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SUMMARY 

 

 

Enzymes are sophisticated biomacromolecules that accelerate chemical reactions by several 

orders of magnitude in favor of cell demands. Such great rate acceleration comes from a 

precisely pre-organized active site pocket that preferentially stabilizes the transition state(s) of 

the reaction. Enzymes are also highly dynamic and their function is linked to its three-

dimensional structure and the broad range of accessible conformations that can be sampled in 

solution. Because of their great catalytic power and environmental sustainability, enzymes 

emerge as a powerful alternative with respect to the conventional metal-based catalysts for the 

production of biofuels, agricultural chemicals and pharmaceutical drugs. However, natural 

enzymes do not cover the widespread industrial purposes and thus their function needs to be 

engineered. Given the vast sequence and conformational space of proteins, the rational design 

of enzymes for novel function is an extremely challenging task.   

 

This thesis starts with an introduction (Chapter 1) that provides the reader with substantial 

information about the nature of enzymes and how they work from different meaningful points 

of view (kinetic, classical thermodynamics, statistical thermodynamics, chemical and 

engineering). Secondly, Chapter 2 is focused on the fundamentals of molecular mechanics 

(MM) and molecular dynamics (MD) together with the different computational methodologies 

employed to study the conformational energy landscape of proteins. It follows with the main 

objectives of the thesis (Chapter 3) that consist of the exploration of the dynamic 

conformational ensemble of proteins and the study of its connection with enzyme properties 

such as enantioselectivity and allostery by means of computational techniques. In particular, 

we target the rationalization of the novel functions achieved in laboratory-evolved enzyme 

variants and the development of new rational design strategies focused on the enzyme 

conformational dynamics.  

 

The results of the four published projects carried out along this thesis are discussed in 

Chapters 4 and 5. Chapter 4 is devoted to the study of a zinc dependent alcohol 

dehydrogenase (ADH) and encompasses two published projects. In the first project (Chapter 

4.1) the bonded-model protocol for metalloenzymes is applied to study the conformational 

dynamics of ADHs in order to investigate the molecular basis of the reversion of 



 

	 	2	

enantioselectivity displayed by laboratory-evolved enzyme variants. The second project 

(Chapter 4.2) was performed in collaboration with an experimental group. This work focuses 

on the rationalization of the enhanced activity and enantioselectivity towards a non-natural 

substrate at ambient temperatures with little trade off in thermostability of an ADH variant 

evolved by Reetz and coworkers through directed evolution (DE).  

 

Chapter 5 includes the third and the fourth projects focused on the exploration of 

Tryptophan synthase enzyme (TrpS: composed of TrpA and TrpB subunits) allosteric 

properties. In the third project (Chapter 5.1) enhanced sampling techniques are employed to 

reconstruct the free energy landscape (FEL) of Tryptophan synthase (TrpS) enzyme associated 

with an allosteric transition. The main goal is to decipher the origin of the loss of activity of 

the TrpB subunit in absence of the TrpA protein binding partner and the recovery of stand-

alone TrpB activity achieved in laboratory-evolved stand-alone TrpB enzyme variants. In the 

last project (Chapter 5.2), the information obtained in Chapter 5.1 is used to face the 

challenge of the rational design of allosteric properties in collaboration with Sterner and 

coworkers. In particular a computational strategy using our in-house Shortest Path Map (SPM) 

correlation-based tool is developed and tested for the design of TrpB stand-alone enzyme 

variants.  

 

Finally, Chapter 6 includes a brief discussion of the main results presented in Chapters 4 

and 5, and the main conclusions of this thesis are summarized in Chapter 7. This thesis 

provides useful information to address the computational evaluation of enantioselectivity and 

allosteric enzymatic properties to investigate the effects induced by mutations on the 

conformational energy landscape of enzymes. The studies gathered in this thesis emphasize the 

relevance of considering the enzyme conformational dynamics in the computational enzyme 

engineering processes. 
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RESUM 

 

 

 

Els enzims són biomacromolècules sofisticades que acceleren les reaccions químiques diversos 

ordres de magnitud a favor de les demandes cel·lulars. Aquesta gran acceleració prové d’una 

preorganització precisa de la regió activa del enzim que estabilitza preferentment l'estat o estats 

de transició de la reacció. Els enzims també són molt dinàmics i la seva funció està lligada a la 

seva estructura tridimensional i a l’àmplia gamma de conformacions accessibles que es poden 

mostrejar en solució. A causa del seu gran poder catalític i la seva sostenibilitat mediambiental, 

els enzims apareixen com una alternativa poderosa respecte als catalitzadors convencionals 

basats en metalls per a la producció de biocombustibles, productes químics agrícoles i 

medicaments farmacèutics. No obstant això, els enzims naturals no cobreixen els amplis 

propòsits industrials i, per tant, cal dissenyar la seva funció. Donat el gran espai de seqüència 

i conformacional de les proteïnes, el disseny racional dels enzims per a una nova funció és una 

tasca extremadament difícil. 

 

 Aquesta tesi comença amb una introducció (Capítol 1) que proporciona al lector una 

informació substancial sobre la naturalesa dels enzims i el seu funcionament des de diferents 

punts de vista significatius (cinètica, termodinàmica clàssica, termodinàmica estadística, 

química i enginyeria). En segon lloc, el Capítol 2 se centra en els fonaments de la mecànica 

molecular (MM) i la dinàmica molecular (DM) juntament amb les diferents metodologies 

computacionals emprades per estudiar el paisatge energètic conformacional de les proteïnes. 

A continuació s’exposen els objectius principals de la tesi (Capítol 3) que consisteixen en 

l’exploració del conjunt de conformacions dinàmiques de proteïnes i estudiar la seva connexió 

amb propietats enzimàtiques com l’estereoselectivitat i l’al·losteria mitjançant tècniques 

computacionals. En particular, ens orientem a la racionalització de la nova funció assolida en 

variants enzimàtiques desenvolupades al laboratori i al desenvolupament de noves estratègies 

de disseny racional centrat en la dinámica conformacional enzimàtica. 

 

Els resultats dels quatre projectes publicats realitzats al llarg d’aquesta tesi es discuteixen 

als Capítols 4 i 5. El Capítol 4 està dedicat a l’estudi d’una alcohol deshidrogenasa dependent 

del metall zinc (ADH) i inclou dos projectes publicats. En el primer projecte (Capítol 4.1) 
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s’aplica el protocol de model enganxat per a metalloenzims per estudiar la dinàmica 

conformacional dels ADH per tal d’investigar les bases moleculars de la reversió de 

l’enantioselectivitat mostrada per variants enzimàtiques evolucionades al laboratori. El segon 

projecte (Capítol 4.2) es va realitzar en col·laboració amb un grup experimental. En aquest 

treball se centra en la racionalització de la millora d’activitat i enantioselectivitat en un substrat 

no natural a temperatures ambientals i amb poca perdua de la termoestabilitat d’una variant 

d’ADH desenvolupada per Reetz i els seus companys de treball a través de l’evolució dirigida 

(ED). 

 

El Capítol 5 inclou el tercer i el quart projectes centrats en l’exploració de les propietats 

al·lostèriques de la triptòfan sintasa (TrpS: composta per les subunitats TrpA i TrpB). Al tercer 

projecte (Capítol 5.1) s’utilitzen tècniques de mostreig millorades per reconstruir el paisatge 

d’energia lliure (PEL) de l’enzim triptòfan sintasa (TrpS) associat a una transició al·lostèrica. 

L’objectiu principal és desxifrar l’origen de la pèrdua d’activitat de la subunitat TrpB en 

absència de la seva proteïna associada TrpA i la recuperació de l’activitat autònoma de TrpB 

aconseguida en variants enzimàtiques TrpB autònomes desenvolupades al laboratori. En el 

darrer projecte (Capítol 5.2), la informació obtinguda al Capítol 5.1 s’utilitza per afrontar el 

repte del disseny racional de propietats al·lostèriques en col·laboració amb Sterner i els seus 

companys de treball. En particular, es desenvolupa  una estratègia computacional que utilitza 

la nostra eina Mapa de camins més curt (MCC) basada en la correlació per al disseny de 

variants enzimàtiques autònomes de TrpB. 

 

 Finalment, el Capítol 6 inclou una breu discussió dels principals resultats presentats als 

Capítols 4 i 5, i les principals conclusions d’aquesta tesi es resumeixen al Capítol 7. Aquesta 

tesi proporciona informació útil per abordar l’avaluació computacional de l’enantioselectivitat 

i les propietats enzimàtiques al·lostèriques per investigar els efectes induïts per mutacions en 

el paisatge energètic conformacional dels enzims. Els estudis recollits en aquesta tesi 

emfatitzen la rellevància de considerar la dinàmica conformacional dels enzims en els 

processos d’enginyeria computacional d’enzims. 
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RESUMEN 

 

 

 

Las enzimas son biomacromoléculas sofisticadas que aceleran las reacciones químicas varios 

órdenes de magnitud a favor de las demandas celulares. Esta gran aceleración proviene de una 

preorganitzación precisa de la región activa de la enzima que estabiliza preferentemente el 

estado o estados de transición de la reacción. Las enzimas también son muy dinámicas y su 

función está ligada a su estructura tridimensional y a la amplia gama de conformaciones 

accesibles que se pueden muestrear en solución. Debido a su gran poder catalítico y su 

sostenibilidad medioambiental, las enzimas aparecen como una alternativa poderosa respecto 

a los catalizadores convencionales basados en metales para la producción de biocombustibles, 

productos químicos agrícolas y medicamentos farmacéuticos. Sin embargo, las enzimas 

naturales no cubren los amplios propósitos industriales y, por tanto, hay que diseñar su función. 

Dado el gran espacio de secuencia y conformacional de las proteínas, el diseño racional de las 

enzimas para una nueva función es una tarea extremadamente difícil. 

 

Esta tesis comienza con una introducción (Capítulo 1) que proporciona al lector una 

información sustancial sobre la naturaleza de las enzimas y su funcionamiento desde diferentes 

puntos de vista significativos (cinética, termodinámica clásica, termodinámica estadística, 

química e ingeniería). En segundo lugar, el Capítulo 2 se centra en los fundamentos de la 

mecánica molecular (MM) y la dinámica molecular (DM) junto con las diferentes metodologías 

computacionales utilizadas para estudiar el paisaje energético conformacional de las proteínas. 

A continuación se exponen los objetivos principales de la tesis (Capítulo 3) que consisten en 

la exploración del conjunto de conformaciones dinámicas de proteínas y estudiar su conexión 

con propiedades enzimáticas como la estereoselectividad y el al·losteria mediante técnicas 

computacionales. En particular, nos orientamos en la racionalización de la nueva función 

alcanzada en variantes enzimáticas desarrolladas en el laboratorio y el desarrollo de nuevas 

estrategias de diseño racional centrado en la dinámica confromacional enzimatica. 

 

Los resultados de los cuatro proyectos publicados realizados a lo largo de esta tesis se discuten 

en los Capítulos 4 y 5. El Capítulo 4 está dedicado al estudio de una alcohol deshidrogenasa 

dependiente del metal zinc (ADH) e incluye dos proyectos publicados. En el primer proyecto 
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(Capítulo 4.1) se aplica el protocolo de modelo enganchado para metaloenzimas para estudiar 

la dinámica conformacional de los ADH para investigar las bases moleculares de la reversión 

de la enantioselectividad mostrada por variantes enzimáticas evolucionadas en el laboratorio. 

El segundo proyecto (Capítulo 4.2) se realizó en colaboración con un grupo experimental. En 

este trabajo se centra en la racionalización de la mejora de actividad y enantioselectividad en 

un sustrato no natural a temperaturas ambientales y con poca pérdida de la termoestabilidad de 

una variante de ADH desarrollada por Reetz y sus compañeros de trabajo a través de la 

evolución dirigida (ED). 

 

El Capítulo 5 incluye el tercer y el cuarto proyectos centrados en la exploración de las 

propiedades alostericas de la enzyma triptófano sintasa (TrpS: compuesta por las subunidades 

TrpA y TrpB). En el tercer proyecto (Capítulo 5.1) se utilizan técnicas de muestreo mejoradas 

para reconstruir el paisaje de energía libre (PEL) de la enzima triptófano sintasa (TrpS) 

asociado a una transición alostérica. El objetivo principal es descifrar el origen de la pérdida 

de actividad de la subunidad TrpB en ausencia su proteína asociada TrpA y la recuperación de 

la actividad autónoma de TrpB conseguida en variantes enzimáticas TrpB autónomas 

desarrolladas en el laboratorio. En el último proyecto (Capítulo 5.2), la información obtenida 

en el Capítulo 5.1 se utiliza para afrontar el reto del diseño racional de propiedades alostericas 

en colaboración con Sterner y sus compañeros de trabajo. En particular, se desarrolla una 

estrategia computacional que utiliza nuestra herramienta Mapa de caminos más corto (MCC) 

basada en la correlación para el diseño de variantes enzimáticas autónomas de TrpB. 

 

Finalmente, el Capítulo 6 incluye una breve discusión de los principales resultados 

presentados en los Capítulos 4 y 5, y las principales conclusiones de esta tesis se resumen en 

el Capítulo 7. Esta tesis proporciona información útil para abordar la evaluación 

computacional de la enantioselectividad y las propiedades enzimáticas alostericas para 

investigar los efectos inducidos por mutaciones en el paisaje energético conformacional de las 

enzimas. Los estudios recogidos en esta tesis enfatizan la relevancia de considerar la dinámica 

confromacional de las enzimas en los procesos de ingeniería computacional de enzimas. 
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Chapter 1. Introduction 
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Life and enzymes 
 

The emergence of biological organisms took place roughly 3.8 billion years ago. Life can be 

defined as the ability of an isolated entity (uni- or pluricellular) to auto-replicate and evolve 

along time. As we know life on Earth, the following different key components are required: 	
	

• Code: A simple code based on the combination of 4 different molecules (DNA) encodes 

all the information needed for all cell functions (replication, transcription, translation, 

regulation…). The protection of the code is pivotal for survival. Cells have many 

mechanisms to guarantee the code is transferred to the next generation in good 

conditions. 

• Catalysts: The role of catalysts is also crucial. Biocatalysts (enzymes) accelerate 

selectively chemical reactions operating under physiological conditions in time scales 

compatible with cell demands (i.e. useful velocities). 

• Energy currency: An organic compound, Adenosine Tri-Phosphate (ATP) allowing for 

energy transfers to drive cell processes requests. 

• Energy storage: Disposal of large energy reserves in chemical form (e.g. glycogen or 

lipids).  

• Evolution: Since all the information is in the code, the code has to undergo changes in 

order to evolve. The Darwinian evolutionary theory states that those changes are 

random and only those that confer good properties for survival are kept. Thus, living 

entities have to die to promote enhancement of the next generations.  

	
This thesis focusses on the study of biocatalysts. Enzymes are vastly the combination of 

only 20 different amino-acids. These 20 building blocks are enough to create the most 

sophisticated biological machinery on earth. Billions of years of evolution from ancient life 

evolved enzymes to catalyze thousands of chemical reactions that allow living organisms to 

obtain energy from nutrients (catabolic pathways), to store the energy obtained in chemical 

form, to use the energy stored to synthetize macromolecules from small metabolites (anabolic 

pathways) and to produce an enormous array of biologically active molecules (secondary 

metabolism) for multiple functions such as metabolic precise control (hormones), electric 

signaling (neurotransmitters), defense against other organisms (drugs), among others. 

Considering their intrinsic natural power, it was a matter of time before we were able to extract 
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them from their living organisms and make them work for human purposes. It happened only 

a few centuries afterwards the initial steps in the scientific revolution thanks to the marriage 

between science and imperium. At the end of the 17th century, studies about the meat digestion 

by the stomach extracts described for first time the biocatalysts. In 1897 Eduard Buchner 

postulated that the molecules involved in sugar fermentation can work separated from the 

living cells. This was the end of the vitalism theories. Frederick W. Kühne was the first to name 

the molecules detected by Buchner enzymes. [1] In the beginning of the 20th century, the 

isolation and crystallization of digestive enzymes by James Summer, John H. Northrop and 

Moses Kunitz ended the debate of the nature of the biocatalysts concluding that enzymes are 

proteins.[2] Another important achievement was carried out by  Leonor Michaelis and Maud 

Mentel developing the Michaelis-Mentel equation,[3] which allowed the kinetic 

characterization of enzymes. Afterwards in the 50s, John Kendrew had successfully resolved 

the first X-ray structure of a protein (myoglobin)[4] and  James Watson alongside Francis Crick 

discovered the DNA structure,[5] which was crucial for the development of genetic engineering. 

We are currently able to purify proteins, solve its 3D structure, characterize its kinetic 

parameters and generate many mutant libraries with the activity of interest for many enzymes. 

However, there are still many open questions behind their mode of action with no clear answer, 

which frustrates our efforts for engineering them. 
 

1.1 Kinetic view 
 

The oldest method to study enzymatic reaction mechanisms is the determination of the 

enzymatic reaction velocity and the mode it changes in different experimental conditions. In 

this section, a brief overview of enzyme kinetics provides a meaningful insight into the main 

kinetic parameters used to characterize enzyme catalytic efficiency. 
 

1.1.1 Some basic kinetic concepts 
 
The reaction rate (V) for a given chemical reaction is the velocity at which the reactants are 

converted into products. As for instance, A and B are converted into C in the reaction: 2A + B 

à C. The reaction rate can be related to the concentration of the reactants through the rate 

constant in the so-called rate law. Thus, the rate constant is a proportionally constant specific 

for each reaction. For the mentioned reaction, the rate law could be k[A][B], where [A] and [B] 

express the concentration of the reactants A and B and their exponents corresponds to the 
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partial orders of the reaction (i.e. 1st order for both, A and B reactants). The overall reaction 

order is the sum of the partial orders for all reactants (i.e. for this case 2nd order). Note that the 

partial orders of reaction are not necessarily the same values that the stoichiometric 

coefficients, and in some cases some reactants may not appear in the rate law. For instance, if 

reactant B exhibits 0th order and reactant A 2nd order; the rate law is k[A]2. As the rate 

constants, the reaction order is determined experimentally. A reactant that exhibits no 

dependence of the velocity respect to its concentration corresponds to a 0th order while a linear 

and quadratic dependence corresponds to a 1st and 2nd reaction order, respectively. The units 

of the rate constants depend on the reaction order as follows: 

 

0th order   V = k; k =M·s-1 

1st order   V = k [A]; k = s-1 

2nd order   V = k [A]2; k = M-1·s-1 

 

Regarding the following first order reaction:  
 

                                                                                                                    (1.1) 
 

 

The reaction rates of the forward and reverse reactions correspond to kf [S] and kr [P] 

respectively. When a chemical reaction reaches the chemical equilibrium, the forward and 

reverse rates become equal; kf [S] = kr [P]. Thus, for the cases where the stoichiometric 

coefficients are equal to the order of the reactants, the equilibrium constant (Keq) can be related 

to the rate constants of a chemical step as: 
 

						Keq= 
kf

kr
=

[P]
[S]

 																																																																																																																																	(1.2) 
 

Another important statement regarding the rate constant is found in the Arrhenius equation, 

that is a remarkable expression that expresses the magnitude of the rate constant as a function 

of the temperature: 
 

k(T)	=	Ae
-Ea
RT                                                                                                                        (1.3) 

 

Where A is a pre-exponential factor that indicates the frequency of collisions, Ea is the 

activation energy, R the gas constant and T the absolute temperature.  
 

       S  P		kf 

kr 
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1.1.2 Michaelis-Menten equation 
 

The first scientist to propose that enzymes form a binary complex with the substrate was the 

English chemist Adrian Brown. This idea was later supported by the French chemist Victor 

Henry (1903), and finally Adrian Brown’s concept was further studied by the German physical 

chemist Leonor Michaelis and his Canadian associate Maude Menten to develop the famous 

Michaelis-Menten equation (1913).[3] To simplify enzyme kinetics they assumed several 

approximations:[1, 6] 

 

• Ignoring the reverse reaction by measuring initial velocities (i.e. collecting the data 

after ca. the first 60 seconds or less, when only a few percent of the product is formed).  

• Negligible enzyme concentrations compared with that of the substrate (i.e. [E] of nano-

molar order while [S] can be five or six orders of magnitude more).  

• Postulation that in solution E forms a rapid and reversible equilibrium with S forming 

the ES complex, such complex is decomposed and the product is released in a slow 

second step of first-order rate constant (kcat) (see reaction of Equation 1.4)   
 

                                                                                                      (1.4) 
 

According to this simple enzyme reaction showed in Equation 1.4: 
 

					KS=	
[E][S] 
[ES]

																																																																																																																																						(1.5) 

and  
  

     V0 = kcat [ES]                                                                                                                       (1.6) 

It is also assumed that the initial or total enzyme concentration remains constant and is equal 

to the sum of the free and the complex form: 

 

					[E]0=[E]+[ES]                                                                                                                  (1.7) 	

Therefore, if the second step is rate-limiting the global velocity is proportional to [ES] 

complex. The dependence of the initial velocities at different increments of [S] shows a 

rectangular hyperbola curve in most enzymes (see Fig. 1.1). At low [S], V0 increases linearly 

E + S  ES		 kcat E + P		Ks 
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with [S]. In this scenario the majority of the enzyme is in the free E form. Thus, the velocity 

become dependent on [S] as the increments of [S] push the equilibrium towards the formation 

of more [ES]. However, at sufficiently high [S], V0 tends towards a limiting value (i.e. Vmax) 

because now most of the enzyme is in the [ES] complex form. At this point, the enzyme is 

saturated in the ES form and further increments of [S] will not affect the velocity.  
 

  
 

Figure 1.1 Substrate concentration effect on the initial velocity for an enzymatic reaction obeying Michaelis-

Menten kinetics. 
 

By combining Equations 1.5-7: 
 

					V0= 
[E]0[S] kcat

Ks+[S]
                                                                                                               (1.8) 

 

Since the maximum velocity will be reached when [ES] = [E]0 (i.e. saturation), Vmax can be 

defined as kcat[E]0, by substituting it in Equation 1.8, we finally obtain the Michaelis-Menten 

equation:    
 

						V0=	
Vmax[S] 
KM+[S]

																																																																																																																																			 (1.9) 

  

Note that for the original Michaelis-Menten approach, KS = KM 
 

 

 

 

½ Vmax 

KM 

In
iti

al
 V

el
oc

ity
, V

0 (
µM

/m
in

) 

Substrate Concentration, [S] (mM) 

	
	

V0= 
Vmax[S]0

KM
 

	
V0= 

Vmax[S]0

KM+[S]0
 

V0=Vmax= kcat [E]! 
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1.1.3 Steady-state theory 
 

In 1925 G. E. Briggs and J. B. S Haldane debated the Michaelis-Menten mechanism.[7] The 

assumption of the rapid equilibrium works for many enzymes. However, such a condition is 

only valid when kcat << k-1 
                

                                                                                            (1.10) 
 

If kcat is large enough, the equilibrium between E and S to form ES is not reached because 

ES is decomposed faster into E and P. The solution they proposed for such enzyme mechanisms 

is the steady state approach. When the enzyme is mixed with the substrate, the reaction rate 

increases exponentially in a pre-steady state period, which occurs at the milliseconds time-

scale. This situation quickly evolves to a steady state where [ES] remains constant (i.e. enzyme 

velocity rate constant). The steady state scenario is maintained as long as [S] remains constant. 

Once the reaction evolves and [S] starts to be consumed the enzyme rate also decreases (Fig 

1.2). Hence, by measuring initial velocities the steady-state approach is accomplished.  
      

           

        
 

Figure 1.2 Representation of the enzyme velocity along time. The steady-state phases are also showed. 

 

Briggs-Hadane kinetics applied the steady state to [ES], thus the rate for ES formation is 

equal to the rate of ES decomposition: 
 

						
d[ES]

dt
 = 0                                                                                                                       	(1.11)	

 

Time 

Ve
lo

ci
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Steady-state 
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Steady-state 
Post 

Steady-state 

d ES
dt

 = 0 

	

k1 E + S  ES		
k-1 

kcat E + P		
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     ES formation rate = k1([E]0 - [ES])[S]                                                                                                       (1.12) 
 

     ES decomposition rate = k-1[ES] + kcat [ES]                                                                                        (1.13) 
 

     k1([E]0 - [ES])/[S] = k-1[ES] + kcat [ES]                                                                                                (1.14) 

 

After realizing a set of algebraic steps over Equation 1.14, we obtain Michaelis-Menten 

equation again:  
 

						V0= 
Vmax[S] 

[S]+(kcat+ k-1)/k1
                                                                                                   (1.15)	

 

Note that for the steady state approach: 

 

      KM = (kcat+ k-1)/k1                                                                                                                                            (1.16) 

 

Since Ks is equal to k-1/k1, we have: 
 

						KM= Ks+ 
kcat

k1
																																																																																																																																(1.17) 

As expected when k-1 >> kcat Equation 1.16 simplifies to KM =	Ks again. 

 

1.1.4 Multi-step enzyme cycles  
 

The enzyme mechanisms explained up to now far represent the sophisticated enzyme cycles. 

Often several intermediates are formed, covalently bound or non-covalently bound along the 

catalytic itinerary. In this regard kcat and KM are often a combination of various rate and 

equilibrium constants. This is the case for the following mechanism, which involves two 

different intermediates in the cycle: 
 

                                                                           (1.18) 
 

 

 

k1 k2 E + S  EX1		k-1 

EX2		 E + P		k3 
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Applying the steady-state assumption, the reader can verify that for this mechanism the 

Michaelis-Menten equation developed can be shown as: 

 

						V0= [E]0[S] + k2k3/(k2+k3)
KSk3/(k2+k3)+[S]

-	                                                                                                                        (1.19)	

 

In which: 
 

					KM= KS
k3

k2+k3
                                                                                                              		 (1.20)	

 

and 
 

						kcat= 
k2k3

k2+k3
                                                                                                                    (1.21)	

 

Then in the cases that KM is not equal to KS: 
 

							KM=
[E][S]
∑ [EX]

                                                                                                                  (1.22)	

 

Where [EX] is the sum of all bound enzyme species. In some cases, an Enzyme-Intermediate 

complex (e.g. EX2) can have a larger contribution to the KM value than the [ES], e.g. EX1 

according to reaction of Equation 1.18. Following the same approach, kcat is a function of all 

first-order rate constants after ES formation, and with no prior information it cannot be 

assigned to any particular process. Any of the catalytic steps after substrate binding can be the 

rate-limiting step (RLS), and in some enzymes (e.g. dehydrogenases) even the product release 

(i.e. EP dissociation rate constant) has been found to be the RLS. Unraveling the step or 

combination of steps that contribute most to the reaction rate limiting, leads to useful 

information in order to improve enzyme efficiency. In general terms, kcat is a first-order rate 

constant called the turnover number. It represents the maximum number of substrate molecules 

converted to products per active site and per unit time, or the number of times the enzyme 

“turns over” per unit time. On the other hand, in all cases KM is the substrate concentration at 

which V=Vmax/2.[6] kcat/KM quantities are widely used to refer to the enzyme specificity and 

catalytic efficiency.  
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Note that when [S]<< KM, Michaelis-Menten equation can be expressed as: 
 

    		V=  [E][S]
kcat

KM
                                                            	                                                   (1.23)	

  

Therefore kcat/KM turns out to be a second order rate constant that refers to the substrate and 

free enzyme reaction. In other words, it measures the efficiency of substrate capture by an 

enzyme. This is the reason why it is called the “specificity constant”. The kcat/KM parameter 

usually only includes the rate constants involved up to the first irreversible step of the reaction 

mechanism.[8] According to the reaction mechanism of Equation 1.18 and, operating: 
 

							
kcat

KM
= 

k1k2

(k-1+ k2)
                                                                                                             (1.24) 

	

Notice that k3, which only applies in the second step of the reaction shown in Equation 1.18 

is not included in the specificity constant. Thus, confirming that the kcat/KM parameter only 

includes rate constants up to the first irreversible step. 
 

1.1.5 Microscopic rate constants 
 

According to the microscopic association rate constants calculations (e.g. k1 values), the 

diffusion-controlled encounter frequency of an enzyme and its substrate should be about 109 s-

1M-1. Most of enzymes have k1 values in the range of 106 to 108 s-1 M-1. Enzymes as Lactate 

Dehydrogenases can reach values close to the diffusion controlled (k1 ≈ 109) while others as α-

Chymotrypsin are far away (k1 = 3.4 x 103).[6] kcat/KM values roughly correspond to k1 values. 

However, the kcat/KM value is always less than k1, and only in particular cases kcat/KM can be 

approximately equal to rate constant k1. Enzymes with high kcat/KM values indicate that the rate 

limiting step for this parameter is close to the diffusion-controlled encounter of the enzyme and 

the substrate. 

 

Experimentally, kcat and KM can be obtained through Michaelis-Menten curve by measuring 

the initial velocities in the steady-state conditions. However, in order to detect the transient 

intermediates formation and obtain the rate constants of the individual enzyme steps, it is 

necessary to measure the rate in the pre-steady state time domain (Fig. 1.2). To that end, rapid 

mixing technics are required.	
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1.2 Classical thermodynamic view 
 

Thermodynamics is that part of science that studies the conversion of different forms of energy 

(e.g. thermal, mechanic, electric) that takes place in natural processes. Work and heat are 

energy quantities that can be understood as modes of energy transfer. In thermodynamics, work 

covers a wide range of processes including mechanical work, electric work, surface work, 

magnetization work, etc. Heat is the energy transferred between two bodies at different 

temperatures. Heat (q) and work (w) are properties that depend on the trajectory of the process, 

while temperature (T), pressure (P), and volume (V) are state functions because their value 

only depends on the current state of the system and not on the history from which such state 

was reached. In other words, we cannot answer how much heat is transferred to 100 g of water 

in order to increase its temperature from 10 to 50 C° because we do not have information about 

the history of the process. In this case, the energy transferred to the water may come from heat 

but also from a different source such as mechanical work performed by a magnetic bar that 

produces friction.[9] If all the energy were transferred from the mechanical work the heat 

transfer would be zero.  In this context, a protein conformational exchange from state A to state 

B may occur in many ways and the underlying process of the exchange history is very useful 

to tune this bio-molecular processes. The idea of this section is to briefly explain the classical 

thermodynamic laws together with some knowledge about biological work in order to situate 

enzymes as pure thermodynamic machineries governed by enthalpy and entropy components. 
 

1.2.1 First law of thermodynamics 

 

According to the first law of thermodynamics, the total energy of the universe remains constant. 

In this context, energy can be converted from a particular form to another and transferred from 

a system to the surroundings and vice versa as long as the total energy does not change. Thus, 

the energy cannot be created or destroyed. In general, the total energy of the universe can be 

represented as: 
 

Euniverse = Esystem + Esurroundings                                                                                                                                                                                 (1.25) 

 

And the energy variation as: 
 

ΔEuniverse = ΔEsystem + ΔEsurroundings = 0                                                                                                       (1.26) 
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According to classical thermodynamics, the total energy of a system can be estimated as the 

internal energy (U) plus the kinetic and potential energies. Assuming that the system is in 

resting state and in absence of external fields (e.g. electric or magnetic) the total energy can be 

estimated only as the internal energy due to the absence of kinetic and potential energies. This 

is indeed the case for most of the bio-molecular processes and cases that will be covered here.  
 

The internal energy of a particular system (e.g. a protein) includes many types of energies: 
 

• Translational 

• Rotational 

• Vibrational 

• Electronic 

• Nuclear 

• Intermolecular interactions 

 

The first law of thermodynamics can be expressed as: 
 

ΔU = q + w                                                                                                                                                  (1.27) 
 

This indicates that a variation in internal energy (ΔU) of the system for a particular process 

can be calculated by the sum of the heat (q) exchange between the system and the surroundings 

and the work (w) executed on (or by) the system. Thus, there is a decrease in the internal energy 

of the system when the system performs work on the surroundings and when the heat is 

absorbed by the surroundings from the system. Accordingly, there is a gain in internal energy 

in the opposite scenario. Work has different meanings depending on its nature, as for instance 

mechanic, electric and expansion work. 
 

Heat can be expressed as: 
 

q = mCeΔT                                                                                                                                                  (1.28) 

 

Where the specific heat capacity (Ce) is the amount of heat needed to increase 1 gram of a 

particular substance by 1 C° of temperature. 
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Another widely used thermodynamic term is the enthalpy (H). It is expressed as: 

 

H = U + PV                                                                                                                                                (1.29) 
 

Where P and V are the pressure and the volume respectively. In contrast to the internal 

energy (U), the enthalpy (H) is obtained by assuming constant pressure condition operating 

from Equation 1.27. The variation of H in a natural process can be expressed as: 

 

ΔH = ΔU + PΔV                                                                                                                                         (1.30) 
 

Notice that the difference between U and H becomes remarkable when there is expansion 

work during the natural process. For instance, in a chemical reaction when there is no 

expansion work, ΔH can be calculated by the heat generated, and according to Equation 1.30, 

ΔH = ΔU.  However, for a chemical reaction where there is gas production, ΔH < ΔU because 

part of the released internal energy is used to perform the gas expansion work. As a 

consequence, there is less heat released.  
 

The standard enthalpy of reaction (ΔrH0) is defined as the enthalpy change of a chemical 

reaction when 1 mol of reactants is converted into 1 mol of products in standard conditions 

(i.e. P= 1bar and 298K). Thus, for combustion reactions (e.g. CO2 formation) ΔrH0 can be 

obtained experimentally by measuring the total heat generated in the reaction. Since the 

temperature during the combustion reaches much higher values than 298K, the heat released 

until the product is cooled up to 298 K has to be considered as part of the reaction enthalpy.[9]  

 

ΔrH0 can be also calculated from the summation of the molar standard enthalpy formation 

of the products minus the molar standard enthalpy formation of the reactants: 
 

							ΔrH0=0 vΔf	H01111 (products)- 0 vΔf	H01111 (reactants)																																																										(1.31) 

 

The molar standard enthalpy of formation (23451111) is the enthalpy change when 1 mol of 

compound is formed from the elements that constitute it (e.g. CO2 formation from graphite and 

oxygen). Chemists handily assign arbitrary values of zero to the elements in their allotropic 

forms (e.g. graphite and oxygen). Intuitively 2645  obtained experimentally of the CO2 

combustion is equal to 23451111(789). However, many 23451111 cannot be obtained experimentally, 
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in these cases chemists solve this problem applying the laws developed by the German Henri 

Hess. The Hess laws permits to calculate the 23451111 of a reaction discomposing the target 

reaction in a set of reactions by which there are 23451111 values available and operating these set 

of chemical reactions as algebraic equations. 
 

1.2.2 Second law of thermodynamics 

 

The fundamental statements of the first and second law of thermodynamics took place in the 

mid-19th century.[10] The first law allows the quantification of the energy exchange between 

the system and the surroundings and how energy can be converted between one form to 

another. However, the main limitation of the first law is that it cannot predict the direction of 

the energy exchange. At a particular set of conditions (e.g. temperature, pressure…) a natural 

process happens in one direction spontaneously. The unfolding of a thermophilic enzyme or 

the water boiling at 25 C° and 1 atm is as improbable as a ball rising spontaneously from the 

ground up to 1 meter. On the other hand, the unfolding of a mesophilic enzyme or the water 

boiling at 100 C° and 1 atm is as probable as the fall of a ball from 1 meter to the ground. In 

order to predict the direction of the spontaneous natural processes, a new thermodynamic 

function takes part: the entropy. In 1877, Ludwig Eduard Boltzmann established for first time 

the probabilistic basis of entropy.[11] According to the Boltzmann equation, the entropy (S) is 

defined as:  
 

S = kBlnW                                                                                                                                                   (1.32) 
 

Where W is the probability (“Wahrscheinlichkeit” in German) that a natural process occurs 

and kB is the Boltzmann constant, 1.381 x 10-23 JK-1. Thus, a change in entropy only depends 

on the probability of the natural event changing from state 1 to state 2. 
 

 ΔS = S2-S1 = kBlnW                                                                                                                                    (1.33) 
 

							ΔS	=	S2-S1	= kBln
W2

W1
																																																																																																																	(1.34) 

 

The equilibrium state is the most probable situation for an isolated system. The probability 

is proportional to the number of possible microstates. In this context, a system can be described 

macroscopically (e.g. P, V, T, U, N) and microscopically (e.g. position and velocity of each 
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atom). There are many microscopic states compatible with the macroscopic state of a system. 

W can be interpreted as the number of microstates to distribute the particles among the different 

energy levels compatible with the macroscopic values. Therefore, an increase in entropy is 

associated with an increase in the number of microstates (W), and as a consequence to an 

increase in the disorder of the system. The statistical thermodynamic approach will be further 

explained in Chapter 1.3 focusing on the enzyme microscopic properties. 
 

In general, Equation 1.34 is not used to calculate entropy changes for experimental purposes 

because the calculation of W in complex natural processes as a chemical reaction is very 

complicated. Instead ΔS can be easily calculated from other energy quantities as ΔH according 

to equation: 
 

					ΔS	= 
qrev
T =

24
T 																																																																																																																												(1.35) 

 

Equation 1.35 is the thermodynamic definition of entropy.[10] It can be estimated operating 

from the first law equation (q = -w) and developing Equation 1.34 for the case of an ideal gas 

expansion. According to the thermodynamic definition of entropy, the change in entropy of a 

system in a reversible process is determined by the heat absorbed divided by the temperature. 

It is noteworthy to say that this definition is only valid for a reversible process (i.e. qrev). 

Although the entropy is a state function, the heat not. Thus, the reversible trajectory of the 

process has to be specified. 

 

According to the second law of thermodynamics: 
 

ΔSuniverse = ΔSsystem + ΔSsurroundings  ≥ 0                                                                                                    (1.36) 
 

The second law of thermodynamics means that the ΔSuniverse never decreases and becomes 

positive for an irreversible process (i.e. spontaneous) while is 0 for a reversible process (i.e. in 

equilibrium conditions). The entropy of the universe is continuously increasing and tends to a 

maximum value.   
 

When the temperature of a system increases, its entropy also increases. This correlation is 

due to the energy input, which boosts the molecules to higher energy levels of translational, 

rotational and vibrational energies. As a consequence, the disorder increases at molecular level. 
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Since the heat from the surroundings is transferred reversibly to the system increasing the 

entropy infinitesimally at a constant temperature: 
 

						dS	= 
dqrev

T 																																																																																																																																			 (1.37)  

 

Operating Equation 1.37 and considering constant pressure (qrev = ΔH), the increments in 

entropy as a result of the heating can be defined as: 
 

							ΔS	=	CP	In
T2

T1
 																																																																																																																														(1.38) 

 

Where Cp is the heat capacity, which is assumed to be independent of the temperature for a 

small range of temperatures. 
 

Additionally, phase changes can also affect the entropy. For instance, at 100 C° and 1 atm, 

water is in equilibrium between liquid and gas phases. The change in entropy associated with 

the conversion to gas phase and considering constant pressure can be expressed as: 
 

							ΔvapS		=
ΔvapH

Tb
    																																																																																																																							 (1.39) 

 

Where ΔvapH and Tb are the enthalpy of evaporation and the temperature of the boiling point, 

respectively. Since the system is in equilibrium conditions (i.e. ΔSuniverse =0), the gain in 

entropy by the system has to be equal to the loss of entropy by the surroundings due to the heat 

transferred to the system. On the other hand, the water does not boil at 25 C° and 1 atm because 

the loss of entropy by the surroundings is much higher than the gain of entropy by the system, 

and then ΔSuniverse <<0. ΔSsystem and ΔSsurroundings can be calculated by imagining a set of 

reversible steps.  For instance, the ΔSsystem and, the ΔSsurroundings of the water boiling process at 

25 C° and 1 atm can be calculated by dividing the process in three reversible steps (i.e. (1) 

heating the water from 25 C° to 100 C°, (2) phase change from liquid to gas at 100 C° (3) 

cooling the water steam from 100 C° to 25 C° using the equations previously detailed. 
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1.2.3 Third law of thermodynamics 

 

The third law of thermodynamics was developed by chemist Walter Nernst in the beginning 

of the 20th century.[12] The third law establishes that every substance has a finite positive 

entropy, but at zero absolute of temperature, the entropy can reach zero. This happens in the 

case of a pure perfect crystalline substance. Mathematically the third law can be expressed as:  
 

lim
	T→0

S	=	0          																																																																																																																													(1.40) 

 

According to Boltzmann's definition of entropy (Equation 1.32), a hypothetic pure 

crystalline substance can only have one microstate. For this case, the crystal only has a 

particular arrangement of the atoms, as a consequence W =1 and 
 

S = kB ln W = kB ln 1 = 0                                                                                                                             (1.41) 
 

The third law allows to estimate the entropy of a substance at a particular temperature as 

follows: 
 

							ST=;
CP

T

T

0
dT	= ; CP

T

0
d lnT   																																																																								                      (1.42) 

 

Then, it is feasible to calculate the absolute entropy of a mol of substance at 298 K and 1 

atm (i.e. standard molar entropy <5111) by summing the amount of entropy accumulated from 0 

K to 298 K. It can be done by using Equation 1.42 and also considering the entropy variations 

associated with the phase transitions (e.g. Equation 1.39). Subsequently, the reaction standard 

molar entropy (26<5) can be calculated from the standard molar entropy of the products and 

reactants.  
 

							ΔrS0	=	0 vS0= (products)0 vS0= (reactants)       																																																											    (1.43) 

 

Altogether indicates that in the thermodynamic equilibrium, a particular system (e.g. an 

enzyme) tends to the maximum degree of disorder that the energy provided by the surroundings 

permits at a given temperature. A common enzyme at 298 K does not unfold (i.e. increasing 

its entropy to a higher level) because the heat taken from the surroundings would decrease the 
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entropy of the surroundings more than the gain of entropy associated with the enzyme 

unfolding. However, at sufficient high temperatures the entropic balance would lead the 

enzyme to unfold. Thanks to the thermodynamic equilibrium enzymes can efficiently explore 

the set of catalytic states needed for the enzyme cycle.  
 

The temperature oscillations along the day are due to the earth translation around the sun, 

which is indeed the source of energy that spreads entropy in every corner. All biological entities 

hope for the daily energy intake of sun in order to keep working for the organisms they take 

part in. Additionally, biological organisms conspire against the second law of thermodynamics 

by building large sophisticated biological structures (lower in entropy) from small disordered 

molecules (higher in entropy). As for instance, the biosynthesis of proteins from amino-acids. 

Organisms can do that thanks to one of the most fascinating events in biological evolution, the 

energy “currency” in chemical form. All organisms use the Adenosine Tri-Phosphate (ATP) 

molecule as energy currency. In ATP higher in energy (i.e. rich in energy) phosphate bonds 

store large energy quantities. The energy released from the hydrolysis of ATP can be used to 

drive many non-spontaneous biological processes, as for instance to drive secondary 

metabolism pathways to yield active compounds, synthesis of biological structures, nerve 

impulse propagation and muscle contraction (human work). 

 

Previous to the industrial revolution, humans lacked knowledge to convert one type of 

energy in another one. In essence humans and animals were the only energy conversion device 

available. Thus, muscle power (i.e. mechanical energy) was the key to almost all human 

activities. The source of energy to activate these organic muscle machines comes in the long 

term from the sun. Plants capture the solar energy through the photosynthesis and store it in 

chemical energy (i.e. food). Food is eventually converted in muscle power though the ATP 

generated in the cellular respiration. After industrial revolution, other energy conversion 

devices arose, as the steam machine, which impacted dramatically our mode of life. Since then, 

the energy conversion devices have been in constant development by humans. Nevertheless, 

the way we are coping with this development is debatable. 

 

The sun delivers 3.766.800 exajoules per year to our planet. All plants capture only 3000 

solar exajoules though the photosynthesis. All human industries and activities consume only 

around 500 exajoules per year, which is equivalent to the solar energy delivered by the sun in 

90 minutes. And this is only solar energy. We are surrounded by other enormous sources of 
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energy as nuclear or gravitational.[13] It is shocking we are not taking advantage of such massive 

amounts of energy. At the same time in chemical industries, we apply the concept of energy 

efficiently; where the energy exchanges networks operate avoiding to waste an infinitesimal 

piece of energy. The efficiency is so high that it seems art. It is evident we do not lack energy 

sources but the will and the knowledge to transform it for human purposes (e.g. food and 

transport).  
 

1.2.4 Gibbs energy 

 

Back to physics: the main limitation of the second law (Equation 1.36) is that ΔS of the system 

and the surroundings has to be calculated to estimate the spontaneity of a process. However, 

we are mostly interested in the system. Due to this fact the American physicist Josiah Gibbs 

developed a novel state function (G).[14] Operating Equation 1.36 only as a function of the 

system and assuming constant pressure and temperature, the famous Gibbs energy is obtained:  

 

G = H –TS                                                                                                                                                   (1.44) 

 

Where H and S are the enthalpy and the entropy of the system, respectively. G variations 

can be applied as criteria of equilibrium and spontaneity: 
 

ΔGsystem = ΔHsystem – TΔSsystem                                                                                                                       (1.45) 

 

ΔGsystem calculation (from now on ΔG) permits to quantify the energy exchange of a 

spontaneous process until it reaches the thermodynamic equilibrium (ΔG = 0). In a spontaneous 

process, the system delivers energy (ΔG < 0). On the contrary a non-spontaneous process has 

to be forced applying energy to the system (ΔG > 0). Indeed, the energy needed to force a 

process from A to B (e.g. unfolding of a thermophilic enzyme at 25 degrees) is the same as the 

energy that would be delivered in the inverse (spontaneous) process from B to A. We are 

forcing many non-spontaneous processes on a daily basis such as boiling water to make a cup 

of tea.  
 

Equation 1.45 is divided in two main components, the enthalpy (ΔH) and the entropy (–

TΔS) contributions. If |ΔH| >> |TΔS| the process is enthalpy-driven and if |ΔH| << |TΔS| 

entropy-driven. The temperature determines the relative contribution of ΔH and ΔS. At high 
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temperatures the impact of ΔS is higher than ΔH. The enthalpic component in a chemical 

reaction can be obtained as the energy exchange as a consequence of the balance between the 

chemical bonds broken and the bonds formed, whereas the entropic component as the entropy 

gained or lost in the reaction step (e.g. gain of entropy in gas formation and/or increase in the 

moles of the product reaction side).  The molar standard free energy variations for a chemical 

reaction (1 bar and 298K) can be calculated from the molar standard free energy formation of 

its reactants and products: 
 

					ΔrG0=0 vΔfG0 (products)-0 vΔfG0 (reactants) 																																																														(1.46) 

 

In similarity with ΔfH01111, an arbitrary value of zero is assigned to the ΔfG0 of the elements in 

their allotropic forms. Accordingly, ΔrG0  = ΔfG0  for the formation reaction of a given 

compound from its elements in their allotropic forms (e.g. CO2 formation).  ΔrG0  can be 

calculated from  ΔrH0	 and ΔrS0	values obtained in Equations 1.31 and 1.43 respectively, using 

them in the following Gibbs equation: 

 

						ΔrG0	=	ΔrH0- TΔrS0                                                                                                                                     (1.47) 

 

Physicochemists define the standard state of an ideal solution when all reactants and 

products are at 1M concentration, at 1 bar pressure and 298 K temperature (ΔrG0). Thus, the 

free energy change for the (A +B ® C +D) reaction is given by: 
 

						ΔrG= ΔrG0+RTln
([C/1M])([D/1M])
([A/1M])([B/1M])

                                                             																	(1.48) 

 

Where R is ideal gas constant. Accordingly, when all reactants are in 1 M concentration 

26? = 	26?5. Thus, 26?5 can be interpreted as the free energy variation of 1 mol of reactants 

evolving to products or vice versa until the equilibrium is reached from standard conditions 

assigned as initial state. 26?5	<< 0 indicates the reaction would evolve spontaneously towards 

products formation and 26?5	>> 0 indicates the reaction would evolve spontaneously towards 

reactants formation. When a reaction reaches the chemical equilibrium: 

 

						0	= ΔrG0+RTlnKeq                                                                                                                                      (1.49) 
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						ΔrG0	=	-RTlnKeq                                                                                                                                          (1.50) 

 

Where Keq is the reaction ratio in the equilibrium and can be related with ΔrG0 as follows: 

 

						Keq	=	e-ΔrG0

RT 																																																																																																																																		(1.51) 
 

In this context ΔrG0 can be interpreted as a constant that indicates not only the direction of 

the process but the driving force. 

