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Abstract

Image and video segmentation are central tasks within the computer vision field. Never-
theless, deep learning solutions for segmentation typically rely on pixel-level annotations,
which are very costly to collect. Likewise, some segmentation systems require human in-
teraction at inference time, which involves effort for the end-user. In this thesis, we
look into diverse supervision scenarios for image and video object segmentation. We
discern between supervision when learning the model, i.e., which type of annotations are
used during training, and supervision at inference, namely which kind of human input
is required when running the system. Our target are models that require low forms of
supervision.

In the first part of the thesis we present a novel recurrent architecture for video object
segmentation that is end-to-end trainable in a fully-supervised setup, and that does not
require any post-processing step, i.e., the output of the model directly solves the ad-
dressed task. The second part of the thesis aims at lowering the annotation cost, in
terms of labeling time, needed to train image segmentation models. We explore semi-
supervised pipelines and show results when a very limited budget is available. The third
part of the dissertation attempts to alleviate the supervision required by semi-automatic
systems at inference time. Particularly, we focus on semi-supervised video object seg-
mentation, which typically requires generating a binary mask for each instance to be
tracked. In contrast, we present a model for language-guided video object segmentation,
which identifies the object to segment with a natural language expression. We study
current benchmarks, propose a novel categorization of referring expressions for video,
and identify the main challenges posed by the video task.
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també és vostra, per tot el suport incondicional que m’heu donat durant tots aquests
anys, tota l’estima que he rebut, i pels valors que m’heu ensenyat des de que sóc petita.
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Acronyms

VOS: Video Object Segmentation

RSIS: Recurrent Semantic Instance Segmentation

RVOS: Recurrent Video Object Segmentation

BASIS: Budget-aware Semi-Supervised Instance and Semantic Segmentation

RE: Referring Expression

LVOS: Language-guided Video Object Segmentation

Glossary

Annotation Budget/Cost: The time required for data labeling.

Training Time: Referred to the training of a deep learning model.

Inference Time: Referred to the stage in which a model has already been trained, and
is used to infer predictions for new data. Also known as test time.

Supervision Setup: We distinguish between supervision setup at training or inference
time. It refers to the type of data provided to the algorithm to be trained or to be used
at inference, respectively.

Strongly-labeled Data: Data is annotated with complete labels, i.e., the optimal labels
for the task addressed.

Weakly-labeled Data: Data is annotated with some partial or inexact label.

Unsupervised Setup: Only data is available without any kind of annotation.

Fully-supervised Setup: Data and the corresponding strong labels are available.

Weakly-Supervised Setup: Given some data, only weak labels available, or only a
subset of the data contains some kind of annotation.

Semi-Supervised Setup: It is a type of weakly-supervised setup, that typically consists
of having some strongly-labeled data and another set of data which is unlabeled or weakly-
labeled.

One-shot Video Object Segmentation: Also known as semi-supervised at inference
VOS. It is the task that, given a video sequence and pixel-wise masks for the objects to
be tracked in the first frame, the algorithm has to produce masks of the target objects
for the rest of the frames.

Zero-shot Video Object Segmentation: Also known as unsupervised at inference
VOS. It is the task that, given only a video sequence with no other initialization cue, the
algorithm has to discover objects along the video and produce masks for them.





1 Introduction

Computer vision plays a key role in Artificial Intelligence because of the rich semantic
information contained in pixels and the ubiquity of cameras nowadays. Multimedia
content is on a rise since social networks have such a strong impact in our society and
access to the internet becomes more widespread. This context allows the gathering of
large datasets which have fostered great advancements in the computer vision field thanks
to deep neural networks. These models can effectively exploit large amounts of data to
reach a high expressive power. Since the breakout of Imagenet [152], a large dataset
for image classification, most computer vision tasks have benefited from deep neural
networks. Among the different tasks in the computer vision field, locating objects in
images and videos is a central one, as it has many applications in autonomous driving,
surveillance, image and video edition, medical diagnosis and biometrics along with others.
Localization of objects can be obtained with bounding boxes around the target objects,
or with accurate pixel-level masks that delineate the instances. The latter is a more
challenging task, but fundamental for certain applications where edges of objects need
to be determined. The main task addressed in this thesis is instance segmentation, that
consists in, given an image or video, providing pixel-level masks for each instance of
certain semantic object classes.

In order to train a segmentation model, current solutions rely on large amounts of pixel-
wise annotations, which demand significant human effort to collect. Furthermore, expert
knowledge is needed to gather certain annotations, such as labels for medical images. In
consequence, there is a huge interest for systems that work with less-demanding forms of
supervision, such as weakly or semi-supervised pipelines.

Besides, in some segmentation tasks, human effort is not only needed for training the
models, but also at inference. In semi-automatic systems, user input may be required
as guidance to start the system. One example is the task of one-shot Video Object
Segmentation (osVOS) [136], which expects that the end-user provides a pixel-level mask
for each object to be tracked in the first frame of the video. Following, the model must
predict the segmentation mask of the tracked objects for the remaining frames. These
initialization cues are crucial for high accuracy, but they are arduous to obtain. An
alternative are models that depend on weaker input signals that are user-friendlier.

This thesis explores different supervision scenarios for the instance segmentation task,
distinguishing between supervision during training and at inference, and focusing on low-
supervision setups. We start with fully-supervised models that rely on large amounts of
annotated data, to later reduce the annotation burden during training by using semi-
supervised setups. Lastly, we focus on the inference mode of the system, and we leverage
language as a weak guidance for the osVOS task.
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Figure 1.1: Two different stages when deploying a deep learning model: training and
inference. In this example, the model would be trained to address semantic segmentation.

1.1 Objectives

In this Section we define which are the objectives of this dissertation. The main goal
of the thesis is to lower the human effort required for running segmentation
models. We work with different supervision scenarios on both training and inference.
To make this idea clearer, we show in Figure 1.1 a typical deployment of a deep learning
system. It has two different stages: firstly, the model is trained with some collected
data and the corresponding annotations. Secondly, once the model is trained and it has
capabilities to address the target task, it can be used in inference mode in order to infer
predictions on unseen data.

This thesis consists of three different Parts. Following, we enumerate our main objectives
for each of them:

Part I: Supervised Learning for Image and Video Segmentation

• We aim at solving video object segmentation (VOS) in and end-to-end manner.

• We aim at addressing VOS in an unsupervised setup at inference (also named zero-
shot), i.e., that the model learns to discover objects within the sequence without
any initialization cue of what objects to follow.

Part II: Semi-Supervised Learning for Image Segmentation

• The goal is to lower the annotation required at training time for segmentation
systems, by exploiting semi-supervised models.

Part III: Language-guided Video Object Segmentation

• Our target is to lower the human effort required at inference time for video object
segmentation systems compared to one-shot systems, by exploiting language as a
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Figure 1.2: The expected performance for each different supervision setup that we target
at each Part of the thesis. SS stands for semi-supervised, and VOS for Video Object
Segmentation. Language-VOS refers to Language-guided VOS. We distinguish between
training and inference mode.

weak supervision to indicate which objects to segment in the video. We refer to
this task with the term language-guided VOS.

• We aim at analyzing current benchmarks for language-guided VOS, in order to
identify the main challenges of the task.

The different supervision scenarios that we explore are summarized in Figure 1.2, where
the expected performance depending on the supervision level is illustrated, for both
training and inference. The Figure illustrates in which supervision scenarios we want to
contribute with this dissertation.

1.2 Research Questions

Most best-performing models for instance segmentation are composed of two stages [143].
Given an image or video, a first stage proposes object candidate regions, and a second
stage semantically classifies these candidates between a predefined set of semantic cate-
gories. Two-stage models typically require a post-processing step in order to filter over-
lapping predictions, so that a single bounding box is assigned to each object instance.
The current trend in deep learning moves towards systems that are fully end-to-end train-
able [21], meaning that the loss optimized corresponds to the actual task addressed, and
that no additional post-processing is required. The first research question addressed in
Part I, is: Is it possible to train fully end-to-end architectures for video ob-
ject segmentation with Recurrent Neural Networks? In this Part of the thesis we
propose a novel architecture for video object segmentation that is composed of a single
stage and that does not require any post-processing step. The architecture is based on
Recurrent Neural Networks in order to discover and track objects in a video sequence,
and it is recurrent in both the spatial (within the image) and the temporal (across video
frames) domains. Moreover, the most common setup for video object segmentation is
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the one-shot case, where a pixel-level mask for each object to be tracked is expected at
inference time. In this Part, we also formulate the following question: Can we train
a video model that discovers objects along the video sequence without any
initialization cue? Ours was the first end-to-end trainable solution that tackled this
task for videos.

Whereas the first Part of the thesis focuses on fully-supervised systems, in Part II we
explore semi-supervision to reduce the annotation time required to train segmentation
models. Instance segmentation solutions based on deep learning are traditionally trained
with strong labels, that is, all objects in the training dataset are manually labeled at a
pixel-level. This annotation procedure is time-expensive and may require expert knowl-
edge, for example when annotating medical images. Some alternatives to alleviate the
annotation burden exploit weaker forms of supervision, by using weak annotations such
as image-level labels or bounding boxes, or by relying on fewer strong annotations (semi-
supervision). The latter leverages a limited amount of strongly-annotated data with a
large amount of unlabeled or weakly-labeled samples, and it aims at better exploiting the
scarce expert knowledge that we may have available. The research question addressed in
Part II of the dissertation is the following: Can we train semi-supervised systems
for segmentation on very low annotation budgets? Part II of this thesis fo-
cuses on training segmentation models with semi-supervised pipelines, showing the first
results with very low annotation budgets for instance segmentation, and proving that
semi-supervised setups for image segmentation reach better results compared to relying
on weak annotations (image-level labels or bounding boxes), with matching annotation
costs.

Part I and II cover fully- and semi-supervised setups for image segmentation, focusing on
the supervision when training the models. In Part III we explore weakly-supervised seg-
mentation systems at inference. Specifically, we leverage natural language for the video
object segmentation task, first addressed in Part I. In the commonly-named one-shot
video object segmentation task [18], also referred as semi-supervised object segmentation,
the objects of the first frame of a video must be pixel-wise labeled at inference time, so
that the model can track the instances throughout the video sequence. In Part III, the
research question addressed is the following: Can we use language to reduce the
human effort required at inference time in semi-supervised VOS systems?
Aiming at a user-friendlier human-computer interaction, in Part III we explore natural
language as a weak form of supervision at test time. Particularly, we exploit referring ex-
pressions to indicate which object is to be segmented. This setup reduces the complexity
of generating a mask for the target object, to producing a simple linguistic expression that
uniquely refers to the instance. We build a neural network that processes natural lan-
guage as input and that discovers the referred objects in the video sequence. Our model
is competitive for images and outperforms all previous works for video. Furthermore,
another research question that we address in this Part is the following: Are current
benchmarks suitable for the video task? We argue that existing datasets [85, 55]
are unsuitable for this task as they mostly contain trivial examples, so we carefully ana-
lyze, filter and augment referring expressions of current benchmarks to identify the main
challenges of language-guided video object segmentation.
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Chapter Image Video Training Inference

3 X Supervised Semi- & Unsupervised
4 X Semi-Supervised Unsupervised
5 X Active Learning Unsupervised
6 X X Supervised Weakly-Supervised

Table 1.1: Classification of the thesis Chapters based on the supervision level.

1.3 Contributions and Thesis Outline

The main contributions of each Part of the thesis are highlighted in this Section.

Part I: Supervised Learning for Image and Video Segmentation

• Chapter 3: We introduce RVOS, the first end-to-end architecture for video object
segmentation. We evaluate our model on DAVIS 2017 [136] and Youtube-VOS [182]
benchmarks. We are the first work to address zero-shot video object segmentation,
that is, to discover objects in video sequences without any initialization cue.

Part II: Semi-Supervised Learning for Image Segmentation

• Chapter 4: We propose BASIS, a semi-supervised pipeline for image segmenta-
tion based on self-learning. BASIS is state-of-the-art for semantic and instance
segmentation with very low annotation budgets on the Pascal VOC dataset [47].
We identify how semi-supervised pipelines can surpass the performance achieved
by weakly-supervised setups, at matching annotation cost.

• Chapter 5: We study a novel active learning mechanism to better choose which
images to strongly-annotate for our semi-supervised pipeline BASIS.

Part III: Language-guided Video Object Segmentation

• Chapter 6: We present RefVOS, a model for language-guided video object seg-
mentation that is state-of-the-art on DAVIS 2017 [136] and A2D datasets [179].

We introduce a novel semantic categorization of referring expressions tailored for
the video task. We augment the referring expressions of A2D to analyze the impact
of the different categories, and identify the main challenges for the video task.

Table 1.1 summarizes the content presented in this thesis, by classifying the different
Chapters based on the modality tackled (image or video), and the type of supervision
applied either while training or at inference. Prior to the three main Parts of the thesis,
a brief technical background review is presented in Chapter 2.

1.4 List of Peer-Reviewed Publications

This Section contains a list of the peer-reviewed publications for each Part of the thesis,
together with publications that are not covered in this dissertation.
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Part I: Supervised Learning for Image and Video Segmentation

• Chapter 3: Amaia Salvador, Miriam Bellver, Victor Campos, Manel Baradad,
Ferran Marqués, Jordi Torres, Xavier Giro-i-Nieto. Recurrent Neural Networks for
Semantic Instance Segmentation. In DeepVision Workshop in CVPR 2018 [154].
This project is open-source (https://github.com/imatge-upc/rsis).

• Chapter 3: Carles Ventura* 1, Miriam Bellver*, Andreu Girbau, Amaia Salvador,
Ferran Marques and Xavier Giro-i-Nieto. RVOS: End-to-End Recurrent Net for
Video Object Segmentation. In CVPR 2019 Proceedings [169]. This project is
open-source (https://github.com/imatge-upc/rvos).

Part II: Semi-Supervised Learning for Image Segmentation

• Chapter 4: Miriam Bellver, Amaia Salvador, Jordi Torres and Xavier Giro-i-
Nieto. Budget-aware Semi-Supervised Semantic and Instance Segmentation. In
DeepVision Workshop Proceedings in CVPR 2019 [14] (Best paper award).

• Chapter 5: Miriam Bellver, Amaia Salvador, Jordi Torres and Xavier Giro-i-
Nieto. Mask-guided sample selection for Semi-Supervised Instance Segmentation.
Multimedia Tools and Applications 2020 [12]. DOI: 10.1007/s11042-020-09235-4.

Part III: Language-guided Video Object Segmentation

• Chapter 6: Miriam Bellver, Carles Ventura, Carina Silberer, Ioannis Kazakos,
Jordi Torres and Xavier Giro-i-Nieto. RefVOS: A Closer Look at Referring Expres-
sions for Video Object Segmentation. Submitted [13]. This project is open-source
(https://github.com/miriambellver/refvos).

Publications not covered in the thesis

• Hierarchical object detection with deep reinforcement learning: In this
work we presented a method for performing hierarchical object detection in images
guided by a deep reinforcement learning agent. The key idea is to focus on those
parts of the image that contain richer information and zoom on them. We train an
intelligent agent that, given an image window, is capable of deciding where to focus
the attention among five different predefined region candidates (smaller windows).
This procedure is iterated providing a hierarchical image analysis. We compare
two different candidate proposal strategies to guide the object search: with and
without overlap. Moreover, our work compares two different strategies to extract
features from a convolutional neural network for each region proposal: a first one
that computes new feature maps for each region proposal, and a second one that
computes the feature maps for the whole image to later generate crops for each
region proposal. Experiments indicate better results for the overlapping candidate
proposal strategy and a loss of performance for the cropped image features due to
the loss of spatial resolution. We argue that, while this loss seems unavoidable when
working with large amounts of object candidates, the much more reduced amount of
region proposals generated by our reinforcement learning agent allows considering

1(*) Joint work with Dr. Carles Ventura from Universitat Oberta de Catalunya

https://github.com/imatge-upc/rsis
https://github.com/imatge-upc/rvos
https://github.com/miriambellver/refvos
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to extract features for each location without sharing convolutional computation
among regions.

This work resulted into two publications:

– Miriam Bellver, Xavier Giró-i-Nieto, Ferran Marqués and Jordi Torres. Hi-
erarchical object detection with deep reinforcement learning. In Deep Rein-
forcement Learning Workshop in Neurips 2016.

– Miriam Bellver, Xavier Giró-i-Nieto, Ferran Marqués and Jordi Torres. Hier-
archical object detection with deep reinforcement learning. In Deep Learning
for Image Processing Applications, 2017 [17]. DOI: 10.3233/978-1-61499-822-
8-164.

This project is open-source (https://github.com/imatge-upc/detection-2016-
nipsws).

• Detection-aided liver lesion segmentation using deep learning: A fully
automatic technique for segmenting the liver and localizing its unhealthy tissues is
a convenient tool in order to diagnose hepatic diseases and assess the response to
the according treatments. In this work we propose a method to segment the liver
and its lesions from Computed Tomography (CT) scans using Convolutional Neural
Networks (CNNs), that have proven good results in a variety of computer vision
tasks, including medical imaging. The network that segments the lesions consists
of a cascaded architecture, which first focuses on the region of the liver in order to
segment the lesions on it. Moreover, we train a detector to localize the lesions, and
mask the results of the segmentation network with the positive detections. The
segmentation architecture is based on DRIU [111], a Fully Convolutional Network
(FCN) with side outputs that work on feature maps of different resolutions, to
finally benefit from the multi-scale information learned by different stages of the
network. The main contribution of this work is the use of a detector to localize the
lesions, which we show to be beneficial to remove false positives triggered by the
segmentation network.

This work derived into the following publication:

– Miriam Bellver, Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Xavier Giró-i-Nieto,
Jordi Torres, Luc Van Gool. Detection-aided liver lesion segmentation using
deep learning. In Machine Learning 4 Health Workshop in Neurips 2017 [11].

This project is open-source (https://github.com/imatge-upc/liverseg-2017-nipsws).

With our method, we ranked 10th on the Liver Tumor Segmentation Bench-
mark (LITS), and we participated in the journal of the challenge [15].

• Distributed training strategies for a computer vision deep learning al-
gorithm on a distributed GPU cluster: Deep learning algorithms base their
success on building high learning capacity models with millions of parameters that
are tuned in a data-driven fashion. These models are trained by processing millions
of examples, so that the development of more accurate algorithms is usually lim-
ited by the throughput of the computing devices on which they are trained. In this
work, we explore how the training of a state-of-the-art neural network for computer

https://github.com/imatge-upc/detection-2016-nipsws
https://github.com/imatge-upc/detection-2016-nipsws
https://github.com/imatge-upc/liverseg-2017-nipsws
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vision can be parallelized on a distributed GPU cluster. The effect of distribut-
ing the training process is addressed from two different points of view. First, the
scalability of the task and its performance in the distributed setting are analyzed.
Second, the impact of distributed training methods on the final accuracy of the
models is studied.

This work derived into the following publication:

– Victor Campos, Francesc Sastre, Maurici Yagües, Miriam Bellver, Xavier
Giró-i-Nieto and Jordi Torres. Distributed training strategies for a computer
vision deep learning algorithm on a distributed GPU cluster. In Procedia
Computer Science, 2017 [20].

1.5 List of Research Stages and Internships

This Section presents a list of the research stages and internships pursued in the course
of this dissertation:

• February 2017 - August 2017: Research internship at the Eidgenössische Technische
Hochschule Zürich (ETHZ) in the Computer Vision Lab (CVL) team, under the
supervision of Dr. Jordi Pont Tuset and Dr. Kevis-Kokitsi Maninis.

• April 2019 - August 2019: Internship at Amazon Berlin, in the Computer Vision
Team, under the supervision of Dr. Matthieu Guillaumin.

• April 2020 - July 2020: Internship at Amazon Barcelona, in the Rhapsody Team,
under the supervision of Dr. Javier Romero.



2 Technical Background

This Chapter aims at introducing some technical concepts to ease the reading of the
manuscript.

Firstly, Section 2.1 introduces the main core computer vision tasks related to this dis-
sertation. Secondly, in Section 2.2 we introduce neural-based architectures which are
the foundations of the different models presented in this thesis. Following, as the main
thread of discussion of this thesis is the supervision level applied at either training or
inference, in Section 2.3 different supervision scenarios are described. Lastly, key con-
cepts on Natural Language Processing which are relevant for Part III of the thesis are
introduced in Section 2.4.

2.1 Computer Vision Tasks

Computer Vision is the field that studies how computers perceive and understand digital
images and videos [161]. Some of the most popular tasks are image classification, object
detection, image segmentation or image captioning in images or videos. This thesis
focuses on methods related to image segmentation. Particularly, in Part I we work
with a novel end-to-end architecture for instance segmentation, and in Parts II and
III of the thesis, we focus on segmentation models in low supervision scenarios. Thus,
in this Section we introduce relevant related work about object detection (as instance
segmentation is a natural extension of this task) and image segmentation.

2.1.1 Object Detection

Object detection is the task of specifying a bounding box for each object instance in an im-
age or video. Typically a semantic class category for each instance is also required. Deep
learning approaches have addressed the task following two basic strategies: proposal-
based object detection and single-shot object detection, explained in Sections 2.1.1.1 and
2.1.1.2 respectively.

2.1.1.1 Proposal-based object detection

Proposal-based methods are composed of two stages. The first one proposes candidate
regions that may contain objects in the image. The second one classifies these object
candidates among a set of pre-defined class categories. These algorithms rely on a fi-
nal post-processing step that filters out the object proposals in order to have a single
bounding box around each object in the image.
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Figure 2.1: Faster R-CNN. Given an image, features are extracted with a CNN and fed
to the Region Proposal Network, that provides a number of proposal regions that may
contain objects. Next, each region proposal is described using the Roi-Pooling operation.
The last step consists in classifying semantically the proposal. Figure from [143].

Region-based Convolutional Neural Networks (R-CNNs) [57] was the first work that
applied deep learning for object detection, and it is a proposal-based method. In its
first stage, object proposals are obtained. These are produced with algorithms based
on hand-crafted features, such as Selective Search [167] of MCG [134]. In the second
stage, each of these regions is represented with a feature vector obtained from a CNN,
and later classified with a class category. The initial proposals are usually regressed
and improved during this second stage. The same authors of the aforementioned work
proposed an improvement with Fast R-CNN [56]. Instead of forwarding each object
proposal to the CNN, which is computationally very expensive, they proposed to extract
features only once for the whole image, and introduced the Region Of Interest Pooling
operation (ROI-pooling) to crop from these feature maps the regions of interest belonging
to each original proposal. Thus, the computational resources required are decreased
significantly. Following, Faster R-CNN [143] (Figure 2.1) removed the step of having
an external algorithm to obtain object proposals, and added into the architecture a
Region Proposal Network (RPN) that directly leveraged convolutional features to predict
regions of interest within the image. These same convolutional features are later used to
describe each region. Faster R-CNN is much faster than previous works, and is still a
standard reference as object detector. Subsequent modifications have added a branch to
obtain a binary mask for each bounding box predicted, solving the task of image instance
segmentation [64].
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Figure 2.2: RetinaNet architecture. It is a one-stage network composed of a feature
pyramid to extract features from the input image, and two subnetworks: one to classify
the anchor boxes and another to regress them. Figure from [99].

