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“Learning is a Lifelong Process”
We now accept the fact that learning is a lifelong process of keeping abreast of

change.
And the most pressing task is to teach people how to learn

— Peter Drucker

Dedicated to my parents, Mirta and Patricio .
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Abstract
For humans, the recognition of objects is an almost instantaneous, precise and
extremely adaptable process. Furthermore, we have the innate capability to learn
new object classes from only few examples. The human brain lowers the complexity
of the incoming data by filtering out part of the information and only processing
those things that capture our attention. This, mixed with our biological predispo-
sition to respond to certain shapes or colors, allows us to recognize in a simple
glance the most important or salient regions from an image. This mechanism can
be observed by analyzing on which parts of images subjects place attention; where
they fix their eyes when an image is shown to them. The most accurate way to
record this behavior is to track eye movements while displaying images.

Computational saliency estimation aims to identify to what extent regions or
objects stand out with respect to their surroundings to human observers. Saliency
maps can be used in a wide range of applications including object detection, image
and video compression, and visual tracking. The majority of research in the field has
focused on automatically estimating saliency maps given an input image. Instead, in
this thesis, we set out to incorporate saliency maps in an object recognition pipeline:
we want to investigate whether saliency maps can improve object recognition
results.

In this thesis, we identify several problems related to visual saliency estimation.
First, to what extent the estimation of saliency can be exploited to improve the
training of an object recognition model when scarce training data is available. To
solve this problem, we design an image classification network that incorporates
saliency information as input. This network processes the saliency map through a
dedicated network branch and uses the resulting characteristics to modulate the
standard bottom-up visual characteristics of the original image input. We will refer
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to this technique as saliency-modulated image classification (SMIC). In extensive
experiments on standard benchmark datasets for fine-grained object recognition,
we show that our proposed architecture can significantly improve performance,
especially on dataset with scarce training data.

Next, we address the main drawback of the above pipeline: SMIC requires an
explicit saliency algorithm that must be trained on a saliency dataset. To solve this,
we implement a hallucination mechanism that allows us to incorporate the saliency
estimation branch in an end-to-end trained neural network architecture that only
needs the RGB image as an input. A side-effect of this architecture is the estimation
of saliency maps. In experiments, we show that this architecture can obtain similar
results on object recognition as SMIC but without the requirement of ground truth
saliency maps to train the system.

Finally, we evaluated the accuracy of the saliency maps that occur as a side-
effect of object recognition. For this purpose, we use a set of benchmark datasets
for saliency evaluation based on eye-tracking experiments. Surprisingly, the esti-
mated saliency maps are very similar to the maps that are computed from human
eye-tracking experiments. Our results show that these saliency maps can obtain
competitive results on benchmark saliency maps. On one synthetic saliency dataset
this method even obtains the state-of-the-art without the need of ever having seen
an actual saliency image for training.

Key words: computer vision, visual saliency, fine-grained object recognition,
convolutional neural networks, images classification.
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Resumen
El reconocimiento de objetos para los seres humanos es un proceso instantáneo,
preciso y extremadamente adaptable. Además, tenemos la capacidad innata de
aprender nuevas categorias de objetos a partir solamente de unos pocos ejemplos.
El cerebro humano reduce la complejidad de los datos entrantes filtrando parte de
la información y procesando las cosas que captan nuestra atención. Esto, combi-
nado con nuestra predisposición biológica a responder a determinadas formas o
colores, nos permite reconocer en una simple mirada las regiones más importantes
o destacadas de una imagen. Este mecanismo se puede observar analizando en
qué partes de las imágenes los sujetos ponen su atención; por ejemplo donde fijan
sus ojos cuando se les muestra una imagen. La forma más precisa de registrar
este comportamiento es rastrear los movimientos de los ojos mientras se muestran
imágenes.

La estimación computacional del “saliency”, tiene como objetivo diseñar algo-
ritmos que, dada una imagen de entrada, estimen mapas de “saliency”. Estos mapas
se pueden utilizar en una variada gama de aplicaciones, incluida la detección de
objetos, la compresión de imágenes y videos y el seguimiento visual. La mayoría
de la investigación en este campo se ha centrado en estimar automáticamente
estos mapas de “saliency”, dada una imagen de entrada. En cambio, en esta tesis,
nos propusimos incorporar la estimación de “saliency” en un procedimiento de re-
conocimiento de objeto, puesto que, queremos investigar si los mapas de “saliency”
pueden mejorar los resultados de la tarea de reconocimiento de objetos.

En esta tesis, identificamos varios problemas relacionados con la estimación del
“saliency” visual. Primero, pudimos determinar en qué medida se puede aprovechar
la estimación del “saliency” para mejorar el entrenamiento de un modelo de re-
conocimiento de objetos cuando se cuenta con escasos datos de entrenamiento.
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Para resolver este problema, diseñamos una red de clasificación de imágenes que
incorpora información de “saliency” como entrada. Esta red procesa el mapa de
“saliency” a través de una rama de red dedicada y utiliza las características resul-
tantes para modular las características visuales estándar ascendentes de la entrada
de la imagen original. Nos referiremos a esta técnica como clasificación de imágenes
moduladas por prominencia (SMIC en inglés). En numerosos experimentos real-
izando sobre en conjuntos de datos de referencia estándar para el reconocimiento
de objetos “fine-grained”, mostramos que nuestra arquitectura propuesta puede
mejorar significativamente el rendimiento, especialmente en conjuntos de datos
con datos con escasos datos de entrenamiento. Luego, abordamos el principal
inconveniente del problema anterior: es decir, SMIC requiere explícitamente un al-
goritmo de “saliency”, el cual debe entrenarse en un conjunto de datos de “saliency”.
Para resolver esto, implementamos un mecanismo de alucinación que nos per-
mite incorporar la rama de estimación de “saliency” en una arquitectura de red
neuronal entrenada de extremo a extremo que solo necesita la imagen RGB como
entrada. Un efecto secundario de esta arquitectura es la estimación de mapas de
“saliency”. En variados experimentos, demostramos que esta arquitectura puede
obtener resultados similares en el reconocimiento de objetos como SMIC pero sin el
requisito de mapas de “saliency” para entrenar el sistema. Finalmente, evaluamos
la precisión de los mapas de “saliency” que ocurren como efecto secundario del
reconocimiento de objetos. Para ello, utilizamos un de conjuntos de datos de refer-
encia para la evaluación de la prominencia basada en experimentos de seguimiento
ocular. Sorprendentemente, los mapas de “saliency” estimados son muy similares a
los mapas que se calculan a partir de experimentos de seguimiento ocular humano.
Nuestros resultados muestran que estos mapas de “saliency” pueden obtener re-
sultados competitivos en mapas de “saliency” de referencia. En un conjunto de
datos de “saliency” sintético, este método incluso obtiene el estado del arte de la
técnica, sin la necesidad de haber visto nunca una imagen de ”saliency” real para el
entrenamiento.

Palabras claves: visión por computadora, "saliency" visual, reconocimiento
de objetos "fine-grained", redes neuronales convolucionales, clasificación de imá-
genes.
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Resum
Per als humans, el reconeixement d’objectes és un procés gairebé instantani, precís
i extremadament adaptable. A més, tenim la capacitat innata d’aprendre classes
d’objectes nous a partir d’uns pocs exemples. El cervell humà redueix la complexitat
de les dades entrants filtrant part de la informació i processant només aquelles coses
que ens capturen l’atenció. Això, barrejat amb la nostra predisposició biològica per
respondre a determinades formes o colors, ens permet reconèixer en un simple cop
d’ull les regions més importants o destacades d’una imatge. Aquest mecanisme es
pot observar analitzant sobre quines parts de les imatges hi posa l’atenció; on es
fixen els ulls quan se’ls mostra una imatge. La forma més precisa de registrar aquest
comportament és fer un seguiment dels moviments oculars mentre es mostren
imatges.

L’estimació computacional de la salubritat té com a objectiu identificar fins a
quin punt les regions o els objectes destaquen respecte als seus entorns per als
observadors humans. Els mapes Saliency es poden utilitzar en una àmplia gamma
d’aplicacions, inclosa la detecció d’objectes, la compressió d’imatges i vídeos i el
seguiment visual. La majoria de les investigacions en aquest camp s’han centrat
en estimar automàticament els mapes de salubritat donats una imatge d’entrada.
En el seu lloc, en aquesta tesi, ens proposem incorporar mapes de salubritat en
una canalització de reconeixement d’objectes: volem investigar si els mapes de
salubritat poden millorar els resultats del reconeixement d’objectes.

En aquesta tesi, identifiquem diversos problemes relacionats amb l’estimació
de la salubritat visual. En primer lloc, fins a quin punt es pot aprofitar l’estimació de
la salubritat per millorar la formació d’un model de reconeixement d’objectes quan
es disposa de dades d’entrenament escasses. Per solucionar aquest problema, dis-
senyem una xarxa de classificació d’imatges que incorpori informació d’informació
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salarial com a entrada. Aquesta xarxa processa el mapa de saliència a través d’una
branca de xarxa dedicada i utilitza les característiques resultants per modular les
característiques visuals estàndard de baix a dalt de l’entrada d’imatge original. Ens
referirem a aquesta tècnica com a classificació d’imatges modulades en salinitat
(SMIC). En amplis experiments sobre conjunts de dades de referència estàndard
per al reconeixement d’objectes de gra fi, demostrem que la nostra arquitectura
proposada pot millorar significativament el rendiment, especialment en el conjunt
de dades amb dades de formació escasses.

A continuació, abordem l’inconvenient principal de la canonada anterior: SMIC
requereix un algorisme de saliència explícit que s’ha de formar en un conjunt de
dades de saliència. Per solucionar-ho, implementem un mecanisme d’al·lucinació
que ens permet incorporar la branca d’estimació de la salubritat en una arquitectura
de xarxa neuronal entrenada de punta a punta que només necessita la imatge RGB
com a entrada. Un efecte secundari d’aquesta arquitectura és l’estimació de mapes
de salubritat. En experiments, demostrem que aquesta arquitectura pot obtenir
resultats similars en reconeixement d’objectes com SMIC, però sense el requisit de
mapes de salubritat de la veritat del terreny per entrenar el sistema.

Finalment, hem avaluat la precisió dels mapes de salubritat que es produeixen
com a efecte secundari del reconeixement d’objectes. Amb aquest propòsit, fem
servir un conjunt de conjunts de dades de referència per a l’avaluació de la validesa
basats en experiments de seguiment dels ulls. Sorprenentment, els mapes de
salubritat estimats són molt similars als mapes que es calculen a partir d’experiments
de rastreig d’ulls humans. Els nostres resultats mostren que aquests mapes de
salubritat poden obtenir resultats competitius en els mapes de salubritat de refer-
ència. En un conjunt de dades de saliència sintètica, aquest mètode fins i tot obté
l’estat de l’art sense la necessitat d’haver vist mai una imatge de saliència real.

Paraules clau: visió per ordinador, saliència visual, reconeixement d’objectes de
gra fi, xarxes neuronals convolucionals, classificació d’imatges.
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1 Introduction

Since the 50s of the last century and until a very few years ago, the usual field
of advanced Artificial Intelligence (AI) was mostly the research laboratory and
science fiction. With the exception of few cases, almost all systems with human-like
intelligence have appeared in futuristic films or works such as those of Isaac Asimov.
However, this landscape has changed radically in recent years.

One of the building blocks of AI is machine learning. It is becoming increas-
ingly common for us to ask machines to teach themselves. We cannot waste time
pre-programming rules to deal with the infinite combinations of input data and
situations that appear in the real world. Instead of doing that, we need machines to
be capable of self-programming, in other words, we want machines that learn from
their own experience. The discipline of Machine Learning addresses this challenge.
Today machine learning is more than ever within the reach of any programmer. To
experiment with these services we have platforms such as IBM Watson Developer
Cloud, Amazon Machine Learning, Azure Machine Learning, TensorFlow or BigML.

Understanding the learning algorithms is easy if we look at how we learn our-
selves as children. Reinforcement learning consists of a group of machine learning
techniques that we often use in artificial systems. In these systems, as in children,
behaviors that are rewarded tend to increase their probability of occurrence, while
behaviors that are punished tend to disappear. These types of approaches are called
supervised learning, as it requires human intervention to indicate what is right and
what is wrong (that is, to provide reinforcement). In many other applications of
cognitive computing, humans, apart from reinforcement, also provide part of the
semantics necessary for algorithms to learn. That is, humans are the ones who
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really know if a document is a complaint, an instance, a claim, a registration request,
a change request, etc. Once the algorithms have a set of training data provided
by humans, then they are able to generalize and begin to automatically classify
documents without human intervention.

Currently, it is these training restrictions or limitations of algorithms that largely
limit their power, since good training datasets (often manually labeled by humans)
are required for algorithms to learn effectively. In the field of computer vision,
for algorithms to learn to detect objects in images automatically, they have to be
previously trained with a good set of labeled images, such as ImageNet. On the
other hand, artificial vision is constantly evolving thanks to the optimization of
algorithms based on Deep Learning. Deep Learning is a technology that allows a
computer to learn like a human being, which makes it easier for artificial vision
systems to use more robust, effective learning methods that are very similar to those
of the human brain.

Object recognition is one of the main objectives of computer vision. Initially is
was based on hand-crafted features, Lowe developed an image feature he called
SIFT, that became the basis for features in many object recognition algorithm
[114], but in recent years the most successful methods are based on convolutional
neural networks (CNNs) [99]. Object recognition is a crucial functionality in many
real-world applications, including robotics, automatic health care, autonomous
driving, smart mobile applications, etc. It is well-known that humans apply a
saliency mechanism to efficiently focus on the main information in images. Recent
developments of neural networks have been exploited to estimate high-quality
saliency images (i.e. DeepGazeII [97], SAM-ResNet [30], SALICON [72, 175] and
SalGAN [137]), however, there has only been little research on how saliency can be
incorporated efficiently in feed forward neural networks. Therefore, in this thesis,
we explore how saliency can be used in CNN-based object recognition.

1.1 Challenges in Saliency for Object Recognition

For humans, object recognition is an almost instantaneous, precise and extremely
adaptable process, since we keep learning during all our life. However, we are sel-
domly aware of the time and energy spent on creating those neurological structures
that make such a complex process possible. It is well known how the human brain
lowers this complexity by filtering out part of the information and only processing
those things that capture our attention [5, 11, 16]. This, combined with our biologi-
cal predisposition to respond to certain shapes or colors, allows us to recognize in a
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Figure 1.1: Example of saliency map based on eye fixations.

simple glance the most important sections from an image [76]. This is reflected by
where we place our attention, and consequently on where we fix our eyes when an
image is shown to us.

The most accurate way to record this behavior is to track eye movements while
displaying multiple images [172]. Other methods require us to click with a mouse on
the areas of interest [139, 171, 185]. Whatever the methodology, the results can be
used to create an image of the same size as the original, where each pixel represents
the probability that the subjects’ eyes fixate on that pixel (see Figure 1.1). This way,
the saliency map is created: a map that indicates the regions where humans are
most likely to look, as this trait is crucial to improve our performance in image
identification or tagging [11, 107, 205].

Given the huge effort to obtain saliency maps for large datasets, most of the
research has been focused on how to obtain them automatically. In recent years,
the most successful approaches have been based on convolutional neural networks
(CNN) [29, 80, 137]. In this thesis, we are not focusing on the question how can
we estimate saliency maps, but rather we are interested in the question if saliency
maps can improve the object recognition task. In the following paragraphs we set
out several research questions that we will address in this thesis.

One of the drawbacks of training deep CNN is that they require large amounts
of data to train. For many applications, such as for example fine-grained object
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recognition, this data might be hard to collect. As discussed above, saliency is used
by the human visual system to focus on the most relevant visual information, and
ignore superfluous background. Based on this observation, exploiting the use of
saliency to prevent overfitting on small datasets is an interesting research directions.
The saliency mechanism could help the network to focus on those parts of the
image that are relevant and at the same time to ignore those parts of the images
that are background, and therefore not expected to contribute much to the object
recognition task. Based on this observation, we define our first research question to
be:

• To what extent saliency maps can be exploited to improve the training of an
object recognition model when only scarce training data is available ?

One drawback of networks, that use saliency maps to improve their object
recognition performance, is that they require saliency maps as an input. This
is typically done by training a separate saliency network. This saliency network
requires ground truth data saliency maps to be trained. If it would be possible to
train the saliency estimation branch within the object recognition network this
would be highly beneficial. In this case, there is no need to compute the saliency
map using a separate network. This would circumvent the need for the collection
of large saliency datasets to train the network. Based on this reasoning, we explore
ways to train saliency estimation directly within the object recognition network in
an end-to-end way. Therefore, we define our second research question as:

• Can saliency be learned in an end-to-end sense within an object recognition
pipeline based on a convolutional neural network ?

Finally, as a result of the research based on the two previous research ques-
tions, we propose an architecture that produces saliency maps that improve object
recognition results. These saliency maps are a byproduct of the object recognition
pipeline, and for their training no ground truth saliency maps are required. Tra-
ditional learned saliency estimation methods are based on ground truth saliency
benchmark datasets. It would therefore be interesting to compare our saliency
estimation approach, which does not require any saliency ground truth data, with
methods that require saliency ground truth data on standard saliency estimation
benchmark datasets. This leads to the third research question:

• What is the quality of saliency that is produced as a byproduct of object
recognition ? How does is perform on benchmark saliency datasets ?
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In the following section we set out our approach to address these questions, and
the related research objectives and contributions.

1.2 Research Objectives

To address the research challenges identified in the previous section, we here define
a set of research objectives.

The first research objective is defined as:

• Demonstrate the importance of saliency maps for object recognition. We
are especially interested in object recognition based on convolutional neural
network since these networks obtain the current state-of-the-art.

We first investigate to what extent the estimation of saliency can be exploited to
improve the training of an object recognition model especially when scarce training
data is available. To solve this problem, we design an image classification deep
CNN that incorporates saliency information as input. This network processes the
saliency map through a dedicated branch and uses the resulting characteristics to
modulate the standard bottom-up visual characteristics of the original image input.
We will refer to this technique as saliency-modulated image classification (SMIC).
The main objective of the proposed method is to allow effective training of a detailed
recognition model with limited training samples and to improve performance on the
task, thus alleviating the need to annotate a large dataset. We evaluate our method
on different datasets and in different settings, achieving considerable performance
improvements when we take advantage of saliency data, especially when training
data is scarce.

The second research objective of the thesis is given by:

• Propose an architecture that does not require explicit saliency maps to im-
prove image classification. Instead these saliency maps should be learned
implicitely, during the training of an end-to-end image classification task.

We start by addressing the main drawback of the above scenario, that is, SMIC
requires an explicit saliency algorithm that must be trained on a saliency dataset.
To solve this, we are going to implement a hallucination mechanism in order to
eliminate the requirement to provide saliency images for training obtained using
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one of the existing algorithms. In other words, we show that the explicit saliency
branch that requires training using a saliency dataset can be replaced with a branch
that is end-to-end trained for the image classification task (for which no saliency
dataset is required). We replace the saliency image with the input RGB image. We
then pre-train this network for the image classification task using a subset of the
ImageNet validation dataset. During this process, the saliency branch will learn to
identify which regions are the most discriminatory. In a second phase, we initialize
the weights of the saliency branch with these previously trained weights. Then
we train the system end-to-end on the fine-grained dataset using only the RGB
images. The results show that the saliency branch significantly improves fine grain
recognition, especially for domains with few training images.

The third research objective of this thesis is given by:

• Demonstrate that it is possible to obtain accurate saliency maps without
any ground truth saliency data. Additionally, propose a fast and more real-
istic computation of the center-bias in an unsupervised manner. We show
that the center-bias improves in most datasets where the center-bias is more
present.

To do this, we evaluate the precision of the saliency maps that occur as a secondary
effect of object recognition, based on the network which has been designed in this
thesis. Furthermore, we also evaluated the use of supervised and unsupervised
center (CB) bias in our setting. We show that CB improves in most of the datasets
where CB is more present. We perform these experiments on several standard
benchmark datasets for saliency estimation.

1.3 Contributions and Outline

The main contributions of this dissertation are:

• We demonstrate that the use of saliency improves the classification task
based on forward convolutional neural networks (Chapter 3). The gain
due to saliency is especially notable for domains with scarce data.

• We address the major drawback of saliency-modulated image classifica-
tion (SMIC) (Chapter 4). We implement a hallucination mechanism in order
to remove the requirement for providing saliency images for training obtained
using an existing saliency algorithms.
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• We demonstrate with several experiments that our approach is able to gen-
erate accurate saliency maps (Chapter 5). We achieve competitive results
when compared with supervised methods. Our saliency maps are a side-effect
in an object classification tasks. We also investigate the use of the center-bias
within this framework.

The aforementioned contributions have been presented at conferences and
published in a scientific Journal. More details of such publications are included in
the Chapter 6.

The thesis is organized as follows. In chapter 2 relevant works related to the pro-
posed approaches are summarized into three sub-fields: i ) representation learning;
i i ) visual saliency; and i i i ) fine-grained object recognition. Chapter 3 describes our
approach to use saliency in order to improve classification accuracy for fine-grained
object recognition in domains with scarce training data. In Chapter 4 we improve
this approach, and describe a method that can hallucinate saliency maps for fine-
grained image classification. Then, in Chapter 5 we evaluate the quality of saliency
maps that are computed as a side-effect of our object recognition architecture. We
show that these maps can obtain excellent results on saliency benchmark datasets.
Finally, in Chapter 6 the thesis is concluded and we present future work.
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2 Related Work

In this chapter we discuss the related work. We start with a brief overview of deep
neural networks. We then discuss the literature on visual saliency, and finally discuss
the literature on fine-grained object recognition.

