. The
switching state evolution has been averaged using a moving window of 0.02 ns

for clarity

stoichiometry of the HfO, oxide layer. For HfOy/Hf cells, the values are few tens
of meV /A (0.04 éV/A [98], 0.06 eV /A [93]). We simulated the forming process by
applying 4V difference between the electrodes, which corresponds to an external
field equivalent to 0.2 eV/ A. The voltage was applied in isochoric-isothermal
MD simulations (NVT ensemble) at 300 K, following the scheme described in
Sec. 6.1.4. The voltage was chosen high enough to ensure the formation of the
CF occurs within timescales accessible to MD simulations. The active electrode
was polarized positively, with a potential of +2V, in order to attract the oxygen
atoms, while the inert electrode was set to -2V. As it can be seen in Figure 6.6,
from a total of five samples generated independently, only three were able to
switch, and two formed a stable filament within the time considered of 2.5 ns.
The relatively low switching probability of the simulated cells is related to the

small cross section considered, compared to the real experimental values.

Figure 6.7a) displays snapshots of atomic charges in one of the samples that
demonstrates a strong switch (sample A) at different stages of the forming. Here,
it can be seen the active electrode further oxidizes with the applied potential, gen-
erating more oxygen vacancies in the oxide layer. Figure 6.7b) shows snapshots of
Hf coordination, with value equal or lower than 5, corresponding to the conductive
Hf atoms. Figure 6.7c) shows the electronegativity of metallic Hf assigned by
EchemDID. Before the forming, EchemDID propagates the electronegativity over

the metallic atoms according to their connectivity with the electrodes. When the
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Figure 6.7: Snapshot of the a) atomic charges, b) coordination number of Hf

atoms, and c¢) potential of Hf atoms, at the beginning (t=0 ns), just when the

filament is fomed (t=1.5 ns) and at the end of the simulation (t=2.5 ns). The
snapshots were generated with VMD software [111, 112].
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CF forms, the electronegativity of the metallic ions varies linearly, according to
the atomic position between the two electrodes. These plots provide an atomistic
picture of the evolution of the CF, that starts as a single-atom chain, just after
the switch, and grows while the potential is kept applied. According to the results,
the forming starts from the active electrode towards the inactive electrode, while
the narrowest constriction is observed near the inactive interface. These findings
agree with the quantum point contact model, which states the CF consists of an

atomic size chain, or constriction, that behaves as a quantum wire [116].

Discussion of the forming mechanism

In VCM cells two different forming mechanisms have been considered in literature
over the last years [117]. The first one postulates the generation of anti Frenkel-
pairs (an interstitial oxygen O; and an oxygen vacancy Vo) when an external
electric field is applied, followed by the migration of the interstitial oxygen towards
the active electrode. In this model, oxygen vacancies are assumed to be immobile,
providing conduction by trap-assisted tunneling. The other mechanism postulates
the vacancies are generated as result of an oxygen exchange reaction at the anode
(active electrode), followed by the migration of the oxygen vacancy to cathode
(inert electrode). In this case, the vacancy migration occurs through successive
oxygen exchanges between the empty space generated by the reaction with the
active electrode and the adjacent oxygen atoms.

The mechanism based on anti-Frenkel pair generation/recombination is not
applicable to amorphous structures due to the reasons explained in 6.1.3. Besides,
MD simulations performed on cubic and monoclinic HfO, have demonstrated
that this mechanism is neither possible in crystalline structures due to the
considerably high electric field required to create O;-Vo pairs (only sporadic
defects are generated at 0.3 ¢V /A) and short recombination times (1 to 4 ps) [118].

We analyzed the forming mechanism by plotting the migration of oxygen
atoms as a function of time for two different kind of simulations: in one case
the electronegativity was actualized periodically as described in Sec. 6.1.4, and
in the other case, the electronegativity was modified only in 100% metallic Hf
at the beginning and maintained fixed during the rest of the simulation. The
aim of this last procedure is to maintain fixed the AE/HfO; interface during

the forming process. The migration profiles for both cases are displayed in
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Figure 6.8. For simulations with the electronegativity fixed, the plots display
abrupt oxygen displacements that start at the upper oxygen layer, and are followed
by displacements of the subsequent layers. Visual inspection of the trajectories
shows that each abrupt displacement in the upper oxygen layers corresponds to a
large displacement in z of a single oxygen atom. This result demonstrates that
oxygen atoms from the first layer that diffuse towards the AE leave behind empty
spaces that are occupied by oxygen atoms from the second layer, producing in
this way a cascade of displacements that attenuate as the distance to interface
increases. For the case where the electronegativity updates during the simulation,
the results are quite similar. However, since there are Hf atoms from the oxide
that become metallic as the filament evolves, the potential propagates inside the
oxide, favoring the oxygen migration in the deeper layers. Our results are a clear
evidence that the forming mechanism operating in amorphous HfO» is the oxygen

exchange across AE/HfO3 interface.