Many works have built on top of Faster-RCNN for object detection or instance segmenta-
tion [41, 39, 97]. All of them share the following steps: (1) Objects proposal generation,
(2) Objects proposals classification and regression, and (3) Post-processing step to filter
object proposals. Although these methods can be very fast at inference, they still need a
final filtering step to have a single bounding box per object in the image. Furthermore,
the fact that they have two different stages prevents from having a single loss that reflects
the task of object detection. Other works, discussed in Section 2.1.1.2, develop strategies
for single-shot architectures, with a single loss to optimize the model.

2.1.1.2 Single-shot object detection

This class of object detectors are called single-shot because it takes only one shot to
detect multiple objects present in an image. Therefore, they are typically faster than
proposal-based methods, although the performance is also typically lower. These models
apply a single neural network to the full image, by dividing the input image into regions
and predicting bounding boxes and probabilities for each region [138, 105, 99]. The
main difference compared to proposal-based methods, is that in this case regions are
not pre-selected. From these models, we want to highlight RetinaNet [99] (Figure 2.2).
The authors discovered that extreme foreground-background class imbalance encountered
during training of single-shot detectors is the main reason for low performance compared
to proposal-based methods. Therefore, they propose a novel focal loss that focuses on
training on hard examples by removing all those regions that belong to background and
are easy negative examples. With this loss, they achieve state-of-the-art performance for
object detection at faster rates compared to proposal-based strategies.

2.1.2 Image Segmentation

The broad definition of image segmentation is the process of partitioning an image into
multiple segments, i.e., sets of pixels, in order to simplify and/or change the represen-
tation from an image into something more meaningful. In the context of deep learning,
image segmentation is a dense prediction task, as each input pixel requires an output. In
this thesis we focus on semantic and instance segmentation, which are described in more
details in Sections 2.1.2.1 and 2.1.2.2 respectively.
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Figure 2.3: Semantic Segmentation examples. The second and fourth images are the
results obtained by a semantic segmentation method for first and third image respectively.

Figure 2.4: Transposed convolution layer with a 2×2 kernel. Each parameter value in
the kernel is multiplied to the input tensor. Following, the resulting matrices are added.
Figure from [191].

2.1.2.1 Semantic Segmentation

In semantic segmentation, given an image, a classification between a predefined set of se-
mantic categories for each input pixel is required. Some examples of the task are depicted
in Figure 2.3. Typical architectures for semantic segmentation are Fully Convolutional
Networks (FCNs) [106]. The main characteristic of FCNs is that they are composed of
convolutional and pooling layers only, without any fully connected layer. This allows
that FCNs can handle varying input sizes. Moreover, they can work faster as matrix
multiplications from fully connected layers are computationally very expensive.

In segmentation tasks it is required to preserve the low-level details, as edges and borders
are crucial to obtain a precise segmentation. Deep learning architectures are typically
tailored to overcome the loss of spatial information induced by pooling operations from
CNNs, such as upsampling methods, dilated convolutions and skip connections.

One manner to overcome the loss of spatial information produced by down-sampling op-
erations is to compensate them with upsampling ones, and recover the input resolution
at the end of the network. This can be performed through bilinear interpolation or with
transposed convolutions. Transposed convolutions (Figure 2.6), also known as deconvo-
lutions or strided convolutions, are just convoluting the input back to a larger size in
order to increase resolution [106]. Transposed convolutions apply a regular convolution
but reverting the spatial information.

Another strategy to keep low-level details is to avoid down-sampling operations, and keep
a high resolution throughout all the network. However, pooling layers are not only meant
to down-sample the resolution, but also to increase the field of view to learn more abstract
concepts. Increasing the field of view can also be achieved by increasing the kernel size,
but at the expense of more parameters. An alternative is to exploit Dilated convolutions,
also known as atrous convolutions [27, 28, 187, 29]. The dilation rate defines the spacing
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Figure 2.5: DeepLabv3 architecture for semantic segmentation. The model has an Atrous
Spatial Pyramid Pooling module with parallel branches working at different dilation rates
in order to capture multi-scale context. Figure from [29].

Figure 2.6: Dilated Convolution. a) shows a 3x3 kernel with dilation rate=1, with a field
of view of 3×3. Figure b) shows the same kernel but with a dilation rate of 2, so the
field of view is increased to 7×7. In Figure c) there is depicted the same kernel but with
dilation ratio of 4, being now the field of view of 15×15. Figure from [187].

between the values in a kernel, i.e., a 3×3 kernel with dilation rate of 2 has the same field
of view as a kernel of size 5×5, but it only requires 9 parameters (Figure 2.6). A model
which employs atrous convolutions for semantic segmentation is DeepLabv3 [29] and is
depicted in Figure 2.5. DeepLabv3 has parallel modules that apply atrous convolutions
at different rates. In their work they show how this helps to segment objects at different
scales.

Another strategy to preserve the information lost in the contracting path of a convolu-
tional neural network, is to leverage skip connections. Skip connections are connections
from early to latter layers, and they can appear in a CNN in many ways. One option is to
connect features from the contracting path of the network to the features of the expanding
path (i.e., the path with upsampling operations to recover the spatial resolution) [146].
These connections can be in form of additions, concatenations or multiplications, among
other options. An alternative is to produce predictions at several stages of the network
(from shallow and also from deep layers) and combine the results [107].
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Figure 2.7: Instance Segmentation examples. Each image has an overlay of segmentation
masks predicted by an instance segmentation method.

2.1.2.2 Semantic Instance Segmentation

Semantic instance segmentation is defined as the task of assigning a binary mask and a
categorical label to each object in an image. This task is very similar to object detection,
but instead of bounding boxes, binary masks must be predicted for each object instance.
In Figure 2.7 some examples with images and the corresponding obtained masks by an
instance segmentation method are shown.

Pipelines for this task are typically an extension of proposal-based object detection meth-
ods, by just adding some mechanism to segment the object within the proposal region
[62, 63, 32]. Some works build on top of Faster R-CNN, and add cascade of predictors
[62, 63, 97] and refinement of the binary masks [97]. A very popular work is [64], which
adds a parallel branch to Faster R-CNN that predicts the binary mask for the proposal.

In contrast to the aforementioned architectures, some works consider the image holis-
tically in order to obtain the objects segments. Thus, these approaches do not rely on
object proposals. These include works that use Conditional Random Fields [6] or water-
shed transform on top of a semantic segmentation map to identify the different object
instances [8]. An alternative is metric learning in order to cluster object pixels to obtain
the instance segments [43].

In Part I of the thesis, we cast instance segmentation as a sequential problem, leveraging
Recurrent Neural Networks (RNNs). Particularly, we adapt RSIS [154], an architecture
for recurrent semantic instance segmentation, in order to perform video object segmen-
tation. Previous to RSIS, other works had treated instance segmentation as a sequential
process. Ren & Zemel [141] exploit attention to focus on different regions of the image in
a sequential manner, and produce the instance segmentation results. Additionally, their
model has a recurrent module to improve the segmentation mask provided for each region
of interest in an iterative way. More similar to RSIS, Romera-Paredes & Torr [144] lever-
age Recurrent Neural Networks to predict binary masks for the different objects within an
image, but their model is class-agnostic and predicts instances of a single object category.
Furthermore, they rely on features pre-trained on semantic segmentation.

A detailed overview of the architectures for instance segmentation for videos is presented
in Section 3.2 of Part I of this thesis.
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Figure 2.8: LeNet-5 architecture for digits recognition [91]. Each convolutional layer
produces a set of feature maps, that are sub-sampled to reduce the resolution. After 4
convolutional layers, the network has a classifier in the form of a Multi-Layer Perceptron.

2.2 Deep Learning Architectures

This Section describes two neural networks that are fundamental for the different models
presented within the thesis. Firstly, in Section 2.2.1 Convolutional Neural Networks are
described. Secondly, Section 2.2.2 explains Recurrent Neural Networks.

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are the most popular type of deep neural net-
works in computer vision [88, 159, 66]. CNNs are networks specialized in processing
data that has a known grid-like topology [58], like images or video frames, that are a
2-D grid of pixels. The main property of CNNs is that at least one of the layers of the
network is a convolutional layer, meaning that it employs convolutions instead of general
matrix multiplication applied in a typical fully-connected layer. CNN architectures often
combine convolutional layers with pooling layers, which sub-sample the resulting feature
maps from the convolutional layers. An example of the overall architecture of a CNN is
illustrated in Figure 2.8.

The motivation to employ convolutions is grounded on three reasons: sparse interactions,
parameter sharing and equivariant representations. Neurons in fully-connected layers are
connected, and hence interact, to all neurons of the next layer. Convolutional layers, on
the other hand, have sparse interactions, as convolutional kernels are typically smaller
than the input. Sparse interactions are suitable for data such as images, where the
information is local. An example to understand that information in images is local,
is that objects, or object parts, only occupy certain region of the image, that can be
detected by a convolutional kernel. Convolutional filters are specialized in detecting
certain patterns, and will be convolved throughout all the input data. The filters share
parameters throughout all locations, reducing the overall number of parameters of the
convolutional layer compared to fully connected layers. Parameter sharing causes that
convolutional layers are equivariant to translation, i.e., if the input changes, the output
changes in the same way, which allows the network to generalize edge, texture and shape
detection in different locations.

The result of convolving a filter produces what is called a feature map. Each layer
produces as many feature maps as filters convolved to the given input. Subsequently,
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Figure 2.9: Unrolled RNN. It can be thought as multiples copies of the same network
that pass information from one step to the next one. Figure from [120].

these feature maps are the input of the following layer. The role of a pooling layer is to
sub-sample feature maps, usually performing a max pooling operation over grid regions
from the input. Pooling is desirable for several reasons. First, from a computational point
of view, if the feature maps are sub-sampled, less computations are required. Another
reason is to gain spatial invariance to small changes of the input, which helps to learn
more generalized representations. Finally, pooling also enables to increase the receptive
field as we go deeper into the network by making the feature maps smaller. Consequently,
filters see features corresponding to wider regions from the input data, which allows to
learn more abstract representations. This helps into learning a hierarchy of features,
starting from low-level features in early layers, and moving to more abstract and global
representations in the deepest levels of the network.

Another key for the success of CNNs, is that they can be trained very efficiently thanks
to modern accelerators such as graphics processing units (GPUs) and optimized deep
learning frameworks [1, 125].

2.2.2 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a class of neural network designed to recognize
patterns in sequences of data. These networks take as their input the current input and
also information from the previous time step of the sequence. RNNs have a feedback loop
that connects each time step to past decisions, so it is commonly said that RNNs have
memory as they allow information to persist. The sequential information is preserved in
the network’s hidden state. Figure 2.9 depicts an unrolled RNN model.

The mathematical formulation to define the hidden state of a vanilla RNN is shown in
Equation 2.1, where ht is the hidden state of a RNN at step t. The hidden state is a
function of the input at this same time step xt modified by a weight matrix W , and then
added to the hidden state from the previous time step ht−1 modified by another weight
matrix U . The weights matrices W and U determine how much information to keep from
the current input and from the previous hidden states.

ht = φ(Wxt + Uht−1) (2.1)

A popular type of RNNs are Long Short-Term Memory (LSTMs) [69] networks. An
LSTM unit is composed of a cell, an input gate, an output gate and a forget gate. The
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cell is capable of remembering values over time intervals and the different gates regulate
the flow of information into and out of the cell. In contrast to vanilla RNNs, LSTMs
are popular for remembering longer-term dependencies. The gates of a LSTM are imple-
mented with fully connected layers. If, instead, they are convolutional layers, then it is
a Convolutional LSTM (ConvLSTM) [178] unit.

RNNs are typically used in the fields of natural language processing and speech recog-
nition, but they can also be leveraged in computer vision as we will explore in Part I
of this thesis, where we employ ConvLSTMs in our proposed architectures for instance
segmentation and video object segmentation.

2.3 Supervision Paradigms

This Section aims at introducing different supervision setups at both training and infer-
ence of a deep learning pipeline. First, in Section 2.3.1 the three main learning paradigms
are introduced. Next, Section 2.3.2 describes weak supervision. Lastly, Section 2.3.3 fo-
cuses on the supervision scenarios at inference time.

2.3.1 Training Supervision Scenarios

We distinguish different machine learning paradigms depending on the level of supervision
during training: supervised, unsupervised and semi-supervised learning.

In supervised learning, ground truth labels are available for the training samples, i.e., a
prior knowledge of what the output values for the given data samples should be in our
problem. Thus, the goal is to learn a function that maps your input data to the desired
output or target. Taking the notation from [24], formally the setup consists of a training
set made of pairs (xi, yi), where yi ∈ Y are the labels or targets of the samples xi ∈ X .
The pairs (xi, yi) are samples i.i.d. (independently and identically distributed) from some
distribution. The goal is to estimate a function Y = f(X ).

In unsupervised learning, only input data is available without corresponding output tar-
gets. Thus, the goal is to model the underlying structure or distribution present within
a set of data points. Formally, let X = (x1, ...., xn) be a set of n examples, where xi ∈ X
for all i ∈ [n] := {1, ..., n}. It is typically assumed that points are drawn i.i.d. from a
common distribution on X . Unsupervised learning consists in estimating a density which
is likely to have generated X. A type of unsupervised learning that has gained relevance
in the recent years, is self-supervised learning, which are algorithms where the input data
itself provides the supervision. In self-supervised learning a proxy task is defined so that
the algorithm learns valuable representations for the actual downstream task.

In semi-supervised learning (SSL), a large amount of input data is typically available,
but only some of it is labeled. Taking again the notation from [24], in SSL the data
set X =

(
(xi)i∈[n]

)
can be divided into two parts: the data Xl := (x1, ..., xl) with the

corresponding labels Yl := (y1, ..., yl), and the data Xu := (xl+1, ..., xl+u) without labels,
or with some weak constraint. In order to address semi-supervised learning, supervised
and unsupervised techniques can be combined.
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2.3.2 Weak Supervision Learning

Full-supervision refers to the setup where all labels are available during training. In
recent years machine learning and deep learning have seen an impressive growth, but
these models are dependent on large hand-labeled datasets in order to be trained on a
fully-supervised way. These annotations are expensive and time-consuming to collect,
especially when domain expertise is required. Therefore, the trend is to advance in
leveraging coarser labels that are easier to obtain, or to directly work with unlabeled data
by training the models in a semi-supervised or unsupervised learning setup (introduced
in the previous Section 2.3.1.

In this Section we introduce the concept of weak supervision, which is central is this
dissertation. Weak supervision [199] aims at reducing the annotation cost required when
training a model. Weakly-supervised methods can either rely on low-quality labels that
can be acquired efficiently, or directly leverage unlabeled data. Following the classification
from [199], there are three different types of weak supervision paradigms:

• Incomplete supervision: only a subset of training data is labeled. There are two
main techniques for this purpose, i.e., active learning [158] and semi-supervised
learning [200, 24]. Active Learning [158] assumes that there is a human expert,
i.e. oracle, than can be queried to get ground-truth labels for selected unlabeled
instances. The idea is to minimize human intervention (and thus the labeling
cost) by minimizing the number of queries. Active Learning selects the most valu-
able unlabeled instances to be strongly-annotated by the oracle. On the other
hand, Semi-Supervised Learning (SSL) automatically exploits a large amount of
unlabeled/weakly-labeled data, and a limited amount of strongly-labeled samples,
without any human intervention.

• Inexact supervision: in this case only coarse-grained labels are given. This
scenario can be formally defined by Multiple Instance Learning (MIL) [45]. In
this formulation, training instances are arranged in sets that are called bags. The
learner receives a label for each entire bag, but not for the individual instances.
Formally, the task is to learn the mapping f : X 7→ Y from a training data set
D = {(X1, y1) , ..., (Xm, ym)} where Xi = {xi1, ...xi,mi} ⊆ X is called a bag, xij ∈
X (j ∈ {1, ...,mi}) is an instance, mi is the number of instances in Xi, and yi are
the labels for the bags. Xi is a positive bag (and then has a positive yi label) if
there exists xip that is positive, while p ∈ {1, ...,mi} is unknown. The final goal
is to predict labels for unseen bags. For the sake of understanding, in an object
detection problem, inexact supervision could mean that only image-level labels are
provided, i.e., information of which class categories of objects appear in the image
but not the precise location. This can be expressed with MIL formulation, as we
know that objects are located in regions of the image, but do not know exactly
where. In this case a bag would be the whole image, and a positive bag means that
at least one example in the bag is positive, i.e., at least one region in the image
contains an object of a certain class category [192]. This type of supervision is also
referred as indirect supervision.

• Inaccurate supervision: the training data has labels, but these are noisy or
may suffer from mistakes, so they can not be always considered ground truth.
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One manner to address it is to learn with label noise [51], for instance identifying
mistakes and attempting to correct them.

2.3.3 Inference Supervision Scenarios

We introduced the different paradigms when training models in Section 2.3.2, and fo-
cused on weak supervision in Section 2.3.1. This Section describes different supervision
scenarios at inference time. We distinguish between the following cases:

• Unsupervised: Unsupervised at inference refers to those tasks that do not require
any effort from the human side at test time. For instance, when addressing image
segmentation or instance segmentation, only an image is the input of the system,
and no other cue is required.

In this thesis, we present the first results for unsupervised at inference video object
segmentation. We call this task zero-shot video object segmentation. A
model addressing this task discovers objects along a video sequence without any
initialization cue. In Zero-shot VOS the model must segment all those objects
that appear and move in the scene. This task is interesting as it does not require
any effort from the end-user at inference mode. An example application is video-
surveillance, in which any object that appears and moves in the scene must be
detected, without any kind of supervision at test time. Another application is
video editing; zero-shot VOS could be useful to select all elements that appear in
a video without any extra supervision.

• Semi-Supervised: Semi-Supervised at inference refers that an example of the
task is given at test time.

In this thesis, we address semi-supervised inference for video object segmentation,
which is a very popular task in video object segmentation. This task is also called
one-shot video object segmentation. Given a video, the user has to provide
pixel-level masks of the objects to be tracked for the first frame of the video, so
that the model can produce segmentation masks for the rest of the sequence.

• Weakly-Supervised: Weakly-supervised at inference refers that a weak signal is
given at test time.

For instance, when addressing video object segmentation, instead of providing pixel-
level masks for the first frame, scribbles or bounding boxes could be used to indicate
which objects to segment. In this thesis, we address weakly-supervised at inference
video object segmentation by using language to indicate the target objects.

2.4 Natural Language Processing Fundamentals

This section introduces concepts on Natural Language Processing which are important
for Part III of the dissertation.

Natural Language Processing, also known as NLP, is the field of artificial intelligence that
addresses the ability of machines to read, understand and derive meaning from human
language. NLP is the core of many popular tasks: machine translation, speech recogni-
tion, sentiment analysis, question answering, text classification and dialogue systems. In
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Figure 2.10: The Transformer model architecture. It consists of an encoder (left) and
a decoder (right) composed of stacked multi-head attention modules and feed forward
layers. A positional encoding is also used to gain notion of the input sequence order.
This Figure and more details can be found in [168].

the next subsections, first the concept of word embeddings, crucial to represent natural
language, is introduced (Sec. 2.4.1). Following, in Section 2.4.2 we briefly describe the
Transformer model, which plays a central role in the advancement of NLP tasks. In
Section 2.4.3 we introduce models for language modeling based on Transformers.

2.4.1 Word Embeddings

One of the tools most used in NLP are word embeddings, which are low-dimensional rep-
resentations of words that can be used for many NLP tasks. The first word embedding
that employed neural networks was word2vec [115], which was trained to reconstruct
linguistic context of words. A posterior work, GloVe [128], built on top of the same
idea. The resulting word representations from word2vec or GloVe allow for latent se-
mantic analysis, and they are still very popular nowadays. The disadvantage of the two
aforementioned methods, is that each word is represented by the same vector regardless
of its context. As a matter of a fact, in NLP context is very relevant, as a word can
have different meanings depending on it. This initiated research on contextualized word
embeddings, such as ELMo [132], which instead of using fixed embeddings for each word,
it processes the entire sentence before assigning an embedding to each of its words by
using a bi-directional LSTM [69]. ELMo was trained to address Language Modeling, i.e.,
to predict the next word in a sequence of words.
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Figure 2.11: BERT pipeline for pre-training the language model in the left, and for fine-
tuning for other tasks in the right. NSP refers to Next Sentence Prediction task, whereas
Mask ML refers to Mask Language Model. When pre-training the language model, the
different tokens of the sentence are encoded and then the decoder is optimized for the
two aforementioned objectives. When fine-tuning, the architecture is the same, but in
this case the loss optimized depends on the given task (SQuaD, NER and MNLI are some
of the NLP tasks from the GLUE benchmark [172]). Something worth noting, is that
[CLS] is a special token added in front of every input example, and that [SEP] is a special
separator token (e.g. separating questions/answers). This Figure and more details can
be found in [44].

2.4.2 The Transformer

The Transformer [168] (Figure 2.10) represents an alternative to recurrent models, as
they can deal with long-term dependencies better than LSTMs [69]. The Transformer
exploits attention mechanisms that learn contextual relations between words (or sub-
words) in a text. The architecture is composed of an encoder and a decoder, in which
the encoder processes the text input, and the decoder produces a prediction for the task.
The Transformer became popular as it outperformed previous RNN-based models for
machine translation.

2.4.3 Language Modeling with Transformers

The OpenAI GPT Transformer [137] was the first to leverage the decoder of the Trans-
former model for language modeling, which could later be used for other downstream
tasks, such as question answering or translation. It is a left-to-right architecture, so
that every token can only attend to previous tokens in the self-attention layers of the
Transformer.

Following, Bidirectional Encoder Representations from Transformers (BERT) [44] (Fig-
ure 2.11) overcame the unidirectionality of GPT. BERT adopts the Mask Language
Model (MLM) task to train their model. MLM objective loss consists in masking a
percentage of words from the input sentences, and train the model to predict the original
value. BERT is also pre-trained to address the Next Prediction task, that is to predict if,
given two sentences, how likely it is that one follows the other.
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3 Recurrent Video Object
Segmentation

3.1 Introduction

Part I of this dissertation focuses on fully-supervised methods for instance segmentation
that are end-to-end trainable. Specifically, we present a novel architecture for video
object segmentation, i.e., the task of discovering objects throughout a video sequence,
that is based on Recurrent Neural Networks (RNNs). This work was a joint collaboration
with Dr. Carles Ventura from the Universitat Oberta de Catalunya (UOC).

Video object segmentation (VOS) aims at separating object pixels from the background in
a video sequence. This task has raised a lot of interest in the computer vision community
since the appearance of benchmarks [130] that have given access to annotated datasets
and standardized metrics. Recently, new benchmarks [136, 182] that address multi-
object segmentation and provide larger datasets have become available, leading to more
challenging tasks.

Most works addressing VOS treat frames independently [18, 171, 110, 34], and do not
consider the temporal dimension to gain coherence between consecutive frames. Some
works have leveraged the temporal information using optical flow estimations [35, 77,
165, 9] or propagating the predicted masks through the video sequence [129, 184].

In contrast to these works, some methods propose to train models on spatio-temporal
features, e.g., [165] used RNNs to encode the spatio-temporal evolution of objects in
the video sequence. However, their pipeline relies on an optical flow stream that intro-
duces extra computation and prevents a fully end-to-end trainable model. A posterior
work [181] proposed an encoder-decoder architecture based on RNNs that is similar to
our proposed pipeline. The main difference is that they process only a single object
in an end-to-end manner. Thus, a separate forward pass of the model is required for
each object that is present in the video. None of these models consider multi-object
segmentation in a unified manner.