2.1 Learned Representations

The complexity of the information processing task depends on how the information
is represented. To this end, many approaches to representation learning, whether
linear or non-linear, supervised or unsupervised, "shallow" or "deep", have been
developed to understand the intrinsic structure of data. In this context, feature
learning or representation learning [7], is a set of techniques that allows a system
to automatically discover the representations required for the detection or classifi-
cation of features from raw data. In particular, deep architectures have provided
the best results in many tasks such as image classification, object detection, and
speech recognition [228].

Many data representation learning methods have been proposed in the last
hundred years in order to learn low dimensional representations of data, for ex-
ample, K. Pearson in 1901 [48] proposed a linear projection, principal component
analysis (PCA), while linear discriminant analysis (LDA) was proposed by R. Fisher
in 1936 [45]. PCA and LDA are both the earliest data representation learning al-
gorithms ( unsupervised and supervised methods respectively). Since 2000, the
machine learning community launched the research on manifold learning, which
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is to discover the intrinsic structure of high dimensional data [6, 155].

In 2006, Hinton and his co-authors successfully applied deep neural networks
to dimensionality reduction, and proposed the concept of Deep Learning [66, 67].
Deep Learning (DL) is an area of machine learning that is based on the usage of
hierarchical structures and algorithms inspired by the human brain which provides
a multidimensional space for learning multiple levels of representations in order
to model complex relationships among data [33, 35, 57]. The key aspect of deep
learning is that the feature representation in the network’s layers is not manually
designed, but they are automatically learned from data during the training process.
For example in the Figure 2.1, it is shown how a deep learning network can represent
the concept person by combining simpler concepts, such as corners and contours,
which are in turn defined in terms of edges.

The most simple example of a deep learning model is the deep feedforward
network represented as a multilayer perceptron (MLP). An MLP implements a func-
tion mapping a set of input values to output values [57]. This function is formed
by many simpler functions. We can think of each layer as a different mathematical
function which provides a new representation of the input. Another perspective
on deep learning is that depth enables the computer to learn a multi-step com-
puter program, where each layer can be thought of as a state of the computer’s
memory executing a set of instructions in parallel. Networks with greater depth
can execute more instructions in sequence. These sequential instructions offer a
great advantage, because subsequent instructions can rely on the results of earlier
instructions. According to this view of deep learning, not all the information in the
activations of a layer necessarily encodes factors of variation that explain the input.
The representation also stores state information that helps to run a program that
can make sense of the input. This has nothing to do with the content of the input
specifically, but it helps the model organize its processing.

Specifically in computer vision, which is a field that focuses on the under-
standing of information presented in the form of image or video data, deep neural
networks have shown impressive results. However, the limitation of MLPs in this
case was obvious: due to their architecture, they were flattening the pixels and
thus discarding the image structure. Therefore, in order to take into account the
spatial relationship between pixels, a different strategy was required and, as a result,
convolutional neural networks (CNN) have been introduced [99] (more details in
section 2.1.2). To have a better picture of the recent advances with CNN, it is enough
to mention the evolution of some specific tasks, ranging from ’simple’ ones such as
image classification/object to more complex applications for astronomy problems
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Figure 2.1: Illustration of a deep learning model from [57].

or self-driving cars [99].

One of the most common tasks in computer vision is image classification. It
was the ImageNet competition [158] that was responsible for the emergence of
more precise models and a better understanding of the convolutional networks
themselves. A fortuitous event demonstrated that those models trained for this
competition could be reused in other scenarios and worked quite well, sometimes
even surpassing the models trained specifically for the tasks [224]. This is due to
the large variety of images (over a thousand categories), which are displayed in
the dataset provided for the ImageNet competition. As a result, ImageNet-trained
models see the world in much the same way as the human visual system. It is not so
surprising then, that after a few decades of trying to develop better networks (to im-
prove performance in visual tasks) they converged to architectures that potentially
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Figure 2.2: Convolutional Neural Network for image processing, e.g., handwriting
recognition [99].

function in a similar way to the visual cortex of some primates as found in [23, 124].

2.1.1 Convolutional Neural Networks

The first CNN based architecture was proposed in 1995 by LeCun et al.[99]. Fig-
ure 2.2 shows the convolution neural network architecture from [99], where the
input of the architecture is a 28x28 gray-scale image, then, such data is forward
propagated through the five convolutional neural layers till it gets the size of 26x1x1.
The data in each CNN layer is termed a feature map and its size, for example, in the
first CNN hidden layer, "4x12x12" is interpreted such as 4 filters with the feature
map size of 12x12. Even though, the CNN architectures were proposed in the last
century, the success of this approach was noticed, principally, with the AlexNet
[94] proposal. This CNN architecture is composed by five convolutional and three
fully-connected layers, as observed in Figure 2.3, such a design was sufficient to win
the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2012) com-
petition achieving the test error rate of 15.3%, the second best competitor scored
26.2%.

Since AlexNet was introduced in 2012, many other CNN-based architectures
have been proposed for different computer vision applications, e.g. edge detection
[204], segmentation [220], image recognition [162], to name only some of them.
However, just a few of these architecures have been efficiently designed to be
replicated in other computer vision tasks. Among the most popular networks are:
VGG [162], U-Net [154], ResNet [62], Inception v3 [170], Xception [28].

The Visual Geometry Group (VGG) at the University of Oxford. Among them,
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Figure 2.3: Illustration of the architecture of the AlexNet CNN introduced in [1].

VGG16 and VGG19 are the most used in different computer vision and image pro-
cessing tasks [162]. For instance, the VGG16 version can be appreciated in Figure 2.4.
This architecture is designed by blocks of convolutional and fully-connected layers,
specifically, composed by 13 convolutional and 3 fully-connected (MLP) layers. VGG
architecture scored the second best mark in the classification task of ILSVRC-2014
competition.

One year later, the Deep Residual Networks (ResNet) have been proposed in [62].
Like VGG, the ResNet family has also different versions according to the depth of its
layers (ResNet50, ResNet100, ResNet152, etc.), with ResNet50 being one of the most
used in the literature. Although the deeper neural network is, the more difficult
its training is (due to vanishing gradient problem), the solution to overcome this
limitations resides in the use of skip connections (termed in the paper as "shortcut
connections"). Skip connections help retaining the correlation structure across
gradients [4] (thus alleviating the aforementioned problem) and thus determining
an improved training and an improved performanceas a result. Skip connections
are additional connections betwwen nodes in different layers that can skip several
layers which form a residual block. In this configuration, the output of the current
residual block is summed with the identity mapping from the previous residual bloc,
this process being repeated several times along the network’s depth (see Figure 2.5).

2.1.2 Neural Networks for Scarce Data Domains

One of the themes of this thesis is the training of networks for scarce data domains.
Few-shot learning aims to create models for which very few labeled samples are
available.
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Figure 2.4: The VGG16 architecture [113].

Early work on this topic is attributed to Fei-Fei et al. [42] who showed that, taking
advantage of previously learned categories, it is possible to learn new categories
using one or very few samples per class. More recently, [92] proposed a conditional
distance measure that takes into account how a particular appearance model varies
with respect to every other model in a model database. The approach has been
applied to one-shot gesture recognition. Nowadays, several deep learning-based
approaches have emerged to address the problem of few-shot learning. We can
identify three main strategies.

One family is based on metric learning. In [186], the authors proposed a frame-
work that trains a network to map a small labeled support set and an unlabeled
example to its label. An extension of this idea is presented in Prototypical net-
works [164], but in this case each class in the support set has been substituted by a
‘prototype’ (computed as the mean of the samples in the corresponding class), to
which each sample is compared.

A second family of approaches in based on meta-learning, i.e. learning a model
that given a few training examples of a new task tries to quickly learn a learner
model that solves this new task [128]. In [147], the authors propose an LSTM-based
meta-learner that is trained to optimize a neural network classifier. The meta-
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Figure 2.5: Residual block with skip connection [62]

learner captures both short-term knowledge within a task and long-term knowledge
common among all the tasks.

Finally, the third family of approaches is based on data augmentation for data-
starved classes. In [61], the authors propose a way to increase ("hallucinate") the
number of samples for the classes with limited data. Their method is based on the
intuition that certain aspects of intra-class variation generalize across categories,
like for instance pose transformations. In practice, for data-rich classes, they use a
neural network to learn transformations between pairs of samples and this transfor-
mation is later on applied on the real samples from data-starved classes to generate
synthetic ones, thus increasing the population of these classes. For the same pur-
pose (i.e. data augmentation for data-starved classes), in [37] the authors propose
an attributed-guided augmentation approach which learns a mapping that allows
the creation of synthetic data by manipulating certain attributes of real data. Thus,
the newly created data presents attributes based on user-defined criteria (values).
Instead of performing the data augmentation in image space, they perform it in
feature space. This idea is further extended in [110], where the authors use a deep
encoder-decoder architecture to generate feature trajectories by exploiting the pose
manifold in terms of pose and appearance.

2.2 Visual Saliency

Visual saliency has long been one of the most studied problems in neuroscience,
psychology, and computer vision and can be defined as "the ability that makes
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a) b) c)

Figure 2.6: Example of salient object in natural image. a) original image; b) ground
truth ; c) example saliency detection results.

some elements of the world stand out from its neighbors and grab our attention
immediately." [73]. In other words, our attention is selective and our brain high-
lights objects that contrast with other elements [181]. However, simultaneously
identifying each and every interesting target in the visual field is computationally
complex, making it a daunting task for even the most sophisticated biological brains,
let alone any existing computer [178].

Saliency is generally known as local contrast [75], which generally originates
from contrasts between objects and their surroundings, such as differences in color,
texture, shape, etc. This mechanism measures intrinsically outgoing stimuli to the
vision system that primarily attract human attention in the initial stage of visual
exposure to an input image [60].

To quickly extract the most relevant information from a scene, the human
visual system pays more attention to the highlighted regions, as seen in Figure 2.6.
Research on computational saliency focuses on the design of algorithms that, like
human vision, predict which regions of a scene stand out. As a definition, visual
saliency is the perceptual quality that makes an object, person, or region of pixels
stand out in relation to its neighbors to attract our attention [76].

The intermediate and upper visual processes can automatically judge the im-
portance of different regions of the image and carry out detailed processes only
on the "salient object" that mainly relates to the current task, while neglecting the
remaining regions of "background" [15]. Figure 2.6 shows some examples of natural
images. As seen in Figure 2.6 (c), the bird is the one that attracts the most visual
attention and, therefore, they are considered as salient objects. On the other hand,
Figure 2.6 (b) shows an example of "saliency map" detection.

16



2.2. Visual Saliency

Visual Attention 

Psychophysics

Computational 
Modeling

Neurophysiology

Filter Models

Connectionist 
Models

Bottom-up 
Methods

Top-down 
Methods

Figure 2.7: Saliency detection methods ontology [15]

2.2.1 Saliency Methods

Saliency detection methods can be grouped according to the model inspiration
source. For instance, Itti’s approach is referred as a biological inspired method.
Such methods explore percularities of human vision and attention operation and
try to mimic the processes taking place while a human observes a scene.

From the perspective of computer vision, the methods of saliency detection
are broadly categorized into two major groups, namely the bottom-up methods
and the top-down methods (see Figure 2.7. Besides that, more methods using
unconventional models and features have also been proposed in recent years.

Bottom-Up Methods

The bottom-up saliency methods describe the attention distribution of a visual
stimulus (image) [26, 167, 206, 229], in form of attention map. In this case, the
attention is driven by low-level features such as color, contrast, and therefore they
are task-independent

Initial work on computing saliency was due to Itti, Koch and Niebur [76], pro-
posed one of the first biologically motivated computational models for saliency
estimation. Their saliency map was inferred from multi-scale representations of
color, orientation and intensity contrast. Saliency research was propelled further by
the availability of large datasets which allowed for direct comparison of methods
and enabled the use of data-driven methods based on machine learning algorithms.
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Rahtu et al. [145] proposed a model using a contrast of a sliding window over the
input image. The resulting saliency map was then used in a Conditional Random
Field (CRF) model to define a segmentation approach based on energy minimiza-
tion, which aims to recover well-defined prominent objects. All these maps were
fused in an unique saliency map using winner-take-all mechanisms [145]. This
framework had inspired many models such as [12, 153, 213], mainly varying on the
feature extraction part (either handcrafted or trained). For instance, some unsu-
pervised models such as the work proposed in [18] used a dictionary of images in
order to train sparse priors which were learned with a feature extractor filters. Later
on, in [17], the authors presented a combination between feature extraction from
Itti-Koch-Niebur model (IKN) and Attention based on Information Maximization
model (AIM). The resulting model was an architecture with cells and connectiv-
ity reminiscent of that appearing in the visual cortex. Similarly, [177] proposed
a contextually-modulated saliency model, which was based on task priors when
observing real scenes and predicts the image regions likely to be fixated by human
observers performing natural. Finally, Murray et al. [130] show how a model of color
appearance in human vision can be generalized to obtain a saliency model.

Since the 2010s, more advanced models, and especially the graph based models,
have been introduced to saliency detection, which have greatly improved the overall
detection accuracy [95]. It is also worth noting that the majority of conventional low-
level feature based saliency detection methods were proposed during this period.
For example, Jiang et al. [78] formulated saliency detection via absorbing Markov
chain on an image graph model and the absorbed time from each transient node to
boundary absorbing nodes is computed. Thus, salient objects can be consistently
separated from the background when the absorbed time is used as a metric. On the
hand, Li et al. [102] proposed a novel approach that takes advantage of both region-
based features and image details. The first step consists of optimizing the image
boundary selection by the proposed erroneous boundary removal, which is followed
by a second step consisting of the foreground saliency estimation. In [141], Perazzi
et al. defined a conceptually algorithm for contrast-based saliency estimation.
Their algorithm consists of several steps. First, they decompose a given image into
compact, perceptually homogeneous elements that abstract unnecessary detail.
Then, they compute two measures of contrast that rate the uniqueness and the
spatial distribution of these elements. Finally, from these elements they derive a
saliency measure that produces a pixel-accurate saliency map which uniformly
covers the objects of interest and consistently separates foreground and background.
Wei et al. [198] proposed a novel saliency measure called geodesic saliency, by
exploiting two common background priors: boundary and connectivity. In the
work of Yang et al. [208], the authors described an approach by exploiting contrast,
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center and smoothness priors. First, they computed an initial saliency map using
contrast and center priors, applying the convex hull of interest points to estimate
the center of the salient object rather than directly use the image center. Second,
they exploited the graph-based manifold ranking to extract foreground queries for
the final saliency map, in which the four image boundaries are used as background
prior knowledge.

Recent models (e.g. ML-Net [29], such as SAM [30], DeepGazeII [97], SalGAN
[137]) use fixation data from image saliency datasets (i.e. that provide eye tracking
data) as ground truth for learning the saliency map with CNN architectures. These
models usually train a neural network that focuses on the most salient regions of
the input image to iteratively refine the predicted saliency map. ML-Net learned
a prior map based on the common ground truth saliency maps, acting as a mask.
This is multiplied by the output map of the network. For the case of DeepGazeII
they sum a probability distribution (baseline of fixations) over the image. Instead,
SAM utilizes an LSTM and trains a set of gaussian parameters acting as an attentive
mechanism to the final map, which finetuned with human fixation density maps.
Finally, SalGAN uses an autoencoder architecture, which is trained with prediction
in combination with an adversarial loss.

Top-Down Methods

The top-down saliency detection methods emerges from those regions that con-
sciously attract users’ attention according to a specific visual task [129], i.e. they are
task dependant. Thus, top-down attention is slow and deliberative with variable
selection criteria depending on the task.

In the early 2000s, Itti and Koch [75] proposed the idea of top-down influence to
better estimate the saliency in specific tasks. They considered that there was a link
between visual attention and eye movement. Thus, it was necessary to combine
eye movement with a computational model to study the human visual system.

Supervised learning approaches are commonly used in detecting image saliency.
In their work, Yang et al [209], proposed a novel model that jointly learned a Condi-
tional Random Field (CRF) and a visual dictionary. Their proposal thus produced
clear saliency maps by incorporating local context information. Improved results
were obtained by updating the dictionary under the CRF supervision. In Lu et al
[115], saliency of salient seed locations was propagated through the graph via a dif-
fusion process. Unlike previous heuristic approaches to seed selection, an optimal
set of salient seeds is learned using a large margin formulation of the discriminant
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saliency principle. Mai et al [120] presented an approach based on Conditional
Random Field (CRF) framework for saliency aggregation that not only models the
contribution from individual saliency map, but also takes into account the spa-
tial relation among pixels. Moreover, Xu et al.[207] proposed a deep unified CRF
saliency model that formulates messages passing with CRFs for joint feature and
prediction refinement. Tong et al [176] proposed a bootstrap learning model for
salient object detection. The strong saliency model is constructed based on the
Multiple Kernel Boosting (MKB) algorithm, which combines all the weak classifiers
into a strong one using the Adaboost algorithm.

Since 2013, thanks to the tremendous success of deep learning and other high-
level feature extraction techniques, more learning-based methods emerged with
significantly improved performance. In [79], the authors formulated saliency map
computation as a regression problem. Their method, based on multi-level image
segmentation, used the supervised learning approach to map the regional feature
vector to a saliency score. Saliency scores across multiple layers were finally fused
to produce the saliency map. Kim et al [86] introduced a novel technique to auto-
matically detect salient regions of an image via high-dimensional color transforms.
Their main idea was to represent a saliency map of an image as a linear combination
of high-dimensional color spaces where salient regions and backgrounds can be dis-
tinctively separated. This is based on an observation that salient regions often have
distinctive colors compared to the background in human perception, but human
perception is often complicated and highly nonlinear. Wang et al [189] presented a
Deep Neuronal Network (DNN) for saliency detection from both local and global
pespectives. In the local estimation stage (DNN-L), they estimated local saliency
by learning image feature from local contrast, texture and shape information. In
the global search stage (DGG-G), they exploited the complex relationships among
global saliency cues and predicts the saliency value for object region. Zhao et al
[225] proposed a multi-context DNN for saliency detection. The global context was
utilized to model saliency in full image, while the local context was used for saliency
prediction in meticulous areas.

Li et al. [104] proposed a novel method for saliency detection using a CNN
which has fully connected layers on its top, responsible for feature extraction at
three different scales. Fusing the saliency maps corresponding to these scales into
a single one, outperforms other methods which genearates saliency maps from a
single segmentation. Chen et al. [26], presented a novel approach called Deep Image
Saliency Computing (DISC) using both the coarse- and fine-level observations in
order to learn the saliency representation in a progressive manner. They used a
two-stacked CNNs, one for generating a coarse-level saliency map (image level) and
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the other one for generating a more accurate saliency map (by focusing on the local
context).

On the other hand, Murabito et al. [129] presented an approach that differs
from others since the only top-down signal introduced in their training is a class-
agnostic classification loss, i.e. their maps were able to highlight those areas which
are relevant for classifying generic images. A similar work is the one of Almahairi
et al. [2], where they introduced a Dynamic Capacity Network (DCN). The authors
combined two types of sub-networks: the first is a low-capacity sub-network and
the second is a high-capacity sub-network The low-capacity sub-network is applied
across most of the input, but also provide a guide to select a few regions of the input
on which to apply the high-capacity sub-network. The selection is made using a
novel gradient-based attention mechanism, that efficiently identifies input regions
for which the DCN’s output is most sensitive.

Other Methods and Current Trends

Besides the two main categories previously analyzed, in this section we review
some other approaches based on hybrid methods, that take advantage of both the
high detection accuracy of top-down features extraction and the high detection
efficiency of bottom-up methods. Additionally, we will review some recent trends
represented by salient object detection. Finally, we will mention some applications
of saliency detection.

Hybrid methods are biologically motivated and the research of Melloni and et al
[125], who based their study on a functional magnetic resonance imaging analysis,
found evidence of a hierarchy of saliency maps in human early visual cortex (V1 to
V4) and identified the region where bottom-up saliency interacts with top-down
control. Following this findings, Borji and et al [10] proposed a method where they
combined low-level features such as orientation, color, intensity, saliency maps of
previous best bottom-up models with top-down cognitive visual features (e.g., faces,
humans, cars, etc.) and learned a direct mapping from those features to eye fixations
using regression, SVM, and AdaBoost classifiers. Shariatmadar et al [161] proposed a
hybrid method for extracting relevant regions of man-made objects. Top-down path
is implemented by extracting features characteristic to edges and corners; bottom-
up path is implemented by the response of Gabor filters of different orientations.
Finally, these maps are linearly combined in order to generate the saliency maps. In
[118], Mahdi and et al presented an exhaustive study of a computational saliency
model based on pre-trained deep features to predict human fixations. The bottom-
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up path was modeled by the deep features extracted from the convolutional layers
of a two-scale CNN, while the top-down path was represented by the deep features
extracted from the whole network. The combination of the two paths is weighted
using a center bias map. Different from this late-fusion approach, in [191] Wang
et al integrated both top-down and bottom-up inference paths in an iterative and
collaborative manner.

