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Abstract 
 

Coastal areas concentrate very high socio-economic and natural values, which will be 

highly threatened by climate change, particularly by sea-level rise (SLR). Given the 

intrinsic characteristics of this zone, appropriate risk management requires a holistic 

analysis in which the multiple components of the coastal system are taken into account. 

This has been addressed by applying the concept of coastal risk landscape, which can be 

defined as the set of all the risks to which the coastal zone is exposed. In this work, the 

two most relevant SLR-driven hazards in terms of induced coastal impacts, erosion and 

inundation, have been analysed. The multiple functions provided by the coastal system 

open a wide spectrum of possible management options in general, and of adaptation 

strategies in particular, as a function of the policy target.  This work focuses on the 

analysis of SLR-induced consequences (impact and adaptation) on recreational and 

natural functions of the coast due to their importance for the Mediterranean in general, 

and the Catalan coast in particular, and because they represent well the range of potential 

targets for coastal management, economy vs. environmental protection.  

From the recreational point-of-view, beaches are the main asset to be managed so that 

any variation in the carrying capacity will be translated into an impact on their 

recreational-tourist use. The expected shoreline-retreat, both due to the current evolution 

rates and SLR-induced erosion, will imply a reduction in the optimal beach width to 

support the carrying capacity on beaches, an important factor for coastal tourism 

development, leading to an expected significant and growing economic impact in the next 

decades. Obtained results show that the Catalan coast is highly vulnerable to erosion and 

accelerated SLR exacerbates this adverse situation, although with significant spatial 

variation. Costa Barcelona is the most affected under current evolution rates finding here 

erosional hotspots such as the Mareme comarca (excluding the Ebro Delta). When SLR 

is considered, severely affected municipalities will appear within the Costa Brava whose 

future beach evolution will result in a significant decrease in the potential demand. In 

these areas, efficient adaptation measures will be required to maintain future carrying 

capacity within a certain range to properly support the economic contribution of the 

coastal tourism sector.  

From the environmental perspective, the induced SLR-impact is analysed in terms of 

the potential damage on existing ecosystems. Flood-prone areas and potential damages 
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are assessed taking into account the intrinsic resilience and adaptive capacity of some 

coastal habitats in the face of SLR. Obtained results show that Catalonia has a low 

sensitivity to SLR-inundation due to its coastal configuration except for low-lying areas 

(Gulf of Roses, Llobregat Delta and Ebro Delta), which in turn concentrate the highest 

natural values of the Catalan coast. In spite of their physical vulnerability, existing 

habitats have a natural adaptation capacity, which permits to maintain providing 

ecosystem functions although under a modified landscape.  In these areas, adaptation 

strategies based on promoting the natural resilience of coastal habitats to SLR can allow 

for open up a whole range of adaptation strategies to shift the management perspective to 

environmental protection and conservation. 
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Resumen 
 

Las zonas costeras concentran un elevado número de valores tanto socio-económicos 

como naturales, los cuales se verán fuertemente amenazados por el cambio climático, 

particularmente por la subida del nivel del mar. Dada las características intrínsecas de 

estas zonas, se requiere una gestión adecuada del riesgo desde una perspectiva global 

donde se tienen en cuenta sus múltiples componentes. Por ello, el análisis realizado se 

enfoca a través del uso del concepto paisaje del riesgo costero, siendo el conjunto de 

riesgos a los que se ve sometida la zona costera. En este trabajo, las dos amenazas más 

relevantes desde el punto de vista del impacto producido, erosión e inundación costera, 

han sido analizadas. Las múltiples funciones que ofrece el sistema costero abren un 

amplio espectro de posibles opciones de gestión en general, y de estrategias de adaptación 

en particular, en base a los criterios políticos establecidos. Este trabajo se centra en el 

análisis de las consecuencias inducidas por la subida del nivel del mar (impacto y 

adaptación) en las funciones recreativas y naturales de la costa debido a su importancia 

para el Mediterráneo en general, y para la costa catalana en particular, representando así 

un rango amplio de objetivos potenciales en la gestión costera, la economía frente a la 

protección del medio ambiente.  

Desde el punto de vista del uso recreativo del litoral, las playas son el principal recurso 

a gestionar por lo que cualquier variación en su capacidad de carga se verá traducida en 

un impacto en la actividad turístico-recreativa de estas. El retroceso esperado de la línea 

de costa, tanto por las tasas de evolución actuales como por la erosión inducida por un 

incremento del nivel del mar, implicará una reducción en el ancho efectivo de las playas 

del litoral catalán para poder soportar su capacidad de carga, un factor clave para el 

desarrollo del turismo costero, causando un impacto económico significativo y creciente 

en las próximas décadas. Los resultados obtenidos indican que la costa catalana es 

altamente vulnerable a la erosión, la cual se verá incrementada por la subida del nivel del 

mar. Debido a que las mayores tasas actuales de erosión se encuentran en el área de Costa 

de Barcelona (excepto el Delta del Ebro), sus playas serán las que se vean más afectadas 

en cuanto a retroceso costero. Por el contrario, considerando los valores de subida del 

nivel del mar, la evolución futura de las playas de la Costa Brava se verá fuertemente 

afectada, resultando en una reducción significativa de su demanda potencial.  En estas 

zonas, se requerirán medidas eficientes de adaptación para mantener la futura capacidad 
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de carga en un determinado rango para sostener la contribución económica de las 

actividades relacionadas con el turismo costero. 

Desde el punto de vista ambiental, el impacto inducido por un aumento del nivel del 

mar es analizado en términos de afectación potencial de los ecosistemas existentes. Para 

ello, se evalúa la superficie de hábitats afectados y el daño causado considerando la 

resiliencia de algunos hábitats costeros. Los resultados obtenidos muestran que la costa 

catalana tiene una baja sensibilidad a la inundación costera dado su elevado frente de 

playa, exceptuando el Golfo de Rosas, el Delta del Llobregat y el Delta del Ebro, siendo 

estas las áreas con mayor valor ambiental. A pesar de su vulnerabilidad, los hábitats 

existentes tienen una capacidad natural que permite mantener la provisión de los servicios 

ecosistémicos a la sociedad, aunque el paisaje costero se vea modificado. En estas zonas, 

el diseño de estrategias de adaptación basadas en promover la resiliencia natural de los 

hábitats supondrá una oportunidad para cambiar el modelo de gestión hacia la protección 

y conservación medioambiental.  
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Chapter 1 

Introduction 

 

 

1.1. Generalities 

Climate change (CC) and, in particular sea-level rise (SLR), is one of the main threats 

to global coastal systems, with a direct consequence of increased coastal hazards (Wong 

et al., 2014). If we also consider the population growth and accumulation of assets in the 

coastal zone due to the coastward migration and urban sprawl (e.g. Small and Nicholls, 

2003), this will result in an intensification of coastal damages along this century (e.g. 

Neumman et al 2015). All this justifies the need to include CC-induced risk assessment 

within coastal management strategies (Losada et al., 2019). 

A large (or even, the largest) contribution to the CC-induced risk in the coastal zone 

lies in the high importance of exposed assets which may be affected in the near future. 

On the one hand, coastal regions generate higher GDP per inhabitant than non-coastal 

ones (Eurostat, 2015). In this sense, coastal regions along Europe’s coastline generated 

almost €6,400 billion of GDP representing approximately 43% of its total GDP (European 

Commission, 2019), with more than €305 billion GDP being at risk under a 1 m SLR 

(Policy Research Corporation, 2009a). On the other hand, coastal ecosystems are among 

the most productive systems in the world providing multiple ecosystem services 

indispensable to the human wellbeing (MEA, 2005). In fact, coastal environments may 

contribute 77% of the global ecosystem service value estimated as $125 trillion/yr in 2011 

(Costanza et al., 1997, 2014). However, the potential damage due to SLR to the ecosystem 

service value in Europe could be about €2.9 billon/yr by 2050 (Roebeling et al., 2013). 

In this general context, CC becomes a real threat that requires adaptation given that 

mitigation alone is insufficient to prevent expected impacts (Biesbroek et al., 2010). This 
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need for adaptation has attracted the attention of politicians and research funding agencies 

becoming one key issue in environmental research and sustainable development (Khan 

and Roberts, 2013). The European Climate Change Adaptation Strategy recognises 

coastal areas as one of the most at risk being priority areas to CC adaptation leading to 

enhance preparedness and response skills at local, regional, national and EU levels 

(European Commission, 2013). In this context, adaptation has become a priority objective 

for Spain given its high vulnerability to CC adopting the National Adaptation Plan to 

Climate Change (PNACC) and the Spanish Strategy for Coastal Adaptation to Climate 

Change in 2006 and 2016, respectively. This framework stablished that adaptation must 

be integrated into Spanish Laws which the most important legal instrument for addressing 

CC on coastal areas is the Law 2/2013 for the protection and sustainable use of the coast 

amending the Law 22/1988 that regulated the coastal management over 25 years.  

The Mediterranean coastline can be considered as one of the hotspots worldwide where 

there is a growing urgency to improve our understanding of the effects of CC-impacts on 

society and the environment and how we may adapt to such changes (Cramer et al., 2018; 

Fatorić and Chellerri, 2012; Sánchez-Arcilla et al., 2008, among others). Several 

initiatives such as the Protocol on Integrated Coastal Zone Management in the 

Mediterranean (ICZM, UNEP/MAP/PAP, 2008) included a specific chapter on natural 

hazards and recommended signed countries to undertake risk assessments to address the 

impacts of natural hazards, and CC in particular. In 2016, the Barcelona Convection 

Parties, including Spain, adopted the Mediterranean Strategy for Sustainable 

Development 2016-2025 (UNEP/MAP, 2016) with the objective of increasing scientific 

knowledge and raising awareness as well as developing technical capacities to deal with 

CC.  

Given the importance of assessing properly the coastal risk when designing coastal 

management plans, one possible approach is based on the concept of coastal risk 

landscape, which can be defined as the set of all risks to which the coastal zone is exposed 

(Ballesteros, 2017). Under this perspective, the conceptual framework SPRC captures the 

mains aspects required for a robust coastal risk assessment describing how a given risk 

propagated from the source to the receptor whose impact induces the consequences (e.g., 

Narayan et al., 2014; Zanuttigh et al., 2014). In this thesis, the IPCC terminology has been 

followed by conceptualizing the coastal system as both natural and human systems where 
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coastal features and ecosystems are included together with build environment and human 

activities (Wong et al., 2014).  

Within this context, the main motivation of this thesis is the assessment of SLR-

induced impacts, associated to two main coastal hazards, i.e. erosion and inundation. In 

spite of the large number of coastal functions and values along the Catalan coast, here 

only the recreational and natural functions are analysed. They have been selected based 

on their importance from the economic and environmental standpoints, and their 

complementarity, since they will represent the two ends of the economy-environment 

spectrum. In general, along the Catalan coast, areas of high economic values are 

associated with large tourism/recreation development and relatively low 

environmental/natural values and vice versa (Brenner et al., 2010). This would drive 

different adaptation strategies depending on the targeted function. 

 

1.2. The Catalan coast 

Catalonia is an autonomous region located on the NE Spanish Mediterranean coast 

(Fig. 1.1). It occupies 32,105 km2 with a coastline of 600 km of which 270 km are 

beaches. According to Brenner (2007), approximately 46% of the total coastal land is 

urban, 6% is protected against urbanization (but not excluded for agricultural purposes), 

8% is non-urban and 40% is protected under the regional Plan of Spaces of Natural 

Interest in Catalonia (PEIN).  

Administratively, the Catalan coast comprises 70 municipalities, which compromises 

approximately 23% of the total territory, and are grouped into 12 comarcas (territorial 

units similar to counties) (Fig. 1.1 and Table A1 in Annex A). According to the data from 

IDESCAT (2016), 62% of the total population inhabits in these coastal regions with an 

average population density of about 507 people/km2, without considering Barcelonès 

where it reaches 15,320 people/km2. These values are significantly higher than the 

Catalonia average, which is 234 people/km2 in 2016, which can be tripled in some 

municipalities during the summer season.  

Socio-economic development of the Catalan coast is based on typical coastal activities 

such as commerce, agriculture and residential development, with tourism being the 
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predominant economic activity (Sardá et al., 2005) contributing around the 11% of the 

Gross Domestic Product (GDP) (Duro and Rodríguez, 2011). At the same time, coastal 

comarcas support 70% of the total accommodations in Catalonia (hotel, cottages and 

camping places) (IDESCAT, 2016). These facts indicate the importance of beaches in the 

economic development of the area.  

 

Figure 1.1. Study area and administrative units (number codes in Table A1 in Annex A).  

 

Regarding the landscape and natural areas, there are several natural protected areas 

within the Catalan coast, largely located in the northern (Cap de Creus and Gulf de Roses) 

and southern regions (Ebro Delta). In fact, 23% of the total protected areas in Catalonia 

are within the coastal comarcas. If coastal ecosystem services are translated into economic 

values, 4.3% of the annual income should be added to the total economic wealth of coastal 

citizens (Brenner et al., 2010). However, according to Greenpeace (2018), Catalonia is 

the autonomous region with the highest percentage of degraded coast due mainly to 

human actions where more than a quarter of its coastline has no capacity to provide such 
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goods and services. These facts reveal the substantial contribution of natural areas to the 

well-being of coastal communities that must be considered as an important asset in the 

future, whose conservation and protection should be included in future management 

strategies.  

Coastal erosion and inundation have been considered as the two most relevant hazards 

in Catalonia due to their induced impacts (Barlonas and Llasat, 2007; CADS, 2008; 

Jiménez et al., 2011). Coastal damage has significantly increased at a rate of 

approximately 40% per decade over the last 50 years in the absence of a general increase 

in marine storm-induced hazards (Jiménez et al., 2012). This is the result of an 

increasingly exposure along the coast and a progressive coastal retreat where about 65% 

of beaches are subjected to erosion with an average retreat rate of -1.6 m/yr (Jiménez and 

Valdemoro, 2019), resulting in an average evolution rate of about -0.5 m/yr for the entire 

Catalan sedimentary coastline.  

In Catalonia, several milestones related to CC-impacts on coastal areas have been 

achieved but further work is still needed. Coastal risks were included in a specific chapter 

of the RISKCAT report (CADS, 2008). The current situation and future developments 

relating to the CC-effects on natural and humans systems in Catalonia have been analysed 

in the last report of the Catalan Office of Climate Change (Generalitat de Catalunya, 

2016). Concerning coastal management policies, CADS (2019) suggested some 

recommendations for sustainable management of marine and coastal environment 

according to the UN 2030 Agenda to make its conservation compatible with the economic 

development. And more recently, the Catalan Government approved the Law 8/2020 for 

the protection and management of the coast that proposes a new model of coastal 

governance incorporating adaptation measures to the effects of CC. 

With this in mind, the Catalan coast is as a good example of coastal hotspot along the 

Mediterranean due to the combination of multiple stresses and pressures on the natural 

system, a high exposure and a low adaptive capacity (Jiménez et al., 2017). This adverse 

situation will be exacerbated if the potential effects of SLR are considered with an 

estimated SLR-induced additional shoreline retreat between 47 m and 65 m by 2100 for 

RCP4.5 and RCP8.5 scenarios, respectively (Jiménez et al., 2017).  
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1.3. Objectives 

The main objective of this thesis is twofold: (i) to develop and apply a coastal risk 

framework to assess SLR-induced impacts due to erosion and inundation on recreational 

and natural functions provided by the Catalan coast; and (ii) to analyse current status of 

coastal adaptation to CC, and identify suitable strategies for analysed functions.  

In order to achieve this, three partial objectives have been identified: 

1. To assess how SLR will affect the recreational function of the coast in terms of the 

potential impact on the carrying capacity on beaches and the influence on the 

tourism industry considering different SLR-scenarios. 

2. To assess how SLR will affect the natural function of the coast in terms of the 

potential impact on coastal habitats and the influence on the provision of ecosystem 

services considering different SLR-scenarios.  

3. To analyse current adaptation investments and implemented actions and to propose 

adaptation strategies for the Catalan coast with the purpose to reduce the 

vulnerability to the effects of CC.  

 

1.4. Structure of the thesis 

Following this first introductory Chapter, the body of this thesis (Chapters 2 to 7) 

comprises three sections in order to achieve the presented objectives. Finally, the 

document is closed by Chapter 8 that contains the overall conclusions and 

recommendations for future works related to this work.  

Section 1. Impact of SLR on the recreational function of the coast. 

The impact of SLR on the recreational function is analysed in Chapter 2 by 

developing a methodology to assess the effect of shoreline evolution on the physical 

carrying capacity (PCC) on beaches at different territorial scales considering different 

CC-scenarios. The economic consequences of carrying capacity losses on the tourism 

sector are analysed in Chapter 3 given its high importance in the economic development 

of the region though an Input-Output model downscaled to the comarca level.  
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Section 2. Impact of SLR on the natural function of the coast. 

Similar to the previous section, the SLR-impact is analysed but in this case on the 

natural function. Chapter 4 provides a methodology for improved flood-damage 

assessments due to SLR in natural areas by introducing the capacity of response 

accounting for the effect of active shorelines to SLR and the likely conversion of some 

habitats once inundation has occurred. In this section, environmental consequences are 

analysed in Chapter 5 by the assessment of the non-market value of natural and 

seminatural habitats in terms of provided ecosystem services. 

Section 3. Adaptation to climate change. 

Chapter 6 shows an overview of how coastal adaptation is being financed and 

implemented in Spain by proposing a methodological framework to analyse (i) how 

adaptation has been and is currently being funded, (ii) which is the rationale for 

investments along the territory, (iii) how adaptation investments compare to regular 

protection costs, and (iv) whether implemented measures are really adaptation ones. 

Specific adaptation strategies for the Catalan coast based on its functionality are presented 

in Chapter 7.  

Finally, Chapter 8 gives an overview of the main conclusions of this study and its 

implications for coastal managers. In addition, some suggestions are given for a further 

research agenda.  

Each chapter is designed to be self-contained where the followed methodology for 

each analysis is presented with its own results and discussions. Some repetitions on study 

site descriptions or data have been allowed. The idea is to facilitate the understanding of 

each chapter on its own without having to skim through the thesis to find the required 

information.  
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Chapter 2 

Impact of sea-level rise on the tourist-carrying 

capacity of Catalan beaches 

Adapted from: López-Dóriga, U., Jiménez, J.A., Valdemoro, H.I., Nicholls, R.J. 2019. 

Impact of sea-level rise on the tourist-carrying capacity of Catalan beaches. Ocean & 

Coastal Management, 170, 40-50. doi: 10.1016/j.ocecoaman.2018.12.028  

 

 

2.1. Introduction  

It is well known that coastal areas are associated with large and growing concentrations 

of population, increasing urbanization and socioeconomic activities, which cause 

interactions between human uses and natural processes. Small and Nicholls (2003) 

estimated that 23% of the global population lives within 100 km of a shoreline and less 

than 100 m above sea level. The population density in these near-coastal areas is nearly 

three times higher than the worldwide average density. These areas also exhibit high rates 

of population growth (Neumann et al., 2015), and show a high susceptibility to change 

due to the accumulation of human-induced pressures (e.g., Newton et al., 2012).  

Tourism has become one of the main economic engines of coastal areas worldwide. 

The Mediterranean is the world's leading tourist destination, accounting for about 30% of 

international tourism globally, with about half of tourist arrivals being in the coastal zone, 

mainly during the summer season (Plan Bleu, 2016). The majority of coastal tourism is 

based on the sun-and-sand model and, as consequence; beaches become one of the main 

resources in providing economic and social values (e.g., Houston, 2013). Within this 

context, preserving or enhancing beach quality is one of the main goals of coastal 

managers in maintaining and/or promoting the attractiveness of beaches for tourists and 

visitors (e.g., Fraguell et al., 2016). One of the main elements in controlling the quality 
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of a beach from a recreational standpoint is the available space for users, which is usually 

referred to as the physical-carrying capacity (Table 2.1 shows the main definitions and 

terminology used in this work). In this sense, any meaningful planning of a sun-and-sand 

destination needs to include a proper assessment of the carrying capacity of existing 

beaches, which will define the number of users to be accommodated as well as their level 

of comfort (e.g., De Ruyck et al., 1997; Pereira da Silva, 2002; Valdemoro and Jiménez, 

2006). Thus, there is no doubt that the formulation of any sustainable, long-term planning 

of coastal tourism must include the potential effects of climate change on the quality of 

resources to be exploited (Hamilton et al., 2005; Moreno and Amelung, 2009a). Among 

the different climate change-induced impacts, Moreno and Amelung (2009a) concluded 

that sea level rise (SLR) and/or water availability will be key factors potentially affecting 

coastal tourism on Mediterranean coasts. With respect to beach quality, SLR will be main 

source of risk with shoreline retreat and inundation being the most important induced 

impacts on sandy coastlines (e.g., Nicholls and Cazenave, 2010). Since beach dimensions 

determine the available surface area for users and services to be provided, 

morphodynamic processes will condition beach use and exploitation (Valdemoro and 

Jiménez, 2006). Hence, this work focuses on the potential impacts of SLR-induced 

shoreline retreat on coastal tourism. 

Within the Mediterranean, Spain is a traditional sun-and-sand destination where 

coastal municipalities have experienced an intense urban and touristic development. 

According to the Spanish Institute of Statistics, about 26% of foreign tourists visiting 

Spain chose Catalonia as their destination in 2015. With the exception of the city of 

Barcelona, the majority of the tourism industry is based on the sun-and-sand model where 

coastal destinations comprise more than 62% of tourism overnights. (Generalitat de 

Catalunya, 2015). Hence beaches are the main asset of this economic sector (Rigall-i-

Torrent et al., 2011). To this end, we assess the recreational carrying capacity of beaches 

to accommodate the tourist demand using tourist beach carrying capacity (tourist BCC, 

see Table 2.1 for definitions). 

Within this context, the main aim of this paper is to assess the potential impact of SLR 

on the recreational carrying capacity of Catalan beaches and hence the potential influence 

on the sun-and-sand tourism economic model over the coming decades. This is 

accomplished via three objectives: (1) developing a model of recreational beach 

utilisation appropriate for Catalonia; (2) developing a shoreline evolution-beach use 
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interaction model; and (3) forecasting the resulting evolution of tourist BCC along the 

Catalan coast under different SLR scenarios. The practical goal of this research is to 

support coastal managers in the decision-making process by defining the appropriate 

mitigation/adaptation measures required for long-term coastal tourism planning. 

 

Table 2.1. Key parameter terminology and definitions. 

Carrying Capacity 

Amount and type of visitors that can be accommodated within a given 

amenity area without unacceptable social consequences and without a 

negative impact on resources (Clark, 1996, Manning and Lawson, 

2002; WTO, 1997). 

Minimum area per user 
Bearable beach surface area per user value without affecting the user-

recreational experience. It depends on the beach type and use intensity. 

Resting area 

(also termed “used beach surface” 

within the text) 

Area where most beach users stay and consequently, where umbrellas 

and sunbeds are usually placed. Beach services are usually located 

landward of this area unless the beach is too narrow.  

Physical-Carrying Capacity 

(PCC) 

Maximum number of users that can physically be accommodated on a 

beach. It depends on beach dimensions, resting area, and maximum 

area per user. 

Tourist BCC 
PCC integrated to a given territorial unit for specific potential users 

(tourists).   

 

2.2. Study area and data 

2.2.1. Study area 

The Catalan coast is located in the NE Spanish Mediterranean (Fig. 2.1). Its 600 km- 

long coastline comprises a large diversity of coastal types, ranging from cliffs to low-

lying areas; with about 270 km of beaches. Currently, more than 60% of the beaches along 

the Catalan coast are impacted by erosion (CIIRC, 2010).  

The Catalan coast comprises 70 municipalities and 12 comarcas (territorial units 

comparable to counties) (Fig. 2.1). These comarcas comprise about 23% of the territory 

of Catalonia and 62% of the total population (IDESCAT, 2016). The economy is based 

on activities such as tourism, commerce, agriculture, and residential development (Sardá 

et al., 2005). Tourism is one of the main economic sectors providing about 11% of the 

Catalan GDP (Duro and Rodríguez, 2011), with most accommodations being associated 
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with three tourism brands located along the coast; i.e., Costa Brava, Costa Dorada, and 

Costa de Barcelona (Generalitat de Catalunya, 2015) (see Fig. 2.2). 

Due to its uniqueness within the Catalan coast, the Ebro Delta has been excluded from 

the current analysis.  The delta is intensively used for agriculture, and it comprises 

important natural resources, which are protected under Natural Park protection laws. 

Thus, in spite of having more than 50 km of beaches, their recreational use is secondary, 

with most visits being nature-oriented (Rodríguez Santalla, 2004; Romagosa and Pons, 

2017).  Due to this, and to avoid the distortion of the analysis from the large delta beach 

area on the assessment of the regional carrying capacity, we have left out their potential 

contribution which deserves a specific analysis.  

 

 

 

Figure 2.1. The Catalan coast divided into tourism coastal brands (names in italics) and 12 administrative 

units (comarcas) (from North to South; 1: Alt Empordà; 2: Baix Empordà; 3: Selva; 4: Maresme; 5: 

Barcelonés; 6: Baix Llobregat; 7: Garraf; 8: Baix Penedés; 9: Tarragonés; 10: Baix Camp; 11: Baix Ebre; 

12: Montsià). The smaller divisions within each comarca correspond to the 70 coastal municipalities. Note: 

Comarcas 11 and 12 were excluded from the analysis. 
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Figure 2.2. Tourist accommodation (bed places) and population values for each comarca along the Catalan 

coast (see comarcas in Fig. 2.1). Note: Comarcas 11 and 12 were excluded from the analysis. 

 

2.2.2. Data 

The data used in this work can be grouped into three types: (1) beach information, 

including the geomorphology, typology, and intensity of use; (2) socio-economic 

information related to beach demand; and (3) SLR projections. 

2.2.2.1. Beach data 

Beach data are used to estimate shoreline dynamics and to characterize beach 

morphology and typology. In order to assess beach evolution under current climate 

conditions, we have used a collection of aerial photographs covering the entire Catalan 

coast taken in 10 flight surveys during the period from 1995 to 2015 by the Cartographic 

and Geologic Institute of Catalonia (ICGC). These photos are taken at a scale 1:2,500 and 

have a mean square error smaller than 0.5 m. To characterize current beach characteristics 

(width, length, and degree of urbanization of the hinterland) we have used the most recent 

available aerial photograph (2015).  

Beaches were classified in terms of the degree of urbanization and in terms of their 

intensity of use. To this end, in addition to the above-mentioned set of aerial photographs, 

we used information provided by two public databases: (i) the Beach Guide of the Spanish 

Ministry of Agriculture, Fish, Food, and Environment (MAPAMA), and (ii) the beach 
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database of the Catalan Government (Generalitat de Catalunya, 2016). Hence, beaches 

were classified into three categories according to the degree of urban development of the 

hinterland: (1) urban, (2) semi-urban and (3) rural (see e.g., Ariza et al., 2008); and into 

three subcategories based on typical intensity of use during the bathing season: (1) high, 

(2) moderate and (3) low. Each beach category was assigned a minimum area per user 

(Table 2.2). This value determines the use saturation level and it depends on the beach 

type, having a low value of 4 m2/user for urban, highly-frequented beaches (see Alemany, 

1984; PAP, 1997; Roca et al., 2008; Valdemoro and Jiménez, 2006; Yepes, 1999).  

 

Table 2.2. Beach typology and minimum area per user associated with their intensity of use. 

Beach 

typology 
Characteristics 

Intensity 

of use 

Minimum area per 

user (m2/user) 

Urban 
Within the main nucleus of a given municipality. 

> 60% urbanized hinterland. 
high 4 

Semi-

urban 

In residential areas outside the main nucleus of a 

municipality. 

30-60% urbanized hinterland. 

high 

moderate 

low 

4 

8 

12 

Rural 
Outside the main nucleus of a municipality. 

< 30% urbanized hinterland and uninhabited areas. 

high 

moderate 

low 

4 

8 

12 

 

2.2.2. Potential beach-user data 

Data used to characterize potential beach visitors were acquired from official statistics 

provided by the Statistical Institute of Catalonia (IDESCAT). The used indicator was the 

number of tourist accommodations (bed places) for each coastal municipality, which 

corresponds to the sum of the total number of bed places in hotels, cottages, and camping 

places. It is a proxy for the maximum number of potential tourists, and is used here to 

calculate the tourist BCC (see definition in Table 2.1). In order to put the tourism demand 

in context; 9.9 million tourists were registered within the coastal tourism brands during 

the summer season of 2015 (from June to September), with an average occupancy rate of 

65%. Note that these data do not include tourists using unregulated lodging such as 

Airbnb.  
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2.2.3. Sea Level Rise  

Tidal gauges with records going far enough back to estimate reliable current sea level 

rise along the Catalan coast are not available (e.g., Marcos and Tsimplis, 2008). Because 

of this, we have used average sea level rise for the Mediterranean to characterize current 

conditions. Gomis et al. (2012), reported that the mean sea level in the Mediterranean has 

been rising at a rate of 0.6 ± 0.1 mm/yr during the period 1948-2000, which is much lower 

than global rise in mean sea level during the period 1971-2010 (between 1.3 and 2.3 

mm/yr, see Church et al., 2013). Marcos and Tsimplis (2008) calculated from the longest 

available records in the Mediterranean a rising sea-level trend between 1.2 and 1.5 mm/yr, 

although existing data are biased towards the North coast.  

SLR projections are taken from the IPCC 5th Assessment Report (AR5), which are 

given by best-guess scenarios (50% probability level) for RCP4.5 and RCP8.5 (Church 

et al., 2013). In addition to this, we have also included a High-end scenario (H+) which 

has been taken from Jevrejeva et al. (2014) which accounts for uncertainties due to 

unknowns in polar ice-sheets processes (Antarctica and Greenland) and, it should be 

equivalent to the RCP8.5 with increased ice-sheet contribution (see also Jackson and 

Jevrejeva, 2016). For this study, we have used the upper bound given by the projection 

of sea level at 95% probability (see Jevrejeva et al., 2014). The inclusion of this H+ 

scenario has been done from the high risk-management perspective to characterize the 

system response and management requirements under very adverse conditions (e.g., 

Hinkel et al., 2015).  These three scenarios are given by the year 2100 relative to 2000 by 

0.53 m, 0.74 m and 1.75 m respectively (Fig. 2.3). 

 

Figure 2.3. SLR scenarios used in this study. 
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2.3. Methodology 

The methodology for this study comprises the following steps: (i) development of the 

BCC evolution model; (ii) assessment of shoreline evolution and (iii) assessment of the 

evolution of BCC over time. 

2.3.1. Beach-Carrying capacity (BCC) model 

This is a model of beach occupancy used to estimate the maximum number of beach 

users within an administrative unit. It depends on three main parameters: (i) the used 

beach surface or resting area (see definition in Table 2.1); (ii) the minimum surface per 

user; and (iii) the users’ redistribution capacity within a given territory.  

The first element determining the carrying capacity of a beach is the model of 

occupation of the space by users. To this end, we use the concept of resting area (Table 

2.1), which is the beach surface occupied by users that depends on the current beach 

width, the intensity of use, beach exploitation model and tidal conditions. In Spanish 

Mediterranean beaches, users tend to concentrate in a fringe close to the shoreline, the 

resting area; that although should ideally be as wide as necessary to comfortably 

accommodate users, in practice, users in Spanish Mediterranean beaches only concentrate 

in a 35 to 40 m-wide strip (Alemany 1984; MOP, 1970; Valdemoro and Jiménez, 2006) 

(see Fig. 2.4). This area is not influenced by tides because it is a microtidal region (25 cm 

of tidal range). With this type of occupation model, the physical-carrying capacity (PCC) 

of beaches is given by the maximum number of users to be allocated within the resting 

area, in such a way that, in the case of eroding beaches but a with a resulting beach wider 

than the resting zone, BCC is not affected (see e.g. Valdemoro and Jiménez, 2006).  

 

Figure 2.4. Distribution of beach users across a wide beach in Costa Brava, showing the concentration near 

the shoreline. 
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To calculate the final allowable number of potential users, it is necessary to consider 

the beach type that determines the typical density of use and the corresponding minimum 

beach surface per user. In this work, we have used values characteristic of the area that 

are specified for each beach along the coast (see Table 2.2). 

 𝑃𝐶𝐶 = 𝑢𝑠𝑒𝑑 𝑏𝑒𝑎𝑐ℎ 𝑎𝑟𝑒𝑎/ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑝𝑒𝑟 𝑢𝑠𝑒𝑟 (2.1) 

Finally, once the carrying capacity is estimated for each beach, their values are 

integrated within a given management unit to assess the overall carrying capacity of the 

unit. This spatial integration is done assuming two conditions: (i) each beach maintains 

its typology and consequently, the allowed minimum surface per user; and (ii) users will 

redistribute across beaches within a given spatial unit to avoid exceeding the maximum 

user density. This implies a limitation of user mobility to the scale of integration, in such 

a way that they will only access beaches within the given spatial unit. This approach 

mimics the observed influence of distance between accommodations and the coastline on 

the behaviour of sun-and-sand tourists (e.g., García-Pozo et al., 2011; Pueyo-Ros et al., 

2017). Thus, instead of considering alternative beaches for each accommodation within 

a given distance, we adopt a management-oriented approach in which we associate all 

accommodations within a given administrative unit with all beaches within such unit. In 

this study, the minimum integration scale is the municipality, and to simulate an increase 

in tourist mobility, it can be scaled up to the entire comarca, tourism region brand, or even 

the entire territory of Catalonia. 

Based on these two conditions, the maximum number of beach users in a spatial unit 

is computed by integrating the capacity of all beaches within the unit but maintaining 

their individual minimum surface per user. 

In order to differentiate the recreational use of the beach by tourists and local residents, 

results are expressed in terms of the percentage of their demand “served” by beaches 

within a given unit. Since this study is focused on the potential tourist demand, only the 

tourist BCC is computed (see Table 2.1). The tourist BCC is calculated for a given spatial 

integration unit as the ratio (in %) between the integrated PCC of all beaches within the 

unit and the maximum number of potential tourists of such unit, which is given by the 

integrated number of tourist accommodations (bed places). 
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2.3.2. Shoreline evolution 

In this study, shoreline evolution rates for each beach are calculated under current 

conditions and under SLR scenarios. In order to calculate current evolution trends, 

shorelines were digitized at each beach along the Catalan coast from each available aerial 

photo. Extracted shorelines were estimated to have an average uncertainty of 2.5 m 

(CIIRC, 2008). Shoreline displacements were calculated at each beach along a series of 

control points, with an average spacing of 100 m. The decadal-scale shoreline rate of 

displacement was then computed by applying linear regression, a technique that removes 

short-term fluctuations and retains the long-term evolution trend (Dolan et al., 1991). This 

evolution trend integrates the contribution of all forcing conditions acting on the coast. 

Since it covers a 20-year period, it can be considered as representative of most probable 

conditions, from storm to fair-weather-wave states. Each beach was characterized by an 

integrated shoreline rate of displacement, which was computed by averaging values 

computed for all control points along the beach. This analysis was done by using the 

ArcGIS tool “Digital Shoreline Analysis System” (DSAS), v. 4.3 (Thieler et al., 2009).  

It has to be noted that the so-obtained evolution rates are used as an empiric model to 

make shoreline projections under current conditions. The underlying assumption is that 

no significant changes are affecting littoral dynamics and coastline evolution. This 

implies that no significant changes in natural conditions will occur (e.g., river sediment 

supplies, wave climate) and that the current management practices will be maintained. 

To calculate the SLR-induced shoreline retreat, we have followed Jiménez et al. 

(2017), who used the Bruun model. This simple model assumes that the beach profile 

adapts to the SLR though an upward and landward displacement of the active profile, 

maintaining the shoreline shape and relative elevation with respect to the new water level 

(Bruun, 1962). Although some authors question the general validity of this model (e.g., 

Cooper and Pilkey, 2004), in the absence of a generally-accepted morphological model, 

it is widely used (e.g., Le Cozannet et al., 2014). Additionally, it provides an indicative 

estimate of expected shoreline retreat at the regional scale. The induced shoreline retreat, 

∆X, is given by the Eq. (2.2) where ∆𝑀𝑊𝐿 is the sea-level rise, 𝐵 is the berm/dune height 

of the active beach, d* is the active depth (or depth of closure), 𝐿 is the across-shore 



Chapter 2 

21 

distance from 𝐵 to d*, and Sact is the averaged inner shelf slope over which the beach 

profile changes. Ranshinge and Stive (2009) identify the selection of a closure depth 

representative of this time scale as one of the sources of uncertainties to apply this model.  

In this work, to overcome this, we adopt the approach of Jiménez et al. (2017), who 

applied Eq. (2.2) at the regional scale by selecting coastal stretches with an alongshore, 

homogeneous, inner-shelf slope. This slope has been calculated from the shoreline to 10 

m water depth and, thus extending deeper than the medium-term closure depth of the area 

that has been calculated as about 7 m (CIIRC, 2010). Table 2.3 shows the representative 

inner shelf slopes used in the different sectors along the Catalan coast. Obtained SLR-

induced shoreline retreats are then considered to be constant for all beaches within a given 

coastal stretch.  

 
∆𝑋 =  ∆𝑀𝑊𝐿

𝐿

(𝐵 + 𝑑 ∗)
≈

∆𝑀𝑊𝐿

𝑆𝑎𝑐𝑡
     

(2.2) 

Table 2.3. Sections along the Catalan coast (and corresponding comarcas) based on the slope of the inner 

shelf (down to 10 m water depth). 

Coastal section Coastal comarca Inner shelf slope 

Costa Brava 

Alt Empordà (1) 

Baix Empordà (2) 

Selva (3) 

1/87.5 

Maresme 
Maresme (4) 

Barcelonès (5) 
1/75 

Llobregat 

Costa Dorada 

 

Baix Llobregat (6) 

Garraf (7) 

Baix Penedés (8) 

Tarragonés (9) 

Baix Camp (10) 

1/100 

 

2.3.3. Time evolution of BCC 

To assess the BCC temporal evolution along the Catalan coast, we have projected PCC 

to each selected time horizon by using different scenarios: (i) current conditions, and (ii) 

assuming an acceleration of SLR according to selected projections. 

In the first case, computed shoreline rates of displacement have been extrapolated to 

the selected time horizon to forecast future beach widths. Hence, we are assuming that no 
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significant changes in governing conditions for coastal dynamics along the Catalan coast 

will occur over the considered period. Regarding this, it should be noted that existing 

wave projections for the area over the next century do not show any increase in 

storminess, and detected changes in mean wave conditions when translated to coastal 

sediment transport and potential changes in coastline evolution have a high degree of 

uncertainty (e.g., Casas-Prat et al., 2016). 

In the second case, the contribution of climate change to BCC evolution was 

considered by adding the estimated SLR-induced erosion under each scenario to the 

estimated baseline shoreline rates of displacement. However, since current projected 

shoreline evolution rates integrate all acting processes during the 1995-2015 period, they 

also should include the contribution of the current SLR. Therefore, the Bruun rule was 

applied to estimate the contribution of current SLR to shoreline erosion during the last 20 

years, and was subtracted from evolution rates to obtain the non-SLR contribution. This 

component is then added to SLR-induced erosion under selected climatic scenarios. 