 

For the protein unfolding process (N® U): 
 

					ΔuG0	=-RTlnKeq= -RTln
Ueq

Neq
 																																				     																																																								   (1.52) 

 

  Then 2C?5 can be estimated by determining the U/N ratio in the equilibrium. The U/N ratio 

of a protein can be for instance monitored experimentally through circular dichroism, 

tryptophan fluorescence or changes in tyrosine absorbance.[15] The entropic ΔuS0  and the 

enthalpic ΔuH0 terms associated with the protein unfolding can be estimated experimentally 

by the differential scanning calorimetry (DSC) technique. DSC measures the heat supplied to 

the system at constant pressure by gradually scanning a range of temperatures over time.[16] 

 

1.2.5 The art of the biochemical work 
 

Further operating Equation 1.45, using first and second law equations, assuming reversible 

trajectories and constant P and T, ΔG can be expressed as: 

 

  ΔG = wrev, no PV                                                                                                                                                    (1.53) 

 

Where (wrev, no PV) is the maximum work including all types of work (e.g. electric, 

superficial…) except the expansion work. Thus, negative ΔG values permit to quantify the 

maximum quantity of useful work (energy) delivered by the system in a spontaneous process. 

On the other hand, positive ΔG values (non-spontaneous process) provide the minimum work 
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that has to be invested in the system to force the course of a non-spontaneous process. However, 

since the natural processes occur spontaneously (i.e. irreversibly) the real work that can be 

obtained is always lower. This is the case of energy obtained from the combustion of fossil 

fuel. The thermodynamic efficiency is low because the combustion is a highly irreversible 

process that occurs in one step, and not in infinitesimals steps (i.e. reversible process). In this 

context, most of the energy is released in the less efficient way (i.e. heat). The heat generated 

by the combustion reaction can be coupled to a machine heat (e.g. thermal machine of Carnot) 

to convert the heat into mechanical work. However, this process is subjected to conversion 

energy limitations. On the other hand, there is a much more efficient way to obtain energy from 

a combustion reaction by performing the reaction into a fuel cell. In this case the reaction 

occurs in a more reversible way obtaining useful electric work. The electron flux of the reaction 

from the cell electrodes (anode to cathode) can be coupled to an electric motor to convert 

electric work into mechanical work. For instance, in the propane-oxygen fuel cell the efficiency 

that can be obtained is up to 70 %, which is roughly double the work obtained in an internal 

combustion engine. The electromotive force (emf) of a particular reaction can be estimated by 

the Nernst equation. For the (A +B ® C +D) reaction it is given by: 
 

						E	= E0-
RT
vF In

([C/1M])([D/1M])
([H/1M])([B/1M])  																																																																																										(1.54) 

 

Where v is the stoichiometric coefficient, F is the Faraday constant (i.e. the charge that 

carries 1 mol of electrons), J is the observed emf and J5 is the standard emf of the cell (i.e. 

298 K and all products and reactants at 1 M concentration). In the case of a reversible cell at a 

given temperature and pressure, -vFE is the maximum work that can be obtained, which is 

indeed the decrease in Gibbs energy by the system: 
 

ΔrG =-vFE = welectric, max                                                                                                                       (1.55) 
 

Electrochemical measurements provide a more direct determination of ΔrG (or ΔrG0) of a 

process. The combustion of glucose in air is also a highly irreversible reaction. As a 

consequence, the energy is released in heat form in one step and the amount of energy is far 

from the maximum that could be obtained. But this is not the case when biological efficiency 

takes place. Organisms divide the combustion reaction into multiple steps aided by enzymes. 

In such a way the process becomes more reversible, and then a large number of energy currency 
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can be obtained (i.e. ATP synthesis from ADP and Pi). How cells convert the electric work 

obtained from the set of oxidations of glucose into chemical form is a fascinating event called 

oxidative phosphorylation. Most of the ATP (90 %) is obtained in the terminal respiratory chain 

through the oxidative phosphorylation. In this process, an electron flux from the reduced 

coenzymes formed in the Krebs cycle (NADH) lead its electrons to the oxygen through an 

ensemble of acceptors called electron transport chain, which split the redox reaction in several 

steps. As the electrons flux downstream along the electron transport chain (i.e. redox steps 

aided by enzymes), most of the free energy released by each redox reaction steps are used to 

expel hydrogen ions (H+) from inside a compartment (e.g. mitochondrial matrix) towards 

another (e.g. mitochondrial intermembrane space) through the membrane that separates them. 

This process generates a chemical and electrical gradient difference since the [H+] increases in 

the mitochondrial intermembrane space, i.e. where they are being pumped into, which 

generates proton-motive-force (PMF). When the [H+] expelled flow back spontaneously to the 

mitochondrial matrix because of the gradient, the energy released is available to perform work; 

this [H+] gradient is analogous to the electric work that is performed in a battery. In the 

biological case, the [H+] flux is coupled to an enzyme called ATP synthase, which uses the free 

energy released of the transport of 4 H+ in favor of a gradient to form one ATP molecule from 

ADP and Pi. Another interesting event is how the release of chemical energy can be used to 

perform mechanical work in the muscle. Myosin is an ATPase that uses the energy released 

from the ATP to perform a conformational change that triggers a power stroke from the myosin 

head on the thin muscle filaments leading to the contraction that produces human mechanical 

work. 

 

We have seen so far how non-spontaneous processes can be performed by supplying the 

energy required to the system allowing living entities their daily duties.  Nevertheless, there is 

a highly remarkable question to ask: 

 

Why does the second law of thermodynamics immediately not reestablish the 

thermodynamic equilibrium by breaking the ordered macromolecules built and the ATP 

phosphate bonds, thus messing it all up? 

 

The non-spontaneous events that organisms force, do not flow backwards immediately 

(spontaneous events) because of the fact that a process that is highly spontaneous does not 

mean it has to happen very fast. Fortunately, time-scale matter. A highly spontaneous process 
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can take long periods of time to occur (e.g. months). The ATP phosphate bond is high in energy 

and stores a considerable amount of energy. However, the phosphate bond does not break 

spontaneously releasing its energy because the ATP molecule is very stable.  

 

We have seen how the oxidation of glucose is much more efficient in terms of useful work 

available when the reaction is divided in a set of steps aided by enzymes but the main role of 

enzymes is to accelerate the chemical reaction steps. Enzymes accelerate chemical reactions 

several orders of magnitudes allowing living organisms to dispose of biologically active 

compounds and energy quantities to drive biological processes in time-scales compatible with 

life. The disposal of energy is achieved accelerating for instance the combustion of glucose 

and the ATP hydrolysis reactions. The combustion of glucose in the absence of enzymes may 

take years, which can be easily tested by exposing a bag of sugar in presence of oxygen. 

Through the action of enzymes, we can dispose of the glucose chemical energy in seconds. 

This energy can be used to think, see and move. How enzymes operate to accelerate chemical 

reactions will be seen in Chapter 1.4. 
 

1.3 Statistical thermodynamic view 
 

Statistical thermodynamics is the discipline that links microscopic properties with the 

macroscopic properties of matter.  A macrostate is a condition in which a particular value of 

many properties as P, V, T, n, H, S, G, U are assigned.  A given macroscopic property (e.g. 

internal energy U) can be interpreted as a time-averaged quantity of an ensemble of microstates 

sampled over time 〈L〉. According to the ergodic hypothesis,[17] if a system evolves over long 

periods of time, it passes through all accessible microstates in statistical equilibrium. In other 

words, the microstates forming an ensemble include all past and future microstates that can be 

explored, and are statistically distributed as relative populations based on its probability to be 

sampled. In this section, the importance of the microscopic view in the enzyme design field 

will be discussed. The underlying characteristics of the microscopic conformations of enzymes 

and its relative population distributions (i.e. conformational ensembles) is of high relevance to 

understand and tune enzyme activity. 
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1.3.1 Fundamentals of Energy landscapes 

 

The energy landscape of a complex molecule, for example an enzyme, is a visual representation 

of the potential energy (U) as a function of the enzyme microstates or configurations (i.e. set 

of atomic Cartesian coordinates) so that any enzyme configuration leads to a potential energy 

value U(x); see Fig. 1.3. Do not confuse the potential energy with the internal energy, which 

is a macroscopic property. The Boltzmann factor connects the probability of sampling a 

particular configuration (x) with its associated energy in a simple exponential equation:  

						pdf(x)≡	p(x)	=
e

-U(x)
kBT

∫ dx	e
-U(x)
kBT

Q

																																																																																																						(1.56) 

Where pdf(x) is the probability density function as a function of x, which is equivalent to 

p(x), kB is the Boltzmann constant and T the absolute temperature.[16] The numerator of the 

equation is the Boltzmann factor, which is a weighting factor proportional to the probability 

density. In order to obtain the exact probability density, the normalizing constant has to be 

present, which is the integral appearing in the denominator and represents the summation of all 

probability weights in the region of interest (v); thus, the probabilities of all accessible 

microstates must add up to 1. The normalizing constant is also named the partition function, 

which is denoted by Z or Q. According to the energy and probability relationship, the 

probability of a microstate decreases as the energy increases. In other words, lower energy 

microstates are more likely. The temperature plays a key role in a given population distribution. 

The relative probability of all microstates becomes equal as the temperature increases. The 

physical meaning is that configurations that are unlikely at one temperature become more likely 

as T increases and as a consequence lower in energy configurations become less likely.[16] 

Consider a mol of enzyme in a box of water at 0 K. According to the third law of 

thermodynamics, only one enzyme configuration is likely. However, there are thousands of 

microstates super high in energy waiting for an increase of temperature to be sampled. As the 

temperature reaches 298K, the configuration that was extremely low in energy at 0 K, now is 

sharing its selfish relative population with another multitude of configurations the enzyme can 

adopt. At this point, the enzyme is mostly maintaining its native conformational ensemble 

being able to perform its catalytic itinerary. When going further to 393 K, another set of 

microstates starts to become likely. Those microstates correspond to unfolded configurations. 
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So that the native configurations become less likely due to the increase in probability of these 

new unfolded microstates that were high in energy at the previous temperature. At this stage, 

one might think that to fold an enzyme at 393K requires free energy, so work is needed. At 

extreme temperature conditions, the entropy becomes so powerful thousands of microstates 

where enzymes are fragmented (i.e. chemical bonds are broken) are sampled. It generates a 

massive number of microstates that tend to be equally likely, and of course the initial super 

lower in energy coordinates of the configuration at 0 K is also sampled, although not in the 

same form (i.e. now it is completely fragmented) and not with the same probability (i.e. now it 

is only an infinitesimally relative population of the whole thing).  

Back to the Boltzmann factor, it is worth mentioning that U(x) is not the only energy term 

that contributes to the total energy. The total energy (E) is indeed the sum of the potential 

energy (U) and the kinetic energy (KE): 

E = U(x) + KE(v) = U(x) +(m/2)v2                                                                                                             (1.57) 

Where m is the mass and v the velocity of a given particle. In general, kinetic energy is the 

energy that a particle possesses due to its motion, while potential energy is the energy 

associated with the particle position, which is subjected to forces. Interestingly, 400 years ago 

Frances Bacon stated that heat is motion. Kinetic energy makes enzymes move away from the 

minimum in energy landscapes, while the restoring force due to the potential energy landscape 

moves them back toward the minimum in energy. 

For simplicity, the kinetic energy (KE) is excluded from the total energy (E).  Notice that 

the full Boltzmann factor is factorizable: 

							e-E/kBT =	e-U(x)kBT e-	
Rm

2Sv2

kBT    																																																																																																														 (1.58) 

Therefore, the first factor depends only on the variable x and the second only on v, which 

means that the variables are statistically independent. The consequence is that the distribution 

of velocities does not affect the distribution of positions, and Equation 1.56 is indeed correct 

and Fig. 1.3 a realistic representation of the energy landscape.[16]  
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Figure 1.3 On the left, one dimensional energy landscape exhibiting different energy basins and energy barriers. 

The set of energy-basins are grouped into three different states (A, B, and C) according to activity and folding 

enzyme descriptors. On the right, single energy basin representation from the original function (solid green line) 

together with the harmonic approximation (dashed black line). 
 

The energy landscape of Fig. 1.3 is simplified in three different states (A, B, and C). There 

is some controversy about the meaning of state. Strictly a state can be defined as a group of 

configurations belonging to a single-well or single basin. However, in a more practical way, a 

state is usually referred to a group of similar energy basins. Accordingly, one can define as 

many states as appropriate to describe a particular process under study. For instance, if we aim 

to study the enzyme unfolding process, states A and B of Fig. 1.3 should be compiled into the 

folded state and state C would be assigned as the unfolded state. In contrast, if we aim to 

estimate catalytic activity (i.e. active/inactive population distribution) states B and C should be 

grouped as non-catalytic and state A as catalytic.  
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Regarding the potential energy function, a particular enzyme configuration (i.e. specific set 

of coordinates) has associated with it a potential energy value. However, a state consists of 

multiple configurations, each one with its own set of coordinates, and hence its own potential 

energy value. In this context the probability density of a state (e.g. state A) can be estimated 

by adding up (i.e. integrating) all the probability densities that encompasses the region of the 

state (vA): 

							pA=; dx p(x)
vA

=
∫ dx e

-U(x)
kBT

vA

∫ dx e
-U(x)
kBT

v

        																																																																																									(1.59) 

 In order to operate U(x) has to be approximated to a particular function. The simplest case 

is the treatment of a smooth energy basin using the harmonic (quadratic) function (Fig, 1.3, on 

the right), in which we can approximate the potential energy (solid green line) near the 

minimum by a simple “harmonic” that is, quadratic potential (dashed black line).  However, 

the space region that encompasses a state is not straightforward, being the boundaries of a state 

very difficult to define. In addition, typical energy landscapes are complex and possess many 

barrier-separated basins complicating such efforts, so that in practice this sort of operations is 

not feasible.  

1.3.2 Free Energy landscapes 

 
The free energy of a microstate (G(x)) can be defined as the energy whose Boltzmann factor 

gives its correct relative probability density. Thus, the free energy of a microstate can be related 

with or approximated by its probability density via:  

							G(x)	≈	-kBT In p(x) 																																																																																																																			(1.60) 

 Accordingly, the Boltzmann factor for the energy of a single configuration tells you its 

relative probability (compared to another configuration), and the Boltzmann factor of the free 

energy of a state (e.g. state A) indicates its relative probability compared to other states (i.e. GA 

= -kB T In pA).[16] After all, probability (relative populations) is an observed behavior of the 

system described statistically. Thus, as long as we believe in probabilities, the free energy 

landscape approach is safe. However, it has been highly debated if the use of free energy 

landscape term for the analysis of population distributions that, for any reason (e.g. lack of 

enough sampling), is not the population distribution at equilibrium conditions (i.e. relative 
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probabilities not correctly associated). This is indeed the case for the sampling problem (see 

section 2.4.2). In this scenario, the lack of convergence in the energy landscape leads to 

imprecise energy values. In agreement with Daniel M. Zuckerman opinion,[16] I consider that 

to say that a free energy landscape is trustable when it is constructed from imprecise population 

distributions is the same that to say that the free energy of a chemical reaction is reliable when 

the enthalpy changes (i.e. heat released in the process) are not measured with precision. In other 

words, who would trust the enthalpy values provided by a calorimetric pump that does not 

measure rigorously the heat?  

Nevertheless, although non-equilibrium analysis does not provide the accurate free energy 

differences between states, they are very useful to sample the major states of the energy 

landscapes and to observe trends in energy differences. In those cases, and as we will see in 

some studies included in this thesis, just naming it as energy landscape or conformational 

population analysis are more appropriate terms.  

1.3.3 Conformational free energy landscapes in proteins 

 
In recent years, the population shift concept originated from the Monod-Wyman-Changeux 

model of allostery[18] has become more popular than the induced fit model. Recently, 

Kovermann and coworkers provided evidence for a conformational selection pathway in the 

adenylate kinase (AdK) enzyme.[19] It is worth mentioning that this enzyme was usually used 

as a model example of induce fit. As shown by X-ray crystallography, Adk adopts an open 

conformation in absence of the ligand, whereas a catalytically competent closed conformation 

is required for catalysis. According to the conformational selection model, this high in energy 

closed conformational state should also be visited in the absence of ligand, although with a 

lower frequency. By introducing a disulfide bond, they succeeded in trapping AdK in a closed 

conformation in the apo state. The X-ray structure provided the definitive proof of the closed 

conformation of the enzyme being also sampled in the absence of any ligand, thus highlighting 

that higher in energy functionally relevant states are visited even in the apo state. Similar to 

substrate binding, introduction of mutations to the enzyme sequence, protein-protein 

interactions, allosteric ligands and covalent modifications (e.g. phosphorylation) can induce a 

shift in the populations of the pre-existing conformational states. In Fig. 1.4 is shown the Free 

Energy Landscape (FEL) of an enzyme that can sample open and closed populations among 
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others in apo state and how a population shift is induced by an external factor towards the 

closed conformational state, so that the enzyme activity is modulated. 
 

									
	

	
	

	
	
	
	
	
	
	
	
	
	
Figure 1.4 Schematic representation of an enzyme free energy landscape in the apo state associated with an open 

to closed conformational exchange and the population shift towards the closed state induced by a substrate (A), 

mutations (B), a protein partner (C), a ligand in protein partner (D), and covalent modifications (E). 

 

High in energy conformational states relevant for substrate binding can be additionally 

important for conferring the enzyme the ability to accelerate additional promiscuous 

reactions,[20] or for the enzyme evolution towards novel function.[21] The effect of mutations on 

the relative enzyme populations was elegantly demonstrated by a recent example by Tokuriki 

and Jackson through an impressive collection of X-ray structures.[21b] They demonstrated that 

the change in function from a phosphotriesterase into an arylesterase is achieved by gradual 

population of pre-existing conformational states, i.e. a population shift occurs along the 
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evolutionary pathway. Their study established that minor states that conferred the natural 

enzyme some arylesterase activity were gradually stabilized to become major states in the 

evolved arylesterases.[21b] A similar finding was obtained by Jackson in evaluating how 

ancestral binding proteins evolved into specialist binders.[22] An ancestral arginine-binding 

protein was crystallized in complex with L-arginine and L-glutamine revealing that the 

promiscuous binding of L-glutamine was possible due to alternative conformational states. 

These alternatives conformational states were further populated along evolution to produce the 

contemporary L-glutamine specific protein binders. These studies support the idea that the 

underlying principle that guides enzyme evolution lies in the population shift of the 

conformational states that pre-exist in solution. The effect of introducing mutations to the 

enzyme sequence for their evolution towards new functions and novel substrate scope has a 

high similarity to substrate binding and allosteric regulation processes.[21b, 21c, 23] In all cases, a 

redistribution of the populations of the conformational states exists, but in the particular case 

of enzyme evolution this population shift should favor the catalytically competent 

conformational states for the new target reaction. The allosteric properties of enzymes are 

further explained in section 1.5.3. 
 

1.4 Chemical view 

 

1.4.1 Fundamentals of catalysis 
 

As discussed in the previous sections, enzymes are essential for living organisms; in this 

section, their mode of action will be discussed. All enzymes are proteins with the exception of 

a small set of RNA molecules. The catalytic activity of proteins is associated with its primary 

(amino acid sequence), secondary (alpha helix, beta sheets, random coil structures), tertiary 

(3D native structure, e.g. globular, filamentous) and quaternary structures (assembly of protein 

subunits). Some enzymes require additional chemical compounds to be active, called cofactors. 

The cofactor can be either one or several metallic ions (e.g. Cu2+, Fe2+, Zn2+, Mn2+) or complex 

organic molecules such as the Nicotinamide Adenine Dinucleotide (NAD) or the Pyridoxal 

Phosphate (PLP). Such organic compounds are called coenzymes and most of them are vitamin 

derivatives. Some enzymes require both, a coenzyme together with the metal ion (e.g. heme 

group). A prosthetic group refers when the cofactor is covalently or tightly bound to the 
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enzyme. The complete and active enzyme including the coenzyme and/or metal ions is called 

holo-enzyme while the enzyme in absence of the cofactor is called apo-enzyme.  

 

	 In a general view, enzymes work as any other catalyst. They do not alter chemical 

equilibrium. Thus, the equilibrium constant and the reaction free energy exchange remain 

unaffected. What catalysts do is to accelerate the speed of the chemical reactions in order to 

reach the equilibrium faster. A reaction coordinate diagram is a representation of the free 

energy changes over the course of a reaction defined at certain conditions (e.g. 298 K, partial 

pressure of each as at 1 atm and concentrations of solutes at 1 M). In this context changes in 

the free energy can be estimated from experimentally determined equilibrium constants using 

the Gibbs equation (see Equation 1.50). In favorable cases, barrier heights between successive 

chemical species can be determined from studies of temperature dependence or from kinetic 

isotope effect data.[8] In Fig. 1.5-A is represented a simple case where the substrate is 

transformed into a product in one single step. As shown in the diagram, there is an energy 

barrier to overcome in order to evolve the reaction towards product formation. In this regard, 

the substrate needs energy quantities to climb up to higher-in-energy configurations allowing 

for the reactant groups alignment, the formation of unstable transitory charges, chemical bonds 

rearrangement and other transformations. Once the reaction reaches the highest in energy 

configuration (i.e. transition state) the reaction coordinate can fall towards the substrate or 

product formation with the same probability. The transition state is not a chemical species with 

significant stability; instead it is a fleeting moment when the charge and bonds rearrangements 

reach the utmost unstable situation. The rate of a reaction can be estimated through the 

activation energy (∆G‡) values: high energy barriers yield slow reactions (low rates). The 

reaction rates can be boosted by increasing the temperature, in this way a higher number of 

molecules have enough kinetic energy to overcome the activation energy. Alternatively, the 

activation energy can be decreased aided by the action of catalysts, such as enzymes (Fig. 1.5-

A-B) 
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Figure 1.5 Reaction coordinate diagrams. It is shown the free energy as a function of the course of the chemical 

reaction of the substrate conversion to product (A), together with alteration on the free energy profiles when the 

reaction is catalyzed by the enzyme for different mechanisms (B, C and D). 

 

In 1930 Eyring, Evans and Polanyi developed the Transition State Theory (TST) based on 

statistical mechanics justification. The theoretically constructed Eyring equation is more useful 

compared to the empirical Arrhenius equation (see Equation 1.3) and expresses the effect of 

the temperature on the reaction rates as: 
 

k = 
ĸkBT

h e-∆G‡/RT																																																																																																													(1.61) 

 

Where kB is the Boltzmann constant, h is the Planck constant, ĸ the transmission coefficient 

(often assumed to be ~1 for condensed phase reactions) and ∆G‡the activation free energy.  
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1.4.2 Transition state stabilization 
 

Enzymes perform catalysis on a specific region of its tridimensional structure that 

geometrically consist of a cavity or pocket called active site. The fundamental question that 

arises is how enzymes decrease the activation energy. The answer can be split in different 

strategies that cooperate can together, the binding energy and the covalent rearrangements: 
 

(i) Binding Energy: The enthalpic contributions of the non-covalent interactions between 

the enzyme and the substrate provide the main source of free energy used by enzymes to 

decrease the activation energy. In 1946 Linus Pauling proposed the idea that the active site 

geometry and charge distribution is precisely complementary to the transition state rather than 

the substrate. The substrate would bind in the active site forming the ES complex aided by 

some non-covalent interactions but the total non-covalent interactions will be formed when the 

substrate reaches the TS. In this context, the enzyme active sites balance the substrate and TS 

stabilization efficiently, i.e. stabilizing the TS over the S (Fig. 1.5-B). A way to do so is to 

stabilize regions of the substrate that most resemble the TS configurations while the geometries 

and charge differences between them are optimized for the TS. Note that if the active site was 

designed to be complementary only to the substrate, the ES complex would be highly stabilized 

improving KM considerable, but the energy barrier to reach the TS would increase 

proportionally in decline of kcat (Fig. 1.5-C). On the other hand, if S and TS are equally 

stabilized by the enzyme, little advantage would be gained because the activation energy would 

remain the same as occurring in the absence of the enzyme (Fig. 1.5-D). Warshel and 

coworkers reported that the main contribution for enzyme catalysis arises from the electrostatic 

stabilization of the TS.[24] In this context, active sites provide a specific 3D structure with local 

charged groups that through strong Coulombic interactions stabilize ionic and polarized 

transition states. Note that stabilization of the very same transition state in bulk water would 

require a substantial thermodynamic penalty, referred to as a reorganization energy, for water 

molecules to be arranged in a manner that stabilizes ionic transition states.[8] 

 

The multiple non-covalent interactions formed between the substrate and the enzyme active 

site provide a substantial driving force for the catalysis. Equation 1.61 permits to calculate that 

∆G‡ has to decrease ca. 5.7 kJ/mol to accelerate a first order reaction a factor of 10 in the cell 

conditions. A single non-covalent interaction is estimated to provide among 4-30 kJ/mol. Thus, 

the global energy that arises from multiple non-covalent interactions is enough to decrease the 
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energy barriers by the 60-100 kJ/mol required to explain the great raise of rates observed in 

many enzymes.[1] Besides, the binding energy also confers the enzyme its high specificity. The 

specificity is the ability of the enzyme to discriminate between different substrates. The 

specificity arises from the multiple non-covalent interactions between the enzyme active site 

and its specific substrate. 

 

The sum of the unfavorable activation energy (positive) and the favorable binding energy 

(negative) results in a lower net activation energy. The main thermodynamic factors that 

contribute to the activation energy are the substrate distortions, entropy reduction, desolvation 

and catalytic groups alignment. All of them are paid by the favorable enthalpy of the binding 

energy: 

 

• Substrate distortions: The free energy from non-covalent interactions formed during 

the TS formation compensates thermodynamically any substrate distortion; such as 

unstable electronic redistributions the substrate has to undergo to react. So that the 

energy required for the distortion is paid for by the binding energy. 

 

• Substrate entropy reduction: In solution, the productive collisions between reactants 

are rare events. The binding energy constrains the degrees of freedom of the substrates 

in the active site and properly orients their reactant functional group aligning their 

molecular orbitals. In 1971 Page and Jencks demonstrated that the motion restriction 

going from a bimolecular to a unimolecular reaction involving an ester and a 

carboxylate group to form an anhydride yield rate increments of many orders of 

magnitude.[25]  

 

• Substrate desolvation: The interactions between the enzyme and the substrate replace 

most or all the hydrogen bonds that take place in solution between the substrate and the 

water molecules. 

 

• Enzyme conformational changes: The binding energy can also induce enzyme 

structural rearrangements in order to increase the catalytic properties. These 

conformational changes may occur in small regions close to the active site pocket but 

also distal domains can be modulated. The conformational change can approach protein 
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functional groups and properly orient them towards the substrate and also can provide 

additional non-covalent interactions to stabilize the TS. This idea was initially 

postulated by Daniel Koshland as the induced fit model. However as discussed in 

section 1.3.3 the conformational selection model is becoming more popular. 

 

(ii) Covalent rearrangements: They generally involve transient covalent bonds between 

the enzyme functional groups and the substrate or the group transfers from or towards the 

substrate. These covalent interactions decrease the activation energy providing an alternative 

reaction pathway lower in energy, therefore boosting the reaction rate. Among the main 

covalent rearrangement mechanisms are the acid/base catalysis, the covalent catalysis and the 

catalysis by metal ions. 

 

• Acid/base catalysis: In many chemical reactions some intermediates formed along the 

reaction coordinate may undergo charge instabilities that quickly decompose them back 

to its constituent reactant species. Proton donor/abstraction can stabilize these charge 

instabilities forming chemical intermediates that favor the product formation. This 

proton transfer may occur between the ionized water molecules and the substrate. 

However, if the proton transfer between the water and the intermediate is slower than 

the intermediate decomposition into its reactants, only a small fraction of the 

intermediates will be stabilized. At this point, enzymes strategically place amino-acid 

side chains in the active site that can act as proton donor/abstraction enhancing the 

reaction velocity considerably (from 102 to 105 orders of magnitude). The pKa values 

of these catalytic residues is key for its action. Note that the protonation state of these 

groups is critical to perform the proton donor/abstraction, which causes pH dependence. 

It is worth mentioning that the pKa values of the active site residues may differ 

significantly with respect to the pKa values in solution. The active site environment 

modulates the pKa: when acids and bases are placed into a hydrophobic environment 

the non-charged species are stabilized. Thereby acids exhibit higher pKa favoring the 

protonated form of the carboxylate group (–COOH) whereas bases exhibit lower pKa 

favoring the deprotonated form of the amine groups (-NH2). The same trend occurs 

when in the vicinity of acids and bases are located like charged residues (i.e. negative 

in the case of the acids and positive for the bases). However, when in the vicinity 

opposite charged residues are placed, acids exhibit lower pKa favoring the deprotonated 
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form of the carboxylate group (–COO-), whereas bases exhibit higher pKa favoring the 

protonated form of the amine groups (NH3
+).  

 

• Covalent catalysis: It involves a transitory covalent interaction between the enzyme 

machinery and the substrate. In this regard, the enzyme modifies the course of the 

chemical reaction adding new chemical steps. These new steps provide a lower in 

energy pathway to the non-catalyzed reaction. Several side chain residues and cofactors 

can act as nucleophiles to form covalent bonds with the substrate. Finally, the covalent 

formed complex undergoes an extra chemical step in order to regenerate the free from 

of the enzyme.   

 

• Metal ions: This strategy is difficult to classify because metal ions catalyze chemical 

reactions in many ways. Metal ions can be placed in the active site by coordination with 

enzyme residues or by taking part in coenzymes. In some cases, their mode of action 

can be simply attributed to the binding energy through ionic interactions (e.g. Mg2+ in 

kinases). In other enzymes they fix the substrate in the active site properly orienting it 

for catalysis, but also the coordinating bond between the metal ion and the substrate 

alters the electronic properties of the substrate improving its tendency to react, as for 

instance in zinc dependent Alcohol Dehydrogenases (ADH). Metal ions also transiently 

switch oxidation states during the catalytic cycle as in case of the iron in P450s or the 

copper in Tyrosinases. Furthermore, metal ions can be just part of the protein scaffold 

stabilizing distal regions of the protein, as is the case for Na+ in tryptophan synthase, 

where the lack of the cation hampers dramatically the catalytic activity. 
 

1.4.3 Role of conformational dynamics in catalysis 
 

The ability of enzymes to visit different thermally accessible conformations has been explained 

previously in section 1.3.3. Here we focus on the link between enzyme dynamics and catalysis, 

which has been highly debated. [26] In 2002 Hammes-Schiffer suggested[26a] that when the 

substrate binds the enzyme, it becomes an integral part of it. In this way both, the substrate and 

the enzyme experience simultaneous conformational changes affected by each other along the 

reaction coordinate. It becomes more obvious in multistep mechanisms. Multi-step enzyme 

cycles require that enzymes optimally stabilize multiple transition states. In this context, the 

ability of enzymes to adopt different catalytic conformations along the reaction pathway is 
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pivotal. As expected, this dynamic ability plays a key role not only in the chemical step but 

also in enzyme regulation, inhibition, substrate binding and product release. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.6 Hypothetical reaction coordinate diagram for an enzyme catalyzed-reaction. The structural changes 

of the enzyme and substrate along the reaction are depicted. 

 

Reaction coordinate diagrams are valuable tools to interpret the enzyme catalytic cycles 

involving substrate binding, intermediates/TS structural evolution and product release. At 

difference with TS, intermediates have significant stability, although they usually have a short 

life-time. In Fig. 1.6 a multi-step reaction coordinate shows the structural evolution of the 

enzyme and the substrate highlighting the catalytic enzyme conformation at each reaction step 

(i.e. open-to-closed conformational exchange). Herein the relative stabilities of the catalytic 

open-to-closed conformations at each reaction step is essential to efficiently optimize the 

catalytic pathway. Unstable catalytic conformations with higher energy barriers associated 

(e.g. adoption of closed state in Fig. 1.6) can contribute to the rate-limiting step of the reaction. 

The rate-limiting step on the catalytic cycle is the one with the highest energy barrier of the 

diagram, which often is the chemical step although in some cases conformational change can 

also be limiting. However other chemical steps with similar energy barriers can be rate-

contributing.  

Motions that occur in enzymes can display a variety of time scales.[27] Bond vibration (10-100 

fs) and side-chain rotations (ps to µs) take place on the shortest time scales, whereas loop 
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motions, often key for substrate binding and product release, occur on the nanosecond up to 

millisecond time scales. On the longest time scales, slow domain motions and allosteric 

transitions can take place (µs to s),[28] see Fig. 1.7. All these motions can precede or occur after 

the chemical step, and indeed in some natural and laboratory-evolved enzymes conformational 

changes have been found to be rate-limiting.[29] Many examples have been provided in the 

literature highlighting the importance of engineering flexible loops for novel function.[30] 

Recent studies based on the analysis of static X-ray structures along evolutionary pathways 

and in ancestral protein reconstruction,[21b, 22] nuclear magnetic resonance (NMR) 

experiments,[29b, 31] and computational studies based on Molecular Dynamics (MD) 

simulations[21a, 27c, 32] have provided further support of enzymes as an ensemble of thermally 

accessible conformations, whose populations can be tuned. All these evidences highlight the 

crucial role of the enzyme conformational dynamics for its function.  
 

 
 
Figure 1.7 Time scales of the different fast and slow motions in proteins. 
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1.5 Engineering view 
 

The use of biocatalysts in industry has expanded significantly over the last few decades. The 

employment of enzymes has impacted considerably many industries, such as pharmaceutical, 

food and biofuel. Enzymes arise as a potential alternative with respect to traditional catalysts 

for many reasons: 

 

• Great catalytic power: often far higher than synthetic or inorganic catalysts. Enzymes 

dramatically accelerate chemical reactions; the increments on rate achieved oscillate 

from 5 to 26 orders of magnitude.[1, 33] 

• High degree of specificity and stereoselectivity towards its substrates: 

discriminating easily among substrates with very similar structures and when acting on 

pro-chiral substrates, precisely yielding the optically pure stereoisomer requested. 

• Environmentally and economic sustainable: enzymes are produced from 

inexpensive renewable resources and are themselves biodegradable. They work under 

aqueous solutions and mild conditions of temperature, pressure and pH. In addition, 

they are easily amenable to economic modeling. The cost of production is stable at 

difference with catalyst based on metals like rhodium, whose market price leads to large 

fluctuations due to its scarcity and competing demand by other industries.[34] 

	
The main handicap is that for many industrial purposes there is no a natural enzyme that 

efficiently accelerates the targeted reaction or in some cases the reaction itself can be performed 

but the substrate scope needs to be expanded to meet industrial requirements. To that end, 

natural enzymes have to be engineered. Given that enzymes are large systems with high 

intrinsic degrees of freedom, they have an enormous potential to exploit the development of 

novel enzyme function. 

 

1.5.1 Overview of enzyme engineering approaches 
 

Enzyme engineering approaches can be divided into different strategies.[34] The oldest consists 

of the variation of the reaction conditions together with kinetic studies, which allowed 

optimizing wild type enzymes towards the production of natural compounds. More recent 

strategies focus on rational approaches based on mutagenesis techniques. Site-directed 

mutagenesis (SDM) is a purely rational technique where the positions of the amino acids 
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subjected to mutagenesis and the nature of the amino acid substitution is selected by prior 

structural or functional knowledge. These strategies allowed the broadening of the substrate 

scope of many enzymes to obtain non-natural compounds. [34] A striking approach that 

dramatically accelerated the pace of biocatalyst optimization (although with a high cost 

associated) is based on Directed evolution (DE) techniques, which were pioneered by Pim 

Stemmer and Frances Arnold.[35] DE is a purely random technique that mimics Darwin’s theory 

of natural selection evolution by inducing multiple random mutations on the enzyme sequence 

space. Posterior screening of the multiple variants generated allows for selection of the best 

hits to be subjected to a new DE round. The process is over when the desired enzymatic 

property (e.g. activity) is achieved. Other successful strategies are semi-rational approaches, 

that emerged as the combination of random methods (e.g. DE) with elements of rational design 

(e.g. prior knowledge),[36] as for instance site-saturation mutagenesis (SSM) and iterative 

saturation mutagenesis (ISM). In SSM all the set of natural amino-acids are randomly tested 

for each rationally chosen position subjected to mutagenesis, and ISM methodology, that was 

developed by Manfred Reetz and coworkers, is a more sophisticated approach where iterative 

cycles of SSM on the chosen sites are performed, which often are sets of one, two or three 

amino acid positions.[37] Another powerful semi-rational approach that aims to decrease the 

sequence space that DE has to search consists of taking advantage of the vast protein sequences, 

structures and functional information deposited in the databases to rationally guide the design 

process (i.e. selection of hotspots and creation of ‘small but smart’ libraries). Many nice 

bioinformatics tools have been developed to that end as for instance HotSpot Wizard,[38] 

ProSAR,[39]  SCHEMA  and ARSA. These tools have been successfully applied to (re)design 

enzymes for industrial approaches reducing screening efforts[40] and have the great advantages 

of being extremely fast and easy to use, so that the tool is not limited to experts only.[41] At a 

high rational level, computational strategies by means of computer modeling and 

thermodynamic calculations arose as rational approaches for the mutation prediction and 

evaluation.[32b] 

 

1.5.2 A brief story of enzyme computational design 
 

Initial attempts to computationally engineer enzymes towards non-natural reactions or 

substrates were based on protocols that (re)designed the active site of some natural protein 

scaffolds by means of computational design strategies, in which a selected subset of active site 
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residues are subjected to mutagenesis while treating most of the enzyme protein as rigid.[42] 

Despite the initial successes, computationally designed enzymes present quite low catalytic 

activities,[42a] and needed to be further evolved by means of experimental techniques such as 

DE.[43] Combining computational protocols and DE techniques (i.e. semi-rational approaches) 

has been shown to be a great strategy in designing enzymes for a broad scope of challenging 

transformations.[44] The origin behind the low activities of computational designs has been 

attributed to the overly restrictive definition of active site residues,[45] the imperfect realization 

of the ideal arrangement for TS stabilization,[46] and the tendency to consider only the chemical 

steps while overlooking essential dynamic conformational changes for substrate binding and 

product release.[47]  

 

 A more ambitious strategy is de novo computational-design, by which the whole enzyme 

active site is generated from scratch in an inert protein scaffold. This task is much more 

challenging than the (re)design since no advantage is taken from the natural protein scaffold. 

However, it provides a workflow by which the target design can be a priori any desired reaction 

that the user is interested in. One of the most successful approaches for de novo designs is the 

inside-out protocols that combine computational design software as for instance Rosetta[48] 

with the theozyme concept.[49] In this context, initial geometry optimization of the transition 

state including protein functional groups (i.e. involved in binding and catalysis) by means of 

quantum mechanics calculation provides the idealized three-dimensional model of a minimal 

active site, also called theozyme. This geometry is then placed into a protein scaffold using for 

instance RosettaMatch,[50] ORBID[42b] or scaffold select[51] software. In addition a 

computational design simulation is performed (e.g. RosettaDesign)[42a] to search within the 

protein sequence of the residues encompassing the pocket where the theozyme has been placed 

to optimize the packing between the transition state, the functional side chains and the nearby 

residues.[52] The resulting designs can be experimentally tested. Moreover, iterative analysis 

based on X-Ray and MD data can be meaningful to rationalize and guide the improvement of 

previous designs.[53] 
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These protocols have been shown to be extremely useful for designing new enzyme variants, 

based on different scaffolds, achieving some initial activity for some non-natural reactions 

including Kemp elimination,[53-54]retro-aldol,[44a, 44f] Diels-Alder,[55] ester hydrolysis,[56] and 

Morita-Baylis-Hillman[57] reactions. However, as in the case of (re)designed natural enzymes, 

the catalytic activities of de novo designed enzymes are still orders of magnitude lower than 

those of natural enzymes,[33, 58] thus requiring the employment of DE techniques in order to 

boost the catalytic activities by several orders of magnitude (see Fig. 1.8). 

 

Figure 1.8 Schematic representation of the inside-out protocol and post-optimization by means of DE rounds, the 

active site positions are shown as sticks while the distal mutations as blue spheres (A) together with the FEL of 

de novo design and the most efficient DE variant (B).  

 

One of the most representative cases of de novo computationally-designed enzymes was the 

creation of Kemp eliminases, which catalyze a proton abstraction from a carbon by a base. The 

inside-out Kemp eliminases exhibited quite low activities, due to the lack of precision to 

generate the perfect arrangement of the active site for catalysis.[44e, 59] The different 

computational designs were further optimized through DE, making use of iterative design 

protocols that yielded new variants exhibiting higher activities.[44b, 44d, 53, 60]The most efficient 

DE-evolved variant was obtained by Hilvert and coworkers and took 17 rounds of DE on an in 

silico designed variant with already substantial activity.[44e] In a recent study, the room-

temperature X-ray crystallography experiments show that the evolution of the in silico 
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designed Kemp eliminase towards the most efficient DE evolved variant is attributed to a 

rigidification of active site residues shifting conformational ensembles towards catalytically 

productive substrates. In addition, they highlight the fact that multistate approaches in the 

computational design field may be useful in order to save DE rounds.[61] 

 

Another highly proficient Kemp eliminase reported so far was recently created by Kamerlin, 

Sanchez-Ruiz, and co-workers using an alternative approach. They showed that through a 

single hydrophobic-to-ionizable mutation an ancestral β-lactamase substantial levels of a 

Kemp eliminase activity was achieved by assisting the generation of a new active site.[62] It 

was striking that with only 1-2 mutations this new variant showed catalytic efficiency  

comparable to those of natural enzymes, even in the absence of a single DE round. Of particular 

interest is that such high activities were achieved mainly due to the modulation of 

conformational flexibility of the ancestral enzyme. In a recent study the efficiency of this de 

novo minimalist design containing only two mutations has been enhanced using a Funclib, 

which combines phylogenetic analysis and RosettaDesign to rank enzyme variants with 

multiple mutations that do not alter negatively enzyme stability. Their best ranked variant 

showed only one order of magnitude lower in efficiency than the most efficient DE-evolved 

variant.[63] 

 

A nice example of the importance of enzyme conformational dynamics and the population 

shift concept for acquiring new function was reported for retro-aldolases (RA). The inside-out 

protocol was applied for generating these mechanistically complex RA enzymes.[44f] The 

designed RAs catalyze the cleavage of methodol substrate by a multistep reaction involving a 

Schiff base intermediate, between the catalytic lysine and the substrate. Hilvert and co-workers 

applied DE on the computationally designed RAs to enhance their modest activities towards 

methodol cleavage. One of the most important mutations was the introduction of a new 

catalytic lysine in the binding pocket in the second evolved variant (RA95.5). The introduced 

mutations completely remodeled the active site allowing a better positioning of the Schiff base 

intermediate for catalysis. Recently, a highly active RA variant (RA95.5-8F) was generated 

after multiple rounds of DE, which exhibits comparable activities to those of natural class I 

aldolases.[64] RA95.5-8F features a sophisticated catalytic tetrad responsible for the enhanced 

efficiency of the enzyme. This series of studies shows the great power of DE in converting the 

original computational designs into highly proficient enzymes reaching activities similar to 

those of natural enzymes. It is worth mentioning that the rate limiting step of RA95.5-8F was 
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shifted respect to less evolved variants along the DE evolution pathway, as observed 

experimentally[65] and by QM/MM calculations over the full multi-step reaction mechanism.[66] 

 

In order to elucidate the conformational dynamics of the different RAs variants generated 

along the evolutionary pathway, Osuna and co-workers computationally analyzed them by 

means of microsecond timescale MD simulations.[21a] The conformational ensemble of the 

variants was explored through the application of the PCA technique to the MD simulations. By 

measuring the distance between the base and the Schiff base intermediate in the different 

conformational states sampled along the MD simulations, the major conformational states were 

sampled to distinguish among catalytically inactive and active conformations. The least active 

variant (i.e. the computational design RA95.0) sampled only a few catalytically active 

conformations. The population of the catalytically active conformational states was raised 

along the evolutionary pathway. The most prominent shift was observed for the last evolved 

variant showing that all the conformations explored were catalytically competent (RA95.5-8F). 

The analysis of the conformational landscape of the variants highlighted that the 

conformational heterogeneity of the computational and less evolved variants was tuned to 

progressively stabilize the catalytically active conformational sub-states, which become major 

in the most evolved variants. Interestingly, the RA intermediate variants that exhibit a high 

degree of conformational flexibility were found to be highly promiscuous.[44i,	44j]	
 

Advances in the available biophysical techniques and computational tools have contributed 

to a deeper understanding of the conformational dynamics of enzymes and their key role for 

function.[32a, 67] The above-mentioned examples further confirm that the explicit consideration 

of the dynamic conformational ensemble of proteins in the computational design of novel 

enzyme function could greatly aid the community.[68] In this context, extensive MDs 

simulations and MD-based enhancing sampling techniques have been shown to be very 

efficient to evaluate the conformational dynamics of enzymes and have been used to rationalize 

how mutations affect the catalytic activity of enzymes.[21a, 27c, 32c, 69]In addition, MD data can 

provide meaningful information to guide enzyme design processes accounting for active site 

and distal positions (e.g. loop engineering).[69b, 70] However, these strategies are 

computationally too expensive for the evaluation of a large set of variants, and when combined 

with QM/MM calculations or QM/MM MD simulations (i.e. linking the conformational 

dynamics with the chemical step)[71] the computational cost is much higher. Besides, the 
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rational identification of the potential hotspots and the nature of the substitutions based on these 

thermodynamic calculations is often not straightforward and very challenging.  

 

Some recent enzyme design protocols that attempted to account for protein flexibility at low 

computational cost were restricted to active site residues. The inside out protocol implemented 

short MD simulations at the end of the design process to identify and rank the best enzyme 

mutants based on how well the theozyme geometry was maintained in the MD runs. [72]Another 

approach is the computational multistate design (MSD), which performs a computational 

design calculation over an ensemble of conformations rather than a single structure and then a 

combination function is applied to obtain the ranked sequences as a single score over all 

ensemble members (e.g. Boltzmann-weighted average). Finally, the top ranked sequences are 

used to generate combinatorial libraries of reduced size.[73] This strategy can be applied for 

ensembles at different stages of the reaction pathway accounting for multi-step mechanisms.[74] 

It is worth mentioning that this approach can be also implemented for more sophisticated 

combining functions, as for instance Negative design (i.e. combination function that leads to 

the stabilization of a target ensemble over another one). Other strategies are based on 

frameworks that combine RosettaDesign with high-throughput MD simulations to increase the 

conformational sampling to evaluate near attack conformation (NACs) frequencies. In this 

regard CASCO (Catalytic Selectivity by Computational design) developed by Janssen and 

similar workflows has been applied to engineer enzyme enantioselectivity.[75] A similar 

strategy based on MD screening, also developed by Janssen, has been used to enhance 

thermostability: the FRESCO (Framework for Rapid Enzyme Stabilization by Computational 

libraries).[76]Another strategy based on PELE (Protein Energy Landscape Exploration) 

calculations has achieved a great goal in the enzyme design field by engineering an additional 

active site on a natural protein. This new variant encompassing two active sites performed 

enhanced catalytic properties towards the natural reaction and proved the potential to design 

non-natural reactions, which can be exploited for cascade reactions.[77] 

 

A completely different approach regarding the strategies have been explained so far is the 

CADEE (Computer-Aided Directed Evolution of Enzymes) workflow developed by Kamerlin 

and co-workers. In this study, the authors present a pedagogical example of how the reaction 

barriers of a large number of variants can be estimated by means of an empirically-based 

QM/MM description of the reactivity using valence-bond theory (empirical valence bond 

(EVB) approach).[78] 
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Most of the computational approaches reported in the literature based on thermodynamic 

calculations to deal with a large number of mutation predictions are restricted to the active site 

engineering, as for instance some of the above mentioned (e.g. MSD, CASCO, and EVB). 