In the last few years, the research on saliency prediction has shifted its focus
from attention maps to object detection. Different from the study of attention
maps which has it roots in neuroscience and cognitive psychology, salient object
detection (SOD) is motivated by computer vision applications targetting object-
level processing. Although the basis for salient object detection could be traced back
to the work of Liu et al [111], the recent advances in deep learning have revitalized
this research direction, where most approaches are built upon fully convolutional
neural networks (FCN), U-NET or feature pyramid networks (FPN) as their basic
structures. Salient object detection first locates and identifies the object/region
in the image, and then segments it from its background. For this purpose, a lot of
models have been proposed, which have achieved a good performance in simple
images containing either a single object [105, 106, 132] or multiple objects [40, 218],
which have been also extended to salient-instance segmentation [41, 201]. Some
interesting applications of SOD are salient object subitizing, i.e. instant judgement
of the number of objects in the image [63, 216] and saliency rank of objects defined
by the order in which a person attends the objects presented in an image [163].
As depth cameras (such as Kinect or RealSense) become popular in the last few
years, RGB-D object detection attracted more and more research interest. While
early methods were based on a simply deep fusion scheme [144], most recent
approaches are built upon a more sophisticated distillation mechansm [116, 142],
in order to transfer the knowledge between the RGB and Depth modalities, or gating
mechanism [226].

All the saliency methods reviewed so far are supervised, i.e. they require a
saliency map ground truth in order to train the deep neural network. This represents
a significant limitation nowadays since there are applications which generate a huge
amount of data (e.g. self-driving cars, multimedia). Computing the saliency maps
for all these images is an intractable problem and thus could limit the generalization
capabilities of the method. Therefore, another recent effort in saliency research is
towards unsupervised saliency detection. For instance, Zhang et al [219], formulate
the problem of unsupervised saliency detection as a learning process from multiple
noisy maps generated by various conventional methods. They propose an end-to-
end deep learning framework which consists of a saliency prediction module and an
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explicit noise modeling model, which work collaboratively and are jointly optimized.
On the other hand, Sun et al [169] generate saliency maps in an unsupervised
manner by exploiting the expectancy-mismatch hypothesis: using a pre-trained
network, they provide a ’reference pattern’ which is in conflict with the current
output. Backpropagating this error to a semantically meaningful convolutional
layer, they obtain, at the end of the training process, the saliency map. Despite being
a simple approach, they obtain competitive results, when compared with supervised
methods. Finally, another approach is presented in Palazzo et al [136] where they
consider saliency maps generation in a multi-modal context, by modulating the
deep visual representation of an image with the neural activity captured by an EEG
device while the subjects look at images.

2.2.2 Saliency for Image Classification

The vast majority of saliency methods previously reviewed are evaluated on the task
of how accurate their generated saliency maps are.

Therefore, it was raised the question of whether saliency is also important for
other related tasks such as object recognition and object tracking [59]. This is
also the purpose of [46], where the authors investigate to what extent saliency
information can be exploited to improve object recognition when the available
training data is scarce. The authors designed a two-branch image classification
deep network, where one of the branches takes saliency information as input. The
network processes the saliency through the dedicated branch and uses the resulting
saliency features to modulate the visual features from the standard RGB branch,
thus forcing the upper layers to focus on the relevant parts only. In the same line,
[129] learned to generate saliency maps from RGB images, but in this case their
method is supervised.

2.2.3 Link between attention and saliency

Attention is widely known to be fundamental to perception, the term being often
used to mean very different things [58, 180]. The most important theories of atten-
tion relate it to planned or executed eye movements [127]. This contrasts with the
notion of attention as a gain control process that weights the information carried
by different sensory channels. Also, attention influences the processing of visual
information even in the earliest areas of primate visual cortex [84, 126, 135].

There is converging evidence that the interaction of bottom-up sensory informa-
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tion and top-down attentional influences creates an integrated saliency map, that is,
a topographic representation of relative stimulus strength and behavioral relevance
across visual space [74, 125, 180]. This influence seems to shape an integrated
saliency map, that is, a representation of the environment that weighs every input
by its local feature contrast and its current behavioral relevance [139, 143, 152]. This
generated saliency map provides a coding scheme to process the most relevant in-
formation in the sensory input to the visual system and thus integrate large volumes
of information. However, by completely integrating bottom-up sensory informa-
tion and top-down attentional influences it equates the absence of attention with
low stimulus power [180]. This could explain why highly prominent stimuli will
be processed even in the absence of attention. On the other hand, the inherent
low prominence will often prevent perceptual representations for some parts of
complex natural scenes [65, 134, 180]. Although, exceptions seem to exist for basic
categorizations, that is, a recovery of the ‘gist’ of natural scenes, as we can observe
in Figure 2.8.

It is known that the brain areas that are responsible for providing the correct ori-
entation for the top-down process are strongly related to those areas responsible for
the execution of eye movements [123, 160, 180]. Bringing together bottom-up stim-
ulus aspects (that are often responsible for automatic attentional allocation) and
top-down influences (that reflect voluntary attention), a global map representing
stimulus saliency (that is modulated by the current behavioral state of the organism)
can be computed. This can provide a unified framework for interpreting future
findings on attentional effects and their close integration with sensory information
processing [180].

2.2.4 Center bias

Observers, when looking at the computer screen, have been found to have a marked
tendency to look at the center of the screen [34, 148, 171, 185]. Usually this happens,
because the characteristics of the images / scenes tend to be skewed towards the
center of the natural images and the fixations are correlated with image features
[122, 139, 140, 156, 157, 172].

Although this tendency to look towards the center is well documented, the
reasons for this bias are not yet clear [171, 172]. Center bias offers an interesting
opportunity to explore not only the underlying mechanisms responsible for this
trend, but also the degree to which fixations are determined by the image char-
acteristics present in the scenes [31, 39, 183]. In the state of the art, two possible
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b). Scene fixationsa). Real world scene

c). Attention map d). Saliency  map

Figure 2.8: An example of Attention map and Saliency map from an real world scene.
[65].

explanations have been found for the tendency of human observers to look at the
center of scenes rather than at the periphery. These will now be discussed in the
next paragraphs [171, 212].

First, center bias may be the result of certain biases in small-amplitude eye
movements over large-amplitude (sacdic) eye movements as explained in [44, 98,
151, 173]. Given this tendency to perform small saccades, the fact that scene visual-
ization experiments usually use a centrally located pre-trial fixation marker results
in the central bias observed in fixation distributions [43, 100, 140, 212].

And, second, it was assumed that the bias arises from selecting image features
for fixation, which are often centrally biased in the scenes [139, 149, 172]. Several re-
cent studies have shown that the locations selected for fixation by human observers
tend to correlate with low-level image features in the scene [74, 139, 140, 150, 171,
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172]. In particular, fixated locations tend to have higher-than-average contrast and
edge information [3, 140, 149]. For instance, most real images frame the scene,
meaning that the relevant or salient part is in the center of view in photographies.
Non-salient/non-popout stimuli [9, 171, 185] has been shown to promote center
biases, as participants do not have any region to attend to, especially if the task
sometimes involves centering the gaze on the image.

These center biases have an influence on how to evaluate saliency models upon
predicting fixations [14, 21], as these fixations are accounted while are not specific
to image saliency. This bias is in part because photographers tend to place objects
of interest at the center of the viewfinder. Thus, if fixations and features correlate,
a centrally biased distribution of features in scenes would result in the observed
central biases in human fixation distributions.

2.2.5 Datasets for Saliency Estimation

Since the available eye movement datasets have different statistics, types of stimuli
and numbers of subjects, here we exploit three categories of reference datasets for a
fair comparison of models, which are divided into i) real images scenes, ii) natural
scenes and iii) synthetic images [9, 10, 20, 22].

i. Real images scenes:

The first dataset, MIT1003 created by Judd and et al in [81], contains 1003
images from Flicker and LabelMe datasets and eye-tracking data recorded by fifteen
users who viewed these free images. These users were men and women between 18
and 35 years old. Of these users, two were project researchers and the others were
only viewers [54, 159, 184]. An eye tracker recorded the trajectory of users’ gazes
on a separate computer as they viewed each image at full resolution for 3 seconds
separated by 1 second of viewing a gray screen. To ensure high-quality tracking re-
sults, they checked the camera calibration every 50 images. To obtain a continuous
prominence map of an image from a user’s eye-tracking data, the authors construct
a Gaussian filter through the user’s fixation locations. Furthermore, the authors
generated a saliency map of the average locations set by all viewers [54, 55, 184]. On
the other hand, the longest dimension of each image was 1024 pixels and the other
dimension ranged from 405 to 1024, with the majority being 768 pixels [54, 159, 184].
There were 779 landscape images and 228 portrait images [96, 97].

The second dataset, Toronto defined by Bruce et al. [18], is the most widely-
used dataset for saliency model evaluation, according to [10, 15, 25, 190]. This
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dataset contains a variety of 120 images of interior and exterior scenes, some with
highlights and others without anything of interest. The eye tracking device consisted
of a standard non head-mounted device. The parameters of the setup are intended
to quantify salience in a general sense based on stimuli that one might expect to
encounter in a typical urban environment. Data was collected from 20 different
subjects for the full set of 120 images [184, 213].

ii. Natural scenes:

The most used dataset for natural scenes is KTH, which was proposed by Koot-
stra et al. [89]. This dataset contains 99 photographs from 5 categories, i.e. animals,
human-actions, buildings, flowers and nature. Each photograph was observed by
31 subjects [103]. Here, human fixation data was recorded during an eye tracking
experiment using the Eyelink head-mounted eye tracking system (SR research).
Then, the images were displayed full-screen with a resolution of 1024 by 768 pixels
on an 18 inch CRT monitor of 36 by 27 cm at a distance of 70 cm from the partici-
pants. The eye tracker was calibrated using the Eyelink software. The calibration
was verified prior to each session, and recalibrated if needed. The participants were
asked to free view the images [89, 103].

The observers were not given a specific task, since the interest was to observe
the bottom-up components of visual attention.The experiment was carried out by
31 students from the University of Groningen (The Netherlands) [119].

iii. Synthetic images:

CAT2000p is a training subset of "Pattern" images belonging to the larger dataset
CAT2000 [13], containing 200 psychological patterns which have often been used
for evaluation of bottom-up saliency models, mainly in behavioral studies including
pop-out, conjunction, search asymmetry, etc. This subset provides eye movement
data with psychophysical/synthetic image patterns during 5 sec of free-viewing.

Another synthetic dataset is SID4VAM proposed by Berga et al. [9], which
contains fixations collected from 34 participants grouped in a collection of 230
images. The images were displayed in a resolution of 1280×1024 px and fixations
were captured at about 40 pixels per degree of visual angle using SMI RED binocular
eye tracker. The dataset has been split in two tasks: Free-Viewing (FV) and Visual
Search (VS). For the FV task, participants had to freely look at the image during
5 second. Instead, for the VS task, participants had to visually locate the area of
interest.
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2.3 Fine-grained Object Recognition

Fine-grained object recognition aims to classify subclasses belonging to the same
category [46, 52, 82]. Examples of fine-grained datasets include natural categories
such as flowers [133], birds [199], dogs [85] and man-made categories such as cars
[90], among others. The problem of fine-grained object classification is difficult
because the differences between subclasses are often subtle and expert labelers,
with knowledge of the discriminating attributes, are needed for the collection of
datasets [46, 179].

Most of the state of the art general object classification approaches [93, 188]
have difficulties in the fine-grained recognition task, which is more challenging due
to the fact that basic-level categories (e.g. different bird species or flowers) share
similar shape and visual appearance. One reason for this could be attributed to the
popular codebook-based image representation, often resulting in the loss of subtle
image information that is critical for the fine-grained task [64].

A first group of approaches on fine-grained recognition operate on a two-stage
pipeline: first detecting some object parts and then categorizing the objects using
this information. The work of [71] first localizes a set of part keypoints, and then
simultaneously processes part and object information to obtain highly descriptive
representations. Mask-CNN [197] also aggregates descriptors for parts and objects
simultaneously, but using pixel-level masks instead of keypoints. The main draw-
back of these models is the need of human annotation for the semantic parts in
terms of keypoints or bounding boxes. To partially alleviate this tedious task of an-
notation, [202] proposes a weakly-supervised approach based on the combination
of three types of attention in order to guide the search for object parts in terms of
’what’ and ’where’. A further improvement has been reported in [223], where the
authors propose an approach free of any object / part annotation. Their method
explores a unified framework based on two steps of deep filter response picking.
On the other hand, [194] proposes an end-to-end discriminative feature-oriented
Gaussian Mixture Model (DF-GMM) to learn low-rank feature maps which alleviate
the discriminative region diffusion problem in high-level feature maps and thus
find better fine-grained details.

A second group of approaches merges these two stages into an end-to-end learn-
ing framework which optimizes simultaneously both part localization and fine-
grained classification. This is achieved by first finding the corresponding parts
and then comparing their appearance [192]. In [203], their framework first per-
forms unsupervised candidate-part discovery and global object discovery which

28



2.3. Fine-grained Object Recognition

Dataset Year Meta-class # images # Categories

Oxford Flowers [133] 2008 Flowers 8.189 102
CUB200 [187] 2011 Birds 11.788 200
Stanford Dog [85] 2011 Dogs 20.580 120
Stanford Car [90] 2013 Cars 16.185 196
FGVC Aircraft [121] 2013 Aircrafts 10.000 100
Birdsnap [8] 2014 Birds 49.829 500
NABirds [182] 2015 Birds 48.562 555
DeepFashion [112] 2016 Clothes 800.000 1.050
Fru92 [70] 2017 Fruits 69.614 92
Veg200 [70] 2017 Vegetable 91.117 200
iNat2017 [69] 2017 Plants/Animals 859.000 5.089
RPC [195] 2019 Retail products 83.739 200

Table 2.1: Benchmark datasets for Fine-grained classification from [196]

are subsequently fed into a two-stream CNN in order to model jointly both the
local and global features. In [27], they propose an approach based on ’Destruction
and Construction Learning’ whose purpose is to force the network to understand
the semantics of each region. For destruction, a region confusion mechanism
(RCM) forces the classification network to learn from discriminative regions. For
construction, the region alignment network restores the original region layout by
modeling the semantic correlation among regions. A similar idea has been pur-
sued in [38], where they propose a progressive training strategy to encourage the
network to learn features at different granularities (using a random jigsaw patch
generator) and afterwards fuse them together. Some other works introduce an
attention mechanism. For instance, [227] proposes a novel part learning approach
by a multi-attention convolutional neural network (MA-CNN) without bounding
box/part annotations. MA-CNN jointly learns part proposals (defined as multiple
attention areas with strong discrimination ability) and the feature representations
on each part. Similar approaches have been in reported in [117, 168]. In [36], they
propose a network which learns sparse attention from class peak responses (which
usually corresponds to informative object parts) and implements spatial and se-
mantic sampling. Finally, in [77], the authors present an attention convolutional
binary neural tree in a weakly-supervised approach. Different root-to-leaf paths
in the tree network focus on different discriminative regions using the attention
transformer inserted into the convolutional operations along edges of the tree. The
final decision is produced as the summation of the predictions from the leaf nodes.
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In another direction, some end-to-end frameworks aim to enhance the inter-
mediate representation learning capability of a CNN by encoding higher-order
statistics. For instance in [51] they capture the second-order information by taking
the outer-product over the network output and itself. Other approaches focuses on
reducing the high feature dimensionality [87] or extracting higher order information
with kernelized modules [24]. In [192], they learn a bank of convolutional filters
that capture class-specific discriminative patches without extra part or bounding
box annotations. The advantage of this approach is that the network focuses on
classification only and avoids the trade-off between recognition and localization.

Regardless, most fine-grained approaches use the object ground truth bounding
box at test time, achieving a significantly lower performance when this information
is not available. Moreover, automatically discovering discriminative parts might
require large amounts of training images.

A summary of popular fine-grained image datasets is provided in Table 2.1. In
this thesis, we will use the Oxford Flowers, CUB200, Stanford Dog and Stanford Cars
fine-grained datasets.
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3 Saliency for Fine-grained Ob-
ject Recognition in Domains
with Scarce Training Data1

3.1 Introduction

Fine-grained object recognition focuses on the classification of subclasses belong-
ing to the same category. Examples of fine-grained datasets include natural cate-
gories such as flowers [133], birds [199], dogs [85] and man-made categories such as
cars [90]. The problem of fine-grained object classification is difficult because the
differences between subclasses are often subtle and expert labelers, with knowledge
of the discriminating attributes, are needed for the collection of datasets. Therefore
the collection of large datasets is expensive and the development of algorithms that
only require few labeled examples is of special interest to the field.

Computational saliency estimation aims to identify to what extent regions or
objects stand out with respect to their surroundings to human observers. Saliency
methods can be divided into methods that aim to identify the salient object (or
objects) and methods that aim to produce a saliency map that is in according
to measurements of human eye-movements on the same image. Itti et al. [76]
proposed one of the first computational saliency methods based on combining the
saliency cues for color, orientation and luminance. Many works followed proposing
a large variety of hand-crafted features for saliency [11, 146]. Similar as other fields
in computer vision, computational saliency estimation has moved in recent years

1This chapter is based on a publication in Pattern Recognition 2019 [46].
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from hand-designed features to end-to-end learned deep features [106].

Saliency detection in human vision plays a role in the efficient extraction of
information by placing the attention on those regions in the image that are most
informative. However, the vast majority of saliency methods are not evaluated on
their efficiency to improve object recognition but instead are evaluated on the task
of how accurate their generated saliency masks are. Given that saliency is only an
intermediate step of the visual pipeline, evaluating the efficiency of saliency in terms
of an improvement of the final task - here we consider fine-grained recognition -
could be considered a more valuable evaluation. Therefore, in this chapter we aim
to evaluate the usefulness of saliency by directly evaluating its improvement on
image classification.

Previous works have found that the incorporation of attention mechanisms in
neural networks could be beneficial. This theory was subsequently extended to
captioning methods where the attention highlights the part of the image that is
currently being described by words. Similar to these methods we will incorporate a
saliency model, which modulates the normal forward pipeline similarly as an atten-
tion model would, but now within the context of fine-grained image classification.
Contrarily to these attention methods, we use a saliency network that is pretrained
on the task of saliency estimation. Especially, we are interested in demonstrating its
effectiveness in the case of scarce training data, a scenario where attending to the
relevant information from the image can significantly reduce the danger of overfit-
ting. The main underlying idea is that using saliency as an attention mechanism
can help backpropagation to focus on the relevant image information; something
which is especially important when only few training examples are available.

In this chapter, we investigate to what extent saliency estimation can be ex-
ploited to improve the training of an object recognition model when scarce training
data is available. For that purpose we design an image classification deep neural
network that incorporates saliency information as input. This network processes
the saliency map through a dedicated network branch and uses the resulting fea-
tures to modulate the standard bottom-up visual features from the original image
input. The main aim of the proposed method is to enable the effective training of a
fine-grained recognition model with limited training samples and to improve the
performance on the task, thereby alleviating the need to annotate a large dataset.
We evaluate our method on different datasets and under different settings, achieving
considerable performance improvements when leveraging saliency data, especially
when training data is scarce.

The contributions of this chapter are as follow:
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3.2. Saliency Modulation for Scarce Data Object Classification

• We investigated the role of saliency on improving the classification accuracy
when the training data is scarce..

• We considered adding a saliency branch to an existing CNN architecture
(AlexNet, ResNet-50 and ResNet-152).

• We validated our approach on the fine-grained object recognition problem.

• Experimental results confirmed that our approach is useful for the case when
the available training data is scarce.

• Our experiments show that there exists a clear correlation (Pearson coeffi-
cient) between the performance of saliency methods on standard saliency
benchmarks and the performance gain that is obtained when incorporating
them in a object recognition pipeline

3.2 Saliency Modulation for Scarce Data Object Classi-
fication

Image classification results have improved much since the advent of deep convolu-
tional neural networks [62, 93] due to the excellent visual representations learned by
these models. Given the great number of parameters of these networks, we require
large datasets of labeled data to effectively train them. For example the popular
ImageNet dataset has over 1M labeled images [158]. Once learned, these strong
image representations can be transfered to other related tasks by a process called
finetuning. This process allows to use deep learning on tasks for which significantly
less labeled data is available. In some cases, however, the available data for the
target task is so scarce that is still insufficient to finetune large networks and obtain
satisfactory results.

Saliency is an attentional mechanism which allows humans to focus their lim-
ited resources to the most relevant information in the image. Since processing
resources are limited, the data is processed in a serial manner, prioritizing those
parts that are expected to have high information content. In this chapter, we in-
vestigate another potential application of saliency, namely its function to facilitate
the fast learning of new objects in the context of deep neural networks. Especially
when only a few training examples are available, focusing on the relevant parts of
the image could significantly improve the speed of learning, understanding speed
as the number of example images required to learn a new class. Therefore, we seek
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Figure 3.1: Overview of our fine-grained recognition model using saliency informa-
tion. We process the two inputs, RGB and Saliency map, through two convolutional
layers and then fuse the resulting features with a modulation layer. We then con-
tinue processing the fused features with three more convolutional layers and three
fully connected layers, ending with the final classification layer.

to incorporate saliency estimation into an image classification pipeline, with the
aim to decrease the data requirements for learning object categories.

Figure 3.1 provides an overview of the proposed network architecture. Our
network contains two branches: one to process the RGB images and one to process
their corresponding saliency images, which are pre-computed and given as input.
They are combined with a modulation layer (× symbol) and further processed by
several shared layers of the joint branch to finally end on a classification layer. Note
how the RGB branch followed by the joint branch correspond to a standard image
classification network. The novelty of our architecture is the introduction of the
saliency branch, which transforms the saliency image to the modulation image.
This modulation image is then used to modulate the features of the RGB branch,
putting more emphasis on those features that are considered important for the
fine-grained recognition task. In the following sections we provide the details of
the network architecture, the functioning of the modulation layer, and the saliency
methods used.