We present an architecture (see Figure 3.1) that serves for several video object seg-
mentation scenarios (single-object vs. multi-object). In our model for VOS we adapt
RSIS [154], a model for recurrent semantic instance segmentation, by adding recurrence
in the temporal domain to predict instances for each frame of the sequence. RSIS was
developed at the initial stage of this PhD in collaboration with Dr. Amaia Salvador, and
although it is not a contribution of this thesis, it is a fundamental tool used in Part I
and Part II of this dissertation.
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Figure 3.1: Our proposed architecture where RNN is considered in both spatial and
temporal domains. We also show qualitative results where each predicted instance mask
is displayed with a different color. At the top of the Figure, there are the different frames
being fed to the encoder. Next, the recurrent decoder processes the features extracted
from the encoder. In this Figure we can see the flow of information between the different
time steps, and the different instances within a single frame.

The fact that our proposed method is recurrent in the spatial (the different instances of
a single frame) and the temporal (different frames) domains allows that the tracking of
instances at different frames can be handled naturally by the network. For the spatial
recurrence, we force that the ordering in which multiple instances are predicted is the
same across temporal time steps. Thus, our model is a fully end-to-end solution, as we
obtain multi-object segmentation for video sequences without any post-processing.

The main task addressed in VOS in the recent years has been one-shot segmentation, also
known as semi-supervised VOS. In this setup, the system receives a pixel-level mask of
each object to be segmented for the first frame of the video sequence at inference time, and
the goal is to predict the mask for the following frames of the video. Our architecture
can also handle the more challenging task of zero-shot learning for VOS (also known
as unsupervised VOS in a posterior challenge to our work, DAVIS-20191, although we
prefer to name it unsupervised at inference). In this case, no initial masks are given, and
the model must discover segments along the sequences. We present quantitative results

1https://davischallenge.org/challenge2019/unsupervised.html

https://davischallenge.org/challenge2019/unsupervised.html
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One-shot VOS

Zero-shot VOS

Figure 3.2: Example of one-shot and zero-shot VOS. In one-shot VOS, at inference time
the first frame comes with the annotations of the different objects. The task is to segment
those objects throughout the following frames of the sequences. In zero-shot VOS no
annotations are provided, and the algorithm has to segment the different objects without
any initial reference. This video sequence belongs to DAVIS 2017 benchmark [136]. These
segmentation masks correspond to the ground truth provided by the benchmark.

for zero-shot learning for two benchmarks: DAVIS-2017 [136] and YouTube-VOS [182].
Furthermore, we can easily adapt our architecture for one-shot VOS by feeding the objects
masks from previous time steps to the input of the recurrent network.

For clarity, we want to highlight that in this context both one-shot and zero-shot VOS are
trained fully-supervised, i.e., all masks are available during training time. The one-shot
and zero-shot terms refer to the number of frames annotated during test time, being the
first case semi-supervised and the latter unsupervised at inference. The two tasks are
illustrated in Figure 3.2. Refer for more details about the different supervision scenarios
to Section 2.3 of the Technical Background Section.

Our contributions can be summarized as follows: (a) We present the first end-to-end
architecture for video object segmentation that tackles multi-object segmentation and
does not need any post-processing, (b) our model can easily be adapted to one-shot
and zero-shot scenarios, and we present the first quantitative results for zero-shot video
object segmentation for the DAVIS-2017 and Youtube-VOS benchmarks [136, 182], (c)
we outperform previous VOS methods which do not use online learning. Our model
achieves a remarkable performance without needing finetuning for each test sequence,
becoming the fastest method.

3.2 Related Work

Deep learning techniques for the video object segmentation task have gained attention
in the research community during the recent years [18, 171, 129, 184, 35, 78, 165, 73,
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160, 87, 164, 77, 89, 74, 178, 154]. In great measure, this is due to the emergence of new
challenges and segmentation datasets, from Berkeley Video Segmentation Dataset (2011)
[5], SegTrack (2013) [93], Freiburg-Berkeley Motion Segmentation Dataset (2014) [118],
to more accurate and dense labeled ones as DAVIS (2016-2017) [130, 136], to the latest
segmentation dataset YouTube-VOS (2018) [181], which provides the largest amount of
annotated videos up to date.

Video object segmentation: When considering the temporal dimension of video se-
quences, we differentiate between algorithms that aim to model the temporal dimension of
an object segmentation through a video sequence, and those without temporal modeling
that predict object segmentations at each frame independently.

For segmentation without temporal modeling, one-shot VOS has been handled with online
learning, where the first annotated frame of the video sequence is used to fine-tune a
pretrained network and segment the objects in other frames [18]. Some approaches have
worked on top of this idea, by either updating the network online with additional high
confident predictions [171], or by using the instance segments of the different objects
in the scene as prior knowledge and blend them with the segmentation output [110].
Others have explored data augmentation strategies for video by applying transformations
to images and object segments [84], tracking of object parts to obtain region-of-interest
segmentation masks [34], or meta-learning approaches to quickly adapt the network to
the object mask given in the first frame [184].

To leverage the temporal information [35, 77, 165, 117] depend on pretrained models
on other tasks (e.g. optical flow or motion segmentation). Subsequent works [9] use
optical flow for temporal consistency after using Markov random fields based on features
extracted from a Convolutional Neural Network.

An alternative to gain temporal coherence is to use the predicted masks in the previous
frames as guidance for next frames [129, 184, 73, 79]. In the same direction, [78] propagate
information forward by using spatio-temporal features. Whereas these works cannot be
trained end-to-end, we propose a model that relies on the temporal information and can
be fully trained end-to-end for VOS. Finally, S2S [181] makes use of an encoder-decoder
recurrent neural network structure, that uses Convolutional LSTMs for sequence learning.
One difference between our work and S2S, is that our model is able to handle multiple
objects in a single forward pass by including spatial recurrence, which allows the object
being segmented to consider previously segmented objects in the same frame.

One and zero-shot video object segmentation: In video object segmentation, one-
shot learning is understood as making use of a single annotated frame (often the first
frame of the sequence) to estimate the segmentation of the remaining frames in the se-
quence. On the other hand, zero-shot or unsupervised learning is understood as building
models that do not need an initialization to generate segmentation masks of objects in
the video sequence.

There are several works in the literature that rely on the first mask as input to propagate
it through the sequence [18, 171, 129, 184, 78, 165, 73]. In general, one-shot methods
reach better performance than zero-shot ones, as the initial segmentation is already given,
thus not having to estimate the initial segmentation mask from scratch. Most of these
models rely on online learning, i.e. adapting their weights given an initial frame and its
corresponding masks. Typically online learning methods reach better results, although
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they require more computational resources for the fine-tuning. In our case, we do not
rely on any form of online learning or post-processing to generate the prediction masks.

In zero-shot learning, in order to estimate the segmentation of the objects in an image,
several works have exploited object saliency [160, 77, 74], leveraged the outputs of object
proposal techniques [87] or used a two-stream network to jointly train with optical flow
[35]. Exploiting motion patterns in videos was studied in [164], while [89] formulates
the inference of a 3D flattened object representation and its motion segmentation. A
foreground-background segmentation based on instance embeddings was proposed in [95].
Our model is able to handle both zero and one-shot cases. In Section 3.4 we show results
for both configurations, tested on the Youtube-VOS [182] and DAVIS-2017 [136] datasets.
For one-shot VOS our model has not been fine-tuned with the mask given at the first
frame. Furthermore, on the zero-shot case, we do not use any pretraining on detection
tasks or rely on object proposals. This way, our model can be fully trained end-to-end
for VOS, without depending on models that have been trained for other tasks.

End-to-end training: Regarding video object segmentation we distinguish between
two types of end-to-end training. A first type of approach is frame-based and allows end-
to-end training for multiple-objects [171, 110]. A second group of models allow training
in the temporal dimension in an end-to-end manner, but deal with a single object at a
time [181], requiring a forward pass for each object and a post-processing step to merge
the predicted instances.

To the best of our knowledge, at the time of publication RVOS was the first work that
allowed a full end-to-end training given a video sequence and its masks, without requiring
any kind of post-processing.

3.3 Model

We propose a model based on an encoder-decoder architecture to solve two different tasks
for the video object segmentation problem: one-shot and zero-shot VOS. For one-shot
VOS, the input consists of the set of RGB video frames, as well as the masks of the first
appearance of each object. For the zero-shot VOS, the input only consists of the set of
RGB video frames. In both cases, the output consists of a sequence of masks for each
object in the video, with the difference that the objects to segment are unknown in the
zero-shot VOS task.

The architecture is based on RSIS [154], a recurrent model for semantic instance segmen-
tation, that produces sequences of binary masks that cover the different objects within
the image. In order to design RVOS, we extended RSIS by adding recurrence to the
temporal dimension. RSIS architecture is explained in details in Section 3.3.1, followed
by a detailed description of the encoder and decoder for video object segmentation in
Sections 3.3.2 and 3.3.3 respectively.

3.3.1 Recurrent Semantic Instance Segmentation

This Section presents the architecture of RSIS [154], a recurrent neural network to ad-
dress Recurrent Semantic Instance Segmentation. RSIS is the predecessor of RVOS,
presented in this Part of the thesis. Furthermore, RSIS is used in Part II to explore
image segmentation in low supervision scenarios. Instance segmentation is the task that,
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Figure 3.3: RSIS, Recurrent architecture for semantic instance segmentation. Figure
from [154]. Our proposed architecture for VOS, namely RVOS, builds upon RSIS.

given an image, a set of binary masks with a corresponding class label must be provided.
RSIS addresses this task by generating a sequence of binary masks that cover the objects
within the image, similarly to previous works on instance segmentation [145, 142].

RSIS is composed of an encoder-decoder architecture (Figure 3.3), similarly to the one
used in semantic segmentation works [106, 147]. The pipeline has skip connections from
the encoder to the decoder to preserve the low-level details, which are central for segmen-
tation tasks. The encoder receives as input the RGB image, and it is a Resnet-101 [67]
architecture pretrained on Imagenet [152] for object classification. The last pooling layer
of the Resnet-101 is removed to keep a higher resolution at the bottleneck of RSIS. The
decoder receives as inputs features at different stages from the encoder part, and is com-
posed of several Convolutional LSTMs [178] layers. The architecture is hierarchical, as it
gradually increases the resolution until matching the input image size, in order to produce
a binary mask for an object contained in the image at each time step. The segmentation
is trained with a soft intersection over union loss (sIoU) between the predicted and the
ground truth mask. During training, the order for the objects to be predicted is not
imposed. In contrast, the model can decide whichever order it prefers. The Hungarian
algorithm is exploited to determine which is the permutation of the ground truth masks
that better matches the sequence predicted by the network. Once each predicted mask
is matched with a ground truth one, the loss can be computed for the whole sequence.

Additionally, an aggregation of multi-resolution features taken from different stages of
the decoder are concatenated and connected to three parallel fully-connected layers with
their corresponding losses. The first one is a classification branch to obtain the semantic
category of the object being segmented at the current time step, that is trained with
categorical cross entropy. The second, is a detection branch, and it must predict a
bounding box for the segment. Adding the detection loss improved the performance of
the segmentation task. The loss employed to train the detection branch is the mean
squared error between the predicted and the ground truth bounding boxes. Lastly, a
third branch predicts whether there are more objects in the image or not. This branch is
named stop branch, and must predict a ‘1’ when there are objects within the image, and
a ‘0’ when all objects have been covered. Hence, the model is able to predict when there
are no more objects to segment, and for this reason there is no need of a post-processing
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Figure 3.4: Our proposed recurrent architecture for video object segmentation for a a
single frame at time step t for the one-shot case. The figure illustrates a single forward
of the decoder, predicting only the first mask of the image. Notice that for the zero-shot
case, the channel with the mask from the previous frame is not added.

step. The stop loss is trained with a binary cross entropy objective.

3.3.2 Encoder for VOS

The encoder for RVOS is based on the encoder from RSIS, explained in the previous
Section 3.3.1. The input xt of the encoder is an RGB image, which corresponds to frame
t in the video sequence, and the output ft = {ft,1, ft,2, ..., ft,k} is a set of features at
different resolutions. The architecture of the encoder is illustrated as the blue part (on
the left) in Figure 3.4. We propose two different configurations: (i) an architecture that
includes the mask of the instances from the previous frame as one additional channel
of the output features (as showed in the figure), and (ii) which preserves the original
architecture from RSIS, i.e. without the additional channel. The inclusion of the mask
from the previous frame is especially designed for the one-shot VOS task, where the first
frame masks are given.

3.3.3 Decoder for VOS

The green blocks on the right of Figure 3.4 depict the decoder architecture for a single
frame and a single step of the spatial recurrence. The RVOS decoder is designed as a
hierarchical recurrent architecture of ConvLSTMs [178] which can leverage the different
resolutions of the input features ft = {ft,1, ft,2, ..., ft,k}, where ft,k are the features ex-
tracted at the level k of the encoder for the frame t of the video sequence, just as in
RSIS (described in Section 3.3.1), but removing the skip connections from the earliest
layer of the encoder to reduce the memory requirements. The output of the decoder is a
set of object segmentation predictions {St,1, , ..., St,i, ..., St,N}, where St,i is the segmen-
tation of object i at frame t. The recurrence in the temporal domain has been designed
so that the mask predicted for the same object at different frames has the same index in
the spatial recurrence. For this reason, the number of object segmentation predictions
given by the decoder is constant (N) along the sequence. This way, if an object i dis-
appears in a sequence at frame t, the expected segmentation mask for object i, i.e. St,i,
will be empty at frame t and the following frames. We do not force any specific order
in the spatial recurrence for the first frame. Instead, we find the optimal assignment
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between predicted and ground truth masks with the Hungarian algorithm using the soft
Intersection over Union score as cost function, as in RSIS.

Figure 3.5 depicts the difference between having only spatial recurrence, over having
spatial and temporal recurrence. The output ht,i,k of the k-th ConvLSTM layer for
object i at frame t depends on the following variables: (a) the features ft obtained from
the encoder from frame t, (b) the preceding k − 1-th ConvLSTM layer, (c) the hidden
state representation from the previous object i − 1 at the same frame t, i.e. ht,i−1,k,
which will be referred to as the spatial hidden state, (d) the hidden state representation
representation from the same object i at the previous frame t− 1, i.e. ht−1,i,k, which will
be referred to as the temporal hidden state, and (e) the object segmentation prediction
mask St−1,i of the object i at the previous frame t− 1:

hinput = [ B2(ht,i,k−1) | f ′t,k | St−1,i ] (3.1)

hstate = [ ht,i−1,k | ht−1,i,k ] (3.2)

ht,i,k = ConvLSTMk( hinput , hstate ) (3.3)

where B2 is the bilinear upsampling operator by a factor of 2 and f ′t,k is the result of
projecting ft,k to have lower dimensionality via a convolutional layer.

Equation 3.3 is applied in chain for k ∈ {1, ..., nb}, being nb the number of convolutional
blocks in the encoder. ht,i,0 is obtained by considering

hinput = [ f ′t,0 | St−1,i ]

and for the first object, hstate is obtained as follows:

hstate = [ Z | ht−1,i,k ]

where Z is a zero matrix that represents that there is no previous spatial hidden state
for this object.

In Section 3.4, an ablation study will be performed in order to analyze the importance
of spatial and temporal recurrence in the decoder for the VOS task.

3.4 Experiments

The experiments are carried out for two different tasks of the VOS: the one-shot and
the zero-shot. In both cases, we analyze how important the spatial and the temporal
hidden states are. Thus, we consider three different options: (i) spatial model (temporal
recurrence is not used), (ii) temporal model (spatial recurrence is not used), and (iii)
spatio-temporal model (both spatial and temporal recurrence are used). In the one-shot
VOS, since the masks for the objects at the first frame are given, the decoder always
considers the mask St−1,i from the previous frame when computing hinput (see Eq. 3.1).
On the other hand, in the zero-shot VOS, St−1,i is not used since no ground truth masks
are given.

The experiments are performed in two VOS benchmarks: YouTube-VOS [182] and
DAVIS-2017 [136]. YouTube-VOS consists of 3,471 videos in the training set and 474
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Figure 3.5: Comparison between original spatial RSIS [154] (left) and proposed spatio-
temporal recurrent networks (right).

videos in the validation set, being the largest video object segmentation benchmark. The
training set includes 65 unique object categories which are regarded as seen categories.
In the validation set, there are 91 unique object categories, which include all the seen
categories and 26 unseen categories. On the other hand, DAVIS-2017 consists of 60
videos in the training set, 30 videos in the validation set and 30 videos in the test-dev
set. Evaluation is performed on the YouTube-VOS validation set and on the DAVIS-2017
test-dev set. Both YouTube-VOS and DAVIS-2017 videos include multiple objects and
have a similar duration in time (3-6 seconds).

The experiments are evaluated using the standard evaluation measures for VOS used
in the aforementioned benchmarks: (i) the region similarity J , and (ii) the contour
accuracy F . In YouTube-VOS, each of these measures is split into two different measures,
depending on whether the categories have already been seen by the model (Jseen and
Fseen), i.e. these categories are included in the training set, or the model has never
seen these categories (Junseen and Funseen). Note that this distinction between seen and
unseen categories applies for both one-shot and zero-shot segmentation.

3.4.1 One-shot video object segmentation

One-shot VOS consists in segmenting the objects from a video given the objects masks
from the first frame. Since the initial masks are given, the experiments have been per-
formed including the mask of the previous frame as one additional input channel in the
ConvLSTMs from our decoder.

YouTube-VOS benchmark: Table 3.1 shows the results obtained in YouTube-VOS
validation set for different configurations: spatial (RVOS-Mask-S), temporal (RVOS-
Mask-T) and spatio-temporal (RVOS-Mask-ST). All models from this ablation study
have been trained using a 80%-20% split of the training set. We can see that the spatio-
temporal model improves both the region similarity J and contour accuracy F for seen
and unseen categories over the spatial and temporal models. Figure 3.6 shows qualitative
results comparing the spatial and the spatio-temporal models, where we can see that
RVOS-Mask-ST preserves better the segmentation of the objects along the time.
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YouTube-VOS one-shot
Jseen Junseen Fseen Funseen

RVOS-Mask-S 54.7 37.3 57.4 42.4
RVOS-Mask-T 59.9 39.2 63.1 45.6
RVOS-Mask-ST 60.8 44.6 63.7 50.3
RVOS-Mask-ST+ 63.1 44.5 67.1 50.4

Table 3.1: Ablation study about spatial and temporal recurrence in the decoder for one-
shot VOS in YouTube-VOS dataset. Models have been trained using 80%-20% partition
of the training set and evaluated on the validation set. + means that the model has been
trained with a curriculum of first using the ground truth masks and then the inferred
masks.

Figure 3.6: Qualitative results comparing spatial (rows 1,3) and spatio-temporal (rows
2,4) models.

Furthermore, we have also considered doing a curriculum of training the models some
additional epochs using the inferred mask from the previous frame Ŝt−1,i, instead of using
the ground truth mask St−1,i. This way, the model can learn how to fix some errors that
may occur in inference. In Table 3.1, we can see that this model (RVOS-Mask-ST+)
is more robust and outperforms the model trained only with the ground truth masks.
Figure 3.7 shows some qualitative results comparing the model trained with the ground
truth mask and the model trained with the inferred mask.

Once stated that the spatio-temporal model is the one that gives the best performance,
we have trained it using the whole YouTube-VOS training set to compare it with other
state-of-the-art techniques (see Table 3.2). Our proposed spatio-temporal model (RVOS-
Mask-ST+) has comparable results with respect to S2S w/o OL [182], with a slightly
worse performance in region similarity J but with a slightly better performance in contour
accuracy F . At the time of publication our model outperformed all previous works
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Figure 3.7: Qualitative results comparing training with ground truth masks (rows 1,3)
and training with inferred masks (rows 2,4).

YouTube-VOS one-shot
OL Jseen Junseen Fseen Funseen

OSVOS [18] 3 59.8 54.2 60.5 60.7
MaskTrack [129] 3 59.9 45.0 59.5 47.9
OnAVOS [171] 3 60.1 46.6 62.7 51.4

OSMN [184] 7 60.0 40.6 60.1 44.0
S2S w/o OL [182] 7 66.7 48.2 65.5 50.3
RVOS-Mask-ST+ 7 63.6 45.5 67.2 51.0

Table 3.2: Comparison against state of the art VOS techniques for one-shot VOS on
YouTube-VOS validation set. OL refers to online learning. The table is split in two
parts, depending on whether the techniques use online learning or not.

[18, 129, 184, 171] for the seen categories, while OSVOS [18] reached the best performance
for the unseen categories. However, note that the comparison of S2S without online
learning [182] and our proposed model with respect to OSVOS [18], OnAVOS [171]
and MaskTrack [129] is not fair for Junseen and Funseen because OSVOS, OnAVOS and
MaskTrack models are fine-tuned using the annotations of the first frames from the
validation set, i.e. they use online learning. Therefore, unseen categories should not be
considered as such since online models have actually seen them.

Table 3.3 shows the results on the region similarity J and the contour accuracy F de-
pending on the number of instances in the videos clips. We can see that the fewer the
objects to segment, the easier the task, obtaining the best results for sequences where
only one or two objects are annotated.

Figure 3.8 shows some qualitative results of our spatio-temporal model for different se-
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Number of instances (YouTube-VOS)
1 2 3 4 5

J mean 78.2 62.8 50.7 50.2 56.3
F mean 75.5 67.6 56.1 62.3 66.4

Table 3.3: Analysis of our proposed model RVOS-Mask-ST+ depending on the number
of instances per video in one-shot VOS.

Figure 3.8: Qualitative results for one-shot video object segmentation on YouTube-VOS
with multiple instances.

quences from YouTube-VOS validation set. It includes examples with different number
of instances per clip. Note that the instances have been properly segmented although
there are different instances of the same category in the sequence (fishes, sheeps, people,
leopards or birds) or there are some instances that disappear from the sequence (one
sheep in third row or the dog in fourth row).

DAVIS-2017 benchmark: Our pretrained model RVOS-Mask-ST+ in YouTube-VOS
was also tested on a different benchmark: DAVIS-2017. As it can be seen in Table 3.4,
when the pretrained model is directly applied to DAVIS-2017, RVOS-Mask-ST+ (pre)
outperforms the rest of state-of-the-art techniques that do not make use of online learning,
i.e. OSMN [184] and FAVOS [34]. Furthermore, when the model is further finetuned
for the DAVIS-2017 training set, RVOS-Mask-ST+ (ft) outperforms some techniques as
OSVOS [18], which is among the techniques that make use of online learning. Note that
online learning requires finetuning the model at test time.

Figure 3.9 shows some qualitative results obtained for DAVIS-2017 one-shot VOS. As
depicted in some qualitative results for YouTube-VOS, RVOS-Mask-ST+ (ft) is also able
to deal with objects that disappear from the sequence.
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DAVIS-2017 one-shot
OL J F

OSVOS [18] 3 47.0 54.8
OnAVOS [171] 3 49.9 55.7
OSVOS-S [110] 3 52.9 62.1
CINM [9] 3 64.5 70.5

OSMN [184] 7 37.7 44.9
FAVOS [34] 7 42.9 44.2
RVOS-Mask-ST+ (pre) 7 46.4 50.6
RVOS-Mask-ST+ (ft) 7 48.0 52.6

Table 3.4: Comparison against state of the art VOS techniques for one-shot VOS on
DAVIS-2017 test-dev set. OL refers to online learning. The model RVOS-Mask-ST+(pre)
is the one trained on Youtube-VOS, and the model RVOS-Mask-ST+ (ft) is after fine-
tuning the model for DAVIS-2017. The table is split in two parts, depending on whether
the techniques use online learning or not.