6.3.2 Reset process

To understand the nature of the reset mechanism, we ran simulations under
different voltages and temperatures. We used Sample A for the studies since this
is the MIM structure that demonstrated the stronger switch. Depending on the
temperature imposed on the system, we observed bipolar or unipolar reset, both

mechanisms will be explained bellow.

Reset at 300 K

The switching behavior for different applied voltages at 300 K is presented in
Figure 6.9a). The results show that the filament remains stable while maintaining
the forming polarity, i.e. positive potential in the AE and negative potential in
the ITE. When the voltage is removed, the filament destabilizes and, finally, it
dissolves when the polarity is reversed, indicating a clear bipolar behavior.

The oxygen migration profiles shown in Figure 6.11 demonstrate that the
motion of oxygen atoms along the field direction is almost negligible; only simula-
tions with voltages of +4V (-4V) showed small displacements towards the AE (IE).
These results indicate that the oxidation produced during the forming process is

completely irreversible, and the filament rupture must occur by a reorganization
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Figure 6.9: a) Switching dynamics of sample A under different voltages at
300 K, performed through cluster analysis of conductive Hf atoms, using a
cutoff of 3.9 A. The switching state evolution has been averaged using a
moving window of 0.05 ns for clarity. b) Mean square displacement (MSD) of
oxygen atoms in the constricted region (with z between 27 and 40A)
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Figure 6.10: Snapshot of the reset process colored by potential of Hf atoms,
for different times. The snapshots were generated with VMD
software [111, 112].
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Figure 6.12: Switching dynamics of sample A under different voltages at
400 K, performed through cluster analysis of conductive Hf atoms, using a

cutoff of 3.9 A, and taking moving average of 0.05 ns.

of the oxygen atoms in the xy plane. Figure 6.9b) displays the xy mean square
displacements (MSD) of the oxygen atoms in the constricted region (oxygen with
z coordinate between 27 A and 40 A), showing a complete correlation with the
filament stability. Based on the snapshots shown in Figure 6.10, we infer that
the driving force for the localized xy oxygen migration is the positive potential
(negative electronegativity) propagated over the filament that induces a local

oxidation.

Reset at 400 K

When the temperature of the whole system is increased up to 400 K, the filament
destabilizes and breaks in all cases, as it is shown in Figure 6.12. This is true
even when applying a bias with the same forming polarity, and further oxygen
migration towards the AE is observed (Figure 6.13). This is because increasing
the temperature of the system favors diffusion, not only in the field direction, but
also in the xy directions, which is the main cause of the filament dissolution, as
observed previously for samples at 300K.

Our findings are in agreement with experiments where the current compliance
is released during reset to produce the filament rupture by Joule heating [92],
suggesting that reset in bipolar HfOs-based cells can also be induced by thermal
activation. Similar results where observed in bipolar TiOs-based RRAM cells,
where by setting a large compliance current value, the cell turned to unipolar
switching [119].
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83



Chapter 6. Molecular dynamics simulations of HfOs-based RRAM devices

6.3.3 Set process

The set was simulated by reversing again the polarity of the external field. In this
case 4V were applied between the metallic electrodes to ensure that the filament
formation occurs in time accessible to the dynamics. Since the characteristic
time for oxygen jumps inside the oxide is relatively slow (~0.5 ns), the set was
simulated at 300 K and increasing slightly the temperature up to 325 K in order
to see the filament formation in shorter times. In both cases, we used the MIM
structure obtained after the bipolar reset at -2V and 300 K, which demonstrates
a complete dissolution of the conductive filament.

The switching dynamics and the mean square displacement are shown in
Figure 6.14, and the snapshots for different set times are displayed in Figure 6.15.
From these results, it can be seen that for 325 K the filament start forming after
0.5 ns, and it remains stable during the rest of the simulation. Again, it was
observed that there is no preferential migration in the field direction, as can
be verified in the COM displacements of oxygen layers in Figure 6.16, which
demonstrate low migration in z axis (below 0.5A for T=325 K). Hence, the set
process must occur through a reorganization of oxygen atoms in the xy plane
(i.e. without involving redox process with the active electrode and increasing the
oxide thickness), leading to a new filament.

