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Summary

In matrix completion, the objective is to recover an unknown matrix from a small subset of
observed entries. Most successful methods for recovering the unknown entries are based on
the assumption that the unknown full matrix has low rank. By having low rank, each of its
entries are obtained as a function of a small number of coefficients which can be accurately
estimated provided that there are enough available observations. Hence, in low-rank matrix
completion the estimate is given by the matrix of minimum rank that fits the observed
entries.

Besides low rankness, the unknown matrix might exhibit other structural properties which
can be leveraged in the recovery process. In a smooth matrix, it can be expected that entries
that are close in index distance will have similar values. Similarly, groups of rows or columns
can be known to contain similarly valued entries according to certain relational structures.
This relational information is conveyed through different means such as covariance matrices
or graphs, with the inconvenient that these cannot be derived from the data matrix itself
since it is incomplete. Hence, any knowledge on how the matrix entries are related among
them must be derived from prior information. As an example, consider a sensor network
taking periodical ambient measurements and storing them into a matrix; the closer two
sensors are the more likely it is that they will take similar measurements. Hence, knowing
the sensor positions allows to obtain relational information without the need to observe any
data. As another example, with a matrix recording the preferences of a group of people on a
given topic, e.g., politics or entertainment, knowing details about each person such as age
or income can help group people by their preferences. Again, this is solely done using prior
information and zero knowledge on the contents of the matrix. By incorporating such prior
information into the matrix completion problem, the missing entries can be extrapolated

v



from those with expected similar value and the recovery error can be reduced.
This thesis deals with matrix completion with prior information, and presents an outlook

that generalizes to many situations. In the first part, the columns of the unknown matrix
are cast as graph signals with a graph known beforehand. In this, the adjacency matrix of
the graph is used to calculate an initial point for a proximal gradient algorithm in order to
reduce the iterations needed to converge to a solution. Then, under the assumption that the
graph signals are smooth, the graph Laplacian is incorporated into the problem formulation
with the aim to enforce smoothness on the solution. This results in an effective denoising of
the observed matrix and reduced error, which is shown through theoretical analysis of the
proximal gradient coupled with Laplacian regularization, and numerical tests.

The second part of the thesis introduces a framework to exploit prior information through
reproducing kernel Hilbert spaces. Since a kernel measures similarity between two points in an
input set, it enables the encoding of any prior information such as feature vectors, dictionaries
or connectivity on a graph. By associating each column and row of the unknown matrix with
an item in a set, and defining a pair of kernels measuring similarity between columns or
rows, the missing entries can be extrapolated by means of the kernel functions. A method
based on kernel regression is presented, with two additional variants aimed at reducing
computational cost, and online implementation. These methods prove to be competitive with
existing techniques, especially when the number of observations is very small.

Furthermore, mean-square error and generalization error analyses are carried out, shedding
light on the factors impacting algorithm performance. For the generalization error analysis,
the focus is on the transductive case, which measures the ability of an algorithm to transfer
knowledge from a set of labelled inputs to an unlabelled set. Here, bounds are derived for
the proposed and existing algorithms by means of the transductive Rademacher complexity,
and numerical tests confirming the theoretical findings are presented.

Finally, the thesis explores the question of how to choose the observed entries of a matrix
in order to minimize the recovery error of the full matrix. A passive sampling approach is
presented, which entails that no labelled inputs are needed to design the sampling distribution;
only the input set and kernel functions are required. The approach is based on building the
best Nyström approximation to the kernel matrix by sampling the columns according to
their leverage scores, a metric that arises naturally in the theoretical analysis to find an
optimal sampling distribution.
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Notation

Vectors and matrices

x, X a column vector and a matrix

x(i) the ith entry of x

Xi,j the entry at the ith row and jth column of X

xT ,XT the transpose of x and XT

‖X‖∗ nuclear norm of X

‖X‖F Frobenius norm of X

Tr(X) the trace of X

vec(X) columnwise vectorization of X

diag(x) a diagonal matrix whose entries are the elements of X

X � 0 X is positive semidefinite

X � Y X − Y is positive semidefinite

X ⊗ Y Kronecker product between X and Y

λi(X) ith eigenvalue of X in non-descending order

{xn}Nn=1 ⊆ X
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Sets, functions and spaces

X finite nonempty set of elements

x ∈ X x belongs to X

{xn}Nn=1 ⊆ X set of N elements where each belongs to X

|X | cardinality of X

R set of real numbers

H reproducing kernel Hilbert space

f ∈ H function f belongs to H

span{f, g} space spanned by the functions f, g

span(X) space spanned by the columns of X

κ kernel function

Acronyms

MC matrix completion

PG proximal gradient

RKHS reproducing kernel Hilbert space

RR ridge regression

KRR kernel ridge regression

ALS alternating least-squares

SGD stochastic gradient descent

GE generalization error

RC Rademacher complexity

iid independent and identically distributed
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1
Introduction

The task of recovering a signal from a few measurements is ubiquitous across disciplines such
as signal processing, statistics or image processing. A classical example is Shannon-Nyquist’s
sampling theorem, which states that a bandlimited continuous time signal can always be
reconstructed from a set of sampling points provided that the sampling rate is sufficiently
high. Other application examples are the extrapolation of missing measurements in a sensor
network [1], or the recovery of a complete image from a subset of pixels [2]. The underlying
principle is usually the same: we are given a set of observations each of which is associated with
a given input element, e.g., time or location, and we wish to predict the observations at other
previously unseen inputs. In today’s jargon, this falls under the wide umbrella of machine
learning [3,4]. This encompassing paradigm aims at obtaining a function which is learned
through a training method run on the known input-output pairs, such that the function will
be able to produce an accurate output for any input quantity within a desired set of inputs.
Depending on the availability of data and prediction target, there exist different machine
learning training methodologies: supervised, semisupervised and unsupervised. The difference
between the approaches lies in whether they use labelled data, i.e., inputs with an associated
output measurement, or unlabelled data, i.e., inputs without an associated measurement, to
learn the prediction function. In supervised learning, only labelled data are used, whereas
semisupervised learning uses a mix of labelled and unlabelled, and in unsupervised learning
only the inputs and no labels are known. Thus, the signal reconstruction problem subscribes
to the supervised or semisupervised class.

As hinted by Shannon-Nyquist’s theorem, there are requirements to a successful and
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2 Introduction

accurate signal recovery. While a signal might be dense in a domain, it might contain
redundancies that become apparent when the signal is mapped to an alternative domain where
it appears as sparse or constrained. Notably, this trait is the foundation for the compressed
sensing theory. In compressed sensing [5], we are given a small vector of observations with
the intent to recover the possibly much larger unknown vector from which the observations
were taken. For this to be feasible, it is necessary that the original full vector can be mapped
to a space where it is be represented as a linear combination of a very small number of the
vectors spanning mapped the space. One example of such a signal meeting this requirement
is a time signal whose Fourier transform only takes a non-zero value at a reduced number of
frequencies. Then, the problem is solved by finding the frequency coefficients via a regression
problem regularized with the l1 norm, which is known to promote sparsity.

The notion of sparsity in a transformed domain is also useful when dealing with data
available as a matrix. There exist a plethora of applications in which there are missing entries
in the data matrix and there is use in recovering them, such as in positioning [6], gene-disease
association prediction [7], large-scale network monitoring [8] or medical resonance imaging [9].
Another prevalent example is that of recommender systems [10], where the rows may be
assigned to items, the columns to users, and each entry denotes the rating given by a user
to an item. Since it is rather unlikely that a user will try and rate every possible item in
the database, this type of matrix tends to be very sparse. Hence, if we were to recommend
an item to a user, one possible approach is to fill the missing ratings in the matrix with
predictions according to the available ratings. This would give us an estimate of the full
matrix of item-user ratings, hence having performed an act of matrix completion (MC). There
are many approaches to the completion of matrices [11,12], with the one developed in [13] by
Candès and Retch having gained the most traction in the recent years. Like most methods,
the low-rank MC technique in [13] is centered around the idea of having a low-rank unknown
matrix. Thus, as in compressed sensing, the sparsity in the transformed domain boils down
to the fact that a low-rank matrix has most of its singular values equal to zero; this implies
that it can be constructed from just a few of its singular vectors. Therefore, [13] formulates
MC as a convex minimization of the nuclear norm of the partially observed matrix, and
demonstrates that an exact recovery of the original matrix is possible whenever the matrix
is low rank, incoherent, i.e., the information is evenly distributed across the matrix, and
uniformly sampled. An alternative equivalent formulation [10] factorizes the unknown matrix
as the product of two low-rank matrices, and replaces the nuclear norm with the sum of the
Frobenius norm of the two factor matrices.

While MC has good recovery guarantees for incoherent matrices, it is rare that data are
organized with lack of structure. For instance, in the user-item example, some users might
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have similar tastes and, likewise, some items might have similar characteristics. Therefore,
in this case it would be reasonable to assume an underlying structure such that similar
users or items give or receive similar ratings. Moreover, other possible scenarios are previous
knowledge about the vector space spanning the matrix columns or vectors, or a known trait
such as smoothness. There exist different strategies to incorporate additional information into
standard MC [14–16], with the most common being the addition of an ad-hoc regularization
term which will enforce the desired structure [17–19]. Additionally, it can be assumed that
the columns or rows of the unknown matrix belong to a specific space shaped by prior
information. For instance, considering the vectors as signals on a graph, the adjacency and
Laplacian matrices of the graph provide relational information that can be used to fill in the
missing entries [20,21].

A more general approach to encode and leverage prior information is via the use of kernel
functions and their associated reproducing kernel Hilbert spaces (RKHSs) [22–24]. RKHS are
spaces spanned by a kernel function which measures similarity between input points. There
exist many kernels, some of which are the linear, Gaussian or polynomial [25]. Moreover,
new kernels can be derived provided that they are linear and symmetric positive definite
functions. Hence, casting the rows and columns of the unknown matrix as functions in a
RKHS, one can encode prior information through kernels and leverage the tools in the RKHS
framework.

This thesis explores MC with prior information available in the form of graphs and
kernels. From this perspective, it proposes efficient algorithms based on kernel regression
which are easily extended to online operation. Moreover, theoretical analysis is conducted
on the mean-square error and generalization error, with the latter being a useful metric
to assess the ability to predict inputs outside the training set. Finally, noticing that prior
information encoded by kernels helps determine which inputs are more important to achieve
a low estimation error, optimal kernel-based sampling strategies are presented. On the whole,
together with novel propositions, this thesis offers a comprehensive overview on kernel-based
methods for MC which serves as a template for future development of new techniques.

1.0.1 Thesis outline and related publications

Including this introduction, this thesis is comprised of six chapters and two appendices. The
contents of each chapter and the produced publications are summarized below.
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Chapter 2

This chapter introduces the fundamentals of MC and its formulation as the convex mini-
mization of the nuclear norm of the matrix. Algorithms based on proximal gradient (PG)
minimization are commonly used in MC due to their simplicity. However, one of their draw-
backs is a slow convergence speed and high computational cost per iteration due to the
need to perform a singular value decomposition. Two PG-based algorithms are proposed
which rely on a variable regularization parameter in order to increase the convergence speed.
Moreover, the chapter explores the availability of prior information about the missing entries
encoded as a graph mapped to the matrix rows; this prompts a model to viewing the columns
of the matrix as graph signals. Hence, an initialization method is introduced that uses
the information provided by the graph to reduce the iterations required by the PG-based
algorithms to converge. Moreover, the second part of the chapter takes on the recovery of
matrices of graph signals contaminated by noise, and presents a theoretical analysis of the
performance of the standard PG algorithm with an additional graph-based regularization
term.

Publications:

• P. Giménez-Febrer, A. Pagès-Zamora. “Matrix completion of noisy graph signals via
proximal gradient minimization”, IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), March 2017.

Chapter 3

This chapter extends the concept of MC with prior information by introducing the field of
reproducing kernel Hilbert spaces as a tool to encode and leverage said information. Aiming at
a fast and low-complexity solver, the task is formulated as one of kernel ridge regression with a
kernel matrix obtained as the Kronecker product of two smaller kernel matrices. The resulting
MC algorithm can also afford online implementation, while the class of kernel functions also
encompasses several existing approaches to MC with prior information. Numerical tests on
synthetic and real datasets show that the novel approach is faster than widespread methods
such as alternating least-squares (ALS) or stochastic gradient descent (SGD), and that the
recovery error is reduced, especially when dealing with noisy data. Moreover, theoretical
analysis on the mean-square error is presented to give insight into the performance of MC
based on kernel regression.



5

Publications:

• P. Giménez-Febrer, A. Pagès-Zamora and G. B. Giannakis, “Matrix completion and
extrapolation via kernel regression”, IEEE Transactions on Signal Processing, vol. 67,
no. 19, pp. 5004-5017, 1 Oct.1, 2019

Chapter 4

Given the availability of a small percentage of samples, MC algorithms must be able to
predict the unseen entries with low error. However, this error can only be measured on the
available entries. Attempting an excessive error minimization on the observed entries can
lead to overfitting, which entails that the solution is too adjusted to the observations and it
is inaccurate elsewhere. In this chapter, the standard and kernel-based MC algorithms are
examined in terms of their generalization error. This analysis sheds light on the ability of
each algorithm to transfer knowledge from the observed entries onto the unobserved ones,
and the influential factors involved.

Publications:

• P. Giménez-Febrer, A. Pagès-Zamora and G. B. Giannakis, “Generalization error
bounds for kernel matrix completion and extrapolation”, IEEE Signal Processing
Letters, January 2020

Chapter 5

This chapter deals with the selection of the training dataset in kernel-based methods. A
statistical passive sampling approach is derived which, through minimizing the error between
the complete kernel matrix and its Nyström approximation, chooses the set of samples that
minimize an upper bound to the mean square error. Furthermore, the analysis and examples
are focused the reconstruction of sparsely sampled functions lying in reproducing kernel
Hilbert spaces whose kernel matrices adhere to the Kronecker product structure.

Others

Besides the listed publications, during the thesis other research lines have been explored
which are not included in this manuscript. Related to MC, the following two publications
have been elaborated within the field of array processing:
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• V. Garg, P. Giménez-Febrer, A. Pagès-Zamora, I. Santamaría, “Source Enumeration
via Toeplitz Matrix Completion”, IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), May 2020.

• V. Garg, P. Giménez-Febrer, A. Pagès-Zamora, I. Santamaría, "Energy-Efficient DOA
Estimation via Shift Invariance Matrix Completion”, submitted to EURASIP Journal
on Advances in Signal Processing, August 2020.

Unrelated to MC but serving as a first contact with graph theory that led to this thesis,
the following publications address the topic of distributed estimation in sensor networks with
faulty nodes:

• P. Giménez-Febrer, A. Pagès-Zamora. “Matrix completion of noisy graph signals via
proximal gradient minimization”, IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), March 2017.

• P. Giménez-Febrer, A. Pagès-Zamora, R. López-Valcarce. “Online EM-based distributed
estimation in sensor networks with faulty nodes” European Signal Processing Conference
(EUSIPCO), August 2016.



2
Matrix completion on graphs

Applications in fields such as sensor networks, data mining and video processing generate
large amounts of redundant data that can be compressed or even partially discarded without
compromising the performance. Thus, in recent years an increasing attention is being paid
to the matrix completion problem, i.e. the problem of recovering a data matrix given a small
fraction of its entries. Similar to compressed sensing, in the matrix completion (MC) approach
the redundancy reduction is applied at the data collection step, in which the original matrix
is sparsely sampled and the recovery of the unknown entries is performed at a later step
using these sampled entries.

In [13], Candès and Retch formulated the matrix completion problem as a convex
minimization of the nuclear norm of the partially observed matrix, and demonstrated that an
exact recovery of the original matrix is possible whenever the matrix is low rank, incoherent
and uniformly sampled. MC was solved in [13] using semidefinite programming solvers,
which are not suitable for the recovery of large matrices [26] due to high computational
costs. Since then, many algorithms based on first order methods such as proximal gradient
(PG) minimization or Bregman iterations have been proposed thanks to their simplicity and
ease of implementation. Two notable examples are the fixed point iterative (FPI) algorithm
in [27], which performs a PG minimization, and the singular value thresholding (SVT)
algorithm in [26], which is based on linearized Bregman iterations. While the FPI algorithm
minimizes a convex relaxation of the problem in [13], and SVT minimizes the dual problem,
both algorithms iteratively use the proximal operator [28] of the nuclear norm to perform
a gradient descent minimization. This proximal operator shrinks the eigenvalues of the
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8 Matrix completion on graphs

matrix, which requires an eigendecomposition that can be computationally intensive for
large matrices. Moreover, gradient descent minimization is known to have a slow convergence
speed. Therefore, algorithms based on gradient descent often seek to increase the convergence
speed and reduce the computational cost. For instance, the fixed point continuation (FPC)
algorithm in [27] uses a warm-start technique on the regularization parameter of the nuclear
norm, whereas the accelerated PG algorithm in [29] extends the FPC algorithm with an
additional interpolation step in order to further speed up the convergence. On the other
hand, the iterative partial matrix shrinkage algorithm in [30] reduces the cost of the proximal
operator by only shrinking the non-dominant singular values of the matrix at each iteration.

The assumptions of incoherence and uniform sampling imply that the matrix entries
are unstructured, which is usually not the case for real data. Therefore, some works have
extended the work in [13] by including extra information about hidden matrix structures
into the problem formulation. For instance, in [14] an additional restriction is imposed so
that the columns of the recovered matrix are a linear combination of the basis elements in a
dictionary. In [18], it is observed that the temperature measurements taken by the sensors in
a wireless sensor network are temporally stable in the short term, so a regularization term is
added to ensure the short term stability of the recovered data. In the problem of predicting
an incomplete matrix of ratings in [19], groups of users with similar background are assumed
to have similar preferences, thus a penalty term is included to reduce the variability of the
predicted ratings within a group. A different approach to include extra information is adopted
in [15], where a fraction of the matrix entries are sampled according to their local coherence,
which is deemed to be indicative of their relevance to the posterior matrix recovery.

The field of signal processing on graphs provides a framework to model the interdependence
between the entries in the matrix, and leverage this information. As described in [31,32], this
novel field extends classical signal processing tools such as filtering or domain transformations
and applies them to signals on a graph, so that the vertices in the graph measure signals and
the graph edges model the underlying relational structure of those signals. The connections
between the vertices are represented by the weighted adjacency matrix of the graph, which
can be known beforehand or inferred from the data as, for instance, in [33]. With regards
to the matrix completion problem, so far the existing works under the signal processing on
graphs perspective take advantage of the fact that the graph signals are known to be smooth
on a given graph. For instance, in [21] the signals are assumed to be smooth on a graph when
the data from connected vertices have similar values. Hence, the p-Dirichlet norm is added as
a regularization function to the problem in [13] to enforce this smoothness on the recovered
data. Additionally, a function named total variation is used in [20] as a regularization term
to enforce the graph structure described by the adjacency matrix. Although not linked to
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the signal processing on graphs framework, there are other works on matrix completion that
rely on graph theory concepts, such as [34], where the sampling of the complete matrix is
modeled as a bipartite graph in order to derive theoretical recovery guarantees related to the
graph Laplacian.

This chapter focuses on the recovery of partially observed graph signals that are arranged
in a data matrix; the content is organized as follows. Section 2.1 introduces the MC formula-
tion and theoretical foundation. Section 2.2 presents the proximal gradient algorithm and
introduces two variants with reduced convergence time and, therefore, less computational
load. Section 2.3, using the extra information provided by the adjacency matrix of the graph,
presents an initial approximation that proves to further speed up the convergence of the
studied PG-based algorithms. Finally Section 2.4 analyzes the performance of MC when
dealing with noisy graph signals and how the Laplacian matrix of the graph improves the
recovery result.

2.1 Matrix completion

Let F ∈ RN×L be an unknown matrix which can only be observed through a subset of its
entries, as depicted in Fig. 2.1. With Ω ⊆ {1, . . . , N} × {1, . . . , L} denoting the set of indices
of the observed entries, and PΩ(·) being the projection operator such that

PΩ(F )i,j =

Fi,j , when (i, j) ∈ Ω,

0, when (i, j) 6∈ Ω.
(2.1)

The MC problem aims at recovering F from M = PΩ(F ), defined as the observed matrix in
absence of noise. Denoting rank(F ) = r, and given the singular value decomposition (SVD)
F = UΣV T , where U = [u1, . . . ,uN ], V = [v1, . . . ,vL] and Σ is rectangular diagonal with
Σii = σi ∀i ≤ r and zero elsewhere, we write

F =
r∑

n=1
σnunv

T
n (2.2)

and its entries as Fi,j =
∑r
n=1 σnun(i)vTn (j). This decomposition evidences that recovering F

amounts to obtaining its SVD. Indeed, the SVD has r(N+L+1) variables, such that one would
require enough observations to reconstruct the singular values and vectors while satisfying
the orthonormality constraints. Hence, since the SVD must satisfy r(r + 1) orthonormality
constraints, the degrees of freedom (DOF) of a matrix are r(N + L− r) [13].

Since in MC applications the number of observations is usually very low, it is unlikely that
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Figure 2.1: Observed matrix (left) and complete matrix (right). Squares in white represent
unobserved entries.

the SVD can be recovered since there may exist an infinite number of possible SVDs solving
the undetermined equation system PΩ(F )i,j =

∑r
n=1 σnun(i)vTn (j) ∀ (i, j) ∈ Ω. Hence, one

needs to establish a prior on F so that the DOF are reduced. In low-rank matrix completion
this prior amounts to assuming that r � min{N,L}, where hereafter we will assume that
L > N without loss of generality. Then, the recovery problem is formulated as

F̂ = arg min
F∈RN×L

rank(F ) (2.3)

s.t. Mij = PΩ(F )ij for (i, j) ∈ Ω.

The optimization problem (2.3) amounts to finding the matrix with the lowest rank that
fits the already observed entries indexed by Ω. Due to its combinatorial nature, solving (2.3)
is NP-hard, meaning that it cannot be solved in polynomial time. Nevertheless, there exist
theoretical guarantees. In order for (2.3) to have a unique solution, the map PΩ(F ) must be
injective on the solution space to (2.3) of matrices with limited rank; this is accomplished
with high probability when the number of observations is |Ω| ≥ 4Lr − 4r2 and r ≤ L/2 [35].
To overcome issues with (2.3), the approach taken in [36] is to replace the rank function with
the nuclear norm as a convex surrogate. The ensuing problem is

F̂ = arg min
F∈RN×L

‖F ‖∗ (2.4)

s.t. Mij = PΩ(F )ij for (i, j) ∈ Ω,

where ‖F ‖∗ = Tr(
√
F TF ) is the sum of the singular values of F . This approach stems from

the least-squares problem coupled with l1 regularization used in compressed sensing [5]. Like
the l1 norm, the nuclear norm promotes sparsity in the singular values of F̂ . Indeed, the
nuclear norm is equivalent to the l1 norm applied to the singular values, i.e., ‖F ‖∗ = ‖Σ1‖1.
Therefore the nuclear norm minimization in (2.3) causes the smaller singular values to
approach or become zero, hence resulting in a low-rank solution.
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To illustrate the sparsifying effect of the nuclear norm, let us consider the l1-regularized
least-squares problem

arg min
x

‖y −Bx‖22 + µ1‖x‖1 (2.5)

and compare it to its l2-regularized counterpart

arg min
x

‖y −Bx‖22 + µ2‖x‖22 (2.6)

where µ1, µ2 ≥ 0. In MC terms, this would be a comparison between the nuclear and
Frobenius norms as regularizers. Due to its nonlinearity, the l2 norm penalizes the largest
terms more, whereas the l1 penalizes all entries in the vector equally. Consequently, the
l1 norm is more prone to induce sparse solutions. The two problems (2.5) and (2.6) are
equivalently written [37] as

arg min
x

‖y −Bx‖22 (2.7)

s.t. ‖x‖1 ≤ β1

arg min
x

‖y −Bx‖22 (2.8)

s.t. ‖x‖2 ≤ β2

for adequate parameters β1, β2 ≥ 0. Fig. 2.2 shows an example of the solution obtained by
both problems for a bidimensional x. Due to the shape of the feasible set, the l1-constrained
problem is more likely to have one of the estimated components be zero.

x1

x2

x̂OLS

Figure 2.2: Minimization of a function constrained with the l1 and l2 norms, where x̂OLS denotes
the solution obtained through ordinary least-squares regression. The ellipses represent the level
curves of the loss function, and the colored square and circle represent the feasible area of the l1
and l2 constraints, respectively.

It has been proven [13] that the solution to (2.4) matches that of (2.3) when the following
conditions are met: F is incoherent, the samples are taken uniformly at random, and the
number of samples is large enough. The notion of incoherence points to a matrix with no
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hidden underlying structure and information evenly spread across the matrix, such that all
entries are equally important for the recovery. More specifically, an incoherent matrix has
singular vectors whose entries have similar magnitude instead of being concentrated in a few
large coordinates. The coherence [36] is measured on the space spanned by the columns or
rows of a matrix and, given a vector space U ⊆ RN of dimension r, it is expressed as

τ(U) = N

r
max

1≤i≤N
‖PUei‖2 (2.9)

where PU is the orthogonal projection matrix onto U , ei is the ith vector of the canonical
Euclidean basis, and max1≤i≤N ‖PUei‖2 ≤ 1. Letting U and V correspond to the column
and row spaces of F spanned by the singular vector matrices U and V , respectively, it is
assumed [36] that there exist constants τ1 and τ0 such that

max(τ(U), τ(V )) ≤ τ0 and (2.10)

‖
r∑
i=n

unv
T
n ‖∞ ≤ τ1. (2.11)

With PU =
∑r
i=n unu

T
n and PV =

∑r
n=1 vnv

T
n , τ0 bounds the maximum correlation

with the standard basis of the rows and columns of F . Similarly, τ1 bounds the maximum
correlation between the rows of U and V . The lower the coherence, the lower the chance
that there exists an entry which must be observed in order to be recovered. Take for instance
the N ×N matrix



1 0 0 · · · 0
0 1 1 · · · 1
0 1 1 · · · 1
...

...
... . . . ...

0 1 1 . . . 1


(2.12)

This matrix has two left singular vectors: [1, 0, . . . , 0]T and 1√
N−1 [0, 1, . . . , 1] with associated

singular values 1 and N − 1, respectively. Having r = 2, the matrix attains a maximum
coherence value (2.9) of N/2. At its maximum value, the coherence indicates that one singular
vector is equal to a vector in the standard basis. Hence, maximum coherence means that
there are entries which must be observed; otherwise they cannot be recovered. This is the
case for the entry at (1, 1) in the example matrix, since not observing it would result in an
estimated all-zeros row or column. On the other hand, the second singular vector has more
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evenly spread values. Hence, reconstructing the second block of ones in (2.12) only requires
a few observations per row.

