
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

Leveraging Synthetic Data to
Create Autonomous Driving

Perception Systems

A dissertation submitted by Gabriel Villalonga
Pineda at Universitat Autònoma de Barcelonato ful-
fil the degree of Doctor of Philosophy.

Bellaterra, December 15, 2020

Co-Directors Dr. Antonio López Peña
Dept. Ciències de la Computació & Centre de Visió per Computador
Universitat Autònoma de Barcelona, Spain
Dr. Germán Ros
Intel Intelligent Systems Lab
Santa Clara, CA, USA

Thesis Dr. Ernest Valveny
committee Dept. Ciències de la Computació & Centre de Visió per Computador

Universitat Autònoma de Barcelona, Spain
Dr. Francesc Moreno
Institut de Robòtica i Informàtica Industrial
CSIC & Universitat Politècnica de Catalunya
Dr. José Manuel Álvarez
AI-Infra, NVIDIA
Santa Clara, CA, USA

This document was typeset by the author using LATEX 2ε.

The research described in this book was carried out at the Centre de Visió per Computador,
Universitat Autònoma de Barcelona. Copyright © 2020 by Gabriel Villalonga Pineda. All
rights reserved. No part of this publication may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the author.

ISBN: 978-84-122714-2-3

Printed by Ediciones Gráficas Rey, S.L.

Acknowledgements

With this thesis ends a stage of my life and a new one starts. When I look at my past
self I see a young guy taking a journey which was insecure that he would be able
to successfully end. Looking at it today, I am really grateful to have done it, which
has changed me as a researcher and person. During this journey I have met a lot of
people and I have had the support of a lot more, without whom I would have not
been able to get where I am today. I need to thank so many people and I apologize
if I forget someone.

To start I would like to thank those academically close, especially the ones who
guided me through this journey. In order of appearance, I would first like to thank
Dr. David Vazquez, for the faith you had in me since day one and for opening the
world of research to me. Next, I would like to thank my co-director Dr. German Ros,
you are an infinite source of knowledge and you were able to teach me so many
things, most grateful for those which I would not have been aware of otherwise.
Last but not least, I would like to thank my director Dr. Antonio Lopez, you helped
me overcome many challenges and your guidance has been invaluable. I hope that
I can become such an accomplished researcher as you some day. All three of you
took an important role in my professional growth, without any of you this thesis
would have not been the same.

I would also like to thank Dr. Peter Kontschieder for welcoming me and ex-
panding my knowledge during my internship at Mapillary. I was able to meet great
people such as Dr. Samuel Rota and Gerhard Neuhold, with whom I had invaluable
discussions. I also extend my gratitude to Dr. Hamed Aghdam, Dr. Joost van de
Weijer and Dr. Joan Serrat for the collaborations and for all that they taught me.
Finally, Dr. Felipe Codevilla, thanks for the insightful conversations and I hope we
work together again in the future.

I would also like to thank the people at the Computer Vision Center. Starting
with the ADAS group where I had so many discussions about research with Diego
Porres, Yi Xiao, Idoia Ruiz and Jose Luis Gomez. In particular, Jose Luis, with whom
I am grateful to have been able to work with during so many projects. Other people
that I was unlucky to spend too few time with, but I am anyways, grateful to share
their internship with ADAS, Rohit Gajawada, Rishab Madan, Arjun Gupta, Motjaba
Valipour, Sahil Gupta and Abishek Tandon. Also, I need to thank the SYNTHIA and
CARLA teams, the work that you are doing for the group and the community is
invaluable. Mainly Xisco Bosch and Marc Garcia, who had to suffer my constant
need for data. In general, I would like to thank the whole CVC staff. In particular,
administration for having my back with all the paperwork, the IT department, and

i

above all Joan Masoliver who had to deal with my server demands.
In addition, I would like to thank my closest friend circle. I would like to thank

Smash Brothers and Vi Negre for helping me disconnect from work. Following
with the closest people at CVC: Dani Hernandez, Mikel Menta and Laura Lopez.
In special Marc Masana, who probably did not realize the importance he played
through this journey, you were an anchor in the bad moments.

I leave my most inner circle to the end. I must thank my family which has always
been there unconditionally without never expecting anything in return. You have
always supported me in both good and bad moments. Without you, I would have
not been able to to accomplish my goals. As someone said: "La familia siempre
estará allí solo porque es tu familia", and I am very grateful for having you in my life.

ii

Abstract

Manually annotating images to develop vision models has been a major bottleneck
since computer vision and machine learning started to walk together. This has
been more evident since computer vision falls on the shoulders of data-hungry
deep learning techniques. When addressing on-board perception for autonomous
driving, the curse of data annotation is exacerbated due to the use of additional
sensors such as LiDAR. Therefore, any approach aiming at reducing such a time-
consuming and costly work is of high interest for addressing autonomous driving
and, in fact, for any application requiring some sort of artificial perception. In the
last decade, it has been shown that leveraging from synthetic data is a paradigm
worth to pursue in order to minimizing manual data annotation. The reason is
that the automatic process of generating synthetic data can also produce different
types of associated annotations (e.g. object bounding boxes for synthetic images
and LiDAR pointclouds, pixel/point-wise semantic information, etc.). Directly
using synthetic data for training deep perception models may not be the definitive
solution in all circumstances since it can appear a synth-to-real domain shift. In
this context, this work focuses on leveraging synthetic data to alleviate manual
annotation for three perception tasks related to driving assistance and autonomous
driving. In all cases, we assume the use of deep convolutional neural networks
(CNNs) to develop our perception models.

The first task addresses traffic sign recognition (TSR), a kind of multi-class
classification problem. We assume that the number of sign classes to be recognized
must be suddenly increased without having annotated samples to perform the
corresponding TSR CNN re-training. We show that leveraging synthetic samples of
such new classes and transforming them by a generative adversarial network (GAN)
trained on the known classes (i.e. without using samples from the new classes), it is
possible to re-train the TSR CNN to properly classify all the signs for a ∼ 1/4 ratio of
new/known sign classes. The second task addresses on-board 2D object detection,
focusing on vehicles and pedestrians. In this case, we assume that we receive a set
of images without the annotations required to train an object detector, i.e. without
object bounding boxes. Therefore, our goal is to self-annotate these images so
that they can later be used to train the desired object detector. In order to reach
this goal, we leverage from synthetic data and propose a semi-supervised learning
approach based on the co-training idea. In fact, we use a GAN to reduce the synth-
to-real domain shift before applying co-training. Our quantitative results show
that co-training and GAN-based image-to-image translation complement each
other up to allow the training of object detectors without manual annotation, and

iii

still almost reaching the upper-bound performances of the detectors trained from
human annotations. While in previous tasks we focus on vision-based perception,
the third task we address focuses on LiDAR pointclouds. Our initial goal was to
develop a 3D object detector trained on synthetic LiDAR-style pointclouds. While
for images we may expect synth/real-to-real domain shift due to differences in
their appearance (e.g. when source and target images come from different camera
sensors), we did not expect so for LiDAR pointclouds since these active sensors
factor out appearance and provide sampled shapes. However, in practice, we have
seen that it can be domain shift even among real-world LiDAR pointclouds. Factors
such as the sampling parameters of the LiDARs, the sensor suite configuration on-
board the ego-vehicle, and the human annotation of 3D bounding boxes, do induce
a domain shift. We show it through comprehensive experiments with different
publicly available datasets and 3D detectors. This redirected our goal towards the
design of a GAN for pointcloud-to-pointcloud translation, a relatively unexplored
topic.

Finally, it is worth to mention that all the synthetic datasets used for these three
tasks, have been designed and generated in the context of this PhD work and will
be publicly released. Overall, we think this PhD presents several steps forward to
encourage leveraging synthetic data for developing deep perception models in the
field of driving assistance and autonomous driving.

iv

Resumen

La anotación manual de imágenes para desarrollar sistemas basados en visión por
computador ha sido uno de los puntos más problemáticos desde que se utiliza
aprendizaje automático para ello. El problema se ha agravado desde la irrupción del
aprendizaje profundo. Esta tesis se centra en el desarrollo de modelos profundos
de percepción para conducción autónoma. Por tanto, no solo se requiere anotar
imágenes, sino también nubes de puntos 3D que provienen de señores LiDAR,
lo que resulta incluso más costoso. En la última década, se ha demostrado que
merece la pena investigar el uso de datos sintéticos para minimizar esos costes.
La razón es que los datos sintéticos pueden generarse con diferentes tipos de
anotaciones asociadas de forma automática, p. ej., la localización de los objetos
de interés, información semántica a nivel de pixeles/puntos, etc. Sin embargo,
entrenar modelos profundos con datos sintéticos y posteriormente utilizarlos para
operar en entornos reales puede dar lugar a problemas de adaptación de dominio,
en otras palabras, la precisión de los modelos no es la esperada. En este contexto,
esta tesis se centra en aprovechar los datos sintéticos para aliviar el coste de las
anotaciones manuales en tres tareas de percepción relacionadas con la asistencia a
la conducción y la conducción autónoma. En todo momento asumimos el uso de
redes neuronales convolucionales para el desarrollo de nuestros modelos profundos
de percepción.

La primera tarea plantea el reconocimiento de señales de tráfico, un problema
de clasificación de imágenes. Asumimos que el número de clases de señales de
tráfico a reconocer se debe incrementar sin haber podido anotar nuevas imáge-
nes con las que realizar el correspondiente reentrenamiento. Demostramos que
aprovechando los datos sintéticos de las nuevas clases y transformándolas con una
red adversaria-generativa (GAN, de sus siglas en inglés) entrenada con las clases
conocidas (sin usar muestras de las nuevas clases), es posible reentrenar la red
neuronal para clasificar todas las señales en una proporción de ∼ 1/4 entre clases
nuevas y conocidas. La segunda tarea consiste en la detección de vehículos y peato-
nes (objetos) en imágenes. En este caso, asumimos la recepción de un conjunto de
imágenes sin anotar. El objetivo es anotar automáticamente esas imágenes para
que así se puedan utilizar posteriormente en el entrenamiento del detector de
objetos que deseemos. Para alcanzar este objetivo, partimos de datos sintéticos
anotados y proponemos un método de aprendizaje semi-supervisado basado en
la idea del co-aprendizaje. Además, utilizamos una GAN para reducir la distancia
entre los dominios sintético y real antes de aplicar el co-aprendizaje. Nuestros
resultados cuantitativos muestran que el procedimiento desarrollado permite ano-

v

tar el conjunto de imágenes de entrada con la precisión suficiente para entrenar
detectores de objetos de forma efectiva; es decir, tan precisos como si las imágenes
se hubiesen anotado manualmente. En la tercera tarea dejamos atrás el espacio 2D
de las imágenes, y nos centramos en procesar nubes de puntos 3D provenientes
de sensores LiDAR. Nuestro objetivo inicial era desarrollar un detector de objetos
3D (vehículos, peatones, ciclistas) entrenado en nubes de puntos sintéticos estilo
LiDAR. En el caso de las imágenes cabía esperar el problema de cambio de dominio
debido a las diferencias visuales entre las imágenes sintéticas y reales. Pero, a priori,
no esperábamos lo mismo al trabajar con nubes de puntos LiDAR, ya que se trata
de información geométrica proveniente del muestreo activo del mundo, sin que
la apariencia visual influya. Sin embargo, en la práctica, hemos visto que también
aparecen los problemas de adaptación de dominio. Factores como los parámetros
de muestreo del LiDAR, la configuración de los sensores a bordo del vehículo autó-
nomo, y la anotación manual de los objetos 3D, inducen diferencias de dominio.
En la tesis demostramos esta observación mediante un exhaustivo conjunto de
experimentos con diferentes bases de datos públicas y detectores 3D disponibles.
Por tanto, en relación a la tercera tarea, el trabajo se ha centrado finalmente en el
diseño de una GAN capaz de transformar nubes de puntos 3D para llevarlas de un
dominio a otro, un tema relativamente inexplorado.

Finalmente, cabe mencionar que todos los conjuntos de datos sintéticos usados
en estas tres tareas han sido diseñados y generados en el contexto de esta tesis
doctoral y se harán públicos. En general, consideramos que esta tesis presenta
un avance en el fomento de la utilización de datos sintéticos para el desarrollo
de modelos profundos de percepción, esenciales en el campo de la conducción
autónoma.

vi

Resum

L’anotació manual d’imatges per desenvolupar sistemes basats en visió per com-
putador ha estat un dels punts més problemàtics des que s’utilitza aprenentatge
automàtic per a això. El problema s’ha agreujat des de la irrupció de l’aprenentatge
profund. Aquesta tesi es centra en el desenvolupament de models profunds de per-
cepció per a conducció autònoma. Per tant, no només es requereix anotar imatges,
sinó també núvols de punts 3D que provenen de senyors LiDAR, el que resulta fins i
tot més costós. En l’última dècada, s’ha demostrat que val la pena investigar l’ús de
dades sintètiques per minimitzar aquests costos. La raó és que les dades sintètiques
es poden generar amb diferents tipus d’anotacions associades de forma automàti-
ca, p. ex., la localització dels objectes d’interès, informació semàntica a nivell de
píxels/punts, etc. Tot i això, entrenar models profunds amb dades sintètiques i
posteriorment utilitzar-los per operar en entorns reals pot donar lloc a problemes
d’adaptació de domini, en altres paraules, la precisió dels models no és l’esperada.
En aquest context, aquesta tesi es centra en aprofitar les dades sintètiques per alleu-
jar el cost de les anotacions manuals en tres tasques de percepció relacionades amb
l’assistència a la conducció i la conducció autònoma. En tot moment assumim l’ús
de xarxes neuronals convolucionals per al desenvolupament dels nostres models
profunds de percepció.

La primera tasca planteja el reconeixement de senyals de trànsit, un proble-
ma de classificació d’imatges. Assumim que el nombre de classes de senyals de
trànsit a reconèixer s’ha d’incrementar sense haver pogut anotar noves imatges
amb què realitzar el corresponent reentrenament. Demostrem que aprofitant les
dades sintètiques de les noves classes i transformant-les amb una xarxa adversària-
generativa (GAN, de les seves sigles en anglès) entrenada amb les classes conegudes
(sense usar mostres de les noves classes), és possible reentrenar la xarxa neuronal
per classificar tots els senyals en una proporció de SI M1/4 entre classes noves i
conegudes. La segona tasca consisteix en la detecció de vehicles i vianants (objec-
tes) en imatges. En aquest cas, assumim la recepció d’un conjunt d’imatges sense
anotar. L’objectiu és anotar automàticament aquestes imatges perquè així es pu-
guin utilitzar posteriorment en l’entrenament del detector d’objectes que desitgem.
Per assolir aquest objectiu, vam partir de dades sintètiques anotades i proposem
un mètode d’aprenentatge semi-supervisat basat en la idea del co-aprenentatge.
A més, utilitzem una GAN per reduir la distància entre els dominis sintètic i real
abans d’aplicar el co-aprenentatge. Els nostres resultats quantitatius mostren que
el procediment desenvolupat permet anotar el conjunt d’imatges d’entrada amb
la precisió suficient per entrenar detectors d’objectes de forma efectiva; és a dir,

vii

tan precisos com si les imatges s’haguessin anotat manualment. A la tercera tasca
deixem enrere l’espai 2D de les imatges, i ens centrem en processar núvols de punts
3D provinents de sensors LiDAR. El nostre objectiu inicial era desenvolupar un
detector d’objectes 3D (vehicles, vianants, ciclistes) entrenat en núvols de punts
sintètics estil LiDAR. En el cas de les imatges es podia esperar el problema de canvi
de domini degut a les diferències visuals entre les imatges sintètiques i reals. Però,
a priori, no esperàvem el mateix en treballar amb núvols de punts LiDAR, ja que
es tracta d’informació geomètrica provinent del mostreig actiu del món, sense que
l’aparença visual influeixi. No obstant això, a la pràctica, hem vist que també aparei-
xen els problemes d’adaptació de domini. Factors com els paràmetres de mostreig
del LiDAR, la configuració dels sensors a bord del vehicle autònom, i l’anotació
manual dels objectes 3D, indueixen diferències de domini. A la tesi demostrem
aquesta observació mitjançant un exhaustiu conjunt d’experiments amb diferents
bases de dades públiques i detectors 3D disponibles. Per tant, en relació amb la
tercera tasca, el treball s’ha centrat finalment en el disseny d’una GAN capaç de
transformar núvols de punts 3D per portar-los d’un domini a un altre, un tema
relativament inexplorat.

Finalment, cal esmentar que tots els conjunts de dades sintètiques usats en
aquestes tres tasques han estat dissenyats i generats en el context d’aquesta tesi
doctoral i es faran públics. En general, considerem que aquesta tesi presenta un
avanç en el foment de la utilització de dades sintètiques per al desenvolupament de
models profunds de percepció, essencials en el camp de la conducció autònoma.

viii

Contents

Abstract (English/Spanish/Catalan) iii

List of figures xiii

List of tables xix

1 Introduction 1

1.1 Autonomous vehicles . 1

1.2 Traffic scene understanding . 3

1.3 The need for annotated data . 5

1.4 PhD Objective and Outline . 6

2 Recognizing New Traffic Signs with Synthetic Data in the Loop 9

2.1 Introduction . 9

2.2 Related work . 12

2.3 Method . 15

2.3.1 Overall idea . 15

2.3.2 Data generation . 17

2.4 Experimental results . 19

2.4.1 Datasets . 19

ix

Contents

2.4.2 Experiments: design, results, and discussion 20

2.5 Conclusions . 31

3 Co-training for On-board Deep Object Detection 33

3.1 Introduction . 33

3.1.1 Paradigms to minimize human labeling 34

3.1.2 The domain adaptation problem 35

3.1.3 The focus of this work . 35

3.1.4 Contributions and organization 36

3.2 Semi-supervised learning . 37

3.2.1 Self-labeling . 37

3.2.2 Domain adaptation . 39

3.3 Methods . 40

3.3.1 Self-labeling functional components 41

3.3.2 Self-training . 46

3.3.3 Co-training . 47

3.3.4 Self-labeling for UDA . 47

3.4 Experiments . 49

3.4.1 Experimental setup . 49

3.4.2 Results . 52

3.5 Conclusion . 63

4 Lidar-based 3D object detection 65

4.1 Introduction . 65

x

Contents

4.2 Related work . 67

4.2.1 Working with pointclouds . 67

4.2.2 Domain shift in pointclouds . 69

4.3 Cross-domain LiDAR-based 3D object detection 70

4.3.1 Data . 70

4.3.2 Methods . 72

4.3.3 Results . 75

4.4 GAN-based pointcloud-to-pointcloud translation 83

4.4.1 Synthetic data . 83

4.4.2 Proposed GAN . 85

4.4.3 Results . 87

4.5 Conclusions . 90

5 Conclusions and Future work 93

A Appendix 99

A.1 The SYNTHIA Dataset Reloaded . 99

A.1.1 Virtual world configuration . 99

A.1.2 Groundtruth . 103

B Appendix 109

B.1 Scientific Articles . 109

B.1.1 Journals . 109

B.1.2 Internacional Conferences . 109

B.1.3 Book chapters . 110

xi

Contents

Bibliography 128

xii

List of Figures

1.1 SAE Levesl of driving automation. Source: <sae.org>. 2

1.2 Conceptualization of a classic autonomous driving pipeline. 3

1.3 Top: 3D pointcloud captured by a LiDAR sensor, color codifies height.
Bottom: usual on-board RGB image from a forward facing camera
behind the windshield. Both data samples correspond to the KITTI
dataset [46]. 4

1.4 Manual annotation of 2D bounding boxes framing vehicles. 5

1.5 Aerial view ground truth of the same synthetic scene based on the SYN-
THIA dataset [123]. Left column: semantic segmentation (top) and
instance segmentation (bottom) from a synthetic image. Mid column:
analogous for LiDAR 3D pointclouds. Right column: color-coded
depth (top) and 3D Bounding boxes (bottom) for vehicles/pedestrian-
s/motorbikes/bicyclists shown on top of the synthetic image used in
all these examples. 7

2.1 Lifelong learning setting. First, unknown classes are identified. Then,
if we want to consider them in the future, we must collect diverse
samples of these classes for posterior model retraining. Finally, we
retrain the models to recognize the new classes, without forgetting
previous ones. In this chapter, we focus on the second step, assum-
ing that rather than collecting the samples from the real world, we
generate them by using a virtual world. 12

xiii

List of Figures

2.2 Proposed method for retraining a classifier, C , to keep detecting pre-
viously known classes (K) for which we have labeled real-world and,
in addition, new previously unknown classes (U) for which we do not
have real-world samples. The key idea is to have synthetic samples
for both the known and new classes. The real-world samples of the
known classes (IK) and the synthetic ones (ĨK) are used to train
a GAN with the aim of performing synthetic-to-real domain adapta-
tion. In particular, the synthetic samples of the new classes (ĨU) are

transformed (G ĨU) by this GAN. Then, the real-world samples of the
previously known classes and the transformed synthetic samples of
the new classes, are used to train the desired classifier. The overall
idea is illustrated for traffic sign recognition. 16

2.3 Hierarchy of Tsinghua traffic signs. 19

2.4 Sample images. Left block (4 columns) and right block (4 columns)
rely on different criteria to generate their splits. Left block: splits
based on the hierarchy shown in Fig. 2.3. Right block: splits based on
the balance between known and unknown (shown %) classes. Within
each block, row-wise we show samples from the same class of the
unknown split. Within each block, from the left to the right column,
we have: a SYNTHIA-TS sample from the unknown class, a SYNTHIA-
TS sample from an unknown class transformed by a CycleGAN trained
on SYNTHIA-TS-to-Tsinghua samples from known classes, similar as
the previous column but training a CycleGAN on the unknown classes,
and a Tsinghua sample of an unknown class. 24

2.5 Samples based on H2-X splits (Fig. 2.3). Rows: splits with classes in
the role of unknown. Left-to-right columns: samples from SYNTHIA-
TS, SYNTHIA-TS samples transformed by a CycleGAN trained on
SYNTHIA-TS and Tsinghua samples of classes in H2-1 split (which
play the role of known classes here), analogous for H2-3 instead of
H2-1, for H2-5 and H2-9, and samples from Tsinghua. 27

3.1 Self-training main components. We use the same notation as in Algo-
rithm 1. The data in green is labeled, the one in dark grey is unlabeled,
the transition of both colors represents pseudo-labeled data. The blue
boxes correspond to the main components involved in self-training
according to Algorithm 1. 42

xiv

List of Figures

3.2 Co-training main components. We use the same notation as in Algo-
rithm 2, but we have introduced two dummy variables for the sake of

clarity (X l̂
1,t ,X l̂

2,t). The data in green is labeled, the one in dark grey
is unlabeled, the transition of both colors represents pseudo-labeled
data. The blue boxes correspond to the main components involved in
co-training according to Algorithm 2. The light grey bounding box is
executed just once. 44

3.3 Top images: virtual-world patches showing 3D BBs framing vehicles
and pedestrians. Bottom image: projecting 3D BBs as 2D BBs for dif-
ferent views of a pickup, with instance segmentation as visual reference. 48

3.4 Main components of Faster R-CNN: feature extractor (FE), region
proposal network (RPN), and region-based CNN (RCNN). Their re-
sponsibilities are outlined in parenthesis and elaborated in the main
text. We use VGG16 as FE. Blue boxes are blocks of neural network
layers with input dimensions indicated as <height, width, channels>.
Grey boxes are algorithmic steps to return BBs, candidates (RPN) or
detections (RCNN). 51

3.5 From left to right: images from V , corresponding images in VGK (i.e.
processed by the V → K GAN), and images from K . Last column
is just a visual reference since, obviously, there is no a one-to-one
correspondence between V and K . 53

3.6 From left to right: images from V , corresponding images in VGW
(i.e.

processed by the V →W GAN), and images from W . For visual com-
parison, the two top rows of this figure and those in Figure 3.5, start
with the same images in V . 53

3.7 Eventual detection performance (mAP) of self-training and co-training
as a function of the stopping cycle, in the UDA setting. Upper and
lower bounds are included as visual reference. We refer to the main
text for more details. 57

xv

List of Figures

3.8 Examples of Self/Co-training + ASource. Red BBs are from the ground
truth of K tr , and green BBs are predicted. Each block of two columns
with the same underlying image compares self-training (left column
of the block) and co-training (right column of the block). Top row
corresponds to detections in Cycle 0, when, in these examples, the
only available training data is VGK (so it is the same for self-training
and co-training). The following rows, top to bottom, correspond to
detections from cycles 1, 10, and 20, respectively, when self-labeled
images are incrementally added to the training set. 58

3.9 Analogous to Figure 3.8 for W tr and VGW
. 59

3.10 Examples of misalignment between ground truth BBs (red) and self-
labeled ones (green). Occlusion is the underlying problem, giving rise
to shorter BBs (top and middle) or BBs fusing several instances in one
(bottom). 62

3.11 Results for K t t (top ‘Source → Co-T+Asource’ block) and W t t (bot-
tom ‘Source → Co-T+Asource’ block). Red BBs are the ground truth,
and green ones are the detections done by the detector indicated at
the first column of each row. 64

4.1 3D detection case. The position, size and orientation is provided. The
position and size is estimated using a bounding box format with its
centroid and box size (red lines). The orientation is computed using
the angle of the car direction respect to the x-axis of the pointcloud
(green arrow). 67

4.2 Corresponding image (left) and LiDAR pointcloud (right) samples.
From top to bottom: KITTI, Lyft, Waymo and SYNTHIA-3D. 71

4.3 Frustrum PointNet pipeline. The pipeline is divided in three stages. (1)
Frustrum proposal is on charge of generating the 2D BBs, i.e. object
candidates. (2) The 3D instance segmentation, which classifies the
points within each candidate frustrum as object or background. (3)
The amodal 3D BBOX estimation of the center of each object and
the eight points defining its 3D BB. Blue boxes refer to trained model
parameters. 73

xvi

List of Figures

4.4 PointPillars pipeline. It consists of two stages. (1) The Pillar Feature
Net converts the pointcloud into pillars which are processed to obtain
features. These are finally rearranged in the form of a pseudo-image.
N is the number of points in each pillar, P is the number of pillars, D
is the input data dimension for each point in each pillar, and C is the
feature length of the learnt pillar. H and W set the dimensions of the
pillar grid. (2) The 3D detection stage processes the pseudo-image
using a multi-resolution network with a SSD head [92] for generating
the detections. Blue boxes refer to trained model parameters. 74

4.5 PointRCNN pipeline. It uses a PointNet network style [26] to extract
features, i.e. per-point features, further processed by a two-stage
object detector, i.e. with a generation of candidates followed by a
classification which determines the class of the candidates and refines
the 3D BBs. Blue boxes refer to trained model parameters. 74

4.6 Synthetic pointcloud samples over the considered ground plane. The
height of the points is color-coded for the sake of a better visualization. 84

4.7 GAN for pointcloud-to-pointcloud translation. Blue arrows show the
common domain forward path, red arrows the target domain forward
path, green arrows the source domain forward path, and yellow arrows
the translation path from source domain samples. 86

4.8 Architecture based on ResNet blocks. 86

4.9 Qualitative results. Column-wise: source pointcloud (left), translated
pointcloud (center), and target-domain pointcloud (right). The later
is added just for visual comparison with the translated pointcloud.
From top row to bottom: adding noisy points, removing noise points,
rigid motion towards a higher plane (note that height is color-coded),
shape change (from a cone to a cuboid). 88

A.1 SYNTHIA views. Left column, top to bottom: NY and Town styles
during night, bridge area and highway area. Right column, top to
bottom: aerial view from NY style area, park area, aerial view from
tonw style area and parking example. Regarding areas, the town covers
approx. 370×260m, NY 480×370m and the highway 1630×1050m. . 101

A.2 Example of sensor suite; C# stands for camera #. When recording with
a mono camera B is always 0. 102

xvii

List of Figures

A.3 Aerial view of the same intersection under different ambient condi-
tions. Top, from left to right: summer, fall, sunset and winter. Bottom,
left to right: heavy shadows, bright illumination, night and rain. . . . 104

A.4 Aerial view grountruth of the same scene. Left, from top to bottom: Se-
mantic segmentation, 3D Bounding boxes and instance LIDAR. Right,
from top to bottom: Depth, instance segmentation and semantic LIDAR.106

A.5 From 3D to 2D BBs. 107

xviii

List of Tables

1.1 Publicly available datasets captured on-board vehicles. We consider
only those providing detection bounding boxes with good quality. In
the sensor column, C stands for camera and L for LiDAR. 6

2.1 Splits of Fig. 2.3 used in appearance-driven experiments. Tsinghua
samples are divided as training and testing tasks (details in main text).
SYNTHIA-TS samples are used in training tasks only. 21

2.2 Basic notation for data subsets. 21

2.3 Lower and upper bounds for traffic sign classification on T C
H0−0. Aver-

age and standard deviation F1 score for five training-testing runs are
shown. The lower bound corresponds to training only with synthetic
data (S T

H0−0), while the upper bound corresponds to training with
real data (T T

H0−0). 22

2.4 Experiments to support Q1 (see main text). All tests are done in T C
su

.
Average and standard deviation of F1 score are reported since each
experiment is performed five times. The column G su

sk −S T
su

just
stands for the subtraction of the means of the respective columns. . . 23

2.5 Experiments to support Q1 analogous to Table 2.4, but using ResNet101. 23

2.6 Experiments to support Q1 (see main text). All tests are done in T C
su

.
Average and standard deviation of F1 score are reported since each
experiment is performed five times. The column G su

sk −S T
su

just
stands for the subtraction of the means of the respective columns. . . 28

2.7 Experiments to support Q1 analogous to Table 2.6, but using ResNet101. 28

xix

List of Tables

2.8 Experiments to support Q2 (see main text), all done in T C
H0−0. Average

and standard deviation of F1 score are reported since each experiment
is performed five times. This is done for the all-classes classification
problem, but we also show detailed results for known and unknown
classes. Table 2.3 shows the lower and upper bounds for these experi-
ments, i.e. training only on either SYNTHIA-TS or Tsinghua data. In
terms of average F1, these bounds are 36.05 and 97.59, resp. 29

2.9 Experiments to support Q2 analogous to Table 2.8, but using ResNet101.
In this case, the lower and upper bounds are 58.74 and 98.76, respec-
tively. 30

3.1 Datasets (X): train (X tr) and test (X t t) information, X = X tr ∪
X t t ,X tr∩X t t =;. We show the number of main/sections4/images/frames
(sequences), vehicle BBs, pedestrian BBs, and whether the datasets
consists of video sequences or not. 50

3.2 Self-training and co-training hyper-parameters as defined in Algo-
rithms 1 and 2. We use the same values for both, as well as to work
with KITTI (K) and Waymo (W) datasets, except for H seq which only
applies to W . N , n, m,∆t 1, and∆t 2 are set in number-of-images units,
Kmi n and ∆K in number-of-cycles, T∆m AP runs in [0..100]. We use the
same confidence detection threshold for vehicles and pedestrians,
which runs in [0..1]. (?) Only used in co-training, however, for m =∞,
it has no effect. 54

3.3 SSL results for K and W . We assess vehicle (V) and pedestrian (P)
detection, according to the mAP metric. From X tr ∈ {K tr ,W tr }, we
preserve the labeling information for a randomly chosen p% of its
images, while it is ignored for the rest. We report results for p=100 (all
labels are used), p=5 and p=10. Slf-T and Co-T stand for self-training
and co-training, resp., which refers to how images were self-labeled
from the respective unlabeled training sets. 54

xx

List of Tables

3.4 Number of self-labeled vehicles and pedestrians applying self-training
and co-training, for the SSL (5% & 10%) and UDA (Source & ASource)
settings, for KITTI (K) and Waymo (W). In parenthesis we indicate
the percentage of false positives. The top block corresponds to ground
truth labels in the full training sets, and the percentages used for
SSL. After removing false positives, in each block of rows, the corre-
sponding∆X shows how many more objects are labeled by co-training
compared to self-training. 55

3.5 UDA results for V → {K ,W }, i.e. virtual to real. ASource (adapted
source) refers to VG ∈ {VGK ,VGW

}. X l ,tr refers to the fully labeled

target-domain training set. X l̂ ,tr consists of the same images as
X l ,tr , but self-labeled by either self-taining (Slf-T) or co-training (Co-
T). Just as reference, we also show the domain shift between K and
W . According to these results, as upper bound for K we take the
detector based on X l ,tr &VG , while for W it is the detector based on
X l ,tr . We refer to the main text for more details. 56

3.6 Results for two new settings: (/FP) assuming we remove the self-
labeled false positives; (/FP+BB) assuming that, in addition, for the
self-labeled instances, we change the predicted BB by the correspond-
ing one in the ground truth. The ∆X rows show differences between
these variants and the respective original one (i.e. neither removing
the FP nor adjusting the BBs). The bottom block of rows remarks the
differences between the best self-labeling (Co-T+ASource, including
/FB and /FB+BB cases) and the upper bound. 61

4.1 Dataset annotation statistics. 71

4.2 Difficulty levels in KITTI benchmark (KB) and our modification (OB)
to accommodate Waymo and Lift datasets. K: KITTI, W: Waymo, L: Lyft. 75

4.3 mAP scores for all training-testing domain combinations and all 3D
object detectors. E and H refer to easy and hard difficulty levels,
resp. FP, PP, and PRCNN refer to Frustrum PointNet, PointPillars,
and PointRCCN, resp. Following KITTI benchmark, the mean IoU to
accept a car detection is 70%, while for pedestrians and cyclists it is
50%. Bold highlights the cases where training and testing datasets are
from the same domain. 76

xxi

List of Tables

4.4 Comparing the mAP scores of Table 4.3. Note that each cell in this
table has a corresponding one in Table 4.3. Therefore, looking at
Table 4.3, we compare the mAP score in such corresponding cell with
its counterpart free of domain shift (i.e., same training and testing
domains). A negative sign indicates domain shift, and the value is the
amount (in mAP units). 77

4.5 Estimated 3D BB margin differences (in cm) among datasets due to
the annotation process. L: length, W: width, H: height. As expected,
we obtained 0 cm as result for training and testing sets being from the
same domain. 79

4.6 mAP scores for all training-testing domain combinations and all 3D
object detectors, applying the margin corrections of Table 4.5 for the
cross-domain cases. E and H refer to easy and hard difficulty levels,
resp. FP, PP, and PRCNN refer to Frustrum PointNet, PointPillars,
and PointRCCN, resp. Following KITTI benchmark, the mean IoU to
accept a car detection is 70%, while for pedestrians and cyclists it is
50%. 80

4.7 Comparing the mAP scores of Table 4.6. Note that each cell in this
table has a corresponding one in Table 4.6. Therefore, looking at
Table 4.6, we compare the mAP score in such corresponding cell with
its counterpart free of domain shift (i.e., same training and testing
domains). A negative sign indicates domain shift, and the value is the
amount (in mAP units). 81

4.8 Comparing the mAP scores of Table 4.6 with Table 4.3 (in mAP units).
A negative sign indicates that margin corrections according to Table
4.5 did not help. 82

4.9 Results . 88

A.1 Main configuration parameters in SYNTHIA. 100

A.2 Feature effects included into the SYNTHIA:Reloaded model to im-
prove realism. 103

xxii

List of Tables

A.3 GT and variability factors provided in different publicly available
datasets of synthetic images. BBs stands for 3D bounding boxes with
instance ID (in the new SYNTHIA they are provided not only for im-
ages, but also for LIDAR data), CK means CamVid/KITTI compatible
semantic classes, while CS refers to Cityscapes. Sem LIDAR refers to
the point cloud with associated class label and instance label per point.
V stands for Vehicles, and VRUs for vulnerable road users (pedestrians
and cyclists). In the case of SYNTHIA, Multi-view includes stereo rigs
as well as a 360◦ view based on several cameras. 105

xxiii

1 Introduction

1.1 Autonomous vehicles

Autonomous vehicles (AVs) are receiving increasing attention from the research
community, the industry, and the authorities responsible for the mobility of citizens
and goods. The EU consisders them as one of the top-10 technologies that will
change our lives [167]. Well-coordinated fleets of AVs are seen as the solution to
reduce the amount of individual infra-occupied and infra-used vehicles on the
roads, so significantly reducing congestion and pollution, along saving energy.
Furthermore, AVs have the advantage of not being distracted with non-driving tasks,
not falling asleep, and respecting speed limits, thus, contributing to a safer driving.
Note that distraction, tiredness, and not respecting speed limits, are major causes
of traffic fatalities [165]. In fact, according to [15], AVs do not need to show a perfect
performance in all circumstances for their deployment to be worth, since being
able to perform slightly better than human drivers is enough to save hundreds of
thousands of lives over 30 years.