However many examples have been provided in the literature demonstrating that mutations 

located at remote positions from the active site can have a large impact on the catalytic activity 

of the enzyme.[32c] [64, 79] For instance, the effect of distal mutations has been nicely 

demonstrated experimentally and computationally in cyclophilin A.[80] Indeed, no correlation 

is found between the influence of a given mutation on the catalytic constant of the enzyme and 

its proximity to the active site.[81] Due to the broad sequence space of proteins, the 

computational prediction of distal mutations has been proven to be challenging.[32c, 79] The key 

role exerted by remote mutations on the active site of the enzyme suggests that allostery (i.e. 

regulation of enzyme function by distal regions) is an intrinsic characteristic of enzymes,[82] 

which might be exploited for enzyme evolution.[21a] Recently Osuna and co-workers have 

shown that correlation-based tools usually employed for elucidating allosteric processes can 

be successfully applied in the enzyme design field, identifying key distal positions that might 

influence the enzyme activity.[21a] The DynaComm.py python code developed by Osuna's 

group generates the shortest path map as output (see Chapter 2.6), which provides a residue 

network accounting for its role in conformational dynamics based on correlated motions. By 

comparing the SPM analysis with the positions mutated along the RA evolutionary pathway, 

most of the mutation points introduced in the different DE rounds were identified. The 

predictive power and applicability of SPM in the enzyme design field is assessed in Chapter 

5. 
	

1.5.3 Engineering stereoselectivity, thermostability and allosteric properties 
 

(i) Stereoselectivity: This property adds an extra dimension to chemical specificity in 

biological systems. The selective formation of only one stereoisomer product from pro-chiral 

substrates is one of the most sophisticated tasks performed by enzymes. Given the importance 

of stereoselectivity in biology (i.e. only one stereoisomer has biological activity while the 

others can be toxic) natural enzymes evolved to be highly stereoselective. Reversing the 

stereoselectivity of a natural reaction or to induce stereoselectivity from scratch targeting a 

non-natural substrate requires the introduction of mutations. These changes in the protein 

sequence induce a re-shape in the active site pocket and a shift in the conformational native 
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ensemble (i.e. free energy landscape) in order to preferentially favor the formation of the 

desired stereoisomer. A powerful experimental method to enhance stereoselectivity and to 

expand substrate scope  consists of a semi-rational DE approach applying iterative saturation 

mutagenesis (ISM) on a reduced set of relevant active site amino acids chosen (combinatorial 

active site test (CAST) sites), which is referred as iterative CASTing.[37, 83] Second-sphere and 

distal mutations can also lead to a re-shaped binding pocket through allosteric effects.[37a] 

Computational QM/MM calculations and MD simulations are promising tools to discern the 

factors governing the improvement in enzyme enantioselectivity at the molecular level.[32b] 

Most of the computational evaluation studies are based on quantifying the frequency of the 

different catalytically productive orientations (e.g. pro-(S) and pro-(R)), which can be done by 

monitoring some selected angles and distances between the substrate and important active site 

residues along the MD simulations.[75a, 84] By combining computational design with short MD 

simulations, Janssen and Baker successfully (re)designed the active site of an epoxide 

hydrolase obtaining enhanced enantioselectivities through the CASCO workflow[75a] and in a 

later study Janssen and co-workers redesigned the enantioselectivity towards an 

hydroamination reaction using a similar workflow.[75b] Recent studies have shown that the 

analysis of enzyme structure flexibility (through root mean square fluctuation (RMSF) 

analysis) along MD simulations can be used to identify key functionality in loop regions 

adjacent to the binding pocket.[84c, 85] By modulating the conformational dynamics of these 

loops the reversal of enantioselectivity can be achieved.[85b] The pivotal role of enzyme 

conformational dynamics towards novel enantioselectivity is assessed in Chapter 4. 

 

(ii) Thermostability: Even if the novel function is achieved (e.g. stereoselectivity for a non-

natural substrate), there is another parameter that is essential for industry purposes. 

Thermostability co-determines the feasibility of applying an enzyme in an industrial process. 

High stability is generally considered an economic advantage because of reduced enzyme 

cycles.[86] Thermostability properties consist of the ability of enzymes to keep the native 

conformational ensemble over time avoiding denaturation. Irreversible thermal denaturation 

usually comprises a reversible unfolding step followed by an irreversible step involving 

aggregation and/or proteolysis. The deactivation step pulls the folded/unfolded equilibrium 

towards the deactivated conformations decreasing the enzyme reaction rate along time until all 

enzymes are deactivated. Thermostability studies strongly suggest that the unfolding processes 

that make a protein amenable to deactivation are partial/local rather than global in character.[87] 

It is worth mentioning that this partial unfolding events primary involve surface-located parts 



Chapter 1. Introduction 

	 	 55	

of the protein. When designing mutations for stabilization against irreversible processes, one 

may use the same reasoning as for stabilization against reversible, unfolding.[86] However, 

when focusing on the unfolding process, only mutations that increase the ΔG of unfolding, 

stabilizing the local regions whose unfolding events triggers deactivation, would contribute to 

decrease denaturation rates.[86] Several strategies have been identified to confer protein 

stabilization, such as entropic stabilization” (rigidification) by Gly → Ala, Xxx → Pro 

mutations, the introduction of disulfide bridges, “helix capping” by introducing residues that 

interact with the alpha-helix dipole, other types of helix optimization, the introduction of salt 

bridges and the introduction of clusters of aromatic–aromatic interactions. [86] Comparison 

between thermophile and mesophilic enzymes together with DE studies indicates that Nature 

has employed many different structural strategies for obtaining high stability.[88] 

When assessing thermostability enhancement, it is noteworthy to distinguish between 

thermodynamic and kinetic parameters. The different approaches for the protein stability 

evaluation often leads to confusion and ambiguity. Thermodynamic stability is purely linked 

to the tendency of a protein to reversibly unfold, whereas the kinetic stability accounts for the 

deactivation process, which is often affected by the partial unfolding step, i.e. the 

thermodynamic stability contributes to the kinetic stability (see Table 1).[15] 

Table 1. Definitions of various thermodynamic and kinetic stability parameters. 

Stability parameters Definitions 
Thermodynamic   

Free energy of unfolding (ΔGu) Change in Gibbs free energy going from the folded to 
unfolded state  

Melting temperature (Tm) The temperature at which half of the protein is in its unfolded 
state  

Unfolding equilibrium constant (Ku) The concentration of unfolded species divided by the 
concentration 

 of folded species  

Half-concentration (C1/2) The concentration of denaturant needed to unfold half of the 
protein 

 (chemical equivalent of Tm) 
Kinetic    

Observed deactivation rate constant (kd,obs) Overall rate constant for going from native to deactivation 
species  

Half-life (τ1/2) Time required for residual activity to be reduced by half 

Temperature of half- inactivation (T50) Temperature of incubation to reduce residual activity by half 
during 

 a defined time period 
Optimum temperature (Topt) Temperature leading to highest activity 
Total turnover number (TTN) Moles of product produced over the lifetime of the catalyst  
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One of the most efficient computational protocols to enhance thermostability is FRESCO 

(Framework for Rapid Enzyme Stabilization by computational libraries)[76]which was 

developed by Janssen and coworkers. FRESCO predicts mutations that stabilize the enzyme 

towards unfolding processes (i.e. increments in ΔGu) and generates small mutant libraries 

requiring far less screening than conventional directed evolution methods.  

The main disadvantage of enhancing thermostability in a mesophilic enzyme is that 

generally it is accompanied by a tradeoff in activity. Evolution tuned the thermostability of 

enzymes although upside down (i.e. enhancing activity with a tradeoff in thermostability). 

Ancient life most probably existed in hot environments (hot-start hypothesis).[89] Ancestral 

enzymes had to cope with high temperatures, being thermophilic. After earth cooling, 

thermophilic enzymes had to catalyze reactions at low temperatures, and as a consequence the 

catalytic activity dropped dramatically. Cold adaptation consists of the evolutionary 

mechanisms that drove ancestral enzymes to become mesophilic. In other words, enzymes 

discount thermostability properties in order to be efficient at low temperatures. How catalytic 

efficiency adapts to temperature changes is currently poorly understood. However some 

thermodynamic insights have been reported, as for instance in the cold adaptation process of 

Adenylate kinase, whose rate limiting step was previously reported to be an enzymatic 

conformational change.[90] These studies show how Adk cold-adapted enzymes present a lower 

energy cost associated with the rate limiting enzyme conformational transition (i.e. lower 

activation energy barriers) at low temperatures.[89b, 91] In particular Hilser and co-workers 

reported that cold adaptation can be achieved by introducing Gly mutations on the protein 

surface, which increase the fluctuations of these regions (entropy tuning changes). These 

changes are allosterically propagated towards the active site modulating the enzyme activity.[91] 

This dynamically-tuned allosteric mechanism provides insights into to the previous studies in 

Lactate dehydrogenase, where the cold-adapted species presented identical active site whereas 

Gly was shown to be prevalent at surface sites.[92] It seems that evolution has tuned the rigidity 

of the protein surface to become softer and more flexible than the hot-adapted one, while the 

active site residues appear to be identical. Mutations at the protein surface may provide a means 

for shifting the activation enthalpy-entropy balance as response to the altered working 

temperature. It seems that all naturally occurring enzymes that have been optimized to function 

at low temperatures catalyze their reactions with reduced activation enthalpies (∆H‡) and more 

negative activation entropies (∆S‡) compared with their warm-active ancestors. Decreasing the 

enthalpy activation barrier results in a reduction of temperature dependence.[93] The 
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challenging task is to optimize the balance among minimizing the energetic cost of the catalytic 

conformational changes at ambient temperatures while keeping or enhancing simultaneously 

thermostability properties (thermoadaptation), which is assessed in Chapter 4.2. 

(iii) Allosteric properties: Allostery is a process by which two distinct functional sites 

within a macromolecule are dynamically connected. The development of allosteric 

communication pathways in proteins has been essential for evolution. It conferred living 

organisms the capability for cell signaling and enzyme regulation. As expected, allosteric 

communication in multimeric enzyme complexes makes the enzyme subunits less active when 

isolated.[94] This is a handicap in protein engineering because the use of isolated subunits is 

advantageous for biosynthetic applications. It decreases the metabolic load on the host cell and 

makes engineering other enzyme properties more feasible, such as stereoselectivity and 

stability.[95] Arnold and co-workers addressed this problem in the Tryptophan Synthase (TrpS) 

enzyme and applied DE to the β-subunit of the allosteric enzyme complex TrpS, thereby 

successfully optimizing the β-subunit for stand-alone function (i.e. loss of catalytic activity 

dependency exerted by the allosteric protein partner).[95-96] The allosteric and stand-alone 

function properties are assessed in Chapter 5. 

From an engineering perspective, allostery has been a hassle. In essence allostery is an 

intrinsic behavior of proteins.[82, 97] Practically it means that any signal that is propagated from 

a given protein region towards a distinct region allowing for function operates under the same 

rules. In this context, the signal or allosteric effector can differ significantly in their nature. It 

can be the binding of a ligand or substrate, a distal mutation introduced in the protein sequence, 

protein-protein interactions or a covalent attachment of a molecule (e.g. phosphorylation).[98] 

In all cases, the allosteric effect induces a redistribution of the conformational ensemble that 

results in positive modulation (allosteric activation) or negative modulation (allosteric 

inhibition). Optimistically, one may think that controlling allosteric properties by means of 

protein engineering should be rather straightforward. However, the control of allosteric 

properties is extremely complicated.  

To approach the allosteric mechanisms, it is crucial to address first the thermodynamics of 

the enzyme-ligand binding process. When an allosteric effector (e.g. ligand or substrate) binds 

an allosteric site, both enthalpic and entropic contributions are involved. An increase in 

enthalpy by tighter binding results in a decrease in entropy through the restriction of the 

mobility of the interacting partners. This phenomenon is referred as entropy-enthalpy 
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compensation.[99] Although such a compensation is widely observed, it is not a requirement. If 

both energy components were always compensated the binding process would never be 

favored.[100] Another interesting phenomenon occurs in some proteins that tend to compensate 

the unfavorable entropic contributions in the allosteric site by increasing the protein dynamics 

in distant regions. [100-101] These entropic effects are very difficult to predict in enzyme design. 

Besides, the non-covalent interactions formed between the effector and the binding pocket 

residues (i.e. binding energy) can induce structural tightening resulting in conformational 

changes via long-range interaction networks involving distant regions of the protein. In other 

words, the binding energy pays the energetic cost associated with distant conformational 

changes. Not least is the free energy of solvation in the interaction interface between the ligand 

and the allosteric site, which may have a dramatic effect on the binding process. In some cases, 

the large favorable solvation entropy that accompanies the binding makes the process 

entropically driven, as for instance in hydrophobic substrates. Hence, although it seems 

obvious that tighter interactions between the allosteric site and the ligand would favor the 

binding, the thermodynamic signature of a “good” binder does not need to be determined by 

the enthalpic term.[100]   

As seen above, the net free energy of the binding process accounts for many energetic 

contributions as the entropic (i.e. degrees of freedom) and enthalpic (i.e. non-covalent 

interactions) components among the substrate, the protein and the solvation shell water 

molecules and any of these partners can be the driving force or the major penalty, depending 

on the case. Note that in essence allosteric effects (i.e. distal effects induced by the allosteric 

effector) are the consequence of the thermodynamic signature of the binding process. In 

general, allosteric mechanisms can be classified in conformationally-based and dynamically-

based allostery (see Fig. 1.9). 

• Conformation-based allostery: This definition of allostery is much more intuitive 

than the dynamics-based because it is purely structural. In this context, the allosteric 

effector induces a population shift involved in long-range conformational changes that 

affects the function in a distal region of the protein, as for instance a conformational 

change from an inactive conformation towards an active conformation in the active site 

pocket. This redistribution of the conformational ensemble affects the relative 

stabilities of the preexisting structural equilibrium between inactive and active states 

and their rates of interconversion. It means that allostery allows for selectively 
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stabilizing a given conformational state (e.g. active) over the others. Conformation-

based allostery has been extensively described for instance in the activation process of 

kinases upon phosphorylation, substrate binding and the introduction of mutations.[102] 

 

Figure 1.9 Representation of the two main allosteric mechanisms including the conformation-based (A) and 

the dynamics-based (B) allostery. 

• Dynamics-based allostery: This concept was popularized by Cooper and Dryden and 

relies on the changes of fluctuations in the protein conformational state that are limited 

to the basin of the free energy landscape of the protein (i.e. absence of population shifts 

associated with long-range conformational changes).[103] Thus the nature of such 

allostery is based on entropic effects in distant regions of the protein.  It is noteworthy 
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to mention that the conformational entropy contributions can be attributed to the micro-

to millisecond time scale motions of the protein backbone and also to the fast backbone 

and side chain dynamics on the sub nanosecond time scale. Both of them have to be 

considered as contributors to the allosteric free energy transduction of proteins.[104] In 

this regard, no clear correlation between side chain and backbone dynamics has been 

found. One of the first examples reported of dynamic allostery is the case of the 

negatively cooperative binding of the cyclic AMP (cAMP) molecule to the dimeric 

catabolite activator protein (CAP), which exists as a homodimer in solution and each 

subunit comprises a cAMP binding site. Interestingly, the binding of the first cAMP 

does not induce long-range conformational changes into the non-ligated subunit. 

Instead, it activates slow motions at the µs-ms time scale resulting in an enhancement 

of dynamic fluctuations distributed in protein regions that are linked by cooperative 

interactions. Thus, providing a means of propagating the allosteric signal in absence of 

structural changes. The binding of the second cAMP extensively suppresses the 

motions (fast and slow) of almost all residues throughout both subunits, which 

drastically decreases the total entropy of the system. This large entropic penalty 

accompanying the binding of the second cAMP results in a weaker, and thus, anti-

cooperative binding.[105] Following this reasoning, in the cases where the allosteric 

effector reduces the flexibility of the active site residues, the active site preorganization 

primes the substrate to bind better and favors the binding process due to a lower entropic 

cost for the reaction process.[103a, 104, 106] However, it has been postulated that bulky 

substrates, which are often the precursors of compounds of pharmacological interests 

have a higher dependency on the conformational dynamics of the binding site, in 

contrast to small substrates that are better recognized in more conformationally 

restricted active site cages. [107] Thus the active site flexibility needs to be tuned 

accordingly, which in some cases is difficult to estimate. 

In a recent study Taylor and co-workers compared the allosteric dynamic-based propagation 

with the mode when a violin is played (the “violin” model).[103a] In this way, playing a particular 

note induces a redistribution of the vibration pattern on the body of the violin like the allosteric 

effector induces a redistribution of the dynamic fluctuations throughout the protein. I guess to 

learn how to play a violin may be complicated and take some years of training, but to learn 

how to play a protein is exponentially harder. Moreover, both allosteric mechanisms proposed 

(i.e. conformational-based and dynamic-based) may certainly act simultaneously. 
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The main techniques to explore allosteric properties are the isothermal titration calorimetry 

(ITC), Nuclear Magnetic Resonance (NMR) spectroscopy and theoretical approaches such as 

MD simulations. ITC allows to quantify the free energy of the binding process together with 

the enthalpic and entropic components as global parameters, thus containing a mixture of 

different contributions. NMR contributes to a deeper insight in the process. On one hand the 

different fast and slow motions among the protein structure are estimated revealing their role 

in presence and absence of the ligand (i.e. estimation of activated/suppressed motions after 

ligand binding). These dynamic data can be related to entropy by the order parameter S2 though 

the relationship developed by Yang and Kay in 1996.[108] Another key parameter extracted 

from NMR experiment is the chemical shift change upon ligand binding (Δδ), which allows to 

distinguish between conformational-based and dynamic-based allostery. Δδ = 0 means that the 

binding process does not alter the mean conformation of the protein (i.e. dynamic-based) 

except the flexibility and rates of interconversion between conformational states. In contrast, 

positive Δδ values indicate a substantial population shift towards a given conformational state 

(conformational-based).  

Finally, theoretical approaches provide advantageous additional information. MD methods 

have been widely employed to assess the individual contributions of the binding free energy 

and their deconvolution. In particular, the conformational entropy can be for instance obtained 

from the MD trajectories through diagonalization of the covariance matrix of displacements of 

atomic Cartesian coordinates (Schlitter’s approach)[109] or quantified NMR-like via generalized 

order parameters (Yang Kay’s relationship). [108] MD-based approaches used to calculate the 

thermodynamics of the binding process include free energy perturbation (FEP), 

thermodynamic integration (TI), lambda-dynamics simulations, Molecular Mechanics-Poisson 

Boltzman surface area (MM-PBSA), linear interaction energy and hybrid quantum 

chemical/molecular mechanics (QM/MM).[100] Moreover, the analysis of the free energy 

landscape after ligand binding (i.e. comparison of non-ligated with ligand-bound protein 

systems) provides a meaningful information about the nature of the allosteric effects since the 

conformational changes, the intermediates states and the energy barriers that connect them can 

be estimated, as well as the width of the energy basins, which is related with entropy. Recently, 

dynamical cross-correlation analysis of the MD trajectories has been found to be an interesting 

strategy to uncover allosteric signal transmissions and the allosteric residues involved (i.e. 

subset or residues that participate in the allosteric mechanism).	[110] 
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1.5.4 Ancestral enzyme properties 
 

In recent years, scientists have been intrigued to assess the biotechnological potential of 

ancestral enzymes. Ancestral reconstruction consists of the process by which phylogenetic and 

statistical analysis using simple models of sequence evolution allow to resurrect ancestral 

proteins. Thus, it allows the reconstruction of how the modern descendants were generated 

from the Last Common Bacterial Ancestor (LCBA), that was supposed to exist a few billions 

of years ago. Their recent implementation in protein engineering arises from their exceptional 

properties: 

• High expression levels: Ancient proteins likely had to fold in absence of the assistance of 

chaperones.  Hence, their efficient folding process may have contributed to the enhanced 

expression levels reported in some of them.[111] 

 

• Enhanced stability: The high stability observed in ancestral enzymes reflects the high-

temperature environment of ancient life (see above). The enhancement in denaturation 

temperatures are often on the order of a few tens of degrees, which is larger than the 

increments obtained in laboratory-evolved enzymes, but also when compared with the 

extant thermophilic enzymes.[112] From an engineering perspective, this enhanced stability 

may be an essential factor for evolvability. In this context, the price of destabilizing 

mutations may be rewarded with enhancement of function. 

 

• Enhanced promiscuity: Enzymes are not as specialized as we thought, being able to 

catalyze side reactions in addition to its native catalytic activity. In some cases, there seems 

to be no fundamental constraint in the number of tasks an enzyme can perform (e.g. 

enzymes involved in detoxification). Note that even in enzymes that are highly specialized 

(i.e. evolved to only perform one physiological function) low-level activity with no known 

physiological relevance is often observed. A promiscuous low-level activity provides an 

exceptional starting point for engineering a useful activity. However, given the fact that in 

most of the modern enzyme’s promiscuity is an accident, finding promiscuous activities is 

a difficult task. Interestingly, many studies support that ancestral enzymes were more 

generalists with broad substrate scope.[113] Hence, it is advantageous to search promiscuous 

activities in ancestral enzymes. In the near future ancestral reconstruction may become the 

common strategy to obtain initial promiscuous activities for biotechnological applications. 
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It is widely accepted that the origin of the enhanced promiscuity is due to an increase in 

flexibility near active site regions, which is compensated by increased rigidity in distal 

sites, thus maintaining the stability of ancestral proteins.[112] The observation of flexibility 

changes at specific positions suggests a fine-tuning of the conformation ensemble along 

evolution. It is worth mentioning that analyses of protein families indicate that proteins 

evolve for different functions through sequence changes while conserving their 3D 

structure; this finding is shown when analyzing the 3D structures of ancestral enzymes. In 

addition, functionally critical positions (i.e. catalytic residues) are sequentially conserved 

suggesting that the evolvability towards novel function uses substitutions of distal positions 

that are dynamically coupled to catalytic sites rather than substitutions at critical active site 

positions,[114] which reinforces the needs for computational protocols accounting for distal 

positions predictions in the enzyme design field, and especially when using ancestral 

scaffolds. The study of the conformational ensemble of a reconstructed LBCA and the 

distal sites prediction for stand-alone function is assessed in Chapter 5.2. 

1.5.5 Computational design outlook 

 

As seen above there are many properties that have to be fit towards the generation of an 

efficient enzyme. In order to climb on the fitness landscape, future approaches may involve 

enzyme engineering cycles including computational design and experimental tests. The 

challenge relies on the development of computational design protocols that take into 

consideration the conformational dynamics as well as the transition state stabilization. The 

introduction of mutations in the protein sequence should be assessed by determining how 

competent is the conformational ensemble, and for optimizing them towards the chemical 

steps. Existing computational protocols can properly estimate active site mutations for 

stabilizing the transition states of the desired reactions based in EVB and hybrid QM/MM 

approaches (i.e. active site optimal preorganization).[115] In this context, the free energy 

landscape construction based on MM methods determines how the pre-existing conformational 

states are redistributed, estimating to which extent the competent states towards a target 

reaction are populated. However, the massive data obtained from the MD simulations makes 

the prediction of mutations to induce a population redistribution on the conformational 

ensemble towards the targeted active conformations very challenging. These engineering 

cycles mentioned could be reinforced though machine learning algorithms, by which the 

information that arises from the engineering cycles is used to climb the fitness landscape 
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efficiently. It can be done for instance by optimizing the computational descriptors (e.g. 

dihedrals, RMSF, map contacts, PCA, TICA, active site volumes and water displacements 

among others) that better predict enzyme improvements (computational scores). These 

protocols are in development and have been successfully applied for instance to enhance 

binding affinities.[116] 

 

Another aspect to consider is the selection of the initial scaffold used as starting point for 

enzyme evolution. Ancestral enzymes seem to be a potential option because of their large 

conformational heterogeneity and their ability to accelerate a wide range of promiscuous 

reactions. As explained above, ancestral enzymes have great properties to exploit evolvability. 

Regarding the rational selection of mutations, the high similarity between allostery and distal 

mutations effects suggest that the tools developed for studying allostery, e.g. based on 

correlation measures taken from the MD simulations,[110a] could be useful for predicting active 

site and distal positions that by mutation can induce a population shift.[21a] Therefore, 

dynamical cross-correlation tool are promising for the generation of “small but smart” libraries 

for the rational design of enzymes, which combined with computational design strategies and 

bioinformatics tools could be of great relevance on the enzyme design field. 

 

A boost in the computational power available together with the development of MM, EVB 

and hybrid QM/MM predictions will be also of great advantage since it would allow complete 

reconstruction of the free energy landscapes of proteins and more accurate transition state 

stabilization estimations in time-scales compatible with industrial demands.  
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In silico approaches for enzyme studies 

 
As stated by Dirac in 1929, “the underlying physical laws necessary for the mathematical 

theory of a large part of physics and the whole of chemistry are thus completely known, and 

the difficulty is only that the exact application of these laws leads to equations much too 

complicated to be soluble”.[117] The complication arises from the large number of particles (the 

so called many-body problem). A protein is a many-body system with tremendous degrees of 

freedom; so, physics and chemist have developed different ways to simplify their study. In this 

regard, proteins can be computationally studied at different levels of complexity. Generally, 

they can be described at atomistic level of resolution or using coarse-grained models. The latter 

are lower resolution models that are extremely efficient from a computational point of view 

since atomic details are lost (i.e. several atoms are grouped into single beads).[32a]   

 

Regarding the atomistic level of complexity, in principle, it can be split into three different 

layers of accuracy (Fig. 2.1). Quantum Mechanics (QM) is the most accurate methodology; 

QM calculations recover the energy of a molecule considering the nuclear and electronic 

configurations. To that end, the time-dependent Schrödinger equation has to be solved. 

Although many approximated methods have been developed to simplify the QM calculations, 

they still have an enormous computational cost associated, so their employment when 

operating with large systems is difficult. The strength of QM techniques in enzymatic studies 

is the underlying of enzyme reaction mechanisms, which is feasible by only treating with high 

QM accuracy a small and well-chosen part of the enzyme (e.g. cluster model approach[118], 

QM/MM[71a] or theozyme[42a]). In this way, the active site reactivity (i.e. bond breaking and 

forming events) and properties that depend on the electronic configuration can be successfully 

computed. On the other hand, molecular mechanics (MM) techniques recover the energy of 

molecules using classical force fields (see next section), which ignore quantum effects. MM 

methods cannot compute enzyme reactivity, but in exchange, the decrease in accuracy 

guarantees a much better computational efficiency, making appropriate the study of enzyme 

dynamic properties encompassing the whole enzyme and explicit solvent.  
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Figure 2.1 Representation of the three layers of accuracy to study enzyme reactivity and conformational dynamics 

computationally.  

 

The balance between accuracy and system size has to be considered together with the nature 

of the process in order to obtain the most realistic data possible. In this thesis, we have been 

targeting the characterization of enzyme conformational dynamics, thus we have mostly used 

MM methodologies. However, QM calculations have also been performed to obtain force-field 

parameters for metalloproteins, substrates and cofactors (see section 2.1.2). 

 

2.1 Classical Force Fields 
 

Molecules are conservative systems, which are subjected to forces, and as a consequence work 

is performed. In this section the energy terms from a MM approach are described. 
 

2.1.1 Potential energy function and parameters 
 

A Force Field (FF) is a potential energy function, by which any protein conformation yields a 

potential energy value; U(r⃗  N ). Any conformation is then associated with a specific set of 

Cartesian coordinates of all atoms as follows: 

 

r⃗  N =  (r1, r2, ..., rN) = (x1, y1, z1, x2, y2, z2, ..., xN, yN, zN)                                                                     (2.1) 

Where riWW⃗   denotes the location of atom i and similarly for xi, yi, zi. As mentioned above, MM 

force fields are based on classical physical models to predict the energy of the configurations 

Quantum Mechanics (QM) 
Enzyme reactivity 
 
 

Hybrid QM/MM 
 
 

Molecular Mechanics (MM) 
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neglecting quantum effects. In this regard, only the positions of the nuclei (atom) are 

considered for calculating the energy. This approach assumes the Born-Oppenheimer 

approximation (i.e. the nuclear and electron motions in a system can be separated). In MM, the 

nuclei (atoms) are treated as “balls-on-spring” to represent molecules, where each ball 

corresponds to an atom and each spring to a covalent bond. Such balls or atoms oscillate around 

equilibrium distances.  

The total potential energy (UFF) is formulated as the sum of several terms allowing for all 

bond stretching (Ustr), all angle bending (Ubend), all dihedral torsions (Utorsion), all out-of-plane 

distortions (Uoop), all van der Waals (Uvdw) and all electrostatic interactions (Uel) among the 

protein atoms. The FF is indeed a combination of the potential energy function and a set of 

parameters (e.g. force constants). 

U	(r⃗  N )  = UFF = Ustr + Ubend + Uoop + Utorsion+ Uvdw + Uel                                                                (2.2) 

It is worth mentioning that these terms are used in the FF to treat large systems such as 

proteins. These FFs are the so-called class I (e.g. AMBER, CHARMM and GROMOS),	and 

recover the energy considering the potential energy function as simplest as possible. The FF 

terms can be grouped as bonded terms (Ustr, Ubend, Uoop and Utorsion) and nonbonded terms (Uvdw 

and Uel). The Ustr is the energy function for stretching a bond between two atoms (A-B). It is 

mostly used expression is a quadratic displacement of the minimum as harmonic oscillator 

(Fig. 2.2). 

 

 

 

 

 

 

 

Figure 2.2 Representation of the potential energy function of the bond stretching term between A and B atoms, 

with kAB the force constant of the bond, rAB the bond length and rAB,eq the equilibrium distance.  
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The Ubend is the energy associated with an angle bend formed by three atoms connected by 

bonds (A-B-C), which is also described by a harmonic approximation (Fig. 2.3). 

 

 

 

 

 

 

Figure 2.3 Representation of the potential energy function of the angle bending term between A, B and C atoms, 

with kABC the force constant of the bond, θABC the angle and θABC,eq the equilibrium angle.  

In some FF, the out-of-plane distortions energy term (Uoop) is also included. This term is 

considered as the improper angle where the central atom is sp2-hybridized (ABC). The latest 

bonded term is Utorsion, which is the dihedral torsion energy associated with the rotation of the 

four atoms connected by bonds (A-B-C-D). This term is described as a (number of) Fourier 

series to describe the periodicity (Fig.  2.4). 
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Figure 2.4 Representation of the potential energy function of the bond twisting term between A, B, C and D 

atoms, with VABCD the torsional force constant, n the multiplicity of the cos function, ωABCD the dihedral angle and 

γABCD the phase angle. 

Regarding the non-bonded terms, Uvdw is the van der Waals energy, which is the energy 

associated with the van der Waals forces (also referred as London dispersion forces) between 

atoms. A common function that fits with the van der Waals energy behavior is the Lennard-

Jones (LJ) potential set at 6-12 exponents (Fig. 2.5). 

 

 

 

 

 

 

Figure 2.5 Representation of the potential energy function of the van der Waals term between A and B atoms, 

with εAB the well-depth, rAB the distance between A and B atoms and σAB the interatomic distance at which 

repulsive and attractive forces exactly balance. 
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Finally, Uel corresponds to the energy associated with the electrostatic interaction between 

point charges given by a Coulomb potential (Fig. 2.6). 

      

 

 

 

 

	
 

Figure 2.6 Representation of the potential energy function of the electrostatic term between A and B atoms, with 

qA and qB the atomic charges of atoms A and B, respectively, rAB the distance between A and B and ε0 the dielectric 

constant (usually set to 1). 

Besides, class I FF have also been developed to consider explicit water molecules in the MD 

simulations, such as the rigid water models TIP3P[119] and TIP4P-D.[120] These are the simplest 

water models and rely only on non-bonded interactions (i.e. bonding interactions are 

constrained). The selection of more complex functional forms compromises between accuracy 

and computational efficiency. In this context, other FFs with higher accuracy have been 

developed to study smaller systems, such as organic compounds. This is the case of class II 

and class III FFs. class II (e.g. MMFF94) incorporate higher order terms (Taylor series) to treat 

bond, angle and dihedral terms and use 14-7 exponents on the van der Waals term. It also 

includes cross terms (Ucross) for describing the coupling between stretching, bending, and 

torsion. Cross terms are required to account for some terms affecting others. For example, a 

strongly bent H2O molecule tends to stretch its O–H bonds.[121] Class III FFs (e.g. polarizable 

CHARMM and AMBER) are considered the next generation of FFs and are optimized for 

hybrid QM/MM methods. They include quantum effects such as electronic polarization, where 

the charges of the atoms are not fixed during the simulation and so atom charge distributions 

can change induced by the environment. Polarizable FFs has been developed using various 

classical models, such us induced dipoles, fluctuating charges or charge-on-spring models 

(Drude oscillators).[71a] FFs are in continuous development by the biomolecular simulation 

community in order to better reproduce natural processes.  FFs development efforts are focused 
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on the integration of dynamic information derived from NMR experiments in the 

parameterization, and in the extension of the quantum terms like polarization in a more realistic 

manner.[32a] 

As stated before, FF consists of a combination of potential energy functions and parameters. 

Therefore, the quality of these parameters is a key factor to ensure realistic energies and 

conformational inter-conversions. FFs developed for proteins (e.g. AMBER) allow for all 

parameters needed for any protein. These parameters (if possible) come from experimental and 

computational data. Many of them allowing for bonded-terms were adjusted to reproduce 

experimental mode frequencies by fitting to structural and vibrational frequency data on small 

molecular fragments (peptides). However other parameters (e.g. dihedrals) were complicated 

to abstract from experimental data. For those cases the use of QM calculations is very common. 

In particular electrostatic non-bonded parameters are commonly obtained through QM 

calculations using the restrained electrostatic potential (RESP).[122]	The van der Waals terms 

are very difficult to obtain from QM calculations due to its limited accuracy when dealing with 

dispersion interactions. As a consequence, their values are usually fitted to experimental data 

in solid and liquid phases.[123] All these procedures are settled in an iterative approach where 

several rounds of optimization are performed until the final model is obtained. Another 

comment worth mentioning is the importance of the atom types. In FFs, each atom has to be 

assigned an atom type. The assignation is based on the element, its hybridization and its local 

environment (e.g. the CT atom type is assigned to any sp3 carbon). This approach decreases 

the dimensionality of the large number of atoms of the system. A relevant utility of empirical 

FFs is to include substrate/drug molecules in the calculations. However, to encompass the 

extent of structural and chemical diversity of substrates/drugs, parameters that show high 

transferability across a wide range of compounds is required. In this context, the Generalized 

AMBER Force Field (GAFF) was constructed to provide the parameters for many compounds 

allowing adding those to perform MD simulations. For consistency with the previous 

parameterization of amino acids, the general protocol to obtain ligands parameters consist of a 

single point energy (SPE) calculation at HF/6-31G* level of theory to the ligand geometry 

previously optimized. At this point, the optimized geometry and the electrostatic potential are 

used to estimate the atom types and its connectivity together with the atomic RESP charges, 

respectively (e.g. using antechamber). This information is used to search in GAFF (using the 

parmchk tool) for those force constants that match with the atom type and connectivity 
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provided. Nevertheless, for some compounds there are no parameters available, and in some 

cases, they are very difficult to extract, which complicates the setup of the MD simulations.  
 

2.1.2 Missing parameters in metalloenzymes 
 

Classical FFs often lack parameters for the metal atoms and metal-based cofactors present in 

metalloproteins. The description of coordination sphere metals of enzyme active sites is not 

straightforward and is a complicated task. Different approaches have been developed to 

consider the metals in class I FFs. The most important methods are the non-bonded model, the 

bonded model and the cationic dummy model (CDM).[124] 

The non-bonded model only considers the non-bonded energy terms to model the 

interactions of the metal in the center of coordinated atoms. The values of the Uvdw term 

parameters have been extensively adjusted for different metals and oxidation states to 

reproduce free energy of solvation (cations) and metal oxygen distances.[124c] Moreover, more 

terms have been included in the LJ equation to consider the dipole-induced dipole 

interactions.[125] The main advantage of this method relies on the low motion restrictions 

between the metal and the coordination atoms due to the lack of bonded-forces between them. 

Nevertheless, the main drawback is that the charge transfer is not considered treating the metal 

as an integer charged ball whose value depends on the oxidation state of the model (e.g. 1+, 

2+, 3+…). 

 

The bonded model considers all FFs terms described previously (i.e. bonded and non-

bonded terms). Hence covalent bonds between the metal and coordination residues have to be 

created. To that end, the Seminario algorithm[124a] presents a common strategy to obtain the 

parameters associated with the bonded terms although other protocols have been tested. [124b, 

126] Seminario's approach consists of a QM geometry optimization of the metal and coordinated 

residues followed by a frequency calculation. The algorithm suggested by Seminario obtains 

the force constants for bond, angle, dihedral and improper torsions involving the metal atom 

directly from the Hessian matrix (a matrix of the second derivatives of the energy with respect 

to atomic coordinates, i.e. the frequencies). The covalent bonds created between the metal and 

the coordination residues permits to account for charge transfer, whose values are calculated 

using e.g. RESP algorithm.[127] The QM calculations for molecules involving metals are 

calculated at the B3LYP/6-31G* level because B3LYP includes electron correlation and the 
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computational cost is affordable. It is worth to say that apart from the coordination residues, 

reactant intermediates can also be attached to the metal. Nevertheless, the main limitation of 

this model is that the coordination number cannot change during the simulation, hence any 

oxidation state of interest and coordination spheres have to be parameterized independently 

and studied in a different MD simulation. 

 

Finally, the CDM approach describes the metal by a set of cationic dummy atoms connected 

around a central atom in the specific coordination geometry to be attained.	[124d,	128] The central 

atom is usually negatively charged while the dummies are positively charged. The number of 

dummy sites depends on the coordination number of the model.	[124d,	129] This method provides 

a powerful non-bonded description for a range of alkaline-earth and transition-metal centers. 

It captures both structural and electrostatic effects since the charge can be distributed in 

different regions of the metal mimicking the coordination geometry. 

 

In this thesis class I FF have been successfully used to study protein conformational 

dynamics associated with two main properties: allostery and enantioselectivity. The latest also 

required the employment non-bonded method using Seminario's algorithm in order to obtain 

metal coordination parameters of a zinc-dependent Alcohol Dehydrogenase (ADH) enzyme. 
 

2.2 Molecular Dynamics 
 

2.2.1 Newtonian dynamics 
 

Molecular dynamics permits the study of complex, dynamic processes that occur in nature, 

such as protein allosteric transitions or enzyme-substrate binding. In a molecular dynamic 

simulation, a series of structural changes over time are obtained using Newtonian dynamics. 

First, the forces on any atomic coordinates are calculated from the FF. The forces on any atomic 

coordinates, for instance, atom i, xi, yi, zi (riWW⃗  ), are given by the partial derivative of the potential 

energy as a function of atom i position (-∂U/∂riWW⃗  ). Once the forces are calculated, Newton’s 

second law (Equation 2.3) can be used to follow the motion of all atoms (N) in a molecular 

assembly. 
 

	FiWWWW⃗ (t) =	miaiWW⃗ (t)=mi
∂2riWW⃗
∂t2

 ; i = 1,2,…,N                                                                       			   (2.3)	
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Where atom i at position ri, is treated as a point with a mass mi and a fixed charge qi. This 

equation describes the motion of a particle of mass mi along the coordinate ri with Fi being the 

force on the particle in that direction. A MD simulation reenacts the simple life of atom: an 

atom will move at its current speed and direction unless it experiences a force that will 

accelerate or decelerate it and/or perturb its direction. In a molecular assembly, the force on 

each particle depends on its position relative to the other particles. As a consequence, a many-

body problem arises which cannot be solved analytically.  

Finite difference methods are used to generate molecular dynamics with continuous 

potential models (force fields), which are assumed to be pairwise additive. It means that the 

total force on a particle in the configuration at a given time is the sum of its interactions with 

other particles. The essential idea consists of breaking the integration of Equation 2.3 into many 

small steps, each separated in time by a fixed time (δt), under the assumption that speed and 

acceleration are constant over this small-time interval. Thus, from the forces calculated from 

the FFs the accelerations are determined and the positions and velocities at time t+δt are 

calculated. Then the force on the particles in their new positions are determined, leading to new 

positions and velocities at a time t+2δt, and so on. 

Many algorithms exist for numerically integrating the equations of motion (Equation 2.3) 

assuming that the positions and dynamic properties can be approximated using a Taylor series 

expansion. 

				 r(t+∂t) = r(t) + ∂tv(t) + 
1
2
∂t2a(t) +

1
6
∂t3b(t) +…                                                         (2.4) 

Where v(t), a(t) and b(t) are the first, the second and the third derivative with respect to r(t). 

The Verlet algorithm[130] is commonly used to further operate from equation 2.4 in order to 

solve the positions at t+∂t using positions and accelerations at time t, and the positions from 

the previous step, r(t-∂t). 

 				r(t+∂t) = r(t) + ∂tv(t) + 
1
2 ∂t

2a(t) +…                                                                           (2.5) 

					r(t-∂t) = r(t) - ∂tv(t) +
1
2
∂t2a(t) -…                                                                                (2.6)	

 



Chapter 2. Methodologies 

	 	76	

By summing Equations 2.5 and 2.6: 

 					r(t-∂t)	=	2r(t)	-	r(t-∂t)	+	∂t2a(t)                                                                           											(2.7) 

Note that the term involving change in acceleration (b) disappears and that velocities do not 

explicitly appear, thus having to be obtained with additional operations. The velocity Verlet 

algorithm improves the original version and accounts explicitly for the velocity from the 

beginning.  

      r(t+∂t) = r(t) + ∂tv(t) + 
1
2 ∂t

2a(t)                                                                                 (2.8) 

						r(t-∂t)	=	v(t)	+	
1
2

 ∂t[a(t)+a(t+∂t)]     	                   			                                                 					(2.9) 

It is actually a three-stage algorithm. First the positions at time t+∂t are calculated using 

Equation 2.8. Second the velocities at time t+∂t/2 are computed. 
 

						v Xt-
1
2
∂tY 	=	v(t)	+	

1
2

 ∂ta(t)   																																																				                      																							(2.10) 

 

At this point new forces are computed from the current positions, thus giving a(t+∂t). 

Finally, the velocities at t+∂t are determined using: 
 

						v(t+∂t) = vXt+
1
2

 ∂tY  +  
1
2

 ∂ta(t+∂t)  																																																																																		(2.11) 

 

Therefore, the accelerations, velocities and positions needed to start a new integration step, 

t+2∂t are obtained. Other algorithms have been developed from Verlet approach as leap-frog 

algorithm[131], which also explicitly includes the velocities or the Beeman’s algorithm,[132] and 

uses a more accurate expression for the velocity.  
 

2.2.2 Initial velocities 
 

In the setup of a MD simulation, initial positions and velocities have to be assigned. The initial 

positions (configuration) ideally come from experimental data (X-Ray and/or NMR). Initial 

velocities can be randomly selected from a Maxwell-Boltzmann distribution at the temperature 

of interest (Equation 2.12). 
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						p(vix)	=	 X
mi

2πkBTY
2
	exp Z-

1
2

mivix
2

kBT
[ 																																																																																												(2.12) 

 

The Maxwell-Boltzmann equation provides the probability of an atom i of mass mi of having 

a velocity vix in the x direction at a temperature T. It is indeed a Gaussian distribution, which 

can be obtained using a random number generator. Most random number generators are 

designed to produce random numbers that are uniform in the range of 0 to 1. In this context, 

multiple separate and independent MD simulations starting from the same conformation (i.e. 

replicas) lead to different initial velocities, which means that the conformational exploration 

over time of any MD replica would be dramatically different, speeding up the FEL sampling 

by collecting better statistics. Note that even a small difference in the initial configuration, such 

as the coordinates of one single atom, lead to an exponential divergence of the time evolution 

of the system.[133] The decision among running a large number of replicas or only a few long 

MD simulations is compromised by the size of the system and time-scale of the process under 

study. However, in many cases, it is not straightforward.  
 

2.2.3 Time step 
 

The selection of the time step (∂\) is a critical parameter for a MD simulation. If it is too big 

instabilities may arise due to high energy overlaps between atoms. On the other hand, if it is 

too small the trajectory will cover only a limited portion of the phase space, which for a system 

of N particles means each combination of 3N coordinates (ri) and 3N momenta (vi), i.e. in 6N 

dimensional space; with a high computational cost associated. The smaller the time step the 

larger the number of integration steps have to be performed for a given simulation time. Thus, 

the appropriate time step should cover the phase space efficiently with collisions occurring 

smoothly. A useful guide to determine it is that the time step should be approximately one-

tenth the time of the shortest period of motion. The highest-frequency vibrations are due to 

bond stretches, especially those of bonds to hydrogen atoms (e.g. O-H stretch vibrates with a 

repeat period of approximately 10 fs).[134] So for treating accurately the molecule motions a 

time step of 1fs is required. However, the computational cost is dramatically decreased when 

constraining hydrogen bond to fixed lengths. This is done by using different methods like 

SHAKE[135] and LINCS[136] algorithms. These approaches allow for larger time steps, often 

double (2 fs). Another approach consists of classifying forces within a system in groups 
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according to how rapidly the force varies over time. Each group has its own time step while 

maintaining accuracy and numerical stability (multiple time step dynamics). 
 

2.2.4 Periodic boundary conditions and cutoff distance 
 

The selection of the periodic boundary conditions is also crucial in a MD simulation. It allows 

more accurate estimation of macroscopic properties from simulations using a relatively small 

number of particles. In this context, the simulated system within a periodic box interacts with 

periodic images of the same system alleviating many of the issues with finite size effects (i.e. 

the periodic approach attempts to reproduce infinite lab-scale systems). In this way, the 

particles experience forces as if they were in bulk fluid. If a particle leaves the box during the 

simulation, then it is replaced by an image particle within the central box. Thus, the total 

number of particles remains constant. It is worth mentioning that multiple interactions between 

periodic systems are indeed undesirable. To prevent this, a cutoff distance regarding the non-

bonded terms is employed, in such a way that the non-bonded interactions between all pairs of 

atoms that are further apart than the cutoff are set to 0. The cutoff value should be chosen such 

that it is less than half the length of the simulation box in any dimension.[133] A value of 8-12 

Å is generally recommended. These cutoffs impose a natural lower limit to the size of a periodic 

simulation box, as the box must be large enough to capture all of the most significant non-

bonded interactions. In principle, any cell shape can be used if it fills all of space by translation 

operations of the central box in three dimensions. It is often sensible to choose a periodic cell 

that reflects the underlying geometry of the system.  

 

In principle, the proper selection of the cutoff value will assure that proteins do not directly 

interact with each other while they may interact through the perturbation of nearby solvent. 