The resulting filament differs from the initial one, obtained after forming
process. However, since the cross section of the device considered here is relatively
small, this finding is not indicative that the filament might form in a different

region during the successive set.

6.4 Summary

In summary, we generated substoichiometric HfO, profiles obtained during the
fabrication of RRAM cells by relaxing hafnium /hafnia interfaces. The relaxed
samples were used to simulate the forming, reset and set processes under oper-
ating conditions, i.e. applying an external potential in the metallic electrodes.
With these reactive simulations, it was possible to describe the redox processes
responsible for the switching of the cell.

The dynamics of the oxygen vacancies was successfully visualized by plotting

conductive hafnium atoms on the fly during the simulation. With this scheme,
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Figure 6.14: a) Switching dynamics of the set simulation at 4 V with
temperatures of 300 K and 325 K. The starting structure corresponds to
sample A after reset at 2 V and 300 K. See caption of Figure 6.9 for the

description of how we obtain the switch curve. b) Mean square displacement

of oxygen atoms with z between 27 and 40 A.
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Figure 6.15: Snapshot of the set process colored by potential of Hf atoms for
different times. The snapshots were generated with VMD software [111, 112].
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Figure 6.16: Center of mass of different oxygen layers along the dielectric

thickness as a function of time for set process at 300 K and 325 K.
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6.4. Summary

we identify the formation and rupture of an atomic conductive filament. Based
on this dynamics, we propose an atomistic mechanism for the forming process
in nanoscaled cells, consisting in a cascade of oxygen displacements initialized
at the interface, similar to oxygen exchange mechanism proposed previously in
experiments. We also found that the reset and set processes occur through a
local reorganization of oxygen atoms in the filament region, without involving
oxygen migration towards the active or inactive electrode. These simulations
provide new insights in the switching mechanism operating in nanoscaled HfOq

based cells.
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Chapter 7

Oxygen vacancy formation and

migration in monoclinic HfO-

The previous chapter was dedicated to describe the microscopic mechanisms
involved in the operation of RRAM cells using molecular dynamics technique. To
complement these studies, besides the dynamics of the oxygen vacancies diffusion,
it is also important to know the energies associated to the formation of oxygen

vacancies and the activation barriers for their migration.

The formation and migration of neutral and charged oxygen vacancies in
HfOs has been extensively studied from the computational point of view in
monoclinic [120, 121, 122, 123, 124] and amorphous [125] structures. However,
these studies were made at zero electric field, far from the operating conditions
that we used previously, and of course, applied in experiments. In the case of
aperiodic systems with periodic boundary conditions (PBCs), the application of
net charge (introducing a charge compensating background) is non-trivial because
the electric dipole in such case is ill-defined since it depends on the center of
charge distribution, or which is the same, the position of the structure [126, 127].
This gives rise a problem when trying to study charged systems under electric
fields using traditional DFT schemes.

Recently, the effect of the electric field on the diffusion barriers of oxygen
vacancies and interstitial oxygen ions in oxide structures has been studied using
the Berry phase operator, within the modern theory of polarization [128, 129, 130].

Other studies propose introducing a slab model with electron-accepting dopants
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in the surface [131], to induce electron transfer from the oxygen vacancy to the
dopant atom, and avoid using systems with net charge.

A much simpler alternative to study the combined effect of net charge and
electric field could be the use of Poisson solvers that do not apply PBC in the
aperiodic direction. To the best of our knowledge, there are no previous reports
of these studies in literature. Therefore, the objective of this chapter is not only
provide further validation on the vacancy migration mechanisms described in
Chapter 6, but also propose a new scheme to study charge migration in slabs

under an external electric field.

7.1 Methods

7.1.1 Computational details

DFT calculations have been performed with VASP [27] code, based on plane
waves, and CP2K [29] code, which is based on a combination of Gaussian functions
and plane waves (GPW). With VASP, we obtained highly converged calculations
used as a reference for the activation and formation energies in periodic systems,
and for comparing with other theoretical results, while CP2K was used to perform
non periodic calculations including the effect of electric field. In both cases, the
exchange correlation functional was described with Generalized Gradient Approx-
imation (GGA) using the Perdew-Burke-Ernzerhof (PBE) parametrization [24].
The cutoff energy for the plane waves expansion was set to 400 eV and 816 eV for
VASP and CP2K calculations, respectively. In the case of CP2K code, a double-¢
Gaussians basis set was used [132].