AVs rely on sensors to capture the surrounding scene, since they are placed on
different positions of the vehicle to avoid blind spots. This data consist of visual
appearance (from regular cameras), distance and speed for moving traffic partici-
pants (from radars), distances and 3D shapes (from LiDARs), thermal information
(from far infrared cameras), global localization (e.g. from GPS) or ego-vehicle
motion information (from IMUs); additionally including vehicle-to-X (V2X) com-
munications [134], i.e. the ability to communicate with other vehicles and/or traffic
infrastructure to access useful information such as the presence of oncoming ve-
hicles/pedestrians/etc. occluded behind the corner, or just for coordinating joint
maneuvers. Once processed, all these data should make AVs able to take more accu-
rate driving actions than humans. However, even for machines, driving is a highly
complex task to be codified just as a set of hard-coded rules, so the artificial drivers
rely on Artificial Intelligence (AI) to provide the expected behaviour [54, 69, 91, 182].

Accordingly, the mobility needs and the advances on AI encourage the develop-
ment of AVs; however, we are still far from the performance of good human drivers.

1

Chapter 1. Introduction

Figure 1.1 – SAE Levesl of driving automation. Source: <sae.org>.

The Society of Automotive Engineers (SAE) classifies the degrees of vehicle auton-
omy according to six levels, which can be seen in Fig. 1.1. Most of the automatized
vehicles today are at some point between Level 2 and Level 3, so just crossing the
border where the driving responsibility moves from the human to the AI; thus, we
are still far from the goal of fully replacing human drivers in all situations, which
corresponds to Level 5.

Most AI drivers behind AVs are based on a set of conceptual modules [91, 182]
as those summarized in Fig. 1.2. The global planner acts at a high navigation level,
defining which route the vehicle should follow to reach the desired destiny; which,
in fact, nowadays is also used to support human driving. Once the route is defined,
the scene understanding module identifies and localizes relevant traffic elements
along this route, such as dynamic participants (i.e., other vehicles, pedestrians, etc.)
and static infrastructure (i.e., free road surface, traffic signs, etc.). This information

2

1.2. Traffic scene understanding

Figure 1.2 – Conceptualization of a classic autonomous driving pipeline.

is sent to the local planner to compute a safe maneuver keeping the desired route.
Once the maneuver is planed, the control module executes the low level commands
(i.e., steering, acceleration/brake) to move the AV accordingly.

This PhD dissertation focuses on the scene understanding module, also known as
environmental perception since the understanding is derived from the data provided
by the on-board sensors.

1.2 Traffic scene understanding

There are different approaches to address traffic scene understanding. Roughly
speaking, we can see approaches where predefined 3D semantic maps are assumed
to exists, and others for which it is not the case [69, 80, 91, 182]. The former ap-
proaches assume that the AV localizes itself in a map in real-time, which allows it to
access prior information about essential traffic infrastructure for driving, such as
accurate localization of lanes, lane markings, sidewalks, intersections, traffic lights,
as well as traffic sign enforcement. This information is then complemented by the
on-board detection of dynamic traffic participants (called objects in the perception
literature) such as vehicles, pedestrians, motorbikes and bicyclists, and, eventually,
the state of some traffic infrastructure such as the one of traffic lights or changing
traffic signs. In the map-free approaches, on-board object detection and recogni-

3

Chapter 1. Introduction

Figure 1.3 – Top: 3D pointcloud captured by a LiDAR sensor, color codifies height.
Bottom: usual on-board RGB image from a forward facing camera behind the
windshield. Both data samples correspond to the KITTI dataset [46].

tion tasks must be performed too; however, in addition, the traffic infrastructure
potentially affecting the AV driving must be also identified, i.e. the lane limits, the
state of some traffic elements (e.g., traffic lights, certain traffic signs), etc. Obviously,
these approaches require to solve more on-board tasks, but, on the other hand,
relying on pre-recorder maps also resorts challenging problems such as their con-
tinuous updating at worldwide scale, the real-time access to them, and developing
reliable 24/7 on-board and real-time vehicle localization algorithms.

In practical terms, traffic scene understanding is achieved when the state of all
the dynamic objects (detection and motion/intention estimation) and static infras-
tructure (localization and semantic state recognition) affecting the AV is captured.
In any case, it is clear that on-board object detection and recognition is required as
part of the perception behind any approach to traffic scene understanding.

4

1.3. The need for annotated data

Figure 1.4 – Manual annotation of 2D bounding boxes framing vehicles.

The most common sensors used to address these tasks are cameras and LiDARs
[69, 80, 182]. Fig. 1.3 shows a sample from each sensor. Cameras are required
when the visual appearance is a must as for performing traffic sign recognition or
detecting lane markings, while LiDAR sensors are specially accurate on providing
distance to obstacles. In both cases, we can address the detection of objects such as
vehicles and pedestrians, even following a multi-modal approach [7, 9, 31, 41, 79,
112, 115] provided the sensors are calibrated (synchronized and aligned). In fact,
this PhD candidate has actively participated in such kind of approaches [52]. From
this experience, the PhD candidate believes that Level 5 AVs will rely on both sensor
technologies (most probably complemented with others such as radar, GNSS, and
V2X), therefore, in this PhD we focus on RGB images and LiDAR 3D pointclouds to
develop models for on-board object detection and recognition.

1.3 The need for annotated data

Nowadays, best models to perform on-board object detection and recognition
rely on convolutional neural networks (CNNs), which are trained in a supervised
manner. For instance, training a CNN for object detection requires bounding boxes
framing the objects, which are usually provided by a costly and cumbersome process
of manual annotation (see example in Fig. 1.4). Since, in addition, thousands
or hundred of thousands of data samples (images or LiDAR 3D pointclouds) are
required to train CNNs and, in fact, also for testing them, data collection and
annotation is a current practical bottleneck in the development of AI drivers. In
Table 1.1 we show a summary of the publicly available datasets for addressing
autonomous driving perception, most of them released in last two years. It is worth
to mention that just blindly summing up the data from all these datasets is not
necessarily a good idea since the respective samples were captured from different

5

Chapter 1. Introduction

Table 1.1 – Publicly available datasets captured on-board vehicles. We consider only
those providing detection bounding boxes with good quality. In the sensor column,
C stands for camera and L for LiDAR.

Dataset Images Sensor Annotations Region Images/second

KITTI [46] 7,4k C & L 2D & 3D BBs Germany 1

Waymo [142] 200M C & L 2D & 3D BBs US 10.000

Lyft [67] 30k C & L 2D & 3D BBs US -

Tsinghua [187] 100k C 2D BBs China 1

Cityscapes [36] 5k C 2D & 3D BBs Germany 1

Nuscenes [21] 390k C & L 2D & 3D BBs Boston & Singapure 20

Apollo [160] 5.4k C & L 2D & 3D BBs China 2

sensor models and/or settings which introduces a domain shift [37, 159, 166].
Beyond trying to improve manual annotation processes, an alternative approach

is to use synthetic datasets for training perception models while minimizing manual
data annotation on real-world images. The key here is that synthetic data can come
with all kinds of automatically generated ground truth (supervision), as can be seen
in Fig. 1.5. This is a paradigm in which the CVC’s group hosting the PhD candidate
has been pioneer [38, 98, 123, 155, 171], and nowadays is a topic of worldwide
research in itself since training on synthetic data and testing on real-world one
challenges domain adaptation methods too [72, 96]. In fact, synthetic data can also
be used to test vision algorithms [11, 38, 63, 100, 121, 126, 129, 145] and learning
protocols [189]. The latter case, corresponding to a work on active learning where
this PhD candidate contributed with the design of a proper synthetic dataset for the
assessment of active learning algorithms.

Accordingly, this PhD dissertation focuses on the use of synthetic data to train
CNN-based models for on-board object detection and recognition tasks, aiming at
reducing human annotation effort.

1.4 PhD Objective and Outline

Once established human annotation as one of the bottlenecks for developing au-
tonomous driving systems, we can state that the overall goal of this PhD is to study
methods for leveraging synthetic data to create autonomous driving perception
systems, under different practical settings. We are going to focus on object detec-
tion and recognition, since these are key functionalities from Level 1 to Level 5

6

1.4. PhD Objective and Outline

Figure 1.5 – Aerial view ground truth of the same synthetic scene based on the
SYNTHIA dataset [123]. Left column: semantic segmentation (top) and instance
segmentation (bottom) from a synthetic image. Mid column: analogous for Li-
DAR 3D pointclouds. Right column: color-coded depth (top) and 3D Bounding
boxes (bottom) for vehicles/pedestrians/motorbikes/bicyclists shown on top of the
synthetic image used in all these examples.

autonomy. Moreover, since cameras and LiDARs are going to be key in high levels
of autonomy, we address work based on both. More specifically, in this PhD we
address different research questions organized per chapter as follows.

Chapter 2. On-board vision systems may need to increase the number of classes
that can be recognized in a relatively short period of time. For instance, a traffic
sign recognition (TSR) system may suddenly be required to recognize new signs
(classes). Since collecting and annotating samples of such new classes may need
more time than we have, especially for uncommon signs, we propose to generate
them from synthetic images. However, since the new version of the TSR system
needs to perform on real-world images, we must expect a problem of domain shift.
In this context, the chapter focuses on two arising questions: (Q1) Can we reduce
this domain shift by applying an image-to-image translation based on a generative
adversarial network (GAN) to the samples of the unknown classes, provided that
such a GAN was trained only with samples of the known classes? note that TSR is
a fine-grain classification task, so a priori it is unclear how GAN-based image-to-
image translation can perform in totally unseen traffic signs; and (Q2) What are
the overall classification results when training the TSR system using the real-world
data of the known classes with the data generated for the new classes following this
GAN-based proposal? In order to answer these questions, we present an extensive
set of experiments. We also contribute with a synthetic dataset designed to support

7

Chapter 1. Introduction

this research.
Chapter 3. We assess co-training as a semi-supervised learning method for

self-annotating objects in raw images, so reducing the human-annotation effort
for developing deep object detectors; in particular, for vehicles and pedestrians.
Our study pays special attention to a scenario involving domain shift; in particular,
when we have automatically generated virtual-world images with object bounding
boxes and we have real-world images which are not annotated. Accordingly, we also
study the combination of co-training with GAN-based image-to-image translation.
We also contribute with a synthetic dataset designed to support this research.

Chapter 4. In previous chapters, we address vision-based object recognition and
detection problems. In this chapter, we focus on LiDAR-based object detection, also
from the point of view of leveraging synthetic data to alleviate manual annotation.
In this case, data refer to 3D pointclouds coming from LiDAR scans, thus manual
annotation is especially cumbersome. Prior to start this research, we expected that
the synth-to-real domain shift for LiDAR data would not be comparable to the case
of images. The reason is that the same scene captured by different camera sensors
and/or acquisition settings may look very different (i.e., even producing domain
shift among the cameras), while LiDARs provide accurate depth information which
one may think to be more sensor/setting invariant. However, our experiments on
LiDAR-based object detection soon revealed that it is not the case. When training
CNNs for LiDAR-based object detection, there is a significant domain shift if the
testing 3D pointclouds come from different LiDAR sensors and/or acquisition
settings. In this context, there is a lack of GAN-based cloud-to-cloud translation
operating on typical AV’s data. This chapter focuses on filling in this gap. We also
contribute with a synthetic dataset designed to support this research.

We have written these chapters to be self-contained, following the usual struc-
ture of a paper, i.e. abstract, introduction, related work, propose method, experi-
mental work with associated discussion, and summarizing conclusions. Chapter 5
summarizes the main contributions of this PhD and draws lines of continuation.
Finally, we have added Appendices A and B, the former providing details about the
generation of the datasets generated for this PhD, the latter listing the publications
done while working in this PhD.

8

2 Recognizing New Traffic Signs with Synthetic
Data in the Loop

On-board vision systems may need to increase the number of classes that can be
recognized in a relatively short period. For instance, a traffic sign recognition
system may suddenly be required to recognize new signs. Since collecting and
annotating samples of such new classes may need more time than we wish, espe-
cially for uncommon signs, we propose a method to generate these samples by
combining synthetic images and Generative Adversarial Network (GAN) technol-
ogy. In particular, the GAN is trained on synthetic and real-world samples from
known classes to perform synthetic-to-real domain adaptation, but applied to
synthetic samples of the new classes. Using the Tsinghua dataset with a synthetic
counterpart, SYNTHIA-TS, we have run an extensive set of experiments. The re-
sults show that the proposed method is indeed effective, provided that we use a
proper Convolutional Neural Network (CNN) to perform the traffic sign recogni-
tion (classification) task as well as a proper GAN to transform the synthetic im-
ages. Here, a ResNet101-based classifier and domain adaptation based on Cycle-
GAN performed extremely well for a ratio ∼ 1/4 for new/known classes; even for
more challenging ratios such as ∼ 4/1, the results are also very positive.

2.1 Introduction

On-board computer vision is fundamental to perceive the traffic environment
around the ego-vehicle and, therefore, a crucial technology for assisting drivers or
enabling fully autonomous vehicles (AVs). In the last decade, computer vision has
been empowered by the use of Convolutional Neural Networks (CNNs), which allow
to extract very detailed meaningful information from raw images. Over the last few
years, we have witnessed unprecedented breakthroughs in tasks such as image level
classification [78, 130], bounding box level 2D and 3D object detection [23, 92, 102,
118, 119], pixel-wise class and instance segmentation [12, 90, 95, 105, 151, 152, 180],
skeleton-wise human pose estimation [22, 85, 141], even dense monocular depth
estimation [6, 42, 45, 50, 56, 57, 113]; all of them, among others, essential visual

9

Chapter 2. Recognizing New Traffic Signs with Synthetic Data in the Loop

capabilities for high levels of driving automation or assistance.
Indeed, CNNs have become very accurate models provided there is sufficient

data (in size and diversity) for their training [64, 140]; where data refer to both the
raw images and the ground truth (GT) that we must associate to them as training
supervision. In fact, since CNNs are data hungry and most GT comes from a
(cumbersome and prone to errors) manual labelling process, providing GT at scale,
reducing manual intervention, and/or reusing previous knowledge have become
emerging topics for computer vision research in general, and for autonomous
driving in particular. For instance, active learning techniques [1, 3, 125, 128] focus
on automatically finding the a priori best training images for their posterior manual
labelling, out of a large amount of unlabelled ones; self-labeling techniques [171,
173, 190] focus on progressively self-labelling images by refining increasingly more
accurate models; transfer learning techniques [48, 108] focus on reusing existing
models for re-training them to perform new tasks, so that only labels for such tasks
are required; domain adaptation techniques [32, 66, 159, 183] focus on reusing
exiting models in new domains, minimizing the labeling effort required in the new
domains; while self-supervision [47, 74, 77, 174] focuses on learning visual models
without manual labeling, with the support of auxiliary simple (pretext) tasks for
which it is possible to automatically define self-labels. Overall, all these research
topics are evidence that, due to CNNs, computer vision and its applications have
become strongly data-dependent.

In this context, there can appear situations where a sudden lack of data can
seriously limit the operational capabilities of a computer vision system. For instance,
imagine an AV or a driver assistance system that must detect (i.e. localize within
an image) and recognize/classify (i.e. assign a specific meaning) traffic signs by on-
board computer vision. While detection itself can be very robust due to the stability
of the shape of traffic signs across the world (triangles, rectangles, circles), it can
happen that the vehicles of a fleet deployed in a new world area suddenly detect
traffic signs that they cannot recognize. These vehicles can automatically broadcast
the unknown traffic signs to the company for opening an incidence. If the company
decides that it is required to actually recognize the new traffic signs, it may take too
much time to collect sufficient samples and perform their proper labelling, specially
if the samples must be acquired under a variety of environmental conditions and
viewpoints, which can be challenging if such new traffic signs are scarce (i.e. they
are rare events). While this is just an illustrative example, we can imagine analogous
situations for robots manipulating goods, traffic surveillance systems separating
vehicles according to their functionality, etc.; readers can imagine other examples
where perception-based systems may have such a kind of unknown class problem,
after all, both CNNs as well as traditional (shallow) vision models work under the
closed-world assumption.

10

2.1. Introduction

Following a new tendency during the last years [38, 44, 101, 121, 123, 129], in this
chapter we propose to explore how synthetic data can help in such situations. In
particular, assuming that we have a few samples of an unknown class (following
with the example, these can be traffic sign images reported by the fleet), we propose
a method consisting of the following steps: (1) to elaborate 3D graphical instances
of the class and automatically place them all around in a virtual environment; (2) by
varying the simulation conditions within the virtual environment, to automatically
generate as many image samples as needed; (3) to domain-adapt these samples to
close the visual gap with real-world images; (4) to retrain the corresponding CNNs
for recognizing the new class. Then, the research question is how these results would
differ from the results obtained by a counterpart procedure consisting on capturing
samples of the new class with real-world cameras and labelling them by hand (i.e.
instead of the steps (1)-(3)). Note that (3) must be a task-agnostic domain adaptation
step. In particular, we propose to use a Generative Adversarial Network (GAN) [53],
previously trained in a generic manner to transform our synthetic images to look
like real-world images captured by the cameras of our computer vision system. We
remark that such a GAN has never seen before samples of the unknown class. As
a very important and challenging use case, we assess the success of our proposal
by applying it to traffic sign recognition in the wild [187], which can be seen as
a fine-grain image classification task. We will elaborate exhaustive experiments
varying the known and unknown traffic signs according to different criteria, not
only for training/retraining the classification CNNs but also the task-agnostic GAN.
In order to support this experimental part, we have created a synthetic dataset
of traffic signs using an evolution of our SYNTHIA environment1 [123], which we
call SYNTHIA-TS. Using the Tsinghua dataset [187] and SYNTHIA-TS, we have run
an extensive set of experiments which show that the proposed method is indeed
effective, provided we use a proper CNN to perform the traffic sign classification task
as well as a proper GAN to transform the synthetic images. Here, a ResNet101-based
classifier and a CycleGAN performed extremely well for a ratio ∼ 1/4 for new/known
classes, and even for more challenging ratios such as ∼ 4/1 the results are also very
positive. Therefore, synthesizing data following our proposal establishes a proper
methodology to minimize the lack of real-world labelled data when a computer
vision system must be retrained to recognize new classes in a relatively short term.

The rest of the chapter is organized as follows. Section 2.3 elaborates our pro-
posal. Section 2.4 details the experimental protocol, the obtained results and the
conclusions deduced from them. Finally, section 2.5 summarizes the work pre-
sented in this chapter and suggests future directions of research in line with our
conclusions.

1We plan to publicly release this rendered data as well as its counterparts transformed by GANs

11

Chapter 2. Recognizing New Traffic Signs with Synthetic Data in the Loop

Figure 2.1 – Lifelong learning setting. First, unknown classes are identified. Then, if
we want to consider them in the future, we must collect diverse samples of these
classes for posterior model retraining. Finally, we retrain the models to recognize
the new classes, without forgetting previous ones. In this chapter, we focus on the
second step, assuming that rather than collecting the samples from the real world,
we generate them by using a virtual world.

2.2 Related work

Learning to recognize new classes falls into the paradigm of lifelong learning [10,
33, 109], where a perception-based system has to continuously adapt to situations
not previously experienced. We can think of three main components of such a
learning capability (see Fig. 2.1). The first one consists in the ability to identify
unknown classes, which is not trivial since CNNs tend to be overconfident about
their classification decisions. In fact, this is an active research topic known as out-of-
distribution detection (which includes novelty and anomaly detection; this chapter
relates to the novelty case) [24,87,99,114]. The second component consists in a data
generation protocol to collect training samples of these unknown classes provided
the CNN needs to take them into account in the future. Finally, the third component
consists in a procedure that allows the CNN to recognize the new classes, without
deteriorating its accuracy identifying the classes for which it was initially/previously
trained; this is known as learning without forgetting [5,76,86,93] and still is an open
and challenging research topic. In fact, [99] focuses on out-of-distribution for our
use case, i.e. traffic sign recognition.

In this chapter, we focus on data generation. We require that we are given the
unknown (novel) traffic signs in the form of a few on-board captured images. Also,

12

2.2. Related work

to avoid the forgetting problem when retraining the traffic sign recognition CNNs,
we will just retrain using all the available data (known and synthesized); in this way,
the chapter can really focus on assessing the usefulness of synthesizing samples of
the unknown classes. Accordingly, the remaining of this section addresses the use
of synthesized visual data for training computer vision models, as well as the use of
GANs to perform task-agnostic domain adaptation.

Researchers such as Taylor et al. [145] pioneered the use of videogame data
for testing vision-based tracking algorithms. Marin et al. [98] extended the use
of this synthetic data to train object detectors performing in real images, while
Vazquez et al. [156] raised the attention on the domain gap between virtual and
real world images. From there, the use of synthetic visual data generated from
virtual environments has kept growing. We find works using synthetic data for
object detection/recognition [62, 110, 111, 172], object viewpoint recognition [139],
re-identification [14], and human pose estimation [132]; building synthetic cities
for autonomous driving tasks such as semantic segmentation [59, 123], place recog-
nition [135], object tracking [44, 103], object detection [72, 147], stixels compu-
tation [63], and benchmarking different on-board computer vision tasks [121];
building indoor scenes for semantic segmentation [61], as well as normal and depth
estimation [71]; generating GT for optical flow, scene flow and disparity [20, 100];
generating augmented reality images to support object detection [4]; simulating
adverse atmospheric conditions such as rain or fog [11,126]; even performing proce-
dural generation of videos for human action recognition [137, 154]. Moreover, since
robotics and autonomous driving rely on sensorimotor models worth to be trained
and tested dynamically, in the last years the use of simulators has been intensified
beyond datasets [27, 38, 127, 129].

In contrast to this literature, we can leverage from already annotated real-world
images conveying a set of classes known by our current CNN-based classifier, but
we have to assess the possibility of using automatically generated synthetic images
as samples of classes that are unknown for our current CNN. Therefore, these
synthetic images must be used to retrain the CNN to properly classify previous
and new classes. We will evaluate two different settings. First, when the synthetic
images are used as they come from the virtual environment. Second, when the
synthetic images are transformed by a GAN to look like the real-world images, i.e. as
a type of task-agnostic domain adaptation; where, following the domain adaptation
terminology, the synthetic world acts as the source domain and the real world as
the target domain.

GANs use a generator CNN to transform the appearance of source images to look
like target images, and a discriminator CNN which aims at distinguishing between
the transformed and the original images in the target domain. The generator-
discriminator system is trained until the discriminator is not able to distinguish the

13

Chapter 2. Recognizing New Traffic Signs with Synthetic Data in the Loop

origin of the images, which is understood as the point when the source images are
similar enough to the target ones. This application of GANs is known as image-to-
image translation.

Isola et al. [107] proposed an encoder-decoder as generator architecture, and
a patch-based (patchGAN) approach for the discriminator. Since this approach
was only able to work with low resolution images, other approaches build upon
this method to overcome this problem [161]. However, a relevant observation is
that these proposals require pixel-level GT about how the generated images should
look like, which is termed as supervised image-to-image translation. In order to
avoid this kind of supervision, Taigman et al. [144] designed an encoder-decoder
generator in such a way that the encoder features are indistinguishable for original
and transformed images. In other words, for the GT it is only required to know if the
images come from the source domain or the target one, which is always possible at
training time. Liu et al. [89] also focused on generators’ feature layers. Afterwards,
other alternatives were proposed that did not require the mentioned supervision.
Some approaches use an auxiliary task to define the loss between input and gener-
ated images; for instance, Bousmalis et al. [18] use image-level classification while
Hoffman et al. [65] use semantic segmentation as auxiliary tasks. Other approaches
focus on appearance of the input and generated images. Shrivastava et al. [133]
proposed an identity loss between the input and generated images. One restriction
of this approach is that source and target domain images have similar appearance.
Zhu et al. [186] and Kim et al. [148] followed the cycle idea, i.e. from source im-
ages target-style ones are generate which, in turn, are the input to generate new
source-style images. The source-to-target and the target-to-source are different
generators. In each domain, we have different discriminators. The cycle idea is not
only useful because it does not require image GT, but also because the input and
transformed images can have a relatively different appearance, especially compared
to the approach in [133]. In other words, in contrast to other GAN proposals, a GAN
trained according to the cycle idea has the potential of properly transforming the
appearance of source images showing content unseen during its training. Accord-
ingly, in this chapter we follow the cycle idea. In particular, since [186] has publicly
available code, called CycleGAN, we use it for the experiments in this chapter.

Finally, the work with the most similar goal to this chapter, has been recently
presented by Beery et al. [16]. The addressed application is animal detection and
classification from static cameras. The chapter evaluates the use of synthetic data
for classifying animals for which it is difficult to have sufficient real-world image
samples. Therefore, similarly to us, previous real-world image samples from known
classes (animals) are leveraged for retraining their (animal) classifier together with
the synthesized images containing the new class samples (they consider deers as
a new class). In this chapter, rather than focusing on one new class at a time, we

14

2.3. Method

evaluate also different balances between known and unknown classes. We also
evaluate the difference between using the synthetic images as they come from the
virtual environment, in contrast to transforming them via GANs. In both cases, since
our application falls into fine-grain classification, we assess also the dependency
on common visual cues between seen and unseen classes.

2.3 Method

2.3.1 Overall idea

Assume we need a classifier C such that, given an image (e.g. framing a traffic sign),
it is able to assign to it a right label from a given set K of known labels/classes (e.g.
traffic sign classes). Let I be a set of images collected for training such a C . For
supervised training, we need to assign one class to each image, which is usually
done offline by human annotators. Let IK be the corresponding annotated set
of images. Then, we can run a supervised machine learning algorithm that uses
IK to generate a classifier CIK , which will be used (at testing time) to support the
addressed application (e.g. on-board traffic sign recognition). The problem arises
when, during the execution of such application, we realise that there are classes
of interest not included in K (e.g. after a warning from an out-of-distribution
detection module also running as part of the application). Let’s call U this set of
new classes such that K ∩U =;. For training a new supervised classifier CIK ∪U

,
which takes into account all classes, we need to collect and manually annotate
new images covering a sufficient amount of instances for each class in U . This
may be difficult to do as quickly as we could wish, since we may be facing unusual
classes (i.e. for which it is difficult to find corresponding instances by just randomly
roaming in the real world) and it will also be a latency due to the manual annotation
of the found instances.

Accordingly, the alternative method that we want to explore, relies on automati-
cally generating synthetic images to quickly obtain sufficient annotated instances
of the new classes for training a new classifier. In addition, as we have already
mentioned, training visual models using pure synthetic images can lead to a perfor-
mance drop when performing in the real world. In order to reduce such a domain
gap, GANs are a possible solution; i.e. by directly transforming the images of the
source domain (e.g. synthetic world) to have a similar appearance to those of the
target domain (e.g. real world). We follow this approach in this study.

Now, let ĨU be a set of synthetically generated images automatically annotated

according to the classes in U , and G ĨU the corresponding set of images transformed
by a GAN. We aim to train a classifier C

{G ĨU ,IK }
(ideally) performing in the real

15

Chapter 2. Recognizing New Traffic Signs with Synthetic Data in the Loop

Figure 2.2 – Proposed method for retraining a classifier, C , to keep detecting pre-
viously known classes (K) for which we have labeled real-world and, in addition,
new previously unknown classes (U) for which we do not have real-world samples.
The key idea is to have synthetic samples for both the known and new classes. The
real-world samples of the known classes (IK) and the synthetic ones (ĨK) are used
to train a GAN with the aim of performing synthetic-to-real domain adaptation. In

particular, the synthetic samples of the new classes (ĨU) are transformed (G ĨU)
by this GAN. Then, the real-world samples of the previously known classes and
the transformed synthetic samples of the new classes, are used to train the desired
classifier. The overall idea is illustrated for traffic sign recognition.

world as if G ĨU would consist of real-world images annotated by humans. Yet
another question is how the GAN is trained. From the point of view of generating
synthetic images, it is analogous to generate images for classes in U as for classes
in K . Therefore, we require that besides the set of real-world images IK , we also
have a set ĨK of (automatically) annotated synthetic images for the known classes;
i.e. both sets cover the same classes but for each class it can be a different number of
samples in each set. The GAN is trained to transform images from the set ĨK into
the set IK , but without assuming a one to one pairing of the images from both sets.
In other words, the GAN will learn to perform domain-to-domain transformations,
but not class-specific transformations between domains. Therefore, when we need
to transform synthetically generated instances for a new previously unknown class

16

2.3. Method

(i.e. in U), we can apply the previous learned GAN even if it was not exposed to
such class during training time and, in fact, it will not be exposed at this time due to
the lack of real-world instances of such class. Figure 2.2 depicts the overall idea.

2.3.2 Data generation

We start by generating synthetic images with automatic GT for each unknown class.
We require to have a real-world example showing the appearance of an instance of
each unknown class (i.e. the example already used to decide that the class must be
considered in future versions of the classifier). Then, a designer can create a textured
3D model of it. Such model can then be populated in a virtual environment that
we have predefined. Next, we can capture as many images as we need containing
instances of the new class along with automatic GT, which is done under predefined
variations regarding the environmental and image capture conditions. For instance,
for the traffic sign recognition study we address in this chapter, we perform the
following steps: (1) we create a traffic sign 3D model for a given unknown sign;
(2) we use the SYNTHIA environment [123] to populate the 3D model in locations
predefined for traffic signs; (3) we automatically aim the camera that captures
images towards these locations varying the capturing angle and distance between
the camera and the traffic sign, as well as the scene illumination. This procedure
ensures visual variability in the collected images due to the fact that environmental
shadows influence the captures, as well as global illumination, resolution, etc.
The same procedure can be used to capture synthetic images of known classes
intended to be used in the training of the domain-adaptation GAN. In the case
of the traffic signs, using the pixel-wise semantic segmentation GT provided by
the virtual environment (SYNTHIA), we create corresponding 2D bounding boxes,
which we crop to obtain the final synthetic image samples.

As we have mentioned before, synthetic images depicting instances of new
classes must be still transformed by means of a GAN in order to alleviate domain
shift effects. With this aim we have used the publicly available implementation
of CycleGAN as detailed in [186]; which we train using images of known classes
taken from the synthetic and real-world domains. The adversarial loss aiming
at approaching the appearance of synthetic and real-world images is defined as
follows:

Lad v (G A→B ,DB ,I A) =Ei ∼I A [log (DB (G A→B (i)))] , (2.1)

where, A and B are different domains (synthetic or real in our case), G A→B refers to
the GAN generator from domain A to domain B , DB refers to the GAN discriminator
that distinguish between images really coming from domain B from those output by

17

Chapter 2. Recognizing New Traffic Signs with Synthetic Data in the Loop

G A→B , and I A is a set of images from domain A. The GAN discriminator is trained
according to the following loss:

Ldi sc (G A→B ,DB ,I A ,I B) =Ei B∼I B [log (DB (i B))]

+Ei A∼I A [log (1−DB (G A→B (i A)))] .
(2.2)

In addition, CycleGAN uses additional losses to force that image appearance is
transformed between domains without effecting the semantic content of the trans-
formed images. In particular, the following cyclical reconstruction loss is used:

Lr ec (G A→B ,GB→A ,I A) =Ei ∼I A [‖GB→A(G A→B (i))− i ‖1] , (2.3)

which is complemented (regularized) with an additional loss aiming at not only en-
suring in-domain content reconstruction but also across-domain content similarity:

Lsi m(G A→B ,I A) =Ei ∼I A [‖G A→B (i)− i ‖1] . (2.4)

Now, we can define the total loss function to train the GAN generator that
transform images from a synthetic domain S to a real domain R as follows:

L (GS →R ,GR→S ,DS ,DR ,I S ,I R) =Lad v (GS →R ,DR ,I S)

+Lad v (GR→S ,DS ,I R)

+Ldi sc (GS →R ,DR ,I S ,I R)

+Ldi sc (GR→S ,DS ,I R ,I S)

+Lsi m(GS →R ,I S)

+Lsi m(GR→S ,I R)

+Lr ec (GS →R ,GR→S ,I S)

+Lr ec (GR→S ,GS →R ,I R) .