As previously stated, the choice of observation set plays an important role in MC.
If the matrix is highly coherent, some entries will need to be observed in order to be
recovered accurately. On the other hand, a matrix with low coherence allows for a less
structured sampling scheme. Hence, in the MC theory it is usually required that the matrix
be incoherent so that the observations can be taken uniformly at random. This is an ideal
sampling distribution since it requires no prior knowledge about the matrix and can be
easily implemented. When τ0 is small and the observations are taken uniformly at random,
|Ω| ≥ CL

6
5 r logL for a constant C observations are required for exact recovery with high

probability [13].

While an exact recovery is possible with (2.4), observations are often contaminated with
noise that will induce an estimation error due to the equality constraint. For instance, in
the movie-user scenario each rating might have an associated indecisiveness factor which
makes the rating not reflect the actual opinion of the user. Let us update the model for the
observed matrix to

M = PΩ(F ) +E (2.13)

where E is a noise matrix with zeros at the entries (i, j) /∈ Ω. Given this model, allowing
for some change in the observed entries will prevent overfitting to the noise and reduce its
impact. Thus, (2.4) can be modified [36] to

F̂ = arg min
F∈RN×L

‖F ‖∗ (2.14)

s.t. ‖M − PΩ(F )‖F ≤ θ for (i, j) ∈ Ω.

The switch to inequality constraints controls the maximum change in the observed entries,
which will percolate to the estimates of the unobserved entries and can result in an overall
reduced estimation error. Equations (2.4) and (2.14) can be cast as semidefinite programming
(SDP) problems and solved with SDP solvers such as SeDuMi and SDPT3 [27]. Still, these
solvers become very slow for matrices with N,L� 100 [27,38].

There exist alternative formulations to (2.4) and (2.14) which focus on reducing the
computational cost while maintaining accuracy [39]. Instead of directly solving the convex
optimization problem, these approaches solve its Lagrangian version

arg min
F∈RN×L

1
2 ‖M − PΩ(F )‖2F + µ‖F ‖∗ (2.15)
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Given a correct adjustment for parameters θ in (2.14) and µ in (2.15), both problems can
be made equivalent [38]. While (2.4) and (2.15) are not equivalent, the solution to (2.15)
serves as an approximation to that of (2.4) when E = 0. The optimal choice of µ depends
mainly on the number of observed entries, the amount of noise, and the rank of the unknown
matrix. Setting a larger µ will yield a lower-rank solution with a poor fit to the observations,
i.e., ‖M − PΩ(F )‖2F will be large. On the other hand, a small µ will provide a better fit to
the observations and less restriction on the rank. When there are very few observations or
high noise, it is preferable to set a large µ in order to prevent overfitting to M and achieve
better accuracy for the unknown entries. As toy example, Fig. 2.3 depicts the underfitting
and overfitting problems in polynomial regression. In MC terms, choosing a higher degree
polynomial is analogous to allowing a higher rank solution, i.e., setting a small µ. In real
applications, µ is typically chosen by cross-validation: the MC algorithm is run on a training
dataset for several values, and the value that gives the smallest error on a different testing
dataset is chosen.

Overfitting
f(x)

x

Adequate
f(x)

x

Underfitting
f(x)

x

Figure 2.3: Fitting a noisy quadratic function with a low (left), adequate (middle), and high (right)
degree polynomial. The overfitted polynomial attains a very small error on the training data but it
will have a high error on any new data since it does not correctly estimate the quadratic function.

Among the algorithms for minimizing (2.15), two popular options are those based on
matrix factorization [39, 40], and proximal gradient [27, 38, 41]. While factorization-based
algorithms are faster, they solve a nonconvex version of (2.15). On the other hand, proximal
gradient solves the convex (2.15), which has a guaranteed unique minimum. Factorization-
based approaches will be discussed in Chapter 3, and the next section introduces proximal
gradient minimization for MC.

2.2 Proximal gradient minimization for matrix completion

Proximal algorithms are a type of methods that solve optimization problems by means of a
proximal operator [28,42]. This operator is especially useful when dealing with nonsmooth
objective functions since it turns them into smooth ones. Its combination with gradient
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descent yields the proximal gradient (PG) algorithm, which can lead to a simple and efficient
iterative minimization scheme. PG is used in MC as an alternative to SDP which allows for
the recovery of larger matrices in simple repeating steps. This section first reviews concepts
on proximal operators, and then details the derivation of the PG algorithm for MC.

The proximal operator associated with a convex function f : X → R, where X is a Hilbert
space, is defined as

proxf (v) = arg min
x

1
2t‖x− v‖

2
2 + f(x) (2.16)

where t > 0 is a weight parameter. There are different interpretations for the proximal
operator, such as the Moreau-Yosida envelope or as a trust region problem [43]. The latter is
the simplest, and it boils down to the fact that the proximal operator finds the minimum of
f around a point v. Take for instance the indicator function of a set Y

I(x) =

0, when x ∈ Y,

∞, when x 6∈ Y.
(2.17)

Its proximal operator proxI(v) = arg minx∈Y ‖x − v‖22 turns out to be the orthogonal
projector onto Y. The proximal operator has the following important properties:

• Convexity.

• Firm nonexpansiveness: ‖proxf (v)−proxf (y)‖22 ≤ 〈v−y,proxf (v)−proxf (y)〉∀x, y ∈ X .

• A fixed point of proxf is also a minimizer of f .

These properties guarantee that consecutive applications of (2.16) will reach a fixed point
which will minimize f . Moreover, this is also true for nonsmooth f , since the proximal
operator is smooth. Finally, the evaluation of (2.16) can often yield a function that is easy to
evaluate and hence simplify the minimization process; see Fig. 2.4 for an example depiction.

In MC, the objective in (2.15) is a convex nonsmooth function which can be written as

f(F ) = g(F ) + h(F ) (2.18)

where g(F ) = 1
2‖PΩ(F )−M‖2F is a smooth component and h(F ) = µ‖F ‖∗ is nonsmooth.

Therefore, a proximal algorithm will be able to find its minimum. The PG algorithm for MC
which minimizes (2.18) is an iterative scheme that executes two steps repeatedly: first, a
gradient step towards the minimum of g is taken and second, the proximal operator of the
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x0x1x2 x

f(x)

Figure 2.4: Minimization of the nonsmooth f(x) = |x|, colored in blue, via successive application
of a proximal operator at xk, k = 0, 1, 2. The lines in black represent 1

2t
‖x− v‖22 + f(x) in (2.16)

for v = xk, and the symbol ⊕ marks its minimum, i.e., proxf (xk).

nuclear norm is applied. The two steps are executed as follows

F ′ = Fk−1 − t∇g(Fk−1) (2.19)

Fk = Stµ(F ′). (2.20)

where Stµ is the proximal operator of the nuclear norm, also known as matrix shrinkage
operator (MSO). Following the formulation in (2.16), given Z with SVD Z = UZΣZVZ the
MSO is

Stµ(Z) = arg min
F

1
2t‖F −Z‖

2
F + µ‖F ‖∗ (2.21)

= UZDµ(ΣZ)VZ (2.22)

where

Dµ(ΣZ)n,n =

(ΣZ)n,n − µ, when (ΣZ)n,n ≥ µ,

0, otherwise.
(2.23)

for n ≤ rank(Z). Actually,Dµ is the vector shrinkage operator [44] used to solve l1-regularized
problems as the proximal operator of the l1 norm. This operator shrinks every singular value
of Z by an amount µ, hence making the smaller singular values zero when applied repeatedly.
Combining (2.19) and (2.20) into a single operation, the PG estimate of F at iteration k is

Fk = Stµ(Fk−1 − t∇g(Fk−1)) = Stµ(Fk−1 − t(PΩ(Fk−1)−M)). (2.24)
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Since each iteration of (2.24) requires an SVD decomposition, its cost is O(N2L) per iteration.
The complete derivation of the PG algorithm for MC is detailed below.

Proximal gradient derivation for MC

To begin with, we will focus on minimizing g(F ) and show how the gradient descent method,
which generates a sequence F1,F2, . . . of estimates of F , results from the reiterated application
of a proximal operator.

Let qg(F ,Z) denote the quadratic approximation to g(F ) around a point Z, defined as

qg(F ,Z) = g(Z) + 〈∇g(Z), (F −Z)〉+ 1
2t ‖F −Z‖

2
F . (2.25)

Then, the kth gradient iteration F̌k = F̌k−1 − t∇g(F̌k−1) for minimizing g(F ) is obtained
by optimizing (2.25) for Z = F̌k−1 as shown below.

F̌k = arg min
F∈RN×L

qg(F , F̌k−1)

= arg min
F∈RN×L

g(F̌k−1) + 〈∇g(F̌k−1), (F − F̌k−1)〉+ 1
2t

∥∥∥F − F̌k−1

∥∥∥2

F
(2.26)

= arg min
F∈RN×L

g(F̌k−1) + Tr(∇g(F̌k−1)TF −∇g(F̌k−1)T F̌k−1)

+ 1
2t Tr(F TF − 2F T F̌k−1 + F̌ Tk−1F̌k−1)

= arg min
F∈RN×L

Tr
[
∇g(F̌k−1)TF −∇g(F̌k−1)T F̌k−1 + 1

2t (F
TF − 2F T F̌k−1 + F̌ Tk−1F̌k−1)

+ t2

2 ∇g(F̌k−1)T∇g(F̌k−1)
]

= arg min
F∈RN×L

1
2t

∥∥∥F − (F̌k−1 − t∇g(F̌k−1))
∥∥∥2

F
. (2.27)

Comparing with (2.16), we observe that the operation in (2.26) is actually the proximal
operator of the linear approximation to g(F ) around F̌k−1. Moreover, (2.27) is minimized
for F = F̌k−1 − t∇g(F̌k−1). Therefore, successively applying the proximal operator yields
the gradient descent algorithm and, given a correct choice for t it will reach a fixed point
which will also be a minimizer of g(F ).

Since (2.25) is an upper bound on g(F ) when t ∈ (0, 1/C] [43], where C is the Lipschitz
constant of g(F ), the minimization of qg(F ,Z) in (2.26) is a majorization-minimization type
algorithm. That is, we first approximate a function with an upper bound and then minimize
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this bound. Applying this same idea to (2.18), we obtain the approximation

qf (F ,Z) = qg(F ,Z) + µ‖F ‖∗. (2.28)

Minimizing (2.28) around a Fk−1 following a similar process as in (2.27) yields

Fk = arg min
F∈RN×L

qf (F ,Fk−1) = arg min
F∈RN×L

1
2t ‖F − (Fk−1 − t∇g(Fk−1)‖2F + µ ‖F ‖∗ . (2.29)

We have that (2.29), which is solved by (2.24), is the proximal operator of µ‖F ‖∗ applied
around Fk−1−t∇g(Fk−1). Hence, this iterative scheme is known as proximal gradient descent.

2.2.1 Proximal gradient algorithms with varying regularization parameter

The regularization parameter µ in (2.15) controls the balance between the error with respect
to M and the nuclear norm. Moreover, it also controls the convergence speed of the iterative
algorithm in (2.24). A large µ leads to fasert convergence [43] to a solution of lower nuclear
norm, whereas with a small µ the algorithm takes longer to converge but it reaches a solution
with a better fit to the observed entries. Thus, while there is an optimum µ to minimize the
error in recovering F , its value must also be chosen to optimize the overall performance of
the PG.

Typical implementations of the proximal gradient algorithm use a warm start technique to
increase the convergence speed when MC is to be solved for a given regularization parameter
µ̄. This is shown in Algorithm 1, where (2.15) is sequentially solved with (2.24) for a list
of Nµ values µ1 > µ2 > . . . > µNµ = µ̄, with the solution obtained for a µi being used as
a starting point for the proximal gradient with the next µi+1. A switching criterion Φ(·) is
evaluated at each iteration to determine whether a solution has been reached and, if it yields
true, a switch to the next µ is made. For instance, in the fixed point continuation (FPC)
algorithm from [27] the switch is made once the proximal gradient converges to a fixed point,
which is controlled by the switching criterion

ΦFPC(Fk,Fk−1) =
(
‖Fk − Fk−1‖2F
‖Fk−1‖2F

< εFPC

)
, (2.30)

where εFPC is a small positive constant. Moreover, the FPC algorithm sets the next regular-
ization parameter as

µi+1 = max{µi · ηFPC , µ̄}, (2.31)

where ηFPC ∈ (0, 1) is the reduction factor. The algorithm stops when a maximum number
of iterations is reached or when the proximal gradient has converged for µ̄.
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Algorithm 1: proximal gradient with varying µ
Input :M ,F0, µ0, µ̄, t

Output : F̂
function pg(M ,F0, µ0, µ̄, t)
F = F0
for µ = µ1, µ2, . . . , µ̄ do

do
F ← Stµ(F − t(PΩ(F )−M))

while not Φ(·)
end
return F

For the sake of convenience, let us define the error of a matrix Z with respect to
F as eF (Z) = ‖Z − F ‖2F, and the error with respect to the observed entries as eM (Z) =
‖PΩ(Z)−M‖2F. Moreover, let us assume that µ̄ minimizes eF (F̂ ) and, therefore, any solution
obtained for µi > µ̄ will have a larger estimation error. Under this assumption, the FPC
algorithm can become inefficient since reaching a fixed point for a given µi might require
extra iterations that do not contribute significantly to lowering the error. Therefore, the
switch to the next µ can be made earlier in order to further reduce the iterations to arrive at
the solution for µ̄. In this section two proximal gradient algorithms are proposed, namely
steered proximal gradient (SPG) and vanishing proximal gradient (VPG), that have a varying
regularization parameter and rely on a criterion other than the convergence of the proximal
gradient to decide when to switch to a lower µ. Thus, while the final solution obtained by
each algorithm is the same as the standard proximal gradient for µ = µ̄, it is reached in a
smaller number of iterations.

Given the assumption that a smaller µi leads to a more accurate solution since it is closer
to µ̄, and that it also leads to a smaller error with respect toM , the SPG algorithm is based
on Algorithm 1 and uses the following switching criterion:

ΦSPG(Fk,Fk−1) =
(
eM (Fk−1)− eM (Fk)

eM (Fk−1) < εSPG

)
(2.32)

where εSPG is a small positive constant. With this criterion, when the error in the observed
entries increases between two consecutive iterations it is assumed that the proximal gradient is
moving away from the optimum solution and µ should be made smaller in order to reduce the
error and steer the proximal gradient towards F . The sequence of regularization parameters
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Algorithm Φ(·) µi+1

Conv. PG true µ̄

FPC ‖Fk−Fk−1‖2
F

‖Fk−1‖2
F

< εFPC max{µi · ηFPC , µ̄}

SPG eM (Fk−1)−eM (Fk)
eM (Fk−1) < εSPG max{µi · ηSPG, µ̄}

VPG true max{µ0 · ηkV PG, µ̄}

Table 2.1: Switching criteria and regularization parameters for the PG-based algorithms.

for this algorithm is given as

µi+1 = max{µi · ηSPG, µ̄}. (2.33)

As a simpler alternative to the SPG algorithm, the VPG algorithm implements the conven-
tional proximal gradient algorithm in (2.24) and exponentially reduces the value of µ at each
iteration by setting its value as

µk = max{µ0 · ηkV PG, µ̄}. (2.34)

For the sake of clarity, note that the iterative solution given in Algorithm 1 is general
for the PG-based algorithms, namely the conventional PG, FPC, SPG and VPG algorithms
with switching criteria and regularization parameters given in Table 2.1.

2.3 Matrix completion for graph signals

As mention in the introduction to the chapter, F might have an underlying structure which
can leveraged to improve the recovery result. One possible approach is to model this structure
through a graph derived or known beforehand. In this section, the columns of the unknown
matrix are assumed to be signals lying on a known graph; for an introduction to the topic of
graph signals, see Appendix A. Using the graph adjacency matrix, an initialization method
for the PG algorithm is presented, which gives a starting point which is closer to the minimum
and therefore improves the overall convergence speed. Moreover, numerical results comparing
the performance of the algorithms introduced in the previous section are provided, while
also showing the benefits of using a graph-based initialization method.
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2.3.1 Graph-based proximal gradient initialization

Proximal gradient algorithms are usually initialized to the all-zero matrix given the lack of
previous information about the data. With the aim to increase the convergence speed, in
this section the PG-based algorithms in Table I are initialized to a point hopefully closer to
the optimum solution by making use of the fact that the columns of F are graph signals
lying on a graph G = (V, E ,A).

Leveraging the graph signal inpainting method in [45], a preliminary estimate of F can
be obtained as:

F̌ = arg min
F∈RN×L

‖F −AF ‖2F (2.35)

s.t. PΩ(F ) = M

and set it as the initialization F0 in Algorithm 1. This optimization problem recovers the
matrix that, given the observed M , is smoothest with respect to the graph with weighted
adjacency matrix A. Indeed, the norm

T (F ) = ‖F −AF ‖2F (2.36)

is known as the total variation function and was used in [20] as a regularization term added
to (2.15) to enforce the graph structure on the recovered data. When the total variation is
small, A accurately describes the underlying relational structure of the graph signals in F .

The solution to (2.35), derived in [45] for the vector case, i.e. L = 1, can be used to
solve (2.35) when L > 1 since the problem is decoupled columnwise. For completeness, we
reproduce the solution in [45] to recover the lth column of F̌ in (2.35), i.e. f̌l, using the
weighted adjacency matrix A and the lth column of M , denoted by ml.

Let us first define the subset of observed entries in column l as Ωl = {i | (i, l) ∈ Ω} and the
subset of unobserved entries as Ωcl = {i | (i, l) ∈ Ωc}. Then, given a graph signal z ∈ RN×1,
we also define the operators (·)Ωl and (·)Ωcl as

zΩl = [z(i) | i ∈ Ωl], (2.37)

zΩcl = [z(i) | i ∈ Ωcl ]. (2.38)

The reordered graph signal is defined as

zol =
[
zΩl

zΩcl

]
(2.39)
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a vector whose |Ωl| first entries are indexed by the observed entries of ml, and the |Ωcl | last
entries are indexed by the zero entries of ml. Similarly, let us define the reordered weighted
adjacency matrix Ao

l as the matrix satisfying Ao
l z
o
l = (Az)ol , where (Az)ol denotes the

reordered version of Az as in (2.39). Then, according to [45], the reordered lth column of F̌
in (2.35) is given by f̌ol = [mΩl

l ; f̌Ωcl
l ], where

f̌
Ωcl
l = −D−1

Ωc
l
,Ωc
l
·DΩc

l
,Ωl ·m

Ωl
l , (2.40)

Dl = (I −Ao
l )T (I −Ao

l ) is partitioned as

Dl =
[
DΩl,Ωl DΩl,Ωcl
DΩc

l
,Ωl DΩc

l
,Ωc
l

]
(2.41)

and each submatrix Dν,φ has dimensions |ν| × |φ|.
Calculating the exact solution to (2.35) using (2.40) can be very computationally intensive

for large matrices. Indeed, assuming M has s observed entries per column on average, the
computational cost of (2.40) is O(L((N − s)3 + (N − s)s)) ≈ O(L(N − s)3)1.

Therefore, and since we are simply looking for a convenient initialization F0 for the
PG-based algorithms, we opt for an alternative expression based on an approximate solution
to (2.35) that is less computationally demanding and performs excellently as it will be shown
in the simulations.

Let the eigendecomposition of the adjacency matrix be A = QΛQT , and Ωc denote the
complementary set of Ω. Knowing that the best rank P approximation to a matrix in terms
of mean-square error is built using its first P singular vectors, the initialization matrix is

F0 = PΩc(Q0C0) +M , (2.42)

where Q0 = [q1, . . . , qP ], and C0 ∈ RP×L is a coefficient matrix obtained as

C0 = arg min
C

‖M − PΩ(Q0C)‖2F . (2.43)

Eq. (2.43) finds an approximation to M considering only the non-zero entries. Since the
problem is columnwise decoupled, if we denote C0 = [c1, . . . , cL], then (2.43) is equivalent
to solving

{c1, . . . , cL} = arg min
c1,...,cL

L∑
l=1
‖m̄l − SlQ0cl‖22, (2.44)

1For each column, the inversion of D̃ΩC
l

,ΩC
l

requires O(N − s)3 operations [46], whereas the products
in (2.40) need O(N(N − s)).
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where m̄l is a vector of length |Ωl| containing the observed samples of the lth column of M ,
and Sl is a |Ωl| ×N sampling matrix. The matrix Sl has a single non-zero element per row
equal to 1, and it is built so that m̄l = Slml. The solution to (2.44) is

cl = (QT
0 S

T
l SlQ0)−1QT

0 S
T
l m̄l ∀l = 1, . . . , L. (2.45)

At this point, we want to compare the computational cost of using (2.40), which is
O(L(N −s)3) to the cost of obtaining (2.42). Assuming again an average of s observed entries
per column, the computational cost of (2.42) is the cost of calculating C0, which entails the
eigendecomposition of A with cost O(N3) [46], plus the cost of the multiplications involved
in (2.45) and (2.42), which results in a total cost O(N3 +N2P + L(P 3 + P 2 + P 2s+ Ps))
that can be approximated to O(N3) for small P and large N . This is a smaller cost than
one PG iteration for N < L.

When the number of observations is low, we can safely assume that the cost of the
proposed approximation (2.42) is lower than the cost of using (2.40). Moreover, we can just
calculate the top P eigenvectors to obtain Q0, which would greatly reduce the computational
cost. For instance for a 500 × 500 matrix with s = 100 and a weighted adjacency matrix
with P = 1, the computational cost of calculating the approximation is O(125 · 106). If we
used (2.40) instead, the cost is O(32 · 109), which is 256 times higher than the cost of our
initialization.

2.3.2 Numerical tests

The matrix completion algorithms have been tested on a synthetic dataset and a real dataset
of temperature measurements. We compare the following algorithms: a) the conventional PG,
b) the FPC algorithm in [27], c) the SPG and VPG algorithms proposed in Section 2.2.1,
and d) the graph signal completion via total variation regularization (GMRC) algorithm
in [20]. GMRC adds the total variation (2.36) to (2.15) as a regularization term and performs
a PG minimization. All the algorithms have been tested initializing them to F0 = 0, to which
we will refer as zero-initialized (ZI), and to the solution in (2.42), to which we will refer as
graph-initialized (GI).

Table 2.2 shows the values of the algorithm parameters used in the simulations. The con-
ventional PG and GMRC algorithms have a constant nuclear norm regularization parameter
of value µ̄. The algorithms have been run for K = 500 iterations over Nrea = 50 realizations
with different percentages of observed samples, denoted by Ps = |Ω|

N ·L · 100. As a performance
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Parameter
Dataset

Synthetic Real
µ̄ 50 0.03
µZI

0 10µ̄ 10µ̄
µGI

0 5µ̄ 5µ̄
ηFPC 0.75 0.65
ηSPG 0.65 0.55
ηV PG 0.85 0.65
εFPC 10−4 10−4

εSPG 0.06 0.06
t 1 1

Table 2.2: Algorithm parameters used in the simulations.

metric for the algorithms, we use the normalized mean square error at iteration k

NMSEk = 1
Nrea

Nrea∑
n=1

‖Fk,n − F ‖2F
‖F ‖2F

, (2.46)

where Fk,n is the estimate of F at iteration k and realization n. We say that an algorithm
has converged when the difference in the NMSE between two consecutive iterations is below
10−4, that is, when

NMSEk −NMSEk−1 < 10−4. (2.47)

Additionally, we use the normalized total variation

T̄ (F ) = ‖F −AF ‖
2
F

‖F ‖2F
(2.48)

as a measure of the smoothness of the graph signals for the given weighted adjacency matrix.

Synthetic dataset

Similar to the dataset used in [26], the synthetic dataset H is a 500× 515 matrix of rank 10
generated as H = V1V2

‖V1V2‖2
F
, where V1 and V2 are 500× 10 and 10× 515 matrices respectively

with random independent and identically distributed entries with distribution N (0, 1). Let
us define the 500× 15 matrix

T = [h1, . . . ,h15] +E (2.49)
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Figure 2.5: NMSE vs. iterations for Ps = 20% for the synthetic dataset with the algorithms
initialized to F0 = 0 (solid lines) and with Eq. (2.42) (dashed lines).

where E is a matrix of noise with distribution N (0, ‖F ‖
2
F

7NL I). This noisy T is used to build
the adjacency A = UTU

T
T , where UT denotes the left singular vector matrix of T . The

algorithms have been run on the 500× 500 matrix F = [h16, . . . ,h515]. For the graph-based
initialization, we use (2.42) with P = 10. The normalized total variation (2.48) for this
dataset F and A is 0.2013.

Fig. 2.5 shows the evolution of the NMSE for all the algorithms when Ps = 20%, with
the zero-initialized algorithms shown in continuous lines and the graph-initialized (2.42) in
dashed lines. This graphical distinction between the zero-initialized and graph-initialized
algorithms will be used in all of the figures in this section. We observe in Fig. 2.5 that,
for both the zero-initialized and graph-initialized cases, all the algorithms except GMRC
converge to a point with the same NMSE since they end with the same µ, although at
different speeds. The NMSE at iteration 0 is the error of F0, which is 1 for the zero-initialized
algorithms (not shown in the plot) and 0.2 for the graph initialized. Hence, it is clear that
the proposed initialization method reduces the convergence time for all the algorithms, and
that the SPG algorithm has the best performance in this case. This figure also illustrates the
importance of choosing a smaller µ0 for the graph-initialized algorithms. Note that for t = 1
the observed matrix M , which is high-rank, serves as a starting point for the algorithms
when F0 = 0. When F0 is calculated using (2.42) instead, the power of the resulting matrix
is more concentrated in the top eigenvalues, which allows for a lower µ0. Indeed, if µ0 were
too large, the algorithms would begin by moving away from the minimum of (2.15), thus
increasing the error, and would not start approaching the minimum until a small enough µ
were chosen. This is especially critical for the FPC algorithm since its switching criterion
is the convergence of the proximal gradient, which would spend many iterations reaching a
fixed point with a higher error than the starting point.
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Figure 2.6: Iterations vs. Ps for the synthetic dataset.

Fig. 2.6 shows the iterations required to reach the solution for µ̄ for all the algorithms
except GMRC, which we have excluded due to its poor performance, at different percentages
of observed entries. We observe that as the number of samples increases, the number of
iterations is reduced for all the algorithms. In the zero-initialized case, the algorithms with
varying µ outperform the conventional PG, although which one is fastest depends on the
percentage of observed entries. Thus, FPC is faster for low percentages, SPG for middle, and
VPG for high. The convergence speed of the three algorithms largely depends on the choice
of initial µ0 and the rate at which µ decays for each algorithm. When Ps is low, the rank of
M is higher and the initial soft-thresholding operations (2.21) are applied to higher rank
matrices. Therefore, a larger µ is required and the algorithm for which µ decays at a slower
rate obtains better results. On the other hand, when Ps grows the rank of M decreases
and µ needs not be as large. Hence, the VPG algorithm, which has the fastest decaying µ,
performs better.

When the algorithms are initialized using (2.42), Fig. 2.6 shows a reduction in the number
of iterations for all the algorithms with respect to the zero-initialized case. Since the starting
point is closer to the minimum, less iterations are required to reach it. On the other hand, the
gap between the zero-initialized and graph-initialized version of the algorithms gets smaller
as the percentage of observed samples increases. This is due to the fact that the error of
M , which serves as a starting point for the zero-initialized algorithms, with respect to F
decreases. The graph-initialized SPG algorithm is the fastest for low values of Ps, whereas
VPG is the fastest medium and high values.