The calculations were performed on 324-atom monoclinic HfOs supercells
(3x3x3 unit cells), with converged lattice parameters of a=5.11 A, b=>5.19 A and
c=5.31 A (a=5.14 A, b=5.16 A and ¢=5.30 A) for VASP (CP2K), as can be seen
in Figure 7.1. We focused on crystal structures because they are computationally
cheaper than amorphous structures, which require many more unit cells to
reproduce the properties of the system. In order to apply an electric field the
system must be set as a slab, so a vacuum of 15A was added to the 3x3x3
supercell in the c-axis.

The Brillouin zone was sampled with 2x2x2 (2x2x1) k points for bulk (slab)

m-HfO9 calculations. All structures were relaxed until the force on each atom
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side view top view

Figure 7.1: Structure of monoclinic HfO, with an oxygen vacancy in 3-fold
(v3) and 4-fold (v4) coordinated sites. Red: oxygen atoms, gray: hafnium
atoms and yellow: oxygen vacancy.

became lower than 0.02 eV /A.

7.1.2 Modeling charged systems under external field

Performing calculations of slabs with large dipole moment or external electric field
requires the implementation of dipole corrections [126, 127] to avoid interaction

between periodic images, where the electric dipole is calculated as:

d— /(r ~R.)p(r) dr (7.1)

Here R, are the coordinates of the center of the charge distribution, which is
chosen as the reference point for computation of the dipole. Although these
corrections work properly for neutral systems, they are not suitable for systems
with net charge since for this case the electric dipole would depend on the center
of the charge distribution R.. Therefore, to avoid dealing with dipole corrections,
we decided to study the movement of ions or charged defects under the effect of
an external electric field using a DFT code that supports Poisson solvers without
PBC, such as CP2K. For the HfO5 slab calculations, the electrostatics was solved
applying PBCs in the xy directions, while the non-periodic direction and electric

field was set along the z axis.
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7.1.3 Nudged Elastic Band Method

A common problem in theoretical chemsitry and condensed matter is the iden-
tification of a minimum energy path (MEP) for the transition from a stable
configuration to another one in a given system. The maximum energy along the
MEP, corresponding to the saddle point in the energy profile, gives the activation
energy (AE) barrier of the process involved. One of the most used methods for
finding MEPs between an initial and a final state is the nudged elastic band (NEB)
method [133]. The basic idea of the NEB method consist of generating a chain
of images of the system (also called replicas or states) between the initial and
final configurations, and optimize them all at the same time using two forces: the
gradient of the potential in the perpendicular direction to the reaction coordinate,
which brings the band to the MEP, and an spring force that controls the spacing

between images along the band:
FYPP — _VV(R,)L +Fj (7.2)

where R; are the coordinates for an image i. The perpendicular component of
the true force,VV(R;) , is calculated as:

VV(R;)L =VV(R;) - VV(Ry) , (7.3)
and the spring force, FfH, is given by:
F7 = k[(Rip1 —Ri) — (Ri —Ri1)] - 7y (7.4)

with & being the spring constant and 7;) the unit vector in the direction tangent to
the reaction path. In order to decompose the forces into parallel and perpendicular
components, it is necessary to estimate the tangent to the path at each image,
and every iteration during the minimization. In improved NEB schemes, the
parallel direction vector, 7|, is defined as the tangent between the image ¢ and
the image with higher energy [134].

In order to obtain a rigorous convergence of saddle point in the MEP, a
modified version of NEB, called climbing image NEB (CI-NEB) [135] can be used.
In this method the image with the highest energy is identified and its potential
is moved up to make the image climb up along the elastic band. Besides, this
scheme also introduces variable spring constants to increase the density of images
near the top of the MEP.
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7.2. Vacancy formation energies

Example: activation barriers for NH3 flipping

To validate the scheme explained in Sec. 7.1.2, we performed NEB calculations in
a test system, consisting on the flipping of a negatively charged ammonia molecule
(NH3'). Figure 7.2 shows the activation barriers obtained with VASP code (top),
which implements full periodic boundary conditions, and CP2K (bottom), without
PBCs at all.

The calculations for the neutral molecule (red curve) predict an activation
barrier of 0.21 eV (0.22 eV) for VASP (CP2K), which is in agreement with the non-
relativistic, no zero-point motion result of 0.22 eV obtained by coupled-cluster
theory [136]. It is to be noted that, when the non-relativistic, no zero-point
motion approximations are released, coupled-cluster theory [136] obtains a result
of 0.25 eV, in perfect agreement with the experimental results [137]. When the
molecule is negatively charged (orange curve), the barrier increases up to 0.25
and 0.27 eV for VASP and CP2K, respectively.