However, if the solvent does not reach a bulk-like state between proteins, the simulation will 

undergo finite-size effects.[133] The employment of the cutoff clearly decreases the 

computational cost of the simulation since the non-bonded terms calculations are more time-

consuming than the bonded terms. Moreover, the minimum image convention is applied where 

each atom ‘sees’ at most just one image of every other atom in the system. The energy or force 

is calculated with the closest atom or image. 
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2.3 Running a MD simulation 
 

Setting up and running a MD simulation includes several steps (system preparation, 

minimization, heating, equilibration and production run). Here, we aim to highlight some 

relevant aspects on every step allowing for a general understanding instead of encompassing 

the technical aspects (i.e. input files or specific issues regarding the nature of the system). The 

system preparation consists of many steps allowing for the selection of the initial configuration 

of the protein and ligand (if added), the protonation of the protein constituents, the addition of 

counter ions and solvent box, and the selection of the FF. All of these steps are critical and 

deserve as much care as possible. If any of the steps turns out to be wrong according to what 

you intended to describe, then all the accumulated data and post analysis would lead to a 

misguided outcome. Once one has checked that the system is correct, the minimization step 

proceeds to find a local energy minimum of the starting structure to avoid instabilities when 

running the MD. Afterwards, the heating process consist of a MD run that increases the 

temperature in several steps up to the targeted temperature and then a short MD run is 

performed to equilibrate the system. A MD run is performed in a particular thermodynamic 

ensemble, i.e. it is a collection of points in phase space satisfying the conditions of a particular 

thermodynamic state (e.g. energy). Traditionally MDs are performed in the constant NVE 

ensemble (microcanonical), which is characterized by fixed number of atoms (N), volume (V) 

and energy (E). The two most common alternative ensembles are the constant NVT (canonical) 

and the constant NPT (isobaric-isothermal ensemble). Regarding the equilibration step, the 

main goal is to monitor the macroscopic properties (e.g. E and T) to ensure they reach a steady 

state on average. Although not rigorous, the equilibration step is over when the macroscopic 

properties, as for instance the energy, fluctuate around constant values with minimal drift. A 

more difficult aspect is to ensure other properties of the system do not oscillate that much over 

time (i.e. protein interactions, protein conformations…). A common strategy is to monitor the 

root mean squared deviation (RMSD) of the system. Once the RMSD values are not 

systematically changing, the equilibration step has been successfully performed. After proper 

equilibration, the production run can be started. At difference with the equilibration step, the 

data obtained from the MD production run can be collected for analysis. However, when 

altering the previous conditions for some reason (e.g. box dimensions, temperature or 

pressure), data should not be collected immediately, instead an additional equilibration step is 

needed.  
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During MD simulations, a thermostat adds and removes heat from the system. The 

temperature of a molecular dynamic simulation is related to the time-averaged kinetic energy 

using the equipartition theorem[133] 
 

					
3
2

NkBT= ]0
1
2

N

i=1
mivi

2^ 																																																																																																																(2.13) 

 

The simplest way to alter the temperature is to scale the velocities (simple velocity 

rescaling). There are many other thermostats algorithms, and all of them work by altering the 

Newtonian equations. 
 

2.4 Free energy landscape construction 
 

2.4.1 Dimensionality reduction of the MD data set 
 

The accumulated data obtained from the production runs is used to recover the Free Energy 

Landscape (FEL) associated with the protein conformational population distribution. 

Unfortunately, as a result of the large number of atoms present in the simulations (ca. 100,000 

atoms for a protein of regular size in an explicit solvent environment), the atomic population 

distributions are defined by an extremely high dimensional space. A potential solution to this 

drawback is to focus on a reduced set of global or collective degrees of freedom (DOFs). These 

DOFs can be defined as a simplification of the enzyme coordinates that describes any explicit 

function, relevant to the process of interest. For instance, distances between catalytic residues, 

backbone dihedral angles or the RMSD of a loop. High dimensional data obtained from the 

MD simulations can be projected onto these collective DOFs obtaining the probability 

distributions and reconstructing the associated free energy landscape (Fig. 2.7).[68] 
 

 
Figure 2.7. Schematic view of the dimensional reduction process of multiple MDs accumulated data set. 
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Reducing the dimensionality of the MD data to only a few DOFs can omit essential kinetic 

or thermodynamic information relevant to the process under study. Besides, choosing an 

appropriate set of DOFs requires a detailed knowledge of our system and for many systems is 

not easy to identify. A minimum criterion for the low-dimensional projection of the 

conformational space is that the set of DOFs clearly distinguish among the different metastable 

states under study and the transition states that interconnect them. In this thesis, we apply 

dimensionality reduction techniques to the study of two different biological processes: 

enantioselectivity and allosteric transitions. For the enantioselectivity study (Chapter 4), we 

evaluate the competent pro-(S) and pro-(R) conformational landscape by computing the angle 

between two substrate atoms and an atom from a rigid active site residue, together with the 

measure of the hydride transfer distance between the substrate and the cofactor. The angle 

selected successfully captures the substrate rotations in the active site and the angle values 

properly discriminates between the pro-(S) and pro-(R) states. Besides the hydride transfer 

distance successfully estimates catalytically competent conformations (at short distances). For 

the allosteric transition study (Chapter 5), more complex DOFs were chosen in order to 

describe an open-to-closed transition of a rigid domain that acts an active site lid. In this case, 

a path of conformations from open to closed conformations is generated by linear interpolation 

of available X-ray data. The reconstruction of the conformational energy landscape associated 

with the open-to-closed path generated together with a restricted degree of deviation (i.e. 

distance from the reference path) successfully captures the relevant catalytic states, which 

allows us to decipher allosteric effects. 

 

Apart from the examples mentioned, other approaches to automatically reduce the 

dimensionality of the data while preserving as much information as possible have been 

developed, such as the Principal Component Analysis (PCA).[137] PCA performs a 

dimensionality reduction accounting for as much variance in the data set as possible. In a 

nutshell, if we define variance as the deviation of an atom from its mean position along the 

MD, then each principal component will be a linear combination of strongly correlated atomic 

motions with large oscillations. The resulting low dimensional PCA space can then be used to 

reconstruct the associated free energy landscape (Fig. 2.7). For example, PCA has been applied 

in several studies of protein folding and allostery.[80b, 138] However, transitions with the highest 

variance do not strictly correlate with the slowest (i.e. kinetically relevant) processes. Contrary 

to PCA, the time-structure independent component analysis (tICA) seeks to lower the 

dimensionality of our data while minimizing the loss of kinetic information.[139] This is done 
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by considering the time correlation of the data instead of the variance. Alternative approaches 

to reduce dimensionality include Diffusion Maps,[140] the variational approach,[141] and the 

Sketch-Map[142] among others.  Once the MD data has been collected and the DOFs have been 

properly selected, the accumulated probability density as a function of the selected DOFs can 

be obtained (i.e. the histograms). There are several methods to calculate the histograms, for 

instance the kernel density estimation as implemented in PLUMED module analysis.[143] 

Finally, as stated in section 1.3.2, the free energy is related with its probability via the 

Boltzmann factor (G(x) ≈ -kB T ln p(x)) and the FEL plot can be constructed.  
 

2.4.2 The sampling problem 
 

The time-dependent thermodynamic properties extracted from MD simulations can only be 

connected with experimental observables if all relevant states or conformations of the system 

are visited (i.e. ergodic principle).[17] The ergodic principle states that if the system evolves in 

time indefinitely, the system will pass though all accessible microstates in statistical 

equilibrium. So that the time-averaged conformational sampling and the average over the 

statistical ensemble (i.e. probability distribution of the microstates at thermodynamic 

equilibrium) are the same. In practical situations, this is not normally the case. To properly 

integrate the equations of motion, atomistic MD calculations using empirical force fields 

typically use time steps of the order of femtoseconds (i.e. 10-15 seconds), being able to compute 

few nanoseconds with a personal computer, but far from the millisecond to second time scales 

of domain motions and allosteric transition occurring in some enzymes.[144] This time scale gap 

frustrates direct comparison with experimental data, encouraging for alternative approaches, 

which can be broadly classified in unbiased and biased methods.[68] 
 

2.5 Enhanced sampling techniques 
 

After more than 40 years since the first MD simulation of a protein was performed,[145] the 

basic MD algorithm remains unaltered. Then, the question is, how can we increase the 

accessible time scales to make reliable connections with experiments? Here we detail some of 

the most commonly used strategies. 
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2.5.1 Unbiased MD methods 
 

		 (i) CPU parallelization leads to an enormous increase in the accessible simulation time 

scales. This strategy simulates extremely large systems during moderately long simulation time 

thanks to a divide and conquer approach (i.e. the enzyme system is broken down to smaller 

entities, each one being computed on the different connected CPU). This approach was used in 

a MD simulation of a complete solvated tobacco mosaic virus capsid with up to 1 million 

atoms.[146]  

 

(ii) The Anton supercomputer, which was specifically developed as a special purpose 

computer by D.E. Shaw and co-workers to perform long single MD simulations of biological 

systems. The first atomistic millisecond MD simulation of a WW protein domain was 

performed with Anton.[147]  This computer has also been used to study the fold of a series of 

small proteins,[148] allosteric transitions in G-protein membrane receptors,[149] and ligand 

binding kinetics[150] among others. 

 

  (iii) GPU based clusters offer an affordable alternative to increase MD accessible times by 

running either single long and/or multiple short simulations of the same system. Some MD 

codes have been specifically designed to run on GPU’s, such as AceMD,[151]  and 

OpenMM,[152] whereas others have been ported to GPU’s (Amber,[153] Gromacs,[154] and 

NAMD[155]). The idea behind multiple MD runs is to promote infrequent transitions or rare 

events by running several MD simulations from different initial structures and combine them 

to recover the associated conformational free energy landscape. However, dealing with the 

resulting flood of data, comprising hundreds or even thousands of simulations, becomes a 

challenge. Markov State Models (MSMs) arise as an approach to analyze large MD data sets 

in an objective methodological way to recover thermodynamic and kinetic parameters between 

conformational states. MSMs are also based on a dimensional reduction (e.g. tICA) to recover 

the free energy landscape associated with slow collective DOFs and the kinetics of the process. 

Quantitative predictions from MSMs can be compared with available experimental data.[156] In 

particular, this approach has recently been used to study serine protease trypsin[157] and Bruton 

tyrosine kinase conformational plasticity.[158] Besides, MD simulations together with MSMs 

were also used to guide a regioselective switch in nitrating P450 from Streptomyces scabies.[69b] 
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(iv) Replica exchange or parallel tempering[159] is an alternative strategy based on running 

several copies of the same system at different temperatures and exchanging conformations at 

certain time intervals. Probability distributions are only meaningful at room temperatures and 

can be recovered by projecting atomic coordinates onto some selected DOFs, as explained 

before, whereas high temperatures facilitate barrier crossing.  This approach has been widely 

used for protein folding,[160] although the number of replicas required to ensure temperature 

exchanges is proportional to the number of atoms, thus making it unaffordable for large 

systems. 
 

2.5.2 Biased MD methods 
 

It is possible to increase the frequency with which barriers separating stable states are crossed 

by introducing external energy potentials into our MD simulations. The selection of the proper 

bias method can be guided by the amount of structural information that we have about our 

system. For instance, to study the transition of a protein domain from open (A) to a closed (B) 

conformation, two main questions can be formulated: do we have enough structural 

information of A and B to define some DOFs, e.g. dihedral angles, describing the transition? 

Do we have intermediate structures between the two states? Based on the answer to both 

questions a proper bias method can be chosen: 

 

(i) When detailed structural knowledge is available of states A, B and also the transition 

path, independent MD simulations at states A and B together with a spectrum of intermediate 

conformations can be performed. In umbrella sampling (US),[161] for example, several MD 

simulations are computed with restraining bias potentials added at small increments along one 

or a few preselected DOFs, also referred as collective variables (CVs), forcing the system to 

sample all the desired conformational states, therefore cancelling the effect of energy barriers 

and exploring low probability regions. Overlapping umbrella sampling simulations can be 

analyzed together to recover probability distributions and the free energy within the A to B 

transition.[162] This method provides good estimates of the free energy, since each point on the 

transition is equally sampled, but detailed structural knowledge is required to define a suitable 

set of starting conformations describing a continuous pathway between A and B. Several 

methods have been also developed to construct the transition paths between known states and 

in most cases do not require the definition of CVs, as for instance finite-temperature string 

method[163] and transition path sampling.[164] 
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(ii) When no clear information about the transition path between A and B states is available, 

methods that explore all possible transitions between A and B along a small set of CVs is a 

proper choice. These methods can explore unexpected intermediates and identify novel 

metastable states. Metadynamics[165] is a powerful technique to accelerate conformational 

transitions between metastable states.[166] As other enhanced sampling techniques, it requires 

the introduction of low-dimensional descriptors (CVs), whose selection is a critical step. 

Ideally, they should clearly distinguish between A, B and the intermediates, describe all the 

slow events that are relevant to the process of interest and their number should not be too large, 

otherwise a very long simulation time is required. [167] As mentioned in section 2.4.1, in this 

thesis we relied on a path of collective variables[168] to explore an allosteric conformational 

transition. In this regard two CVs are required. The progression along the reference path of 

conformations generated (thanks to the available X-ray structures) represents one CV, while 

the distance from the reference path the other CV. This approach alleviates the burden of the 

high dimensionality. Notice that although the progress along a high-dimensional path is 

computed, the position of the system along the path is an intrinsically two-dimensional quantity 

defined by only two CVs values. [167]   

 

Metadynamics[165] is based on the addition of small repulsive potentials (Gaussians) to a 

selected set of CVs at a regular number of MD steps (Fig. 2.8), such that the external potential 

(VG) acting on the system at time t is given by: 
 

					VG(S(x),t)	=	ω 0 exp _-
(S(x)-s(t'))2

2δs2 `
t'= τG, 2τG,…

t'<t

       																																																		(2.14) 

Where S(x) refers to the CVs values as a function of the coordinates and s denotes the value 

of the CVs. Thus s(t) = S(x(t)), which is the value taken by the CV at time t. Three parameters 

are pivotal to describe external energy, VG: the Gaussian height (a), the Gaussian width (b) 

and the frequency cd	  with which the Gaussians are added. These parameters have to be 

carefully selected since they influence the accuracy of the free energy reconstruction. If the 

Gaussians are too large, the free energy landscape would be explored faster, but the 

reconstructed profile will be affected by large errors. On the other hand, if the Gaussians are 

too small or are placed infrequently the reconstruction would be accurate but will take a longer 

time.[167]   
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Figure 2.8 Representation of a metadynamics simulation. The repulsive potentials are deposited to the collective 

variable over time (from A to D) until the full free energy landscape is covered (D). 

 

As shown in Fig 2.8, these external potentials discourage the system from visiting prior 

configurations, forcing it to escape from energy minimum A to explore B through the lowest 

energy path. In addition to accelerate transitions between states, metadynamics allows to 

recover the free energy associated with the A to B transition by the sum of all the repulsive 

potentials added along the MD as a function of the CV values (Equation 2.14). Theoretically, 

after sufficiently long time metadynamics simulations provide a reliable estimate of the 

underlying free energy (Fig. 2.8 D). 
 

lim
t→∞

VG(s,t) ~ F(s)  																																																																																																										(2.15) 

 

Since the initial implementation of metadynamics, many derivatives have been developed. 

In this thesis we use a well-tempered version[169] in combination with multiple-walkers 

approach.[170] In the well-tempered version the Gaussian height is gradually decreased with 
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time proportional to a decaying exponential function of the potential deposited in the currently 

visited point of the CV space.[166] With this rescaling on the Gaussian height, the bias potential 

smoothly converges in the long time limit. The so-called bias factor parameter can be selected 

in order to control how quickly the Gaussian height is decreased. Thus, it has to be carefully 

chosen in order to efficiently cross the relevant energy barriers in the course of the simulation. 

The multiple-walkers approach was the first strategy taking advantage of running 

metadynamics on multiple replicas of the system simultaneously. It was originally developed 

with the purpose of speeding up free energy calculations using coupled parallel machines. [167] 

It is based on running in parallel interacting replicas (walkers) where each walker biases the 

identical CVs and reads the Gaussian potentials deposited by the others during the simulation. 

Since all walkers contribute to construct the same metadynamics bias, the free energy 

landscape is estimated by summing the Gaussian potentials deposited by all walker replicas as 

a function of the CVs values. 

 

In general, this method usually provides higher accuracy, but can also experience 

convergence issues since it is not easy to decide when to stop a simulation, avoiding the 

addition of useless repulsive terms. An intuitive way to decide when the metadynamics 

simulation is over is the observation of the diffusion of the CV in the entire relevant region, 

which is an indicator of convergence. Metadynamics has the advantage that not much structural 

information is required to set up the simulation, although choosing a proper set of CVs can 

sometimes be tricky. Metadynamics has been widely used to study the conformational 

landscapes of proteins,34 and the effect of pathogenic mutations in cancer related kinases.[171] 

 

(iii) Only one conformational state is known (e.g. A) and, therefore, no clear information 

about the transition is available. In this situation, methods to explore biomolecular 

conformations without a priori structural knowledge, such as accelerated MD (aMD),[172] are 

advantageous. In aMD, a constant bias potential (i.e. boost potential) is added to raise the 

energy minima while keeping transition states almost unaffected, therefore, smoothing the free 

energy landscape and enhancing conformational exchanges. aMD has the advantage that it is 

not necessary the preselection of CVs, becoming really useful when little structural information 

is available. Nevertheless, a non-trivial post-processing is needed to recover unbiased free 

energy values. This method has been applied to fold a set of small proteins[173] and to study the 

conformational dynamics of biomolecules, such as the maltose binding protein.[174] 
 



Chapter 2. Methodologies 

	 	88	

2.6 Residue-by-residue correlation and proximity tools 
 

Residue-by-residue correlation methodologies appear to be an interesting strategy to uncover 

the connections of the different dynamic regions of the proteins. In this context, these analyses 

provide a fingerprint of the enzyme motions along the MDs. Some studies have shown that 

these tools are promising for the underlying characteristics of allosteric pathways between 

subunits, as for instance in the imidazole glycerol phosphate synthase (IGPS) enzyme,[110a] but 

also to characterize the intrinsic enzyme allosteric properties, as in the case of kinases[110b] and 

tRNA protein complexes.[110c] Our group has recently shown that these methods can also be 

applied to identify mutations found by means of directed evolution (DE) techniques in retro-

aldolase enzymes.[21a] The same strategy has been applied in this thesis to the tryptophan 

synthase enzyme. The python code developed by our group provides a Shortest Path Map 

(SPM) as an output, which operates as follows: 

 

(i) Generation of the correlation and distance matrix values from MD data; the covariance 

between the two measures how random these variables change together. In our case it measures 

how the Cα of each residue deviates from its average position along the MD simulation run. 

The averaged positions can be obtained by clustering the MD data to obtain the most populated 

cluster as a representative structure. Thus, the covariance between Cαj and Cαk for N 

observations along the MD simulations is estimated as: 
 

					qjk=
1

N-1
0eXij-X=jf(Xik-X=k),

N

i=1

 																																																																																								(2.16) 

 

  Covariance is sometimes called a measure of “linear dependence” between two random 

variables. When covariance is normalized the correlation coefficient (Pearson coefficient) is 

estimated. Correlation can be defined as any class of statistical relationship involving 

dependence. The Pearson coefficient is expressed as: 
 

							ρX,Y=	
cov (X,Y)
σXσY

																																																																																																															(2.17) 

 

Where X and Y are two random variables (e.g. Cαj and Cαk), cov is the covariance associated 

with these variables and gh and gi the standard deviation of X and Y, respectively. The Pearson 



Chapter 2. Methodologies 

	 	 89	

correlation is +1 in the case of a perfect direct linear relationship (correlation), -1 in the case 

of inverse linear relationship (anticorrelation). As it approaches to 0 there is hardly any 

relationship between the two (uncorrelated). The correlation matrix is indeed a n x m matrix 

whose i and j entry is the correlation between Xi and Xj obtained along the MD simulations. By 

analogy, the distance matrix entries correspond to the mean distance between Xi and Xj. 

 

(ii) Graph construction. To create a network for our system we first need to specify how the 

nodes and edges will be created. Typically, one node represents some set of atoms, e.g. an 

amino acid within a protein. We assign one node to each Cα residue. The edges are defined 

between pairs of nodes if the mean distance matrix values, dist (Cαi-Cαj), are shorter than a 

selected threshold (e.g. < 6 Å). Then the length of the edges drawn is weighted according to 

the correlation matrix values. So that the length of the edge that connects nodei and nodej is 

estimated as: 
 

 dij = -log|Cij|                                                                                                                                  (2.18) 
 

Where Cij is the Pearson correlation coefficient for residues i and j. Larger (absolute) 

correlation values (closer to 1 or -1) will have shorter edge distances, whereas less correlated 

residue pairs (values closer to 0) will have edges with long distances (see original network 

system in Fig 2.9).  
 

 

Figure 2.9 Schematic view of the Shortest Path Map (SPM) construction from the MD simulations data set. The 

blue spheres represent the graph nodes while the lines that connect them the edges. 

 

Once the original graph is generated, we use the Dijkstra algorithm as implemented in igraph 

module.[175] The algorithm operates by exploring all possible paths to go from the node of 

origin (e.g. residue 1) to the rest of nodes through the shortest path in terms of d node distances 
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obtained from Equation 2.18. When all nodes (i.e. all residues) have been targeted as nodes of 

origin, the exploration is over. Thus, the width of each edge and the size of each node are 

proportional to the number of shortest paths passing through that edge or node during the 

calculation (Fig 2.9). Note that not all nodes are included in the SPM. This is due to a threshold 

selected manually that discards those edges that are explored less frequently by the Dijkstra 

algorithm. SPM provides a view of the enzyme pathways that most contribute to the protein 

dynamics in terms of correlated motions, which were found to coincide with many DE mutation 

positions (see Chapter 5.1). 

 

It is worth mentioning that according to the SPM workflow, the selection of the 

conformational ensemble subjected to the analysis is a relevant step. In this thesis, we 

performed the SPM analysis on the conformational ensemble obtained through the 

metadynamics simulations. In contrast with conventional MDs, that in some cases may not 

sample the complete conformational exchange under study due to the associated time-scale of 

the transition, metadynamics simulations has the advantage to statistically sample the targeted 

conformational exchange. Thus, the proper selection of the conformational ensemble provides 

a more accurate view of the protein dynamics in the SPM graph. No further adjustments were 

made to the original formulation of the SPM method due to the constraints imposed in the 

metadynamics conformational ensemble.  
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The major goal of this thesis is the characterization of the protein conformational energy 

landscape by means of computational methods and investigating its connection with enzyme 

properties such as enantioselectivity, catalytic activity, thermoadaptation and allostery. In 

general, we aim to rationalize the novel function achieved in laboratory-evolved enzymes 

through the exploration of the protein conformational dynamics and exploit this information to 

rationally design promising enzyme variants. The objectives of this thesis are divided into two 

main blocks encompassing specific objectives regarding the nature and the properties of the 

system studied: 

 

I. Alcohol dehydrogenases (ADH) studies (Chapter 4):  

 

• Explore the conformational dynamics of a zinc dependent ADH enzyme using the 

bonded model protocol for metalloproteins to analyze the conformational population 

distribution as a function of the enantioselectivity and catalytic activity.  

 

• Perform an in-depth structural analysis of the major conformational states found in 

order to investigate the molecular basis of the enantioselectivity control. 

 

• Rationalize the reversion of enantioselectivity and thermoadaptation at ambient 

temperatures towards non-natural induced by DE mutations in the laboratory-evolved 

ADH enzyme variants. 

 

II. Tryptophan synthase (TrpS) studies (Chapter 5): 

 

• Reconstruct the free energy landscape (FEL) of the TrpS enzyme (formed by the two 

subunits: TrpA, TrpB) associated with an allosteric transition using enhanced sampling 

techniques (metadynamics) in order to decipher the conformational ensemble of TrpS, 

TrpB in absence of the TrpA protein partner and laboratory-evolved stand-alone TrpB 

enzyme variants.  

 

• Rationalize the loss of activity in the absence of the TrpB protein partner (i.e. TrpA) 

and the recovery of activity induced by the DE mutations achieved in laboratory-

evolved stand-alone enzyme variants. 
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• Test the predictive power of correlation-based tools (Shortest Path Map, SPM) for the 

identification of DE mutations introduced in TrpB for stand-alone enzyme variants. 

 

• Develop new computational strategies for the rational design of TrpB stand-alone 

enzyme variants using SPM correlation-based tools in combination with bioinformatic 

computational tools.  
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Chapter 4. Enantioselectivity and 

thermoadaptation properties of alcohol 

dehydrogenase (ADH) enzymes 
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4.1 Exploring the reversal of enantioselectivity on a zinc-dependent alcohol 

dehydrogenase 
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Abstract 
 
Alcohol Dehydrogenase (ADH) enzymes catalyse the reversible reduction of prochiral ketones 
to the corresponding alcohols. These enzymes present two differently shaped active site 
pockets, which dictate their substrate scope and selectivity. In this study, we computationally 
evaluate the effect of two commonly reported active site mutations (I86A, and W110T) on a 
secondary alcohol dehydrogenase from Thermoanaerobacter brockii  (TbSADH) through 
Molecular Dynamics simulations. Our results indicate that the introduced mutations induce 
dramatic changes on the shape of the active site, but most importantly they impact the substrate-
enzyme interactions. We demonstrate that the combination of Molecular Dynamics simulations 
with the tools POVME and NCIplot correspond to a powerful strategy for rationalising and 
engineering the stereoselectivity of ADH variants. 
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Exploring the reversal of enantioselectivity on a
zinc-dependent alcohol dehydrogenase†

Miguel A. Maria-Solano, Adrian Romero-Rivera and Sílvia Osuna *

Alcohol Dehydrogenase (ADH) enzymes catalyse the reversible reduction of prochiral ketones to the

corresponding alcohols. These enzymes present two differently shaped active site pockets, which dictate

their substrate scope and selectivity. In this study, we computationally evaluate the effect of two com-

monly reported active site mutations (I86A, and W110T) on a secondary alcohol dehydrogenase from

Thermoanaerobacter brockii (TbSADH) through Molecular Dynamics simulations. Our results indicate that

the introduced mutations induce dramatic changes in the shape of the active site, but most importantly

they impact the substrate–enzyme interactions. We demonstrate that the combination of Molecular

Dynamics simulations with the tools POVME and NCIplot corresponds to a powerful strategy for rationa-

lising and engineering the stereoselectivity of ADH variants.

1. Introduction
Biocatalysis is based on the application of natural catalysts for
new purposes, for which the enzymes were not designed. The
advantages of biocatalysts with respect to traditional catalysts
make enzyme-based routes a preferable alternative for the
synthesis of optically active compounds.1 The asymmetric
reduction of prochiral ketones to yield optically pure alcohols
can be achieved with metal-based catalysts,2 but also with
enzymes such as alcohol dehydrogenases (ADH). Many studies
have been reported in the literature showing the importance of
ADH in asymmetric synthesis,3–5 of relevance is their usually
high thermostability,6,7 and the ability to operate in non-
aqueous media with high activity and selectivity.8,9

ADH enzymes catalyse the reversible reduction of prochiral
ketones to their corresponding alcohols. They require the pres-
ence of NAD(P)H as a cofactor, which delivers its pro-(R)
hydride to the usually Re face of the ketone yielding the corres-
ponding (S)-alcohols (see Scheme 1). The stereoselectivity of
ADHs towards the formation of (S)-alcohols mainly arises from
the shape of the active site of the enzymes that usually present
a small and a large binding pocket (see Fig. 1).10 As most ADH
follow Prelog’s rule (Scheme 1), the engineering of their active
sites for the formation of the (R)-enantiomer, i.e. anti-Prelog
ADHs, is of great interest. In addition to that, the expansion of
the substrate scope of ADH is also highly appealing for broad-

ening their applicability in asymmetric synthesis. To that end,
Directed Evolution (DE)1,11–14 and rational site-specific muta-
genesis15 have been applied in some ADH enzymes. Reetz
et al. developed a powerful strategy for reducing the number of
variants to screen by generating a collection of small but
‘smart’ enzyme libraries.16 This was applied on the zinc-depen-

Scheme 1 Representation of Prelog and anti-Prelog rules for the
studied substrate 1a, together with the stereoselectivity of the engin-
eered variants TbSADHI86A, and TbSADHW110T by Reetz et al.20

Fig. 1 Volume representation of the small and large TbSADH binding
pockets for the WT enzyme (middle), W110T (left), and I86A (right)
variants. These calculations have been performed with POVME 2.0.31

†Electronic supplementary information (ESI) available. See DOI: 10.1039/
C7OB00482F

Institut de Química Computacional i Catàlisi (IQCC) and Departament de Quimica,
Universitat de Girona, Carrer Maria Aurèlia Capmany 6, 17003 Girona, Spain.
E-mail: silvia.osuna@udg.edu
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dent secondary ADH from Thermoanaerobacter brockii
(TbSADH) for the asymmetric reduction of tetrahydrofuran-3-
one towards the (S)-alcohol, which is of importance for the
synthesis of the HIV inhibitors amprenavir and fosamprena-
vir.16,17 Engineered variants of Lactobacillus kefir short-chain
alcohol dehydrogenase were also developed for the asymmetric
reduction of the same tetrahydrofuran-3-one, but also for the
related thiolan-3-one.18 Phillips and coworkers engineered
TbSADH for accepting several structurally diverse ketones.19

Similarly, Reetz evolved the same ADH for accepting a set of
non-cyclic ketones.6 They also engineered TbSADH for the
catalytic asymmetric reduction of prochiral ketones of type
4-alkylidene cyclohexanone with formation of the corres-
ponding axially chiral (R) or (S)-alcohols.20 Interestingly, the
singly mutated variants TbSADHW110T and TbSADHI86A were
found to yield respectively either the unusual (R)-alcohol or
the (S)-alcohol with high conversion rates and selectivity. The
same W110 and I86 positions were found to be important in
determining the enantioselectivity of the highly homologous
secondary ADH from Thermoanaerobacter ethanolicus (TeSADH)
enzyme.8,21–23

The previously mentioned examples highlight the outstand-
ing performance of laboratory-evolution for enhancing activity,
and reversing the enantioselectivity of ADHs. Complementary
to experimental evolution, computational methods can be
used for rationalizing the activity and selectivity of natural and
laboratory-engineered enzymes.24 Bocola and coworkers eluci-
dated through Quantum Mechanics and Molecular Mechanics
(i.e. QM/MM) calculations the mechanism of hydride
and proton transfer of the oxidoreductase from Candida
Parapsilosis.25 Electronic structure calculations and Molecular
Dynamics (MD) simulations were performed to investigate the
mechanism of liver alcohol dehydrogenase (LADH).26 The cal-
culations revealed a lower activation barrier for the hydride
transfer step if alcohol deprotonation occurs first. Many com-
putational studies have been devoted to elucidate the funda-
mental nature of hydrogen tunnelling that occurs in these
NAD(P)H-dependent enzymes.27–29 Some of us explored
through MD simulations of the Michaelis–Menten and tran-
sition state-bound complexes the stereoselectivity of some
Lactobacillus kefir short-chain alcohol dehydrogenases.18 These
simulations allow rationalising the effect of active site
mutations on the selectivity of this Zn(II) free ADH enzyme.

In this study we computationally evaluate the effect of
W110 and I86A active site mutations on a series of zinc-depen-
dent TbSADH variants20 through MD simulations. We demon-
strate that the introduced mutations induce dramatic changes
in the shape of the enzyme active site, which affect the sub-
strate–enzyme interactions thus determining the stereo-
selectivity of the TbSADH variants.

2. Results and discussion
ADH enzymes present two differently shaped active site
pockets, which are responsible for their substrate scope and

selectivities (see Fig. 1). By introducing mutations to the ADH
active site, both pro-(R) and pro-(S) selectivities can be
obtained. In most experimental studies based on TbSADH and
the homologous TeSADH published so far two positions,
namely I86 and W110, have been found to be key for either
enhancing the enzyme activity towards bulky substrates and/or
reverting the stereoselectivity of ADHs.9,20,21,23,30 In order to
shed some light into the role of the latter mutations in ADH
catalytic activity and selectivity, we performed MD simulations
on the Wild-Type (WT) TbSADH enzyme, and the variants
TbSADHW110T and TbSADHI86A. We restricted our study to the
analysis of the prochiral ketone of type 4-alkelidene cyclohexa-
none (1a, see Scheme 1) studied by Reetz and coworkers.20

This ketone is especially challenging as the steric preferences
of the carbon atoms surrounding the carbonyl group are iden-
tical. Of importance is the fact that positions I86 and W110 are
key to revert the enzyme enantioselectivity even with this non-
conventional substrate.

We carried out five independent 200 ns MD simulations
(i.e. accumulated simulation time of 1 microsecond) in both
pro-(R) and pro-(S) conformations of 1a in the WT TbSADH,
TbSADHW110T, and TbSADHI86A enzyme variants. In order to
maintain the substrate 1a bound to the Zn(II) metal ion, a
force constant was applied. This approach allows us to analyse
the positioning of 1a for efficient hydride transfer, and thus
explain the activity and origin of enantioselectivity observed
experimentally.

As shown in Scheme 1, 1a has a bromide atom that can be
differently oriented in the small and large binding pockets
depending on the variant and the starting pose (pro-(R) and
pro-(S) conformation, see Fig. 2–5). The positioning of both the

Fig. 2 Representation of some representative snapshots of the
different conformational states sampled along the MD simulations for
TbSADH starting from the pro-(R) orientation of 1a. The histogram of
the hydride transfer distance together with the pro-(R)/pro-(S) angle
(detailed in Fig. S1†) is displayed.
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Fig. 3 Representation of the non-covalent interactions for the pro-(S) and pro-(R) conformations of 1a in the active site pocket of TbSADH enzyme,
computed with the computational tool NCIplot.34,35

Fig. 4 Representation of some representative snapshots of the different conformational states sampled along the MD simulations for the
TbSADHW110T and TbSADHI86A starting from the pro-(R) (in orange) and pro-(S) (in blue) orientations of 1a, respectively. The histogram of the hydride
transfer distance together with the pro-(R)/pro-(S) angle (detailed in Fig. S1†) is displayed for both variants.
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bromide and the cyclohexane ring of 1a and its interactions
with the enzyme active site pocket will dictate ADH selectivity.
The difference in activity can be predicted by analysing the dis-
tance between the carbonyl group of the substrate and the
NAD(P)H carbon atom involved in the hydride transfer (see
Scheme 2). Our computed hydride transfer Transition State
(TS) using DFT and a small subset of the enzyme active site
residues, i.e. following the theozyme approach,32 indicates that
at the TS it is ca. 2.7 Å for both axial and equatorial attacks
(see Scheme 2, and Fig. S8†). This is in line with previous cal-
culations for the hydride transfer. As with classical MD simu-
lations we cannot model the bond-breaking/forming hydride
transfer step, we instead evaluate the active site preorganiza-
tion towards the pro-(S)/pro-(R) enzyme–substrate complexes to
shed some light into the enzyme enantioselectivities.
We define as catalytically competent poses those MD confor-

mations that present hydride transfer distances shorter than
4.5 Å, whereas those orientations with longer hydride dis-
tances were defined as non-catalytic. This allows us to
indirectly quantify the number of reactive events along the
simulation time, i.e. it provides an estimate of the enzyme
catalytic activity.

We evaluate ADH enantioselectivity preferences by compar-
ing the angle formed between the carbonyl group of the active
site residue T38 (situated next to C37, one of the Zn(II)-coordi-
nating residues), the C5 and C3 carbon of 1a cyclohexane ring
(see Fig. S1†) in all variants. As the NAD(P)H cofactor is in
some cases displaced from the active site, the angle provided
by the rigid T38 residue together with the measure of the
hydride transfer distance allow us to better evaluate the cataly-
tically competent pro-(S) and pro-(R) conformations. As done
in previous studies,18 by computing the relative populations of

Fig. 5 Representation of the non-covalent interactions for pro-(S) and pro-(R) conformations of 1a in the active site pocket of TbSADHW110T (top)
and TbSADHI86A (down) enzymes, computed with the computational tool NCIplot.34,35
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the reactive pro-(S) and pro-(R) poses observed along the MD
simulations, the experimental enantiomeric excess ratios can
be estimated (see Table S2†).

Evaluation of the TbSADH WT enzyme stereoselectivity

Our analysis starts with the evaluation of the WT TbSADH
enzyme activity and selectivity towards 1a. Reetz et al. reported
that TbSADH is able to produce the corresponding (R)-alcohol
in a 95% conversion, but only with 66 (R) % ee.20 We evaluated
the WT enzyme active site pockets in the most populated con-
formational states (i.e. most visited along the MD simulations)
using the computational tool POVME,31 indicating that the
small and large active site pockets have an approximated
volume of ca. 73 Å3 and 100 Å3 (see Fig. 1 and Table S1†),
which evidence their drastic difference in size as observed
with X-ray structures.33

In our TbSADH MD simulations starting from the pro-(R)
orientation of 1a, the bromide atom is forced to fit in the
small pocket because the bulky W110 residue does not allow
the rotation of the substrate towards the large binding pocket
(see Fig. 2, pro-(R) A). This corresponds to the most populated
conformation, where 1a remains properly positioned for the
hydride transfer to occur towards its Si-face and thus allowing
the (R)-alcohol formation. The average hydride distance is ca.
3.9 Å, which coincides with the computed hydride transfer dis-
tance at the reactant complex (i.e. 3.8 Å).27 This rather short
distance is in agreement with the high conversion rate
observed experimentally. The analysis of non-covalent inter-
actions with the NCI plot of 1a in the pro-(R) conformation
reveals stabilizing C–H⋯π interactions between H59, Y267,
and W110 with the cyclohexane ring of the substrate (see
Fig. 3). In contrast, the latter stabilizing interactions are much
weaker in the pro-(S) conformations (in particular non-covalent
interactions with the residue W110), which evidence how the
TbSADH pocket is more complementary to the pro-(R) confor-
mation of 1a to produce the corresponding (R)-alcohol.

In the MD simulations starting from the pro-(S) confor-
mation of 1a, short catalytic distances of ca. 3.9 Å are also
observed (see Fig. S2 A†), where 1a is properly positioned for
the formation of the (S)-alcohol. However, this pro-(S) catalyti-
cally active conformation has a quite low population. This
rather low stability of the pro-(S) conformation is also evi-

denced by analysing the non-covalent interactions of 1a and
the active site pocket of TbSADH. The enzyme also adopts
some intermediate conformations that present substantially
longer unproductive hydride transfer distances. Overall, our
MD simulations on TbSADH starting from both pro-(R) and
pro-(S) orientations of 1a indicate that the formation of the
(R)-alcohol is substantially preferred, although some catalyti-
cally competent pro-(S) conformations are also explored. This
is in line with the 66% (R) ee observed in the experimental
assays.

Evaluation of the TbSADHW110T and TbSADHI86A enzyme
stereoselectivity

The substitution of W110 by threonine makes the enzyme
large binding pocket even wider. The computed volume is ca.
166 Å3, whereas for the TbSADH it was 100 Å3 (as discussed
previously). This mutation therefore gives extra space to 1a for
a better accommodation of the bromide substituent in the
enzyme active site pocket, and thus allows the substrate to
rotate towards the large binding site. Experimentally, it was
found that TbSADHW110T was able to convert 1a into the
corresponding (R)-alcohol with high conversion rates and high
enantioselectivities (99% conversion, and 97 (R) % ee).20 In
this enzyme variant, angles of ca. 70° are observed for the pro-
(R) conformation, whereas ca. 20° for the pro-(S) attack (see
Fig. 4, W110T A and B).

In our MD simulations starting from the pro-(R) orientation
of 1a, the substrate rapidly rotates to position the bromide into
the large binding pocket, and remains in this pro-(R) orien-
tation most of the simulation time (see Fig. 4, W110T). The
NAD(P)H cofactor is perfectly positioned to deliver the hydride
and allow the (R)-alcohol formation (see Fig. 4, W110T pro-(R)
A) displaying catalytically competent hydride distances and
angles. Moreover, starting from pro-(S) orientations (Fig. S3†)
1a rapidly rotates towards pro-(R) conformations.

The analysis of non-covalent interactions in the pro-(R) con-
formations of 1a reveals stabilizing C–H⋯π interactions
between the cyclohexane ring of the substrate and residues
H59, and Y267, but also with the nicotinamide ring of the
NAD(P)H cofactor (see Fig. 5, W110T pro-(R)). The W110T
mutation enlarges the active site pocket, but also allows the
formation of stabilizing interactions between the bromide and
the side-chains of L107 and the newly introduced T110
residue. We also observe during the MD simulations that the
substrate can rotate to explore pro-(S) conformations (see
Fig. 4, W110T pro-(S) B), however long hydride distances are
observed due to the displacement of the NADP(H) cofactor,
which interacts with the bromide atom of the substrate (see
Fig. 5, W110T pro-(S)).

We finally evaluated the TbSADHI86A enzyme variant, which
was found to allow the formation of the opposite (S)-alcohol in
high enantiomeric excess (98 (S) % ee), and conversion (95%).
Our volume calculations on the most populated conformation-
al states indicate that the small enzyme active site pocket is
enlarged from ca. 73 to 89 Å3. In contrast to what we observe
in the TbSADH and TbSADHW110T variants, MD simulations

Scheme 2 DFT optimized TS structure for the hydride transfer step. For
visualization purposes, non-polar hydrogen atoms are hidden.
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starting from the pro-(S) poses of 1a reveal that the substrate
stays in the pro-(S) conformations with an angle of ca. 60°
most of the simulation time (see Fig. 4, I86A pro-(S) A). In this
most populated state, catalytically competent hydride transfer
distances are sampled (ca. 4 Å), which fits with the high
activity of the variant observed experimentally. This favourable
pro-(S) conformations are mainly stabilized by C–H⋯π inter-
actions between the cyclohexane ring and residues W110, H59,
and Y267 (see Fig. 5, I86A pro-(S)). As observed in the case of
TbSADHW110T, C–H⋯π interactions are also observed within
the cyclohexane ring and the nicotinamide ring of NAD(P)H.
The mutation introduced at position 86 (i.e. I86A) creates
additional space in the small binding pocket, which is occu-
pied by the indole ring of W110. This new conformation of
W110 maximizes the C–H⋯π interactions with the cyclohexane
ring of 1a, and thus favors the pro-(S) attack (see Fig. 5, I86A
pro-(S)).

In the MD simulations, when 1a rotates to explore pro-(R)
conformations, long hydride transfer distances are observed
due to the displacement of the NAD(P)H cofactor (see Fig. 4,
I86A pro-(R) B). MD simulations starting from the pro-(R) con-
formation (Fig. S4†) show that the substrate stays most of the
time in the pro-(R) orientation, but again leads to the displace-
ment of the NAD(P)H cofactor and thus results in a non-cata-
lytic configuration. The analysis of non-covalent interactions
in this pro-(R) conformation reveals that most of the above
mentioned interactions with W110, H59, and Y267 are lost
(see Fig. 5, I86A pro-(R)). These results point out that although
1a can adopt both pro-(R) and pro-(S) orientations, pro-(S) is
the catalytically competent pose as only with this orientation
both 1a and NAD(P)H are properly positioned for the catalysis.

3. Conclusions
Our MD simulations indicate that the poor selectivity of the
WT TbSADH enzyme is due to the possible positioning of the
substrate in both pro-(R) and pro-(S) orientations. The pro-(R)
conformation is, however, substantially favoured due to stron-
ger non-covalent interactions between the substrate and the
enzyme active site. TbSADHW110T presents a substantially
wider active site, especially the large binding pocket, which
allows the substrate to explore pro-(R) conformations with cata-
lytically active hydride transfer distances. In the pro-(R) confor-
mation, C–H⋯π interactions are observed between the cyclo-
hexane ring and active site residues H59 and Y267. The intro-
duced threonine residue at position 110 also allows the for-
mation of stabilizing interactions between its side-chain and
the bromide group of 1a. TbSADHI86A enzyme variant shows a
significantly different behaviour revealing a highly pre-orga-
nized active site for the pro-(S) conformation with catalytically
efficient distances. The introduced I86A mutation enlarges the
small binding pocket, and induces a conformational change in
W110 that optimally positions the indole group for enhanced
C–H⋯π interactions with the cyclohexane ring of the substrate.
The combination of MD simulations, theozyme calculations,

and in-depth analysis of the active site pocket through the
computational tools POVME and NCIplot allows us to rational-
ise the effect of these two key active site mutations in the
enantioselectivity of the zinc-dependent TbSADH enzyme.
Given that many studies based on TbSADH and TeSADH target
the same active site mutations, we believe that the obtained
results are rather general. Our results also highlight the feasi-
bility of MD simulations, coupled with POVME and NCIplot
calculations for the engineering of natural enzyme active sites
for enhanced activity and selectivity.

Computational methods

MD simulations in explicit water were performed using
AMBER 16 package4 and starting from the PDB structure:
1YKF.33 The W110T and I86A variants were generated using
the mutagenesis tool included in PyMOL (http://www.pymol.
org). Parameters for substrate 1a for the MD simulations were
generated within the antechamber module of AMBER 16 using
the general AMBER force field (GAFF),36 with partial charges
set to fit the electrostatic potential generated at the B3LYP/6-
31G(d) level by the restrained electrostatic potential (RESP)
model.37 The charges were calculated according to the Merz–
Singh–Kollman scheme38,39 using Gaussian 09.40 Amino acid
protonation states were predicted using the H++ server (http://
biophysics.cs.vt.edu/H++).41 We have used the bonded model
for Zn and the residues of the first coordination sphere, in par-
ticular we used the Seminario approach42 to obtain the metal
parameters needed for the simulation as implemented in Prof.
Ryde program.43 The optimization, frequencies and charge cal-
culations to obtain the parameters were done at the B3LYP/6-
31G(d) level using Gaussian 09.40 The parameters for NAD(P)H
were extracted from previous studies by Prof. Ryde.44,45 The
WT enzyme (PDB: 1YKF) and variant were solvated in a pre-
equilibrated truncated cuboid box with a 10 Å buffer of
TIP3P46 water molecules using the AMBER16 leap module,
resulting in the addition of ca. 11 000 solvent molecules. The
system was neutralized by the addition of explicit counterions
(Na+ and Cl−). All calculations were done using the ff14SB
Amber force field.47 A two-stage geometry optimization
approach was performed. The first stage minimizes the posi-
tions of solvent molecules and ions imposing positional
restraints on the solute by a harmonic potential with a force
constant of 500 kcal mol−1 Å−2, and the second stage is an
unrestrained minimization of all the atoms in the simulation
cell. The systems are gently heated using six 50 ps steps, incre-
menting the temperature 50 K each step (0–300 K) under con-
stant volume and periodic boundary conditions. Water mole-
cules were treated with the SHAKE algorithm such that the
angle between the hydrogen atoms is kept fixed. Long-range
electrostatic effects were modeled using the particle-mesh-
Ewald method.48 An 8 Å cutoff was applied to Lennard-Jones
and electrostatic interactions. Harmonic restraints of 10 kcal
mol−1 were applied to the solute, and the Langevin equili-
bration scheme was used to control and equalize the tempera-
ture. The time step was maintained at 1 fs during the heating
stages, allowing potential inhomogeneities to self-adjust. Each
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system was then equilibrated without restrains for 2 ns with a
2 fs time step at a constant pressure of 1 atm and a tempera-
ture of 300 K. After the systems were equilibrated in the NPT
ensemble, 3 independent five hundred nanosecond MD simu-
lations were performed under the NVT ensemble and periodic-
boundary conditions.