 

2.4. Results 

2.4.1. Shoreline evolution 

The statistical distribution of shoreline evolution rates under current conditions for 

beaches along the Catalan coast is shown in Fig. 2.5. Obtained values are biased towards 

negative values, reflecting a dominant erosive decadal-scale behaviour during the 

analysed period (about 65% of the beach length is retreating) at an average rate of 

displacement of -0.4 m/y. As Jiménez and Valdemoro (2019) pointed, this erosive 

behaviour is reflecting the integrated effects of natural dynamics and human influence in 

the territory. Main human forcings are related to variations in sediment supply to beaches 

and perturbations in sediment transport patterns due to coastal works, with special 

influence of existing marinas. In fact, largest shoreline displacement rates (both negative 

and positive) showed in Fig. 2.5, correspond to sites largely affected by the presence of 

obstacles locally modifying littoral dynamics such as in the surrounding of marinas along 

the Maresme coast (see also Ballesteros et al., 2018); and to hotspots in deltaic areas 

suffering of river sediment input decrease (Jiménez et al., 2018; Rodríguez-Santalla and 

Somoza, 2019).  



Chapter 2 

23 

 

 

Figure 2.5. Histogram of beach-averaged shoreline evolution rates during the 1995-2015 period along the 

Catalan coast. 

 

These calculated evolution rates are the integrated result of natural littoral dynamics 

and human action on the coast during the analysed period. Thus, it has to be considered 

that during this period; about 5 millions of m3 of sand have been supplied to the Catalan 

coast to try to mitigate local stability problems (see Jiménez and Valdemoro, 2019). This 

implies that the natural background erosion rate should be higher than the calculated one, 

with the “excess” of erosion being equivalent to that required to remove the supplied 

volume. In a recent study on the performance of nourishment operations along the 

southern part of the Catalan coast (Tarragona province) during the last 20 years, Galofré 

et al. (2018) evaluated this excess of erosion about -0.1 m/y. 

Fig. 2.6 shows the SLR-induced shoreline retreat of a representative part (comarcas 6 

to 10) of the Catalan coast for the SLR scenarios. As can be seen, the average SLR-

induced retreat is projected to be almost the same in 2050 for RCP4.5 and RCP8.5 

scenarios (around 20 m), whereas they significantly differ by 2100 due to the expected 

acceleration in sea level rise under RCP8.5 (47 m and 66 m for RCP4.5 and RCP8.5, 

respectively). For the H+ scenario, the calculated retreat is about two times larger than 

those associated with other RCP scenarios in 2050 and three times larger in 2100 (see 

also Jiménez et al., 2017).  Table 2.4 shows the estimated shoreline SLR-induced retreats 

to be applied to each sector along the coast. 



The influence of Climate Change on the coastal risk landscape 

24 

 

Figure 2.6. SLR-induced shoreline retreat for the southern comarcas (6 to 10 in Table 2.3) of the Catalan 

coast under selected SLR scenarios. 

 

Table 2.4. Shoreline retreat (m) under different SLR scenarios in 2050, 2075, and 2100. The values are 

referenced to 2015 measurements. 

Coastal comarcas 

Shoreline retreat (m) 

SLR scenario 2050 2075 2100 

1, 2, 3 

RCP 4.5 

RCP 8.5 

H+ 

15 

17 

35 

28 

35 

81 

41 

59 

147 

4, 5 

RCP 4.5 

RCP 8.5 

H+ 

13 

14 

30 

24 

30 

70 

35 

51 

126 

6, 7, 8, 9, 10 

RCP 4.5 

RCP 8.5 

H+ 

17 

19 

40 

32 

41 

93 

47 

68 

168 

 

 

2.4.2. Physical-Carrying Capacity (PCC) 

At present, beaches along the coast can accommodate up to maximum of about 1.37 

million users at one time (excluding the Ebro delta beaches). They present a non-

homogeneous distribution per comarca that reflect the dominant geomorphology and 

extension of each unit.  
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The PCC distribution aggregated per tourism brand is shown in Table 2.5. As can be 

seen, the two most well-known Catalan tourism brands, Costa Brava in the north and 

Costa Dorada in the south, comprise about 60% of the total PCC, whereas they comprise 

67% of the tourist bed places. The largest PCC is provided by the Costa de Barcelona 

brand, which includes the comarca with the highest number of users (272,000), Maresme, 

which is composed of a 42 km-long sandy coastline. In spite of being the brand with the 

largest PCC (34% of the total), it only provides 16% of total tourist accommodations. 

Finally, the city of Barcelona, the area with the highest tourist affluence, only supports 

6% of the PCC. 

PCC projections along the analysed coast show a decrease for all areas, although with 

significant spatial variation. Thus, considering the expected changes by 2050 under 

current conditions, the total PCC of the analysed beaches will decrease down to 81% of 

the current capacity (1,108 million users). Observed spatial variability is due to the 

combination of variations in coastline evolution and beach morphology. The least 

affected brand will be Costa Brava, which will maintain 89% of the present PCC (392,000 

users in 2015, Table 2.5). This is due to its geomorphology characterized by bay beaches 

within headlands having relatively low erosion rates. On the other hand, Costa de 

Barcelona is the most affected tourism brand, where PCC decreases to 77% of the current 

capacity. This area includes the Maresme comarca, which has the largest shoreline 

erosion rates along the Catalan coast (excluding Ebro delta beaches). 

The total PCC by 2050 under the RCP8.5 scenario will decrease to 64% of the present 

capacity (880,000 users, Table 2.5). Although this value is similar to that predicted under 

the influence of current coastal processes, the observed spatial variability is quite 

different, with all zones presenting similar reduction rates. In comparison with the 

previous scenario, the Costa Brava will be one of the most affected brands, maintaining 

68% of present PCC. On the other hand, the PCC of Maresme beaches will be reduced 

down to 54% of actual values, which represents a 10% increase with respect to current 

climatic conditions. For the other tested scenarios, PCC will also experience the same 

decreasing trend which is proportional to SLR. Thus, in 2050, the total PCC will be 

916,000 users under RCP4.5 and 616,500 users under the H+ scenario. These reductions 

will significantly increase beyond 2050 due to the expected SLR acceleration under tested 

scenarios. 
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Table 2.5. Characteristics and PCC for the different tourism brands along the Catalan coast. 

Tourism 

brand 
Comarca 

Beach 

length 

(km) 

Tourist accommodation 

(bed places in thousands) 

PCC - thousands of users – 

(percentage over total) 

2015 2050  2050 

reference 
current 

climate 
RCP8.5 

Costa 

Brava 
1, 2, 3 54.33  179.44 

392 

(29%) 

347 

(31%) 
267 (30%) 

Costa de 

Barcelona 
4, 6, 7 63.91 72.02 

471 

(34%) 

363 

(33%) 
305 (35%) 

Barcelona 

city 
5 12.88 73.54 82 (6%) 64 (6%) 50 (6%) 

Costa 

Dorada 
8,9,10 57.34 112.54 

421 

(31%) 

334 

(30%) 
257 (29%) 

Total   437.54 1,366 1,108 880 

 

2.4.3. Tourist BCC 

Fig. 2.7 shows the BCC integrated at the municipality and comarca scales versus 

potential users (tourists). At present, when the tourist BCC is integrated at the municipal 

scale (Fig. 2.7a), beaches are able to absorb between 80-100% of the potential demand. 

There are three locations lacking sufficient space to accommodate the potential maximum 

demand: Santa Cristina d’Aro (Baix Empordà), Barcelona (Barcelonès) and Cubelles 

(Garraf), which only satisfy 17%, 59%, and 61% of the local demand, respectively. 

However, if the spatial integration is enlarged up to the comarca level, which implies that 

users can be redistributed to all beaches within a given comarca, all regions will satisfy 

the potential maximum tourist demand (Fig. 2.7b). It has to be considered that the change 

in the scale of the spatial aggregation will reflect the maximum distance to be covered by 

users to visit a beach from their place of lodging.  

As expected, the percentage of tourism demand satisfied by beaches will decrease with 

time and with the magnitude of sea level rise. As an example, in 2050 and under current 

climate conditions, the number of municipalities with insufficient beach surface to 

support 100% of the tourist BCC will increase from 3 to 10. In fact, if no adaptation action 
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is taken, some beaches will disappear and the expected tourist BCC for some 

municipalities will become nil (e.g., Caldes d’Estrac and Cabrera de Mar in Maresme) 

(Fig. 2.7a). When the effect of different SLR scenarios is considered, the number of 

significantly-affected municipalities increases (Fig. 2.7a). Thus, for the RCP8.5 scenario, 

10 municipalities will present low or very low tourist BCC, increasing to 23 under the H+ 

scenario. It should be noted that severely affected municipalities are different than those 

identified under current conditions, with most of them being located in the Costa Brava 

(Cadaqués, Palafrugell, and Blanes) (Fig. 2.7a). When the analysis is at the comarca level, 

the tourist BCC reduction is smoothed out due to the potential redistribution of beach 

users within a larger unit. La Selva is the only affected comarca with decreases to 40% of 

the current tourist under BCC RCP8.5 scenario (Fig. 2.7b). 

When the analysis is extended to 2100, a dramatic decrease in tourist BCC is expected, 

especially for RCP8.5 and the H+ scenarios (Figs. 2.7a and b). Under the RCP8.5 

scenario, the tourist BCC for about half of the coastal municipalities will decrease to less 

than 20% of present values (Fig. 2.7a). If values are integrated at the comarca level, a 

smaller effect on the tourist BCC is observed. However, some comarcas experience a 

significant reduction; with La Selva (Costa Brava) being most affected as it will only be 

able to provide 2% of the required tourist BCC in 2100. Other significantly affected areas 

are Baix Camp and Tarragona (Costa Dorada), which will be able to provide 48% and 

78% of the required BCC, respectively, and Barcelonès (city of Barcelona) and Baix 

Empordá (Costa Brava) with 38% and 19%, respectively (Fig. 2.7b). 

 

  



The influence of Climate Change on the coastal risk landscape 

28 

 

 

 

Figure 2.7. Tourist BCC integrated at the (a) municipal level, and (b) comarca level.  
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2.5. Discussion and conclusions 

2.5.1. Methodological aspects 

A methodology to assess the evolution of the recreational capacity of beaches at 

different management scales as a function of coastline evolution is proposed and applied 

to Catalan beaches under different climate scenarios. In this sense, this research belongs 

to the category of quantitative approaches to evaluating the effects of climate change on 

tourism based on a consideration of physical changes (Roselló-Nadal, 2014). Most 

existing analyses on the potential effects of climate change on sustainability of coastal 

tourist destinations focus on potential changes in climatic attractiveness (e.g., Amelung 

and Viner, 2006; Moreno and Amelung, 2009b; Perry, 2006, among others). However, in 

addition to climate conditions, beaches are the main resource for sustaining tourism in 

most coastal destinations, such as the Mediterranean countries, and any impact on the 

quantity and quality of beaches will affect tourism. In a business scenario in which the 

success of every season is usually indicated in terms of the percentage of increase in 

incoming tourists, any sustainable long-term planning requires an assessment of the 

evolution of the main resource to be “exploited”, the beach. In this context, the evolution 

of the available beach surface area will determine the potential maximum number of users 

that can be served as well as the user density, the latter aspect being an important issue in 

influencing the user perception of beach quality (e.g., Ariza et al., 2010; Roca et al., 2008; 

Rodella et al., 2017).  

With respect to this, Valdemoro and Jiménez (2016) among others have formalized the 

relationship between shoreline dynamics and beach user density. Thus, the inclusion of 

long-term erosion rates emerges as a key factor to estimate future beach carrying capacity 

under current conditions (i.e., Alexandrakis et al., 2015; Rodella et al., 2017; Silva et al., 

2007; Zacarias et al., 2011). On the other hand, climate change projections have 

determined the need to assess SLR-induced changes in carrying capacity (e.g., de Sousa 

et al., 2018; Jiménez et al., 2017; Scott et al., 2012b; Toimil et al., 2018). In this work, 

we have compared the contribution of each component of shoreline evolution to future 

carrying capacity variations and, have combined both to assess their integrated effect. 

This is important since when designing management responses to this future threat, such 

as nourishment volumes to maintain beaches (e.g., Hinkel et al., 2013), we have also to 
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consider needs under current conditions which will have to be added to the so-estimated 

volumes to assess the existence of enough resources (e.g., Jiménez et al., 2011; 2017).   

While SLR-induced erosion is an indisputable hazard to be included in any long-term 

assessment, there is much less agreement on how to properly assess it. Thus, in spite that 

the Bruun rule is probably the most used methods to predict shoreline retreat (e.g. Le 

Cozannet et al., 2014), there is a disagreement about its validity (see e.g., Cooper and 

Pilkey, 2004). In consequence, there have been different attempts to modify, reformulate 

or propose new models (e.g., Ranashinge et al., 2012; Rosati et al., 2013; Taborda and 

Ribeiro, 2015). However, these models also present the same shortcoming than the Bruun 

rule, i.e. they have been hardly verified and/or validated and, in this sense, they also have 

an inherent uncertainty. One of the problems to select a reliable method is the lack of 

adequate data for validation due to the hypothesis done by models and, in consequence, 

the limitation of existing data fulfilling such conditions (see e.g., Le Cozannet et al., 2016; 

Zhang et al., 2004). Recently, some works have addressed model validation using 

laboratory experiments (e.g., Atkinson et al., 2018; Beuzen et al., 2018; Monioudi et al., 

2017), although still they are limited in quantity and need to be completed to perform a 

robust validation of existing models. Within this context in which no universally accepted 

model exists, we have selected to use the Bruun rule to estimate SLR-induced shoreline 

retreat. To this end, we have applied it by following recommendations of Stive et al. 

(2009) who suggested using it for regional scale assessments. In this sense, we do not 

apply the model at the beach scale, but we use to obtain regional scale SLR-induced 

background erosion. In this case, as we mentioned in the methodology section, we have 

divided the Catalan coast in three zones in terms of the inner shelf slope and we obtain a 

representative background erosion rate for each zone. This rate is later applied to each 

beach, with the corresponding time-response being the combination of such regional 

erosion rate and the local beach width. It has to be also noted that here we are assuming 

that no changes in sediment sources/sinks along the coast are considered (see e.g., 

Jiménez et al., 2017).   

In this study we assume a model of use of the beach space and defined maximum-use 

density values, based on local characteristics. Both elements can be modified to adapt to 

sites with different spatial distribution of users or, to test how BCC would vary under 

different management scenarios, such as accepting a higher density of users. Therefore, 
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this simple, flexible, and easy-to-use beach-user interaction model can be adapted to 

physical changes as well as to modifications in the beach management model. 

One of the advantages of the adopted approach is that we have defined a model of use 

of the beach space, including saturation density values based on local characteristics. 

Therefore, each beach is classified in terms of its current use characteristics and, thus, the 

SLR-induced beach width decrease will have a differentiated impact on BCC. This 

approach permits to assess the impact on regional BCC by changing local beach 

management, as it would be the case of modifying accepted saturation levels. In our case 

study, we have assigned different intensity of use and saturation levels values using 

existing databases where all beaches were previously classified in terms of these two 

variables. In the case of non-existence of such information, the same procedure could be 

applied by assigning different saturation values as a function of their typology (e.g., 

urban, semiurban, natural). 

One of the management-oriented key points of the model is the spatial integration of 

the BCC. The adopted approach integrates the carrying capacity from a basic unit, the 

beach, up to a given spatial (management-oriented) unit such as the municipality. This 

model assumes that the maximum level of mobility of tourists is determined by the 

integration scale, in such a way that beaches within a given management unit are only 

serving tourists staying in such unit. This has two main implications: (i) first, from the 

managerial standpoint, BCC is assessed as an integrated variable accounting for all 

beaches within a given management (integration) unit; and (ii) second, the implicit 

consequence is that if all beaches within a given unit lack of sufficient carrying capacity, 

tourists will change their destination, i.e., they will move on to a different municipality 

or brand providing sufficient BCC. In this sense, the developed methodology allows 

assessing the capacity to accommodate the maximum potential number of tourists in the 

territory by redistributing the demand over different spatial units. This should facilitate 

exploring the formulation of adaptation measures based on the management of the 

accommodation offer along the territory taking into account the spatial distribution of 

future BCCs.   

The tourist sector is here indicated by means of the maximum number of potential 

visitors derived from the total number of tourist bed places. However, it has to be 

considered that this number does not include people using accommodations that are not 
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reflected in official statistics, such as accommodation-sharing sites, second-home 

residences, or day-visitors from outside the management unit. As an indicator of the 

potential capacity associated with this “uncontrolled” component, the report on the 2017 

summer tourist balance in Catalonia (Generalitat de Catalunya, 2017) estimates that the 

housing for the tourist-use component offers about 35% of total bed places. This implies 

a “best-case scenario” impact assessment, since the maximum potential total tourist 

demand would be larger than that considered here. The use of bed places to compare with 

the BCC implies the assumption of full occupancy. To put into context the obtained 

results, the above-mentioned report (Generalitat de Catalunya, 2017) stated that the 

occupation rate during the 2017 summer season (June to September) in hotels in the 

analysed coastal tourism brands was about 83%. In the analysis presented here we have 

assumed that the offer of tourist accommodations within a spatial unit will not change 

with time. This is not a requirement of the model, which can be modified to take into 

account any time variation in the beach demand, including scenarios of growing tourism 

sector.  

 

2.5.2. Temporal and spatial changes in BCC 

The results indicate that at present, beaches along the Catalan coast (excluding the 

southernmost comarcas comprising the Ebro delta) can accommodate a maximum of 

about 1,366 million beachgoers under the current model of use (use of the available space 

and maximum allowable user density for each beach). This overall capacity is larger than 

the total number of tourist bed places and it should indicate that at present, Catalan 

beaches have the capacity to accommodate the maximum potential tourist demand. 

However, if we impose a limitation in tourist mobility, which is here modelled through 

the spatial integration of BCC, to the municipality scale, beaches along the Catalan coast 

are able to accommodate up to 89% of the maximum potential tourist demand without 

changing current beach management. Barcelona is one of the most affected 

municipalities, with beaches providing 59% of its tourist BCC due to the large number of 

tourists. However, this quantity of tourists is not directly linked to beaches since 

Barcelona is not the classical sun-and-sand destination. To put the obtained results in 

context, according to the Barcelona municipality, the influx of users to Barcelona beaches 

during 2016 was about 4.7 million, and the average used surface per visitant was 



Chapter 2 

33 

estimated in about 7 m2/user, with some beaches having values lower than 4 m2/user 

(Ajuntament de Barcelona, 2017). In any case, it should be considered that the degree of 

occupation of these beaches presents significant time variations such that the same beach 

can range from situations of low occupation to saturation (e.g., Guillén et al., 2008). In 

order to properly interpret overall results, it has to be considered that at present, there are 

municipalities along the Catalan coast which are able to support 100% of the current 

tourist demand, which at the same time, present singular user density values close to or 

above saturation levels at some beaches (e.g., Roca et al., 2008; Sardá et al., 2009).  

As it was already mentioned, beach width projection under current conditions have 

been estimated assuming that current natural and management conditions will not vary 

during the projection time. Thus, any potential change in current shoreline management 

options should affect future shoreline evolution and BCC even assuming no change in 

climate conditions. To assess the potential magnitude of such changes, if current 

maintenance beach nourishments performed during the last years, this would imply an 

increase of -0.1 m/y in the average background shoreline retreat rate. 

Projection of present shoreline trends along the Catalan coast to 2050 indicates a 19% 

decrease in the overall PCC under current dynamic conditions, which would increase 

under a highly-probable climate change due to the estimated SLR-induced erosion up to 

33%, 36%, and 55% for RCP4.5, RCP8.5 and H+ scenarios, respectively. When these 

figures are put in the context of potential implications for tourism, even in the absence of 

climate change, some municipalities will experience a measureable decrease in tourist 

BCC such that beaches will only be able to accommodate 83% of the maximum potential 

tourist demand if no actions are taken to manage them. Future tourist BCC perspectives 

will be much worse for the case in which climate change-induced effects are considered, 

with the capacity to absorb the maximum potential tourist demand being 74%, 72%, and 

53% for RCP4.5, RCP8.5 and H+ scenarios, respectively. It should be considered that 

this decrease in tourist BCC is not evenly-distributed along the Catalan coast. It is mainly 

concentrated in municipalities in the North (Costa Brava), where the number of potential 

tourists is very high and beaches are relatively narrow (Fig. 2.7a). 

For longer-term projections, this behaviour is reinforced and extended along the entire 

Catalan coast. Thus, for instance, under the RCP8.5 scenario, the overall tourist BCC will 
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be 51% and 34% of the current maximum potential tourist demand in 2075 and 2100, 

respectively (Fig. 2.7a). 

However, if we increase the aggregation scale up to the comarca level, the excess of 

users above saturation levels is redistributed among all beaches within a larger spatial 

unit. This indicates that the coastal system has the capacity to better absorb the overall 

demand (Fig. 2.7b) following a redistribution of users across the territory. It should be 

noted that the scales of aggregation have been selected in accordance with the 

administration structure in Spain, but since the information is individually obtained for 

each beach, the integration can be carried out at any spatial scale. As a rule of thumb, 

results show an increasing number of tourist BCC hotspots as the territorial unit becomes 

smaller. Consequently, this analysis between different integration scales could be useful 

in order to define more optimum management scales, and to locate hotspots and priority 

areas in order to define an adaptation strategy focused on sustaining the recreational use 

of beaches.  

Regarding the tourist BCC hotspots identified here, the results indicate that the 

expected capacity to absorb the tourist demand of beach space of a given quality will be 

significantly affected by climate change if measures to avoid the BCC loss are not 

adopted. One of the most potentially-affected brands will be the city of Barcelona, 

although from the standpoint of tourism, this destination has other multiple tourist 

attractions, such as culture, architecture, and gastronomy. Regarding the most well-

known coastal tourism brands, Costa Brava and Costa Dorada, both have municipalities 

that would be severely affected over long-time scenarios (to 2100), losing 87% and 53% 

of their current tourist BCC, respectively under RCP8.5. 

Although beaches are used by both tourists and the local population, here we have 

focused exclusively on the tourist sector. In this sense, the estimated impact would be a 

“best-case scenario,” because if we also account for the use of beaches by the local 

population, the available surface will be further reduced. In this sense, data on 

beachgoer’s origin obtained in different beaches in the Costa Brava area indicate a 

percentage of locals of about 20-30% (Lozoya et al., 2014; Roca et al., 2008). This 

percentage of beach use by locals would increase in areas with low tourism and high 

population density, such as Maresme south, the metropolitan coast northwards of 

Barcelona (Ballesteros et al., 2018). To get an order of magnitude of this effect, assuming 
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that on average, 25% of beach users are of local origin, the overall tourist BCC integrated 

at the municipal scale for the area of study under RCP8.5 scenario will be 65%, 45%, and 

31% of the current maximum potential tourist demand in 2050, 2075, and 2100, 

respectively. 

The results show the high sensitivity of the coastal tourism sector to climate change 

not only as a function of the change in climatic conditions controlling comfort, but in 

terms of time variations in the primary resource to be exploited, i.e., the beach. The 

assessment presented has been done for a scenario of constant-over-time tourist 

accommodation capacity and consequently, constant potential beach demand by tourists. 

In this sense, this can be considered a best-case scenario which could be refined by testing 

different scenarios of time-evolution of tourists, including government aspirations for the 

tourist industry.  

 

2.5.3. Management implications 

In all cases, these results indicate that to maintain the economic contribution of the 

tourist sector, efficient adaptation measures are required. The aim of these measures 

should be to maintain future beach carrying capacity within a given range in order to 

properly support beach demand. This could be done or by (1) redistributing users along 

the coast, (2) increasing the density of use, (3) increasing the beach surface, or (4) 

combining some of them. Regarding the option 1, this strategy would not likely be 

implemented at a regional scale, since it implies “abandoning” well-established areas with 

local economies strongly linked to tourism (e.g., Costa Brava). However, from a local 

standpoint, this could be an opportunity for less-developed areas, which could offer new 

accommodation units in areas with enough BCC. Option 2 would imply a decrease in 

beach quality with the corresponding effects on users. Since many of the beaches analysed 

here are urban ones in which the accepted saturation level is high, the increase in density 

for these beaches would lead to a situation of permanent overcrowding. In the remaining 

beaches, the increase in user density implies that in effective terms, they will change from 

semi-urban and natural beaches to urban-like ones. Finally, the management of BCC 

through the conservation of available beach surface requires the implementation of 

traditional, coastal engineering measures to reduce and/or to compensate erosion. Along 

the Catalan coast, this has been the traditional way of mitigating erosion problems, such 
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that during the last 30 years, more than 25 million m3 of sand nourishment have been 

deposited on Catalan beaches (e.g., Jiménez and Valdemoro, 2019). In spite of this 

nourishment strategy, Catalan beaches present an erosive behaviour, which will be 

exacerbated under SLR. Consequently, the implementation of an adaptation strategy 

based exclusively on beach nourishment requires having a strategic sediment reservoir 

with enough quality sediment to maintain future beach widths. However, current 

estimates of existing nearshore sediment stocks are insufficient to cover expected needs 

(e.g., Galofré et al., 2018) unless new sand stocks are found. A possible approach to 

overcoming this limitation in existing resources will be to concentrate adaptation 

measures in high-priority areas identified with this analysis, where future beach evolution 

will result in a significant decrease in tourist BCC.  
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Chapter 3  

Valuating the impacts of sea-level rise 

on the recreational function 

 

 

3.1. Introduction  

In the previous Chapter, the physical impact of SLR has been assessed in terms of 

reduction in the physical carrying capacity (PCC) of beaches along the Catalan coast, 

which should directly affect the tourism industry. Given the economic importance of this 

sector on the national GDP, here we assess the economic dimension of the estimated 

impacts under different SLR scenarios. 

There are several methods to evaluate in economic terms the recreational value of 

beaches, such as travel cost (TC), hedonic pricing (HP), and contingent valuation (CV). 

TC involves accounting for costs incurred by beachgoers in traveling to the recreational 

site (Bell and Leeworthy, 1990; Fleming and Cook, 2008). HP identifies the factors and 

characteristics that affect an item´s price, such as the value of beach width (Pompe and 

Rinehart, 1995) or beach recreation (Edwards and Gable, 1991) capitalized in property 

values. Finally, CV estimates the value that a person places on beaches asking their 

willingness-to-pay (WTP) to obtain a specific service or function (Shivlani et al., 2003; 

Whitehead et al., 2008). However, these methods respond to users’ prices attributable to 

a beach and do not reflect its real value since obtained non-market values (i) are highly 

dependent on user preferences and local characteristics; and (ii) do not provide an 

integrated valuation required to manage properly coastal resources (Ariza et al., 2012). 

Although there is vast literature on beach quality assessment from the recreational 

standpoint (Ariza et al., 2012; Pendleton et al., 2001; Roca et al., 2009), less attention has 

given to quantitatively assess the direct economic impact of beach recreation. It is well-
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recognized that beaches play an important role as locations for recreation and, indeed, a 

key element for the tourism industry (Houston, 2013) in such a way coastal tourism 

comprises the largest market segment of this sector worldwide (Hall, 2001; UNEP, 

2009b). In fact, King and Symes (2003) suggested that the US economy would lose $2.4 

billion in GDP annually if beaches were unavailable for recreation due to reductions in 

beach width and associated carrying capacity. More recently, Alexandrakis et al. (2015) 

estimated the value of eroded beaches in Greece by tourism revenue losses which, on 

average, were roughly €50 thousand/m2 per year after 10 years of shoreline retreat.  For 

the Catalan coast, Ariza et al. (2012) assessed the value of beaches in highly touristy areas 

which was estimated at approximately €7 M/ha in the peak of summer, a much higher 

value than other coastal areas (e.g. Edwards and Gable, 1991; Kline and Swallow, 1998; 

Silberman et al., 1992; Taylor and Smith, 2000). 

According to the UN’ World Tourism Organization, the total contribution of tourism 

in 2019 was 10.3% of global GDP generating 1 in each 10 jobs around the world 

(UNWTO, 2020). Furthermore, this institution has developed methodologies for 

evaluating the economic impact of tourism in the form of Tourist Satellite Accounts 

(TSA) based on input/output (IO) Tables. IO analysis measures the activity of producers 

and purchases of goods and services across the spectrum of economic sectors (Vellas, 

2011), and it is one of the best methodologies to demonstrate how economic sectors are 

interlinked (Briassoulis, 1991; Fletcher, 1989; Sun, 2007).  

Tourism is one of the most sensitive economic sector to climate change. Although 

potential impacts have been addressed (Priego et al., 2015; Rutty and Scott, 2014), 

economic consequences on coastal tourism have not been explored in detail so far 

(Amelung et al., 2008). Climate change may trigger a crisis in the tourism industry at 

many destinations in such a way is vital to understand the impacts and consequences for 

sustainable development of this sector (de Sausmarez, 2007; Meheux and Parker, 2006) 

as well as to consider different adaptation measures (Moreno and Becken, 2009, Scott et 

al., 2012). In this sense, Kirezci et al. (2020) suggested that SLR-induced flooding may 

threaten up to 20% of global GDP by 2100, with much of it belongs to the tourism 

industry.  

Within the Mediterranean, Spain is a traditional sun-and-sand destination where 

approximately 12% of the national economy comes from tourism (INE, 2019). 
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Particularly, for the Catalan coast, beaches are recognized as the main resource for the 

development of this sector (Rigall-i-Torrent et al., 2011). However, given the predicted 

decrease in the available surface of beaches due to SLR (López-Dóriga et al., 2019), the 

remaining question is how the economy will be impacted? To this end, we have estimated 

potential economic losses through IO analysis by assuming that beach PCC is linked to 

the potential tourism demand and, consequently, to the tourism consumption and output. 

Within this context, the main aim of this Chapter is to assess the potential impact of 

SLR on the economic contribution of tourism. This is accomplished via two objectives: 

(1) application of IO analysis and downscaling to comarca level, the minimum 

administrative unit with available economic data disaggregated into sectors; and (2) 

assessment of the economic consequences of the reduction of beach carrying capacity 

under given SLR scenarios.  

 

3.2. Data and Methods 

3.2.1. General methodological framework 

As it has been mentioned previously, beaches are the most important asset for coastal 

tourism development. However, to what extent the economy of a given area will be 

affected by the reduction of the number of potential beachgoers? To answer this question, 

a methodological framework consisting of four steps has been designed (Fig. 3.1): (i) 

assessment of the tourism expenditure; (ii) application of IO model to measure the 

economic impact by changes in tourism expenditure; (iii) regionalization of the economic 

impact to assess the effect on a given administrative unit; and (iv) assessment of the SLR-

effect as a function of changes in the PCC.  

It is assumed that, in coastal comarcas, most of the tourism is associated with the sun-

and-beach model. In addition to this, the main hypothesis it that (coastal) tourism 

economy is proportional to the available beach carrying capacity, which would control 

the number of potential visitors as well as the quality of the beach destiny. With this, any 

change in the available beach surface in a given territory, can be translated to changes in 

GDP and employment. 
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Fig. 3.1. Methodological framework to assess SLR-impact on the economy. 

 

Tourism does not appear as a specific productive sector in the economic sphere. This 

is due to the fact that tourism is not defined by the goods and services it produces, which 

are not specific for the sector, but it is determined by the consumers’ characteristics whose 

purchases are limited to the temporary visit of a territory. Such transversal character 

includes different economic branches, such as catering, commerce, transport, among 

others (Baró, 2003), with multiple businesses and companies participating in offering 

goods and services to tourists and, also, to the local population. All this means that, in 

order to evaluate the tourism contribution to the economy of a given territory, it is 

necessary to characterize the habits of tourists’ expenditure and, from them, estimating 

the direct and indirect effects they generate.  

Like any other economic activity, tourism can be analysed from the perspective of the 

demand and the offer. From the demand perspective, the economic value of tourism is 

calculated from the set of activities performed by tourists and the associated expenditure. 

From these consumptions, the generated effects on the local productive sector can be 

estimated. Conversely, the offer perspective considers the provision of tangible (products) 

and intangible goods (services) for tourist use. However, the key question is to determine 

which activities produce these goods, and which proportion can be directly associated 

with tourism, since local population also contributes to its consumption. For the 

objectives of this work, the most appropriate method to quantify the tourism impact is the 

demand point-of-view, which captures more accurately the consequences of tourism 

expenditure on the economy.  
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3.2.2. Assessment of tourism expenditure 

3.2.2.1. Number of stays 

Tourism demand in the study area is diverse, and following statistical data three 

typologies have been considered: (i) tourist, (ii) one-day visitor, (iii) second residence. 

 Data used to characterize the number of tourist overnights were acquired from official 

statistics provided by the Statistical Institute of Catalonia (IDESCAT). The selected 

indicators were the number of travellers and overnights by tourism brands (see Fig. 2.1 

in the previous Chapter). Then, they were disaggregated down to the comarca-scale based 

on the number of tourist places within the tourism brand. The considering types of 

accommodations include hotels, campsites, cottages, as well as other unregulated 

lodgings such as Airbnb and other rental platforms. 

To characterize tourists who do not overnight, one-day visitors’ estimations made by 

the Barcelona Council (DIBA, 2020) obtained through surveys in certain municipalities 

have been used. From these, an average ratio with respect to overnight stays was 

calculated, and then applied to all coastal comarcas.  

In order to define the demand from people having a second residence, data from the 

2011 census (IDESCAT) were used, which were updated according to statistics related to 

housing and population inhabitants. To estimate the number of overnights in second 

homes, an average occupation of 2.82 people/home is assumed, which is the average 

value for the principal residence in Catalonia, and a stay of 90 days/year. 

Table A2 in Annex A provides estimations about the number of stays per coastal 

comarcas in 2019.  

 

3.2.2.2. Average daily expenditure 

Data to calculate the average daily expenditure for each type of visitor were obtained 

from different statistic resources. Tourism expenditure surveys done by the Spanish 

Ministry of Industry, Commerce and Tourism (Egatur, 2019) and the Tourist Activity 
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Index developed by the Autonomic University of Barcelona (Duro, 2014) provide 

information on the expenditure made at the destination by tourists arriving to Catalonia, 

differentiating among different factors such as origin, mean of transport, type of 

accommodation, among others. Likewise, data from INE (2020a) allows for 

differentiating the expenditure made per tourism brand. These sources offer differentiated 

spending figures between the type of accommodation (hotels, campsites and cottages). 

The average expenditure per comarca has been obtained by Eq. 3.1, 

 
𝐺𝑃 =  

(𝐺𝐻 ∗ 𝑃𝐻) + (𝐺𝐶 ∗ 𝑃𝐶) + (𝐺𝑅 ∗ 𝑃𝑅)

𝑃
 

(3.1) 

where 𝐺𝑃 is the average tourist expenditure per overnight, 𝐺𝐻 is the average daily 

expenditure of those staying in hotels, 𝑃𝐻 is the number of overnights in hotels, and 

𝐺𝐶, 𝑃𝐶, 𝐺𝑅, 𝑃𝑅  stand for same variables for campsites and rural cottages, respectively. 

Table A3 in Annex A shows obtained values for coastal comarcas, with an average value 

of 128.3 €/person·day. 

The average expenditure of one-day visitors has been calculated by using data from 

INE (2020a) and Tourism Laboratory of the Barcelona Council (DIBA, 2020). Table A3 

in Annex A shows obtained values for each coastal comarca, with an average value of 

44.9 €/person·day. 

Finally, to estimate the expenditure made by second homes, the level of expenditure 

per inhabitants in Catalonia and consumption patterns was analysed (INE, 2020b). Table 

A3 in Annex A shows obtained values for each coastal comarca, with an average value 

of 36.8 €/person·day. This figure does not include any component related to the home’s 

construction and maintenance since the intention is to be the most restrictive with the 

concept of tourism expenditure. 

 

3.2.2.3. Tourism expenditure 

The total tourism expenditure per each coastal comarca (𝐺𝑇𝑐) is obtained by applying 

the Eq. 3.2,  

 
𝐺𝑇𝑐 = (𝐺𝑡𝐶 ∗  𝑁𝑡𝑐) + (𝐺𝑣𝑐 ∗ 𝑁𝑣𝑐) + (𝐺𝑟𝑐 ∗ 𝑁𝑟𝑐) 

(3.2) 
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where 𝐺𝑡𝐶  is the daily average expenditure per tourist overnights in comarca c, 𝑁𝑡𝑐 is the 

number of tourist overnight stays in comarca c, and 𝐺𝑣𝑐 , 𝑁𝑣𝑐 , 𝐺𝑟𝑐, 𝑁𝑟𝑐   stand for the same 

reason but for one-day visitors and second residences, respectively. Table A4 in Annex 

A shows obtained values for each coastal comarca. 

 

3.2.3. Input-output model 

3.2.3.1. IO Tables 

Input-Output (IO) analysis is a quantitative top-down technique that represents the 

existing interdependencies between different sectors or industries. Originally developed 

by Leontief (1936), this model is commonly used for estimating the impacts (positive or 

negative) of economic shocks and analysing the domino effect throughout the entire 

economy (Miller and Blair, 2009). In particular, this work analyses the impact of tourism 

sector thought the tourism expenditure and its repercussions on the economic magnitudes 

of a given area, mainly income and employment. A very general and simplified overview 

of an IO Table is presented in Table 3.1, which is comprised by three sub-matrixes:  

Quadrant 1 (intermediate transactions) is the basis for the IO model itself, and it 

includes the matrix of intermediate flows. It represents the transactions for intermediate 

sales and purchases of goods and services among sectors, i.e. inputs and outputs for each 

branch. Depending on whether a supply of demand approach is desired, it is analysed by 

rows or by columns. Rows represent the production (either in monetary terms or as 

coefficients) of each productive sector distributed by consumption sectors. Columns 

indicate the resources that each sector uses to produce the manufactured goods. 

Quadrant II (final use) shows the final use of goods and services for each branch, which 

is composed by private consumptions (PC), public expenditure (PE), gross capital 

formation (GC) and exports (E). If intermediate consumption row (IC) is added to the 

corresponding final demand row (FD), the column vector of the total output (TO) is 

obtained, which is equal to the row vector of the total input (TI).  

Quadrant III (primary inputs) contains the components which constitutes the added 

value (AV) of the corresponding branch and the surplus generated (SG). The input total 

(IT) is the sum of primary inputs and intermediate consumptions (IC). 
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Therefore, IO Table can be considered as an accounting instrument representing all 

economic activities grouped into activity branches and quantifying the transactions 

between them, the production that each one allocates to the final demand, and the use 

made of primary resources. Furthermore, IO Table constitutes a powerful simulation and 

forecasting tool allowing for an analysis of the induced effects by variations in the 

demand of a productive branch, in this case in tourism expenditure. 

 

Table 3.1. General structure of an IO Table. 

  Intermediate demand Final demand 

  Branch 1 Branch 2 Branch n ∑IC PC PE GC E ∑FD TO 

In
te

rm
ed

ia
te

 

in
p

u
t 

Branch 1 

Quadrant I 

Intermediate transactions 

Quadrant II 

Final use 

X1 

Branch  2 X2 

Branch n Xn 

P
ri

m
ar

y
 

in
p

u
t AV Quadrant III 

Primary inputs to production 

      

SG       

T
o

ta
l 

in
p

u
t 

TI X1 X2 Xn  
      

 

3.2.3.2. IO analysis 

The first step involved is the conversion of inter-branches transactions into a matrix 

showing the direct requirements of a sector to produce a unit of its product, called the 

technical coefficients matrix or intermediate consumptions. The technical coefficients 

are calculated from values taken from the Quadrant I divided by the total input of the 

corresponding branch (Eq. 3.3), 

 𝑎𝑖𝑗 =
𝑥𝑖𝑗

𝑋𝑗

 (3.3) 

where 𝑥𝑖𝑗 is the amount of production input supplied by branch i used by the branch j to 

obtain its production 𝑋𝑗, i.e., the necessity of branch j in products of branch i to achieve 

an unit of good it produces.  
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The technical coefficient matrix provides a simplified vision of the existing technical 

production relationships between different branches of an economy. It is configured as a 

square-matrix of “n” rows and “n” columns indicating the number of branches into which 

the whole economic activity is disaggregated; in this case into 82 economic branches. 