If an external field of 0.1 eV/A is applied along the z axis to the charged
molecule with PBCs, the barrier remains almost the same and so do the initial
and final energies, demonstrating that there is a failure when computing the
effect of field. Besides, the energies of the images depend on the center of charge
distribution defined for the dipole correction, as can be seen when comparing
turquoise and brown curves.

In the case of calculations without PBC, the effect of the electric field modifies
strongly the stability of the initial structure with respect to final, lowering the
barrier to 0.23 eV for the forward process, and increasing it to 0.32 eV for the
reverse process. These energies are completely independent on the position of the
molecule. Since the difference in the z coordinate of the nitrogen atom between the
initial and final state is 1.01 A, we would expect an energy difference of 0.101 €V,
but instead we obtain 0.09 eV. The deviation can be explained considering the
screening of the molecular dipole when it points aligned or antialigned with the
field.

7.2 Vacancy formation energies

During the fabrication of RRAM devices, it is common to perform a high-

temperature annealing (up to ~1000 K) to crystallize the HfOy to the monoclinic
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Figure 7.2: Activation barriers for ammonia flipping with different charge

states (0 and -1), top: calculated with VASP and applying dipole corrections

with the center of charge distribution placed on the N atom, or on the H
atoms(shift=0.75), and bottom: calculated with CP2K without PBC, since we

do no apply dipole corrections, we shifted the molecule coordinates in the field

direction.
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Figure 7.3: Formation energies as a function of the Fermi level for threefold
(left) and fourfold (right) coordinated oxygen vacancies in m-HfO5 at different
charge states, calculated with VASP.

phase (m-HfO2), which is the most stable phase below ~2000 K. During this
process, high concentration of oxygen vacancies are generated in the crystal
structure, so it is important to know the energy associated with this process and
the most stable charge states.

The formation energy (Eyom) of single oxygen vacancy were calculated

through the following equation:

Eform = Ento,—v +1/2 po, +q (Er + Evpum) — Ento, (7.5)

where the oxygen vacancy can be a threefold (vs) or fourfold (v4) coordinated site
with charge (q) equal to 0, +1, +2. The energies Enfo,.v and Fyfo, correspond
to the defective and pristine monoclinic hafnia structures, respectively. Ep
is the Fermi level imposed externally, and VBM the valence band maximum
of the defective structure. The oxygen chemical potential 110, was obtained
through a spin polarized calculation of an isolated oxygen molecule. For the
case of systems with net charge, Madelung corrections were applied to discount
interaction between periodic images [138].

The resulting energy plots are presented in Figure 7.3, showing a detailed
description of each charge state, and Figure 7.4, where only the most stable
charge state as a function the Fermi energy is displayed, for VASP and CP2K

calculations. As can be seen in Figure 7.4 the thermodynamically preferred
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Figure 7.4: Oxygen vacancy formation energies as a function of the Fermi
level for the most stable charged states (q=+2 and q=0) calculated with
VASP and CP2K.

Ref. [120] (VASP

System VASP CP2K
w/o Madelung)

HfO5-v3-q0  6.50 6.36 6.76
HfO,-v3-ql  3.78 — 3.98
HfO,-v3-q2  0.76 0.52 0.81
HfOy-vd-q0  6.38 6.26 6.63
HfOs-vd-ql  4.10 — 4.25
HfOy-vd-q2  1.40 1.11 1.44

Table 7.1: Formation energies in eV calculated with VASP and CP2K

without including Madelung corrections.

charge state for Fr near the VBM is +2, in both threefold and fourfold vacancies,
while for high Er, the most stable state is 0, in agreement with previous results
[121, 120]. The transition from +2 to 0 takes place at 3.41 eV and 2.95 eV above
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the VBM in HfO2-v3 and HfO,-v4 structures, respectively, when considering
experimental band gap for mHfO2 of 5.25eV [139].

Finally, the energies calculated with VASP and CP2K at Er = Ey pas (without
considering Madelung corrections) are compared with literature in Table 7.1. In
the table it can be seen that the lowest formation energy is obtained for the
threefold coordinated vacancies with charge 42, hence we used this structure for

further studies of the activation barriers.

7.3 Vacancy migration energies

As mentioned in Chapter 6, during the normal operation of RRAM devices, the
dielectric layer is subject to an external electric field that induces the migration
of oxygen atoms (or their respective vacancies), facilitating the creation of new
defects. Hence, understanding the effect of the electric fields on the activation
barrier for the vacancy diffusion, is fundamental to complement our previous

studies.