(2.5)

At training time, we use IK and ĨK as I R and I S image sets, respectively. Then,
the learned generator GS →R will be the CNN that we use to transform a set of

synthetic images ĨU into G ĨU .

18

2.4. Experimental results

Figure 2.3 – Hierarchy of Tsinghua traffic signs.

2.4 Experimental results

The experiments have been designed to address two questions. Since we use syn-
thetically generated instances of unknown classes to retrain the current classifier, we
will have a domain shift problem. (Q1) Can we reduce this domain shift by applying
an image-to-image translation GAN to the samples of the unknown classes, provided
such a GAN was trained only with samples of the known classes?, and (Q2) What
are the overall classification results when training the classifier using the real-world
data of the known classes with the data generated for the new classes following such
GAN-based proposal?

Note that question Q1 focuses on classification results in terms of new classes
in isolation, while Q2 addresses the ultimate question, since we combine real-
world samples form known classes with generated samples from unknown classes
for training the all-classes classifier. In the following, section 2.4.1 introduces
the synthetic and real-world datasets used in our experiments, and section 2.4.2
elaborates the designed experiments to answer these questions along with the
obtained results and corresponding discussion.

2.4.1 Datasets

In order to perform our experiments, we need a dataset based on real-world images
of traffic signs as well as another based on synthetic images. We have selected the
widely used Tsinghua traffic sign dataset [187], and a synthetic analogous that we
have created to perform the research in this chapter, which we call SYNTHIA-TS.
We briefly describe them in the following.

19

Chapter 2. Recognizing New Traffic Signs with Synthetic Data in the Loop

Tsinghua is a dataset composed of outdoor scenes captured in China while
driving a car in urban scenarios. Following the approach proposed in [187], we have
cropped the traffic signs and removed all the classes with less than 100 samples.
The resulting dataset is composed of 21,721 cropped images, representing 42 traffic
sign classes. In terms of appearance, these classes can be hierarchically organized
as shown in Fig. 2.3, where the first criterion to split the dataset is the external shape
of the traffic signs, and the second is the textual/graphical content of the signs. Both
shape and content define the semantics of each traffic sign, i.e. the class.

SYNTHIA-TS has been created by mimicking the 42 classes considered from
the Tsinghua dataset, using one textured 3D model per each of those classes. Then,
following the protocol explained in section 2.3.2, we have acquired traffic sign
images within the SYNTHIA environment (refer to appendix A to see more details).
The generated data are balanced for all image acquisition conditions and classes.
We have generated 23,222 instances in total, covering the 42 classes. Since the
SYNTHIA environment was previously created for multiple purposes, obtaining
these instances from it took less than 2h using a desktop PC based on an INTEL
Core i7 CPU and one NVIDIA Geforce GTX 1080 GPU.

2.4.2 Experiments: design, results, and discussion

We have not only considered the Tsinghua and SYNTHIA-TS datasets as a whole, i.e.
H0-0 in terms of the hierarchy shown in Fig. 2.3; instead, in order to perform a finer
grained analysis regarding questions Q1 and Q2, we have also conducted experi-
ments based on different nodes of such hierarchy, which we call splits. Accordingly,
our setup assumes that we have an existing split s1 of real-world annotated im-
ages for training, and that we want to learn also a new split s2, for which we have
no access to a proper amount of corresponding real-world images and, therefore,
we have to synthesize them. It is understood that s1 and s2 have no intersection
between classes. On the other hand, for the purpose of performing comparative
evaluations in our experimental setting, in fact we do have access to the real-world
annotated images of split s2.

20

2.4. Experimental results

Ta
b

le
2.

1
–

Sp
li

ts
o

fF
ig

.2
.3

u
se

d
in

ap
p

ea
ra

n
ce

-d
ri

ve
n

ex
p

er
im

en
ts

.T
si

n
gh

u
a

sa
m

p
le

s
ar

e
d

iv
id

ed
as

tr
ai

n
in

g
an

d
te

st
in

g
ta

sk
s

(d
et

ai
ls

in
m

ai
n

te
xt

).
SY

N
T

H
IA

-T
S

sa
m

p
le

s
ar

e
u

se
d

in
tr

ai
n

in
g

ta
sk

s
o

n
ly

.

Sp
li

t
N

u
m

.
Sa

m
p

le
s

Sa
m

p
le

s
co

d
e

cl
as

se
s

Ts
in

gh
u

a
SY

N
.-

T
S

C
o

n
te

n
t

H
0-

0
42

21
,7

21
23

,2
22

A
ll

th
e

tr
af

fi
c

si
gn

cl
as

se
s

ar
e

co
n

si
d

er
ed

H
1-

1
35

20
,2

56
19

,5
07

O
n

ly
ci

rc
u

la
r

tr
af

fi
c

si
gn

s
H

1-
2

7
1,

46
5

3,
77

3
O

n
ly

n
o

n
-c

ir
cu

la
r

tr
af

fi
c

si
gn

s
H

2-
1

6
3,

71
3

3,
24

8
M

an
d

at
o

ry
ac

ti
o

n
s

(c
ir

cu
la

r,
b

lu
e

b
ac

kg
.,

w
h

it
e

b
o

rd
er

).
H

2-
3

10
4,

01
2

5,
88

5
P

ro
h

ib
it

io
n

ac
ti

o
n

s
(c

ir
cu

la
r,

w
h

it
e

b
ac

kg
.,

re
d

b
o

rd
er

&
d

ia
g.

li
n

e)
H

2-
5

16
7,

31
6

8,
89

6
In

fo
rm

at
io

n
(c

ir
cu

la
r,

w
h

it
e

b
ac

kg
.,

w
it

h
re

d
b

o
rd

er
)

H
2-

9
5

98
9

2,
71

3
W

o
rk

in
g

ar
ea

s
(t

ri
an

gu
la

r,
ye

llo
w

b
ac

kg
.,

b
la

ck
b

o
rd

er
)

Ta
b

le
2.

2
–

B
as

ic
n

o
ta

ti
o

n
fo

r
d

at
a

su
b

se
ts

.

N
o

ta
ti

o
n

D
es

cr
ip

ti
o

n

S
T s

Sy
n

th
et

ic
tr

ai
n

in
g

d
at

a
fr

o
m

sp
li

t
s

T
T s

Ts
in

gh
u

a
tr

ai
n

in
g

d
at

a
in

sp
li

t
s

G
s 2

s 1
D

at
as

et
G

s 2
ge

n
er

at
ed

b
y

ap
p

ly
in

g
a

G
A

N
tr

ai
n

ed
o

n
sp

lit
s
S

T s 1
&

T
T s 1

to
sp

li
tS

T s 2
T

C s
Ts

in
gh

u
a

te
st

in
g

(c
la

ss
ifi

ca
ti

o
n

)
d

at
a

fr
o

m
sp

lit
s

21

Chapter 2. Recognizing New Traffic Signs with Synthetic Data in the Loop

Table 2.3 – Lower and upper bounds for traffic sign classification on T C
H0−0. Average

and standard deviation F1 score for five training-testing runs are shown. The lower
bound corresponds to training only with synthetic data (S T

H0−0), while the upper
bound corresponds to training with real data (T T

H0−0).

Training set VGG16 ResNet101

S T
H0−0 36.05±3.92 58.74±2.04

T T
H0−0 97.59±0.15 98.76±0.14

Since, we will be referring to splits coming from synthetic and real-world data,
the former sometimes transformed by a GAN, and the later sometimes used as
training or testing data, we have defined the compact notation of Table 2.2, which
will allow us to be precise and concise when describing the multiple experiments
we are reporting in this section. Using this notation and given two splits s1 and s2,
an example of an experiment for Q2 would consist in using T T

s1
and S T

s2
to train a

traffic sign classifier for the known classes in split s1 together with the new classes in
split s2, which we would like to be accurate when testing in T C

s1∪s2
, i.e. accurate for

all classes. Alternatively, if we use a GAN to transform the synthetic images, then the
training of the classifier would be done with T T

s1
and G s2

s1 . In fact, we transformed
all the synthetic images at once, which took less than 1.5h using a desktop PC based
on an INTEL Core i7 CPU and one NVIDIA GeForce TITAN X Pascal GPU.

As we can see in Fig. 2.3 we have 3 hierarchical levels: 1) the whole data, 2)
two splits based on external shape, and 3) given a shape, different data based on
content. Each considered split is defined on Table 2.1 specifying their features. We
are not considering splits with only one class (i.e. H2-2, H2-4, H2-6, H2-7 and H2-8)
since they would not allow to address Q1 (for which at least two classes are needed).
However, note that although these splits are not considered in isolation, their data
are considered when working with a split corresponding to their parent nodes in
the hierarchy.

Now, we start the experiments by establishing the upper and lower bounds of
different traffic sign classifiers. In these experiments, we use the full Tsinghua and
SYNTHIA-TS datasets. Therefore, in this case, we use the split H0-0 (Fig. 2.3) for
Tsinghua, i.e. we use T T

H0−0 and T C
H0−0 for training and testing, respectively. Both

sets have samples of all the traffic signs we are considering. More specifically, for
each class, 60% of the samples are used for training tasks (CycleGAN and traffic
sign classifiers) and the remaining 40% for testing traffic sign classifiers. The per-
class training/testing sampling is performed randomly and once. Training on
S T

H0−0 and testing on T C
H0−0 acts as lower bound, since we are using only synthetic

22

2.4. Experimental results

Table 2.4 – Experiments to support Q1 (see main text). All tests are done in T C
su

.
Average and standard deviation of F1 score are reported since each experiment is
performed five times. The column G su

sk −S T
su

just stands for the subtraction of the
means of the respective columns.

Known Unknown VGG16 VGG16 VGG16 VGG16 VGG16
classes (sk) classes (su) S T

su G su sk G su sk - S T
su G su su T T

su

H1-2 H1-1 39.20±2.99 49.88±3.68 10.68 74.55±2.67 97.44±0.23
H1-1 H1-2 65.44±4.39 74.65±4.71 09.21 94.35±0.73 94.23±6.11

H2-3 65.45±4.05 -04.84
H2-5 H2-1 70.29±5.31 65.91±9.28 -04.38 90.81±0.71 99.22±0.28
H2-9 74.01±7.71 03.72

H2-1 39.10±2.08 -02.93
H2-5 H2-3 42.03±4.44 62.87±4.11 20.84 88.15±2.37 97.29±0.44
H2-9 55.92±0.72 13.89

H2-1 54.51±1.33 01.43
H2-3 H2-5 53.08±7.75 60.85±4.90 07.77 85.25±1.48 97.35±0.25
H2-9 61.59±2.88 08.51

H2-1 72.51±5.98 02.19
H2-3 H2-9 70.32±5.90 80.35±4.09 10.03 94.77±1.03 91.81±7.60
H2-5 76.82±4.12 06.50

Table 2.5 – Experiments to support Q1 analogous to Table 2.4, but using ResNet101.

Known Unknown ResNet101 ResNet101 ResNet101 ResNet101 ResNet101
classes (sk) classes (su) S T

su G su sk G su sk - S T
su G su su T T

su

H1-2 H1-1 58.44±1.92 63.00±2.15 04.56 84.35±1.08 98.70±0.24
H1-1 H1-2 79.20±4.06 88.80±0.52 09.60 92.06±1.66 96.26±0.83

H2-3 76.66±1.59 10.27
H2-5 H2-1 66.39±2.05 72.65±2.90 06.26 89.71±0.88 99.42±0.13
H2-9 78.47±3.26 12.08

H2-1 48.12±4.61 -07.01
H2-5 H2-3 55.13±2.81 68.86±2.83 13.73 87.99±2.86 97.84±0.42
H2-9 52.70±2.82 -02.43

H2-1 58.73±3.16 -02.49
H2-3 H2-5 61.22±1.87 63.61±3.37 02.39 82.52±0.76 97.08±0.26
H2-9 65.11±2.09 03.89

H2-1 67.62±5.63 -02.83
H2-3 H2-9 70.45±4.78 82.05±2.29 11.60 92.83±0.91 90.18±0.91
H2-5 83.42±2.10 12.97

23

Chapter 2. Recognizing New Traffic Signs with Synthetic Data in the Loop

su S T
su

G su
sk G su

su T T
su

su S T
su

G su
sk G su

su T T
su

H1-1 88%

H1-2 76%

H2-1 50%

H2-3 50%

H2-5 24%

H2-9 12%

Figure 2.4 – Sample images. Left block (4 columns) and right block (4 columns)
rely on different criteria to generate their splits. Left block: splits based on the
hierarchy shown in Fig. 2.3. Right block: splits based on the balance between
known and unknown (shown %) classes. Within each block, row-wise we show
samples from the same class of the unknown split. Within each block, from the left
to the right column, we have: a SYNTHIA-TS sample from the unknown class, a
SYNTHIA-TS sample from an unknown class transformed by a CycleGAN trained
on SYNTHIA-TS-to-Tsinghua samples from known classes, similar as the previous
column but training a CycleGAN on the unknown classes, and a Tsinghua sample of
an unknown class.

images (as they come from the virtual environment), therefore, we must expect a
domain shift. Training on T T

H0−0 acts as upper bound, since we are using real-world
images from the same distribution (camera and world area) than in the testing set.
Table 2.3 shows these upper and lower bound results for the different architectures
we have considered, namely VGG16 and ResNet101. Moreover, since during the
training of CNNs there is certain amount of randomness (e.g. when sampling the
datasets during a mini-batch), we repeat each training five times and report testing
accuracy in terms of the mean and standard deviation of the F1 classification score

24

2.4. Experimental results

(i.e. F1 = (2TP)/(2TP+FN+FP)) computed on the respective classification results.
These results show that: (1) we can achieve a high classification accuracy with the
appropriate real-world data; (2) using the synthetic data for training produces a
reasonable accuracy (far from random), but there is a dramatic domain shift with
results dropping from 97.59% to 36.05% for VGG16, and from 98.76% to 58.74% for
ResNet101.

Tables 2.4–2.5 report results to answer Q1. We consider paired splits, one is
used as the set of known classes (sk), the other as the set of unknown classes (su).
These splits do not intersect, but their union does not necessarily corresponds
to the full traffic sign hierarchy because only splits from Table 2.1 are considered.
The pairs have been designed to force different global appearance between known
and unknown classes. The S T

su
columns report the classification accuracy lower

bound for each experiment, i.e. training a classifier for classes in su with samples
in S T

su
but testing on the real-world data T C

su
. Columns T T

su
act as upper bound,

since training is done on real-world samples of su as if they were actually known.
Columns G su

sk report the classification accuracies when training is done with the
samples of G su , i.e. the samples of S T

su
transformed by a CycleGAN trained to

perform image-to-image translation from S T
sk

to T T
sk

. Therefore, the CycleGAN has
not seen samples from classes in su at training time. Finally, we also include the
case G su

su where the CycleGAN has been trained using samples from the unknown
set of classes. Obviously, this is not realistic in our application setting, however, it
can be taken as an upper bound of the accuracy that would be possible to achieve by
using CycleGAN to transform the synthetic images. Fig. 2.4 shows examples of the
images involved in our experiments: synthetic, real, and transformed by different
CycleGANs.

These results based on splits confirm the observations made for H0-0 according
to Table 2.3; i.e. training and testing (for the unknown classes) with real-world data
shows high classification accuracies, while training with the pure synthetic data and
testing in the real-world data shows a significant drop of accuracy. Again, ResNet101
is more robust to domain shift than VGG16. We can see how the gap is larger as the
number of classes based on synthetic data (unknown ones) increases. For instance,
the gap for H1-1 is larger than for H1-2, both for VGG16 and ResNet101. Note that
H1-1 contains 35 classes and H1-2 only 7 (see Table 2.1). If we analyse the splits
of the next hierarchical level (H2-X), the same observations hold; note that H2-3
and H2-5 (10 and 16 classes, resp.) show a larger gap than H2-1 and H2-9 (6 and 5
classes, resp.), both for VGG16 and ResNet101.

On the other hand, CycleGAN indeed helps to significantly reduce domain shift.
When using the H1-1 split as known classes to train the CycleGAN, and apply this
GAN to the synthetic images of the unknown classes, i.e. those in H1-2 split, we see

25

Chapter 2. Recognizing New Traffic Signs with Synthetic Data in the Loop

∼ 9 points of accuracy gain when testing in real-world images of H1-2 split (9.21 for
VGG16 and 9.60 for ResNet101). Changing the roles of these splits, the gain is 10.68
for VGG16 and 4.56 for ResNet101. However, in the two situations (H1-1/H1-2 as
known/unknown and viceversa) ResNet101 reports significantly higher accuracies
(more than 10 points) after the GAN-based domain adaptation of the synthetic
images. Also, for VGG16 and ResNet101, being H1-2 the split of unknown classes
shows significantly higher accuracies (more than 20 points) than when it is H1-1,
which is just a consequence of starting with similar accuracy differences before
domain adaptation. Looking to the H2-X splits, we can see that the GAN-based
domain adaptation reports significant higher accuracy in most of the experiments.
In fact, it is more interesting to analyse when it is not the case. For instance, when
split H2-1 is used to train the CycleGAN, we obtain either very low accuracy gains
(e.g. for VGG16, 1.43 when the unknown classes are in H2-5 and 2.19 for H2-9) or
even negative adaptation (e.g. -2.93 for H2-3 with VGG16, and for H2-3/5/9 with
ResNet101). We think that, when using H2-1 to train the CycleGAN, the learned
image-to-image transform is too biased towards a blue background, which is a color
not present in the rest of the H2-X considered splits (in the role of unknown classes).
When exchanging the roles between H2-1 and the rest of the considered H2-X splits,
the conclusion is the same for VGG16. However, ResNet101 still is able to extract
the most from the domain adapted images, showing significant accuracy gains
with respect to using the synthetic images as they come directly from the virtual
environment. Fig. 2.5 presents some visual hints. For instance, when split H2-1
is used to train the CycleGAN, this adds a bluish color to the transformed images,
while the CycleGAN is trained with H2-9 split, the added color is yellowish. Being
the former more marked than the latter, which may be the reason behind some
of the previously mentioned cases of poor domain adaptation. We can see other
effects, like blue background images going to black background. According to the
reviewed results, ResNet101 seems more robust to this effect than VGG16 (see the
case of su = H2-1 in Tables 2.4–2.5).

Tables 2.4–2.5 help to analyse results in scenarios where there are significant
visual differences among the known/unknown classes. We are also interested on
analysing different balances between known and unknown classes. Analogously
to Table 2.2, we will define splits denoted by a percentage of classes, e.g. 100%
would be H0-0. Each of these splits also have a complementary one with the
remaining classes. When forming the new splits, in order to be sure that we do
not degenerate in the previous hierarchy-based experiments, the classes are not
sampled from H0-0, but they are proportionally and randomly sampled from all
the H2-X splits. For example, 50% would consider half of H2-1, H2-3, H2-5 and
H2-9 classes, added to H2-2, H2-6 and H2-8 which only have one class. Tables
2.6–2.7 present the corresponding results. We can see, how previous observations

26

2.4. Experimental results

su S T
su

G su
H2−1 G su

H2−3 G su
H2−5 G su

H2−9 T T
su

H2-1

H2-3

H2-5

H2-9

Figure 2.5 – Samples based on H2-X splits (Fig. 2.3). Rows: splits with classes in the
role of unknown. Left-to-right columns: samples from SYNTHIA-TS, SYNTHIA-TS
samples transformed by a CycleGAN trained on SYNTHIA-TS and Tsinghua samples
of classes in H2-1 split (which play the role of known classes here), analogous for
H2-3 instead of H2-1, for H2-5 and H2-9, and samples from Tsinghua.

are confirmed, namely: (1) domain gap increases with the number of synthetic
classes (the unknown ones) to be covered by the traffic sign classifier, but still the
obtained accuracies are reasonable; (2) CycleGAN is able to dramatically reduce the
domain shift for the unknown classes, recovering from ∼ 10 to even ∼ 30 points of
accuracy; (3) ResNet101 is able to produce the best results before and after domain
adaptation.

Overall, to already answer Q1, we see that using known classes to train a GAN-
based transformation from synthetic to real-world domains, indeed helps to dramat-
ically reduce the classification accuracy gap due to the domain shift for synthetically
generated new classes. However, there are scenarios more favorable than others
and still there is room for improvement.

27

Chapter 2. Recognizing New Traffic Signs with Synthetic Data in the Loop

Ta
b

le
2.

6
–

E
xp

er
im

en
ts

to
su

p
p

o
rt

Q
1

(s
ee

m
ai

n
te

xt
).

A
ll

te
st

s
ar

e
d

o
n

e
in

T
C s u

.
A

ve
ra

ge
an

d
st

an
d

ar
d

d
ev

ia
ti

o
n

o
fF

1
sc

o
re

ar
e

re
p

o
rt

ed
si

n
ce

ea
ch

ex
p

er
im

en
t

is
p

er
fo

rm
ed

fi
ve

ti
m

es
.T

h
e

co
lu

m
n

G
s u

s k
−S

T s u
ju

st
st

an
d

s
fo

r
th

e
su

b
tr

ac
ti

o
n

o
ft

h
e

m
ea

n
s

o
ft

h
e

re
sp

ec
ti

ve
co

lu
m

n
s.

K
n

o w
n

(s
k

)/
U

n
kn

ow
n

(s
u

)
V

G
G

16
V

G
G

16
V

G
G

16
V

G
G

16
V

G
G

16
%

cl
as

se
s

;N
u

m
.c

la
ss

es
S

T s u
G

s u
s k

G
s u

s k
-
S

T s u
G

s u
s u

T
T s u

∼
88

%
/1

2 %
;

37
/0

5
82

.5
8
±3

.6
2

91
.8

4
±0

.9
2

09
.2

6
99

.0
8
±0

.4
2

99
.8

5
±0

.1
8

∼
76

%
/2

4%
;

32
/1

0
78

.7
2
±1

.5
7

88
.7

4
±0

.8
6

10
.0

2
95

.0
0
±0

.5
4

99
.3

0
±0

.2
0

∼
50

%
/5

0%
;

20
/2

1
41

.8
0
±2

.8
5

74
.1

1
±1

.3
6

32
.3

1
85

.8
5
±1

.1
5

97
.7

5
±0

.4
6

∼
24

%
/7

6%
;

10
/3

2
43

.8
1
±2

.2
2

71
.3

1
±2

.6
4

27
.5

0
82

.6
2
±2

.4
7

97
.5

3
±0

.3
0

∼
12

%
/8

8%
;

05
/3

7
40

.3
5
±2

.6
9

50
.2

4
±1

.2
5

09
.8

9
76

.2
6
±3

.6
3

94
.9

3
±0

.3
4

Ta
b

le
2.

7
–

E
xp

er
im

en
ts

to
su

p
p

o
rt

Q
1

an
al

o
go

u
s

to
Ta

b
le

2.
6,

b
u

tu
si

n
g

R
es

N
et

10
1.

K
n

ow
n

(s
k

)/
U

n
kn

ow
n

(s
u

)
R

es
N

et
10

1
R

es
N

et
10

1
R

es
N

et
10

1
R

es
N

et
10

1
R

es
N

et
10

1
%

cl
as

se
s

;N
u

m
.c

la
ss

es
S

T s u
G

s u
s k

G
s u

s k
-
S

T s u
G

s u
s u

T
T s u

∼
88

%
/1

2 %
;

37
/0

5
97

.5
4
±0

.6
9

97
.2

4
±2

.2
7

09
.7

0
99

.4
7
±0

.4
6

10
0.

00
±0

.0
0

∼
76

%
/2

4%
;

32
/1

0
78

.3
3
±3

.0
8

88
.1

2
±1

.3
3

09
.7

9
95

.0
2
±0

.8
4

99
.6

9
±0

.1
4

∼
50

%
/5

0%
;

20
/2

1
63

.7
8
±1

.6
6

78
.8

4
±2

.2
4

15
.0

6
87

.1
1
±1

.2
0

98
.4

6
±0

.2
4

∼
24

%
/7

6%
;

10
/3

2
60

.3
9
±3

.2
7

77
.6

8
±1

.8
5

17
.2

9
86

.3
4
±1

.0
5

98
.7

5
±0

.1
3

∼
12

%
/8

8%
;

05
/3

7
60

.1
7
±2

.6
1

59
.1

2
±2

.6
1

-0
1.

05
84

.4
2
±0

.7
6

96
.2

2
±0

.0
6

28

2.4. Experimental results

Table 2.8 – Experiments to support Q2 (see main text), all done in T C
H0−0. Average

and standard deviation of F1 score are reported since each experiment is performed
five times. This is done for the all-classes classification problem, but we also show
detailed results for known and unknown classes. Table 2.3 shows the lower and
upper bounds for these experiments, i.e. training only on either SYNTHIA-TS or
Tsinghua data. In terms of average F1, these bounds are 36.05 and 97.59, resp.

Unknown VGG16, S T
H0−0 +T T

sk
VGG16, G H0−0

sk +T T
sk

classes (su) H0-0 (sk / su) H0-0 (sk / su)

H1-1 37.12±2.47(59.83±8.55/32.58±2.90) 59.54±3.60(84.97±2.89/54.45±3.82)
H1-2 88.81±1.70(95.92±0.74/53.22±9.91) 92.88±1.42(96.77±0.62/73.46±6.21)

12% 87.53±1.55(92.50±0.81/50.69±7.88) 93.79±1.16(94.73±1.16/86.83±2.11)
24% 78.17±1.81(88.21±0.68/46.05±5.79) 89.91±2.19(92.84±1.17/80.53±5.79)
50% 56.52±3.84(75.85±1.50/35.26±6.60) 74.96±1.40(85.01±1.26/63.90±2.73)
76% 30.69±2.13(49.09±1.67/24.94±3.10) 67.45±1.41(74.04±2.71/65.39±1.28)
88% 31.46±3.18(33.34±3.66/31.23±3.27) 53.62±2.26(64.44±4.74/50.70±2.46)

First, the used CNN matters. Here Resnet101 shows significantly better clas-
sification accuracies than VGG16, i.e. ResNet101 is more robust to this kind of
known/unknown class setting. We can see this by looking at Tables 2.4–2.5. Note
how, for H2-X splits, when the split of classes used to train CycleGAN is the same
split as used to train the traffic sign classifier (G su

su columns), then the classifi-
cation accuracies of VGG16 and ResNet101 are similar, VGG16 even outperforms
ResNet101 several times. A similar effect can be appreciated in Tables 2.6–2.7.
Hence, ResNet101 seems to be more robust to image imperfections introduced by
CycleGAN. In this favorable, but unrealistic, setting the domain adapted images
show less artifacts (see Figures 2.4 and 2.5).

Second, the most adverse scenario indeed is when known and unknown classes
show very different appearance combined with a low known/unknown class ratio. In
a reasonable case, as for ∼ (88%/12%) splits of randomly selected known/unknown
classes, using ResNet101, we can see how we obtain a classification accuracy of
97.24 in average (Table 2.7), where training with real-world data reaches 100.00.
In the most imbalanced case, ∼ (12%/88%), ResNet101 reaches a classification
accuracy of 77.85, still far from the 98.82 when training with real-world images.
Note that in this scenario there is room to improve GAN-based image-to-image
translation since even using the classification classes to train the CycleGAN, the
obtained accuracy is 84.93, still far from 98.82.

Although in this chapter these are just intermediate results in our way to address
Q2, this analysis is already useful if our goal is to perform transfer learning for the

29

Chapter 2. Recognizing New Traffic Signs with Synthetic Data in the Loop

Table 2.9 – Experiments to support Q2 analogous to Table 2.8, but using ResNet101.
In this case, the lower and upper bounds are 58.74 and 98.76, respectively.

Unknown ResNet101, S T
H0−0 +T T

sk
ResNet101, G H0−0

sk +T T
sk

classes (su) H0-0 (sk / su) H0-0 (sk / su)

H1-1 65.67±0.66(95.42±0.80/59.72±0.68) 70.65±1.60(98.53±0.38/65.08±1.97)
H1-2 95.55±0.39(98.37±0.27/81.45±3.30) 97.57±0.31(98.77±0.11/91.55±1.33)

12% 90.05±1.67(94.11±0.62/60.00±9.71) 95.54±0.82(96.44±0.47/88.95±3.49)
24% 82.70±1.22(91.02±0.63/56.07±3.15) 92.57±0.36(95.00±0.50/84.78±0.77)
50% 68.03±2.03(81.92±0.95/52.74±3.32) 81.08±0.57(87.72±0.60/73.78±0.85)
76% 49.23±1.17(50.94±1.66/48.70±1.06) 71.94±1.76(71.50±2.38/72.08±1.75)
88% 52.95±2.31(43.77±1.99/54.06±2.53) 56.56±2.56(56.83±1.93/55.43±2.70)

traffic sign classifier; i.e. if we want to train a classifier that only needs to operate
in a new set of traffic signs for which we have not enough samples, and we want
to leverage knowledge from the known classes even if these are not going to be
used anymore for classification. For instance, in particular environments with
specialized traffic signs, like in some closed infrastructures or industrial facilities.
In fact, the vision system does not need to be on-board a vehicle, it can even be on
a humanoid or any other robotic platform. However, a probable requisite in this
case would be to use the same camera sensor model to classify new classes than the
used for collecting the real-world images involved in the training of the GAN-based
domain adapter.

Finally, in order to address Q2, we have performed the experiments shown in
Tables 2.8–2.9. In these tables, columns S T

H0−0 +T T
sk

refer to training jointly with

synthetic and real-world data. S T
H0−0 is the full SYNTHIA-TS set, i.e. covering known

(k) and unknown (u) classes. Therefore, we use all the synthetic data available for
the classes we want to classify. On the other hand, T T

sk
refers to the training set

of all known real-world classes; in these experiments k ∪u are the 42 considered
classes of split H0-0. Therefore, T T

sk
+T T

su
equals the full Tsinghua training set

(T T
H0−0). Columns G H0−0

sk +T T
sk

are analogous to previous ones, but in this case
rather than using the synthetic data as gathered from the virtual environment, we
use it transformed by a CycleGAN. These GANs are trained only using the known
classes in each experiment, i.e. in this case T T

sk
and S T

sk
. Accordingly, G H0−0

sk is
composed by G sk sk , used as pure data augmentation, as well as G su

sk , which are
really needed since we assume that we do not have real-world training samples for
the split su .

We see that the observations done in the context of Q1 apply here too: (1)
domain gap increases with the number of synthetic classes (the unknown ones); (2)

30

2.5. Conclusions

CycleGAN is able to significantly reduce the domain shift; (3) ResNet101 performs
better than VGG16 before and after domain adaptation, even when using the full
Tsinghua training set they report similar upper bounds (97.59 for VGG16, 98.76
for ResNet101). In the case of ResNet101, the best cases almost reach the upper
bound: (1) when the known classes are those in split H1-1 (∼ 83% of classes), and
the unknown in split H1-2 (∼ 17% of classes), we obtain 97.57 which is very close to
98.76; (2) when classes are directly selected randomly on the H2-X hierarchy level,
the case of 12% of unknown classes reaches 95.54 which is also a very high accuracy;
even the 24% case still reports 92.57. Moreover, in all these cases, the accuracy on
the known classes keeps over 95 and over 84 for the unknown ones (91.55 for H1-2,
88.95 for the 12%, 84.78 for the 24%). Overall, we can conclude that with ResNet101
the proposed method works well when the ratio of unknown/known classes is of
∼ 1/4. In order to reach the upper bound, we can investigate if we can still improve
CycleGAN, but in this ∼ 1/4 regime, the last mile can be probably covered by adding
a small amount of real-world collected and annotated samples from the unknown
classes. As the vision system keeps performing in the real-world, the samples falling
in the new classes can be kept, then we can replace the synthesized and transformed
samples by these self-annotated ones in a future retraining of the classifier. In fact,
this self-annotation cycles can be also a good approach for more challenging ratios
of unknown/known classes; note that for the 76% of unknown classes the results
are over 70, and over 50 for the 88%.

2.5 Conclusions

There are situations where a computer vision system may need to recognise new
(previously unknown) classes, but the lack of samples from such classes (i.e. raw
images with annotations) may seriously delay this possibility. In this chapter, we
have explored how to address this situation by using synthetic data and leveraging
samples from the classes already known to the system. Since, there is a domain shift
between synthetic and real worlds, addressing the problem involves incorporating
some kind of domain adaptation. To solve the lack of data problem, we have
proposed to learn a GAN using (the already available) samples from the known
classes, and apply it to adapt synthetic samples from the new classes. As a proof
of concept, we have focused on traffic sign recognition. We have used the publicly
available Tsinghua dataset and we have created a synthetic dataset (SYNTHIA-TS),
which we will also publicly release, for designing the experiments presented in this
chapter. In particular, the experiments have been designed to address two questions.
First, we addressed the intermediate question can we reduce the synthetic-to-real
domain shift by applying an image-to-image translation GAN to the unknown classes,

31

Chapter 2. Recognizing New Traffic Signs with Synthetic Data in the Loop

provided such a GAN was trained only with the known classes? After an extensive
set of experiments and results that we have presented and discussed, the answer
was positive, which leads us to the main question, namely, what are the overall
classification results when training the classifier using the real-world data of the
known classes with the data generated for the new classes following our proposal?
Again, the obtained results allow us to conclude that the proposed method is indeed
effective provided we use a proper CNN to perform the classifications task as well as
a proper GAN to transform the synthetic images. Here, a ResNet101-based classifier
and domain adaptation based on CycleGAN performed extremely well for ratios
of unknown/known classes of even ∼ 1/4. For more challenging ratios such as
∼ 4/1 the results are also very positive. As a matter of fact, instead of focusing on
improving the components of the presented method, as future work we plan to
augment this method with complementary techniques such as self-annotation, i.e.
using the classifier generated with our current method to self-annotate real-wold
samples of the new classes for a posterior retraining/fine-tuning of the classifier.