Figure 3.9: Qualitative results for one-shot on DAVIS-2017 test-dev.

3.4.2 Zero-shot video object segmentation

Zero-shot VOS consists in segmenting the objects from a video without having any prior
knowledge about which objects should be segmented, i.e. no object masks are provided
at inference time. This task is more complex that the one-shot VOS since the model has
to detect and segment the objects appearing in the video.

Previous to the publication of this work, there was no benchmark specially designed for
zero-shot VOS. Although YouTube-VOS and DAVIS benchmarks can be used for training
and evaluating the models without using the annotations given at the first frame, both
benchmarks had the limitation that not all objects appearing in the video were annotated.
Specifically, in YouTube-VOS, there are up to 5 object instances annotated per video.
This makes sense when the objects to segment are given (as done in one-shot VOS), but
it may be a problem for zero-shot VOS since the model could be segmenting correctly
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Figure 3.10: Missing object annotations may suppose a problem for zero-shot video object
segmentation.

YouTube-VOS zero-shot
Jseen Junseen Fseen Funseen

RVOS-S 40.8 19.9 43.9 23.2
RVOS-T 37.1 20.2 38.7 21.6
RVOS-ST 44.7 21.2 45.0 23.9

Table 3.5: Ablation study about spatial and temporal recurrence in the decoder for
zero-shot VOS in YouTube-VOS dataset. Our models have been trained using 80%-20%
partition of the training set and evaluated on the validation set.

objects that have not been annotated in the dataset. Figure 3.10 shows a couple of
examples where there are some missing object annotations.

Despite the problem stated before about missing object annotations, we trained our model
for the zero-shot VOS problem using the object annotations available in these datasets.
To minimize the effect of segmenting objects that are not annotated and missing the ones
that are annotated, we allow our system to discover up to 10 object instances along the
sequence, expecting that the up to 5 annotated objects are among the predicted ones.
During training, each annotated object is uniquely assigned to one predicted object in
order to to compute the loss. Therefore, those predicted objects that have not been
assigned do not result in any loss penalization. However, an erroneous prediction of
any annotated object is considered by the loss. Analogously, in inference, in order to
evaluate our results for zero-shot video object segmentation, the masks provided for the
first frame in one-shot VOS are used to select which predicted instances are selected
for evaluation. Note that the assignment is only performed at the first frame and the
predicted segmentation masks considered for the rest of the frames are the corresponding
ones.

YouTube-VOS benchmark: Table 3.5 shows the results obtained on YouTube-VOS
validation set for the zero-shot VOS problem. As stated for the one-shot VOS prob-
lem, the spatio-temporal model (RVOS-ST) also outperforms both spatial (RVOS-S) and
temporal (RVOS-T) models.

Figure 3.11 shows some qualitative results for zero-shot VOS in YouTube-VOS validation
set. Note that the masks are not provided and the model has to discover the objects to
be segmented. We can see that in many cases our spatio-temporal model is temporal
consistent although the sequence contains different instances of the same category.

DAVIS-2017 benchmark: Previous to the publication of our work in CVPR 2019,
there were no published results for this task in DAVIS-2017 to be compared. The zero-
shot VOS had only been considered for DAVIS-2016, where some unsupervised techniques
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Figure 3.11: Qualitative results for zero-shot video object segmentation on YouTube-VOS
with multiple instances.

had been applied. However, in DAVIS-2016, there is only a single object annotated for
sequence, which could be considered as a foreground-background video segmentation
problem and not as a multi-object video object segmentation. Our pretrained model
RVOS-ST on Youtube-VOS for zero-shot, when it is directly applied to DAVIS-2017,
obtains a mean region similarity J = 21.7 and a mean contour accuracy F = 27.3. When
the pretrained model is fine-tuned for the DAVIS-2017 trainval set achieves a slightly
better performance, with J = 23.0 and F = 29.9.

Although the model has been trained on a large video dataset as Youtube-VOS, there are
some sequences where the object instances have not been segmented from the beginning.
The low performance for zero-shot VOS in DAVIS-2017 (J = 23.0) can be explained due
to the bad performance also in YouTube-VOS for the unseen categories (Junseen = 21.2).
Therefore, while the model is able to segment properly categories which are included
among the YouTube-VOS training set categories, e.g. persons or animals, the model fails
when trying to segment an object class that has not been seen before. Note that it is
specially for these cases when online learning becomes relevant, since it allows to finetune
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Figure 3.12: Qualitative results for zero-shot video object segmentation on DAVIS-2017
with multiple instances.

the model by leveraging the object mask given at the first frame for the one-shot VOS
problem. Figure 3.12 shows some qualitative results for the DAVIS-2017 test-dev set
where no object mask is provided but the RVOS-ST model has been able to segment the
multiple object instances appearing in the sequences.

3.4.3 Runtime analysis

At the time of publication, RVOS was the fastest method amongst all while achieving
comparable segmentation quality with respect to previous state-of-the-art works as seen
previously in Tables 3.2 and 3.4. The inference time for RVOS is 44ms per frame with
a GPU P100 and 67ms per frame with a GPU K80. Methods not using online learning
(including ours) are two orders of magnitude faster than techniques using online learning.
Inference times for OSMN [184] (140ms) and S2S [182] (160ms) have been obtained from
their respective papers. For a fair comparison, we also compute runtimes for OSMN
[184] in our machines (K80 and P100) using their public implementation (no publicly
available code was found for [182]). We measured better runtimes for OSMN than those
reported in [184], but RVOS was still faster in all cases (e.g. 65ms vs. 44ms on a P100,
respectively). To the best of our knowledge, our method was the first to share the encoder
forward pass for all the objects in a frame, which explains its fast overall runtime.

3.5 Training Details

The original RGB frames and annotations were resized to 256×448 in order to have a
fair comparison with S2S [181] in terms of image resolution. In training, due to memory
restrictions, each training mini-batch was composed with 4 clips of 5 consecutive frames.
However, in inference, the hidden state is propagated along the whole video. Adam
optimizer is used to train our network and the initial learning rate is set to 10−6. Our
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model was trained for 20 epochs using the previous ground truth mask and 20 epochs
using the previous inferred mask in a single GPU with 12GB RAM, taking about 2 days.

3.6 Conclusions

In this Part we have presented RVOS, a fully end-to-end trainable model for multiple
objects in video object segmentation (VOS) with a recurrence module based on spatial
and temporal domains. The model has been designed for both one-shot and zero-shot
VOS, and tested on YouTube-VOS and DAVIS-2017 benchmarks.

The experiments show that RVOS trained with spatio-temporal recurrence improves over
considering the spatial or the temporal domain only. In our work we presented the first
results for zero-shot VOS on both benchmarks and we also outperformed previous works
that do not make use of online learning for one-shot VOS on them. Posterior to our
work, the DAVIS-2019 benchmark [19] introduced the unsupervised VOS Challenge (in
our terminology, zero-shot VOS), and used our architecture RVOS as baseline for the
new challenge.

Subsequent works to RVOS have improved performance for VOS by exploiting space-time
memory networks in order to read relevant information from the past frames [119, 157],
or by training spatio-temporal embeddings to cluster pixels belonging to a specific object
instance over the entire video sequence [7]. However, we want to highlight that one of the
main advantages of our model, is that it is very fast in inference, being ours the fastest
of all these aforementioned methods as pointed out in [7]. The code is available in our
project website https://imatge-upc.github.io/rvos/.

Posterior to our work, the interest in end-to-end architectures for object localization
and segmentation has caused great developments in the field, such as the recent work
DETR [21], which leverages Transformers [168] to build a flexible pipeline for end-to-end
object detection. As in our work, they cast the object detection task as an image-to-set
problem, arguing that then the network can reason about the image as a whole. In our
case, our network is built with Recurrent Neural Networks. We believe that an interesting
topic for future research with end-to-end architectures for object localization, is to focus
on videos, as we did with RVOS, but exploiting the advancements with Transformer
architectures.

To conclude, the neural networks from Part I have been trained in a fully-supervised
setup, i.e., all training data is annotated at a pixel level. Furthermore, we explored two
different setups at inference for video object segmentation: the semi-supervised one (one-
shot case) and the unsupervised one (zero-shot). In Part II, we will explore how to train
segmentation models with low annotation costs for training.

https://imatge-upc.github.io/rvos/
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Introduction

Image segmentation solutions have traditionally been trained in a fully-supervised setup,
i.e., dense annotations at a pixel level are required for all the training set. These annota-
tions represent a bottleneck as they demand significant human labeling effort. Previous
works have leveraged weak forms of supervision, such as bounding boxes or scribbles, in
order to train segmentation models [180, 98, 163, 10, 124, 40, 83]. However, these methods
do not meet the accuracy of their fully-supervised counterparts. A trade-off between per-
formance and annotation budget can be achieved with semi-supervised pipelines, which
take advantage of a limited amount of strongly-labeled samples, and a large amount of
unlabeled/weakly-labeled data. In this Part of the thesis we explore semi-supervised
pipelines for semantic and instance segmentation, and show how semi-supervised meth-
ods are capable of reaching better performance than other weakly-supervised methods
given a fixed annotation cost.

In this Part of the dissertation we present our contributions on algorithms for weak
supervision in an incomplete supervised setup, i.e., when only a subset of the data is
annotated. First, Chapter 4 presents a semi-supervised pipeline to leverage weakly-
annotated/unlabeled data together with a limited amount of strongly-annotated samples.
Our method surpasses previous works at very low annotation budgets. We report results
for both semantic and instance segmentation. Secondly, Chapter 5 introduces a novel
manner to perform active learning to query which samples to strongly-annotate for the
pipeline presented in Chapter 4, proving that our strategy improves random selection.
In this second Chapter we focus exclusively on instance segmentation on still images.





4 Budget-aware Semi-Supervised
Segmentation

4.1 Introduction

In computer vision, current state-of-the-art models based on Convolutional Neural Net-
works are data-hungry, and their performance is related to the amount of annotated data
available for training. In particular, segmentation annotations are very costly, as they
require a label for each pixel of the image. Therefore, there is a growing interest in train-
ing segmentation models that do not rely on a high annotation budget but still achieve
a competitive performance.

For semantic and instance segmentation, the use of weak labels as a cheaper supervision
signal to train segmentation models has been extensively explored in the literature. Some
of the most popular weak supervision signals are image-level labels [176, 194, 3, 198] or
bounding boxes [40, 124, 83, 94, 195]. Although the results are promising, they are still
far from the performance of methods that rely on stronger supervision.

Another option to lower the annotation cost are semi-supervised scenarios, where
a small subset of the data is strongly annotated, and the remaining samples are
unlabeled/weakly-labeled. The most successful semi-supervised methods handle het-
erogeneous annotations (few strong and a huge amount of weak labels) and, although
they reach higher performance [124, 70, 176], their annotation cost is much higher than
the one related to only using weak labels, such as image-level labels or bounding boxes.

The goal of weakly and semi-supervised methods is to obtain segmentation results that
are competitive with their fully-supervised counterparts, while requiring a much lower
annotation cost. However, previous works do not typically compare to each other in
terms of the annotation budget. In this Chapter, we argue that when the goal is to
minimize human effort, methods should be compared considering the annotation cost, in
terms of time required to annotate the training data, regardless of the type of annotation
they use (’costly’ annotations such as pixel-level masks, or ’cheaper’ ones such as image-
level labels). In this direction, [10] proposed a comparison between weakly- and fully-
supervised semantic segmentation methods that contemplates the total annotation time
required for the training set. We extend this analysis including semi-supervised methods
that rely on unlabeled data and also, for the first time, for the instance segmentation
task. This will allow a unified analysis across different supervision setups and different
supervision signals, comparing the total annotation time when fixing a certain budget.

In this Chapter, we present a semi-supervised scheme trained with low annotation budgets
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that reaches significantly better performance than methods trained with weak labels while
having the same annotation cost. Our proposed pipeline consists of two networks: a first
annotation model that generates pseudo-annotations for the unlabeled or weakly-labeled
data, and a second segmentation model that is trained with both the strong and pseudo-
annotations (Figure 4.1). In order to lower the annotation budget, first we work with
strong and unlabeled data, so that only strong annotations have an associated annotation
cost. With only a few strong annotations, we reach higher performance than previous
weakly and semi-supervised approaches for both semantic and instance segmentation, at
much reduced annotation budgets. We name our semi-supervised pipeline BASIS (from
Budget Aware Semi-supervised semantic and Instance Segmentation).

We also analyze heterogeneous annotations for instance segmentation, which combine
both strong and weak labels. The weak label that we choose consists in counting the
number of objects there are for each of the class categories of the dataset [54]. To the
authors knowledge, this is the first time this weak supervision is used for instance segmen-
tation. We propose to exploit weak labels by feeding them into the annotation network.
As weak labels involve a cost, we adjust the number of samples to analyze different super-
vision scenarios. We find that, when the number of strongly-labeled samples is extremely
reduced, this solution outperforms the standard semi-supervised pipeline.

Our contributions can be summarized as follows: (a) We unify the segmentation bench-
marks regardless of the training setting and the supervision signals by comparing them
in terms of the total annotation cost they require, (b) we outperform previous semi-
supervised semantic segmentation methods at low annotation budgets for the Pascal
VOC benchmark [48], and present the first quantitative results for semi-supervised in-
stance segmentation for this dataset when no extra images are available, (c) we show that
when fixing a low annotation budget, it is more convenient having fewer but stronger-
labeled data over having larger weakly-annotated sets.

4.2 Related Work

In this Section we focus on the related work when aiming at lowering the annotation
budget for image segmentation, by reducing the annotation time itself, or by leveraging
weakly-supervised methods.

4.2.1 Reducing the annotation time

Many works have focused on how to obtain labels in a more rapid way. The time to
annotate a bounding box has been narrowed from 35 seconds [162] to 7 per object using
extreme clicking techniques [123]. Regarding pixel-wise annotations, several large-scale
segmentation datasets have been collected using polygon annotations [48, 100, 38, 197] to
reduce the annotation cost, but still require a significant amount of time per object (79
s/object for Microsoft COCO [100]). Other works automatically provide a segmentation
from a bounding box [149, 26], but the final prediction is noisy and cannot be considered
as strong supervision. Another option is leveraging interactive segmentation tools with
a human in the loop, thus providing valid strong annotations at a reduced annotation
time [114, 23, 2, 112]. Nevertheless, these tools typically rely on some already annotated
set in order to train the automatic engine, which involves an extra cost that should be
taken into account. In contrast to these works, our focus resides in the type of annotations
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Training annotation network

GT LABELS
Annotation of unlabeled or 
weak-labeled images1

Training segmentation network with the GT and the pseudo-labels 

PSEUDO-LABELS

GT + PSEUDO-LABELS

2

3

Figure 4.1: Our semi-supervised training pipeline consists of two networks, an annotation
network trained with strong-labeled data, and a segmentation network trained with the
union of pseudo-annotations and strong-labeled samples. Note that both networks are
trained in a fully-supervised way.

being used, instead of the way to obtain them.

4.2.2 Image Segmentation with Synthetic Images

One option to obtain images and annotations for free, is to generate synthetic images
with the corresponding per-pixel labels from virtual 3D environments [153, 33, 148], and
train segmentation models with those. However, these methods are limited to domains
with 3D environments available, such as urban scenes, and the generated synthetic images
present a domain gap with real ones.

4.2.3 Image Segmentation with Weak Supervision

Several works in the literature have proposed to use weak supervision to reduce the
annotation cost for image segmentation. In this review we will distinguish between those
that fall into the category of inexact supervision, and those that use semi-supervised
learning, a method when there is incomplete supervision.

4.2.3.1 Image Segmentation with Inexact Supervision

For semantic segmentation, one of the most popular forms to reduce the annotation
cost is to leverage coarser labels, such as image-level labels, as they can be obtained
with minimum human intervention. There are approaches that treat image-level la-
bels with Multiple Instance Learning (MIL) techniques [133, 127, 126], but these works
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achieve an accuracy far from their fully-supervised counterparts. Other works develop
Expectation-Maximization (EM) methods to learn from weakly-annotated data [124].
Another pool of works have focused on localizing class-specific cues with Class Activa-
tion Maps (CAMs) [196] in order to mine regions [175, 76, 3, 176], while others obtain
regions with attention mechanisms [194]. CAMs are a frequently exploited when only
image-level labels are available, as they permit to localize class-specific regions within an
image with a model trained only with image-level labels.

For semantic segmentation, other weak signals have been exploited, such as scribbles [180,
98, 163], points [10] or bounding boxes [124, 40, 83].

Few works have addressed weakly-supervised instance segmentation in computer vision.
Bounding box labels have been exploited to recursively generate and refine pseudo-labels
from a weak-labeled sets [83, 195, 94]. These methods typically rely on bottom-up seg-
ment proposals [134, 149]. In contrast with this approach, Remez et al. [140] propose an
adversarial scheme that learns to segment without using any object proposal technique.
Although these works tackle weakly-supervised instance segmentation, their weak super-
vision consists in using bounding boxes, thus their main challenge resides in how to sep-
arate the foreground from the background within a bounding box. The first work [198]
that uses image-level supervision for weakly-supervised instance segmentation detects
peaks of Class Activation Maps [196], producing what they identify as Peak Response
Maps (PRMs). With them they generate a query to retrieve the best candidate among a
set of pre-computed object proposals (MCG) [134]. Following works [90] build on PRMs
by using the pseudo-masks to train Mask R-CNN [65] in a fully-supervised way, reaching
better performance.

All these aforementioned works fall into the category of inexact weak supervision, as they
exploit coarse-grained labels, without relying on any strongly-labeled image.

4.2.3.2 Image Segmentation with Semi-Supervised Learning

Semi-supervised learning allows to reduce the annotation burden while keeping a compet-
itive performance. Some works that address weakly-supervised semantic segmentation
with coarse labels present results for the semi-supervised case by combining their gener-
ated pseudo-annotations with a few strong labels [124, 40, 83, 176, 94]. Some other works
exclusively tackle the semi-supervised scenario, as it is our case. Image-level labels are
leveraged for semi-supervised semantic segmentation by [70]. Their pipeline consists of
two separate networks, a classification and a segmentation network with bridged layers.
They obtain remarkable results training with only a few strong annotations. A posterior
work [71] proposes a new partially supervised training paradigm to combine bounding
box annotations and pixel-level masks. To the authors knowledge, only [71, 94] have
tackled semi-supervised instance segmentation at the time of publication of this work.
However, these approaches assume a huge amount of weakly-labeled samples. In our
work, we focus on low-budget scenarios, presenting the first results for semi-supervised
instance segmentation for the Pascal VOC benchmark [48] with no extra images from
other datasets.

Based on referent surveys [200, 24], the semi-supervised approach that we present in
this Chapter falls into the category of a self-learning [155] method. It is also known as
self-training, self-teaching or bootstrapping. This approach relies on supervised learning
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methods. These methods first train a model with few strongly-labeled data, and use it
to predict pseudo-labels for the unlabeled pool of samples. Following, the supervised
method is retrained using its own predictions as additional labeled data. This process
can be done repeatedly.

Concretely, our pipeline consists of two networks. The first one, named annotation
network, is trained with a few strongly-annotated samples. Next, this network is used
to obtain pseudo-labels for the unlabeled pool of samples. Following, a second network
named segmentation network is trained with both the original strongly-annotated data,
and the obtained pseudo-labels. From the literature reviewed in this Section, our model
resembles to the work from [176]. Their pipeline consists of two networks as well, a deep
neural network that produces pseudo-labels from CAMs, and a network that is trained
with the obtained annotations. As our setup is semi-supervised, our first network is
trained with strong supervision only, while the second network is trained with both
pseudo- and strong annotations. The main difference is that in our case, we do not work
with CAMs as pseudo-labels, but with segmentation predictions from the first network.

4.3 Benchmark for Budget-Aware Segmentation

The main focus of our work is to offer a unified analysis across different supervision
setups and supervision signals for semantic and instance segmentation. Our motivation
raises from the ultimate goal of weakly and semi-supervised techniques: the reduction of
the annotation burden. We adopt the analysis framework from [10] and extend it to any
supervision setup, applied to two different tasks: semantic and instance segmentation.

We estimate the annotation cost of an image from a well-known dataset for semantic
and instance segmentation: the Pascal VOC dataset [48]. Our study considers four level
of supervision: image-level, image-level labels + object counts, bounding boxes, and full
supervision (i.e. pixel-wise masks). The estimated costs are inferred from three statistical
figures about the Pascal VOC dataset drawn from [10]: a) on average 1.5 class categories
are present in each image, b) on average there are 2.8 objects per image, and c) there
is a total of 20 class categories. Hence, the budgets needed for each level of supervision
are:

Image-Level (IL): According to [10], the time to verify the presence of a class in
an image is of 1 second. The annotation cost per image is determined by the total
number of possible class categories (20 in Pascal VOC). Then, the cost is of tIL =
20 classes/image × 1s/class = 20 s/image.

Image-Level + Counts (IL+C): IL annotations can be enriched by the amount of
instances of each object class. This scheme was proposed in for weakly-supervised object
localization [54], in which they estimate that the counting increases the annotation time
to 1.48s per class. Hence, the time to annotate an image with image labels and counts is
tIL+C = tIL + 1.5 classes/image × 1.48 s/class = 22.22 s/image.

Full supervision (Full): We consider the annotation time reported in [10] for instance
segmentation: tFull = 18.5 classes/image × 1s/class + 2.8 mask/image × 79 s/mask =
239.7 s/image. As we could not find any reference to the semantic segmentation task,
we will assume that semantic segmentation labels require as much time as the instance
segmentation ones.
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IL IL+C Full BB

Cost (s/image) 20 22.22 239.7 38.1

Table 4.1: Average annotation cost per image when using different types of supervision.
IL stands for image-level labels, IL+C, stands for image-level labels plus counts, Full
refers to pixel-wise annotations, and BB stands for bounding box labels.

Figure 4.2: Annotation budget vs. number of images. The vertical axis is in logarithmic
scale for a better visualization.

Bounding Boxes (BB): Recent techniques have cut the cost of annotating a bounding
box to 7.0 s/box by clicking the most extreme points of the objects [123]. Following
the same reasoning as for dense predictions, the cost of annotating a Pascal VOC image
with bounding boxes is tbb = 18.5 classes/image × 1s/class + 2.8 bb/image × 7 s/bb =
38.1 s/image.

Table 4.1 summarizes the average cost of the different supervision signals for a single
Pascal VOC image.

Given a certain annotation budget, the amount of annotated images will depend on the
chosen level of supervision. The lower the level of supervision, the more images will be
annotated. Figure 4.2 shows the total cost of annotating a variable amount of images
with different types of supervision. The central research question of our work is how to
use an annotation budget: whether in few but fully supervised annotations, or in weaker
labels for a larger amount of images.