The activation barriers were calculated for the diffusion of an oxygen vacancy
along the c-axis, from a threefold coordinated site to an equivalent adjacent point,
as can be seen in Figure 7.5. The values obtained for neutral and charged defects
in HfO4 bulk are displayed in Figure 7.6, comparing the results calculated with
VASP and CP2K codes. Here it can be seen a notably reduction of the barrier
(from 1.76/1.83 €V to 0.84/0.76 €V) when the defect is doubly charged, in good
agreement with other DFT calculations [124].

Finally, the activation barriers for the migration of neutral and charged defects
under an external field of 0.05 eVA are showed in Table 7.2, where we also compare
with the bulk values in order to verify our method. The results demonstrate
only a small reduction of the barrier due to the external field. This might be
indicative that the dipole moment induced by the migration of the charged defect
could screen the external field, modifying in this way the energy of the images.
Therefore, deeper studies must be performed on this systems considering different

external field and charge states.
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Figure 7.5: Initial and final structures of HfO5 with a threefold coordinated
oxygen vacancy. In the snapshots, Hf atoms are represented in grey, O atoms

in red and the vacancy is plotted in yellow.
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Figure 7.6: Activation barriers for the diffusion of a neutral or positively
charged (+2) oxygen vacancies calculated with VASP and CP2K codes.
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Barriers bulk [eV] Barriers slab [eV]
System
VASP CP2K Ref. [124] CP2K
HfO2-v3-q0 (E=0) 1.76 1.83 1.84 1.83
HfO2-v3-q2 (E=0) 0.84 0.76 0.96 0.72
HfOy-v3-q2 (E=0.05 eV/A)  — — — 0.69

Table 7.2: Activation barriers corresponding to oxygen vacancies diffusion
along the c-axis from a threefold coordinated site to an equivalent adjacent
point, considering different charge states and the effect of an external electric
field.

7.4 Summary

In this chapter we studied the application of an external electric field to systems
with net charge through DFT calculations, in order to understand the migration of
charged defects in monoclinic HfO9, relevant for the operation of RRAM devices.
We used a slab setup without periodic boundary conditions in the field direction
to avoid implementing dipole corrections, which brings issues when the system
has a net charge. The results where systematically compared with other slabs
and bulk calculations using standard PBC, in order to validate our approach.

The activation barriers were successfully obtained for neutral and charged
vacancies, demonstrating good agreement with values reported in literature. The
same calculations performed under an electric field demonstrate a slight barrier
lowering when the migration is in favor of the field. However more studies must
be done in this direction to complete the understanding of the coupling between
possible dipoles generated by the excess of charge and the field.

The scheme used in this work opens up an alternative to the use of the modern

theory of polarization for the study of charged defects under external fields.
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Chapter 8

Preliminary studies of
MoSo-based RRAM devices

Recently, nonvolatile resistive switching (RS) phenomena, commonly studied in
oxide structures as described in Chapters 6, has been observed in a variety of 2D
materials, such as transition metal dihcalcogenides (TMDs) [12, 140, 141, 142],
hexagonal boron nitride (h-BN) [143], and others [144].

Among 2D TMDs, MoS; is again the most explored layered semi-conductor,
with atomically thin memristors with planar [145, 146] and vertical [12, 140]
geometries, as well as, transparent and flexible multilayer devices [147, 148] having
been successfully fabricated. In the case of vertical cells, the atomically thin
layer sandwiched between two electrodes is responsible for the change in the
resistance, for this reason such devices are also known as atomirstors. Although
there are some ideas as to the factors that might cause the low resistance state,
the switching mechanism operating in this kinds of cells is still not clear. The
most recent evidence indicates that the RS behavior could be due to Schottky
emission in HRS and localized direct tunneling in LRS, probably because of the
formation/rupture of CFs based on the sulfur vacancies [12, 149]. However, a
detailed elucidation of the mechanisms at atomistic level is still missing.

In order to link the previous studies of MoSs structures and HfOs-based RRAM
cells, this chapter is dedicated to the study of RRAM cells based on atomically
thin MoSs layers. Specifically, we performed DFT transport calculations of
Au/MoS2/Au cells using different Au surfaces and MoS; phases (2H and 1T").
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Figure 8.1: Device setup for transport calculations. The structure shown
corresponds to a Au(100)-MoS3-Au(100) stack.

To determine whether the resistance change is associated to vacancy defects, we
also introduced simple and double sulfur vacancies in the MoSs layer. This work

is still in development, and only preliminary results will be presented here.