We explain our model using AlexNet [93] as base classification network, but the
theory could be applied to most convolutional neural network architectures. We
also consider ResNet-50 and ResNet-152 [62] as base networks in our experiments
(sec. 3.3.2).
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3.2. Saliency Modulation for Scarce Data Object Classification

3.2.1 Combining RGB with Saliency for Image Classification

Consider a saliency map s(x, y) where x and y are the spatial coordinates. We will
assume that saliency maps are of the same size as the original image I (x, y, z), where
z = {1,2,3} indicate the three color channels of the image. A straightforward way
to incorporate the saliency into the image classification network is by concatenat-
ing the image and the saliency map into an image with four channels such that
I (x, y,4) = s(x, y). This strategy has been previously used by Murabito et al. [129]
in a classification pipeline that combines two CNN networks: one to compute top-
down saliency maps from an RGB image, and a second network that appends the
generated saliency map to the RGB image channels to perform image classification.

In this case, the classification network only needs to train from scratch the
weights of the first layer, the following layers can be initialized with a pretrained
network. We call this approach early fusion of saliency and image content.

In this chapter we propose delayed fusion of saliency and image content, where
we use the saliency map to modulate the features of an intermediate network layer.
Consider the output of the i th layer of the network, l i , with dimension wi ×hi × zi .
Then we define the modulation with a function ŝ(x, y) as

l̂ i (
x, y, z

)= l i (
x, y, z

) · ŝ
(
x, y

)
, (3.1)

yielding the saliency-modulated layer l̂ i . Here the modulation image ŝ is the output
of the saliency branch, which takes s as input (as depicted in Figure 3.1). Note that
we consider a single saliency map ŝ that is independent of the number of feature
maps. To ensure that ŝ has the same spatial dimensions as l i , we use a similar
architecture for both the saliency branch and the RGB branch. Concretely, the main
difference resides in the size of the channel dimension: the saliency branch takes
an intensity image as input (instead of a 3-channel RGB image) and outputs a scalar
modulation image of wi ×hi ×1 (instead of a wi ×hi ×ci feature map). Moreover,
we use a sigmoid activation function at the end of the saliency branch, as opposed
to the ReLU non-linearity of the RGB branch. This ensures that 0 ≤ ŝ

(
x, y

)≤ 1 and
thus provides a suitable range for feature modulation.

In the original architecture, max pooling is performed right after the second
convolutional layer. In our model, we postpone this max pooling to after the fea-
tures from both branches are fused, i.e. we perform max pooling on the salience-
modulated layer l̂ i . The reasoning behind this choice is to leverage the greater
modulation potential of higher resolution saliency features. We experimentally
show (sec. 3.3.2) that this results in a small performance boost.
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In addition to the formulation in Eq. (3.1) we also introduce a skip connection
from the RGB branch to the beginning of the joint branch, defined as

l̂ i (
x, y, z

)= l i (
x, y, z

) · (ŝ
(
x, y

)+1
)

. (3.2)

This skip connection is depicted in Figure 4.1 (+ symbol). It prevents the modulation
layer from completely ignoring the features from the RGB branch. This is inspired
by a previous work [211] that found this approach beneficial when using attention
for network compression. We confirm the usefulness of the skip connection in the
experiments section, sec. 3.3.2.

We train our architecture in an end-to-end manner. The backpropagated gra-
dient from the modulation layer into the image classification branch is equal to

∂L

∂l i
= ∂L

∂l̂ i
· (s +1) , (3.3)

where L is the loss function of the network. This shows that the saliency map not
only modulates the forward pass (see Eq. (3.2)), but it also modulates the backward
pass in exactly the same manner; in both cases putting more weight on the features
that are on locations with high saliency, and putting less weight on the irrelevant
features in the background on which the network could potentially overfit.

3.2.2 Training the Saliency Branch

The aim of the saliency branch is to process the saliency map s(x, y) into effec-
tive modulation features ŝ(x, y) that increase the classification performance when
training with scarce data. The main intuition is that the saliency features ŝ will
focus the backpropagated gradient to the relevant image features, thereby reducing
the required data necessary to train the network. The additional saliency branch
necessary to compute ŝ(x, y) has its own set of parameters and could, in principle,
increase the possibility of overfitting. We therefore consider two different scenarios
to initialize this branch. In both cases, we start with an equivalent architecture to
the one depicted in Figure 3.1 but without the saliency branch. We pretrain this
network for image classification on ImageNet [158]. Then, we add the saliency
branch and apply either of the following options:

• Initialization from scratch: the weights of the saliency branch are randomly
initialized using the Xavier method.
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• Initialization from pretrained: the weights of the saliency branch are pre-
trained on an image classification network for which abundant training data
is available. To do this, we first generate saliency images for the ImageNet
validation dataset, which consists of 50K images (40K for training and 10K for
validation) using the saliency method of choice. On this dataset we train our
method, initializing the saliency branch from scratch. We now have a good
pretrained model for the saliency branch too. Finally, we use this pretrained
network (using both the saliency and RGB branch) to initialize all the weights
of our network except the top classification layer.

3.2.3 Saliency input

The input to the saliency branch is a saliency map. Among the many saliency
methods that provide satisfactory results [20], we perform most of our experiments
using two of the top performing methods:

• iSEEL [174] leverages the inter-image similarities to train an ensemble of
extreme learners. The predicted saliency of the input image is then calculated
as the ensemble’s mean saliency value. Their approach is based on two
aspects: (i) the contextual information of the scene and (ii) the influence of
scene memorability (in terms of eye movement patterns by resemblance with
past experiences). We use MATLAB code released by the authors.

• SALICON [72] exploits the power of high-level semantics encoded in a CNN
pretrained on ImageNet. Their approach represents a breakthrough in saliency
prediction, by reducing the semantic gap between the computational model
and the human perception. Their method has two key elements: (i) an ob-
jective function based on saliency evaluation metrics and (ii) integration of
information at different image scales. We use the open source implementa-
tion provided by [175].

Besides these two methods, we also perform experiments with three other
approaches for a more comprehensive comparison.

• Itti and Koch [76]: First, we consider the classical saliency model of Itti et al.
Several activation maps, corresponding to multiscale image features (color,
intensity and orientations) are generated from the visual input and combined
into a single topographical saliency map. A neural network is used to select
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Figure 3.2: Saliency images generated with the different saliency estimation ap-
proaches considered, as well as the two baseline saliency maps evaluated, White
and Center. We also include the original RGB image for reference.

the most salient locations in order of decreasing magnitude, which could be
subsequently analyzed by more complex, higher cognitive level processes.

• GBVS [60]: The Graph-based Visual Saliency (GBVS) is also a biologically-
plausible bottom-up model following the approach proposed earlier by Itti et
al., but improving the performance of the generation of activation maps and
the normalization/combination step. They used the Markovian formalism to
describe the dissimilarity and concentration of salient locations of the image
seen as a graph.

• BMS [217]: Boolean Map based Saliency (BMS) approach computes saliency
by analyzing the topological structure of the Boolean maps. These maps
are generated by randomly thresholding the color channels. As topological
element they choose ‘sorroundedness’ because it better characterizes the
image/background segregation.

Figure 3.2 depicts the estimated saliency maps for an example image using the
five different saliency methods presented above. In addition to these methods, we
consider two additional saliency map baselines. White regards all image pixels as
equally salient, and thus the saliency maps are uniformly white. On the other hand,
Center emulates a center prior by representing saliency as a centered 2-dimensional
Gaussian distribution. These two baselines allow us to determine whether our
model is actually leveraging the saliency information contained in the maps, or it
is simply adding a general image bias that is beneficial for recognition (e.g. center
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bias). We are especially interested in assessing whether saliency methods that
obtain higher performance on saliency benchmarks also yield better performance
when incorporated into our saliency pipeline.

3.3 Experiments

3.3.1 Experimental Setup

Datasets. We have performed the evaluation of our approach on four standard
datasets used for fine-grained classification

• Flowers: Oxford Flower 102 dataset [133] consists of 8189 images of flowers
grouped in 102 classes. Each class contains between 40 and 258 images.

• Birds: is a dataset consisting of 11,788 images of bird species divided in 200
categories [199]. Each image is annotated with its bounding box and the
image coordinates of 15 keypoints. However, in our experiments we used the
whole image.

• Cars: the dataset in [90] contains 16,185 images of 196 classes of cars. The
data is split into 8,144 training images and 8,041 testing images, where each
class has been separated roughly in a 50-50 split.

• Dogs: Stanford Dogs [85] consists of 20,580 images of different breeds of dogs
from around the world grouped in 120 categories. Since some of these images
appear also in Imagenet, in our experiments we have discarded the repeated
ones.

Networks. Our base network is AlexNet [93], which consists of five convolutional
layers followed by three fully connected layers. We used the pretrained network
on ImageNet [158] and fine-tuned it for fine-grained recognition on each dataset
for 70 epochs with a learning rate of 0.01 and a weight decay of 0.003. The top
classification layer is randomly initialized using Xavier. We have attached a saliency
branch to this network as shown in Figure 3.1.

For some experiments we have also used the ResNet-50 and ResNet-152 [62],
consisting of 50 and 152 convolutional layers, respectively, organized in 5 residual
blocks. The structure of the saliency branch has been kept the same as in Figure 3.1,
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i.e. consisting of two convolutional layers and having a ReLu activation function
after the first one and a sigmoid function after the second.

Evaluation protocol. For all the above datasets, we randomly select and fix 5
images for test, 5 for validation, and keep the rest for training. We do this for
each class in the dataset independently. In order to investigate different data
scarcity levels, we train each model with subsets of k training images for k ∈
{1,2,3,5,10,15,20,25,30,K }, where K is the total number of training images for
the class, which does not include the 10 held out images for validation and test.
Contrarily to current few-shot approaches, this setting grants us a more complete
disclosure of the results of our model under multiple limited-data scenarios. We use
accuracy in terms of percentage of correctly classified samples as evaluation mea-
sure. We train and test each model five times with different random initializations,
and show the average performance for the five runs.

3.3.2 Experimental Results

In the experimental section we evaluate the best strategies for fusing the saliency
and RGB branches, compare several network architectures, evaluate various saliency
methods as input to the saliency branch, and compare our results with state of the
art on standard benchmark datasets for fine-grained object recognition.

Optimal architecture. In order to justify the design choices in our model, we
present here multiple architectural variations to integrate saliency information into
a neural network. We call Baseline-RGB to the original network model, which only
contains the RGB branch and thus does not use any saliency information. We test
an Early fusion model in which the saliency image is directly concatenated to the
RGB input

We consider several variants of our model in which delayed fusion is performed
at different network levels, indicated as Fusion L1 for fusion after layer 1 (similarly
for Fusion L2, L3, L4, and L5). In all cases, we use a two-layer saliency branch,
indicated by S2. Moreover, we evaluate whether performing the fusion after the
pooling layer is a better option than doing it before. Finally, we include a model
without the skip connection from the RGB branch to the joint branch (No SC).

We evaluate all models on Flowers [133] with AlexNet [93] and using iSEEL [174]
as the saliency method of choice. Table 3.1 shows the results for different number
of training images. First, we observe how the performance of all methods steadily
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Method 1 2 3 5 10 15 20 25 30 K AVG
Baseline-RGB 31.8 45.8 53.1 63.6 72.4 76.9 81.2 85.1 87.2 88.0 68.5
Early Fusion 19.3 25.7 30.1 40.8 60.9 69.2 75.3 79.9 82.4 83.7 56.7
Fusion L1-S2 33.3 47.9 54.3 65.1 71.9 76.3 82.1 85.9 87.9 90.7 69.5
Fusion L2-S2 34.7 49.3 55.2 65.2 72.7 76.7 83.9 86.5 89.1 91.3 70.5
Fusion L3-S2 32.9 46.7 54.1 64.9 71.7 74.4 82.3 85.1 87.3 89.1 68.9
Fusion L4-S2 32.5 48.9 54.0 65.1 71.7 73.5 81.0 84.9 87.2 88.8 68.2
Fusion L5-S2 32.5 48.9 54.0 63.3 71.1 73.3 81.0 84.3 87.2 88.7 68.4
Fusion L2-S2 + After pool 34.3 49.1 55.5 66.0 72.1 77.5 83.6 85.6 88.9 90.2 70.2
Fusion L2-S2 + No SC 33.9 48.1 55.1 65.1 71.1 77.6 82.4 86.3 88.1 90.9 69.9

Table 3.1: Results for the baseline model and different variations of our architecture
incorporating saliency information.The results correspond to the classification
accuracy on the Flowers dataset [133] with AlexNet [93]. Each column indicates the
number of training images used, and the rightmost column shows the average

.

grows when increasing the number of training images. In general, incorporating
saliency information helps when fused within the network, but damages the ac-
curacy if concatenated to the input image. We attribute this to the need to learn
a low-level filter from scratch, which in turn affects the feature representation at
higher levels. Performing the fusion immediately after the second convolutional
layer seems to be the best option. Fusing before or after the pooling layer leads
to similar results, the advantage of fusing higher resolution saliency features gives
only a marginal boost. Finally, the skip connection from the RGB branch to the joint
branch is also beneficial.

We have also explored different architectures for the saliency branch. We first
assess whether an additional convolutional layer in the saliency branch leads to
better performance. Table 3.2 presents the comparison between a two-layer saliency
branch (S2) and a three-layer version (S3). For completeness, we explore merging
after the second layer of the RGB branch (L2) as in previous experiments, and
merging after the third layer (L3). We observe how an extra layer does not further
improve the model’s performance. Alternatively, we investigate whether having
fewer parameters in the saliency branch achieves higher results. We evaluate with
75% and 50% fewer parameters by reducing the number of output channels in the
first layer. Table 3.3 shows how reducing the number of parameters in the saliency
branch slightly reduces the final performance.

Pretraining the saliency branch on ImageNet. As described in section 3.2, we
consider two alternative ways of initializing the saliency branch: from scratch and
pretrained on ImageNet [158]. In this section, we compare these two approaches
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Method 1 2 3 5 10 15 20 25 30 K AVG
Baseline-RGB 31.8 45.8 53.1 63.6 72.4 76.9 81.2 85.1 87.2 88.0 68.5
Fusion L2-S2 34.7 49.3 55.2 65.2 72.7 76.7 83.9 86.5 89.1 91.3 70.5
Fusion L3-S2 32.9 46.7 54.1 64.9 71.7 74.4 82.3 85.1 87.3 89.1 68.9
Fusion L2-S3 34.5 48.2 55.9 65.0 72.8 76.1 83.0 86.5 89.0 91.0 70.2
Fusion L3-S3 33.1 49.3 54.2 65.1 72.1 74.9 82.9 85.3 88.0 89.0 69.4

Table 3.2: Results on Flowers [133] with AlexNet [93] using two (S2) or three (S3)
convolutional layers for the saliency branch.

Method 1 2 3 5 10 15 20 25 30 K AVG
Baseline-RGB 31.8 45.8 53.1 63.6 72.4 76.9 81.2 85.1 87.2 88.0 68.5
Fusion L2-S2 (100%) 34.7 49.3 55.2 65.2 72.7 76.7 83.9 86.5 89.1 91.3 70.5
Fusion L2-S2 (75%) 34.7 49.0 55.3 65.1 72.0 77.0 83.3 85.9 88.3 89.1 70.0
Fusion L2-S2 (50%) 34.7 49.1 55.9 65.1 71.8 77.1 83.5 86.2 88.0 89.0 70.0

Table 3.3: Results on Flowers [133] with AlexNet [93] when reducing the number of
parameters of the saliency branch.

with respect to the Baseline-RGB. The experiments are performed on Flowers dataset
(see Figure 3.3a) and represent the classification accuracy versus the number of
training samples. Adding a saliency branch initialized from scratch already outper-
forms the baseline using only RGB (see also Tab. 3.1), and pretraining this branch
with ImageNet further increases the performance in a systematic and substantial
manner. Our method with pretraining is especially advantageous in the scarce-data
domain (i.e < 20 images per class). For example, we obtain a better performance
than the baseline using half the data, 10 images/class vs. 20 images/class, respec-
tively. Furthermore, in the very low-range of number of samples we obtain similar
performance with only one third of the samples (3 images/class vs. 10 images/class).
Finally, our saliency branch is still beneficial even when using all available training
samples. In fact, our method trained with a limited number of samples (around 25
per class) already surpasses the final performance of baseline using all samples.

Figure 3.4 shows some qualitative results for the case when the pretrained
version of our approach predicts the correct label, meanwhile the Baseline-RGB fails.
Alternatively, Figure 3.5 depicts the opposite case: the Baseline-RGB predicts the
correct label of the test images, meanwhile the pretrained version of our approach
fails. In both cases, the saliency images have been generated using the iSEEL
method. A possible explanation for the failures in this latter case could be that
the saliency images are not able to capture the relevant region of the image for
fine-grained discrimination. Thus, the salience-modulated layer focuses on the
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Baseline RGB
From Scratch 
Pretrained

Figure 3.3: Experiments on four datasets using iSEEL [174] to generate the saliency
maps. Baseline-RGB is compared against two different ways to initialize the saliency
branch of our model: from scratch and pretrained on ImageNet [158].

wrong features for the task.

Different datasets.

Besides Flowers dataset, we validate our approach on three other datasets: Birds,
Cars and Dogs (see figures 3.3b, c, and d, respectively). We follow the same experi-
mental protocol as in the Flowers case. We can see how most trends observed in
Flowers also apply to these datasets. For example, incorporating saliency informa-
tion improves the classification accuracy, especially when data is scarce. Moreover,
pretraining the saliency branch is beneficial for our method and leads to a further
performance boost. Even when using all available samples, our method outper-
forms the baseline model. Therefore, we can claim that our approach successfully
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Figure 3.4: Some success examples on Flowers [133]: when the prediction done by
Baseline-RGB fails to infer the right label for some test images, but the prediction
by our approach is correct. From left to right: input image, saliency images gener-
ated with iSEEL [174], example image of the class with which the input image was
wrongly predicted.

generalizes to other fine-grained datasets.

Confirmation of intuition. Our method is based on the idea that adding a saliency
branch helps the network to focus on the relevant image regions during the training.
To verify that this is actually happening we propose the following experiment: we
measure if the percentage of backpropagated gradient magnitude which passes
through the relevant image regions is increased by our proposed network architec-
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Predicted (Baseline-RGB): Thorn Apple

Predicted (Ours Pretrained): Arum Lily

Ground Truth: Thorn Apple

Predicted (Baseline-RGB): Foxglove

Predicted (Ours Pretrained): Sweet Pea

Ground Truth: Foxglove

Predicted (Baseline-RGB): Hibiscus

Predicted (Ours Pretrained): Lotus

Ground Truth: Hibiscus

Figure 3.5: Some failure examples on Flowers [133]: when the prediction done by
our method fails to infer the right label for some test images, but the prediction
by Baseline-RGB is correct. From left to right: input image, saliency images gener-
ated with iSEEL [174], example image of the class with which the input image was
wrongly predicted.

ture. We perform this experiment on the Birds dataset for which we have access to
bounding box information of the birds (defining the relevant region). We measure
the percentage of backpropagated gradient energy which is in the bounding box of
the bird (this is computed by dividing the gradient magnitude in the bounding box
by the gradient energy in the whole image). We measure this just before the third
convolutional layer for AlexNet (which is just before the joint branch in Figure 3.1),
and we measure this for both the network with and without saliency branch.

The results are presented in Figure 3.6. The results show that the percentage of
backpropagated gradient that passes through the relevant image regions is higher
for our approach. As expected it is even higher for the network with the pretrained
saliency branch. However the gap with the network trained from scratch diminishes
with the number of epochs. The fact that more backpropagated gradient energy
goes through the relevant image regions may explain why our method obtains better
results than the standard baseline method.

Different saliency methods. Table 3.4 presents results on the Flowers using our full
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Figure 3.6: Average percentage of the total backpropagated gradient energy per
epoch that is inside the bird bounding box. The graph shows that for our approach
significantly more backpropagated gradient is on the relevant image region (for
both the version trained from scratch and the version with pretrained saliency
branch).

AlexNet model combined with the different input saliency maps. We can observe
how, instead of helping, the two saliency baselines are actually hurting the method
performance with respect to the Baseline-RGB. We hypothesize that this is due
to the noise introduced in the network’s internal representation when the input
saliency map is independent of the input image. On the other hand, all the saliency
estimation methods increase the method performance, especially in the scarce-
data range (i.e. < 10 images). Moreover, better saliency methods (e.g. iSEEL and
SALICON) result in higher accuracies. In order to experimentally confirm this
observation, we show in Figure 3.7 the accuracy of our image classification model
as a function of the saliency estimation performance of the corresponding method.
We measure saliency estimation performance in terms of Normalized Scanpath

46



3.3. Experiments

Saliency (NSS), which is the official measure currently used by the popular MIT
saliency benchmark [20] to sort all the participating methods. There is indeed a
clear linear correlation, supported quantitatively by a Pearson product-moment
correlation coefficient of 0.95. Therefore, we conclude that our model is agnostic
to the saliency method employed. More importantly, it shows that better saliency
methods (evaluated based on saliency estimation) actually lead to better image
classification performance once integrated into an object recognition pipeline. This
observation can be a motivation for saliency research: it not only leads to better
saliency estimation but indirectly also contributes to improved object recognition.