Therefore, the technical coefficient matrix makes it possible to analyse the effects 

resulting from changes in the economic activity. These effects occur beyond the 

production branch in which the activity is increased, since one-unit increment in the final 

demand for products of a branch j will imply not only the provision of all intermediate 

inputs necessary to its production but also a whole chain of subsequent needs. In fact, an 

increase in the productive branch activity causes an increase in the input demand to 

develop such activity (Eq. 3.4), 

 𝑋1 = 𝐴 · 𝐷 (3.4) 

where 𝐴 is the technical coefficients matrix, 𝐷 the increase demand vector and 𝑋1 the 

supply needs to new inputs. However, this increase in production to satisfy the initial 

demand causes a new need for inputs to be produced (Eq. 3.5). 

 𝑋2 = 𝐴 · 𝑋1 = 𝐴 · (𝐴 · 𝐷) = 𝐴2 · 𝐷 (3.5) 

This process will be repeated indefinitely since each new production requires new 

inputs to be supplied, although, logically, this sequence will have decreasing values. This 

iterative model allows us to capture easily and simply the sequence chain of inputs needs 

of the productive system represented by the sum of all its components as well as the 

increase in the initial demand (𝐷) (Eq. 3.6).  

 𝑋 = 𝐷 + 𝐴 · 𝐷 + 𝐴2 · 𝐷 + 𝐴𝑛 · 𝐷 = [𝑌 + 𝐴 + 𝐴2 + 𝐴𝑛] · 𝐷 = [𝑌 − 𝐴]−1 · 𝐷 (3.6) 

Solving Eq. 3.6 for the total output, [𝑌 − 𝐴]−1 is the so-called Leontief inverse or 

demand multiplier showing the input supply needs resulting from a change in the activity 

of one or more productive branches.  
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The use of technical coefficient matrix and Leontief inverse matrix of IO Table allows 

us to convert expenditure and investment data into macroeconomic variables such as GDP 

and employment of each coastal comarca.  

Three types of effects can be distinguished by applying IO model: (i) direct effects 

derived from the income received by the different productive factors as a consequence of 

the consumptions and expenses made by the different types of visitors; (ii) indirect effects 

caused by the increase in the economic activity related to tourism and the investment 

made in complementary activities; and (iii) induced effects generated by the increase in 

the economic activity associated to the expenses made by people directly or indirectly 

linked to tourism. The sum of these allows assessing the overall tourism impact in a given 

territory.  

Finally, IO Tables differentiate economic fluxes within Catalonia, the rest of Spain, 

and relations with foreign countries, which allow us to know how GDP and generated 

work positions are distributed along the territory quantifying the effect of spillover. Such 

an effect is referred to as the fact that an action taken in a certain territory (investment or 

expenditure) affects the economy of another one. In the case of tourism, with a wide range 

of related goods and services, these spillover effects tend to be significant. 

 

3.2.3.3. IO Tables for Catalonia 

The creation of IO Tables is a complex and long process analysing information 

available about economic transactions between different productive sectors, as well as on 

production, sectoral exports, and domestic demand. Statistical Institutions of each country 

promoted the creation and development of IO Tables at national level at first, and then at 

regional scale as more statistical information become available. The main methodological 

problem is associated with the availability of economic information.  

In the case of Catalonia, the first IO Tables were developed by the Barcelona Chamber 

of Commerce (Muns and Pujol, 1972; Parellada, 1992), and by Barcelona University 

(CEP, 1982). Afterward, the IDESCAT developed IO Tables for the years 2001, 2005, 

2011 and 2014. The most comprehensive IO Framework corresponds to the year 2011 in 

terms of data used and development of both technical coefficient and inverse matrixes, 
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with a disaggregation into 82 productive sectors. This IO Framework has been updated 

to 2014 although neither the symmetric tables nor the technical coefficient and inverse 

matrixes have been developed for this year, which are key instruments to quantify the 

impact on the economy.  

In this work, 2011 IO Framework was updated to 2014 values by adjusting the two 

basic matrixes for IO analysis (technical coefficient and Leontief inverse matrix), a 

method broadly applied (Brand, 2012). This update was based on macroeconomic data 

on the evolution of production and business account samples from diverse sectors of the 

Catalan economy allowing for productive relationship adjustments among them.  

 

3.2.4. Downscaling to coastal comarcas 

In order to evaluate the effect on a smaller scale, it is necessary to apply regionalization 

techniques to IO Tables (Álvarez, 2001). The most used technique to downscale IO 

Tables is the application of location coefficients (Flegg et al., 1997, Flegg and Tohmo, 

2011) by applying them to the national coefficient of the IO Table (Brand, 2012).  In this 

work, the approach of Garola (2019) for the regionalisation of IO Tables has been 

adopted, which is given by    

 𝐴𝑖𝑗
𝑟 = 𝐴𝑖𝑗

𝑁 ∗ 𝑞𝑖𝑗 (3.7) 

where 𝐴𝑖𝑗
𝑟  is the coefficient of the IO Table at comarca level; 𝐴𝑖𝑗

𝑁  is the coefficient of the 

IO Table at regional scale (in this case, Catalonia); and 𝑞𝑖𝑗 is the developed location 

coefficients based on the existing economic information. In the case of Catalonia, 

economic macro magnitudes are available for comarcas and for large cities. These 

location coefficients represent the existing relationship in sectors’ production between 

comarcas and Catalonia (Eq. 3.8) and, by definition, they are smaller than one reflecting 

that each comarca is part of a superior administrative unit. 
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𝑞𝑖 =  

𝑋𝑖
𝑐

𝑋𝑐

𝑋𝑖
𝑁

𝑋𝑁

 (3.8) 

where, 𝑋𝑖
𝑐  is the production of sector i and 𝑋𝑐is the total production in the comarca c; and 

𝑋𝑖
𝑁and 𝑋𝑁 stand for the same reason but for regional scale (Catalonia). 

These location coefficients enable us to create new technical coefficient and inverse 

Leontief matrixes that allows introducing the local impact and, thus, to assess which part 

of the generated economic impact associated to the tourist expenditure ends up affecting 

the economy at the comarca scale. By applying this tool, it is possible to capture the 

effects of tourist activity in a particular comarca to calculate GDP and work positions. 

 

3.2.5. Assessment of SLR-effect on the economy  

As mentioned before, the main hypothesis is that any variation in the beach carrying 

capacity will imply a loss in the number of potential beach users and, consequently, a 

proportional reduction in the incurred tourism expenditure. The SLR-impact on the PCC 

evaluated for each beach in Chapter 2 has been aggregated at the comarca scale to be used 

in this analysis (see Annex A, Table A5).  

The impact of SLR on the tourism-related economy has estimated by 2050, 2075 and 

2100 under considered SLR-scenarios. Although the use of long-term scenarios is 

common in physical-impact assessments, its application for forecasting economic impacts 

is not a straightforward task. In this work, this is simply done by considering the expected 

decrease in tourism expenditure with respect to the current economy. This assumption 

simplifies the assessment without making any hypothesis about economic developments 

at comarca level over the next 80 years.  
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3.3. Results 

3.3.1. Tourism impact on the economy 

Total tourism expenditure in coastal comarcas was approximately €16,933 M in 2019, 

with 64%, 20%, and 16% being supplied by tourists, one-day visitors and second 

residences, respectively (Annex A, Table A4). Among coastal comarcas, Barcelonès 

stands out reflecting the huge importance of the city of Barcelona as a tourist centre. It 

has to be noted that although Barcelona beaches are intensively used all the year around, 

they are not the main interest of tourists but the city itself. In this sense, the economic 

impact of SLR on Barcelona will be clearly overestimated.    

 It should be noted that these figures are derived from the expenditure generated by 

tourists from a comarca within that unit, which is a very restrictive criterion where each 

comarca is considered as a closed unit. Thus, although tourism expenditures in a given 

comarca generate indirect and induced productive activities in others areas, these links 

have not been considered. 

Using tourism expenditures, tourism activities have generated approximately €12,655 

M in 2019, which represents 10% of the total GDP of coastal comarcas. Furthermore, 

spillover impacts have been estimated at around €4,630 M, part of which affecting other 

comarcas. With respect to employment, the tourism impact can be estimated at more than 

187,000 work positions, representing roughly 10% of the total employment in coastal 

comarcas. To properly interpret these results, it has to be considered that the model works 

in annual terms, whereas beach/coastal tourist activities have a strong seasonality 

character.   

Fig. 3.2 shows the effect of tourism on the GDP of each comarca. As it can be seen, 

there is a significant variability, ranging from 4% in Baix Llobregat to 29% in Baix 

Empordà. In any case, this value must be interpreted with caution since it depends on the 

importance of tourism, and also on the existence of other activities. Thus, the high values 

obtained in Baix Empordà and Baix Penedès are reflecting their importance as highly 

specialized areas in tourism, combining both tourists and second homes. They correspond 

to Costa Brava and Costa Dorada, the most well-known coastal tourism brands in 

Catalonia. 
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Figure 3.2. Tourism impact (in percentage over total GDP) for each coastal comarca in 2019 (from North 

to South: 1: Alt Empordà; 2: Baix Empordà; 3: Selva; 4: Maresme; 5: Barcelonès; 6: Baix Llobregat; 7: 

Garraf; 8: Baix Penedès; 9: Tarragonès; 10: Baix Camp; 11: Baix Ebre; 12: Montsià).   

 

3.3.2. SLR-impact on the economy 

Fig. 3.3 shows the impact of SLR on the tourism GDP of each coastal comarca with 

respect to 2019 values under different climatic scenarios. As expected, the percentage of 

the income associated with tourism will decrease with time and with the magnitude of 

SLR. In fact, the fall in tourism GDP will be very significant even without considering 

SLR due to the dominant erosive behaviour of Catalan beaches (Jiménez and Valdemoro, 

2019). This is especially evident in Baix Ebre with an expected decrease in contribution 

to GDP ranging from 54% to 33% by 2050 to 2100, respectively. When the effect of SLR 

is considered, this contribution further decreases. As an example, comarcas within Costa 

Brava tourism brand may lose all their tourist activity under the most-extreme scenario 

due to the disappearance of their beaches. 

Fig. 3.4 represents the quantification of this impact in monetary terms. Considering 

RCP8.5 as a reference, and without including Barcelonès (to avoid the before mentioned 

overestimation due to the weight of Barcelona city), the coastal comarcas of Baix 

Empordà, Selva and Tarragonès will suffer the largest reductions by losing more than 

€1,000 M on their tourism GDP by the end of the century. 
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Figure 3.3. Variation in tourism GDP (in %) with respect to 2019 values under different climatic scenarios 

at a) 2050; b) 2075; and c) 2100.  
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Figure 3.4. Reduction in tourism GDP (in M €) with respect to 2019 values under different climatic 

scenarios at a) 2050; b) 2075; and c) 2100.  
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Finally, Table 3.2 shows the effect of such reduction in tourism GDP on the total 

economy of each comarca. In general terms, the greatest lossess in GDP will occur in 

those highly tourism-specialized coastal comarcas. For long-term projections, the decline 

in GDP in Alt Empordà, Baix Empordà, Selva and Baix Penedès would exceed 20% under 

the most-extreme scenario (H+) 

 

Table 3.2. Reduction in total GDP (in %) with respect to 2019 values for each coastal comarca under 

different climatic scenarios by 2050, 2075, and 2100.  

Scenario 
Coastal comarcas 

1 2 3 4 5 6 7 8 9 10 11 12 

2
0

5
0
 

EV -2.2 -1.9 -7.3 -4.3 -1.6 -0.2 -1.2 -7.0 -2.3 -3.0 -4.8 -2.3 

RCP4.5 + EV -6.3 -6.6 -12.5 -5.3 -2.6 -0.5 -4.7 -8.9 -4.4 -6.4 -7.4 -5.5 

RCP8.5 + EV -6.9 -7.7 -13.4 -5.5 -2.8 -0.6 -5.3 -9.3 -4.8 -7.0 -7.5 -6.0 

H+ + EV -10.8 -16.2 -19.9 -6.7 -3.9 -1.4 -9.3 -13.4 -7.9 -11.2 -7.9 -6.8 

2
0

7
5
 

EV -3.6 -5.3 -7.3 -5.4 -2.5 -0.4 -2.8 -8.3 -3.6 -5.8 -6.3 -4.9 

RCP4.5 + EV -9.7 -16.0 -17.5 -6.2 -3.9 -1.7 -8.0 -14.1 -6.9 -9.7 -7.9 -6.7 

RCP8.5 + EV -10.7 -19.4 -19.2 -6.5 -4.2 -1.8 -9.0 -15.5 -8.1 -10.7 -7.9 -6.8 

H+ + EV -17.7 -28.1 -22.5 -6.7 -5.3 -2.0 -11.1 -21.7 -11.2 -13.3 -8.5 -6.8 

2
1

0
0
 

EV -4.5 -9.4 -10.5 -5.6 -3.0 -0.9 -3.9 -10.8 -4.6 -7.4 -6.9 -5.0 

RCP4.5 + EV -13.8 -23.2 -19.7 -6.7 -4.4 -1.7 -9.2 -17.1 -8.6 -10.9 -8.2 -6.8 

RCP8.5 + EV -17.1 -26.5 -22.2 -7.9 -4.7 -1.8 -10.4 -18.1 -9.9 -12.7 -8.5 -6.8 

H+ + EV -25.6 -28.8 -22.5 -10.1 -6.2 -2.1 -12.2 -24.1 -12.9 -13.6 -8.6 -7.4 

 

3.4. Discussion and conclusions 

3.4.1. Methodological aspects 

This Chapter investigates the economic contribution of tourism demand for coastal 

comarcas in Catalonia and the potential economic impact of SLR. It has been quantified 

through IO analysis the direct and indirect effects from tourist expenditures on the 

regional economy in terms of income and employment.  

Main methodological constraints are associated with the inherent assumptions of the 

used IO methodology (Miller and Blair, 2009) as well as by the applied regionalization 

technique (Flegg and Tohmo, 2011). In any case, this has permitted to value beach 
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tourism by using tangible economic data instead of using other approaches based on non-

real expenditures as WTP-based methods.  

Tourism’s economic impact on a region is initiated by tourism expenditures. Due to 

this, the first data required is how much visitors spend on services and goods in the local 

economy (Frechtling and Horváth, 1999). Quantifying the tourism expenditure was a 

challenging task since it involves many aspects to consider such as (i) the proper 

definition of tourist-visitor concept, (ii) the hypothesis made about expenditure levels, 

and (iii) the application of models to obtain economic magnitudes from such expenses.  

In this work we have assumed that the density of use of analysed beaches does not vary 

with time to do not change the user’s profile of each location. By increasing the density 

of use in certain beaches, the carrying capacity could be maintained within a given range 

to support future demand. However, higher users’ density scenarios would lead to 

overcrowding situations affecting the attractiveness of the area and, consequently, 

affecting the recreational use (Ariza et al., 2080; 2010).  Therefore, this can be considered 

as the most plausible hypothesis apart from the unlimited number of possible scenarios 

that could be given for such long-terms projections. By this, a reduction in PCC would 

lead to a reduction in the number of users to maintain the density of use and, consequently, 

a reduction in tourism expenditure in the same proportion. 

Finally, this work is restricted to the physical effect of climate change in terms of SLR. 

Other effects are also expected such as temperature increase, which are already important 

challenges faced by local authorities (March et al., 2014). In fact, most of the existing 

assessment of climate change on coastal tourism development focus on climatic 

attractiveness (e.g., Amelung and Viner, 2006; Moreno and Amelung, 2009b; Perry, 

2006, among others). Therefore, the estimated impact on the economy will be higher than 

the presented here. 

 

3.4.2. Economic consequences on recreational areas along the Catalan 

coast 

Tourism activities in 2019 generated approximately €12,655 M in coastal comarcas of 

Catalonia, representing approximately 10% of the total GDP. These figures indicate that 
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any variation in the development of this sector could have significant implications on the 

economy of a given area. Additionally, spillover effects must also be considered since, 

when tourists buy a product on a local shop or make a consumption in a restaurant, the 

economic impact is not limited to the territorial unit but also to the manufacturing area, 

which can be a remote area. This impact on the economy was quantified in terms of 

additional €4,630 M, but not territorially distributed. Therefore, the final contribution of 

tourism to GDP would exceed obtained values since they strictly reflects the impact of 

tourism expenditure in a comarca on itself.  

Furthermore, the quantified effect here on the economy is not the only one. The 

predicted significant loss in work positions and generated activities would result in a loss 

of population affecting to other productive sectors (e.g., public services, administration) 

and, consequently, generating a greater economic impact. The use of this predictive model 

is an essential tool to design appropriate policies to each territory nor only to preserve 

tourism but also to generate alternative activities to compensate such reduction.  

The economic impact of the SLR shows a high variability, reflecting differences in the 

vulnerability of the tourism sector between comarcas, a fact that should be taken when 

developing policies to cope with the effects of climate change. An adaptation measure 

will be economically viable if potential benefits are higher than the associated costs. If 

benefits were quantified in terms of avoiding losses in GDP, the comarcas where it will 

be more worthwhile to invest in adaptation would be Baix Empordà, Selva, Barcelonès 

and Tarragonès considering RCP8.5 as a reference (Table 3.3).  

To sum up, the use of this type of predictive model is an essential tool to help coastal 

managers when designing proper policies for each territory both to preserve the tourism 

sector and to generate alternative activities that can compensate for its loss. This analysis 

reveals valuable insights on the effects of variations in beach users on tourism’s 

contribution to a regional economy.  
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Table 3.3. Potential losses in total GDP (in M €) at each comarca under RCP8.5 scenario if adaptation 

actions to maintain current PCC are not implemented.  

Coastal comarca 2050 2075 2100 

Alt Empordà 219 340 544 

Baix Empordà 237 600 819 

Selva 527 755 869 

Maresme 405 485 587 

Barcelonès 1,989 3,030 3,399 
Baix Llobregat 126 387 387 

Garraf 130 220 254 

Baix Penedès 159 264 310 

Tarragonès 393 661 814 

Baix Camp 306 465 552 

Baix Ebre 130 138 147 

Montsià 82 94 94 
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Chapter 4  

Impact of relative sea-level rise on low-lying 

coastal areas of Catalonia 

Adapted from: López-Dóriga, U., Jiménez, J.A. 2020. Impact of Relative Sea-Level Rise 

on low-lying coastal areas of Catalonia, NW Mediterranean, Spain. Water, 12(11), 3252. 

doi: 10.3390/w12113252   

 

 

4.1. Introduction  

Sea-level rise (SLR) will significantly alter coastal landscapes through inundation, 

erosion and salt-water intrusion of low-lying areas worldwide. Considering that 10% of 

the world’s population inhabits areas less than 10 m above sea level (McGranahan et al., 

2007), the occupation of which has led to the widespread conversion of natural areas into 

economically productive regions (Valiela, 2006), the most dramatic and immediate 

effects of SLR will be the inundation of coastal lowland areas (Fitzgerald et al., 2008). In 

these areas, such as deltas, where accelerated rates of SLR are exacerbated by natural 

subsidence due to sediment compaction, inundation is likely by the end of the century 

(Syviski et al., 2009). Therefore, SLR coupled with subsidence rates (called relative sea-

level rise, RSLR) will increase the vulnerability of coastal communities and economic 

sectors to flooding in the near future, causing both environmental and socioeconomic 

changes (Ericson et al., 2006; Nicholls et al., 2010). 

Within this context, the Mediterranean coast is especially vulnerable due to the impact 

of RSLR due to the high concentration of sensitive low-lying areas, anthropogenic 

pressures, and natural hazards (Nicholls and Hoozemans, 1996; Reimann et al., 2018; 

UNEP 2009a). Moreover, impacts related to climate and environmental changes will be 

more severe than the expected global mean, with temperatures already reaching +1.5 °C 
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above pre-industrial times (Cramer et al., 2018). As a consequence, there exists a large 

number of risk assessments to RSLR for low-lying environments in this region, such as 

for the Po delta and other Italian plains (Antoniolli et al., 2017; 2020; Bondesanf et al. 

1995), the French Mediterranean coastline (Brunel et al., 2009), and the Egyptian coast 

(Frihy and El-Sayed, 2013) among others. Within this region, the Catalan coast can be 

considered a good example of the NW Mediterranean coastline, despite being largely 

urbanized, low-lying areas of high environmental value still exist (Brenner et al., 2008; 

2010) that are highly vulnerable to SLR (e.g., Sánchez-Arcilla et al., 1998; 2008). 

Generally, low-lying coasts are highly dynamic and ecologically and economically 

valuable systems. Due to their proximity to water bodies, coastal habitats are highly 

vulnerable to the impacts of SLR, meaning that determining their physical and ecological 

responses to future change is a difficult task. Although inundation is one of the most 

important SLR impacts on coastal zones, together with erosion and enhanced-storm 

induced flooding (Nicholls and Cazenave, 2010), there is a growing need to integrate 

dynamic interactions between physical and ecological factors to better predict the impacts 

of SLR on low-lying coasts (Passeri et al., 2015). 

One of the most widely used method to assess SLR-induced inundation is the 

“bathtub” approach in which areas below a target water level and hydraulically connected 

to the sea are delineated as being flooded (Gallien et a., 2011; Poulter and Halpin, 2008). 

This method is suitable for armored, rocky, and passive coasts where the wave action is 

limited and the sedimentary supply is low (Leatherman, 1990). However, active 

sedimentary coasts have more dynamic effects than inundation alone, and processes 

driving coastal evolution are expected to occur as sea level rises (Fitzgerald et al., 2008; 

Gutierrez et al., 2009). In light of this, coastal fringes can be considered a natural barrier 

to counteract RSLR (Sánchez-Arcilla et al., 2008), and therefore, the dynamic responses 

of shorelines must be included in comprehensive assessments of future SLR-inundation, 

especially where the only form of protection is afforded from natural landforms such as 

beaches. 

Another important challenge is relating the inundated area to the resulting damage. 

One approach is to consider the loss of function/habitat occupying the inundated area, 

e.g., Alvarado-Aguilar et al. (2012). However, this often overestimates damage, 

especially from an environmental standpoint, as the capacity of adaptation of natural areas 
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is not considered (Kirwan et al., 2010; Lentz et al., 2016). Despite some uncertainty of 

how coastal habitats respond to changing conditions, considering the natural capacity of 

coastal areas to adapt to projected SLR is important for meaningful damage estimates 

(Van De Lageweg and Slangen, 2017).  As an example, Lentz et al. (2016) found that 

70% of the coastal landscape projected to experience future flooding has some capacity 

to respond dynamically to SLR, which significantly reshape the coastal landscape. 

Therefore, the use of static inundation models will likely overpredict the expected impact, 

leading to greater uncertainty for coastal managers. Therefore, to properly assess the 

impacts of future climate change, it is important to consider and quantify expected habitat 

changes (Bellard et al., 2012). As an example, the Sea Level Affecting Marsh Model 

(SLAMM) was specifically developed to characterize wetland resilience to SLR (Clough 

et al., 2016; Craft et al., 2009; Glick et al., 2013; Traill et al., 2011). This well-known 

model was broadly applied along the coast of the United States (Mcleod et al., 2010) but 

rarely adapted to microtidal areas, such as the Mediterranean coast (Prado et al., 2019). 

Quantifying the dynamic effects of SLR is also challenging because of the complex 

interactions between coastal processes acting at different temporal and spatial scales (Chu 

et al., 2014). In this study, we developed a simple Geographical Information System 

(GIS)-based methodology to assess the potential future damage to coastal habitats. 

Similar to the decision tree used in the SLAMM, we use transition/evolution rules to 

represent shifts between coastal habitats to obtain preliminary estimates of potential 

changes and associated damage from SLR inundation. 

The two main aims of the study are to: (i) develop a method of assessing  RSLR-related 

inundation of low-lying areas that accounts for dynamic coastal responses and (ii) apply 

the method to the low-lying areas along the Catalan coast in the NW Mediterranean, 

Spain. In doing so, we sought to shift the perspectives of coastal managers from 

considering RSLR solely as a threat to also considering it as an environmental 

opportunity. At the same time, we aimed to build on previous analyses on the impact of 

SLR-induced erosion along the Catalan coast (Jiménez et al., 2017; López-Dóriga et al., 

2019). These previous studies show that, due to its topography and except for low-lying 

areas, the Catalan coast has a very low sensitivity to inundation (Ballesteros, 2017). 

Therefore, we focus on the most sensitive areas of the Catalan coast based on future SLR 

scenarios. 
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4.2. Study area and data 

4.2.1. Study area 

The Catalan coast is located in the northeast Mediterranean region, Spain (Fig. 4.1), 

and has an approximate coastline length of 600 km comprising cliffs, low-lying deltaic 

areas, and approximately 270 km of beaches. As of 2019, 63% of the total population in 

Catalonia (4.82 million people, IDESCAT) are concentrated in coastal comarcas 

(administrative units equivalent to a county), representing 23% of the total territory. 

 

Figure 4.1. The Catalan coast, coastal comarcas and wetlands (shadowed purple areas). The insets are the 

low-lying study areas with the digital elevation model (see Table 4.1). (The geographic coordinate system 

is ETRS89/UTM zone 31N). 

 

Low-lying areas along the coast have high environmental value due to habitats that 

provide high ecosystem service values (e.g., Brenner et al., 2010) including a very large 

percentage of environmentally protected areas (Brenner et al, 2006); 47% of all the 

designated wetlands in Catalonia are located in the three selected study areas of the Gulf 
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of Roses, the Llobregat Delta, and the Ebro Delta (hereinafter GR, LD, and ED, 

respectively) (Fig. 4.1) (Sauri et al., 2010). An overview of the main geomorphologic and 

socioeconomic characteristics of these areas is given in Table 4.1. These areas include 

salt, brackish, and freshwater marshes; coastal lagoons; beaches; and sandy dune habitat, 

which are protected under different legislative provisions including RAMSAR sites, the 

Natura 2000 Network, and Natural Parks. The ED is one of the largest deltas in the 

Mediterranean, of which approximately 7,800 ha are protected as a Natural Park. In GR, 

the Aiguamolls de l’Empordà National Park encompasses 4,730 ha in two discontinuous 

regions separated by the Empuriabrava marina, where human activities are strictly 

regulated. In contrast, Baix Llobregat Agricultural Park is dominated by peri-urban 

agriculture (Paül and McKenzie, 2010), containing 2,900 ha of fruit and vegetable crops 

with the objective of promoting the integration of agricultural activities with the natural 

environment.  

In the ED, approximately 210 km2 of the coastal plain are devoted to rice production, 

generating approximately 98% and 13% of the total yield in Catalonia and Spain, 

respectively (Zografos, 2017). The land is cultivated under continuous paddy inundation, 

which requires a constant water supply from the Ebro River distributed via an extensive 

network of irrigation channels. In the LD area, the main crops are vegetables and fruits, 

most of which are consumed in the metropolitan area of Barcelona. Agricultural 

production in the GR is mainly cereals, fruit trees, vines, and olives. 

The main factor controlling the inundation of these low-lying areas is their topography 

(Table 4.1). Thus, ED is most vulnerable to SLR as approximately 53% of its land area is 

less than 0.5 m above the mean sea level (MSL) (Sánchez-Arcilla et al., 1998). 

Anthropogenic influences also modulate the natural inundation of these areas. For 

example, the dense network of irrigation and drainage channels that crisscross the ED 

plain acts to extend the area of inundation across the deltaic plain (Alvarado-Aguilar et 

al., 2012). 

The configuration of the coastline is also important since, given an absence of flood 

protection infrastructure, natural landforms serve as a natural barrier to inundation. The 

LD and GR have a coastal fringe formed by sandy beaches, with coastal dunes of 

moderate height (García-Lozano and Pintó, 2018) and some inlets and creeks. These areas 

are fronted by active shorelines able to respond to SLR and maintain some level of 
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protection assuming they have enough accommodation space. On the other hand, the ED 

has an active sandy outer coastline with small areas of dunes and a passive muddy 

coastline along two semi-enclosed bays.  

 

Table 4.1. Main characteristics of the study sites (see Fig. 4.1). 

 Gulf of Roses (GR) Llobregat Delta (LD) Ebro Delta (ED) 

Population (inhabitants in 

coastal comarcas) 
137,951 818,883 145,496 

Coastal geomorphology Active sandy coastline 

Active sandy coastline 

with high dune fields 

areas 

Active sandy outer 

shoreline and passive 

muddy semi-enclosed bays  

Analyzed surface (ha) 8,504 4,228 33,168 

% Surface by 

elevation range 

above MSL 

<0.5 6.48 6.21 53.06 

0.5-1 9.90 9.11 20.01 

1-2 27.23 37.42 17.35 

2-3 18.72 30.83 6.25 

>3 37.66 16.43 3.32 

% Urban surface 12.06 36.66 7.03 

% Cropland surface 63.90 26.34 68.42 

 

4.2.2. Data 

4.2.2.1. Low-lying areas 

The topography of the study sites was characterized using a digital elevation model 

(DEM) with a grid resolution of 2 x 2 m obtained from Light Detection and Ranging 

(LiDAR) data from the Cartographic and Geologic Institute of Catalonia (ICGC). Land 

use and habitats were characterized using two databases: (i) a land-cover map of Catalonia 

developed by the Ecological and Forestry Applications Research Centre (4th version) and 

(ii) the habitat distribution maps produced by the Department of Environment of the 

Catalan Government (2nd version). The former is a high-resolution thematic map 

obtained by photo-interpretation analysis with a scale of 1:2,500 and a pixel resolution of 

0.25 m (Ibàñez i Martí and Burriel, 2010).  The latter details habitats in general including 

those of interest at a European Union (EU) level compiled from aerial orthophotos 
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(1:5,000) between 2008 and 2012 based on the interpretation and adaptation of the EU 

CORINE classification (Generalitat de Catalunya, 2018). The official Catalonia Wetland 

Inventory (Generalitat de Catalunya, 2020) was also used. 

 

4.2.2.2. Sea-level rise  

Sea-level rise projections were based on the Intergovernmental Panel on Climate 

Change (IPCC) AR5 RCP4.5 and RCP8.5 scenarios (50% probability level) (Church et 

al., 2013), with used values representative of regional estimates as showed in Sayol and 

Marcos (2018). In addition to this, we have also included a high-impact (H+) scenario to 

take into account the uncertainties associated with polar ice-sheet processes, which is 

given by the projection of sea level at 95% probability of the RCP8.5 steric component 

(Jevrejeva et al. 2014). The inclusion of this scenario has been done from a risk 

management perspective to include very adverse conditions with a potentially high 

impact despite their low probability (Hinkel et al., 2015). Relative to 2010, these three 

scenarios yielded 2100 SLR values of 0.49 m, 0.70 m, and 1.70 m, respectively (Fig. 4.2). 

 

Figure 4.2. Sea-level rise (SLR) scenarios used in this work. 

 

The three study sites are among the areas susceptible to subsidence along the Catalan 

coast (CADS, 2008). The ED is most affected by subsidence, with reported rates ranging 

from 1.75 mm/yr (Somoza et al., 1997) to 3 mm/yr (Ibáñez et al., 1997; Jiménez and 

Valdemoro, 1997). The subsidence in ED under current conditions has been analyzed by 
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Pérez-Aragüés and Pipia (2015) using DInSAr (Differential Interferometry Synthetic 

Aperture Radar). They found varying rates across the deltaic plain averaging about 

3mm/yr along the deltaic front, which we have selected as a representative rate. 

Subsidence rates for the LD and GR are poorly studied but lower than the ED, with 

reported average values of 1.25 mm/yr (Duro et al., 2004) and 0.8 mm/yr (Giménez et al., 

1996), respectively. 

 

4.3. Methodology 

Our methodology consisted of two steps: (i) the delineation of inundation-prone areas 

due to RSLR and (ii) the assessment of the impact of inundation on the affected habitats. 

In both cases, we adopt a pseudo-dynamic methodology that, in the first instance, 

accounts for the capacity of active shorelines to respond dynamically to RSLR and in the 

second instance, considered the capacity for habitat conversion. 

4.3.1. Delineation of inundation-prone areas 

The extent of the area susceptible to inundation under the SLR scenarios was 

delineated using a pseudo-dynamic bathtub approach. For this, areas below a given water 

level (i.e., the RSLR of interest) and hydraulically connected to the sea were assumed to 

be potentially inundated (Gallien et al., 2011; Poulter and Halpin, 2008). Hydraulic 

connection was defined using the “eight-side rule”, where the diagonal and cardinal 

neighbors are used to determine if a model cell is flooded and to remove isolated low-

lying inland areas (Poulter and Halpin, 2008). However, this approach is valid only when 

the coastal zone is passive, that is, it does not actively respond to RSLR. This includes 

areas of resistant geology and inner coastlines that do not experience direct wave action. 

In contrast, exposed low-lying areas fringed by sandy coastlines will react dynamically 

to changing sea-level conditions (e.g., Fitzgerald, 2008). Here, we assumed an 

equilibrium-based response of sandy coastlines to RSLR, as depicted by the Bruun model 

(Bruun, 1962), i.e., an upward and landward translation of the active profile in-pace with 

rising sea level and maintaining the shape of the equilibrium profile. The validity (and 

uncertainty) associated to the use of Bruun or, in fact, of any model predicting SLR 

induced morphological changes has been covered in the literature by different authors 

(Cooper and Pilkey, 2004; Le Cozannet et al., 2016), and it is still an open question 
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(Ranasinghe, 2020; Toimil et al., 2020). In the absence of a universally accepted model, 

here we have used the Bruun model to assess the magnitude of the RSLR-induced 

shoreline retreat in the study sites. Thus, we followed the approach of Jiménez et al. 

(2017) when analyzing SLR-induced erosion in Catalonia, whereby the predicted 

landward response is modulated or prevented by the existence or lack of accommodation 

space in the hinterland, respectively. Under this assumption, a sandy beach-dune system 

protecting a low-lying area under current conditions can migrate landwards, while 

maintaining its relative elevation (and thus protective function) under RSLR provided 

accommodation space (and sand) is available (Fig. 4.3). Following Jiménez et al. (2017), 

to reduce the uncertainty in the selection of the closure depth (see Ranasinghe et al., 

2012), the Bruun rule was applied using the characteristic values of the inner shelf slope 

for each study site, calculated from the shoreline to 10 m of depth and thus extending 

deeper than the medium-term closure of depth along the Catalan coast, which is about 7 

m (CIIRC, 2010) (Table 4.2). This permits to account for the expected increase of the 

limit of the active profile under increasing time scales as those corresponding to RSLR 

(Cowell et al. 1999). 

The landward extension of the active fringe adapting to RSLR was given as the reach 

of overwash-induced transport, which depends on the wave and water-level climates, and 

permits the beach to rebuild landwards while the shoreline erodes. This dynamic 

adaptation approach has previously been used to simulate the long-term (rollover) 

behavior of the Trabucador barrier system (Jiménez and Sánchez-Arcilla, 2004) and to 

explain the survival of the Tortosa barrier despite experiencing extreme erosion rates 

(approximately 40 m/year) in the ED (Valdemoro et al., 2007). The role of overwash 

transport in transferring material towards the hinterland is modulated by coastal 

morphology, particularly dune/beach elevation and beach slope (e.g., Durán et al., 2006). 

To estimate the critical width, the extension of overwash deposits was identified and 

measured using aerial photos to obtain an averaged representative value for each study 

site (Table 4.2). Thus, in each case, beach profiles were assumed to adjust to RSLR as 

predicted by the Bruun rule provided the hinterland is wider than the projected shoreline 

erosion plus the critical width. If the existing accommodation space is bounded by an 

inner fixed boundary, this was assumed the innermost limit for beach migration. In the 

latter case, the elevation of the physical boundary controls inundation following the 

bathtub approach. 
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Figure 4.3. Model of SLR-induced inundation. (a) Static-approach and passive inundation following the 

bathtub method. (b) Pseudo-dynamic equilibrium profile response following the Bruun Rule and inundation 

following a modified bathtub method. Note: the beach profiles are not to scale. 

 

Table 4.2. Representative values to calculate coastal fringe re-adaptation to RSLR following Bruun rule 

for each study site. 

 Gulf of Roses Llobregat Delta Ebro Delta 

Shoreface slope 1/87.5 1/100 1/225 

Critical beach width (m) 80 60 100 

 

4.3.2. Potential flood damage 

Once the areas susceptible to inundation under a given RSLR scenario were delineated, 

the resulting damage was estimated. One common approach is to determine the area of 

existing land use and habitats and assume they will be lost if inundated (e.g. Alvarado-

Aguilar et al., 2012), which we refer to as the “total damage approach”. However, when 

an inundated area is composed of natural habitats, some habitats have the capacity to 

change/adapt to new sea-level conditions, which we call the “conversion approach”. The 

conversion approach is similar to that employed in coastal landscape models in which a 

given habitat affected by inundation has an assumed capacity to change/adapt depending 

on its properties and the new conditions it is exposed (Kirwan et al., 2010; Lentz et al., 

2016). The evolution of habitats within an inundated area is evaluated by applying a series 
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of conversion rules linking their current spatial distribution and their expected capacity 

to respond to each RSLR scenario. 

First, coastal habitats were re-classified into generalized types based on their 

distinctive responses to SLR according to geomorphology, ecology, and level of 

development. These categories and general summaries of the land-cover types and main 

habitats found in each study site are provided in Annex B, Table B1. The differences in 

habitats within a given category correspond to site specificities that depend on local 

characteristics such as geomorphology, freshwater availability, and land use. 

The first variable affecting a habitat’s susceptibility to inundation is vertical 

distribution and distance with respect to mean sea level. Here, we assumed that specific 

habitats thrive within a certain elevation range according to their salinity tolerance and 

resilience to flooding and physical (wave) disturbance. To this end, habitat and 

topographic data were jointly analyzed to evaluate the vertical distribution, with resulting 

distribution ranges varying among the study sites (Fig. 4.4) due to their local 

characteristics, particularly topography and water flux across the coastal plain (see also 

Benito et al., 2004).  Considering the vertical distributions of existing habitats (Fig. 4.4 

and Table B1, Annex B), a series of basic transition rules were applied (Table 4.3). This 

followed a simplified version of previously adopted dynamic transitions including the 

SLAMM (Clough et al., 2016; Craft et al., 2009; Glick et al., 2013; Traill et al., 2011) 

and is similar to other simplified approaches (Lentz et al., 2016). 

An important aspect to consider in habitat response is the effect of hydraulic 

connectivity between the affected area and the sea. This was represented by delineating 

areas of total and partial inundation, which are inextricably linked to vegetation 

distribution (Mogensen and Rogers, 2018). To this end, we included tidal influences using 

the following three vertical levels: (i) the mean sea level (MSL), given by the target 

RSLR; (ii) the high-sea level (HSL); and (iii) the low-sea level (LSL). The HSL and LSL 

bound the intertidal zone around the future MSL, which corresponds to an average 

astronomical tidal amplitude of 0.20 m. Thus, when analyzing the inundation extent of 

each RSLR scenario, the pseudo-dynamic bathtub approach was applied as delimited by 

the MSL. Two additional inundation simulations were then performed, the first to derive 

the area below the HSL and the second to derive the area below the LSL. The area below 

the LSL was taken as the area of permanent inundation, and the intertidal zone between 
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the HSL and LSL was taken as the area of temporary inundation. Importantly, to delineate 

the area below the HSL, hydraulic connectivity criteria were applied. This meant that 

areas within this elevation range but which are isolated by the presence of a physical 

barrier/infrastructure were not inundated. Habitat conversion under a given RSLR 

scenario was controlled by its location with respect to the MSL (Table 4.3). The transition 

rules did not consider the time required for habitats to accommodate new conditions, but 

as a general rule, the longer they have to reach new conditions, the greater the capacity to 

change (Spencer et al., 2016). This time factor is further discussed in Section 4.5.2. 