From the simulations with the synthetic dataset we conclude that the initialization
method proposed in Section 2.3.1 always improves the convergence speed of the proximal
gradient algorithms, especially when the percentage of observed entries is low. Likewise,
the graph-initialized SPG and VPG algorithms proposed in Section 2.2.1 have a higher
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Figure 2.7: NMSE vs iterations for the real dataset.

convergence speed than the conventional PG and FPC algorithms. It should be noted that,
although in the simulations we have tuned their parameters for a wide range of values of Ps,
the performance of the algorithms with varying µ can be improved by setting the µ0 and η
parameters accordingly to the percentage of observed samples. Even so, the graph-initialized
SPG and VPG algorithms are better suited for cases when µ0 cannot be tightly adjusted in
order to prevent the error of the proximal gradient from rising in the first iterations.

Real dataset

The dataset F is a 150 × 365 matrix of temperature readings taken by 150 stations over
365 days in 2002 in the United States [20]. The graph signals xl are the temperature values
measured at each station. In order to obtain the weighted adjacency matrix A, first a graph
G′ with unweighted adjacency matrix P ′ is generated as in [20] for the stations. In this graph,
each station is a vertex and is connected to the 8 geographically closest stations. Next, we
obtain the undirected graph G with symmetric adjacency matrix P = sign(P ′T +P ′). Finally,
the entries of A are calculated as Ai,j = exp(− N2di,j∑

i,j
di,j

), where di,j are the geodesic distances
on G. The normalized total variation for the dataset F is 0.0383, and the observation matrix
is M = PΩ(F ).

Fig. 2.7 shows the evolution of the NMSE for Ps = 20%. We observe that the starting
point of the initialized algorithms is fairly close to the minimum since it has a very low error.
Fig. 2.8 shows the iterations to convergence for all the algorithms at different percentages of
observed entries. Among the zero-initialized algorithms, SPG is faster for low percentages
and VPG is faster for high percentages. We observe a significant reduction in the number
of iterations for the graph-initialized algorithms, especially when Ps is low. Since the total
variation for this dataset is very low, the initialization is more accurate. Similar to the results
with synthetic data, the graph-initialized SPG algorithm is the fastest for low values of Ps,
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Figure 2.8: Iterations vs Ps for the real dataset.

and the graph-initialized VPG for middle-to-high values.

2.4 Matrix completion for noisy graph signals

This section addresses the recovery of partially observed graph signals that are arranged in a
data matrix when the observations are noisy. The problem is solved by adding the Laplacian
quadratic form as a regularization term as in [21,47], and using the standard PG method,
which facilitates the derivation theoretical bounds on the recovery error and give insight
into the effect of the regularization. Moreover, numerical results are presented showing the
performance of the regularized PG compared to its non-regularized counterpart.

2.4.1 Regularized proximal gradient minimization

When a graph signal is smooth on its graph, the values corresponding to connected vertices
have similar values. On the other hand, if the signal is contaminated by noise, the noise
does not necessarily satisfy the smoothness condition. Therefore, we can reduce the impact
of the noise and take advantage of the structural information provided by the graph by
incorporating its Laplacian matrix into the MC formulation. The quadratic Laplacian form
measures the smoothness of a signal on the graph and is defined as

L(F ) = Tr(F TLF ) = 1
2
∑L

l=1

∑
(i,j)∈E

Ai,j(Fi,l − Fj,l)2, (2.50)

Thus, the unknown matrix can be recovered by solving

arg min
F∈RN×L

1
2 ‖PΩ(F )−M‖2F + µ ‖F ‖∗ + αL(F ), (2.51)



2.4. Matrix completion for noisy graph signals 29

where the Laplacian quadratic form has been incorporated as an additional term weighted by
a parameter α in order to promote similarity between the vertices connected on the graph.
Note that, although here only the columns of F are considered to be graph signals, both
columns and rows can simultaneously be graph signals on two different graphs. Hence, a
second regularization term can be added to (2.51) to also enforce the graph structure on the
rows. This approach will be detailed in Chapter 3.

Since the Laplacian quadratic form is a smooth function, (2.51) can be solved via the PG
algorithm with the iterative scheme

Fk = Stµ
(
Fk−1 − t∇

(
‖PΩ(Fk−1)−M‖2F + αL(Fk−1)

))
(2.52)

= Stµ (Fk−1 − t(PΩ(Fk−1)−M + 2αLFk−1)) . (2.53)

Section 2.3.1 proposed an initialization method based on the adjacency matrix. Similarly,
L can be used to obtain an initialization point. Let Q0 ∈ RN×P be the matrix containing the
P eigenvectors of L with associated eigenvalue 0. As explained in Appendix A, Q0 contains
the graph signals that are smoothest on the graph so that L(Q0) = 0. Therefore, an initial
point can be obtained as in (2.44) using Q0 as a basis in the least-squares problem.

2.4.2 Error analysis of proximal gradient minimization

This section analyzes the recovery error of the PG algorithm and how the addition of the
Laplacian quadratic form as a regularization term impacts on the noise. To avoid notation
clutter, in this section the sampling operator is denoted as (·)Ω = PΩ(·), and the matrix
shrinkage operator is redefined as

Stµ(F ) = U(Σ− tβF )V (2.54)

where βF denotes a diagonal N × L matrix with main diagonal

dF = [µ, . . . , µ, σd
t
, . . . ,

σD
t

] (2.55)

with D = min(N,L), and {σd, . . . , σD} are the singular values of F smaller than tµ, that is,
σi < tµ ∀i ≥ d. Before introducing the main results, the following lemmas and assumptions
are defined and made:

Assumption 1. Similar to Assumption 7 in [17], we assume that, given small enough α and
t, there exists a constant 0 ≤ γ < 1 such that for any F∥∥(I − 2αtL)F − tFΩ∥∥

F ≤ γ ‖F ‖F . (2.56)
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Lemma 2.1. Given a pair of matrices F and Z,

‖Stµ(F )− Stµ(Z)‖F ≤ ‖F −Z‖F . (2.57)

Proof. This property is due to the non-expansiveness of the MSO, and its proof can be found
in [27].

Lemma 2.2. For any F

‖Stµ((I − 2αtL)F )− F ‖F ≤
√
rtµ+ 2αt ‖LF ‖F . (2.58)

Proof. We begin by showing that

‖Stµ((I − 2αtL)F )− F ‖F

= ‖Stµ((I − 2αtL)F )− F + 2αtLF − 2αtLF ‖F

≤ ‖Stµ((I − 2αtL)F )− (I − 2αtL)F ‖F + 2αt ‖LF ‖F . (2.59)

Next, let us define F ′ = (I − 2αtL)F with SVD F ′ = U ′Σ′V ′. Then,

‖Stµ((I − 2αtL)F )−F ‖F ≤ ‖Stµ(F ′)−Stµ(F′ +tµI)‖F + 2αt ‖LF ‖F

≤ ‖Stµ(F ′)−F ′‖F + 2αt ‖LF ‖F (2.60)

which, after applying (2.54) and noticing that rank(F ′) = r, leads to (2.58).

We now introduce the following theorem, which bounds the recovery error of the original
matrix when the observed entries are noiseless:

Theorem 2.1. Let F̂ be the rank r estimate obtained with (2.53) after the PG has converged,
with a noiseless observed matrix FΩ. Then∥∥∥F̂ − F∥∥∥

F
≤
√
rtµ+ 2αt ‖LF ‖F

1− γ . (2.61)

Proof. Since f(F ) = 1
2
∥∥FΩ − FΩ

∥∥2
F + αL(F ) is convex and continuously differentiable, the

proximal gradient converges to a solution in the optimal solution set of (2.51) which is also a
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fixed point of (2.53) [48]. Hence, since F̂ is a fixed point, we have that∥∥∥F̂ − F∥∥∥
F

=
∥∥∥Stµ(F̂ − t(F̂Ω − FΩ + 2αLF̂ ))− F

∥∥∥
F

=
∥∥∥Stµ((I − 2αtL)F̂−t(F̂Ω − FΩ))−Stµ((I − 2αtL)F ) + Stµ((I − 2αtL)F )− F

∥∥∥
F

≤
∥∥∥Stµ((I−2αtL)F̂−t(F̂Ω − FΩ))−Stµ((I−2αtL)F )

∥∥∥
F

+ ‖Stµ((I − 2αtL)F )− F ‖F .

(2.62)

Applying Lemma 1:∥∥∥F̂ − F∥∥∥
F
≤
∥∥∥(I − 2αtL)(F̂ − F )− t(F̂ − F )Ω

∥∥∥
F

+ ‖Stµ((I − 2αtL)F )− F ‖F . (2.63)

Next, we apply Lemma 2 and Assumption 1 and obtain∥∥∥F̂ − F∥∥∥
F
≤ γ

∥∥∥F̂ − F∥∥∥
F

+
√
rtµ+ 2αt ‖LF ‖F (2.64)

which leads to the error bound in Theorem 1.

Intuitively, Theorem 1 shows that the recovery error with noiseless observations can be
reduced by setting a lower µ, as it was anticipated in [49], as well as by choosing a graph on
which the graph signals in F are smooth. Nevertheless, whether the error can be driven to 0
by having µ→ 0 depends on the number of observed entries and their distribution, which is
implicit through the constant γ.

In order to assess the effect of the regularization on the noise, let us switch to another
perspective. In the signal processing on graphs theory [31, 32], QT obtained from the
eigendecomposition of L is referred to as the Graph Fourier Transform (GFT) matrix. The
eigenvectors in Q can be viewed as frequencies on the graph, with the eigenvectors associated
to the smaller eigenvalues corresponding to the lower frequencies, that is, signals that vary
slowly on the graph. Given a vector f , the product Lf = QΛQTf projects the vector onto
the graph frequency domain of L, scales the frequency coefficients by Λ, and projects the
result back to the graph domain given by Q. Therefore, the result of Lf is a highpass filtered
version of the vector since the lowest frequency coefficients in QTf associated with the
smallest eigenvalue, which is equal to 0, are eliminated and the rest are scaled according to
Λ. Then, we can introduce the following theorem:

Theorem 2.2. Given I0 = ΛΛ†, where Λ† is the pseudoinverse of Λ, the frequency content
of F̂ on the nonzero frequencies of the graph is bounded as∥∥∥I0Q

T F̂
∥∥∥

F
≤ 1

2α

(∥∥∥Λ†QT (FΩ − F̂Ω)
∥∥∥

F
+
∥∥Λ†QTE

∥∥
F +

∥∥Λ†QTU ′βF̂ ′V
′)
∥∥

F

)
(2.65)
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where matrices U ′,V ′ are the left and right singular vector matrices of

F̂ ′ = F̂ − t(F̂Ω −M)− 2αtLF̂ . (2.66)

Proof. Let F̂ ′ in (2.66) have SVD F̂ ′ = U ′Σ′V ′. Given an estimate F̂ , which is a fixed point
of (2.53), we have that Stµ(F̂ ′) = F̂ . Expanding the MSO in this last expression we obtain

F̂ ′ − tU ′βF̂ ′V
′ = F̂ . (2.67)

Now, if we replace F̂ ′ by its definition, substitute M = FΩ +E and rearrange the resulting
equation, we have

2αLF̂ = FΩ − F̂Ω +E −U ′βF̂ ′V
′. (2.68)

Note that if we multiply LF̂ by Λ†QT we are left with a GFT matrix of the columns of F̂ ,
containing only the coefficients of the nonzero frequencies. Hence, multiplying both sides of
(2.68) by Λ†QT we obtain the bound in (2.65).

Theorem 2 shows that the Laplacian regularization has a lowpass filtering effect on the
solution since the right-hand side of (2.65) vanishes with α. Moreover, the second term on the
right-hand side of (2.65) also shows the filtering effect on the noise E since the coefficients of
its GFT are multiplied by Λ†. If the noise is not smooth on the graph, that is, L(E) is large
and the GFT coefficients are concentrated around the higher frequencies, its contribution to
the spectrum of F̂ will be small.

2.4.3 Numerical tests

We have tested the PG algorithm for the Laplacian-regularized matrix completion problem on
the real dataset of temperature measurements. The algorithm has been run until convergence
over Nrea = 20 realizations with different percentages of observed samples, denoted by
Ps = |Ω|

N ·L · 100. The parameters of the PG are µ = 200, which is set relative to the singular
values of the observed dataset, t = 0.05 and α = {0, 0.5}. As a performance metric, we use
the NMSE (2.46). The initial estimates are calculated using (2.45) and the Laplacian.

Fig. 2.9 shows the NMSE after convergence for different percentages of samples and
parameter values. We observe that in the noiseless case the NMSE is reduced as the percentage
increases. Moreover, the PG shows a larger error with α = 0.5 than with α = 0. This is
because there are enough samples and µ is small enough to allow the non-regularized PG to
attain a low recovery error. In the noisy case, Fig. 2.9 shows that the error also decreases
with Ps for α = 0.5, although it rises for α = 0 after Ps = 25%. This is due to the absence of
regularization, which causes the PG to overfit to the noisy entries thus resulting in a larger
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Figure 2.9: NMSE vs. Ps for noisy and noiseless observations.
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Figure 2.10: NMSE vs. iterations with Ps = 30% for noisy and noiseless observations.

error as more observations and noise are added.
Fig. 2.10 shows the evolution of the NMSE for Ps = 30% for the first 200 iterations

for noisy and noiseless observations with different parameter values. We observe that the
starting point of the PG with noiseless observations is fairly close to the minimum since the
initial estimate calculated with (2.42) has a very low NMSE of 0.033. For comparison, if we
initialize to M the NMSE is 0.699 and it takes 400 iterations to converge with α = 0. For
α = 0.5, the PG converges to a point close to the initial error. In the noisy case, we observe
a smaller error at convergence for α = 0.5 than for α = 0, which converges to NMSE = 0.069
(see Fig. 2.9), since the graph regularization helps filter out some of the noise. Moreover, the
regularization also increases the convergence speed with noisy observations since the PG
with α = 0 needs 1000 iterations to converge at Ps = 30%.

2.5 Conclusions

In this chapter we have addressed the completion of partially observed matrices of graph
signals and the convergence speed of the proximal gradient algorithm. We have first proposed
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two algorithms: SPG, which switches to a lower regularization parameter whenever the
proximal gradient moves aways from the optimal solution, and VPG, a simpler implementation
that reduces the regularization parameter at each iteration. Second, we have proposed an
initialization method for the proximal gradient algorithms that makes use of the weighted
adjacency matrix of the graph to calculate a starting point closer to the solution. We have
shown in simulations with the synthetic and real datasets that the proposed initialization
method always reduces the number of iterations required for convergence, and that the
SPG and VPG algorithms are faster than the conventional PG and FPC algorithms when
initialized using this method. Moreover, this initialization can be useful for any iterative
matrix completion algorithm, even those with an already fast convergence since they tend to
rely on more complicated and computationally expensive operations to achieve higher speeds.
We have also studied the performance of the Laplacian-regularized PG. From the simulations
we can conclude that, if the random sampling is able to capture the underlying structure of
the dataset and µ is small enough, the Laplacian regularization does not reduce the recovery
error when the observations are noiseless. On the other hand, with noisy observations the
regularization improves the error for datasets which are smooth on the graph since it helps
filter out the noise, prevents the overfitting to the observed noisy entries, and it also reduces
the iterations to convergence.



3
Matrix completion via kernel regression

Existing MC approaches rely on some form of rank minimization or low-rank matrix fac-
torization. Specifically, [13] proves that when MC is formulated as the minimization of the
nuclear norm subject to the constraint that the observed entries remain unchanged, exact
recovery is possible under mild assumptions. Alternatively, [10] replaces the nuclear norm by
a product of two low-rank factor matrices that are identified in order to recover the complete
matrix. These are the two most widespread approaches, which yield good results in general
situations where there is little extra knowledge about the unknown matrix.

As introduced in Chapter 1, while the low-rank assumption can be sufficient for reliable
recovery, prior information about the unknown matrix can be also accounted for to improve
the completion outcome. Forms of prior information can include sparsity [17], local smooth-
ness [18], and interdependencies encoded by graphs [20, 21, 47, 50]. These approaches exploit
the available similarity information or prior knowledge of the bases spanning the column or
row spaces of the unknown matrix. In this regard, reproducing kernel Hilbert spaces (RKHSs)
constitute a powerful tool for leveraging available prior information thanks to the kernel
functions, which measure the similarity between pairs of points in an input set. Prompted by
this, [22, 24,51, 52] postulate that columns of the factor matrices belong to a pair of RKHSs
spanned by their respective kernels. In doing so, a given structure or similarity between rows
or columns is effected on the recovered matrix. Upon choosing a suitable kernel function, [17]
as well as [18, 20, 21, 47, 50] can be cast into the RKHS framework. In addition to improving
MC performance, kernel-based approaches also enable extrapolation of rows and columns,
even when all their entries are missing - a task impossible by the standard MC approaches

35
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in e.g. [13] and [10] relying on the basic formulation.
One major hurdle in MC is the computational cost as the matrix size grows. In its

formulation as a rank minimization task, MC can be solved via semidefinite programming [13],
or proximal gradient minimization [20,26,27,41], which entails a singular value decomposition
of the recovered matrix per iteration. Instead, algorithms with lower computational cost are
available for the bi-convex formulation based on matrix factorization [10]. These commonly
rely on iterative minimization schemes such as alternating least-squares (ALS) [40, 53] or
stochastic gradient descent (SGD) [24,54]. With regard to kernel-based MC, the corresponding
algorithms rely on alternating convex minimization and semidefinite programming [51], block
coordinate descent [22], and SGD [24]. However, algorithms based on alternating minimization
only converge to the minimum after infinite iterations. In addition, existing kernel-based
algorithms adopt a specific sampling pattern, as in [52] where the observations are arranged
in grid fashion, or do not effectively make use of the Representer Theorem for RKHSs that
will turn out to be valuable in further reducing the complexity, especially when the number
of observed entries is small.

This chapter introduces an RKHS-based approach to matrix completion and extrapolation
(MCEX) that also unifies and broadens the scope of MC approaches, while offering reduced
complexity algorithms that scale well with the matrix size. Specifically, a novel MC solver
via kernel ridge regression as a convex alternative to the nonconvex factorization-based
formulation that offers a closed-form solution is presented. Through an explicit sampling
matrix, the proposed method offers an encompassing sampling pattern, which further enables
the derivation of upper bounds on the mean-square error. Moreover, an approximate solution
to the MCEX regression formulation that also enables online implementation using SGD is
developed . Finally, means of incorporating prior information through kernels are discussed
in the RKHS framework.

The rest of the chapter is organized as follows. Section 3.1 outlines the RKHS formulation
and the kernel regression task. Section 3.2 unifies the existing methods for MC under
the RKHS umbrella, while Section 3.3 introduces our proposed Kronecker kernel MCEX
(KKMCEX) approach. Section 3.4 develops our ridge regression MCEX (RRMCEX) algorithm,
an accelerated version of KKMCEX, and its online variant. Section 3.5 deals with the
construction of kernel matrices. Finally, Section 4.3 presents numerical tests, and Section 3.7
concludes the chapter.
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3.1 Kernel regression and reproducing kernel Hilbert spaces

Consider a set of s input-observation pairs {(x̄i,mi)}si=1 in X ×R, where X is the input set of
cardinality |X | = N , X̄ := {x̄1, . . . , x̄s} ⊆ X contains the sampled inputs, and measurements
obey the model

mi = f(x̄i) + ei (3.1)

where f : X → R is an unknown function and ei ∈ R is noise. In pattern recognition,
the objective is to learn the function f so that the output f(x) for points x /∈ X̄ can be
predicted. The variable x can be any entity susceptible of mathematical representation as
an element within a set. For instance, in the user-movie example xi could be the ith user
and mi the received average rating across all movies, with f(xi) being the true average prior
to the indecisiveness induced by ei. There exist a myriad of methods to learn f from the
observations, such as linear regression, kernel regression, support vector machines, or neural
networks [4]. These methods fall within the so-called supervised learning techniques: we
are given a set of inputs each with an associated measurement or label. In unsupervised
learning, on the other hand, we are only given the inputs and none of the labels; this category
applies to, e.g., clustering. As an in-between category, semisupervised learning deals with
a set containing inputs with associated measurement, and single inputs with no associated
measurement.

Adapting the standard MC formulation (2.15) to the notation in (3.1), the input set
is X := {1, . . . , N} × {1, . . . , L}, the training set with associated observations is X̄ = Ω,
and the matrix itself is a mapping X → R such that each index pair (i, j) represents an
input point, and the indexed entry the output f(i, j) = Fi,j . Then, MC as explained in
Chapter 2 falls within the semisupervised learning class since obtaining a solution involves
the whole matrix, including zero-valued entries. Nevertheless, MC can also be implemented
as a supervised learning problem, i.e., the learning stage uses only labelled inputs, by means
of the kernel-based, and factorization-based approaches that will be detailed in this chapter.
This section lays the foundations for kernel ridge regression (KRR) and reproducing kernel
Hilbert spaces (RKHS).

3.1.1 Nonlinear kernel regression

Given an input set X ⊆ RD with |X | ≤ N , in linear regression applications the evaluation
of f : X → R is a linear combination of the elements of the input vector weighted by some
coefficients u, i.e., f(x) = xTu. With a set of input-observation pairs {(x̄i,mi)}si=1, where
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the inputs constitute the set X̄ = {x̄1, . . . , x̄s}, these can be represented in compact form as

m = X̄Tu+ e (3.2)

where m := [m1, . . . ,ms], X̄ := [x̄1, . . . , x̄s] ∈ RD×s and e := [e1, . . . , es]. The coefficient
vector u in (3.2) can be found by solving the ridge regression (RR) problem

arg min
u∈RD

‖m− X̄Tu‖22 + µ‖u‖22 (3.3)

which gives the estimate û = X̄(X̄T X̄ + µI)−1m. The RR solution approximates f :=
[f(x1), . . . , f(xN )] with f̂ = XT û, which is a linear combination of the columns in XT =
[x1, . . . ,xN ]T ∈ RN×D. The quality of the solution is impacted by the level of noise and by
the distance from f to the space spanned by the columns of XT . Moreover, another possible
impediment is a wrongful model assumption in (3.2) when the relationship between f and
the columns of XT is nonlinear, i.e., the linear model f(xi) = xTi u ∀xi ∈ X is not accurate.

A method to overcome nonlinearities in regression is to map the regressors xi onto a
higher dimensional space where f can be obtained as a linear combination of a basis in this
extended space. Let φ : X → RDφ , where Dφ > 0, be a feature map lifting elements in X
into a higher dimensional space and inducing the model f(x) = φ(x)Tu, where u now has
dimension Dφ. Moreover, let Φ := [φ(x̄1), . . . , φ(x̄s)] ∈ RDφ×s. The feature map turns (3.3)
into

arg min
u∈RDφ

‖m−ΦTu‖22 + µ‖u‖22 (3.4)

which yields û = Φ(ΦTΦ + µI)−1m and f̂(x) = φ(x)T û ∀x ∈ X . With an appropriate
feature map choice, solving (3.4) in RDφ yields a more accurate coefficient vector. See Fig. 3.1
for an example application. While the feature map might improve the RR solution, it can
result in huge computational cost. Since Dφ can be very large or even infinite, the cost of
calculating the products φ(xi)Tφ(xj) to obtain ΦTΦ can become prohibitive. Fortunately,
some feature maps allow to completely bypass the computation of the vector products and
obtain their values via a cheaper function.

Given φ, let us define the function κ : X × X → R as

κ(xi,xj) = 〈φ(xi), φ(xj)〉 (3.5)

which evaluates the inner product between two elements in RDφ . This κ is known as kernel
function, and the process of mapping x to a higher dimensional space with φ and evaluating
the inner product with (3.5) is known as kernel trick. Since û ∈ span(Φ), making the variable
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Figure 3.1: 2D linear and polynomial regression for f(x) = x2 − x vs. plane fitting on points lifted
to 3D space. The polynomial regression can be interpreted as mapping x to R2 via φ(x) = [x, x2] and
obtaining the ridge regression solution, which yields û = [−1, 1] and f̂(x1, x2) = x2 − x1 for µ = 0.

change u := Φᾱ the RR in (3.4) becomes

arg min
ᾱ∈Rs

‖m−ΦTΦᾱ‖22 + µ‖Φᾱ‖22. (3.6)

Then, taking advantage of (3.5), (3.6) can be rewritten as

arg min
ᾱ∈Rs

‖m− K̄ᾱ‖22 + µᾱT K̄ᾱ (3.7)

where K̄ is s×s with entries K̄i,j = κ(x̄i, x̄j). The resulting problem (3.7) is known as kernel
ridge regression (KRR), and it is the dual problem [55] of RR in (3.4). Indeed, the solution
to (3.7) is ˆ̄α = (K̄ + µI)−1m, and multiplying Φ ˆ̄α yields û from (3.4). One advantage
granted by KRR is that it is not necessary to know the map φ since (3.7) only requires
knowledge of κ. There exist many possible kernel functions, the choice of which depends on
the data in X . A commonly used one is the Gaussian kernel, detailed in the example below.

Example: Gaussian kernel. Assuming an input set X ⊆ RD, the Gaussian kernel function
is defined as

κ(xi,xj) = exp
(
−η ‖xi − xj‖22

)
(3.8)

with η being a free parameter. Actually, this kernel evaluates an inner product in an infinite
dimensional space as shown next. Given xi,xj ∈ RD, (3.8) can be expanded as

exp
(
−η ‖xi − xj‖22

)
= exp

(
−η ‖xi‖22

)
exp

(
−η ‖xj‖22

)
exp (−2η〈xi,xj〉) . (3.9)
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Taking the Taylor series expansion of the last term [56], we have

exp (−2η〈xi,xj〉) =
∞∑
l=0

1
l! (2η〈xi,xj〉)

l =
∞∑
l=0

1
l!

(
2η

D∑
d=1

xi(d)xj(d)
)l

=
∞∑
l=0

∑∑
nd=l

(
l

n1, . . . , nD

)(√
(2η)l
l! xi(1)n1 · · ·xi(D)nD

)(√
(2η)l
l! xj(1)n1 · · ·xj(D)nD

)

(3.10)

where the last equality uses the multinomial theorem, and the subindex
∑
nd = l iterates over

all D-tuples with positive integer elements (n1, . . . , nD) that add up to l. Substituting (3.10)
into (3.9), the Gaussian kernel is

κ(xi,xj) =

exp
(
−η ‖xi‖22

) ∞∑
l=0

√
(2η)l

∑∑
nd=l

D∏
d=1

xi(d)nd√
nd!


exp

(
−η ‖xj‖22

) ∞∑
l=0

√
(2η)l

∑∑
nd=l

D∏
d=1

xj(d)nd√
nd!


= 〈φ(xi), φ(xj)〉 (3.11)

where the feature map φ : RD → R∞ is defined as

φ(xi) = exp
(
−η ‖xi‖22

)[√
(2η)l

D∏
d=1

xi(d)nd√
nd!