32

3 Co-training for On-board Deep Object De-
tection

Providing ground truth supervision to train visual models has been a bottleneck
over the years, exacerbated by domain shifts which degenerate the performance
of such models. This was the case when visual tasks relied on handcrafted fea-
tures and shallow machine learning and, despite its unprecedented performance
gains, the problem remains open within the deep learning paradigm due to its
data-hungry nature. Best performing deep vision-based object detectors are
trained in a supervised manner by relying on human-labeled bounding boxes
which localize class instances (i.e. objects) within the training images. Thus, ob-
ject detection is one of such tasks for which human labeling is a major bottle-
neck. In this chapter, we assess co-training as a semi-supervised learning method
for self-labeling objects in unlabeled images, so reducing the human-labeling ef-
fort for developing deep object detectors. Our study pays special attention to a
scenario involving domain shift; in particular, when we have automatically gen-
erated virtual-world images with object bounding boxes and we have real-world
images which are unlabeled. Moreover, we are particularly interested in using
co-training for deep object detection in the context of driver assistance systems
and/or self-driving vehicles. Thus, using well-established datasets and protocols
for object detection in these application contexts, we will show how co-training
is a paradigm worth to pursue for alleviating object labeling, working both alone
and together with task-agnostic domain adaptation.

3.1 Introduction

Since more than two decades ago, machine learning (ML) has been the enabling
technology to solve computer vision tasks. In the last decade, traditional ML, i.e.
based on relatively shallow classifiers and hand-crafted features, has given way to
deep learning (DL). Thanks to DL models based on convolutional neural networks
(CNNs), DL approaches significantly outperformed traditional ML in all kinds of
computer vision tasks, such as image classification, object detection, semantic

33

Chapter 3. Co-training for On-board Deep Object Detection

segmentation, etc. A major key for the usefulness of DL models is to train them in
a supervised way. In other words, the raw data (still images and videos) need to
be supplemented by ground truth; nowadays, usually collected via crowd-sourced
labeling. In practice, due to the data-hungry nature of CNNs, data labeling is con-
sidered a major bottleneck. Therefore, approaches to minimize labeling effort are
of high interest; or put in another way, approaches to automatically leverage the
large amounts of available unlabeled raw data must be pursued. Thus, we can
find different families of algorithms, or paradigms, which address human-labeling
minimization under different working assumptions. We continue this introduction
by reviewing them in subsection 3.1.1, while subsection 3.1.2 highlights how do-
main shifts exacerbate human labeling requirements. With the human-labeling
bottleneck problem introduced, subsection 3.1.3 summarizes our focus when ad-
dressing such a problem. In particular, we outline our application context and the
proposed approach for reducing human annotation effort in such a context. Finally,
subsection 3.1.4 highlights the main contributions presented in this chapter as well
as the organization of the rest of its contents.

3.1.1 Paradigms to minimize human labeling

For instance, active learning (AL) approaches [1, 125, 128] assume an initial model
and an unlabeled dataset to be labeled by a human (oracle) following an interactive
procedure. In particular, the current model processes the unlabeled data providing
so-called pseudo-labels (at image, object, or pixel level); then, these results are
inspected, either automatically or directly by the oracle, to select the next data
to be labeled. Afterwards, the model is trained again, and the process repeated
until fulfilling a stop criterion. AL assumes that with less labeling budget than
the required to have the oracle labeling data at random, one can train models
that perform at least similarly. In practice, it is usually hard to clearly outperform
the oracle’s random labeling strategy. In contrast to AL, other approaches do not
assume human oracles in the labeling loop. For instance, this is the case of semi-
supervised learning (SSL) algorithms [25, 149, 153], which assume the availability of
a large number or raw unlabeled data together with a relatively small number of
labeled data. Then, a model must be trained using the unlabeled and labeled data
(without human intervention), with the goal of being more accurate than if only
the labeled data were used. The so-called self-training and co-training algorithms,
which are of our main interest in this chapter, fall in the SSL paradigm [153]. In AL
and SSL, the most common idea is to efficiently label the unlabeled data, either
via an oracle (AL) or automatically (SSL). Self-supervised learning (SfSL) follows a
different approach which consists in providing supervision in the form of additional
(relatively simple) tasks, known as pretext tasks, for which automatic ground truth

34

3.1. Introduction

can be easily generated (e.g. solving jigsaw puzzles [47, 74, 77]).

3.1.2 The domain adaptation problem

Within these approaches, the most classical assumption is that the labeled and the
unlabeled data are drawn from the same distribution and one aims at using the
unlabeled data (via annotations or pretext tasks) to solve the same tasks for which
the labeled data were annotated. However, in practice, we may require to solve
new tasks, leading to transfer learning (TL) [164, 188], or solving the same tasks in
a new domain, leading to domain adaptation (DA) [37, 159, 166]. Beyond specific
techniques to tackle TL or DA, we can leverage solutions/ideas from AL, SSL, or
SfSL. For instance, AL [155], SSL [75, 190], and SfSL [174] algorithms have been used
to address DA problems. In this chapter, we use SSL (comparing self-training and
co-training) to address DA too.

3.1.3 The focus of this work

From the application viewpoint, in this chapter, we focus on vision-based on-board
deep object detection. Note that this is a very relevant visual task for driving, since
detecting objects (e.g. vehicles, pedestrians, etc.) along the route of a vehicle is a
key functionality for perception-decision-action pipelines in the context of both
advanced driver assistance systems (ADAS) and self-driving vehicles. Moreover,
nowadays, most accurate vision-based models to detect such objects are based on
deep CNN architectures [88, 92, 118, 120]. In addition, in this application context,
it is possible to acquire innumerable quantities of raw images, for instance, from
cameras installed in fleets of cars. Thus, methods to minimize the effort of manually
labeling them are of great relevance.

Among the SSL approaches, co-training [17, 58] has been explored for deep
image classification [29, 117] with promising results. However, up to the best of our
knowledge, it remains unexplored for deep object detection. Note that, while image
classification aims at assigning image-level class/attribute labels, object detection
is more challenging since it requires to localize and classify objects in images, i.e.
placing a bounding box (BB) per object, together with the class label assigned to
it. Moreover, object detection from on-board images, i.e. detection of vehicles,
pedestrians, etc., is especially difficult since, to the inherent intra-class differences
(e.g. due to vehicle models, pedestrian clothes, etc.), acquisition conditions add
a vast variability because the objects appear in a large range of distances to the
camera (resolution and focus variations), under different illumination conditions
(from strong shadows to direct sunlight), and they usually move (blur, occlusion,
view angle, and pose variations).

35

Chapter 3. Co-training for On-board Deep Object Detection

Originally, co-training relies on the agreement of two trained models performing
predictions from different features (views) of the data [17]. These predictions are
taken as pseudo-labels to improve the models incrementally. Later, prediction
disagreement was shown to improve co-training results in applications related
to natural language processing [58, 150]. Thus, in this chapter, we propose a co-
training algorithm inspired by prediction disagreement. On the other hand, since
co-training was proposed as a SSL method aiming at avoiding the drift problem of
self-training [17], which incrementally re-trains a single model from its previously
most confident predictions, we also elaborate a strong self-training baseline for our
deep object detection problem.

We assess the effectiveness of the two self-labeling methods, i.e. self-training
and co-training, in two different practical situations. First, following most classical
SSL, we will assume access to a small dataset of labeled images, X l , together with a
larger dataset of unlabeled images X u ; where here the labels are object BBs with
class labels. Second, we will address a relevant setting that resorts DA. In particular,
we will assume access to a dataset of virtual-world images with automatically gener-
ated object labels. Therefore, eventually, X l can be larger than X u , since labeling
these images does not require human intervention; however, X u is composed of
real-world images, thus, between X l and X u there is a domain shift [155]. In this
case, we also compare self-labeling techniques with task-agnostic DA, in particular,
using GAN-based image-to-image translation [186]. As especially relevant cases,
we will focus on on-board detection of vehicles and pedestrians using a deep CNN
architecture. Our experiments will show how, indeed, our co-training algorithm
is a good SSL alternative for on-board deep object detection. Co-training clearly
boosts detection accuracy in regimes where the size of X l is just the 5%/10% of the
labeled data used to train an upper-bound object detector. Moreover, under the
presence of domain shift, we will see how image-to-image GAN-based translation
and co-training complement each other, allowing to reach almost upper-bound
performances without human labeling.

3.1.4 Contributions and organization

Hence, the main contributions of this chapter are: (1) proposing a co-training algo-
rithm for deep object detection; (2) designing this algorithm to allow addressing
domain shift via GAN-based image-to-image translation; (3) showing its effective-
ness by developing a strong self-training baseline and relying on publicly available
evaluation standards and on-board image datasets. Alongside, we will also con-
tribute with the public release of the virtual-world dataset we generated for our
experiments. To show these achievements we organize the rest of the chapter as
follows. Section 3.3 details our self-training and co-training algorithms. Section 3.4

36

3.2. Semi-supervised learning

draws our experimental setting, and discuss the obtained results. Finally, Section
3.5 summarizes the presented work, suggesting lines of continuation.

3.2 Semi-supervised learning

Our main goal is to train a vision-based deep object detector without relying on
human labeling. Following our work line [96], we propose to leverage labeled
images from virtual worlds and unlabeled ones from the real world, in such a way
that we can automatically label the real-world images by progressively re-training
a deep object detector that substitutes human annotators. Note that the labeling
step is needed due to the domain shift between virtual and real-world images,
otherwise, we could just use the virtual-world images to train object detectors
and, afterwards, deploy them in the real world expecting a reliable performance.
In particular, we explore the combination of the co-training idea for self-labeling
objects and GAN-based image-to-image translation in the role of task-agnostic DA.
On the other hand, our proposal is agnostic to the object detection architecture
supporting self-labeling.

Accordingly, in the remaining of this section, we first review related works on
self-labeling (subsection 3.2.1), including self-training and co-training; next, we
review related works on DA (subsection 3.2.2). In both sections, we relate our
proposal to the reviewed works.

3.2.1 Self-labeling

Self-labeling algorithms are examples of SSL wrappers [153], which work as meta-
learners for supervised ML algorithms. The starting point consists of a labeled
dataset, X l , and an unlabeled dataset, X u , where it is supposed that the cardinality
of X u is significantly larger than the cardinality of X l , and both datasets are drawn
from the same domain, D. The goal is to learn a predictive model,φ, whose accuracy
would be relatively poor by only using X l but becomes significantly higher by also
leveraging X u . Briefly, self-labeling is an incremental process where φ is first
trained with X l ; then X u is processed using φ in a way that the predictions are

taken as a new pseudo-labeled dataset X l̂ , which in turn is used to retrain φ. The
pseudo-labeling/retraining cycle is repeated until reaching some stop criterion,
when φ is expected to be more accurate than at the beginning of the process. The

main differences between self-labeling algorithms arise from how X l̂ is formed
and used to retrain φ in each cycle.

37

Chapter 3. Co-training for On-board Deep Object Detection

Self-training In self-training, introduced by Yarowsky [179] for word sense dis-

ambiguation, X l̂ is formed by collecting the most confident predictions of φ in
X u , updating X u to contain only the remaining unlabeled data. Then, φ is re-

trained using supervision from X l ∪X l̂ , i.e. pseudo-labels are taken as ground
truth. Before the DL era, Rosenberg et al. [124] already showed promising results
when applying self-training to eye detection in face images. More recently, Jeong

et al. [70], proposed an alternative to collect X l̂ for deep object detection, which
consists of adding a consistency loss for training φ as well as eliminating predom-
inant backgrounds. If Iu

i is an unlabeled image, the consistence loss is based on

the idea that φ(Iu
i) and φ((Iu

i)�), where ()� stands for horizontal mirroring, must
provide corresponding detections. Experiments are conducted on PASCAL VOC
and MS-COCO datasets, and results are on pair with other state-of-the-art methods
combining AL and self-training [158]. The reader is referred to [106] for a review
on loss-based SSL methods for deep image classification. On the other hand, note
that this SSL variations are not agnostic to φ, since its training loss is modified.
This is also the case in [94], where, in the context of deep image classification, the
activation functions composing φ must be replaced by Hermite polynomials. In
this chapter, we use a self-training strategy as SSL baseline for on-board deep object
detection, thus, keeping agnosticism regarding φ.

Co-training Co-training was introduced by Blum and Mitchell [17] in the context
of web-page classification, as alternative to the self-training of Yarowsky [179], in
particular, to avoid model drift. In this case, two models, φ1 and φ2, are trained on
different conditionally independent features of the data, called views, assuming
that each view is sufficiently good to learn an accurate model. Each model is
trained by following the same idea as with self-training, but in each cycle the data
samples self-labeled by φ1 and φ2 are aggregated together. Soon, co-training was
shown to outperform other state-of-the-art methods including self-training [104],
and the conditional independence assumption was shown not to be essential in
practice [13, 162, 163]. Later, in the context of sentence segmentation, Guz et al. [58]
introduced the disagreement idea for co-training, which was refined by Tur [150]
to jointly tackle DA in the context of natural language processing. In this case,
samples self-labeled with high confidence by φi but with low confidence by φ j ,
i , j ∈ {1,2}, i 6= j , are considered as part of the new pseudo-labeled data in each
cycle. In fact, disagreement-based SSL became a subject of study on its own at that
time [185].

Before the irruption of DL, Levin et al. [84] applied co-training to detect vehicles
in video-surveillance images, so removing background and using different training
data to generate different views. More recently, Qiao et al. [117] used a co-training

38

3.2. Semi-supervised learning

setting for deep image classification, based on several views. Each view corresponds
to a different CNN, φi , trained by including samples generated to be mutually
adversarial. The idea is to use different training data for each φi to prevent them
to prematurely collapse in the same network. This implies to link the training
of the φi ’s at the level of the loss function. In this chapter, we force the use of
different training data for each φi , without linking their training at the level of loss
functions, again, keeping co-training agnostic to the used φi . Moreover, we address
objected detection, which involves not only predicting class instances as in image
classification, but also localizing them within the images, so that the background
becomes a large source of potential false positives.

Finally, to avoid confusion, it is worth to mention the so-called co-teaching,
recently introduced by Han et al. [60], and its variant co-teaching+ introduced by Yu
et al. [181]. These algorithms are designed to address situations with noisy labels
on X l , both demonstrated on deep image classification. Indeed, these algorithms
stem ideas from co-training (the classical one from [60], the disagreement-based
one from [181]), however, reproducing the words of Han et al. [60], co-training is
designed for SSL, and co-teaching is for learning with noisy (ground truth) labels
(LNL); as LNL is not a special case of SSL, we cannot simply translate co-training
from one problem setting to another problem setting.

3.2.2 Domain adaptation

ML algorithms assume that training and testing data are drawn from the same
domain, D. When this is not the case, the trained models suffer from domain
shift. In other words, we have data, XS , drawn from a source domain, DS , as
well as data, XT , drawn from a target domain, DT ,DT 6=DS . We can assume that
XS =X tr

S ∪X t t
S ,X tr

S ∩X t t
S =;, where X tr

S is used to train some predictive model
φS . It turns out that the prediction accuracy of φS in X t t

S is much higher than in
XT , a phenomenon known as domain shift. Addressing this problem is the goal of
DA techniques, under the assumption that there is some (unknown) correlation
between DS and DT , since DA is not possible otherwise.

The core idea is to use XT to obtain a new model, φT , being clearly more
accurate than φS in DT . While doing this, the human-based labeling effort in XT

must be minimized. Supervised DA (SDA) assumes access to a relatively small set of
labeled target-domain data X l ,tr

T ⊂XT . If we do not have access to X l ,tr
S , then the

challenge is to leverage fromφS and X l ,tr
T to obtainφT . Otherwise, we can combine

X l ,tr
S and X l ,tr

T to train φT . In unsupervised DA (UDA), XT is unlabeled; thus, we

address the more challenging situations of using XT with either φS or X l ,tr
S to train

φT . For a review of the DA corpus we advise the reader to consult [37, 159, 166].

39

Chapter 3. Co-training for On-board Deep Object Detection

In this chapter, we assume an UDA setting. Moreover, our source data come
from a virtual world with automatically generated labels, so we have X l ,tr

S . Since
we aim at assessing self-labeling by co-training to address the UDA problem, we

have X l =X l ,tr
S , X u =XT , thus, X l̂ ⊆XT .

Following this line of work, Kim et al. [75] addressed USD for deep object detec-
tion by proposing a combination of a weak self-training and a special treatment of
backgrounds via a loss component used during the training of the object detector,
with PASCAL VOC as XS and art-style datasets (Clipart1K, Watercolor2K, Comic2K)
as XT . Zou et al. [191] also use a self-training strategy for UDA in the context of
deep image classification and semantic segmentation (including a virtual-to-real
setting), where the core idea is to perform confidence and model regularization
of the trained classifiers. Since in our experimental setting we will use Faster R-
CNN to obtain φ, it is also worth to mention the work by Chen et al. [32], where
an UDA method was specifically designed for Faster R-CNN and demonstrated on
car detection under a virtual-to-real setting too. Since Faster R-CNN is a two-stage
classifier, the proposed UDA involves an image-level adaptation for the region pro-
posal stage, and an instance-level adaptation for the BB prediction stage. Finally,
focusing on traditional ML and Amazon reviews datasets, Chen et al. [28] showed
that co-training is a promising algorithm for UDA, providing better performance
than self-training.

Accordingly, beyond self-training-style and model-specific strategies for UDA,
in this chapter, we are interested in assessing co-training as a meta-learning UDA
strategy. To the best of our knowledge, this is an under-explored and relevant setting.
Moreover, even we are going to use Faster R-CNN because its outstanding accuracy,
our proposal neither is specific for it, nor requires modifying its losses. In other
words, our co-training-based UDA works at the training-data level. This allows to
complement it with other UDA working at the same level. In particular, we combine
it with GAN-based image-to-image translation, since such task-agnostic approach
can transform X l ,tr

S to be more similar to XT before starting co-training. By using
the CycleGAN implementation of Zhu et al. [186], we will see how, indeed, GAN-
based image-to-image translation combined with co-training outperforms the use
of each method in isolation.

3.3 Methods

In this section, we detail our self-training and co-training meta-learning proposals
as Algorithms 1 and 2, respectively. In addition, Figures 3.1 and 3.2 provide a visual
representation of these algorithms, highlighting their main components with the
corresponding data flow. Our main interest is to assess the performance of co-

40

3.3. Methods

input :Labeled images: X l = {< Il
i ,Y l

i >}
Unlabeled images: X u = {Iu

i }
Object detection architecture: Φ

Φ Training hyper-par.: HΦ

Slf-tr. hyp.-p.: H sl = {T, N ,n,H st p [,H seq]}

output :New labeled images: X l̂ = {< Il̂
i ,Y l̂

i >}

<X l̂ ,k >←<;,0 >;

φ← TrainDetector(Φ,HΦ,X l ,X l̂);

X l̂
new ← RunDetector(φ,X u ,T);

repeat

X l̂
ol d ←X l̂

new ;

X l̂
↑ ← Select(↑,n,Rand(X l̂

new , N [,H seq ,k]));

X l̂ ← Fuse(X l̂ ,X l̂
↑);

φ← TrainDetector(Φ,HΦ,X l ,X l̂);

X l̂
new ← RunDetector(φ,X u ,T);

until Stop?(H st p ,X l̂
ol d ,X l̂

new ,k++);

X l̂ ←X l̂
new ;

return X l̂ ;
Algorithm 1: Self-labeling by self-training (see main text).

training in vision-based object detection, but we need also to develop a strong
self-training baseline. Since they share functional components, we first introduce
those and then detail how they are used for both self-training and co-training.
Finally, we will see how, depending on the input data, these SSL algorithms can
be used even in a context where there is a domain shift between already existing
labeled images and the images to be labeled automatically. To refer to both, self-
training and co-training indistinctly, we will use the term self-labeling in the rest of
this section.

3.3.1 Self-labeling functional components

Input and output parameters Since we follow a SSL setting [153], we assume
access to a set of images (e.g. acquired on-board a car) with each object of interest
(e.g. vehicles and pedestrians) labeled by a BB and a class label, as well as to a
set of unlabeled images. The former is denoted as X l = {< Il

i ,Y l
i >}, where Il

i is a

41

Chapter 3. Co-training for On-board Deep Object Detection

Figure 3.1 – Self-training main components. We use the same notation as in Algo-
rithm 1. The data in green is labeled, the one in dark grey is unlabeled, the transition
of both colors represents pseudo-labeled data. The blue boxes correspond to the
main components involved in self-training according to Algorithm 1.

particular image of the labeled set, being Y l
i its corresponding labeling information;

i.e., for each object of interest in Il
i , Y l

i includes its BB and its class label. The
unlabeled set is X u = {Iu

i }, where Iu
i is a particular unlabeled image. We assume

also a given object detection architecture to perform self-labeling, denoted as Φ,
with corresponding training hyper-parameters denoted as HΦ. After self-labeling,
we expect to obtain a new set of automatically labeled images, which we denote

as X l̂ = {< Il̂
i ,Y l̂

i >}, where Il̂
i ∈X u and has Y l̂

i as so-called pseudo-labels, which

in this case consists of a BB and a class label for each detected object in Il̂
i . The

variables introduced so far are generic in SSL, i.e. they are not specific of our
proposals. We denote as H sl the specific set of hyper-parameters we require for
self-labeling. In fact, H sl includes {T, N ,n,H st p ,H seq } as common parameters for
both self-training and co-training, but the latter requires an additional parameter
m that we will explain in the context of co-training. If K is the number of classes
to be considered, then T = {t1, . . . , tK } is a set of per-class detection thresholds,
normally used by object detectors to ensure a minimum per-class confidence to
accept potential detections. Since self-labeling must perform object detection on
unlabeled images, these thresholds are needed. During a self-labeling cycle, N
self-labeled images are randomly selected, from which n are kept to retrain the
object detector. Self-training and co-training use different criteria to select such n
self-labeled images. H st p consists of the parameters required to evaluate whether
self-labeling should stop or not. Finally, H seq is an optional set of parameters, only
required if X u consists of sequences rather than isolated images. Note that, in this

42

3.3. Methods

input :Labeled images: X l = {< Il
i ,Y l

i >}
Unlabeled images: X u = {Iu

i }
Object detection architecture: Φ

Φ Training hyper-par.: HΦ

Co-tr. hyp.-p.: H sl = {T, N ,n,m,H st p [,H seq]}

output :New labeled images: X l̂ = {< Il̂
i ,Y l̂

i >}

<X l̂
1 ,X l̂

2 ,k >←<;,;,0 >;

<X l
1 ,X l

2 >←<X l , (X l)� >;

φ1 ← TrainDetector(Φ,HΦ,X l
1 ,X l̂

1);

φ2 ← TrainDetector(Φ,HΦ,X l
2 ,X l̂

2);

X l̂
1,new ← RunDetector(φ1,X u ,T);

X l̂
2,new ← RunDetector(φ2,X u ,T);

repeat

X l̂
ol d ←X l̂

1,new ;

X l̂
1,↑ ← Select(↑,m,Rand(X l̂

1,new , N [,H seq ,k]));

X l̂
2,↑ ← Select(↑,m,Rand(X l̂

2,new , N [,H seq ,k]));

X l̂
1,↓ ← Select(↓,n,RunDetector(φ1,X l̂

2,↑,T));

X l̂
2,↓ ← Select(↓,n,RunDetector(φ2,X l̂

1,↑,T));

X l̂
1 ← Fuse(X l̂

1 ,X l̂
1,↓);

X l̂
2 ← Fuse(X l̂

2 ,X l̂
2,↓);

φ1 ← TrainDetector(Φ,HΦ,X l
1 ,X l̂

1);

φ2 ← TrainDetector(Φ,HΦ,X l
2 ,X l̂

2);

X l̂
1,new ← RunDetector(φ1,X u ,T);

X l̂
2,new ← RunDetector(φ2,X u ,T);

until Stop?(H st p ,X l̂
ol d ,X l̂

1,new ,k++);

X l̂ ←X l̂
1,new ;

return X l̂ ;
Algorithm 2: Self-labeling by co-training (see main text).

case, we can easily avoid to introduce too similar training samples coming from the
same object instances in consecutive frames, which has shown to be useful in AL
approaches [3].

43

Chapter 3. Co-training for On-board Deep Object Detection

Figure 3.2 – Co-training main components. We use the same notation as in Al-
gorithm 2, but we have introduced two dummy variables for the sake of clarity

(X l̂
1,t ,X l̂

2,t). The data in green is labeled, the one in dark grey is unlabeled, the tran-
sition of both colors represents pseudo-labeled data. The blue boxes correspond to
the main components involved in co-training according to Algorithm 2. The light
grey bounding box is executed just once.

TrainDetector(Φ,HΦ,X l ,X l̂) : φ This function returns an object detector, φ, by
training a CNN architecture Φ (e.g. Faster R-CNN [120]) according to the training
hyper-parameters HΦ (e.g. optimizer, learning rate, mini-batch size, training itera-
tions, etc.). Note that this is just the standard manner of training φ, but as part of
our self-labeling procedures, we control the provided training data. In particular,

we use labels (in X l) and pseudo-labels (in X l̂) indistinctly. However, we only con-

sider background samples based on X l , since, during self-labeling, X l̂ can contain
false negatives which could be erroneously taken as hard negatives when training
φ. Despite this control over the training data, note that we neither require custom
modifications of the loss function used to train φ, nor architectural modifications
of Φ.

44

3.3. Methods

RunDetector(φ,X u ,T) : X l̂ This function returns a set of self-labeled images, X l̂ ,
obtained by running the object detector φ on the unlabeled set of images X u ; in
other words, the pseudo-labels correspond to the object detections. Each detection
D consists of a BB B and a class label c; moreover, being a detection implies that
the confidence φ(D) fulfils the condition φ(D) ≥ tc , tc ∈ T .

Rand(X l̂ , N [,H seq ,k]) : X l̂
s This function returns a set X l̂

s of N self-labeled im-

ages randomly chosen from X l̂ . H seq and k are optional parameters. If they are

provided, it means that X l̂ consists of sequences and we want to ensure not to
return self-labeled consecutive frames, since they may contain very similar samples
coming from the same object instances and we want to favor variability in the sam-
ples. Moreover, in this way we can minimize the inclusion of spurious false positives
that may persist for several frames. In this case, H seq = {∆t 1,∆t 2}; where ∆t 1 is the
minimum distance between frames with pseudo-labels generated in the current
cycle, k, and ∆t 2 is the minimum distance between frames with pseudo-labels
generated in cycle k and frames with pseudo-labels generated in previous cycles
(< k). ∆t 1 condition is applied first, then ∆t 2 one. The final random selection is
performed on the frames remaining after applying these distance conditions.

Select(s,n,X l̂) : X l̂
s This function returns a sub-set X l̂

s ⊂ X l̂ of m self-labeled
images, selected according to a criterion s. If s =↑, the top n most confident images
are selected; while for s =↓, the n least confident images are selected. We resume
the confidence of an image from the confidences of its detections. For the sake of

simplicity, since X l̂ = {< Il̂
i ,Y l̂

i >}, we can assume that Y l̂
i not only contains the BB

and class label for each detected object in Il̂
i , but also the corresponding detection

confidence. Then, the confidence assigned to Il̂
i is the average of the confidences in

Y l̂
i .

Fuse(X l̂
ol d ,X l̂

new) : X l̂ The goal of this function is to avoid redundant detections

between the self-labeled sets X l̂
ol d and X l̂

new and preserving different ones, produc-

ing a new set of self-labeled images, X l̂ . Thus, on the one hand, X l̂ will contain all

the self-labeled images in X l̂
ol d ∪X l̂

new −X l̂
ol d ∩X l̂

new ; on the other hand, for those

images in X l̂
ol d ∩X l̂

new , only the detections in X l̂
new are kept, so the corresponding

information is added to X l̂ .

45

Chapter 3. Co-training for On-board Deep Object Detection

Stop?(H st p ,X l̂
ol d ,X l̂

new ,k) : Boolean This function decides whether to stop self-
labeling or not. The decision relies on two conditions. The first one is if a minimum
number of self-labeling cycles, Kmi n , have been performed, where current number

is k. The second condition relies on the similarity of X l̂
ol d and X l̂

new , computed as

the mAP (mean average precision) [46] by using X l̂
ol d in the role of ground truth

and X l̂
new in the role of results to be evaluated. We compute the absolute value

difference between the mAP at current cycle and previous one, keeping track of
these differences in a sliding window fashion. If these differences are below a
threshold, T∆m AP , for more than a given number of consecutive cycles, ∆K , self-
labeling will stop. Therefore, H st p = {Kmi n ,T∆m AP ,∆K }.

3.3.2 Self-training

Algorithm 1 describes self-training based on the functional components introduced
in Section 3.3.1. In the following, we highlight several points of this algorithm.

As Select(, ,) is run in the loop, it implies that in each cycle the n most confident
self-labeled images are kept for retrainingφ. Moreover, potentially redundant object
detections arising from different cycles are resumed by running the Fuse(,) function.
As is called Fuse(,) in the loop, when a previous detection and a new one overlap
enough, the new one is kept since it is based on the last trained version of φ, which
is expected to be more accurate than previous ones. When calling Select(, ,), not all
the available self-labeled images are considered, but just a random set of them of
size N ; which are chosen taking into account the selection conditions introduced in
case of working with sequences. This prevents the same highly accurate detections
to be systematically selected across cycles, which would prevent the injection of
variability when retraining φ. The random selection over the entire X u was also
proposed in the original co-training algorithm [17]. As we have mentioned before,
when running TrainDetector(, , ,), background samples are only collected from X l

to avoid introducing false positives. Moreover, we set HΦ to ensure that all the
training samples are visited at least once (mini-batch size × number of iterations ≥
number of training images). Therefore, we can think of X l ∪X l̂ as a mixing of data,
where X l acts as a regularizing factor during training, which aims to prevent φ to
become an irrecoverably bad detector. Thinking in a virtual-to-real UDA setting, we
note that from traditional ML algorithms to modern deep CNNs, mixing virtual and
real data has been shown to be systematically beneficial across different computer
vision tasks [68, 123, 138, 155]. Finally, we can see that to run the stopping criterion
we rely on the full self-labeled data available at the beginning and end of each cycle,
which results from applying the last available version of φ to the full X u set.

46

3.3. Methods

3.3.3 Co-training

Algorithm 2 describes our co-training proposal based on the functional components
introduced in Section 3.3.1. In the following, we highlight several points of this
algorithm.

Our co-training strategy tries to make φ1 and φ2 different by training them on

different data. Note how each φi is trained on X l
i and X l̂

i , i ∈ {1,2}, at each cycle.

The X l
i ’s do not change across cycles and we have X l

1 =X l and X l
2 = (X l)�, thus,

one of the labeled sets is a horizontal mirroring of the other. Moreover, the X l̂
i ’s are

expected to be different from each other and changing from cycle to cycle. On the
other hand, even technically not using the same exact data to train φ1 and φ2, there
will be a cycle when they converge and are not able to improve each other. This is
what we check to stop, i.e. as for self-training, but focusing on the performance of
φ1 since it is the detector using X l (the original labeled dataset).

Another essential question is how each X l̂
i is obtained. As we have mentioned

before, we follow the idea of disagreement. Thus, from the random set of images

self-labeled by φi , i.e. X l̂
i ,new , i ∈ {1,2}, we set to X l̂

i ,↑ the m with overall higher

confident pseudo-labels; then, the images in X l̂
i ,↑ are processed by φ j , j ∈ {1,2}, i 6=

j , and the n with the overall lower confident pseudo-labels are set to X l̂
j ,↓. Finally,

each X l̂
i ,↓ is fused with the X l̂

i accumulated from previous cycles to update X l̂
i .

Therefore, in each cycle, each φi is retrained with the images containing the less
confident pseudo-labels for current φi , selected among the images containing the
most confident pseudo-labels for current φ j . In this way, the detectors trust each
other, and use the samples that are more difficult for them for improving.

Note also that the most costly processing in self-training and co-training cycles
is the TrainDetector(, , ,) procedure. It is called once per cycle for self-training, and
twice for co-training. However, in the latter case the two executions can run totally
in parallel, therefore, with the proper hardware resources, self-training and co-
training cycles can be performed in a very similar time.

3.3.4 Self-labeling for UDA

Once introduced our self-training and co-training algorithms, we see how using
them for UDA is just a matter of providing the proper input parameters; i.e., X l =
X l ,tr

S , X u =XT , being X l ,tr
S the source-domain labeled dataset, and XT the target-

domain unlabeled one. We will draw the former from a virtual world, and the latter
from the real world.

47

Chapter 3. Co-training for On-board Deep Object Detection

Figure 3.3 – Top images: virtual-world patches showing 3D BBs framing vehicles
and pedestrians. Bottom image: projecting 3D BBs as 2D BBs for different views of
a pickup, with instance segmentation as visual reference.

48

3.4. Experiments

3.4 Experiments

3.4.1 Experimental setup

As real-world datasets we use KITTI [46] and Waymo [142], in the following de-
noted as K ,W , respectively. The former is a well-established standard born in
the academia; the latter is a new contribution from the industry. To work with K ,
we follow the splits introduced in [170], which are based on isolated images, and
guarantee that training and testing images are not highly correlated; i.e., training
and testing images are not just different frames sampled from the same sequences.
On the other hand, W dataset contains video sequences. Following the advice for
its use, we have randomly selected part of the sequences for training and the rest
for testing. Taking K as reference, we focus on daytime and non-adverse weather
conditions in all the cases. In addition, we have accommodated W images to the
resolution of K ones, i.e. 1240× 375 pixels, by just cropping away their upper
part (which mainly shows sky) and keeping the vertically centered 1240 columns.
Following KITTI benchmark moderate settings, we set the minimum BB height to
detect objects to 25 pixels and, analogously, 50 pixels for W . Moreover, since W

contains 3D BBs, as for the virtual-world objects (Figure 3.3), we obtain 2D BBs
from them. In other words, the resulting 2D BBs account for occluded object areas,
which is not the case for the 2D BBs directly available with W .

In order to perform our experiments, as set of virtual-world images (V), we
have used a dataset that we generated internally (refer to appendix A to see more
details) around two years ago as a complement for our former SYNTHIA dataset
[123]. We did not have the opportunity to release it at that moment, but it will be
publicly available to complement this chapter. We generated this data following
KITTI parameters: same image resolution, daytime and non-adverse weather, and
isolated images. As in [123], we did not focus on obtaining photo-realistic images.
However, for generating V , we included standard visual post-effects such as anti-
aliasing, ambient occlusion, depth of field, eye adaptation, blooming and chromatic
aberration. Later, we will see how the domain shift between V and K /W , is similar
to the one between K and W ; thus, being V a proper virtual-world dataset for
our study. Figure 3.3 shows virtual-world images with 3D BBs framing vehicles
and pedestrians, illustrating also how the 3D BBs are projected as 2D BBs covering
occluded object areas.