 

Figure 4.4. Vertical distribution of main habitat types in each study area. Values are the percentage (%) of 

a given habitat in a given altimetry range as a proportion of the total habitat surface within the study area. 

Note that the altimetry interval classes are different for each study area. 

 

Table 4.3. Transition rules determining habitat shifts and associated sea-level criteria. 

Initial habitat type Final habitat type Sea-level criteria 

Cropland 

Grassland 

Temperate forest 

Halophyte vegetation HSL–MSL 

Transitional wetland MSL–LSL 

Coastal lagoon <LSL 

Coastal vegetation 

Wetland 

Transitional wetland MSL–LSL 

Coastal lagoon <LSL 

Coastal lagoon Coastal lagoon <MSL 
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The conversion rules shown in Table 4.3 were applied assuming two boundary 

conditions: (i) no modification to existing structures in the floodplain (e.g., dikes, levees, 

channels, etc.) and (ii) negligible sediment input to the floodplain. The first condition 

could be changed to simulate the effect of floodgates or barriers as adaptation measures 

to RSLR. However, as our primary objective was to assess impact, we chose to evaluate 

the effect of inundation without anthropogenic influence other than the existing 

infrastructure. The second condition limits the inherent capacity of wetlands to adapt in 

response to SLR (Mogensen and Rogers, 2018; Spencer et al., 2016). However, this 

assumption reflects current conditions in the region and especially in the ED (e.g., Ibáñez 

et al., 1997; 2010). Thus, instead of considering vertical accretion rates to control habitat 

shifts (Tabak et al., 2016; Traill et al., 2011), the applied rules were based on relative 

elevation, i.e., sea-level criteria and current vertical distribution of each habitat type. 

Finally, the effect of saltwater intrusion on cropland areas was also considered, as this 

is a major threat to agricultural lands in the region (Butcher et al., 2016; Tully et al., 

2012). Under this scenario, impacts are expected to differ between the study areas given 

that their main crop types are not the same (see Genua-Olmedo et al. (2016) for the ED, 

Soy-Massoni et al. (2016) for the GR, and Serra et al. (2018) for the LD), meaning 

variable salinity thresholds with respect to impacts on yield (e.g., Maas and Grattan, 1999; 

Machado et al., 2017). Furthermore, local geomorphology dictates the suitability of an 

area for agriculture and crop type (Fig. 4.4). For example, given the low or very low 

tolerance of existing crops to saltwater intrusion, croplands are sparse in low-lying areas 

close to the water level in GR and LD (<1% of the total surface). Therefore, a minimum 

elevation threshold of 0.5 m with respect to the simulated future water levels was applied 

for the assumed maintenance of croplands; agricultural land below this level under a given 

SLR scenario was assumed to be abandoned due to salt intolerance and the likely rapid 

colonization by other salt-tolerant vegetation (see Meyer et al., 2016). Such conversion 

of abandoned agricultural land to halophytic vegetation communities (or barren land) 

follows ecosystems connectivity, helping to preserve linkage between them (Fagherazzi 

et al., 2019; Kirwan and Gedan, 2019). The application of this agricultural transition rule 

was specific to GR and LD, as agriculture in the ED is devoted to rice production in 

paddies at all elevations along the delta plain (Fig. 4.4), which are maintained by active 

freshwater inundation, which productivity also depends on elevation (e.g., Genua-

Olmedo et al., 2016). 
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4.4. Results 

4.4.1. Flood analysis and potentially inundated areas 

For comparison, Fig. 4.5 shows the ED inundation extent for the entire range of RSLR 

scenarios based on both the classical (i.e., passive inundation) and pseudo-dynamic 

bathtub approaches. By 2050, including natural coastline adaptation to SLR decreased 

the inundated area by approximately 34.7% under RCP4.5 and RCP8.5, and by 21.1% 

under the H+ scenario. By 2100, the protection provided by the morphodynamic coastal 

response decreases, with the inundated area being just 11.3%, 5.1%, and 2% lower than 

that calculated by using the passive bathtub approach for RCP4.5, RCP8.5, and H+ 

scenarios, respectively. 

 

Figure 4.5. Computed inundated surface (ha) using the classical bathtub approach (blue line) and pseudo-

dynamic method (orange line) in the Ebro Delta (ED) under the range of considered RSLR scenarios. 

Corresponding timelines for SLR under the selected scenarios are shown at the bottom. 

 

Therefore, the inclusion of the capacity for active sandy shorelines to respond 

dynamically to SLR yielded a smaller inundation extent relative to a passive inundation 

approach, and this effect was most pronounced under the low-medium RSLR scenarios. 

However, as RSLR increases, the natural protective effect decreased, reflecting site-

specific modulation via anthropogenic modification of the deltaic plain (Fig. 4.6). Under 
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lower RSLR conditions, most of the coast is protected by beaches, with inundated areas 

occurring (i) along the inner bays where there is no beach protection; (ii) in the inner part 

of the spits; and (iii) in areas with very flat beaches (<RSLR) (indicated by the light-blue 

areas in Fig. 4.6). However, if a beach can maintain its relative elevation with respect to 

MSL—as the pseudo-dynamic approach assumed—the hinterland should be protected. 

This effect can only be detectable provided there are very low sandy stretches (i.e., below 

the target level); if the entire coast is higher than the simulated RSLR, the computed 

inundation extent of both methods will be the same. 

The capacity for such a dynamic protective response is lost in some locations due to 

the lack of accommodation space, which is constrained by the existence of infrastructure 

in the hinterland. In the ED, this was mainly identified in the northern region, where some 

narrow beaches are backed by levees causing coastal squeeze (see the red square in Fig. 

4.6c), with the elevation of this infrastructure (with no adaptation capability to SLR) being 

the main control on inundation. Accordingly, approximately 1,435 ha was flooded 

assuming 40 cm of SLR primarily as a result of the beach breaching in the absence of 

active adjustment. The distribution of floodwater across the deltaic plain is another 

element controlling the magnitude of inundation. This will largely be controlled by the 

topography of an area, but in the case of the ED, the existing network of channels 

crisscrossing the area extend the inundation from adjoining areas (Fig. 4.6d). 

The computed inundation-prone areas for the three study sites under the considered 

scenarios are shown in Table 4.4 and Fig. 4.7. The results reflect the influence of 

geomorphology and relief, with the ED being the most vulnerable site, and GR and LD 

only significantly affected under high RSLR conditions due to relatively high beach 

profiles protecting the hinterland and their higher elevation. This higher topography also 

implies that differences in the inundation extents determined using the static and modified 

bathtub approaches will be relatively low in the GR and LD because, as previously noted, 

this is only detectable when beach/dune heights are lower than the RSLR scenario. 

The difference in vulnerability is reflected in the percentage of the affected surface. 

Thus, by 2050, the inundated surface in the GR and LD represents less than 1% and 2% 

of the total area under both RCP and H+ scenarios, respectively. In comparison, the 

proportion of the ED inundated under these scenarios increase by 9% and 27%, 

respectively (Table 4.4). Except for the ED, by 2100, the increase in the magnitude of 
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RSLR under RCP4.5 and RCP8.5 did not result in a significant increase in the inundated 

area. Specifically, the long-term projection of the inundation extent in the GR and LD 

increased by less than 7% under RCP8.5. In comparison, in the ED, the affected area 

covered approximately 50% of the deltaic plain under RCP8.5. As expected, the 

vulnerability of these systems to the H+ scenario significantly increased, with 

approximately 35% of the GR and LD, and 80% of the ED, being susceptible to 

inundation. 

 

Figure 4.6. Inundation-prone areas in the ED under different RSLR scenarios. Light-blue shading indicates 

additional areas of inundation not accounting for dynamic beach response (i.e., computed using the static 

bathtub approach but not the pseudo-dynamic method). Active beach adaptation to RSLR is prevented when 

accommodation space is insufficient (e.g., the red square in (c) where narrow beaches are backed by 

infrastructure). Due to the network of channels crisscrossing the plain, some areas otherwise protected by 

a beach can be inundated by water from adjoining areas (red arrows in (d)). (The geographic coordinate 

system is ETRS89/UTM zone 31N). 
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Table 4.4. Inundation-prone surface (ha) and percentage of the study site area (%) by using the pseudo-

dynamic inundation method under different RSLR scenarios at given time horizons. 

Year Scenario 
GR LD ED 

Ha % ha % ha % 

2050 

RCP4.5 
83 0.98 40 0.94 2,923 8.81 

RCP8.5 

H+ 169 1.99 67 1.59 8,856 26.70 

2100 

RCP4.5 224 2.64 99 2.34 12,215 36.83 

RCP8.5 579 6.81 169 4.01 16,881 50.90 

H+ 2,970 34.92 1,518 35.91 26,838 80.91 

 

4.4.2. Flood damage analysis 

Fig. 4.8 shows the relative percentage of habitats (by area) affected by inundation at 

the three study sites under the different RSLR scenarios. Although the evolution of 

affected surfaces with RSLR is similar, significant differences exist in the extent of 

inundation and the shape of the curve for each habitat type, largely reflecting their vertical 

distributions (Fig. 4.4). The affected surface area for each habitat by 2050 and 2100 under 

the tested scenarios are given in Annex B, Tables B2, B3, and B4 for GR, LD, and ED, 

respectively.  

The most affected habitats are those found at the lowest elevations, namely coastal 

lagoons and wetlands. Although this was common between the three sites, the greatest 

susceptibility was simulated in the ED, where more than 90% of the wetland area is 

inundated assuming a RSLR of 70 cm (broadly equating to 2100 under the RCP8.5 

scenario). Under the same conditions, 38% and 16% of the existing wetlands in the GR 

and LD are inundated, respectively. This general trend also applies to lagoons, although 

differences between the GR and LD are higher (Fig. 4.8). This difference is even more 

pronounced for agricultural lands, where a 70 cm RSLR resulted in the submergence of 

approximately 50% in the ED compared to < 1% in the GR and LD. Under the higher 

RSLR scenarios, agricultural lands in the GR and LD were increasingly affected but to a 

much lesser extent than in the ED.  
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Figure 4.7. Inundation extent for 2100 under different SLR-scenarios at the (a) GR, (b) LD, (c) ED. (The 

geographic coordinate system is ETRS89/UTM zone 31N). 
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Figure 4.8. Simulated proportion (in %) of main habitat types inundated in the plain of (a) GR, (b) LD, and 

(c) ED. 

According to our methodology, habitats occupying inundated areas are not necessarily 

lost as they have some capacity to adapt to the new conditions. Tables B2–B4 in Annex 

B show the evolution of habitat surfaces at each site under the different scenarios by 2050 

and 2100. Natural habitats, which are located at the lowest elevations and are most 

directly affected by inundation, are also more likely to evolve or migrate in response to 

changing sea levels, and they are coastal lagoons, coastal vegetation, and wetlands. Fig. 

4.9 shows the projected habitat evolution in the three study sites by 2100 under the 

RCP8.5 scenario. 

With the adopted rules, the largest habitat variation was estimated for coastal lagoons 

whose surfaces increase with time and with the magnitude of SLR, and they occupy 

almost all of the projected inundated surface. By far, the largest increase occurs in the 

ED, where a significant portion of the deltaic plain was inundated, generating a large, 

shallow waterbody partially protected by the sandy coastal fringe, with different eco-

geomorphological characteristics depending on the site. Along the inner northern and 

southern bays, saltwater open lagoons occur due to their passive shorelines. On the other 

hand, along the seaward coast, brackish-saltwater leaky lagoons occur, partially protected 

by a narrow sandy barrier (Fig. 4.9c). In the LD, the new lagoon surfaces would have a 

similar typology to the existing ones, mostly chocked lagoons elongated perpendicular to 

the coast (Fig. 4.9b). This is due to the relatively high coastal profile that results in 

inundation progressing through existing channels that connect lagoons to the open sea. 

Lastly, the simulated future lagoon surface in the GR has a combination of elongated 

chocked brackish lagoons at the northern end of the bay and restricted/leaky lagoons in 

the central part (Fig. 4.9a). 
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For wetlands, the largest conversion was also projected in the ED. At relatively low 

RSLR values (RCP8.5 by 2050), an increase of approximately 25% was predicted with 

losses due to full submergence (i.e., conversion to lagoons) compensated by the 

conversion of rice fields and areas of coastal vegetation in the intertidal zone to 

transitional wetlands. Importantly, approximately half of this projected area would not be 

captured without considering the dynamic adaptation of habitats (i.e., the “total damage 

approach” in Table B4, Annex B). Under higher RSLR values (RCP8.5 by 2100), the 

wetland surface decreases to approximately 79% of the original values. In the LD and 

GR, the simulated variations are different from the ED as topography significantly differs 

(Fig. 4.9). Thus, at low RSLR values (RCP8.5 by 2050), change in the wetland surface is 

negligible. With a higher rate of change (RCP8.5 by 2100), the wetland surface area in 

the GR and LD decreased to 71% and 90%, respectively (Tables B2 and B3, Annex B). 

Coastal vegetation shows a similar variation to wetlands, where a new fringe of 

halophyte vegetation developed close to the sea level affected by high tides (the HSL–

MSL range). The largest variation was found in the ED, where a significant increase of 

up to 240% was simulated relative to the current state under low SLR scenarios (RCP4.5 

and RCP8.5 by 2050). However, under the higher SLR scenario (e.g., RCP8.5 by 2100), 

although the area occupied by coastal vegetation is larger than under current conditions, 

it progressively decreased due to the effects of existing infrastructure. This change in 

areas of coastal vegetation was also observed in the GR and LD but was modulated 

according to their topographic and spatial characteristics. These factors determine the 

extension of halophytic vegetation in comparison with losses via direct inundation and 

landward beach migration, whereby current coastal vegetation could be buried by 

overwash deposits (Tables B2 and B3, Annex B). The simulations also indicate that the 

composition of new areas of wetland and coastal vegetation would differ from the current 

communities via large-scale conversion to transitional wetlands, and halophytic 

communities would occur at the expense of freshwater vegetation and agricultural land.  

Beach and dune habitats were simulated to decrease at all sites, with spatial patterns 

driven by the effect of existing infrastructure that limits landward migration. Thus, 

considering the expected change by 2050 under the RCP8.5 scenario, beaches decrease 

to approximately 96%, 89%, and 86% of their current area for GR, LD, and ED, 

respectively. As expected, the loss of beaches significantly increases beyond 2050 due to 
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SLR acceleration and the lack of accommodation space for natural adaptation (Tables B2, 

B3 and B4 in Annex B). 

Finally, agricultural lands were simulated as being the most negatively affected 

habitat, with estimated losses larger than those resulting from direct inundation given no 

capacity to adapt and because the fringes closest to the projected water levels are 

developed preventing their future use for agriculture. Thus, croplands currently 

occupying the future intertidal zone under a given RSLR scenario are likely to be replaced 

by halophytic vegetation and transitional wetlands. Moreover, in the GR and LD, 

agricultural land located at an elevation below +0.5 m with respect to future MSL is too 

saline to support the current cropping systems. For example, under a relatively low RSLR 

scenario (2050 under RCP8.5), losses of cropland due to habitat conversion are 1.5%, 

2.6%, and 5.1% above those from direct inundation in the GR, LD, and ED, respectively. 

Under the same scenario, by 2100 the relative increases in cropland losses are 8.9%, 

26.1%, and 3.3% for GR, LD, and ED, respectively. This reflects the potential 

abandonment of the orchards and crops on the higher land in the GR and LD due to the 

saltwater intrusion. 
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Figure 4.9. Habitat distribution under (i) current conditions and (ii) projected changes assuming habitat 

conversion by 2100 under RCP8.5 scenario at (a) GR, (b) LD; and (c) ED. (The geographic coordinate 

system is ETRS89/UTM zone 31N).  
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4.5. Discussion and conclusions 

4.5.1. Methodological aspects 

We developed a pseudo-dynamic method to account for active shoreline responses to 

RSLR in predictions of the inundation of low-lying areas of sandy coasts. This approach 

is based on the coupling of an equilibrium-based coastal response and classical bathtub 

modeling approaches. Although simple, it permits the movement beyond a passive 

inundation model, which ignores the dynamic response of coastal environments to RSLR 

(e.g., Passeri et al., 2015). 

The dynamic adaptation of sandy shorelines to RSLR has been simulated by using the 

Bruun model, which was implemented considering the availability of accommodation 

space in the hinterland. When no obstacles exist, beaches adjust by migrating upward and 

landward so that their relative elevation is maintained and, consequently, afford the same 

level of protection against inundation. However, where a physical barrier prevents this 

landward migration, beaches will progressively erode and lose their dynamic protective 

capacity, and inundation will ultimately be controlled by the height of the barrier. Thus, 

a lack of accommodation space depends not only on the existence of a barrier but also on 

the rate of SLR, which determines the velocity of beach landward migration to reach the 

barrier. Our approach can be adapted for other models of coastal response to SLR (e.g., 

Dean and Maurmeyer, 1983; Ranasinghe et al., 2012; Rosati et al., 2013), with the 

protection afforded by a beach ultimately controlled by the dynamic response to future 

conditions. 

It has to be noted that we have not included shoreline changes other than RSLR-

induced, and this should be equivalent to “isolate” the RSLR component in the long-term 

behavior of these areas. However, other factors such as river sediment supplies and 

longshore and cross-shore sediment transport patterns would also contribute to their long-

term evolution (e.g., Jiménez et al., 1997; Jiménez and Sánchez-Arcilla, 2004). 

Integrating all these components into a single long-term morphodynamic model is an 

issue that is far from being solved at present (e.g., Ranasinghe et al., 2012). Importantly, 

our approach is closer to reality for assessing the inundation extent in sandy coasts, being 

relevant for low-lying beaches lower than the target RSLR. Thus, when we compared the 

computed inundated extents for the three study areas with those obtained by using the 
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conventional bathtub approach, significant differences were only found for the ED (a 

<35% in the inundated area by 2050 under the RCP8.5 scenario). Although this trend 

should be maintained for higher RSLR provided accommodation space is available, both 

methods tended to produce similar results, with a reduction in the inundation extent of 

just about 5% by 2100. However, this is largely attributed to the hydraulic connectivity 

of the ED plain, where seawater entering through passive areas is distributed across the 

plain via the channel network (see also Alvarado-Aguilar et al., 2012). 

We also implemented a simple method to account for the possibility of habitat 

conversion following inundation. Thus, SLR-induced damage projects are modulated 

and, as a consequence, may affect decision-making and the development of adaptation 

strategies. In most projections, an assumption is made that all inundated areas of land are 

lost. While this can be acceptable for highly modified environments, this may lead to 

unrealistic damage estimations for those natural systems able to adapt to future 

conditions. 

There are some advanced tools to simulate habitat conversion, such as the SLAMM, 

which was specifically used to characterize wetland response under future sea-level 

scenarios (Clough et al., 2016; Craft et al., 2009; Glick et al., 2013; Traill et al., 2011). 

This model allows for the dynamic assessment of SLR, transitioning away from simple 

and static inundation models, although concerns regarding application in different 

geomorphological, ecological, and hydrological settings have been raised (Oreskes et al., 

1994; Rykiel, 1996). Nevertheless, the use of complex landscape models provides 

detailed information on habitat responses despite the constraints of time-consuming 

computational effort and model calibration (Mcleod et al., 2010). Here, we followed a 

much simpler approach based on the same underlying concept—that habitats have a 

capacity to adapt to new conditions—formulated as a series of rules based on ecological 

succession, tolerance to inundation and/or salinity, vertical distribution, and location with 

respect to the MSL. This approach considers the intertidal zone associated with the future 

MSL as a buffer area of potential high environmental value. When located within the 

flood plain outside the sandy fringe, areas of typical vegetation will naturally evolve, with 

habitat shifts being controlled by hydraulic connectivity to the sea and salinity tolerance 

(e.g., Rogel et al., 2000). This is similar to the assumptions of some existing models for 

wetlands that predict vegetation distribution based on dominant hydrodynamic 
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conditions, such as water depth and duration of inundation (Morris et al., 2002; Todd et 

al., 2010). 

 Although the capacity for wetland adaptation is highly linked to sediment availability 

and vertical accretion (Cahoon et al., 1995; Kirwan et al., 2010; Reed, 1995), this was not 

considered here as sediment input to the study areas is practically zero. For example, in 

the case of the ED, significant retention of riverine sediments behind dams in the upper 

Ebro River catchment (up to 99%) dramatically reduces the capacity for the vertical 

accretion of the delta plain in response to SLR (Ibáñez et al., 1996; 1997). Indeed, the 

suspended sediment load is currently <0.01 g/l (Rovira et al., 2012), meaning delta is 

unable to grow and suffers from intense coastal reshaping by wave action (Jiménez and 

Sánchez-Arcilla, 1993; Jiménez et al., 1997). This anthropogenic impact on hydrology 

and sediment budgets can disrupt the eco-geomorphological feedbacks needed to adjust 

to SLR and hinder the natural capacity of systems to survive (Rodríguez et al., 2017; 

Sandi et al., 2018). Therefore, the conversion rules we applied in our simulations are 

appropriate for the target study sites but should be adapted for application elsewhere if 

conditions permit vertical accretion. Overall, although a broadly simple approach, our 

methodology improves the impact assessment of the RSLR-induced inundation in low-

lying natural areas both with respect to inundation extent and potential habitat loss. 

Importantly, the approach can be easily implemented in a GIS environment and, thus, 

used as an additional element in the decision-making process to design adaptation 

strategies in this type of environment. 

 

4.5.2. Inundation-driven impacts on study sites 

While the study sites are considered the most sensitive areas of the Catalan coast to 

SLR-induced permanent inundation, they show very different sensitivities depending on 

the configuration of the sea-land border, topography, geomorphology, and degree of 

human impact on the floodplain. The ED was found to be most vulnerable to SLR 

inundation due to (i) a very long passive coastline unable to protect the floodplain behind 

along the semi-enclosed bays, where floodwaters affect a large area of the hinterland; (ii) 

a very low relief, which exposes a large proportion of the floodplain to inundation under 

relatively low RSLR scenarios (approximately 73% of the plain is <1 m above MSL); and 

(iii) a dense network of channels crisscrossing the plain that, although may act as barriers, 
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if not managed appropriately, can facilitate the transfer of floodwaters across the plain. 

In contrast, the LD and GR show more resilient configurations due to (i) coastlines formed 

by relatively wide sandy beaches with dunes able to adapt to changing sea levels while 

maintaining a good level of protection; (ii) limited exposure of the lowest part of the 

plains due to their topography (approximately 15% of their plains are <1 m above MSL); 

and (iii) the main areas of water entrance onto the plain are existing outlets connecting 

lagoons and rivers with the open sea, which restricts inundation in these areas. 

In this context, it is important to highlight the need for reliable estimates of local 

subsidence rates, as these will determine the local acceleration of SLR and, consequently, 

modulate possible differences in RSLR under the same climatic scenario, as those 

reported by Vacchi et al. (2016) and Vecchio et al. (2019) for the Mediterranean coast. In 

the analyzed areas, used subsidence rates are based on existing local estimates, with GR 

and LD being the sites with a lower coverage and, consequently, with a larger associated 

uncertainty. Differences in vulnerability among study areas are also reflected in the 

expected impacts of SLR-inundation on representative habitats. For croplands, the ED is 

considered the only site to be significantly impacted by inundation based on both the 

relative and absolute magnitudes of the affected area. This is due to the extension and 

covered range of elevations of the deltaic plain surface, which indicated a direct impact 

(by inundation) on cultivated land of between 10% and 52% by 2050 and 2100, 

respectively, under RCP8.5. Existing studies on the impact of SLR on rice production due 

to salt intrusion have found a similar pattern (Genua-Olmedo et al., 2016) due to the 

relationship between soil salinity and surface elevation. Considering these results, it is 

expected that the productivity of agriculture land above the simulated inundation levels 

will also decrease due to progressive soil salinization.  

The simulated impact of inundation on agriculture is much smaller in the LD and GR 

compared to the ED, both in absolute and relative terms, with approximately 26% and 

10% of agricultural land affected, respectively, by 2100 under RCP8.5. It is important to 

note that these projections only account for direct inundation and do not reflect areas 

affected by saltwater intrusion, which would lead to higher losses in the GR and LD. For 

the LD and GR, as most of the agriculture lands affected by SLR would become 

disconnected from water, cultivation will likely be abandoned. This implies a net loss of 

ecosystem services provided by agricultural lands (e.g., Tscharnkte et al., 2005), 

including cultural services (Serra et al., 2018; Soy-Massoni et al., 2016). In the ED, the 
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inundation of croplands maintained hydraulic connectivity in our simulations, driving the 

development of a shallow lagoon along the entire coast (Fig. 4.9). Thus, the combination 

of a wide and gently sloping topography fringed with coastal vegetation, lagoons, and 

wetlands at the seaward boundaries of rice fields and protection from direct wave action 

afforded by an active sandy coastline provides ideal conditions for marsh development 

and migration. Indeed, in addition to vertical accretion, transgression into adjacent 

uplands is a primary mechanism for marsh survival, where gently sloping uplands favor 

marsh migration (e.g., Kirwan et al., 2016). 

The current configuration of the ED plain appears to be the most important factor 

determining differences in the degree of inundation as well as the induced damage. On 

the one hand, the inundation extent is strongly controlled by the dense channel network 

crisscrossing the delta plain (Alvarado-Aguilar et al., 2012). On the other hand, this 

network moderates habitat migration and the formation of new natural areas. To enhance 

this landscape shift from agriculture to natural habitats formed by lagoons and marshes, 

existing barriers in the plain (e.g., channels and other minor infrastructure) should be 

removed, as they function as the main obstacle for marsh expansion by upland migration 

(for example, Borchert et al., 2018; Wolters et al., 2005). This boundary effect has also 

been considered by Prado et al. (2019) who analyzed the effects of SLR on the pristine 

and anthropic configurations of the ED. 

The largest expansion of natural habitats was predicted for lagoons. In the case of the 

LD and GR, lagoons increased in area but maintained their typology by expanding from 

their current configuration over the surrounding wetlands according to local topography. 

This topographic control means that the LD is expected to be the site experiencing the 

lowest degree of lagoon expansion—approximately 184% by 2100 under RCP8.5 

compared to 600% for the GR. In absolute terms, the simulated lagoon surface in the ED 

under this scenario will be approximately 0.16 times the current one. In contrast, once the 

critical rate of SLR at which wetlands drown is exceeded, the extensive inundation of the 

ED plain would result in a significant increase in lagoon surface area (approximately 

565% by 2100 under RCP8.5) and significantly altered typology. A large proportion of 

this new surface would be occupied by saltwater open shallow lagoons along the bayside 

shorelines and brackish-saltwater leaky lagoons along the seaward coast. Under current 

conditions, freshwater inputs to lagoons occur via irrigation channels, a practice that can 

be maintained under future conditions. 
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Importantly, the ecological characteristics of converted natural areas may differ from 

the existing ones. Projected wetland areas would be dominated by saltwater ecosystems, 

whereas under current conditions, they are a mix of saltwater, brackish, and freshwater 

environments. In this context, salinity is generally one of the most important factors 

determining coastal wetland habitat type (e.g., White and Kaplan, 2017),  and for the three 

study areas, SLR-related inundation will drive a shift in plant communities to salt- and 

flood-tolerant wetlands (Day et al., 2000; McKee and Mendelssohn, 1989), having 

implications for wetland management (White and Kaplan, 2017). 

The time available to adapt becomes crucial when considering the ability of habitats 

to naturally respond to changing sea levels. We assessed the impact of inundation as a 

function of projected water levels but did not consider the time taken to reach these levels. 

Indeed, the rate of rising will strongly affect the capacity of these systems to respond. 

Thus, the longer the time taken to reach new conditions, the higher the likelihood that a 

system can respond via ecological succession. This temporal effect was examined for 

coastal marshes by Kirwan et al. (2010), demonstrating threshold SLR rates that lead to 

marsh submergence and irreversible conversion to unvegetated areas. Such thresholds are 

site-specific and depend on factors such as sediment availability and tidal range (e.g., 

Kirwan and Megonigal, 2013; Kirwan et al., 2016). This potential effect is illustrated for 

the ED in Fig. 4.10, which shows the inundation extent for three elevation ranges (0–0.1 

m, 0.1–0.2 m, 0.2–0.5 m) under the simulated SLR scenarios. Although the extents are 

the same (being determined by the selected elevation range), the time required to inundate 

each segment and, consequently, the time for adaptation varies. Under RCP4.5 and 

RCP8.5, the time to adapt at the lowest intervals (<0.1 m and <0.2 m) would be similar, 

becoming inundated by 2025–2040 and 2040–2060, respectively. However, at higher 

elevations (<0.5 m), the time available is approximately 20 years shorter under RCP8.5. 

In the case of the high-impact H+ scenario, the time for adaptation at all elevation ranges 

drastically decreases relative to RCP4.5 by 5, 20, and 40 years at <0.1 m, <0.2 m, and 

<0.5 m, respectively. 

The inclusion of time as a variable in assessments of potential inundation damage is 

important because it has direct consequences in terms of (1) flood management, by 

constraining the design, development, and implementation of adaptation strategies, and 

(2) habitat response, by increasing the probability of adaptation and ecological 

succession. 
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Figure 4.10. Timeframes of inundation from 2025 to 2100 in the ED at different elevation ranges (0–0.1 

m, 0.1–0.2 m, and 0.2–0.5 m) under RCP4.5, RCP8.5, and H+ scenarios. (The geographic coordinate system 

is ETRS89/UTM zone 31N.)  

 

4.5.3. Implications for designing adaptation strategies 

The approach adopted to assess the impact of RSLR in low-lying areas provides an 

alternative vision to considering the entire inundated surface as a total loss of value. The 

classical total damage approach results in management strategies based primarily on flood 

control. This is the case of the ED, where rice producers have developed an adaptation 

plan that includes building a dike along the bayside shorelines and at the back of beaches 

to prevent inundation of the deltaic plain and, thus, the inundation of rice fields 

(Comunitat General de Regants del Canal de la Dreta del Ebre, 2017). However, even 

where such a barrier is advantageous, rice fields within the potential inundation area are 

typically below future projected water levels and, consequently, will be severely affected 

by saltwater intrusion (e.g., Genua-Olmedo et al., 2016). Thus, to maintain their 

productivity, additional investment to adapt the existing hydrological infrastructure is 

also required, such as pumping systems to remove water from low-lying fields. In the 

case of the LD and GR, this strategy is not likely plausible given that the extent of habitats 

of economic interest is very small, unless the H+ scenario is considered. However, even 

in this extreme case, the damage is expected to be relatively low. 

The adoption of an adaptation strategy based on protecting the anthropogenic system 

would artificially bind existing natural areas, such as lagoons and wetlands, disconnecting 
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them from the sea, and further limiting accommodation space along the coastline. This 

implies a strategy based on poldering, although alternative nature-based strategies are 

increasingly being considered in areas that traditionally use this approach, including 

removing existing barriers to enhancing natural values (e.g., van Staveren et al., 2014; 

Wesselink et al., 2015). In fact, given there is no “silver bullet” solution to adaptation, a 

transformative change in current policies is needed that goes beyond the existing portfolio 

of accepted approaches (Suckall et al., 2018). 

Addressing maladaptation in coastal areas may have devastating effects and, 

sometimes, may cause more damage than a “do nothing” approach in which nature is 

allowed to take its course (Hoggart et al., 2014). In areas of high environmental value, 

ensuring accommodation space for natural habitats to adapt may be a feasible strategy to 

cope with the effects of SLR (Haassnot et al., 2019). However, urban sprawl and the 

existence of flood-prevention structures can act as barriers that inhibit such dynamic 

ecosystem responses (Enwright et al., 2016).  Promoting natural protection by creating 

natural buffer areas must be accompanied by the progressive removal of anthropogenic 

infrastructure that prevents migration, thus favoring ecosystem connectivity. This may be 

feasible in the ED because of its low elevation and flat topography, since landward 

migration of wetlands is largely controlled by the topographic slope of the adjacent upland 

(Kirwan et al., 2016). This could be achieved by reclaiming stretches of agricultural land 

located at the lowest elevations, which are the first to be affected by inundation and saline 

intrusion, to be transformed into wetlands and, in turn, restrict urban infrastructure and 

rice fields to higher elevations on the plain. This approach to managing inundations will 

result in a dynamic coastal landscape where habitats would shift according to future 

conditions and where the existing channel network could be used to control salinity. This 

strategy is not usually well received by local stakeholders set to be most economically 

affected (Ledoux et al., 2005; Myatt et al., 2003; Parrot and Burningham, 2008) in 

general, and in ED in particular (Fatorić and Chelleri, 2012; Roca and Villares, 2012). In 

the GR, potential social conflicts exist between different stakeholders in the context of 

environmental protection, largely as a result of perceived threats to agriculture (Roca et 

al., 2011). The existence of multiple stakeholders with different perspectives is always a 

challenge in adaptation planning, with “winners” favoring adaptation and “losers” 

opposing it (Hinkel et al., 2018). Nevertheless, the creation of new wetland areas may 

support alternative economic activities focused on environmental conservation, which 
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could be more sustainable given the high environmental value of the area (e.g., 

birdwatching, cycling, eco-tourism, etc.) (Figueras et al., 2011; Sauri et al., 2010). Further 

understanding of the perceptions of all stakeholders is required during the design of 

sustainable adaptation actions in response to climate change (Fatorić et al., 2014). When 

addressing SLR-induced flooding in highly vulnerable areas, such as lowlands, 

quantifying affected areas as direct losses is justified assuming no change in the status 

quo; however, considering the inherent capacity of some coastal landscapes to adapt, SLR 

may present new opportunities. In Catalonia, wherever possible, promoting habitat 

creation may help increase coastal resilience in the face of SLR and provide additional 

ecosystem services in environmental hotspots, even where these are progressively 

degraded by human actions. 

 

4.6. Conclusions 

In this work, we have presented a methodology for improved SLR-induced inundation-

damage assessments in natural coastal areas. To improve the delineation of inundation-

prone areas, the classical bathtub approach was integrated with an equilibrium-based 

coastal response to RSLR to account for the dynamic adaptation capacity of sandy 

shorelines. To improve the assessment of induced damage in inundated areas, the likely 

ability of coastal habitats to adapt to changing conditions was simulated by linking their 

spatial distribution with their expected ability to respond to changing sea-level conditions. 

This methodology was applied to assess the impact of different scenarios of RSLR in the 

most vulnerable low-lying areas of Catalonia, which also have the highest natural values 

along the coast.  

Obtained results showed a very different susceptibility of the study sites to inundation, 

being the ED the most affected one under all considered scenarios. In terms of associated 

impacts, the most affected habitat was croplands, which is unable to adapt to new 

conditions, and it will convert to natural habitats (wetlands/lagoons) depending on local 

hydraulic connectivity. In this sense, existing man-made infrastructures in the ED plain 

play a double role. On the one hand, the existing network of channels controls the 

inundation extent on the plain, and on the other hand, they act as physical barriers limiting 

the horizontal habitat migration and the formation of new natural areas. 
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The adopted approach permits to move beyond traditional inundation-damage 

assessments where any affected area is considered as a total loss of value. In areas of high 

natural values, this may lead to consider SLR not only as a threat but also as an 

opportunity for a change in their management that allows a range of adaptation strategies 

different from classic protection measures. 
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Chapter 5  

Valuating the impacts of sea-level rise 

on the natural function 

 

 

5.1. Introduction  

In the previous Chapter, the impact of SLR on areas comprising most of the natural 

value of the Catalan coast was assessed by estimating the expected changes in the surface 

occupied by most important habitats under different SLR scenarios. In this Chapter, these 

changes are valued in monetary terms by evaluating which are the ecosystem services 

(ES) provided by such habitats and how they evolve in time. By definition, ES are the 

benefits human population derive, directly or indirectly, from ecosystems (Costanza et 

al., 1997). Estimating their economic value can be a useful to measure trade-offs between 

environment and society to enhance the human well-being in a sustainable manner.  

Costanza et al. (1997) and Daily (1997), among others, were the pioneers on assessing 

the monetary valuation of ES, and since then, this approach has been widely used to value, 

in economic terms, natural areas that traditionally had not any market value (e.g. de Groot 

et al., 2012; Costanza et al., 2014). This has also boosted by international initiatives such 

as The Millennium Ecosystem Assessment (MEA, 2005), and The Economics of 

Ecosystem and Biodiversity (Van der Ploeg and de Groot, 2010).  

The coastal zone comprises the most productive ecosystems, providing a range of 

social and economic benefits to humans yet being highly threatened systems (MEA, 

2005). In fact, coastal environments may contribute with about 77% of the global 

ecosystem service value (ESV hereinafter) (Costanza et al., 1997) although their 

assessment is much more limited than of terrestrial ones (Barbier, 2012; Liquete et al., 

2013) and, traditionally, their generated benefits have been generally ignored in 
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environmental planning and decision-making. Nevertheless, by treating and accounting 

for coastal ES as an economic part of development infrastructure, natural assets may be 

comparable with other economic sectors when making investments and implementing 

management actions (Arkema et al., 2015; Marre et al., 2016; Waite et al., 2015). 

In this sense, it is expected that a major driver such as SLR, which is likely to produce 

a change in the distribution and quality of natural assets along the coast, would also 

produce a significant variation in the associated flow of environmental services (Mehvar 

et al., 2019; Yoskowitz et al., 2016). As an example, it is well-recognized that SLR-

induced losses and changes in wetland distribution (Craft et al., 2009; Traill et al., 2011, 

among others) would affect their provided ES such as disturbance regulation and 

recreational activities (Feagin et al., 2010; Gedan et al., 2011). Because the quantity and 

quality of ES are strongly linked to changes in the coastal landscape, modifications on 

environmental conditions may affect the systems’ functionality and the provision of ES 

(Mitchell et al., 2013).  

For the Catalan coast, Brenner et al. (2010) were the first to generate a baseline 

estimate of the economic value of the ES provided by ecosystems within coastal 

comarcas. They estimated a total value of about US $3,196 M (at 2004), although they 

mostly valued terrestrial habitats. Following their approach, Dupras et al. (2016) assessed 

the impact of changes in land use in the Maresme coastal comarca by estimating changes 

in ESV due to observed urban sprawl. These works highlighted the importance of 

accounting for non-market values of ES when designing spatial planning policies. In this 

aspect, Soy-Massoni et al. (2016) assessed the social perception of the multiple benefits 

provided by agricultural landscapes in Costa Brava by showing the need for a balance 

between productive goals and nature conservation. 

Within this context, the main aim of this Chapter is to quantify potential SLR-induced 

variations in the ESV flow along the low-lying coastal areas analysed in the previous 

Chapter. By developing this ecological economic point-of-view, it is expected to provide 

a better insight into interactions between environment and economy, which would permit 

decision-makers to have an alternative view of induced SLR changes to make decisions 

on adaptation in natural areas. 
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5.2. Methodology 

The methodology for this study comprises the following steps: (i) assignment of ESV 

for each habitat type; and (ii) assessment of the ESV flow for the SLR-induced changes 

in natural areas evaluated in the previous Chapter. This will be applied to habitat changes 

estimated by applying the two considered methods, total damage and conversion 

approach (TDA and CA), to compare the implications of the adopted one.  