]
l=0,...∞,

∑l

d=1
nd=l

(3.12)

The derivation of the Gaussian kernel highlights how much simpler it can be to evaluate
κ(xi,xj) than to perform the mapping into a feature space and take the inner product.
Moreover, as evidenced by the Gaussian kernel, kernel functions can also be thought of as a
measure of similarity between items in a set. For MC, this premise provides useful tools to
encode prior information about the columns and rows of the matrix, and facilitates efficient
algorithms based on kernel regression.

3.1.2 Kernel regression in reproducing kernel Hilbert spaces

While KRR has been first introduced as a way to perform nonlinear regression efficiently,
it is a problem that stands on its own in trying to learn f from a measurement set, as is
depicted in Fig. 3.2. This section introduces KRR from a more formal perspective using the
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reproducing kernel Hilbert space (RKHS) framework.
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Figure 3.2: KRR (left) using the Gaussian kernel. The right figure shows the Gaussian kernel
centered at two different observations x1, x2 ∈ R.

Assuming that f in (3.1) satisfies f ∈ Hf , where Hf is a RKHS, KRR seeks to obtain

f̂ = arg min
f∈Hf

1
s

s∑
i=1

(mi − f(x̄i))2 + µ′‖f‖2Hf (3.13)

where µ′ ∈ R+ is the regularization parameter, and ‖f‖Hf the norm in Hf . Note the factor
1
s , which keeps the balance between the loss and regularization terms as new observations
are added and s increases. Let us define the RKHS as

Hf := {f : f(x) =
N∑
i=1

αiκf (x, xi), αi ∈ R} (3.14)

where {αi}Ni=1 are weight coefficients, and κf : X × X → R is the kernel function that spans
Hf . The kernel can also be defined through the map φx : X → C, where C is a feature space
with inner product 〈·, ·〉C : C × C → R, such that

κf (xi, xj) = 〈φx(xi), φx(xj)〉C (3.15)

For an input set of text files, for example, the files could be mapped to a feature vector that
tracks the number of words, lines, and blank spaces in the file. The norm in Hf is ‖f‖Hf :=
〈f, f〉Hf , where 〈f, f〉Hf is the inner product in Hf . With {αi}Ni=1 and {α′i}Ni=1 denoting
the coefficients of f, f ′ ∈ Hf , respectively, we define 〈f, f ′〉Hf :=

∑N
i=1
∑N
j=1 αiα

′
jκx(xi, xj).

Moreover, given the kernel matrix Kf ∈ RN×N with (Kf )i,j = κf (xi, xj), we have

〈f, f ′〉Hf = αTKfα
′ (3.16)

where α := [α1, . . . , αN ]T and α′ := [α′1, . . . , α′N ]T . RKHSs are complete and separable linear
spaces endowed with an inner product that satisfies the reproducing property [25]. The
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significance of these properties is explained as follows.

A space is complete if every Cauchy sequence in it converges to a point within the space.
A Cauchy sequence is a sequence f1, f2, f3, . . . such that for any ε ∈ R+ there exists a positive
integer cd such that the distance ‖fi − fj‖Hf < ε for all i, j > cd; this implies that the terms
of the sequence get closer as it advances, and that it converges to a point in the space. One
example of non complete space is the set of rational numbers Q: there exists an infinite
sequence within Q that approaches

√
2, but its convergence point is outside Q. A space is

separable if it contains a dense countable subset, i.e., there exists a countable subset H′f ⊆ Hf
such that, for all f ∈ Hf and ε > 0, there exists f ′ ∈ H′f that satisfies ‖f − f ′‖ < ε. For
instance, the set Q is a countable dense subset of R since 1) its elements can be ordered with
one-to one correspondence with the set of natural numbers N, i.e., it is countable, and 2) for
any number in R there is a number in Q arbitrarily close to it, i.e., it is dense. The properties
of completeness and separability ensure that Hf is isomorphic to RN for N <∞ [25].

The reproducing trait of Hf is granted by its inner product, and it states that f(x) =
〈f, κf (·, x)〉Hf ; that is, f in Hf can be evaluated at any x ∈ X by taking the inner prod-
uct between f and κf (·, x). This also applies to the kernel function, where κf (xi, xj) =
〈κf (·, xi), κf (·, xj)〉Hf . In order for 〈·, ·〉Hf in (3.16) to be an inner product, κf must be
symmetric and positive semidefinite, meaning 〈f, f〉Hf ≥ 0 ∀f ∈ Hf . As a consequence, Kf

will be symmetric positive semidefinite since αTKfα ≥ 0 ∀α ∈ RN .

UsingKf , consider without loss of generality expressing the vector f := [f(x1), . . . , f(xN )]T

as f = Kfα, where α := [α1, . . . , αN ]T . Then, KRR (3.13) boils down to solving

arg min
f∈Hf

s∑
i=1

(mi − 〈f, κf (·, x̄i)〉Hf )2 + µ‖f‖2Hf . (3.17)

For Kf invertible, f is estimated as

f̂ = arg min
α∈RN

‖m− Sf‖22 + µfTK−1
f f (3.18)

where S is a s×N binary sampling matrix with a single nonzero element per row equal to 1.
Moreover, the coefficient vector estimate is

α̂ = arg min
α∈RN

‖m− SKfα‖22 + µαTKfα. (3.19)

The Representer Theorem, detailed in Appendix B.1, states that the ith component of α̂
in (3.19) is equal to 0 if xi /∈ X̄ ; this means that f̂ ∈ span{k(·, x̄i)}si=1. Therefore, one only
needs to optimize for the coefficients associated with the inputs x̄i ∈ X̄ . Doing so leads to
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the estimator
ˆ̄α = arg min

ᾱ∈Rs
‖m− SKfS

T ᾱ‖22 + µᾱTSKfS
T ᾱ (3.20)

which upon setting K̄ = SKfS
T is equal to what was obtained in the nonlinear RR

problem (3.7). Then, f can be recovered through f = KfS
T ˆ̄α.

Due to their interpretability as a similarity function, kernel functions give rise to the
notion of smoothness in RKHSs: if κf (xi, xj) is large, then f(xi) and f(xj) are expected to
have similar values. This is akin to what was is explained in Appendix A for graph signal
processing, where the similarity was indicated by a graph. Indeed, the Laplacian quadratic
form is not unlike the regularization term in (3.19), which promotes smoothness and similarity
according to kf and prevents overfitting to the observations. Therefore, we will leverage
the smoothness assumption in Section 3.3 to extrapolate the missing values in MC with an
algorithm based on KRR.

3.2 Kernel-based matrix completion

This section presents an overview of factorization and kernel-based approaches to MC that
exist in the literature. MC considers F ∈ RN×L of rank r observed through an N ×L matrix
of noisy observations

M = PΩ(F +E) (3.21)

where Ω ⊆ {1, . . . , N} × {1, . . . , L} is the sampling set of cardinality s = |Ω| containing the
indices of the observed entries; PΩ(·) is a projection operator that sets to zero the entries with
index (i, j) /∈ Ω and leaves the rest unchanged; and, E ∈ RN×L is a noise matrix. According
to [36], one can recover a low-rank F from M by solving the following problem:

min
F∈RN×L

‖PΩ(M − F )‖2F + µ ‖F ‖∗ . (3.22)

Because F is low rank, it is always possible to factorize it as F = WHT as shown in Fig. 3.3,
whereW ∈ RN×p andH ∈ RL×p are the latent factor matrices with p ≥ r. This factorization
allows expressing the nuclear norm as [57] ‖F ‖∗ = minF=WHT

1
2

(
‖W ‖2F + ‖H‖2F

)
, which

allows reformulating (3.22) as

{Ŵ , Ĥ} = arg min
W∈RN×p
H∈RL×p

∥∥PΩ(M −WHT )
∥∥2

F + µ

2

(
‖W ‖2F + ‖H‖2F

)
(3.23)

and yields F̂ = Ŵ ĤT . While (3.22) and (3.23) yield the same F̂ when the rank of the
matrix minimizing (3.22) is smaller than p [40], solving (3.22) can be costlier since it involves
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the computation of the singular values of the matrix. On the other hand, since (3.23) is
bi-convex it can be solved by alternately optimizing W and H, e.g. via ALS [53] or SGD
iterations [54]. Moreover, leveraging the structure of (3.23), it is also possible to optimize
one row from each factor matrix at a time instead of updating the full factor matrices, which
enables faster and also online and distributed implementations [58]. Still, one important
drawback of (3.23) is that it is unable to provide an estimate for columns or rows with
zero observations since an all-zero column or row in M would have a corresponding all-zero
coefficient row in Ĥ or Ŵ , respectively. This issue can be overcome by incorporating prior
information in MC through kernels.

=

F W

HT

Figure 3.3: Factorization of a rank 3 matrix.

Aiming at a kernel-based matrix completion (KMC), we model the columns and rows
of F as functions that belong to two different RKHSs. To this end, consider the input sets
X := {x1, . . . , xN} and Y := {y1, . . . , yL} for the column and row functions, respectively.
The content of each space depends on the application; in the user-movie ratings paradigm,
X could be the set of users and Y the set of movies. Nevertheless, one can always resort
to the basic setting with X and Y denoting the index sets {1, . . . , N} and {1, . . . , L},
respectively. Then, F := [f1, . . . ,fL] is formed with columns fl := [fl(x1), . . . , fl(xN )]T with
fl : X → R. Likewise, we rewrite F := [g1, . . . , gN ]T , with rows gn := [gn(y1), . . . , gn(yL)]T

and gn : Y → R. We further assume that fl ∈ Hw ∀l = 1, . . . , L and gn ∈ Hh ∀n = 1, . . . , N ,
where

Hw := {w : w(x) =
N∑
n=1

αnκw(x, xn), αn ∈ R} (3.24)

Hh := {h : h(y) =
L∑
l=1

βl κh(y, yl), βl ∈ R} (3.25)

and κw : X × X → R and κh : Y × Y → R are the kernels forming Kw ∈ RN×N and
Kh ∈ RL×L, respectively.
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Since W and H span the column and row spaces of F , their columns belong to Hw and
Hh as well. Thus, the mth column of W is

wm := [wm(x1), . . . , wm(xN )]T (3.26)

where wm : X → R and wm ∈ Hw ∀m = 1, . . . , p, and the mth column of H is

hm := [hm(y1), . . . , hm(yL)]T (3.27)

where hm : Y → R and hm ∈ Hh ∀m = 1, . . . , p. Hence, instead of simply promoting a small
Frobenius norm for the factor matrices as in (3.23), we can also promote smoothness on
their respective RKHS. The kernel-based formulation in [22] estimates the factor matrices by
solving

{Ŵ , Ĥ} = arg min
W∈Hw
H∈Hh

∥∥PΩ(M −WHT )
∥∥2

F + µTr(W TK−1
w W ) + µTr(HTK−1

h H). (3.28)

Note that (3.28) is equivalent to (3.23) for Kw = 2I and Kh = 2I. Alternatively, we can
instead find the coefficients that generate W and H in their respective RKHSs. Thus, if
we expand W = KwB and H = KhC, where B ∈ RN×p and C ∈ RL×p are coefficient
matrices, (3.28) becomes

{B̂, Ĉ} = arg min
B∈RN×p
C∈RL×p

∥∥PΩ(M −KwBC
TKh)

∥∥2
F + µTr(BTKwB) + µTr(CTKhC). (3.29)

Nevertheless, with nonsingular kernel matrices, B and C can be found by solving (3.28) with
Algorithm 21 and substituting B̂ = K−1

w Ŵ and Ĉ = K−1
h Ĥ [22].

Alternating minimization schemes that solve the bi-linear MC formulation (3.23) tend to
the solution to the convex problem (3.22) in the limit [53], thus convergence to the global
optimum is not guaranteed unless the number of iterations is infinite. Since algorithms for
kernel-based MC [22] solving (3.28) rely on such alternating minimization schemes, they lack
convergence guarantees given finite iterations as well. In addition to that, their computational
cost scales with the size of F . On the other hand, online implementations have a lower
cost [24], but only guarantee convergence to a stationary point [59]. The ensuing section
develops a convex kernel-based reformulation of KMC that enables a closed-form solver which
purely exploits the extrapolation facilitated by the kernels.

1The symbols Ωw
n and Ωh

l in Algorithm 2 denote, respectively, the indices of the observations in the nth
row and lth column of M .



46 Matrix completion via kernel regression

Algorithm 2: Alternating least squares for kernel-based MC.
Input :M ,Kw,Kh, µ, iterations
Output : Ŵ , Ĥ

function ALS(M ,Kw,Kh, µ, iterations)
for t = 1, . . . , iterations do

for n = 1, . . . , N do
wn ← (

∑
j∈Ωwn

hjh
T
j + µ(K−1

w )i,iI)−1(
∑
j∈Ωwn

mi,jhj −
∑
i 6=j(K−1

w )i,jwj)
end
for l = 1, . . . , L do
hl ← (

∑
j∈Ωh

l
wiw

T
i + µ(K−1

h )j,jI)−1(
∑
i∈Ωh

l
mi,jwi −

∑
j 6=i(K

−1
h )i,jhi)

end
end
return Ŵ , Ĥ

3.3 Kronecker kernel MC and extrapolation

In the previous section, we viewed the columns and rows of F as functions evaluated at
the points of the input sets X and Y in order to unify the state-of-the-art on MC using
RKHSs. Instead, we now postulate entries of F as the output of a function lying on an
RKHS evaluated at a tuple (xi, yi) ∈ X × Y. Given the spaces X and Y, consider the space
Z := X × Y with cardinality |Z| = NL along with the two-dimensional function f : Z → R
as f(xi, yj) = Fi,j , which belongs to the RKHS

Hf := {f : f(x, y) =
N∑
n=1

L∑
l=1

γn,lκf ((x, y), (xn, yl)), γn,l ∈ R} (3.30)

with κf : Z × Z → R. While one may choose any kernel to span Hf , we will construct one
adhering to the bilinear factorization F = WHT whose (i, j)th entry yields

Fij = f(xi, yj) =
p∑

m=1
wm(xi)hm(yj) (3.31)

with wm and hm functions capturing mth column vector of W and H as in (3.26) and
(3.27). Since w ∈ Hw and h ∈ Hh, we can write wm(x) =

∑N
n=1 bn,mκw(x, xn) and hm(y) =∑L

l=1 cl,mκh(y, yl), where bn,m and cl,m are the entries at (n,m) and (l,m) of the factor
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matrices B and C from (3.29), respectively. Therefore, (3.31) can be rewritten as

f(xi, yj) =
p∑

m=1

N∑
n=1

bn,mκw(xi, xn)
L∑
l=1

cl,mκh(yj , yl)

=
N∑
n=1

L∑
l=1

(
p∑

m=1
bn,mcl,m

)
κw(xi, xn)κh(yj , yl)

=
N∑
n=1

L∑
l=1

γn,lκf ((xi, yj), (xn, yl)) (3.32)

where γn,l =
∑p
m=1 bm,ncm,l, and κf ((xi, yj), (xn, yl)) = κw(xi, xn)κh(yj , yl) since a product

of kernels is itself a kernel [37]. Using the latter, (3.32) can be written compactly as

f(xi, yj) = kTi,jγ (3.33)

where γ := [γ1,1, γ2,1, . . . , γN,1, γ1,2, γ2,2, . . . , γN,L]T , and correspondingly,

ki,j =[κw(xi, x1)κh(yj , y1), . . . , κw(xi, xN )κh(yj , y1),

κw(xi, x1)κh(yj , y2), . . . , κw(xi, xN )κh(yj , yL)]T

=(Kh):,j ⊗ (Kw):,i (3.34)

where a subscript (:, j) denotes the jth column of a matrix, and we have used that Kw and
Kh are symmetric matrices. In accordance with (3.34), the kernel matrix of Hf in (3.30) is

Kf = Kh ⊗Kw. (3.35)

Clearly, ki,j in (3.34) can also be expressed as ki,j = (Kf ):,(j−1)N+i. Moreover, note that
the entries of the kernel matrix are (Kf )i′,j′ = κw(xi, xn)κh(yj , yl), where n = j′modN, i =
i′ mod N, l = d j

′

N e, and j = d i′N e. This together with (3.33), and recalling that Kf is
symmetrical, implies that

f = [f(x1, y1), f(x2, y1), . . . , f(xN , y1), f(x1, y2), f(x2, y2), . . . , f(xN , yN )]T (3.36)

can be expressed in matrix-vector form as

f = Kfγ (3.37)

or, equivalently, f = vec(F ).

Since the eigenvalues of Kf are the product of eigenvalues of Kh and Kw, it follows
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that Kf is positive semidefinite and thus a valid kernel matrix. With the definition of the
function f and its vector form we have transformed the matrix of functions specifying F
into a function that lies on the RKHS Hf . Hence, we are ready to formulate MC as a
kernel regression task for recovering f from the observed entries of m = vec(M). Given
{((xi, yj),mi,j)}(i,j)∈Ω in Z × R, the goal is to recover f as

f̂ = arg min
f∈Hf

∑
(i,j)∈Ω

(mi,j − f(xi, yj))2 + µ‖f‖2Hf (3.38)

where ‖f‖2Hf := γTKfγ. See Fig. 3.4 for an example depiction of the recovery of f from a
few observations.

(x, y)

f
(x
,y
)

f̂

m

Figure 3.4: Recovery of the unobserved entries in F after formulating MC as a function estimation
problem.

Define next e := vec(E) and m̄ := Sm, where S is an S ×NL binary sampling matrix
also used to specify the sampled noise vector ē := Se. With these definitions and (3.37), the
model in (3.21) becomes

m̄ = Sf + Se = SKfγ + ē (3.39)

which can be solved to obtain

γ̂ = arg min
γ∈RNL

‖m̄− SKfγ‖22 + µγTKfγ (3.40)

in closed form
γ̂ = (STSKf + µI)−1ST m̄ (3.41)

under the assumption that Kf is invertible. Then, we obtain the estimate F̂ = unvec(Kf γ̂).
Since the size of Kf is NL × NL, the inversion in (3.41) can be very computationally
intensive. To alleviate this, we will leverage the Representer Theorem (see Appendix B.1 for
a formal proof), which allows a reduction in the the number of degrees of freedom of the
regression problem. In our setup, this theorem is as follows.

Theorem 3.1. Representer Theorem. Given the set of input-observations pairs
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{(xi, yj),mi,j)}(i,j)∈Ω ∈ Z × R and the function f as in (3.32), the solution to

arg min
f∈Hf

∑
(i,j)∈Ω

(mi,j − f(xi, yj))2 + µ‖f‖2Hf (3.42)

is an estimate f̂ that satisfies

f̂ =
∑

(n,l)∈Ω

τn,lκf ((·, ·), (xn, yl)) (3.43)

for some coefficients τn,l ∈ R, ∀(n, l) ∈ Ω.

Theorem 3.1 asserts that γ̂ in (3.40) satisfies γ̂n,l = 0 ∀ (n, l) /∈ Ω. Therefore, we only
need to optimize {γn,l : (n, l) ∈ Ω} which correspond to the observed pairs. In fact, for our
vector-based formulation, the Representer Theorem boils down to applying on (3.41) the
matrix inversion lemma (MIL), which asserts the following.

Lemma 3.1. MIL [60]. Given matrices A,U and V of conformal dimensions, with A
invertible, it holds that

(UV +A)−1U = A−1U(V A−1U + I)−1. (3.44)

With (3.41) A = µI,U = ST and V = SKf , application of (3.44) to (3.41) yields

γ̂ = ST (SKfS
T + µI)−1m̄. (3.45)

Subsequently, we reconstruct f as

f̂K = KfS
T (SKfS

T + µI)−1m̄ (3.46)

and we will henceforth refer to it as the Kronecker kernel MC and extrapolation (KKMCEX)
estimate of f . Regarding the computational cost incurred by (3.45), inversion costs O(S3),
since the size of the matrix to be inverted is reduced from NL to S. Clearly, there is no
need to compute Kf = Kh ⊗Kw. As S has binary entries, SKfS

T is just a selection of S2

entries in Kf ; and, given that κf ((xi, yj), (xn, yl)) = κw(xi, xn)κh(yj , yl), it is obtained at
cost O(S2). Overall, the cost incurred by (3.45) is O(S3). Compared to the MC approach
in (3.28), the KKMCEX method is easier to implement since it only involves a matrix
inversion. Moreover, since it admits a closed-form solution, it facilitates deriving bounds on
the estimation error of f̂K .

One meaningful advantage of KKMCEX over the standard MC formulation is that it
is able to predict any output as long as its corresponding input belongs to the domain of
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the kernel function. Hence, it is able to estimate an entry in a column or row of M with
zero observations. Notice that the solution in (3.45) depends only on the observed entries.
Hence, in order to generalize to a point (x̃, ỹ) /∈ X × Y, one simply needs to build the
augmented Kf including the new point. This is possible provided that the kernel function
can be evaluated at (x̃, ỹ) in order to obtain κf ((·, ·), (x̃, ỹ)). Consider for instance an input
set {X × Y} ⊆ RD, where D > 0, and a Gaussian kernel. While KKMCEX in (3.46) only
tries to predict f(x) ∀x ∈ X , it is easy to obtain its value for any input as long as it is a
vector in RD since the kernel function can be evaluated at any input in this vector space.

Insights on KKMCEX vs. other kernel-based methods

The KKMCEX solution in (3.46), differs from that obtained as the solution of (3.29). On
the one hand, the loss in (3.40) can be derived from the factorization-based one in (3.29) by
using the Kronecker product kernel Kh ⊗Kw and γ = vec(BCT ) to arrive at∥∥PΩ(M −KwBC

TKh)
∥∥2

F =
∥∥m̄− S(Kh ⊗Kw)vec(BCT )

∥∥2
2 . (3.47)

One difference between the two loss functions is that (3.40) does not explicitly limit the
rank of the recovered matrix F̂ = unvec(f̂K) since it has NL degrees of freedom through
γ̂, while in (3.29) the rank of F̂ cannot exceed p since B and C are of rank p at most. In
fact, the low-rank property is indirectly promoted in (3.40) through the kernel matrices.
Since rank(F ) ≤ min(rank(Kw), rank(Kh)), we can limit the rank of F̂ by selecting rank
deficient kernels. On the other hand, the regularization terms in (3.29) and (3.40) play a
different role in each formulation. The regularization in (3.29) promotes smoothness on the
columns of the estimated factor matrices {Ŵ , Ĥ}; or, in other words, similarity between the
rows of {Ŵ , Ĥ} as measured by κw and κh. On the contrary, the regularization in (3.40)
promotes smoothness on f̂ , which is tantamount to promoting similarity between the entries
of F̂ in accordance with κf . Hence, (3.40) allows the design of entrywise relationships in F ,
whereas (3.29) is restricted to row or columnwise design.

Comparing the KKMCEX formulation with the Kronecker product kernel matrix to
existing ones, matrices built via the Kronecker product have been used in regression for
different purposes. In particular, [61] proposes the use of Kronecker kernels in the recovery
of time-varying graph signals via kernel regression. Related to MC, [47] leverages Kronecker
product structures to efficiently solve the Sylvester equations that arise in alternating
minimization iterations to find {Ŵ , Ĥ} in (3.28). On the other hand, [52, 62] propose a
Kronecker kernel ridge regression method that can be used to extrapolate missing entries in
a matrix. However, the methods in [52,62] assume a complete training set and Kronecker
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structure for the regression matrix; this implies that the observed entries in M can be
permuted to form a full submatrix. Still, KKMCEX introduces S which encompasses any
sampling pattern in Ω. Thus, the properties of the Kronecker product used in [47, 52, 62]
cannot be applied to solve (3.46) since SKfS

T must not necessarily be the Kronecker
product of two smaller matrices.

3.3.1 KKMCEX error analysis

The performance of KKMCEX is assessed by the mean-square error

MSE := Ee{‖f − f̂K‖22} (3.48)

where Ee{·} denotes the expectation with respect to e. This assessment and the analysis
in this section also applies to standard KRR in (3.19). Before we proceed, we will outline
Nyström’s approximation.

Definition 1. Given a kernel matrix K and a binary sampling matrix S of appropriate
dimensions, the Nyström approximation [63] of K is T = KST (SKST )†SK, and the
regularized Nyström approximation is

T̃ = KST (SKST + µI)−1SK. (3.49)

Nyström’s approximation is employed to reduce the complexity of standard kernel
regression problems. Instead of K, the low-rank approximation T̃ is used to reduce the
cost of inverting large-size matrices using the MIL [64]. While it is known that the best
low-rank approximation to a matrix in the Frobenius distance sense is obtained from its
top eigenvectors, Nyström’s approximation is cheaper. Using Def. 1, the following lemma
provides the bias and variance of the KKMCEX estimator in (3.46) in terms of T̃ :

Lemma 3.2. Given the kernel matrix Kf and its regularized Nyström approximation T̃f with
µ > 0, assuming E{e} = 0 the MSE of the KKMCEX estimator is

MSE =
∥∥(Kf − T̃f )γ

∥∥2
2 + Ee{

1
µ2

∥∥(Kf − T̃f )ST ē
∥∥2

2} (3.50)

where the first term accounts for the bias and the second term accounts for the variance.

Lemma 3.2 shows that the MSE of the KKMCEX can be expressed in terms of T̃f ; see
proof in Appendix B.2. Knowing that, for a matrix A and vector x, ‖Ax‖2 ≤ ‖A‖2‖x‖2
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and that the 2-norm satisfies ‖A‖22 ≤ ‖A‖
2
F, we have

∥∥(Kf − T̃f )γ
∥∥2

2 + Ee
{

1
µ2

∥∥(Kf − T̃f )ST ē
∥∥2

2

}
≤
∥∥Kf − T̃f

∥∥2
F

(
‖γ‖22 + 1

µ2 Tr(Ee{ēēT })
)
.

(3.51)

Consequently, the upper bound on the MSE is proportional to the approximation error of T̃f
to Kf . This suggests selecting {mi,j}(i,j)∈Ω so that this approximation error is minimized;
see also [64] where Ω is chosen according to the so-called leverage scores of Kf in order to
minimize the regression error. The next theorem uses Lemma 3.2 to upper bound the MSE
in (3.50); see Appendix B.3 for its proof.