For each dataset, Table 3.1 summarizes the number of main/sections4/images/
frames and objects (vehicles and pedestrians) used for training and testing our
object detectors.

49

Chapter 3. Co-training for On-board Deep Object Detection

Ta
b

le
3.

1
–

D
at

as
et

s
(X

):
tr

ai
n

(X
tr

)a
n

d
te

st
(X

tt
)i

n
fo

rm
at

io
n

,X
=

X
tr
∪X

tt
,X

tr
∩X

tt
=
;.

W
e

sh
ow

th
e

n
u

m
b

er
o

fm
ai

n
/s

ec
ti

o
n

s4
/i

m
ag

es
/f

ra
m

es
(s

eq
u

en
ce

s)
,v

eh
ic

le
B

B
s,

p
ed

es
tr

ia
n

B
B

s,
an

d
w

h
et

h
er

th
e

d
at

as
et

s
co

n
si

st
s

o
f

vi
d

eo
se

q
u

en
ce

s
o

r
n

o
t.

X
tr

X
t t

D
at

as
et

(X
)

Im
ag

es
(s

eq
.)

Ve
h

ic
le

s
Pe

d
es

tr
ia

n
s

Im
ag

es
(s

eq
.)

Ve
h

ic
le

s
Pe

d
es

tr
ia

n
s

Se
q

.?

V
IR

T
U

A
L

(V
)

19
,7

91
43

,3
26

44
,8

63
N

o

K
IT

T
I

(K
)

3,
68

2
14

,9
41

3,
15

4
3,

79
9

18
,1

94
1,

33
3

N
o

W
A Y

M
O

(W
)

9,
87

3
(5

0)
64

,4
46

9,
91

8
4,

16
1

(2
1)

24
,6

00
3,

06
8

Ye
s

50

3.4. Experiments

Figure 3.4 – Main components of Faster R-CNN: feature extractor (FE), region pro-
posal network (RPN), and region-based CNN (RCNN). Their responsibilities are
outlined in parenthesis and elaborated in the main text. We use VGG16 as FE.
Blue boxes are blocks of neural network layers with input dimensions indicated as
<height, width, channels>. Grey boxes are algorithmic steps to return BBs, candi-
dates (RPN) or detections (RCNN).

Since our proposal does not assume a particular object detection architecture,
for performing the experiments we have chosen Faster R-CNN [120] because it pro-
vides a competitive detection accuracy and is very well known by computer vision
practitioners [88]. For the sake of completeness, Figure 3.4 shows the main com-
ponents of Faster R-CNN, namely, the Feature Extractor (FE), the region proposal
network (RPN), and the region-based CNN (RCNN). We use the implementation
available in the Detectron framework [49], with VGG16 as FE. The RPN component
generates object candidates from the so-called bottleneck of FE (i.e. ConvBlock5).
Conceptually, these candidates can be understood as BBs which can potentially
contain objects of interest. Using these candidates and the same bottleneck, the
RCNN component performs the final object classification and BB regression (a
refinement of the BBs proposed by RPN). For comprehensive details the reader
can refer to [49]. At training time, we always initialize VGG16 (FE) with ImageNet
weights since it is a recommended best practice. The weights of the RPN and RCNN
components are randomly initialized. We run each Faster R-CNN training for 40,000
iterations using SGD optimizer. The learning rate starts at 0.001 and we have used a
decay of 0.1 at iterations 30,000 and 35,000. Each iteration uses a mini batch of two
images. In terms of Algorithms 1 and 2, these settings correspond to HΦ.

51

Chapter 3. Co-training for On-board Deep Object Detection

As GAN-based image-to-image translation method we use the CycleGAN im-
plementation in [186]. A GAN training runs for 40 epochs using a weight of 1.0 for
the identity mapping loss. In order to be able to use full resolution images, the
training of the GAN has been done patch-wise, with patch sizes of 300×300 pixels.
The rest of parameters have been set as recommended in [186]. We train a V →K

transforming GAN, GK , and another for V →W , GW . Accordingly, VGK =GK (V)
denotes the set of virtual-world images transformed by GK and, analogously, we
have VGW

= GW (V). We will use the notation VG to refer to any of these sets. The
ground truth present in V is used as ground truth for VG . For qualitative examples
of image-to-image transformations, we refer to Figures 3.5 and 3.6, using GK and
GW , respectively.

Table 3.2 summarizes the rest of hyper-parameters used to perform our ex-
periments. Note that, regarding our self-labeling approaches, we use the same
values for K and W , with the only exception that for W we also consider that it is
composed of video sequences. Moreover, we also use the same values for hyper-
parameters shared by self-training and co-training. We relied on the meaning of
the hyper-parameters to set them with reasonable values. Then, during the experi-
ments of the 5% with self/co-training (see Table 3.3) we did visual inspection of the
self-labeled images to ensure the methods were working well. In this process, we
noted that, since the confidence thresholds (T) were already avoiding too erroneous
self-labeled images, for co-training it was better to send all the images self-labeled
by the detector φi to detector φ j , i , j ∈ {1,2}, i 6= j , so that φ j can select the n most
difficult for it among them. This is equivalent to set m = ∞ in Algorithm 2 (so
nullifying the parameter).

Algorithms 1 and 2 return self-labeled images, i.e. X l̂ . For our experiments,

we use X l̂ together with the input labeled set, X l , to train a final Faster R-CNN
object detector out of the self-labeling cycles but using the same training settings.
This detector is the one used for testing. Finally, to measure object detection
performance, we follow the KITTI benchmark mean average precision (mAP) metric
[46].

3.4.2 Results

We start by assessing the self-labeling algorithms in a pure SSL setting, working only
with either the K or W dataset. Table 3.3 shows the results when using the 100% of
the respective real-world training data, i.e. X l =X tr ∈ {K tr ,W tr }, as well as when
randomly selecting the 5% or the 10% of X tr as X l set, meaning that these subsets
are created once and frozen for all the experiments. Table 3.4 shows the number
of object instances induced by the random selection in each case. In Table 3.3, the

52

3.4. Experiments

Figure 3.5 – From left to right: images from V , corresponding images in VGK (i.e.
processed by the V →K GAN), and images from K . Last column is just a visual
reference since, obviously, there is no a one-to-one correspondence between V and
K .

Figure 3.6 – From left to right: images from V , corresponding images in VGW
(i.e.

processed by the V →W GAN), and images from W . For visual comparison, the two
top rows of this figure and those in Figure 3.5, start with the same images in V .

53

Chapter 3. Co-training for On-board Deep Object Detection

Table 3.2 – Self-training and co-training hyper-parameters as defined in Algorithms
1 and 2. We use the same values for both, as well as to work with KITTI (K) and
Waymo (W) datasets, except for H seq which only applies to W . N , n, m, ∆t 1, and
∆t 2 are set in number-of-images units, Kmi n and ∆K in number-of-cycles, T∆m AP

runs in [0..100]. We use the same confidence detection threshold for vehicles and
pedestrians, which runs in [0..1]. (?) Only used in co-training, however, for m =∞,
it has no effect.

H st p H seq

T N n m? Kmi n T∆m AP ∆K ∆t 1 ∆t 2

{0.8,0.8} 2,000 100 ∞ 20 2.0 5 5 10

Table 3.3 – SSL results for K and W . We assess vehicle (V) and pedestrian (P)
detection, according to the mAP metric. From X tr ∈ {K tr ,W tr }, we preserve the
labeling information for a randomly chosen p% of its images, while it is ignored for
the rest. We report results for p=100 (all labels are used), p=5 and p=10. Slf-T and
Co-T stand for self-training and co-training, resp., which refers to how images were
self-labeled from the respective unlabeled training sets.

X t t =K t t X t t =W t t

Training set V P V&P V P V&P

100% Labeled (upper bound) 81.02 65.40 73.21 61.71 57.74 59.73

5% Labeled (lower bound) 59.81 36.49 48.15 51.69 41.92 46.81
5% Labeled + Slf-T 68.94 40.99 54.97 54.26 55.38 54.82
5% Labeled + Co-T 68.99 55.07 62.03 54.00 56.34 55.17

10% Labeled (lower bound) 72.13 49.03 60.58 49.53 49.83 49.68
10% Labeled + Slf-T 76.32 56.05 66.19 54.88 57.40 56.14
10% Labeled + Co-T 73.08 58.53 65.81 56.15 60.20 58.18

54

3.4. Experiments

Table 3.4 – Number of self-labeled vehicles and pedestrians applying self-training
and co-training, for the SSL (5% & 10%) and UDA (Source & ASource) settings, for
KITTI (K) and Waymo (W). In parenthesis we indicate the percentage of false
positives. The top block corresponds to ground truth labels in the full training
sets, and the percentages used for SSL. After removing false positives, in each block
of rows, the corresponding ∆X shows how many more objects are labeled by co-
training compared to self-training.

K W

Training set V P V P

100 % Labeled 14,941 3,154 64,446 9,918
5 % Labeled 647 83 3,520 472
10 % Labeled 1,590 367 6,521 959

5% Labeled + Slf-T 9,376 (0.8%) 837 (0.5%) 52,150 (1.7%) 5,554 (3.1%)
5% Labeled + Co-T 10,960 (1.8%) 1,591 (6.2%) 56,102 (4.0%) 6,948 (10.9%)
∆5% +1,462 +660 +2,594 +809

10% Labeled + Slf-T 10,536 (0.7%) 1,409 (2.3%) 54,698 (1.6%) 6,519 (2.7%)
10% Labeled + Co-T 11,309 (1.7%) 1,552 (3.9%) 56,686 (3.1%) 7,384 (6.0%)
∆10% +654 +115 +1,106 +598

Slf-T + Source 12,686 (4.6%) 1,378 (8.9%) 29,036 (23.8%) 837 (5.1%)
Co-T + Source 14,537 (6.5%) 1,964 (14.0%) 48,653 (30.4%) 3,481 (12.9%)
∆Sour ce +1,490 +434 +1,1737 +2,238

Slf-T + ASource 10,389 (1.7%) 1,268 (3.5%) 41,173 (24.7%) 1,928 (13.5%)
Co-T + ASource 12,864 (3.1%) 1,532 (5.2%) 53,955 (28.8%) 3,553 (16.0%)
∆ASour ce +2,253 +229 +7,413 +1,317

100% case shows the upper-bound performance, and the 5% and 10% act as lower
bounds.

We can see that, in all the cases, the self-labeling methods outperform the
lower bounds. For vehicles (V), self-training and co-training perform similarly
for the 5% lower bound, while for the 10% self-training performs better than co-
training in K but worse in W . For pedestrians (P), co-training always performs
better. Looking at the vehicle-pedestrian combined (V&P) performance, we see
significant improvements over the lower bounds. Interestingly, for the 10% setting,
co-training even outperforms the upper bound for pedestrians in W . In fact, in
this case, the corresponding V&P performance is just 1.55 points below the upper
bound. The same setting in K , improves 5.3 points over the lower bound, but is
7.4 points below the upper bound. These experiments show that our self-labeling

55

Chapter 3. Co-training for On-board Deep Object Detection

Table 3.5 – UDA results for V → {K ,W }, i.e. virtual to real. ASource (adapted
source) refers to VG ∈ {VGK ,VGW

}. X l ,tr refers to the fully labeled target-domain

training set. X l̂ ,tr consists of the same images as X l ,tr , but self-labeled by either
self-taining (Slf-T) or co-training (Co-T). Just as reference, we also show the domain
shift between K and W . According to these results, as upper bound for K we take
the detector based on X l ,tr &VG , while for W it is the detector based on X l ,tr . We
refer to the main text for more details.

X t t =K t t X t t =W t t

Training set V P V&P V P V&P

Source (K) - - - 37.79 49.80 43.80
Source (W) 45.57 44.11 44.84 - - -

Source (V) (lower bound) 62.27 61.28 64.28 38.88 53.37 46.13
ASource (VG) 75.52 61.94 68.73 52.42 53.08 52.75
Target (X l ,tr) 81.02 65.40 73.21 †61.71 †57.74 †59.73
Target + Source (X l ,tr &V) 81.68 68.07 74.88 60.65 54.23 57.44
Target + ASource (X l ,tr &VG) †84.08 †66.00 †75.04 62.02 51.55 56.79

Slf-T + Source (X l̂ ,tr &V) 70.25 67.59 68.92 48.50 44.63 46.57

Co-T + Source (X l̂ ,tr &V) 73.53 69.50 71.52 48.56 56.33 52.45

Slf-T + ASource (X l̂ ,tr &VG) 79.62 65.87 72.75 59.19 52.48 55.84

Co-T + ASource (X l̂ ,tr &VG) 79.99 69.01 74.50 59.99 55.39 57.69

∆(Co-T + ASource) vs Source +17.72 +07.73 +10.22 +21.11 +02.02 +11.56
∆(Co-T + ASource) vs ASource +04.47 +07.07 +05.77 +07.57 +02.31 +04.94
∆(Co-T + ASource) vs upp.-b.† -04.09 +03.01 -00.54 -01.72 -02.35 -02.04

∆(Co-T + Source) vs Source +11.26 +08.22 +07.22 +09.68 +02.96 +06.32
∆ASource vs Source +13.25 +00.66 +04.45 +13.54 -00.29 +06.62

56

3.4. Experiments

Figure 3.7 – Eventual detection performance (mAP) of self-training and co-training
as a function of the stopping cycle, in the UDA setting. Upper and lower bounds are
included as visual reference. We refer to the main text for more details.

algorithms, especially co-training, are performing the task of SSL reasonably well,
which encourages to address the UDA challenge with them.

Table 3.5 shows the UDA results for V →K and V →W , thus, training with V

acts as lower bound. Just as reference, we also show the results of training on K and
testing on W , and vice versa. The former case shows a similar domain shift as when
training on V . The latter case shows a significant lower shift from V to K , than from
W to K . Thus, we think that V offers a realistic use case to assess virtual-to-real
UDA. The ∆X rows at the bottom block of Table 3.5 summarize numerically the
main insights.

A first observation is that, by combining GAN-based image-to-image translation
and co-training, we obtain significant performance improvements over the lower
bounds in all cases; in terms of V&P, 10.22 points for K and 11.56 for W . In fact,
the gap to reach upper-bound performances, is relatively small compared to the
improvement over the lower bounds; in terms of V&P, such gap is of 0.54 points for
K and of 2.04 for W . Note that for K , the upper bound comes from the X l ,tr &VG

setting (i.e. training on the full labeled training set of K plus VGK); while for W , the
upper bound comes from the X l ,tr setting (i.e. training on the full labeled training
set of W). Thus, without any manual training data labeling, we are almost reaching
upper-bound performance.

57

Chapter 3. Co-training for On-board Deep Object Detection

F
ig

u
re

3.
8

–
E

xa
m

p
le

s
o

fS
el

f/
C

o
-t

ra
in

in
g

+
A

So
u

rc
e.

R
ed

B
B

s
ar

e
fr

o
m

th
e

gr
o

u
n

d
tr

u
th

o
fK

tr
,a

n
d

gr
ee

n
B

B
s

ar
e

p
re

d
ic

te
d

.
E

ac
h

b
lo

ck
o

ft
w

o
co

lu
m

n
s

w
it

h
th

e
sa

m
e

u
n

d
er

ly
in

g
im

ag
e

co
m

p
ar

es
se

lf
-t

ra
in

in
g

(l
ef

t
co

lu
m

n
o

ft
h

e
b

lo
ck

)
an

d
co

-t
ra

in
in

g
(r

ig
h

t
co

lu
m

n
o

f
th

e
b

lo
ck

).
To

p
ro

w
co

rr
es

p
o

n
d

s
to

d
et

ec
ti

o
n

s
in

C
yc

le
0,

w
h

en
,i

n
th

es
e

ex
am

p
le

s,
th

e
o

n
ly

av
ai

la
b

le
tr

ai
n

in
g

d
at

a
is

V
G

K
(s

o
it

is
th

e
sa

m
e

fo
r

se
lf

-t
ra

in
in

g
an

d
co

-t
ra

in
in

g)
.T

h
e

fo
ll

ow
in

g
ro

w
s,

to
p

to
b

o
tt

o
m

,c
o

rr
es

p
o

n
d

to
d

et
ec

ti
o

n
s

fr
o

m
cy

cl
es

1,
10

,a
n

d
20

,r
es

p
ec

ti
ve

ly
,w

h
en

se
lf

-l
ab

el
ed

im
ag

es
ar

e
in

cr
em

en
ta

lly
ad

d
ed

to
th

e
tr

ai
n

in
g

se
t.

58

3.4. Experiments

F
ig

u
re

3.
9

–
A

n
al

o
go

u
s

to
F

ig
u

re
3.

8
fo

r
W

tr
an

d
V

G
W

.

59

Chapter 3. Co-training for On-board Deep Object Detection

A second observation is that, indeed, co-training brings additional improve-
ments on top of image-to-image translation; in terms of V&P, 5.77 points for K and
4.94 for W . Note that, when applying them separately to the virtual-world images
(source domain), both co-training and CycleGAN (ASource) show similar perfor-
mance improvements for W but co-training outperforms CycleGAN in K ; in terms
of V&P, co-training improves 7.22 points for K and 6.32 for W , while CycleGAN
improves 4.45 and 6.62 points, respectively. Interestingly, CycleGAN performs better
than co-training for vehicles and it is the opposite for pedestrians. In any case, using
both together outperforms them in isolation.

A third observation is that co-training consistently outperforms self-training.
Moreover, in Figure 3.7 we can see that this is also consistent along self-labeling
cycles (we show the UDA setting). It plots curves illustrating how the self-training
and co-training strategies would perform as a function of the stopping cycle. We
collect the respective self-labeled images at different cycles (x-axis) and train an
object detector as these cycles were determined as the stopping ones. Then, we
assess the performance of the detector in the corresponding testing set (either
from K or W), so collecting the corresponding mAP (y-axis) per each considered
cycle. We see how self-training curves oscillate more around the respective lower
bounds, while co-training ones keep improving performance as we train more
cycles. Moreover, in Table 3.4, we can see how co-training systematically self-labels
more correct object instances than self-training (∆X rows show the increment for
SSL and UDA settings).

Figures 3.8 and 3.9 show qualitative examples of how self-training and co-
training progress in K tr and W tr images, respectively; in this case, starting with
VGK and VGW

as corresponding initial labeled training sets. Both self-labeling strate-
gies improve over the starting point, since they can correct BB localization errors,
remove false positives, and recovering from false negatives. In some cases, self-
training and co-training show the same final right result, but co-training reaches it
in earlier cycles, while in other cases co-training shows better final results.

As summarized in Table 3.6, with additional experiments, we have further ana-
lyzed co-training results. We repeat the training and evaluation of all the detectors
developed for both the SSL and UDA settings, considering two variants in the re-
spective training sets. In (/FP) we remove the false positives from the self-labeled
data. In (/FP+BB), in addition, for those self-labeled instances that are true positives,
we replace the BBs predicted during self-labeling by the corresponding BB ground
truth. In this way, we can incrementally analyze the effect of false positives and BB
adjustment accuracy.

Table 3.6 shows how the impact of having false positives as training data is
not as strong as one may think a priori. For instance, in Table 3.4 we can see that
co-training with CycleGAN (Co-T + ASource) has output a 28.8% of false vehicles in

60

3.4. Experiments

Table 3.6 – Results for two new settings: (/FP) assuming we remove the self-labeled
false positives; (/FP+BB) assuming that, in addition, for the self-labeled instances,
we change the predicted BB by the corresponding one in the ground truth. The ∆X

rows show differences between these variants and the respective original one (i.e.
neither removing the FP nor adjusting the BBs). The bottom block of rows remarks
the differences between the best self-labeling (Co-T+ASource, including /FB and
/FB+BB cases) and the upper bound.

X t t =K t t X t t =W t t

Training set V P V&P V P V&P

Upper bound (UB) †84.08 †66.00 †75.04 †61.71 †57.74 †59.73

5% Labeled + Co-T 68.99 55.07 62.03 54.00 56.34 55.17
5% Labeled + Co-T/FP 68.37 55.34 61.86 53.94 55.23 54.59
5% Labeled + Co-T/FP+BB 82.98 59.24 71.11 62.72 58.54 60.63
∆5%, FP -0.62 +0.27 -0.17 -0.06 -1.11 -0.58
∆5%, FP+BB +13.99 +4.17 +9.08 +8.72 +2.20 +5.46

10% Labeled + Co-T 73.08 58.53 65.81 56.15 60.20 58.18
10% Labeled + Co-T/FP 72.94 58.68 65.81 56.62 57.74 57.18
10% Labeled + Co-T/FP+BB 83.16 61.29 72.23 63.17 60.13 61.65
∆10%/FP -0.14 +0.15 0.00 +0.47 -2.46 -1.00
∆10%/FP+BB +10.08 +2.76 +6.42 +7.02 -0.07 +3.47

Co-T + Source 73.53 69.50 71.52 48.56 56.33 52.45
Co-T + Source/FP 71.64 69.50 70.57 51,06 56.94 54.00
Co-T + Source/FP+BB 86.03 68.97 77.50 59.21 56.59 57.90
∆Co-T + Source/FP -1.89 0.00 -0.95 +2.50 +0.61 +1.55
∆Co-T + Source/FP+BB +12.50 -0.53 +5.98 +10.65 +0.26 +5.45

Co-T + ASource 79.99 69.01 74.50 59.99 55.39 57.69
Co-T + ASource/FP 80,16 67.79 73.98 60.70 56,87 58,79
Co-T + ASource/FP+BB 86.26 66.69 76.48 63.98 58.55 61.27
∆Co-T + ASource/FP +0.17 -1.22 -0.52 +0.71 +1.48 +1.10
∆FP+FP+BB +6.27 -2.32 +1.98 +3.99 +3.16 +3.58

∆(Co-T + ASource) vs UB -4,09 +3,01 -0,54 -1,72 -2,35 -2,04
∆(Co-T + ASource/FP) vs UB -3.92 +1.79 -1.06 -1.01 -0.87 -0.94
∆(Co-T + ASource/FP+BB) vs UB +2.18 -0.69 +1.44 +2.27 +0.81 +1.54

61

Chapter 3. Co-training for On-board Deep Object Detection

Figure 3.10 – Examples of misalignment between ground truth BBs (red) and self-
labeled ones (green). Occlusion is the underlying problem, giving rise to shorter
BBs (top and middle) or BBs fusing several instances in one (bottom).

W and a 3.1% in K , a large difference; however, Table 3.6 indicates that removing
them results in a vehicle detection improvement of just 0.71 points in the former
case, and 0.17 in the latter. This may be linked with the fact that SGD optimization
in deep neural networks (DNNs) tend to prioritize learning patterns instead of
noise [8].

In general, as Table 3.6 shows, a better BB adjustment has a higher impact than
removing false positives, especially for vehicles. In fact, for the higher performing
detector, i.e. co-training with CycleGAN, this adjustment would allow to even out-
perform the upper bound. This improvement is mainly coming from the detection

62

3.5. Conclusion

of vehicles. For instance, Figure 3.10 shows examples of the typical BB misalign-
ment we have found, mainly due to occluded vehicle instances. Note also that
the (/FP+BB) results indicate that non-self-labeled objects (false negatives) do not
cause any loss of performance, unless they would result in better BB adjustments.

We finish by showing qualitative results on K t t and W t t (Figure 3.11), for differ-
ent object detectors. Comparing ground truth BBs and detections, we appreciate
how it is confirmed what is expected from the quantitative results, i.e. co-training
combined with GAN-based image-to-image translation is providing the most accu-
rate results.

3.5 Conclusion

Motivated by the burden of manual data labeling when addressing vision-based ob-
ject detection, we have explored co-training as SSL strategy for self-labeling objects
in images. Moreover, we have focused on the challenging scenario where the initial
labeled set is generated automatically in a virtual world; thus, co-training must
actually perform UDA. We have proposed a specific co-training algorithm which is
agnostic to the particular object detector used for self-labeling. We have devised a
comprehensive set of experiments addressing the challenging task of on-board ve-
hicle and pedestrian detection, using de facto standards such as KITTI and Waymo
datasets, together with a virtual-world dataset introduced in this chapter. Our quali-
tative results allow us to conclude that co-training and GAN-based image-to-image
translation complement each other up to allow the training of object detectors
without manual labeling, while still reaching almost the same performance as by
totally relying on human labeling for obtaining upper-bound performances. These
results show that the self-labeled objects are sufficient to train a well-performing
object detector, but also that improving BB adjustment is convenient to improve its
performance. Accordingly, our future work will address this point, for instance, by
developing a multi-modal co-training which jointly explores RGB images (as in this
chapter) as well as depth information based on monocular depth estimation [51],
where object borders may be better localized.

63

Chapter 3. Co-training for On-board Deep Object Detection

Figure 3.11 – Results for K t t (top ‘Source → Co-T+Asource’ block) and W t t (bottom
‘Source → Co-T+Asource’ block). Red BBs are the ground truth, and green ones are
the detections done by the detector indicated at the first column of each row.

64

4 Lidar-based 3D object detection

In order to explore on-board perception beyond vision, we decided to work on
3D object detection based on LiDAR pointclouds. In line with previous chapters,
we aim at leveraging synthetic data with automatically generated ground truth
to develop such detectors. While for images we may expect synth/real-to-real do-
main shift due to differences in their appearance, we did not expect so for LiDAR
pointclouds since these active sensors factor out appearance and provide sam-
pled shapes. However, after an extensive set of experiments that we present and
discuss in this chapter, we conclude that there is domain shift among pointclouds
coming from different datasets, i.e. not only in the synth-to-real case but also in
the real-to-real setting. Factors such as the sampling parameters of the LiDARs
and the sensor suite configuration on-board the ego-vehicle, do induce a domain
shift. This redirected our initial goal towards the design of a GAN for pointcloud-
to-pointcloud translation, a relatively unexplored topic. The first decision was to
chose a proper pointcloud representation. After assessing different options, we
have used a voxel grid representation, which allows us to process pointclouds of
an arbitrary number of points, in contrast to previous related works. Then, we
have developed a GAN able to translate between two pointcloud domains which
were forced to have shifts in terms of shape, rigid motion, and presence/absence
of noisy points.

4.1 Introduction

After addressing traffic sign recognition, a multi-class image classification prob-
lem, and vision-based 2D object detection, in both cases focusing on methods
to leverage synthetic data for training the respective deep models, a natural step
forward is to address LiDAR-based 3D object detection, in this case leveraging
synthetic pointclouds for training. We started this work by reviewing the literature
to know the publicly available real-world LiDAR-based pointcloud datasets with
3D BB annotations (we found KITTI, Waymo, and Lyft), as well as to know the best

65

Chapter 4. Lidar-based 3D object detection

performing detectors. This review of related works is summarized in Sect. 4.2. We
will see that a key question is how to represent pointclouds to train deep models.
Basically, there are three main approaches and we have selected a top-performing
detector representing each one (Frustrum PointNet, PointPillars, PointRCNN). We
also developed a dataset of synthetic pointclouds with automatically generated
3D BBs (SYNTHIA-3D), aiming at training the selected detectors with it to latter
perform in the real-world datasets. After doing this, we found that there is a domain
shift between our synthetic pointclouds and the real-world ones. Then, as sanity
check, we performed the same kind of experiments crossing all real-world datasets
and, indeed, we found that there is also a real-to-real domain shift problem for
LiDAR-based pointclouds. The comprehensive list of experiments is presented in
Sect. 4.3. In fact, we will see that the cross-domain drop of accuracy of all the 3D
object detectors is relatively large. We did not expect so for LiDAR pointclouds since
these active sensors factor out appearance and provide sampled shapes. In the
same section, we also show that even compensating for dataset differences on 3D
BB margins, which may be due to different criteria during the human annotation
process, domain shift still persists. We think it may be because of factors such as the
sampling parameters of the LiDARs and the sensor suite configuration on-board
the ego-vehicle. After obtaining these results, we searched the literature for domain
adaptation methods applied to pointclouds and found that this is still a relatively
unexplored topic. We added the related works to Sect. 4.2 too.

Since in previous chapters GANs were helping to perform domain adaptation
for vision-based perception tasks, we have decided to use GANs for pointcloud-
to-pointcloud translation between a source and a target domain. We present our
proposal on Sect. 4.4. The first decision was to chose a proper pointcloud repre-
sentation. We have used a voxel grid representation, which allows us to process
pointclouds of an arbitrary number of points, in contrast to previous related works.
Then, we have developed a GAN that takes this representation as input. Our GAN
is based on an encoder common to target and source domains and two domain-
specific decoders, so not being restricted by cycle or reconstruction losses. The only
regularization enforcement comes from autoencoder losses. In order to evaluate
such a GAN, we have designed a set of experiments based on synthetic pointclouds.
They have shown that the GAN is able to translate between two domains which
were forced to have shifts in terms of shape, rigid motion, and presence/absence of
noisy points.

Overall, as we will summarize and remark in Sect. 4.5, this chapter shows that
domain adaptation is needed for LiDAR-based pointclouds, and that GAN-based
pointcloud-to-pointcloud translation is a promising line of work to address the
problem.

66

4.2. Related work

Figure 4.1 – 3D detection case. The position, size and orientation is provided. The
position and size is estimated using a bounding box format with its centroid and
box size (red lines). The orientation is computed using the angle of the car direction
respect to the x-axis of the pointcloud (green arrow).

4.2 Related work

In order to assess how synthetic pointclouds can help to address on-board per-
ception tasks, we have divided the related work in two sections. Section 4.2.1
summarizes works addressing pointcloud-based 3D object detection. Section 4.2.2
focuses on works addressing the domain shift problem for pointclouds.

4.2.1 Working with pointclouds

In the context of AVs, the amount of publicly available LiDAR-based pointclouds
with annotations is significantly fewer than for images, where we have a bunch of
datasets for classification, detection and segmentation tasks. KITTI [46] has been
the first publicly available dataset providing LiDAR-based pointclouds with BB
annotations for 3D object detection, and being key for developing monocular depth
estimation algorithms. There are other datasets which provide depth information
by other methods, as the Cityscapes dataset [36] which relies on a stereo rig, or as
the SYNTHIA dataset [123] which uses the z-buffer of a virtual world. In the last two
years, different companies developing AVs have started to release on-board data
from LiDAR sensors, as illustrate Lyft [67] and Waymo [142] datasets, both including
different kinds of annotations. Thanks to these datasets and deep learning, LiDAR-

67

Chapter 4. Lidar-based 3D object detection

based classification [26, 116, 169], object detection [82, 115, 131, 175], and semantic
segmentation [26, 35, 146], are emerging topics of research with promising results
for on-board perception.

Independently of the addressed perception task, processing LiDAR pointclouds
is highly demanding in terms of memory, especially compared to images. To solve
this problem different representation of the pointclouds have been proposed. A
common approach is the use of a voxel grid, which was first applied to a classifica-
tion task by Wu et al. [169]. In this approach, the original pointcloud is transformed
on a grid of voxels. Each voxel contains the information of a set of 3D points from
the original pointcloud, in particular, those falling within a neighbourhood of a
given size. Later, this approach has been applied to other tasks such as object detec-
tion [184]. Another approach consists in projecting the pointcloud to a 2D space as
on a bird-eye view [176, 177] or fusing multiple views [30]. Charles et al. [26, 116]
propose to sub-sample a random subset of 3D points to be processed by 3D con-
volutions. Since this approach disregards the 3D topology, different alternatives
to 3D convolutions have been proposed, such as KPConv [146] or the Minkowski
engine [35]. Following the voxel grid idea, Riegler et al. [122] propose to use a octree
representation which is an approach leveraging from the voxel grid idea and the
direct use of the raw 3D points; in particular, larger voxels are used at 3D areas with
existing points, while void voxels are removed. Finally, the implicit representation is
commonly used for some tasks [55], however, since it involves processing one 3D
point at a time, it turns to be too slow for training CNN-based models.

Focusing on LiDAR-based 3D object detection, we can find works which assume
the support of 2D images, works that rely on a voxel grid representation of the
pointcloud, and works directly using the pointcloud representation. The most
relevant are briefly summarized in the following.

Works based on 2D images. In [30, 79] the key is to fuse image content with
LiDAR-based pointclouds projected to the image space. In these works 3D BBs are
directly predicted. In [81], image-based 2D object detections are generated first,
and then 3D BBs adjusted to them with the support of a corresponding depth image
(coming from an indoors active sensor). Following this line, Qui et al. [115] proposed
a 2D-3D pipeline, first 2D object detection is performed on the images, so that the
corresponding 2D BBs delimit a frustrum on the LiDAR-based pointcloud, then for
each 2D detection the 3D BB fitting is performed within its frustrum. Obviously,
all these approaches assume that LiDAR (or any other active sensor) and camera
sensors are calibrated.

Works based on the voxel grid representation. In [39, 157], this representation
is used to extract features consisting on different statistics of the 3D points falling in
each voxel. In contrast to these works where the voxel features are post-processed in
a more ad hoc fashion, in [184] a fully 3D CNN is used to directly process the voxel

68

4.2. Related work

features. Yan et al. [175] include sparse 3D convolutions to increase the detection
speed and accuracy. Lang et al. [82] change the 3D convolutions by 2D convolutions
working with so-called pillars.

Works based on the 3D pointcloud representation. PointNet [26], and its en-
hanced version PointNet++ [116], work directly on the pointcloud to learn a feature
vector for each point and a global feature for the whole pointcloud. The global fea-
ture vector is learnt from all point feature vectors, then each of those is augmented
by its concatenation with the global feature vector. These augmented point feature
vectors are used to obtain the 3D bounding boxes. Shi et al. [131] propose the
PointRCNN inspired in the two-stage image-based object detectors, such as Faster
R-CNN [119], where there is a object candidate proposal and a further regression to
improve the proposals and classify them. In this case, the role of backbone network
is based on the local-global feature concatenation of PointNet.

In order to perform 3D object detection, for the sake of completeness, in this
chapter we have selected one CNN architecture from each of these approaches. In
particular, we use Frustrum PointNet [115], PointPillars [82], and PointRCNN [131].