The theozyme calculations for the hydride transfer step were
performed at the B3LYP/6-31G(d) level of theory using
Gaussian 09.40 Active site volume calculations were performed
with the computational tool POVME 2.0.31
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COMPUTATIONAL METHODS WITH FULL REFERENCES 
 
 
Molecular Dynamics Simulations. MD simulations in explicit water were performed using AMBER 16 package1 

and  starting  from  the  PDB  structure:  1YKF.2  The  I86A  and  W110T  variants  were  generated  using  the 

mutagenesis  tool  included  in  PyMOL  (http://www.pymol.org).  Parameters  for  substrate  1a  for  the  MD 

simulations were generated within the antechamber module of AMBER 16 using the general AMBER force field 

(GAFF),3 with partial charges set to fit the electrostatic potential generated at the B3LYP/6‐31G(d) level by the 

restrained  electrostatic  potential  (RESP) model.4  The  charges were  calculated  according  to  the Merz‐Singh‐

Kollman  scheme5, 6  using Gaussian  09.7  Amino  acid  protonation  states were predicted using  the H++  server 

(http://biophysics.cs.vt.edu/H++).8  We  have  used  the  bonded  model  for  Zn  and  the  residues  of  the  first 

coordination sphere,  in particular we used the Seminario approach9  to obtain the metal parameters needed 

for  the  simulation  as  implemented  in  Prof.  Ryde  program.10  The  optimization,  frequencies  and  charge 

calculations  to  obtain  the  parameters  was  done  at  the  B3LYP/6‐31G(d)  level  using  Gaussian  09.7  The 

parameters for NAD(P)H were extracted from previous studies by Prof. Ryde.11, 12 The Wild‐Type (WT) enzyme 

(PDB:  1YKF)  and  variants  were  solvated  in  a  pre‐equilibrated  truncated  cuboid  box  with  a  10‐Å  buffer  of 

TIP3P13  water  molecules  using  the  AMBER16  leap  module,  resulting  in  the  addition  of  ca.  9,000  solvent 

molecules. The system was neutralized by addition of explicit counterions (Na+ and Cl−). All calculations were 

done using  a modification of  the  ff99SB  force  field  (ff14SB).14 A  two‐stage  geometry  optimization  approach 

was  performed.  The  first  stage  minimizes  the  positions  of  solvent  molecules  and  ions  imposing  positional 

restraints on solute by a harmonic potential with a force constant of 500 kcal mol−1 Å−2, and the second stage is 

an unrestrained minimization of all the atoms in the simulation cell. The systems are gently heated using six 

50‐ps  steps,  incrementing  the  temperature  50  K  each  step  (0–300  K)  under  constant  volume  and  periodic 

boundary conditions. Water molecules were treated with the SHAKE algorithm such  that  the angle between 

the  hydrogen  atoms  is  kept  fixed.  Long‐range  electrostatic  effects  were  modeled  using  the  particle‐mesh‐

Ewald  method.15  An  8‐Å  cutoff  was  applied  to  Lennard‐Jones  and  electrostatic  interactions.  Harmonic 

restraints  of  10  kcal/mol  were  applied  to  the  solute,  and  the  Langevin  equilibration  scheme  was  used  to 

control  and  equalize  the  temperature.  The  time  step  was  kept  at  1  fs  during  the  heating  stages,  allowing 

potential inhomogeneities to self‐adjust. Each system was then equilibrated without restrains for 2 ns with a 2‐

fs timestep at a constant pressure of 1 atm and temperature of 300 K. After the systems were equilibrated in 

the NPT ensemble, 3 independent five hundred nanosecond MD simulations were performed under the NVT 

ensemble and periodic‐boundary conditions. 

 
The theozyme calculations for the hydride transfer step were performed at the B3LYP/6‐31G(d)  level 
of theory using Gaussian 09.7 Active site volume calculations were performed with the computational 
tool POVME 2.0.16  
 
 
 
 
   



Table S1. Volume calculated (Å3) on the different variants on the small and big pocket without 1a in the 3 most 
populated clusters using POVME16.  

  WT TbSADH  TbSADHI86A  TbSADHW110T 
Pockets  Prelog  Anti‐Prelog  Prelog  Anti‐Prelog  Prelog  Anti‐Prelog 

  C0  C1  C2  C0  C1  C2  C0  C1  C2  C0  C1  C2  C0  C1  C2  C0  C1  C2 
Small  78  62  68  77  79  72  91  86  84  93  98  83  ‐  ‐  ‐  ‐  ‐  ‐ 
Large  97  99  83  104  104  115  ‐  ‐  ‐  ‐  ‐  ‐  197  145  154  174  168  155 

 
Table S2. Calculation of the %ee of pro‐(R) and pro‐(S) conformations. *Calculation of the conformations taking 
into account distances lower than 4.5 Å (closer the catalytic distance) and their corresponding angles are used 
to  classify  the  pro‐(R)  and  pro‐(S)  conformations.  CR/S  is  the  productive  number  of  pro‐(R)  and  pro‐(S) 
conformations, N is the total number of frames in the MD simulation.   
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Variants    R*  S*  % ee (R)  % ee (S) 

WT TbSADH  Pro‐(S)  0.36  0.20  29  ‐ 
Pro‐(R)  0.68  0.08  79  ‐ 

TbSADHI86A  Pro‐(S)  0.02  0.51  ‐  92 
Pro‐(R)  0.69  0.16  62  ‐ 

TbSADHW110T  Pro‐(S)  0.33  0.12  47  ‐ 
Pro‐(R)  0.45  0.03  88  ‐ 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure S1. Representation of the selected angle between T38 (C), 1a (C5) and 1a (C3) for the determination of 
pro‐(S) (A) and pro‐(R) (B) orientations. The atoms involved in the angle and in the hydride transfer are shown 
in spheres. 
 
 



 

 

Figure  S2. Representation of  some  representative  snapshots of  the different  conformational  states  sampled 
along the MD simulations for TbSADH starting from the pro‐(S) orientation of 1a. The histogram of the hydride 
transfer distance together with the pro‐(R)/pro‐(S) angle (detailed in Figure S1) is displayed. 

 

 

Figure  S3. Representation of  some  representative  snapshots of  the different  conformational  states  sampled 
along  the  MD  simulations  for  the  TbSADHW110T  starting  from  the  pro‐(S)  (in  blue)  orientations  of  1a.  The 
histogram  of  the  hydride  transfer  distance  together with  the pro‐(R)/pro‐(S)  angle  (detailed  in  Figure  S1)  is 
displayed. 



 

Figure  S4. Representation of  some  representative  snapshots of  the different  conformational  states  sampled 
along  the  MD  simulations  for  TbSADHI86A  starting  from  the  pro‐(R)  (in  orange)  orientations  of  1a.  The 
histogram  of  the  hydride  transfer  distance  together with  the pro‐(R)/pro‐(S)  angle  (detailed  in  Figure  S1)  is 
displayed.



 

 
Figure S5. Root Mean Square Fluctuation (RMSF, in Å) along the microsecond timescale MD simulations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  S6.  Representation  of  1a  conformations  sampled  along  the  MD  simulations  for  the  TbSADHW110T  , 
TbSADH and TbSADHI86A. The histogram of the hydride transfer distance together with the dihedral of the chair 
of 1a (C1, C6, C5, C4) is displayed. 
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Figure  S7.  Representation  of  the  pro‐(R)/pro‐(S)  conformations  sampled  along  the MD  simulations  for WT 
TbSADH,  TbSADHW110T,  and  TbSADHI86A.  The  histogram  of  the  hydride  transfer  distance  together  with  the 
dihedral of 1a (C3, C5, C1) and C (NAD(P)H, i.e. hydride transfer carbon) is displayed. Atoms used to calculate 
the dihedral angle are shown in spheres. 
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Figure  S8.  TS  calculations  for  equatorial  (a)  and  axial  (c)  attacks,  followed  by  their  respective  chemdraw 
representations. 
 
Dataset S1. Optimized Cartesian coordinates for the TS corresponding to the equatorial attack. 
C    1.787437    1.125009    1.433691    
 C    0.015505    1.967248    ‐0.183447   
 C    1.122809    2.568934    ‐1.088241   
 C    2.894615    1.747238    0.542756    
 H    ‐0.838897   1.657653    ‐0.792277   
 H    1.476635    1.853329    2.190716    
 H    2.170144    0.234133    1.938962    
 H    1.387609    1.825490    ‐1.853071   
 H    0.742288    3.452516    ‐1.606558   
 H    3.275205    0.970779    ‐0.135035   
 H    3.733844    2.068696    1.168569    
 H    ‐0.318991   2.726421    0.531164    
 C    2.352647    2.898518    ‐0.280793   
 C    0.578201    0.763950    0.572228    
 C    2.952933    4.087893    ‐0.219666   
 O    0.581346    ‐0.371383   ‐0.087695   
 Br   2.388460    5.642809    ‐1.200481   
 H    3.827454    4.296858    0.383700    
 C    1.337269    ‐5.247790   ‐0.621626   
 S    0.210596    ‐3.785782   ‐0.722782   
 C    ‐0.872518   ‐0.465519   ‐3.256821   
 O    ‐1.473963   ‐0.641159   ‐1.980598   



 C    6.946485    ‐1.435586   ‐1.363926   
 C    5.477721    ‐1.701110   ‐1.352834   
 C    4.546963    ‐1.690375   ‐0.345452   
 N    4.759984    ‐2.037201   ‐2.489192   
 C    3.464276    ‐2.213680   ‐2.150074   
 N    3.298887    ‐2.010788   ‐0.851535   
 C    2.755433    ‐2.574335   4.270317    
 C    1.821436    ‐2.543972   3.063093    
 O    0.624535    ‐2.838857   3.192478    
 O    2.399601    ‐2.181645   1.958585    
 N    ‐3.750303   ‐0.095630   0.998582    
 C    ‐3.489546   1.110464    1.579755    
 C    ‐2.357536   1.332747    2.316805    
 C    ‐1.324152   0.299188    2.379866    
 C    ‐1.764437   ‐1.019127   1.946210    
 C    ‐2.909803   ‐1.162566   1.230498    
 C    ‐2.075935   2.637565    2.974554    
 N    ‐3.141798   3.443769    3.253770    
 O    ‐0.913187   2.979713    3.216944    
 C    ‐4.924850   ‐0.200903   0.097054    
 C    ‐4.641117   0.374531    ‐1.314182   
 C    ‐5.601567   ‐0.463551   ‐2.170026   
 C    ‐5.553070   ‐1.835896   ‐1.482626   
 C    ‐4.496909   ‐2.784499   ‐2.036125   
 O    ‐4.849593   1.764386    ‐1.407051   
 O    ‐6.874407   0.171331    ‐2.029336   
 O    ‐5.278064   ‐1.545139   ‐0.073702   
 H    ‐3.508582   ‐2.313094   ‐2.066781   
 H    ‐4.436724   ‐3.681205   ‐1.411138   
 H    ‐5.732816   0.363004    0.581066    
 H    ‐3.601113   0.166014    ‐1.583104   
 H    ‐5.299072   ‐0.512115   ‐3.221237   
 H    ‐6.541811   ‐2.304256   ‐1.509488   
 H    ‐5.810234   1.869444    ‐1.548005   
 H    ‐7.456974   ‐0.130036   ‐2.743517   
 H    ‐0.376227   0.630674    1.533465    
 H    ‐0.679058   0.333259    3.259464    
 H    ‐4.236209   1.877120    1.407530    
 H    ‐4.066920   3.055710    3.375455    
 H    ‐2.943270   4.286888    3.777629    
 H    ‐1.150990   ‐1.883066   2.177741    
 H    ‐3.259836   ‐2.109878   0.845674    
 H    ‐1.664506   ‐0.537294   ‐4.008084   
 H    ‐0.391866   0.518453    ‐3.359174   
 H    ‐0.123479   ‐1.241105   ‐3.471628   
 H    ‐4.768892   ‐3.096070   ‐3.050938   
 H    7.198306    ‐0.588643   ‐2.013107   
 H    7.287507    ‐1.200280   ‐0.352668   
 H    7.510860    ‐2.305773   ‐1.719306   
 H    5.138852    ‐2.136542   ‐3.422390   
 H    ‐0.764386   ‐0.580118   ‐1.299600   
 H    2.308655    ‐5.029591   ‐1.074908   
 H    1.498531    ‐5.555106   0.416099    
 H    0.883700    ‐6.083743   ‐1.161826   
 H    4.683076    ‐1.487739   0.705664    
 H    2.689781    ‐2.489611   ‐2.849811   
 H    3.144690    ‐1.567976   4.463005    



 H    2.232927    ‐2.934338   5.159132    
 H    3.617603    ‐3.218485   4.066375    
 Zn   1.534876    ‐2.112381   0.196976 
 
 
Dataset S2. Optimized Cartesian coordinates for the TS corresponding to the axial attack 
N    4.653884    ‐2.347811   ‐2.466331   
 N    3.213009    ‐2.195351   ‐0.817006   
 C    1.164852    ‐5.461163   ‐0.321457   
 C    ‐0.895516   ‐0.885553   ‐3.303573   
 C    6.822327    ‐1.515092   ‐1.457850   
 C    5.368599    ‐1.846952   ‐1.390258   
 C    4.450716    ‐1.760820   ‐0.374846   
 C    3.372545    ‐2.542822   ‐2.085272   
 C    2.635038    ‐2.661780   4.318216    
 C    1.711581    ‐2.629025   3.103192    
 O    ‐1.522512   ‐0.912624   ‐2.028384   
 O    0.506219    ‐2.892778   3.227441    
 O    2.305988    ‐2.301919   1.997152    
 S    0.119748    ‐3.969492   ‐0.640993   
 Zn   1.447057    ‐2.282020   0.236115    
 H    ‐1.677177   ‐1.008361   ‐4.059227   
 H    ‐0.381688   0.068198    ‐3.494031   
 H    ‐0.169108   ‐1.701707   ‐3.423772   
 H    7.025552    ‐0.746396   ‐2.212786   
 H    7.160452    ‐1.136878   ‐0.489893   
 H    7.426262    ‐2.395091   ‐1.708774   
 H    5.025580    ‐2.542566   ‐3.387368   
 H    ‐0.823913   ‐0.797690   ‐1.342589   
 H    2.171799    ‐5.331520   ‐0.729308   
 H    1.246968    ‐5.668546   0.749693    
 H    0.704799    ‐6.327347   ‐0.805607   
 H    4.594064    ‐1.428554   0.641848    
 H    2.602668    ‐2.935619   ‐2.732325   
 H    3.066512    ‐1.667896   4.483028    
 H    2.092199    ‐2.972660   5.213314    
 H    3.469658    ‐3.348595   4.139973    
 N    ‐3.553408   0.137370    0.962291    
 N    ‐2.988358   3.827792    2.918280    
 C    ‐3.291436   1.392947    1.421827    
 C    ‐2.136381   1.693675    2.095243    
 C    ‐1.078713   0.689182    2.194281    
 C    ‐1.521746   ‐0.670154   1.919383    
 C    ‐2.694875   ‐0.893682   1.269072    
 C    ‐1.899649   3.030968    2.703476    
 C    ‐4.769569   ‐0.070285   0.137630    
 C    ‐4.551635   0.305425    ‐1.349258   
 C    ‐5.578360   ‐0.609532   ‐2.032185   
 C    ‐5.526970   ‐1.879920   ‐1.169943   
 C    ‐4.546185   ‐2.939353   ‐1.656119   
 O    ‐0.754143   3.410146    2.973010    
 O    ‐4.734843   1.676344    ‐1.615120   
 O    ‐6.825868   0.079193    ‐1.912396   
 O    ‐5.140817   ‐1.419966   0.166374    
 H    ‐3.546495   ‐2.519409   ‐1.810929   
 H    ‐4.475929   ‐3.747565   ‐0.921047   
 H    ‐5.547672   0.566018    0.578945    



 H    ‐3.533369   0.032050    ‐1.642442   
 H    ‐5.336981   ‐0.807986   ‐3.081435   
 H    ‐6.531319   ‐2.303309   ‐1.069745   
 H    ‐5.699347   1.789478    ‐1.718690   
 H    ‐7.451777   ‐0.288966   ‐2.554956   
 H    ‐0.157006   0.921432    1.254308    
 H    ‐0.393335   0.820223    3.032631    
 H    ‐4.061618   2.128246    1.220565    
 H    ‐3.908570   3.427880    3.039049    
 H    ‐2.815819   4.689607    3.420673    
 H    ‐0.908606   ‐1.511739   2.226072    
 H    ‐3.051803   ‐1.877960   1.001003    
 H    ‐4.898042   ‐3.369468   ‐2.600653   
 C    0.314843    1.763893    ‐0.766831   
 C    0.749232    0.687008    0.231558    
 C    2.069186    0.963273    0.951861    
 C    2.221863    2.420667    1.426356    
 C    1.908935    3.390576    0.305343    
 C    0.535154    3.212038    ‐0.287643   
 C    2.821251    4.286471    ‐0.071039   
 O    0.508604    ‐0.544446   ‐0.145952   
 Br   2.558589    5.580799    ‐1.471522   
 H    2.186986    0.264718    1.786633    
 H    0.912719    1.586914    ‐1.673253   
 H    ‐0.731659   1.600059    ‐1.045813   
 H    1.515102    2.611597    2.244311    
 H    3.232496    2.576803    1.817614    
 H    ‐0.196429   3.454396    0.492475    
 H    0.370451    3.902922    ‐1.118263   
 H    2.867069    0.728376    0.231653    
 H    3.800580    4.385869    0.380189 
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4.2 Inducing high activity of a thermophilic enzyme at ambient temperature 

by directed evolution 

 

 
 

 
Li, G.; Maria-Solano, M. A., Romero-Rivera, A., Osuna, S.*, Reetz, M.* Inducing High Activity of a 
Thermophilic Enzyme At Ambient Temperature by Directed Evolution, Chem.Commun. 2017, 53, 9454-9457. 
[Chemistry, Multidisciplinary, 6.319, Q1]. https://doi.org/10.1039/C7CC05377K 
 

The work included in this chapter has been carried out in collaboration with an experimental 
group led by Manfred Reetz. The directed evolution strategy for the generation of the evolved 
variant was performed by the Reetz group, while the computational exploration and its 
subsequent analysis for the rationalization of the enhanced enzyme properties by our group. 
 
 

 
 
 
 
 
 
 
 
Abstract 
 
The long-standing problem of achieving high activity of a thermophilic enzyme at low 
temperatures and short reaction times with little tradeoff in thermostability has been solved by 
directed evolution, an alcohol dehydrogenase found in hot springs serving as the catalyst in 
enantioselective ketone reductions.  
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Inducing high activity of a thermophilic enzyme at
ambient temperatures by directed evolution†

Guangyue Li,ab Miguel A. Maria-Solano,c Adrian Romero-Rivera,c Sı́lvia Osuna *c

and Manfred T. Reetz *ab

The long-standing problem of achieving high activity of a thermo-

philic enzyme at low temperatures and short reaction times with

little tradeoff in thermostability has been solved by directed evolution,

an alcohol dehydrogenase found in hot springs serving as the catalyst

in enantioselective ketone reductions.

Robust enzymes derived from thermophilic organisms that thrive
under extreme conditions as in hot springs are valuable catalysts in
such processes as paper production, baking, laundry detergents
and waste-treatment which operate at elevated temperatures.1,2 At
room temperature these enzymes generally show no activity or low
turnover, which is inacceptable for other types of applications, as in
the production of chiral pharmaceuticals or other fine chemicals.3

For practical (industrial) applications, maximal stability and activity
are needed, yet these appear to be opposing properties. Combining
the virtues of pronounced enzyme robustness with high activity at
ambient temperatures would lower energy expenditure and enable
shorter reaction times under operating conditions, enabling high
space-time yields.3,4 A limited number of protein engineering studies
of such thermostable enzymes using rational design or directed
evolution based on mutator strains, epPCR and/or DNA shuffling
have appeared.5 The improvements proved to be moderate, generally
with a tradeoff in thermostability.

The present study likewise focuses on increasing activity
of a (hyper)thermally stable enzyme, but this time utilizing a
different directed evolution technique. Our goal is opposite to that
of conventional thermostabilization of mesophilic enzymes by
directed evolution, the usual alternative that is generally accom-
panied by a tradeoff in activity. For example, Arnold et al. applied
six cycles of random mutagenesis and DNA shuffling to the

p-nitrobenzyl esterase from Bacillus subtilis in order to enhance
thermostability, the melting temperature (Tm) increasing from
57 1C to 71 1C, and the kcat-value decreasing from 720 s!1 to
470 s!1 at 30 1C.6 This kind of approach has been reviewed.7 The
mutational effects have been traced to protein rigidification due
to newly introduced intramolecular H-bonds and salt bridges as
well as disulfide bond formations. In the present approach the
opposite effect can be anticipated, namely increased flexibility
especially around the active site. Thus, a strategy complementary
to the traditional approach would be of theoretical and practical
interest. As will be seen, our results are also relevant to the current
debate in evolutionary biology regarding changes of enzyme
activity and stability starting from a hot environment to a cooled
earth over a period of three billion years.8

As the model thermophilic enzyme we chose the NAD(P)H-
and Zn-dependent alcohol dehydrogenase TbSADH9,10 from
Thermoanaerobacter brockii, first discovered in the hot springs
of Yellowstone Park.9a It is identical to Thermoanaerobacter
ethanolicus (TeSADH) from a different source, a previously used
designation. In the purified form this ADH displays high
thermostability as demonstrated by a half-life of 1.7 hours at
90 1C and 1.2 days at 80 1C.9f Thermostability as measured by
differential scanning microcalorimetry is Tm = 98.5 1C.9e Using
circular dichroism (CD), we determined Tm to be 90 1C, which is in
the range of many hyperthermally stable enzymes.5 It has been
noted that in the reduction of a variety of structurally different
ketones at ambient temperatures using this enzyme long reaction
times of several days are needed,9b and keto-esters require 72 1C
for reasonable conversion,11a as also reported for other thermo-
philic ADHs.11b In other cases, overnight reactions had to be
performed.9 In previous studies, protein engineering of TbSADH
was applied for various purposes, including the increase and
reversal of stereoselectivity for different substrates,12 but a
significant tradeoff in stability was often noted12f,g or thermo-
stability was not measured.12e

The purpose of the present study was to evolve high activity of a
thermophilic enzyme at low temperatures, enabling short reaction
times for complete conversion while maintaining robustness.
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Catalonia, Spain. E-mail: silvia.osuna@udg.edu

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c7cc05377k

Received 13th July 2017,
Accepted 1st August 2017

DOI: 10.1039/c7cc05377k

rsc.li/chemcomm

ChemComm

COMMUNICATION

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 0
4 

A
ug

us
t 2

01
7.

 D
ow

nl
oa

de
d 

on
 1

0/
30

/2
02

0 
5:

55
:2

7 
PM

. 
 T

hi
s a

rti
cl

e 
is 

lic
en

se
d 

un
de

r a
 C

re
at

iv
e 

Co
m

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0003-3657-6469
http://orcid.org/0000-0001-6246-647X
http://crossmark.crossref.org/dialog/?doi=10.1039/c7cc05377k&domain=pdf&date_stamp=2017-08-09
http://rsc.li/chemcomm
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7cc05377k
https://pubs.rsc.org/en/journals/journal/CC
https://pubs.rsc.org/en/journals/journal/CC?issueid=CC053068


This journal is©The Royal Society of Chemistry 2017 Chem. Commun., 2017, 53, 9454--9457 | 9455

The TbSADH-catalyzed asymmetric reduction of acetophenone
(1a) was chosen as the model system with enantioselectivity
playing a secondary role (Scheme 1). Like many other thermo-
stable ADHs,13 TbSADH shows very low activity towards 1a (and
similar substrates)9,11a at 30 1C, and requires extended reaction
times and more forcing conditions (e.g., overnight at 50–60 1C).9

The wildtype (WT) is slightly (S)-selective (17–18% ee).12g

Two crystal structures of TbSADH have been reported,10 one
containing NAD(P)H which is the catalytically active form displaying
an open binding pocket and a wide ‘‘entrance channel’’.10a We
employed this structure (1YKF) in order to build a model for docking
substrate 1a into the binding pocket. In this way 13 residues were
identified for potential saturation mutagenesis, 10 surrounding
the substrate [C37, S39, A85, I86, L107, W110, T154, Y267, L294
and C295], and the rest occupying positions in the entrance
channel [I49, C283 and M285] (Fig. 1). These positions were then
subjected individually to NNK-based saturation mutagenesis in
which all 20 canonical amino acids are used as combinatorial
building blocks, requiring in each case the screening of B96
transformants for 95% library coverage.14

In the mini-libraries generated by randomization at positions
85, 86, 110, 283, 285 and 294, several mutants were discovered
showing more than a 2-fold activity improvement, namely A85G,
I86C, I86E, I86A, W110I, W110L, W110E, C283V, M285L, M285V,
L294T and L294V. The libraries created at the other seven positions
failed to harbor significantly improved variants (Table S1, ESI†).
This information was then used as a basis for performing satura-
tion mutagenesis at a relatively large 6-residue randomization site
defined by the above hot spots. The use of NNK codon degeneracy
would require for 95% library coverage the screening of 4109

transformants.14 As a practical alternative requiring only 1728
transformants, an appropriate reduced amino acid alphabet14,15

was designed individually for each one of the six residues (Table S2,
ESI†). The choice of the respective building blocks was guided by
the amino acid substitutions that had shown positive effects in the
initial NNK-based single libraries. This library harbored several
distinctly improved variants (Table S3, ESI†), the best ones being
TbSADH-1 (A85G/I86A) and TbSADH-2 (A85G/I86C) as shown by
kinetic experiments using purified proteins (Table 1). At 30 1C
the two variants show, relative to WT, 58- and 52-fold increases
in kcat and 301- and 61-fold improvements in catalytic efficiency
(kcat/Km), respectively. At 45 1C, variants TbSADH-1 and TbSADH-2
also show notably better catalytic performance than WT, namely
51- and 36-fold increases in kcat and improvements in kcat/Km by
factors of 216 and 52-fold, respectively.

The best mutants TbSADH-1 and TbSADH-2 were tested in
upscaled reactions at different temperatures using 50 mM of
substrate 1a in 1 mL of reaction volume (Table S4, ESI†).
Excellent results were achieved, e.g., at 30 1C both variants
ensured 96% conversion within 1.5 hour with complete enantio-
selectivity (499% ee (R)). In contrast, at the same temperature
WT TbSADH required 20 hours for a mere 4% conversion and
17% ee (S). In further experiments, whole cell catalysis at 30 1C
using TbSADH-1 and TbSADH-2 was successfully performed
using substrate 1a at concentrations ranging between 200 mM
to 2 M (Table S5, ESI†).

We also measured the kinetics of WT TbSADH and variants
TbSADH-1 and TbSADH-2 using ketones 1b–d, revealing similar
activity increases (Table S6, ESI†). Synthetically useful results
were achieved once more, e.g., in the case of 1b both variants
reaching 96% conversion within one hour with 98% ee (R) (Table S7,
ESI†). At the same temperature WT TbSADH led to less than 5%
conversion after 20 hours with poor (S)-selectivity (27% ee).

The thermostability of both variants was measured by deter-
mining the melting temperature (Tm) using circular dichroism.
Relative to WT TbSADH (Tm = 90 1C), the robustness of the two

Scheme 1 Asymmetric reduction of ketones 1a–d catalyzed by TbSADH
mutants.

Fig. 1 TbSADH structure model showing docked acetophenone (1a) as
substrate (in purple) based on the crystal structure of wildtype (1YKF),8a

which served as a guide for choosing amino acid positions for saturation
mutagenesis (in pink).

Table 1 Kinetic results using acetophenone (1a) as substrate

Enzyme Mutations Km (mM) kcat (min!1) kcat/Km (min!1 M!1)

30 1C WT TbSADH 19.01 " 1.68 1.80 " 0.07 94
TbSADH-1 A85G/I86A 3.70 " 0.17 104.76 " 1.31 28 313
TbSADH-2 A85G/I86C 16.20 " 2.46 93.15 " 2.35 5750

45 1C WT TbSADH 20.78 " 1.25 3.79 " 0.15 182
TbSADH-1 A85G/I86A 4.95 " 0.25 194.54 " 3.14 39 301
TbSADH-2 A85G/I86C 14.47 " 2.05 136.04 " 9.32 9402
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best variants TbSADH-1 (Tm = 84 1C) and TbSADH-2 (Tm =
87.5 1C) is lowered by only 6 1C and 2.5 1C, respectively (Fig. S1
and Table S9, ESI†).

We then performed Molecular Dynamics (MD) simulations
on the WT enzyme and the A85G/I86A variant, firstly for
explaining the origin of dramatically enhanced activity at
ambient temperature, and secondly to understand the reversed
enantioselectivity (see ESI† for computational details). In Fig. 2
and Fig. S7 (ESI†), an overlay of representative snapshots from
the MD simulations performed in the apo state is represented,
together with the Root Mean Square Fluctuations (RMSF) of
all residues at 30 and 45 1C. The analysis of RMSF allows us to
identify the most flexible regions of the enzyme structure, and
rationalize the effect of the A85G/I86A mutations on the TbSADH
conformational dynamics. The loop composed of residues 87–110
that partially covers the active site of the enzyme (represented in
yellow in Fig. 2A and B) is quite rigid in the case of the WT enzyme.
The introduction of A85G/I86A induces a higher flexibility on
the active site 87–110 loop, which is mainly due to a change in the
backbone conformation of residues 106–107 as observed in the
Ramachandran plot (see Fig. S8, and ESI† Movies). Residues
106–107 are located close to the active site, and make hydro-
phobic interactions with the substrate (see below). The change in
the backbone conformation of 106–107 increases the volume of
the active site (from ca. 96 Å3 for WT to ca. 117 Å3 for A85G/I86A),
(Fig. S9 and Table S12, ESI†).

The higher flexibility of the A85G/I86A variant, especially
in the active site loop, confers the enzyme the ability to change
the shape of the active site easily and to adapt to the new
non-natural substrate, thus leading to higher activity at low
temperatures.

We have also performed MD simulations in the presence of
acetophenone (1a) to elucidate the origin of reversed enantio-
selectivity as done in a previous study (see ESI† for details).16

The higher flexibility of the active site loop 87–110 in the A85G/
I86A variant plays a key role in dictating the enantioselectivity

of the process. In WT, L107 occupies the small binding pocket
of the enzyme forcing 1a to position the phenyl group in the
large binding pocket. This orientation maximizes the CH# # #p
and CH# # #CH interactions of 1a and W110, L107, A85, and
favors the pro-(S) pose. The higher flexibility of the active site
loop in the A85G/I86A variant allows 1a to position the phenyl
ring in the small binding pocket, thus favoring the formation of
the (R)-product. This pro-(R) orientation is stabilized by CH# # #p
and CH# # #CH interactions between 1a and residues W110, A86,
and L294 (see Fig. S10 and S11, ESI†).

In conclusion, we have applied an efficient directed evolu-
tion strategy to evolve high activity of the thermophilic alcohol
dehydrogenase TbSADH at ambient temperatures with little
tradeoff in thermostability. Ketones such as acetophenone are
rapidly reduced with pronounced enantioselectivity (99% ee) at
ambient temperatures within short reaction times. The high
thermostability of the mutant(s) suggests that further mutational
changes if needed for other purposes can be tolerated.17 The
respective molecular phenomenon, uncovered by MD simulations,
points to notably enhanced flexibility of an active site loop.
A comparison of the movies of the wildtype and one of the
mutants at the respective binding pockets nicely visualizes the
underlying effect. This confers the active site pocket higher
plasticity and the ability to adapt to new non-natural substrates
at lower temperatures. Higher flexibility of the active site loop
also has implications in the enantioselectivity of the process, as
it changes the preferred orientation of the substrate in the
active site pocket.

Our findings have bearing on a recent study in which the
putative evolutionary drivers of thermoadaptation in enzyme
catalysis were identified.8a On the basis of the hot-start hypothesis
of ancestral proteins,8 the authors note that ‘‘the challenge of
evolving efficient enzymatic turnover at lower temperatures has
not been addressed’’, emphasizing that the traditional concept of
stability/activity tradeoff needs to be questioned in Darwinian
evolution. While care must be taken when comparing natural
with laboratory evolution, our results demonstrate the physical
feasibility of evolving such mutational effects. On the practical
side, the present mutagenesis approach needs to be generalized
by including other (hyper)thermostable enzymes. It will be
interesting to see if flexibilization around the binding pocket is
a general phenomenon characteristic of such enzyme mutants.
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Fig. 2 Overlay of representative snapshots for WT (A) and A85G/I86A
variant (B) in the apo state at 30 1C. Average values of Root Mean Square
Fluctuation (RMSF) of all residues computed from the MD simulations in
the apo state (C).
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pp. 1035–1110; (b) K. Götz, L. Hilterhaus and A. Liese, in Enzyme
Catalysis in Organic Synthesis, ed. K. Drauz, H. Gröger and O. May,
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and S. Osuna, Chem. Commun., 2017, 53, 284–297.

17 J. D. Bloom, S. T. Labthavikul, C. R. Otey and F. H. Arnold, Proc. Natl.
Acad. Sci. U. S. A., 2006, 103, 5869–5874.

Communication ChemComm

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 0
4 

A
ug

us
t 2

01
7.

 D
ow

nl
oa

de
d 

on
 1

0/
30

/2
02

0 
5:

55
:2

7 
PM

. 
 T

hi
s a

rti
cl

e 
is 

lic
en

se
d 

un
de

r a
 C

re
at

iv
e 

Co
m

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7cc05377k


Electronic Supplementary Material (ESI) for ChemComm. 
This journal is © The Royal Society of Chemistry 2017 

 
 
 
 

Inducing High Activity of a Thermophilic Enzyme at Ambient 
Temperatures by Directed Evolution 
Guangyue Li, Miguel A. Maria-Solano, Adrian Romero-Rivera, Sílvia Osuna* and 

Manfred T. Reetz* 

 



Methods 
 

Docking acetophenone (1a) into WT TbSADH 

The X-ray structure1 of TbSADH was used as the basis for docking calculations. The models of WT 
TbSADH was prepared as in a previous study.2 Substrate acetophenone (1a) was prepared for 
docking using ChemDraw. Docking to the WT TbSADH was performed using autodock vina. Ten 
docking poses were requested and a constraint was applied such that only the docking poses in 
which the substrate coordinates to the active site zinc ion were saved. 

 
Molecular dynamics (MD) simulations. 

MD simulations in explicit water were performed using AMBER 16 package4 and starting from the 
PDB structure: 1YKF.1 The A85G/I86A variant was generated using the mutagenesis tool included 
in PyMOL (http://www.pymol.org). Parameters for substrate 1a for the MD simulations were 
generated within the antechamber module of AMBER 16 using the general AMBER force field 
(GAFF),5 with partial charges set to fit the electrostatic potential generated at the B3LYP/6-31G(d) 
level by the restrained electrostatic potential (RESP) model.6 The charges were calculated according 
to the Merz-Singh-Kollman scheme7, 8 using Gaussian 09.9 Amino acid protonation states were 
predicted using the H++ server (http://biophysics.cs.vt.edu/H++).10 We have used the bonded model 
for Zn metal center, the residues of the first coordination sphere and either the substrate or a water 
molecule (apo state) bound.11 In particular we used the Seminario approach12 to obtain the metal 
parameters needed for the simulation as implemented in Prof. Ryde program.13 The optimization, 
frequencies and charge calculations to obtain the parameters was done at the B3LYP/6-31G(d) level 
using Gaussian 09.7 The parameters for NAD(P)H were extracted from previous studies by Prof. 
Ryde.14,15 The wild-type enzyme (PDB: 1YKF) and variant were solvated in a pre-equilibrated 
truncated cuboid box with a 10-Å buffer of TIP3P16water molecules using the AMBER16 leap 
module, resulting in the addition of ca. 9,000 solvent molecules. The system was neutralized by 
addition of explicit counterions (Na+ and Cl−). All calculations were done using a modification of 
the ff99SB force field (ff94SB).17 A two-stage geometry optimization approach was performed. The 
first stage minimizes the positions of solvent molecules and ions imposing positional restraints on 
solute by a harmonic potential with a force constant of 500 kcal mol−1 Å−2, and the second stage is 
an unrestrained minimization of all the atoms in the simulation cell. The systems are gently heated 
using six 50-ps steps, incrementing the temperature 50 K each step (0–300 K, 30ºC and 0-315 K, 
45ºC) under constant volume and periodic boundary conditions. Water molecules were treated with 
the SHAKE algorithm such that the angle between the hydrogen atoms is kept fixed. Long-range 
electrostatic effects were modeled using the particle-mesh-Ewald method.18 An 8-Å cutoff was 
applied to Lennard-Jones and electrostatic interactions. Harmonic restraints of 10 kcal/mol were 
applied to the solute, and the Langevin equilibration scheme was used to control and equalize the 
temperature. The time step was kept at 1 fs during the heating stages, allowing potential 
inhomogeneities to self-adjust. Each system was then equilibrated without restrains for 2 ns with a 
2-fs timestep at a constant pressure of 1 atm and temperature of 300 K. After the systems were 
equilibrated in the NPT ensemble, 5 independent two hundred nanosecond MD simulations were 
performed under the NVT ensemble and periodic-boundary conditions at 30 and 45ºC in the 
substrate-bound and apo states. Therefore, an accumulated simulation time of 1 microsecond has 
been obtained for each variant (WT and A85G/I86A) at each temperature (30 and 45ºC) in both apo 
and substrate-bound states. 

 



Schemes, Tables and Figures 
 
 
 
 
 

 

 
Scheme S1. Prelog and anti-Prelog selectivity for model ketone reductions catalyzed by TbSADH. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



 

 

 
Figure S7. Overlay of some representative MD snapshots for WT (A 30°C, C 45°C) and A85G/I86A 

variant (B 30°C, D 45°C) in the apo state. Average values of Root Mean Square Fluctuation (RMSF) of all 

residues computed from the MD simulations (where the cofactor is not displaced from the active site) in 

apo state (E) 
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Figure S8. Representation of the Ramachandran plots esidues M106 (A, B), and L107 (C, D) for WT en) 

and A85G/I86A variant (red) for all MD ulations in the apo state at 30°C. 
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Figure S9. Active site volume representation of the most populated cluster from the MD simulations in 

the state for WT (A), and A85G/I86A variant (B). These calculations have been performed with 

POVME20 

 

 

 

 

Figure S10. Representations of the most important non-covalent interactions (in green) between the substrate 

1a and the active site for WT (A) and A85G/I86A variant (B), computed with the computational tool 

NCIplot.21 
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Figure S11. Overlay of some representative MD snapshots for WT with 1a in pro-(S) conformation (A 

30°C, C 45°C) and A85G/I86A variant with 1a in pro-(R) conformation (B 30°C , D 45°C). 
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Chapter 5. Allosteric properties and 

stand-alone function of tryptophan 

synthase (TrpS) enzymes 
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5.1 Deciphering the allosterically driven conformational ensemble in 

tryptophan synthase evolution 
 

 
 
Maria-Solano, M.A.; Iglesias-Fernández, J.*; Osuna, S.* Deciphering the allosterically driven conformational 
ensemble in tryptophan synthase evolution, J. Am. Chem. Soc. 2019, 141, 13049-13056. [Chemistry, 
Multidisciplinary, 14.70, Q1]. DOI: 10.1021/jacs.9b03646 
 
The permission to reuse this published article in this thesis has been granted from 
ACSPublications in print and electronic formats. 
 
 
Abstract 
 
Multimeric enzyme complexes are ubiquitous in nature and catalyze a broad range of useful 
biological transformations. They are often characterized by a tight allosteric coupling between 
subunits, making them highly inefficient when isolated. A good example is Tryptophan 
synthase (TrpS), an allosteric heterodimeric enzyme in the form of an αββα complex that 
catalyzes the biosynthesis of L-tryptophan. In this study, we decipher the allosteric regulation 
existing in TrpS from Pyrococcus furiosus (PfTrpS), and how the allosteric conformational 
ensemble is recovered in laboratory-evolved stand-alone β-subunit variants. We find that 
recovering the conformational ensemble of a subdomain of TrpS affecting the relative 
stabilities of open, partially closed, and closed conformations is a prerequisite for enhancing 
the catalytic efficiency of the β-subunit in the absence of its binding partner. The distal 
mutations resuscitate the allosterically driven conformational regulation and alter the 
populations and rates of exchange between these multiple conformational states, which are 
essential for the multistep reaction pathway of the enzyme. Interestingly, these distal mutations 
can be a priori predicted by careful analysis of the conformational ensemble of the TrpS 
enzyme through computational methods. Our study provides the enzyme design field with a 
rational approach for evolving allosteric enzymes toward improved stand-alone function for 
biosynthetic applications. 
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ABSTRACT: Multimeric enzyme complexes are ubiquitous
in nature and catalyze a broad range of useful biological
transformations. They are often characterized by a tight
allosteric coupling between subunits, making them highly
inefficient when isolated. A good example is Tryptophan
synthase (TrpS), an allosteric heterodimeric enzyme in the
form of an αββα complex that catalyzes the biosynthesis of L-
tryptophan. In this study, we decipher the allosteric regulation
existing in TrpS from Pyrococcus furiosus (PfTrpS), and how
the allosteric conformational ensemble is recovered in
laboratory-evolved stand-alone β-subunit variants. We find
that recovering the conformational ensemble of a subdomain
of TrpS affecting the relative stabilities of open, partially
closed, and closed conformations is a prerequisite for enhancing the catalytic efficiency of the β-subunit in the absence of its
binding partner. The distal mutations resuscitate the allosterically driven conformational regulation and alter the populations
and rates of exchange between these multiple conformational states, which are essential for the multistep reaction pathway of
the enzyme. Interestingly, these distal mutations can be a priori predicted by careful analysis of the conformational ensemble of
the TrpS enzyme through computational methods. Our study provides the enzyme design field with a rational approach for
evolving allosteric enzymes toward improved stand-alone function for biosynthetic applications.

■ INTRODUCTION
Allostery is a central biological process in which two distinct
sites within a biomolecule are functionally connected.
Allosteric effects play a key role in protein regulation and
cell signaling, and their functional significance has fostered
many studies for unveiling the underlying forces that drive
allostery.1−3 In enzymatic mechanisms, allosteric interactions
often promote enzyme−substrate binding and product release,
and directly affect catalytic turnover.4−6 Some studies suggest
that allostery is an intrinsic characteristic of enzymes,7 given
the fact that distal active site mutations often confer improved
catalytic properties.8−11 The essential role played by remote
mutations in tuning enzyme activity also indicates that allostery
could be exploited for the engineering of new enzyme
variants.12

Allosteric regulation present in multimeric enzyme com-
plexes makes the isolated subunits, that is, in the absence of
their protein partner, highly inefficient. This is indeed the case
for Tryptophan synthase (TrpS; EC 4.2.1.20). TrpS is a
heterodimeric enzyme complex composed of α-subunits
(TrpA) and β-subunits (TrpB) in an αββα arrangement that
presents an intricate allosteric communication network
between TrpA and TrpB.13−15 TrpA catalyzes the retro-aldol
cleavage of indole-3-glycerol phosphate (IGP) producing

glyceraldehyde-3-phosphate (G3P) and indole; the latter is
able to diffuse through an internal TrpA−TrpB tunnel to reach
the TrpB subunit (see Figure 1).

Received: April 4, 2019
Published: July 29, 2019

Figure 1. Overview of the Tryptophan synthase (TrpS) mechanism.
The enzyme is a heterodimeric complex formed by two subunits:
TrpA (shown in teal) and TrpB (in purple).
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The TrpB resting state is characterized by a pyridoxal
phosphate (PLP)-cofactor covalently linked to the K82 active
site residue, forming a Schiff base intermediate (E(Ain)). After
transamination with L-serine E(Ser), an external aldimine
intermediate E(Aex1) is formed. This intermediate undergoes
deprotonation at Cα, assisted by K82, which is followed by a
rapid elimination of the Aex1 hydroxyl group to form an
electrophilic amino acrylate intermediate E(A−A). In the
dimeric complex, indole formed in TrpA reaches the TrpB
active site and reacts with E(A−A) to form a quinonoid
intermediate E(Q2), which after proton extraction (to recover
indole’s aromatic character) generates E(Q3) (not shown in
Figure 2a). At this point, protonation at Cα of Q3 by K82
forms the E(Aex2) intermediate, which undergoes a second
transamination reaction to finally release the L-tryptophan
E(Trp) product and restore the enzyme resting state (see
Figure 2).15

Previous studies along the catalytic mechanism identified
different open and closed conformations of the enzyme in both
subunits, which were based on static X-ray structures. These
open-to-closed transitions can be defined by the TrpA loop
(residues 163−176) that gets ordered and the slow motion of
the rigid COMM domain in TrpB (residues 97−184, see
Figure 2 and Table S1). Both the TrpA loop and the TrpB
COMM domain are part of the active site cavity of each
subunit and modulate solvent exposure to prevent substrate
loss to the media. Besides, the COMM domain contains the α-
helix H6 (residues 174−164) that is directly involved in
noncovalent interactions with the indole moiety of the TrpB
reactant intermediates. Moreover, E104 located in the COMM
domain has been reported to play a role in the stabilization of
charge redistribution that takes place during the nucleophilic
attack of indole in the A−A intermediate (see Figure 2).15

Tryptophan synthase has found applications in many fields
of synthetic chemistry, in particular, for the production of
noncanonical amino acids (NCAAs).16−18 The use of TrpS for
industrial purposes is hampered by its multimeric structure and
the low activity of TrpB as stand-alone enzyme. Detailed

insights were obtained in studies by Prof. Arnold and co-
workers, who applied Directed Evolution (DE) to a
thermophilic TrpB from Pyrococcus furiousus (PfTrpB). They
optimized the enzyme for stand-alone function,19 and later on
for the production of a variety of Trp derivatives.19−25 The
most efficient stand-alone catalyst was achieved by introducing
up to six activating mutations, which were located far away
from active site positions (see Figure 2b). Note that P12L,
E17G, and F274S are located close to the TrpA−TrpB protein
interface. Analysis of spectroscopic data suggested that PfTrpB
stand-alone variants and the PfTrpS complex were better in
stabilizing closed conformations of the COMM domain upon
substrate binding than isolated PfTrpB.24 However, despite
showing drastic differences in catalytic efficiency, X-ray data
failed to find a connection between COMM domain closure
and stabilization of the enzyme. In particular, the COMM
domain structure is almost identical among different organisms
(e.g., Salmonella typhimurium and Pyrococcus furiosus), isolated
PfTrpB enzyme, and PfTrpB stand-alone variants, although all
of them diverge in functionality. These observations suggest
that the origin behind their different catalytic efficiencies could
be attributed to alterations in the enzyme conformational
ensemble induced by distal active site mutations. Such effects
have not been explored yet, although they are crucial to
understand how the stand-alone functionality was achieved.
In this work, we elucidate how the different reaction

intermediates and distal mutations introduced in laboratory-
evolution alter the allosterically driven conformational
ensemble of PfTrpS. Surprisingly, the introduced distal
mutations increase the conformational heterogeneity of the
COMM domain; hence, the PfTrpB enzyme has the ability to
access the different COMM domain conformations, which are
essential for efficient catalysis in the absence of its binding
partner. Through careful inspection of the conformational
ensemble of PfTrpS with our recently developed SPM tool,12

we were able to identify the most important positions to
recover the allosterically driven conformational ensemble,
which coincide with the mutations introduced in laboratory-

Figure 2. (a) Tryptophan synthase reaction mechanism of TrpB subunit showing the conformational states of the COMM domain according to the
available X-ray data at each reaction intermediate. The degree of closure of the COMM domain is represented by colored labels in blue (open, O),
teal (partially closed, PC), and green (closed, C). (b) Overlay of representative X-ray structures showing the COMM domain (97−184 residues) in
O, PC, and C states. The pyridoxal phosphate (PLP) cofactor is shown in purple, the PfTrpB0B2 stand-alone DE mutation positions are marked
with purple spheres, and the COMM domain α-helix H6 (residues 174−164) is highlighted.
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evolution. Our study shows clearly that stand-alone versions of
allosterically regulated enzymes can be rationally designed by
targeting the recovery of the allosterically driven conforma-
tional ensemble.