Before proceeding with the description of the methodological aspects, some remarks 

need to be made. Firstly, specific coastal habitats must be identified under a defined 

typology, which has been done in Chapter 4. However, it was a challenge to link ES to 

the defined habitat typology. Secondly, the definition of the study area is crucial for 

delimiting boundaries for ESV estimations. For the purpose of this study, the ESV will 

be estimated for the low-lying areas described in Chapter 4 (GR, LD and ED) since they 

are the most vulnerable to flooding and concentrate the areas comprising the highest 

natural value along the Catalan coast. 

 

5.2.1. ESV for habitat types 

The first step involves the definition of the ES to be assessed. Although there are 

different approaches to ES classification, we adopted the typology developed by Costanza 

et al. (1997) for standardization and comparability purposes. Moreover, following de 

Groot (2006), only those services that can be managed on a sustainable basis were 

included. Such ecological sustainability can be defined as “the natural limits set by the 

carrying capacity of the natural environment (physically, chemically and biologically), 

so that human use does not irreversibly impair the integrity and proper functioning of its 

natural processes and components” (de Groot et al., 2000).  This excludes the integration 

of some production (e.g., food, raw materials, medicinal and ornamental resources) and 

carrier (e.g., cultivation, energy-conversion, mining, waste disposal, transportation) 

functions since they involve the conversion of original ecosystems into other 

unsustainable land use type. As a result of this, 14-non consumptive services provided by 

natural and semi-natural ecosystems are considered here (Table 5.1). 
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Table 5.1. Functions and services of natural and semi-natural ecosystems. 

Ecosystem function Ecosystem service Examples 

Regulation 

1. Gas/climate 

regulation 

C-sequestration 

Maintenance of air quality 

Maintenance of favourable climate 

2. Disturbance 

regulation 

Flood prevention and control 

Storm protection 

3. Water regulation Drainage and natural irrigation 

4. Water supply Storage and retention of water 

5. Erosion control 

Maintenance of arable land 

Deposition of nutrients 

Retention of soil 

6. Soil formation 
Soil fertility 

Maintenance of soil structure 

7. Nutrient regulation Nutrient cycling 

8. Waste management 

Waste treatment 

Pollution control/detoxification 

Water purification 

9. Pollination 
Biocontrol 

Seed dispersal 

10. Biological control Trophic-dynamic relations 

Habitat 11. Habitat and refuge 
Nursery 

Living space for plants and animals 

Production 12. Genetic resources 
Genepool 

Biodiversity protection 

Information 

13. Aesthetic and 

recreation 

Ecotourism 

Fishing 

Enjoyment of scenery 

14. Cultural and 

spiritual 

Education 

Heritage value 

Science 

 

Following the analysis of Brenner et al. (2010) in the Catalan coast, ESV are estimated 

by applying the transfer value method.  The aim of this method is to assess the ESV of 

our study area using the results from previous original studies conducted in other areas 

(Loomis, 1992). It involves transferring the results of monetary estimates of ES from one 

location to another assuming socio-economic and environmental similarities between 
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selected areas. Although there is still a great debate over the validity of this method 

(Brouwer, 2000; Johnston and Rosenberger, 2010), the practice of the value transfer for 

ES valuation is justified when primary data collection is no feasible due to any reason 

(Wilson and Hoehn, 2006), as is the case of the present study; being one of the most 

widely applied approach (Brander et al., 2012; Camacho-Valdez et al., 2013; Dupras et 

al., 2015, 2016; Liu et al., 2010).  

The valuation of the ES of each habitat identified was carried out using the values 

obtained from the Ecosystem Service Valuation database (ESVD) (Van der Ploeg and de 

Groot, 2010). This is one of the largest open-access databases that includes ESV classified 

by biomes and ecosystems allowing for an easy retrieval for value transfer. Furthermore, 

to increase the robustness of this assessment, we used some estimates from the database 

of Brenner et al. (2010) who evaluated the non-market value of the ES provided by the 

Catalan coastal zone. Table B5 Annex B lists the studies that were used in this analysis. 

The selection of values for the ES assessment was based on the following criteria: (1) 

areas with similar socio-economic and ecological characteristics to Catalonia, mostly 

Western Europe and North America; (2) non-market values related to non-consumptive 

resources; and (3) natural and semi-natural ecosystems similar to those defined in Chapter 

4 (e.g., desert, coral reefs and tropical forests were excluded from the analysis). 

Due to the lack of information on ESV for determined habitat types identified 

previously, two major assumptions were made: (i) coastal lagoons are often considered 

as a category of wetland (Enjolras and Boisson, 2010) and, consequently, are valued as 

such; and (ii) riparian landscapes are used for transferring the ESV to coastal and 

halophyte vegetation areas due to their spatial distribution and biophysical characteristics 

(Naiman and Décamps, 1997; Tabacchi et al., 1998). Both assumptions are based on 

functional affinities and available data for the development of the ES valuation. 

To enable a direct comparison and aggregation of economic estimates of ES, values 

were standardized to a common currency, spatial and temporal units, namely euros per 

hectare per year (€/ha·yr). Then, values were adjusted to 2020 using GDP deflators using 

appropriate conversion factor from the National Statistics Institute (INE, 2020). 

Finally, we calculated the average value for each ESV within each habitat type. Due 

to the scarcity of values in some categories, a simple statistical analysis was done by 
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calculating the standard deviation, the median, minimum and maximum values provide 

insight into the distribution of the values. 

 

5.2.2. ESV flow 

The total ESV annual flow for a given habitat is calculated by integrating the provided 

individual ESV following the Eq. 5.1, where 𝑉(𝐸𝑆𝑖) is the flow expressed in currency 

amount per year units, 𝐴(𝐿𝑈𝑖) is the surface of habitat type (𝑖), and 𝑉(𝐸𝑆𝑘𝑖) is the annual 

value per each ecosystem service (𝑘) generated by habitat type (𝑖) (Troy and Wilson, 

2006). 

 𝑉(𝐸𝑆𝑖) = ∑ 𝐴(𝐿𝑈𝑖

𝑛

𝑘=1

) × 𝑉(𝐸𝑆𝑘𝑖) (5.1) 

As it was seen in Chapter 4, habitats located in the intertidal zone are the most likely 

to suffer potential changes in their eco-morphological characteristics due to RSLR, and 

as a consequence, those which provided ES are most likely to change (Mehvar et al., 

2019). As an example, coastal wetlands being subjected to submersion (i.e. transitional 

wetlands) will experience a significant salinity increase leading to a change in dominant 

plant communities (Day et al., 2000; McKee et al., 1989). Furthermore, mainly in the ED, 

a large part of coastal lagoons will be saltwater semi-enclosed ones instead of closed 

lagoons as they are under current conditions. Therefore, provided ES may differ from the 

current ones in such a way such potential impact must be introduced on ESV flow 

estimations. To mimic this change, a reduction factor will be applied to original ESV 

values. In this work, it is assumed a reduction in present values of 75% and 10% for 

transitional wetlands and lagoons, respectively. Higher resilience on coastal lagoon areas 

is considered since water characteristics on these new areas could be modulated by 

freshwater inputs through irrigation channels, if desired. The assignation of these values 

is arbitrary since there is no data for different sub-habitats generated. In order to address 

the associated uncertainty, a brief sensitivity analysis will be presented in the Discussion 

section.  
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With respect to the contribution of beach and dunes on ESV flow, this work only 

considers those functions not related to recreational uses since the value of this service is 

highly dependent on the original site characteristics (e.g., attractiveness of the site, 

typology of users) (e.g. Lozoya et al. 2014); in such a way extrapolations of recreational 

values from other sites should be made with caution (Ariza et al., 2012). The importance 

of this function can be guessed by considering results obtained in the analysis of the 

impact of SLR on the recreational use of beaches along the Catalan coast (see Chapter 3). 

Finally, estimations on ESV flows were projected to 2050 and 2100 under selected 

SLR scenarios assuming a zero discounting rate, meaning that the current value of money 

would be the same as that in future. Applying discounting rates from natural assets is a 

controversial issue (Azar and Sterner, 1996) on which there is still debate about whether 

discounting is appropriate at all or whether a non-constant rate should be assumed over 

time. Furthermore, such application is not relevant for comparative purposes, as in this 

case.   

 

5.3. Results 

5.3.1. Non-market value of ES 

Table 5.2 presents the results from cross-referencing ES against defined coastal 

habitats. Grey cells represent potential ES provided by the feature, and blank ones indicate 

that the ES is not significant at the given habitat or, that it has not been documented. In 

addition, dark shading indicates the ES assessed in this work to be relevant for the Catalan 

coast, whereas light shading indicates that ES are expected to be provided by a habitat 

type (i.e., found in the literature) but it is registered in areas with different socio-economic 

or ecological characteristics than the Catalan coast. 

Table 5.2 clearly shows how some habitats provide a larger number of services when 

compared to others. On the one hand, temperate forest, wetlands and coastal vegetation 

are the most productive habitats providing almost totality of identified ES. On the other, 

beach and dunes and urban greenspace provided few services although with a high value 

(see next Section). Nevertheless, all habitats are relevant for the functionality of the 

coastal system by providing complementary services. 
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Besides natural systems, converted habitats (e.g., croplands) can play an important role 

in the delivery of ES. In fact, cultivated farmland (croplands, pastures, orchards) are 

recognized to be a service-providing ecosystem (MEA, 2005; Power, 2010). Conversely, 

barren and salt mine areas are not expected to provide any ES or its value has not been 

found in the literature review. For the case of urban areas, it has been distinguished the 

urban greenspace including urban parks and other green areas that are able to provide a 

range of ES (Bolund and Hunhammar, 1999). 

 

Table 5.2. Identification of ES provided by different habitat types (adapted from Brenner et al. (2010)). 
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A summary of economic value estimates for each habitat type is presented in Annex 

B, Table B6. Although the value transfer method is a crude first approximation at best, 
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Table B6 shows the ranges on these figures providing insight into the large variability of 

values. We found that the greater number of studies focused primarily on temperate forest 

(81 estimations) and coastal wetland areas (37 estimations). In terms of ES, the most 

valued were aesthetic and recreation (66 estimations) and gas and climate regulation (47 

estimations) (see Tables B5 and B6).  

Overall, beach and dunes was the most valued habitat (116,041 €/ha·yr) followed by 

coastal wetlands (19,903 €/ha·yr). Even, when the aesthetic and recreation service is 

removed as mentioned above, beaches and dunes remain as the most valued (75,163 

€/ha·yr). This is due to the large value given to the disturbance regulation service. In 

contrast, the habitat types with the lowest total ESV were grassland (503 €/ha·yr) and 

cropland (2,781 €/ha·yr). It is important to highlight that the current analysis is focused 

on non-market values and provisioning services (e.g., food and raw material) provided by 

agricultural and pasture land were excluded (Table 5.3). 

Total values by ES also reveal considerable variability. Disturbance regulation is the 

largest valuable ES (75,988 €/ha·yr) followed by aesthetic and recreation (53,194 

€/ha·yr). For both ES, beach and dunes play an important role contributing 99% and 77% 

to their total ESV.  This fact highlights that these habitats are essentially valued in terms 

of protection and recreation. On the other side of the spectrum, water regulation and 

genetic resources are the least valuable ES (23 €/ha·yr and 68€/ha·yr, respectively) (Table 

5.3). Nutrient regulation was not be valued in this work since data found for this service 

do not follow the adopted criteria, with the scarce registered values are given in global 

terms and for large biomes such as continental shelf, coral reefs and seagrass beds (which 

are not considered in this work). We must stress that only relevant ES provided by coastal 

“terrestrial” habitats are valuated in this work. 
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Table 5.3. Non-market value of ES provided by each habitat type (values in €/ha·yr, 2020 price levels). 

*Aesthetic and recreation value for beach and dunes is not considered for presented estimations on ESV 

flow. 
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5.3.2. ESV flow in natural low-lying areas 

Projected annual flow of non-market value of ES for each habitat type by 2050 and 

2100 under tested scenarios are given in Tables B7, B8 and B9 for GR, LD and ED, 

respectively. At current conditions, it is estimated that ES contributed annually €45.0 M, 

€21.6 M and €287.8 M to the total natural capital of GR, LD and ED, respectively (Fig. 

5.1). To put in context the much higher flow provided by the ED, it is necessary to 

consider that in addition of the different representation of habitats, it has the largest 

extension (i.e., the analyzed extension in the ED is approximately 4 and 8 times larger 

than GR and LD, respectively).  

Figure 5.1 shows the evolution of ESV flow under given SLR scenarios for the 

expected habitat distribution in each site estimated using the two approaches followed to 

assess the SLR-induced impact based on the likely conversion (CA) and the total damage 

(TDA) on habitats.  

Under the CA, the likely conversion of some habitats entails a variation in their ESV 

flow which is highly dependent on specific characteristics of each site. In GR and LD, 

changes in ESV flow are relative smaller under both RCP scenarios since SLR-induced 

changes are limited to the external coastal fringe (i.e., beaches). Reductions in current 

ESV flow by 2050 will be less than 5% contributing annually €44.3 M and €20.6 M 

respectively (Fig. 5.1). Conversely, current ESV flow in ED will be maintained or even 

increased since estimated SLR-inundation resulted in a large expansion of natural 

habitats, mainly coastal wetlands and lagoons. Under RCP8.5, the projected ESV flow in 

ED will be €277.6 M/yr and €412.8 M/yr by 2050 and 2100, respectively, representing 

96% and 143% of its current ESV flow (Fig. 5.1). 

As expected, the most noticeable changes in ESV flow are calculated under the H+ 

scenario. Despite having a great impact in terms of affected surface, a positive effect on 

natural assets is predicted due to the high value of new natural areas to be generated 

through inundation. This is clearly observed at longer-time projections (by 2100) at which 

ESV flow in GR and LD is projected to be approximately 50% higher than current 

conditions contributing €65.2 M/yr and €32.5 M/yr, respectively. By far, the largest 

increase is found in ED due to the largest naturalization of the area in such a way the ESV 

flow will be increased by 81% delivering €520.8 M/yr to society (Fig. 5.1). 
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However, reductions in ESV flow would be expected if habitats shifts were not 

considered and coastal habitats were projected to decrease in size and their corresponding 

ESV. By 2050, considering RCP8.5 as a reference,  the natural value in GR and LD will 

decrease roughly to 94% of current values (€41.8 M/yr and €20.3 M/yr, respectively) 

whereas it will be further reduced in ED maintaining only the 61% of its current natural 

value (€175.3 M/yr). When the analysis is extended to 2100, the decrease on ESV flow 

will be more evident in ED than in the other two areas maintaining only 19% of the current 

values under RCP8.5 (€55.0 M/yr). Despite this, the ESV flow in ED will be 

approximately 2 times higher than GR and 3 times higher than LD, whose ESV flow will 

be €31.4 M/yr and €16.8 M/yr, respectively (Fig. 5.1). 

 

 

Figure 5.1. Projected ESV flow for a) GR; b) LD; and c) ED considering TDA and CA at different SLR-

scenarios.  

 

With respect to the proportion of each coastal habitat to the total ESV flow (Fig. 5.2), 

the most productive are coastal wetlands, beach and dunes and croplands. Their largest 

contribution is due to these natural ecosystems were the most valued (i.e., the highest total 

ESV in this work) and the substantial representation of cropland areas in the total study 

area.  The contribution of these habitats under current conditions represent the 90%, 77% 

and 79% of the total value in GR, LD and ED, respectively (Fig. 5.2). For croplands, its 
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proportion to the total ESV will increase in the three study areas under RCP8.5 by 2100 

by considering the TDA whereas it will be reduced by the CA, especially in the ED. In 

the case of wetlands, its contribution to the total ESV will remain very similar in both 

approaches at GR and LD but it will decrease in ED being practically null under the CA. 

The great difference is observable in the contribution of coastal lagoons that will be 

decreased in the TDA but highly enhanced in CA. 

 

 

 

Figure 5.2. Contribution (in %) for each habitat type to the ESV flow for a) GR; b) LD; and c) ED 

considering TDA and CA. 
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5.4. Discussion and conclusions 

5.4.1. Methodological aspects 

In this work, we have adopted the transfer value method which has been widely used 

in similar analysis (Brenner et al., 2010; Dupras et al., 2015, 2016; Liu et al., 2010; among 

others), despite being also subjected to debate in the environmental economic literature 

(e.g. Brouwer, 2000; Johnston and Rosenberger, 2010). However, under the absence of 

local values for ES, it is the only remaining option. In this respect, there are some elements 

to be considered to put in context the obtained results. Firstly, not all ES provided by 

coastal habitats have been well studied, and others even have not been consider at all. 

Ideally, updated and broad assessments on ES are need to fill the gaps in the literature to 

provide a more complete coverage of services provided per each ecosystem that would 

almost increase the total ESV. Consequently, the estimated figures underestimate the 

actual value of ES provided, and the estimated value should be considered as the 

minimum value. 

Another major limitation stems from the plurality of classification of ES in the 

literature. Several ES classifications have been proposed (Costanza et al., 1997; de Groot 

et al., 2002; Farber et al., 2006) which introduces some noise when they are used for ES 

assessment. Furthermore, characterizing certain services is a difficult task (e.g., erosion 

control, nutrient regulation) because the value is not easily transferable, or available data 

do not exist (Barbier et al., 2011). In agreement with previous studies (Brenner et al., 

2010; de Groot et al., 2012) the categories of disturbance regulation and aesthetic and 

recreation were the most valued ES (both in the number of estimates and the value 

obtained). 

Despite these challenges, integrating climate change and ES assessment is vital. SLR-

impacts may alter the coastal ES in a different way depending on the ecosystem type and 

provided services (Mehvar et al., 2018). In this work, one of the most important changes 

is associated to the ES provided by coastal wetlands (including coastal lagoons), due to 

its expansion but also due to the expected shift in their composition towards more salt-

dominated environments. Although scarce, recent studies have quantified variations in 

the value of coastal ES (Roebeling et al., 2013; Yoskowitz et al., 2017) but they have not 

explicitly quantified the change in the ESV (Mehvar et al., 2018). In order to test the 
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sensitivity of modifying the ESV provided by coastal wetlands to changing eco-

physiological conditions, different reduction rates were applied and compared as there is 

no available data for new sub-habitats generated (Fig. 5.3). Considering RCP8.5 by 2100 

as a reference, the ESV flow would be €41.8 M/yr, €17.4 M/yr and €425.5 M/yr for GR, 

LD, and ED, respectively, if no reduction were considered. Presented results in this work 

assumed a reduction of 75% in ESV due to expected change in eco-physiological 

conditions, so that the ESV flow was reduced by approximately 3% in GR and ED and 

1.5% in LD. As expected, the smaller change in provided services, the smaller variation 

in the projected ESV flow. As an example, considering a moderate change in 

environmental conditions (50% reduction in provided ES), the ESV flow would decrease 

by 2% in GR and ED (€41.0 M/yr and €417.0 M/yr, respectively) and 1% in LD (€17.3 

M/yr). If provided services changed slightly (5% reduction in ESV), no major changes 

would be observed in its contribution whose reduction in the ESV flow would be less 

than 0.25%. These results stress the need to know how habitats evolve and to assess the 

differences in ESV for each habitat type. 

 

Figure 5.3. Variation in projected ESV flow (in %) for RCP8.5 by 2100 considering different reduction 

rates on provided ES by coastal wetlands. 

 

Other important aspect to be considered is the existing lack of information for certain 

habitats. As an example, coastal lagoons are underrepresented across valuation studies 

(Barbier et al., 2011; Newton et al. 2018), with valuation of their ES being based in few 

studies (e.g., De Wit et al., 2015; Rolfe and Dyack, 2010). The limited number of studies 

and different approaches to define coastal lagoon systems make difficult to find “reliable” 
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valuation studies (Camacho-Valdez et al., 2013). To overcome this, the ESV of lagoons 

was taken as the ones from coastal wetlands since, following the Ramsar classification; 

they include permanent shallow marine waters with less than six meters deep. Such 

characteristics represent the coastal lagoon areas found in the study areas. A similar 

approach was adopted for areas with coastal and halophyte vegetation. There is no 

specific valuation for these habitats and, thus, we decided to use estimations from riparian 

vegetation areas. Riparian zones are an interface between terrestrial and aquatic 

ecosystems with ecologically rich habitats supporting a number of ES (Dosskey et al., 

2012, Stutter et al., 2012). The observed coastal and halophyte vegetation areas in the 

study areas are found near or above HSL fitting into the operational definition of marine 

riparian plants (Levings and Jamieson, 2001). 

 

5.4.2. Economic consequences on natural areas along the Catalan coast 

According to obtained results, natural environments in the Catalan coast, mostly found 

in low-lying areas, generate a significant economic value when considering their ES 

contribution to human well-being. Among the analysed areas, the ED is the most 

productive area delivering at current conditions €287.8 M/yr to society. Such contribution 

is approximately 6 and 13 times higher than the ESV flow of GR and LD, respectively. 

To identify which part of this difference is associated with their extension, these values 

have been normalised by their respective surface (Fig. 5.4). As it can be seen, the most 

valuable area is the ED with an average ES of 8,675 €/ha·yr. GR and LD present similar 

values of 5,287 €/ha·yr and 5,118€/ha·yr, respectively. This implies that the natural value 

per hectare of ED is about 1.7 times higher than in the other two areas. Under the RCP8.5 

scenario, the relative ESV flow of these areas slightly decreases by 2050, although 

maintaining their relative contribution, with 5,207 €/ha·yr, 4,873 €/ha·yr, and 8,369 

€/ha·yr for GR, LD and ED, respectively. However, the large habitat conversion expected 

in the ED by 2100, with its corresponding increase in ESV flow up to 12,444 €/ha·yr, 

makes that its relative value in comparison to GR and LD will be 2.6 and 3.1 times higher, 

respectively.  
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Figure 5.4. Relative annual flow (€/ha·yr) for the different analyzed areas considering the CA. Note: for 

2050 and 2100 projections, bars represent values under RCP8.5 scenario. Blue and red error bars represent 

the range of values by considering RCP4.5 and H+, respectively. 

 

As mentioned before, the aesthetic and recreational service provided by beaches was 

not included because its assessment applying the value transfer method should be made 

with caution (Ariza et al., 2012). Most estimates of this service are based on the 

“willingness to pay” (WTP) (e.g., hedonic pricing, travel cost, contingent valuation 

methods) which are conditioned by human preferences and knowledge base. A study 

carried by Lozoya et al. (2014) in Costa Brava showed that the WTP in protected natural 

areas is higher than in urban beaches, which is highly dependent on the user profile. This 

may be related to the quality of the surrounding areas and the perception of the beach 

users (Roca and Villares, 2008). In spite of this, an alternative “number” representing this 

ES can be obtained by considering the impact of coastal tourism on the GDP of the 

Catalan coast (Chapter 3), which on average it corresponded to €16 M/beach hectare. 

However, this figure does not only include the value of the beach, but also associated 

recreational services for beach exploitation and use. With the exception of Barcelona, the 

largest contributions to the economy per beach hectare were found in Costa Brava and 

Costa Dorada with €20.8 M and €14.1 M, respectively. Conversely, beaches in ED only 

contribute €1.6 M per hectare showing its secondary recreational use under current 

recreational and tourism planning. 
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5.4.3. Concluding remarks 

This study showed the non-market estimations for the main natural areas located along 

the Catalan coast using the value transfer approach where SLR-impact on the value of ES 

provided by coastal habitats has been assessed at mid- and long-term projections. Results 

indicate that the ED is the most valuable area delivering at least €288 M/yr to society 

nowadays, which is approximately 6 and 13 times higher than in GR and LD, respectively.  

Besides increasing the coastal resilience in the face of SLR as seen in the previous 

Chapter, our results indicate that promoting habitat conversion will maintain and even 

enhance the benefits provided by coastal ecosystems. The ESV flow in GR and LD will 

remain almost the same along this century since these areas are less vulnerable to SLR-

inundation with changes limited to the external coastal fringe. However, due to the largest 

naturalization and habitat shift expected in ED, the ESV flow in this area will be roughly 

doubled by 2100, mainly due to the creation of new coastal lagoon areas that will be able 

to provide valuable ES for human welfare and well-being. 

In the context of EU Biodiversity Strategy for 2030, this work highlights the need to 

recognize and value the equivalent economic contribution of natural areas to society 

which can lead to a shift in the management perspective promoting their conservation and 

protection in future management strategies. In future adaptation policies, allowing for 

habitat conversion should take precedence over land reclamation and protection for 

economic purposes wherever possible, putting the biodiversity on a path to recovery with 

multiple benefits for people and the climate. 
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Chapter 6  

Financing and implementation of adaptation 

measures to climate change along the Spanish coast 

Adapted from: López-Dóriga, U., Jiménez, J.A., Bisaro, A., Hinkel, J. 2020. Financing 

and implementation of adaptation measures to climate change along the Spanish coast. 

Science of the Total Environment, 712, 135685. doi: 10.1016/j.scitotenv.2019.135685 

 

 

6.1. Introduction  

Climate adaptation has become a core focus in the political agenda, with the goal of 

enhancing preparedness and the capacity to cope with climate change impacts (Biesbroek 

et al., 2010; Khan and Roberts, 2013). Indeed, EU Member States have started to develop 

national adaptation strategies requiring physical, social, and institutional measures to 

adapt to climate change, given the recognition that mitigation alone is insufficient to 

prevent impacts (Biesbroek et al., 2010). 

While adaptation strategies to climate change are necessary everywhere where 

significant impacts are expected, coasts are areas of special interest since they concentrate 

a series of characteristics related to their susceptibility to natural hazards, their exposure 

in terms of natural and human values, and the fact to be directly subjected to one of the 

most relevant climate-related changes, the accelerated rise in sea level (see e.g. Nicholls 

et al., 2007). As a consequence, coastal communities and infrastructures are likely to be 

affected and, therefore, coastal adaptation will be required on almost all populated 

coastlines in the world (Nicholls, 2011). In fact, the European Climate Change Adaptation 

Strategy recognises coastal areas as one of the most at risk being priority areas to climate 

change adaptation (European Commission, 2013). In this sense, many studies state that 

adaptation costs would be lower than damage costs without adaptation for most developed 

coasts. As an example, the economic cost of coastal flooding has been estimated at €18 
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billion under a scenario of 50 cm of sea level rise, but adaptation may significantly reduce 

changes to €1 billion/year (EEA, 2008). These issues are not limited to Europe, without 

adaptation, 0.2–4.6% of the worldwide population is expected to be flooded annually in 

2100 under 25–123 cm of global mean sea-level rise, with expected annual losses of 0.3–

9.3% of the global gross domestic product (Hinkel et al., 2014).  

In spite of this, although numerous studies on coastal adaptation have been performed 

in recent years, most of them have focused on mapping the current state of adaptation 

plans (e.g. Araos et al., 2016; Gibbs, 2019; Pearce et al., 2018; Woodruff and Reagan, 

2019), while a noticeable lack of studies on the implementation of adaptation does exist 

(e.g. Mimura et al., 2014). Moreover, governments at all levels are expressing their 

intention to adapt, but not much progress is being made in terms of implementation 

(Berrang-Ford et al., 2011). One possible explanation is that the associated political risk 

of adaptation could act as a constraint (Ford et al., 2011; Gibbs, 2016; Lesnikowski et al., 

2015). In fact, a review on early implementation of adaptation plans by local governments 

has shown that they mostly adopt a reactive or event-driven approach, with a main focus 

on climate variability and current weather extremes rather than long-term climate change 

(Mimura et al., 2014).  

Furthermore, there is an increasing recognition that barriers to coastal adaptation are 

not technical or economic, but are largely financial and social (Hinkel et al., 2018). 

Indeed, while an adaptation finance gap is substantial across all sectors (UNEP, 2016), it 

is significant for coastal adaptation in particular, where currently, governments appear to 

be meeting only a fraction of the costs needs to ensure flood safety (Nicholls et al., 2019). 

Financing coastal adaptation is challenging for several reasons. First, coastal adaptation 

provides long-term stochastic benefits, whereas the costs of provision are large and 

upfront (Bisaro and Hinkel, 2018), putting pressure on strained public budgets that need 

to consider opportunity costs of investment (Penning-Rowsell and Priest, 2015). Second, 

coastal adaptation involves high-value coastal real estate, and adaptation measure values 

can affect amenity values, for example, sea walls may decrease the quality of ocean views, 

giving rise to rent-seeking behaviour by vested interests in blocking such measures 

(Beatley, 2012). Third, coastal areas are subject to multiple uses and diverse stakeholder 

interests. The resulting governance structures often result in overlapping or unclear public 

responsibilities (Storbjörk and Hedrén, 2011), which act as a barrier to financing. Yet 

while the current literature has described and enumerated such barriers, often in individual 
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case studies (Eisenack et al., 2014), less attention is dedicated to analysing coastal 

adaptation financing decisions at the national level to, for example, identify patterns in 

such decisions and the underlying drivers of such barriers. Therefore, a better 

understanding of the adaptation finance is necessary to better tailor appropriate solutions, 

as the overall expenditures for coastal adaptations will rise with the sea level, and must 

compete for resources with other concerns (Moser et al., 2018). As a consequence of all 

this, it seems clear that coastal adaptation needs to start earlier than anticipated to provide 

time to engage stakeholders, to enable effective decision making and to implement 

measures (Haasnoot et al., 2019).  

Within this context, Spain adopted the National Adaptation Plan to Climate Change 

(PNACC) and the Spanish Strategy for Coastal Adaptation to Climate Change (CAS 

hereinafter) in 2006 and 2016, respectively. This is a statutory and multi-sectorial national 

planning strategy for climate change adaptation of coastal areas, with the aim of assisting 

in the decision-making process to plan for, implement and monitor adaptation actions 

(Losada et al., 2019). Thus, since Spain is starting to implement coastal adaptation 

actions, the assessment of these early-stage investments is important to put them in the 

context of long-term coastal planning. In this sense, it has to be considered that most of 

climate adaptation efforts reported worldwide deal with partial solutions and approaches 

to climate adaptation, rather than more full-scale implementation (see Mimura et al., 

2014).  

Understanding coastal adaptation financing and implementation provides context for 

this paper, where the case of Spain is particularly interesting since it is considered as one 

of the top countries in Europe in terms of climate adaptation initiatives as well as in 

investments in coastal protection in general (Policy Research Corporation, 2009a; 

Lesnikowski et al., 2015, 2016). Thus, it will be relevant to assess to what extent the 

implemented measures are consistent with the established policy goals and plans. In the 

absence of an approved roadmap to implement measures included in the CAS, it is worthy 

to identify the existence of a rationale behind the spatial distribution of investments at 

this early stage. As previously mentioned, Mimura et al. (2014) concluded that many early 

implementations of adaptation plans have a main focus on climate variability and 

extremes rather than long-term climate change. In this context, it is also relevant to assess 

if current implementation measures along the Spanish coast are really adaptation 

measures, or their targets are current coastal problems but financed under the umbrella of 
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adaptation financing initiatives (PIMA-Adapta) as a matter of opportunity. This should 

be noted in the time evolution of total investments in coastal protection in the near future.  

To our knowledge, no previous studies have provided an in-depth analysis of current 

investments in coastal adaptation measures for climate change at national level in general, 

and along the Spanish coastline in particular. Therefore, the main goal of this paper is to 

assess the current progress of Spain in implementing coastal adaptation measures to 

climate change. To this end, we have analysed how Spain is currently financing coastal 

adaptation; which measures within the CAS are currently being implemented; the extent 

to which measures already implemented are actually adaptation measures; and how the 

current investments in coastal adaptation measures compare with the occurrences of 

current “regular” coastal protection measures (without climate change). Finally, based on 

this analysis, we will provide policy recommendations on possible adjustments and the 

investment pattern required for an efficient long-term implementation of adaptation 

measures for climate change along the Spanish coast. 

 

6.2. Study area 

6.2.1. Study area 

The Spanish coastline (Fig. 6.1) is approximately 7,900 km long, and comprises a high 

diversity of coastal environments including cliffs, rocky coasts, embayed beaches, long 

beaches, estuaries, swamps, dunes and deltas, along three main climate areas 

(Mediterranean, Temperate-Atlantic, Subtropical-Canary Islands). In general terms, the 

Mediterranean area has the largest abundance of beaches, whereas the Atlantic area 

presents the largest extension of cliff areas.  

From an administrative standpoint, this coastline extends along 10 autonomous 

communities and 2 autonomous cities, comprising 20 coastal provinces and 487 

municipalities. Approximately 40% of the Spanish coastline is urban, 7% is occupied by 

port facilities, 3% is occupied by industrial facilities and 8% is used for farming (Orts, 

2016). The Spanish coast is also an area of high concentration of population, with 

approximately 45% of the national population living in coastal municipalities, which only 
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represent approximately 7% of the territory. Table 6.1 shows an overview of the main 

physical and socioeconomic indicators of the Spanish coastal zone. 

 

 

Figure 6.1. Coastal regions in Spain (see names in Table 6.1). 

 

 

Table 6.1. Key statistics for Spain’s coastal regions (data from National Statistics Institute (INE), 2015). 

Coastal GDP and population only consider information from coastal provinces within each region (dark 

grey areas in Fig. 6.1). 

 

Region 
Coastal length 

(km) 

Coastal GDP 

(millions €) 

Coastal population 

(inhabitants) 

Galicia (1) 1,498 50.15 1,425,745 

Asturias (2) 401 21.22 1,075,279 

Cantabria (3) 284 12.20 566,678 

Basque Country (4)  246 55.00 1,829,822 

Catalonia (5) 699 193.35 6,595,767 

Valencia (6) 518 100.77 4,692,449 

Murcia (7) 274 28.21 1,335,792 

Andalusia (8) 945 85.05 4,591,231 

Balearic Islands (9) 1,428 27.34 983,131 

Canary Islands (10) 1,583 40.92 1,968,280 

Ceuta (11) 20 1.59 75,276 

Melilla (12) 9 1.46 65,488 
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The combination of a long coastline, where inundation and erosion-induced problems 

are already frequent under current climate conditions (e.g. Del Río et al., 2012, 2013; 

Jiménez et al., 2012; Jiménez and Valdemoro, 2019; Rodríguez-Ramírez et al., 2003; 

Sanjaume and Pardo, 2005) and high human pressures concentrating values along the 

coast, makes the Spanish coastline a vulnerable environment to climate change-induced 

flooding and erosion. Nevertheless, coastal vulnerability significantly varies along the 

territory as a function of physical and socioeconomic characteristics. A national 

assessment of the expected impacts induced by climate change along the Spanish coast is 

given by Losada et al. (2014), who found that coastal systems were especially sensitive 

to the effects of sea-level rise and other factors such as rising water surface temperatures, 

acidification, and changes in storm surge. The obtained results have been used by the 

Spanish Office of Climate Change (OECC) to identify adaptation needs in the Spanish 

coastline as well as the required actions. Additional site specific assessments of sea level 

rise-induced impacts along the Spanish coasts can be found in Enríquez et al. (2017), 

Jiménez et al. (2017), López-Dóriga et al. (2019),  Martínez-Graña et al. (2018), Toimil 

et al. (2018), among others. 

 

6.2.2. Administrative framework for coastal risk and climate change 

adaptation 

Formally, in Spain, the OECC holds the competences in adaptation to climate change 

policy-making, assessment, and implementation at the national level, among other 

climate change-related issues. These aspects included in the responsibilities of the 

Secretary of Environment within the Ministry for the Ecological Transition (MITECO 

hereinafter, formerly Ministry of Agriculture and Fisheries, Food and Environment).  

In 2006, OECC developed the PNACC, which is the framework for coordinating the 

Spanish public administration to carry out actions to evaluate the impacts, vulnerability, 

and adaptation to climate change in Spain (OECC, 2006). This plan is implemented 

through work programmes, where priority activities to be addressed are covered. The 

current programme (WP3) was adopted in 2013 (OECC, 2014).  

Competences on management in the coastal zone in Spain are distributed between 

different administrations, i.e. central government, autonomous communities and 
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municipalities, with the central government playing the most important role. The 

autonomous communities have the administrative competence for urban planning in the 

coastal zone, whereas the national General Directorate for Sustainability of the Coast and 

the Sea (DGSCM hereinafter) is the administrative body for ruling and managing the 

maritime-terrestrial public domain. The DGSCM lays out and implements the coastal 

management policy that is applied in situ by their administration’s peripheral services, 

known as coastal demarcations, to address identified coastal problems/issues along the 

Spanish coast. Thus, the central government has the competences in coastal protection 

along the entire Spanish coast and, in this sense, the funding for coastal protection is 

provided through the DGSCM. 

With regards to the coastal zone, as a result of one of the obligations of the Law 2/2013 

for the protection and sustainable use of coasts and amendment of the Spanish Coastal 

Act 22/1988, the DGSCM developed the Spanish Strategy for Coastal Adaptation to 

Climate Change (CAS hereinafter, as mentioned above). This national strategy was 

officially approved after a positive strategic environmental assessment in 2016 (DGSCM, 

2016). It indicates different degrees of coastal vulnerability and risk along the entire 

Spanish coastline, and it identifies measures to address potential effects (Losada et al., 

2019). This strategy is being downscaled to the regional level by developing specific 

strategies for coastal regions, in a process controlled by autonomous regions. In addition 

to this, the DGSCM has also developed several (five already done, two in progress) 

dedicated strategies to the protection of the coast in areas currently experiencing large 

erosion problems. These strategies diagnose the problem, prioritise areas to be protected, 

and propose different alternatives to address the problem, which are in line with measures 

considered in the CAS. 

 

6.3. Material and methods 

6.3.1. General methodological framework 

As it has been already mentioned, the lack of comprehensive studies about 

implementation of adaptation measures at large scale, the characteristics of the 

information to be analysed, and the type of data to be analysed have driven us to design 

a methodological framework to be used in the analysis. The practical goal of the 
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methodology is to get a country profile on the implementation of coastal adaptation 

measures. The proposed methodological framework serves to answer different questions 

contributing to get such profile and it is schematised in Figure 6.2. It consists of three 

main steps: (i) the creation of a database on implemented adaptation measures; (ii) the 

compilation of data to characterize regions where we are adapting and to describe the 

context of current investments in coastal protection; and (iii) the analytical module where 

data are analysed to answer target questions.  

 

Figure 6.2. Methodological framework to analyse progress in implementing coastal adaptation measures 

at National scale. 

 

6.3.2. Data compilation 

The first part of the methodology consists of the compilation and analysis of 

investments in adaptation measures along the Spanish coast that have been explicitly (and 

officially) designed to address adaptation to climate change. To this end, we have built a 

database of measures implemented along the different coastal regions of Spain, where we 

compiled the types of measures, locations, budgets and funding agencies. There are two 

main financial sources for coastal adaptation actions in the Spanish coastal zone: the 

central government through the PIMA Adapta programme, established under the 

PNACC, and the EU, through the LIFE programme. 
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The PIMA Adapta programme was implemented in 2015 by the Spanish government 

to fund adaptation projects related to water resources, coastal areas, and biodiversity in 

National Parks. It is operated by MITECO through the OECC. With respect to coastal 

adaptation, this initiative covers a wide range of actions to restore coastal habitats and 

stabilise the shoreline, with the objective of reducing vulnerability to the effects of climate 

change. It also includes information regarding resources and uses of the territory, as well 

as vulnerability studies on the coast for developing regional adaptation plans. PIMA 

Adapta actions in coastal areas are managed by two different entities. In particular, 

adaptation measures implemented in the Maritime-Terrestrial Public Domain are handled 

by DGSCM. In contrast, the budget allocated to developing detailed vulnerability studies, 

as well as regional adaptation strategies, is distributed to coastal autonomous 

communities.  