8.1 Computational details

Density functional theory calculations were performed with the SIESTA code [28],
using the generalized gradient approximation with the PBE functional [24]. The
core electrons are described with norm-conserving pseudopotentials [68], while
the valence electrons are explicitly treated with a double-{ polarized basis set.
The MIM cells studied consist of Au-MoSs-Au stacks, with different interface
configurations. The details of the structures are summarized in Table 8.1. The
lattice parameter for the MoS; is 3.197 A, which corresponds to fully relaxed
structure, while all the strains necessary to have commensurate lattice param-
eters between the metal and MoSy are applied to the fcc-Au electrodes, under
the assumption that this strain will not qualitatively alter the metal electrode

transport properties. The cell was relaxed in z direction to optimize the distance
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Au (100) Au (110) Au (111)

a [A] 4.156 4.156 4.156

Au unit cells 3x4dx4 3x4x6 2x4x4

MoSs unit cells 4x3x1 4x2x1 3x2x1
Strain x [%)] -2.56 -2.56 5.79
Strain y [%)] 0.08 5.79 5.79

c relaxed [A] 4.209 3.001 7.736

d [A] 8.054 7.826 8.647
Surface atoms 24 12 16

Area [nm?] 1.279x1.661 1.279%1.107 0.959x1.107
Surface density [atoms/nm?| 11.297 8.475 15.071

Table 8.1: Lattice parameters and structure information for Au-MoSs-Au
RRAM cells. In all cases the strain in Au surfaces was set to match with the

fully relaxed lattice parameters of MoS, monolayer, corresponding to 3.197A.

between the electrodes and the MoSs layer, and the Au ¢ parameter, using a
force and stress tolerance of 0.03 eVA and 0.1 GPa, respectively. The reciprocal
space was sampled with a number of k-points equivalent to 24x24x24 per fcc unit
cell with a single Au atom. Long-range van der Waals forces were included, using
Grimme semi-empirical dispersion corrections [150].

The transport calculations were performed using NEGF formalism as described

in Chapter 3. The setup for the calculations is shown in Figure 8.1.

8.2 Effect of MoS, phase and sulfur vacancies

In order to determine the origin of the resistance change observed in MoSs-based
RRAM cells, we performed transport calculations of MIM structures with pristine
2H and 1T’-MoSs layers, as well as, 2H-MoS, layers with single sulfur vacancies
at different positions, sandwiched between two Au(100) electrodes. We chose the
100 surface because it has been observed in experimental cells through atomically
resolved STM images [12].
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Figure 8.2: Current vs. voltage curves for MIM structures with different
MoS; phases and defects.
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Figure 8.3: Transmission coefficients for Au(100)-MoS2-Au(100) structures
with different MoSs phases, compared with a reference Au(100) . the highest
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Figure 8.4: Energy-resolved local density of states (LDOS) of
Au(100)/MoS3(2H)/Au(100) structure. In the plot, the red and line denote
the Fermi level. For clarity reasons, the scale bar was set to a maximum value
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The resulting current vs. voltage (I-V) curves are displayed in Figure 8.2,
where it can be seen that both MoSs phases give similar results, and introducing
vacancy defects does not affect the conductance at all. Besides, the extremely
high current obtained in all cases are indicative of a LRS. Although these values
are much higher than experimental results, the difference comes from the fact that
our calculations are performed within a purely ballistic regime. Therefore, as far
as the resulting conductance does not exceed the one predicted by the Landauer
formula (Gog = %T ), our result is reasonable. To verify this we analyzed the
transmission coeflicients for the MIM structures with pristine 2H and 1T°-MoS,
phases and compared with reference bulk Au structures (without the active 2D
layer nor vacuum), which provides the maximum attainable transmission. The
results are shown in Figure 8.3, where it can be seen that the insertion of the

MoSs layer results in a lowering of the coefficients only by a factor of ~4.
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Figure 8.5: Current vs. voltage curves for MIM structures considering

different Au surfaces

Since experiments have determined that current in HRS corresponds to
Schottky emission, we plotted energy-resolved local density of states (LDOS),
in order to extract the Schottky barriers heights, as shown in Figure 8.4. The
0.20 eV obtained for Au(100)/MoS2(2H)/Au(100) structure is considerably lower
than the 0.67 eV reported for Au-MoSy top contacts from DFT calculations
considering vdW dispersion forces [56]. We speculate that the difference might
be caused by changes in the band alignment due to the presence of a second Au
electrodebellow.

As a result of the relatively low barrier height and the short barrier width
of 0.81 nm (which is in good agreement with experimental value of 0.7 nm [12]),

the structure shows strong tunneling transport.