Method 1 2 3 5 10 15 20 25 30 K AVG
Baseline-RGB 31.8 45.8 53.1 63.6 72.4 76.9 81.2 85.1 87.2 88.0 68.5
Baseline-White 23.1 29.7 37.2 55.1 66.9 73 82.5 84.8 86.6 87.9 62.7
Baseline-Center 24.3 30.3 39.2 55.7 68.3 74.1 82.7 84.5 86.8 87.8 63.4
Itti-Koch [76] 32.8 46.8 53.9 64.0 72.9 77.1 82.9 85.4 87.1 88.3 69.1
GBVS [60] 33.3 46.9 54.0 64.1 73.0 77.3 83.1 85.7 87.5 88.8 69.4
BMS [217] 34.2 47.3 54.9 64.8 73.3 77.8 83.4 86.1 88.1 90.1 70.0
iSEEL [174] 34.7 49.3 55.2 65.2 72.7 76.7 83.9 86.5 89.1 91.3 70.5
SALICON [80] 37.6 51.9 57.1 68.5 75.2 79.7 84.9 88.2 91.2 92.4 72.7

Table 3.4: Comparison of different saliency methods regarding the effect on our
model. The results correspond to the classification accuracy on the Flowers
dataset [133] when using our full model with AlexNet [93] as base network. Each
column indicates the number of training images used, and the rightmost column
shows the average.

Different base networks. In order to evaluate the generality of our approach
across different base networks, we have considered ResNet-50 and ResNet-152
as alternatives to AlexNet. We have tested several possible fusion architectures
(Tables 3.5 and 3.6), but the optimal performance has been obtained when the
fusion between the RGB and saliency branches takes place after the fourth residual
block, with a two-layer saliency branch (Block4-S2). Results in Table 3.7 show the
classification accuracy achieved on Flowers when using ResNet-50 and ResNet-152
with SALICON salieny maps. Furthermore, we compared our two initialization
methods for the saliency branch (from scratch and pretrained on ImageNet) against
the Baseline-RGB. Although under both initializations we obtained higher accuracy,
the one that performs the best is the pretrained. These results confirm the trend
already observed for AlexNet regarding the benefits of pretraining the saliency
branch as shown in Figure 3.3.

Comparison with standard dataset splits. All previous experiments use a custom
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Figure 3.7: Correlation between the performance of the saliency method in terms
of NSS and the fine-grained recognition accuracy of our method using the corre-
sponding saliency model. Results with AlexNet [93] on Flowers [133].

data split consisting of a fixed test set of 5 images and a varying number of training
images. In order to enable comparisons with published results by other methods,
we perform here experiments using the standard data split of each dataset, em-
ploying the entirety of the corresponding given sets for training and evaluation.
Table 3.8 presents results for our approach and several state of the art fine-grained
recognition approaches for Flowers, Birds, and Cars datasets. We discard Dogs
dataset due to the overlap with the ImageNet images already used for pretraining
the network, as they can no longer be ignored when using the full sets. Our ap-
proach uses SALICON saliency and ResNet152 as base network, which is equivalent
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Method 1 2 3 5 10 15 20 25 30 K AVG
Baseline-RGB 39.1 59.6 67.8 81.6 89.0 91.7 92.7 93.0 93.0 95.4 80.3
Block1-S2 38.0 59.2 68.0 80.7 88.8 91.0 91.9 92.0 92.1 94.8 79.6
Block2-S2 38.2 59.5 68.0 81.4 90.0 91.6 92.0 92.4 93.0 94.9 80.1
Block3-S2 39.3 62.9 68.5 83.0 90.0 92.1 93.5 94.9 93.4 95.9 81.4
Block4-S2 45.8 64.3 72.8 83.0 90.5 93.0 93.9 94.6 93.7 96.7 82.7
Block5-S2 38.2 57.9 65.9 80.8 87.1 90.9 91.1 91.2 91.9 92.6 78.8

Table 3.5: Results for the baseline model and different variations of our architecture
incorporating saliency information in different blocks. The results correspond to
the classification accuracy on the Flowers dataset [133] with ResNet-50 [62]. Each
column indicates the number of training images used, and the rightmost column
shows the average

.

Method 1 2 3 5 10 15 20 25 30 K AVG
Baseline-RGB 39.0 60.1 68.0 82.5 89.0 92.0 92.1 93.3 94.2 95.8 80.6
Block1-S2 39.0 59.9 68.0 82.1 88.6 91.9 92.2 93.0 94.2 95.1 80.4
Block2-S2 38.8 60.2 68.2 83.0 90.2 92.2 93.0 94.0 94.0 96.2 81.0
Block3-S2 43.0 63.7 68.9 83.1 90.2 92.1 93.1 94.3 96.1 96.3 82.1
Block4-S2 42.6 64.2 70.9 85.5 90.9 92.7 94.0 95.0 97.0 97.8 83.1
Block5-S2 39.0 58.0 65.8 80.3 87.1 90.8 91.5 92.0 92.3 92.7 79.0

Table 3.6: Results for the baseline model and different variations of our architecture
incorporating saliency information in different blocks. The results correspond to
the classification accuracy on the Flowers dataset [133] with ResNet-152 [62]. Each
column indicates the number of training images used, and the rightmost column
shows the average

.

to the networks used by the most recent works. Our method is competitive with
specialized fine-grained approaches, despite the more sophisticated techniques
included in those (e.g. part localization), some of which might be complementary
to our saliency modulation. Moreover, our approach is especially beneficial in the
scarce training data regime, whereas some of the state of the art methods may not
work under these conditions.

Comparison with few-shot method. Our scarce-data approach is similar in spirit
to the few-shot learning methods [128, 164, 186]. For this reason, we propose here a
comparison with the state of the art method for few-shot classification, Prototypical
networks [164]. In the standard few-shot protocol, the task is framed as N -way
k-shot, i.e. provide each time a set of k labeled samples from each of N classes that
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Method 1 2 3 5 10 15 20 25 30 K AVG
Baseline-RGB Resnet-50 39.1 59.6 67.8 81.6 89.0 91.7 92.7 93.0 93.0 95.4 80.3
Resnet-50 Block4-S2 From Scratch 45.8 64.1 71.8 83.0 90.5 93.0 93.9 94.6 93.7 96.7 82.7
Resnet-50 Block4-S2 Pretrained 47.1 65.2 72.9 83.8 91.3 93.9 94.6 95.4 94.7 97.4 83.6
Baseline-RGB Resnet-152 39.0 60.1 68.0 82.5 89.0 92.0 92.1 93.3 94.2 95.8 80.6
Resnet-152 Block4-S2 From Scratch 42.6 64.2 70.9 85.5 90.9 92.7 94.0 95.0 97.0 97.8 83.1
Resnet-152 Block4-S2 Pretrained 46.9 65.5 73.0 84.7 92.0 94.2 95.3 95.8 97.3 98.1 84.3

Table 3.7: Results on Flowers [133] using ResNet-50 and Resnet-152 [62] as base
networks and SALICON [80] as saliency method.

Method Flowers Birds Cars
Krause et al. [91] - 82.0 92.6
RA-CNN [49] - 85.3 92.5
Bilinear-CNN [109] - 84.1 91.3
Compact Bilinear Pooling [51] - 84.3 91.2
Low-rank Bilinear Pooling [88] - 84.2 90.9
Cui et al. (with Imagenet) [32] 96.3 82.8 91.3
MA-CNN [227] - 86.5 92.8
Ge-Yu [53] 90.3 - -
DLA [210] - 85.1 94.1
Ours (Resnet152 Block4-S2 From Scratch) 96.4 85.6 92.1
Ours (Resnet152 Block4-S2 Pretrained) 97.8 86.1 92.4

Table 3.8: Comparison with state of the art methods for domain-specific fine-
grained recognition using the standard data splits of Flowers [133], Birds [199] and
Cars [90]. Our approach uses ResNet-152 [62] as base network and SALICON [80]
saliency maps.

have not previously been trained upon. The goal is then to classify a disjoint batch of
unlabeled samples, known as ’queries’, into one of these N classes. Therefore, some
classes are used to train the few-shot method, while others are only used at test
time. In our case, we do not require such split, as we can train and test the model in
all classes simultaneously. Moreover, their test episodes are composed of only N
classes at a time, where N is generally a small number (e.g. below 20). Contrarily, we
follow a more general classification approach and test on all classes simultaneously,
which is inherently more challenging as the classification probability increases.

We propose two different scenarios to compare our method to Prototypical
networks on the task of Flower [133] classification. The first, 20-way 5-shot, closely
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Method 20-way 5-shot 102-way 5-shot
Prototypical networks [164] 53.8 26.2

Ours 81.0 73.8

Table 3.9: Results for few-shot classification on Flowers [133] when using our full
model with AlexNet [93] as base network.

resembles the setting introduced by [186] and usually employed by few-shot ap-
proaches. We split the set of classes in train and test, selecting 20 random classes
for the testing phase. Then, we run Prototypical networks for the 20-way 5-shot
classification task, following similar settings to those used in the mini-ImageNet
experiment of [164]. We train until convergence using 100 training episodes and
test using 5 episodes, with 5 queries per episode both during training and testing.
The second scenario, 102-way 5-shot, is more similar to the conventional classifi-
cation task, in which all classes are used for training and testing. We maintain the
training settings for this case, but remove from the ‘shot’ set those queries used at
test time. Table 3.9 presents the results of these experiments. Our method leads to
substantially superior performance in both cases, but the difference is especially
remarkable for the 102-way setting. This demonstrates the limitations of this type
of few-shot approaches when scaling to many classes, even when they are trained
with the same set of classes used for test.

3.4 Conclusion

In this chapter, we investigated the role of saliency in improving the classification
accuracy of a CNN when the available training data is scarce. For that purpose we
have considered adding a saliency branch to an existing CNN architecture, which is
used to modulate the standard bottom-up visual features from the original input
image. We have shown that the proposed approach leads to an improvement of the
recognition accuracy with limited number of training data, when applied to the task
of fine-grained object recognition.

Extensive evaluation has been performed on several datasets and under dif-
ferent settings, demonstrating the usefulness of saliency for fine-grained object
recognition, especially for the case of scarce training data. In addition, our ap-
proach allows to compare saliency methods on the high-level task of fine-grained
object recognition. Traditionally, saliency methods are evaluated on their ability
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to generate saliency maps that indicate the relative relevance of regions for the
human visual system. However, it remained unclear if these saliency methods
would actually translate into improved high-level vision results for tasks such as
object recognition. Our experiments show that there exists a clear correlation (Pear-
son product-moment correlation coefficient of 0.95) between the performance of
saliency methods on standard saliency benchmarks and the performance gain that
is obtained when incorporating them in a object recognition pipeline.
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4 Saliency for Object Recogni-
tion, and Object Recognition
for Saliency1

4.1 Introduction

RepetitivFine-grained image recognition has as objective to recognize many sub-
categories of a super-category. Examples of well-known fine-grained datasets are
Flowers [133], Cars [90] and Birds [199]. The challenge of fine-grained image recog-
nition is that the differences between classes are often very subtle, and only the
detection of small highly localized features will correctly lead to the recognition
of the specific bird or flower species. An additional challenge of fine-grained im-
age recognition is the difficulty of data collection. The labelling of these datasets
requires experts and subcategories can be very rare which further complicates
the collection of data. Therefore, the ability to train high-quality image classifica-
tion systems from few data is an important research topic in fine-grained object
recognition.

Most of the state-of-the-art general object classification approaches [93, 188]
have difficulties in the fine-grained recognition task, which is more challenging due
to the fact that basic-level categories (e.g. different bird species or flowers) share
similar shape and visual appearance. Early works have focused on localization and
classification of semantic parts using either explicit annotation [108, 214, 221] or
weakly labeling [50, 227]. The main disadvantage of these approach was that they

1This chapter is based on a paper accepted as a Full Paper in VISAPP 2021 [47].

53



Chapter 4. Hallucinating Saliency Maps for Fine-Grained Image Classification
for Limited Data Domains

required two different ’pipelines’, for detection and classification, which made more
complicated the joint optimization of the two subsystems. Therefore, more recent
approaches are proposing end-to-end strategies with the focus on improving the
feature representation from intermediate layers in a CNN through higher order
statistics modeling [24, 192].

In the previous chapter we have discussed a fine-grained recognition system
that only requires few labelled data. We will refer to this technique as saliency-
modulated image classification (SMIC). This is especially beneficial when only few
labelled data is available. The gradients which are backpropagated are concentrated
on the regions which have high saliency. This prevents backpropagation of gradients
of uninformative background parts of the image which could lead to overfitting to
irrelevant details. A major drawback of this approach is that it requires an explicit
saliency algorithm which needs to be trained on a saliency dataset.

In order to overcome the lack of sufficient data for a given modality, a common
strategy is to introduce a ’hallucination’ mechanism which emulates the effect of
genuine data. For instance, in [68], they use this ’hallucination’ strategy for RGB-D
object detection. A hallucination network is trained to learn a complementary
RGB image representation which is taught to mimic convolutional mid-level fea-
tures from a depth network. At test time, images are processed jointly through
the RGB and hallucination networks, demonstrating an improvement in detection
performance. This strategy has been adopted also for the case of few-shot learning
[61, 193, 215]. In this case, the hallucination network has been used to produce
additional training samples used to train jointly with the original network (also
called a neta-learner).

In this chapter, we address the major drawback of SMIC, by implementing a
hallucination mechanism in order to remove the requirement for providing saliency
images for training obtained using one of the existing algorithms [20]. In other
words, we show that the explicit saliency branch which requires training on a
saliency image dataset, can be replaced with a branch which is trained end-to-
end for the task of image classification (for which no saliency dataset is required).
We replace the saliency image with the input RGB image (see Figure 3.1). We
then pre-train this network for the task of image classification using a subset from
the ImageNet validation dataset. During this process, the saliency branch will
learn to identify which regions are more discriminative. In a second phase, we
initialize the weights of the saliency branch with these pre-trained weights. We
then train the system end-to-end on the fine-grained dataset using only the RGB
images. Results show that the saliency branch improves fine-grained recognition
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significantly, especially for domains with few training images.

We briefly summarize below our main contributions in this chapter:

• we propose an approach which hallucinates saliency maps that are fused
together with the RGB modality via a modulation process,

• our method does not require any saliency maps for training (like in these
works [46, 129]) but instead is trained indirectly in an end-to-end fashion by
training the network for image classification,

• our method improves classification accuracy on three fine-grained datasets,
especially for domains with limited data.

4.2 Proposed Method

Several works have shown that having the saliency map of an image can be helpful
for object recognition and fine-grained recognition in particular [129]. The idea is
twofold: the saliency map can help focus the attention on the relevant parts of the
image to improve the recognition, and it can help guide the training by focusing
the backpropagation to the relevant image regions. In the previous chapter, we
show that saliency-modulated image classification (SMIC) is especially efficient for
training on datasets with few labeled data. The main drawback of these methods is
that they require a trained saliency method. Here we show that this restriction can
be removed and that we can hallucinate the saliency image from the RGB image. By
training the network for image classification on the imageNet dataset we can obtain
the saliency branch without human ground truth images.

4.2.1 Overview of the Method

The overview of our proposed network architecture is illustrated in Figure 4.1. Our
network consists of two branches: one to extract the features from an RGB image,
and the other one (saliency branch) to generate the saliency map from the same
RGB image. Both branches are combined using a modulation layer (represented by
the × symbol) and are then processed by several shared layers of the joint branch
which finally ends up with a classification layer. The RGB branch followed by the
joint branch resembles a standard image classification network. The novelty of
our architecture is the introduction of the saliency branch, which transforms the
generated saliency image into a modulation image. This modulation image is used
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Step I: Training on Imagenet Step II: Finetuning on a fine-grained dataset
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Figure 4.1: Overview of our method. We process an RGB input image through two
branches: one branch extracts the RGB features and the other one is used to learn
saliency maps. The resulting features are merged via a modulation layer, which
continues with a few more convolutional layers and a classification layer. The
network is trained in two steps.

to modulate the characteristics of the RGB branch, putting more emphasis on those
characteristics that are considered important for the fine-grained recognition task.
In the following sections we provide the details of the network architecture, the
operation of the modulation layer, and finally, how our saliency map is generated.
We explain our model using AlexNet [93] as the base classification network, but
the theory could be extended to other convolutional neural network architectures.
For instance, in the experimental results section, we also consider the ResNet-152
architecture [62].

4.2.2 Hallucination of saliency maps from RGB images

The function of the visual attention maps is to focus on the location of the char-
acteristics necessary to identify the target classes, ignoring anything else that may
be irrelevant to the classification task. Therefore, given an input RGB image, our
saliency branch should be able to produce a map of the most salient image locations
useful for classification purposes.
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To achieve that, we apply a CNN-based saliency detector consisting of four
convolutional layers (based on the AlexNet architecture)2. The output from the
last convolutional layer, i.e. one with 384 dimensional feature maps with a spatial
resolution of 13 × 13 (for a 227 × 227 RGB input image), is further processed using a
1 × 1 convolution and then a function of activation ReLU. This is to calculate the
saliency score for each "pixel" in the feature maps of the previous layer, and to
produce a single channel map. Finally, to generate the input for the subsequent
classification network, the 13 × 13 saliency maps are upsampled to 27 × 27 (which is
the default input size of the next classification module) through bilinear interpola-
tion. We justify the size of the output maps by claiming that saliency is a primitive
mechanism, used by humans to direct attention to objects of interest, which is
evoked by coarse visual stimuli. Therefore, our experiments (see section IV) show
that 13 × 13 feature maps can encode the information needed to detect salient areas
and drive a classifier with them.

4.2.3 Fusion of RGB and Saliency Branches

Consider an input image I (x, y, z), where z = {1,2,3} indicate the three color chan-
nels of the image. Also consider a saliency map s(x, y). In Flores et al. [46], a network
h (I , s) was trained which performed image classification based on the input image
I and the saliency map s. Here, we replace the saliency map (which was generated
by a saliency algorithm) by a hallucinated saliency map h (I , s̊ (I )). The hallucinated
saliency map s̊ is trained end-to-end and estimated from the same input image I
without the need of any ground truth saliency data.

The combination of the hallucinated saliency map s̊ , which is the output of the
saliency branch, and the RGB branch is done with modulation. Consider the output
of the i th layer of the network, l i , with dimension wi ×hi × zi . Then we define the
modulation as

l̂ i (
x, y, z

)= l i (
x, y, z

) · s̊
(
x, y

)
, (4.1)

resulting in the saliency-modulated layer l̂ i . Note that a single hallucinated saliency
map is used to modulate all i feature maps of l̂ .

In addition to the formula in Eq. (4.1) we also introduce a skip connection from

2We vary the number of convolutional layers in the experimental section and found four to be
optimal.
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the RGB branch to the beginning of the joint branch, defined as

l̂ i (
x, y, z

)= l i (
x, y, z

) · (s̊
(
x, y

)+1
)

. (4.2)

This skip connection is depicted in Figure 4.1 (+ symbol). It prevents the modulation
layer from completely ignoring the features from the RGB branch.

We train our architecture in an end-to-end manner. The backpropagated gradi-
ent for the modulation layer into the image classification branch is equal defined
as:

∂L

∂l i
= ∂L

∂l̂ i
· (s̊

(
x, y

)+1
)

, (4.3)

where L is the loss function of the network. We can see that the saliency map
modulates both the forward pass (see Eq. (4.2)) as well as the backward pass in
the same manner; in both cases putting more weight on the features that are on
locations with high saliency, and putting less weight on the irrelevant features. We
show in the experiments that this helps the network train more efficiently, also on
datasets with only few labeled samples. The modulation prevents the network from
overfitting to the background.

4.2.4 Training on Imagenet and fine-tuning on a target dataset

As can be seen in Figure 4.1, the training of our approach is divided into two steps:
first, training on Imagenet and second, fine-tuning on a target dataset.

Step 1: Training of saliency branch on Imagenet.

As explained above, the aim of the saliency branch is to hallucinate (generate)
a saliency map directly from an RGB input image. This network is constructed by
initializing the RGB branch with pretrained weights from Imagenet. The weights of
the saliency branch are initialized randomly using the Xavier method (see Figure 4.1,
left image). The network is then trained selectively, using the ImageNet validation
set: we allow to train only the layers corresponding to the saliency branch (depicted
by the surrounding dotted line) and freeze all the remaining layers (depicted through
the continuous line boxes).

Step 2: Fine-tuning on a target dataset. In this step, we initialize the RGB branch
with the weights pre-trained from Imagenet and the saliency branch with the cor-
responding pre-trained weights from Step 1. The weights of the top classification
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layer are initialized randomly, using the Xavier method. Then, this network is then
further fine-tuned on a target dataset, selectively. We distinguish two cases:

• Approach A: We freeze the layers of the saliency branch and we allow all the
other layers layers in the network to be trained. This process is depicted by
the continuous line surrounding the saliency branch and the dotted line for
the rest (see the Figure 4.1, middle image).

• Approach B: We allow all layers to be trained. Since we consider training on
datasets with only few labels this could results in overfitting, since it requires
all the weights of the saliency branch to be learned (see the Figure 4.1, right
image) .

In the experiments we evaluate both approaches to training the network.

4.3 Experimental Results

4.3.1 System setup

Datasets. To evaluate our approach, we used three standard datasets used for
fine-grained image classification:

• Flowers: Oxford Flower 102 dataset [133] has 8.189 images divided in 102
classes.

• Birds: CUB200 has 11.788 images of 200 different bird species [199].

• Cars: the CARS-196 dataset in [90] contains 16,185 images of 196 car classes.

Networks architectures. We evaluate our approach using two network architec-
tures: Alexnet [93] and Resnet-152 [62]. In both cases, the weights were pretrained
on Imagenet and then finetuned on each of the datasets mentioned above. The
networks were trained for 70 epochs with a learning rate of 0.0001 and a weight
decay of 0.005. The top classification layer was initialized from scratch using Xavier
method [56].

Evaluation protocol. To validate our approach, we follow the same protocol as in
[46]. For the image classification task, we train each model with subsets of k training
images for k ∈ {1,2,3,5,10,15,20,25,30,K }, where k is the total number of training
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images for the class. We keep 5 images per class for validation and 5 images per
class for test. We report the performance in terms of accuracy, i.e. percentage of
correctly classified samples. We show the results as an average over three runs.