Data on investments through PIMA Adapta programme have been collected from 

information provided by the OECC, as well as from analysing information provided by 

the DGSCM on the budget distribution per fiscal year. In the latter case, only measures 

directly funded through the PIMA Adapta programme are accounted for. Thus, for 

instance, a given type of adaptation measure, such as beach nourishment, can be funded 

through the regular annual budget, or through PIMA Adapta. Table 6.2 shows some 

examples of different adaptation measures conducted by the DGSCM through the PIMA 

Adapta programme.  

The second major source for funding adaptation measures to climate change is the 

LIFE programme. This is an EU programme for the environment, nature, and climate 

action, and has funded more than 2,600 projects since 1992. Its overall objective is to 

contribute to the implementation, updating, and development of environmental policy and 

legislation for the EU by co-financing relevant projects. This is a competitive process, 

and the European Commission launches periodic calls for proposals under selected 

"priority areas" according to a work programme. Usually, the EU co-financing rate is 

50%, except in cases where projects focus on concrete conservation actions for priority 

species or habitats, where co-financing can increase up to 75%. The beneficiaries are 

public and private bodies and the objectives, tasks, and actions for different involved 

stakeholders, as well as financial responsibilities, are established through a grant 

agreement. These beneficiaries contribute to the remaining part of the budget.  



The influence of Climate Change on the coastal risk landscape 

120 

Table 6.2. Examples of Environment Promotion Plan for Climate Change Adaptation (PIMA Adapta) 

coastal actions in different locations in Spain. 

Measure Location Link to CC adaptation Year Source 

Environmental recovery 

and beach nourishment 
Castellón (Valencia) 

Reduce coastal exposure 

Stabilize shoreline 
2017 

MITECO 

website (1)  

Artificial dune creation and 

vegetation settlement 

Malgrat de Mar 

(Catalonia) 

Reduce coastal exposure 

Stabilize shoreline 
2016 

MITECO 

website (2)  

Wetland restoration and 

environmental recovery 
A Coruña (Galicia) 

Maintain coastal 

ecosystems in good 

conditions 

Promote Nature-based 

solutions (NBS) 

2016 
MITECO 

website (3)  

Sand management (by-

pass) 
Almeria (Andalusia) 

Reduce coastal exposure 

Stabilize shoreline 
2015 

MITECO 

website (4)  

Slope stabilization and 

coastal protection 

Several 

municipalities in 

Asturias 

Protect the coast 2015 
MITECO 

website (5)  

Artificial defences 

(groynes and breakwaters) 
Almeria (Andalusia) 

Reduce coastal exposure 

Stabilize shoreline 
2015 

MITECO 

website (6)  

Groyne removal and sand 

re-distribution 
Cartagena (Murcia) 

Stabilize shoreline 

Mitigate erosion 

problems 

2017 
MITECO 

website (7)  

 

To identify LIFE-projects that directly contribute to adaptation to climate change in 

Spain, the LIFE programme database was searched for projects in Spain with selected 

keywords (for example, coastal areas, adaptation, climate change). In this work, we only 

consider LIFE-funded projects from 2010 onwards, covering the period of PIMA Adapta 

implementation as well as some additional years during which society became more 

concerned regarding potential impacts of climate change. In this respect, the second work 

programme (WP2) of the PNACC, which is considered as a significant step for 

systematically addressing adaptation to climate change in Spain (OECC, 2009) was 

adopted in 2009. The LIFE projects classified here as investments in adaptation in the 

Spanish coastal zone are listed in the Table C1 in Annex C. We report on the sum of the 

EU contribution and co-financing from the partners. 

In addition to collecting data on the funding of coastal adaptation measures, we also 

compiled data on the current expenditures on protection, so as to characterise the current 

needs to maintain, protect, and preserve the Spanish coast (referred to as regular budget). 

These expenditures are covered by the Spanish government through the DGSCM. Data 

have been collected from information provided by the DGSCM and the national general 

https://www.miteco.gob.es/es/costas/temas/proteccion-costa/actuaciones-proteccion-costa/castellon/120222-regeneracion-ambiental-benafeli.aspx
https://www.miteco.gob.es/es/costas/temas/proteccion-costa/actuaciones-proteccion-costa/castellon/120222-regeneracion-ambiental-benafeli.aspx
https://www.miteco.gob.es/es/costas/temas/proteccion-costa/actuaciones-proteccion-costa/barcelona/08-0430-ADAPTA.aspx
https://www.miteco.gob.es/es/costas/temas/proteccion-costa/actuaciones-proteccion-costa/barcelona/08-0430-ADAPTA.aspx
https://www.miteco.gob.es/es/costas/temas/proteccion-costa/actuaciones-proteccion-costa/a-coruna/150706-marisma-a-xunqueira-do-areal.aspx
https://www.miteco.gob.es/es/costas/temas/proteccion-costa/actuaciones-proteccion-costa/a-coruna/150706-marisma-a-xunqueira-do-areal.aspx
https://www.miteco.gob.es/es/costas/temas/proteccion-costa/actuaciones-proteccion-costa/almeria/040315-PIMA.aspx
https://www.miteco.gob.es/es/costas/temas/proteccion-costa/actuaciones-proteccion-costa/almeria/040315-PIMA.aspx
https://www.miteco.gob.es/es/costas/temas/proteccion-costa/actuaciones-proteccion-costa/asturias/PIMA-33-2.aspx
https://www.miteco.gob.es/es/costas/temas/proteccion-costa/actuaciones-proteccion-costa/asturias/PIMA-33-2.aspx
https://www.miteco.gob.es/es/costas/temas/proteccion-costa/actuaciones-proteccion-costa/almeria/040322-PIMA.aspx
https://www.miteco.gob.es/es/costas/temas/proteccion-costa/actuaciones-proteccion-costa/almeria/040322-PIMA.aspx
https://www.miteco.gob.es/es/costas/temas/proteccion-costa/actuaciones-proteccion-costa/murcia/301451-retirada-espigon-punta-brava.aspx
https://www.miteco.gob.es/es/costas/temas/proteccion-costa/actuaciones-proteccion-costa/murcia/301451-retirada-espigon-punta-brava.aspx
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budgets on budget distribution per fiscal year and per coastal protection objective. These 

yearly budgets included an amount to be used for emergencies, usually associated with 

measures to cope with damages induced by the impact of storms. Since 2014, the DGSCM 

has launched yearly programs, called Plan Litoral, for funding emergency measures to 

repair storm-induced damages along the Spanish coast. This program is only launched in 

years where the frequency or intensity of storms induce very significant damage along 

the Spanish coast, as was the case in 2014, 2015, 2017, and 2018. Expenditures in this 

program have been compiled from information provided by the DGSCM characterising 

the current investment needs to compensate for storm-induced damages under current 

climate conditions. 

 

6.3.3. Data analysis 

The data analysis focuses on identifying the dominant measures and geographical 

rationales for investments during the first years of the implementation of the PNACC. 

This is completed by characterising the current context of expenditures for maintaining 

and preserving the Spanish coastal zone during the last decade, from 2010 to 2018.  

Investments in adaptation measures were classified according to the CAS, which is 

consistent with the International Panel on Climate Change (IPCC) AR5 (Noble et al., 

2014). It classifies actions into three major categories: (i) structural-physical, (ii) social, 

and (ii) institutional, and into three sub-categories based on the typology and purpose: (i) 

protection, (ii) accommodation and (iii) retreat. In total, the CAS considers 26 different 

adaptation actions, which are classified according to these two criteria (Table C2 in 

Annex C). Measures already implemented along the Spanish coast and funded under 

PIMA Adapta and LIFE projects were classified according to these criteria. 

Finally, measures were grouped in more generic classes to simplify the classification 

(see Table C3 in Annex C), including the combination of different options (mixed type), 

and a class for actions where their typology was not specified (without specifying the 

type). The distribution of expenditures per type for each project is determined according 

to the provided description. When it consists of more than one measure, the investment 

is assigned the following budget details. In the case of projects executed in different 
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coastal regions (this is especially applicable to LIFE projects), the budget is split 

accordingly, to obtain corresponding regional values. 

To put investments in coastal adaptation measures into a general context, we compare 

them with current expenditures in coastal protection during the last decade. Current 

expenditures in coastal protection by the DGSCM were classified in terms of their main 

official objectives. To make a consistent comparison to investments in coastal adaptation, 

we identified expenditures associated with objectives directly covered by the CAS (see 

Table C4 in Annex C). 

To characterise the geographical distribution of investments in coastal adaptation, the 

compiled data are aggregated within each coastal region. Thus, regional values of total 

investments and investments per type of measure were obtained for PIMA Adapta and 

LIFE projects.   

To investigate the rationale behind the geographical distribution, we analyse the 

relationship between the distribution of investments and selected regional indicators 

characterising spatial scale, economic importance, and coastal vulnerability. These 

indicators are the coastline length and GDP of the coastal provinces of each region, 

whereas the vulnerability of each region is characterised by using an integrated value of 

the coastal vulnerability index (CVI), as calculated by López-Royo et al. (2016). This is 

a slightly modified version of the Gornitz and Kanciruk (1989) index to characterize the 

vulnerability of coastal areas to coastal hazards including SLR, particularly due to erosion 

and/or inundation. This is formulated in terms of a series of variables such as 

geomorphology, coastal slope, shoreline evolution, relative sea level rise, wave climate 

and tidal range. 

 

6.4. Results 

6.4.1. Investments in coastal adaptation 

The total investment in coastal adaptation to climate change during the analysed period 

(2010–2018) in the Spanish coastal regions has been estimated at €56 M, from which 

57% was funded by the Spanish national initiatives under the PIMA Adapta program. The 

remaining parts were funded through LIFE projects, which are co-funded by the EU 
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Commission and Spanish administration (local, regional and national). If we normalise 

these investments for the covered period by each source, the average current investment 

in coastal adaptation in Spain is approximately €8 M/year using national funds, and €2.6 

M/year using LIFE project funds (considering both EU and partner contributions).  

Figure 6.3 shows the distribution of such investments according to the type of measures 

along the Spanish coast. Approximately 40% of the total budget was dedicated to social 

and institutional measures. Here, the main efforts were devoted to financing research 

projects and studies aimed at developing regional adaptation plans and analysing 

adaptation options (11.8%), as well as at evaluating services provided by coastal 

ecosystems (14.2%). Although the analysed period covers the early stages of the funding 

strategy, approximately half of the total budget was used to implement structural 

measures (44.9%) dominated by nature-based solutions and soft measures, representing 

23.1% and 14.7% of the investment, respectively. 

One interesting result is that the types of measures funded differ strongly between the 

two funding sources. Structural measures funded through the national adaptation plan 

consist of soft measures (mostly beach nourishment), nature-based solutions and hard 

defences (21.6%, 14.4%, and 8.7%, respectively). When these type of measures are 

considered under the umbrella of LIFE funding, the role played by nature-based measures 

increases up to 34.6%, that of soft measures decreases down to 5.5%, and no hard 

measures are considered.  

With respect to social and institutional actions, there is also a significant difference 

between funding sources. The LIFE funding clearly promotes this type of social and 

institutional actions, with approximately 60% of the investment dedicated to projects to 

evaluate and protect ecosystem services and to define protected areas. In contrast, 24.2% 

of the national funding was purely for social actions, with an absence of institutional 

measures. Approximately 15.5% of funds were not associated with specific types of 

measures, owing to a lack of relevant information. 
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Figure 6.3. Percentage of expenditures per typology of adaptation measures in Spain.  

 

6.4.2. Geographical distribution of investments in coastal adaptation 

The geographical distribution of the investments in coastal adaptation along the 

Spanish coastline is shown in Figure 6.4. Most of the funding was allocated to the 

Mediterranean coastal zone, with the largest three regions (Andalusia, Catalonia and 

Valencia) concentrating approximately 73% of the regional investment distributed among 

the coastal regions (56% if total investment, as €12.83 M are destined for measures that 

are not associated to a specific region). This is partially owing to the fact that these regions 

have successfully attracted LIFE funds. As an example of this, approximately 70% of the 

total investment in Andalusia and Catalonia has been obtained through LIFE funding, 

with important coastal adaptation projects such as LIFE-Adaptamed and LIFE-Pletera 

having been implemented. These regions also concentrate the largest investment (56%) 

of the national PIMA Adapta program along the Spanish coastline since 2015. In contrast, 

Murcia, Ceuta, and Melilla present the lowest investments in coastal adaptation, with all 

actions being supported through national funds. 
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Figure 6.4. Investments in coastal adaptation to climate change in Spanish coastal regions. Note: €12.8 M 

are destined for general measures without specific territorial assignment. 

 

Figure 6.5 shows the distribution of investments and selected regional indicators. 

When investments in a region are related to coastline length, there is an apparent direct 

relationship, i.e. the larger the shoreline, the larger the investment. However, when all 

data are considered, they are not significantly statistically correlated (Fig. 6.5a). This lack 

of correlation is caused by two groups of regions which depart from this general trend: 

(i) regions with a highly-indented coastline which results in a very large length (Galicia, 

Canary, and Balearic Islands), and (ii) regions comprised by an autonomous city, which 

results in a very short length (Ceuta and Melilla). When these regions are removed from 

the analysis, a very strong correlation is obtained (r2 = 0.94) between investment and 

coastline length.  

When investments are related to the economic importance of coastal provinces within 

each region, again a direct relationship is noted, i.e., the larger the regional coastal GDP, 

the larger the investment (Fig. 6.5b). In this case, the entire dataset follows the trend and 

they show a moderate correlation (r2 = 0.57). In spite of this, Andalusia behaves as an 

outlier, receiving an investment much larger than expected according to its GDP. If this 

region is removed, the obtained correlation between investment and coastal GDP 

significantly improves (r2 = 0.91). 
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Figure 6.5. Investment in coastal adaptation per region vs. regional indicators. (A: coastline length; B: GDP 

of coastal provinces within the region; C: average coastal vulnerability index (CVI)). (*: indicate excluded 

values to obtain alternative relationship –blue dashed line-). 
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Finally, investments in coastal adaptation in each region were related to an overall 

measure of coastal vulnerability. To this end, we have used the previous results obtained 

by López-Royo et al. (2016) who characterised the vulnerability of the continental 

Spanish coastline (excluding islands and autonomous cities in North Africa) by using a 

modified version of the CVI. Figure 6.5c shows the investments in each region versus 

their average CVI values. As can be seen, regions with the largest investments (Andalusia, 

Catalonia, and Valencia) are classified as high or very-high vulnerability coastlines, as 

these areas contain the largest extensions of uninterrupted sandy beaches. Despite the fact 

that this vulnerability computation was not used as a decision criterion for distributing 

funding, the investment in each region is strongly correlated to its vulnerability degree (r2 

= 0.77). In other words, the larger the coastal vulnerability, the larger the investment. 

 

6.4.3. Investments in coastal protection 

To put investments in coastal adaptation measures into a general context, expenditures 

in coastal protection in Spain during the last decade are analysed.  

Figure 6.6 shows the evolution of annual expenditures in coastal measures funded by 

the DGSCM since 2010. There is a significant drop in total expenditures after 2010, 

decreasing by about €120 million in just two years, to reach a nearly constant annual 

investment in regular coastal actions of €61 M/year since 2012. Here “regular” means 

expenditures without including storm recovery investment specific budget items (Plan 

Litoral). However, most of this sharp decrease (approximately 70%, €84 M in two years) 

was incurred under an objective of “improve and ensure the public and free use of the 

coast”, which is not directly related to the measures covered by the CAS (see Annex C, 

Table C4). If we only retain the annual expenditures in measures related to adaptation 

options included in the CAS (see Annex C, Table C4), the current investments in coastal 

protection were not so severely affected (blue line in Figure 6.6). 

Since 2014, the DGSCM budget has stabilized at a value approximately 55% lower 

than in 2010 (Figure 6.6), with an average annual expenditure of €64 M/year. From that 

€64 M/year, approximately €40 M/year is devoted to coastal protection projects related 

to options included in the CAS (Table C4, Annex C). In addition, during this period, the 

DGSCM has also had an average annual investment of €26 M/year in emergency 
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measures. Considering both contributions, i.e. coastal protection measures including Plan 

Litoral, the average annual investment of the DGSCM under current conditions to 

maintain and preserve the Spanish coast is approximately €66 M/year. 

 

Figure 6.6. Current expenditure by the General Directorate for Sustainability of the Coast and the Sea 

(DGSCM) in coastal protection measures. 

 

6.5. Discussion  

In this work, we have done a first evaluation of current expenditures in adaptation 

measures to climate change along the Spanish coast. Until present, most of activities 

related to coastal adaptation in Spain were related to assessing impacts and vulnerability, 

capacity building actions and developing plans and strategies (e.g. European 

Commission, 2018). In this respect, the number of adaptation initiatives and actions to 

climate change placed Spain as one of the top countries in Europe and even worldwide 

(Lesnikowski et al., 2015, 2016). As a result of these investments, the PNACC and the 

CAS were approved in 2006 and 2016 respectively (Losada et al., 2019). This has opened 

a new period for investments, in such a way that specific adaptation measures began to 

be funded along the Spanish coast. In what follows, these initial investments are 

discussed. 

Nonetheless, results presented in this study must be interpreted with caution and a 

number of limitations should be borne in mind. On the one hand, methodology limitations 

related to the lack of previous studies hamper further elaborations on previous findings. 

To our knowledge, this work is the first assessment on coastal adaptation investments in 



    Chapter 6 

 

129 

Spain at this early stage of implementation. Also, the absence of an official database 

reflecting all investments in coastal adaptation to climate change, drives us to compile 

these data from different official sources of information. In this sense, when information 

on given implemented measures exists we are sure that they took place. But, the non-

presence of such information does not necessarily imply that it does not exist. However, 

due to the obligations of the Administration to officially report annual investments, we 

assume possible deviations to be small enough. Thus, our findings can be considered 

reliable and valid in the sense they have been obtained from reliable sources although, 

formally speaking, they would represent the minimum investment made on coastal 

adaptation to climate change. 

 

6.5.1. Is so-called adaptation really adaptation? 

Nature-based related measures have been mostly funded under the LIFE program, 

whereas the PIMA Adapta program has shown a larger focus on classical coastal 

engineering actions (unless sediment-based measures are considered as nature-based 

ones). The bias of LIFE projects to this type of measure is owing to the environmental 

protection orientation of the program. On the contrary, although the PIMA Adapta also 

considers this type of measure, this early-stage funding has been mainly concentrated in 

classical coastal engineering measures, which are used most often to tackle current coastal 

problems. As coastal management in Spain is mainly oriented for supporting recreation 

and protection functions and most of the investments are in urban coastal zones, these 

approaches are often seen to be the most cost-effective measures. Gibbs (2016) also found 

that in terms of budget allocation, large-scale coastal protection infrastructure is typically 

government funded. Thus, one question left open by our analysis whether the funded 

projects have really been designed as an adaptation measure to climate change, or simply 

as short-term protection measures for solving current problems.  

Funded measures based on beach nourishment have been generally designed to tackle 

current problems, providing continuity to previous works undertaken by the DGSCM 

where the official objectives were shoreline stabilization and coastal protection. A typical 

example is the nourishment of the Benifali beach (Castellón, Valencia region) in 2017, 

an area that has been identified as a coastal hotspot for the impact of storms (CEDEX, 

2015). The budget allocated to PIMA Adapta was approximately €1 M, which is 
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approximately 27% of all of the investments in the Valencia region within the 

programme. The planned and executed works were designed to recover the beach 

functionality under current climatic conditions, and they did not account for the potential 

excess of erosion owing to sea level rise. Thus, although the measure can be considered 

as effective in recovering the beach, it cannot formally be considered as an adaptation to 

climate change. In other words, even without climate change, this measure had to be 

enacted. This can be extended to nearly all nourishment operations funded until present 

under PIMA Adapta.  

One of the few nature-based measures funded under PIMA Adapta is dune building 

(and vegetating). An example of this is an artificial dune in the Tordera delta coast 

(Barcelona, Catalonia region) in 2016. This is a coastal hotspot subject to large erosion 

rates and susceptible to inundation during storm impacts (Jiménez et al., 2017), and is 

classified as a priority area within the Maresme Strategic Plan (CEDEX, 2014). The 

budget funded through PIMA Adapta was €0.15 M, and it was the only physical measure 

funded through the programme in the Barcelona province. The dune was built during the 

first part of 2016 and, owing to the impact of storms on January/February 2017, it was 

destroyed at its northern part, where the beach was narrowest. The dune was essentially 

designed to prevent inundation of the hinterland during the incidence of storms and, 

owing to local conditions, it will hardly survive unless a minimum beach width is 

maintained in front of the dune. In spite of the fact that sediment eroded from the dune 

will contribute to the beach sediment budget, its mobilization at a very short-term scale 

hardly permits an assumption that it plays a quantifiable role in long-term coastal 

adaptation to sea level rise if no continuous maintenance is performed. 

These examples of physical adaptation measures funded under PIMA Adapta have the 

common characteristic of being executed in areas experiencing problems under current 

climatic conditions, whereas the DGSCM actively invests in coastal protection. In fact, 

most of these actions have not been executed in an isolated manner, but they were a part 

of other concurrent protection works at such locations. Thus, although formally they were 

contributing to adapting the coast to climate change by improving its current state, the 

reality is that they had to be executed, even absent climate change. In other words, they 

were officially labelled as an adaptation measure (funded under PIMA Adapta), but they 

were mostly designed to solve current problems.  
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When these measures are considered in a long-term perspective (e.g. Hinkel et al., 

2013), such as that associated with climate change adaptation, additional elements have 

to be considered. Thus, to enable nourishment as an effective long-term adaptation option, 

the existence of strategic sediment reservoirs (Marchand et al., 2011) to obtain the 

required present and future volumes is needed (e.g. Jiménez and Sanchez-Arcilla, 2019). 

Moreover, the design and execution are also key elements to be considered, i.e. 

continuous versus massive nourishments. An example of this is the Sand Motor project 

in the Netherlands, where approximately 21 M of m3 of sand was supplied to the coast 

during a period of six months to counteract coastal erosion during a period of 

approximately 20 years (see details in Stive et al., 2013). According to the corresponding 

study, this would be more efficient, economical, and environmentally friendly in the long-

term than traditional beach nourishments. By depositing a large amount of sand in a single 

operation, short-term replenishment would be unnecessary, thus avoiding repeated 

disruptions of the seabed, as well as decreasing unit dredging costs and taking advantage 

of financing opportunities (e.g. Stronkhorst et al., 2018).  

This is also applicable to implementing hard measures, where functional designs under 

current conditions are not necessarily valid for future ones (e.g. Arns et al., 2017). A clear 

example of redesigning for future conditions is the Thames Barrier and its associated 

defences, which need to be upgraded to maintain the same level of protection. Despite 

being initially designed to resist flooding from storm surges, the Thames Estuary 2100 

project proposed a strategy based on different adaptation pathways, depending on the rate 

of sea level rise (Environment Agency, 2009). Hall et al. (2019) suggest that the most 

cost-effective and robust adaptation pathway involves moving the Thames Barrier 17 km 

towards the sea if the mean sea level rises 2 m above the present level.   

An example of a nature-based solution is the recovery of the ecological functionality 

of the coastal lagoon system of La Pletera (Girona, Catalonia, Mediterranean). This is an 

action funded through the LIFE programme (Annex C, Table C1) and aiming to restore 

the integrity of a coastal lagoon system that was altered by abandoned infrastructure, by 

deconstructing built-up areas and restoring previous wetlands and their ecological 

functioning. The total investment was €2.5 M, from which 75% was funded by the EU. 

Different local stakeholders, led and coordinated by the Torroella de Montgrí 

municipality, supplied the rest of the investment. The origin of the project is a former 

study launched and funded by the DGSCM in 2007 to recover the ecological functionality 
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of the area. They also modified the land planning to incorporate a previously urban-

delineated zone to the public domain. The project has been fully executed and, in addition 

to the physical measures, it included a concerted communication, education and 

awareness-raising strategy. Although the objective is essentially based on ecological 

restoration, the adopted approach, which enhances the accommodation space in the area, 

can be easily included in any long-term adaptation scheme to climate change.  

In this context, it has to be considered that recovering coastal ecosystem functionality, 

together with the generation of space is the basis of the development of ecosystem-based 

solutions for coping with global change (e.g. Temmerman et al., 2013). Until now, the 

implemented measures have only been placed in uninhabited areas, which certainly avoid 

social conflicts. However, when using as an adaptation measure to reduce future risks, 

this measure would imply affecting the local population and as such, it may have social 

implications of different degree depending on each case (Hino et al., 2017). In this 

context, the Spanish experience in redefining coastal setbacks so as to free occupied space 

in the coastal zone to apply to the Spanish Coastal Act is quite disappointing. In most of 

the cases, it becomes a very long administrative process, in which the affected population 

uses all possible judicial resources to avoid being relocated. In practice, this implies that 

in addition to space, time is one of the most important resources for implementing 

adaptation measures based on coastal retreat (Jiménez, 2019). Thus, if this option is going 

to be considered, it should be recommended to start the usual long administrative process 

and the negotiating process with the affected population as soon as possible. This also 

illustrates that social and institutional measures are useful and needed, not only at the 

early stages, but also throughout the entire adaptation process. However, their weight in 

the allocation of adaptation expenditures has to decrease progressively in benefit to the 

other types of structural-physical initiatives. 

 

6.5.2. What drives the spatial distribution of adaptation investments? 

According to the gathered data, the regions with highest current investments in 

adaptation are located along the Mediterranean coast (Andalusia, Catalonia and 

Valencia). These regions present some common features such as relatively long 

coastlines, high coastal GDP, and high coastal vulnerability. They are among the most 

visited regions by tourists and, considering the dominant role of sun and sand tourism 
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(Aguiló et al., 2005), beaches are one of the main resources for economic development 

(Rigall-i-Torrent et al., 2011). These characteristics seem to indicate some rationality 

regarding investments, i.e. more vulnerable and/or economically important coastal 

regions can concentrate investments to progress towards better adaptations to climate 

change. In any case, it has to be considered that a significant part of the accounted 

investments are from LIFE funding (Figure 6.3), and to access them, regional 

stakeholders must participate in a competitive process which requires an active role. 

These regions caught more than 80% of the accounted LIFE funds, with Andalusia being 

the most successful region. 

At the other end of the spectrum, two of the regions with the longest coastlines, the 

Spanish archipelagos of the Canary and Balearic Islands, are among the areas with the 

lowest current investments in adaptation. These types of insular territories are, however, 

also especially vulnerable to climate change (e.g. Mimura et al., 2007). Moreover, 

landscape transformation, associated with the dominant role of the tourism industry, has 

further increased the vulnerability of those islands (e.g. Pérez-Chacón et al., 2019; Roig-

Munar et al., 2019). A possible explanation for such apparent underfunding could be 

associated to the fact that most of the existing beaches in these territories do not present 

significant problems of stability, and erosion is one of the major drivers in DGSCM 

investments in coastal protection. However, current problems related to landscape 

transformation and urban development are beyond the DGSCM competences, and 

although they can interact with climate change-induced problems, they are apparently not 

perceived as such. In any case, this apparent underfunding should be corrected, so as to 

account for territorial specificities in the near future. 

One of the key elements in properly distributing investments in coastal adaptation to 

climate change is the existence of specific adaptation plans downscaled at the regional 

level, where local impacts, needs and measures are clearly defined. Once this is available 

for all coastal regions, solid criteria for funding distribution could be established. Without 

this, current investments are usually distributed using criteria based on current protection 

needs and, some generic elements, such as coastline length. In some way, this replicates 

the results obtained by Policy Research Corporation (2009a) when analysing coastal 

protection expenditures in the EU, which found that a small group of countries 

concentrated most of the investments (Spain was one of them). Countries more advanced 

in coastal protection and climate adaptation are in general those that are most affected by 
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coastal hazards, and that have experienced severe weather events in the past. This can be 

observed specially in the North Sea countries concerned with flood risk, with the UK and 

the Netherlands as forerunners. The main difference is that, at European level, each 

country decides how much is invested in adaptation, whereas, at the national level, the 

government decides how the overall budget should be distributed. As previously 

mentioned, the active involvement of coastal regions in LIFE projects can attract 

additional and significant investments and, for the short period analysed, they have played 

a relevant role in determining the final expenditures in adaptation. 

Considering that the current beach management in Spain is oriented towards 

recreational uses owing to their importance to the local economy, mobilising private 

finance would pump resources into coastal adaptation and protection investments. Future 

efforts on coastal adaptation should focus on grant financing and aligning public 

stakeholder and private investor interests in coastal adaptation projects, to overcome 

prevailing barriers and to help close the coastal adaptation-financing gap (Bisaro and 

Hinkel, 2018). In fact, coastal adaptation is often attractive from a purely economic 

perspective for soft and hard measures to maintain benefits from tourism (Hinkel et al., 

2013), and require efficient coastal adaptation measures to maintain future beach widths 

to properly support tourist demand (e.g. López-Dóriga et al., 2019). However, they could 

also generate indirect revenues, as the associated tourism activities could be taxed (Kok 

et al., 2017). Therefore, delineating tax rates to account for unequal benefits of public 

funds could facilitate local investments in coastal adaptation (Mullin et al., 2019). 

Consequently, promoting public-private partnership with powerful (economic) 

stakeholders, for example, the tourism industry, can enhance coastal adaptation, as 

insufficient investments during earlier stages in changing conditions may lead to an 

increase in future expenditures. 

 

6.5.3. Coastal adaptation to climate change vs. regular protection 

investments 

Expenditures in coastal protection in Spain at the beginning of 2000s (2000–2008) 

were among the five highest in Europe, with an average annual expenditure of 

approximately €52 M/year (Policy Research Corporation, 2009b), with values even 

higher during the 1990s, up to €82 M/year (Barragán, 2004). However, the national 
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coastal budget significantly decreased after 2009, coinciding with the peak of the recent 

economic crisis (Fig. 6.6). Therefore, the analysed period can be characterised by a 

relatively low investment in regular protection and adaptation to climate change measures 

as, even adding both together, the annual investment would not reach the values before 

the economic crisis.  

During the last decade, and specifically from 2014 to 2018, the Spanish coastline has 

experienced significant damage associated with the impact of storms, in such a way that 

specific recovery programmes (Plan Litoral) were required (Fig. 6.6).  The spatial 

distribution of these investments depended on where storm occurred, and hence was 

concentrated in neighbouring regions during a given year (Fig. 6.7). As an example, the 

2014 programme was fully dedicated to the Cantabric/Atlantic coastal regions, to 

compensate for damages induced by the storm season of 2013/2014, which also 

significantly damaged the coast of southeast England and France (e.g. Masselink et al., 

2016). In contrast, the 2017 programme was dedicated to the Mediterranean coastal 

regions. 

 

Figure 6.7. Regional distribution of storm recovery programmes (Plan Litoral). (Location of regions can 

be seen in Figure 6.1). 

 

These damages, and consequently the budgets required for recovery, are expected to 

increase with time. Jiménez et al. (2012) detected an increase in coastal damage along the 

Catalan coastline in recent decades. They found that this increase was not related to any 

trend in storminess, but rather was associated with a progressive decrease in the protection 

capacity of eroding beaches. Thus, any scenario of sea level rise and subsequent induced 
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shoreline retreat will even further decrease the protection provided by beaches to storm 

impacts (e.g. Jiménez et al., 2017). All of these characterises the Spanish coastline as 

vulnerable to storm impacts, with expected increasing budget demands for recovery 

measures owing to the effects of sea level rise. Thus, the lack of adequate investment for 

maintaining beaches at optimum configurations to provide protection against the impacts 

of storms will tend to increase the needs and importance of this additional budget. In other 

words, if less money is currently invested, future expenditures will significantly increase 

above expected levels.   

On the whole, coastal protection and climate change adaptation activities are highly 

interlinked. In Spain, it is difficult to indicate which part of the investment is solely made 

in relation to climate change adaptation. Thus, adaptation measures are undertaken 

together with regular coastal protection activities. In fact, some management policies and 

procedures for coastal natural hazards are often seen as able to be managed without 

having an activated coastal adaptation plan in place (Gibbs, 2016). However, there is no 

existing framework designed to systematically assess the adaptation progress at the 

national level (UNEP, 2017). Tracking how adaptation is taking place allows researchers 

to document best practices, to facilitate early adoption of efficient adaptation measures, 

and to assess progress of adaptation efforts over time and space (Berrang-Ford et al., 

2019). In spite of being costly, investing now in coastal adaptation will bring greater 

benefits in the future, and a monitoring plan of adaptation will enable us to learn lessons 

regarding what works, where and why. 

 

6.6. Conclusions  

Understanding the costs of adaptation, how adaptation has been and is currently being 

funded, and what funding mechanisms have been used, and following the criteria to 

distribute the investments will help in decision-making for the long-term planning and 

implementation of adaptation measures. Within this context, this work analysed how 

coastal adaptation is being financed in the early stages of implementation of the CAS in 

Spain. 

According to the strategy, financing options will be specified once measures have been 

defined and prioritised. At the current stage, and in the absence of a detailed 
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implementation plan, coastal adaptation has been financed through national (PIMA 

Adapta) and EU funds (LIFE projects). Measures financed through PIMA Adapta are 

mainly based on traditional coastal engineering actions, and they are implemented in areas 

experiencing problems under current climatic conditions. Thus, although they would 

contribute to adaptation by improving the current state of the coast, they would need to 

be implemented even under a non-changing climate. This makes the identification of the 

part of the investment that is solely related to climate change adaptation a difficult task. 

Consequently, it may affect tracking the adoption and implementation of adaptation in 

reality. Adaptation measures using LIFE-funding are more oriented towards 

nature/ecosystem-related actions, owing to the conditions imposed by this funding 

programme. In most of the cases, although they were designed as 

environmental/ecological restoration actions, they also play out as adaptation measures. 

Solving current coastal problems under the guise of adaptation is a two-sided concept. 

On the positive side, it allows to improve the current coastal status, which will enhance 

adaptation to future changes. However, unless additional climate-induced effects are 

accounted for the design of measures, these investments will be insufficient for coping 

with future changes. A simple way to assess whether future conditions are considered in 

the design of coastal measures is by analysing the time evolution of investments in coastal 

protection. In Spain, with large vulnerable areas under current conditions, anything that 

it is not an increase in total expenditure with respect to previous years would indicate an 

underinvestment in coastal adaptation.  

All coastal adaptation actions analysed here have been financed through public funds. 

This is a legacy of the traditional coastal protection policy, which allocates to the State 

the competence, the right, and the obligation to protect our coasts. However, coastal 

adaptation can be tackled through different alternatives, with various consequences for 

the stakeholders. This can be an opportunity to access private financing for adaptation by 

selecting alternatives that, while meeting official sustainability targets, also permit 

meeting the specific needs of stakeholders. In countries with an important coastal tourism 

industry and/or a large part of the GDP associated with the tourism sector (for example, 

many Mediterranean countries), contributing to financing coastal adaptation could be 

considered as an additional cost in this sector.  
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Although the adaptation resource considered here is money, time is the most evident 

declining resource. Although we are at the beginning of the implementation of adaptation 

measures, these need to be undertaken and implemented with respect to time. Delays 

and/or actions not taken properly and timely during the initial stages could result in higher 

costs arising in the future. Finally, it has to be stressed that the misuse of the concept of 

adaptation measure will tend to the society to be overconfident about adopted actions 

whereas they are not really progressing to real adaptation. To overcome this risk, it is 

necessary to have a clear roadmap for implementing adaptation measures together a 

proper financing structure. 
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Chapter 7  

Adaptation strategies for the Catalan coast 

 

 

7.1. Introduction  

This Chapter presents different adaptation strategies to cope with the impacts of SLR 

on the Catalan coast focused on the management of the two analysed functions: (i) 

maintenance of recreational uses, and (ii) conservation of areas of high natural values.  

There is an urgent need to plan our response to climate change, where in addition to 

mitigation policies; adaptation will play an essential role. Since any decision on 

adaptation over time implies a deep uncertainty (Hallegate et al., 2012), the design of 

dynamic adaptive plans have emerged as a key option (Haasnoot et al., 2013, 2019; 

Hallegate, 2009; Hallegate et al., 2012). In this context, an adaptation pathway is a 

decision-making strategy that involves a sequence of manageable steps in terms of 

alternative ways to achieve objectives over time. Central to this approach is the concept 

of adaptation tipping point (ATP), condition under which a particular action no longer 

achieve the specified objectives and a new action is necessary (Kwadijk et al., 2010). As 

a result, the adaptation pathway approach presents a series of consecutive and planned 

measures after a tipping point in the shape of a decision tree. Each decision within an 

adaptation pathway is triggered when changing conditions cross a threshold beyond 

which an unacceptable level of risk to the function is likely to arise. The timing of the 

ATP for a given action strongly depends on the considered scenario. Thus, the faster the 

rate of change is, the earlier the decision on adaptation will be. Moreover, they must 

consider both the timing to make the decision on measure to be implemented and the 

timing to implement such measure (Haasnoot et al., 2019). 
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Here, the practical goal is to present and compare different adaptation strategies 

oriented to a specific function in order enable coastal managers to develop suitable and 

sustainable adaptation plans and create a strategic vision of the future. 

 

7.2. General criteria 

The selection of alternatives and related actions demands a prioritisation by 

introducing specific criteria to manage analysed coastal functions. Although this is a 

policy option, in this work such priorities have been defined in agreement with the Coastal 

Adaptation Strategy (CAS) and the National Planning Framework for Adaptation to 

Climate Change (PNACC). Thus, the two basic criteria are: 

• Where beaches are used for recreation and tourism, the functionality of the coast 

should be preserved. This implies to maintain the beach width within optimum values to 

provide the required recreational carrying capacity.  

• High natural value areas located on sensitive stretches to SLR (i.e., low-lying 

coasts) should be managed to enhance its natural resilience, giving priority to nature-

based solutions wherever possible. 

 

7.3. Adaptation strategy for the recreational use of the coast 

7.3.1. Acceptable limit for the current strategy 

Prior to defining any adaptation strategy, it is necessary to set an acceptable level of 

potential risk referring to the state and functionality of the socio-economic system 

(Losada et al., 2019). Responsible stakeholders will select this level of acceptability, and 

it will determine when actions need to be implemented. In this work, we have assumed a 

given (arbitrary) risk threshold, although this can be modified by the competent 

Administration.  

When dealing with economy, the selection of a risk threshold is a tricky task since, in 

general, any variation in the GDP would cause a great concern. In this context, we have 

selected a 2% decrease on the total GDP as the threshold to take adaptation actions. 
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According to the analysis done in Chapter 3, this value can be translated approximately 

into a 20% decrease in the contribution from tourist activities which corresponds to a 20% 

reduction in the PCC (physical carrying capacity). Such change in the economy would 

represent a loss of more than €2,500 M in 2019 values and more than 36,500 work 

positions in Catalonia. It is important to highlight that the definition of this threshold is 

considered apart from any external factor, such as the case of COVID-19 pandemic whose 

recorded decline for Spain GDP was 18.5% for the second quarter 2020 (Eurostat, 2020). 

Figure 7.1 shows the projected reduction in the PCC for the entire Catalan coast under 

given SLR scenarios. As it can be seen, the threshold of tolerable risk will be reached by 

2035 under both RCP scenarios, while it will occur 5 years sooner under H+. Table C5 in 

Annex C shows the differences for the expected timing for this initial ATP considering 

different management targets based on different assumable PCC losses.  

 

Figure 7.1. Projected reduction in PCC (in %) for the entire Catalan coast at different SLR-scenarios. In 

this work, 20% decrease in PCC is considered as the tolerable threshold for starting adaptation associated 

to a reduction of 2% of GDP. 