■ RESULTS AND DISCUSSION
Available structural data show that the TrpB COMM domain
is able to explore open (O), partially closed (PC), and closed
(C) conformations along the multistep TrpB catalytic pathway,
due to the allosteric regulation exerted by TrpA (see Figure 2).
Considering only the TrpB subunit, X-ray studies revealed that
its resting state (i.e., E(Ain)) is characterized by the O COMM
domain conformations (1V8Z),26 which are shifted toward PC
states at the external aldimine intermediate E(Aex1)
(5DW0).19 All subsequent reaction intermediates (i.e., from
the electrophilic amino acrylate E(A−A) to E(Aex2)) were
crystallized in C states (4HN427 and 3CEP28). A recent X-ray
structure (5DW3)19 indicated that the PC conformation is
recovered once Trp is formed at E(Trp), preparing the enzyme
for product release and the next turnover (see Figures 1 and 2
and Table S1 for more structural data).
Allosteric transitions, such as the TrpA-triggered O-to-C

exchange of the COMM domain in TrpB, are relatively slow
domain motions that take place on time scales larger than our
currently accessible simulation times.29 Indeed, initial 500 ns
standard MD simulations of the PfTrpS in the αβ complex, the
isolated PfTrpB wild-type, and the stand-alone PfTrpB0B2

enzyme variant in multiple reaction intermediates (Ain,
Aex1, and A−A) failed to sample the entire allosteric
transition, with no clear RMSD differences observed between
the studied systems (Figure S2). To overcome this limitation,
we employed enhanced sampling techniques. In particular, we
applied the metadynamics approach30,31 to reconstruct the free
energy landscape (FEL) associated with the COMM domain
O-to-C transition of the PfTrpS αβ complex, isolated PfTrpB
wild-type, and evolved stand-alone PfTrpB0B2 variant (see
details in the Supporting Information). Several intermediates
along the catalytic cycle were modeled. In particular, we
selected E(Ain), E(Aex1), E(A−A), and E(Q2) to evaluate the
O−PC−C conformational exchange of the COMM domain
found in X-ray data, but also to reproduce the multistep
mechanism under study (see Figure 2).

Population Shift toward Closed Conformations along
the Allosteric PfTrpS Catalytic Pathway. To elucidate the
allosterically driven conformational ensemble of PfTrpS αβ
complex, we reconstructed the FEL associated with the
conformational dynamics of the COMM domain for each
reaction intermediate (see Figure 3a). As expected from X-ray
data, in the resting state of the enzyme, PfTrpS-Ain, the O
conformational state is highly favored, in agreement with its
functional role in Ser binding. However, less stable PC states
(ca. 2 kcal/mol higher in energy) are also visited with an
associated O-to-PC transition energy barrier of only ca. 3 kcal/
mol. As the PfTrpS enzymatic reaction progresses, a
population shift occurs toward the stabilization of PC states
(see Figure 3a). After the reaction with serine in the external
aldimine Aex1 intermediate, the open O state is destabilized by
ca. 2 kcal/mol with respect to the PC state, which becomes the
most stable conformation. In contrast to Ain and Aex1, the
quinonoid Q2 intermediate generated after indole coupling
samples all possible conformations of the COMM domain: O
and PC states are almost equally stabilized, while the C state is
ca. 5 kcal/mol higher in energy. The associated PC-to-C
barrier is ca. 6 kcal/mol. This suggests that the adoption of the
fully closed COMM domain conformation is the limiting
factor, in agreement with the spectroscopic data for
PfTrpS.19,24 Such closed active states form an optimized
network of hydrophobic interactions between the enzyme and
the indole moiety (see Figure 3c). Several side-chain residues,
including Y301, S185, and COMM domain G184, H110,
L161, and I165 define this network.
Comparison of PfTrpS(Q2)-O and -C metastable structures

shows that the helix H6 closure is needed for forming CH··CH
and CH··π interactions between L161 and I165 with the indole
moiety and also a hydrogen bond with the E104 residue
(Figure 3b,c). The C state of PfTrpS(Q2) shows a highly
preorganized active site with E104 and the proton acceptor
K82 properly positioned for catalysis together with the indole
moiety establishing many noncovalent interactions with the
active site pocket (see Figures 3c and S8a,b). The high stability
of O states at the Q2 intermediate suggests that the COMM
domain of PfTrpS(Q2) is already prepared for product release
and recovery of the native state of the enzyme for the next
cycle. Altogether, these findings highlight the crucial role of the
allosterically driven conformational ensemble of the COMM

Figure 3. (a) Free energy landscape (FEL) associated with the COMM domain open-to-closed (O-to-C) conformational exchange of the PfTrpS
complex enzyme at Ain, Aex1, and Q2 reaction intermediates. (b) Overlay of the PfTrpS metastable conformations of the open (O) state at Ain
intermediate, partially closed (PC) at Aex1, and closed (C) at Q2, respectively, showing the entire O-to-C sampled transition. (c) Detailed active
site view of the PfTrpS metastable conformation of the C state at Q2 intermediate (shown in purple). Active site residues are shown in gray, except
for those included in the COMM domain (shown in blue), and the catalytic K82 proton transfer residue (green). The catalytic distances (in Å)
between charge−charge stabilization E104-Q2 and proton transfer K82-Q2 are also represented.
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domain of PfTrpS for efficiently optimizing the multiple steps
along its catalytic cycle.
Isolated PfTrpB Displays Restricted COMM Domain

Heterogeneity and Unproductive Closure. Experimental
data showed that, in the absence of the allosteric partner
PfTrpA, PfTrpB activity decreases 3-fold (kcat of 0.31 and 1.0
s−1 for isolated PfTrpB and PfTrpS, respectively).19 Our
reconstructed FELs corresponding to isolated PfTrpB display
some similarities to the PfTrpS system (see Figures 3a and
4a). Ser binding at the Aex1 intermediate shifts the
conformational ensemble from O toward PC states. Similarly,
a population shift toward C states at the Q2 intermediate is
observed. Contrary to the situation for the PfTrpS complex, a
single energy minimum is found at the Aex1 and Q2
intermediates of PfTrpB. In fact, the COMM domain is not
able to escape from O states at Ain, PC at Aex1, and C at Q2
intermediates as the other states are inaccessible. Therefore,
PfTrpB in the absence of PfTrpA allosteric regulation has a
very limited conformational heterogeneity of the COMM
domain, which hampers the multistep reaction pathway. It is
also worth mentioning that the stable C states at the PfTrpB-
Q2 intermediate are highly deviated from the reference O-to-C

conformational path (i.e., RMSD larger than 1.5 Å; see Figure
4a). A detailed structural analysis of the isolated wild-type
PfTrpB(Q2) as compared to the PfTrpS(Q2) complex in C
states indicates that the isolated PfTrpB enzyme cannot
efficiently sample catalytically competent C states; this is in
particular true for the key COMM H6 closure (Figures 4b,c
and S8c). Furthermore, the proton transfer catalytic distance
K82-Q2 is also longer than that in PfTrpS (3.9 ± 0.3 Å vs 3.6
± 0.3 Å). Our simulations have therefore shown that, in the
absence of its PfTrpA allosteric partner, the PfTrpB COMM
domain displays a restricted conformational landscape, which
lacks the ability to easily access O, PC, and C states existing in
the allosterically driven conformational ensemble of PfTrpS.

Activating Distal Mutations for Stand-Alone Function
Recovers COMM Domain Heterogeneity. PfTrpB was
evolved for stand-alone function generating a new variant
PfTrpB0B2, which displays a considerably improved catalytic
constant with respect to both the isolated wild-type PfTrpB
and the PfTrpS complex (kcat of 2.9, 0.31, and 1.0 s−1 for
PfTrpB0B2, PfTrpB, and PfTrpS, respectively). It is also worth
mentioning that the activity of the evolved PfTrpB0B2 decays
dramatically in the presence of PfTrpA (kcat of 0.04 s−1).19

Figure 4. (a) Free energy landscape (FEL) associated with the COMM domain open-to-closed (O-to-C) conformational exchange of the PfTrpB
isolated enzyme at Ain, Aex1, and Q2 reaction intermediates. (b) Overlay of the metastable conformations of the closed (C) states at Q2
intermediate for PfTrpB (in orange) and PfTrpS (blue). (c) Detailed active site view of the PfTrpB metastable conformation of the C state at Q2
intermediate (shown in purple). Active site residues are shown in gray, except for those included in the COMM domain (shown in orange), and the
catalytic K82 proton transfer residue (green). The catalytic distances (in Å) between charge−charge stabilization E104-Q2 and proton transfer K82-
Q2 are also represented.

Figure 5. (a) Free energy landscape (FEL) associated with the COMM domain open-to-closed (O-to-C) conformational exchange of the
PfTrpB0B2 enzyme at Ain, Aex1, and Q2 reaction intermediates. (b) Overlay of the metastable conformations of the closed (C) states at Q2
intermediate for PfTrpB0B2 (in pink) and PfTrpS (blue). (c) Detailed active site view of the PfTrpB0B2 metastable conformation of the C state at
Q2 intermediate (shown in purple). Active site residues are shown in gray, except for those included in the COMM domain (shown in violet), and
the catalytic K82 proton transfer residue (green). The catalytic distances (in Å) between charge−charge stabilization E104-Q2 and proton transfer
K82-Q2 are also represented.
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Intrigued by the restricted conformational dynamics of the
COMM domain as found in isolated PfTrpB, we decided to
explore whether distal mutations introduced in laboratory
evolution were able to recover the allosterically driven
conformational ensemble of PfTrpS. By comparing the
reconstructed FELs for stand-alone PfTrpB0B2 and PfTrpS
complex along the different reaction intermediates (see Figures
3a and 5a), it becomes evident that the PfTrpB0B2 variant
recovers the conformational heterogeneity of the COMM
domain, characteristic of the allosterically regulated dimeric
enzyme. However, interesting differences between both
systems are found to be crucial for rationalizing their catalytic
activities.
In the resting state (Ain), PfTrpB0B2 has only the O state

accessible. However, as the reaction progresses, a population
shift toward PC and C states occurs, as was also observed in
the dimeric PfTrpS complex. At Aex1, O and PC states have
comparable relative stabilities and are separated by a small
energy barrier of ca. 1 kcal/mol, which allows a fast O-to-PC
conformational exchange. Similar to the PfTrpS system, at the
Q2 state the allosterically driven conformational ensemble
containing O, PC, and C states is recovered. Nevertheless, a
substantially lower barrier is observed for the O-to-PC-to-C
transition of ca. 2 kcal/mol as compared to PfTrpS complex.
This rather small energy barrier allows PfTrpB0B2 to easily
adopt the catalytically competent C conformation from PC
and O states. This high stability of the catalytically relevant C
state contrasts with the PfTrpS system where the closed state
is ca. 5 kcal/mol higher in energy. Such a difference in the
stability of the C state explains the improved catalytic
efficiency of the evolved stand-alone variant. The C state of
stand-alone PfTrpB0B2(Q2) has an almost identical degree of
closure of the COMM domain as the PfTrpS catalytically
competent conformation, and a similar catalytic K82-Q2
proton transfer distance (see Figures 5b,c and S9). This
indicates that the C state of the stand-alone PfTrpB0B2(Q2)
variant is properly preorganized for the reaction.
A remarkable difference between the dimeric PfTrpS(Q2)

complex and stand-alone PfTrpB0B2(Q2) is found at the PC
state, which in the case of the evolved variant is highly
digressed from the original path (i.e., RMSD > 1.5 Å, see
Figure 5a); therefore, we denote this as the novel PC state.
The large deviation arises from an unexpected large-scale
conformational change of 14 Å that positions R159, adjacent to
the H6 helix of the COMM domain, toward the active site (see
Figure 6a). This novel PC conformation has not been
previously observed by means of X-ray crystallography.
Interestingly, R159 takes over the position previously occupied
by L161 at H6 of PfTrpB0B2(Q2)-C, establishing a cation−π
interaction with the indole moiety (Figure 6b). We
hypothesize that this novel conformation of R159 may play a
role in the catalytic cycle, most probably in properly
positioning serine and/or indole for the reaction (see the
Supporting Information for a detailed discussion and Figures
S10 and 11).
Our findings indicate that stand-alone PfTrpB0B2 recovers

the COMM domain heterogeneity, thus making O and active
C states accessible again. The great stabilization of active C
states together with the novel PC conformation displayed by
the PfTrpB0B2 enzyme variant unravel the increase in catalytic
efficiency with respect to the allosterically regulated PfTrpS
complex.

Another relevant aspect is the experimentally observed
inactivation of the evolved PfTrpB0B2 in the presence of
PfTrpA. To study this inactivation, we reconstructed the FEL
for the PfTrpA-PfTrpB0B2(Q2) complex. Surprisingly, our
simulations show that the presence of PfTrpA does not restrict
the PfTrpB0B2 COMM domain heterogeneity, as it is also able
to sample the O-to-C exchange. However, the formation of the
dimeric complex with PfTrpA induces a population shift
toward unproductive closed states (i.e., highly deviated from
the reference path), similar to those observed in the isolated
PfTrpB system (see Figure S12). Thus, PfTrpA truncates the
efficient conformational ensemble of the stand-alone
PfTrpB0B2 yielding nonproductive closed conformational states
of the COMM domain.

COMM Domain Heterogeneity as an Essential Factor
in Indole Active-Site Accessibility. Available X-ray
structures after E(Aex1) formation display C conformations
of the COMM domain. However, our analysis of the
allosterically driven conformational ensemble of PfTrpS
complex and that of stand-alone PfTrpB0B2 provided evidence
for a high flexibility of the COMM domain and the ability to
visit O, PC, and the catalytically relevant C states. The
question that remains is what is the specific role of O
conformational states of the COMM domain after Ser binding?
One possibility would be to assist in either indole binding or
Trp release after the reaction. Experimentally, the Michaelis
constant for indole binding in the stand-alone PfTrpB0B2

enzyme variant (8.7 μM) was improved with respect to
isolated PfTrpB (77 μM), but also as compared to the enzyme
complex PfTrpS (20 μM).19

To elucidate the changes in indole binding and the role
played by the COMM domain O states, we reconstructed the
FELs at the electrophilic amino acrylate E(A−A) intermediate
(Figures 7a,b and S13), and analyzed the available indole
substrate access tunnels with the CAVER software.33 At this
A−A intermediate, PfTrpS complex and stand-alone
PfTrpB0B2 can easily access both O and C states, which are
separated by relatively small energy barriers. The analysis of
indole access tunnels in both O and C states reveals two

Figure 6. (a) Overlay of the PfTrpB0B2 metastable conformations of
the closed (C, in pink) and novel partially closed (PC, in green) states
at the Q2 reaction intermediate. The novel PC state revealed by MD
simulations presents R159 from the COMM domain located in the
active site close to the position previously occupied by L161 in the C
state. (b) Representation of the noncovalent interactions (computed
with NCIplot)32 at the novel PC state of PfTrpB0B2, highlighting
(green surfaces) the cation−π interaction between R159 and the
indole moiety of Q2.
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different entry pathways (Figures 7c,d and S13c): the
previously described internal tunnel (IT) that connects TrpA
and TrpB subunits in PfTrpS complex (shown in blue in
Figures 7c,d and S13c), and a secondary tunnel (ST)

connecting the active site with a novel entry path not
described before (shown in green). C states of the COMM
domain yield a narrow bottleneck tunnel radius hampering
indole diffusion outside the active site, thus capturing it for
efficient catalysis (see Figure 7d). Therefore, the differences in
indole binding should be related to O COMM domain states.
Interestingly, the isolated wild-type PfTrpB is not able to
sample the O state, which results in indole access through PC
conformations that have a much narrower bottleneck radius
(see Figure S13c). This leads to less favorable KM values for
PfTrpB, as observed experimentally.
At the O state of PfTrpS complex, indole diffusion occurs

along the internal TrpA−TrpB tunnel, suggesting that the
secondary tunnel (green in Figures 7c,d and S13C) may play a
role in Ser binding and/or Trp release. For the stand-alone
PfTrpB0B2 variant, both tunnels show a large bottleneck radius;
thus no tunnel preference for indole entrance to the active site
is found (see Figure 7c). Altogether, these calculations indicate
that the recovery of the allosterically regulated COMM
conformational ensemble of PfTrpS, especially O state
accessibility, is also key for indole binding.

Distal Mutations for Stand-Alone Function Can Be
Predicted Computationally. Our group has recently shown
that distal mutations found by DE in the case of multistep
retro-aldolase enzymes can be identified with residue-by-
residue correlation and proximity analysis tools.12 Intrigued by
the possibility of predicting distal positions for stand-alone
function, we applied our Shortest Path Map (SPM) method.12

This computational tool identifies those pairs of residues that
have a higher contribution to the conformational dynamics of
the enzyme (see Figure 8 and computational details). We
focused our analysis on the PfTrpS(Q2) metadynamics
trajectory because of the complete O-to-C conformational
exchange sampled in it (see Figure S14 for SPM analysis at

Figure 7. (a) Free energy landscape (FEL) associated with the
COMM domain open-to-closed (O-to-C) conformational exchange
of stand-alone PfTrpB0B2 enzyme at A−A reaction intermediate. (b)
Overlay of metastable conformations of the O (dark purple) and C
state (light purple) at A−A intermediate of PfTrpB0B2. (c and d)
Internal (IT, in blue) and secondary (ST, in green) tunnels of
PfTrpB0B2 at the O and C states at A−A reaction intermediate
computed with CAVER 3.0.33 The averaged bottleneck radii (in Å)
are also shown.

Figure 8. Identification of the amino acids that contribute to the open-to-closed (O-to-C) conformational exchange in PfTrpS at (Q2) intermediate
through Shortest Path Map (SPM) analysis.12 The sizes of the spheres and black edges are indicative of the importance of the position for the
PfTrpS conformational dynamics. Positions mutated via DE are marked in orange (if they are included in the SPM), or in pink (if they directly
interact with SPM residues). SPM residues that interact with the DE positions are marked with blue spheres. For each mutation that interacts with
SPM residues, a zoom is provided to show the type of noncovalent interaction and the percentage of interaction time during the simulation.
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other reaction intermediates). PfTrpB0B2 presents six muta-
tions: P12L, E17G, I68V, T292S, F274S, and T321A, from
which two were directly predicted by the SPM tool, and three
were directly interacting with a SPM position. The specific
effect of each isolated mutation on the enzyme activity is not
known, except for two of them: T292S and P12L. The most
beneficial mutation T292S (3-fold increase in kcat with respect
to PfTrpB)19 was previously suggested to modulate COMM
domain closure based on the T292−D300 interaction observed
in X-ray data.15 In our metadynamics simulations, the
hydrogen bond between T292 and D300 is maintained 86%
of the time (see Figure 8). Although position 292 is not
directly included in our computed SPM path, position 300 is
predicted as key for the COMM domain conformational
dynamics. This indicates that by altering the D300 position
interactions (for instance, the T292−D300 interaction) the
COMM domain closure can be modulated. Interestingly, P12L
distal mutation, which was found to have a slight impact on the
kcat of the enzyme, is directly identified with high contributions
in our SPM analysis (see orange spheres in Figure 8). Similarly,
the distal site E17G is also predicted by SPM, suggesting a role
on COMM domain conformational heterogeneity. DE
positions F274 and I68, although not strictly included in the
SPM path, make direct and stable noncovalent interactions
with already SPM predicted positions (see blue and pink
spheres in Figure 8). For instance, F274 highly forms CH··π
and π ··π interactions with the SPM residues F281 (maintained
99% of the simulation time), Y301 (37%), and P302 (33%), as
well as a hydrogen bond with M277 (28%). Similarly, DE
position I68 makes CH··π interactions with Y69 (74%),
included in SPM. The only DE position that has a minor role
in the COMM domain conformational dynamics and makes
negligible interactions with SPM residues is T321.
Our new proposed methodology makes use of metady-

namics simulations to enforce the sampling of the allosterically
regulated O-to-C transition, and identifies which residues
present a higher contribution to the O-to-C COMM domain
conformational exchange through inter-residue correlation
calculations. With this new computational approach, distal
positions involved in the allosteric transition can be identified,
thus providing a set of key positions for the generation of smart
libraries for stand-alone function. This new proposed protocol
can be applied to any allosterically regulated system of interest.
This study also provides further evidence for the key role
played by the enzyme conformational dynamics in the
evolution of enhanced catalytic activities, especially in
challenging multistep mechanisms such as the one catalyzed
by TrpS.34

■ CONCLUSIONS
Recovering the allosterically driven conformational ensemble
existing in multimeric enzymes such as TrpS for stand-alone
function is strikingly similar to the dramatic effect induced by
distal mutations on the catalytic efficiency of some enzymes.
Only those ensembles of conformations that are preactivated
for catalysis are selected and stabilized along the evolutionary
process. Understanding the differences between both processes
is highly appealing for the rational design of enzymes. The
present study demonstrates that fine-tuned control of the
allosterically driven conformational ensemble of PfTrpS plays
a key role along its catalytic cycle. By altering the relative
stabilities of open, partially closed, and closed conformational
states of the COMM domain, each reaction step along the

catalytic pathway can be efficiently optimized. Our free energy
calculations on the conformational exchange of the COMM
domain indicate that the rate for the open-to-closed conforma-
tional transition is relatively fast (in the nanosecond to
microsecond time scale) in comparison with the reaction steps
and turnover time scale (millisecond to second). However,
such transitions are essential for preorganizing the active site
pocket to accommodate the different substrates, and efficiently
catalyzing Ser and indole coupling for Trp production. Distal
mutations, introduced experimentally for converting PfTrpB
into an efficient stand-alone variant, recover the allosterically
regulated conformational ensemble of PfTrpS. This enables
access to open, partially closed, and closed states of the
COMM domain. In the absence of such mutations, the isolated
PfTrpB lacks the COMM domain conformational hetero-
geneity, which is required for the challenging multistep
catalytic pathway. By careful analysis of the open-to-closed
conformational exchange of the COMM domain, and the
residues that contribute more to the exchange, distal mutations
introduced via directed evolution can be predicted with our
recently developed SPM tool. This study shows that, by
evaluating the native allosterically regulated conformational
ensemble, and the residues that have a higher contribution to
the allosteric conformational transition, proficient stand-alone
enzyme variants could be rationally designed. The hypothesis
that many enzymes are intrinsically regulated allosterically7 is
inspiring, as it also suggests that our novel computational
approach proposed here might be of general use in the
computational enzyme design field.
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(11) Jimeńez-Oseś, G.; Osuna, S.; Gao, X.; Sawaya, M. R.; Gilson,
L.; Collier, S. J.; Huisman, G. W.; Yeates, T. O.; Tang, Y.; Houk, K. N.
Nat. Chem. Biol. 2014, 10 (6), 431−436.
(12) Romero-Rivera, A.; Garcia-Borras̀, M.; Osuna, S. ACS Catal.
2017, 7 (12), 8524−8532.
(13) Hyde, C. C.; Ahmed, S. A.; Padlan, E. A.; Miles, E. W.; Davies,
D. R. J. Biol. Chem. 1988, 263, 17857−71.
(14) Lee, S. J.; Ogasahara, K.; Ma, J. C.; Nishio, K.; Ishida, M.;
Yamagata, Y.; Tsukihara, T.; Yutani, K. Biochemistry 2005, 44 (34),
11417−11427.
(15) Dunn, M. F. Arch. Biochem. Biophys. 2012, 519 (2), 154−166.
(16) Barry, S. M.; Kers, J. A.; Johnson, E. G.; Song, L. J.; Aston, P.
R.; Patel, B.; Krasnoff, S. B.; Crane, B. R.; Gibson, D. M.; Loria, R.;
Challis, G. L. Nat. Chem. Biol. 2012, 8 (10), 814−816.
(17) Kieffer, M. E.; Repka, L. M.; Reisman, S. E. J. Am. Chem. Soc.
2012, 134 (11), 5131−5137.
(18) Patel, R. N. Biomolecules 2013, 3 (4), 741−777.
(19) Buller, A. R.; Brinkmann-Chen, S.; Romney, D. K.; Herger, M.;
Murciano-Calles, J.; Arnold, F. H. Proc. Natl. Acad. Sci. U. S. A. 2015,
112 (47), 14599−14604.
(20) Herger, M.; van Roye, P.; Romney, D. K.; Brinkmann-Chen, S.;
Buller, A. R.; Arnold, F. H. J. Am. Chem. Soc. 2016, 138 (27), 8388−
8391.
(21) Murciano-Calles, J.; Romney, D. K.; Brinkmann-Chen, S.;
Buller, A. R.; Arnold, F. H. Angew. Chem., Int. Ed. 2016, 55 (38),
11577−11581.
(22) Buller, A. R.; van Roye, P.; Murciano-Calles, J.; Arnold, F. H.
Biochemistry 2016, 55 (51), 7043−7046.
(23) Romney, D. K.; Murciano-Calles, J.; Wehrmuller, J. E.; Arnold,
F. H. J. Am. Chem. Soc. 2017, 139 (31), 10769−10776.
(24) Buller, A. R.; van Roye, P.; Cahn, J. K. B.; Scheele, R. A.;
Herger, M.; Arnold, F. H. J. Am. Chem. Soc. 2018, 140 (23), 7256−
7266.
(25) Boville, C. E.; Scheele, R. A.; Koch, P.; Brinkmann-Chen, S.;
Buller, A. R.; Arnold, F. H. Angew. Chem., Int. Ed. 2018, 57 (45),
14764−14768.
(26) Hioki, Y.; Ogasahara, K.; Lee, S. J.; Ma, J.; Ishida, M.;
Yamagata, Y.; Matsuura, Y.; Ota, M.; Ikeguchi, M.; Kuramitsu, S.;
Yutani, K. Eur. J. Biochem. 2004, 271 (13), 2624−35.
(27) Niks, D.; Hilario, E.; Dierkers, A.; Ngo, H.; Borchardt, D.;
Neubauer, T. J.; Fan, L.; Mueller, L. J.; Dunn, M. F. Biochemistry
2013, 52 (37), 6396−6411.

(28) Barends, T. R. M.; Domratcheva, T.; Kulik, V.; Blumenstein, L.;
Niks, D.; Dunn, M. F.; Schlichting, I. ChemBioChem 2008, 9 (7),
1024−1028.
(29) Henzler-Wildman, K.; Kern, D. Nature 2007, 450 (7172),
964−972.
(30) Barducci, A.; Bonomi, M.; Parrinello, M. Wiley Interdiscip. Rev.
Comput. Mol. Sci. 2011, 1 (5), 826−843.
(31) Laio, A.; Gervasio, F. L. Rep. Prog. Phys. 2008, 71 (12), 22.
(32) Contreras-Garcia, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.;
Piquemal, J. P.; Beratan, D. N.; Yang, W. J. Chem. Theory Comput.
2011, 7 (3), 625−632.
(33) Chovancova, E.; Pavelka, A.; Benes, P.; Strnad, O.; Brezovsky,
J.; Kozlikova, B.; Gora, A.; Sustr, V.; Klvana, M.; Medek, P.;
Biedermannova, L.; Sochor, J.; Damborsky, J. PLoS Comput. Biol.
2012, 8 (10), e1002708.
(34) Maria-Solano, M. A.; Serrano-Hervas, E.; Romero-Rivera, A.;
Iglesias-Fernandez, J.; Osuna, S. Chem. Commun. 2018, 54 (50),
6622−6634.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.9b03646
J. Am. Chem. Soc. 2019, 141, 13049−13056

13056

http://dx.doi.org/10.1021/jacs.9b03646


S1

Deciphering the Allosterically-driven Conformational Ensemble in 
Tryptophan Synthase Evolution.

Miguel A. Maria-Solano,[a] Javier Iglesias-Fernández,*[a] and Sílvia Osuna*[a,b]

a Miguel A. Maria-Solano, Javier Iglesias-Fernández, and Prof. Sílvia Osuna
Department of Chemistry
Institute of Computational Chemistry and Catalysis
University of Girona
Girona 17003, Catalonia, Spain.
E-mail: Silvia.osuna@udg.edu

bProf. S. Osuna
ICREA
Barcelona 08010, Catalonia, Spain

Supporting information



S2

SI Table of Contents

Computational methods…………………………………………………………………………………………...S5

SI Tables…………………………………………………………………………………………………………..S6

SI Figures………………………………………………………………………………………………………….S7

References………………………………………………………………………………………………………..S17

Computational methods:

Molecular Dynamics Simulations

System preparation: The crystal structure of the open PfTrpS enzyme, with PDB accession code 1WDW, was used 

as a starting structure for all the simulations. The PfTrpS heterodimeric complex used for this study contains one 

PfTrpA subunit and one PfTrpB subunit. The PfTrpB wild-type isolated structure was generated by manually 

removing the PfTrpA subunit from the PfTrpS PDB. Point mutations in the PfTrpB0B2 variant were introduced with 

the RosettaDesign software1. MD simulation parameters for the reaction intermediates (IGP, G3P, Ain, Aex1, A-

A, Q2) were generated with the antechamber module of AMBER162  using the general amber force-field (GAFF)3 

with partial charges set to fit the electrostatic potential generated at the HF/6-31G(d) level with the RESP model.4 

These charges were calculated using the Gaussian09 software package. Different reaction intermediates were 

introduced to the open PfTrpS, PfTrpB, and PfTrpB0B2 structures by alignment to available X-ray structures (see 

Table S1). A total of 12 systems (3 enzyme variants with 4 different reaction intermediates, Ain, A-A, Aex1, Q2) 

were generated. For the PfTrpS, IGP was introduced in the PfTrpA subunit at Ain, Aex1 and A-A PfTrpB reaction 

intermediates whereas G3P at Q2.

To study the inactivation effect of PfTrpA on the evolved PfTrpB0B2 enzyme variant, a system containing both 

subunits was set-up by structural alignment of the PfTrpB0B2 to the wild-type structure with PDB code 1WDW.  

The dimeric PfTrpB2 system was also set-up from the 1WDW structures by manually removing the PfTrpA 

subunits. The reaction intermediates studied were introduced as described above.

Molecular Dynamics Simulations: Long-timescale MD-simulations were performed using an in-house GPU-

cluster. Each enzyme system was immersed in a pre-equilibrated cubic box with a 10-Angstrom buffer of TIP3P 

water molecules,5 resulting in the addition of approximately 15.000 water molecules. Afterwards, the systems were 

neutralized by the addition of explicit counterions (Na+ or Cl-). All subsequent calculations were done using a 

modification of the amber99 force field (ff14SB).6 A two-stage geometry optimization approach was performed. 

The first stage minimizes the positions of solvent molecules and ions imposing positional restraints on solute by a 

harmonic potential with a force constant of 500 kcal mol-1Å-2, and the second stage is an unrestrained minimization 

of all the atoms in the simulation cell. All systems were gently heated using seven 50 ps steps, incrementing the 

temperature 50 K each step (0-350 K) under constant-volume and periodic-boundary conditions. Water molecules 

are treated with the SHAKE algorithm such that the angle between the hydrogen atoms is kept fixed. Long-range 
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electrostatic effects are modeled using the particle-mesh-Ewald method.7 An 8Å cutoff was applied to Lennard-

Jones and electrostatic interactions. Decreasing harmonic restraints were applied to the protein (210, 165, 125, 85, 

45, 10 kcal/mol Å2) during the thermal equilibration, with the Langevin scheme used to control and equalize the 

temperature. The time step is kept at 1 fs during the heating stages, allowing potential inhomogeneities to self-

adjust. Each system is then equilibrated without restrains for 2 ns with a 2 fs timestep at a constant pressure of 1 

atm and temperature of 350 K. After equilibration, a 500 ns of production MD simulation was performed for each 

system in the NVT ensemble and periodic-boundary conditions. Production runs were performed with the 

AMBER16 software.2 

Well-tempered Metadynamics simulations with Path Collective Variables

Conventional MD simulations can only sample limited time scales, therefore, obviating important information 

regarding the conformational dynamics of the enzymes. To overcome the time scale gap, while keeping full 

atomistic resolution of our systems, we relied on enhanced sampling techniques, in particular the metadynamics 

approach.8-10 Metadynamics simulations allow to reconstruct the free energy landscape (FEL) as a function of a few 

degrees of freedom, often referred to as collective variables (CVs). In this work we used path CVs, an extremely 

powerful approach to study transitions between different conformational states. Here, a path of conformations from 

open (O) to closed (C) states was obtained by linear interpolation between the X-ray available data. Specifically, 

s(R) represents the progression along the path, while z(R) measures the distance from the ideal path provided. In 

this work, a path of 15 conformations from an open (s(R) = 1) to closed state (s(R)=15), was generated. Guided by 

structural information we restricted the path of structures to the alpha carbons of the COMM domain (residues 97-

184) and a region located at the base of COMM domain (residues 282-305), see Figure S1. The � parameter was 

computed as 2.3 multiplied by the inverse of the mean square displacement between successive frames, 80. 

Metadynamics enhances the sampling of the conformational space by adding external energy potentials to a selected 

set of collective variables (CVs). This bias potential gradually overcomes energy barriers allowing for efficient 

exploration of different conformational states. After certain simulation time, the biasing potential corresponds to 

the negative of the free energy surface and, therefore, all possible states are equally sampled. More exhaustive 

discussions of the method can be found elsewhere.11-12

The PLUMED2 software package13 together with the GROMACS 5.1.2 code14 were used to carry out the 

metadynamics simulations. Here, the well-tempered15 version of metadynamics was used to improve convergence 

of the FES reconstruction. Metadynamics simulations were started from the equilibrated structures obtained from 

previous classical simulations of the PfTrpS, PfTrpB, and PfTrpB0B2 enzyme variants, all in four different reaction 

intermediates (Ain, Aex1, A-A, and Q2). PfTrpA-PfTrpB0B2 and PfTrpB2 system were only studied in the Q2 and 

Ain intermediates, respectively. Initial Gaussian potentials of height 0.15 kcal mol-1, deposited every 2 ps of MD 

simulation at 350 K, were gradually decreased on the basis of the well-tempered adaptative bias with a bias factor 

of 10. The adaptive Gaussian width scheme,9 in which hills variance adapt to local properties of the free-energy 

surface, was used. The multiple-walker extension,16 which uses several replicas of the same system biasing identical 

CVs, was used to increase the sampling of the conformational space and to increase the convergence of individual 
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free-energy profiles. In this approach, multiple walkers are run in parallel and each walker replica reads the 

Gaussian potentials deposited by the others during the simulation time, in such a way they are all dependent of each 

other. The free energy landscape associated with the metadynamics CVs is estimated by summing the Gaussian 

potentials deposited by all walker replicas as a function of the CVs values. 

After an initial metadynamics run, we extracted ten snapshots for each system covering approximately all the 

conformational space available. Then, multiple-walkers metadynamics simulations with 10 replicas were 

computed. Each replica was run for 50 – 100 ns, giving a total of 500-1000 ns of simulation time per system (i.e. 

accumulated simulation time of ca. 7 microseconds, see Figure S3).  The convergence of the recovered FEL was 

evaluated by monitoring the energy difference between selected regions of the conformational surface along 

simulation time (see S4 and S5). In particular, the regions selected are the local energy minima (e.g. energy 

differences between O and C local energy minima). For the systems where only one local energy minima was 

found, the energy differences were computed between the local energy minima and a higher in energy region. 

Finally, a set of structures from each local energy minima were clustered to obtain representative metastable 

conformations (Figure S7). The local energy minima and the associated representative structures were labeled as 

open (O), partially closed (PC) and closed (C) accordingly with the s(R) CV values;  (O)=1-5, (PC)=5-10 and  

(C)=10-15.

Molecular Dynamics Simulations to study the role of Arg159

A starting configuration of PfTrpB0B2 enzyme variant with Arg159 pointing to the active site (IN conformation) 

was obtained from the metastable structure PfTrpB0B2(Q2)-PC obtained from the metadynamics simulations. 

Conventional Arg159 conformation (OUT conformation) was obtained from previously described molecular 

dynamics simulations at the Ain reaction intermediate. Ser and Trp initial conformations were obtained from X-ray 

structures with pdb accession codes 5IXJ and 5DW3, respectively. Threonine molecule present in 5IXJ was 

manually converted into Serine. Five systems were set-up to study the effect of Arg159 novel conformation in the 

catalytic cycle of TrpB: (1) R159 IN conformation at Ain, (2) R159 IN conformation at Ser, (3) R159 IN 

conformation at Trp (4) R159 OUT conformation at Ser, and (5) R159 OUT conformation at Trp. Five replicas of 

800 ns were run for each system using the computational set-up described above.  

The results indicate that R159 is stable in a PC novel conformation when L-Ser or L-Trp are bound in the PfTrpB0B2 

active site. On the contrary, absence of the substrate or product (PfTrpB0B2(Ain)) destabilizes this conformation as 

R159 tends to leave the active site in three out of a total of five simulation replicas (Figure S10). Analysis of the 

catalytic distance between Ser and PLP cofactor reveals the stabilization of the substrate molecule within the active 

site of the enzyme in this PC novel conformation. Histogram analysis of the catalytic distance highlighted an 

increased population of conformations at short catalytic distances (< 5 Å), when R159 points towards the active 

site of the enzyme (Figure S11 A). Interestingly, slightly longer distances (> 8 Å) corresponding to product release 

are only observed when the R159 residue points towards the solvent (Figure S11 B). Although more conformation 
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sampling is required, these results suggest that this novel conformation of Arg159 plays a role in L-Ser positioning 

for the catalytic reaction.

CAVER Analysis

The program CAVER 3.017 was used to analyze the available tunnels for substrate entrance to the PfTrpS, PfTrpB, 
and PfTrpB0B2 active site at A-A intermediate. 100 snapshots from each local energy minima from the 
metadynamics trajectories were selected and aligned for analysis. For this study, a spherical probe of 0.9 Å radius 
was selected with a weighting coefficient of 1, and clustering threshold of 12.0. The starting point for the calculation 
was chosen at indole active site coordinates by alignment of the metastable structures at A-A intermediate with the 
X-ray structure (PDB ID 4HPX), which contains the A-A intermediate co-crystalized with an indole analogue.

Shortest Path Map analysis

The first step of the Shortest Path Map (SPM) calculation relies on the construction of a graph based on the 
computed mean distances and correlation values observed along the MD simulations. For each residue of the protein 
a node is created and centered on the C-alpha if a neighboring residue displays a mean distance of less than 6 Å 
along the simulation time. The length of the line connecting both residues is drawn according to their correlation 
value (dij=-log |Cij|). Larger correlation values (closer to 1 or -1) will have shorter edge distances, whereas less 

correlated residue pairs (values closer to 0) will have edges with long distances. At this point, we make use of 
Dijkstra algorithm as implemented in graph module18 to identify the shortest path lengths. The algorithm goes 
through all nodes of the graph and identifies which is the shortest path to go from the first until the last protein 
residue. The method therefore identifies which are the edges of the graph that are shorter, i.e. more correlated, and 
that are more frequently used for going through all residues of the protein, i.e. they are more central for the 
communication pathway. More details about our SPM tool can be found in our recent publication in ACS Catalysis. 
19

Hydrogen bond and aromatic interaction analysis. 

Conserved hydrogen bonds and aromatic interactions along the metadynamics simulations for the PfTrpS enzyme 

at Q2 intermediate were analyzed with the cpptraj module of the AmberTools16.2 For aromatic interactions, only 

the hydrogens of Phe, Tyr, and Trp residues with and angle and distance cutoff of 30º and 5 Å, respectively, were 

considered. 

Metadynamics calculation of the PfTrpB in the dimer form (PfTrpB2). 

Although PfTrpB enzyme exists as a dimer in solution,20 calculations were performed with monomeric PfTrpB to 

reduce the computational cost associated to the study. This simplification was based on the following reasoning:

- The higher PfTrpB2 stability (compared to mesophilic TrpB enzymes), is mainly caused by the great 

number of hydrogen bonds involved in the main chains of PfTrpB (monomeric form) instead of the 

hydrophobic interactions, which are indeed the stabilization forces in the TrpB-TrpB interface.20
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- The dimeric TrpB-TrpB interface is situated far away from the H6 of the COMM domain and the active 

site of the enzyme.

- There is no allosteric communication reported between TrpB subunits.

Howbeit, a metadynamics simulation of the PfTrpB2 complex enzyme at the Ain reaction intermediate was 
performed, under the same methodological conditions as described above, to validate the results. Figure S15 shows 
how the FELs of the PfTrpB and PfTrpB2 complex are remarkably similar. In both cases the O conformational 
states are highly favored, the PC states are low in energy and the C states are inaccessible. Therefore, we conclude 
that monomeric TrpB is a suitable entity to study the allosteric effects exerted by PfTrpA and DE mutations.

Supplemental tables
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Table S1.  Tryptophan synthase X-Ray crystallographic data collected from bibliography.

Supplemental Figures

PDB ID Enzyme Subunit states TrpA ligand TrpB ligand Ref.

1WDW PfTrpS αOβO - Ain 21

1V8Z PfTrpB βO - Ain 20

5DVZ PfTrpB βO - Ain 22

5IXJ PfTrpB βO - Ain, L-Thr 23

6AMC PfTrpB4D11 βO - Ain 24

6AM7 PfTrpB2b9 βO - Ain 24

6CUZ PfTrpB7E6 βPO - Ain 25

6CUV PfTrpB7E6 βO - Ain 25

βC - A-A analogue

6CUT PfTrpB7E6 βC - A-A-analogue 25

5DW0 PfTrpB βPC - Aex1 22

5VM5 PfTrpB2b9 βPC - Aex1 24

βC - A-A

6AMH PfTrpB4D11 βPC - Aex1 24

6AMI PfTrpB4D11 βPC L-Trp 24

5DW3 PfTrpB βPC - L-Trp 22

5T6M PfTrpB βPC - β-MeTrp 26

6AM8 PfTrpB2b9 βC Aex2 24

βPC - L-Trp

4HT3 StTrpS αCβPC F9F Ain 27

2CLL StTrpS αCβPC F9F Aex1 28

4HN4 StTrpS αCβC F9F A-A 27

4HPX StTrpS αCβC F9F A-A, benzimidazole 27

3CEP StTrpS αCβC IGP Q analogue 29

3PR2 StTrpS αCβC F9F Q analogue 30

5CGQ StTrpS  αCβPC F9F L-Trp  
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COMM DOMAIN

CLOSED

OPEN

Figure S1. Schematic representation of the Open-to-Closed (O-to-C) path generated from the open (PDB ID: 
1WDW) in blue to the closed (PDB ID: 3CEP) in green X-ray structures. The alpha carbon atoms included in the 
path (i.e. COMM domain (97-184) and 282-305 region) are shown as yellow spheres.

PfTrpS PfTrpB PfTrpB0B2
   (a)       

   (b)       

Ain- Aex1-A-A

Simulation time (ns) 

R
M

SD
(Å

)

Figure S2.  Molecular Dynamics simulations of PfTrpS, PfTrpB, and PfTrpB0B2 with different reaction intermediates (Ain, A-
A, Aex1). (a) RMSD values calculated for the COMM domain within 500 ns conventional MD simulations. (b) Superimposition 
of conformations from the MD simulation of the PfTrpS-Ain system. The protein structure, the COMM domain, and the PLP 
cofactor are colored in grey, green, and orange respectively. 
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Ain Aex1 A-A Q2

(a) PfTrpS αβ complex

Ain Aex1 A-A Q2

(b) PfTrpB isolated

Ain Aex1 A-A Q2

(c) PfTrpB0B2 stand-alone

 Figure S3. Representation of the Open-to-Closed (O-to-C) path of conformations (1-to-15) sampled along the 
metadynamics simulations of the PfTrpS αβ complex (a), PfTrpB wild-type isolated (b) and PfTrpB0B2 stand-alone 
(c) enzymes at different reaction intermediates (Ain, Aex1, A-A and Q2). The different color lines represent each 
metadynamics walker replica (1-10) run in parallel. As it is shown, the (O-to-C) path conformational space is highly 
sampled with multiple crossing events among the walker replicas.
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(a) PfTrpS αβ complex

Ain
Aex1
AA
Q2

(b) PfTrpB isolated (c) PfTrpB0B2 stand-alone

Figure S4. Estimate of the differences in energy between selected regions of the FEL surface along the 
metadynamics simulations for the PfTrpS αβ complex (a), PfTrpB wild-type isolated (b), and PfTrpB0B2 stand-
alone (c) enzymes at different intermediates (Ain, Aex1, A-A and Q2). Each line represents the ΔΔG mean value 
of the 10 walker replicas.

(a)PfTrpA-PfTrpB0B2 (b) PfTrpB2

Figure S5. Estimate of the differences in energy between selected regions of the FEL surface along the 
metadynamics simulations for the PfTrpA-PfTrpB0B2 complex at Q2 reaction intermediate (a), and the PfTrpB2 
complex at Ain reaction intermediate (b). The line represents the ΔΔG mean value of the 10 walker replicas.
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Ain Aex1 A-A Q2

(a) PfTrpS αβ complex

O
PC O PC

PC

C

O
C

O

Ain Aex1 A-A Q2

(b) PfTrpB isolated

O
PC

PC
C

C

Ain Aex1 A-A Q2

(c) PfTrpB0B2 stand-alone

O O PC

PC

C

O

C

O

Figure S6. FELs associated with the COMM domain Open-to-Closed (O-to-C) conformational exchange of the 
PfTrpS αβ complex (a), PfTrpB wild-type isolated (b) and PfTrpB0B2 stand-alone (c) enzymes at different reaction 
intermediates (Ain, Aex1, A-A and Q2). The FELs are estimated by summing the Gaussian potentials deposited as 
a function of the CVs during the metadynamics simulations.
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Ain Aex1 A-A Q2

(a) PfTrpS αβ complex

O PC O PC
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(b) PfTrpB isolated
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(c) PfTrpB0B2 stand-alone
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Figure S7. Projection of a set of conformations that correspond to the local energy minima coordinates from the 
metadynamics simulation on the FELs associated to the Open-to-Closed (O-to-C) conformational exchange of the 
PfTrpS αβ complex in blue dots (a), PfTrpB wild-type isolated in yellow dots (b) and PfTrpB0B2 stand-alone in 
violet dots (c). The representative metastable conformations of each local energy minima were obtained by 
clustering these sets of structures.
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Figure S8. Schematic representation of the non-covalent interactions for the PfTrpS(Q2)-O αβ complex, 
PfTrpS(Q2)-C αβ complex and PfTrpB(Q2)-C wild-type isolated representative metastable conformations from the 
metadynamics simulations, calculated with the computational tool NCIplot.31-32

Figure S9. Schematic representation of the non-covalent interactions for the PfTrpB0B2(Q2)-C stand-alone 
representative metastable conformation from the metadynamics simulations, calculated with the computational tool 
NCIplot. 31-32  
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Figure S10. Distance between Arg159 and PLP residues along simulation time for the TrpB0B2 Ain and L-Ser/L-
Trp bound states. Each simulation replica is shown in a different color.  
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Figure S11. Distance between L-Ser (A) / L-Trp (B) and PLP residues along simulation time for the TrpB0B2 
Arg159 residue inside and outside the active site. Each simulation replica is shown in a different color. Histogram 
analysis are provided for each system by considering the information of all simulation replicas altogether. 
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Figure S12. (a) Free energy landscape (FEL) associated to the COMM domain Open-to-Closed (O-to-C) conformational 
exchange of stand-alone PfTrpA-PfTrpB0B2 enzyme at Q2 reaction intermediate. (b) Overlay of meta-stable conformations 
of the C states at Q2 intermediate for-PfTrpB0B2 dark (in pink) and PfTrpA-PfTrpB0B2 (brown).

PfTrpA-TrpB0B2(Q2)

PC
C

O

Q2
H6

PfTrpB0B2(Q2)-C
PfTrpA-PfTrpB0B2 (Q2)-C

(a) (b)
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PfTrpS(A-A) αβ complex PfTrpB(A-A) isolated PfTrpB0B2(A-A) stand-alone

O

PC

C

O

C

C

(a)

PfTrpB(A-A)-PC and -C
isolated

PfTrpS(A-A)-O and -C
complex

AA
H6

PfTrpB0B2(A-A)-O and -C
stand-alone

AAH6 AAH6

H6

PfTrpB0B2(A-A)-O

AA

H6

AA

H6

AA

PfTrpB(A-A)-PCPfTrpS(A-A)-O

(b)

(c)

IT
(1.70 ± 0.28)

ST
(1.86 ± 0.21)

IT 
(1.40 ± 0.23)

ST
(1.38 ± 0.31) IT

(1.78 ± 0.25)

ST
(1.65 ± 0.24)

Figure S13. (a) Representation of the FELs associated with the COMM domain Open-to-Closed (O-to-C) transition 
for the PfTrpS αβ complex, PfTrpB isolated and PfTrpB0B2 stand-alone enzymes at A-A reaction intermediate. (b) 
Overlays of the PfTrpS, PfTrpB and PfTrpB0B2 metastable open (O), partially closed (PC) and closed (C) 
conformations at A-A intermediate. (c) PfTrpS, PfTrpB and PfTrpB0B2 metastable conformations of the open (O), 
and partially closed (PC) states at A-A reaction intermediate, together with the internal (IT, in blue) and the 
secondary (ST) tunnels computed with CAVER 3.0.17 The averaged bottleneck radii (in Å) are also shown. 
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Figure S14.  Identification of the amino-acids that contribute to the Open-to-Closed (O-to-C) conformational 
exchange in PfTrpS at Ain (a), Aex1 (b) and A-A (c) intermediates through Shortest Path Map (SPM) analysis.19 
The size of the spheres and black edges are indicative of the importance of the position for the PfTrpS 
conformational dynamics. Positions mutated via DE are marked in orange (if they are included in the SPM), or in 
pink (if they directly interact with SPM residues). SPM residues that interacted with the DE positions are marked 
with blue spheres. 