4.2.2 Domain shift in pointclouds

The domain shift problem has been explored for a long time in the context of vision-
based tasks [37, 159, 166]. As we have mentioned in previous chapters, since it is a
task-agnostic approach, image-to-image translation based on Generative Adversar-
ial Networks (GANs) [53] emerged as a very promising paradigm to alleviate visual
domain shift. In this context, most GANs use a generator based on an autoencoder
trained with some loss which aims at preserving the relevant content of the input
images after its transformation [18, 65, 89, 133, 144, 148, 186]. Since in previous
chapters we saw that GANs were able to reduce the domain shift between synthetic
and real-world images in our context of application, we have decide to follow the
same approach to alleviate the domain shift between LiDAR-based pointclouds.

When trying to translate LiDAR-based pointclouds with GANs, we find similar
memory drawbacks as when addressing 3D object detection. Obviously, the choice
of the pointcloud representation may have an important impact on the pointcloud-
to-pointcloud translation. The approaches based on voxel grids [19, 34, 169] require
a proper adjustment of the grid resolution. Approaches based on the octree idea, e.g.
Octnet [122], include multiples scales to increase the grid resolution using less mem-
ory but at the expense of increasing computation time. There are approaches based
on 2D projections (e.g. bird-eye view, etc.) [73,136] to reduce memory requirements
but losing information. Yet other approaches work directly on 3D points [2, 43, 143]
having the problem of scalability due to their computational complexity, thus, they
are restricted to generate (translate) a fixed amount of 3D points. In fact, to avoid

69

Chapter 4. Lidar-based 3D object detection

this restriction further proposals translate one 3D point at a time [178].
Indeed, the translation results of these proposals are very promising, however,

they are designed to perform on isolated 3D shapes and relatively small indoor
3D spaces. In contrast, in the context of AVs, we cannot assume LiDAR-based
pointclouds containing isolated shapes (e.g. in addition to more or less density on
traffic participants, the road surface is always present) and we must work on relative
large outdoor scenarios. Wu et al. [168] start working on domain adaptation for
outdoor scenes captured by LiDAR, but for task-specific (pointcloud segmentation)
CNNs. In [97], a task-agnostic CNN-based pointcloud-to-pointcloud synth-to-real
translation is proposed (using CARLA and KITTI), although not relying on the GAN
idea. The underlying idea is that the domain shift is due to the inability to simulate
the right behaviour of LiDAR rays in all circumstances. Thus, this is an specific
issue arising in simulation (the effect can be even different for different simulators),
but not necessarily in real-to-real domain shift. Even if we are specially interested
in synth-to-real domain shift, we bet for GANs because, in practice, there is also
a real-to-real domain shift. Moreover, after performing a number of exploratory
experiments, we decided to rely on the voxel grid representation to perform GAN-
based pointcloud-to-pointcloud translation.

4.3 Cross-domain LiDAR-based 3D object detection

As we have shown in previous chapters, synthetic images and unlabeled real-world
ones can be used to train CNN-based visual models that must perform in the real-
world. Although synthetic and real-world domains suffer from domain shift, it can
be reduced by using different approaches as GAN-based image-to-image translation
or semi-supervised learning. In this section, we want to assess if this domain gap
also exists between pointclouds from different domains, being of especial interest
the synth-to-real case. We focus on 3D object detection. To perform a proper
analysis we have selected different publicly available datasets and detectors, which
will be explained along next subsections. In fact, we will see that, indeed, the
domain shift does exist.

4.3.1 Data

We use three real-world datasets acquired on-board and one synthetic dataset. In all
cases, we have used three classes to evaluate 3D object detection performance: car,
pedestrian and cyclist. The sensor specifications and datasets statistics are detailed
in the following. We remark that, since one of the CNN models under evaluation
involves a stage of 2D object detection on images paired with LiDAR samples, these

70

4.3. Cross-domain LiDAR-based 3D object detection

Table 4.1 – Dataset annotation statistics.

Dataset Car Pedestrian Cyclist images

KITTI 28,742 4,487 1,627 7,481

Waymo 156,408 66,825 2,257 19,395

Lyft 153,292 5,833 5,063 18,553

SYNTHIA-3D 84,328 64,826 103,501 37,369

Figure 4.2 – Corresponding image (left) and LiDAR pointcloud (right) samples. From
top to bottom: KITTI, Lyft, Waymo and SYNTHIA-3D.

71

Chapter 4. Lidar-based 3D object detection

dataset statistics refer to LiDAR samples having corresponding images.
KITTI. The KITTI dataset contains samples around Germany using different

sensors. In this chapter, we use only the data from the LiDAR sensor on top of
the vehicle. The sensor used is a velodyne of 64 beams with 26.9◦ vertical field of
view (FOV) ([−24.9◦,+2.0◦]) and 360◦ horizontal FOV with 0.08◦ angular resolution
(azimuth). The maximum data acquisition distance is 120 meters, although only
the labels closer than 80 meters are considered. This dataset has 7,481 samples,
split in 3,711 samples for training and 3,759 for validation.

Lyft. The Lyft dataset contains samples from Palo Alto, CA, United States. It
consists of paired image and LiDAR samples, but in this chapter we use onlye the
LiDAR ones. The data were acquired by three LiDAR sensors, one placed on top of
the vehicle, and the other two on each bumper side, being the resulting pointclouds
put in correspondence. The LiDAR sensor on the top scans the scenario with 64
beams, the others with 40. This is done for a 360◦ horizontal FOV with 0.2◦ azimuth
resolution. The resulting dataset consists of 18,553 samples, 16,553 for training and
2,553 for validation.

Waymo. The waymo dataset consists of scenes from suburban and urban areas
around different cities of the United States. The vehicle is equipped with five LiDAR
sensors: one on top of the vehicle, three on the frontal bumper and one on the
rear part of the vehicle. The sensor on top has a vertical FOV of 20◦([−17.6◦,+2.4◦])
with a range of 75 meters; the other four LiDAR sensors are using a vertical FOV of
120◦([−90◦,+30◦]) on a 20 meters range. The resulting dataset consists of 19,395
samples, 14,441 for training and 4,954 for validation.

SYNTHIA-3D. The SYNTHIA-3D dataset is sampled from the virtual world intro-
duced in [123], thus, inspired on cities and urban areas. The 3D data are retrieved
from depth images (z-buffer associated to the RGB images), using a sampling al-
gorithm which partially mimics the LiDAR parameters used in the KITTI dataset,
further explained in appendix A. To increase the realism of the simulated LiDAR we
have removed the points from car’s glasses as it is the case on real sensors. We have
generated 33,600 samples for training on this synthetic data.

Overall, all the datasets are recorded on urban and non-urban areas but, as
we can see in Table 4.1, the distribution of classes is different among them. For
instance, cars receive the 93% of the annotations in Lyft, and cyclist just the 1% in
Waymo. Furthermore, due to setting differences in the respective LiDAR suites, as
can be seen in Fig. 4.2, the datasets have different pointcloud distributions.

4.3.2 Methods

In this chapter, we consider a representative CNN architecture from each of the
three different approaches introduced in Sect. 3.2. In particular, among the methods

72

4.3. Cross-domain LiDAR-based 3D object detection

Figure 4.3 – Frustrum PointNet pipeline. The pipeline is divided in three stages. (1)
Frustrum proposal is on charge of generating the 2D BBs, i.e. object candidates. (2)
The 3D instance segmentation, which classifies the points within each candidate
frustrum as object or background. (3) The amodal 3D BBOX estimation of the center
of each object and the eight points defining its 3D BB. Blue boxes refer to trained
model parameters.

requiring 2D images we use Frustrum PointNet [115], among the methods inspired
on the voxel grid representation we use PointPillars [82], and from the methods
directly working with the pointcloud representation we use PointRCNN [131]. We
summarize Frustrum PointNet, PointPillars, and PointRCNN in the following.

Frustrum PointNet. Frustrum PointNet is based on a three-stage framework as
can be seen in Fig. 4.3. The first stage uses a 2D object detector to predict 2D BBs, i.e.
object candidates. However, in this chapter, since we are only interested in 3D BB
prediction in pointclouds, instead of true 2D detections we use the corresponding
ground truth; in this way, we remove errors due to 2D object detection from our
analysis. Therefore, in our analysis, each object frustum is right, and the 3D object
detection focuses on two stages. First, the points within each candidate frustrum
are classified as object or background and, then, from the points classified as object,
the center of each object and the eight points defining its 3D BB are estimated. For
training will all datasets, we have used the same parameters as in [115], i.e. the
Frustrum_v1 parameter setting, and we have trained for the three selected classes
(car/pedestrian/cyclist) using a single model.

PointPillars. As can be seen in Fig. 4.4, this CNN relies on two main stages.
The first, i.e. the pillar feature network, takes the pointcloud aiming at producing
a set of features in the form of a pseudo-image. The second, i.e. the 3D detection
network, aims at detecting the objects from the pseudo-image. For the first stage,

73

Chapter 4. Lidar-based 3D object detection

Figure 4.4 – PointPillars pipeline. It consists of two stages. (1) The Pillar Feature
Net converts the pointcloud into pillars which are processed to obtain features.
These are finally rearranged in the form of a pseudo-image. N is the number of
points in each pillar, P is the number of pillars, D is the input data dimension for
each point in each pillar, and C is the feature length of the learnt pillar. H and
W set the dimensions of the pillar grid. (2) The 3D detection stage processes the
pseudo-image using a multi-resolution network with a SSD head [92] for generating
the detections. Blue boxes refer to trained model parameters.

Figure 4.5 – PointRCNN pipeline. It uses a PointNet network style [26] to extract
features, i.e. per-point features, further processed by a two-stage object detector, i.e.
with a generation of candidates followed by a classification which determines the
class of the candidates and refines the 3D BBs. Blue boxes refer to trained model
parameters.

74

4.3. Cross-domain LiDAR-based 3D object detection

Table 4.2 – Difficulty levels in KITTI benchmark (KB) and our modification (OB) to
accommodate Waymo and Lift datasets. K: KITTI, W: Waymo, L: Lyft.

Difficulty (KB/OB) Height (K/W/L) Occlusion Truncation

(Easy/Easy) > (40/120/50) pixels fully visible 0.15%

(Moderate/Hard) > (25/70/31) pixels half visible 0.30%

(Hard/Hard) > (25/70/31) pixels hard visible 0.50%

a 2D grid perpendicular to the z-axis pointcloud is assumed. For each cell in the
grid, a so-called pillar of N points is created. These N points are randomly chosen
among those with the same (x, y) coordinate than the corresponding cell, zero
padding is applied when there are less than N points available. This information
is transformed into a N×P×D, where P is the number of pillars (i.e. the number
of cells of the grid), and D accounts for information appended to the points of the
pillars (e.g. mean point of the pillar, distance to this mean point, etc.). After a set of
steps based on this representation, we obtain a pseudo-image of features. In the
second stage, this pseudo-image is processed by using a multi-resolution network
with a SSD head [92] which provides the final 3D object detections.

PointRCNN. As summarized in Fig. 4.5, the PointRCNN framework works di-
rectly on the pointcloud. It uses a PointNet network style [26] to extract features,
i.e. per-point features, further processed by a two-stage object detector, i.e. with a
generation of candidates followed by a classification which determines the class of
the candidates and refines the 3D BBs.

4.3.3 Results

We provide results for the three selected 3D object detectors and each dataset.
We use the metrics of the KITTI benchmark to report object detection [46] and
orientation scores [40]. The metrics are reported for the three considered classes
(car, pedestrian and cyclist) and for the two levels of difficulty (easy, hard) based
on the three levels defined in the KITTI benchmark (easy, moderate and hard). In
practice, since the pointclouds are registered with corresponding images, in order
to assign these difficulty levels, it is is considered the projection of the 3D object
BBs (ground truth) in the respective images. In particular, the levels are defined
by the height and truncation of the projected object BBs, and the occlusion level
assigned to the objects (which is a subjective ground truth label). Table 4.2 shows
these values, which are the same for all datasets but the height parameter (which
needs to accommodate the different resolution of the original camera sensors).

75

Chapter 4. Lidar-based 3D object detection

Table 4.3 – mAP scores for all training-testing domain combinations and all 3D
object detectors. E and H refer to easy and hard difficulty levels, resp. FP, PP, and
PRCNN refer to Frustrum PointNet, PointPillars, and PointRCCN, resp. Following
KITTI benchmark, the mean IoU to accept a car detection is 70%, while for pedes-
trians and cyclists it is 50%. Bold highlights the cases where training and testing
datasets are from the same domain.

Car Pedestrian Cyclist
Testing Training Method E H E H E H

KITTI

KITTI
FP 74.09% 63.76% 61.21% 51.57% 83.80% 67.23%
PP 86.47% 73.11% 62.83% 49.79% 79.68% 55.14%

PRCNN 84.34% 74.00% 61.01% 46.19% 84.86% 57.51%

Lyft
FP 44.43% 31.89% 64.02% 51.08% 64.87% 54.33%
PP 47.92% 33.15% 43.72% 35.22% 56.04% 40.97%

PRCNN 30.47% 28.02% 31.43% 25.27% 57.17% 34.75%

Waymo
FP 33.10% 19.17% 46.05% 38.27% 67.05% 57.11%
PP 67.13% 47.99% 37.91% 29.51% 65.04% 46.59%

PRCNN 05.53% 06.38% 56.59% 47.20% 60.05% 43.97%

SYNTHIA-3D
FP 57.59% 37.10% 18.63% 17.30% 78.96% 63.51%
PP 67.13% 47.99% 37.91% 29.51% 65.04% 46.59%

PRCNN 28.21% 23.43% 08.31% 06.64% 62.32% 46.69%

Lyft

KITTI
FP 9.15% 9.37% 36.02% 30.27% 19.32% 14.44%
PP 16.80% 13.11% 21.24% 15.30% 11.67% 8.54%

PRCNN 36.77% 30.61% 19.73% 14.25% 22.44% 15.67%

Lyft
FP 66.83% 59.56% 68.57% 64.83% 51.82% 52.89%
PP 54.85% 45.29% 29.54% 22.06% 31.05% 23.56%

PRCNN 74.90% 65.98% 67.66% 58.30% 54.94% 47.02%

Waymo
FP 34.35% 28.62% 44.97% 44.21% 32.52% 25.75%
PP 45.15% 39.12% 34.83% 25.13% 22.43% 16.69%

PRCNN 63.30% 54.33% 37.12% 31.14% 36.01% 26.17%

SYNTHIA-3D
FP 16.78% 12.93% 12.63% 10.61% 28.48% 19.94%
PP 28.23% 21.60% 17.39% 12.49% 11.56% 7.08%

PRCNN 55.25% 42.14% 6.05% 5.40% 34.23% 23.94%

Waymo

KITTI
FP 0.73% 0.96% 28.96% 22.88% 32.22% 25.74%
PP 4.36% 5.20% 9.79% 5.31% 4.79% 1.33%

PRCNN 7.24% 6.87% 15.97% 12.84% 31.02% 29.20%

Lyft
FP 18.97% 18.55% 48.38% 45.81% 40.67% 42.28%
PP 51.42% 37.40% 20.72% 16.28% 33.53% 19.48%

PRCNN 42.44% 38.12% 21.41% 19.11% 35.61% 31.45%

Waymo
FP 37.28% 35.21% 72.16% 68.79% 48.44% 42.86%
PP 66.44% 56.54% 43.08% 34.06% 26.91% 22.28%

PRCNN 84.95% 77.22% 72.87% 61.38% 40.70% 36.78%

SYNTHIA-3D
FP 1.43% 1.38% 2.20% 1.54% 11.01% 16.97%
PP 21.25% 16.01% 18.11% 9.06% 17.33% 2.78%

PRCNN 45.05% 37.62% 01.02% 01.54% 32.69% 32.95%

76

4.3. Cross-domain LiDAR-based 3D object detection

Table 4.4 – Comparing the mAP scores of Table 4.3. Note that each cell in this table
has a corresponding one in Table 4.3. Therefore, looking at Table 4.3, we compare
the mAP score in such corresponding cell with its counterpart free of domain shift
(i.e., same training and testing domains). A negative sign indicates domain shift,
and the value is the amount (in mAP units).

Car Pedestrian Cyclist
Testing Training Method E H E H E H

KITTI

Lyft
FP -29.66 -31.87 2.81 -0.49 -18.93 -12.90
PP -38.55 -39.96 -19.11 -14.57 -23.64 -14.17

PRCNN -53.87 -45.98 -29.58 -20.92 -27.69 -22.76

Waymo
FP -40.99 -44.59 -15.16 -13.30 -16.75 -10.12
PP -19.34 -25.12 -24.92 -20.28 -14.64 -8.55

PRCNN -78.81 -67.62 -4.42 1.01 -24.81 -13.54

SYNTHIA-3D
FP -16.50 -26.66 -42.58 -34.27 -4.84 -3.72
PP -19.34 -25.12 -24.92 -20.28 -14.64 -8.55

PRCNN -56.13 -50.57 -52.70 -39.55 -22.54 -10.82

Lyft

KITTI
FP -57.68 -50.19 -32.55 -34.56 -32.50 -38.45
PP -38.05 -32.18 -8.30 -6.76 -19.38 -15.02

PRCNN -38.13 -35.37 -47.93 -44.05 -32.50 -31.35

Waymo
FP -32.48 -30.94 -23.60 -20.62 -19.30 -27.14
PP -9.70 -6.17 5.29 3.07 -8.62 -6.87

PRCNN -11.60 -11.65 -30.54 -27.16 -18.93 -20.85

SYNTHIA-3D
FP -50.05 -46.63 -55.94 -54.22 -23.34 -32.95
PP -26.62 -23.69 -12.15 -9.57 -19.49 -16.48

PRCNN -19.65 -23.84 -61.61 -52.90 -20.71 -23.08

Waymo

KITTI
FP -36.55 -34.25 -43.20 -45.91 -16.22 -17.12
PP -62.08 -51.34 -33.29 -28.75 -22.12 -20.95

PRCNN -77.71 -70.35 -56.90 -48.54 -9.68 -7.58

Lyft
FP -18.31 -16.66 -23.78 -22.98 -7.77 -0.58
PP -15.02 -19.14 -22.36 -17.78 6.62 -2.80

PRCNN -42.51 -39.10 -51.46 -42.27 -5.09 -5.33

SYNTHIA-3D
FP -35.85 -33.83 -69.96 -67.25 -37.43 -25.89
PP -45.19 -40.53 -24.97 -25.00 -9.58 -19.50

PRCNN -39.90 -39.60 -71.85 -59.84 -8.01 -3.83

77

Chapter 4. Lidar-based 3D object detection

While for KITTI the three occlusion levels are given, for Waymo and Lift it is only
possible to distinguish from full or partial visibility, therefore, we have simplified
the difficulty levels to two, easy (fully visible) and hard (otherwise).

Table 4.3 presents the results of training and testing with different datasets using
the three 3D object detectors that we have selected. First we focus on the cases
where the training and testing datasets correspond to the same domain, which have
been highlighted in bold. Thus, we start by focusing on the differences between
the 3D object detectors. We can see that for KITTI there is not a dominant detector
which performs the best for all difficulty levels on the three classes. When looking
at Waymo and Lift datasets, which are more challenging than KITTI, we observe
that PointRCNN clearly outperforms PointPillars in all difficulty levels and classes.
PointRCNN also outperforms Frustrum PointNet for cars, but not for pedestrians
and cyclists. However, we remind that for our analysis, we assume perfect 2D
detections (ground truth) to define the frustrum of each object.

Let’s focus now in the case were training and testing datasets come from different
domains. The detailed results can be seen in Table 4.3. However, in order to
determine if there is domain shift, we introduce Table 4.4, where we compare the
cross-domain results with their single-domain counterparts. Almost all values
are negative in these comparative table, indicating a generalized problem of large
domain shifts, both among real-world datasets and in the synth-to-real case.

Since manually annotating 3D BB is not trivial, we have assessed if such domain
shifts could be due to human annotation instead of coming from actual pointcloud
differences. In order to do so, we have devised the following protocol. Let D be the
detector we are using (Frustrum PointNet/PointPillars/PointRCNN), S the source
domain we are considering, and T the target domain. Here we assume different
source and target domains. Then, D has been trained with the training set of S , and
tested in the validation set of T . In fact, these are the results reported in Table 4.3.
Now, we apply D to 100 pointcloud samples randomly selected from the training
set of T (note, not from the validation set), and keep the right detections (true
positives). What we do now is to explore how much we must modify the 3D BBs of
these detections to have a larger mean IoU score computed on the corresponding
3D BBs of the GT. Since we look for differences among datasets due to the manual
annotation process, we apply the same perturbations to all these detections. We
do this by applying an independent per-axis (length/height/width) enlargement to
all the detections, i.e. to all the corresponding 3D BBs. In particular, we consider
enlargements running on [−60, . . . ,0, . . .60] cm, with steps of 5 cm, which are added
symmetrically to each axis (half left and half right, top/down, forward/backward).
Then, the best enlargement for each axis is kept, where best enlargement refers to
the one giving rise to the higher mean IoU score. These enlargements are reported
in Table 4.5. Intuitively, these values can help to adjust the 3D BB margins between

78

4.3. Cross-domain LiDAR-based 3D object detection

Table 4.5 – Estimated 3D BB margin differences (in cm) among datasets due to the
annotation process. L: length, W: width, H: height. As expected, we obtained 0 cm
as result for training and testing sets being from the same domain.

Car Pedestrian Cyclist
Testing Training Method L W H L W H L W H

KITTI

Lyft
FP -25 -20 0 5 -5 5 -15 -10 -5
PP -30 -20 0 10 -20 10 0 -20 0

PRCNN -40 -20 0 10 -10 10 -30 -5 0

Waymo
FP -30 -25 -5 -15 -15 5 -10 -20 5
PP -30 -30 -10 -10 -10 10 0 -20 10

PRCNN -45 -35 0 -15 -20 0 -10 -20 5

SYNTHIA-3D
FP -20 -5 0 20 5 0 15 -15 -5
PP -20 -1 0 20 -10 0 -20 0 -10

PRCNN -25 -35 0 25 5 10 0 -15 0

Waymo

KITTI
FP 40 40 5 5 25 -5 -10 40 -15
PP 40 40 10 10 30 -10 0 20 0

PRCNN 35 40 0 10 35 -5 -20 30 -5

Lyft

FP 40 35 5 10 20 -10 5 15 0
PP 0 30 0 20 20 -10 0 10 0

PRCNN 5 20 5 20 20 5 0 5 5

SYNTHIA-3D
FP 40 35 5 30 30 -10 20 15 -10
PP -10 30 0 20 10 -10 -10 50 0

PRCNN 10 -5 0 25 20 10 0 15 -20

Lyft

KITTI
FP 40 25 5 -5 20 0 15 35 -5
PP 3 2 1 10 20 10 0 20 0

PRCNN 35 25 0 15 20 10 -10 35 0

Waymo
FP 35 0 5 -15 0 0 5 10 5
PP 10 -10 0 0 -10 0 10 10 10

PRCNN 20 -20 0 -15 -15 5 -10 -20 5

SYNTHIA-3D
FP 40 15 0 25 15 5 5 25 0
PP -10 10 0 20 -10 0 10 20 0

PRCNN 5 -15 0 35 25 10 10 15 5

79

Chapter 4. Lidar-based 3D object detection

Table 4.6 – mAP scores for all training-testing domain combinations and all 3D
object detectors, applying the margin corrections of Table 4.5 for the cross-domain
cases. E and H refer to easy and hard difficulty levels, resp. FP, PP, and PRCNN
refer to Frustrum PointNet, PointPillars, and PointRCCN, resp. Following KITTI
benchmark, the mean IoU to accept a car detection is 70%, while for pedestrians
and cyclists it is 50%.

Car Pedestrian Cyclist
Testing Training Method E H E H E H

KITTI

KITTI
FP 74.09% 63.76% 61.21% 51.57% 83.80% 67.23%
PP 86.47% 73.11% 62.83% 49.79% 79.68% 55.14%

PRCNN 84.34% 74.00% 61.01% 46.19% 84.86% 57.51%

Lyft
FP 49.77% 35.69% 52.59% 44.69% 74.10% 57.83%
PP 72.19% 55.59% 43.72% 35.22% 67.01% 48.15%

PRCNN 50.05% 45.74% 31.46% 25.14% 62.50% 38.37%

Waymo
FP 58.97% 41.46% 31.07% 30.05% 79.60% 70.72%
PP 76.32% 58.47% 53.31% 45.55% 66.18% 46.83%

PRCNN 71.53% 63.64% 65.38% 53.34% 77.56% 55.86%

SYNTHIA-3D
FP 53.90% 34.59% 52.58% 44.45% 68.08% 50.70%
PP 75.34% 54.79% 44.10% 33.44% 69.42% 48.34%

PRCNN 67.54% 51.55% 44.72% 32.60% 73.04% 53.57%

Lyft

KITTI

FP 35.74% 30.82% 39.35% 31.56% 30.64% 23.43%
PP 41.79% 33.67% 22.02% 15.84% 16.80% 12.16%

PRCNN 63.19% 52.53% 22.68% 15.83% 30.53% 22.17%

Lyft
FP 66.83% 59.56% 68.57% 64.83% 51.82% 52.89%
PP 54.85% 45.29% 29.54% 22.06% 31.05% 23.56%

PRCNN 74.90% 65.98% 67.66% 58.30% 54.94% 47.02%

Waymo
FP 14.86% 10.10% 45.81% 38.36% 16.76% 10.92%
PP 49.36% 42.78% 35.18% 25.34% 22.39% 16.98%

PRCNN 70.01% 58.93% 38.13% 32.15% 33.37% 23.66%

SYNTHIA-3D
FP 19.59% 13.38% 29.82% 17.75% 21.84% 13.08%
PP 25.73% 20.08% 19.14% 13.60% 15.54% 9.47%

PRCNN 59.46% 48.05% 43.34% 34.77% 36.36% 25.18%

Waymo

KITTI
FP 27.37% 20.50% 37.65% 32.86% 38.91% 32.66%
PP 42.28% 30.67% 35.49% 24.55% 6.04% 1.84%

PRCNN 55.96% 48.15% 44.91% 35.27% 31.02% 34.57%

Lyft
FP 48.21% 43.48% 56.62% 54.25% 38.01% 41.52%
PP 49.29% 38.01% 26.62% 20.59% 33.53% 18.08%

PRCNN 54.24% 46.71% 29.93% 25.38% 35.61% 32.10%

Waymo
FP 37.28% 35.21% 72.16% 68.79% 48.44% 42.86%
PP 66.44% 56.54% 43.08% 34.06% 26.91% 22.28%

PRCNN 84.95% 77.22% 72.87% 61.38% 40.70% 36.78%

SYNTHIA-3D
FP 07.06% 04.99% 16.40% 08.41% 03.81% 11.40%
PP 28.35% 20.89% 23.02% 16.69% 17.33% 3.93%

PRCNN 47.78% 38.50% 27.39% 21.21% 32.69% 32.84%

80

4.3. Cross-domain LiDAR-based 3D object detection

Table 4.7 – Comparing the mAP scores of Table 4.6. Note that each cell in this table
has a corresponding one in Table 4.6. Therefore, looking at Table 4.6, we compare
the mAP score in such corresponding cell with its counterpart free of domain shift
(i.e., same training and testing domains). A negative sign indicates domain shift,
and the value is the amount (in mAP units).

Car Pedestrian Cyclist
Testing Training Method E H E H E H

KITTI

Lyft
FP -24.32 -28.07 -8.62 -6.88 -9.70 -9.40
PP -14.28 -17.52 -19.11 -14.57 -12.67 -6.99

PRCNN -34.29 -28.26 -29.55 -21.05 -22.36 -19.14

Waymo
FP -15.12 -22.30 -30.14 -21.52 -4.20 3.49
PP -10.15 -14.64 -9.52 -4.24 -13.50 -8.31

PRCNN -12.81 -10.36 4.37 7.15 -7.30 -1.65

SYNTHIA-3D
FP -20.19 -29.17 -8.63 -7.12 -15.72 -16.53
PP -11.13 -18.32 -18.73 -16.35 -10.26 -6.80

PRCNN -16.80 -22.45 -16.29 -13.59 -11.82 -3.94

Lyft

KITTI

FP -31.09 -28.74 -29.22 -33.27 -21.18 -29.46
PP -13.06 -11.62 -7.52 -6.22 -14.25 -11.40

PRCNN -11.71 -13.45 -44.98 -42.47 -24.41 -24.85

Waymo
FP -51.97 -49.46 -22.76 -26.47 -35.06 -41.97
PP -5.49 -2.51 5.64 3.28 -8.66 -6.58

PRCNN -4.89 -7.05 -29.53 -26.15 -21.57 -23.36

SYNTHIA-3D
FP -47.24 -46.18 -38.75 -47.08 -29.98 -39.81
PP -29.12 -25.21 -10.40 -8.46 -15.51 -14.09

PRCNN -15.44 -17.93 -24.32 -23.53 -18.58 -21.84

Waymo

KITTI
FP -9.91 -14.71 -34.51 -35.93 -9.53 -10.20
PP -24.16 -25.87 -7.59 -9.51 -20.87 -20.44

PRCNN -28.99 -29.07 -27.96 -26.11 -9.68 -2.21

Lyft
FP 10.93 8.27 -15.54 -14.54 -10.43 -1.34
PP -17.15 -18.53 -16.46 -13.47 6.62 -4.20

PRCNN -30.71 -30.51 -42.94 -36.00 -5.09 -4.68

SYNTHIA-3D
FP -30.22 -30.22 -55.76 -60.38 -44.63 -31.46
PP -38.09 -35.65 -20.06 -17.37 -9.58 -18.35

PRCNN -37.17 -38.72 -45.48 -40.17 -8.01 -3.94

81

Chapter 4. Lidar-based 3D object detection

Table 4.8 – Comparing the mAP scores of Table 4.6 with Table 4.3 (in mAP units). A
negative sign indicates that margin corrections according to Table 4.5 did not help.

Car Pedestrian Cyclist
Testing Training Method E H E H E H

KITTI

Lyft
FP 5.34 3.80 -11.43 -6.39 9.23 3.50
PP 24.27 22.44 0.00 0.00 10.97 7.18

PRCNN 19.58 17.72 0.03 -0.13 5.33 3.62

Waymo
FP 25.87 22.29 -14.98 -8.22 12.55 13.61
PP 9.19 10.48 15.40 16.04 1.14 0.24

PRCNN 66.00 57.26 8.79 6.14 17.51 11.89

SYNTHIA-3D
FP -3.69 -2.51 33.95 27.15 -10.88 -12.81
PP 8.21 6.80 6.19 3.93 4.38 1.75

PRCNN 39.33 28.12 36.41 25.96 10.72 6.88

Lyft

KITTI

FP 26.59 21.45 3.33 1.29 11.32 8.99
PP 24.99 20.56 0.78 0.54 5.13 3.62

PRCNN 26.42 21.92 2.95 1.58 8.09 6.50

Waymo
FP -19.49 -18.52 0.84 -5.85 -15.76 -14.83
PP 4.21 3.66 0.35 0.21 -0.04 0.29

PRCNN 6.71 4.60 1.01 1.01 -2.64 -2.51

SYNTHIA-3D
FP 2.81 0.45 17.19 7.14 -6.64 -6.86
PP -2.50 -1.52 1.75 1.11 3.98 2.39

PRCNN 4.21 5.91 37.29 29.37 2.13 1.24

Waymo

KITTI
FP 26.64 19.54 8.69 9.98 6.69 6.92
PP 37.92 25.47 25.70 19.24 1.25 0.51

PRCNN 48.72 41.28 28.94 22.43 0.00 5.37

Lyft
FP 29.24 24.93 8.24 8.44 -2.66 -0.76
PP -2.13 0.61 5.90 4.31 0.00 -1.40

PRCNN 11.80 8.59 8.52 6.27 0.00 0.65

SYNTHIA-3D
FP 5.63 3.61 14.20 6.87 -7.20 -5.57
PP 7.10 4.88 4.91 7.63 0.00 1.15

PRCNN 2.73 0.88 26.37 19.67 0.00 -0.11

82

4.4. GAN-based pointcloud-to-pointcloud translation

source and target datasets. This kind of differences may be due to the instructions
followed by the human annotators. As a sanity check, we also considered the case
S =T , and the found margins are zero as we should expect.

Now, we present new 3D object detection results in Table 4.6. The difference
between these results and those in Table 4.3 is that, instead of directly evaluating
the 3D BBs provided by each detector, we applied the corresponding margins of
Table 4.5 to these 3D BBs. Then, these corrected BBs are submitted for evaluation
against the 3D BBs of the GT. Again, to simplify the assessment of domain shift, we
present Table 4.7 as summary for the results in Table 4.6.

Looking at Table 4.4 and Table 4.7 we can confirm that there is domain shift
among the considered datasets, at least to affect 3D object detection. However,
indeed, compensating for the different annotation criteria alleviate the accuracy
drops significantly, which can be appreciated in a more straightforward way in Table
4.8. Therefore, we can take Table 4.6 as the final 3D object detection results, and
Table 4.7 as final results regarding domain shift assessment. Among the 3D object
detectors, Frustrum PointNet is suffering the most from domain shift. Comparing
PointPillars and PointRCNN, we can see that depending on the source-target do-
main pairs and the particular class, they outperform each other, without a clear best.
Overall, what matters for us is that these results indicate that domain shift must be
addressed for LiDAR-based pointclouds. From these results, we also believe that
the synth-to-real domain shift is not worse than the real-to-real cases.

4.4 GAN-based pointcloud-to-pointcloud translation

Encouraged by the results obtained in previous chapters, in order to reduce point-
cloud domain shift, we have followed an approach based on GANs. Designing and
training GANs is not trivial even for 2D data such as images. Therefore, it may
be even more difficult for 3D pointclouds. Accordingly, in this chapter we have
started by the basics. In particular, we want to assess if via GANs we can learn to
perform certain basic pointcloud transformations, namely, rigid motion, shape
change, removal and addition of noise. In order to properly assess the capabilities
of GANs to learn such transformations, we use synthetic pointclouds since we can
easily force all of them and we can generate the pointcloud as we wish.