 

This timing for adaptation is not uniform along Catalonia since there is a high spatial 

variability in beach PCC, magnitude of the impact and contribution to GDP among coastal 

comarcas. Thus, it is expected that Costa Dorada will be the first tourism brand requiring 

adaptation, which must start to be implemented in about 10 years (2030) under RCP 

scenarios, whereas this tolerable threshold will be reached in about 15 years (2035) for 
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Barcelona and Costa Barcelona, and in about 20 years (2040) for Costa Brava (Table C5 

in Annex C). 

Adaptation measures to propose a strategy to manage coastal recreation under the 

influence of SLR have been selected taking into account alternatives considered within 

the PNACC and the CAS (López-Dóriga et al., 2020): (i) beach nourishment, and (ii) 

spatial tourism planning. The former corresponds to the most widely applied 

structural/engineering measure, whereas the latter refers to a coastal planning strategy to 

redistribute users in areas with enough carrying capacity. These strategies are presented 

in what follows. 

 

7.3.2. Beach nourishment 

7.3.2.1. Specific criteria 

In general terms, beach nourishment can be defined as the artificial addition of suitable 

quality sediment to a beach area that has a sediment deficit to maintain its width for a 

specific purpose, such as protection or recreation (Dean, 2003). As it was introduced in 

Chapter 2, this optimum beach configuration for recreational purposes in the Catalan 

coast corresponds to a width of 40 m. To implement this adaptation measure the following 

conditions have been imposed: 

 Nourishment is only applied in urban and semiurban beaches to compensate 

SLR-induced effects when the maximum saturation level (4 m2/user) is 

exceeded. 

 Since the management target is recreational, and no changes in beach typology 

is considered, natural beaches are not nourished in spite of being eroded. As a 

consequence, Ebro Delta beaches (Baix Ebre and Montsià coastal comarcas), 

among others, are not nourished under a recreational planning perspective. This 

does not imply that natural beaches could be nourished under other criteria 

defined by the competent Administration. 

These criteria have been selected to optimize the use of the available sand stock. A 

generalized beach nourishment strategy would imply, in addition to higher costs, an 

earlier depletion of the resource and, consequently, an early reaching of the tipping points. 
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7.3.2.2. Methodology 

The methodology to define this adaptation measure comprises the following steps: 

1. Calculation of required volume to nourish beaches 

The first task is to evaluate the volume required to compensate losses associated to 

shoreline changes (∆𝑋). The volume of sediment required per unit length of shoreline 

(∆𝑉) is here simply estimated by assuming that shoreline changes result in a parallel 

displacement of the active beach profile, which is defined from the berm (𝐵) down to the 

closure depth (𝑑𝑐) (Eq. 7.1), 

 ∆𝑉 = ∆𝑋(𝐵 + 𝑑𝑐) (7.1) 

The success of a nourishment scheme strongly depends on the compatibility of the 

borrow sediment with respect to the native sand (Dean, 2003). Since beaches along the 

Catalan coast are of varying sediment sizes (CIIRC, 2010), they will require borrow 

sediment of different characteristics. The proper selection of such material will control 

the expected sediment losses which are usually represented through the overfill factor. To 

simplify the analysis, in this work, full availability of suitable borrow material is assumed, 

and a general overfill factor of 1.05 is applied to compute nourishment volumes with 

respect to required ones.  

 

2. Aggregation to a given territorial or management unit 

Required nourishment volumes are calculated for each beach, and then they are 

aggregated up to a given management unit. Available sediment stocks are public goods 

to be administrated by the Government of Spain, and they could be obtained and used 

across different autonomous communities. In spite of this, in this work we assume that 

the maximum management unit is given by the Catalan coast, and that the competent 

Administration will set up the criteria to distribute the material within such unit to meet 

local demands.  
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In order to mimic the role of the competent Administration, and because the target is 

to manage recreational beaches, we have defined the tourism coastal brand as the 

integration management unit. Moreover, in order to distribute the existing available sand 

stock among different units to meet nourishment needs, two criteria are considered: (i) 

physical, as a function of the sandy coastline length of each unit; and (ii) economic, based 

on the number of tourist accommodations within the unit, which is a proxy of the potential 

demand of beach resources, and highly related with the recreational component of the 

GDP (López-Dóriga et al., 2019). This approach serves to frame adaptation strategies 

according to social and territorial constraints and capacities (see e.g. Adger et al., 2009; 

Dupuis and Biesbroek, 2013; Ford et al., 2010). 

 

3. Definition of available stock of sediment 

The main ATP controlling this adaptation measure will be controlled by the existence 

of enough sediment resources to implement it under a given SLR scenario. In this context, 

the concept of strategic sediment reservoir introduced after the Eurosion project 

(Marchand et al., 2011) plays an essential role. This is especially evident when beach 

nourishment needs to be periodically done, which is the case in adapting to SLR-induced 

erosion. Although this stock should be established by evaluating existing sediment 

resources in the shelf susceptible to be exploited, in this work has arbitrarily been fixed 

just to illustrate the development of the strategy. To this end, two different potential 

sediment stocks have been selected, which are given by: (i) a volume equivalent to the 

cumulative nourishments done along the Catalan coast during the last decades (1980-

2010); and (ii) a multiple of this amount (here taken as two times). 

 

4. Identification of the sell-by date 

Finally, the timing of this action is identified when the established ATP for this 

measure occurs. This sell-by date depends on the considered SLR-scenario and defined 

objectives. Two conditions have been defined: (i) whenever the current PCC cannot be 

maintained (i.e., no variations in the current economy); and (ii) when the assumed 

threshold of 2 % of the GDP is reached. 
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7.3.2.3. Results 

1. Sand volume requirements 

The estimated cumulative volumes of sediment required for beach nourishment to 

compensate losses resulting in widths narrower than 40 m are 101.8 M m3 and 123.9 M 

m3 by 2100 under RCP4.5 and RCP8.5 scenarios, respectively (Fig. 7.3a and Table C6 in 

Annex C). This amount nearly doubles up to 255.1 M m3 under the H+ scenario.   

It has to be stressed that these amounts result of a strategy based on maintaining PCC 

in urban and semiurban beaches, and any change on this would imply a drastic change in 

the required sediment stock. As an example, under RCP8.5, the required volume by 2100 

would rise up to 152.2 M m3 and 300.0 M m3 to compensate induced erosion (without the 

40 m width condition) in (i) recreational beaches, and (ii) all beaches, including natural 

ones, respectively. Required sediment volumes under different nourishment criteria and 

SLR scenarios are shown in Annex C, Table C6. 

The disaggregation of these cumulative sand requirements by 2100 under RCP8.5 at 

the tourism brand scale is indicated in Fig. 7.2. As it can be seen, Costa Barcelona will 

be the most demanding brand requiring 45.3 M m3, which represents 36.6% of the total. 

Costa Brava and Costa Barcelona will require similar amounts of material, roughly 30% 

of the total each one, whereas the needs for Barcelona will only represent the 3.7% of the 

total (Fig. 7.2 and Fig. 7.4). Estimated sediment needs for each tourism brand under 

different scenarios can be seen in Annex C, Table C7.  

 

Figure 7.2. Distribution of sand among tourism brands under RCP8.5 scenario by 2100 considering the 

nourishment criteria defined in this work (total required: 123.9 M m3). 
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These volumes would theoretically permit to sustain the economy related to beach 

recreation, in that contribution linked to PCC since this would be preserved. Under an 

adaptation strategy of assuming a 2 % decline in GDP, the required volumes would reduce 

and measures should be implemented later. Thus, for the most restrictive criteria under 

which only recreational beaches are nourished to compensate up to 40 m width, the total 

required sediment volumes by 2100 will decrease down to 81.8 M m3, 103.9 M m3 and 

204.1 M m3 under RCP4.5, RCP8.5 and H+ scenarios, respectively (Fig. 7.3b). 

 

2. Timing of the action 

Figure 7.3 shows the limits of this action as a function of sediment availability, which 

were set in 25 M m3 and 50 M m3. For the strategy of adapting to maintain current PCC, 

beach nourishment would be feasible by itself until 2040 and 2060 under RCP8.5 for both 

stocks respectively. In the case of the 2 % GDP decrease strategy, the feasibility of 

nourishment will extend about 15 years. Temporal variations in the timing of this action 

under different SLR scenarios and management strategies are shown in Annex C, Table 

C8. 

The existence of a limited sediment availability implies to decide on how to distribute 

among the different tourism brands to meet their needs to locally adapt to SLR. Although 

this is policy option, here we mimicked this decision by using physical and economic 

features (Table 7.1). If the distribution is based on the extension of beaches within the 

unit (physical criterion), Costa Barcelona and Costa Dorada will receive the largest 

amount of sand, whereas Costa Brava will be the most benefited using the economic 

criterion due to the highest contribution of their beaches to the GDP. 

 

Table 7.1. Distribution criteria of the available sand for beach nourishment by tourism brands.  

Tourism brand Physical criterion Economic criterion 

Costa Brava 29% 41% 

Costa de Barcelona 35% 16% 

Barcelona city 5% 17% 

Costa Dorada 31% 26% 
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Figure 7.3. Sand volume requirements for nourishment and ATPs assuming (a) no economic losses; or (b) 

after a 2% decline in GDP. 

 

As a consequence of this sediment stock distribution, the timing of nourishment will 

vary among tourism brands (Annex C, Table C9). Considering a total sediment stock of 

50 M m3 and for the strategy of maintaining current PCC, the feasibility of nourishment 

to adapt to SLR would be similar for all tourism brands if this stock is distributed using 
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the physical criterion (Fig. 7.4, discontinuous green line). Thus, under the RCP8.5 

scenario, nourishment will be a valid adaptation measure by itself until 2060 for Costa 

Brava, Barcelona and Costa Dorada, and until 2055 for Costa Barcelona. However, if the 

distribution is done based on economic criterion (Fig. 7.4, discontinuous pink line), 

significant timing differences would appear along the coast. Thus, under RCP8.5, the 

“allocated” volume of sediment for Costa de Barcelona would satisfy their local needs 

until 2035, whereas those for Costa Brava will be able to implement this action during 

the second half of this century (Annex C, Table C9).  

 

Figure 7.4. Sand volume requirements among tourism brands for nourishment and ATPs based on the 

distribution criteria defined by the competent Administration considering a total sediment stock of 50 M 

m3. Note: sand requirements for Barcelona brand are approximately 10 times less than the other tourism 

brands.  
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7.3.2.4. Discussion 

Given than the adaptation process interacts between natural and social systems, it is 

important to integrate perspectives from technological limits, economic and financial 

barriers and social conflicts into adaptation planning (Hinkel et al., 2018). 

 

Technological limits. From a technological point-of-view, the availability of adequate 

volume of sand is a challenging task. On the one hand, the borrow sand must be 

compatible to the native sediment of each beach, in terms of size, texture, composition 

and colour. On the other, sand requirements increase as sea level rises leading to a rapid 

depletion of sand reservoirs. Therefore, some uncertainties appear associated to the 

availability of good quality material and the rate at which it is needed. In fact, Hanson 

(2002) suggested that the great challenge for this measure will be to find suitable borrow 

areas in the near future. Specifically for the Catalan coast, current estimates of 

traditionally used shallow sediment stocks are insufficient to cover expected needs 

(Galofré et al., 2018), so, the great challenge is to find a strategic sediment reservoir 

(Marchand et al., 2011). 

 

Economic barriers. Generally, this action is beneficial in areas of tourism 

development since coastal tourism contributes substantially to the economy. Current 

standard costs per cubic meter of sand range between €6-10, for relative short-distance 

borrow to nourishment sites. By applying these values to the required volumes of sand, 

in cost-benefit terms, adaptation is profitable for these areas since associated costs are 

much lower than expected losses if actions will not be taken to prevent the reduction in 

the carrying capacity of beaches. However, unit costs are expected to increase since 

nearshore sites from which sand is currently derived are expected to be exhausted, and 

deeper and at longer distance deposits should be required. Moreover, prices are likely to 

rise due to lack of contractors available to undertake nourishment works coupled with the 

increase in its demand, already observed in the Netherlands (Hillen et al., 2010). 
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Table 7.2. Comparison between nourishment costs and projected losses in tourism GDP.  

Year 
Cost of nourished sand (M €) Reduction in tourism GDP (M €) 

RCP4.5  RCP8.5  H+  RCP4.5 RCP8.5 H+ 

2050 219 - 364 219 - 364 328 - 546 4,833 5,222 7,681 

2075 381 - 635 438 - 730 782 - 1,303 7,361 8,175 10,894 

2100 611 - 1,1018 743 - 1,239 1,531 - 2,551 8,762 9,952 11,955 

 

Finance barriers. At present, the costs of beach nourishment are financed by the 

Central Government. However, it is not clear how long public finance can maintain these 

actions in the near future. Future nourishment projects could be financed by Public-

Private Partnerships given the multiple beneficiaries from maintaining beaches to support 

the recreational demand. In fact, there is a strong relationship between price hotels and 

the distance to the beach (Alegre et al., 2013). Particularly for Catalonia, Rigall-i-Torrent 

et al. (2011) analysed the effects of beach characteristics (e.g., length, width, sand type 

and beach services) and location on hotel prices showing 13-17% increase, on average, 

for those in front of a beach. Therefore, powerful economic stakeholders with high stakes 

in beaches, such as the tourism industry, could contribute for beach nourishment in terms 

of tax revenues.   

 

Social conflicts. Beach nourishment can diverge private interests, such as tourism, 

favouring this action and environmental activist opposing it. Despite being a “soft” action 

often considered as environmental-friendly, this measure can cause damage to the 

adjacent Posidonia oceanica meadows (González-Correa et al., 2008). Apart from 

conflicting interests (economic versus environment), different administration levels 

managing the Spanish coastal zone show a lack of coordination between them leading to 

a des-integrated management without a defined medium-long term strategy for beaches 

(Ariza et al., 2008; Jiménez et al., 2011). The citizen platform Preservem el litoral 

opposed to nearshore dredging claiming that this action promote unsustainable coastal 

management and demanding a new integrated coastal management model with more 

public participation.  
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7.3.3. Spatial planning 

7.3.3.1. Specific criteria 

This measure consists of allowing the distribution of potential beachgoers along the 

territory to sustain the future carrying capacity without implementing structural actions 

to avoid losses on beach surface. In this case, adaptation will be accompanied by spatial 

planning policies by developing new infrastructures and services in areas with enough 

space on beaches to accommodate the potential users’ demand. The implementation of 

this measure assumes the following: 

 Areas with enough carrying capacity on their beaches will absorb the excess of 

demand from others with insufficient PCC.  

 In consistency with the general restriction for natural beaches, the Ebro Delta 

with more than 50 km of beaches is not taken into account since it would imply 

a major transformation of the area losing its natural characteristics. 

 

7.3.3.2. Methodology 

1. Identification of sender/receiver areas 

The first step involves the evaluation of how beachgoers can be distributed along the 

territory. To do this, potential “sender” and “receiver” areas are identified. The former 

correspond to those whose PCC will be lower than their corresponding demand whereas 

the later have a larger PCC than the needed to sustain its local demand. Following the 

acceptability limit of the strategy, the distribution of users is triggered when the carrying 

capacity is affected by 20%. 

When a beach is mainly used or exploited for recreational purposes, two types of use 

can be distinguished: (i) tourist, and (ii) leisure. The former represents coastal tourism as 

one of the most important economic activities whereas the latter represents the social 

service provided by beaches. Although the analysis done in Chapter 2 focuses on the 

tourist component (tourist BCC), the social component must be also considered when 

designing adaptation. In this section, an equally distributed use of beaches between both 

components is assumed, i.e., 50% of the PCC for local residents and 50% for tourists. 
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Furthermore, to ensure the maximum potential tourist demand on beaches, 100% of 

potential tourists (given by the number of accommodation places) is assumed that will go 

to the beach.  

 

2. Aggregation to a given territorial unit 

Once the PCC is estimated for each beach, values are integrated within a given 

management unit to assess the distribution capacity of users within such unit in terms of 

“absorbing” the maximum potential demand. Given that there is no a fixed criterion about 

users’ distribution, and following the analysis done for beach nourishment, values are 

scaled up to the entire territory of Catalonia simulating the maximum users’ mobility. 

 

3. Identification of the sell-by-date 

As the previous measure, the timing of this action is established based on when 

triggering this action: (i) from today to avoid any variation in the economy or; (ii) when 

the tolerable risk for the economy is reached. In this case, this situation is achieved when 

the capacity is less than 80% since the tolerable risk threshold for the economy (2% 

decline in GDP) is exceeded from this value. 

 

7.3.3.3. Results 

1. Sender/receiver areas 

Fig. 7.5 shows the long-term projection (by the year 2100) of the sender (in red) and 

receiver (in green) areas of beach users under the different SLR-scenarios, with 

redistribution starting when the economic risk threshold is exceeded. For the RCP8.5 by 

2100, there will be 37 sender municipalities unable to sustain the potential beachgoers’, 

being the Costa Brava the largest sender tourism brand. On the other hand, 23 

municipalities will be capable of absorbing the excess of demand, most of them located 

in the Costa de Barcelona tourism brand. As expected, the number of municipalities able 

to absorb users will decrease as sea-level rise, concentrating the users’ distribution in 11 
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municipalities for the most-extreme scenario (H+), being Costa Brava and Costa Dorada 

the most affected tourism brands. 

 

 

Figure 7.5. Potential sender and receiver municipalities by 2100 at different SLR-scenarios. Discontinuous 

line indicates Ebro Delta municipalities whose beaches were not considered for potential user distribution. 

For municipalities’ codes, see Table A1 in Annex A.  

 

2. Timing of the action 

Fig. 7.6 shows the variation in user distribution based on the PCC relative to the 

potential demand under different SLR-condition. If the user spatial distribution according 

to the current PCC is maintained, Catalan beaches will be able to absorb its potential 

beach demand up to 2050 for both RCPs and up to 2030 for H+. If the triggering point to 

implement this measure is the 2% decline in GDP, the current distribution will be valid 

until approximately 2070, 2065 and 2045 for RCP4.5, RCP8.5 and H+, respectively. 

Discontinuous lines in Fig. 7.6 indicate the capacity for the entire territory of Catalonia, 
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including beaches within Ebro Delta municipalities, in such a way this measure would be 

extended on average 5 years more if these natural beaches were included. Table C10 in 

Annex C shows the expected timing for users’ distribution promoted by developing new 

spatial planning policies as an adaptation measure. 

 

Figure 7.6. Users’ distribution in terms of potential demand absorbed by the PCC on Catalan beaches. 

Discontinuous lines indicate the increase in the distribution capacity by including Ebro Delta (ED) beaches. 

 

7.3.3.4. Discussion 

Technological limits. Theoretically, there are no technological limits in this case. The 

main challenge involved in implementing this measure will be the development of new 

urban infrastructures and services associated to the recreational use of beaches. In general 

terms, the larger the number of users, the larger the number of existing services (Jiménez 

et al., 2007). Not only tourism industry must be developed in receiver areas, but also 

improvements on infrastructures (roads and connections between areas) and beach 

services designed to facilitate the use of the beach and make the users’ experience 

comfortable (easy access to the beach, showers, bars, WCs, among others). The main 

challenge for this strategy is related to the territorial planning of each site, which 

determines if the development of new infrastructures is possible or not. In this sense, 
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receiver areas must have a soil classification that allows for the urbanization without 

generating any impact.    

 

Economic barriers. The main and the highest impact of the implementation of this 

measure is the abandonment of well-stablished areas with local economies strongly linked 

to coastal tourism (e.g., Costa Brava). However, this option could be an opportunity for 

less-developed areas by improving the tourism market in those with enough space in their 

beaches. On average terms, approximately 30% of tourism GDP is generated in Costa 

Brava but, as seen in Fig. 7.5, their beaches will not be able to support their potential 

demand at their own at long time projections. Only Castelló d’Empuries and Begur 

municipalities will present an excess of their PCC with respect to their potential demand 

to host potential users from other areas under RCP conditions whereas such capacity will 

be null for the worst-case scenario (H+). The projected variation in its tourism GDP 

derived from the mobilisation of users in sender municipalities will range between 78- 

100% by 2100 with respect to 2019 values depending on the SLR considered with a very 

high economic impact at the local scale (Table 7.3). On the other hand, the most benefited 

tourism brand from user distribution will be Costa de Barcelona where more than half of 

the potential receiver municipalities will be located within this brand at any SLR-

scenario, although it is not clear that its territory would allow the necessary urban 

development for the tourism industry given its current level of urbanization. Therefore, 

its contribution to tourism GDP, approximately 17%, would be increased by developing 

spatial planning policies and providing resources to promote the use of their beaches. 

Furthermore, the impact on GDP from sender areas will be less than the other tourism 

brands (Table 7.3).  

 

Table 7.3. Variation in tourism GDP by 2100 from potential user mobilization in sender municipalities.  

Tourism brand 
2019 tourism GDP 

(M €) 

Variation from sender municipalities  

RCP4.5 RCP8.5 H+ 

Costa Brava 3,893 78% 90% 100% 

Costa de Barcelona 2,352 31% 34% 61% 

Barcelona city 4,070 85% 87% 95% 

Costa Dorada 2,947 57% 66% 83% 
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Financial barriers. Spatial planning seems to be constrained by accessible finance to 

develop new areas with enough space on their beaches as well as to compensate losses in 

those whose beaches are retreating or even collapsing. Furthermore, spatial planning has 

a critical anticipatory role to play in promoting robust adaptation (Wilson, 2006) in such 

a way planning new tourism must be proactive  (Ryan, 2002). Furthermore, when defining 

tourism planning policies and developing new tourist areas is important to consider the 

life cycle and the maturity state of the tourist destinations (Butler, 1980). Specifically for 

the massive sun-and-beach tourism model, it is recommended to implement re-structuring 

processes to face the challenges of competitiveness and future sustainability of the tourist 

activity (Faulkner, 2002; Ivars-Baidal et al., 2013; Medina-Muñoz et al., 2016).   

 

Social conflicts. The implementation of this measure will lead to a considerable 

socioeconomic change since sender areas would lose their current model of economic 

development while receiver areas would support a greater one. It is inevitable that any 

modification in the tourism development induces changes on the social character of the 

destination. The PCC reduction in sender areas will transform the competitive position 

and sustainability of coastal tourism with important implications for potential tourism 

revenues, destination marketing as well as local economies and loss of work positions. 

Conversely, some conflicts in receiver areas will arise relating overcrowding situations 

and environmental problems (Burak et al., 2004; Saveriades, 2000), civil complaints 

about effects on the territory (Hjalager et al., 2020), and even social movements against 

classical tourism (Milano et al., 2019). 

Spatial planning can be used as a tool for a sustainable development if environment, 

society and economy is considered (Risteskia et al., 2012). The challenge for planning is 

to ensure the efficient use of the resource (here, beaches) while balancing socio-economic 

development, cultural heritage and environmental protection.  

 

7.3.4. Concluding remarks 

It is worth to mention that coastal tourism is one of the most important industries for 

the Catalan economy. Presented strategies correspond to two opposite perspectives for 
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managing the coast with the same strategic objective to maintain the carrying capacity of 

beaches in order to sustain the economic contribution from their recreational use. Through 

beach nourishment works, it is expected the maintenance of the status quo of beaches 

whereas the total capacity can be preserved by allowing the distribution of potential users 

throughout the territory. Furthermore, the type of use done by beachgoers differs among 

presented strategies. Nourishment is implemented regardless of the type of visitor, tourist 

or local, representing the total recreational use. However, the spatial distribution strategy 

compares the reduction in the carrying capacity with the possible influx of beachgoers, 

focusing more on the tourist component of the recreational function of beaches. As seen 

previously, both measures present advantages and disadvantages when designing and 

implementing providing a comparative analysis in terms of technological limits, 

economic and financial barriers to adaptation and social conflicts.  

Technically, the broad experience in nourishment works makes it easier to implement 

than new spatial planning policies. In fact, artificial nourishment has become the most 

used action to try to counteract beach erosion along the Catalan coast during the last 

decades and along worldwide coasts (Cooke et al., 2012; Hanson et al., 2002; Luo et al., 

2016). In addition, improvements have been made in the design and execution of projects 

as well as the exploitation of deeper sand reservoirs. As far as spatial planning strategies 

is concerned, the apparent lack of technological requirements for promoting the 

distribution of beachgoers is not real since the development of services is required to 

facilitate the use of beaches and to satisfy the recreational experience (easy access, 

showers, WCs, bars, among others) (Jiménez et al., 2007). This will be feasible in receiver 

areas if and only if re-planning policies are introduced to the development of such 

recreational infrastructures.  

Economically, the maintenance of the current economic contribution is faster through 

nourishment works by maintaining the current status quo of beaches. Obtained benefits 

in terms of avoiding losses in tourism GDP are significantly higher than the associated 

costs (Table 7.2). Furthermore, such costs can be distributed over time through periodic 

actions. In contrast, despite being highly profitable in potential areas to be developed, the 

creation of new recreational areas with enough carrying capacity on their beaches will 

require a very high investment at initial stages.  
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As far as obtaining funds is concerned, beach nourishment is financed by proper 

budgetary appropriations by the Central Government because, by Law, the coastal 

defence and maintenance is strictly its responsibility. Conversely, spatial planning will 

attract private interest as it means the development of new economic markets. Private 

provisioning attracts investment when returns are high, such as in coastal tourism and real 

estate. Showing both strategies can be an alternative to introduce Public-Private 

Partnerships in financing adaptation in such a way those stakeholders benefiting from the 

maintenance of the recreational capacity on beaches are pushed to co-finance the 

responsibility of investing in adaptation.  

Finally, from the social standpoint, the spatial planning strategy will carry the greatest 

impact since the implementation of this measure will affect the local economy leading to 

a general mobilization while most of the social complaints generated by beach 

nourishment actions are associated to environmental conservationist complaints.  

 

7.4. Adaptation strategy for the natural use of the coast 

7.4.1. Adaptation strategies in low-lying natural areas  

Adaptation to climate change is particularly important in low-lying coastal areas 

threatened by SLR (Hinkel et al., 2014; Nicholls et al., 1999).  In fact, there are two main 

reasons underpinning the need for it: (i) to prevent the loss and degradation of coastal 

habitats, and consequently, the impacts on society, and (ii) to reduce the increased 

potential risk to people and assets. 

From the natural landscape perspective, the inherent adaptive capacity of coastal 

habitats, especially wetlands, appear to be large (Kirwan and Megonigal, 2013). Their 

main adaptation mechanisms involve vertical accretion to keep pace with SLR (Cahoon 

et al., 1995; Kirwan et al., 2010; Reed, 1995) as well as landward migration for their 

survival (Enwright et al., 2016). One strategy for enhancing this natural resilience is 

through innovative nature-based solutions including management realignment as a 

sustainable adaptation measure to ensure that there is enough space to adapt naturally 

(Esteves and Williams, 2017). During the last years, there is a growing tendency of giving 

importance to the role of “building with nature” by promoting sustainable practices in the 
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context of climate change (Jacobs et at., 2009: Luisetti et al., 2011; van Staveren et al., 

2014). 

Conversely, adaptation in these areas is also driven by the maintenance of the 

economic development encouraging protection to prevent significant changes to the 

current structure of the economy (Suckall et al., 2018). Therefore, interaction between 

land use and economic interests can influence adaptation. This is observable in the 

Ganges-Brahmaputra-Meghna Delta (Nicholls et al., 2016) where constructing dykes is 

envisioned to safeguard the economic potential of the area (Ahmed et al., 2017). In fact, 

the World Bank invested approximately US $400 M to improve polder embankments in 

Bangladesh with the objective to protect from direct inundation and to improve the 

agricultural production by reducing saltwater intrusion (World Bank, 2013). Other 

example can be found in the Mekong Delta where current protection policies shifted to 

protection strategies based on raising dikes in order to enable the socio-economic 

development dedicated principally to rice farming (Renaud et al., 2013).  

Particularly for our study case areas, these two approaches could be applied to address 

adaptation. Although their economic contribution to the Catalan GDP is low, essentially 

related to agriculture, this activity cannot be completely ignored due to its social and 

cultural component. On the other hand, the studied low-lying areas represent hotspots in 

terms of natural values and they concentrate the largest contribution to natural capital 

along the Catalan coast. Therefore, both economy and environmental protection must be 

considered to designing adaptation strategies at these coastal zones.  In what follows, two 

adaptation alternatives are presented and discussed. 

 

7.4.2. Nature-Based solutions 

7.4.2.1. Specific criteria 

The objective of this strategy is to provide locally enhanced resilience to SLR in low-

lying areas by promoting natural protection by creating natural buffer zones. This implies 

to generate accommodation space to permit habitat creation/conversion and conservation 

as SLR generates the inundation of the area. To this end, it is essential to facilitate habitat 

conversion to promote the value of the ecosystem services provided by these natural areas 



The influence of Climate Change on the coastal risk landscape 

160 

while maintaining economic activities, mainly agriculture, at higher elevation areas where 

the risk is low. In this sense, following results obtained in the impact assessment presented 

in Chapter 4, SLR can be considered an opportunity, with a substantial part of the land 

(higher elevation areas) being economically profitable at medium-term projections, and 

the most vulnerable areas (lowest elevation) being susceptible to permit the development 

of new natural areas. The implementation of this measure assumes the following: 

 Managed realignment to reclaim stretches of agricultural land at the most 

vulnerable area to SLR-flooding (lowest elevation zones). 

 Buyout of private properties by the Central Government to incorporate them to 

the Maritime-Terrestrial Public Domain (MTPD). 

 Progressive removal of fixed infrastructures in affected areas to enhance 

ecosystems connectivity and capacity of landward migration.  

 

7.4.2.2. Methodology 

1. Delimitation of potential areas to allow the re-naturalization 

With this strategy, the operational target is to allow a progressive inundation to 

promote the likely conversion of some habitats. The delineation of flood-prone areas 

under SLR including hydraulic connectivity has been introduced in Chapter 4. This 

methodology is applied and the inundation is projected by 2100 through successive steps 

of action phases. Because the inundation extent depends on the SLR-scenario considered, 

the most unfavourable climate change conditions is presented here given by the RCP8.5 

scenario. 

 

2. Definition of action phases 

Once the potential areas likely to be affected by SLR are defined, it is established the 

action phases at which several measures will be implemented to create space for natural 

dynamic processes. In this work, different time horizons (2050, 2075, and 2100) have 

been defined for a progressive transformation required for habitat shift. 
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Given the timescales of adaptation (Hallegate, 2009), managed realignment and land 

reclamation entail a preparation phase (τ) required for negotiating with the involved 

stakeholders, land buyouts and expropriations as well as for dismantling fixed barriers. 

Here, it is assumed 5 years for planning and preparedness, and 25 years between action 

phases to let nature take its course. This progressive implementation allows for an 

adaptive management of the strategy to evaluate how it works during a phase and apply 

corrective actions, if necessary, to the next one.  

 

7.4.2.3. Results 

Fig. 7.7 shows the vulnerable areas to SLR-induced flooding in GR, LD and ED and 

action phases of re-naturalization and managed realignment. The time line of this strategy 

is represented in Table 7.4 where main implemented actions are summarized.  

 

Table 7.4. Time line and main activities to take during action phases in GR, LD and ED under the RCP8.5 

scenario.  

 

 Phase 1 Phase 2 Phase 3 

 GR LD ED GR LD ED GR LD ED 

Expropriation/purchase 

of cropland (ha) 
86 29 2,129 118 60 5,516 341 204 4,079 

Withdrawing of urban 

infrastructure (ha) 
8 1 35 3 3 216 22 4 313 
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Figure 7.7. Potential areas to implement the nature-based strategy at different action phases in a) GR, b) 

LD, and c) ED under the RCP8.5 scenario. 
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 Phase 1: from present to 2050. 

During the first five years (2020-2025), it will be required the buyout of approximately 

2,245 ha of agricultural land in total. This represents the 2%, 3% and 9% of the current 

croplands in GR, LD, and ED, respectively. Furthermore, 44 ha of fixed barriers will be 

removed to favour landward migration of natural ecosystems, which approximately 75% 

correspond to water ponds and irrigation channels for agriculture. Among analysed low-

lying areas, 95% of the total efforts during the first part of implementation (τ1) are 

destined to ED.  

The natural buffer areas must be ready at 2025 to allow the progressive inundation and 

the likely habitat conversion. 

 

 Phase 2: from 2050 to 2075. 

The preparation to phase 2 (τ2) will start in 2045 during which approximately 5,700 ha 

of agricultural lands must be expropriated and incorporated to MTPD. This would imply 

the additional purchase of 2%, 5% and 24% of current croplands in GR, LD and ED, 

respectively. In turn, 222 ha of fixed structures will be dismantled, mainly infrastructures 

to support agricultural activities. As in phase 1, most of the actions to be implemented 

will be concentrated in the ED (97%). 

The natural buffer areas must be ready at 2050 to allow the progressive inundation and 

habitat conversion. 

 

 Phase 3: from 2075 to 2100. 

The preparation to phase 3 (τ3) will trigger in 2070 giving time to the last negotiations 

and land purchases during which approximately additional 4,625 ha of croplands should 

be incorporated to the MTPD. This will be accompanied by the removal of 340 ha of 

man-made infrastructures which correspond to 70% supporting services to agriculture, 

25% small buildings and 5% roads. During this planning phase, although ED remains the 

main hotspot, the need for these actions becomes noticeable in GR and LD requiring 7% 

and 4%, respectively, of the total work.  
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The natural buffer areas must be ready at 2075 to allow the progressive inundation and 

habitat conversion. 

As an example, Fig. 7.8 shows affected areas subjected to managed realignment in the 

southern part of the ED where, progressively, cropland areas should be expropriated and 

incorporated to the MTPD, and fixed infrastructures should be removed to generate the 

space required for horizontal migration and connectivity. The implementation of this 

strategy requires long-term and strategic planning where managed retreat is gradual by 

defining setback lines with time scales that preclude the potential increase in risk due to 

SLR. In addition, this progressive action plan allows for an adaptive management by 

evaluating the environmental state achieved in each phase in order to implement required 

actions compatible with habitat recovery, such as the regulation of freshwater inputs to 

control the salinity stress, an important factor for wetland development (White and 

Kaplan, 2017). 

 

Figure 7.8. Timing for potential actions to implement in the southern Ebro hemidelta under RCP8.5. 

 

7.4.2.4. Discussion 

Technological limits. Two important factors limit this strategy: space and time. The 

more space available between the sea and urbanized areas, the higher the efficiency of 

the nature-based defence (Temmerman et al., 2013). On the other hand, the time available 

becomes crucial for habitat adaptation (discussed in Chapter 4). Through this progressive 

managed realignment, both elements are achieved.   
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Economic barriers. The implementation of this strategy is suitable in areas with high 

environmental value under which the common good is quantified in terms of non-market 

values by ecosystem recovery. Unless provided ecosystem services were not valued by 

the society, the economic costs will be lower than the expected benefits. 

 

Financial barriers. Compensation, including land purchase, is one of the major 

limitations of this strategy. The increased provision of financial compensation to local 

stakeholders, mainly the owners of croplands affected by the managed realignment, is a 

challenging task (Ledoux et at., 2005). According to the Coastal Law, payments are in 

charge of the Central Government in such a way that future funding needs will increase 

as sea level rises whose budgetary allocations should be defined at the early stages of this 

strategy. To solve financial needs, Central Government could applied for EU funds for 

environmental conservation and adaptation to climate change.  

 

Social conflicts: Lack of awareness, poor acceptance of local population and 

government mistrust are among the main constraints to the implementation of this 

measure. Roca and Villares (2012) analysed social perceptions of managed realignment 

strategies in the ED revealing a local mistrust of public bodies by their feeling of 

abandonment from past episodes.  

 

7.4.3. Proposal for actions in the Ebro Delta to protect its integrity and 

adapt to RSLR 

7.4.3.1. Proposed measures 

Another alternative is developed from the perspective of protecting economic 

activities in these areas of which curently there is an example already suggested for the 

Ebro Delta (Comunitat de Regants de la Dreta del Ebre, 2017). In particular, structural 

measures combining “grey” and “green” infrastructures are proposed based on three 

actions (Fig. 7.9): 
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1. Construction of 50-km dike (1.5-2 m height, 4-5 m width) to protect the delta plain, 

urban settlements, interior lagoons with high environmental value (Encanyissada, 

Tancada, Alfacada, Canal Vell, among others) and agricultural land (Fig. 7.9, in 

red). Along La Marquesa and Alfacada beaches, currently under erosion processes, 

a setback zone, 150-300 m wide, will be defined to allow an optimal beach width 

for protection.  

 

2. Re-building of El Fangar and Les Alfaques spit-bars (1-2 m) by sand contributions 

to maintain the current structure and coastal dynamics. In addition, this action is 

accompanied by environmental and landscape improvement works in El 

Trabucador bar (Fig. 7.9, in yellow). 

 

3. Creation of dunes with different configurations to dissipate wave energy and local 

actions to protect the coast against erosion and shoreline retreat (e.g., sand 

nourishment in Buda Island and La Marquesa beach) (Fig. 7.4, in green). 

 

Figure 7.9. Protection strategy suggested for the ED. Adapted from Comunitat de Regants de la Dreta del 

Ebre (2017). 

 

Furthermore, within the delta protection plan is also proposed the idea of recovering 

the sediment fluxes from the Ebro River to the delta in order to increase the vertical 
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accretion in the rice fields. To undertake this action, a sediment by-pass system is required 

to remobilize the material from the reservoirs of the lower catchment area to the river and 

irrigation network of the ED. 

 

7.4.2.2. Discussion 

Technological limits: Although the protection objective from dikes will be achieved 

in the inner bays, protected areas will be below future water levels affecting the 

agricultural use of the lowest elevation areas. This action does not avoid the effects of 

saltwater intrusion in such a way pumping stations will be required increasing future 

investments. Furthermore, the resources for spits-bar reconstruction (sand and money) 

are finited and limited restricting the applicability of this action.  

 

Economic barriers. According to this report, an initial cost assessment of these 

measures reveals implementing costs of €170 M. A detailed analysis is needed to quantify 

maintenance costs and future investments required.  

 

Financial barriers. Although it is established that the Central Government will 

finance these measures, the owners of the rice fields should make part of the investment 

since they are the main beneficiaries from this strategy. 

 

Social conflicts. Building artificial barriers generate mistrust among entities defending 

the natural heritage due to the lack of a detailed and precise assessment of the possible 

impacts caused by its construction. In fact, the social study carried out by Fatorić and 

Chelleri (2012) revealed that most of the interviewed stakeholders from different sectors 

recommended softer actions for the ED that is most in harmony with the nature.  
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7.4.4. Concluding remarks 

The adaptation of low-lying coastal areas has been designed from a perspective of 

economic impacts or from natural landscape changes. Here, we synthesized the potential 

strategies to be applied in natural areas along the Catalan coast. 

The protection strategy suggested by local stakeholders is mainly based on traditional 

engineering measures, such as dyke construction and beach nourishment works, whereas 

habitat creation and restoration provide an ecologically sound alternative following the 

concept of building with nature. The delta-sea transitional border will be removed thought 

the implementation of hard measures under which natural ecosystems will be affected. 

However, the proposed re-naturalization of the area will be an opportunity to restore and 

create new areas with high environmental value. In this sense, the construction of any 

barrier may isolate the coast and sea causing a degradation of vulnerable and important 

ecosystems as well as interacting with the delta evolution requiring further adaptation 

(Welch et al., 2017). However, there may be substantial synergies between protection and 

biodiversity conservation perspectives. The sediment input from the Ebro River can be 

beneficial not only for rice production (Genua-Olmedo et al., 2016) but also for the 

survival of some habitats, mainly wetlands (Cahoon et al., 1995; Kirwan et al., 2010; 

Reed, 1995), to promote vertical accretion and for elevation gain. 