Theorem 3.2. Let σNL be the maximum eigenvalue of a nonsingular Kf , and γ̃ := LTγ,
where L is the eigenvector matrix of Kf − T̃f with eigenvectors ordered in ascending order.
If e is a zero-mean vector of iid Gaussian random variables with covariance matrix ν2I, the
MSE of the KKMCEX estimator is bounded as

MSE ≤ µ2σ2
NL

(σNL + µ)2

s∑
i=1

γ̃i
2 + σ2

NL

NL∑
i=s+1

γ̃2
i + sν2σ2

NL

µ2 . (3.52)

Considering the right-hand side of (3.52), the first two terms correspond to the bias, while
the last term is related to the variance. In order to assess how the MSE bound behaves as s
increases, let us recall the variable change µ = sµ′ from Section 3.1. Considering this change
and fixed values in (0,∞) for µ′, ‖γ̃i‖2 and σNL2, the bias term reduces to

s2µ′2σ2
NL

(σNL + sµ′)2

s∑
i=1

γ̃i
2 + σ2

NL

NL∑
i=s+1

γ̃2
i . (3.53)

It can be seen in (3.53) that as s increases, terms move from the second summation to the
first. Therefore, whether the bias term grows or diminishes depends on the multiplication
factors in front of the two summations. Since s2µ′2

(σNL+sµ′)2 ≤ 1 the bias term in (3.53) decreases
with s. Moreover, whenM is fully observed, that is, s = NL, the bias can be made arbitrarily
small by having µ′ → 0. On the other hand, the variance term becomes ν2σ2

NL

sµ′2 and decays
with s as well. As a result, the MSE bound in Theorem 3.2 decays up until s = NL.

2Note that ‖γ̃i‖2 and σNL depend on the selected kernel Kf and matrix F , and do not depend on S.
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3.4 Ridge regression MCEX

Although the KKMCEX algorithm is fast when s is small, the size of the matrix to be inverted
in (3.45) grows with s, hence increasing the computational cost. Available approaches to
reducing the computational cost of kernel regression methods are centered around the idea
of approximating the kernel matrix. For instance, [64] uses Nyström’s approximation, that
the performance analysis in Section 3.3.1 was based on, whereas [65] relies on a sketch of
Kf formed by a subset of its columns, hence reducing the number of regression coefficients;
see also [66], where the kernel function is approximated by the inner product of random
finite-dimensional feature maps, which also speeds up the matrix inversion. In this section,
we reformulate the KKMCEX of Section 3.3 to incorporate a low-rank approximation of Kf

in order to obtain a reduced complexity estimate for f . Moreover, we also develop an online
method based on this reformulation.

Recall from Eq. (3.15) that a kernel can be viewed as the inner product of vectors
mapped to a feature space Cz, namely κf ((xi, yj), (xn, yl)) = 〈φz(xi, yj), φz(xn, yl)〉Cz . Let
φ̃z : X × Y → Rd be a feature map approximating κf so that

κf ((xi, yj), (xn, yl)) ' 〈φ̃z(xi, yj), φ̃z(xn, yl)〉. (3.54)

Then, we define the NL× d feature matrix

Φ̃z := [φ̃z(x1, y1), φ̃z(x2, y1), . . . , φ̃z(xN , yL)]T (3.55)

and form K̃f = Φ̃zΦ̃
T

z . Note that K̃f is a rank-d approximation ofKf , and that the equality
Kf = K̃f is only feasible when rank(Kf ) ≤ d. Consider Φ̃x := [φ̃x(x1), . . . , φ̃x(xN )]T and
Φ̃y = [φ̃y(y1), . . . , φ̃y(yL)]T , where φ̃x : X → Rdx and φ̃y : Y → Rdy , as the feature matrices
forming low-rank approximations to Kw and Kh, respectively. Since Kf = Kh ⊗Kw in
KKMCEX, a prudent choice is Φ̃z = Φ̃y ⊗ Φ̃x. The next section will present means of
constructing {Φ̃x, Φ̃y, Φ̃z} maps.

Since K̃f is a valid kernel matrix, upon replacing Kf in (3.39) with K̃f , the observation
model reduces to

m̄ = SΦ̃zΦ̃
T

z γ + ẽ, (3.56)

where ẽ = ē+ S(Kf − K̃f )γ. With this model, the weights in (3.40) are obtained as

γ̂ = arg min
γ∈RNL

∥∥∥m̄− SΦ̃zΦ̃
T

z γ
∥∥∥2

2
+ µγT Φ̃zΦ̃

T

z γ. (3.57)
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Letting ξ := Φ̃T

z γ and substituting into (3.57), we arrive at

ξ̂ = arg min
ξ∈Rd

∥∥m̄− SΦ̃zξ
∥∥2

2 + µ ‖ξ‖22 (3.58)

which admits the closed-form solution

ξ̂ = (Φ̃T

z S
TSΦ̃z + µI)−1Φ̃T

z S
T m̄. (3.59)

Using ξ̂, we obtain f̂R := Φ̃z ξ̂ as the ridge regression MCEX (RRMCEX) estimate. Using
the MIL (3.44) on (3.59), it follows that

ξ̂ = Φ̃T

z S
T (SΦ̃zΦ̃

T

z S
T + µI)−1m̄ (3.60)

and thus,
f̂R = Φ̃z ξ̂ = K̃fS

T (SK̃T

f S
T + µI)−1m̄. (3.61)

Therefore, (3.61) shows that f̂R is equivalent to the KKMCEX solution f̂K in (3.46) after
replacing Kf by its low-rank approximation K̃f . For error-free approximation, Kf = Φ̃zΦ̃

T

z ,
while ξ̂ in (3.59) can be viewed as the primal solution to the optimization problem in (3.58),
and γ̂ in (3.45) as its dual [25]. Still, obtaining ξ̂ requires multiplying two d × s matrices
and inverting a d× d matrix, which incurs computational cost O(d2s) when s ≥ d, and SΦ̃z

is obtained at cost O(ds). Thus, the cost of RRMCEX grows linearly with s in contrast to
KKMCEX which increases with s3.

By choosing an appropriate feature map so that d � s, it is possible to control the
computational cost of calculating ξ̂. However, reduced computational cost by selecting a
small d might come at the price of an approximation error to Kf , which correspondingly
increases the estimation error of f̂R. The selection of a feature matrix to minimize this error
and further elaboration on the computational cost are given in Section 3.5.

3.4.1 Online RRMCEX

Online methods learn a model by processing one datum at a time. An online algorithm often
results when the objective can be separated into several subfunctions, each depending on one
or multiple data. In the context of MC, online implementation updates F̂ every time a new
entryMi,j becomes available. If we were to solve (3.45) each time a new observation becomes
available, inverting an s× s matrix per iteration would result in an overall prohibitively high
computational cost. Still, the cost of obtaining an updated solution per observation can stay
manageable using online kernel regression solvers that fall into three categories [67]: dictionary
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learning, recursive regression and stochastic gradient descent based. Akin to [68, 69], we will
pursue here the SGD.

Consider rewriting (3.58) entrywise as

ξ̂ = arg min
ξ∈Rd

∑
(i,j)∈Ω

[
mi,j − φ̃Tz (xi, yj)ξ

]2 + µ ‖ξ‖22 . (3.62)

With n denoting each scalar observation, SGD iterations form a sequence of estimates

ξ̂n = ξ̂n−1 − tn
[
φ̃z(xi, yj)(φ̃Tz (xi, yj)ξ̂n−1 −mi,j) + µξ̂n−1

]
(3.63)

where tn is the step size, n = 1, . . . , S and the tuple (i, j) denotes the indices of the entry
revealed at iteration n. With properly selected tn, the sequence ξ̂n will converge to (3.62) at
per iteration cost O(d) [70]. Apart from updating all entries in the matrix, (3.63) can also
afford a simple distributed implementation using e.g., the algorithms in [71].

Remark 3.1. Online algorithms for MC can be designed to solve the factorization-based
formulation from (3.23) rewritten as

arg min
W∈RN×p
H∈RN×p

∑
(i,j)∈Ω

(
(mi,j −wT

i hj)2 + µ

|Ωwi |
‖wi‖22 + µ

|Ωhj |
‖hj‖22

)
(3.64)

where wT
i and hTj denote the ith and jth rows ofH andW respectively, Ωwi = {j : (i, j) ∈ Ω},

and Ωhj = {i : (i, j) ∈ Ω}. When mi,j becomes available, algorithms such as SGD and online
ALS update the rows {wT

i , hTj } of the coefficient matrices. This procedure can also be applied
to the kernel MCEX formulation in (3.28), that solves for W and H. Then, all entries in
the ith row and jth column of F̂ are also updated per iteration, as opposed to our method,
which updates the whole matrix.

Table 3.1 summarizes the main contributions in this chapter, namely the KKMCEX,
RRMCEX, and online RRMCEX algorithms.

KKMCEX f̂K = KfS
T (SKfS

T + µI)−1m̄

RRMCEX f̂R = Φ̃z(Φ̃
T

z S
TSΦ̃z + µI)−1Φ̃T

z S
T m̄

(o)RRMCEX f̂nO = Φ̃z ξ̂
n, ξ̂n = ξ̂n−1 − tn

[
φ̃z(xi, yj)(φ̃Tz (xi, yj)ξ̂n−1 −mi,j) + µξ̂n−1

]
Table 3.1: Algorithms proposed in the chapter.
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3.5 Choosing the kernel matrices

This section provides pointers on how to build matrices Kf for KKMCEX and Φ̃z for
RRMCEX in Table 3.1 when prior information about either the matrix F , or the input sets
X and Y , is available. In the first considered scenario, F is a matrix of graph signals and the
kernels are built using the Laplacian matrix of the row and column graphs of F . Second, the
availability of feature vectors associated with the elements in the input sets is leveraged to
generate kernels. Finally, several approaches on how to construct the approximate feature
matrix Φz while aiming at reducing computational costs are presented. To avoid notational
clutter, the symbols referring to the input sets and associated feature vectors will be reused
throughout the section, with their purpose being deducible from context.

3.5.1 Kernels based on the graph Laplacian

Suppose that the columns and rows of F lie on a graph, that is, each entry of a column or row
vector is associated with a node on a graph that encodes the interdependencies among entries
in the same vector. Specifically, we define an undirected weighted graph Gx = (X , Ex,Ax)
for the columns of F , where X is the set of vertices with |X | = N , Ex ⊆ X × X is the set
of edges connecting the vertices, and Ax ∈ RN×N is a weighted adjacency matrix. Then,
functions {fl : X → R}Ll=1 are graph signals [31], that is, a map from the set X of vertices
into the set of real numbers. Likewise, we define a graph Gy = (Y, Ey,Ay) for the rows of F ,
i.e., {gn : Y → R}Nn=1, which are also graph signals. In a matrix of user-movie ratings for
instance, we would have two graphs: one for the users and one for the movies. The graphs
associated with the columns and rows yield the underlying structure of F that can be used
to generate a pair of kernels.

Using Ax and Ay, we can form the corresponding graph Laplacian as Lx := diag(Ax1)−
Ax and likewise for Ly, that can serve as kernels. A family of graphical kernels results from
using a monotonic inverse function r†(·) on the Laplacian eigendecomposition as [72]

K = Qr†(Λ)QT . (3.65)

A possible choice of r(·) is the Gaussian radial basis function, which generates the diffusion
kernel r(λi) = eηλi , where λi is the ith eigenvalue ofL, and η a weight parameter. Alternatively,
one can choose just the linear function r(λi) = 1 + ηλi, which results in the regularized
Laplacian kernel. By applying different weighting functions to the eigenvalues of Lx and
Ly, we promote smoother or more rapidly changing functions for the columns and rows
of F̂ [61]. While Kw and Kh are chosen as Laplacian kernels, this would not be the case
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for Kf = Kh ⊗Kw used in our KKMCEX context since it does not result from applying
r†(·) to a Laplacian matrix. However, since Kw = QwΣwQ

T
w and Kh = QhΣhQ

T
h , the

eigendecomposition of Kf is Kf = (Qh ⊗Qw)(Σh ⊗Σw)(QT
h ⊗QT

w), and the notions of
frequency and smoothness carry over. In other words, we are still promoting similarity
through Kf among entries that are connected on the row and column graphs.

A key attribute in graph signal processing is that of “graph bandlimitedness", which arises
when a signal can be generated as a linear combination of a few eigenvectors of the Laplacian
matrix. Therefore, a bandlimited graph signal belongs to an RKHS that is spanned by a
bandlimited kernel [23] that suppresses some of the frequencies of the graph. A bandlimited
kernel is derived from the Laplacian matrix of a graph as in (3.65), using

r(λi) = 0 ∀i /∈ Ψ, (3.66)

where Ψ ⊆ N contains the indices of frequencies not to be suppressed. As mentioned earlier,
we define a graph for the columns and a graph for the rows of F . Therefore, graph signals
contained in the columns and rows may be bandlimited with different bandwidths. In order
to form Kf our KKMCEX approach, we will need to apply different weighting functions
akin to the one in (3.66) for kernel matrices Kw and Kh.

3.5.2 Kernels from known bases or features

In some applications, the basis that spans the columns or rows of the unobserved matrix is
assumed known, although this basis matrix needs not be a kernel matri. In order to be able
to include such a basis into the kernel framework, we need to generate kernel functions that
span the same spaces as the columns and rows of F .

Consider the input sets {X ,Y} whose entries can be mapped into an Euclidean space
through feature extraction functions θx : X → Rtx and θy : Y → Rty defined as θx(xi) := xi

and θy(yj) := yj . For instance, in a movie recommender system where the users are represented
in X and the movies in Y, each coordinate of yj could denote the amount of action, drama
and nudity in the movie, and xi would contain weights according to the user’s preference
for each attribute. We may then use the feature vectors to determine the similarities among
entries in X and Y by means of kernel functions.

Let X := [x1, . . . ,xN ]T and Y := [y1, . . . ,yL]T . If span(F ) ⊆ span(X) and span(F T ) ⊆
span(Y ), we may conveniently resort to the linear kernel. The linear kernel amounts to the
dot product in Euclidean spaces, which we use to define the pair κw(xi, xj) = xTi xj and
κh(yi, yj) = yTi yj . This leads to a straightforward construction of the kernel matrices for
KKMCEX as Kw = XXT and Kh = Y Y T .
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Besides the linear kernel, it is often necessary to use a different kernel class for each κw
and κh chosen to better fit the spaces spanned by the rows and columns of F . For instance,
the Gaussian kernel defined as κw(xi, xj) = exp{−η ‖xi − xj‖22}, is a widely used alternative
in the regression of smooth functions.

3.5.3 Feature maps for RRMCEX

Aiming to construct Φ̃z in (3.55) that approximates Kf at reduced complexity, we choose φ̃z
with d� S. To approximate linear kernels, let φ̃x(xi) = θx(xi) = xi and φ̃y(yj) = θy(xi) = yj

so that we can set φ̃z(xi, yj) = φ̃y(yj) ⊗ φ̃x(xi) and Φ̃z = Y ⊗X. Note that in this case
Φ̃zΦ̃

T

z yields a zero-error approximation to Kf = (Y ⊗X)(Y ⊗X)T , which renders the
KKMCEX and RRMCEX solutions equivalent.

On occasion, X and Y may have a large column dimension, thus rendering Y ⊗X
undesirable as a feature matrix in RRMCEX. In order to overcome this hurdle, we build
an approximation to the column space of Y ⊗X from the SVD of X and Y . Consider the
SVDs of matrices X = UxDxV

T
x and Y = UyDyV

T
y , to obtain Y ⊗X = (Uy ⊗Ux)(Dy ⊗

Dx)(V T
y ⊗ V T

x ). Let Φ̃z = UdDd, where Ud and Dd respectively hold the top d singular
vectors and singular values of Y ⊗X. The SVD has cost O(Nt2x) for X and O(Lt2y) for
Y . Comparatively, the cost of building Kw and Kh for the linear kernel is O(N2tx) and
O(L2ty), respectively. Therefore, choosing RRMCEX over KKMCEX in this case incurs no
extra overhead.

When a function other than the linear kernel is selected, obtaining an approximation is
more complex. To approximate a Gaussian kernel on X × X , the vectors {φ̃x(xi)}Ni=1 can be
obtained by means of Taylor series expansion [73] or random Fourier features [66], which can
also approximate Laplacian, Cauchy and polynomial kernels [66, 74]. Therefore, the maps φ̃x
and φ̃y must be designed according to the chosen kernels.

In some instances, such as when dealing with graph Laplacian kernels, X and Y are not
available and we are only given Kw and Kh. We are then unable to derive approximations to
the kernel matrices by means of maps φ̃x and φ̃y. Nevertheless, we can still derive an adequate
Φ̃z to approximate Kf . Indeed, Mercer’s Theorem asserts that there are eigenfunctions
{qn}NLn=1 in Hf along with a sequence of nonnegative real numbers {σn}NLn=1, such that

κf ((xi, yj), (xn, yl)) =
NL∑
n=1

σnqn(xi, yj)qn(xn, yl). (3.67)

We can find (3.67) from the eigendecomposition Kf = QfΣfQ
T
f , where qn is the nth

eigenvector in Qf and σn the nth eigenvalue in Σf . If Kf is low rank, we can construct
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Φ̃z = QdΣ
1
2
d , where Qd and Σd respectively hold the top d eigenvectors and eigenvalues of

Kf . Note that, sinceKf = (Qh⊗Qw)(Σh⊗Σw)(QT
h ⊗QT

w), we only need to eigendecompose
smaller matrices Kw and Kh at complexity O(N3 + L3). In some cases however, such as
when using Laplacian kernels, the eigendecompositions are readily available, and Φz can be
built at a markedly reduced cost.

3.6 Numerical tests

In this section, we test the performance of the KKMCEX, RRMCEX and online (o)RRMCEX
algorithms developed in Sections 3.3, 3.4 and 3.4.1, respectively; and further compare them
to the solution of (3.28) obtained with ALS [53] and SGD [24]. We run the tests on synthetic
and real datasets, with and without noise, and measure the signal-to-noise-ratio (SNR)
as snr = ‖F ‖2

F
‖E‖2

F
. The algorithms are run until convergence over Nr = 50 realizations with

different percentages of observed entries, denoted by Ps = 100s/(NL), which are taken
uniformly at random per realization. As figure of merit, we use

NMSE = 1
Nr

Nr∑
i=1

∥∥∥F̂i − F∥∥∥2

F

‖F ‖2F
(3.68)

where F̂i is the estimate at realization i. We show results for the optimal combination of
regularization and kernel parameters, found via grid search. Finally, ALS and SGD are
initialized by a product of two random factor matrices.

3.6.1 Synthetic data

We first test the algorithms on synthetic data. A 250 × 250 data matrix is generated as
F = KwΓKh, where Γ is a 250× 250 matrix of Gaussian random deviates. For Kw and Kh

we use Laplacian diffusion kernels with η = 1 based on Erdös-Rényi graphs, whose binary
adjacency matrices are unweighted and any two vertices are connected with probability
0.03. The resulting F is approximately low-rank, with the sum of the first 10 eigenvalues
accounting for 96% of the total eigenvalue sum. Therefore, we set the rank bound p to 10 for
the ALS and SGD algorithms. Whether F is approximately low-rank or exactly low-rank
did not affect our results, as they were similar for matrices with an exact rank of 10. For
KKMCEX, Kf = Kh ⊗Kw, and for RRMCEX Φ̃z = QdΣ

1
2
d , where Qd contains the top

250 eigenvectors of Kf , and Σd the corresponding top 250 eigenvalues.
Fig. 3.5 shows the simulated NMSE when M is noiseless (a) or noisy (b). We deduce

from Fig. 3.5a that all algorithms except SGD achieve a very small NMSE, below 0.003
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Figure 3.5: NMSE vs Ps for (a) synthetic noiseless matrix; and (b) synthetic noisy matrix.

at Ps = 1% that falls to 0.0007 at Ps = 10%. Of the three algorithms, KKMCEX has the
smallest error except at Ps = 1%, where RRMCEX performs best. Although the error drops
for SGD at Ps > 4%, it is outperformed by the other algorithms by an order of magnitude.
Fig. 3.5b shows the same results when Gaussian noise is added to F at snr = 1. We observe
that KKMCEX and RRMCEX are matched and attain the lowest error, whereas ALS and
SGD have larger errors across Ps. This corroborates that thanks to the regularization term
that smoothes over all the entries instead of row or column-wise, the noise effect is reduced.
Interestingly, RRMCEX is able to reduce the noise effect despite the bias it suffers because
it only uses the top 250 eigenvalues of Kf from a total of 62,500. This is mainly due to the
additive noise being evenly distributed across the eigenspace of Kf . Therefore, by keeping
only the eigenvectors associated with the top 250 eigenvalues in Kf , we are discarding those
dimensions in which the SNR is lower.

Fig. 3.6 depicts the time needed for the algorithms to perform the simulations reported in
Fig. 3.5. We observe in Fig. 3.6a that RRMCEX has an almost constant computation time,
whereas the time for KKMCEX grows with Ps as expected since the size of the matrix to be
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Figure 3.6: Time vs Ps for (a) synthetic noiseless matrix; and (b) synthetic noisy matrix.

inverted increases with s. On the other hand, ALS and SGD require less time than KKMCEX
for the larger values of Ps, but are always outperformed by RRMCEX. Moreover, the ALS
time is reduced as Ps increases because the number of iterations required to converge to
the minimum is smaller. Fig. 3.6b suggests that the noise only impacts ALS, which has its
computation time rise considerably across all Ps. Overall, Figures 3.5 and 3.6 illustrate that
RRMCEX has the best performance for the synthetic matrix both in terms of NMSE and
computational cost.

3.6.2 Temperature measurements

In this case, F has size 150× 365 comprising temperature readings taken by 150 stations over
365 days in 2002 in the United States3. This is the same dataset used in Section 2.4.3, and the
columns and rows of F are modeled as graph signals with Ax and Ay for the graphs formed
by the stations and the days of the year, respectively. We use Laplacian diffusion kernels both
for Kw and Kh, while Kf and Φ̃z are obtained as in the tests on synthetic data, except that

3http://earthpy.org/ulmo.html
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Φ̃z is constructed with the top 150 eigenvectors of Kf . The steps to construct the adjacency
matrix Ax are the same as in Section 2.4.3, and are detailed here again for conveniency. The
matrix Ax is obtained as in [20], where a graph G with unweighted adjacency matrix P is
generated for the stations, and each station is a vertex connected to the 8 geographically
closest stations. Next, we obtain the undirected graph G′ with symmetric adjacency matrix
P ′ = sign(P T + P ). Finally, the entries of Ax are constructed as (Ax)i,j = exp(− N2di,j∑

i,j
di,j

),

where {di,j} are geodesic distances on G. In order to form Ay, we adopt a graph on which
each day is a vertex and each day is connected to the 10 past and future days.
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Figure 3.7: NMSE vs Ps for the matrix of temperature measurements (a) without noise, and (b)
with noise.

Fig. 3.7 shows the simulated tests for (a) the matrix of temperature readings, and (b) the
same matrix with additive Gaussian noise at snr = 1. Fig. 3.7a demonstrates that KKMCEX
achieves the lowest error for the first three data points, while afterwards ALS has a slight
edge over KKMCEX. The real data matrix F is approximately low rank, since the sum of the
first 10 singular values accounts for 75% of the total sum. This explains why RRMCEX fares
worse than KKMCEX. Because it only contains the top 150 eigenvectors of Kf , which is full
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rank, the vectorized data m lies in part outside the space spanned by Φ̃z. Indeed, increasing
the number of eigenvectors in Φ̃z results in a lower error, although the computational cost
increases accordingly. Fig. 3.7b further demonstrates that the addition of noise has the least
impact on RRMCEX, which attains the lowest error slightly below KKMCEX. On the other
hand, ALS has a marginally higher error whereas the gap between SGD and the other three
methods remains. Fig. 3.8 depicts the computational time for the results in Fig. 3.7a, which
follow the same trends as those obtained for the synthetic dataset.
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Figure 3.8: Time vs Ps for the noiseless matrix of temperature measurements.

3.6.3 Mushroom dataset

The Mushroom dataset4 comprises 8,124 labels and as many feature vectors. Each label
indicates whether a sample is edible or poisonous, and each vector has 22 entries describing
the shape, color, and other features of the mushroom sample. After removing items with
missing features, we are left with 5,643 labels and feature vectors. Here, a clustering problem
is solved in which F is a 5, 643×5, 643 adjacency matrix, where Fi,j = 1 if the ith and the jth

mushroom samples belong to the same class (poisonous or edible), and Fi,j = −1 otherwise.
We encode the matrix stacking the feature vectors via one-hot encoding to produce a

5, 643× 98 binary feature matrix analogous to X in Section 3.5.2. The kernel matrix Kw

is built from the Pearson correlation coefficients of the rows of X, and let Kh = Kw. The
feature matrix Φ̃z for RRMCEX is built using the top 3,000 left singular vectors of X ⊗X.

Fig. 3.9a shows the test results on the mushroom adjacency matrix from s = 2, 000
(Ps = 0.006%) to s = 20,000 (Ps = 0.06%) in steps of 1,000 observations. KKMCEX and
RRMCEX achieve similar NMSE, while SGD has an error one order of magnitude higher,
and ALS outperforms both by around one order of magnitude. This difference with ALS is
because regression-based methods restrict the solution to belong to the space spanned by
the basis matrix. On the other hand, when solving (3.28), we do not enforce the constraints

4http://archive.ics.uci.edu/ml
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Figure 3.9: results for the mushroom adjacency matrix as (a) NMSE vs Ps, and (b) time vs Ps.

W ∈ Hx, H ∈ Hy [22, 24]. Therefore, when the prior information encoded in the kernel
matrices is imperfect, ALS might be able to find a factorization that fits better the data at the
cost of having Ŵ /∈ Hx and Ĥ /∈ Hy. However, in Fig. 3.9b we see that the computational
cost for ALS and SGD is much higher than for KKMCEX and RRMCEX for the smaller
Ps. On the other hand, the time for ALS decreases with s due to requiring les iterations to
converge, whereas for KKRRMCEX and RRMCEX it increases with s.

3.6.4 Online MC

In the online scenario, we compare the (o)RRMCEX algorithm with online (o)ALS, imple-
mented after Algorithm 2 and SGD. One observation is revealed per iteration at random,
and all three algorithms process a single observation per iteration in a circular fashion. The
(o)ALS algorithm is based on Algorithm 2, and it updates only the row corresponding to the
newly revealed entry in each factor matrix. Per realization, we run tests on both synthetic
and temperature matrices with Ps = 10%, that is, s = 6,250 and s = 5,475 observations for
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Figure 3.10: NMSE vs time for the online algorithms on the (a) synthetic noiseless matrix; and (b)
matrix of noiseless temperature measurements. Each mark denotes 1000 iterations have passed.

the synthetic and temperature matrices, respectively, for a single realization.
Fig. 3.10a depicts the tests for the noiseless synthetic matrix. Clearly, (o)RRMCEX

converges much faster than SGD and (o)ALS. Indeed, as opposed to SGD and (o)ALS, which
require several passes over the data, (o)RRMCEX approaches the minimum in around 6,000
iterations. Moreover, it achieves the smallest NMSE of 0.0004, which is slightly below the
0.0011 obtained by SGD. Fig. 3.10b shows the results for the temperature matrix without
noise. Again, we observe that (o)RRMCEX converges the fastest to the minimum, whereas
SGD requires many passes through the data before it starts descending, while (o)ALS
converges much faster than with the synthetic data. Regarding the NMSE, (o)RRMCEX
and SGD achieve the same minimum value.