8.3 Evaluation of different Au surfaces

In order to identify the structure corresponding to the HRS, we extended the
transport studies to other Au surfaces [(110) and (111)], and the resulting I-V

curves are displayed in Figure 8.5. Although there is a slight increase on the

106



8.4. Discussion and outlook

resistance for (110) and (111) surfaces respect to the (100) surface, the values
obtained still correspond to a LRS.

Notice that the changes in the conductance are related to two factors: i) the
main one is the distance (d) between the two Au electrodes, and ii) the density of
surface Au atoms also has some effect. Table 8.1 summarizes this information for
each case. The (111) interface has the highest d, hence the lowest conductance;
the (110) surface has the shortest d, but it has the lowest Au atom surface density,
so it shows an intermediate conductance. Finally (100) would show the highest
conductance because it has a large atomic surface density, and at the same time

there is a short distance d.

8.4 Discussion and outlook

As a summary, transport calculations of Au/MoS;/Au RRAM cells were performed
in order to identify structural features responsible for LRS and HRS. The analysis
of different phases of MoSsy, as well as sulfur defects in the 2H-MoS, layer
demonstrated high current values, characteristic of a LRS. Besides, the evaluation
of different contacting Au surfaces did not affect the conductance high enough to
produce a switch in the resistance state. Therefore, we deduce that tunneling
through the 2D layer dominates in all cases, and in order to observe HRS,
structures with higher Schottky barriers must be considered.

The first step towards the understanding of the RS phenomena in 2D atom-
ristors is the identification of structures with Schottky barriers high enough to
limit electronic transport. Once this information is determined, the structural
changes that give rise a reduction on the resistance can be addressed. Based
on our results and the analysis of literature, we believe that some factors to be

considered are:

e Include molybdenum vacancy defects, to determine whether there are

changes in the band alignment and the Schottky barrier height increases.

e Study chromium contacts to evaluate the effect of this metal in the Schottky
barrier formation. We propose Cr because several memristive devices based
on 2D materials include an adhesion layer of approximately 2 nm between
the Au electrode and the MoSs layer [12, 140, 143, 151].
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e Contact the MoSs layer with different Au top and bottom surface orienta-

tions to reduce the coupling between electrode states.
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Chapter 9

Conclusions

This thesis is focused on theoretical studies of 2D lateral metal-semiconducting
interfaces and RRAM devices using non-equilibrium Green’s functions, within
density functional theory formalism and molecular dynamics simulations. The

main contributions of this work are summarized in the following points:

e Transport properties of MoSy heterostructures were described in order to
predict Schottky barriers, emission regimes and the contact resistances

across metal/semiconductor interfaces.

e The analysis of current vs. voltage curves, as well as transmission coeffi-
cients, led us to a method for identifying emission regimes (i.e. tunnel vs.
thermoionic) in Schottky contacts. The same analysis can be performed
in experimental studies, prior to a possible use of the activation-energy

method for the extraction of activation barriers.

e Molecular dynamics studies of RRAM devices conducted under an external
field provided deep insights into the physics of the switching mechanism of
filamentary HfO5 based structures. In particular, the results indicate that
reset /set processes take place by in plane oxygen atom diffusion as opposed

to vertical diffusion.

e Through DFT combined with NEB calculations, it was possible to calculate
formation energies and activation barriers involved in the migration of ions

under external electric fields.

109



Chapter 9. Conclusions

e The resistive switching phenomena was studied in MoSs single layers,
sandwiched between Au electrodes, in order to determine the structural
changes corresponding to high and low resistance states. The results

demonstrate transport dominated by tunneling, indicative of LRS.

The work here presented may be extended by:

e Further analysis of the electrostatics in the lateral MoSs junctions: although
the MoSs heterostructure transport studies were carried out with a large
amount of vacuum between the periodic boundary condition replicas, the
potential profile at distances from the interface larger than the vacuum
separation might be influenced by the periodic replicas. This might be
addressed with the use of a transport capable DFT code feturing a non-

periodic Poisson solver.

e Further studies on the possibility of Fermi level pinning in lateral MoSq
junctions by artificially doping the metallic (1T’) phase, and subsequent

Fermi level shifting on the metal side.

e Introducing a model for local Joule heating in the MD simulation of LRS
RRAM devices, to better capture filament breakup in RESET events.

e Investigate the reason for the reduced lowering of the oxygen migration
barrier under the action of an external electric field, by attempting a larger

range of values.

e Exploring different configurations and electrode materials to elucidate the

structure corresponding to the HRS in 2D-material based atomristors.
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