Note that in the absence of substrate (i.e. TrpS-Ain), SPM shows a small set of correlated motions. However, after 
substrate binding (i.e. Aex1, A-A and Q2 intermediates) an increase in the number of correlated pathways 
connecting distal regions with the COMM domain is observed, which are conserved among the different reaction 
intermediates. In particular, one of the most conserved pathways found corresponds to the P12L and E17G distal 
regions that are located close the TrpA-TrpB interface, as well as the pathway that includes I68V. This analysis 
indicates that the COMM domain conformational dynamics is modulated by these different pathways, thus 
providing mutation points for achieving stand-alone function.



S19

(a) PfTrpB(Ain) (b) PfTrpB2(Ain)

Figure S15.  Representation of the FELs associated with the COMM domain Open-to-Closed (O-to-C) transition 
for the PfTrpB (a), PfTrpB2 complex (b) enzymes at Ain reaction intermediate.
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5.2 Rational prediction of distal activity-enhancing mutations in tryptoptan 

synthase  

 

 
 
Maria-Solano, M.A.*; Kinateder, T.; Iglesias-Fernández, J.; Sterner, R.*; Osuna, S.*	Rational prediction of 
distal activity-enhancing mutations in tryptophan synthase, [to be submitted]. 
 
The work included in this chapter has been carried out in collaboration with an experimental 
group led by Reinhard Sterner. The free energy landscape calculations and their combined 
analysis with the Shortest Path Map tool for the rational design of stand-alone enzyme variants 
was performed by our group, while the reconstruction of the phylogenetic tree and the 
experimental validation of the designed variants by the Sterner group. 

 
 
 
Abstract 
 
Allostery is a central mechanism for the regulation of multi-enzyme complexes. The 
mechanistic basis that drives allosteric regulation is poorly understood, but harbors key 
information for enzyme engineering. In the present study, we focus on the tryptophan synthase 
complex that is composed of TrpA and TrpB subunits, which allosterically activate each other. 
Specifically, we develop a rational approach for identifying key amino acid residues of TrpB 
distal from the active site. In particular, we predict positions crucial for shifting the inefficient 
conformational ensemble of the isolated TrpB to a productive ensemble through intra-subunit 
allosteric effects. The experimental validation of the new conformationally-driven TrpB design 
demonstrates its superior stand-alone activity in the absence of TrpA, comparable to those 
enhancements obtained after multiple rounds of experimental laboratory evolution. Our work 
evidences that the current challenge of distal active site prediction for enhanced function in 
computational enzyme design can be ultimately addressed. 
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ABSTRACT 
 
Allostery is a central mechanism for the regulation of multi-enzyme complexes. The mechanistic basis 
that drives allosteric regulation is poorly understood, but harbors key information for enzyme 
engineering. In the present study, we focus on the tryptophan synthase complex that is composed of 
TrpA and TrpB subunits, which allosterically activate each other. Specifically, we develop a rational 
approach for identifying key amino acid residues of TrpB distal from the active site. In particular, we 
predict positions crucial for shifting the inefficient conformational ensemble of the isolated TrpB to a 
productive ensemble through intra-subunit allosteric effects. The experimental validation of the new 
conformationally-driven TrpB design demonstrates its superior stand-alone activity in the absence of 
TrpA, comparable to those enhancements obtained after multiple rounds of experimental laboratory 
evolution. Our work evidences that the current challenge of distal active site prediction for enhanced 
function in computational enzyme design can be ultimately addressed. 
 
 

INTRODUCTION 

 
Enzymes are some of the most sophisticated biomolecules that exist on Earth. They achieve impressive 

rate accelerations thanks to their highly preorganized active site pocket, while exhibiting remarkable 

conformational flexibility key for their function, regulation and evolution.1-7 Enzymes are dynamic 

biological entities, being their catalytic activity directly related to their structure and the broad ensemble 

of conformations they sample in solution.4-6 This conformational equilibrium can be shifted, for example, 

by the binding of a ligand to a given site. This in turn influences the binding or the turnover of a substrate 

at the active site of the enzyme, a phenomenon that is called “allostery”.8, 9  Likewise, the introduction 

of an amino acid substitution in the protein sequence not only induces an evident structural change but 
also a redistribution of the conformational ensemble, which in turn can potentially impact catalytic 

activity. 4, 6, 10, 11 Indeed, it has been proven that allosteric effects are not restricted to effector binding, 

but instead single point mutations or covalent attachment (e.g. phosphorylation), among others can 

induce similar responses.9, 12, 13  

 

Identifying mutations that modulate enzyme activity is the primary goal of enzyme engineering. One 

approach to enzyme engineering is Directed Evolution (DE), which has been applied to a myriad of 
enzyme systems successfully identifying active site and distal mutations, providing access to 

impressive tailor-made enzyme variants at the expense of large and expensive screening efforts.14-17 



Rational design emerged as an attractive alternative to decrease the screening efforts to a reduced 

number of promising enzyme variants based on prior structural knowledge and computational 

approaches.18-21 Given the sophisticated nature of enzyme catalysis, multiple computational strategies 

and protocols have been developed in recent years for computational enzyme design.20 The evaluation 
of the conformational landscape of enzymes along distinct natural and DE evolutionary pathways has 

evidenced that the introduced mutations progressively tune the conformational ensemble, stabilizing 

key conformational states for the novel function.4, 6, 10, 20 Of note is that the mutations introduced with 

DE are often located distal from the active site pocket, which given the vast sequence space are 

computationally challenging to predict.20, 22, 23 In addition to that, the computational prediction of which 

remote mutations can induce the desired population shift to favor the key conformational ensemble for 

novel functionality is an extremely difficult task.20 Our group has recently shown that active site and 

distal positions targeted by DE can be computationally identified through the coupling of MD simulations 
with cross correlation methods such as the Shortest Path Map (SPM).20, 24 SPM has been applied for 

identifying DE mutations in the retro-aldolase, monoamine oxidase and tryptophan synthase enzymes 

suggesting its potential application for smart library construction for enzyme design. 20, 24  

 

Tryptophan synthase (TrpS) is an excellent model system for studying allosteric properties. TrpS is 

a heterodimeric enzyme complex formed by α(TrpA) and β(TrpB) subunits in an αββα arrangementThe 

functional unit is formed by a TrpA and an associated TrpB subunit (Fig. 1a).25, 26 TrpA catalyzes the 

retro-aldol cleavage of indole-3-glycerol phosphate (IGP) producing glyceraldehyde-3-phosphate (G3P) 
and indole, which diffuses along an internal tunnel towards the TrpB active site.27 TrpB is a pyridoxal 

phosphate (PLP) cofactor dependent enzyme that catalyzes the production of L-Tryptophan by 

condensation of indole and L-serine in a multistep reaction mechanism, which mainly comprises: (1) 

formation of a Schiff base intermediate (Ain) at the resting state by covalent attachment of PLP cofactor 

to the catalytic lysine, (2) transamination with L-Ser, (3) indole coupling, and (4) formation of several 

quinonoid intermediates (Q) to finally release L-Trp. This complex multi-step mechanism involves 

multiple proton donor/abstraction steps assisted by the catalytic lysine (Supplementary Scheme 1).28 
Of relevance is the tight allosteric coupling between TrpA and TrpB along the catalytic itinerary.29, 30 

TrpA and TrpB catalyze different reactions that are synchronized (i.e. TrpA tunes the TrpB 

conformational ensemble and vice versa). This fine tuning of the conformational ensemble involves 

open-to-closed transitions of the rigid COMM domain that forms a lid covering the TrpB active site (Fig. 

1b) and an active site loop of TrpA, as shown by X-ray and computational data.26, 31, 32 Given the tight 

allosteric communication exerted between subunits, both TrpA and TrpB are much less efficient when 

isolated, which hampers TrpB industrial application for non-canonical amino-acids production.33-38 

Arnold and coworkers addressed this limitation by applying DE to optimize activity of TrpB from the 
TrpS of Pyrococcus furiosus for stand-alone function (i.e. recovery of the catalytic activity in the absence 

of the allosteric protein partner TrpA).33, 34 Interestingly, the most evolved variant (pfTrpB0B2) was even 

more efficient than the original pfTrpS complex (2.9-fold increase in kcat), and contained 5 out of the 6 

mutations located distal from the active site. This manifests that the recovery of activity exerted by the 

distal mutations is induced through allosteric effects.33, 34 Intrigued by the allosteric regulation induced 



by distal mutations, we explored the conformational energy landscape of the pfTrpS enzyme complex, 

the pfTrpB isolated enzyme and the stand-alone pfTrpB0B2 evolved variant.31 Free energy calculations 

revealed that the DE mutations in pfTrpB0B2 recovered the allosterically driven conformational ensemble 

of the pfTrpS complex, allowing the exploration of open, partially closed and closed conformations of 
the COMM domain, which is required for the multi-step catalytic pathway. The pfTrpB stand-alone 

activity was thus achieved though the recovery of the conformational ensemble present in the pfTrpS 

complex. In fact, the allosterically driven conformational ensemble was not only recovered but also 

improved, as a higher stability of catalytically productive closed states was found in the case of 

pfTrpB0B2. This explained the pfTrpB0B2 superior activity with respect to the pfTrpS complex. In contrast, 

isolated pfTrpB showed a restricted COMM domain conformational heterogeneity and catalytically 

unproductive closed states. Careful analysis of the pfTrpS conformational ensemble through SPM 

correlation-based tools elucidated the enzyme pathways most contributing to the TrpS conformational 
dynamics, which interestingly included some important DE positions.20, 31 This suggests that the 

identified positions with SPM can potentially alter the enzyme conformational dynamics, and thus its 

stand-alone activity. However, multiple positions are identified and there is a lack of information on 

which specific amino-acid substitution should be introduced for achieving an efficient conformational 

ensemble for stand-alone function.   

 

 

 
 

 

 
 



 

Fig. 1 | Overview of Tryptophan Synthase (TrpS) enzyme. a, The functional unit of TrpS consists of a heterodimer, which is 

formed by TrpA (blue) and TrpB (green). TrpA catalyzes the cleavage of indole-3-glycerol phosphate (IGP) to glyceraldehyde-3-

phosphate (G3P) and indole, which in TrpB reacts with activated L-Ser in a multistep mechanism to yield L-Trp (see 

Supplementary Scheme 1). b, Overlay of pfTrpS metastable conformations from previous computational exploration showing the 

transition of the COMM domain (residues 97-184) from an open (blue, O), to a partially closed (pink, PC) to a closed conformation 

(green, C). Highlighted are the a-helix H6 of the COMM domain (residues 174-164) and the reaction intermediate Q2 in the active 

site, which is colored as a function of its origin molecule (PLP cofactor in orange, L-Ser in blue and indole in purple).31 c, The 

phylogenetic tree shows the path from the last bacterial common ancestor (LBCA) TrpS over six intermediate nodes (ANC1 TrpS 

to ANC6 TrpS) to the extant Neptuniibacter caesariensis TrpS.39 Numbers next to each edge indicate the number of mutations 

accumulated in TrpA and TrpB with respect to the previous node. While LBCA-TrpB gets deactivated by TrpA and exhibits stand-

alone function, the allosteric effect of TrpA is reverted along the phylogenetic tree with a switch between ANC2 TrpB and ANC3 

TrpB to an allosteric activation, as observed in extant ncTrpB. 

 

An orthogonal in silico method to analyze functional transitions in enzyme evolution is ancestral 

sequence reconstruction (ASR) .40-42 In a previous work, we reconstructed the TrpS phylogenetic tree 

and identified a shift in the allosteric modulation exerted by TrpA on TrpB activity.39, 43 The analysis of 

the steady state kinetic parameters of the last bacterial common ancestor (LBCA) revealed high stand-
alone activity of LBCA-TrpB and its allosteric inhibition in the presence of TrpA. Along the phylogenetic 

tree, this inhibition was gradually inversed towards allosteric activation existing in modern TrpB (Fig. 

1c).  

 



This inversion of the allosteric effect exerted by TrpA on TrpB between ANC2 and ANC3 provides a 

perfect starting point for an SPM-based design. Specifically, we wanted to identify residues within the 

allosteric network of TrpB that are able to rescue the missing allosteric activation from TrpA and predict 

mutations that convey stand-alone function in the context of the inefficient ANC3 TrpB. To this end, we 
intended to explore the conformational ensemble of the stand-alone LBCA TrpB enzyme system, and 

identify key positions by means of our developed SPM correlation-based tool. Sequence comparison 

of the identified positions along the phylogenetic tree further reduces the number of potential mutations 

and provides the specific amino-acid substitutions for stand-alone function. This approach decreases 

the experimental screening to one single mutant and includes the rational prediction of both active site 

and distal mutations.  Our study presents a computational enzyme design approach that is not restricted 

to active site mutations and demonstrates that the challenge to rationally predict distal mutations can 

be ultimately addressed by exploring the conformational energy landscape of enzymes in combination 
with cross correlation and bioinformatic tools. 

 

RESULTS: 

 

 
Reconstruction of Ancestral TrpS conformational ensembles. As shown in previous studies, 

natural evolution has altered the need of TrpS to be allosterically regulated.39 As opposed to modern 

TrpB, the ancestral LBCA TrpB was found to operate less efficiently (in terms of kcat) in the presence of 

TrpA.43 The allosteric inhibition imparted by TrpA suggests that the ancestral TrpB in complex is less 
efficient in accessing the catalytically productive conformational states required for enhanced activity.31 

Interestingly, LBCA TrpB affinity towards L-Ser substrate was enhanced in the heterocomplex form 

(Supplementary Table 1). To provide the molecular basis for stand-alone activity and higher affinity 

towards L-Ser, we decided to computationally reconstruct the free energy landscape (FEL) of LBCA 

TrpB in the presence (i.e. heterocomplex TrpS) and absence of TrpA (Fig. 2). We employed 

metadynamics simulations to reconstruct the FEL associated with the open-to-closed transition of the 

COMM domain (see Supplementary Fig. 1) at the resting state (i.e. E(Ain)) and at the Q2 intermediate 

(i.e. quinonoid intermediate formed after indole coupling, see Supplementary Scheme 1). The 
reconstructed FEL of the LBCA TrpB(Ain) in the absence of TrpA, indicates that TrpB(Ain) mostly visits 

partially closed (PC) conformational states of the COMM domain (Fig. 2a).  This is altered in the 

presence of TrpA, which clearly induces a shift in the FEL stabilizing open (O) states with similar 

deviations from the reference path (Fig. 2a and 2b, on the left). At the resting state, closed (C) states 

are inaccessible for both systems. The analysis of the access tunnels to the active site for L-Ser binding 

through CAVER calculations (see Fig. 2c and Supplementary Fig. 2) indicates that the PC 

conformational ensemble of the isolated LBCA TrpB has a substantially narrower tunnel bottleneck than 

the accessible O states of the complex. This finding indicates that the O conformational ensemble 

improves L-Ser accessibility to the active site, thus explaining the enhanced KM
L-Ser values displayed by 

the LBCA TrpS complex. 

 



 
Fig. 2 | Computational exploration of the LBCA conformational ensemble. Free energy landscape (FEL) associated with the 

COMM domain open-to-closed (O-to-C) conformational transition of the LBCA TrpB (a) and LBCA TrpS (b) at Ain and Q2 reaction 

intermediates. The x-axis corresponds to the progression along the reference O-to-C path generated from X-Ray data, while the 

y-axis to the mean square deviation (MSD) distance from the reference path c, Tunnels access of LBCA TrpS-O state at Ain 

reaction intermediate for the L-Ser substrate, computed with CAVER 3.0. The averaged bottleneck radii (in Å) for the internal 

TrpA-TrpB tunnel (IT, green) and the secondary tunnel (ST, violet) found are also shown. d, Overlays of the metastable 

conformations of the partially closed (PC) state of LBCA-TrpS (orange) and the closed (C) state (green) of LBCA-TrpB at Q2 

reaction intermediate. The catalytic proton transfer distance (in Å) between the K84 (yellow) residue and the Q2 reaction 

intermediate (slate) is also represented. 

 

More interesting is the fact that TrpA was found to inhibit the TrpB catalytic efficiency, as isolated 

LBCA TrpB displays a ca. 8.4-fold kcat higher value. As we show in our previous study,31 the catalytic 

activity of TrpS can be estimated by evaluating its ability to visit catalytically competent C states of the 

COMM domain. The catalytically-relevant closed conformational ensemble displays an efficient active 
site preorganization by means of optimized non-covalent interaction networks and short catalytic 

distances between the Q2 intermediate and the conserved catalytic K84 that acts as proton acceptor. 

In particular, the H6 COMM domain helix was found to play an important role in the closure to form non-

covalent interactions with the indole moiety of Q2. In the present work, the reconstructed FEL associated 

to the COMM domain open-to-closed (O-to-C) transition for LBCA TrpB (Fig. 2a,d) indicates that at the 



Q2 intermediate, the catalytically productive C conformational ensemble is indeed accessible for 

efficient catalysis. The structural characterization of the visited C conformational states shows LBCA 

TrpB adopts catalytically productive COMM domain closure with appropriate K84-Q2 proton transfer 

distances (Fig. 2d and Supplementary Fig. 3 and 4), as discussed above. This evidences that LBCA 
TrpB has stand-alone properties derived from the exploration of stable catalytically competent C 

conformations in the absence of TrpA. On the contrary, LBCA TrpA alters the conformational landscape 

of TrpB as it induces a shift towards PC conformations hampering the ability of the COMM domain to 

complete the O-to-C transition for achieving catalytically productive C states (Fig. 2b). As expected, PC 

conformations of LBCA TrpB in the presence of TrpA do not exhibit a competent closure of the COMM 

domain, in particular this is notorious for the H6 region. Besides, the K84-Q2 proton transfer distances 

are larger (Fig 2d. and Supplementary Fig. 3). In summary, our results indicate that the destabilization 

of the competent C LBCA TrpB ensemble is the main responsible of the allosteric inhibition exerted by 
the LBCA TrpA protein partner. It is worth mentioning that we estimated a similar effect (i.e. 

destabilization of the competent C ensemble) for the allosteric inhibition exerted by pfTrpA on the 

laboratory-evolved stand-alone pfTrpB0B2. Another interesting aspect of LBCA conformational dynamics 

is its limited conformational heterogeneity (i.e. a narrow set of states are sampled), especially if 

compared with the previously studied allosteric pfTrpS complex and the laboratory-evolved stand-alone 

pfTrpB0B2 catalyst. A high degree of conformational heterogeneity was observed for the latter cases, 

which explored the complete O-to-C transition at Q2 intermediate. The lack of O states of the COMM 

domain at the Q2 intermediate for LBCA-TrpB suggests a more rigid COMM as the reaction evolves, 
and an infrequent transition towards O state, thus suggesting that product release might be rate limiting.  

 

Computational prediction of distal active site mutations for stand-alone function. The mutations 

introduced along an evolutionary pathway progressively tune the conformational ensemble of enzymes 

towards novel function. 4, 6, 10, 20 In this context, distal active site mutations have been shown to play a 

crucial role in natural and laboratory evolvability.12, 22 Their prediction considering the vast protein 

sequence space that yields a targeted function is, however, an extremely challenging task in 
computational enzyme design.20 We have recently reported that molecular dynamics coupled to 

correlation-based tools are promising methodologies for the identification of both active site and distal 

positions targeted in non-rational laboratory evolution experiments.20, 24 In particular, we successfully 

developed and applied the Shortest Path Map (SPM) method for identifying the enzyme pathways that 

most contribute to the conformational dynamics of the pfTrpS enzyme. Of relevance is that the identified 

positions contained or make persistent non-covalent interactions with residues targeted in the 

laboratory evolution of the pfTrpS enzyme for stand-alone function.31 SPM identifies important positions 

for the enzyme conformational dynamics, thus reducing the potential number of mutational hotspots.  
 

Inspired by the previous work on the TS ancestral reconstruction, we focused our computational 

design on the ancestral ANC3 TrpB scaffold.39, 43 This enzyme corresponds to the third node of the 

phylogenetic tree and exhibits reversion of allosteric inhibition towards activation along the evolution 

pathway (see Fig. 1c). In other words, ANC3 TrpB is the first enzyme that is allosterically dependent on 



TrpA, thus being highly inefficient as stand-alone catalyst (Supplementary Table 2). The absence of 

TrpA decreases ANC3 TrpB activity 30.2-fold in terms of kcat, suggesting a reduced conformational O-

to-C ensemble. Given the success of SPM in identifying key positions for the enzyme conformational 

dynamics, we decided to apply our computational methodology to rationally engineer an ANC3 TrpB 
catalyst towards stand-alone activity. Our initial reference protein was LBCA TrpB, as it exhibits stand-

alone properties thanks to its ability to adopt stable and efficient closed states of the COMM domain. 

The SPM analysis of the LBCA TrpB SPM identified 74 possible hotspots that potentially regulate the 

enzyme conformational dynamics (74 out of 413 residues, i.e. 18% of the total enzyme). This number 

is too large for an efficient rational design of ANC3 TrpB, as it is unclear, which positions should be 

targeted and which substitutions should be introduced to establish stand-alone function. We solved this 

problem by analyzing the sequence conservation between LBCA TrpB and the targeted ANC3 TrpB 

system for the 74 SPM positions (see the workflow followed in Fig. 3). Comparing the residues at each 
of the 74 SPM positions reduced the number of sites to 6 and specified the nature of the mutation to 

the amino acid found in LBCA TrpB. Interestingly, 5 out of 6 positions were located far away from the 

active site.  

 



 
Fig. 3 | SPM-based computational workflow for the rational design of SPM6 TrpB enzyme variant. By analyzing the 

conformational ensemble of the stand-alone LBCA TrpB with high catalytic activity (upper left ensemble) through the SPM, we 

identified positions (grey spheres, lower left structure) within allosteric pathways (black edges) in the enzyme that most contribute 

to the LBCA TrpB conformational dynamics in the Q2 intermediate. Thereby the size of each edge and node corresponds to the 

relevance for conformational dynamics; catalytic K84 is highlighted in yellow. Excluding residues that do not participate in an 

allosteric pathway reduces the sequence space from 20393 to 2074 possible activity enhancing substitutions. Sequence 

comparison at the SPM positions between stand-alone LBCA TrpB and inefficient ANC3 TrpB reduces the sequence space to 6 

mutations with respect to LBCA TrpB (lower right structure, purple residues), that were introduced into ANC3 TrpB (upper right 

structure, purple residues) and tested in-vitro. 

 

 

 



Rational SPM-based ANC3 TrpB designs for stand-alone function. The application of the SPM 

method coupled to sequence comparison between two variants exhibiting rather high (LBCA TrpB) or 

low (ANC3 TrpB) stand-alone function reduced the SPM library to only 6 specific mutations in ANC3 

TrpB: A56E, D62E, S73T, T207S, N299A and R300M. This ANC3 variant was termed SPM6 TrpB. 
Interestingly, none of the mutations are located at the COMM domain, 5 out of 6 mutations are located 

far away from the active site (ca. 18-29 Å), among which N299A and R300M are near the TrpA-TrpB 

protein interface and only S73T is located at the active site pocket (Fig. 3 and Supplementary Fig. 5). 

The computational screening of ANC3 TrpB, the ANC3 TrpS and the SPM6 TrpB enzyme variant by 

means of conventional molecular dynamics simulations suggested that both SPM6 TrpB and ANC3 

TrpS are able to retain the closed conformation of the COMM domain. In contrast, isolated ANC3 TrpB 

explores additional non-productive conformations (Supplementary Fig. 6). This fast screening 

computational protocol suggests a rather low stability of the C state of the COMM domain in isolated 
ANC3 TrpB, which explains its low stand-alone catalytic activity (Fig. 4a). These computational insights 

encouraged us to experimentally test the SPM6 enzyme variant. As shown in Fig. 4 and Supplementary 

Table 3, SPM6 TrpB successfully enhances the catalytic activity with respect to ANC3 TrpB by almost 

one order of magnitude (7-fold increase in kcat). The catalytic efficiencies for both, L-Ser and indole are 

also improved. It is worth emphasizing that a similar fold increase in stand-alone catalytic activity was 

achieved in pfTrpB by means of multiple rounds of laboratory evolution.33 Our SPM-based 

computational approach therefore provides the same order of improvement in stand-alone activity but 

by only testing one single rationally designed variant. Another interesting aspect to evaluate is whether 
the SPM6 mutations have an impact in the allosteric modulation exerted by TrpA. The catalytic activity 

of the ancestral ANC3 TrpB increases 30.2-fold in terms of kcat thanks to the TrpA-triggered allosteric 

activation. Unexpectedly, the introduction of SPM6 mutations to ANC3 TrpB confer increased stand-

alone activity while still retaining some TrpA allosteric activation (the activity of SPM6 TrpB is enhanced 

5.5-fold in the presence of TrpA). This indicates that the SPM6 distal mutations tune the O-to-C 

conformational ensemble of SPM6 TrpB through long-range intra-subunit allosteric effects but these 

changes in the conformational landscape do not prevent TrpA allosteric activation. In fact, the 
combination of both inter-subunit and intra-subunit allosteric effects yields SPM6 TrpS complex 

displaying even higher catalytic activity than the ancestral ANC3 TrpS complex (i.e. 1.3-fold increase, 

Fig. 4a).  



 
 

Fig. 4 | Illustration of the TrpB kinetic characterization. a, Activity changes of ANC3, SPM3, SPM8, SPM6 and LBCA isolated 

TrpB enzymes upon complexation with their corresponding TrpA protein partners, in terms of the average values for kcat. b, TrpB 

fold activity at logarithmic scale of ANC3 respect to SPM3, SPM8, SPM6 and LBCA. The new TrpB designs SPM6 and SPM8 

are 7 and 5.4-fold more active than ANC3 TrpB, while the reference stand-alone LBCA TrpB 17.4-fold. Errors bars indicate the 

standard deviation observed in two separate experiments.  

 

In order to further test the SPM predictive power and the robustness of the strategy followed so far, 

we additionally targeted two other SPM based approaches. In the first one, we followed the same 

workflow as for the SPM6 design but used instead of LBCA TrpB the isolated ANC2 TrpB as stand-

alone reference protein for the SPM pathway analysis. (Fig. 1c). After identifying the shortest path map 
in ANC2 TrpB and subsequent sequence comparison between ANC2 TrpB and ANC3 TrpB we 

identified 3 SPM positions and predicted 3 mutations in ANC3 TrpB: S73T, N299S and R300M. The 

corresponding variant was termed SPM3. This reduced number of non-conserved SPM positions 

makes sense since ANC2 and ANC3 are closer in the phylogenetic tree than LBCA and ANC3. 

In the second approach, we conducted a SPM analysis on the ANC3 TrpS complex. The rationale 

behind taking this complex as a reference was that, while isolated ANC3 TrpB is poorly active and its 

allosteric communication is likely truncated, complexation with TrpA leads to high activity and likely a 

restored allosteric network. After identifying allosterically relevant SPM positions within ANC3 TrpS, we 
again compared the ANC3 TrpB sequence to LBCA TrpB in order to predict mutations that lead to a 

stand- alone catalyst. Following this protocol, we identified two extra positions as compared to SPM6 

(SPM8): R53N and M187I, where R53N is far away the active site and M187I is located at the H6 helix 

of the COMM domain. It should be noted that the 3 positions of SPM3 and 6 out of 8 of SPM8 were 

previously identified in SPM6. Following the same computational MD-based screening protocol SPM3 

and SPM8 TrpB variants were analyzed, which suggested a rather high stability of the C state of the 

COMM domain for enhanced activity (Supplementary Fig. 6). The experimental validation of the 

computational predictions for both SPM3 and SPM8 variants revealed enhanced catalytic activities of 
ANC3 TrpB when isolated. SPM8 TrpB exhibited a similar activity enhancement (5.4-fold in terms of 

kcat) as SPM6 TrpB, whereas a quite modest enhancement was obtained for SPM3 TrpB in line with the 
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reduced number of mutations (1.1-fold). Regarding the inter allosteric effects exerted by TrpA, SPM3 

and SPM8 variants also showed TrpA allosteric activation. In particular, SPM3 showed a similar degree 

of the kcat increase in complex as ANC3 (26.3-fold), while SPM6 (5.5-fold) and SPM8 (1.9-fold) enzyme 

variants present a reduced predisposition to the TrpA allosteric activation (Fig. 4).  

 

DISCUSSION 

 
Allosteric regulation is a central biological process focused on the functional connection between 

distinct sites on either a single biological entity or among complex multimeric structures.9, 12, 44 This 

regulation of enzymatic function is not limited to effector or protein partner binding, as similar effects 

have been observed by covalent attachment or by introducing mutations located at distal positions of 

the enzyme active site.9, 12 The elucidation of the underlying mechanism and forces that drive allosteric 

regulation has the enormous potential of identifying key positions for regulating enzymatic function, 
which could be exploited in enzyme design.20 The present study indeed demonstrates that distal active 

site positions, regulating the allosterically-driven conformational ensemble and thus the enzyme activity, 

can be successfully identified by means of correlation-based tools and sequence comparison. Given 

the vast sequence and conformational space, the rational prediction of mutations, especially those 

located at remote positions from the active site impacting enzymatic function is an extremely difficult 

task in the computational enzyme design field. Apart from that, the identification of the amino acid 

substitutions that optimize the enzyme conformational ensemble for a targeted enzyme function is 
extremely challenging. Our study focuses on the engineering of stand-alone function taking advantage 

of the substantial allosteric contributions that distal mutations were exerting on the laboratory-evolved 

variants.31, 33, 34  The exploration of the free energy landscape of the ancestrally reconstructed LBCA 

TrpS in complex and as stand-alone catalyst (LBCA TrpB), together with our previous findings31 on the 

wild-type pfTrpS complex, isolated  pfTrpB and laboratory-evolved pfTrpB0B2 has elucidated the 

conformational ensemble that a stand-alone catalyst has to display for being efficient. This information 

is pivotal for fine-tuning the conformational ensemble and progressing towards the targeted enzyme 

design goal. We find that LBCA TrpB naturally adopts a stable catalytically productive COMM domain 
closure, which is hampered by the presence of the LBCA TrpA protein partner. LBCA TrpA therefore 

induces an allosteric inhibition of LBCA TrpB activity, which contrasts with the TrpA allosteric activation 

usually found in modern TrpB enzymes. In this study we exploit the intrinsic ability of LBCA TrpB to 

efficiently stabilize catalytically competent COMM domain closed conformations when isolated (i.e. 

crucial for stand-alone properties), and develop a novel computational enzyme design approach for 

achieving stand-alone function. In particular, we apply our SPM method to identify the enzyme 

pathways and positions that most contribute to the LBCA TrpB conformational dynamics. We 

hypothesized that these conformationally-relevant SPM positions could be potential hotspots for tuning 
the conformational ensemble of TrpA-dependent TrpB enzymes. The reconstruction of the phylogenetic 

tree from LBCA TrpS to the modern ncTrpS provided an intermediate variant ANC3 TrpB, which exhibits 

a high allosteric activation from ANC3 TrpA (i.e. ANC3 TrpB is highly inefficient when isolated). The 

application of SPM into LBCA TrpB reduced the sequence space from 393 to 74 hotspots, suggesting 



that ca. 18% of the positions play a conformationally-relevant role. However, this still leads to a massive 

amount of enzyme variants to screen. Interestingly, the analysis of sequence conservation at the 

identified SPM positions between LBCA and ANC3 TrpB templates reduced this large number to only 

6 positions. This approach assumes that the transfer of the non-conserved conformationally-relevant 
SPM mutations from the LBCA to the targeted ANC3 TrpB template will alter the enzyme conformational 

dynamics and induce the stabilization of the catalytically relevant closed state of the COMM domain. It 

is worth mentioning that among these 6 mutations 5 are distal from the active site and none is included 

in the COMM domain. 

 

The fast-computational screening of the rationally designed enzyme including these 6 mutations 

indicated that SPM6 better stabilizes the closed conformational ensemble than the parent ANC3. 

Indeed, the experimental evaluation of SPM6 indicated the introduced mutations boosted the stand-
alone catalytic activity of the inefficient isolated ANC3 TrpB enzyme near one order of magnitude. This 

enhancement by only testing a single variant is comparable to that observed for the laboratory evolved 

pfTrpB0B2 after three rounds of DE, that involved the screening of ca. 3,080 variants.33 The observed 

enhancement of ANC3 TrpB stand-alone activity still does not completely recover the activity displayed 

by the ANC3 TrpS complex. The new SPM6 designed variant enhances the low initial 3% activity 

displayed by ANC3 TrpB up to ca. 23%. It should be also mentioned that the SPM6 design is based on 

the template scaffold LBCA-TrpB, whose catalytic activity is lower than that of ANC3 TrpS complex 

(LBCA TrpB activity is ca. 58% that of ANC3 TrpS). In the case of the DE pfTrpB0B2 enzyme variant, a 
300 % of activity recovery was observed.33 

 

The partial recovery observed for SPM6, is in part due to the dramatic loss of activity displayed by 

ANC3 TrpB in the absence of TrpA (97% of activity loss), which is more moderate in pfTrpB (69%). 

These numbers indicate that the total recovery of ANC3 activity is more demanding from an engineering 

point of view, and suggest that the new generated SPM6 variant still presents some predisposition 

towards TrpA regulation. This evidences that the distal mutations introduced in SPM6 variant 
successfully enhanced the stand-alone activity of ANC3 TrpB activity through intra-subunit allosteric 

effects, however, they did not completely free TrpB from the inter-subunit allosteric regulation exerted 

by TrpA. To our surprise, SPM6 in complex with TrpA showed the most efficient turnover tested in this 

work, which indicates that the combination of intra- and inter-allosteric effects can operate 

synergistically to successfully tune the O-to-C conformational ensemble and achieve high catalytic 

efficiencies.  

 

Another secondary insight gained from this work comes from the analysis of how the TrpS 
conformational landscape is altered and conserved along the natural evolutionary pathway. The 

exploration of the conformational ensemble and the identification of the key conformationally-relevant 

SPM positions of LBCA, ANC2 and ANC3 phylogenetic nodes and their comparison with the previously 

studied modern pfTrpS revealed that the main allosteric pathways are not significantly altered along 

evolution. Indeed, the comparison of the generated SPM paths for the different enzymes reveals a 



rather high number of shared positions, thus suggesting similar TrpB correlated motions among 

variants. The conservation of the conformationally-relevant positions also explains the common 

positions targeted in the different SPM-based strategies for SPM3 and SPM8 designs. Our findings 

reinforce the original approach based on the LBCA SPM analysis as a robust computational strategy 
that could be exploited for the rational engineering of TrpB enzyme variants either for improved stand-

alone or in complex function. It also evidences that conformational heterogeneity and, in particular, the 

use of ancestral conformationally-rich scaffolds corresponds to a successful strategy for designing 

desired enzymatic functions.42, 45    

 

The approach presented in this work highlights that the exploration of the enzyme conformational 

ensemble is essential for successful computational enzyme design. The detection of the key 

conformationally-relevant positions and the combined analysis of its conservation along ancestral 
phylogenetic trees harbors meaningful information for solving the current challenge in computational 

enzyme design of distal active site prediction for enhanced function. 

  



METHODS: 

 

Molecular Dynamics simulations. System preparation. The crystal structure of the LBCA TrpS 

complex (LBCA TrpA + LBCA TrpB), with PDB accession code 5ey5 was used as starting structure. 

The missing X-Ray regions were added using Modeller web server. The ANC3 TrpS complex was 

constructed by homology modelling. The ANC2 TrpB, the SPM3, SPM6 and SPM8 variants were 

generated from the ANC3 TrpB template using the mutagenesis tool included in Pymol 

(http://www.pymol.org/). Isolated TrpB enzymes were generated by manually removing its 

corresponding TrpA subunit. MD parameters for the reaction intermediates for TrpA (IGP, GP3) and 

TrpB (Ain and Q2) were generated with the antechamber and parmchk modules of AMBER1646 using 
the general amber force-field (GAFF). The partial charges (RESP model) were set to fit the electrostatic 

potential generated at the HF/6-31G(d) level of theory using the Gaussian09 software package. The 

different reaction intermediates were placed in the TrpA and TrpB subunits by alignment to available X-

ray structures. For the simulations of TrpS complexes, two different combinations of bound substrates 

were used: in the first simulations IGP was introduced in TrpA subunit, while Ain intermediate was 

bound in TrpB; in the second set, G3P was introduced in TrpA, while Q2 intermediate was placed in 

TrpB. A total of 13 systems were generated: 4 wild-type TrpS complexes (LBCA TrpS and ANC3 TrpS 

with IGP-Ain and GP3-Q2 intermediates), 6 isolated TrpB enzymes (LBCA TrpB, ANC3 TrpB and ANC2 
TrpB at Ain and Q2 intermediates) and 3 TrpB enzyme variants (SPM3, SPM6 and SPM8 at Q2 

intermediate). 

 

Molecular dynamics simulation details. All enzyme structures were filled with buffer in a pre-equilibrated 

cubic box of 10 Angstrom using the TIP3P water model and neutralized by the addition of explicit 

counterions (Na+ and Cl-) using the AMBER 16 leap module. All subsequent calculations were 

performed using a modification of the amber99 force field (ff14SB). A two-stage geometry optimization 
approach was performed. The first stage minimizes the positions of solvent molecules and ions 

imposing positional restraints on solute by a harmonic potential with a force constant of 500 kcal mol-

1Å-2, and the second stage is an unrestrained minimization of all the atoms in the simulation cell. All 

systems were gently heated using seven 50 ps steps, incrementing the temperature 50 K each step 

under constant-volume and periodic boundary conditions. Hydrogen bonds were set to fixed lengths 

using the SHAKE algorithm. Long-range electrostatic effects were modeled using the particle-mesh-

Ewald method. An 8 Å cutoff was applied to Lennard-Jones and electrostatic interactions. Decreasing 

harmonic restraints were applied to the protein (210, 165, 125, 85, 45, 10 kcal mol-1Å-2) during the 
thermal equilibration, with the Langevin scheme used to control and equalize the temperature. The time 

step was kept at 1 fs during the heating stages, allowing potential inhomogeneities to self-adjust. Each 

system was equilibrated without restrains for 20 ns with a 2fs timestep at a constant pressure of 1 atm. 

After the systems were equilibrated in the NPT ensemble, a production run MD simulation was 

performed for each system in the NVT ensemble and periodic-boundary conditions. Production runs 

were performed with the AMBER16 software. For the systems subjected to the fast MD-based 

screening (ANC3 TrpS, ANC3 TrpB, ANC2 TrpB, SPM3, SPM6, SPM8) a production run of 3 



independent replicas 500 ns each (i.e. 1.5 μs accumulated time for each system) were performed at 

333 K. 

 

Metadynamics simulations. Path of collective variables. For the LBCA systems we were interested in 
obtaining the Free energy landscape as a function of the COMM domain Open-to-Closed transition. To 

that end we followed the same protocol employed in our previous work where we applied well-tempered 

metadynamics simulations with a path of collective variables to construct the FEL for the pfTrpS 

complex, the isolated pfTrpB and the evolved variant pfTrpB0B2.31 The LBCA FEL obtained here are 

therefore directly comparable to the previous FEL explorations of pfTrpS. Metadynamics47 is an 

enhancing sampling technique that consists in the addition of external energy potentials at regular 

number of MD steps in order to encourage the system to escape from prior stable conformations 

overcoming energy barriers and visiting other energy minima. In particular, the external potentials are 
added to a selected degree of freedom, often referred to as collective variables (CVs). After sufficient 

simulation time, metadynamics provides a reliable estimation of the underlying free energy as a function 

of the CVs by summing the external potentials added along the simulation. Here we used a path of 

collective variables approach that describes the process under study (path of conformations from open 

to closed states obtained by linear interpolation between available X-ray data, see Supplementary Fig. 

1). Specifically, the x axis represents the progression along the path, encompassing 15 conformations 

from an open (x value = 1) to closed state (x value =15), while y axis measures the mean square 

deviation (MSD) from the reference path provided. Guided by structural information we restricted the 
path of structures to the α-carbons of the COMM domain (residues 97-184) and a loop region located 

at the base of the COMM domain (residues 282-305). Given the high 3D structural similarity between 

LBCA and the modern enzymes as shown by the available X-ray data, the path of conformations 

previously generated for the modern pfTrpB enzyme perfectly matches that obtained for LBCA. The λ 

parameter was computed as 2.3 multiplied by the inverse of the mean square displacement between 

successive frames, 80. 

 

Well-tempered and Multiple walkers. We used the PLUMED2 software package48 and GROMACS 5.1.2 

code49 to perform the metadynamics simulations. First, we carried out a metadynamics simulation for 

the two systems targeted (LBCA TrpS and LBCA TrpB) at the Ain and Q2 reactant intermediates starting 

from the preequilibrated structures through conventional MD simulations (see above). Initial Gaussian 

potentials of height 0.15 kcal mol-1, deposited every 2 ps of MD simulation at 350 K, were gradually 

decreased on the basis of the well-tempered adaptive bias with a bias factor of 10. The well-tempered 

approach allows for a smooth convergence of the FEL reconstruction avoiding the risk of overfilling. 

Besides, the adaptive Gaussian width scheme, in which hills variance is adapted to local properties of 
the free-energy surface, was used. Second, we extracted ten snapshots from the initial metadynamics 

exploration mostly covering the conformational space sampled by each system. These ten snapshots 

were used as the starting structures for the multiple-walkers metadynamics simulations. This approach 

allows to increase the sampling of the conformational space and to reach convergence of individual-

energy profiles. The ten replicas (walkers) are run in parallel and each walker reads the energy 



quantities (external potentials) deposited by the others during the simulation time. In this context, the 

ten walkers collaborate together to reconstruct the FEL. For this case each replica was run for 50-60 

ns, giving a total of 500-600 ns per system (i.e. accumulated simulation time of ca. 2.3 μs). 

 

Convergence. The convergence of the recovered FEL was assessed by monitoring the energy 

difference (DDG) between selected regions of the conformational surface along the simulation time (see 

Supplementary Fig. 7). The selected regions correspond to the open, partially closed and closed energy 

minimum found and also open and closed regions that exhibited higher in energy free energy values. 

For instance, in the LBCA TrpS system at Q2 intermediate, the energy differences were computed 

between the partially closed local energy minimum found and the higher in energy closed and open 
regions (i.e. PC-C and PC-O energy differences).  

 

Structural analysis. A set of structures from each local energy minimum were clustered to obtain 

representative metastable conformations (see Supplementary Fig. 8). For consistency with our previous 

work, the local energy minima and the associated representative structures were labeled as open (O), 

partially closed (PC) and closed (C) accordingly with the path of CV values (x axis); (O)=1-5, (PC)=5-

10 and (C)=10-15. 
 

Caver analysis. The analysis of the available tunnels for the entrance of L-Serine was performed with 

the CAVER 3.0 software.50 In this study we analyze the LBCA TrpS and LBCA TrpB systems at Ain 

intermediate. A total of 200 snapshots for the selected local energy minima from the metadynamic 

trajectories were subjected to Caver analysis. In particular, we used the structures from LBCA TrpS 

(Ain) open and the LBCA TrpB (Ain) partially closed energy minima. The starting point for the 

calculations was chosen at the L-Ser active site coordinates by alignment of the LBCA metastable 

structures at Ain intermediate with the X-ray structure (PDB ID 5DW0), which contains the Aex1 
intermediate co-crystalized (intermediate formed after L-Serine covalent attachment with PLP). 

According to the parameters used in this study, a spherical probe of 0.9 Å radius was selected with a 

weighting coefficient of 1, and clustering threshold of 12.0. 

 

Shortest Path Map analysis. The Shortest Path Map (SPM) analysis was performed using the 

metadynamics simulation of LBCA TrpB, and the MD simulation of the ANC3 variant. The first step for 

SPM construction relies on the calculation of the inter-residue mean distances and correlation values 

observed along the MD simulations and the conversion of this information into a simplified graph. For 
each residue of the enzyme a node is created. Each pair of nodes that display a mean distance of less 

than 6 Å along the MD simulation time is connected through a line. The length of the connecting line 

between residues i and j is weighted according to their correlation value (dij=-log |Cij|). In this way, 

those pairs of residues exhibiting large correlation values (i.e. highly correlated, values closer to 1 or -

1) will be connected through shorter lines, whereas long lines will be drawn for those presenting lower 

correlation values (i.e. non-correlated, values closer to 0). At this point, the generated graph is further 

simplified to identify the shortest path lengths. The algorithm goes through all nodes of the initial graph 



and detects the shortest paths to go from the first until the last protein residue. Following this strategy, 

those lines in the graph that are shorter, i.e. the connecting residues are more correlated, and that play 

a substantial role in the enzyme conformational dynamics are detected. The generated graph that we 

called SPM is then drawn on the 3D structure of the enzyme. More details about our SPM tool can be 
found in the recent publications 24 and 20. 

 

Bacterial Strains and Chemicals. The proteins that were analyzed in this study were expressed in E. 

coli strain BL21 Gold (DE3) (purchased from Agilent Technologies). All chemicals used herein were 

purchased form commercial sources and were of analytical grade or higher. 

 

Cloning. The genes for SPM3, SPM6, and SPM8 were codon optimized for expression in E. coli and 

purchased from Thermo Fisher Scientific (GeneArt Gene Synthesis). The genes were then cloned into 
a pET21a vector in a coupled digestion/ligation reaction using BsaI and T4 DNA ligase,51  which allowed 

for an isopropyl-β-thiogalactopyranoside (IPTG) inducible expression with a C-terminal His6-tag. 

 

Gene Expression and Protein Purification. The E. coli expression strain BL21 (DE3) Gold was 

transformed with plasmids harboring the genes for the TrpB variants SPM3, SPM6 and SPM8 and 

grown in 4 L lysogeny broth (LB) medium supplemented with 150 mg/mL ampicillin and 40 µM PLP at 

37°C. When an OD600 of 0.6 was reached, expression was induced by addition of 0.5 mM IPTG and the 

cultures were further incubated over night at 20°C. Cells were then harvested by centrifugation and 
suspended in 50 mM KP (pH 7.5), 300 mM KCl, 10 mM imidazole, and 20 mM PLP. Cells were disrupted 

by sonication (Branson Sonifier W-250D, 30 % amplitude, 3 min, 2 s pulse, 2 s pause) and cell debris 

and insoluble aggregates were removed by centrifugation. The target proteins were purified from the 

supernatant by nickel-affinity chromatography (HisTrapTM FF crude or HisTrap excel, 5 mL, GE 

Healthcare) applying a linear imidazole gradient (10 mM to 500 mM). This was followed by size 

exclusion chromatography (Superdex 75 HiLoad 26/600, GE Healthcare) using 50 mM potassium 

phosphate (pH 7,5), 300 mM KCl, and 500 mM imidazole. The purified proteins were then dripped into 
liquid nitrogen and stored at -80°C. 