The tests on the Mushroom dataset are run with s = 10,000 (Ps = 0.033%) and
s = 20,000 (Ps = 0.036%) observations following the same procedure as with the synthetic
and temperature datasets. Fig. 3.11 shows results for the Mushroom adjacency matrix with
the error for s = 20,000 plotted in solid lines, and for s = 10,000 in dotted lines. We observe
that for s = 20,000, (o)RRMCEX crosses the minimum of (o)ALS and SGD in 7 seconds,
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Figure 3.11: NMSE vs time for the mushroom adjacency matrix. Solid lines denote s = 20,000,
and dotted lines denote s = 10,000. Each mark denotes 10,000 iterations have passed.

whereas (o)ALS and SGD converge to this minimum in 12 and 200 seconds, respectively.
Afterwards, the line for (o)RRMCEX keeps descending until an error of 0.012 is reached.
For s = 10,000 the convergence time of (o)RRMCEX and SGD remains almost unchanged,
whereas for (o)ALS it increases to 26 seconds. Moreover, the error of both (o)ALS and SGD
grows much larger, whereas (o)RRMCEX exhibits just a small increase.

3.7 Conclusions

This chapter has taken a comprehensive look at MC under the framework of RKHS. It has
viewed columns and rows of the data matrix as functions from an RKHS, and leveraged
kernel theory to account for the available prior information on the contents of the sought
matrix. Moreover, two estimation algorithms have been developed which offer simplicity and
speed as their main advantages. When the number of observed data is small, KKMCEX
obtains the full matrix estimate by inverting a reduced-size matrix thanks to the Representer
Theorem. On the other hand, when the number of observations is too large for KKMCEX to
handle, RRMCEX can be employed instead in order to lower the computational cost with
no impact on the recovery error when noise is present. In addition, RRMCEX can be easily
turned into an online method implemented via SGD iterations. Compared to mainstream
methods designed for the factorization-based formulation, namely ALS and SGD, RRMCEX
exhibited improved performance in simulated and real data sets.

By casting aside the low-rank constraints, the proposed algorithms prove to be efficient
and equally accurate as existing kernel-based approaches. Moreover, theoretical analysis has
assessed the MSE of the estimator, and revealed an approach to sample selection through
the Nyström approximation. This avenue is explored in depth in Chapter 5, which presents
efficient methods to design optimal sampling strategies in RKHSs.



4
Generalization error bounds for matrix completion and

extrapolation

When analyzing the performance of MC algorithms, several works, e.g. [26,36,47,75], provide
sample complexity bounds; that is, the evolution of the distance to the optimum across
the number of samples and iterations. Other analyses are based on the generalization
error (GE) [39,76,77], which reports the estimation error to be expected when predicting
the output for an input not seen in the training set.

In the process of training a machine learning model, the objective is to obtain a function
able to predict labels for unseen data x /∈ X̄ , where X̄ ⊆ X denotes the training input set,
with low error. Ideally, this error should be small across the whole X or different subsets of
X . If true, this indicates a prediction function with good generalization properties, which
means that one can expect a similar overall performance when the function is applied to
two different sets. There exist two settings in which the generalization properties are to be
assessed: inductive and transductive. Both settings are usually cast in the semisupervised
learning class [78], with the following differences between them. The inductive setting adheres
to a probabilistic characterization of the inputs, which are all drawn from a possibly known
distribution D. Moreover, its aim is to learn a general map X → R that can handle inputs
not seen during training. In this case, the GE measures the difference between the expected
value of the loss function, and the loss on a given random dataset drawn from D [25]. On the
other hand, the transductive setting assumes no known distribution for any input set and
strives to predict only a set of known inputs. Indeed, transductive learning [79] describes how
most machine learning is performed: a training set, which may include unlabelled inputs, is
used to learn a function which is then evaluated on a testing set on which the prediction

67
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error must be minimized. Hence, the purpose is to transfer knowledge from the training
set onto the testing set and, consequently, the transductive GE is defined as the difference
between the loss function evaluated on the training and testing datasets [76,79].

Since in MC there is no assumed known D for the matrix entries, and the set to be
predicted is always known beforehand, it falls within transductive learning. The present
chapter deals with transductive GE analysis in MC with prior information, and derives
GE bounds based on the transductive Rademacher complexity [79]. Moreover, it presents
numerical tests demonstrating that the transductive GE of KKMCEX is less dependent
on matrix size, thus making it more reliable when dealing with large matrices with a few
observations.

This chapter is organized as follows. Section 4.1 presents an introduction to inductive
GE analysis, while Section 4.2 applies the transductive GE analysis to the standard MC,
kernel MC (KMC) and KKKMCEX algorithms. Then, Section 4.3 describes the numerical
tests, and Section 4.4 offers conclusions.

4.1 Inductive generalization error

Consider a loss function L : X u → R, where X u denotes the Cartesian power X u :=
{(x1, . . . , xu) : xi ∈ X ∀i = 1, . . . , u} and u ≤ |X |. Moreover, let Xu := {x1, . . . , xu} ⊆ X
denote a set of u random variable inputs drawn each from X under the distribution D with
replacement. The function L(·) is defined as the function that, after having learned a function
f on a training set, measures the loss over the set of random variables Xu. For instance,
one could use the average loss L(Xu) = 1

u

∑u
i=1 l(xi) or weighted loss L(Xu) =

∑u
i=1 vil(xi),

where l : X → R is an element-wise function such as the square loss and vi ∈ R. Assuming
that L(·), l(·) > 0, it is desirable to have L(Xu)− E{L(Xu)} ≈ 0 so that L(·) is statistically
stable and its measured loss over any random draw is close to its expected value. The theorem
below provides a probabilistic bound for this difference.

Theorem 4.1. McDiarmid’s Inequality [25]. Assume that L(·) satisfies

sup
x1,...,xu,x̃j

|L(x1, . . . , xu)−L(x1, . . . , xj−1, x̃j , xj+1, . . . , xu)| ≤ cj , ∀1 ≤ j ≤ u, x̃j ∈ X . (4.1)

Then, for all ε > 0

P{L(Xu)− E{L(Xu)} ≥ ε} ≤ exp −2ε2∑u
i=1 c

2
i

. (4.2)

McDiarmid’s Inequality first assumes a bound on the change when one item in the drawn
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input set is swapped with a newly drawn input from X , and then applies a concentration
inequality to bound the difference between the loss on Xu and its expected value. A concentra-
tion inequality provides a bound on the difference between a random variable and its expected
value [80], and these are used in many contexts [39, 64] to obtain algorithm performance
bounds. Note that (4.2) does not account for the possibility that L(Xu)−E{L(X )} < 0 since
this would be a desirable outcome. The example below shows how McDiarmid’s Inequality
can be used to bound the GE1 for a solution to the least squares regression problem.

Example: least squares GE. Let us assume a function f∗ : X ⊆ RD → R defined as
f∗(x) = xTw∗, where w∗ is fixed and has been obtained via least squares regression on a
training dataset. Given the input set Xu := {x1, . . . ,xu} ⊆ X and observation set {yi}ui=1

with yi ∈ R associated with xi, the loss function of the least squares problem L∗ : X u → R
for the optimal coefficient vector w∗ is

L∗(Xu) = 1
u

u∑
i=1

(yi − xTi w∗)2. (4.3)

For any draw Xu, assume the bound
∣∣(yj − xTj w∗)2 − (ỹj − x̃Tj w∗)2

∣∣ ≤ B ∀j = 1, . . . , u, x̃j ∈
X , B ≥ 0 and bounded yj , ỹj ∈ R. Then, the upper bound for the loss difference after an
element swap in Xu is

sup
Xu,x̃j

|L∗(Xu)− L∗(Xu \ {xj} ∪ {x̃j})| = sup
Xu,x̃j

1
u

∣∣(yj − xTj w∗)2 − (ỹj − x̃Tj w∗)2∣∣ ≤ B

u

(4.4)

∀j = 1, . . . , u. Applying McDiarmid’s Inequality, it holds that

P{L∗(Xu)− E{L∗(Xu)} ≥ ε} ≤ exp −2uε2
B2 . (4.5)

Equating the right-hand side of (4.5) to δ, which denotes the probability of failure with
δ ∈ (0, 1), we rewrite ε = B√

2u

√
ln 1

δ . Finally, the difference between the empirical loss and
its expected value is bounded as

L∗(Xu)− E{L∗(Xu)} ≤ B√
2u

√
ln 1
δ

(4.6)

with probability 1− δ.

1GE refers to inductive GE, whereas TGE refers to transductive GE.
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As shown in the example, McDiarmid’s Inequality enables the derivation of a bound
on the deviation from the mean for a single function. However, in optimization problems
the solution is chosen among a set of possible solutions, the size of which may depend on
several parameters. For instance, the least squares minimization problem chooses from a set
of candidates in a hypothesis class

F := {f : f(x) = xTw, w ∈ RD} (4.7)

which induces the class of loss functions L = {l : l(x) = (yi −xTw)2,w ∈ RD}. Therefore, it
would be practical to be able to analyze the generalization properties of any possible solution
in the class without having to solve the problem first to find w∗. To this end, we have the
bound given by the theorem below.

Theorem 4.2. [25] Let L be a class of mappings from X to [0, 1] with x ∈ X ∼ D. Then,
w.p. 1− δ over a random draw Xu ⊆ X , every l ∈ L satisfies

E{l(x)} − 1
u

∑
x∈Xu

l(x) ≤ Ru(L) +

√
ln 2

δ

2u (4.8)

≤ R̂u(L) + 3

√
ln 2

δ

2u (4.9)

where R̂u(L) is the so-called empirical Rademacher complexity of L over Xu2, Ru(L) =
E{R̂u(L)} is the Rademacher complexity, and the difference E{l(x)} − 1

u

∑
x∈Xu l(x) is the

inductive GE for L.

Theorem 4.2 shows that the difference between the expected value and the empirical mean
of the loss function l(·), i.e. the GE, is bounded by the Rademacher complexity (RC) plus a
term that decays with u. The fact that the range of L is restricted to [0, 1] is not relevant
since l can be scaled to adapt its range to a new interval. Moreover, note that the left-hand
side of (4.8) is the same as E{L(Xu)} − L(Xu) when L(Xu) = 1

u

∑u
i=1 l(xi) provided that

the variables in Xu are iid. The empirical RC is an empirical measure of the capacity of a
function class, and is defined as

R̂u(L) = Eθ

{
sup
l∈L

∣∣∣∣∣ 2u
u∑
i=1

θil(xi)
∣∣∣∣∣
}
, xi ∈ Xu (4.10)

where {θi}ui=1 are the so-called Rademacher variables, which take values in {−1, 1} with
probability 0.5 each, and Eθ denotes the expected value over the Rademacher variables.

2The shorthand notation R̂u(L) := R̂(L,Xu), where R̂ also denotes empirical RC, is used as in [25].
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Eq. (4.10) measures the maximum correlation between a function in L and the sequence of
noise θ1, θ2, . . ., with a high correlation indicating high capacity for L. A high capacity amounts
to having a higher chance of finding a function l ∈ L that fits any set of observations [25].
Take for instance polynomial regression: allowing a high degree polynomial can fit any set
of data points, whereas with a lower degree the fitting error is increased. See Fig. 4.1 for
a depiction of this example. If the capacity of L is too high, then optimizing within it will
yield solutions with a very small error on any training dataset, but poor performance when
tested on a different testing set. Hence, it is necessary to limit the capacity of the class in
order to prevent overfitting; this is done through the addition of regularization terms to the
optimization function.

f(x)

x

f(x)

x

f(x)

x

Draw 1 Draw 2 Draw 3

Figure 4.1: Optimization over three different data draws for the classes of quadratic (dashed line)
and high degree polynomial (solid line) functions. The polynomial class has such capacity that it
always contains a function that closely fits the observations. Thus, applying the function from the
first draw onto the second or third would yield high error. The quadratic class has lower capacity but
does not overfit, hence any solution can be applied to any draw and good performance is expected.

Note that the class L is actually a composite l ◦ F since in optimization problems one
usually tries to find

min
f∈F

1
s

∑
x̄∈X̄

l(f(x̄)) (4.11)

where f is the function to be learned within a class F , and X̄ ⊆ X is the set of training data
with |X̄ | = s. Instead of obtaining the RC for L, one can leverage the Ledoux-Talagrand
contraction inequality for l ◦ F with l(·) Lipschitz-continuous with constant C and l(0) = 0,
which states that

R̂u(l ◦ F) ≤ 2CR̂u(F). (4.12)

Hence, the RC measure of the class F is also valuable and often easier to calculate such as
in the case of the least squares hypothesis class3 (4.7). Then, assuming that L := l ◦ F , the

3For the loss function class induced by (4.7) to be Lipschitz continuous, |yi| and |xTw| must be bounded.
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GE bound in (4.9) becomes

E{l(x)} − 1
u

∑
x∈Xu

l(x) ≤ 2CR̂u(F) + 3

√
ln 2

δ

2u . (4.13)

This section has introduced the necessary tools to evaluate the GE of a learned function
f in a class F in the inductive setting. However, in real applications the learning process is
carried out differently and is split into a training and testing phase; this would fall within
the transductive learning approach. Moreover, the distribution D is usually unknown, which
renders Theorem 4.2 unable to measure the GE. Therefore, the next section presents the
transductive approach to GE and its application to MC.

4.2 Generalization error in MC

The inductive GE does not fit the MC framework because it requires that: i) the data
distribution is known; and, ii) the entries are sampled with replacement. In order to come up
with distribution-free claims for MC, one may resort to the transductive GE analysis [79]. In
the transductive scenario, the set of s observations Ω is redefined as the set Ω = Ωt ∪ Ωv

comprising the union of the training set Ωt and the testing set Ωv, where |Ωt| = st, |Ωv| = sv

and s = st + sv. These data are taken without repetition, and the objective is to minimize
the loss on the testing set; with a diverse enough testing set, good performance on it should
carry over to unseen points not in Ω. This section derives bounds for the transductive GE of
base MC in (4.14), kernel-based MC (KMC) in (4.15) and KKMCEX in (4.16) algorithms
shown in Table 4.1 in the transductive setting. Additionally, while this work focuses on MC,
the KMC formulation is similar to tensor completion [81], which has a regularization term
per dimension. Similarly, KKMCEX can be formulated with tensors in mind by forming Kf

as the Kronecker product of three or more matrices. Therefore, the analysis of the ensuing
section readily carries over to tensors as well, although this is out of the scope of this thesis.

Consider rewriting MC in the general form

F̂ = arg min
F∈F

1
st

∑
(i,j)∈Ωt

l(Mi,j ,Fi,j) (4.17)

where l : R × R → R denotes the loss function, and F is the hypothesis class shaped by
constraints or regularization terms. For instance, choosing the square loss and setting the
class to the set of matrices with a nuclear norm smaller than a constant t results in the
base MC formulation (2.15). Thus, the transductive GE (TGE) is the difference between the
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MC
arg min
W∈RN×p
H∈RL×p

∥∥PΩt(M−WHT )
∥∥2

F s.t. ‖W ‖2F+‖H‖2F ≤ t (4.14)

KMC
arg min
B∈RN×p
C∈RL×p

∥∥PΩt(M −KwBC
TKh)

∥∥2
F s.t. Tr(BTKwB) + Tr(CTKhC) ≤ tB

(4.15)

KKMCEX
arg min
γ̄∈Rst

∥∥m̄− K̄f γ̄
∥∥2

2 s.t. γ̄T K̄f γ̄ ≤ b (4.16)

Table 4.1: MC algorithms rewritten as equivalent convex optimization problems for the TGE
analysis, where t, tB , b ∈ R+. KKMCEX uses the sampling matrix St which selects the training
observations in Ωt so that K̄f = StKfS

T
t .

testing and training loss functions

1
sv

∑
(i,j)∈Ωv

l(Mi,j , F̂i,j)−
1
st

∑
(i,j)∈Ωt

l(Mi,j , F̂i,j). (4.18)

By making this difference small, it is ensured that F̂ has good generalization properties,
meaning a similar empirical loss on a different testing set of samples can be expected. Since
MC algorithms find their solution among a class of matrices under different restrictions
or hypotheses, we are interested in bounding (4.18) for any matrix in the solution space.
Moreover, the analysis of (4.18) provides insight into how the parameters of each MC
formulation impact on the TGE. Before presenting such results, the notion of transductive
Rademacher complexity (TRC) must be introduced as follows.

Definition 4.1. Transductive Rademacher complexity [79] Given a set Ω = Ωt ∪ Ωv

with q := 1
st

+ 1
sv
, the TRC of a matrix class F is

Rs(F) = qEθ
{

sup
F∈F

∑
(i,j)∈Ω

θi,jFi,j

}
(4.19)

where θi,j is a Rademacher random variable that takes values in {−1, 1} with prob. 0.5 each.
We may also write (4.19) in vectorized form as Rs(F) = qEθ

{
supF∈F θTvec(F )

}
, where

θ = vec(Θ), and Θ ∈ RN×L has entries Θi,j = θi,j if (i, j) ∈ Ω, and Θi,j = 0 otherwise.

TRC measures the expected maximum correlation between any function in the class
and the random vector θ. Intuitively, the greater this correlation is, the greater is the
chance of finding a solution in the hypothesis class that will fit any observation draw, that
is, F̂i,j ' Mi,j∀ (i, j) ∈ Ω. For instance, for a hypothesis class containing very smooth
matrices only, the TRC would be low since all entries would have similar values and thus



74 Generalization error bounds for matrix completion and extrapolation

the expectation in (4.19) would be close to 0. On the other hand, for an unconstrained
class containing every possible matrix in RN×L, the TRC would be infinite. Although TRC
measures the ability to fit both the testing and training data at once, a model for F is learnt
using only the training data indexed by Ωt. Moreover, while having a small loss across all
entries in Ω is desirable, making it too small can lead to overfitting, and an increased error
when predicting entries outside Ω. Using the TRC, the TGE is bounded as follows.

Theorem 4.3. [79] Let F be a matrix hypothesis class. For a loss function l with Lipschitz
constant γ, and any F ∈ F , it holds with probability of at least 1− δ that

1
sv

∑
(i,j)∈Ωv

l(Mi,j ,Fi,j)−
1
st

∑
(i,j)∈Ωt

l(Mi,j ,Fi,j)

≤ Rs(l ◦ F) + 5.05q
√

min(st, sv) +
√

2q ln (1/δ) . (4.20)

Theorem 4.3 asserts that, in order to bound the TGE, it suffices to bound the TRC.
Moreover, using the contraction property in [79], Lemma 5, which states that Rs(l ◦ F) ≤
CRs(F), where C is the Lipschitz constant of l(·), only the TRC of F is needed. Given that
the same loss function is used in MC, KMC and KKMCEX, in order to assess the TGE
upper bound of the three methods, we will pursue the TRC, i.e., Rs(F), for the hypothesis
class of each algorithm. Moreover, since KKMCEX has been proven specially useful for large
matrices with a very small number of samples, the analysis will focus on how the matrix size
and size of the training and testing sets affect the TGE.

4.2.1 Generalization error for base MC

In the base MC formulation (4.14), the hypothesis class contains the set of matrices with
bounded nuclear norm, hence defined as

FMC := {F : ‖F ‖∗ ≤ t, t ∈ R+} (4.21)

As derived in [76], the TRC for this class of matrices is bounded as

Rs(FMC) ≤ qEθ
{

sup
F∈FMC

||Θ||2 ‖F ‖∗
}
≤ Gqt(

√
N +

√
L) (4.22)

where G is a universal constant.
Since q = 1

st
+ 1
sv
, the bound in (4.22) decays as O( 1

st
+ 1
sv

) ⊆ O (1/min(st, sv)) for fixed
t, N and L. However, the TGE does not since the sum of the second and third terms on the
right-hand side of (4.20) decays as O(1/

√
min (st, sv) ). Thus, the size of the training and
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testing datasets should be proportional, e.g., s = 2st = 2sv, for the TGE bound to diminish
with the number of samples as O(1/

√
s).

For non-fixed N and L, the TRC bound (4.22) also scales with the matrix dimensions.
Moreover, note that the nuclear norm is O(

√
NL) since ‖F ‖F ≤ ‖F ‖∗ ≤

√
r ‖F ‖F. Therefore,

t should also grow with N and L in order to match the hypothesis class to the matrix size,
and obtain a good estimate of F . Hence, for varying N , L and s with st = sv, the TGE
bound is O( 1√

s
+ N

√
L+L

√
N

s ). This implies that increasing N or L results in a larger TGE
bound regardless of the value of s, whereas increasing st and sv in the same proportion
results in a smaller TGE bound.

Although the TRC bound indicates growth with matrix size, we observe in (4.20) that a
constant TGE bound is feasible when the set {Fi,j}(i,j)∈Ω does not change across different
hypothesis classes; this is also observable in the definition of the TRC (4.19). For base MC,
this happens when an empty column or row is added toM since the new row in Ŵ or Ĥ will
be an all-zero vector. Therefore, if Ω does not change between sizes, the non-zero coefficients
in Ŵ and Ĥ will be the same and so will be the TGE. An example of such scenario is a
recommender system, where new items are added without having been rated by any user;
this is also known as zero-shot learning. Nevertheless, note that base MC cannot recover
all-zero vectors, which will increase the overall prediction error regardless of the TGE on Ω.

4.2.2 Generalization error for KMC

Unlike base MC that minimizes the nuclear norm of the data matrix, KMC does not directly
employ the rank in its objective function. Instead, it imposes constraints on the maximum
norm of the factor matrices in their respective RKHSs. Hence, the TRC for KMC is bounded
as follows.

Theorem 4.4. If the KMC hypothesis class is

FK :=
{
F : F = KwBC

TKh,Tr(BTKwB) + Tr(CTKhC) < tB , tB ∈ R+} (4.23)

then
Rs(FK) ≤ λmaxGqtB

(√
N +

√
L
)

(4.24)

where λmax is the largest eigenvalue of Kw and Kh.
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Proof. Given the factorization F = WHT , rewrite the nuclear norm in (4.22) as

‖F ‖∗ ≤
1
2

(
‖W ‖2F + ‖H‖2F

)
= 1

2(Tr(BTK2
wB) + Tr(CTK2

hC))

≤ λmax

2 [Tr(BTKwB) + Tr(CTKhC)] ≤ λmaxtB
2 (4.25)

where we used that Tr(BTK2
wB) =

∑N
i=1 b

T
i K

2
wbi with bi denoting the ith column of B,

and bTi K
1
2
wKwK

1
2
wbi ≤ λmaxb

T
i Kwbi.

Theorem 4.4 establishes that the TRC bound expressions of KMC and base MC are
identical within a scale. With tB = t, λmax controls whether KMC has a larger or smaller
TRC bound than base MC. Thus, according to Theorem 4.4, the TGE bound for KMC
shrinks with s and grows with N, L and λmax. Next, an alternative bound is derived in order
to gain further insights about the factors affecting the TGE.

Consider the factorizations Kw = ΦxΦT
x and Kh = ΦyΦT

y , where Φx ∈ RN×dx and
Φy ∈ RL×dy . Plugging these into (4.15) yields

min
∥∥PΩt(M −ΦxΦT

xBC
TΦyΦT

y )
∥∥2

F s.t. Tr(BTΦxΦT
xB) + Tr(CTΦyΦT

yC) ≤ tB (4.26)

= min
∥∥PΩt(M −ΦxAxA

T
y ΦT

y )
∥∥2

F s.t. ‖Ax‖2F + ‖Ay‖2F ≤ tB (4.27)

where Ax = ΦT
xB and Ay = ΦT

yC are coefficient matrices of size dx × p and dy × p,
respectively. Optimizing for {B,C} in (4.26) or for {Ax,Ay} in (4.27) yields the same
F̂ provided that {ΦT

x ,ΦT
y } have full column rank. Under this assumption, consider the

hypothesis class

FI :=
{
F : F = ΦxAxA

T
y ΦT

y , ‖Ax‖2F + ‖Ay‖2F ≤ tB , tB ∈ R+
}

(4.28)

which satisfies FI = FK . This leads to the following result.

Theorem 4.5. If K = (Φy ⊗ Φx)(Φy ⊗ Φx)T , and Ss is a binary sampling matrix that
selects the entries in Ω, then

Rs(FI) ≤ qtBTr
(√

SsKSTs

)
. (4.29)

Proof. With θ := vec(Θ), bw := ‖Ax‖2F, and bh := ‖Ay‖2F, we have that
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Rs(FI) = qEθ
{

sup
bw+bh≤tB

θTvec(ΦxAxA
T
y ΦT

y )
}

= qEθ
{

sup
bw+bh≤tB

θT (Φy ⊗Φx)vec(AxA
T
y )
}

≤ qEθ
{

sup
bw+bh≤tB

∥∥θT (Φy ⊗Φx)
∥∥∥∥vec(AxA

T
y )
∥∥}

= qEθ
{

sup
bw+bh≤tB

√
θTKθ

∥∥AxA
T
y

∥∥
F

}
≤ qEθ

{
sup
bw+bh≤tB

√
θTKθ ‖Ax‖F

∥∥AT
y

∥∥
F

}
≤ qtB

√
Eθ {θTKθ} = qtB

√
Tr(SsKSTs )

where we have used the Cauchy-Schwarz inequality, the sub-multiplicative property of the
Frobenius norm, and Jensen’s inequality in the first, second and third inequalities. Moreover,
the last equality uses the independency between the Rademacher variables in θ, and SsKSs
selects the entries in the diagonal of K corresponding to Ω.

Theorem 4.5 shows through Ss how the choice of sampling and testing datasets impacts
the TRC bound, which can be leveraged to develop optimal sampling strategies [82]. Moreover,
the derived bound is also valid for the inductive MC (IMC) [53] algorithm, as detailed ahead
in Remark 4.1. Finally, the theorem reveals the conditions under which the TGE bound does
not grow with N and L, which are as follows.

If c denotes the maximum value of the sampled entries in the diagonal of K, and st = sv,
then Theorem 4.5 provides a bound that decays as O(tB

√
c
s ). The definition of FI implies

that tB is determined by the Frobenius norms of {Ax,Ay}. Since ||Ax||2F and ||Ay||2F are
O(dxp) and O(dyp), respectively, assuming an adaptive parameter tB we have that tB is
O ((dx + dy)p). Hence the TRC bound is limited by the rank of the kernel matrices, given
by dx and dy. Therefore, the TGE bound for KMC in (4.20) scales as O

(
(dx + dy)p

√
c
s

)
,

which is maintained through different N and L so long as the kernel matrices have constant
rank, and c does not change.

Remark 4.1. KMC generalizes the formulation of inductive MC (IMC) in [75]. In IMC, the
observation model is assumed Fi,j = xiZyj , where xi,xj are feature vectors and Z ∈ Rdx×dy

is a rank p coefficient matrix. Then, Z is recovered through factorizing Z = AxA
T
y and
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solving
arg min
Ax∈Rdx×p
Ay∈Rdy×p

=
∥∥PΩt(M −XAxA

T
y Y

T )
∥∥2

F + µ
(
‖Ax‖2F + ‖Ay‖2F

)
, (4.30)

where X and Y are the matrices stacking the feature vectors {xi}Ni=1 and {yj}Lj=1, respec-
tively. Clearly, the objective function in (4.30) is (4.27) with Φx = X and Φy = Y . Therefore,
the objective in IMC (4.30) is the same as in KMC (4.15) when κw and κh are linear kernels
with feature matrices X and Y .