4.3.2 Fine-grained Image Classification Results

Optimal depth and fusion saliency branch: We first evaluate the saliency branch
with a variable number of convolutional layers. The results are presented in Fig-
ure 4.2 and we found that four convolutional layers led to a significant increase
in performance, this can also be seen in more detail in Table 4.1, where we show
the accuracy classification for Flowers-102, Birds and Cars, using AlexNet as base
Network. Also, we look for the best RGB branch layer to perform the saliency branch
and RGB branch merge. The results are presented in Figure 4.3, and in more detail
in Table 4.2 for the aforementioned datasets.

It is found to be optimal to fuse the two branches before the Pool-2 layer for
AlexNet3. Based on these experiments, we use four convolutional layers in the
saliency branch and fuse before the second pool layer for the remainder of the
experiments and for all datasets.

Evaluation on scarce data domain: As described in section III, we consider two
alternative ways to train the saliency branch on the target dataset: keeping the
saliency branch fixed (Approach A) or allowing it to finetune (Approach B). In
this section, we compare these two approaches with respect to the Baseline-RGB
and Baseline-RGB + scratch SAL (where Saliency branch is initialized from scratch
without pretraining on Imagenet) and the work presented in the previous chapter,
called SMIC. We do not compare to other fine-grained methods here, because they
do not report results when only considering few labeled images. The experiments
are performed on Flowers, Cars and Birds datasets and can be seen in Table 4.3.
The average improvement of accuracy of our Approach A and B with respect the
Baseline-RGB is 3.7% and 4.3%, respectively for the Flowers dataset; 3.9% and 4.3%,
respectively for the Cars dataset; and 2.4% and 2.9%, respectively for the Birds
dataset. Our Approach B is especially advantageous, if we compare it with the our
previous SMIC approach, where we needed an additional algorithm to generate the
salience map. It is therefore advantageous to also finetune the saliency branch on
the target data even when we only have a few labeled images per class.

In Table 4.4, we show the same results but now for ResNet152. One can see

3In a similar study, we found that for Resnet-152 the optimal fusion is after the forth residual block.
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#train images 1 2 3 5 10 15 20 25 30 K AVG
Baseline-RGB 31.8 45.8 53.1 63.6 72.4 76.9 81.2 85.1 87.2 87.8 68.3
1 Conv Layer 32.0 46.3 53.9 64.4 72.9 76.7 81.4 85.3 89.1 87.9 69.0
2 Conv Layer 33.8 47.7 54.7 66.5 73.5 77.0 82.0 86.1 90.3 89.1 70.1
3 Conv Layer 35.1 48.8 56.3 68.1 74.9 77.9 82.7 87.0 91.0 91.2 71.3
4 Conv Layer 37.3 51.7- 57.2 68.7 75.6 78.7 83.8 88.4 91.7 92.5 72.6

C
ar

s

Baseline-RGB 4.1 7.8 11.7 17.3 25.5 31.1 38.5 42.2 47.2 60.0 28.5
1 Conv Layer 4.3 8.3 12.4 18.1 25.7 31.9 38.4 43.0 47.6 60.2 29.0
2 Conv Layer 6.2 9.4 15.6 20.1 26.2 33.0 38.7 44.6 48.7 60.9 30.3
3 Conv Layer 8.7 11.8 17.3 21.4 27.0 34.1 39.1 45.0 49.0 61.5 31.5
4 Conv. Layer 9.8 15.1 18.4 22.9 28.8 35.1 39.9 45.8 49.7 62.9 32.8

B
ir

d
s

Baseline-RGB 9.1 13.6 19.4 27.7 37.8 44.3 48.0 50.0 54.2 57.0 34.8
1 Conv. Layer 9.9 14.3 20.0 27.9 38.0 44.0 47.7 48.9 52.9 57.1 36.1
2 Conv. Layer 10.2 15.0 21.4 28.3 38.4 44.1 48.1 49.0 53.3 57.1 36.5
3 Conv. Layer 11.8 16.9 22.1 29.0 38.9 44.5 48.4 49.3 53.9 57.4 37.2
4 Conv. Layer 12.9 18.7 22.7 29.7 39.4 44.1 48.2 49.9 53.9 57.7 37.7

Table 4.1: Results on Flowers, Birds and Cars (results are the average over three runs),
using AlexNet as base network. For the baseline model and different variations of
layers on saliency branch of our architecture for saliency detection . The results
correspond to the classification accuracy. Each column indicates the number of
training images used, and the rightmoss column shows the average.

that the results improve significantly, especially for Cars results improve a lot. The
same general conclusions can be drawn : Approach B obtains better results than
Approach A and the method obtains similar results as SMIC but without the need of
a pretrained saliency network.

Comparison with other state-of-the-art approaches: In the past experiments,
we used a custom data split consisting of a fixed subset of k training images. To
compare our approach with other state-of-the-art methods, we followed the stan-
dard data split for training and evaluation of each dataset. Note that our main
purpose is to evaluate on domains with little labeled data but we have included
this results for comparison. This results are presented in Table 4.5. For the current
comparison, we use our both approaches with ResNet-152 as base network, which
is equivalent to the network architecture used by the most of the recent works. It
can be appreciated that both our methods show similar performance with other
fine-grained specialized approaches which often use more complex architectures
including part-localization modules.

Qualitative results: Table 4.6 shows some qualitative results for the case when
the pretrained version of our approach predicts the correct label, meanwhile the
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Fl
ow

er
s

#train images 1 2 3 5 10 15 20 25 30 K AVG
Baseline-RGB 31.8 45.8 53.1 63.6 72.4 76.9 81.2 85.1 87.2 87.8 68.3
Merge Before Pool 2 37.3 51.7 57.2 68.7 75.6 78.7 83.8 88.4 91.7 92.5 72.6
Merge After Pool 2 37.0 51.8 57.0 68.9 75.4 78.2 83.7 88.4 91.2 89.7 72.1
Merge After Conv. 3 35.9 50.9 56.9 67.8 73.9 77.4 82.9 86.1 90.7 89.4 71.2
Merge After Conv. 4 34.3 48.8 55.1 65.0 72.7 77.0 81.9 85.2 88.9 88.3 69.7

C
ar

s

Baseline-RGB 4.1 7.8 11.7 17.3 25.5 31.1 38.5 42.2 47.2 60.0 28.5
Merge Before Pool 2 9.8 15.1 18.4 22.9 28.8 35.1 39.9 45.8 49.7 62.9 32.8
Merge After Pool 2 9.3 14.7 18.7 22.0 28.9 35.3 40.1 45.5 49.3 61.0 32.5
Merge After Conv. 3 8.5 12.1 15.0 19.3 27.7 34.2 38.7 44.0 48.1 60.0 30.8
Merge After Conv. 4 7.1 10.3 13.1 18.9 26.1 32.9 38.1 42.9 47.8 59.1 29.6

B
ir

d
s

Baseline-RGB 9.1 13.6 19.4 27.7 37.8 44.3 48.0 50.0 54.2 57.0 34.8
Merge Before Pool 2 12.9 18.7 22.7 29.7 39.4 44.1 48.2 49.9 53.9 57.7 37.7
Merge After Pool 2 9.0 17.9 22.8 29.1 38.9 44.4 48.5 50.1 53.8 56.8 37.1
Merge After Conv. 3 8.1 15.3 20.7 28.3 38.3 43.1 47.3 49.2 53.0 55.9 35.9
Merge After Conv. 4 6.1 14.2 20.0 27.9 38.0 42.9 47.0 48.1 52.1 55.2 35.2

Table 4.2: Results on Flowers, Birds and Cars (results are the average over three runs),
using AlexNet as base network. For the baseline model and different variations of
our architecture incorporating the merge of our hallucinating saliency. The results
correspond to the classification accuracy. Each column indicates the number of
training images used, and the rightmoss column shows tha average.

Baseline-RGB fails. Alternatively, in Table 4.7 depicts the opposite case: the Baseline-
RGB predicts the correct label of the test images, meanwhile the pretrained version
of our approach fails. In both cases, the saliency images have been generated using
our Approach B. A possible explanation for the failures in this latter case could be
that the saliency images are not able to capture the relevant region of the image
for fine-grained discrimination. Thus, the salience-modulated layer focuses on the
wrong features for the task.We also wanted to show our saliency map and compare
it with 2 of the algorithms used in this thesis for the offline generation of saliency
map, which are ISEEL and SALICON, these examples can be seen in the Table 4.8

4.4 Conclusion

In this chapter, we proposed a method to improve fine-graned image classification
by means of saliency maps. Our method does not require explicit saliency maps, but
they are learned implicitely during the training of an end-to-end deep convolutional
network. We validated our method on several datasets for fine-grained classification
tasks (Flowers, Birds and Cars). We showed that our approach obtains similar
results as the SMIC method, which required explicit saliency maps. We showed
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Figure 4.2: Graph shows the classification accuracy on Flowers for various number
of layers in the saliency branch. Best results are obtained with four convolutional
layers. Baseline refers to the method without saliency branch.

that combining RGB data with saliency maps represents a significant advantage for
object recognition, especially for the case when training data is limited.
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Figure 4.3: Graph shows the classification accuracy on Flowers. Various points
for fusing the saliency and RGB branch are evaluated. Best results are obtained
when fusion is placed before the pool-2 layer. Baseline refers to the method without
saliency branch.
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Fl

ow
er

s

#train images 1 2 3 5 10 15 20 25 30 K AVG
Baseline-RGB 31.8 45.8 53.1 63.6 72.4 76.9 81.2 85.1 87.2 87.8 68.3
Baseline-RGB + scratch SAL 34.3 48.9 54.3 65.9 73.1 77.4 82.3 85.9 88.9 89.1 70.0
SMIC [46]∗ 37.6 51.9 57.1 68.5 75.2 79.7 84.9 88.2 91.2 92.3 72.7
Approach A 36.9 51.3 56.9 67.8 74.9 78.4 82.9 88.1 90.9 92.0 72.0
Approach B 37.3 51.7 57.2 68.7 75.6 78.7 83.8 88.4 91.7 92.5 72.6

C
ar

s

Baseline-RGB 4.1 7.8 11.7 17.3 25.5 31.1 38.5 42.2 47.2 60.0 28.5
Baseline-RGB + scratch SAL 5.9 10.7 14.4 19.1 27.4 32.9 38.5 44.0 48.7 61.5 30.3
SMIC [46]∗ 9.3 14.0 18.0 22.8 30.0 34.7 40.4 46.0 50.0 61.4 32.7
Approach A 9.3 14.3 17.4 22.3 28.4 35.3 39.7 45.7 50.1 61.9 32.4
Approach B 9.8 15.1 18.4 22.9 28.8 35.1 39.9 45.8 49.7 62.9 32.8

B
ir

d
s

Baseline-RGB 9.1 13.6 19.4 27.7 37.8 44.3 48.0 50.0 54.2 57.0 34.8
Baseline-RGB + scratch SAL 10.4 14.9 20.3 28.3 38.6 43.9 46.9 48.4 50.7 55.7 35.8
SMIC [46]∗ 13.1 18.9 22.2 30.2 38.7 44.3 48.0 50.0 54.2 57.0 37.7
Approach A 11.8 18.3 22.1 29.3 39.1 44.4 47.8 49.7 53.1 56.5 37.2
Approach B 12.9 18.7 22.7 29.7 39.4 44.1 48.2 49.9 53.9 57.7 37.7

Table 4.3: Classification accuracy for Flowers, Cars, and Birds dataset (results are
the average over three runs), using AlexNet as base network. Results are provided
for varying number of training images, from 1 until 30; K refers to using the number
of training images used in the official dataset split. The rightmost column shows
the average. The ∗ indicates that the method requires an explicit saliency method.
Our method (Approach B) obtains similar results as SMIC but without the need of a
pretrained saliency network trained on a saliency dataset.

Fl
ow

er
s

#train images 1 2 3 5 10 15 20 25 30 K AVG
Baseline-RGB 39.0 60.1 68.0 82.5 89.0 92.0 92.1 93.3 94.2 95.4 80.3
Baseline-RGB + scratch SAL 40.1 63.8 69.7 83.9 89.7 91.9 92.9 93.8 95.1 97.1 81.8
SMIC [46]∗ 42.6 64.2 70.9 85.5 90.9 92.7 94.0 95.0 97.0 97.8 83.1
Approach A 42.4 64.5 70.7 85.2 90.3 92.4 93.3 94.3 96.5 97.9 82.8
Approach B 42.7 64.5 71.0 85.1 90.4 92.5 93.1 94.7 96.8 98.1 82.9

C
ar

s

Baseline-RGB 30.9 45.8 53.1 62.7 70.9 73.9 79.9 88.7 89.2 90.7 68.6
Baseline-RGB + scratch SAL 33.8 46.1 54.8 63.8 71.7 74.9 80.9 88.1 89.1 91.0 69.4
SMIC [46]∗ 34.7 47.9 55.2 64.9 72.1 75.8 82.1 90.0 91.1 92.4 70.6
Approach A 34.1 47.0 56.3 64.7 71.9 75.3 81.7 89.0 90.8 91.7 70.2
Approach B 34.0 47.5 55.4 64.7 71.8 75.5 81.9 89.3 91.0 92.1 70.3

B
ir

d
s

Baseline-RGB 24.9 35.3 44.1 53.3 63.8 71.8 75.7 79.3 82.9 83.7 61.5
Baseline-RGB + scratch SAL 26.3 36.1 45.2 53.9 64.3 72.1 76.3 79.9 83.1 83.4 62.1
SMIC [46]∗ 28.1 37.9 46.8 55.2 65.3 73.1 77.0 82.9 84.4 86.1 63.7
Approach A 26.9 36.9 46.1 54.2 64.9 72.8 77.1 81.4 83.4 84.8 62.9
Approach B 27.1 37.0 46.2 54.9 65.4 72.8 77.1 81.3 83.8 85.1 63.1

Table 4.4: Classification accuracy for Flowers, Cars, and Birds dataset (results are the
average over three runs), using ResNet152 as base network. Results are provided for
varying number of training images, from 1 until 30; K refers to using the number
of training images used in the official dataset split. The rightmost column shows
the average. The ∗ indicates that the method requires an explicit saliency method.
Our method (Approach B) obtains similar results as SMIC but without the need of a
pretrained saliency network trained on a saliency dataset.
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Method Flowers Birds Cars
Krause et al. [91] - 82.0 92.6
Bilinear-CNN [109] - 84.1 91.3
Compact Bilinear Pooling [51] - 84.3 91.2
Low-rank Bilinear Pooling [88] - 84.2 90.9
Cui et al. (with Imagenet) [32] 96.3 82.8 91.3
MA-CNN [227] - 86.5 92.8
Ge-Yu [53] 90.3 - -
DLA [210] - 85.1 94.1
SMIC [46]∗ 97.8 86.1 92.4
Approach A 97.3 84.8 91.7
Approach B 97.9 85.1 92.1

Table 4.5: Comparison with state of the art methods for domain-specific fine-
grained recognition using the standard data splits of Flowers, Birds and Cars.
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Input Image Our Saliency Example Image

Predicted (Baseline-RGB): StemlessGentian
Predicted (Our Approach B): Moonkshood
Ground Truth: Moonkshood

Predicted (Baseline-RGB): Watercress
Predicted (Our Approach B): Primula
Ground Truth: Primula

Predicted (Baseline-RGB): Sweet Pea
Predicted (Our Approach B): Snap dragon
Ground Truth: Snap dragon

Table 4.6: Some success examples on Flowers: when the prediction done by Baseline-
RGB fails to infer the right label for some test images, but the prediction by our
approach is correct. Example image contains image of the wrongly predicted class.
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Input Image Our Saliency Example Image

Predicted (Baseline-RGB): Thorn Apple
Predicted (Our Approach B): Arum Lily
Ground Truth: Thorn Apple

Predicted (Baseline-RGB): Foxglove
Predicted (Our Approach B): Sweet Pea
Ground Truth: Foxglove

Table 4.7: Some failure examples on Flowers: when the prediction done by our
method fails to infer the right label for some test images, but the prediction by
Baseline-RGB is correct. Example image contains image of the wrongly predicted
class.

Dataset RGB Original Our Approach B ISEEL SALICON

Flowers-102

Birds

Cars

Table 4.8: Visualization of saliency maps for Flowers-102, Birds and Cars.
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5 Saliency for Free: Saliency
Prediction as a Side-Effect of
Object Recognition1

5.1 Introduction

One of the perceptual cues used for scene understanding is image saliency, i.e. a
representation of the scene that highlights those regions which are more informative
than their surroundings. Computational methods in saliency detection used in
computer vision are intended to determine which regions of the image attract
humans’ attention. Saliency methods can be divided in two main categories: (i)
salient object detection methods (which segment relevant objects in the image)
[222, 224]; and (ii) methods which produce eye-fixation maps [72, 129, 138]. For
the second category, which is the focus of this chapter, the common way to obtain
an accurate saliency map is to perform eye tracking experiments on still images.
Eye fixations from different participants are fused to obtain a unique map, named
fixation map, which will represent the saliency ground truth.

In [76] proposed one of the first computational saliency methods based on
combining the saliency cues for color, orientation and luminance. Many works
followed proposing a large variety of hand-crafted features for saliency [11, 146]. In
the last decade, computational saliency estimation has moved from handcrafted to
deep features [106]. These methods aim to find a network that computes saliency
maps that are close to ground truth saliency maps. A limitation of these approaches
is that they require saliency ground truth for their training. Generating saliency

1This chapter has been submitted to a journal.
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ground truth is a costly process and is required for each new dataset, and affects
the efficiency of these approaches.

In the human visual system, saliency is applied to select a small part of the
incoming sensory information. As a result massive sensory input can be processed
despite limited computational capacity of the brain [75]. It allows humans to rapidly
and efficiently process the incoming information. The capability to attend the most
relevant information in the image present in the human visual system could also be
important for neural networks that aim to process visual data. In this chapter, we
endow a neural network that aims to perform object recognition with a separate
branch that computes a saliency map. This map is used to attend to specific regions
in the image (thereby selecting the part of the information deemed most relevant).
The potential of such a network is that it can be trained on any image classification
dataset. The saliency maps would be the side-effect of training this network, and
hence our method allows for the computation of saliency without needing any
eyetracking ground truth data to train.

The ground truth of saliency is obtained by locating fixations in the scene. These
(binary) fixation maps are then smoothed by 1 degree of visual angle (dva or deg) in
order to simulate the average deviation of capture of the eye tracker [101][177]. This
smoothing is usually done using a circular gaussian filter, obtaining a continuous
representation of the saliency map. Several image processing and computer vision
techniques have been used in order to accurately represent saliency maps.

The saliency map is assumed to be specific for each image (depending on image
features), but experimentation may induce certain patterns such as the center bias.
The center bias (CB) is the common region where participants tend to look, this can
be due to: (i) photographs tend to frame the salient object centered on the image,
(ii) there are oculomotor tendencies from the task focusing the gaze on the center
[131] and (iii) some images do not show objects salient enough to focus attention
outside the center. This center bias is present in most saliency datasets and is also
exploited by several saliency models to better simulate human data.

In this chapter we evaluate the accuracy of the saliency maps that are produced
as a side-effect of object recognition. Additionally, we also evaluate the usage of
supervised and unsupervised center bias (CB) in our framework. We show that the
CB improves in most datasets where the CB is more present. To summarize, our
main contributions are:

• We demonstrate that it is possible to obtain accurate saliency maps by training
an object recognition network endowed with a saliency branch. Our method
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does not require any saliency ground truth data.

• We include an extensive study of the effect of center bias on the results.

• Extensive experiments performed on real and synthetic image datasets show
that highly accurate saliency maps are obtained. Our method obtains com-
petitive results on several standard benchmark datasets and the new state-of-
the-art on the CAT2000 dataset.

The current chapter is related to previous chapter. There we focus on fine-grained
image classification, and show that a saliency branch can be used to improve results.
In this chapter, we show that a saliency branch trained for image classification can
actually obtain competitive results on the saliency benchmark dataset, without
requiring any saliency ground truth data for training. To the best of our knowledge,
we are the first to show that saliency prediction can be obtained as a side-effect of
object recognition.

5.2 Proposed Approach

In the current chapter, we extend the work in the previous chapter by including a
study of the center bias which allows us to further improve the results. In addition,
we perform an analysis of the quality of the saliency estimation on three new
datasets (CAT2000, MIT1003 and KTH).

5.2.1 Network architecture

The overview of our proposed method is shown in Figure 5.1. The network consists
of two branches: one to extract the features from an RGB image (the red branch
called RGB branch), and the other one (called the saliency branch marked in green)
to generate the saliency maps from the same RGB image. Both branches are com-
bined using a modulation layer (represented by the × symbol) and the output is
further processed by several shared layers ending up with a classification layer.

Consider an input image I (x1, x2, x3), where x1, x2 are the spatial coordinates
and x3 = {1,2,3} indicate the three color channels of the image. Let us define the
three networks as being s for the saliency branch, r for the RGB branch and f for
the final shared layers. We will name the output of the saliency branch the saliency
image S(x1, x2) (we will design the saliency branch to output only a single saliency
image, therefore there are only two coordinates involved), and the output of the
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Figure 5.1: Overview of our method. We process an RGB input image through two
branches: one branch extracts the RGB features and the other one is used to learn
saliency maps.