4.4 BASIS

Our semi-supervised scheme BASIS is a self-learning methods and consists of two differ-
ent networks. A first fully supervised model fθ is trained with strong-labeled samples



4.5 Semantic Segmentation 55

#Strong #Unlabeled val mIoU test mIoU

DeepLab-v3+ Ours ∼1.4k 79.22 77.26
DeepLab-v3+ Ours ∼1.4k ∼9k 79.41 78.71
DeepLab-v3+ Ours ∼10k 80.42 80.29

DeepLab-v3+ [30] ∼10k 81.21 -

Table 4.2: Performance of DeepLab-v3+ for the validation and test set of Pascal VOC
2012 with different supervision setups.

from the ground truth (X,Y ) = {(x1, y1), ..., (xN , yN )}, being N the total number of
strong samples. The network fθ is an annotation network used to predict pseudo-labels
Y ′ = {y′1, ..., y′M} for M unlabeled samples X ′ = {x′1, ..., x′M}. A second segmentation
network gϕ is trained with (X,Y ) ∪ (X ′, Y ′), as depicted in Figure 4.1. Depending on
the task (semantic or instance segmentation), we will choose different architectures for
the networks. It is important to remark that the proposed pipeline is independent to the
network architecture used, so it is possible to leverage off-the-shelf networks.

We present experiments for both the semantic and instance segmentation tasks for the
Pascal VOC 2012 benchmark [48]. The standard semi-supervised setup adopted for
this dataset consists of using the Pascal VOC 2012 train images (1464 images) as strong-
labeled images, and the Pascal VOC additional set (9118 images) [61] as unlabeled/weak-
labeled. Note that in fact, all these images (1464 + 9118) are annotated with strong
annotations, but for purposes of working on a semi-supervised setup, we will consider
the second set as weakly-labeled by only working with the class category annotations.

In this section, we vary N to analyze the performance at different annotation budgets,
and consider M to be the total size of the training dataset minus N (M = 10582−N).
Note that these M samples are unlabeled, free of annotation cost.

4.5 Semantic Segmentation

For semantic segmentation, we consider fθ and gϕ to have the same architecture, a
DeepLab-v3+ [30] with an Xception-65 [36] encoder, with output stride of 16 for both
training and evaluation. We used the official TensorFlow implementation from [30].
Following the setup described in Section 4.4, we run experiments with the standard
semi-supervised setup for Pascal VOC. Table 4.2 shows the results for different levels
of supervision in terms of mean Intersection Over Union (mIoU). The first row sets the
baseline of 79.22 when training the annotation network fθ (a DeepLab-v3+) with only
the 1.4k images from the Pascal VOC 2012 train set. The next row, reports a mIoU
of 79.41 when we train gϕ, also a DeepLab-v3+, with both the strong-labels Y and the
pseudo-labels Y ′ obtained with fθ, which represents a small improvement. Finally, we
trained a DeepLab-v3+ with all labels strongly-annotated (fully-supervised case), and
obtained a mIoU of 80.42, close to the reference figure (81.21) reported in [30].

To assess the impact of fixing different annotation budgets, we trained several
DeepLab-v3+ fθN with a varying number of strong-labeled training samples N ∈
{100, 200, 400, 800, 1464}. These networks are used to obtain pseudo-annotations for
the M samples without labels. Then, we train a corresponding gϕN for each fθN . Notice
that the pseudo-annotations are obtained for free, as no supervision signal is required.
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Figure 4.3: Semantic segmentation performance of the annotation and segmentation
networks for an increasing budget for the validation set of Pascal VOC.

100 200 400 800 1464

Annotation Network (AP th=0.5) 58.3 66.3 70.4 75.9 79.0
Segmentation Network (AP th=0.5) 64 67.8 72.7 77.0 79.4

Budget (days) 0.28 0.55 1,11 2.22 4.06

Table 4.3: Mean Intersection Over Union (mIoU) and annotation budgets when changing
N for semantic segmentation.

Figure 4.3 plots the obtained mIoU by the annotation network fθN and segmentation
network gϕN for different annotation budgets. The same information is depicted in Ta-
ble 4.3. We observe that, given a certain budget, the mIoU of gϕN is always higher
than the one obtained with the fθN alone, and therefore the extra pseudo-labels improve
the performance. Notice that the gap between efθN and gϕN becomes larger for lower
budgets, given that gϕN is trained with a larger proportion of images compared to its
corresponding fθN . This suggests that pseudo-annotations can increase the quality of
the segmentation tool at no additional cost, being this increment more relevant for low
budgets.

Figure 4.4 compares our results with recent works of both weakly-supervised that rely
on coarse labels and semi-supervised approaches for semantic segmentation. The plot
on the left shows the mIoU metric with respect to the annotation cost in days. We
propose this analysis as a unified benchmark that allows a fair comparison between both
weakly-supervised and semi-supervised pipelines. We observe that our results obtained
with DeepLab-v3+ outperform all previous methods at same or lower annotation budgets,
setting a new state of the art of 79.41 mIoU for semi-supervised segmentation at the time
of publication, using strong supervision only. In order to compensate for the different
network backbones used in the related works, Figure 4.4 (right) normalizes the mIoU



4.5 Semantic Segmentation 57

[88]
[88]

[102]

[191]
[191]
[191]

[136]
[136]

[3]
[39]
[39]

[211]

[83]
[83]

[94]

[176]
[176]
[176]

[124]
[124]

[3]
[40]
[40]

[194]

Figure 4.4: Semantic segmentation comparison, in terms of mean IoU and the normalized
IoU considering the fully-supervised performance, for the validation set of Pascal VOC
with other semi-supervised (SS) and weakly-supervised (WS) methods that use image-
level labels (IL) or bounding box labels (BB). All methods are trained with the Pascal
VOC dataset. Note that in this Figure we only show our results with the segmentation
network (not the annotation one), as it is the one that gets better performance.

Figure 4.5: Visualization of Pascal VOC validation set for the annotation fθN (A-) and
segmentation networks gϕN (S-), depending on the number of strong labels used N ∈
{200, 400, 800}. The color map legend is in Figure 4.6.

Figure 4.6: Pascal VOC color map for semantic segmentation [47]
.
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#Strong #Unlabeled val AP 50

RSIS Ours ∼1.4k 32.4
RSIS Ours ∼1.4k ∼9k 48.3
RSIS Ours ∼10k 56.4

RSIS [154] ∼10k 57.0

Table 4.4: Performance of RSIS for the validation set of Pascal VOC 2012 with different
supervision setups. The difference between the result obtained in the original RSIS paper
(AP 50 of 57.0), and the result we got when re-training RSIS for this work (AP 50 of
56.4), is due to variance in the model performance.

scores with the ones obtained by their fully-supervised counterparts. Our method with
DeepLab-v3+ still reaches a closer number to the fully-supervised case compared to the
other works at a fixed annotation budget. We want to highlight that our approach
outperforms all methods that rely on weak labels when matching the annotation cost.
Therefore, we conclude that it is preferable to invest the budget into collecting fewer
fully supervised samples, than a larger amount of weakly-labeled ones. Figure 4.5 depicts
some examples of semantic segmentation predicted by fθN and gϕN when using different
number of strong labels. As expected, gϕN obtains better segmentation results than its
counterpart fθN . We can also observe that at low annotation budgets (N = 200), the
segments produced are able to accurately outline some contours, although the results are
still far from the ones obtained with a higher N .

4.6 Instance Segmentation

The approach for instance segmentation follows the semi-supervised pipeline described
in Section 4.5: training an annotation network fθ and a segmentation network gϕ. This
is the same scheme as in the semantic segmentation task presented in Section 4.5 but,
in this case, we use the recurrent architecture for instance segmentation RSIS [154],
described in Section 3.3.1 from Part I, for both fθ and gϕ. The results in Table 4.4 show
a similar behaviour to the semantic segmentation case from Table 4.2, although there
is a more significant improvement of performance when the segmentation network gϕN

is trained with (X,Y ) ∪ (X ′, Y ′), the union of the strong-labeled set and the pseudo-
annotated set. Figure 4.7 shows the Average Precision at 0.5 threshold for different
budget scenarios, in which fθN is trained with N ∈ {100, 200, 400, 800, 1464} strong
labels. The same information is depicted in Table 4.5. The setup is the same as in the
semantic segmentation case of Section 4.5, but the performance gap between fθN and
gϕN is more significant for the instance segmentation task (Figure 4.7) than for the
semantic segmentation one (Figure 4.3). In the later, both curves converge when all
available 1464 strong labels are used to train the annotation network, which indicates
that the segmentation network does not learn anything new from the unlabeled images.
We hypothesize that learning instance segmentation is a more complex task, and more
samples would be needed for both curves to converge.

Figure 4.8 compares our approach with related works that tackle weakly-supervised in-
stance segmentation. For low annotation budgets there is the work from [198], that
addresses weakly-supervised instance segmentation with image-level labels. This task
is clearly very challenging for the instance segmentation problem, and we demonstrate
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Figure 4.7: Instance segmentation performance of the annotation and segmentation net-
works for an increasing budget for the validation set of Pascal VOC.

100 200 400 800 1464

Annotation Net. (AP th=0.5) 6.6 12.9 18.5 26.9 31.7
Segmentation Net. (AP th=0.5) 14.9 23.7 35.7 42.9 46.8

Budget (days) 0.28 0.55 1,11 2.22 4.06

Table 4.5: Average Precision (AP) at th = 0.5 and annotation budgets when changing
N for instance segmentation.

that when matching the annotation cost, our semi-supervised approach reaches signif-
icant better performance. We believe that working with a semi-supervised setup for
low-annotation budgets is convenient for instance segmentation, as cheap labels such as
image-level ones barely relate to distinguishing between different instances of an image.
Bounding boxes, on the other hand, scale down the problem to separate the foreground
from the background, but at the cost of more expensive annotations and thus at higher
budgets [83, 94]. Figure 4.9 depicts some examples predicted by the segmentation
network gϕN when varying N . The higher the N , the better the network distinguishes
between different instances.

4.6.1 Training with heterogeneous annotations

Heretofore, we have been assuming a semi-supervised setup where some samples are
strongly-labeled and others are unlabeled. For instance segmentation, we observe in
Figure 4.7 that the Average Precision for annotation networks fθ trained with very few
strong samples is very low (an annotation network trained with N = 100 reaches a
low figure of 2.5 of AP). In this section we propose to use heterogeneous annotations,
i.e., strong and weak annotations, instead of strongly-labeled samples alone. The main
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Figure 4.8: Instance segmentation comparison, in terms of Average Precision (AP) and
the normalized AP considering the fully-supervised performance, for the validation set
of Pascal VOC with other weakly-supervised (WS) methods that use image-level labels
(IL) or bounding box labels (BB).

difference to our previous setup, is that now the annotation cost will come from two
sources: the N strong-labeled samples, and the M weak-labeled ones.

As weak labels, we choose image-level labels, in addition to knowing how many instances
of each class category appear in an image (IL+C). This supervision signal was first
employed for weakly-supervised object localization [54], and its annotation cost is almost
the same as using simply image-level labels, as explained in Section 4.3. To the best of
our knowledge this is the first time that this supervision signal is used for instance
segmentation. As strong annotations, as in the previous setup, we consider pixel-level
annotations.

The setup is similar to the one explained in Section 4.4. For a better understanding,
we will keep the same notation. Let Z be the IL+C labels for the strongly-annotated
subset (X,Y, Z), and Z ′ the IL+C labels for the weakly-annotated subset (X ′, Z ′). To
exploit the weak-labels Z ′, now fθ during training will receive as input (X,Z), and will
be optimized to predict Y . In order to infer the pseudo-annotations Y ′, (X ′, Z ′) will be
fed into fθ. The segmentation network gϕ works as in Section 4.4. The architecture of
the annotation network fθ is a modified version of RSIS [154], described in Section 3.3.1
from Part I, and the architecture for the segmentation one corresponds to the original
RSIS model.

Annotation network. RSIS consists in an encoder-decoder architecture (Figure 4.10).
The encoder is a ResNet-101 [66], and the decoder is formed by a set of stacked ConvL-
STM’s [178]. At each time step, a binary mask and a class category for each object of the
image is predicted by the decoder. The architecture also has a stop branch that indicates
if all objects have been covered. The main property of this architecture is that its output
does not need any post-processing (as it happens with proposal-based methods, where
proposals need to be filtered), so that the pseudo-annotation is the output of the network
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Figure 4.9: Visualization of Pascal VOC validation set for the instance segmentation
network gϕN (S-) with N ∈ {100, 200, 400, 800, 1464} and M = 10582 − N . The AP
(th=0.50) for each configuration is, from left to right, of 7.7, 20.9, 27.9, 42.6 and 48.3.

itself. More details of this architecture are explained in Section 3.3.1 from Part I of this
thesis. Our modified RSIS architecture for weak labels (W-RSIS) is also depicted in
Figure 4.10. The main difference is that, besides the features extracted by the encoder,
the decoder receives at each time step a one-hot encoding of a class category representing
each of the instances of the image. If there are several instances belonging to the same
class, a one-hot encoding of that class will be given as input at several time-steps.

Table 4.6(a) presents an ablation study to analyze the impact of the different modifica-
tions included in W-RSIS. We use the standard semi-supervised setup for Pascal VOC
(1464 strong labels and 9118 weak labels). The first row in Table 4.6(a) corresponds to
the original RSIS, which annotates samples without using the weak labels. The + IL
term means that the output of the softmax class predictor is masked at inference time,
thus constraining the possible classes predicted for the pseudo-labels. The option + C
assumes that the count of instances n in the image is known, and post-processes the
pseudo-labels accordingly by keeping the first n objects. Finally, in W-RSIS the IL+C
labels are an input of the network fθ, instead of simply being used as a post-processing
step. The ablation study shows how the proposed W-RSIS architecture maximizes the
information contained in the IL+C weak labels.
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Figure 4.10: RSIS architecture in the first row, and W-RSIS architecture in the second.
RSIS has three different outputs, the mask, class, and stop score. When the score is
below a fixed threshold (e.g. th = 0.5), no more masks are produced. W-RSIS receives
as input a token for each object in the image, so it only has the segmentation output.

RSIS does not impose any order on the sequence of predicted masks. The permutation
of the ground truth masks that leads to a lower loss with the predicted sequence is found
with the Hungarian algorithm. As in RSIS, we use the soft intersection over union loss
(sIoU) as the cost function between the mask predicted by our network and the ground
truth mask. Notice that now we have some restrictions in the sequence order, as we
want an alignment between the input class category and the output, so in order to train
W-RSIS, the Hungarian matching is performed only between ground truth instances of
the same category.

Table 4.6(b) includes a second ablation study, in this case, about the masking of the
Hungarian algorithm to just allow some permutations, constrained to class categories.
The first row corresponds to the basic case Hungarian, but we observed that this did
not constrain that our input classes were aligned with the classes of the predicted masks.
Afterwards, we applied the Hungarian algorithm among objects of the same category
only, hence forcing an alignment between the input class categories (which correspond to
ground truth) and the actual class category of the prediction. This last Masked Hungarian
solution resulted to be the best option.

Figure 4.11 proves how W-RSIS generates better annotations compared to RSIS at differ-
ent annotation budgets. We train multiple W-RSIS models fθN with a varying number of
strong-labeled samples N ∈ {100, 200, 400, 800, 1464}, and compare them to the base-
line RSIS. We notice that for any number N of strong samples, W-RSIS outperforms
RSIS, being the improvement more notable at low N .

Figure 4.12 shows qualitative results of the pseudo-annotations obtained by both config-
urations. The first three pairs of images correspond to cases in which RSIS (first row)
misses some of the instances because they were predicted with a low confidence score
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AP 50

RSIS 32.4
RSIS + IL 33.6
RSIS + IL + C 37.3
W-RSIS 38.8

(a)

AP 50

Hungarian 34.8
Masked Hungarian 38.8

(b)

Table 4.6: (a) Ablation study of IL+C (Image-level Labels plus Counts) as inputs with
the Pascal validation set. (b) Ablation study of different losses with the Pascal validation
set.
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Figure 4.11: Comparison of RSIS annotation network, whose input are only the images
to be annotated, and W-RSIS annotation network, whose input are the images and the
IL+C information.

that does not reach the minimum detection threshold. W-RSIS (second row) does not
present this limitation because the amount of instances for each class is provided by the
weak annotation, so the confidence score is ignored. The last pair of images corresponds
to the case in which RSIS predicts a wrong class, a problem that W-RSIS does not have
either as the category is already provided by the weak label. The additional knowledge
about the category of the pseudo-annotation provided by the class label facilitates the
task, resulting in better quality masks.

Segmentation network. We analyze the final performance of the segmentation network
gϕ in terms of the annotation cost when using the RSIS or W-RSIS annotation network.
Notice that the segmentation network gϕ is the same for both configurations (RSIS), just
fθ changes.
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Figure 4.12: Comparison of pseudo-annotations obtained by RSIS (first row) and W-RSIS
(second row) with N = 800. The class category predicted for each pseudo-annotation
is written underneath, with the same color code. The performance of each annotation
network is 34.5 and 24.9 of AP (th=0.50), for W-RSIS and RSIS respectively.

In Section 4.4 annotating samples was cost-free, as the pseudo-annotations were done
on unlabeled images, so varying the number M did not impact the annotation budget.
Consequently, we always considered M to be the total size of the training set of Pascal
VOC minus N (M = 10582−N). In the heterogeneous setup that we are considering now,
there is a cost involved in annotating samples, as weak-labels are fed into the annotation
network.

In this section we will vary the number of weak-labeled samples M ∈
{912, 2279, 4459, 6838, 9118}, corresponding to the {10, 25, 50, 75, 100}% of the addi-
tional Pascal VOC set from [61]. In Table 4.8 we fix three different budget scenar-
ios (∼0.55, ∼1.1 and ∼2.2 days) and we compare RSIS and W-RSIS. As now the weak-
labeled samples have an associated cost, for the W-RSIS setups, we reduce the number
of strong samples N , and use part of the budget for M weak-labels. We observe that
for very low annotation budgets (∼0.55, ∼1.1 days), it is more convenient to spend some
budget on weak-labels and reduce the number of strong ones. We even reach better
performance at lower annotation budgets (0.79 vs. 1.1 days), as the performance of the
W-RSIS annotation network fθ is significant superior to the baseline one. On the other
hand, for higher annotation budgets, the RSIS annotation network fθ is strong enough,
and does not benefit from the weak labels. We observe that in this second case, the
baseline reaches better performance (42.6 vs. 40.9 or 36.5 of AP).

The last row in Table 4.8 includes the results of [198], the only previous work addressing
the problem of instance segmentation with a low annotation budget. W-RSIS obtains
a much better performance at half the budget required by [198] (33.5 of AP at 1.14
days, vs. 26.8 of AP at 2.43 days). Figure 4.13 shows qualitative results for W-RSIS for
different numbers of weak-labeled samples.

Table 4.7(a) presents the Average Precision obtained at each of the configurations we
tested varying N and M . Note that the first row indicates the results with the W-RSIS
annotation network fθ, while the rest include results for the segmentation network gϕ
when trained with a varying number of M samples. We observe the expected behaviour,
the higher N and M , the better the results. We can also see how changing N has a higher
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100 200 400 800 1464

W-RSIS 19.0 22.7 27.1 34.5 40.0

10% 25.2 27.3 32.5 40.4 46
25% 27.7 30.8 34.8 41.2 47.1
50% 28.0 30.7 32.6 43.1 47.2
75% 28.4 32.7 36.8 43.7 48.4
100% 29.4 33.3 36.8 43.8 48.4

(a)

100 200 400 800 1464

W-RSIS 0.28 0.55 1.11 2.22 4.06

10% 0.51 0.79 1.34 2.45 4.30
25% 0.86 1.14 1.70 2.80 4.65
50% 1.45 1.73 2.28 3.39 5.23
75% 2.03 2.31 2.87 3.98 5.82
100% 2.62 2.90 3.45 4.56 6.40

(b)

Table 4.7: (a) Average Precision (AP) at th = 0.5 and (b) Annotation budget (in days)
when changing M (rows) and N (columns) for instance segmentation.

#Strong #Unlabeled #Weak Budget AP 50

RSIS 200 10382 0.55 days 20.8
W-RSIS 100 912 0.51 days 22.7

RSIS 400 10182 1.1 days 27.9
W-RSIS 200 912 0.79 days 30.5
W-RSIS 200 2279 1.14 days 33.5

RSIS 800 9782 2.22 days 42.6
W-RSIS 400 4559 2.28 days 40.9
W-RSIS 200 6838 2.31 days 36.5

[198] 10582 2.43 days 26.8

Table 4.8: Results of the segmentation network when the annotation network changes
(RSIS vs. W-RSIS) at different fixed annotation budgets.

impact to the final performance than M , as N indicates the number of strongly-labeled
samples. In this configuration, weak labels add a cost to the annotation budget, which
we report in Table 4.7(b). In comparison to Table 4.5, we observe better performance at
a cost of slight increase in the annotation budget, specially for low values of N .

4.7 Training Details

This Section presents the training details for the different models.

Semantic Segmentation. The model used for all semantic segmentation configurations
is the DeepLab v3+ [30] with an Xception65 [36] encoder pretrained on ImageNet [88].
We used the official code in TensorFlow. The different atrous rates that we used were
6, 12, 18. The output stride chosen is of 16. We used the decoder module explained in
the original work [30], with an output stride of 4. We trained the models on 2 Tesla V100
(4 GPU devices in total), with a total mini-batch size of 28. As in the original work [30],
we optimized the models with SGD with Momentum of 0.9, with a base learning rate of
0.007. The image resolution used both for training and evaluation is of 513× 513 pixels.

Instance Segmentation. For instance segmentation we trained two different
models, the RSIS and our modified version W-RSIS. We used the PyTorch code
(https://github.com/imatge-upc/rsis). We trained our models with 2 Tesla V100 (4

https://github.com/imatge-upc/rsis


66 Budget-aware Semi-Supervised Segmentation

Figure 4.13: Visualization of Pascal VOC validation set for the instance segmentation
network gϕ when the annotation network is W-RSIS. The setup consists of N = 200 and
M ∈ {912, 2279, 4459, 6838, 9118}, being N the number of strongly-labeled data, and M
the number of weakly-labeled samples. The percentages on top of the figure indicate the
fraction of M compared to the total set [61]. The AP (th=0.50) for each configuration
is, from left to right, of 30.5, 33.5, 35.4, 36.5 and 43.0.

GPU devices) with a mini-batch size of 60. The encoder is pretrained on ImageNet [88].
The image resolution we used in this case was of 256 × 256 pixels. As in the original
work, we used an Adam [86] optimizer, with learning rate of 10−3 for the decoder and of
10−6 for the encoder.

4.8 Conclusion

The main contribution of this Chapter is a unified benchmark for image segmentation
structured around the annotation cost in days, allowing to compare fairly weakly and
semi-supervised methods. This budget-aware benchmark has allowed us to demonstrate
that semi-supervised setups are preferable to weakly-supervised setups that rely on only
coarse labels. In other words, that fewer but strong labels achieve better results than a
larger amount of weak labels. This fewer labels paradigm is especially suitable in those
domains in which collecting images is cumbersome (e.g. for the medical field).
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Moreover, the time to outline segments can be alleviated even further by modern inter-
active annotation tools [2, 112]. Therefore, at a restricted annotation cost, more strong
labels can be obtained, aiming at closer figures compared to the fully-supervised case.