The proteins LBCA TrpB, LBCA TrpA, Anc3 TrpB, and Anc3 TrpA were taken from previous work.39 

 

Steady-State Enzyme Kinetics. In order to monitor TrpB activity, the difference in absorbance 

between indole and L-Trp was used (Δε290 = 1890 M-1cm-1). The reactions were performed at 30°C and 

changes in absorption were monitored with a spectrophotometer (JASCO V-750). The experimental 

conditions included 50 mM potassium phosphate (pH 7.5), 180 mM KCl, 40 µM PLP, saturating 

concentrations of one substrate (either L-Ser or indole) and varying concentrations of the second 
substrate. When a constant baseline absorption was reached, reactions were initiated by addition of 

TrpB or the TrpS complex. In the case of TrpS,TrpA was added in molar excess to ensure complete 

complex formation. Initial slopes were determined and divided by Δε290 to give the initial velocities (Vi). 

The values obtained for Vi were divided by the total concentration of TrpB enzyme ([E]t) and plotted 



against the substrate concentration [S]. The Michaelis constant KM and the turnover number kcat were 

obtained by fitting to the Michaelis-Menten equation (1) using Origin 2019 (Origin Lab). 

 
Vi

[E]t
=

kcat [S]
KM+[S] 

 

(1) 
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Supplementary Information 

 
Supplementary Table 1. Steady state enzyme kinetic parameters of LBCA TrpB and the LBCA TrpS 
complex. 

 
Kinetic parameters LBCA TrpB LBCA TrpS 

kcat  [s-1] 0.51 ± 0.04 0.059 ± 0.004 

KM
Ind   [µM] 7.5 ± 1.6 9.1 ± 2.0 

kcat/ KM
Ind  [M-1 s-1] 6.6 · 104 6.3 · 103 

kcat    [s-1] 0.48 ± 0.01 0.057 ± 0.002 

KM
Ser     [mM] 1.82 ± 0.13 0.28 ± 0.04 

kcat/ KM
Ser    [M-1 s-1] 272 209 

Experimental conditions: 50 mM potassium phosphate pH 7.5, 180 mM KCl, 40 µM PLP, 30°C. The 
concentration of the substrate added in excess was at least five times its respective KM. For the 
measurements of TrpB, 0.2 µM TrpB LBCA were used, while for the LBCA TrpS complex 2.0 µM LBCA 
TrpA and 1.0 µM LBCA TrpB were employed. Under these conditions approximately 100% of LBCA 
TrpB was complexed with LBCA TrpA. 
 
Supplementary Table 2. Steady state enzyme kinetic parameters of ANC3 TrpB and the ANC3 TrpS 

complex. 

 
Kinetic parameters ANC3 TrpB ANC3 TrpS 

kcat  [s-1] 0.028 ± 0.001 0.91 ± 0.01 

KM
Ind   [µM] 9.8 ± 1.2 27.7 ± 1.5 

kcat/ KM
Ind  [M-1 s-1] 2.9 · 103 30.7 · 103 

kcat    [s-1] 0.029 ± 0.001 0.81 ± 0.03 

KM
Ser     [mM] 2.4 ± 0.5 0.62 ± 0.07 

kcat/ KM
Ser    [M-1 s-1] 12.1 1.4 · 103 

 



Experimental conditions: 50 mM potassium phosphate pH 7.5, 180 mM KCl, 40 µM PLP, 30°C. The 
concentration of the substrate added in excess was at least seven times its respective KM. For the 
measurements of TrpB, 2.0 µM ANC3 TrpB were used, while for the ANC3 TrpS complex 5.0 µM ANC3 
TrpA and 0.2 µM ANC3 TrpB were employed. Under these conditions TrpB was completely saturated 
with TrpA. 
 

 
 
 
Supplementary Table 3. Steady state enzyme kinetic parameters of SPM6 TrpB and the SPM6 TrpS 
complex. 

 
Kinetic constants SPM6 TrpB SPM6 TrpS 

kcat  [s-1] 0.23 ± 0.01 1.14 ± 0.07 

KM
Ind   [µM] 19.8 ± 1.9 56.8 ± 9.6 

kcat/ KM
Ind  [M-1 s-1] 1.2 · 104 1.9 · 104 

kcat    [s-1] 0.17 ± 0.004 1.06 ± 0.04 

KM
Ser     [mM] 1.9 ± 0.1 1.02 ± 0.16 

kcat/ KM
Ser    [M-1 s-1] 89 1.1 · 103 

 

Experimental conditions: 50 mM potassium phosphate pH 7.5, 180 mM KCl, 40 µM PLP, 30°C. The 
concentration of the substrate added in excess was at least five times its respective KM. For the 
measurements of TrpB, 0.5 µM TrpB SPM6 were used, while for the SPM6 TrpS complex 0.4 µM ANC3 
TrpA and 0.2 µM TrpB SPM6 were employed. Under these conditions TrpB was completely saturated 
with TrpA. 
 
 
Supplementary Table 4. Steady state enzyme kinetic parameters of SPM8 TrpB and the SPM8 TrpS 
complex. 
 

Kinetic parameters SPM8 TrpB  SPM8 TrpS 

kcat  [s-1] 0.15 ± 0.004 0.32 ± 0.016 

KM
Ind   [µM] 12.4 ± 1.1 19.0 ± 2.5 

kcat/ KM
Ind  [M-1 s-1] 1.25 · 104 1.55 · 104 

kcat    [s-1] 0.16 ± 0.005 0.27 ± 0.01 

KM
Ser     [mM] 3.75 ± 0.3 0.51 ± 0.06 

kcat/ KM
Ser    [M-1 s-1] 41 578 

Experimental conditions: 50 mM potassium phosphate pH 7.5, 180 mM KCl, 40 µM PLP, 30°C. The 
concentration of the substrate added in excess was at least six times its respective KM. For the 
measurements of TrpB, 1.0 µM TrpB SPM8 were used, while for the SPM8 TrpS complex 0.75 µM 
ANC3 TrpA and 0.5 µM TrpB SPM8 were employed. Under these conditions TrpB was completely 
saturated with TrpA. 
 

 



Supplementary Table 5. Steady state enzyme kinetic parameters of SPM3 TrpB and the SPM3 TrpS 

complex. 

 
Kinetic parameters TrpB SPM3  SPM3 TrpS 

kcat  [s-1] 0.033 ± 0.002 0.83 ± 0.04 

KM
Ind   [µM] 16.3 ± 2.4 44.2 ± 5.3 

kcat/ KM
Ind  [M-1 s-1] 2.0 · 103 1.6 · 104 

kcat    [s-1] 0.032 ± 0.001 0.88 ± 0.01 

KM
Ser     [mM] 0.38 ± 0.03 0.55 ± 0.03 

kcat/ KM
Ser    [M-1 s-1] 85 1.5 · 103 

Experimental conditions: 50 mM potassium phosphate pH 7.5, 180 mM KCl, 40 µM PLP, 30°C. The 
concentration of the substrate added in excess was at least five times its respective KM For the 
measurements of TrpB, 1.5 µM TrpB SPM3 were used, while for the SPM3 TrpS complex 1.0 µM ANC3 
TrpA and 0.5 µM TrpB SPM3 were employed. Under these conditions TrpB was completely saturated 
with TrpA. 
  



Supplementary Scheme 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Supplementary Scheme 1. Tryptophan synthase reaction mechanism of the TrpB subunit. The 

catalytic K86 residue is colored in orange, while the L-Ser and indole substrates are blue and purple, 

respectively. In the resting state, a pyridoxal phosphate (PLP)-cofactor is covalently linked to the K84 
active site residue, forming a Schiff base intermediate (E(Ain)). After transamination with L-serine 

E(Ser), an external aldimine intermediate E(Aex1) is formed. This intermediate undergoes 
deprotonation at Cα, aided by K84, which is followed by a rapid elimination of the Aex1 hydroxyl group 

to form an electrophilic amino acrylate intermediate E(A−A). At this point, indole formed in TrpA reaches 

the TrpB active site and reacts with E(A−A) to form a quinonoid intermediate E(Q2), which after proton 

extraction generates E(Q3) (not shown). The reaction mechanism follows with the protonation at Cα of 

Q3 by K84 to forms the E(Aex2) intermediate, which undergoes a second transamination reaction to 

finally release the L-tryptophan E(Trp) product and recover the resting state of the enzyme. 
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Supplementary Figure 1 

 
 
Supplementary Figure 1. Representation of the Open-to-Closed path of collective variables. The 
α carbon atoms encompassing the path (shown as cyan spheres) corresponds to the COMM domain 

residues (97-184) and the loop residues (282-305) going from the Open (PDB ID: 1WDW, in orange) 

to the Closed (PDB ID: 3CEP, in purple) X-ray structures. 

  



Supplementary Figure 2 
 

 
 
Supplementary Figure 2. Representation of the tunnel access at Ain reaction intermediate for 
the L-Ser substrate. The substrate access tunnels that were computed with CAVER 3.0 of the O and 

PC conformational ensembles corresponding to the LBCA TrpS complex and LBCA TrpB isolated 

respectively, revealed two different entry paths: The previously reported TrpA-TrpB internal tunnel (IT, 

green) and a secondary tunnel (ST, violet) that our group recently characterized.1 The averaged 

bottleneck radii values (in Å) are also shown.  We previously hypothesized that the secondary tunnel 

may play a role in the L-Ser entry but also in the L-Trp release.1 The larger bottleneck radius of the ST 

in comparison with the IT highlights that the ST must be preferred for the L-Ser entry in both systems. 

The LBCA TrpS(Ain)-O state exhibited a larger bottleneck radius than the LBCA TrpB(Ain)-PC state in 

both tunnels, which indicates that the open state stabilization driven by the TrpA allosteric 

communication improves substrate accessibility.  

 

  



Supplementary Figure 3 
 

 

 
 
Supplementary Figure 3. Detailed active site view. Shown are the metastable conformations of the 

C state of LBCA TrpB (left) and PC state of LBCA TrpS (right) at the Q2 reaction intermediate (violet) 

present in both structures. Active site residues are depicted in stick representation, the COMM domain 

is colored green (LBCA TrpB) or orange (LBCA TrpS), and catalytic K84 is highlighted in yellow. The 

number next to the yellow dashed line indicates the catalytic proton transfer distance (in Å) between 

K84 and the reaction intermediate 
  



Supplementary Figure 4 
 

 
 
Supplementary Figure 4. Overlays of the metastable conformations of the closed (C) states at 
Q2 intermediate. The COMM domain is highlighted for pfTrpS (blue), the pfTrpB0B2 (pink) and LBCA 

TrpB (green). The pfTrpS and pfTrpB0B2 metastable structures were obtained from reference 1. 
 

The FEL of the LBCA TrpB(Q2) shows an energy minimum in the region that corresponds to a closed 
COMM conformations with large and low MSD distances equal in energy (Fig. 2a). In this context, we 

previously identified an energy minimum corresponding to low deviated closed conformations for the 

allosterically regulated pfTrpS complex and also for the stand-alone evolved variant pfTrpB0B2.1 These 

closed conformational ensembles displayed efficient active site preorganization by means of optimized 

non-covalent interactions networks and short catalytic distance between the Q2 intermediate and the 

catalytic K84 that acts as proton acceptor. In particular the H6 was found to play an important role in 

the closure of the COMM domain and to form non-covalent interactions with the indole moiety of Q2. 

Structural comparison between the metastable structure from the pfTrS(Q2)-C state, the pfTrB0b2(Q2)-
C and the LBCA TrpB(Q2)-C from the low deviated closed ensemble obtained here showed that LBCA 

TrpB displays a highly similar degree of closure and also similar K84-Q2 proton transfer distances. This 

indicates that LBCA TrpB has stand-alone properties due to the fact that it explores a stable catalytically 

competent closed conformation in the absence of TrpA.  

  



Supplementary Figure 5 

 

  
 
Supplementary Figure 5. Representation of the activity loss of ANC3 TrpB isolated and the 
activity recovery exerted by the SPM6 mutations. The catalytic activity (right y-axis) is represented 

in gray squares, while the distances between the a carbon atoms of the residues that were mutated in 

SPM6 with respect to the Ain reaction intermediate (C4A atom) are depicted in purple spheres.  
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Supplementary Figure 6 
 
 
 
 
 

 
 
Supplementary Figure 6. Population analysis of the conventional molecular dynamics 
simulations. The MD data is plotted as a function of the same collective variables used for the 

metadynamics simulations (i.e. Open-to-Closed conformational transition from the X-ray data 
(reference path) and the MSD distance from the reference path). The dashed gray line indicates the y-

axis top deviation value monitored in the metadynamics calculations (i.e. 2.5 Å2). Note that the inefficient 

ANC3 TrpB isolated samples non-productive COMM domain conformations (above the dashed line, 

high MSD distances), while the ANC3 TrpS in complex and the designed SPM enzyme variants better 

retain catalytically productive closed conformations (below the dashed line, low MSD distances). All the 

systems were simulated at the Q2 intermediate. 
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Supplementary Figure 7 
 

 
 
Supplementary Figure 7. Estimate of the differences in energy between selected regions of the 
FEL surface along the metadynamics simulations. The lines represent the mean ∆∆G value of the 

10 walker replicas along the simulation time for the LBCA trpS complex and LBCA TrpB isolated at Ain 

and Q2 intermediates. The line labels indicate the regions of the energy landscape that have been 
computed. With increasing simulation time, all lines tend to flatten, which is indicative of FEL 

convergence.  
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Supplementary Figure 8 
 
 

 
 
 
Supplementary Figure 8. Projection of the conformations that correspond to the local energy 
minima coordinates from the metadynamics simulations on the FEL. The conformations projected 

are depicted as orange (LBCA TrpS complex) and green (LBCA TrpB isolated) dots.  The representative 

metastable conformations of each local energy minimum presented in the main text were obtained 

clustering these set of structures. 
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In this chapter the main goals achieved in this thesis will be briefly discussed. To summarize 

the results, the chapter is divided in three sections. In the first place, the discussion is focused 

on the stereoselectivity and thermostability studies of alcohol dehydrogenase ADH enzymes 

and secondly, on the allosteric and stand-alone function studies of Tryptophan Synthase (TrpS) 

enzymes, which corresponds to the analysis of the main results gathered from Chapter 4 and 

Chapter 5, respectively. The chapter finishes with a brief discussion about the link between 

the chemical step and the conformational dynamics of enzymes. 
 
6.1 Alcohol dehydrogenase (ADH): enantiosectivity and thermostablity 

studies  
	
One of the most targeted enzymes for engineering enantioselectivity are alcohol 

dehydrogenases (ADH). ADHs are zinc-dependent enzymes that use NAD(P)H as cofactor, 

which delivers its hydride ion to the carbonyl group on the Re or Si-face of the pro-chiral ketone 

substrate yielding the corresponding (S) or (R)-alcohol. In an inspiring study from Lamed and 

coworkers, the active site shape of a thermophilic ADH enzyme from Thermoethanolicus 

brockii (TbADH) was speculated.[176] They suggested that its structure would consist of two 

differently-sized active site pockets, one being larger than the other to accommodate the bulkier 

alkyl group of the pro-chiral ketone substituent.[176] Interestingly, this hypothesis was later 

confirmed with the resolution of the crystal structure.[177] Phillips rational site-specific 

mutagenesis studies indeed reported that by changing the size of the active site pockets the 

enantioselectivity and the substrate scope of the enzyme can be modulated.[178] Reetz and 

coworkers successfully engineered the enantioselectivity of TbSADH on a rich array of 

substrates by applying CASTing, guided by the available crystal structure and Phillips 

studies.[179] 

 

In most experimental studies published, W110 and I86 positions located at the active site 

have been found to be key for enhancing the activity and reversing the enantioselectivity 

towards diverse bulky ketones.[178-180] We hypothesized that these single point mutations might 

induce a significant shift on the conformations sampled by the enzyme, which may enable the 

accommodation of non-natural substrates and preferentially favors the formation of one 

enantiomer over the other. To shed further light on the enhanced enantioselectivity contribution 

of these two mutations, we decided to evaluate the conformational dynamics of wild-type 

TbSADH, and the singly-mutated TbSADHW110T and TbSADHI86A variants in the presence of 
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the pro-chiral ketone 4-alkediene cyclohexanone (1a), studied by Reetz and coworkers.[179a] 

Experimentally, it was found that TbSADH is able to produce the corresponding (R)-alcohol 

but only with modest enantioselectivity (66 (R) % ee). In contrast, TbSADHW110T exhibited 

(R)-enantioselectivity with 97 (R) % ee, whereas TbSADHI86A reversed enantioselectivity with 

98 (S) % ee.[179a] Our MD simulations constrained the substrate bound to the Zn metal ion by 

imposing a force constant within the bonded model.[84b, 124a, 181] This approach allows us to 

rationalize the preferences of the accommodation of the substrate in the active site along the 

simulation time. In this study, we coupled the MD simulations to active site volume 

calculations with POVME[182] and the analysis of the most relevant non-covalent interactions 

with NCIplot[183] in order to rationalize how favorable are the pro-(R) and pro-(S) 

conformations.[84b] 

 

Figure 6.1. Representation of some representative snapshots of the different conformational states sampled along 

the MD simulations for the TbSADHW110T and TbSADHI86A starting from the pro-(R) (in orange) and pro-(S) (in 

blue) orientations of 1a, respectively. The histogram of the hydride transfer distance together with the pro-(R)/pro-

(S) angle between 1ª and an active site residue is displayed for both variants. High and low angle (in degrees) 

values represent pro-(R) and pro-(S) conformations, respectively. Short hydride transfer distances (in Å) values 

above the dashed line indicate catalytically productive orientations. 
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The conformational states sampled by the wild-type enzyme can position the 1a substrate 

in a catalytically competent orientation for both pro-(R) and pro-(S) hydride transfer. However, 

the (R)- alcohol is substantially preferred, which is in line with the 66% ee observed in the 

experimental assays. The substitution of W110 by threonine alters the large binding pocket of 

the conformational states sampled, becoming even wider. The computed volume is ca. 165 Å, 

whereas for the TbSADH was 100 Å3. The extra space released after this mutation allows the 

substrate to position the bromide into the large binding pocket stabilizing those conformations 

that adopt the catalytically productive pro-(R) orientation most of the simulation time (Fig. 6.1 

W110T pro- (R)) In contrast, the substitution of I86 by alanine enlarges the small binding 

pocket (from ca. 70 to 90 Å3). The additional space in the small binding pocked is occupied by 

the indole ring of W110, which favors the population of those conformations that better 

accommodate the pro-(S) productive orientation (Fig. 6.1 I86A pro- (S)).  The analysis of the 

non-covalent interactions occurring on the most populated conformational states sampled 

revealed how the active site pocked is remodeled to better stabilize the pro-(S) or pro-(R) 

orientations. These recent advances highlight the feasibility of MD simulations coupled with 

other computational tools such as POVME[182] and NCIplot[183] calculations for the engineering 

of natural enzyme active sites for enhanced enantioselectivity towards non-natural substrates. 
 

In a later work, we addressed the engineering of the TbADH in the context of high activity 

at room temperatures towards the non-natural acetophenone substrate. Combining the virtues 

of pronounced enzyme robustness with high activity at ambient temperatures is of great interest 

for the production of chiral pharmaceuticals.[184] As mentioned in the introduction (section 

1.5.3), how catalytic efficiency adapts to temperature changes is currently poorly understood 

and the optimization of enzyme activity with little trade-off of themostability and vice versa is 

a challenging task. The present study focuses on increasing activity of the TbADH 

(hyper)thermally stable enzyme at room temperatures while maintaining robustness utilizing a 

structure-guided directed evolution approach. Our goal is opposite to that of conventional 

thermostabilization of mesophilic enzymes by directed evolution, the usual alternative that is 

generally accompanied by a tradeoff in activity.[185] 
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The best mutant screened, TbSADH-1 (A85G/I86A) was tested in upscaled reactions 

showing an excellent performance. At 30 ºC ensured 96% conversion within 1.5 hour with 

complete enantio- selectivity (99% ee (R)). In contrast, at the same temperature WT TbSADH 

required 20 hours for a mere 4% conversion and 17% ee (S). The kinetic parameters show that 

TbSADH-1 variant displayed higher activity that WT at 30 ºC (58-fold in kcat) and 45 ºC (51-

fold in kcat). Interestingly the robustness of the TbSADH-1 evolved was only lowered respect 

to the WT by 6 ºC.  

Figure 6.2 Overlay of representative snapshots for WT (A) and A85G/I86A variant (B) in the apo state at 30 

ºC. Root Mean Square Fluctuation (RMSF) values of all residues computed from the MD simulations in the apo 

state (C). 

We then performed Molecular Dynamics (MD) simulations on the WT enzyme and the 

A85G/I86A variant, firstly for explaining the origin of dramatically enhanced activity at 

ambient temperature, and secondly to understand the reversed enantioselectivity. The analysis 

of RMSF in the apo state allows us to identify the most flexible regions of the enzyme structure, 

and rationalize the effect of the A85G/I86A mutations on the TbSADH conformational 

dynamics (see Fig. 5.2). The RMSF analysis reveals that the introduction of the A85G/I86A 

mutations increases the flexibility of a region composed by residues 87-110 that is partially 
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covering the active site (represented in yellow in Fig. 6.2). POVME[182] calculations show that 

the A85G/I86A has a larger active site volume. The higher flexibility of the A85G/I86A 

variant, especially in the active site loop, confers the enzyme the ability to change the shape of 

the active site easily and to adapt to the new non-natural substrate, thus leading to higher 

activity at low temperatures. 

We also performed MD simulations in presence of the acetophenone substrate in order to 

elucidate the origin of reversed enantioselectivity. The analysis of the non-covalent interactions 

using NCIplot[183] calculations revealed how the higher flexibility of the active site loop 87–

110 in the A85G/I86A variant plays a key role in dictating the enantioselectivity. This higher 

flexibility allows the acetophenone substrate to position the phenyl ring in the small binding 

pocket, thus stabilizing the pro-(R) orientation. Our results demonstrate the feasibility to evolve 

high activity of the thermophilic alcohol dehydrogenase TbSADH at ambient temperatures 

with excellent enantioselectivity and little tradeoff in thermostability. On the practical side, the 

present mutagenesis approach needs to be generalized by including other (hyper)thermostable 

enzymes. It will be interesting to see if flexibilization around the binding pocket is a general 

phenomenon characteristic of such laboratory-evolved enzymes. 

6.2 Tryptophan synthase (TrpS): allostery and stand-alone function studies 

 

 Tryptophan Synthase (TrpS) is a heterodimeric enzyme complex composed by α (TrpA) - β 

(TrpB) subunits characterized by a tight allosteric coupling between them. In this context, the 

TrpA and TrpB reactions are synchronized, making them inefficient when isolated.[94, 186] TrpS 

catalyzes the L-Tryptophan production in an interesting manner. TrpA catalyzes the retro-aldol 

cleavage of indole-3-glycerol phosphate (IGP) producing glyceraldehyde-3-phosphate (G3P) 

and indole; the latter being able to diffuse through an internal TrpA−TrpB tunnel to reach the 

TrpB active site. TrpB reaction is pyridoxal phosphate (PLP)-cofactor dependent and follows 

a multistep mechanism that involves many proton donor/abstraction reactions aided by K82.	
The TrpB resting state is characterized by a pyridoxal phosphate (PLP)-cofactor covalently 

linked to the K82 active site residue, forming a Schiff base intermediate (E(Ain)). After 

transamination with L-serine E(Ser), an external aldimine intermediate E(Aex1) is formed. 

This intermediate undergoes deprotonation at Cα, assisted by K82, which is followed by a rapid 

elimination of the Aex1 hydroxyl group to form an electrophilic amino acrylate intermediate 

E(A−A). In the dimeric complex, indole formed in TrpA reaches the TrpB active site and reacts 
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with E(A−A) to form a quinonoid intermediate E(Q2), which after proton extraction generates 

E(Q3). At this point, protonation at Cα of Q3 by K82 forms the E(Aex2) intermediate, which 

undergoes a second transamination reaction to finally release the L-tryptophan E(Trp) product 

and restore the enzyme resting state. Available X-ray data show that both subunits explore an 

active site open-to-closed (O-to-C) transition along the catalytic cycle from open states at 

resting state to closed states as the reaction progresses. For the TrpB, the motion of a rigid 

COMM domain that is part of the active site cavity defines the O-to-C transition.  

 

The use of TrpS for industrial purposes is hampered by its multimeric structure and its low 

activity of TrpB when isolated. In an insightful work, Arnold and coworkers applied DE to the 

TrpB subunit from Pyrococcus furiosus, resulting in the addition of 6 distal mutations to yield 

an efficient stand-alone catalyst (PfTrpB0B2).[95] It is worth mentioning that the COMM domain 

structure is almost identical among different organisms (e.g., Salmonella typhimurium and 

Pyrococcus furiosus), isolated Pf TrpB enzyme, and Pf TrpB stand-alone variants, although all of 

them diverge in functionality. These observations suggest that the origin behind their different 

catalytic efficiencies could be attributed to alterations in the enzyme conformational ensemble 

induced by distal active site mutations (i.e. allosteric effects). Such effects had not been 

explored yet, although they are crucial to understand how the stand-alone functionality was 

achieved. Intrigued by the recovery of PfTrpB0B2 activity in absence of the protein partner 

TrpA, we studied the conformational ensemble of the PfTrpS complex, the PfTrpB isolated 

and the PfTrpB0B2 stand-alone variant employing enhanced sampling techniques. In particular, 

we applied metadynamics simulations[167, 187] using a path of conformations that describes the 

allosteric COMM domain O-to-C transition found by X-ray data as collective variables. This 

approach allowed us to reconstruct the free energy landscape (FEL) associated with the O-to-

C conformational dynamics. Several intermediates along the catalytic cycle were modeled. In 

particular, we selected the resting state E(Ain), E(Aex1), E(A−A), and E(Q2) to evaluate the 

conformational exchange of the COMM domain found in X-ray data, but also to reproduce the 

multistep mechanism under study. 

 

To elucidate the allosterically driven conformational ensemble of PfTrpS complex, we 

reconstructed the FEL associated with the conformational dynamics of the COMM domain for 

a few selected reaction intermediates. The PfTrpS complex FEL analysis shows that for the 

resting state the most favorable conformations are in the open state region, which agrees with 

its functional role in L-Serine substrate binding. As expected, as the reaction progresses a 
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population shift occurs towards partially closed and the catalytically active closed 

conformations. Interestingly, at quinonoid Q2 intermediate (generated after indole coupling), 

PfTrpS samples all possible conformations of the COMM domain: O and PC states are almost 

equally stabilized, while the C state is higher in energy (Fig. 5.3 A, on the left). The C state of 

PfTrpS(Q2) shows a highly preorganized active site with the catalytic residue K82 (proton 

acceptor) properly positioned for catalysis together with the indole moiety establishing many 

noncovalent interactions with the active site pocket. Comparison of PfTrpS(Q2)-O and -C 

metastable structures show that the helix H6 closure is needed for forming key active site 

noncovalent interactions with the indole moiety (Fig. 5.3 A, on the right).  

 

Experimental data showed that, in the absence of the allosteric partner PfTrpA, PfTrpB 

activity decreases 3.2-fold.[95] The analysis of the FEL of PfTrpB isolated indicates that the 

absence of the TrpA allosteric communication restricts the COMM domain conformational 

heterogeneity along the cycle. In fact, only a single energy minimum is found at the Aex1 

and Q2 intermediates. In this way, the COMM domain is not able to escape from O states at 

Ain, PC at Aex1, and C at Q2 intermediates, as the other states are inaccessible (Fig. 6.3 B, on 

the left). In addition, the closed state sampled is highly deviated from the reference O-to-C 

conformational path (i.e. deviation larger than 1.5 Å). A detailed structural analysis of the 

isolated wild-type PfTrpB(Q2) as compared to the Pf TrpS(Q2) complex in C states indicates 

that the isolated PfTrpB enzyme cannot efficiently sample catalytically competent C 

conformations; this is particularly true for the key COMM H6 closure and for the catalytic 

proton transfer distance K82-Q2, which is longer than in PfTrpS (Fig. 6.3 B, on the right). Our 

simulations have therefore shown that the isolated PfTrpB lacks the ability to easily access O, 

PC, and catalytic C states existing in the allosterically driven conformational ensemble of 

PfTrpS. Given the restricted conformational dynamics of the COMM domain in the absence of 

PfTrpA we decided to analyze whether distal mutations introduced in laboratory evolution 

were able to recover the allosterically driven conformational ensemble of PfTrpS.  
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Figure 6.3 On the left, Free energy landscape (FEL) associated with the COMM domain open-to-closed (O-to-

C) conformational exchange of the PfTrpS complex (A), PfTrpB isolated (B) and PfTrpB0B2 stand-alone (C) 

enzymes at Ain, Aex1, and Q2 reaction intermediates. The x-axis corresponds to the progression along the 

reference O-to-C path generated from X-Ray data, while the y-axis to the mean square deviation (MSD) distance 

from the reference path. On the right, overlay of the PfTrpS metastable conformations of the open state at Ain 

intermediate, partially closed at Aex1, and closed at Q2, respectively (A left panel), the metastable conformations 

of the closed states at Q2 intermediate for PfTrpB and PfTrpS (B left) and the metastable conformations of the 

closed states at Q2 intermediate for Pf TrpB0B2 and Pf TrpS (C left). The Detailed active site view of the metastable 

closed conformations at Q2 intermediate for the PfTrpS complex (A right panel), PfTrpB isolated (B right) and 

PfTrpB0B2 stand-alone (C right) is also shown together with the catalytic distances (in Å) between charge−charge 

stabilization E104-Q2 and proton transfer K82-Q2. 
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Experimentally, it was found that PfTrpB0B2 displays a considerably improved catalytic 

constant with respect to both the isolated wild-type PfTrpB (9.4-fold) and the PfTrpS complex 

(2.9-fold).[95] By comparing the reconstructed FELs for stand-alone PfTrpB0B2 and PfTrpS 

complex along the different reaction intermediates, it becomes evident that the PfTrpB0B2 

variant recovers the conformational heterogeneity of the COMM domain, characteristic of the 

allosterically regulated enzyme. In similarity with the PfTrpS allosteric complex,	PfTrpB0B2 at 

Q2 intermediate is able to sample O, PC and C states (Fig. 5.3 C, on the left). The PfTrpB0B2 

O, PC and C states are substantially stable separated by low energy barriers (ca. 2 kcal/mol). 

This allows the COMM domain to easily adopt the catalytically competent C conformations. 

The high stability of the catalytically relevant C state contrasts with the PfTrpS system where 

the closed state is ca. 5 kcal/mol higher in energy. This difference in the C state stabilization 

explains the improved catalytic activity of the evolved stand-alone variant. The C state of stand-

alone PfTrpB0B2(Q2) has an almost identical degree of closure of the COMM domain as the 

PfTrpS catalytically competent conformation, and a similar catalytic K82-Q2 proton transfer 

distance (Fig. 5.3 C, on the right). This indicates that the C state of the stand-alone PfTrpB0B2 

exhibits a proper preorganization for the reaction.  

 

Finally, we were intrigued by the possibility of predicting distal positions for stand-alone 

function. To that end we relied on residue-by-residue correlation analysis. In particular we 

applied our Shortest Path Map (SPM) method.[188] This computational tool identifies those 

enzyme pathways that have a higher contribution to the conformational dynamics of the 

enzyme in terms of correlated motions. We focused our analysis on the PfTrpS(Q2) 

metadynamics trajectory because of the complete O-to-C conformational exchange sampled 

in it. PfTrpB0B2 presents six mutations: P12L, E17G, I68V, T292S, F274S, and T321A, from 

which two were directly predicted by the SPM tool, three were persistently interacting with a 

SPM positions and only one showed a minor role in the COMM domain conformational 

dynamics, making negligible interactions with SPM residues.  

 

The present study demonstrates that fine-tuned control of the Open-to-Closed COMM domain 

conformational ensemble plays a key role along the TrpB catalytic cycle. Our new proposed 

methodology makes use of metadynamics simulations to enforce the sampling of the 

allosterically regulated O-to-C transition, and identifies which residues present a higher 

contribution to the O-to-C COMM domain conformational exchange through inter-residue 
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correlation calculations. With this new computational approach, distal positions involved in 

the allosteric transition can be identified, thus providing a set of key positions for the generation 

of smart libraries for stand-alone function. However, multiple positions are identified and there 

is a lack of information on which specific amino-acid substitution should be introduced for 

achieving an efficient conformational ensemble for stand-alone function. Indeed, the prediction 

of key conformationally relevant mutations for novel functionality, especially those located at 

remote positions from the active site, is an extremely difficult task in the enzyme design field. 

 

In a following-up work, we focused on the development of a computational strategy for 

stand-alone function engineering targeting remote mutations using the SPM method. To that 

end, we were inspired by a previous work performed by our experimental collaborators.  They 

were able to reconstruct the phylogenetic tree of TrpS, in particular they focused on the 

phylogenetic lineage that connects the last bacterial common ancestor (LBCA) to the modern 

Neptuniibacter caesariensis TrpS enzyme, which involves 6 intermediate nodes (ANC1-6).[189] 

Careful analysis of the steady state kinetics revealed how TrpA exerts an allosteric inhibition 

in LBCA, which progressively shifts towards allosteric activation along the phylogenetic tree. 

ANC3 was the first TrpS enzyme that shows TrpA allosteric dependence. Indeed, the ANC3 

TrpB activity decays dramatically in the absence of its allosteric activator ANC3 TrpA (30.2-

fold decrease). Given the poor activity of ANC3 TrpB isolated we focus our computational 

design on the ANC3 TrpB scaffold.  

 

The FEL associated to the COMM domain O-to-C transition for LBCA TrpB of the LBCA 

confirmed the LBCA TrpB stand-alone properties and the LBCA TrpA allosteric inhibition of 

LBCA TrpB activity found experimentally. LBCA TrpB adopts a stable catalytically 

productive COMM domain closure, which is hampered with the presence of the LBCA TrpA 

protein partner that limits the COMM domain ability for completing the O-to-C transition and 

achieving catalytically productive closed states. This exploration together with the findings of 

our previous work, elucidates the conformational ensemble that a stand-alone catalyst has to 

display for being efficient. This information is relevant for the designer in order to rationally 

progress towards the targeted enzyme design goal. In this study we exploited the ability of 

LBCA TrpB to stabilize catalytically competent COMM domain closed conformations when 

isolated (inherent stand-alone properties), and develop a novel computational enzyme design 

approach for achieving stand-alone function based on the LBCA TrpB conformational 

ensemble analysis through our SPM method. We hypothesized that the identification of the 
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conformationally-relevant SPM positions could be potential hotspots for tuning the 

conformational ensemble of TrpA-dependent TrpB enzymes, such as the targeted ANC3 TrpB 

enzyme. The SPM analysis reduced the sequence space from 20393 to 2074 possible mutations. 

However, this still leads to a massive amount of enzyme variants to screen. We solved this 

sequence dimensionality problem by analyzing the sequence conservation between LBCA 

TrpB and the targeted ANC3 TrpB system for the 74 SPM positions (see the workflow 

followed in Fig. 6.4). This sequence comparison of the identified SPM positions allowed us to 

decrease the SPM library to only 6 mutations yielding to the SPM6 enzyme variant. The nature 

of the specific amino acid transfer to the ANC3 template was then restricted to the natural 

amino acid found in LBCA TrpB. Interestingly, 5 out of 6 positions were located far away from 

the active site, and none is included in the COMM domain. This approach assumes that the 

transfer of the non-conserved conformationally relevant SPM mutations from the LBCA to the 

targeted ANC3 TrpB template will tune the ANC3 TrpB conformational ensemble towards a 

better stabilization of catalytically productive closed state through allosteric effects.  



Chapter 6. Results and discussion 

	 219		

 
 

Figure 6.4 SPM-based computational workflow for the rational design of SPM6 TrpB enzyme variant. By 

analyzing the conformational ensemble of the stand-alone LBCA TrpB with high catalytic activity (upper left 

ensemble) through the SPM, we identified positions (grey spheres, lower left structure) within allosteric pathways 

(black edges) in the enzyme that most contribute to the LBCA TrpB conformational dynamics in the Q2 

intermediate. Thereby the size of each edge and node corresponds to the relevance for conformational dynamics; 

catalytic K84 is highlighted in yellow. Excluding residues that do not participate in an allosteric pathway reduces 

the sequence space from 20393 to 2074 possible activity enhancing substitutions. Sequence comparison at the SPM 

positions between stand-alone LBCA TrpB and inefficient ANC3 TrpB reduces the sequence space to 6 mutations 

with respect to LBCA TrpB (lower right structure, purple residues), that were introduced into ANC3 TrpB (upper 

right structure, purple residues) and tested in-vitro. 
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The experimental evaluation of the SPM6 enzyme variant indicated that the 6 introduced 

mutations successfully enhances the catalytic activity with respect to ANC3 TrpB ca. one order 

of magnitude (7-fold increase in kcat). This enhancement obtained by solely testing a single 

variant is comparable to that observed for the laboratory evolved PfTrpB0B2 after three rounds 

of Directed Evolution that involved the screening of ca. 3,080 variants. The observed 

enhancement of ANC3 TrpB stand-alone activity still does not completely recover the activity 

displayed by the ANC3 TrpS complex. The new SPM6 designed variant enhances the low 

initial 3% activity displayed by ANC3 TrpB up to ca. 23%. It should be also mentioned that 

the SPM6 design is based on the template scaffold LBCA-TrpB, whose catalytic activity is 

lower than that of ANC3 TrpS complex (LBCA TrpB activity is ca. 58% that of ANC3 TrpS). 

In the case of the DE pfTrpB0B2 enzyme variant, a 300 % of activity recovery was observed. 

 

The partial recovery observed for SPM6, is in part due to the dramatic loss of activity 

displayed by ANC3 TrpB in the absence of TrpA (97% of activity loss), which is more 

moderate in pfTrpB (69%). These numbers indicate that the total recovery of ANC3 activity is 

more demanding from an engineering point of view, and suggest that the new generated SPM6 

variant still presents some predisposition towards TrpA regulation. This evidences that the 

distal mutations introduced in SPM6 variant successfully enhanced the stand-alone activity of 

ANC3 TrpB activity through inter-unit allosteric effects, however, they did not completely free 

TrpB from the intra-unit allosteric regulation exerted by TrpA. To our surprise, SPM6 in 

complex with TrpA showed the most efficient turnover tested in this work, which indicates that 

the combination of intra- and inter-allosteric effects can operate synergistically to successfully 

tune the O-to-C conformational ensemble and achieve high catalytic efficiencies. These 

findings indicate that our computational strategy could be exploited for the rational engineering 

of TrpB enzyme variants either for improved stand-alone or in complex function. 

 

The approach presented in this work highlights that the exploration of the enzyme 

conformational ensemble is essential for successful computational enzyme design. The 

detection of the key conformationally-relevant positions and the combined analysis of its 

conservation along ancestral phylogenetic trees harbors meaningful information for solving the 

current challenge in computational enzyme design of distal active site prediction for enhanced 

function. 
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6.3 Ending Thoughts 

 
The coupling between enzyme conformational dynamics and the chemical steps of the 

enzymatic reactions remains under debate.[190] Along the catalytic turnover, enzymes have to 

search in the conformational space for those conformations more appropriate for binding the 

substrate, subsequently stabilizing the transition state(s) and finally releasing the product. 

Enzymatic motions take place at varying time scales (from femtosecond to second), but not all 

of them participate or play a role along the catalytic cycle. If a given a structural rearrangement 

is key for the turnover, such exchange should not have a time-scale longer than the enzymatic 

reaction. Otherwise, the rearrangement is not involved in the catalytic cycle. In this context, 

rearrangements that take place in time scales equal or shorter than the turnover may play an 

important role.  

 

One could consider a hypothetic enzyme that presents a conformational exchange key for 

the turnover ranging in the same time scale to the one observed in the enzymatic reaction. If 

the introduction of a mutation accelerates such conformational transition, and as a consequence 

the enzymatic reaction rate increases, then one could think that the conformational exchange 

was rate limiting before mutation, and afterwards is the chemical step that determines the 

velocity of the enzymatic reaction. Thus, in these cases the efficiency of enzymes can be 

optimized by tuning the conformational dynamics up to a certain extend. However, considering 

the population distribution concept, there is still room for improvement. For those cases where 

the conformational exchange involved in the enzyme mechanism is accessible during the 

turnover, redistributing the relative stabilities of the enzyme conformational states that are 

interconnected by the conformational exchange may affect the enzymatic reaction rate. In this 

case, the introduction of a mutation that efficiently stabilizes the active conformational state 

that for instance triggers catalysis or aids the product release, increases the enzymatic reaction 

rate proportionally.  

 

Regarding the results obtained in Chapter 5.1 for the computational study of tryptophan 

synthase, the free energy calculations on the conformational exchange of the COMM	domain 

indicate that upon substrate binding the rate for the open-to-closed conformational	transition is 

relatively fast (in the nanosecond to	microsecond time scale) in comparison with the reaction 

steps	and turnover time scale (millisecond to second). This is a good example that illustrates 
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how by altering the relative stabilities of open, partially closed, and closed conformational 

states of the COMM domain through allosteric effects, each reaction step along the	catalytic 

pathway can be efficiently optimized yielding to higher enzymatic reaction rates. A similar 

behavior was observed experimentally for adenylate kinase, where the substrate binding 

increases dramatically a domain open-to-closed rates of interconversion and yet exert influence 

on the much-slower turnover. They propose a paradigm for the mode of action of enzymes, in 

which numerous cycles of conformational rearrangement are required to find a mutual 

orientation of substrates that is optimal for the chemical reaction.[191] In another insightful study 

of kemp eliminases, it has been shown experimentally how directed evolution gradually alters 

the enzyme conformational ensemble to populate a highly active conformational state that 

dramatically accelerates the enzymatic reaction.[192] 

 

Although the naturally occurring enzyme motions plays a crucial role in many enzymes, 

theoretically is very complicated to quantitatively relate enzyme reaction rates (i.e. catalytic 

constants) enhancements with the role of conformational dynamics. In part because it is 

difficult to define the boundaries of catalytically active regions in the conformational energy 

landscape and also because the quantitative characterization of the catalytic efficiency of the 

explored conformational states need to be estimated, like for instance with the Near Attack 

conformation analysis or theozyme-like conformations of the catalytic residues or much more 

accurately by means of EVB or QM/MM calculations at a higher computational cost. All 

together points out that a profound knowledge of both, chemical reaction and conformational 

dynamics events together with their relationship is crucial to completely understand enzyme 

reaction mechanisms. As shown in Chapter 5.2, a detailed analysis of the enzyme 

conformational ensembles harbors meaningful information that can be used in order to enhance 

enzyme catalytic efficiencies. 
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In this thesis, we have explored the protein conformational energy landscape and its link with 

enzyme properties such as enantioselectivity, thermoadaptation and allostery. In particular, we 

have evaluated how the introduction of mutations alter the enzyme population distributions in 

laboratory-evolved enzyme variants. Following the conformational exploration, cross-

correlation tools have been employed to characterize the enzyme pathways that most contribute 

to their conformational dynamism. This information has been used to identify potential 

hotspots and develop computational enzyme design strategies. In general, the studies of this 

thesis emphasize the importance of considering the enzyme conformational dynamics in 

computational design processes and highlights the concept that allostery is an intrinsic property 

of enzymes that can be exploited for enzyme evolution. This thesis also supports that the 

computational enzyme design can be adressed as a population shift problem. 

 

The main conclusions regarding the different projects carried out are divided in two blocks: 

 

I. Enantioselectivity and thermoadaptation studies: 

 

• In Chapter 4.1, the bonded model protocol was applied to computationally explore the 

pro-(R) and pro-(S) conformations of a thermophilic zinc dependent ADH 

Thermoethanolicus brockii (TbADH) towards a non-natural substrate. The population 

distribution analysis associated with the pro-(R)/pro-(S) poses derived from the MD 

simulations evidences the poor enantioselectivity of the wild type TbADH enzyme and 

the enantio-preferences controlled by the DE mutations. Further in-depth structural 

analysis by means of volume and non-covalent interactions calculations reveal how the 

active site pocket is remodeled to better stabilize pro-(R) or pro-(S) conformations in 

the different laboratory-evolved enantioselective enzymes studied. Thus, the origin of 

enantioselectivity observed experimentally is explained. These advances show that the 

combination of MD simulations with other computational tools serves as a potential 

strategy to rationalize the enantioselectivity control and supports their feasibility to be 

implemented in engineering processes for enhanced enantioselectivity towards non-

natural substrates. 

 

• In Chapter 4.2, the enhanced activity and stereoselectivity towards a non-natural 

substrate of a TbADH laboratory-evolved variant by our experimental collaborators 
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was evaluated. Interestingly, the engineering strategy followed was the contrary to the 

usual thermostabilization of mesophilic enzymes, generally accompanied by a tradeoff 

in activity. The engineering approach carried out focuses in the thermoadaptation of a 

(hyper)thermally stable enzyme at room temperatures while maintaining its robustness. 

The RMSF analysis and active site volume calculations from MD simulations uncover 

the origin for thermoadaptation. The TbADH evolved variant shows a larger active site 

volume and higher flexibility of an active site loop, which confers the enzyme the 

ability to adapt to the bulky non-natural substrate at ambient temperatures. Further 

structural analysis through non-covalent interactions calculations reveal the molecular 

basis of the flexible active site loop role controlling enantioselectivity. This study points 

out that the fine-tuned flexibilization around the binding pocket can be a potential 

feature to target thermoadaptation engineering towards bulky non-natural substrates. 

 

 

II. Allostery and stand-alone function studies:  

 

• In Chapter 5.1, the conformational energy landscape of an allosteric complex enzyme 

from Pyrococcus furiosus TrpS (TrpA-TrpB), the isolated TrpB and a laboratory-

evolved TrpB stand-alone variant was evaluated. The study reveals that the 

allosterically TrpA-driven conformational ensemble exhibits a fine-tuned control that 

plays a key role along the catalytic cycle. This catalytic conformational ensemble is 

hampered in the isolated TrpB enzyme. The lack of allosteric effects exerted by TrpA 

leads to a restricted conformational heterogeneity and the stabilization of unproductive 

catalytic states. In contrast, the DE introduced mutations recovered the allosterically 

driven conformational ensemble and better stabilize productive catalytic states, which 

explains its superior catalytic activity. Careful analysis of the PfTrpS conformational 

ensemble through Shortest Path Map (SPM) correlation-based tool elucidates the 

enzyme pathways most contributing to the TrpS conformational dynamics, which 

interestingly included some important DE positions. This study evidences that allosteric 

regulation and enzyme evolution obey the same natural laws and highlights that the 

mutations introduced along an evolutionary pathway may promote the stabilization of 

only those conformations preactivated for novel function. 
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• In Chapter 5.2, the promising use of SPM-based strategies for achieving stand-alone 

function was assessed. The insights gained in Chapter 5.1 together with the previous 

work of our experimental collaborators where they reconstructed the phylogenetic tree 

of TrpS, were key for the successful computational design. The exploration of the 

conformational energy landscape of the Last bacterial common ancestor (LBCA) 

corroborates its stand-alone function properties tested experimentally. Careful 

inspection of the LBCA conformational ensemble though the SPM correlation-based 

tool identifies conformationally-relevant positions that can potentially alter the TrpB 

conformational ensemble. Sequence conservation analysis of the conformationally 

relevant SPM positions identified 6 mutations, where 5/6 were located distal from the 

active site, that could potentially enhance TrpB stand-alone activity. The experimental 

validation of the TrpB SPM6 rationally designed variant indicated a boost in the 

catalytic activity of near one order of magnitude, which evidences how the mutations 

introduced successfully achieved stand-alone properties by tuning the TrpB 

conformational ensemble through allosteric effects. This study corresponds to the proof 

of concept that the exploration of the conformational energy landscape is an essential 

factor in computational enzyme design. The rational prediction of key 

conformationally-relevant positions and the combined analysis of its conservation 

along ancestral phylogenetic trees, harbors meaningful information to address the 

current challenge of remote mutations prediction for enhanced function in 

computational enzyme design. 
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