4.2.3 Generalization error for KKMCEX

KMC (4.15) and KKMCEX (4.16) provide an estimate within the same RKHS since f̂K =
vec(KwΓ̂Kh), where Γ̂ = unvec(STt ˆ̄γ) and St selects the observations in Ωt. However,
the complexity of the hypothesis spaces differs due to the different regularization terms:
KKMCEX restricts the smoothness in Hf , whereas KMC does so along Hw and Hh. This
results in a TRC bound for KKMCEX that is given by the theorem next.

Theorem 4.6. Given the hypothesis space for KKMCEX as

FR := {F : F = unvec(KfS
T
t γ̄), γ̄T K̄f γ̄ ≤ b2, b ∈ R+} (4.31)

it holds that
Rs(FR) ≤ qb

√
Tr(SsKfSTt K̄

−1
f StKfSTs ). (4.32)

Proof.

Rs(FR) = qEθ

{
sup

γ̄TKf γ̄≤b
θTKfS

T
t γ̄

}

= qEθ

{
sup

γ̄T K̄f γ̄≤b
θTKfS

T
t K̄

− 1
2

f K̄
1
2
f γ̄

}

≤ qEθ

{
sup

γ̄T K̄f γ̄≤b

∥∥∥θTKfS
T
t K̄

−1
2
f

∥∥∥∥∥∥K̄ 1
2
f γ̄
∥∥∥}

≤ qbEθ
{∥∥∥θTKfS

T
t K̄

− 1
2

f

∥∥∥}
= qb

√
Tr(SsKfStK̄

−1
f STt KfSTs ). (4.33)

Supposing that ||Kf ||∞ ≤ c, the bound in (4.32) decays as O(b
√
sc/min(st, sv)). For

st = sv, this yields a rate O(b
√

c
s ). Note that, if c is constant for different N and L, then b

can also be kept constant. Thus, in this case the TGE bound induced by (4.32) only scales
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with the number of samples as O( 1√
s
). This is feasible when the feature maps are independent

of the matrix size so that for any N and L it is satisfied that 〈φz((xi, yj)), φz(xn, yl)〉Cz ≤
c ∀ (i, j), (n, l) ∈ {1, . . . , N} × {1, . . . , L}; such is the case with, e.g., the linear kernel.
Interestingly, although the degrees of freedom of KKMCEX (and hence the risk of overfitting)
grow with st since γ̄ ∈ Rst , the TGE does not increase because the number of samples
increases proportionally. Thus, different from baseline MC and KMC, similar performance is
expected on the testing dataset regardless of the data matrix size.

4.3 Numerical tests

This section compares the TGE of base MC and KMC, solved via alternating least-squares
(ALS) in Algorithm 2, with KKMCEX solved with (3.46). Besides comparing the TGE
of these algorithms, the simulations assess how the matrix size impacts the TGE. To this
end, first a fixed-rank synthetic data matrix with N = L is generated as F = KwBC

TKh.
The kernel matrices are Kw = Kh = abs(RDRT ), where R ∈ CN×N is the DFT basis
and D ∈ RN×N is a positive diagonal matrix with decreasing values on its diagonal. The
coefficient matrices {B,C} have p = 30 columns, with entries drawn from a zero-mean
Gaussian distribution with variance 1. The tests are run over 1,000 realizations. A new
matrix F is generated per realization with st = 1, 000 entries drawn uniformly at random,
and the remaining sv = N2 − s forming the testing dataset. The parameter µ is chosen by
cross-validation for each size.
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Figure 4.2: Training loss, testing loss, and generalization error vs. matrix size for noiseless synthetic
data.

Fig. 4.2 shows the training, testing, and TGEs from Eq. (4.18) for the synthetic matrices.
We observe for base MC that the training loss is small, whereas it is much larger on the
testing dataset, and also it grows with N . Moreover, since the training loss is minimal, the
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TGE coincides with the testing loss. Clearly, the base MC solution (4.14) is not able to
predict the unobserved entries due to the lack of prior information that would allow for
extrapolation in rows or columns with no observed entries. In addition, the TGE approaches
saturation for large matrix sizes since most entries in the estimated matrix are 0, and the
testing loss tends to the average 1

sv

∑
(i,j)∈ΩvM

2
i,j . Regarding KMC and KKMCEX, we

observe that both algorithms achieve a constant training loss. Although not visible on the
plot, the training loss of KKMCEX is one order of magnitude smaller than that of KMC. On
the other hand, the testing and TGE of KKMCEX are constant unlike in KMC for which
both are higher and grow with N . These results confirm what was asserted by the TGE
bounds in Section 4.2.
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Figure 4.3: Training loss, testing loss, and generalization error vs. matrix size for noisy synthetic
data.

Fig. 4.3 shows the same simulation results as Fig. 4.2, but with noisy data at snr = 4.
We observe that MC overfits the noisy observations since the training loss is, again, very
small, while the testing loss is much larger. For KMC and KKMCEX, the presence of noise
increases the training and testing losses. Due to the noise, a larger µ is selected to prevent
overfitting at the cost of a higher training loss. Nevertheless, the testing loss of KMC slightly
grows with N . In terms of TGE, KKMCEX outperforms KMC with a lower value that tends
to a constant.

Fig. 4.4 shows the numerical tests with the 150×L matrix of temperature measurements
taken in 2002 by 150 weather stations in the US. The kernel matrices are the row and column
covariances of the same data from 2001, and st = 500 with sv = 150L− st. We observe that
for KMC and KKMCEX both training and testing errors grow with L. However, KMC is
unstable both in training and testing, whereas KKMCEX is smooth. Thus, although the
TGE grows slightly for KKMCEX, it is more reliable when the number of samples is very
small.
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Figure 4.4: Training loss, testing loss, and generalization error vs. matrix size for temperature
data.

4.4 Conclusions

This chapter has analyzed the TGE for MC with prior information following a procedure that
can be utilized to additional data imputation methods after properly defining a loss function
and corresponding hypothesis class. Bounds on the TRC have established that baseline MC
and KMC become less reliable as the size of the matrix increases when the number of samples
remains constant. On the other hand, KKMCEX offers improved analytical guarantees with
a TGE that scales only with the number of samples. Moreover, numerical tests support the
theoretical findings for synthetic data with known kernel matrices, and have demonstrated
improved performance for KKMCEX with real data. Finally, since the RKHS framework
generalizes several MC settings with prior information, the analysis herein applies also to
these settings.





5
Optimal sampling in RKHSs

While in learning applications the focus is usually on achieving a small prediction error,
there is also the cost of label acquisition for training. Often, the cost of labelling a training
input is comparable or superior to the prediction cost. For instance, in recommender systems,
a request needs to be sent to the user asking them to rate an item; this does not even
guarantee a rating since the user might just ignore the request. In other areas such as sensor
networks, medicine or any scenario with human annotators, the time to label an input is also
non-negligible. Besides the cost of label acquisition, there is also the fact that the prediction
error on new inputs is affected by the chosen training set as it was elucidated in Chapter 4.
Hence, the design of optimal sample selection strategies is of paramount importance in order
to improve algorithm performance.

Active sampling provides a protocol under which to choose the most promising set of
inputs to label. It implements an iterative scheme that, provided the availability of a small
starting training set, executes two steps repeatedly: first, the function is learned or updated
using the current training set and, second, a criterion is evaluated to decide which next
input should be labelled and added to the training set. There exist a variety of criteria,
the most common being the evaluation of prediction uncertainty. For instance, in Gaussian
processes, the posterior pdf serves as an uncertainty measure. Another approach is the query
by committee, in which the function is learned with several algorithms, and the input on
which the disagreement is highest is chosen as the next one to be labelled. Other approaches
are based on minimizing the expected error, or choosing the input that will induce the
biggest change in the function. With regards to MC, active sampling approaches follow the
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aforementioned procedures adapted to the MC formulation [83–86].
While active sampling generally achieves good performance results, it may not be the

case in some situations e.g., when the samples are too noisy or when online operation is not
possible. There also exist batch versions of active learning which acquire the labels in groups,
but the issue with noisy samples still prevails. Moreover, most active learning methods are
designed for classification tasks, which often have built-in uncertainty measures, with the
availability of methods for regression being more limited [87,88].

An alternative to active sampling is provided by the passive sampling method. In passive
sampling, the set of inputs to be labelled is selected observing uniquely the geometry of the
input space. For instance, the greedy sampling approach in [87], iteratively adds new input
points to the training set by choosing the one with the largest distance to the set. By relying
only on the input space, passive sampling avoids having to iteratively recompute the learned
function for every additional input; the training set can be labelled all at once when it is
deemed complete. Furthermore, the impact of noisy samples is diminished

Since the KKMCEX algorithm is regression-based and operates on a fully known, although
not fully labelled, set of inputs X , passive sampling is a sensible choice to reduce the prediction
error. As hinted in Lemma 3.2, the MSE depends on the difference between the kernel matrix
and its Nyström approximation. Since the kernel matrix is built needing only the inputs
in X to evaluate the kernel function, a passive sampling approach is constituted by first
building the Nyström approximation with an optimal set of columns of Kf . Then, the inputs
in X corresponding to the chosen columns are labelled to form the training set. Unlike [87],
this kernel-based approach enables passive sampling on any type of input set X , including
non-metric spaces. That is, as long as there exists a kernel function measuring similarity
between inputs, e.g., files, users or vertices on a graph, a passive sampling strategy can be
devised. This chapter introduces a probabilistic approach to passive sampling based around
building an accurate Nyström approximation to the kernel matrix.

The chapter is organized as follows. Section 5.1 provides a theoretical analysis of the
sampling procedure in RKHSs and proves that Nyström-based passive sampling is optimal,
in the absolute error sense, for noiseless samples. Section 5.2 introduces the passive sampling
approach for KKMCEX and discusses different sampling strategies to accelerate the algorithm.
Finally, Section 5.3 presents numerical tests and Section 5.4 offers conclusions.

5.1 Optimal sampling in RKHSs

Let f : X → R be a function lying on an RKHS Hf , X̄ = {x̄i}si=1 be a set of sampled points in
X where |X | = N , and assume noiseless observations {yi}si=1 such that yi = f(x̄i)∀i = 1, . . . , s.
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Moreover, consider a slight departure from the train/test protocol in Chapter 4 and assume
that the objective is simply to learn f ∈ Hf from X̄ and {yi}si=1 as in Chapter 3. This
section takes the functional analysis approach on the signal reconstruction process from [89]
and derives results valid for any algorithm operating in a finite dimensional RKHS.

The recovery of f from the observation set can be thought of as the “inversion” of

f̄ = Af (5.1)

where f̄ = [f(x̄1), . . . , f(x̄s)]T , and A : Hf → Rs is a sampling operator evaluating f

at {x̄i}si=1. The reproducing property states that any functional evaluation in Hf obeys
f(x) = 〈f, κf (·, x)〉Hf . Thus, the sampling operator is defined as

Af =
s∑

n=1
〈f, κf (·, x̄n)〉Hfen (5.2)

where en is the nth vector of the standard basis, i.e., the nth column of an s× s identity
matrix. Let S be the subspace spanned by {κf (·, x̄n)}sn=1. Then, f = fS + fS⊥ , where fS
is the projection of f onto S and fS⊥ is the projection onto the subspace orthogonal to S,
denoted by S⊥. Thus, for x̄ ∈ X̄ ,

f(x̄) = fS(x̄) + fS⊥(x̄) = 〈fS , κf (·, x̄)〉Hf + 〈fS⊥ , κf (·, x̄)〉Hf = 〈fS , κf (·, x̄)〉Hf = fS(x̄).
(5.3)

Since fS ∈ S, it can be written as
∑s
n=1 ᾱnκf (·, x̄n) for some real coefficients {ᾱn}sn=1. In

turn, f(x̄) =
∑s
n=1 ᾱnκf (x̄, x̄n). Therefore, since f̄(i) := f(x̄i), A maps f into a new RKHS

Hg ⊆ Rs defined as

Hg := {f̄ : f̄(i) =
s∑

n=1
ᾱnκf (x̄i, x̄n), ᾱn ∈ R} (5.4)

with kernel matrix K̄ ∈ Rs×s where K̄i,j = κf (x̄i, x̄j) so that f̄ = K̄ᾱ, where ᾱ =
[ᾱ1, . . . , ᾱs]T , and 〈f̄ , f̄ ′〉Hg = f̄T K̄−1f̄ ′ for f̄ , f̄ ′ ∈ Hg and assuming K̄ invertible. With
A : Hf → Hg, its adjoint operator is A∗ : Hg → Hf , and it satisfies

〈Af, f̄〉Hg = 〈f,A∗f̄〉Hf (5.5)

which leads to the definition

A∗f̄ =
s∑

n=1
κf (·, x̄n)〈f̄ , en〉Hg (5.6)
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where 〈f̄ , en〉Hg = f̄T K̄−1en = ᾱn. The operator A∗ maps f̄ back into Hf using only the
basis functions in S, hence reversing the sampling in (5.1) and yielding an estimate for f .

After the sampling operator and its adjoint have been defined, the reconstruction of a
function in Hf from its samples can be achieved through the consecutive application of each
operator, i.e., f̂ = A∗Af . Hence, P = A∗A is an orthogonal projector onto S since it is
a self-adjoint operator, i.e., 〈Pf, f ′〉Hf = 〈f,Pf ′〉Hf , and it satisfies PP = P. Then, the
estimate f̂ is equal to fS as shown below

f̂ = Pf = A∗
s∑

n=1
〈f, κf (·, x̄n)〉Hfen

=
s∑

m=1
κf (·, x̄m)〈

s∑
n=1
〈f, κf (·, x̄n)〉Hfen, em〉Hg

=
s∑

m=1
κf (·, x̄m)〈f̄ , em〉Hg

=
s∑

m=1
κf (·, x̄m)ᾱT K̄K̄−1em

=
s∑

m=1
ᾱmκf (·, x̄m) = fS . (5.7)

Since an orthogonal projection onto a space yields an element with minimum distance to
the original function, the reconstruction error at x ∈ X is upper bounded by

|f(x)− Pf(x)| = |〈f, κf (·, x)〉Hf − 〈Pf, κf (·, x)〉Hf |

= |〈f, κf (·, x)〉Hf − 〈f,Pκf (·, x)〉Hf |

= |〈f, κf (·, x)− Pκf (·, x)〉Hf |

≤ ‖f‖Hf ‖κf (·, x)− Pκf (·, x)‖Hf (5.8)

It can be seen that the error upper bound at a point x depends on the distance between the
kernel function κf (·, x) and its projection onto S. Note that zero error is obtained at the
sampled points since Pκf (·, x̄) = κf (·, x̄) ∀x̄ ∈ X̄ . For x /∈ X̄ , the error can only be zero if
κf (·, x) ∈ S; this is the case when a kernel function is duplicated such that κf (·, x̄i) = κf (·, xj)
where x̄i ∈ X̄ and xj /∈ X̄ . See Fig. 5.1 for an example. Assuming no such duplicities exist,

|f(x)− Pf(x)| ≤

0 if x ∈ X̄

‖f‖Hf ‖κf (·, x)− Pκf (·, x)‖Hf if x /∈ X̄
(5.9)
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
1 2 3 2
2 1 2 1
3 2 1 2
2 1 2 1


Figure 5.1: Kernel matrix for a space X = {x1, x2, x3, x4} where X̄ = {x1, x2, x3} and x4 /∈ X̄ .
The error |f(x4)− Pf(x4)| = 0 since κf (·, x4) = κf (·, x2) and x2 ∈ X̄ .

The total error over the function estimate is denoted by |f − f̂ | =
∑N
i=1 |f(xi)− f̂(xi)|,

and (5.9) shows that it can only be zero when f ∈ S so that Pf = f . Moreover, since
according to (5.7) f̂ = fS , then ‖f − f̂‖Hf = ‖fS⊥‖Hf . Therefore, in order to have zero error
for any f ∈ Hf , then Hf = S must be true.

The second norm in (5.8) denotes the distance in Hf between a kernel function and its
closest approximation built with the functions in S. This fact exposes useful properties of A
such as the one in the lemma below.

Lemma 5.1. A is a norm-preserving transform in Hg with respect to Hf such that it holds
that ‖f‖Hf = ‖Af‖Hg ∀ f ∈ S.

Proof. Let us expand the second term in (5.8) as

‖κf (·, x)− Pκf (·, x)‖2Hf = 〈κf (·, x)− Pκf (·, x), κf (·, x)− Pκf (·, x)〉Hf
= κf (x, x)− 2〈κf (·, x),Pκf (·, x)〉Hf + 〈Pκf (·, x),Pκf (·, x)〉Hf
= κf (x, x)− 2〈κf (·, x),Pκf (·, x)〉Hf + 〈Aκf (·, x),Aκf (·, x)〉Hg
= κf (x, x)− 2〈Aκf (·, x),Aκf (·, x)〉Hg + 〈Aκf (·, x),Aκf (·, x)〉Hg
= κf (x, x)− 〈Aκf (·, x),Aκf (·, x)〉Hg
= ‖κf (·, x)‖Hf − ‖Aκf (·, x)‖Hg (5.10)

where, using 〈f,A∗f̄〉Hf = 〈Af, f̄〉Hg and AA∗ = I, the identity 〈A∗Af,A∗Af〉Hf =
〈AA∗Af,Af〉Hg has been applied on the third equality, and 〈f,A∗Af〉Hf = 〈Af,Af〉Hg on
the fourth. The resulting expression measures the difference between the norm of κf (·, x)
in Hf and its sampled counterpart in Hg. Thus, since (5.10) must be 0 for κf ∈ S, A is a
norm-preserving transform in Hg ∀ f ∈ S.

The expansion in (5.10) has further implications as shown in the theorem below.

Theorem 5.1. Let f = [f(x1), . . . , f(xN )]T , and S be an s×N binary sampling matrix with
a nonzero element per row equal to 1 such that Sf := Af . Moreover, let Kf be the kernel
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matrix of Hf , and Tf = KfS
T K̄−1

f SKf . Then, the total error across f is bounded as

|f − Pf | ≤ ‖f‖Hf Tr{Kf − Tf} (5.11)

Proof. Using (5.8) and (5.10), it holds that

|f − Pf | =
N∑
m=1
|f(xm)− Pf(xm)|

≤ ‖f‖Hf
N∑
m=1
‖κf (·, xm)− Pκf (·, xm)‖Hf

≤ ‖f‖Hf
N∑
m=1

(
‖κf (·, xm)‖Hf − ‖Aκf (·, xm)‖Hg

)
(5.12)

= ‖f‖Hf
N∑
m=1

κf (xm, xm)−
s∑
i=1

s∑
j=1

κf (x̄i, xm)(K̄−1)i,jκf (x̄j , xm)


= ‖f‖Hf Tr(Kf −KfS

T K̄−1SKf ) = ‖f‖Hf Tr(Kf − Tf ). (5.13)

Matrix Tf is the so-called Nyström approximation1 to Kf . Thus, (5.13) shows that the
error upper bound is proportional to the difference between Kf and Tf on its diagonal
entries. Moreover, Tr(Kf − Tf ) ≥ 0 since in (5.10) ‖κf (·, x)‖Hf ≥ ‖Aκf (·, x)‖Hg . Therefore,
designing A to maximize

∑N
n=1 ‖Aκf (·, xn)‖Hg = Tr(Tf ) yields the smallest bound in

Theorem 5.1.

5.2 Passive sampling for KKMCEX

Section 5.1 regards the reconstruction of a sampled function by means of projection operators.
Moreover, it shows that the recovery error is proportional to the difference between the kernel
matrix and its Nyström approximation. Since this approximation is built from a subset of
columns, which columns are chosen is crucial to keep the approximation accurate. While
there exist deterministic [90] methods which order the columns according to a metric and
then choose the top performers, most implementations of the Nyström approximation opt for
statistical approaches. In these, a sampling probability is assigned to each column and the
required number of columns is sampled according to the resulting distribution. One example

1T is different to the regularised Nyström approximation T̃f = KfS
T (K̄f + µI)−1SKf , except for

µ = 0.
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of such a technique is in [64,91], which measures column importance through the so-called
leverage scores and provides strong theoretical guarantees on the approximation error.

In KKMCEX, the function to be recovered is an NL vector f . The sampling operator
in Section 5.1 takes the form of the sampling matrix, i.e., A := S, and its adjoint derived
following (5.5) is A∗ := KfS

T (SKfS
T )−1, which maps Rs → RNL. Therefore, following the

same process as in Section 5.1, the projection operator is P = KfS
T (SKfS

T )−1S. Looking
at the KKMCEX solution in (3.46),

f̂K = KfS
T (SKfS + µI)−1Sm (5.14)

one observes that it is not obtained by directly applying the projection operator ontom unless
µ = 0. However, since (5.14) lies on the column span of KfS

T , the result is a non-orthogonal
projection of m onto S = span{KfS

T }, i.e., the space spanned by the kernel functions
evaluated at the sampled inputs. Still, a direct application of Theorem 5.1 is not possible
unless µ = 0 and m is noiseless.

To evaluate the performance of a specific sampling pattern, the risk function [91], which
is equal to the MSE except that it takes S as a parameter, will be used. Thus, the risk is

Rµ(S) = Ee{‖f − f̂K‖22}

=
∥∥(I −KfS

T (SKfS
T + µI)−1S)f

∥∥2
2 + Ee

{∥∥KfS
T (SKfS

T + µI)−1ē
∥∥2

2

}
and, assuming µ = 0, it becomes

R0(S) =
∥∥f −KfS

T (SKfS
T )−1Sf

∥∥2
2 + Ee

{∥∥KfS
T (SKfS

T )−1Se
∥∥2

2

}
= ‖f − Pf‖22 + Ee

{
‖Pe‖22

}
. (5.15)

Hence, the first term in (5.15), i.e., the bias, takes similar form as (5.11) in Theorem 5.1
whereas the second term or variance is the norm of the projection of the vectorized noise
onto S. If there were no noise, the variance term in (5.15) disappears and therefore the
overall error depends uniquely on the accuracy of the Nyström approximation. With noise,
there needs to be a balance between bias and variance in order to make the risk small, i.e.,
sampling the most important points in f while acquiring the least amount of noise. However,
since the distribution of the noise over the sample is usually unknown, this strategy is not
feasible. Under the assumption of Gaussian noise with variance ν2, adapting the procedure
in the proof of Theorem 5.1 to the 2-norm, we have that

R0(S) = ‖f − Pf‖22 + ν2Tr(P) ≤ ‖f‖22 Tr(Kf − Tf ) + ν2s
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which shows that adding more samples can reduce the approximation error for Tf and hence
the bias but it also increases the variance. Since µ > 0 enables the regularization term in
KKCMEX, which can reduce the impact of the noise and risk of overfitting, the passive
sampling strategy will be derived by analyzing Rµ(S).

5.2.1 Design of the sampling matrix

Lemma 3.2 shows that the difference between the kernel matrix and its regularized Nyström
approximation, which depends on µ, also regulates the MSE bound for KKMCEX. Therefore,
it is well-grounded that one may pick the samples in Z := X × Y by choosing the associated
columns in Kf that best build the regularized Nyström approximation. This section frames
the sampling of the entries inm = vec(M) as designing the sampling matrix S that minimizes
the error Kf − T̃f . Through analyzing the risk function from a probabilistic standpoint, S is
cast as a weighted sampling matrix with weights set according to the leverage scores of the
columns of Kf . Since this process only involves the kernel matrix, it is a passive sampling
approach. Once S is obtained, the corresponding samples are obtained as m̄ = Sm and
KKMCEX can then be applied to recover f .

Rewriting the risk function following Lemma 3.2 and (3.51), the risk is upper bounded as

Rµ(S) =
∥∥(Kf − T̃f )γ

∥∥2
2 + Ee

{
1
µ2

∥∥(Kf − T̃f )ST ē
∥∥2

2

}
≤
∥∥Kf − T̃f

∥∥2
2

(
‖γ‖22 + ν2s

µ2

)
(5.16)

where the regularized Nyström approximation T̃f = KfS
T (SKfS+µI)−1SKf is a function

of S. There exist many approaches to building Nyström approximations, all based around
the idea of selecting the subset of columns of Kf yielding the best low-rank approximation.
Such an approach can be derived by further examining the eigenvalues of Kf − T̃f . Let us
recall Eq. (B.16) from Appendix B.3,

Kf − T̃f = µQfΣ
1
2
f (Σf + µI)− 1

2 (I − P )−1(Σf + µI)− 1
2 Σ

1
2
fQ

T
f (5.17)

where Kf = QfΣfQ
T
f and P is

P = Σf (Σf + µI)−1 − (Σf + µI)− 1
2 Σ

1
2
fQ

T
f S

TSQfΣ
1
2
f (Σf + µI)− 1

2 . (5.18)

Defining V = (Σf + µI)− 1
2 Σ

1
2
fQ

T
f and knowing that the product of two diagonal matrices is
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commutative, substituting into (5.18) yields

P = V V T − V STSV T (5.19)

Therefore, P is the difference between V V T and an approximation built from a subset of the
columns in V , and it is the only element in (5.17) depending on the sampling distribution
through S. Thus, if S is designed to minimize the norm of P so that in (5.17) ‖(I −P )−1‖2
is approximately minimized, a reduction on the difference Kf − T̃f in (5.17) and also on the
bound on Rµ(S) in (5.16) can be expected.

Let ω be an ordered s-tuple containing indices drawn with replacement from {1, . . . , NL}
with the probability distribution Pr(i) = pi. Here, pi denotes the probability of sampling the
ith column inKf , and ω contains the indices of the sampled columns in non-descending order.
Moreover, assume a weighted S ∈ Rs×NL with Si,j = 1√

spj
if ω(i) = j, i = 1, . . . , s, j =

1, . . . , NL, and 0 elsewhere. Note that, since the indices in ω are drawn with replacement,
there might be repeated rows in S sampling the same item. Moreover, the change to a
weighted S is necessary in order to satisfy certain theoretical guarantees. In [92] it is shown
that the optimal probability distribution to minimize E{‖P ‖2F} in (5.19) is pi = ‖vi‖2

2
‖V ‖2

F
, with

vi denoting the ith column of V ,

‖vi‖22 =
NL∑
j=1

σj
σj + µ

qj(i)2 (5.20)

where σi = (Σf )ii, and qi is the ith column in Qf . Ideally, making ‖P ‖F smaller also
minimizes ‖Kf − T̃ ‖2F .

Note, however, that while a smaller ‖Kf−T̃ ‖2F makes the upper bound in (5.16) smaller, it
does not actually ensure that Rµ(S) will also be reduced. Moreover, the optimal distribution
is tied to the regularization parameter µ through (5.20). Hence, setting µ to minimize
‖Kf − T̃ ‖2F does not imply that the optimal regularization parameter for Rµ(S) is also
chosen. For this reason, we decouple the problem of finding the optimal distribution from
the regularization in the recovery problem and define

li =
NL∑
j=1

σj
σj + α

qj(i)2 (5.21)

where α > 0 is a tunable parameter. Then, the chosen distribution is

pi = li∑NL
j=1 lj

. (5.22)



92 Optimal sampling in RKHSs

Thus, replacing µ in (5.20) with α to obtain (5.21) enables separate optimization of the
regularization term in the regression problem and the probability distribution (5.22).