In next Chapter we exploit active learning to select which samples to strongly-annotate
for the BASIS semi-supervised pipeline.





5 Sample Selection for
Semi-Supervised Segmentation

5.1 Introduction

This Chapter extends the semi-supervised scheme BASIS presented in Chapter 4. Given
a low annotation budget, BASIS outperforms previous works on weakly and semi-
supervised semantic and instance segmentation. The setup in BASIS consists of using a
limited amount of strong labels, and a larger amount of unlabeled or weakly-labeled data.
In this initial approach, the subset of strongly-annotated samples was chosen randomly.
In this Chapter, we propose an alternative selection scheme based on active learning,
which leads to an improved performance given a fixed annotation budget.

Our active learning method for sample selection consists of firstly training the annotation
network with a random subset of very few strongly-annotated images. This model is
later used to obtain pseudo-annotation masks, as in BASIS, but in this case a confidence
score for the masks is predicted, too. This additional information is leveraged to select
more images to be strongly-annotated by humans, allowing a more efficient usage of the
available annotation budget. Our main contribution is the definition of a novel way to
estimate the confidence score. Specifically, our model is trained to predict an estimation of
the Intersection Over Union (IoU) of the pseudo-labels and their corresponding ground
truth masks. IoU prediction has been used in previous works on object detection for
filtering object proposals [80]. To the best of the authors’ knowledge, our work is the
first one to use IoU as a selection criterion for active learning. We name our selection
strategy Mask-guided sample selection.

The summary of our contributions in this Chapter is as follows: (a) a novel method to
estimate the mask confidence score based on IoU score, being the first work to leverage
IoU prediction for active learning, (b) a study of the selected images, which concludes
that the best images to annotate are those that are neither the easiest nor the most
complicated of our dataset. Finally, (c) with the Mask-guided sample selection strategy
we reach higher performance compared to our BASIS baseline, leading to state-of-the-art
results at low annotation budgets.

5.2 Related Work

Active learning [158]: consists in recursively selecting which samples to annotate to
train a network. The goal of this approach is the reduction of the annotation cost, by only
annotating those samples that will have more impact to the learning of the model. This
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acquires special relevance in contexts where annotating samples is very expensive, e.g., in
image segmentation problems. Common active learning methods select samples according
to two main criteria: how uncertain and representative a sample is. The uncertainty is
related to how informative a sample is with respect to the learning process.

There are several methods that estimate the uncertainty, e.g., dropout has been used to
sample from the approximate posterior of a Bayesian CNN to calculate the uncertainty of
predictions when varying the model [52]. This quantified metric can be used to request
the annotation of subsequent training batches of data [53][59]. More recent methods
have also used Bayesian CNNs to calculate the informativeness of images generated by
a Generative Adversarial Network (GAN) [109] in order to add these samples to the
training set. Another method [46] is based on bootstrapping, and consists in training
several networks with different subsets and calculate the variance in predictions across
the different networks in order to estimate uncertainty [183].

Some of the aforementioned methods not only base their selection on the uncertainty
criterion, but also on the representativeness of a sample. This criterion is relevant to
promote diversity among samples and to avoid redundancy. One strategy used in com-
puter vision is to extract image descriptors with a CNN, and compare images with a
cosine similarity metric [183] to avoid picking very similar samples. Maximizing set cov-
erage has also been studied [49]. Other metrics, such as content distance have been used
to quantify the distance between images to maximize content information [121][122].

Most of the above methods focus on image recognition and region labeling. The first
works that handled active learning for large scale object detection [170] used as active
learning criterion the simple margin selection method for SVMs [166], which seeks points
that most reduce the version space. More recently, methods rely on modern object
detectors [138][105], but still are based on uncertainty indicators like least confidence or 1-
vs-2 [16][150]. Notice that object detection is very close to the instance segmentation task
addressed in this work. However, our sample selection criterion is based on the estimated
quality of the different masks predicted for each image, instead of using classification
scores as the previous approaches. We want to highlight that our method is the first one
that proposes active learning for semi-supervised instance segmentation for Pascal VOC
benchmark [48], and the first one to explore mask quality prediction as an alternative
to classification scores for active learning. Our claim is that classification scores are
suitable for object detection pipelines, but do not reflect the quality of the actual pixel-
wise annotation used to train instance segmentation models.

IoU prediction: IoU prediction has been used in previous works for filtering object
proposals in object detection tasks [80]. In particular, in [80] the IoU between pre-
dicted bounding boxes and ground truth bounding boxes is estimated, and the authors
argue that this score, in comparison to a class confidence score, considers the localization
accuracy. In their work they show how their approach leads to improved performance.
Similarly to this work, [75] estimate the IoU between the predicted masks and the ground
truth masks, and use this score to better filter object proposals for instance segmentation.
In this direction, we propose to also predict the Intersection Over Union of the predicted
masks with respect to the ground truth as a measure of the confidence of the prediction.
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Figure 5.1: IoU-W-RSIS model with the IoU branch. The model consists of an encoder
for the image, that is a ResNet-101, and a recurrent decoder that receives at each time
step a class category label, in this example, it receives at the first time step the label
sheep, and in the second time step it receives the same label, as in the image there are
two instances of the sheep category. The decoder also receives the features obtained by
the encoder, and at each time step produces a binary mask with the segmented instance,
and a prediction of the IoU of the produced mask.

5.3 IoU Quality Prediction

We study a selection criterion mechanism for the semi-supervised setup with heteroge-
neous annotations presented in Section 4.6.1. This setting combines two types of annota-
tions: strongly-annotated samples (with pixel-level annotations) and weakly-annotated
samples with image-level plus counts (IL+C). This type of weak annotation consists in
indicating the class labels in each image, and the counts of how many times each category
appears. In this Chapter we decided to work with this setup, instead of using unlabeled
samples, because with the IL+C weak labels we know beforehand how many objects
there are in each image, which facilitates the study of predicting a confidence value for
each instance. However, the strategy that we propose could be easily adapted for the
setup in which no weak labels are provided.

Compared to what we presented in the previous Chapter 4, the only change in the
model architecture is an additional output to the W-RSIS annotation network, already
presented in Section 4.6.1. This output estimates the quality of each predicted mask,
which can be used to guide an active learning algorithm in choosing which images should
be strongly-annotated given a limited budget. Our proposed method to estimate the
mask quality is to predict the Intersection over Union (IoU) of the predicted mask over
a hypothetical ground truth. The IoU measures the intersection between two regions
divided by its union, and it is a common metric to assess segmentation performance
(Equation 5.1). For binary segmentation, the IoU is computed on the foreground pixels
of the predicted and the ground truth masks.

IoU(A,B) =
|A ∩B|

|A|+ |B| − |A ∩B|
(5.1)

We call this new architecture IoU-W-RSIS, and it is depicted in Figure 5.1. The model
can be trained in a fully-supervised setup, as the ground truth masks are available for
the training data. IoU-W-RSIS will segment an object mask of the category fed in the
input and predict a confidence score of the segmentation quality at each time step.
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Figure 5.2: IoU-W-RSIS model with the IoU branch for a single time step. The class
label is omitted in this figure for clarity. The input image is fed into the encoder and the
features at different resolutions are fed at different levels of the decoder. Each level of the
decoder has a convolutional LSTM (Conv LSTM) layer that receives a hidden state from
the previous time step, and produces features for the current time step. The features of
the different levels are averaged-pooled and concatenated, and are the input of a fully
connected layer that predicts the mask IoU. On the other hand, the features of higher
resolution are the ones that produce the binary mask that corresponds to the segment.

The architecture that predicts the IoU is depicted in Figure 5.2. A branch for IoU pre-
diction is added to the decoder of the network, indicated in the Figure as Mask IoU. This
branch aggregates features of the decoder at different spatial resolutions, concatenates
them, and computes global average pooling. Afterwards, we add a fully connected layer
that predicts the IoU using an L1 regression loss. This loss term is introduced once the
segmentation loss has already converged. At that point, the network weights are frozen
and only the additional IoU branch is trained for a few epochs. To give more relevance to
the predictions of low IoUs, we predict the squared IoU, as suggested in other scenarios
in which small values have important relevance, as bounding box offset regression for
object detection [138].

With the proposed architecture, an IoU Score for each mask is predicted. In our method-
ology we use an overall IoU per image instead of individual IoU scores per object. This
means that a human annotator will be asked to annotate all object instances from the
selected images. Therefore, to compute the IoU Score for an image with M objects, we
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simply average the scores predicted per each object, as seen in Equation 5.2.

IoU Score =
1

M

∑
iεM

IoUi (5.2)

5.4 Experiments

The IoU-W-RSIS annotation network presented in Section 5.3 is tested considering one
active learning iteration for the task of instance segmentation. Our experiments aimed
at measuring the gain of a IoU-guided selection of the images to strongly-annotate, com-
pared with a baseline of random selection as in Section 4.6.1, and with baseline techniques
for active learning based on Dropout [52]. We present experiments for the instance seg-
mentation task for the Pascal VOC 2012 benchmark [48]. The standard semi-supervised
setup adopted for this benchmark consists in using the Pascal VOC 2012 train images
(1464 images) as strong-labeled images, and an additional set (9118 images) from [61]
as unlabeled/weak-labeled. For our study, as done in the previous Chapter 4, we se-
lect which samples to strongly-annotate from the Pascal VOC 2012 train images. The
additional set of Pascal is used to obtain pseudo-annotations for the semi-supervised
pipeline.

Two sets of experiments are presented, first we focus on the IoU prediction task (Sec-
tion 5.4.1), and then we study how to use this score for tackling sample selection (Sec-
tion 5.4.2).

5.4.1 IoU Prediction

As a first experiment, we try several configurations to train the IoU branch of the IoU-W-
RSIS architecture. We train our proposed annotation network IoU-W-RSIS with N ∈
{100, 200, 400, 800, 1464}, where N is the amount of strongly-annotated samples. These
N samples are randomly selected from the Pascal VOC 2012 train set (that has a total
of 1464 images). Table 5.1 contains the Mean Absolute Error (MAE) computed as the
mean of the MAE of IoU Scores (Eq. 5.2) of the dataset for the different configurations.
The Baseline configuration consists in training the IoU branch at the same time as the
segmentation branch. In the next row, we freeze the weights of the segmentation network
after 150 epochs and only train the IoU branch (for 250 epochs). Finally, we optimize
the squared root of the IoU and this option leads to the best results. As expected, the
MAE tends to decrease from left to right in the table, which corresponds to considering
more strongly annotated images.

To better understand the kind of segmentation that our model obtains, Figure 5.3 shows
results from the network trained with the minimum number of images, only 100 random
samples. Note that this model gets a performance of 19.0 Average Precision (thresh-
old=0.5). When there is a single object in the scene, the model gets decent performance,
but as there are more objects, the masks obtained are worse. However, the goal of this
network is not to get accurate segments, but to estimate which is the performance of
this model for a given image. With this estimation, we can identify for which images the
current model is struggling to obtain good performance, and for which images the cur-
rent model is good enough already. This information is crucial to define our mask-guided
selection criterion.
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100 200 400 800 1464

Baseline 31.1 39.8 49.3 47.7 51.0
+ Freeze Seg. Network 24.8 16.7 19.0 17.1 16.6
+ Sqrt Loss 23.6 19.5 18.0 17.0 16.6

Table 5.1: Mean Absolute Error (MAE) of IoU prediction. Each column indicates the
number of samples used to train the IoU prediction branch, and each row is a different
configuration that we test. The one that yields best performance is when we freeze the
segmentation network and when the prediction of the model is the squared root of the
IoU.

Figure 5.3: Segmentations predicted by the IoU-W-RSIS model trained on only 100
images. Each color indicates a different mask.

5.4.2 Mask-guided sample selection

The second set of experiments exploit the estimated IoU to select which images should
be strongly-annotated and used as supervision to train the annotation network in the
BASIS pipeline.

Considering a fixed set of 1464 images from Pascal VOC 2012, our proposal firstly trains
an IoU-W-RSIS annotation network with a few randomly selected samples (100), and
later the remaining samples (1364) are processed through the trained model. Together
with the predicted masks for these 1364 samples, the IoU-W-RSIS annotation network
predicts also a IoU score for each input sample. We explore different approaches to select
which subset of images should be strongly-annotated based on the estimated IoU for
each predicted mask. Next, the chosen samples are manually annotated with pixel-level
labels and added to the training of the annotation network. This pipeline is depicted
in Figure 5.4. We follow the classic active learning setup, in which the samples to be
annotated are iteratively selected. In our case, we experiment with a single iteration, but
it could be easily extended to a looped pipeline.
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Unlabeled 
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Figure 5.4: Active Learning pipeline to select next samples to be labeled by a human
annotator. The first step consists in training the annotation network with few strongly-
labeled samples. The second step consists in using the annotation network to obtain
pseudo-masks for the unlabeled samples, together with the masks quality score. Based
on this score, some samples are selected to be manually annotated by a human, and
added to the pool of labeled samples to re-train the annotation network.

200 400 800

Random subset 22.7 ± 1.8 27.1 ± 0.8 34.5 ± 2.0
Dropout Baseline (highest) 21.4 ± 1.4 23.9 ± 1.3 28.1 ± 1.9
Dropout Baseline (lowest) 20.0 ± 0.9 24.8 ± 1.5 32.2 ± 1.4

β = 0.0 20.9 ± 1.5 24.1 ± 0.7 29.1 ± 1.3
β = 0.1 22.3 ± 1.5 23.8 ± 0.6 28.6 ± 0.7
β = 0.2 23.3 ± 0.8 24.4 ± 0.3 31.6 ± 1.1
β = 0.3 23.9 ± 0.8 26.5 ± 2.6 32.9 ± 1.4
β = 0.4 23.4 ± 2.7 29.0 ± 1.3 35.0 ± 0.6
β = 0.5 22.2 ± 1.1 28.9 ± 0.7 35.1 ± 0.9
β = 0.6 22.2 ± 2.4 28.6 ± 1.3 35.4 ± 2.4
β = 0.7 22.3 ± 1.2 26.7 ± 1.3 35.4 ± 1.4
β = 0.8 21.9 ± 2.0 25.3 ± 1.2 33.4 ± 3.1
β = 0.9 20.4 ± 1.1 25.9 ± 1.1 34.8 ± 1.9
β = 1.0 20.3 ± 1.1 25.2 ± 2.3 34.5 ± 1.3

Table 5.2: Oracle: mean Average Precision (th=0.5) for different selection criteria (5
runs for each configuration). Each column indicates the number of images used to train
the segmentation models. The first row shows the results obtained with random selection
of samples, the second and third rows show a baseline sample selection method, whereas
the following rows show different selection criteria with our method. If β = 0.0 and the
number of training samples is 200, means that the first 100 samples are randomly-selected
and the next 100 are the ones that have a IoU closer to 0.0.

5.4.2.1 Criterion for sample selection based on IoU

In this Section we explore a criterion for selecting which images should be strongly-
annotated by a human given their estimated IoU Scores. As we would like our analysis
to focus on the selection criterion only, in this Section we will not use the IoU value
predicted by our model but the real ground truth value (oracle).

Our experiments start with an IoU-W-RSIS annotation network trained with only 100
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Figure 5.5: Oracle: mean Average Precision (th=0.5) for different selection criteria (5
runs for each configuration). We illustrate two criteria: the mask-guided and the random
one. We see how for some IoU scores our proposed method surpasses the random one.
For the mask-guided criteria, the figure shows the variance of each configuration. We
compare three different scenarios depending on the number of training images, as in
Table 5.2.

samples, which obtains a performance of 19.0 Average Precision (threshold=0.5). After
that, we select another N’ samples to be manually annotated, being N ′ ∈ {100, 300, 700}
to make a total of N ∈ {200, 400, 800} strongly-annotated samples. The criterion used
to select these N’ samples consists in first defining a set of IoU Scores (from 0 to 1.0 in
steps of 0.1), that we name β, and select the N’ images (being N ′ ∈ {100, 300, 700})
whose IoU Scores are closest to these β values. Finally, the samples used to train the
annotation networks are the 100 initial random images plus these N’ selected images. The
performance obtained with these different subsets is presented in Table 5.2, which reports
the Average Precision (threshold=0.5). All configurations have been trained five times,
and the reported results are the average with the standard deviation of the performance
of these different models. Notice that we compare our approach to a random selection
and to two baseline selection criteria. These baselines consist in adding a dropout layer at
the end of the encoder of our model, with 50% of probability of dropping out the neurons.
Following, we test each of the trained models five different times with the dropout, and
obtain the predicted masks for each run. We compute the standard deviation of the
pixels from the masks predicted, to see which samples vary significantly between different
runs when different neurons are dropped, as a way to estimate the uncertainty of the
predictions. Finally, we select the images related to the lowest standard deviation values
(Dropout Baseline lowest) or the highest values (Dropout Baseline highest), similarly
to previous works [53][59]. We illustrate the same results in Figure 5.5, comparing our
mask-guided criteria, and the random one.

The results in Table 5.2 and Figure 5.5 show that there are multiple subsets that out-
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perform the random and the baseline selections. This means that our selection strategy
based on IoU is effective to reach better performance. We also notice that the optimal
predefined IoU Score is not fully consistent across different subsets sizes (at N = 800
the optimal score is 0.6, whereas at N = 200 the optimal score is 0.3). Interestingly,
these optimal IoU Score values suggest that the best options are the ones that select
images that are neither the most challenging of the dataset nor the easiest ones. We
also observe that the dropout baselines do not surpass our method and are even worse
than random selection. As our results with IoU Score indicate, the best options for the
dropout baselines may be related to neither the highest nor lowest standard deviations.
However, choosing a mid-range option for standard deviation is not as intuitive as it is
with IoU Score. In the latter case, we only need to select an IoU which directly reflects
the quality of the predicted masks. Moreover, our method does not need to run the
model several times to select the samples, as it happens with the dropout baselines, thus
it is computationally more efficient.

5.4.2.2 Predicted IoU-selection

The experiments in Section 5.4.2.1 with the real ground truth IoU (the oracle experiment)
showed that choosing samples based on the IoU quality metric leads to better results than
performing a random selection or a baseline active learning selection.

In this Section, we address the realistic case in which the IoU is predicted by the same an-
notation network, instead of using the ground truth value as in Section 5.4.2.1. Table 5.3
and Figure 5.6 shows that for the three set sizes (N = 200, 400, 800) better results are
also obtained by selecting with the IoU criterion instead of performing a random selection
or using the dropout baseline defined previously. The optimal IoU scores are between
0.3 and 0.6. In fact, we observe a tendency that for smaller subsets, a lower IoU score
is optimal, whereas for larger subsets, a higher IoU score works better. We also observe
there is no significant difference in the maximum performance between the results ob-
tained with the oracle and the predicted IoU configurations, but the curves (Figure 5.6)
from the latter are noisier.

5.4.2.3 Sets analysis

In this Section we will analyze the properties of the N’ samples selected based on the
selection criterion when considering different IoU Scores predefined values. We compare
the subsets obtained from the oracle and the predicted IoU configurations. In Figure 5.7
we depict an histogram of the average number of objects per image and the mean size of
objects per image for each of the subsets, depending on the predefined IoU Scores. The
plot has two different columns, the first one belongs to the oracle configuration and the
second one to the predicted IoU configuration. For both the oracle and the predicted IoU
configurations, we observe that lower IoU scores are related to images with more objects
per image and smaller objects. These two scenarios correspond to very challenging cases
in object detection, as pointed out by previous works [56]. Finally, we can observe that
the subsets created by the predicted IoU follow a similar distribution to the oracle one.

As we already found in Section 5.4.2.2, the optimal IoU Scores are between 0.3 and 0.6.
In Figure 5.7 we can see how images associated to these values tend to have a close to
the average number of objects per image (2.8 objects/image). Regarding object size, we
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200 400 800

Random subset 22.7 ± 1.8 27.1 ± 0.8 34.5 ± 2.0
Dropout Baseline (highest) 21.4 ± 1.4 23.9 ± 1.3 28.1 ± 1.9
Dropout Baseline (lowest) 20.0 ± 0.9 24.8 ± 1.5 32.2 ± 1.4

β = 0.0 21.5 ± 1.1 23.7 ± 0.6 30.1 ± 1.7
β = 0.1 21.8 ± 1.6 23.7 ± 0.7 30.3 ± 1.7
β = 0.2 22.6 ± 0.9 25.0 ± 0.8 29,9 ± 2.2
β = 0.3 24.0 ± 1.3 26.9 ± 3.2 33,5 ± 3.1
β = 0.4 23.2 ± 0.4 24.8 ± 2.2 35.3 ± 0.9
β = 0.5 20.9 ± 3.1 25.0 ± 0.9 37.0 ± 2.0
β = 0.6 20.6 ± 1.2 27.5 ± 2.7 34.8 ± 3.0
β = 0.7 20.3 ± 1.0 26.2 ± 3.1 36.3 ± 1.1
β = 0.8 20.7 ± 2.1 26.9 ± 1.6 35,9 ± 2.5
β = 0.9 20.8 ± 0.8 26.1 ± 1.2 35,5 ± 1.1
β = 1.0 21.1 ± 1.5 24.8 ± 1.5 34.6 ± 2.1

Table 5.3: Predicted IoU: mean Average Precision (th=0.5) for different selection crite-
ria (5 runs for each configuration). Each column indicates the number of images used
to train the segmentation models. The first row shows the results obtained with ran-
dom selection of samples, the second and third rows show a baseline sample selection
method, whereas the following rows show different selection criteria with our method. If
β = 0.0 and the number of training samples is 200, means that the first 100 samples are
randomly-selected and the next 100 are the ones that have a predicted IoU closer to 0.0.

Figure 5.6: Predicted IoU: mean Average Precision (th=0.5) for different selection crite-
ria (5 runs for each configuration). We illustrate two criteria: the mask-guided and the
random one. We see how for some IoU scores our proposed method surpasses the random
one. For the mask-guided criteria, the figure shows the variance of each configuration.
We compare three different scenarios depending on the number of training images, as in
Table 5.3.
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Oracle IoU guidance

Oracle IoU guidance

Oracle IoU guidance Predicted IoU guidance

Predicted IoU guidance

Figure 5.7: Analysis of the mean object size (first row) and number of objects (second
row) of the selected images when considering the oracle and the predicted IoU. We
consider three different scenarios, when 100, 300 or 700 samples are added to the initial
100 randomly-selected set of samples.

observe that objects tend to be neither the largest ones nor the smallest.

Figure 5.8 shows some of the selected images when different IoU Scores are considered.
We observe that at high IoU Scores values (0.8 or 1.0), images selected are easy, with
only one or two large objects in the image. On the other hand, at low IoU Scores (0.0 or
0.2) images have multiple, rather small, instances. As our results indicate, the optimal
selected samples to be strongly annotated are those in the middle of the range. These
are images that have multiple instances but that are not too complicated to segment.
We hypothesize that training with very difficult images can be inefficient if the model is
not capable to learn from them, while easy cases do not add much value to the learning
process.