RGB branch R(x1, x2, x3). Both S and R will have the same spatial resolution. We
now define the modulation layer as:

R̊ (x1, x2, x3) = r (I (x1, x2, x3)) · (s (I (x1, x2, x3))+1)

= R (x1, x2, x3) ·S (x1, x2)+R (x1, x2, x3) .
(5.1)

Note that the same saliency branch output S is applied to all the feature maps
of R (along the x3 dimension). The output R̊ is a summation of the modulated
output R ·S and a non-modulated version of the RGB branch R (see also the skip
connection represented by ⊕ in Figure 5.1). This was found to improve results
in [46]. The output of the modulation layer is then used as an input to the shared
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layers to obtain the final prediction over the classes y :

p
(
y |I )= f

(
R̊

)
. (5.2)

where we omit the spatial coordinates for clarity. We train the network for the task
of image classification on a training dataset D of images with the cross-entropy loss:

L = ∑
I∈D

log pc(I )
(
y |I ) (5.3)

where D is the entire training dataset and c(I ) is the ground truth label of image I
and pc is the c-th element of the vector p.

The RGB branch followed by the modulation layers resembles a standard image
classification network (see layers marked in red in the Figure 5.1-left). In this work,
we will consider several architectures, including AlexNet [93], VGG16 [162], and
ResNet152 [62]. The saliency branch consists of four convolutional layers, similar to
the first three layers of the AlexNet architecture combined with a 1x1 convolutional
layer. More precisely, the output of the third convolutional layer, i.e. the one with
384 dimensional feature maps with a spatial resolution of 13 × 13 (for a 227 × 227
RGB input image), is further processed using a 1 × 1 convolution and then a ReLU
activation function. This 1x1 convolution maps the feature map to a single output
feature map, and its goal is to calculate the score for each "pixel" and to produce
a single map that can be used to modulate the RGB branch. Finally, to generate
the input for the posterior classification network, the 13 × 13 saliency maps are
upsampled at 27 × 27 (which is the default input size of the following classification
module) through bilinear interpolation.

What differentiates our architecture from a standard object recognition network,
is the introduction of the saliency branch which transforms the RGB input image
into a modulation map S. While training the network the modulation map learns to
focus on those features that are important to perform the classification task. This
is a very similar task as for which the human visual system is thought to use visual
saliency, namely to identify those regions of high information in the image. In this
chapter, we show that this modulation map resembles a saliency map. Actually
when compared to saliency maps obtained from human eye-tracking experiments,
this modulation map is found to provide a surprisingly good estimate of them.
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5.2.2 Training the saliency branch

Our approach is depicted in Figure 5.1.The main idea is to train the saliency branch S
on a classification task. By optimizing the network to be good in image classification,
we hypothesize that the saliency branch will learn a mapping from the image I to
something similar as a saliency map. The modulation map S will provide higher
values to those regions that are important to performing the image classification
task. The learned network s will then be evaluated on several existing saliency
estimation datasets. Interestingly, the network s has not been trained with any
saliency ground truth, rather the saliency network is trained as a side-effect of
training a network optimal for object recognition.

We would like the classification task to be very general to ensure that the saliency
network is trained on a wide variety of images. We therefore choose to train the
network on the ImageNet dataset [93] which has 1000 different classes, including
classes from plants, sports, artefacts, animals, etc.

As explained above, the purpose of the saliency branch is to generate a saliency
map directly from an RGB input image. This network is built by initializing the
RGB branch with ImageNet pre-trained weights. The weights of the saliency branch
are initialized randomly using the Xavier method [56] (see Figure 5.1, green layers).
Then, the network is selectively trained: we allow to train only the layers corre-
sponding to the Saliency branch (represented by the surrounding green dotted line
box) and to freeze all the remaining layers (represented by the solid red line boxes).
During training, the saliency branch learns to focus on those regions of the image
that are important for the classification of the 1000 ImageNet classes.

Once the Imagenet training is finished, we only use the saliency branch, freeze
its weights, and test it on the images of various saliency estimation datasets (see
Figure 5.1-right). We will consider both datasets with real images (Toronto [18],
MIT1003 [81], KTH [89]) as well as datasets that contain synthetic images (CAT2000
[13] and SID4VAM [9]).

5.2.3 Combination with center bias

Eye movement datasets used for saliency evaluation tend to be center biased
(namely, that most fixations tend to be at the center of the image, see Table 5.11.
Several factors on the experimentation and the stimuli can cause this effect. For
instance, most real images frame the scene (the relevant or salient part is in the
center of view in photographies). Non-salient/non-popout stimuli [9, 171, 185] has
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GVA Circular Ellipsoid

36 x 2

36 x 5

36 x 14

Table 5.1: Simulating the Center Bias by parametrizing Gaussian

been shown to promote center biases, as participants do not have any region to
attend to, specially if the task sometimes involves centering the gaze on the image.
These center biases have an influence on how to evaluate saliency models upon
predicting fixations [14, 21], as these fixations are accounted while are not specific
to image saliency.

To compute the center bias, we use an isotropic 2d gaussian low-pass filter
with σ=GVA/(2

√
2log (2)), with a window of 6σ x 6σ. Using a parameter "GVA"

as a multiplying factor of the pixels per degree of visual angle. This is the usual
smoothing function [19, 20, 21] for building the fixation density maps.

Supervised CB (SCB) With the gaussian function can compute the exact center
bias from data with 1 deg of GVA and overlapping all binary fixation maps (seem-
ingly obtaining a unique fixation density map with images put altogether). For
evaluation, we split the data in two sets, generating the center bias for each of them
and evaluating each sample with the opposite split. See in Table 5.11 (column 2)
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examples of center biases for different datasets.

Unsupervised CB (UCB) For the CB we used circular (UCBc) and ellipsoid (UCBe)
versions of the gaussian function (see Table 5.1). We did this as center biases might
vary on the display and experimental methods for each saliency dataset, in most
cases these maps are spread in the horizontal axis, as image is usually of rectangular
shape. For the ellipsoid case, we resized the image so that the resulting map is
stretched horizontally with a factor of +50%, but keeping the same GVA vertically.

We selected for the GVA according to the following rule: 2 deg corresponds
to the approximate maximum diameter of coordinate deviation permitted during
eye tracking calibration, this is approximately 2 times the common deviation of
participant’s fixations [101, pp 255]; [177, pp 778], 5 deg corresponds to the degrees
of higher visual accuity of foveal/central vision [166] and 14 deg corresponds to the
radius of the screen (about 512px).

Fusion Previously, other models (see Table 5.2 - column 7) used additional com-
putations from priors or baselines from fixation data. For instance, DeepGazeII
summed the center baseline whereas ML-Net and SAM the learned priors are used
for modulating the result of the network. We defined two regimes for fusing the RGB
and the saliency branch: sum (CB+) or multiplication (CB×). With this we can test
at distinct baselines the effect of the center bias over the saliency map produced by
the network. See in Table 5.10 different examples of the resulting fusion (sum or
multiplication).

5.3 Experimental Results

5.3.1 Setup

Datasets

We have computed the saliency maps for images from distinct eye-tracking
dataser, corresponding to 120 real scenes (Toronto) [18], 40 nature scenes (KTH)
[89], 100 synthetic patterns (CAT2000) [13] and 230 synthetic images with specific
feature contrast (SID4VAM) [9]. We have computed these images images dataset
with our approach, supervised artificial model that specifically compute high-level
features (DeepGazeII, ML-Net, SAM, salGAN), and models biological inspiration
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# Name Year Features/Architecture Mechanism
1 IKN 1998 DoG (color+intensity) -
2 AIM 2005 ICA (infomax) max-like
3 GBVS 2006 Markov chains graph prob.
4 SDLF 2006 Steerable pyramid local+global prob.
5 ML-Net 2016 VGG-16 Backprop.(finetuning)
6 DeepGazeII 2016 VGG-19 Backprop.(finetuning)
7 SAM 2018 VGG-16/ResNet-50+LSTM Backprop.(finetuning)
8 SalGAN 2017 VGG-16 Autoencoder Finetuning+GAN Loss
# Name Learning Training Data (#img) Bias/Priors
1 IKN - - -
2 AIM Unsupervised Corel (3600) -
3 GBVS Unsupervised Einhauser (108) graph norm.
4 SDLF Unsupervised Oliva (8100) scene priors
5 ML-Net SALICON (10k), MIT (1003) learned priors -
6 DeepGazeII Supervised SALICON (10k), MIT (1003) center bias
7 SAM Supervised SALICON (10k) & others gaussian priors
8 SalGAN Supervised SALICON (10k), MIT (1003) -

DoG: difference of gaussians, ICA: independent component analysis, C-S:
center-surround, max-like: max-likelihood probability, BCE: binary cross-entropy,

GAN: Generative adversarial network

Table 5.2: Description of saliency models

Dataset Type # Images # PP pxva Resolution
TORONTO Indoors & Outdoors 120 20 32 681x511
MIT1003 Indoors & Outdoors 1003 15 35 1024x768

KTHn Nature photos 99 31 34 1024x768
CAT2000p Synthetic Patterns 100 18 38 1920x1080
SID4VAM Synthetic Pop-out 230 34 40 1280x1024

pxva: pixels per 1 degree of visual angle, PP: participants

Table 5.3: Characteristics of eye tracking datasets

(IKN, AIM, SDLF and GBVS).

Base-Networks

We evaluate our approach using three network architectures: AlexNet [93],
which consists of five convolutional layers followed by three fully connected layers,
VGG16 and ResNet-152 [62], consisting of 152 convolutional layers, respectively,
organized in 5 residual blocks
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5.3.2 Results

First experiment: multiple networks.

In order to evaluate how accurate the saliency map is able to match the location
of human fixations, we used a set of metrics preiously defined by [15] and [21]

In Table 5.4 we show results of Area Under ROC (AUC), Correlation Coefficient
(CC), Normalized Scanpath Saliency (NSS), Kullback-Leibler divergence (KL), simi-
larity (SIM) for every network for all datasets.

The area under ROC (AUC) considers as true positives the saliency map values
that coincide with a fixation and false positives the saliency map that have no
fixation, then computes the area under the curve. Similarly, the NSS computes the
average normalized saliency map that coincide with fixations. Other metrics such
as CC, KL and SIM compute the score upon the region distribution statistics of all
pixels (KL calculating the divergence and CC/SIM the histogram intersection or
similarity of the distribution).

Dataset Model AUC-Judd AUC-Borji CC NSS KL↓ SIM
AlexNet 0.7323 0.7034 0.2597 0.8654 1.7622 0.2844

MIT1003 VGG16 0.7402 0.7199 0.2594 0.8597 1.7772 0.2899
ResNet152 0.7231 0.7084 0.2531 0.8550 2.0785 0.2839

AlexNet 0.7679 0.7308 0.4546 1.3718 1.5134 0.3944
TORONTO VGG16 0.7812 0.7475 0.4627 1.4045 1.5179 0.4201

ResNet152 0.7816 0.7323 0.5378 1.6433 1.6991 0.4390

AlexNet 0.5975 0.5881 0.2249 0.3374 1.0083 0.5112
KTH VGG16 0.6028 0.5793 0.2250 0.3459 1.3194 0.4848

ResNet152 0.6154 0.5869 0.2942 0.4436 1.3492 0.4989

AlexNet 0.7005 0.6710 0.2950 0.7468 1.4615 0.3936
CAT2000 VGG16 0.7113 0.6741 0.3151 0.8371 1.4510 0.4031

ResNet152 0.7217 0.6805 0.3100 0.8548 1.2876 0.4064

AlexNet 0.7413 0.7216 0.3889 1.4256 1.6652 0.4085
SID4VAM VGG16 0.6752 0.6506 0.2707 0.8477 1.9129 0.3695

ResNet152 0.6988 0.6723 0.3010 1.1140 1.9790 0.3786

Table 5.4: Benchmark of our method with different networks (top-1 networks are
underlined)

After computing the saliency maps for all datasets (see in 5.4) with AlexNet,
VGG16 and ResNet152 we observed that metric scores vary considerately depending
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on dataset or network. AlexNet is shown to provide best results for pop-out patterns
(SID4VAM) whereas ResNet152 and VGG16 showed overall higher scores with real
images (MIT1003, TORONTO, KTH).

Second experiment: Center bias analysis

In this section we wanted to analyze the use of the center bias, for this we have
carried out different experiments. To begin with, we wanted to test different ways
of normalization (Min-Max, Energy and Standarization) of our center bias, we can
see this in the Table 5.5.

Adding, we perform a random permutation of images for train and test (i.e. 50%
and 50%). For example, in the case of Toronto, there are 120 images, as we should
randomly select 60 images for train (T1) and 60 images for test (T2). So it would
be interesting to combine the density map with the baseline of each different split,
that is, first we generate the center bias baseline of T1 and T2, then you take your
saliency maps (from split T1) you combine them (mult / sum ) with the T2 baseline
and then vice-versa: using the T2 saliency maps combined with the T1 baseline.
The results of this experiment are observed in Table 5.6

In addition, we have used the original pxva of the five datasets (See Table 5.7
and Table 5.8) and we have compared the different sizes of the single Gaussian in
its two forms (circular and elliptical), for which we have used only the Min-Max
normalization for the fusion type Sum or Multiplication.

We have also performed an ablation study for evaluating the effect of the center
bias and the fusion. From this, we tested the center bias extracted from the data
(SCB) as well as our unsupervised implementation using gaussian and ellipsoid
baselines (UCBc and UCBe), testing both fusions of Mult-MinMax or Sum-MinMax.
For most datasets, the UCBe gave highest scores using a GVA factor of 14 deg and
the Sum-MinMax fusion (adding the baseline to the saliency map). For the cases
of SCB, the Mult-MinMax scored higher, although both fusions gave very similar
scores.

In Table 5.10 we show results for our model with different parametization and
using a distribution-based metrics; AUC-Judd and SIM.

Third experiment: State of the Art.

In Table 5.15 and Table 5.14 we show results for our model with different param-
etization and our best setting in comparison with the state of the art saliency models
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(using both location- and distribution-based metrics; AUC-Judd and SIM).

Fourth experiment: Visual results and center bias

We can see in Table 5.11 different examples of images and the generated saliency
maps from different scenes (one per each dataset), including an illustration of each
dataset center bias. We can observe that the fusion is able to modulate the saliency
map, showing that it can be better to use one strategy or another.

Fifth experiment: Qualitative results

These saliency prediction results show that our model has robust metric scores
on both real images and synthetic images for saliency prediction. Again, we would
like to stress that our model is not trained on fixation prediction datasets and does
not add a center Gaussian to leverage some metrics due to the center bias. Our
model performs best on detecting pop-out effects (from visual attention theories
[76]), whilst performing similarly for real image datasets (Figure 5.2). Some deep
saliency models use several mechanisms to leverage (or/and train) performance for
improving saliency metric scores, such as smoothing/thresholding (see Figure 5.2,
rows 4-5) or a center gaussian (see Figure 5.3, row 5). We also consider that some
of these models are already finetuned for synthetic images (e.g. SAM-ResNet [30]).
Our Approach (that has not been trained in these type of datasets) has shown to be
robust on these two distinct scenarios/domains.

Sixth experiment: Evaluation benchmark of saliency hallucination

Here we compare the saliency estimation which is obtained after only perform-
ing Step I in Figure 5.1 with existing saliency methods. This saliency estimation
is trained without access to any ground truth saliency data, and is obtained while
training the image classification task on Imagenet.

Saliency prediction metrics assign a score depending on how well the predicted
saliency map is able to match with locations of human fixations (see definitions
in Borji et al.[15] and Bylinskii et al.[21]). We selected the Area Under ROC (AUC),
Kullback-Leibler divergence (KL), similarity (SIM), shuffled AUC (sAUC) and In-
formation Gain (IG) metrics considering its consistency of predictions of human
fixation maps as well as towards to the center bias. We compare scores with clas-
sical saliency models, both with handcrafted low-level features (i.e. IKN [76], AIM
[18], SDLF [177] and GBVS [60]) and state-of-the-art deep saliency models (i.e.
DeepGazeII [97], SAM-ResNet [30], SALICON [72, 175] and SalGAN [137]) mainly
pretrained on human fixations. The results are surprising, our method which has
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Model

Humans

GBVS

OpenSALICON

SAM-ResNet

Our Approach

Figure 5.2: Qualitative results for real images (Toronto dataset). Each image is
represented in a different column and each model saliency map in each row. The
ground truth density map of human fixations is represented in the 2nd row.

not been trained on any saliency data obtains competitive results. For the case of
Toronto (Table 5.12) the best models are GBVS and OpenSALICON, followed by our
model that scores in the top-3 of KL and SAM-ResNet that scores slightly higher
in InfoGain metric. For the case of SID4VAM (Table 5.13) our approach gets best
scores for most metrics compared to other deep saliency models, being mainly the
top-2 acquiring similar scores to GBVS in most metrics (outperforming it in AUC
measures).

Finally, we have compared scores with classical unsupervised saliency models
(i.e. IKN, AIM, SDLF and GBVS) and state of the art deep saliency models (i.e. ML-
Net, DeepGazeII, SAM and SalGAN), mainly backpropagating scores on human
fixation data. Our model outperforms other unsupervised saliency models in both
AUC and SIM metrics (see Table 5.15 and Table 5.14, respectively ), and outerforms
all other deep saliency models with synthetic and pop-out patterns (CAT2000,
SID4VAM). This suggests that we are able to extract bottom-up attention but we
are not biased to specific features of the dataset. Accounting that our model is not
trained on human fixation data, our model scores top-3 in AUC and SIM metrics for
real image saliency datasets (TORONTO, MIT1003, KTH).
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Model

Humans

GBVS

OpenSALICON

SAM-ResNet

Our Approach

Figure 5.3: Qualitative results for synthetic images (SID4VAM dataset).Each image
is represented in a different column and each model saliency map in each row. The
ground truth density map of human fixations is represented in the 2nd row.

5.4 Conclusion

This chapter shows that saliency might be an intrinsic effect in image representation
learning, and this can be obtained by training other tasks such as image classifica-
tion. By training on ImageNet classification we are able to extract saliency maps
and modulate that factor to a specific center bias. Our model appears to be robust
with different metrics and datasets, outperforming classical unsupervised models
and with a trend to acquire similar results to the state of the art, even with limited
data. We have added a study of which networks and typologies of center biases
can affect saliency prediction. Our results showed that scores vary considerately
depending on dataset or network, as every dataset has specific set of features and
parametization of experimental systematic tendencies, suggesting that there cannot
be a unique solution for modeling the center bias in combination with saliency.
Possible improvements could include finetuning with fixation data, abling to tune
the saliency branch (and/or the center bias) by training on fixation data.