4.4.1 Synthetic data

The synthetic dataset is generated by placing objects of predefined shape on a
ground plane (Fig. 4.6), randomly varying certain object parameters such as size,
point density (sampling), location, and surrounding noisy points. This kind of

83

Chapter 4. Lidar-based 3D object detection

Figure 4.6 – Synthetic pointcloud samples over the considered ground plane. The
height of the points is color-coded for the sake of a better visualization.

variations may produce domain shift, and arise because differences in the scanning
strategies and physical placement of on-board LiDAR suites. The ground plane
covers 70×70 meters as the usual forward-facing view of LiDAR-based pointclouds
captured on-board (view of 70 meters forward and 35 meters at each side of the car).
Objects can be framed by 3D BBs ranging from 6×6×1 (width/length/height) to
40×40×3 meters.

Shape changes. We consider four types of object according to their shape,
namely, cuboids, spheres, cylinders and cones. Each object can be of different
sizes and sampled according to a desired point density. Taking this into account,
we have generated two pointcloud datasets, one based on cuboids and the other
in the curved shapes (spheres, cylinders, cones). No matter the dataset, objects
are generated according to a random size, point density, and location. In all cases
constrained to the above mentioned ground plane limits and range of object sizes.
Each dataset contains 10,000 samples. We consider that there is a domain shift
between these datasets due to the different shapes that appear in each one.

84

4.4. GAN-based pointcloud-to-pointcloud translation

Rigid motion. Each object can be placed in any location over the finite ground
plane area, by defining the coordinates of its center of masses. According to this
parameter, we generate two pointcloud datasets. One with objects on the ground
plane, and another with objects flying at a fixed height. We consider that there is a
domain shift between these datasets due to a rigid motion. Each dataset contains
10,000 samples, where objects have been randomly chosen among the predefined
ones.

Noisy points. LiDAR pointclouds can have noisy points, for instance, when the
LiDAR beams intersect difficult materials such as glasses. We simulate this noise by
adding points around the generated objects. The amount of added points ranges
from the 5% to the 10%, following a uniform probability. These points are also
uniformly distributed around the objects. Again, we generate two different datasets,
one with noise the other without noise. Each one containing 10,000 samples. Thus,
in this case the domain shift comes from the presence of noise.

4.4.2 Proposed GAN

We assume a source domain A and a target domain B . We are interested in finding
a function f able to transform samples from A to B . To find this function we
make use of GANs [53], where f will play the role of the GAN’s generator. As we
have mentioned before, for training such a GAN, it is important to define a proper
representation of the pointcloud.

In order to be able to work with pointclouds composed by any number of points,
we use the voxel grid representation. Each voxel corresponds to 0.30×0.30×0.33
meters of the pointcloud space, and the value of the voxel is -1 if there are no
points falling in its corresponding space, and 1 otherwise. Then, for the synthetic
pointcloud samples that we have generated, this implies that we have a grid of
200×200×30 voxels. As is common practice, we process each plane individually,
i.e. using 2D convolutions, at the input of the GAN’s generator and discriminator.

The GAN’s generator is composed by one common encoder (E), one decoder
(XD) for each domain D , and a translator (T) to transform the bottleneck features
from the source domain to the target domain, as seen in Fig. 4.7. The encoder has
three convolutional blocks, where each block is composed of 2D convolutions, batch
normalization and leaky ReLU. The last block does not use batch normalization.
The decoder is built as the encoder but changing convolutions for deconvolutions.
To improve details on generated samples there are skip connections on the two first
convolution layers. The translator network works from the bottleneck and each skip
connection layer. Each translator consists of three ResNet blocks (Fig. 4.8).

Once we have defined the elements of our framework, we can define the losses
used for training the GAN. The training procedure uses the adversarial losse defined

85

Chapter 4. Lidar-based 3D object detection

Figure 4.7 – GAN for pointcloud-to-pointcloud translation. Blue arrows show the
common domain forward path, red arrows the target domain forward path, green
arrows the source domain forward path, and yellow arrows the translation path
from source domain samples.

Figure 4.8 – Architecture based on ResNet blocks.

86

4.4. GAN-based pointcloud-to-pointcloud translation

in [53]:

Lad v (G A→B ,DB ,I A) =Ei ∼I A [log (DB (G A→B (i)))] , (4.1)

where G A→B (i) = XB (T (E (A))) for a generation from domain A to domain B . Among
that loss, we have added regularization losses working on any domain D as:

Lr eg (E , XD ,I D) =Ei ∼I D [‖XD (E(i))− i ‖1] , (4.2)

note that there is no regularization on the translator network T , which is only
trained using the previous adversarial loss. The regularizer term only works on the
autoencoder (encoder+decoder) part using the same decoder domain. On the other
hand, we have the losses for training the discriminator network defined as:

Ldi sc (G A→B ,DB ,I A ,I B) =Ei B∼I B [log (DB (i B))]

+Ei A∼I A [l og (1−DB (G A→B (i A)))] .
(4.3)

Using the previous defined losses, we can define our total loss as:

L (GS →B ,E , X A , XB ,DB ,I A ,I B) =Lad v (G A→B ,DB ,I A)

+Ldi sc (GS →B ,DB ,I A ,I B)

+Lr ec (E , X A ,I A)+Lr ec (E , XB ,I B) ,

(4.4)

where we want to transform samples from domain A to domain B .

4.4.3 Results

In order to evaluate the performance of this pointcloud-to-pointcloud translation
GAN, we consider four situations: (1) shape change, from curved-shape objects
(spheres, cylinders, cones) to cuboid objects; (2) rigid motion, from objects on the
ground plane to flying objects; (3)-(4) noisy points, from situations without noise to
situations with noise and vice versa. As we have described before, we have synthetic
datasets with 10,000 pointclouds in each domain. For training the GANs, we always
take the 50% of the source-domain dataset for training and the 50% for testing.

For each experiment we provide quantitative and qualitative results. In order
to evaluate GAN-based image-to-image translation, it is common practice to use
realism metrics (e.g. PIF, Inception Score, etc.) that could be adapted to work on
pointclouds. However, it has been shown [83] that high values on these metrics
do not imply that the transformed images are better than the original images to
train for specific visual tasks. For these experiments, since we know how the source

87

Chapter 4. Lidar-based 3D object detection

Figure 4.9 – Qualitative results. Column-wise: source pointcloud (left), translated
pointcloud (center), and target-domain pointcloud (right). The later is added just
for visual comparison with the translated pointcloud. From top row to bottom:
adding noisy points, removing noise points, rigid motion towards a higher plane
(note that height is color-coded), shape change (from a cone to a cuboid).

Table 4.9 – Results

Transformation N I NC Dwidth, NC Dlength, NC Dheight K P

Shapes 86.07% 2.07%, 5.89%, 21.08% 65.43%

Rigid Motion 81.76% 4.32%, 2.78%, 9.25% 78.87%

Adding noisy points 99.84% 0.46%, 0.19%, 2.58% 81.94%

Removing noisy points 76.70% 1.79%, 1.54%, 12.33% 58.15%

88

4.4. GAN-based pointcloud-to-pointcloud translation

and target domain pointclouds were generated, for each source-domain pointcloud
under validation we can compute on-the-fly a corresponding target-domain surface
as ground truth, i.e. to act as container of the translated pointcloud if the GAN
performs perfectly. Therefore, we can measure the accuracy of the translation by
using a normalized intersection, N I , defined as follows:

N I = 100× Intersection

2Prediction− Intersection
, (4.5)

where Prediction is the amount of points of the translated pointcloud, and Inter-
section the amount of points of the translated pointcloud falling inside the volume
delimited by the corresponding ground truth surface. Note that N I = 100 for Pre-
diction = Intersection, i.e. for an ideal translation; while N I = 0 when there is
no intersection. An additional metric we use to evaluate how close is the trans-
lated pointcloud to the target-domain ground truth, is the difference between the
corresponding centroids. In particular, we provide a per-axis normalize centroid
difference, NC Dd ,d ∈ {width, length, height}, where the per-axis normalization is
with respect to the size of the corresponding side of the source-domain pointcloud
3D BB. On the other hand, it is not only important to measure where the translated
points are located in the target-domain space, but also measuring if there is a loss
of points, which it is not desired since in these experiments we use the same point
density for source and target domains; thus, we defined a kept points (K P) metric
as:

K P = 100× min(Prediction,Source)

max(Prediction,Source)
, (4.6)

where Source is the number of points in the source pointcloud.
During training, we use the same hyper-parameters for all experiments. We train

the GANs for 100,000 iterations with batch size of 1, and using the Adam optimizer
with a 0.0002 learning rate. We use the GAN model obtained at the last iteration.
In Fig. 4.9 we can see examples of original and translated pointclouds, we can
see how the trained GANs are able to add the desired effect to the source-domain
pointclouds so that they resemble more target-domain counterparts, i.e. adding
and removing noisy points, performing a rigid motion, and changing shape (e.g.
from a cone to a cuboid). In Table 4.9 we present the quantitative results. Overall,
N I values are high, and NC Dd values are low. This means that globally the GAN is
able to perform the desire translation. Looking at the K P metric, we see that point
density is kept well for rigid motion and adding noisy points. However, it is lower
than we would like when removing noisy points and changing shapes. In the former
case, it means that object points are also removed, not only noisy ones. In the latter

89

Chapter 4. Lidar-based 3D object detection

case, it is a bit more expected since we are changing shapes.

4.5 Conclusions

With the recent interest in LiDAR-based pointclouds to train deep perception mod-
els for AVs, we were motivated to perform such training by leveraging from synthetic
pointclouds with automatically generated ground truth. Since LiDAR is a kind of
active sensor which factors out appearance and provides geometry in the form of
pointclouds, in contrast to previous chapters, we did not expect a serious issue
regarding potential domain shifts. However, our comprehensive experiments on
on-board 3D object detection, show that there is domain shift between publicly
available LiDAR-based pointclouds, so in real-to-real settings, and also in the synth-
to-real setting. In order to reach these conclusions we have relied on three real-wold
datasets and a synthetic one. We have generated our own dataset of synthetic
pointclouds, which we plan to put publicly available too. We have also used three
essentially different 3D object detectors. Intuitively, the shift among the different
domains, comes from different LIDAR acquisition settings in terms of scanning
resolution and placement of the sensor suite on-board the ego-vehicle. Even more,
our experiments show that if we not only have 3D BBs from the source domain but
also from the target domain, then domain differences on human annotation must
be compensated to avoid artificial domain shifts not really due to the pointclouds
themselves.

Since in previous chapters GANs were helping to perform domain adaptation
for vision-based perception tasks, we have decided to use GANs for pointcloud-to-
pointcloud translation between a source and a target domain. The first decision
was to chose a proper pointcloud representation. We have used a voxel grid repre-
sentation, which allows us to process pointclouds of an arbitrary number of points,
in contrast to previous related works. Then, we have designed and trained a GAN
working with this representation as input. In order to evaluate such a GAN, we have
designed a set of experiments based on synthetic pointclouds. They have shown
that the GAN is able to translate between two domains which were forced to have
shifts in terms of shape, rigid motion, and presence/absence of noisy points. Overall,
we have shown that domain adaptation is also needed for LiDAR-based pointclouds.
We have shown that GAN-based pointcloud-to-pointcloud translation is a promis-
ing way to reduce domain shift. Next steps will focus on extensive experiments with
real-world LiDAR data. We have to remark that, according to our experience, it is
important to design and understand the pointcloud-to-pointcloud GANs using fun-
damental examples as we have done in this chapter, since developing such GANS
directly on real-world uncontrolled LiDAR data is extremely expensive in compu-

90

4.5. Conclusions

tational terms. In fact, although for the sake of simplicity we have not mentioned
a large part of the work done related to this topic, we must say that until we did
not follow such approach we were not able to decide which is the best pointcloud
representation to work with GANs.

91

5 Conclusions and Future work

Autonomous vehicles (AVs) are considered to be one of the top technologies that
will change our life for good. One can see already some use cases of AVs safely
driving in certain areas under the supervision of a human expert. AVs make use of
a on-board suite of sensors to understand the scene around them. These sensors
can capture appearance (cameras), distances (LiDAR), speed (radar), ego-vehicle
motion (IMU), etc. The vast amount of data provided by these sensors are used
by powerful artificial intelligence (AI) to learn how to drive. The need for these
data keeps increasing with new AIs based on deep convolutional neural networks
(CNNs), which are highly data-hungry. The cost of obtaining the proper data to
develop such CNNs does not reside only on their acquisition from the raw sensors,
but there is also a cumbersome human labor on providing supervision (ground
truth) by annotating object locations, semantic categories, pedestrian/cyclist/driver
intentions, etc. Therefore, approaches to reduce the data annotation burden are
essential for scaling the development of deep perception models for AVs. In the
last decade, we have seen how leveraging from synthetic data with automatic an-
notations can reduce the amount of required human annotated data provided the
synth-to-real domain shift is well addressed. In fact, domain shift also appears in
real-to-real domain cases. Overall, this relevant context motivated the research
presented in this thesis.

The first topic we have addressed is motivated by the observation that AVs
need to be able to adapt to a constantly changing world, or new environments.
In particular, when addressing traffic sign recognition (TSR), a kind of multi-class
classification problem, it may happen that the number of sign classes to be recog-
nized must be suddenly increased without having annotated samples to perform
the corresponding TSR CNN re-training. We address this problem in Chapter 2.
The idea is to leverage synthetic samples of the new traffic sign classes, however,
this induces a domain shift problem. Since generative adversarial networks (GANs)
can perform image-to-image translation, we decided to rely on such technology
to reduce the domain shift. The advantage is that such a GAN is task-agnostic,so
not depending on the specific CNN used to perform the TSR itself. However, the

93

Chapter 5. Conclusions and Future work

challenge comes from the fact that TSR is sensitive to image details, but such a
GAN must be trained on known classes while latter it must perform a synth-to-real
translation on samples of unknown classes. The main tasks we performed in this
research are the following:

1. The generation of a synthetic traffic sign dataset with compatibility with
the Tsinghua dataset, a main reference to address traffic sign detection and
recognition. We call this dataset SYNTHIA-TS and we plan to put it publicly
available.

2. The design of an exhaustive set of experiments covering different ways of bal-
ancing known and unknown traffic sign classes, varying the relative amounts
and considering both random balances and semantic-based ones (using a
hierarchy of traffic signs classes that we defined).

3. The training and validation of different CNN architectures for TSR with known
and unknown classes by using synthesized samples for unknown classes, both
as they come from a virtual environment and as translated by a CycleGAN
trained on samples from the known classes.

The obtained results show that some TSR CNNs are more robust than others
to synth-to-real domain shift after applying the GAN, in particular, ResNet archi-
tecture outperforms VGG in this setting. A ResNet101-based TSR classifier and
image translation based on CycleGAN performed extremely well for a ∼ 1/4 ratio of
unknown/known classes; even for more challenging ratios such as ∼ 4/1, the results
are very positive.

Motivated by these results, in Chapter 3 we addressed a more challenging task,
namely, on-board vision-based 2D object detection. We explore if by leveraging
from synthetic data, we can significantly reduce the human annotation effort of the
2D bounding boxes (BBs) required to train 2D object detectors. We consider the
detection of vehicles and pedestrians. Thus, the idea is to automatically provide
2D BBs for such classes given an unannotated set of images. We propose a semi-
supervised learning (SSL) pipeline based on the co-training idea. In short, co-
training is an iterative approach where new data are progressively self-annotated by
a coordinated action of two different models (here two deep 2D object detectors),
which are eventually improved by retraining with the new self-annotations, which in
turn should allow to self-annotate more data (false negatives in current iteration) in
the next iteration. In our pipeline, the initial models, i.e. those in the first iteration,
are trained on synthetic data. Therefore, since we aim at self-annotating a real-
world set of images, there is an inherent domain shift problem. Accordingly, we have
also used CycleGAN to reduce this shift and so starting with more accurate initial

94

models. In fact, this kind of synthesized data are used in all iterations as regularizing
mechanism during the training of the deep detectors; i.e., at the mini-batch level,
synthesized (original or translated by the GAN) and real-world images are combined.
Overall, the designed pipeline has the goal of self-annotating a set of real-world
images, which can be latter used to train any 2D object detector. Therefore, the
pipeline is agnostic to the CNN architecture used for 2D object self-annotation
during co-training; in other words, such architecture is taken as a black box. The
main tasks we performed in this research are the following:

1. The generation of a synthetic dataset of on-board images with 2D BBs for
vehicles and pedestrians, which we plan to put publicly available. We use the
publicly available KITTI and Waymo datasets as real-world ones.

2. The design of an exhaustive set of experiments covering different settings
regarding the annotated and unannotated data as input to the SSL pipeline.
We cover the case where we start with a small amount of annotated real-
world images and many unannotated ones (no domain shift), the case where
no real-world images are annotated but we have the mentioned synthetic
dataset, and the analogous case but where the original synthetic data are
previously translated by a CycleGAN to approach the appearance of the real-
world (target) domain images. The experimental setting also assesses the
relevance of false positives and BB adjustment when training a deep 2D object
detector with the obtained self-annotations.

3. The design and implementation of a co-training pipeline for deep 2D object
detection, as well as a self-training pipeline acting as SSL baseline. Moreover,
we trained the needed CycleGANs to alleviate domain shift.

The obtained results confirm that our proposed co-training pipeline allows to
reach almost upper-bound results (i.e. when the training data are fully human-
annotated) provided we use the synthetic data translated by a CycleGAN. In other
words, almost upper-bound results are obtained without human annotation. Inter-
estingly, co-training and GAN-based translation provide complementary contribu-
tions on the obtained accuracy. According to our experiments, the remaining issue
to fully reach the upper-bound performance is to obtain a better 2D BB adjustment,
which may be due to difficult cases such as objects with heavy occlusion. This
seems to be more important than the small amount of false positives output by our
co-training pipeline.

After addressing TSR, a multi-class image classification problem, and vision-
based 2D object detection, in both cases focusing on methods to leverage synthetic
data for training the respective deep models, a natural step forward is to address

95

Chapter 5. Conclusions and Future work

LiDAR-based 3D object detection, in this case leveraging synthetic pointclouds for
training. We elaborate this work in Chapter 4. The main tasks we performed in this
research are the following:

1. The generation of a synthetic dataset consisting of on-board pointclouds
with 3D BBs for vehicles, pedestrians, and cyclists, which we plan to release
publicly. We use the publicly available KITTI, Waymo, and Lift datasets as
real-world ones.

2. A comprehensive set of experiments with cross-domain training and testing
runs, considering three different 3D object detectors.

3. The design and evaluation of a pointcloud-to-pointcloud translation GAN,
for which we use a voxel grid representation of pointclouds as input.

In contrast to previous chapters, we did not expect a serious issue regarding
potential domain shifts. However, the mentioned set of experiments show that there
is domain shift between publicly available LiDAR-based pointclouds, so in real-
to-real settings, and also in the synth-to-real setting. Intuitively, the shift among
the different domains comes from different LiDAR acquisition settings in terms of
scanning resolution and placement of the sensor suite on-board the ego-vehicle.
Even more, our experiments show that, if we not only have 3D BBs from the source
domain, but also from the target domain, then domain differences on human
annotation must be compensated to avoid artificial domain shifts not really due to
the pointclouds themselves. Accordingly, since in previous chapters GANs helped
to perform domain adaptation, we decided to design a new GAN for pointcloud-
to-pointcloud translation between a source and a target domain. We determined
that, in order to do so, using a voxel grid representation as input to the GAN, allows
us to process pointclouds of an arbitrary number of points, in contrast to what we
found in the state of the art. Extensive experiments with synthesized pointclouds
have shown that our GAN is able to translate between two pointcloud domains
which were forced to have shifts in terms of contained shapes, rigid motion, and
presence/absence of noisy points.

Overall, in this thesis, we have shown how synthetic data can help to alleviate
the human annotation of on-board raw sensor data. As a result of this research,
several ideas for improvement arise which we think are worth to pursue as future
work. We think that our SSL proposal, based on GANs and co-training, should be
tested on a multi-modal setting. At the moment, the models cooperating during co-
training are applied to images. However, for the success of co-training it is critical
to keep these models essentially different (so avoiding drifting). We think that
these differences could be higher by using a multi-modal approach, e.g. one model

96

performing on RGB images and another on corresponding depth images (from
monocular depth estimation or from a registered LiDAR). In addition, it is worth
to assess this approach on other perception tasks such as semantic or instance
segmentation. We would like also to assess the performance of our pointcloud-to-
pointcloud translation GAN beyond synthetic experiments, which certainly will
require a proper computational setup since voxel grid resolution will need to be
increased. Finally, in line with our work on TSR, we woul like to apply the idea to
indoor environments where humanoid robots must recognize different types of
domestic objects, and some of them can be totally unknown at a given moment.

97

A Appendix

A.1 The SYNTHIA Dataset Reloaded

SYNTHIA is nowadays a widely used public dataset for studying Autonomous Driv-
ing in the context of vision-based perception tasks. SYNTHIA’s images were orig-
inally released with pixel-wise ground truth for semantic and instance segmen-
tation, as well as depth maps. Here, we present an upgrade of SYNTHIA (SYN-
THIA:Reloaded), with more variability thanks to new scenarios and assets; new
data modalities such as LIDAR; ground truth for new problems, such as 3D and 2D
object detection of pedestrians, cyclists, vehicles and traffic signs/lights; This new
version has been used to generate the data in chapters 2, 3 and 4.

By varying different parameters of the Unity-based SYNTHIA framework, the
new datasets include random shots and sequences. In the next sections we outline
both the main parameters involved in the configuration of the SYNTHIA’s virtual
world, as well as the raw data and GT that it can provide. The specifications used to
generate each dataset is specified in their respective chapters.

A.1.1 Virtual world configuration

Fig. A.1 shows the different areas of the current SYNTHIA world (town and NY1

style areas, and highway). Table A.1 summarizes the main parameters we can set
for collecting data.

The data acquisition mode indicates that we can either capture data as random
shots or as driving sequences. In the former case, we can acquire data anywhere
in the virtual world, using a random sensor pose (avoiding useless shots such as
looking at the sky, or from inside a building). We can even randomize the pose and
location of the dynamic objects (pedestrians, vehicles, etc.) and traffic signs/lights
to obtain many instances of them without actually driving. In the latter case, the
player car as well as the rest of traffic participants are moving while respecting
traffic rules. In both cases, data acquisition is determined by the sensor suite that

1New York city

99

Appendix A. Appendix

Table A.1 – Main configuration parameters in SYNTHIA.

Data acquisition mode Driv. Seq. / Random shots

Sensors
Camera

focal length, image resolution,
fps, 6D pose
vertical & horizontal FoV,

LIDAR vertical & horizontal resolution,
rpm, max. depth, 6D pose

Scene

Textures
selection of road, sidewalk,
and vegetation textures

Ambient
brightness, shadow strength,
IDs of time, weather, & season

Area Town/NY/Highway

Objects
Parked

number of: more than 2-wheel
vehicles, bikes, motorbikes

Moving
number of: vehicles, cyclists,
bikers, pedestrians, wheelchairs

we define. In the case of driving sequences, sensors are attached to the player car as
in the example of Fig. A.2.

At the moment we can generate data by approximating two types of sensors for
perception, camera for textures and image processing, and LIDAR for depth estima-
tion. As can be seen in Table A.1, we can place the cameras as wished and define
their main parameters (focal length and resolution). Camera acquisition is directly
leveraged from Unity®Pro framework, which allows us to set a desired fps value. A
real LIDAR throws a vertical ray perpendicular to the XZ plane, rotating the ray at
different times on this plane until completing 360◦ with a vertical FoV. The space
between points follow a vertical and horizontal resolution. Due to the ray rotation
among the time, if there are moving objects, motion blur appears. To simulate this
sensor we rely on a rotating camera with the same vertical FoV, although the depth
buffer of the camera is considered instead of the RGB image. The acquired depth
buffers are sampled according to the established horizontal and vertical resolution.
To simulate a real LIDAR we would need as many camera captions as rays needed to
complete 360◦ according to the horizontal resolution, which it is computationally
impractical. So, we have added a horizontal FoV parameter to define how many
degrees we capture at the same time with the camera. As lower the value more
realistic LIDAR we can obtain.

There are several synthetic data nowadays where they try to complement the
real data by applying a high degree of variability and keeping the world as fidel as

100

A.1. The SYNTHIA Dataset Reloaded

Figure A.1 – SYNTHIA views. Left column, top to bottom: NY and Town styles
during night, bridge area and highway area. Right column, top to bottom: aerial
view from NY style area, park area, aerial view from tonw style area and parking
example. Regarding areas, the town covers approx. 370×260m, NY 480×370m and
the highway 1630×1050m.

possible to the real world and sensors. On the next points we talk about the fidelity
and variability included in the SYNTHIA dataset.

101

Appendix A. Appendix

Figure A.2 – Example of sensor suite; C# stands for camera #. When recording with a
mono camera B is always 0.

Fidelity. The virtual world is captured by camera and LIDAR sensors. The
camera sensor follow a perfect pinhole camera where does not exist noise, blurring
or other effects created by current cameras. This can be a problem when we train
to learn patterns from synthetic data and applied on real data, where all type of
noise can be observed in the images. To decrease the effect of this situation we
have included some post processing features (see Table A.2) to improve the realism
from the synthetic data. The listed features focus mainly on improving the light
transfer between different materials textures (i.e. metallic cars, rough buildings,
etc) and color relationship between different objects. We have included different
blurring and noise effects to simulate the effects of real camera sensors based on
motion and perception. Although it is an important forward step among realism
we still are missing features based on physics models created by camera sensors as
rolling shutter. On our future work we plan to work on physic based models among
exploring this type of features for LIDAR sensors.

Variability. For generating the virtual-world content we can also select different
textures for roads, sidewalks and vegetation; as well as global scene brightness,
strength of the shadows, daytime/nighttime, weather conditions (e.g. clear/rainy),
and season. We can also select the number of traffic participants to be spawned,
either to stay parked (vehicles/bikes/motorbikes) or to move (vehicles, pedestrians,

102

A.1. The SYNTHIA Dataset Reloaded

Table A.2 – Feature effects included into the SYNTHIA:Reloaded model to improve
realism.

Feature Definition
Antialiasing Definition

Ambient occlusion Shadows created by close objects
Depth of Field Blurring effect at far objects

Motion Blur
Blurring effects caused by
camera or moving objects

Eye Adaptation
Colors perceived are modified

based on the minimum and
maximum presented on the scene

Bloom
Propagate illumination to places
closes to high illumination peaks

Chromatic Aberration
Small noise created at borders

objects by camera sensors

bike riders and cyclists). Fig. A.3 shows several examples. Table A.3 compares
variability factors (dynamic objects – multi-view) for different publicly available
datasets. Thorough the experiments we show how this variability is able to improve
the performance of SYNTHIA over other datasets as GTA-V which has more realism,
but they contain less variability and flexibility to generate diverse data.

A.1.2 Groundtruth

Table A.3 shows the GT types required for covering research activity on most key
computer vision tasks, indicating also which publicly available datasets include
them. Fig. A.4 shows visual examples of such GT for the case of the new SYNTHIA
dataset.

In addition to the GT already present in previous SYNTHIA dataset, i.e. pixel-
wise depth, semantic class, instance ID, and camera pose; the new SYNTHIA dataset
also includes 3D oriented BBs for camera and LIDAR data (not only for dynamic
objects as the rest of datasets, but also for traffic signs/lights), pixel-wise optical flow,
LIDAR-like point clouds with semantic class and instance ID per point. Note also
that in contrast with other datasets SYNTHIA has pixel-wise GT for lane-makings
(can be specially interesting along the highway) and horizontal signs. It is worth to
mention that, up to the best of our knowledge, such a semantic and instance LIDAR
information is not provided by other publicly available datasets.

103

Appendix A. Appendix

Figure A.3 – Aerial view of the same intersection under different ambient conditions.
Top, from left to right: summer, fall, sunset and winter. Bottom, left to right: heavy
shadows, bright illumination, night and rain.

104

A.1. The SYNTHIA Dataset Reloaded

Ta
b

le
A

.3
–

G
T

an
d

va
ri

ab
ili

ty
fa

ct
o

rs
p

ro
vi

d
ed

in
d

if
fe

re
n

tp
u

b
lic

ly
av

ai
la

b
le

d
at

as
et

s
o

fs
yn

th
et

ic
im

ag
es

.B
B

s
st

an
d

s
fo

r
3D

b
ou

n
d

in
g

b
ox

es
w

it
h

in
st

an
ce

ID
(i

n
th

e
n

ew
SY

N
T

H
IA

th
ey

ar
e

p
ro

vi
d

ed
n

ot
on

ly
fo

r
im

ag
es

,b
u

ta
ls

o
fo

r
LI

D
A

R
d

at
a)

,C
K

m
ea

n
s

C
am

V
id

/K
IT

T
I

co
m

p
at

ib
le

se
m

an
ti

c
cl

as
se

s,
w

h
ile

C
S

re
fe

rs
to

C
it

ys
ca

p
es

.S
em

LI
D

A
R

re
fe

rs
to

th
e

p
o

in
t

cl
o

u
d

w
it

h
as

so
ci

at
ed

cl
as

s
la

b
el

an
d

in
st

an
ce

la
b

el
p

er
p

o
in

t.
V

st
an

d
s

fo
r

V
eh

ic
le

s,
an

d
V

R
U

s
fo

r
vu

ln
er

ab
le

ro
ad

u
se

rs
(p

ed
es

tr
ia

n
s

an
d

cy
cl

is
ts

).
In

th
e

ca
se

o
fS

Y
N

T
H

IA
,M

u
lt

i-
vi

ew
in

cl
u

d
es

st
er

eo
ri

gs
as

w
el

la
s

a
36

0◦
vi

ew
b

as
ed

o
n

se
ve

ra
lc

am
er

as
.

V
D

ri
ft

[5
9]

Sc
en

eF
lo

w
[1

01
]

V
ir

tu
al

K
IT

T
I

[4
4]

G
TA

-V
[1

21
]

SY
N

T
H

IA
[1

23
]

SY
N

T
H

IA
:R

el
o

ad
ed

B
B

s
7

7
3

3
7

3

D
ep

th
3

3
3

7
3

3

Se
m

.c
la

ss
es

N
o

n
e

N
o

n
e

C
S

C
K

&
C

S
C

K
C

K
&

C
S

In
st

an
ce

se
gm

.
3

3
3

3
3

3

C
am

er
a

p
o

se
3

3
3

3
3

3

Se
m

.L
ID

A
R

7
7

7
7

7
3

D
yn

.o
b

je
ct

s
V

V
V

V
&

V
R

U
s

V
&

V
R

U
s

V
&

V
R

U
s

W
ea

th
er

Su
n

n
y

Su
n

n
y

V
ar

ia
b

le
V

ar
ia

b
le

V
ar

ia
b

le
V

ar
ia

b
le

V
ar

ia
b

le
Il

lu
m

.
7

7
7

7
3

3

Se
as

o
n

s
F

ix
ed

F
ix

ed
F

ix
ed

F
ix

ed
4

4
M

u
lt

i-
vi

ew
7

7
7

7
3

3

105

Appendix A. Appendix

Figure A.4 – Aerial view grountruth of the same scene. Left, from top to bottom:
Semantic segmentation, 3D Bounding boxes and instance LIDAR. Right, from top
to bottom: Depth, instance segmentation and semantic LIDAR.

Obviously, as in previous version we have vehicles, pedestrians and cyclists, and
we have added wheelchairs. Overall, we have also improved the visual quality. More-
over, when we use a suite of sensors, like in Fig. A.2, camera and LIDAR raw data can
be spatially registered by the provided camera and LIDAR meta-information, and
timestamps are used for temporal alignment. Odometry information also comes
with timestamps. Thus, we follow a data acquisition protocol which is common to
autonomous driving research.

Since in chapter 3 we also use 2D object detection, it is worth to explain how 2D
BBs are obtained from the GT. There are two straight forward approaches. On the
one hand, one can use the pixel-wise instance IDs to build the BBs; however, this

106

A.1. The SYNTHIA Dataset Reloaded

Figure A.5 – From 3D to 2D BBs.

method has the drawback of miss-annotating occluded objects; thus, potentially
misleading the training of the object detector. The reason is that when a 2D BB is
provided, it is supposed to contain a full object, not just a part of it. On the other
hand, we can just project the vertices of each 3D BB to the image plane, and then
find the 2D BB of the projected points, also with cropping at image borders. In this
case, it is convenient to have a check for the degree of occlusion. This can be easily
done by combining the pixel-wise instance ID information with the 2D BBs. When
the ratio between the area of an instance ID and the area of the 2D BB is too low
(the former must be contained in the latter), we can assume a heavy occlusion and
discard the 2D BB. See Fig. A.5 for a visual example.

107

B Appendix

B.1 Scientific Articles

B.1.1 Journals

Gabriel Villalonga, Antonio M. López, Co-Training for on-board deep object
detection, IEEE Access, 2020.

Gabriel Villalonga, Joost van de Weijer, Antonio M. López, Recognizing new
classes with synthetic data in the loop: application to traffic sign recognition,
Sensors, Special issue on Advance in Sensors and Sensing Systems for Driving
and Transportation, 2020.

Antonio M. López, Gabriel Villalonga, Laura Sellart, Germán Ros, David
Vázquez, Jiaolong Xu, Javier Marín, Azadeh Mozafari, Training my car to see
using virtual worlds, Image and Vision Computing, Special issue on Auto-
motive Vision: Challenges, Trends, Technologies and Systems for Vision-Based
Intelligent Vehicles, 2017.

B.1.2 Internacional Conferences

Alejandro González, Gabriel Villalonga, Jiaolong Xu, David Vázquez, Jaume
Amores, Antonio M López, Multiview random forest of local experts combin-
ing RGB and LiDAR data for pedestrian detection, IEEE Intelligent Vehicles
Symposium (IV), 2015

Alejandro González, Gabriel Villalonga, German Ros, David Vázquez, Anto-
nio M López, 3D-guided multiscale sliding window for pedestrian detection,
Iberian Conference on Pattern Recognition and Image Analysis, 2015.

Javad Zolfaghari Bengar, Abel Gonzalez-Garcia, Gabriel Villalonga, Bogdan
Raducanu, Hamed Habibi Aghdam, Mikhail Mozerov, Antonio M. López, Joost
van de Weijer, Temporal coherence for active learning in videos, International

109

Appendix B. Appendix

Conference on Computer Vision, Workshop on Computer Vision for Road
Scene Understanding and Autonomous Driving, 2019.