5.4.2.4 Training of segmentation network

In this Section we focus on the final goal of the pipeline: training the segmentation
network. As a first step, an annotation network of N = 100 is trained with 100 random
samples, and following 100 more samples are selected (the ones that are closest to the
IoU score of 0.3, which is the optimal for this set size), so we get an annotation network
trained with N = 200. The same procedure applies for N = 400 and N = 800, always
starting from N = 100 random samples, and applying thresholds 0.6 and 0.5 respectively,
as they are the optimal ones for each set size. Once the annotation network has been
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1.0 0.8 0.6 0.4 0.2 0.0

Figure 5.8: Examples of images of each subset. Each column are images related to
different predicted IoUs. For instance, the first column belongs to the images that have
a mean IoU closer to 1, and we can see that these images are simple, with a single and
big instance appearing.

trained with the best selection of samples given our mask-guided criterion, we use this
annotation network to pseudo-annotate the additional Pascal set from [61], a total of 9118
images. Lastly, we train the segmentation network with the obtained pseudo-annotations
and the available strongly-labeled samples.

Figure 5.9 shows the Average Precision (threshold 0.5) achieved by the annotation net-
work when the samples are selected with the mask-guided criterion, compared to a ran-
dom selection, depending on the final number of strongly-labeled samples used. We see
how the proposed selection strategy outperforms the random one for all data points.

Following, Figure 5.10 depicts the Average Precision (threshold 0.5) of the segmentation
network depending on the total annotation budget in days. We test two configurations,
pseudo-annotating all the additional set of Pascal [61], consisting of 9118 images, or only
annotating half of it, 4559 samples. The three data points plotted per curve consist
in using N = 200, N = 400 or N = 800 strongly-labeled samples. We see that all
configurations of the mask-guided selection require a slight higher budget compared to
the random selection configurations. That is, because in order to choose which samples
to strongly-annotate, we need extra IL+C weak labels for the Pascal 2012 train set as
inputs to the network, whose budget is added to the total cost. As we can observe in the
plot, this additional annotation cost is worth it for the N = 400 and N = 800 strongly-
labeled samples configurations, as the performance is higher compared to the random
one.

The final results obtained by the segmentation network are presented in Tables 5.4
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Figure 5.9: Annotation networks comparison, in terms of Average Precision (AP) th=0.5,
for the validation set of Pascal VOC, when samples are chosen based on random selection
and with the mask-guided selection strategy.
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Figure 5.10: Segmentation networks comparison, in terms of Average Precision (AP)
th=0.5, for the validation set of Pascal VOC, when samples are chosen based on random
selection and with the mask-guided selection strategy.
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AP @[0.5:0.95] AP @[0.5] AP @[0.7] AR @[0.5:0.95] AR @[0.5] AR @[0.7] F@[0.5] SSIM

200 18.7 34.4 20.6 26.1 41.6 28.7 37.7 84.0
400 24.8 41.8 28.2 33.6 50.2 37.5 45.6 83.6
800 29.2 47.1 32.7 38.7 55.4 42.9 50.9 85.8

Table 5.4: Average Precision and Average Recall at different thresholds, F measure
and SSIM for the segmentation networks with the Mask-guided criterion. The samples
pseudo-labeled are the complete additional set of Pascal (9118 images).

AP @[0.5:0.95] AP @[0.5] AP @[0.7] AR @[0.5:0.95] AR @[0.5] AR @[0.7] F@[0.5] SSIM

200 19.5 34.6 21.7 27.3 42.8 30.1 38.3 84.4
400 22.8 38.8 26.4 32.5 48.2 37.0 43.0 83.7
800 29.0 46.2 33.0 37.9 54.2 42.4 49.9 85.9

Table 5.5: Average Precision and Average Recall at different thresholds, F measure
and SSIM for the segmentation networks with the Mask-guided criterion. The samples
pseudo-labeled are 50% of the additional set of Pascal (4559 images).

and 5.5 with three complementary metrics: Average Precision and Recall at different
thresholds, the F measure at threshold 0.5, which corresponds to F = 2 ∗ (precision ∗
recall)/(precision + recall), and the Structural Similarity Index (SSI), as an effort to
have a metric that considers the overall structure of the mask instead of pixel-wise errors.
Observing these metrics, we see that for N = 400 and N = 800, using more pseudo-labels
(9118 vs. 4559) leads to better performance, while for N = 200 it is not the case. This
may be produced by the different ratio of pseudo-labeled samples vs. strongly-labeled
samples, which is significantly larger for N = 200. Having a large ratio of noisy labels
compared to reliable ones, could damage the training of the model. We also observe that
when varying the number of pseudo-labels (9118 vs. 4559), the SSIM does not change as
much as we see for the other metrics. Interestingly, the SSIM for N = 200 is higher than
for N = 400. The reason could be that with N = 200 the blobs obtained in the masks
are coarser and this could favour this metric because it is based on structural similarity.
Nevertheless, the difference is not very significant between both configurations.

5.5 Conclusions

In this Chapter we have proposed a novel method to select which samples to strongly-
annotate in our semi-supervised instance segmentation setup. Our method, based on
IoU prediction, outperforms the baseline random selection and a solution based on neu-
ral dropout to estimate pixel-wise uncertainty. We guided a detailed analysis of which
samples are best to annotate given the confidence score of the predictions, and we observe
that the best samples are those that fall in the mid-range of the IoU scores. With our
pipeline, we present a very simple but effective manner to perform sample selection to
improve performance at a negligible annotation cost. As future work we think that IoU
prediction for sample selection can be exploited in other tasks, such as semantic segmen-
tation or object detection. Regarding instance segmentation, which is a very challenging
task in the field of scene understanding, we think that our experimental validation proves
that the task can be addressed with low annotation budgets, and that exploiting few but
interesting samples can lead to better results.



Summary of Part II

Part II has presented two different techniques for weakly-supervised segmentation, both
of them leveraging the same semi-supervised framework. Chapter 4 has presented BASIS,
a semi-supervised pipeline for semantic and instance segmentation, and Chapter 5 has
introduced a sample selection mechanism for the instance segmentation case. The main
contribution of this Part is that we analyze how, at matching annotation costs, semi-
supervised pipelines surpass methods that rely on weak labels only. Hence, having a few
strong labels is key for good performance, and we studied how selecting wisely which
samples to strongly-annotate can increase further the accuracy of our semi-supervised
models.

The aforementioned strategies focus on lowering the annotation cost during training. In
Part III, we concentrate on the inference part of the system, concretely when addressing
video object segmentation. In this task, a pixel-level mask of the object to be segmented
is typically required at inference, as we saw in Part I with one-shot video object segmen-
tation. In Part III, instead of relying on pixel-level masks, we explore natural language
expressions as cues to indicate which object to segment throughout a video sequence.





Part III

Language-guided Video Object
Segmentation

85





6 Referring Expressions for
Video Object Segmentation

6.1 Introduction

Part II of this thesis addressed how to train segmentation models with low annotation
budgets. This budget only considered the time to annotate the training data. Another
manner to leverage human effort, is to center on the human interaction required at
inference time.

One-shot video object segmentation [131, 181], a task already addressed in Part I of this
thesis, requires significant human interaction at inference, as a pixel-level mask for each
object of interest in the video has to be provided for the first frame. The goal of the
system is to follow the objects along the video sequence. In Part I we also addressed
zero-shot video object segmentation, meaning that no object mask is provided and the
system must discover different objects in the video clip without any initialization cue.
Nonetheless, we analyzed that the performance dropped significantly compared to the
one-shot case. In Part III of this thesis we study a trade-off that consists in lowering the
effort required at inference time compared to the one-shot case, but still providing some
initialization cue to the system to identify the target object.

We aim at improving the human computer interaction by allowing linguistic expressions
as initialization cues, instead of interactive segmentations under the form of a detailed
binary mask, bounding box, scribble or point. In particular, we focus on referring ex-
pressions (REs) that allow the identification of an individual object in a discourse or
scene (the referent). For instance, Figure 6.1 depicts REs related to one of the objects
contained in a video sequence, which is highlighted in green.

Language-guided Video Object Segmentation (LVOS) was first addressed by Khoreva et
al.[85], and tackled later by Gavrilyuk et al. and Wang et al. [55, 173]. Compared to
related works on still images [188, 25], REs for video objects may be more complex, as
they can refer to variations in the properties of the objects, such as a change of location
or appearance. The particularities of REs for videos were initially addressed by Khoreva
et al. [85], who built a dataset of REs divided in two categories: REs for the first frame
of a video, and REs for the full clip. We propose another approach for analyzing the
performance of the state of the art in VOS with REs. We identify seven categories of
REs and use them to annotate existing datasets.

We address both the language-guided image segmentation and the language-guided video
object segmentation tasks with RefVOS, our end-to-end deep neural network that lever-



88 Referring Expressions for Video Object Segmentation

ages BERT language representations [44] to encode the phrases. RefVOS achieves results
comparable to previous works for the RefCOCO dataset of still images [82], and improves
state-of-the-art works over the DAVIS-2017 [135] and Actor-Action datasets (A2D) [179]
for video with the phrases collected by Khoreva et al. [85] and Gavriluk et al. [55], respec-
tively. We also identify the categories of REs which are most challenging for RefVOS.

The main contributions presented are summarized as follows: (a) an end-to-end model,
RefVOS, that achieves state of the art performance with available phrases for DAVIS-2017
and A2D benchmarks, (b) a novel categorization of REs tailored to the video scenario
with an analysis of the current benchmarks, and (3) an extension of A2D with additional
REs with varying semantic information to analyze the limitations and strengths of our
model according to the proposed linguistic categories.

6.2 Related Work

Language-guided Image Segmentation: The task, also known as referring image
segmentation, was first tackled by Hu et al. [72]. They use VGG-16 [159] to obtain a
visual representation of the image, and a Long-Short Term Memory (LSTM) network to
obtain an embedding of the RE. From the concatenation of visual and language features,
the segmentation of the referred object is obtained. Posterior work [102] explored how
to include multi-scale semantics in the pipeline, by proposing a Recurrent Refinement
Network that takes pyramidal features and refines the segmentation masks progressively.
Liu et al. [103] argued to better represent the multi-modality of the task by jointly mod-
eling the language and the image with a multi-modal LSTM that encodes the sequential
interactions between words, visual features and the spatial information. With the same
purpose of better capturing the multi-modal nature of this task, long-range correlations
between the visual and language representations can be reinforced by learning a cross-
modal attention module (CMSA) [186] or by learning a visual-textual co-embedding
(STEP) [25]. Additionally, STEP iteratively refines the textual embedding of the RE

"a black bike"

"a horse jumping over obstacles"

"a big man on the right in a black jacket"

"a boy riding a bicycle"

"a jockey wearing a white uniform"

"a cardboard box held by a man"

Figure 6.1: Video sequences for DAVIS 2017 with language queries and our results. The
first column shows a reference frame, the second to third columns depict the masks
produced by our model when given the language query shown on top. Finally, the fourth
to fifth columns show the results for the language query shown on top of these columns,
which refers to another object of the video sequence.
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with a Convolutional Recurrent Neural Network in a collaborative learning setup to im-
prove the segmentation. An alternative consists in using off-the-shelf object detectors,
like MAttNet [188]. In this case, a language attention network decomposes REs into
three components: subject, location, and relationships, and merges the features obtained
for each into single phrase embeddings. Given the object candidate by an off-the-shelf
object detector model and a RE, the visual module dynamically weights scores from all
three modules to fuse them.

RefVOS is a simpler model trained end-to-end that obtains a performance comparable
to previous works on still images.

Language-guided Video Object Tracking: Object Tracking is a similar task to Video
Object Segmentation as it also follows a referent across video frames, but in the tracking
case the model localizes the object with a bounding box instead of a binary mask. Li et
al. [96] and Feng et al. [50] tackle the object tracking problem given a linguistic phrase
instead of using the bounding box at the first frame.

Our network provides pixel-wise segmentation masks that could be easily converted into
bounding boxes, and at the same time avoid the annotation ambiguities present when
bounding boxes overlap.

Language-guided Video Object Segmentation (LVOS): VOS [131, 181] has tra-
ditionally focused on semi-supervised setups in which a binary mask of the object is
provided for the first frame of the video. Khoreva et al. [85] propose to replace the mask
supervision with a linguistic expression. In their work, they extend the DAVIS-2017
dataset [135] by collecting referring expressions for the annotated objects. They provide
two different kinds of annotations from two annotators each: first frame annotations
are the ones that are produced by only looking at the first frame of the video, whereas
full video annotations are produced after seeing the whole video sequence. They use
the image-based MAttNet [188] model pretrained on RefCOCO to ground the localiza-
tion of the referred object, and then train a segmentation network with DAVIS-2017 to
produce the pixel-wise prediction. Temporal consistency is enforced, so that bounding
boxes are coherent across frames, with a post-processing step. To the authors’ knowl-
edge, Khoreva et al. [85] is the only work previous to ours that focuses on REs for video
object segmentation. Related work by Gavriluk et al. [55] addresses a similar task by
segmenting video objects given a natural language query. They extend the Actor-Action
Dataset (A2D) [179] by collecting phrases, but some of them may be ambiguous with
respect to the intended referent, as they were not produced with the aim of reference, but
description. The authors propose a model with a 3D convolutional encoder and dynamic
filters that specialize to localize the referred objects. Wang et al [173] also leverages
3D convolutional networks, adding cross-attention between the visual and the language
encoder.

We propose a simpler model trained end-to-end that treats each video frame indepen-
dently and outperforms all previous works.

Referring Expression Categorization: RefCOCO, RefCOCO+ [189] and RefCOCOg
[113] are datasets that provide REs for the still images in MSCOCO [101]. The datasets
focus on different aspects related to the difficulty of REs: the REs for RefCOCO and
RefCOCO+ were collected using the interactive ReferIt two-player game [82], designed
to crowdsource expressions that uniquely identify the target referents. However, for
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RefCOCO+, location information was disallowed. RefCOCOg, in turn, collected non-
interactively, only contains non-trivial instances of target objects, that is, there is at
least one other object in an image of the same class. The CLEVR dataset [81] contains
objects of certain shapes, attributes such as sizes and colors, and spatial relationships.
CLEVR uses synthetic images and phrases designed to test VQA systems, while our work
focuses on human-produced language and natural videos.

Khoreva et al. [85] categorize the REs they collected for DAVIS-2017 in order to analyze
the effectiveness of their proposed model. This is similar to our work, however, while
they distinguish REs according to their length and whether they contain spatial words
(e.g., left) or verbs, we propose a more fine-grained, semantic categorization that also
distinguishes between different aspects of verb meaning related to motion and object
relations. Khoreva et al. [85] furthermore analyze the REs in DAVIS-2017 with respect
to the parts of speech they contain, while we use our semantic categories for dataset
analysis.

6.3 Model

We address the task of language-guided image segmentation with the deep neural network
depicted in Figure 6.2, that we call RefVOS. This model operates at the frame level, i.e.,
treats each frame independently, and is thus applicable for both images and videos. It
uses state of the art visual and language feature extractors, which are combined into a
multi-modal embedding decoded to generate a binary mask for the referent.

Visual Encoder: To encode the images we rely on DeepLabv3, a network for semantic
segmentation based on atrous convolutions [29]. We use DeepLabv3 with a ResNet101 [66]
backbone and output stride of 8. The Atrous Spatial Pyramid Pooling (ASPP) has atrous
convolutions with 12, 24 and 36 rates.

Language Encoder: In contrast to previous works addressing language-guided image
segmentation, our work was the first one to leverage the bidirectional transformer model
BERT [44] as language encoder. For our pipeline, we use BERT to obtain an embedding
for the linguistic phrases. First of all we fine-tune BERT with the REs of RefCOCO with
the masked language modelling (MLM) loss for one epoch, which consists in randomly
masking a percentage of input tokens and then predicting them, following the common
fine-tuning procedure for BERT. We then integrate BERT into our pipeline and fine-
tune it specifically towards the language-guided image segmentation task: to this end
we tokenize the linguistic phrase and add the [CLS] and [SEP] tokens at the beginning
and end of the sentence respectively. BERT produces a 768-dimensional embedding
for each input token. We adopt the procedure of Devlin et al. [44] and extract the
embedding corresponding to the [CLS] input token, i.e., the pooled output, as it aggregates
a representation of the whole sequence.

Multi-modal Embedding: To obtain a multi-modal embedding, the encoded linguis-
tic phrase is first converted to a 256-dimensional embedding with a linear projection
and then element-wise multiplied with the visual features extracted by the ASPP from
DeepLabv3. We noted that the multiplication yielded better performance than addition
or concatenation, as depicted in Table 6.1. A convolutional layer then predicts two maps,
one for the foreground and another for the background class. We employ the cross entropy
loss commonly used for segmentation.
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val testA testB

Concatenation 55.12 58.88 49.59
Addition 56.60 60.87 51.29
Multiplication 59.45 63.19 54.17

Table 6.1: Comparative study about different fusion strategies between visual and lan-
guage features on RefCOCO.
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Figure 6.2: Architecture of our model, namely RefVOS.

6.4 Referring Expression Categorization

We propose a novel categorization for referring expressions (REs), i.e., linguistic phrases
that allow the identification of an individual object (the referent) in a discourse or scene.
This categorization is adapted to the challenges posed by the VOS task. This categoriza-
tion will later be used to assess VOS benchmarks and also to analyze the performance of
video models. We follow the commonly adopted definition of REs put forward by com-
putational linguistics and natural language processing (e.g., [139]), and consider a (noun)
phrase as a RE if it is an accurate description of the referent, but not of any other object
in the current scene. Likewise, in Vision & Language research, visual RE resolution and
generation has seen a rise of interest, especially in still images [37, 113, 104, 190, 116],
and more recently also on videos [4, 31]. The task is formulated as, given an instance
comprising an image or video with one or multiple objects, and a RE, identify the referent
that the RE describes by predicting, e.g., its bounding box or segmentation mask. The
difficulty of the task increases with the number of objects appearing in the scene, and
the number of objects of the same class. Such cases require more complex REs in order
to identify the referent.

In order to make progress on VOS with REs and allow for a systematic comparison of
methods, benchmark datasets need to be challenging from both, the visual and linguistic
perspective. However, for example, most video sequences in the DAVIS-2017 dataset
used in Khoreva et al. [85] show a single object in the scene or, at most, different objects
from different classes. In these cases, the actual challenge is that of predicting accurate
object masks for the RE. On the other hand, the existing datasets for VOS with REs
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do not focus on the particularities that video information provides either, and often use
object attributes which can be already captured by a single frame, or are not even true
for the whole clip (e.g. the A2D dataset provides phrases for only a few frames per clip).

Our novel categorization of REs for video objects allows the analysis of datasets with
respect to the difficulty of the REs and the kind of semantic information they provide.
We apply it to label and analyze existing REs of DAVIS-2017 and A2D. In addition, we
use this categorization to extend a subset of the A2D test set with REs which contain
semantically varying information to analyze how our model behaves with respect to the
different categories.

6.4.1 Difficulty and Correctness of Datasets

We first assess the validity and visual difficulty of a subset of DAVIS-2017 and A2D, by
classifying each instance (an object and its RE) into trivial or non-trivial : if the referent
is not the only object of a certain object class in the video we consider it non-trivial,
otherwise trivial. A trivial case would be a video with a single elephant, because the class
category is enough to indicate the target object. A non-trivial case would be if there is
more than one elephant in the video, as then a more complex description is required to
uniquely identify each instance. We further label each phrase according to its linguistic
ambiguity and correctness: we mark it as no RE if its referent is not the only object
in the video which could be described by the phrase, and as wrong object if it does not
match the referent.

Data and Annotation Procedure: Annotation was performed on the DAVIS-2017 val-
idation set (61 REs provided by annotator 1 [85]) in the full video setup (see Section 6.2),
as well as on the subset of the A2D test set which contains at least two annotated ob-
jects (856 instances). Each instance contained therein was annotated by one out of four
persons (all co-authors). Note that we assume the instances in A2D videos with only a
single annotation as trivial, and automatically labeled them as such (439 instances).

Results: Figure 6.3 shows the proportion of phrases in the DAVIS-2017 and A2D
sets with respect to their difficulty and correctness. Despite being collected in a
(non-interactive) referential two-player game setup, DAVIS-2017 contains a consider-
able proportion of ambiguous phrases (no RE, 8%). The proportion in A2D is slighlty
higher (11%), but note that A2D was designed to contain descriptive phrases in contrast
to unique identifiers (as defined above). About 52% in DAVIS, and 35% in A2D are
non-trivial phrases, that is, more challenging for language-guided VOS from both, the
linguistic and visual perspective, since the object class itself is not sufficient to identify
the correct referent.

6.4.2 Semantic Categorization of REs

Our categorization is inspired by semantic categories of situations and utterances in lin-
guistics [92, 60], tailored to the situations found in video data. Specifically, we analyze the
REs with respect to the type of information they express, by assigning them categories
assumed to be relevant for reference to objects in visual scenes. We focus on information
relevant for both, objects in still images and videos, namely the class category, appear-
ance, and the location of the referent, and distinguish between information assumed to
be more relevant for videos only, namely motion vs. static events. If, according to the
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Figure 6.3: Proportion of expressions in the val set of DAVIS-2017 and the test set of
A2D by the difficulty and correctness of the REs.

Semantic Categories Q: Does RE tell you about referent r. . . Example

appearance how r looks like? . . . in a yellow dress. . .
class category r’s name or category (noun) . . . seagull . . .
location where r is located? (rel. to image/other object) . . . near tractor . . .

motion if r moves or changes its location? . . . walking . . .
obj-motion if r moves or changes another object’s location? . . . riding a bike. . .
static what r is doing (if not moving)? . . . eating . . .
obj-static if r acts on another object (no motion)? . . . holding a bike. . .

Table 6.2: The semantic categories used for annotation.

RE, the referent acts upon other objects in the scene, we distinguish between whether
an object is moved by the referent or not (obj-motion vs. obj-static). This information
may be particularly valuable for models that reason over object interactions.

(Psycho)linguistic studies have observed a tendency of REs to contain redundant nondis-
criminating information, i.e., logically more information than required to establish unique
reference, arguably because this reduces the effort needed for identification (e.g., [68, 92])
In particular the kind (class category) of the object and salient properties such as
color (e.g., [151]) have been found to be used redundantly. To assess whether the phe-
nomenon of redundancy is born out in the video datasets, we additionally label instances
as redundant or minimal.

Data and Annotation Procedure: We collect annotations for the same 61 instances of
the validation set of DAVIS-2017 as above, and for a subset of the test set of A2D, which
we call A2Dre henceforth. We obtain A2Dre by selecting only instances that were labeled
as non-trivial, which are 433 REs from 190 videos. We do not use the trivial cases as the
analysis of such examples is not relevant, as referents can be described by using the class
category alone. Each annotator was presented with a RE, a video in which the target
object was marked by a bounding box, and a set of questions paraphrasing our categories
(see Table 6.2). Three annotators (all co-authors of the paper) individually labeled all
instances of the DAVIS-2017 val set, then jointly discussed their disagreements, and again
individually revised their annotations for possible errors or other unclear cases. The inter-
annotator agreement can be considered substantial for all categories, with Davies & Fleiss’
kappa coefficients [42] between κ = .83 and .97 (except obj-static, κ = .35, which has only
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Figure 6.4: REs in the validation set of DAVIS-2017 and A2Dre with respect to their
categories. The class category is referred as category for reduced space in the plot.

5 positively labeled instances by at most 2 annotators, and class category which obtained
perfect agreement). A2Dre was subsequently annotated by the same 3 annotators. Our
final set of category annotations used for analysis was derived by means of majority
voting: for each non-trivial RE, we kept all category labels which were assigned to the
RE by at least two annotators.