Working with nature allows the delta to adapt in a progressive way to new 

environmental conditions, whereas the main aim of the protection strategy is the 

maintenance of the status quo of the delta so as not to alter the agricultural production 

tradition and its associated way of living. Given than the productivity of cropland areas 

in the lowest elevation zones will be largely affected as sea level rises, with future 

maintenance costs being progressively higher, the transformation of agricultural areas 

into wetlands could be more sustainable given the important environmental values of 

these areas once habitats are restored. An additional factor to consider is that rice 

production is a subsidized activity in the framework of EU Common Agricultural Policy, 

whose long-term maintenance is questionable (e.g., Plieninger et al., 2012). Furthermore, 

the EU Habitats Directive (1992) requires for compensatory measures for projects having 

a negative impact on Natura 2000 sites, found in our study areas. Rigidizing the coast can 

cause intertidal habitat loss due to coastal squeeze, so that environmental degradation 

requires creation of habitats as a compensatory measure, with similar functions as those 
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lost, to ensure the overall coherence of Natura 2000 protection (Defra, 2005; Pontee, 

2013). 

In terms of who must finance adaptation, the current proposal to protect the ED 

requires a high investment that directly favour the rice producers’ interests. This is why, 

similarly to beach nourishment, the responsibility for co-financing adaptation should be 

introduced by Public-Private Partnerships. Nature-based solutions also implies a cost but 

in this case the entire society is benefitted paying for a public good through environmental 

benefits provided by habitat restoration, conservation and protection. 

Finally, the social dimension of adaptation in natural areas focuses mainly on how to 

balance environment and economic development, often viewed as competing 

perspectives.  However, the political and cultural dimension highly influence the 

adaptation decision. Managed realignment entails a large political risk hindering the 

adoption of this adaptation strategy (Gibbs, 2016) preferring traditional protection 

engineering measures to maintain the current status quo in terms of livelihoods (Suckall 

et al., 2018). A better understanding and raising awareness about nature-based solutions 

is urgently needed to provide an alternative for buffering the impacts of SLR while 

counteracting many drawbacks of hard infrastructures (Jones et al., 2012).  

To sum up, managed realignment in some areas will become unavoidable under the 

acceleration of SLR. Incorporating potential affected areas to create natural buffer zones 

can increase the adaptive capacity of these areas and simultaneously decrease the 

vulnerability of the coastal assets to the impacts of SLR. 

 

 



 

 

 



    Chapter 8 

 

171 

 

Chapter 8 

Conclusions 

 

 

8.1. Summary of main findings and conclusions 

In this thesis we have presented a coastal risk framework to assess the impact of SLR-

induced erosion and inundation on two of the main functions provided by sedimentary 

coasts, recreation and natural/environmental. This framework was developed for and 

applied in the Catalan coast.  

Obtained results showed that the Catalan coast is highly vulnerable to erosion due to its 

current erosive behaviour which will be significantly increased under tested SLR-

scenarios. This SLR-enhanced erosion may have drastic consequences for the overall 

beach recreational carrying capacity, one of the key elements for coastal tourism 

development. This will result in a decrease in the capacity to provide space and quality 

for recreation, with an expected significant and growing economic impact in the next 

decades. 

On the other hand, Catalonia has a very low sensitivity to SLR-inundation due to its 

coastal configuration (i.e., steep beach slopes) except for low-lying areas (Gulf of Roses, 

Llobregat Delta and Ebro Delta), which concentrate the highest natural values of the 

Catalan coast. The vulnerability of these areas depends on the configuration of the water-

land border, topography, geomorphology, and degree of human impact on the floodplain, 

being the Ebro Delta the most vulnerable to SLR. In spite of their physical vulnerability, 

existing habitats have a natural adaptation capacity, which permit to maintain providing 

ecosystem functions although under a modified landscape. 

Once these SLR-induced impacts were evaluated, the status of coastal adaptation to SLR 

was investigated. First, a diagnosis of the current implementation of adaptation was done, 
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followed by a proposal of suitable adaptation strategies to manage impacts on the Catalan 

coast. Due to the complementarity of analysed functions, resulting in suitable adaptation 

strategies have different perspectives. When the management of recreational values is the 

target, adaptation strategies based on actively maintaining the beach carrying capacity 

along the Catalan coast are economically effective and technically feasible. On the other 

hand, in areas of high natural value, adaptation strategies based on enhancing and 

promoting the natural resilience of coastal habitats to SLR may become the cornerstone 

for preserving natural values along the Catalan coast.  

The main concluding remarks derived from the different sections of this thesis are 

presented in what follows. As each Chapter was designed to be self-contained, specific 

conclusions are found in each one and general ones are summarized covering each aspect 

separately: 

 

Impact of SLR on the recreational function of the coast 

 A methodology to assess the effect of SLR on the recreational function has been 

developed. On the one hand, the physical impact has been assessed in terms of 

variations in the physical carrying capacity on beaches by SLR-induced shoreline 

retreat. On the other, the potential impact on the economic contribution of the 

tourism sector has been evaluated given the importance of this sector to the 

Catalan GDP. 

 The physical carrying capacity on beaches is projected to decrease with significant 

spatial variations due to the combination of different coastline evolution rates and 

beach morphology. Costa Barcelona is the most affected under current evolution 

rates since erosional hotspots are found within this tourism brand (e.g., Maresme 

comarca). ). When SLR is considered, severely affected municipalities will appear 

within the Costa Brava affecting significantly its potential beach demand  

 Costa Brava and Costa Dorada are the tourism brands whose economies strongly 

depends on tourist activities being, in turn, the most affected by variations in the 

number of beach users, whose GDP decline would exceed 20% under the worst-

case scenario. 
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Impact of SLR on the natural function of the coast 

 A methodology to assess the effect of SLR on the natural function has been 

developed. On the one hand, the physical impact has been assessed by estimating 

the expected changes in the surface occupied by most important habitats under 

different SLR scenarios in low-lying areas of the Catalan coast. On the other, the 

potential impact on the ecosystem services values has been evaluated given the 

multiple benefits they provide to society. 

 The current development level of the Catalan coast, heavily urbanized as most of 

the Mediterranean coastline, limits the accommodation space for allowing natural 

protection. Fixed man-made infrastructures prevent beach rebuilding and 

landward migration of coastal habitats, as well as controlling the inundation 

extend especially in the Ebro Delta. 

 The Ebro Delta is the most valuable area delivering annually at least €288 M to 

citizens. By promoting habitat creation to increase coastal resilience in the face of 

SLR, the benefits provided by coastal ecosystems will not only be maintained in 

the future but also enhanced as in the Ebro Delta by doubling this value by 2100.  

 

Adaptation to climate change 

 A methodological framework to analyse the progress in implementing coastal 

adaptation has been designed to understand how we are adapting to climate 

change. Tracking how adaptation is taking place facilitates the assessment of 

adaptation efforts over time and space. 

 Although implemented actions were labelled as adaptation to climate change, 

some of them have been designed to solve current coastal problems. The misuse 

of the concept of adaptation measure will tend to the society to be overconfident 

about adopted actions whereas we are not progressing to real adaptation. To 

overcome this risk, it is necessary to have a clear roadmap for implementing 

adaptation measures together with a proper financing structure.   

 If the objective is to maintain the recreational use of beaches, adaptation actions 

should be designed to maintain the future beach carrying capacity in priority areas 

within a given range in order to sustain the economic contribution of coastal 

tourism activities.  
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 If the objective is environmental protection and conservation, the consideration of 

the inherent resilience of natural areas can allow for open up new adaptation 

alternatives in which SLR is not only a threat but also an opportunity from the 

natural standpoint. 

 

8.2. Further research 

The research presented in this thesis is a comprehensive assessment of SLR-impact on 

coastal functions and their consequences. However, different challenges to further 

complement, improve, and extend this work have been identified: 

 To incorporate possible scenarios of coastal tourism as well as variations in the 

potential tourism demand. External factors such as COVID-19 pandemic influence 

the economy whose recommendations to maintain interpersonal distance cause 

scenarios with low users’ density in beaches. 

 To introduce dynamic models and Bayesian networks to better represent coastal 

processes at long-term projections. 

 To improve the prediction of habitat response to changing conditions.  

 To include social perception analysis to understand the level of risk in coastal areas 

and to address social conflicts that largely influence coastal adaptation.  
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Table A1. Administrative units along the Catalan coast (from North to South). 

Province Coastal comarca Municipality 

Girona 

Alt Empordà 

1. Portbou 

2. Colera 
3. Llançà 

4. El Port de la Selva 

5. Cadaquès 
6. Roses 

7. Castellò d’Empùries 

8. Sant Pere Pescador 
9. L’Escala 

Baix Empordà 

10. Torroella de Montgrí 

11. Pals 
12. Begur 

13. Palafrugell 

14. Mont-Ras* 

15. Palamòs 

16. Calonge 

17. Castell-Platja d’Aro 
18. Sant Feliu de Guìxols 

19. Santa Cristina d’Aro 

Selva 
20. Tossa de Mar 

21. LLoret de Mar 
22. Blanes 

Barcelona 

Maresme 

23. Malgrat de Mar 

24. Santa Susanna 
25. Pineda de Mar 

26. Calella 

27. Sant Pol de Mar 
28. Canet de Mar 

29. Arenys de Mar 

30. Caldes d’Estrac 
31. Sant Vicenç de Montalt 

32. Sant Andreu de Llavaneres 

33. Mataró 
34. Cabrera de Mar 

35. Vilassar de Mar 

36. Premià de Mar 
37. El Masnou 

38. Montgat 

Barcelonès 
39. Sant Adrià del Besos 
40. Badalona 

41. Barcelona 

Baix Llobregat 

42. El Prat de Llobregat 

43. Viladecans 
44. Gavà 

45. Castelldefels 

Tarragona 

Garraf 

46. Sitges 
47. Sant Pere de Ribes* 

48. Vilanova i la Geltrú 

49. Cubelles 

Baix Penedès 
50. Cunit 
51. Calafell 

52. El Vendrell 

Tarragonès 

53. Roda de Barà 

54. Creixell 
55. Torredembarra 

56. Altafulla 

57. Tarragona 
58. Vila-Seca 

59. Salou 

Baix Camp 
60. Cambrils 
61. Mont-Roig del Camp 

62. Vandellòs i l’Hospitalet de l’Infant 

Baix Ebre 

63. L’Ametlla de Mar 

64. El Perelló 
65. L’Ampolla 

66. Deltebre 

Montsià 

67. Sant Jaume d’Enveja 

68. Amposta 
69. Sant Carles de la Ràpita 

70. Alcanar 

* Municipalities not considered as they do not have beaches. 
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Table A2. Number of stays per coastal comarca in 2019.  

Coastal comarca Tourist one-day visitors Second home 

Alt Empordà 7,663,000 2,963,010 12,044,765 

Baix Empordà 7,663,000 2,963,010 12,044,765 

Selva 8,998,000 4,376,137 5,193,850 

Maresme 9,159,000 5,688,978 6,350,400 

Barcelonès 23,283,000 9,481,631 11,143,008 

Baix Llobregat 2,730,000 9,481,631 5,124,125 

Garraf 2,226,000 5,688,978 3,378,931 

Baix Penedès 1,387,000 4,515,062 9,857,635 

Tarragonès 10,972,000 3,792,652 12,599,453 

Baix Camp 4,728,000 3,468,889 6,947,856 

Baix Ebre 1,053,000 2,370,408 2,165,357 

Montsià 524,000 2,431,187 1,705,277 

Note: for tourist and second home, these figures correspond to overnight stays. 

 

Table A3. Average daily expenditure (in €) per coastal comarca in 2019. 

Coastal comarca Tourist one-day visitors Second home 

Alt Empordà 118.1 41.3 36.8 

Baix Empordà 118.1 41.3 36.8 

Selva 118.1 41.3 36.8 

Maresme 121.0 42.3 36.8 

Barcelonès 176.7 61.8 36.8 
Baix Llobregat 150.0 52.5 36.8 

Garraf 155.6 54.4 36.8 
Baix Penedès 120.0 42.0 36.8 
Tarragonès 120.0 42.0 36.8 
Baix Camp 120.0 42.0 36.8 
Baix Ebre 111.2 38.9 36.8 
Montsià 111.2 38.9 36.8 

 

Table A4. Tourism expenditure (in M €) per coastal comarca in 2019. 

Coastal comarca Tourist one-day visitors Second home TOTAL 

Alt Empordà 700 128 502 1,329 

Baix Empordà 905 122 443 1,470 

Selva 1,063 181 191 1,434 

Maresme 1,109 241 233 1,583 

Barcelonès 4,114 586 410 5,110 

Baix Llobregat 410 497 188 1,095 

Garraf 346 310 124 780 

Baix Penedès 167 190 362 718 

Tarragonès 1,317 159 463 1,939 

Baix Camp 568 146 255 969 

Baix Ebre 117 92 80 289 

Montsià 58 95 63 215 

TOTAL 10,873 2,745 3,314 16,933 
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Table A5. Physical Carrying capacity (PCC) per coastal comarcas at different time projections under 

current evolution rates (EV) and SLR-scenarios. 
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Table B1. Land cover types and main habitats found in the study areas. 

Category Land cover 
Main habitats 

GR BL ED 

Urban 

Urban areas  

Buildings 

Parking areas 

Urban green areas 

Roads 

Infrastructures 

Urban and industrial areas, including the 

associated ruderal vegetation  

Urbanized areas, with important clearings of natural vegetation  

Barren 

Cliffs, rocky outcrops. 

Bare, burned, eroded 

grounds 

Extraction and 

discharge areas 

Undeveloped urban areas 

Abandoned cultivated areas  

Salt mine Salt mine Non-existent 
Salt mine and 

industrial salt ponds  

Cropland Cultivated areas 

Intensive 

herbaceous crops 

different from rice 

(cereals, fodder) 

Intensive 

herbaceous crops 

different from rice 

(orchards and 

garden center)  

Rice fields 

Fruit trees 

Vineyards 

Grassland 

Scrubland 

Shrub land 

Pasture and meadow 

Lowland harvesting 

fields (mainly 

Gaudinia fragilis)  

Lowland hayfields  

Temperate forest 

Various (conifer, 

deciduous, evergreen 

trees) 

Riverside 

woodlands  

Pinewoods (Pinus 

pinea) and 

understory  
Riverside 

woodlands Residual dunes with 

pine trees (Pinus 

pinea, Pinus 

pinaster)  

Beach and dunes 
Beach, dunes and 

sandy areas 

Sandy beaches  

Dunes and dune slacks  

Coastal vegetation 

Shrubby and 

herbaceous 

communities on salt or 

gypsaceous soils 

Salicornia sp. Swards 

Junciform-leaved Spartina versicolor grassland of coastal sand 

muds  

Juncus maritimus beds of coastal and inland long-inundated, 

brackish depressions 

Wetland 

Freshwater marsh Non-existent 

Lowland Cladium 

mariscus beds of 

riversides 

Brackish marsh 

Reed beds  

Bulrush beds 

(Scirpus spp.)  

Cane formation 

along water courses  

Bulrush beds 

(Scirpus spp.) 

Coastal lagoon 

Freshwater ponds Standing fresh waters 

Saltwater/brackish 

lagoons 

Vegetated/non-vegetated lagoon 

Non-existent Mud and sand flats 
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Table B2. Projected surface (ha) under the TDA and CA for different SLR scenarios at 2050 and 2100 in 

the GR.  Note:  the final surface for coastal vegetation and wetland areas under the CA will be the sum of 

current not-affected area and the new converted areas to halophyte vegetation and transitional wetlands, 

respectively. 
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Table B3. Projected surface (ha) under the TDA and CA for different SLR scenarios at 2050 and 2100 in 

the LD.  Note:  the final surface for coastal vegetation and wetland areas under the CA will be the sum of 

current not-affected area and the new converted areas to halophyte vegetation and transitional wetlands, 

respectively. 
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Table B4. Projected surface (ha) under the TDA and CA for different SLR scenarios at 2050 and 2100 in 

the ED.  Note:  the final surface for coastal vegetation and wetland areas under the CA will be the sum of 

current not-affected area and the new converted areas to halophyte vegetation and transitional wetlands, 

respectively. 
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Table B5. List of monetary values per habitats and services. 

Habitat type 
Ecosystem 

service 
Method* 

Value  

(2020 €/ha·yr) 
Source 

Urban 

Greenspace 

Gas/climate 

regulation 

AC 451 Mcpherson 1992 

AC 2,257 Mcpherson 1992 

DM 69 Mcpherson et al. 1998 

 926  

Water 

regulation 

AC 17 Mcpherson 1992 

 17  

Aesthetic and 

recreation 

CV 9,540 Tyrvainen 2001 

CV 3,245 Tyrvainen 2001 

CV 4,804 Tyrvainen 2001 

 5,863  

Cropland 

Erosion control 

RC 175 Pimentel et al. 1995 

RC 66 Pimentel et al. 1995 

 120  

Soil formation 
RC 278 Pimentel et al. 1995 

 278  

Pollination 

AC 30 Robinson et al. 1989 

DM 13 Southwick and Southwick 1992 

VT 21 Costanza et al. 1997 

 21  

Biological 

control 

VT 35 Costanza et al. 1997 

 35  

Habitat/refugia 

CV 3,419 Christie et al. 2004 

CV 1,153 Christie et al. 2004 

 2,286  

Aesthetic and 

recreation 

CV 71 Bergstrom et al. 1985 

CV 11 Alvarez-Farizo 1999 

 41  

Grassland 

Gas/climate 

regulation 

DM 10 Costanza et al. 1997 

VT 2 Sala and Paruelo 1997 

AC 1 Sala and Paruelo 1997 

DM 376 Sala and Paruelo 1997 

CV 122 Ministerie van LNV 2006 

 102  

Water 

regulation 

VT 6 Costanza et al. 1997 

 6  

Erosion control 

DM 38 Barrow 1991 

CV 41 Costanza et al. 1997 

VT 165 Sala and Paruelo 1997 

AC 53 Ministerie van LNV 2006 

 74  

Soil formation 

DM 17 Pimentel et al. 1997 

VT 2 Costanza et al. 1997 

 9  

Waste 

management 

RC 149 Ministerie van LNV 2006 

RC 14 Ministerie van LNV 2006 

VT 121 Costanza et al. 1997 

 95  

Pollination 
VT 36 Costanza et al. 1997 

 36  

Biological 

control 

VT 33 Costanza et al. 1997 

 33  

Aesthetic and 

recreation 

HP 60 Brookshire et al. 1982 

VT 2 Costanza et al. 1997 
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CV 2 Alvarez-Farizo 1999 

DM 31 Ministerie van LNV 2006 

CV 191 Barkmann and Zsciegner 2010 

CV 599 Barkmann and Zsciegner 2010 

 148  

Temperate 

forest 

Gas/climate 

regulation 

MP 13 Nordhaus 1993 

MP 91 Nordhaus 1993 

MP 19 Nordhaus 1993 

MP 2 Nordhaus 1993 

MP 135 Reilly and Richards 1993 

MP 116 Reilly and Richards 1993 

MP 55 Reilly and Richards 1993 

MP 39 Reilly and Richards 1993 

MP 52 Frankhauser 1994 

MP 110 Frankhauser 1994 

MP 47 Frankhauser 1994 

MP 45 Maddison 1995 

MP 64 Schauer 1995 

MP 876 Schauer 1995 

MP 556 Azar and Sterner 1996 

MP 28 Azar and Sterner 1996 

MP 82 Azar and Sterner 1996 

MP 182 Azar and Sterner 1996 

MP 77 Hope and Maul 1996 

MP 55 Plambeck and Hope 1996 

MP 1,153 Plambeck and Hope 1996 

MP 17 Norhaus and Yang 1996 

MP 121 Costanza et al. 1997 

MP 23 Norhaus and Popp 1997 

MP 17 Norhaus and Popp 1997 

AC 36 Pimentel et al. 1997 

MP 107 Roughgarden and Schneider 1999 

MP 157 Tol 1999 

MP 831 Tol 1999 

MP 71 Tol and Downing 2000 

MP 45 Tol and Downing 2000 

MP 204 Tol and Downing 2000 

MP 55 Tol and Downing 2000 

MP 215 Tol and Downing 2000 

MP 2 Tol and Downing 2000 

VT 298 CBD 2001 

MP 60 Newell and Pizer 2003 

MP 41 Newell and Pizer 2003 

VT 30 Mates and Reyes 2004 

 157  

Water Supply 

TC 25 Loomis 1998 

RC 870 Postel and Thompson 2005 

 447  

Erosion control 
CV 136 Costanza et al.,1997 

 136  

Soil formation 
VT 13 Costanza et al. 1997 

 13  

Waste 

management 

VT 121 Costanza et al. 1997 

VT 24 CBD 2001 

RC 19 De la Cruz and Benedicto 2009 

 55  

Pollination 
RC 446 Hougner et al. 2006 

 446  
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Biological 

control 

VT 6 Costanza et al. 1997 

 6  

Habitat/refugia 

CV 8 Shafer et al. 1993 

CV 8,926 Garrord and Willis 1997 

CV 41 Garrord and Willis 1997 

CV 5,259 Garrord and Willis 1997 

CV 11 Haener and Adamowicz 2000 

CV 1,173 Kenyon and Nevin 2001 

CV 363 Amigues et al. 2002 

CV 4,540 Amigues et al. 2002 

 2,540  

Genetic 

resources 

CV 176 Walsh et al. 1984 

CV 22 Costanza et al. 1997 

VT 35 CBD 2001 

VT 85 CBD 2001 

VT 24 Phillips et al. 2008 

 68  

Aesthetic and 

recreation 

CV 2 Prince and Ahmed 1989 

TC 2 Willis 1991 

TC 77 Willis 1991 

TC 33 Willis 1991 

TC 13 Willis 1991 

TC 347 Willis 1991 

TC 347 Willis and Garrord 1991 

CV 1,495 Bishop 1992 

CV 1,335 Bishop 1992 

CV 1,264 Shafer et al. 1993 

CV 28 Maxwell 1994 

CV 397 Bennet et al. 1995 

TC 350 Bellu and Cistulli 1997 

VT 49 Costanza et al. 1997 

VT 97 CBD 2001 

DM 12 Phillips et al. 2008 

TC 10 De la Cruz and Benedicto 2009 

VT 3 De la Cruz and Benedicto 2009 

 307  

Cultural and 

spiritual 

VT 2 Costanza et al. 1997 

TC 1 De la Cruz and Benedicto 2009 

 2  

Beach and 

dunes 

Disturbance 

regulation 

HP 92,889 Pompe and Rinehart 1995 

HP 57,306 Parson and Powell 2001 

 75,097  

Aesthetic and 

recreation 

HP 361 Edwards and Gable 1991 

CV 56,937 Silberman et al. 1992 

TC 104,218 Kline and Swallow 1998 

HP 1,996 Taylor and Smith 2000 

 40,878  

Cultural and 

spiritual 

HP 66 Taylor and Smith 2000 

 66  

Coastal 

Vegetation** 

Disturbance 

regulation 

AC 146 Rein 1999 

AC 339 Rein 1999 

 242  

Water supply 

CV 36 Oster 1977 

CV 518 Gramlich 1977 

HP 11 Rich and Moffitt 1982 

TC 17 Kahn and Buerger 1994 

CV 11,275 Danielson et al. 1995 

CV 4,939 Berrens et al. 1996 
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AC 267 Rein 1999 

 2438  

Aesthetic and 

recreation 

HP 3,178 Thibodeau and Ostro 1981 

CV 19 Greenly et al. 1981 

HP 84 Amacher et al. 1989 

CV 5,388 Sander et al. 1999 

CV 484 Lant et al. 1990 

CV 3,689 Whitehead 1990 

CV 3,458 Duffield et al. 1992 

CV 2,448 Duffield et al. 1992 

CV 4,140 Hayes et al. 1992 

HP 118 Kulshreshtha and Gillies 1993 

VT 716 Kosz 1996 

DM 191 Rein 1999 

TC 82 Mahan et al. 2000 

VT 716 Schuyt and Brander 2004 

VT 470 Schuyt and Brander 2004 

VT 619 Schuyt and Brander 2004 

DM 1,826 Everard and Jevons 2010 

 1,625  

Cultural and 

spiritual 

CV 11 Greenly et al. 1981 

 11  

Coastal 

wetlands 

and lagoons 

***  

Disturbance 

regulation 

AC 5 Farber 1987 

AC 3 Farber and Costanza 1987 

AC 58 Farber and Costanza 1987 

AC 993 Costanza et al. 1989 

VT 2558 Costanza et al. 1997 

RC 277 Ledoux 2003 

 649  

Waste 

management 

VT 14,697 Gosselink et al. 1974 

RC 8,357 De Groot 1992 

AC 45,593 Breaux et al. 1995 

AC 300 Breaux et al. 1995 

AC 4,402 Breaux et al. 1995 

VT 9,311 Costanza et al. 1997 

 13,777  

Habitat/refugia 

MP 1,018 Batie and Wilson 1978 

DM 16 Lynne et al. 1981 

AC 2 Farber and Costanza 1987 

DM 104 Coreil 1993 

FI 1,512 Bell 1997 

VT 234 Costanza et al. 1997 

FI 2,272 Johnston et al. 2002 

CM 31 Nunes et al. 2004 

 649  

Aesthetic and 

recreation 

VT 2,815 Gosselink et al. 1974 

CV 2,781 Gupta and Foster 1975 

HP 152 Anderson and Edwards 1986 

TC 38 Farber and Costanza 1987 

TC 25 Farber 1988 

DM 2,251 Bell 1989 

TC 34 Costanza et al. 1989 

CV 242 Bergstrom et al. 1990 

DM 457 Hickman 1992 

DM 1,055 Hickman 1993 

VT 298 Green and Soderqvist 1994 
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* Non-market economic valuation methods are: (VT) Value transfer; (DM) Direct market; (AC) Avoided 

cost; (RC) Replacement cost; (TC) Travel cost; (HP) Hedonic price; (CV) Contingent valuation; (MP) 

Marginal product, (FI) Factor Income; (CM) Choice modelling. 

** ESV for coastal vegetation areas correspond to riparian landscapes due to ecological characteristics and 

spatial distribution. 

*** ESV for coastal wetlands areas correspond to saltwater and tidal marsh areas. There is no differentiation 

between wetland and coastal lagoon areas.   

 

  

VT 6,333 Green and Soderqvist 1994 

CV 40 Farber 1996 

FI 44,674 Bell 1997 

FI 6,773 Bell 1997 

VT 1,348 Costanza et al. 1997 

 4,332  

Cultural and 

spiritual 

CV 496 Anderson and Edwards 1986 

 496  
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Tabla B6. Summary of the bundle of ecosystem services per habitat (values in €/ha·yr, 2020 price levels). 

 

Habitat type N 

Total 

average 

ESV 

Total 

median 

values 

Total 

St.Dev. 

values 

Total 

minimum 

value 

Total 

maximum 

values 

Urban greenspace 7 6,806 5,272 4,447 3,331 11,814 

Barren 0 0 0 0 0 0 

Salt mine 0 0 0 0 0 0 

Cropland 11 2,781 2,781 1,731 1,556 4,008 

Grassland 23 503 322 554 132 1,381 

Temperate forest 81 4,177 1,978 4,818 680 13,344 

Beach and dunes 7 116,041 104,629 74,905 57,733 197,173 

Coastal vegetation 27 4,316 1,236 6,159 187 17,013 

Coastal wetlands and 

lagoons 
37 19,903 10,422 29,161 826 95,593 
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Table B7. Annual flow of non-market value of ES (€/ha·yr in 2020) under the TDA and CA for different 

SLR scenarios at 2050 and 2100 in the GR. Notes: the aesthetic and recreational value for beach and dunes 

was omitted. A reduction factor was applied for ESV flow estimations for those modified wetlands and 

coastal lagoons under the CA. 

 



Annex B 

230 

Table B8. Annual flow of non-market value of ES (€/ha·yr in 2020) under the TDA and CA for different 

SLR scenarios at 2050 and 2100 in the LD. Notes: the aesthetic and recreational value for beach and dunes 

was omitted. A reduction factor was applied for ESV flow estimations for those modified wetlands and 

coastal lagoons under the CA. 
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Table B9. Annual flow of non-market value of ES (€/ha·yr in 2020) under the TDA and CA for different 

SLR scenarios at 2050 and 2100 in the ED. Notes: the aesthetic and recreational value for beach and dunes 

was omitted. A reduction factor was applied for ESV flow estimations for those modified wetlands and 

coastal lagoons under the CA. 
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Table C1. LIFE projects included in this work. 
 Priority area Project Location Period 

Code 

CAS 

Budget 

in M € 

(% UE) 

L
IF

E
 E

n
v

ir
o

n
m

en
t 

Environment 

and resource 

efficiency 

Adaptation and mitigation measures to 

climate change in the Ebro Delta 

(LIFE Ebro Admiclim) 
Catalonia 

2014-

2018 
21 

2.26  

(50%) 

Integrated management of three 

artificial wetlands in compliance with 

the Water Framework, Bird and 

Habitat Directives 

(LIFE ALBUFERA) 

Valencia 
2013-

2016 
6 

1.45  

(50%) 

Nature and 

Biodiversity 

De-urbanizing and recovering the 

ecological function of the coastal 

system of La Pletera 

(LIFE PLETERA) 

Catalonia 
2014-

2018 
6 

2.53 

(75%) 

Habitat restoration and management in 

two coastal lagoons of the Ebro Delta: 

Alfacada y Tancada 

(LIFE DELTA-LAGOON) 

Catalonia 
2010-

2017 
6 

3.05 

(50%) 

In situ and Ex situ innovative 

combined techniques for coastal dune 

habitats restoration in SCIs on 

Northern Spain 

(LIFE+ARCOS) 

Asturias 

Cantabria 

Basque 

Country 

2014-

2018 
4 

1.33 

(70%) 

Preservation and improvement in 

priority habitats on the Andalusian 

coast 

(LIFE CONHABIT) 

Andalusia 

2014-

2019 

 

25 
2.65 

(60%) 

Integration  of human activities in the 

conservation objectives of the Natura 

2000 Network in the littoral of 

Cantabria 

(CONVIVE LIFE) 

Cantabria 
2015-

2019 
6 

1.33 

(60%) 

Environmental 

Governance 

and 

Information 

Not in coastal areas since 2010. 

LI
FE

 C
lim

at
e

 A
ct

io
n

 

Climate 

Change 

Mitigation 

Andalusian blue carbon for climate 

change mitigation: quantification and 

valorisation mechanisms 

(LIFE BLUE NATURA) 

Andalusia 
2015-

2019 
22 

2.51 

(60%) 

Climate 

Change 

Adaptation 

Protection of key ecosystem services 

by adaptive management of climate 

change endangered Mediterranean 

socio- ecosystems 

(LIFE ADAPTAMED) 

Andalusia 
2015-

2020 
22 

5.46 

(60%) 

Climate 

Governance 

and 

Information 

Sharing awareness and governance of 

Adaptation to climate change in Spain 

(LIFE SHARA) 

Spain 

Portugal 

2016-

2021 
18 

1.57 

(60%) 
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Table C2. Classification of adaptation options categories (MAGRAMA, 2016). (P: protection, A: 

accommodation, R: retreat; O: others).  

Code Options Category (1) 
Category 

(2) 

1 Risk analysis & Assessment 
Social 

Technology/Information 
P, A, R 

2 Coastal monitoring 
Social 

Technology/Information 
P, A, R 

3 Early warning systems 
Social 

Technology/Information/Behaviour 
A 

4 Beach and dune regeneration 
Structural-Physical 

Engineering/NBS 
P 

5 Beach and dune creation 
Structural-Physical 

Engineering 
P 

6 Wetland restoration & conservation 
Structural-Physical 

NBS 
P 

7 Sediment management 
Structural-Physical 

Engineering/NBS 
P 

8 
Coastal protection structures 

(seawalls, waterfronts) 

Structural-Physical 

Engineering 
P 

9 
Coastal stabilization structures 

(groins, breakwaters) 

Structural-Physical 

Engineering 
P 

10 Infrastructure adaptation 
Structural-Physical 

Engineering 
A 

11 Adaptation code and normative 
Structural-Physical/Institutional 

Engineering/Laws & Regulations 
A 

12 Insurances 
Institutional 

Economy 
A 

13 
Structure realignment along the 

coast 

Structural-Physical/Social 

Engineering/Behaviour 
R 

14 
Structure realignment in estuaries 

and river mouth 

Structural-Physical/Social 

Engineering/Behaviour 
R 

15 Land acquisition 
Social 

Behaviour 
R 

16 Land use changes 
Institutional/Social 

Laws & Regulations/ Behaviour 
A 

17 
Promoting wetland migration and 

creation of new areas 

Physical/Institutional/Social 

NBS/ Laws & 

Regulations/Behaviour 

R 

18 Training & awareness 
Social 

Education/Information 
O 

19 Reduction of barrier & limits 
Social/Institutional 

Information/ Laws & Regulations 
O 

20 Decision making integration 
Institutional 

Laws & Regulations 
O 

21 Research 
Social 

Information 
O 

22 Assessment of ecosystem services 
Institutional 

Economy/Information 
O 

23 Relocation 
Social 

Behaviour 
R 

24 Concession management 
Institutional 

Policy & Administration 

A, R 

25 Protected areas O 

26 ICZM All 
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Table C3. Reclassification of categories of adaptation options (see codes in Table C2). 

 

Type Code CAS 

Soft measures 4, 5, 7 

Hard measures 8, 9, 10 

NBS 6, 17 

Mixed (soft + hard) 4+8, 4+9, 5+8, 7+8 

Training + Awareness 1, 2, 3, 18, 19 

Integration decision-making process 11, 12, 13, 14, 15, 16, 20, 26 

Research 21 

Evaluation ecosystem services 22 

Protected areas 23, 24, 25 

w/o specifying No code 

 

 

 

 

 

 

Table C4. DGSCM objectives and their relation with adaptation actions included in the CAS (see codes 

in Table C2). 

 

DGSCM objectives Code CAS 

Coast protection and 

conservation 

Control coast regression 2, 4, 5, 7, 8, 9 

Protect and recover coastal 

systems 

6  

Improve coastal knowledge 1, 3, 18, 19, 20, 21, 22 

Improve and ensure the public and free use of the coast Not related 

Plan, conserve, protect and improve the marine environment Not related 

Ensure and manage the Marine-Terrestrial Public Domain 
10, 11, 12, 13, 14, 15, 16, 17, 

23, 24, 25, 26 
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Table C5. Expected timing for the acceptable limit for the current strategy at different levels of reduction 

in PCC (in %) considering the integrated effect of current evolution rates (EV) and SLR in shoreline 

evolution for Catalonia and tourism brands.  

 

Territorial 

unit 
SLR scenario 10% 15% 20% 25% 

 RCP4.5 + EV 2025 2030 2035 2040 

Catalonia RCP8.5 + EV 2025 2030 2035 2040 

 H+ + EV 2020 2025 2030 2030 

Costa Brava 

RCP4.5 + EV 2025 2030 2040 2045 

RCP8.5 + EV 2025 2030 2040 2045 

H+ + EV 2025 2025 2030 2035 

Costa de 

Barcelona 

RCP4.5 + EV 2025 2025 2035 2040 

RCP8.5 + EV 2025 2025 2035 2040 

H+ + EV 2025 2025 2030 2030 

Barcelona city 

RCP4.5 + EV 2025 2030 2035 2040 

RCP8.5 + EV 2025 2030 2035 2040 

H+ + EV 2025 2025 2030 2035 

Costa Dorada 

RCP4.5 + EV 2020 2025 2030 2035 

RCP8.5 + EV 2020 2025 2030 2035 

H+ + EV 2020 2025 2025 2030 

 

 

 

 

Table C6. Sand volume requirements (in M m3) for Catalan beaches considering different nourishment 

criteria and assuming no variation in GDP and PCC. 

 

Nourishment criteria  Year RCP4.5 + EV RCP8.5 + EV  H+ + EV 

Urban and 

semi-urban 

beaches  

Compensate to 

40 m beach 

width  

2050 36.4 36.4 54.6 

2075 63.5 73.0 130.3 

2100 101.8 123.9 255.1 

Urban and 

semi-urban 

beaches 

Compensate 

for any loss  

2050 51.1 51.1 77.6 

2075 82.1 95.1 162.4 

2100 126.0 152.2 291.1 

All beaches 
Compensate 

for any loss  

2050 107.5 107.5 144.1 

2075 176.6 194.6 287.3 

2100 263.7 300.0 490.0 
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Table C7. Sand volume requirements (in M m3) among tourism brands considering the criteria stablished 

in this work and assuming no variation in GDP and PCC.  

 

Tourism 

brand 
Year  RCP4.5 + EV RCP8.5 + EV  H+ + EV 

Costa Brava 

2050 10.7 10.7 16.5 

2075 18.2 21.2 39.3 

2100 29.2 36.2 81.8 

Costa de 

Barcelona 

2050 14.7 14.7 19.3 

2075 25.2 27.7 43.8 

2100 39.1 45.3 80.9 

Barcelona city 

2050 1.4 1.4 2.2 

2075 2.4 2.8 4.9 

2100 3.8 4.6 9.3 

Costa Dorada 

2050 9.6 9.6 16.7 

2075 17.6 21.3 42.3 

2100 29.8 37.8 83.1 

 

 

 

 

 

 

Table C8. Expected timing of the ATP for beach nourishment for Catalonia considering the integrated 

effect of current evolution rates (EV) and SLR in shoreline retreat.  

 

Management Strategy SLR scenario 
ATP1 ATP2 

25 M m3 50 M m3 

No variation in GDP (no PCC losses) 

RCP4.5 + EV 2040 2065 

RCP8.5 + EV 2040 2060 

H+ + EV 2030 2045 

2% GDP decline (20% reduction in PCC) 

RCP4.5 + EV 2060 2080 

RCP8.5 + EV 2055 2075 

H+ + EV 2040 2055 
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Table C9. Expected timing for beach nourishment among tourism brands considering a total sediment 

stock of 50 Mm3 according to the distribution criteria defined by the competent Administration. 

 

Tourism 

brand 
SLR scenario Physical criterion Economic criterion 

Costa Brava 

RCP4.5 + EV 2065 2080 

RCP8.5 + EV 2060 2075 

H+ + EV 2045 2055 

Costa de 

Barcelona 

RCP4.5 + EV 2060 2035 

RCP8.5 + EV 2055 2035 

H+ + EV 2045 2030 

Barcelona city 

RCP4.5 + EV 2065 >2100 

RCP8.5 + EV 2060 >2100 

H+ + EV 2050 2090 

Costa Dorada 

RCP4.5 + EV 2065 2060 

RCP8.5 + EV 2060 2055 

H+ + EV 2045 2040 

 

 

 

 

 

Table C10. Expected timing for users’ distribution promoted by new spatial planning policies for Catalonia 

considering the integrated effect of current evolution rates (EV) and SLR in shoreline retreat.  

 

Management Strategy SLR scenario 
Excluding Ebro 

Delta beaches 

Throughout the 

entire territory 

No variation on GDP (no PCC losses) 

RCP4.5 + EV 2050 2055 

RCP8.5 + EV 2050 2055 

H+ + EV 2030 2040 

2% GDP decline (20% reduction in PCC) 

RCP4.5 + EV 2070 2075 

RCP8.5 + EV 2065 2070 

H+ + EV 2045 2050 
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