B.1.3 Book chapters

German Ros, Laura Sellart, Gabriel Villalonga, Elias Maidanik, Francisco
Molero, Marc Garcia, Adriana Cedeño, Francisco Perez, Didier Ramirez, Ed-
uardo Escobar, Jose Luis Gomez, David Vázquez, Antonio M. López, Semantic
segmentation of urban scenes via domain adaptation of SYNTHIA, Chapter
contribution to the book Domain Adaptation in Computer Vision Applica-
tions, Springer Series on Advances in Computer Vision and Pattern Recogni-
tion, 2017.

110

Bibliography

[1] Y. Abramson and Y. Freund. SEmi-automatic VIsuaL LEarning (SEVILLE):
a tutorial on active learning for visual object recognition. In Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2005.

[2] Panos Achlioptas, O. Diamanti, Ioannis Mitliagkas, and L. Guibas. Learning
representations and generative models for 3d point clouds. In International
Conference on Machine Learning (ICML), 2018.

[3] Hamed H. Aghdam, Abel Gonzalez-Garcia, and Antonio M López Joost van de
Weijer. Active learning for deep detection neural networks. In International
Conference on Computer Vision (ICCV), 2019.

[4] H.A. Alhaija, S. Karthik Mustikovela, L. Mescheder, A. Geiger, and C. Rother.
Augmented reality meets computer vision: Efficient data generation for urban
driving scenes. International Journal of Computer VisionSpecial issue on
Synthetic Visual Data, 126(9):961–972, 2018.

[5] R. Aljundi, C. Rahaf, and T. Tuytelaars. Expert gate: Lifelong learning with a
network of experts. In Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017.

[6] R. Ambrus, V. Guizilini, J. Li, S. Pillai, and A. Gaidon. Two stream networks
for self-supervised ego-motion estimation. In Conference on Robot Learning
(CoRL), 2019.

[7] Eduardo Arnold, Omar Y. Al-Jarrah, Mehrdad Dianati, Saber Fallah, David
Oxtoby, and Alex Mouzakitis. A survey on 3D object detection methods for
autonomous driving applications. IEEE Trans. on Intelligent Transportation
Systems, January 2019.

[8] D. Arpit, S. Jastrzebsk, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Ma-
haraj, A. Fischer, A. Courville, Y. Bengio, and S. Lacoste-Julien. A closer look
at memorization in deep networks. In International Conference on Machine
Learning (ICML), 2017.

111

Bibliography

[9] Alireza Asvadi, Luis Garrote, Cristiano Premebida, Paulo Peixoto, and Ur-
bano J. Nunes. Multimodal vehicle detection: fusing 3D-LIDAR and color
camera data. Pattern Recognition Letters, 115:20–29, November 2018.

[10] A. Awasthi and S. Sarawagi. Continual learning with neural networks: A
review. In ACM India Joint International Conference on Data Science and
Management of Data, 2019.

[11] C.H. Bahnsen, D. Vázquez, A.M. López, and T.B. Moeslund. Learning to
remove rain in traffic surveillance by using synthetic data. In International
Conference on Computer Vision Theory and Applications (VISIGRAPP), 2019.

[12] M. Bai and R. Urtasun. Deep watershed transform for instance segmentation.
In Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[13] Maria-Florina Balcan, Avrim Blum, and Ke Yang. Co-training and expansion:
Towards bridging theory and practice. In Neural Information Processing
Systems (NeurIPS), 2004.

[14] I. Barros, M. Cristani, B. Caputo, A. Rognhaugen, and T. Theoharis. Looking be-
yond appearances: Synthetic training data for deep cnns in re-identification.
Computer Vision and Image Understanding, 167:50–62, February 2018.

[15] M. Bauman. Why waiting for perfect autonomous vehicles may cost lives.
Rand Corporation, 2017.

[16] S. Beery, Y. Liu, D. Morris, J. Piavis, A. Kapoor, M. Meister, N. Joshi, and
P. Perona. Synthetic examples improve generalization for rare classes.
arXiv:1904.05916, 2019.

[17] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with
co-training. In Conference on Computational Learning Theory (COLT), 1998.

[18] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. Unsuper-
vised pixel-level domain adaptation with generative adversarial networks. In
Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[19] Andrew Brock, Theodore Lim, James Millar Ritchie, and Nicholas J. Weston.
Generative and discriminative voxel modeling with convolutional neural
networks. In Neural Information Processing Systems (NeurIPS), 2016.

[20] D.J. Butler, J. Wulff, G.B. Stanley, and M.J. Black. A naturalistic open source
movie for optical flow evaluation. In European Conference on Computer
Vision (ECCV), 2012.

112

Bibliography

[21] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong,
Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.
nuscenes: A multimodal dataset for autonomous driving. In Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2020.

[22] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-person 2D pose
estimation using part affinity fields. In Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017.

[23] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teuliere, and T. Chateau. Deep
MANTA: A coarse-to-fine many-task network for joint 2D and 3D vehicle
analysis from monocular image. In Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017.

[24] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: a survey. ACM
Computing Surveys, 41(3):15:1–15:58, 2009.

[25] O. Chapelle, B. Schölkopf, and A. Zien. Semi-supervised Learning. The MIT
Press, 2006.

[26] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2017.

[27] C. Chen, A. Seff, A.L. Kornhauser, and J. Xiao. DeepDriving: Learning affor-
dance for direct perception in autonomous driving. In International Confer-
ence on Computer Vision (ICCV), 2015.

[28] Minmin Chen, Kilian Q. Weinberger, and John C. Blitzer. Co-training for
domain adaptation. In Neural Information Processing Systems (NeurIPS),
2011.

[29] Minmin Chen, K.Q. Weinberger, and Yixin Chen. Automatic feature decom-
position for single view co-training. In International Conference on Machine
Learning (ICML), 2011.

[30] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d object detection
network for autonomous driving. In Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017.

[31] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3D object
detection network for autonomous driving. In Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2017.

113

Bibliography

[32] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. van Gool. Domain adaptive Faster
R-CNN for object detection in the wild. In Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2018.

[33] Z. Chen and B. Liu. Lifelong Machine Learning. Morgan & Claypool, 2017.

[34] Chris Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-
r2n2: A unified approach for single and multi-view 3d object reconstruction.
In European Conference on Computer Vision (ECCV), 2016.

[35] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D spatio-temporal
convnets: Minkowski convolutional neural networks. In Int. Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2019.

[36] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
The cityscapes dataset for semantic urban scene understanding. In Int. Conf.
on Computer Vision and Pattern Recognition (CVPR), 2016.

[37] Gabriela Csurka. A Comprehensive Survey on Domain Adaptation for Visual
Applications, chapter 1. Advances in Computer Vision and Pattern Recogni-
tion. Springer, 2017.

[38] A. Dosovitskiy, G. Ros, F. Codevilla, A.M. López, and V. Koltun. CARLA: An
open urban driving simulator. In Conference on Robot Learning (CoRL), 2017.

[39] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner. Vote3deep:
Fast object detection in 3d point clouds using efficient convolutional neural
networks. In International Conference on Robotics and Automation (ICRA),
2017.

[40] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man. The PASCAL Visual Object Classes Challenge 2011 (VOC2011) Re-
sults. http://www.pascal-network.org/challenges/VOC/voc2011/workshop/-
index.html.

[41] Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz Hertlein, Claudius
Glaeser, Fabian Timm, Werner Wiesbeck, and Klaus Dietmayer. Deep multi-
modal object detection and semantic segmentation for autonomous driving:
Datasets, methods, and challenges. IEEE Trans. on Intelligent Transportation
Systems, February 2020.

114

Bibliography

[42] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao. Deep ordinal re-
gression network for monocular depth estimation. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2018.

[43] Matheus Gadelha, R. Wang, and Subhransu Maji. Multiresolution tree net-
works for 3d point cloud processing. In European Conference on Computer
Vision (ECCV), 2018.

[44] A. Gaidon, Q. Wang, Y. Cabon, and R. Vig. Virtual worlds as proxy for multi-
object tracking analysis. In Int. Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2016.

[45] Yukang Gan, Xiangyu Xu, Wenxiu Sun, and Liang Lin. Monocular depth esti-
mation with affinity, vertical pooling, and label enhancement. In European
Conference on Computer Vision (ECCV), 2018.

[46] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2012.

[47] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learn-
ing by predicting image rotations. In International Conference on Learning
Representation (ICLR), 2018.

[48] R.B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2014.

[49] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollár, and Kaiming
He. Detectron. https://github.com/facebookresearch/detectron, 2018.

[50] C. Godard, O.M. Aodha, and G.J. Brostow. Unsupervised monocular depth
estimation with left-right consistency. In Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017.

[51] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J. Brostow.
Digging into self-supervised monocular depth prediction. In International
Conference on Computer Vision (ICCV), 2019.

[52] A. González, G. Villalonga, J. Xu, D. Vázquez, J. Amores, and A. M. López.
Multiview random forest of local experts combining rgb and lidar data for
pedestrian detection. In Intelligent Vehicles Symposium (IV), 2015.

115

https://github.com/facebookresearch/detectron

Bibliography

[53] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Neural Information
Processing Systems (NeurIPS), 2014.

[54] S: Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu. A survey of deep learn-
ing techniques for autonomous driving. Journal of Field Robotics, 37(3):362–
386, 2020.

[55] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and
Mathieu Aubry. Atlasnet: A papier-mâché approach to learning 3d surface
generation. arXiv:1802.05384, 2018.

[56] V. Guizilini, J. Li, R. Ambrus, S. Pillai, and A. Gaidon. Robust semi-supervised
monocular depth estimation with reprojected distances. In Conference on
Robot Learning (CoRL), 2019.

[57] A. Gurram, O. Urfalioglu, I. Halfaoui, F. Bouzaraa, and Antonio M. Lopez.
Monocular depth estimation by learning from heterogeneous datasets. In
Intelligent Vehicles Symposium (IV), 2018.

[58] U. Guz, D. Hakkani-Tür, S. Cuendet, and G. Tur. Co-training using prosodic
and lexical information for sentence segmentation. In Conference of the
International Speech Communication Association (INTERSPEECH), 2007.

[59] V. Haltakov, C. Unger, and S. Ilic. Framework for generation of synthetic
ground truth data for driver assistance applications. In German Conference
on Pattern Recognition (GCPR), 2013.

[60] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor W.
Tsang, and Masashi Sugiyama. Co-teaching: Robust training of deep neu-
ral networks with extremely noisy labels. In Neural Information Processing
Systems (NeurIPS), 2018.

[61] A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, and R. Cipolla. Un-
derstanding real world indoor scenes with synthetic data. In Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2016.

[62] H. Hattori, N. Lee, V.N. Boddeti, F. Beainy, K.M. Kitani, and T. Kanade. Syn-
thesizing a scene-specific pedestrian detector and pose estimator for static
video surveillance. International Journal of Computer VisionSpecial issue on
Synthetic Visual Data, 126(9):1027–1044, 2018.

116

Bibliography

[63] D. Hernandez, L. Schneider, A. Espinosa, D. Vázquez, A.M. López, U. Franke,
M. Pollefeys, and J.C. Moure. Slanted stixels: Representing san francisco’s
steepest streets. In British Machine Vision Conference (BMVC), 2017.

[64] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M.M.A.
Patwary, Y. Yang, and Y. Zhou. Deep learning scaling is predictable, empiri-
cally. arXiv:1712.00409, 2017.

[65] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, and
T. Darrell. CyCADA: Cycle-consistent adversarial domain adaptation. In
Machine Learning Research, 2018.

[66] J. Hoffman, D. Wang, F. Yu, and T. Darrell. FCNs in the wild: Pixel-level
adversarial and constraint-based adaptation. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2016.

[67] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. Iglovikov, and
P. Ondruska. One thousand and one hours: Self-driving motion prediction
dataset. In Conference on Robot Learning (CoRL), 2020.

[68] Nikita Jaipuria, Xianling Zhang, Rohan Bhasin, and Mayar Arafa. Deflating
dataset bias using synthetic data augmentation. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR) Workshops, 2020.

[69] J. Janai, F. Guney, A. Behl, and A. Geiger. Computer Vision for Autonomous
Vehicles: Problems, Datasets and State-of-the-Art. Now Publishers Inc, 2020.

[70] Jisoo Jeong, Seungeui Lee, , Jeesoo Kim, and Nojun Kwak. Consistency-
based semi-supervised learning for object detection. In Neural Information
Processing Systems (NeurIPS), 2019.

[71] C. Jiang, S. Qi, Y. Zhu, S. Huang, J. Lin, L.-F. Yu, D. Terzopoulos, and S.-C.
Zhu. Configurable 3d scene synthesis and 2d image rendering with per-pixel
ground truth using stochastic grammars. International Journal of Computer
VisionSpecial issue on Synthetic Visual Data, 126(9):920–941, 2018.

[72] M. Johnson-Roberson, C. Barto, R. Mehta, S. Nittur S., K. Rosaen, and . Va-
sudevan. Driving in the matrix: Can virtual worlds replace human-generated
annotations for real world tasks? In International Conference on Robotics and
Automation (ICRA), 2017.

[73] E. Kalogerakis, Melinos Averkiou, Subhransu Maji, and S. Chaudhuri. 3d
shape segmentation with projective convolutional networks. In Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017.

117

Bibliography

[74] Dahun Kim, Donghyeon Cho, Donggeun Yoo, and In So Kweon. Learning
image representations by completing damaged jigsaw puzzles. In Winter conf.
on Applications of Computer Vision (WACV), 2018.

[75] Seunghyeon Kim, Jaehoon Choi, Taekyung Kim, and Changick Kim. Self-
training and adversarial background regularization for unsupervised domain
adaptive one-stage object detection. In International Conference on Computer
Vision (ICCV), 2019.

[76] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath,
D. Kumaran, and R. Hadsell. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences, 114(13):3521–
3526, 2017.

[77] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-
supervised visual representation learning. In Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2019.

[78] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep
convolutional neural networks. In Neural Information Processing Systems
(NeurIPS), 2012.

[79] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. Waslander. Joint 3D proposal
generation and object detection from view aggregation. In Int. Conf. on
Intelligent Robots and Systems (IROS), 2018.

[80] Sampo Kuutti, Saber Fallah, Konstantinos Katsaros, Mehrdad Dianati, Francis
Mccullough, and Alexandros Mouzakitis. A survey of the state-of-the-art local-
ization techniques and their potentials for autonomous vehicle applications.
IEEE Internet of Things Journal, 5(2):829–846, 2019.

[81] J. Lahoud and B. Ghanem. 2d-driven 3d object detection in rgb-d images. In
International Conference on Computer Vision (ICCV), 2017.

[82] Alex Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar
Beijbom. Pointpillars: Fast encoders for object detection from point clouds.
In Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2019.

[83] Kuan-Hui Lee, G. Ros, J. Li, and Adrien Gaidon. Spigan: Privileged adver-
sarial learning from simulation. In International Conference on Learning
Representation (ICLR), 2019.

118

Bibliography

[84] Anat Levin, Paul Viola, and Yoav Freund. Unsupervised improvement of
visual detectors using co-training. In International Conference on Computer
Vision (ICCV), 2003.

[85] J. Li, C. Wang, H. Zhu, Y. Mao, H.-S. Fang, and C. Lu. CrowdPose: Efficient
crowded scenes pose estimation and a new benchmark. In Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019.

[86] Z. Li and D. Hoiem. Learning without forgetting. In European Conference on
Computer Vision (ECCV), 2016.

[87] S. Liang, Y. Li, , and R. Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. In International Conference on Learning
Representation (ICLR), 2018.

[88] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu,
and Matti Pietikäinen. Deep learning for generic object detection: A survey.
International Journal of Computer Vision, 128:261–318, 2020.

[89] M. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation
networks. In Neural Information Processing Systems (NeurIPS), 2017.

[90] S. Liu, J. Jia, S. Fidle, and R. Urtasun. SGN: sequential grouping networks
for instance segmentation. In International Conference on Computer Vision
(ICCV), 2017.

[91] S. Liu, L. Liu, J. Tang, S. Wu, and J.-L. Gaudiot. Creating Autonomous Vehicle
Systems. Morgan & Claypool, 2018.

[92] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg. SSD:
single shot multibox detector. In European Conference on Computer Vision
(ECCV), 2016.

[93] X. Liu, M. Masana, L. Herranz, J. van de Weijer, A.M. López, and A.D. Bagdanov.
Rotate your networks: Better weight consolidation and less catastrophic
forgetting. In International Conference on Pattern Recognition (ICPR), 2018.

[94] Vishnu Suresh Lokhande, Songwong Tasneeyapant, Abhay Venkatesh,
Sathya N. Ravi, and Vikas Singh. Generating accurate pseudo-labels in semi-
supervised learning and avoiding overconfident predictions via hermite poly-
nomial activations. In Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2020.

119

Bibliography

[95] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for seman-
tic segmentation. In Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2015.

[96] Antonio M. López, Gabriel Villalonga, Laura Sellart, Germán Ros, David
Vázquez, Jiaolong Xu, Javier Marin, and Azadeh Mozafari. Training my car to
see using virtual worlds. Image and Vision Computing, 68:102–118, 2017.

[97] Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong, Wenyuan Zeng,
Mikita Sazanovich, Shuhan Tan, Bin Yang, Wei-Chiu Ma, and Raquel Ur-
tasun. Lidarsim: Realistic lidar simulation by leveraging the real world.
arXiv:2006.09348, 2020.

[98] J. Marin, D. Vázquez, D. Gerónimo, and A.M. López. Learning appearance in
virtual scenarios for pedestrian detection. In Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2010.

[99] M. Masana, I. Ruiz, J. Serrat, J. van de Weijer, and A.M. López. Metric learning
for novelty and anomaly detection. In British Machine Vision Conference
(BMVC), 2018.

[100] N. Mayer, E. Ilg, P. Fischer, C. Hazirbas, D. Cremers, A. Dosovitskiy, and T. Brox.
What makes good synthetic training data for learning disparity and optical
flow estimation? International Journal of Computer VisionSpecial issue on
Synthetic Visual Data, 126(9):942–960, 2018.

[101] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox.
A large dataset to train convolutional networks for disparity, optical flow,
and scene flow estimation. In Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

[102] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka. 3D bounding box estima-
tion using deep learning and geometry. In Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017.

[103] M. Müller, N. Smith, and B. Ghanem. A benchmark and simulator for uav
tracking. In European Conference on Computer Vision (ECCV), 2016.

[104] Kamal Nigam and Rayid Ghani. Analyzing the effectiveness and applicability
of cotraining. In Int. Conference on Information and Knowledge Management
(CIKM), 2000.

[105] H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic
segmentation. In International Conference on Computer Vision (ICCV), 2015.

120

Bibliography

[106] Avital Oliver, Augustus Odena, Colin Raffel, Ekin D. Cubuk, and Ian J. Good-
fellow. Realistic evaluation of deep semi-supervised learning algorithms. In
Neural Information Processing Systems (NeurIPS), 2018.

[107] T. Zhou P. Isola, J. Zhu and A. Efros. Image-to-image translation with condi-
tional adversarial nets. In Int. Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[108] S.J. Pan and Q. Yang. A survey on transfer learning. IEEE Trans. on Knowledge
and Data Engineering, 22(10):1345–1359, 2009.

[109] G.I. Parisi, R. Kemker J.L. Part, C. Kanan, and S. Wermter. Continual lifelong
learning with neural networks. Neural Networks, 113:54–71, May 2019.

[110] X. Peng, B. Sun, K. Ali, and K. Saenko. Learning deep object detectors from
3D models. In International Conference on Computer Vision (ICCV), 2015.

[111] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Teaching 3D geometry to de-
formable part models. In Int. Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2012.

[112] Andreas Pfeuffer and Klaus Dietmayer. Optimal sensor data fusion archi-
tecture for object detection in adverse weather conditions. In International
Conference on Information Fusion (FUSION), 2018.

[113] S. Pillai, R. Ambrus, and A. Gaidon. SuperDepth: Self-supervised, super-
resolved monocular depth estimation. In International Conference on
Robotics and Automation (ICRA), 2018.

[114] M.A.F. Pimentel, D.A. Clifton, L.A. Clifton, and L. Tarassenko. Review of
novelty detection. Signal Processing, 99:215–249, June 2014.

[115] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. Frustum
PointNets for 3D object detection from RGB-D data. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2018.

[116] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space. In Neural
Information Processing Systems (NeurIPS), 2017.

[117] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan Yuille. Deep
co-training for semi-supervised image recognition. In European Conference
on Computer Vision (ECCV), 2018.

121

Bibliography

[118] J. Redmon and A. Farhadi. YOLO9000: better, faster, stronger. In Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017.

[119] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: towards real-time object
detection with region proposal networks. In Neural Information Processing
Systems (NeurIPS), 2015.

[120] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real time object
detection with region proposal networks. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 39(6):1137–1149, 2017.

[121] S.R. Richter, Z. Hayder, and V. Koltun. Playing for benchmarks. In Interna-
tional Conference on Computer Vision (ICCV), 2017.

[122] G. Riegler, A. O. Ulusoy, and A. Geiger. Octnet: Learning deep 3d represen-
tations at high resolutions. In Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017.

[123] G. Ros, L. Sellart, J. Materzyska, D. Vázquez, and A.M. López. The SYNTHIA
dataset: a large collection of synthetic images for semantic segmentation
of urban scenes. In Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2016.

[124] C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised self-
training of object detection models. In Workshop on Applications of Computer
Vision (WACV), 2005.

[125] S. Roy, A. Unmesh, and V.P. Namboodiri. Deep active learning for object
detection. In British Machine Vision Conference (BMVC), 2018.

[126] Ch. Sakaridis, D. Dai, and L. van Gool. Semantic foggy scene understanding
with synthetic data. International Journal of Computer VisionSpecial issue on
Synthetic Visual Data, 126(9):973–992, 2018.

[127] M. Savva, A.X. Chang, A. Dosovitskiy, T. Funkhouser, and V. Koltun. MI-
NOS: Multimodal indoor simulator for navigation in complex environments.
arXiv:1712.03931, 2017.

[128] Burr Settles. Active learning, volume 6 of Synthesis Lectures on Artificial
Intelligence and Machine Learning, pages 1–114. Morgan & Claypool, 2012.

[129] S. Shah, D. Dey, C. Lovett, and A. Kapoor. AirSim: High-fidelity visual and
physical simulation for autonomous vehicles. In Field and Service Robotics
(FSR), 2017.

122

Bibliography

[130] N. Sharma, V. Jain, and A. Mishra. An analysis of convolutional neural net-
works for image classification. Procedia Computer Science, 132:377–384, 2018.

[131] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object pro-
posal generation and detection from point cloud. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2019.

[132] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kip-
manand, and A. Blake. Real-time human pose recognition in parts from a
single depth image. In Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2011.

[133] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. Learning
from simulated and unsupervised images through adversarial training. In Int.
Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[134] C.M. Silva, B.M. Masini, Gianluigi Ferrari, and Ilaria Thibault. A survey on
infrastructure-based vehicular networks. Hindawi Mobile Information System,
2017.

[135] J. Skinner, S. Garg, N. Sünderhauf, P. Corke, B. Upcroft, and M.l Milford. High-
fidelity simulation for evaluating robotic vision performance. In Int. Conf. on
Intelligent Robots and Systems (IROS), 2016.

[136] A. A. Soltani, H. Huang, J. Wu, T. D. Kulkarni, and J. B. Tenenbaum. Syn-
thesizing 3d shapes via modeling multi-view depth maps and silhouettes
with deep generative networks. In Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017.

[137] C.R. de Souza, A. Gaidon, Y. Cabon, and A.M. López. Procedural generation of
videos to train deep action recognition networks. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2017.

[138] C.R. de Souza, A. Gaidon, Y. Cabon, Naila Murray, and A.M. López. Generating
human action videos by coupling 3d game engines and probabilistic graphical
models. International Journal of Computer Vision, 128:1505–1536, 2019.

[139] H. Su, C.R. Qi, Y. Li, and L. Guibas. Render for CNN: viewpoint estimation in
images using CNNs trained with rendered 3D model views. In International
Conference on Computer Vision (ICCV), 2015.

[140] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable effec-
tiveness of data in deep learning era. In International Conference on Computer
Vision (ICCV), 2017.

123

Bibliography

[141] K. Sun, B. Xiao, D. Liu, and J. Wang. Deep high-resolution representation
learning for human pose estimation. In Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019.

[142] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai
Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay
Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Et-
tinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang, Jonathon Shlens,
Zhifeng Chen, and Dragomir Anguelov. Scalability in perception for au-
tonomous driving: Waymo open dataset. In Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2020.

[143] Yongbin Sun, Yue Wang, Z. Liu, Joshua E. Siegel, and S. Sarma. Pointgrow:
Autoregressively learned point cloud generation with self-attention. In Winter
conf. on Applications of Computer Vision (WACV), 2020.

[144] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-domain image gener-
ation. In International Conference on Learning Representation (ICLR), 2017.

[145] G.R. Taylor, A.J. Chosak, and P.C. Brewer. OVVV: Using virtual worlds to
design and evaluate surveillance systems. In Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2007.

[146] H. Thomas, C. R. Qi, J. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas.
KPConv: Flexible and deformable convolution for point clouds. In Interna-
tional Conference on Computer Vision (ICCV), 2019.

[147] Y. Tian, X. Li, K. Wang, and F.-Y. Wang. Training and testing object detectors
with virtual images. IEEE/CAA Journal of Automatica Sinica, 5(2):539–546,
2018.

[148] T.Kim, M. Cha, H. Kim, J.K. Lee, and J. Kim. Learning to discover cross-domain
relations with generative adversarial networks. In Machine Learning Research,
2017.

[149] I. Triguero, S. García, and F. Herrera. Self-labeled techniques for semi-
supervised learning: Taxonomy, software and empirical study. Signal Process-
ing, 42(2):245–284, 2015.

[150] Gokhan Tur. Co-adaptation: Adaptive co-training for semi-supervised learn-
ing. In International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2009.

124

Bibliography

[151] J. Uhrig, M. Cordts, U. Franke, and T. Brox. Pixel-level encoding and depth
layering for instance-level semantic labelling. In German Conference on
Pattern Recognition (GCPR), 2016.

[152] J. Uhrig, E. Rehder, B. Fröhlich, U. Franke, and T. Brox. Box2Pix: Single-shot
instance segmentation by assigning pixels to object boxes. In Intelligent
Vehicles Symposium (IV), 2018.

[153] Jesper E. van Engelen and Holger H. Hoos. A survey on semi-supervised
learning. Machine Learning, 109:373–440, 2020.

[154] G. Varol, J. Romero, X. Martin, N. Mahmood, M.J. Black, I. Laptev, and
C. Schmid. Learning from synthetic humans. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2017.

[155] D. Vázquez, A.M. López, J. Marín, D. Ponsa, and D. Gerónimo. Virtual and real
world adaptation for pedestrian detection. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 36:797–809, 2014.

[156] D. Vázquez, A.M. López, D. Ponsa, and J. Marin. Cool world: domain adapta-
tion of virtual and real worlds for human detection using active learning. In
Neural Information Processing Systems (NeurIPS) Workshops, 2011.

[157] Dominic Wang and Ingmar Posner. Voting for voting in online point cloud
object detection. In Robotics: Science and Systems (RSS), 2015.

[158] Keze Wang, Xiaopeng Yan, Dongyu Zhang, Lei Zhang, and Liang Lin. Towards
human-machine cooperation: Self-supervised sample mining for object de-
tection. In Int. Conf. on Computer Vision and Pattern Recognition (CVPR),
2018.

[159] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey.
Neurocomputing, 312:135–153, October 2018.

[160] Peng Wang, Xinyu Huang, Xinjing Cheng, Dingfu Zhou, Qichuan Geng, and
Ruigang Yang. The apolloscape open dataset for autonomous driving and its
application. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2019.

[161] T. Wang, M. Liu, J. Zhu, A. Tao, J. Kautz, and B. Catanzaro. High-resolution
image synthesis and semantic manipulation with conditional gans. In Int.
Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.

[162] Wei Wang and Zhi-Hua Zhou. Analyzing co-training style algorithms. In
European Conference on Machine Learning (ECML), 2007.

125

Bibliography

[163] Wei Wang and Zhi-Hua Zhou. A new analysis of co-training. In International
Conference on Machine Learning (ICML), 2010.

[164] Karl Weiss, T.M. Khoshgoftaar, and DingDing Wang. A survey of transfer
learning. Journal of Big Data, 3(9), 2016.

[165] WHO. Global status report on road safety. https://apps.who.int/iris/
bitstream/handle/10665/277370/WHO-NMH-NVI-18.20-eng.pdf?ua=1,
2018.

[166] Garrett Wilson and Diane J. Cook. A survey of unsupervised deep domain
adaptation. ACM Transactions on Intelligent Systems and Technology, 11(5),
2020.

[167] L. Woensel and G. Archer. Ten technologies which could change our lives:
potential impacts and policy implication. European Parliamentary Research
Service, 2015.

[168] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer. Squeezesegv2: Improved
model structure and unsupervised domain adaptation for road-object seg-
mentation from a lidar point cloud. In International Conference on Robotics
and Automation (ICRA), 2019.

[169] Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric shapes. In Int.
Conf. on Computer Vision and Pattern Recognition (CVPR), 2015.

[170] Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese. Data-driven 3d
voxel patterns for object category recognition. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2015.

[171] J. Xu, S. Ramos, D. Vázquez, and A.M. López. Domain adaptation of de-
formable part-based models. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 36(12):2367–2380, 2014.

[172] J. Xu, D. Vázquez, A.M. López, J. Marín, and D. Ponsa. Learning a part-based
pedestrian detector in a virtual world. IEEE Trans. on Intelligent Transporta-
tion Systems, 15:2121 – 2131, 2014.

[173] J. Xu, D. Vázquez, K. Mikolajczyk, and A.M. López. Hierarchical online domain
adaptation of deformable part-based models. In International Conference on
Robotics and Automation (ICRA), 2016.

126

https://apps.who.int/iris/bitstream/handle/10665/277370/WHO-NMH-NVI-18.20-eng.pdf?ua=1
https://apps.who.int/iris/bitstream/handle/10665/277370/WHO-NMH-NVI-18.20-eng.pdf?ua=1

Bibliography

[174] J. Xu, L. Xiao, and A.M. López. Self-supervised domain adaptation for com-
puter vision tasks. IEEE Access, 7:156694–156706, November 2019.

[175] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional
detection. Sensors, 18:3337, 10 2018.

[176] B. Yang, M. Liang, and R. Urtasun. Hdnet: Exploiting hd maps for 3d object
detection. In Conference on Robot Learning (CoRL), 2018.

[177] B. Yang, W. Luo, and R. Urtasun. Pixor: Real-time 3d object detection from
point clouds. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018.

[178] G. Yang, X. Huang, Z. Hao, M. Liu, S. Belongie, and B. Hariharan. Pointflow: 3D
point cloud generation with continuous normalizing flows. In International
Conference on Computer Vision (ICCV), 2019.

[179] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised
methods. In Annual Meeting of the Association for Computational Linguistics
(ACL), 1995.

[180] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions.
In International Conference on Learning Representation (ICLR), 2016.

[181] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W. Tsang, and Masashi
Sugiyama. How does disagreement help generalization against label corrup-
tion? In International Conference on Machine Learning (ICML), 2019.

[182] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda. A survey of autonomous
driving: Common practices and emerging technologies. IEEE Access, 8:58443–
58469, 2020.

[183] Y. Zhang, P. David, and B. Gong. Curriculum domain adaptation for semantic
segmentation of urban scenes. In International Conference on Computer
Vision (ICCV), 2017.

[184] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud
based 3d object detection. In Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2018.

[185] Z.-H. Zhou and M. Li. Semi-supervised learning by disagreement. Knowledge
and Information Systems, 24(3):415–439, 2010.

127

Bibliography

[186] J. Zhu, T. Park, P. Isola, and A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In International Conference on
Computer Vision (ICCV), 2017.

[187] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu. Traffic-sign detection
and classification in the wild. In Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

[188] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. A comprehensive survey on transfer learning.
arXiv:1911.02685, 2020.

[189] Javad Zolfaghari, Abel Gonzalez, Gabriel Villalonga, Bogdan Raducanu,
Hamed Aghdam, Mikhail Mozerov, A.M. López, and Joost van de Weijer. Tem-
poral coherence for active learning in videos. In International Conference on
Computer Vision (ICCV) Workshops, 2019.

[190] Y. Zou, Z. Yu, B.V. Kumar, and J. Wang. Unsupervised domain adaptation
for semantic segmentation via class-balanced self-training. In European
Conference on Computer Vision (ECCV), 2018.

[191] Yang Zou, Zhiding Yu, Xiaofeng Liu, B.V.K. Vijaya Kumar, and Jinsong Wang.
Confidence regularized self-training. In International Conference on Com-
puter Vision (ICCV), 2019.

128

	Abstract (English/Spanish/Catalan)
	List of figures
	List of tables
	Introduction
	Autonomous vehicles
	Traffic scene understanding
	The need for annotated data
	PhD Objective and Outline

	Recognizing New Traffic Signs with Synthetic Data in the Loop
	Introduction
	Related work
	Method
	Overall idea
	Data generation

	Experimental results
	Datasets
	Experiments: design, results, and discussion

	Conclusions

	Co-training for On-board Deep Object Detection
	Introduction
	Paradigms to minimize human labeling
	The domain adaptation problem
	The focus of this work
	Contributions and organization

	Semi-supervised learning
	Self-labeling
	Domain adaptation

	Methods
	Self-labeling functional components
	Self-training
	Co-training
	Self-labeling for UDA

	Experiments
	Experimental setup
	Results

	Conclusion

	Lidar-based 3D object detection
	Introduction
	Related work
	Working with pointclouds
	Domain shift in pointclouds

	Cross-domain LiDAR-based 3D object detection
	Data
	Methods
	Results

	GAN-based pointcloud-to-pointcloud translation
	Synthetic data
	Proposed GAN
	Results

	Conclusions

	Conclusions and Future work
	Appendix
	The SYNTHIA Dataset Reloaded
	Virtual world configuration
	Groundtruth

	Appendix
	Scientific Articles
	Journals
	Internacional Conferences
	Book chapters

	Bibliography

	Títol de la tesi: Leveraging Synthetic Data to Create Autonomous DrivingPerception Systems
	Nom autor/a: Gabriel Villalonga Pineda