Results: What kind of information do REs express? First of all, we found 99% of
the REs for non-trivial instances in A2Dre, and 66% in DAVIS-2017 val (74% including
trivial), respectively, to contain redundant information. Recall that only the REs in
DAVIS-2017 were obtained in a referential setup, thus relatively larger proportion of
redundant REs in A2D is not surprising.

Figure 6.4 shows the proportion of instances in the two datasets (DAVIS-2017 val and
A2Dre) that were labeled with the individual categories. As expected, the name or class
category of the referent is virtually always expressed. The visual properties of the referent,
i.e., appearance, is prominent in both datasets, too (approx. 60%). Taken together with
their high redundancy ratio, this confirms what has been found in psycholinguistic studies
on reference [92]. The remaining categories, however, are rare in both datasets, or are
only highly frequent in A2Dre, with location and motion being used in the majority of
REs. That A2Dre comprises more complex REs than DAVIS-2017 may be not only due
to their collection as descriptive, instead of discrimininative phrases, but also due to the
much higher complexity of the video scenes. Note that information about referent-object
interactions (obj-static and obj-motion) is neglectable, which illustrates the datasets’
limited usefulness for research on reasoning over object interactions [174, 193, 185]. In
the experiments we report in Section 6.5, we discard these categories, and focus on the
remaining categories only, for which we augment the A2Dre dataset.

6.4.3 Extending A2D with REs

As explained above, A2Dre is a subset from the A2D test set including 433 non-trivial
REs. Due to its highly unbalanced distribution across the 7 semantic categories (Fig-
ure 6.4), we select the 4 major categories appearance, location, motion and static. The
four categories have in common that in most cases, for a given referent, a RE can be pro-
vided that expresses a certain category, and one that does not. We use these categories to
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augment A2Dre with additional REs, which vary according to the presence or absence of
each them. Specifically, based on our categorization of the original REs, for each RE re
and category C, we produce an additional RE re′ by modifying re slightly such that it
does (or does not) express C. For example, if we have the last RE from Figure 6.6, i.e.
girl in yellow dress standing near the woman, which could be categorized as appearance,
location, no motion and static, we produce new REs for each category: girl standing near
the woman (no appearance), girl in yellow dress standing (no location), girl in yellow
dress walking (motion) and girl in yellow dress near the woman (no static). We do not
apply this procedure for class category, since it is expressed in almost all REs, and its
removal may be difficult in many cases.

6.5 Experiments

We report results with our model on two different tasks: language-guided image seg-
mentation and language-guided video object segmentation. The results for still images
are obtained on RefCOCO and RefCOCO+ [189], while those for video correspond to
DAVIS-2017 and A2D.

6.5.1 Language-guided Image Segmentation

The impact of BERT embeddings in our model on both RefCOCO and RefCOCO+ can be
assessed in Table 6.3, compared with a bidirectional LSTM similar to Chen et al. [25] for
encoding the linguistic phrase. In particular, we average the GloVe embeddings [128] of
each token and concatenate the mean embeddings of the forward and backward pass. This
baseline is compared to two configurations that use BERT. The first fine-tunes BERT
for the language-guided image segmentation task, and significantly boosts performance
over using GloVe embeddings. The second has an additional step, that consists in first
training BERT with the masked language modelling loss with the REs from RefCOCO,
as explained in Section 6.3, and then fine-tuning BERT on the language-guided image
segmentation task (as in the previous configuration). We see that this configuration
brings an additional gain.

Table 6.3 also compares our model with the state of the art on language-guided image
segmentation. STEP [25] yields the best performance for both datasets. It consists in
an iterative model that refines the RE representation to improve the segmentation. Note
that the model must be run for each iteration. Our model surpasses STEP (1-fold) on
RefCOCO val and testA, which corresponds to a comparable computational cost, and is
still slightly better than STEP (4-fold). Compared to STEP (5-fold), the performance of
our method is slightly lower.

Qualitative results generated with our best model on RefCOCO are depicted in Figure 6.5.
We note how our model distinguishes properly the referred instance and generates an
accurate mask.

We conclude that our approach is competitive with the state of the art for language-
guided image segmentation. Hence, RefVOS is a valid model to be exploited for language-
guided VOS.
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RefCOCO RefCOCO+
val testA testB val testA testB

Ours with Bi-LSTM 48.46 52.90 44.43 35.35 40.72 28.43
Ours with BERT 58.65 62.28 54.28 42.07 46.46 34.23
Ours with BERT Pre-train 59.45 63.19 54.17 44.71 49.73 36.17

MattNet 56.51 62.37 51.70 46.67 52.39 40.08
CMSA 58.32 60.61 55.09 43.76 47.60 37.89
LANG2SEG 58.90 61.77 53.81 - - -
STEP (1-fold) 56.58 58.70 55.39 - - -
STEP (4-fold) 59.13 - - - - -
STEP (5-fold) 60.04 63.46 58.97 48.18 52.33 40.41

Table 6.3: Overall IoU for RefCOCO and RefCOCO+.

language query man on right person on left of bench

language query Man on far left on screen main guy on the tv

language query woman in blue guy on right

language query PIZZA IN THE BACK front

language query left orange apple in front

language query white dog brown bear

Figure 6.5: Visualizations of RefCOCO testA and testB sets.

6.5.2 Language-guided VOS

Our model is assessed for LVOS on DAVIS-2017 and A2D. In both cases, each video frame
is treated separately, so we use the same architecture as in the still image experiments
from Section 6.5.1.

Our experiments on the DAVIS-2017 validation set are reported in Table 6.4. All models
are pre-trained on RefCOCO. Results are provided with the J&F metric adopted in
the DAVIS-2017 challenge for the two different types of REs collected by Khoreva et
al. [85] explained in Section 6.2. J&F is the average between a region-based evaluation
measure (J) and a contour-based evaluation measure (F). The region-based evaluation
measure J is computed in the same way as IoU. On the other hand, the contour-based
evaluation measure F is computed as follows: first, pixel boundaries for both predicted
and ground truth masks are obtained. Then, these pixel boundary masks are dilated using
a morphological operation. Finally, precision and recall measures are computed on these
dilated boundary masks and F-measure is computed as 2∗precision∗recall/(precision+
recall).
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Model
+Ft DAVIS +Ft DAVIS REs J&F

segms. 1st frame full video 1st frame full video

Khoreva et al. [85] X 39.3 37.1
URVOS [156] X X 44.1 -

39.8 40.8
RefVOS X 42.0 42.0

X X 44.5 45.1
X X 42.7 45.1

Table 6.4: J&F on DAVIS-2017 validaton set.

Prec IoU
@0.5@0.9 Overall Mean

Gavriluk et al. [55] 50.0 0.4 55.1 42.6
Wang et al. [173] 55.7 2.0 60.1 49.0

RefVOS with A2D 49.5 6.4 59.9 43.0
RefVOS with RefCOCO 27.9 3.4 41.4 25.6
+ finetuned on A2D 57.8 9.3 67.2 49.7

Table 6.5: Precision, overall IoU and mean IoU on A2D.

Our experiments indicate that our baseline model trained only with RefCOCO already
outperforms the best model by Khoreva et al. [85], despite the latter being fine-tuned on
the same DAVIS-2017 dataset (+Ft DAVIS segms.). The difference increases when our
model is fine-tuned with the segmentations provided in the training set, but freezing the
language encoder. This is the configuration comparable to Khoreva et al. [85] in terms
of training data, and brings gains of 2.7 and 4.9 points for the first frame and full video
REs, respectively. Finally, we also fine-tune the BERT language encoder, obtaining a
significant extra gain in performance. We want to highlight that our frame-based model
does not rely on any post-processing to add temporal coherence, or optical flow, in
contrast to Khoreva et al. [85], so our method may be more efficient computationally.
We also compare our model to URVOS [156], a concurrent work to ours. URVOS is a
model for language-guided video object segmentation, and is composed of a cross-modal
attention module for the visual and lingual features, and a memory attention module
to leverage information from past predictions in a video sequence. Compared to ours,
their architecture is more complex due to the cross-attention and memory network. Our
model performs slightly better when trained with the same amount of annotated data.
Qualitative results for full video REs for our model are presented in Figure 6.1. When
the multiple objects belong to different class categories, the model works properly and
produces accurate masks from the language query, whereas it is more challenging to
properly segment the referent in cases where there are multiple instances of the same
class in the sequence (3rd row). The fine-tuning is done with the full video REs, and the
REs shown in Figure 6.1 are of the same kind. We note how the referred object is in
general identified and properly segmented.

The results for A2D are shown in Table 6.5, using the evaluation methods that allow us
a comparison with previous works [55, 173]. Following we provide a brief description of
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the metrics for this benchmark:

• Overall IoU: Intersection area of all test data over the total union area.

• Mean IoU: Average over the IoU of each test sample so that large and small regions
are treated equally.

• Precision@X : Given a threshold X, e.g. X = 0.5, a predicted mask for an instance is
counted as true positive if the IoU is larger than X, and as false positive otherwise.
Then, Precision@X is computed as the ratio between the number of true positives
and the total number of instances.

For each benchmark we report the evaluation metrics commonly used. Therefore, Overall
IoU is reported for RefCOCO and RefCOCO+ datasets, J&F is reported for DAVIS-2017
dataset, and Precision@{0.5,0.6,0.7,0.8,0.9}, Overall IoU and Mean IoU are reported for
A2D dataset.

Our model trained only with A2D already outperforms Gavriluk et al. [55] in Precision at
a high threshold and at the Overall and Mean Intersection Over Union (IoU). Moreover,
our model significantly increases its performance when it is first trained on RefCOCO
and later fine-tuned on A2D, both its visual and language branches. In this setup, it
achieves state of the art results in all metrics by significant margins. Note that both
Gavriluk et al. [55] and Wang et al. [173] leverage an encoder pre-trained on the Kinetics
dataset, which includes 650,000 video clips [22]. Hence, these models see a large amount
of annotated data for action recognition in videos. We also want to stress our high
Precision values at high thresholds, which indicates that our model is able to produce
very accurate masks. Visualizations with our model are illustrated in Figure 6.6.

In conclusion, RefVOS outperforms all previous works for DAVIS-2017 and A2D on the
LVOS task, although it is a frame-based model. This motivates the analysis of our
model when tested with different types of REs, based on the categorization and difficulty
analysis proposed in Section 6.4.

Referring Expressions Analysis: Firstly, we analyze the performance on trivial and
non-trivial linguistic phrases for both the A2D test and DAVIS-2017 validation sets. The
mean IoU per referent obtained for trivial and non-trivial for DAVIS-2017 is 48.7 vs.
46.2, and for A2D is 53.9 vs. 33.2. We observe that the performance is worse for the
non-trivial cases for both datasets as expected, with a major drop on A2D.

Secondly, we study the effect of RE categories in relation to the performance of RefVOS.
The A2Dre+ dataset described in Section 6.4.3 allows us to have the same number of
referents for all major categories: appearance, location, motion and static. Each of our
referents is annotated with highly similar REs (two for each category) and thus are
directly comparable. In contrast, Khoreva et al. [85] split the videos into two different
subsets with non-comparable referents. Table 6.6 compares the performance of RefVOS
depending whether each of the categories is present in the RE. The results show that the
presence of image-based categories, such as appearance and location, yields significantly
higher results compared to their absence. Regarding video-based categories, we observe
a drop in performance when the static category is present, which indicates that the
model struggles at identifying a referent based on static actions such as holding, sitting,
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language query: "a baby is rolling on the floor"

language query: "an orange ball is jumping up and down"

language query: "car jumping into the water"

language query: "a man in suit is running "

language query: "Girl in yellow dress standing near the woman"

language query: " green ball is on the floor"

language query: "man in blue shirt doing dribble"

language query: "a car is parked on the left"

language query: "brown dog walking with a man"

language query: "baby in red shirt reaching a toy"

Figure 6.6: Video sequences for A2D with language queries and the results of our model.
The first column shows a reference frame, the second to fourth columns depict the masks
produced by our model when given the language query shown on top. Finally, the fifth to
seventh columns show the results for the language query shown on top of these columns,
which refers to another object of the video sequence.

Image-based Video-based

+App -App +Loc -Loc +Motion -Motion +Static -Static

33.90 30.15 34.15 30.78 35.58 35.60 34.28 36.21

Table 6.6: Effect of the presence of categories in REs.

eating. In contrast, the presence or absence of the motion category does not affect the
performance, which actually means that the model is unable to benefit from this type of
REs.

Following we further analyze visually the results obtained with RefVOS depending on
the categories appearinig in REs. Figure 6.7 includes examples of the results of our
model with A2Dre+. Each column is a first frame of a video sequence with a non-trivial
case, and each row is a different RE that has or has not a certain category. As we
concluded with the numerical results, the performance when the appearance and location
categories are present is higher compared to when these categories are absent. Regarding
the motion and static categories, we first notice that some REs are not created as the
annotators considered that it was not possible. We indicate those examples with the
“Not Applicable” label. We see how the presence or the absence of the motion and static
categories has a minimal impact to the results. In fact, adding these categories even leads
to worse segmentations, as it happens with the example “a man eating a big sandwich”
from the second column.
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App-

App+

Loc-

Loc+

Motion-

Motion+

Static-

Static+

Figure 6.7: Each column is the first frame of a video sequence of A2D. Each row indicates
if the RE that produces the depicted result contains or not a certain category from
our proposed categorization. The REs that are inside a box are the original REs in
the dataset [55]. For the example in the fourth column, the natural expression in the
annotations from Gavrilyuk et al. [55] is man standing, which is not a RE as it does not
uniquely identify the target object. For this reason, for this example all REs shown in
the Figure are our own annotations.
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Overall IoU Mean IoU
Trivial Non-Trivial All Trivial Non-Trivial All

Generic 45.6 18.1 41.6 34.6 10.0 29.6
Only Actor 65.6 34.8 60.8 51.5 22.8 45.7
Only Action 56.3 30.7 52.6 43.0 18.5 38.0
Actor + Action 66.6 37.3 62.2 51.3 24.8 45.9
Full phrase 70.2 47.5 67.2 53.9 33.2 49.7

Table 6.7: Overall and Mean IoU on A2D for different levels of information in REs.

Finally, in Table 6.7 we study the effect of feeding the model with only the actor, the
action, or the actor and action, without formulating any RE, for all the test set of A2D.
These actor and action terms are obtained from the dataset collected by Gavriluk et
al. [55]. In most cases these expressions are not REs as they do not unambiguously
describe the referent in the video. Additionally, we consider a generic phrase thing. We
distinguish between the trivial and non-trivial cases. Results show that RefVOS works
significantly better when the actor is provided than when the action is. Furthermore,
performance improves when using both. Finally, having the full linguistic phrase is still
the best model. Remarkably, our configuration with actor and action reaches higher
Overall IoU than previous works that use complete linguistic phrases (see Table 6.5).
Notice that using the full phrase improves performance especially for the non-trivial
cases, as these require complete linguistic expressions to identify the referent. We also
want to stress that the aggregated performance, i.e., considering all cases, is dominated
by the performance of the trivial ones, as they represent most of the dataset.

6.6 Training Details

We used PyTorch framework to develop the models. DeepLabv3 model is the one pro-
vided by torchvision, and BERT model is the one provided by HuggingFace’s transformer
library [177]. In order to train the model on RefCOCO and RefCOCO+, we use pre-
trained weights of Imagenet for the backbone model.

We use SGD optimizer with 0.9 of momentum and 1e-6 of weight decay. We train
our model with batch size of 7 and 480x480 of resolution. The learning rate scheduler
for RefCOCO and RefCOCO+ consists in first starting with learning rate of 0.01 and
decrease it 0.0004 every epoch until reaching 3e-3 of learning rate. Then we increase
the learning rate again to 6e-3 and decrease it 2.5e-4 every epoch until reaching 1e-3.
Increasing the learning rate after some iterations has been proven to increase performance
in previous works [108]. Finally we set a final state with fixed learning rate of 3e-5. To
later fine-tune on DAVIS, we set an initial learning rate of 1e-3 and decrease 1e-5 every
epoch for 20 epochs. To train the model with A2D we set a learning rate of 0.1 and
decrease it 0.004 for 15 epochs. We used a single Tesla V100 GPU to train the models.
The average time for training the model with RefCOCO is about 3 days, 2 days for A2D
and 1 day for DAVIS-2017 with our machines. The approximate number of parameters
of our model, considering also the BERT encoder, is 170M.
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6.7 Conclusions

In this Part we study the task of language-guided video object segmentation, as a manner
to alleviate the struggle to delineate the objects to be segmented as it is required in the
one-shot VOS task. Thus, we reduce the human effort required at inference in the VOS
task.

We focus on studying the difficulty of REs from benchmarks on LVOS, and propose
seven semantic categories to analyze the nature of such REs. We introduce RefVOS,
a novel model that, compared to previous works, is competitive for language-guided
image segmentation, and state of the art for language-guided VOS. However, our analysis
shows that benchmarks are mainly composed of trivial cases, in which referents can be
identified with simple phrases. This indicates that the reported metrics for the task may
be misleading. Thus, we focus on the non-trivial cases. We extend A2D with new REs
with diverse semantic categories for non-trivial cases, and test our model with them,
which reveals that it struggles at exploiting motion and static events, and that it mainly
benefits from REs based on appearance and location. We reckon that future research on
LVOS should focus on non-trivial cases describing motion and events, as they present
a challenge for language grounding on videos. Concurrent to our work, Seo et al. [156]
collected Refer-Youtube-VOS, a large-scale benchmark for language-guided video object
segmentation built on top of Youtube-VOS [182]. We believe that, as future work, our
categorization for REs could be used to classify the provided language expressions by
this benchmark. Thus, models could be evaluated based on the non-trivial cases and the
different categories in order to analyze which REs are more challenging when using a
large-scale dataset.

The presented models, source code and extended dataset of REs are publicly available
and can be found in https://github.com/miriambellver/refvos.

https://github.com/miriambellver/refvos


7 Conclusions

This thesis has addressed the task of instance segmentation for both image and video,
being the guiding thread the level of supervision applied either at training or at inference.
Our main objective is to lower the human effort required. Following, we summarize the
different goals and contributions for each part of the thesis:

The first research question formulated in Part I of the thesis was if it was possible to
train fully end-to-end instance segmentation architectures leveraging Recur-
rent Neural Networks, specially focusing on video systems. Our main contribution
is the development of RVOS, a recurrent model for video object segmentation that is
end-to-end trainable and that is trained in a fully-supervised way, and thus it does not
require any post-processing step. Our model can segment multiple objects and frames
in a single stage. This project was open-sourced, which has enabled the research com-
munity to build on top of our architecture, contributing to the general interest towards
end-to-end trainable models. Another goal for Part I was to design a video system
that did not rely on any initialization cue to discover objects along the video
sequence. In this dissertation we present the first solution for zero-shot video object
segmentation, i.e., a model that segments objects from a sequence that is completely
unsupervised at inference, and thus does not require any effort at test time.

The tools developed for Part I of the thesis were crucial to identify the main challenge
of image segmentation models: advancing towards systems that demand less annotation
effort. In Part II the main goal was to reduce the annotation time required during train-
ing. Hence, we shift our focus from fully-supervised systems to semi-supervised ones.
The research question addressed was if it is possible to train semi-supervised sys-
tems for segmentation on very low annotation budgets. As a solution, we propose
BASIS, a semi-supervised pipeline based on self-learning that leverages a limited amount
of strongly-labeled data and larger amounts of unlabeled or weakly-labeled samples. Our
experimental validation is tested on two different tasks for segmentation, and for varying
annotation budgets. Our main contribution is that we experimentally show that, when
considering matching annotation costs, having few but accurate strong labels leads to
better results than having a larger amount of weakly-annotated data. We consider that
this outcome can be relevant for the community, as it can be used to assess how to
spend some pre-defined budget when annotating a new dataset. Furthermore, another
contribution of our experimental validation is that, compared to previous works, we show
results for image segmentation when the annotation cost is remarkably low, which can be
a referent for future research. Additionally, in Part II of the dissertation we explore the
effect of using an active learning mechanism to select which samples to strongly-annotate.
Given a pool of weakly-labeled data, we want to know which samples are better to further
annotate with pixel-wise labels. We contribute with a novel mechanism that predicts the
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model confidence about a prediction of a given sample, by estimating the intersection
over union of the predicted masks with the ground truth. Moreover, we conclude that for
our pipeline, the best samples to choose are those that are neither the most complex, nor
the easiest ones of the dataset. In other words, those images that are not trivial for the
model to resolve, as they do not bring any extra gain, and also discarding those samples
that are so complex that could be considered outliers.

In Part III we target to ease the human intervention required at inference time, in con-
trast with Part II, where we focused on the annotation cost of the training data for
segmentation models. Particularly, our first research question was if language could
help to reduce the human effort required at inference time in semi-supervised
VOS systems. As a solution, we present RefVOS, a model that addresses language-
guided video object segmentation. Our method surpasses previous works and is the first
method to exploit BERT language model [44] for this task. The second research question
was if current benchmarks are suitable for the video task. The main contribution
of Part III is an analysis on current benchmarks addressing language-guided video object
segmentation, and our proposal on novel semantic categorization of referring expressions
that attend to the intrinsic challenges of video. To lead a thorough study, we augment
the phrases provided by these benchmarks, and analyze which type of expressions are
more challenging for video objects based on our categorization. We concluded that object
descriptions based on motion and static events were the hardest to comprehend by our
model. We believe that our novel categorization can be a valuable contribution to the
community to assess video models, in order to identify their performance for different
types of language expressions. We open-sourced this project, and we hope that this helps
to reproduce our results and build on top of our model for future research on the topic.

Future Work

As a conclusion, in this thesis we explored different supervision scenarios for instance
segmentation models, distinguishing between supervision when training and at inference.
We believe that, due to the wide range of applications of image segmentation and the
expensive cost of pixel-level annotations, future work will still focus on lowering the
annotation cost using semi-supervised or weakly-supervised pipelines, or even with fully-
unsupervised systems through self-supervised learning. However, as we saw in our work,
accurate annotations, even if only having a few of them, are crucial for good performance
in current models. In the last Part of the thesis we concluded that language is a powerful
input for semi-automatic systems. Nevertheless, we observed that there is still potential
of improvement to make our models comprehend descriptions of objects in videos based
on their dynamics. An interesting line of research to explore would be to fully exploit
video, by also extracting features from the audio signal. Therefore, we would approximate
to a system that is able to understand vision, language and audio all together.
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Jordi Torres, and Luc Van Gool. Detection-aided liver lesion segmentation using
deep learning. Machine Learning 4 Health Workshop in Neurips, 2017. 9

[12] Miriam Bellver, Amaia Salvador, Jordi Torres, and Xavier Giro-i Nieto. Mask-
guided sample selection for semi-supervised instance segmentation. Multimedia
Tools and Applications, 79(35):25551–25569, 2020. 8

[13] Miriam Bellver, Carles Ventura, Carina Silberer, Ioannis Kazakos, Jordi Torres,
and Xavier Giro-i Nieto. Refvos: A closer look at referring expressions for video
object segmentation. arXiv preprint arXiv:2010.00263, 2020. 8

[14] Mı́riam Bellver Bueno, Amaia Salvador Aguilera, Jordi Torres Viñals, and Xavier
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