82



5.4. Conclusion

Dataset Fusion Normalization AUC-Judd AUC-Borji CC NSS KL↓ SIM

M
IT

10
03

MinMax 0.798 0.738 0.358 1.182 1.797 0.357
Mult Energy 0.796 0.737 0.357 1.182 1.796 0.357

Standarization 0.797 0.742 0.356 1.179 1.788 0.355
MinMax 0.795 0.786 0.364 1.186 1.517 0.311

Sum Energy 0.793 0.785 0.364 1.185 1.517 0.310
Standarization 0.794 0.785 0.364 1.185 1.517 0.310

To
ro

n
to

MinMax 0.796 0.714 0.480 1.445 2.499 0.439
Mult Energy 0.795 0.713 0.478 1.444 2.498 0.438

Standarization 0.794 0.714 0.479 1.444 2.498 0.438
MinMax 0.793 0.778 0.464 1.355 1.220 0.393

Sum Energy 0.792 0.776 0.463 1.356 1.221 0.392
Standarization 0.792 0.777 0.464 1.356 1.221 0.390

K
T

H

MinMax 0.628 0.596 0.274 0.396 1.300 0.511
Mult Energy 0.626 0.597 0.273 0.394 1.299 0.511

Standarization 0.627 0.596 0.273 0.393 1.300 0.510
MinMax 0.634 0.629 0.326 0.462 0.667 0.560

Sum Energy 0.631 0.627 0.322 0.461 0.669 0.559
Standarization 0.633 0.627 0.323 0.460 0.668 0.558

C
AT

20
00

MinMax 0.812 0.735 0.655 1.688 1.540 0.560
Mult Energy 0.811 0.734 0.654 1.687 1.539 0.561

Standarization 0.811 0.733 0.654 1.686 1.539 0.560
MinMax 0.787 0.775 0.518 1.321 0.992 0.451

Sum Energy 0.785 0.773 0.518 1.322 0.991 0.452
Standarization 0.786 0.774 0.518 1.320 0.990 0.451

SI
D

4V
A

M

MinMax 0.746 0.708 0.383 1.375 2.142 0.403
Mult Energy 0.745 0.707 0.382 1.373 2.143 0.401

Standarization 0.745 0.707 0.382 1.373 2.143 0.402
MinMax 0.742 0.735 0.338 1.043 1.474 0.381

Sum Energy 0.741 0.733 0.337 1.041 1.475 0.380
Standarization 0.741 0.734 0.338 0.043 1.474 0.381

Table 5.5: Analysis of normalization on MIT1003, Toronto, KTH, CAT2000 and
SID4VAM, using AlexNet as base-network

83



Chapter 5. Saliency for Free: Saliency Prediction as a Side-Effect of Object
Recognition

Dataset Fusion Normalization AUC-Judd AUC-Borji CC NSS KL↓ SIM
M

IT
10

03
MinMax 0.796 0.738 0.358 1.099 1.737 0.355

Mult Energy 0.795 0.737 0.357 1.182 1.797 0.357
Standarization 0.794 0.737 0.336 1.180 1.797 0.356

MinMax 0.795 0.786 0.364 1.186 1.515 0.311
Sum Energy 0.794 0.785 0.364 1.185 1.516 0.310

Standarization 0.792 0.785 0.363 1.185 1.516 0.310

To
ro

n
to

MinMax 0.796 0.715 0.479 1.445 2.499 0.439
Mult Energy 0.795 0.713 0.479 1.444 2.498 0.439

Standarization 0.795 0.713 0.477 1.444 2.499 0.438
MinMax 0.792 0.777 0.465 1.356 1.221 0.393

Sum Energy 0.791 0.776 0.464 1.356 1.220 0.393
Standarization 0.791 0.776 0.464 1.355 1.221 0.393

K
T

H

MinMax 0.629 0.597 0.274 0.397 1.300 0.511
Mult Energy 0.628 0.596 0.274 0.395 1.299 0.512

Standarization 0.627 0.596 0.274 0.395 1.301 0.511
MinMax 0.634 0.629 0.323 0.466 0.669 0.559

Sum Energy 0.633 0.627 0.322 0.464 0.66 0.555
Standarization 0.632 0.628 0.322 0.464 0.668 0.554

C
AT

20
00

MinMax 0.813 0.735 0.655 1.688 1.541 0.560
Mult Energy 0.811 0.733 0.651 1.688 1.540 0.560

Standarization 0.811 0.733 0.653 1.687 1.541 0.559
MinMax 0.789 0.775 0.518 1.321 0.992 0.452

Sum Energy 0.787 0.777 0.518 1.322 0.993 0.451
Standarization 0.788 0.776 0.518 1.322 0.992 0.452

SI
D

4V
A

M

MinMax 0.747 0.708 0.383 1.377 2.142 0.404
Mult Energy 0.744 0.707 0.383 1.375 2.142 0.404

Standarization 0.746 0.707 0.382 1.375 2.143 0.403
MinMax 0.744 0.733 0.338 1.043 1.433 0.382

Sum Energy 0.742 0.733 0.336 1.043 1.475 0.381
Standarization 0.741 0.734 0.337 1.043 1.474 0.381

Table 5.6: Analysis of adquisition on MIT1003, Toronto, KTH, CAT2000 and
SID4VAM, using AlexNet as base-network

84



5.4. Conclusion

Gaussian GVA Fusion AUC-Judd AUC-Borji CC NSS KL↓ SIM

M
IT

10
03

C
ir

cu
la

r

Mult-MinMax 0.595 0.548 0.196 0.667 1.807 0.154
35 x 2 Sum-MinMax 0.7697 0.7264 0.4388 1.3115 1.5287 0.3987

Mult-MinMax 0.718 0.632 0.304 1.014 0.906 0.302
35 x 5 Sum-MinMax 0.768 0.740 0.343 1.133 1.616 0.322

Mult-MinMax 0.792 0.743 0.349 1.152 1.679 0.345
35 x 14 Sum-MinMax 0.794 0.785 0.358 1.159 1.547 0.301

E
lli

p
so

id

Mult-MinMax 0.651 0.581 0.252 0.858 1.372 0.230
35 x 2 Sum-MinMax 0.758 0.722 0.320 1.061 1.666 0.309

Mult-MinMax 0.724 0.639 0.315 1.013 1.001 0.3045
35 x 5 Sum-MinMax 0.771 0.751 0.340 1.138 1.664 0.3200

Mult-MinMax 0.799 0.750 0.351 1.168 1.700 0.350
35 x 14 Sum-MinMax 0.800 0.750 0.360 1.169 1.699 0.338

To
ro

n
to

C
ir

cu
la

r

Mult-MinMax 0.616 0.564 0.232 0.698 1.752 0.193
32 x 2 Sum-MinMax 0.770 0.726 0.439 1.312 1.529 0.399

Mult-MinMax 0.762 0.673 0.431 1.309 6.637 0.391
32 x 5 Sum-MinMax 0.781 0.753 0.447 1.311 1.492 0.406

Mult-MinMax 0.792 0.740 0.492 1.477 1.689 0.433
32 x 14 Sum-MinMax 0.790 0.780 0.430 1.238 1.344 0.338

E
lli

p
so

id

Mult-MinMax 0.640 0.657 0.354 1.018 1.500 0.314
32 x 2 Sum-MinMax 0.776 0.740 0.430 1.238 1.344 0.338

Mult-MinMax 0.780 0.681 0.438 1.311 1.511 0.401
32 x 5 Sum-MinMax 0.789 0.757 0.450 1.374 1.542 0.402

Mult-MinMax 0.800 0.741 0.497 1.500 1.701 0.440
32 x 14 Sum-MinMax 0.801 0.780 0.439 1.301 1.350 0.340

K
T

H

C
ir

cu
la

r

Mult-MinMax 0.521 0.509 0.092 0.137 2.130 0.067
36 x 2 Sum-MinMax 0.560 0.585 0.231 0.345 1.019 0.510

Mult-MinMax 0.578 0.540 0.187 0.270 1.451 0.229
36 x 5 Sum-MinMax 0.609 0.597 0.259 0.380 1.035 0.509

Mult-MinMax 0.632 0.602 0.283 0.404 1.546 0.490
36 x 14 Sum-MinMax 0.635 0.630 0.327 0.465 0.700 0.556

E
lli

p
so

id

Mult-MinMax 0.527 0.527 0.155 0.224 2.013 0.115
36 x 2 Sum-MinMax 0.597 0.598 0.155 0.224 1.939 0.120

Mult-MinMax 0.581 0.542 0.185 0.273 1.478 0.229
36 x 5 Sum-MinMax 0.620 0.598 0.258 0.380 1.100 0.510

Mult-MinMax 0.634 0.639 0.327 0.465 0.702 0.560
36 x 14 Sum-MinMax 0.640 0.639 0.3266 0.466 0.702 0.561

Table 5.7: Analysis of GVA gaussian on real images dataset: MIT1003, Toronto and
KTH.
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Gaussian GVA Fusion AUC-Judd AUC-Borji CC NSS KL↓ SIM
C

AT
20

00

C
ir

cu
la

r

Mult-MinMax 0.620 0.568 0.465 1.266 1.648 0.211
38 x 2 Sum-MinMax 0.732 0.700 0.400 1.042 1.341 0.415

Mult-MinMax 0.753 0.678 0.628 1.626 0.769 0.462
38 x 5 Sum-MinMax 0.781 0.761 0.548 1.400 1.140 0.465

Mult-MinMax 0.811 0.768 0.604 1.534 1.946 0.545
38 x 14 Sum-MinMax 0.819 0.801 0.558 1.402 0.970 0.480

E
lli

p
so

id

Mult-MinMax 0.678 0.611 0.559 1.483 1.291 0.316
38 x 2 Sum-MinMax 0.751 0.724 0.466 1.207 1.266 0.433

Mult-MinMax 0.759 0.681 0.627 1.600 0.887 0.471
38 x 5 Sum-MinMax 0.790 0.770 0.551 1.398 1.120 0.487

Mult-MinMax 0.812 0.770 0.607 1.574 1.348 0.549
38 x 14 Sum-MinMax 0.820 0.800 0.610 1.493 1.350 0.531

SI
D

4V
A

M

C
ir

cu
la

r

Mult-MinMax 0.525 0.511 0.068 0.195 2.195 0.057
40 x 2 Sum-MinMax 0.741 0.712 0.368 1.316 1.690 0.402

Mult-MinMax 0.605 0.560 0.169 0.513 1.521 0.194
40 x 5 Sum-MinMax 0.736 0.711 0.326 1.091 1.776 0.385

Mult-MinMax 0.731 0.689 0.345 1.220 3.057 0.380
40 x 14 Sum-MinMax 0.722 0.714 0.306 0.944 1.570 0.377

E
lli

p
so

id

Mult-MinMax 0.540 0.524 0.102 0.298 2.009 0.104
40 x 2 Sum-MinMax 0.740 0.711 0.352 1.228 1.715 0.396

Mult-MinMax 0.611 0.561 0.171 0.522 1.611 0.199
40 x 5 Sum-MinMax 0.740 0.714 0.330 1.100 1.799 0.335

Mult-MinMax 0.730 0.699 0.341 1.220 3.057 0.380
40 x 14 Sum-MinMax 0.731 0.689 0.343 1.220 3.018 0.380

Table 5.8: Analysis of GVA gaussian on synthetics images dataset on CAT2000 and
SID4VAM, using AlexNet as base network.
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Dataset Fusion Normalization AUC-Judd AUC-Borji CC NSS KL↓ SIM

M
IT

10
03

MinMax 0.796 0.738 0.358 1.099 1.737 0.355
Mult Energy 0.795 0.737 0.357 1.182 1.797 0.357

Standarization 0.794 0.737 0.336 1.180 1.797 0.356
MinMax 0.795 0.786 0.364 1.186 1.515 0.311

Sum Energy 0.794 0.785 0.364 1.185 1.516 0.310
Standarization 0.792 0.785 0.363 1.185 1.516 0.310

To
ro

n
to

MinMax 0.796 0.715 0.479 1.445 2.499 0.439
Mult Energy 0.795 0.713 0.479 1.444 2.498 0.439

Standarization 0.795 0.713 0.477 1.444 2.499 0.438
MinMax 0.792 0.777 0.465 1.356 1.221 0.393

Sum Energy 0.791 0.776 0.464 1.356 1.220 0.393
Standarization 0.791 0.776 0.464 1.355 1.221 0.393

K
T

H

MinMax 0.629 0.597 0.274 0.397 1.300 0.511
Mult Energy 0.628 0.596 0.274 0.395 1.299 0.512

Standarization 0.627 0.596 0.274 0.395 1.301 0.511
MinMax 0.634 0.629 0.323 0.466 0.669 0.559

Sum Energy 0.633 0.627 0.322 0.464 0.66 0.555
Standarization 0.632 0.628 0.322 0.464 0.668 0.554

C
AT

20
00

MinMax 0.813 0.735 0.655 1.688 1.541 0.560
Mult Energy 0.811 0.733 0.651 1.688 1.540 0.560

Standarization 0.811 0.733 0.653 1.687 1.541 0.559
MinMax 0.789 0.775 0.518 1.321 0.992 0.452

Sum Energy 0.787 0.777 0.518 1.322 0.993 0.451
Standarization 0.788 0.776 0.518 1.322 0.992 0.452

SI
D

4V
A

M

MinMax 0.747 0.708 0.383 1.377 2.142 0.404
Mult Energy 0.744 0.707 0.383 1.375 2.142 0.404

Standarization 0.746 0.707 0.382 1.375 2.143 0.403
MinMax 0.744 0.733 0.338 1.043 1.433 0.382

Sum Energy 0.742 0.733 0.336 1.043 1.475 0.381
Standarization 0.741 0.734 0.337 1.043 1.474 0.381

Table 5.9: Analysis of adquisition on MIT1003, Toronto, KTH, CAT2000 and
SID4VAM, using AlexNet as base-network
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GVA Fusion TORONTO MIT1003 KTH CAT2000 SID4VAM
C

ir
cu

la
r

35 x 2 Mult-MinMax 0.616 0.595 0.521 0.620 0.525
Sum-MinMax 0.770 0.745 0.600 0.732 0.741

35 x 5 Mult-MinMax 0.762 0.718 0.578 0.753 0.605
Sum-MinMax 0.781 0.768 0.609 0.780 0.736

35 x 14 Mult-MinMax 0.792 0.792 0.632 0.812 0.730
Sum-MinMax 0.789 0.794 0.635 0.819 0.722

E
lli

p
so

id

35 x 2 Mult-MinMax 0.640 0.651 0.527 0.678 0.540
Sum-MinMax 0.776 0.758 0.597 0.751 0.740

35 x 5 Mult-MinMax 0.780 0.724 0.581 0.759 0.611
Sum-MinMax 0.788 0.771 0.620 0.790 0.740

35 x 14 Mult-MinMax 0.800 0.799 0.639 0.812 0.730
Sum-MinMax 0.801 0.800 0.640 0.820 0.730

SCB - Mult-MinMax 0.796 0.796 0.628 0.812 0.746
SCB - Sum-MinMax 0.793 0.795 0.634 0.787 0.741

Table 5.10: Ablation of fusion and normalization on all saliency datasets. We show
results for the AUC-Judd metric (top-1 fusion is bold)
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Image CB GT SM SM+Fusion MULT SM+Fusion SUM

TORONTO

MIT1003

KTH

CAT2000

SID4VAM

Table 5.11: Qualitative results using human center bias
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Method AUC KL ↓ SIM sAUC InfoGain
IKN [76] 0.782 1.249 0.366 0.650 -0.024
AIM [18] 0.716 1.612 0.314 0.663 -0.580
SDLF [177] 0.703 1.518 0.304 0.664 -0.398
GBVS [60] 0.803 1.168 0.397 0.632 0.077
DeepGazeII [97] 0.838 1.367 0.325 0.763 -0.200
SAM-ResNet [30] 0.725 2.420 0.516 0.666 -1.555
OpenSALICON [72, 175] 0.771 1.113 0.429 0.716 0.232
SalGAN [137] 0.818 1.272 0.435 0.715 0.392
Our Approach (Step I) 0.731 1.513 0.394 0.589 -0.418
Ground Truth (Humans) 0.954 0.000 1.000 0.902 2.425

Table 5.12: Comparison our saliency output with on standard benchmark methods
over synthetic image datasets (Left: Toronto, Right: SID4VAM) for saliency pre-
diction. (Top) Baseline low-level saliency models. (Bottom) State-of-the-art deep
saliency models. Best score for each metric is defined as bold and TOP-3 scores are
underlined.

Method AUC KL ↓ SIM sAUC InfoGain
IKN [76] 0.678 1.748 0.380 0.608 -0.233
AIM [18] 0.566 14.472 0.224 0.557 -18.181
SDLF [177] 0.607 3.954 0.322 0.596 -3.244
GBVS [60] 0.718 1.363 0.413 0.628 0.331
DeepGazeII [97] 0.610 1.434 0.335 0.571 -0.964
SAM-ResNet [30] 0.673 2.610 0.388 0.600 -1.475
OpenSALICON [72, 175] 0.673 1.549 0.375 0.615 0.052
SalGAN [137] 0.662 2.506 0.373 0.593 -1.350
Our Approach (Step I) 0.721 1.663 0.409 0.627 -0.125
Ground Truth (Humans) 0.882 0.000 1.000 0.860 2.802

Table 5.13: Comparison our saliency output with on standard benchmark methods
over synthetic image datasets (Left: Toronto, Right: SID4VAM) for saliency pre-
diction. (Top) Baseline low-level saliency models. (Bottom) State-of-the-art deep
saliency models. Best score for each metric is defined as bold and TOP-3 scores are
underlined.
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Model TORONTO MIT1003 KTH CAT2000 SID4VAM
IKN 0.366 0.290 0.547 0.382 0.380
AIM 0.314 0.251 0.523 0.301 0.224
SDLF 0.304 0.251 0.512 0.309 0.322
GBVS 0.397 0.324 0.563 0.430 0.413
DeepGazeII 0.325 0.260 0.549 0.335 0.335
ML-Net 0.489 0.424 0.557 0.375 0.373
SAM-VGG 0.214 0.182 0.354 0.322 0.216
SAM-ResNet 0.516 0.472 0.508 0.456 0.388
SalGAN 0.435 0.435 0.544 0.553 0.373
Best Network 0.439 0.284 0.499 0.406 0.379
Best Network+SCB× 0.442 0.299 0.501 0.561 0.388
Best Network+UCBc×* 0.447 0.303 0.502 0.537 0.390
Best Network+UCBe+* 0.449 0.307 0.505 0.544 0.394
Humans (GT) 1.000 1.000 1.000 1.000 1.000

SCB+: Supervised (baseline from fixation data), UCB×/+(c/e): Unsupervised with circular
(c) or Ellipsoid (e) gaussian center bias.

* Selecting most similar GVA to SCB per dataset

Table 5.14: Benchmark on saliency models. We show results for the SIM metrics
and state of the art (top-1 model is bold)
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Model TORONTO MIT1003 KTH CAT2000 SID4VAM
IKN 0.794 0.760 0.617 0.701 0.686
AIM 0.727 0.706 0.572 0.570 0.570
SDLF 0.714 0.697 0.555 0.573 0.620
GBVS 0.817 0.807 0.649 0.759 0.747
DeepGazeII 0.850 0.849 0.648 0.612 0.612
ML-Net 0.845 0.839 0.658 0.678 0.700
SAM-VGG 0.569 0.559 0.525 0.625 0.537
SAM-ResNet 0.850 0.854 0.660 0.766 0.727
SalGAN 0.821 0.856 0.655 0.751 0.715
Best Network 0.782 0.723 0.615 0.722 0.699
Best Network+SCB× 0.810 0.808 0.641 0.820 0.711
Best Network+UCBc×* 0.812 0.809 0.643 0.819 0.708
Best Network+UCBe+* 0.813 0.810 0.645 0.822 0.710
Humans (GT) 0.969 0.978 0.902 0.895 0.943

SCB+: Supervised (baseline from fixation data), UCB×/+(c/e): Unsupervised with circular
(c) or Ellipsoid (e) gaussian center bias.

* Selecting most similar GVA to SCB per dataset

Table 5.15: Benchmark on saliency models. We show results for the AUC-Judd
metrics and state of the art (top-1 model is bold)
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6 Conclusions and Future Work

6.1 Conclusions

This dissertation focused on the role of saliency to improve the classification ac-
curacy of a CNN. Our first approach consisted in adding a saliency branch to an
existing CNN architecture which is used to modulate the standard bottom-up visual
features from the original image input, acting as an attentional mechanism that
guides the feature extraction process. The main aim of the proposed approach was
to enable the effective training of a fine-grained recognition model with limited
training samples and to improve the performance on the task, thereby alleviating
the need to annotate a large dataset. The vast majority of saliency methods are
evaluated on their ability to generate saliency maps, and not on their functionality
in a complete vision pipeline. Our proposed pipeline allows to evaluate saliency
methods for the high-level task of object recognition. We performed extensive ex-
periments on various fine-grained datasets (Flowers, Birds, Cars, and Dogs) under
different conditions and show that saliency can considerably improve the network’s
performance, especially for the case of scarce training data. Furthermore, our
experiments showed that saliency methods that obtain improved saliency maps
(as measured by traditional saliency benchmarks) also translate to saliency meth-
ods that yield improved performance gains when applied in an object recognition
pipeline.

In our second approach, we set out to address one of the main disadvantages of
the SMIC method. Therefore, we proposed an approach that does not require ex-
plicit saliency maps to improve image classification, but these are learned implicitly
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during end-to-end image classification task training. We showed that our approach
achieves similar results to the case where saliency maps are explicitly provided.
We validated our method on several data sets for fine-grained classification tasks
(flowers, birds, and cars) and showed that, especially for domains with limited data,
the proposed method significantly improves the results.

And finally, we were able to go deeper into the use of saliency in Chapter 5,
where we demonstrated that it is possible to automatically generate saliency maps
without any truth about the terrain. In our last approach, saliency maps were
learned as a side effect of training an object recognition network that is endowed
with a saliency branch. Extensive experiments carried out on both real and synthetic
saliency datasets demonstrated that our approach is capable of generating accurate
saliency maps, achieving competitive results on both synthetic and real datasets
when compared to methods that do require ground truth data.

6.1.1 List of Publications

This thesis covers the following publications, in chronological order:

• Carola Figueroa-Flores, Abel Gonzalez-Garcia, Joost van de Weijer and Bog-
dan Raducanu. Saliency for fine-grained object recognition in domain with
scarce training data. Pattern Recognition ; 94-62-73, 2019 (Journal).

• Carola Figueroa Flores, Bogdan Raducanu, David Berga and Joost van de
Weijer. Hallucinating saliency maps for fine-grained image classification
for limited data domains. In the 16th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications
(VISAPP 2021) paper accepted as a Full Paper.

• Carola Figueroa Flores, David Berga, Bogdan Raducanu and Joost van de
Weijer. Saliency for Free: Saliency Prediction as a Side-Effect of Object Recog-
nition. Submitted to: Pattern Recognition Journal, 2020 under review

6.2 Future Work

The purpose of this section is to describe possible future experiments and propose
lines of study that were not approached during the development of this thesis.

Thanks to the research efforts of the computer vision community on the ad-
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vent of deep neural networks and large annotated datasets, saliency prediction
techniques have presented a gaze-assisted attention mechanism for image caption
based on human eye fixations (i.e.the static states of gaze upon a specific location).
Although this strategy confirms the importance of using eye fixations, it requires
gaze information from a human operator. Therefore, it can not be applied on
general visual data archives, in which this information is missing. To overcome
this limit, Tavakoli et al. [174] presented an image captioning method based on
saliency maps, which can be automatically predicted from the input image. Based
on this approach and our results obtained in Chapter 3, we could propose as future
work an approach which incorporates saliency prediction to effectively enhance the
quality of image description. This way, we could open an opportunity to extend this
work to the problem of "neural image captions", that is, how to provide a textual
description for the most salient region(s) of an image.

How quickly can you tell the number of salient objects in an image? As early as
the 19th century, it was observed that humans can effortlessly identify the number
of objects in the range of 1-4 at a glance [165]. Since then, this phenomenon, later
coined by Kaufman et al. [83] as subitizing, has been studied and tested in various
experimental settings [200]. Inspired by the subitizing phenomenon and our results
obtained in our model in Chapter 4, we would be interested to study the problem
of salient object subitizing(SOS), i.e. predicting the existence and the number of
salient objects in an image without using any localization process.

After demonstrating that our model proposed in chapter 5 has achieved good
results, we would like to extend it, using for the concept related to "multi-scale
saliency". For this, we could introduce contrast-based element saliency at each
scale. Finally, a multi-scale saliency integration strategy would be applied to obtain
the final saliency map.
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