The quantity li is the so-called regularized leverage score2 of the ith column of Kf [64],
which is a measure of the importance of the column and can also be written as li =
(Kf (Kf + αI)−1)i,i. Just so, the ith leverage score is a weighted average of the ith row of
the eigenvector matrix Q. Leverage scores are similar to the notion of coherence, in that
if a row has high leverage score or coherence this indicates that it contains a point that
“sticks out” with respect to the other elements. Leverage scores are typically used in ordinary
least squares (OLS) problems in order to sample a subset of equations and solve a smaller
problem [93]. While in OLS the regression matrix is usually tall and rank-deficient, this is
not the case with kernel matrices in KRR. Therefore, having α > 0 is necessary to avoid the
trivial result of having all li being 1. Moreover, α regulates how much weight is given to the
notable points, with a larger α inducing smaller scores with a more even distribution across
all columns.

Calculating the leverage scores entails obtaining the eigendecomposition ofKf , or inverting
(Kf + αI), which can be computationally costly. Since in KKMCEX Kf = Kh ⊗Kw, the
computation of li can be sped up by instead calculating the approximation

l̃i =
(
Kh(Kh + αhI)−1 ⊗Kw(Kw + αwI)−1)

ii
= (lh ⊗ lw)i (5.23)

where lw = diag
(
Kw(Kw + αwI)−1), lh = diag

(
Kh(Kh + αhI)−1) and αw, αh ≥ 0. Then,

the approximate probability is

p̃i = l̃i∑NL
i=1 l̃i

. (5.24)

Since l̃i is an approximation to li, the resulting probability distribution p̃i will differ from
pi in (5.22). Moreover, it is generally not possible to have l̃i = li by tuning αw and αh

since these two variables do not afford enough degrees of freedom to satisfy an equality.
Nevertheless, the computation cost is greatly reduced, which can outweigh any potential loss
in accuracy.

5.3 Numerical tests

This section presents numerical tests comparing uniform sampling with pi = 1
NL to the

approach based on leverage scores (5.22) and approximate leverage scores (5.24) for different
values of s. The optimal hyperparamters µ and α are found via grid search for each s. The

2Hereafter the words leverage score refer to the regularized leverage score.
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search is performed randomly: intervals [µmin, µmax] and [αmin, αmax] are set for µ and α
respectively, and 100 tuples of values within the intervals are selected uniformly at random.
For the approximate leverage scores, the parameter values are αw = αh =

√
α. The s labelled

samples form the training set, and the NMSE measures the estimation error as

NMSE = 1
Nr

Nr∑
i=1

∥∥∥F̂i − F∥∥∥2

F

‖F ‖2F
(5.25)

where F̂ = unvec(f̂K), Nr = 20, and a new training set is acquired at each realization.
Since the proposed sampling scheme is applicable to any function in an RKHS that can be
arranged as a vector with its associated kernel matrix, the simulations consider the recovery
of missing entries in both vectors, where Kh = 1, and matrices. Moreover, in the vector case
only the results for uniform and leverage-based sampling (5.22) are shown since the exact
and approximate leverage scores are the same for αw = α.

The Boston housing dataset3 is the first to be evaluated. This dataset contains 506 feature
vectors detailing the characteristics of houses in Boston such as size or number of rooms,
and the price of each house is the ground truth and variable to be predicted. Hence, F is
cast as a 506 × 1 vector. The kernel used to define Kw is the Gaussian kernel applied on
the feature vectors. Fig. 5.2 shows the NMSE for different values of s and the two sampling
strategies: uniform and based on leverage scores. The figure shows that the passive sampling
approach attains a smaller error than uniform sampling. While the gains are small, they are
in line with those obtained by other methods [64,87].
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Figure 5.2: NMSE vs. s for the Boston housing data.

Fig. 5.3 shows the results for the mushroom dataset used in Section 3.6.3. The vector
to be recovered is of length 5,000 and the kernel is the same as the one in Section 3.6.3.
Here, the feature vectors contain details about each mushroom such as shape or size, and

3https://www.cs.toronto.edu/ delve/data/boston/bostonDetail.html
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the objective is to determine whether a mushroom is edible or poisonous. It can be observed
that passive sampling holds a slight edge over uniform sampling. Note that, since this is a
binary classification problem with classes [1,−1], the NMSE evaluates the difference between
the regression result and the actual numerical value of the class before applying any decision
rule.
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Figure 5.3: NMSE vs. s for the mushroom data.

In the first matrix case, the evaluation is done on a 500× 500 adjacency matrix of the
mushroom data as in Section 3.6.3. This is a clustering problem, where each mushroom is a
node on a graph connected only to those nodes belonging to the same class, i.e., poisonous
or edible. Then, the objective is to recover the whole graph adjacency matrix from a few
observed entries. Fig. 5.4 shows that passive sampling lowers the NMSE by around 0.01 across
the range of s. Moreover, the distribution obtained from the approximate scores delivers
the same performance the exact ones at a smaller computational cost. As in the vector case
in 5.3, the leverage scores of the chosen kernels reflect accurately the importance of each
data point, hence reducing the MSE when passive sampling is adopted.

On the other hand, Fig. 5.5 shows the results for the temperature dataset, where the
kernels are the row and covariance matrices of the data from the year previous to 2002. It can
be observed that all sampling methods achieve almost the same NMSE. Due to the natural
smoothness of the data, the chosen sampling distribution is not as important.
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Figure 5.4: NMSE vs. s for the mushroom adjacency matrix.
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Figure 5.5: NMSE vs. s for the temperature data.
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5.3.1 Suboptimal hyperparameters and grid search

The grid search process for µ and α ensures that the smallest possible error is achieved.
Moreover, since in the simulations the whole matrix is known, training data can be drawn
across the whole matrix in order to obtain a representative set. Nevertheless, it is unlikely that
one is able to choose the best pair of hyperparameters; either because only a small percentage
of entries can be known, or an exhaustive grid search is unfeasible due to computational cost.
Fig. 5.6 depicts the results for the temperature matrix for a suboptimal µ = 10 across all s.
Compared to Fig. 5.5, where optimal hyperparameters are chosen, a suboptimal µ results in
a smaller error for the passive sampling schemes.
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Figure 5.6: NMSE vs. s for the temperature data with µ = 10.

Fig. 5.7 shows the result of the grid search for µ and α for several values of s. The
two topmost subfigures depict the error obtained for 100 different pairs of values for each
algorithm at s = 1620. For the search over µ, each tested value has several vertically aligned
points which correspond to different values of α. The plot shows that the optimal µ is 103.5

and that the vertical dispersion of the points diminishes as µ grows larger. A plausible
explanation for this phenomenon is that a larger µ yields a smoother F̂ , which reduces the
influence of the outliers. On the other hand, the plot for α does not show any specific pattern,
which in this case indicates that whether passive sampling brings any improvement is mostly
determined by µ.
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Figure 5.7: Hyperparameter grid search for the temperature data.
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5.4 Conclusions

This chapter has peered into how the prior information embedded in the kernel functions
spanning an RKHS can be used to determine which inputs are the most important to label in
order to recover the complete function. First, through functional analysis, it has been shown
that the recovery error of a sampled function in an RKHS is directly tied to the Nyström
approximation to the kernel matrix. Hence, in the noiseless case, the error can be minimized
by finding the best possible Nyström approximation and labelling the inputs corresponding to
the chosen columns. This sampling approach is passive since it only involves knowledge of the
input space and kernel matrix, which presents benefits over active sampling schemes which
require online operation and are more vulnerable to noise. Given the theoretical background,
the Nyström-based sampling approach has been applied to KKMCEX for the picking of the
training set. In this, the weighted sampling matrix is designed according to the leverage
scores of the kernel matrix, which measure the importance of each column in achieving a
good Nyström approximation. Numerical tests have shown that the proposed approach works
well for the recovery of sampled vectors and matrices, the latter case showing better results
when the choice of the regression regularization parameter is suboptimal.



6
Conclusions

This thesis has addressed the problem of matrix completion (MC) from a variety of standpoints
with the underlying theme of the availability of prior information. For one, it has delved
into the algorithmic side by studying existing formulations and proposing enhancements
to improve speed and accuracy. Furthermore, it has explored and proposed frameworks to
encode and use said prior information to enhance the recovery accuracy of the unknown
matrix. As it is, the work comprised in the thesis pushes forward the theoretical boundaries
in MC and opens the door to improved application.

Chapter 2 has presented an introduction to MC which addresses core concepts and
algorithms in an accessible manner. Proximal gradient algorithms have been studied in
solving the minimization problem with nuclear norm regularization, and improved variants
which increase the convergence speed have been proposed. Moreover, it has been shown that
proximal gradient (PG) warrants the use of prior information about the unknown matrix
in two ways: initialization and additional regularization. By modelling the columns of the
matrix as graph signals, the structural information provided by the graph is used to obtain an
initial point closer to the minimum and thus reducing the required PG iterations. Moreover,
the availability of a graph enables more a accurate recovery through the incorporation of
the graph Laplacian into the MC formulation as an additional regularization term. The
PG algorithm is able to easily handle such terms, and through its analytical expressions
theoretical measures on its performance have been derived.

Chapter 3 has introduced the implementation of MC as a kernel regression problem. The
introduction to reproducing kernel Hilbert spaces demonstrates how kernel functions aid in the
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recovery of missing data points. Since the kernel function measures similarity between points
in the input space, predicting an unlabeled input amounts to finding a linear combination of
the kernel evaluated at the sampled points. Moreover, through its regularization term kernel
ridge regression enforces smoothness in the estimated function in order to reduce overfitting.
When applied to MC, the rectangular matrix is cast as a function in a vector space to be
recovered from a small number of observations. In this reformulation, the kernel matrix
is formed as the Kronecker product of two smaller kernel matrices, corresponding to the
column and row spaces of the matrix. The resulting Kronecker Kernel MC and extrapolation
(KKMCEX) algorithm enables a straightforward MC which is also computationally efficient
when the number of observations is small. Still, given the sparse nature of the observed
matrix, it is not feasible to determine column and row similarities through application of the
kernel function. Hence, this chapter has explored means of obtaining kernel matrices through
side information available in the form of graphs or feature vectors associated to the rows and
columns of the unknown matrix.

Besides KKMCEX, Chapter 3 also has introduced its dual variant, the ridge regression
MC and extrapolation (RRMCEX) algorithm. This method aims to overcome one flaw in
KKMCEX: the fact that its computational cost scales with the number of observations.
By replacing the kernel matrix with a low-rank approximation product of two feature
matrices, RRMCEX solves MC as a ridge regression problem offering accuracy close to that
of KKMCEX at a potentially much smaller cost. Moreover, thanks to the separability of its
cost function, the online variant online RRMCEX has been derived, which has been shown
in numerical tests to outperform the widely used stochastic gradient descent. All in all,
Chapter 3 has introduced a MC framework built atop the reproducing kernel Hilbert space
toolset with proven usefulness and speed advantages when compared to existing kernel-based
implementations.

In Chapter 4 the focus has been on comparing three approaches to MC, namely base
MC, KMC and KKMCEX, through their generalization error. First, the concept of inductive
GE has been introduced as a mean to measure the difference between the loss function
applied to a random dataset and its expected value. However, practical implementations
of MC operate in the transductive setting: there is no assumed sampling distribution and
the objective is to transfer knowledge from a training set onto a testing set which evaluates
algorithm performance. The chapter has presented a guide on how to obtain the transudctive
generalization error (TGE), which can be approximated through the transductive Rademacher
complexity (TRC). The TRC indicates how likely it is that a function within a hypothesis
class will fit the training and testing points. Hence, having a high TRC can result in very
accurate prediction of both known datasets but poor performance when predicting previously
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unseen inputs. Base MC, KMC and KKMCEX rely on different regularization terms, which
modulate the TRC and hence their generalization properties. Through the bounds derived
in Chapter 4 it has been shown that KKMCEX has one major advantage over the other
methods: its TGE is only dependent on the number of observations and independent of the
matrix size. Hence, it is a more reliable method when dealing with a very small number of
samples and large matrices.

Finally Chapter 5 has taken on on the issue of choosing the observations in the training
set to minimize the recovery error. While active sampling is a commonly used scheme that
offers good results it has two main drawbacks: the algorithm must be able to operate in
online manner to sequentially request new observations, and observation noise can derail the
sampling process. Hence, the chapter has taken a passive sampling approach. In it, the only
information used to acquire the complete training set is contained within the input space
and the chosen kernel. Essentially, the passive sampling method examines the kernel function
to determine which points stick out the most and therefore should be sampled with higher
probability. Then, a sampling probability is assigned to each input point according to its
importance and the observations are drawn according to the distribution. Chapter 5 has
shown that in KKMCEX finding the optimal sampling distribution amounts to finding the
subset of columns in the kernel matrix that best form its Nyström approximation. Indeed,
this is proven via functional analysis of the sampling process in the noiseless case. Moreover,
is shown how separately sampling the column and row spaces, which results in a grid sampling
pattern, leads to more efficient algorithms where the optimal distribution is much faster to
calculate.

While this thesis has focused solely on MC, there are several avenues upon which the
work can be continued. As mentioned in Chapter 4 the kernel-based approach to tensor
completion is similar to kernel MC. Hence much of the analysis carried out here such as
the TGE or the optimal sampling distribution can be extended to work on tensors. In fact,
extending the grid sampling strategy onto tensors can lead to much faster algorithms while
reducing the recovery error thanks to an adequate sample choice. The closely related field of
Gaussian processes has proposed efficient algorithms [94] for when the input set is a tensor
product of sets. Since this is the case for both kernel-based matrix and tensor completion,
such algorithms can also be employed to accelerate the recovery of high dimension tensors.
Hence, the Nyström-based sampling strategy from Chapter 5 can be coupled with this kind
of algorithm in order to boost performance.

Another open question is the possibility of performing multi-kernel MC due to the
difficulty of always being able to find an appropriate kernel. By allowing multiple kernel
functions for the row and column spaces, the prediction error can be reduced [23] since the
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optimal kernel is automatically chosen as a combination of other kernels. However, this comes
at an increase in computational cost which for MC is due to be very high for large matrix
sizes. A potential way to curb on cost is via an online multi-kernel implementation extended
to work with kernel matrices that are obtained as the Kronecker product of two or more
matrices.

Finally, there is the always-present challenge of finding new applications for a method.
With its current surge in popularity, deep learning is being used to solve all sorts of problems
and also to improve existing machine learning techniques. Indeed, there are works [95,96]
tackling MC through deep learning in order to better exploit nonlinearities in the data
matrix. Another hot topic for MC is in biomedical applications, especially in predicting
drug-target interactions [52,97]. Although not included in this manuscript, some work has
been conducted within this thesis on using MC in array processing. Given the large amount
of antennas implemented in newer communication standards, keeping power consumption
low must be a priority. Here, MC is a powerful tool that can contribute to achieving this
goal. Since in multiantenna arrays the received signal is the same at each antenna except for
a small phase shift, the snapshot matrix is inherently low-rank. Hence, MC-based strategies
can be designed in order to sample only a few antennas at each time instant and still be
able to recover the full snapshot matrix. Moreover, this allows to downsize the receiver and
implement a small number of radio frequency chains equal to the number of antennas to be
sampled at each time instant. New collaborations [98,99] have shown that MC outperforms
other existing approaches, hence revealing a research path with innovation potential.
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A
Graph signals

A graph is defined as G = {V, E ,A}, where V = {v1, . . . , vN} is the set of vertices, and
E ⊆ V×V is the ordered set of edges connecting the vertices, and A ∈ RN×N is the adjacency
matrix. Each vertex is associated with an entity, whereas an edge (vi, vj) represents that
information flows from vertex j to vertex i. If the information flow between all connected
pairs of vertices is bidirectional, then the graph is undirected such that (vi, vj) ∈ E ⇔
(vj , vi) ∈ E ∀ vi, vj ∈ V. The overall connectivity of the network is represented in A,
which can be unweighted or weighted. In the unweighted case, Ai,j = 1 ∀ (vi, vj) ∈ E and
Ai,j = 0 ∀ (vi, vj) /∈ E . Hence, this adjacency matrix only represents whether there is a
connection between any two vertices in the graph. On the other hand, the non-zero entries of
a weighted adjacency matrix can take any value in R+, representing the degree of similarity
between two vertices. In this thesis it is assumed that all graphs are undirected with a
symmetrical weighted adjacency matrix, such as the pair illustrated in Fig. A.1.
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Figure A.1: Undirected graph and its associated weighted adjacency matrix.

Given G, a graph signal is defined as a map from the set of V vertices into the set of real
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numbers x : V → R that can be arranged in a column vector x defined as

x = [x(1), . . . , x(N)]T , (A.1)

where x(i) is the value of the signal at vertex vi. The values of the graph signal should reflect
the structure of the underlying graph, with connected vertices having similar values. Fig. A.2
depicts a graph with 382 vertices and 654 edges, where most nodes are arranged into grid
blocks and there are some edges connecting each block. Fig. A.3 shows a possible signal
measured on this graph, where it is clear that vertices close in the grid have similar values,
and vertices connected between different grids do as well. It should be noted that the entries
in x do not have an inherent organization as is the case with, for instance, time signals.
The entries of a graph signal can be shuffled and the signal will still be the same, since this
shuffling amounts to a reordering of the domain of the function x : V → R and it does not
alter the links between vertices. Thus, the graph signal in Fig. A.4 is equal to the one in
Fig. A.3 since the edges remain unchanged even though the 2D positioning of the vertices in
the figure has changed. Consider now the availability of different realizations of graph signals

Figure A.2: Graph obtained from the pixels in an image of the UPC logo. Some edges connecting
the letters have been added.

Figure A.3: Graph signal.

lying on the same graph. For instance, this situation arises in a wireless sensor network where
each node is connected only to its close neighbors and taking periodic measurements. While
each signal is described by the same graph, its values might be completely different and
independent between signals. Thus, we have a set of graph signals {xl}Ll=1 residing on the
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Figure A.4: Graph signal with some shuffled vertices.

graph G, and we cast X into a N × L graph signal matrix

X = [x1, . . . ,xL]. (A.2)

Besides establishing the graph connectivity through E , the weights of the edges also need
to be known. In graph learning applications, the entries of a weighted A are usually generated
by applying pairwise similarity measures such as the Gaussian kernel or cosine distance to
the samples of the signal [33]. Alternatively, when no samples are available and only the
structural data V and E are known, A can be generated by applying pairwise structural
similarity measures [100] to the vertices of the graph. For instance, given a graph G, its
adjacency matrix can be generated as

A = diag(A′1)−1A′, (A.3)

where
A′i,j = exp(− N2di,j∑

i,j di,j
), (A.4)

and di,j is the geodesic distance, i.e., the number of hops, between station j and station i on
graph G. The structural similarity measures are the most adequate for the matrix completion
problem since the available graph signals are incomplete. Nevertheless, one can design A
with any other method deemed appropriate for a specific application.

Besides the adjacency matrix, another important element for a graph is the Laplacian
matrix since it gives further insight into the graph structure. For instance, it can be used
to find the optimal partition of the graph into disjoint sets, or to obtain low dimensional
embeddings to be used in, e.g., clustering applications. In graph signal processing, the
Laplacian plays a central role as it allows to implement filters from classical signal processing
into the graph domain, and develop new graph-specific operations.
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The Laplacian of a graph is defined as

L = diag−1(A1)−A (A.5)

with eigendecomposition L = QΛQT . The eigendecomposition of the Laplacian elucidates the
notion of frequency on a graph. Each eigenvalue and eigenvector pair represents a frequency,
with the largest eigenvalue denoting the highest frequency, and the opposite for the smallest
eigenvalue. Thus, each eigenvector represents the signal that varies with different speed across
the graph according to the associated eigenvalue. For instance, the values at the vertices of a
high frequency signal will change rapidly in magnitude between connected vertices, whereas
for a low frequency signal the values will be similar. Fig. A.5 illustrates this concept for the
second and sixth smallest frequencies of the graph introduced in Fig. A.2. Another important

Figure A.5: Eigenvectors as graph signals for the second (l) and sixth (r) eigenvalues.

property of the Laplacian is that its smallest eigenvalue is 0 with associated eigenvector 1,
and multiplicity equal to the number of connected components of the graph. Thus, a signal
with constant value is the smoothest possible signal on a graph as shown in Fig. A.6.
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Figure A.6: Smoothest signal on the graph.





B
Proofs

B.1 Representer Theorem

Theorem 2.1. Representer Theorem. Given the set {x̄i,mi}si=1 of input-observation
points in X×R×R, the unknown function f : X → R ∈ Hf , and a loss function l : X×R→ R,
the solution to

arg min
f

s∑
i=1

l(f(x̄i),mi,j) + µ||f ||2Hf (B.1)

is an estimate f̂ that satisfies

f̂(x) =
s∑
i=1

ᾱiκf (x, x̄i) (B.2)

for some ᾱi ∈ R, i = 1, . . . , s.

Proof. In order to prove the Representer Theorem, we will show that the loss function l

and the norm ||f ||2Hf only depend on the set of inputs X̄ = {x̄1, . . . , x̄s}. Let us define the
subspace S ⊆ Hf as

S := span{kf (·, x̄i) : i = 1, . . . , s}. (B.3)

Now f can be decomposed as f = fS + fS⊥ , where fS ∈ S is the projection of f onto S, and
fS⊥ is the projection on the subspace orthogonal to S. From the reproducing property we
have that for x̄ ∈ X̄

f(x̄) = 〈f, kf (·, x̄)〉Hf = 〈fS , kf (·, x̄)〉Hf + 〈fS⊥ , kf (·, x̄)〉Hf = 〈fS , kf (·, x̄)〉Hf . (B.4)
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Using the reproducing property on the last equality, we have that f(x̄) = fS(x̄) ∀ x̄ ∈ X̄ .
This implies

s∑
i

l(f(x̄i),mi) =
s∑
i

l(fS(x̄i),mi), (B.5)

that is, the loss function l only depends on the inputs x̄ ∈ X̄ . On the other hand, the norm
‖f‖22 Hf satisfies

‖f‖22 Hf = ‖fS + fS⊥‖
2
2 Hf = ‖fS‖22 Hf + ‖fS⊥‖22 Hf ≥ ‖fS‖

2
2 Hf . (B.6)

This shows that the norm is minimized when f lies in the subspace S and therefore
‖fS⊥‖

2
2 Hf = 0. Thus, the minimizer of (B.1) satisfies f̂(x) =

∑N
i=1 αiκf (x, xi) where

αi = 0 if xi /∈ X̄ for i = 1, . . . , N .

B.2 Proof of Lemma 3.2

For the KKMCEX estimator (3.46), the MSE is given as

MSE := Ee
{
‖f − f̂K‖22

}
= Ee

{
‖f −Kf γ̂‖22

}
. (B.7)

Plugging the estimator from (3.45) into (B.7) yields

MSE = Ee
{∥∥f −KfS

T (SKfS
T + µI)−1(Sf + ē)

∥∥2
2

}
=
∥∥(I −KfS

T (SKfS
T + µI)−1S)f

∥∥2
2 + Ee

{∥∥KfS
T (SKfS

T + µI)−1ē
∥∥2

2

}
(B.8)

where we have used that E{e} = 0. Further, the first and second terms in (B.8) are the bias
and variance of the KKMCEX estimator, respectively. If we substitute f = Kfγ into the
first term of (B.8), we obtain

bias =
∥∥(I −KfS

T (SKfS
T + µI)−1S)Kfγ

∥∥2
2

=
∥∥(Kf −KfS

T (SKfS
T + µI)−1SKf )γ

∥∥2
2

=
∥∥(Kf − T̃f )γ

∥∥2
2 (B.9)
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where T̃f is the regularized Nyström approximation of Kf in (3.49). On the other hand, the
variance term is

var = Ee
{∥∥KfS

T (SKfS
T + µI)−1ē

∥∥2
2

}
= Ee

{
1
µ2

∣∣∣∣KfS
T (SKfS

T + µI)−1(µI + SKfS
T − SKfS

T )ē
∣∣∣∣2

2

}
= Ee

{
1
µ2

∥∥KfS
T −KfS

T (SKfS
T + µI)−1SKfS

T ē
∥∥2

2

}
= Ee

{
1
µ2

∥∥(Kf −KfS
T (SKfS

T + µI)−1SKf )ST ē
∥∥2

2

}
= Ee

{
1
µ2

∥∥(Kf − T̃f )ST ē
∥∥2

2

}
. (B.10)

Adding the two terms in (B.9) and (B.10), we obtain the MSE in (3.50).

B.3 Proof of Theorem 3.2

Since Kf − T̃f appears in the bias and variance terms in Lemma 1, we will first derive an
upper bound on its eigenvalues that will eventually lead us to a bound on the MSE. To this
end, we will need a couple of lemmas.

Lemma B.1. Given a symmetric matrix A ∈ RN×N and a symmetric nonsingular matrix
B ∈ RN×N , it holds that λk(AB) = λk(B 1

2AB
1
2 ); and also λk(AB) ≤ λk(A)λN (B).

Proof. Since B is invertible and symmetric, we can write AB = B−
1
2 (B 1

2AB
1
2 )B 1

2 . There-
fore, AB is similar to B 1

2AB
1
2 , and they both share the same eigenvalues. Let U ⊂ RN \{0}.

From the min-max theorem [101], the kth eigenvalue of A satisfies

λk(A) = inf
U

{
supx ∈ U x

TAx

xTx
| dim(U) = k

}
. (B.11)
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Therefore, we have

λk(AB) = λk(B 1
2AB

1
2 )

= inf
U

{
sup
x∈U

xTB
1
2AB

1
2x

xTx
| dim(U) = k

}

= inf
U

{
sup
x∈U

xTB
1
2AB

1
2x

xTB
1
2B

1
2x

xTBx

xTx
| dim(U) = k

}

≤ inf
U

{
sup
x∈U

xTAx

xTx
| dim(U) = k

}
λN (B)

= λk(A)λN (B). (B.12)

The following lemma bounds the eigenvalues of Kf − T̃f , and the regularized Nyström
approximation T̃f in (3.49).

Lemma B.2. With Kf as in (3.35) and T̃f as in (3.49), the eigenvalues of Kf − T̃f are
bounded as

Kf − T̃f �
µσNL
σNL + µ

I ′s + σNLIs (B.13)

where σNL is the largest eigenvalue of Kf , Is := diag([0, 0, . . . , 1, 1]) has s zeros on its
diagonal, and I ′s := I − Is.

Proof. Using the eigendecomposition Kf = QfΣfQ
T
f , we can write

Kf − T̃f = Kf −KfS
T (SKfS

T + µI)−1SKf

= QfΣ
1
2
f

[
I −Σ

1
2
fQ

T
f S

T (SQfΣ
1
2
f Σ

1
2
fQ

T
f S

T + µI)−1SQfΣ
1
2
f

]
Σ

1
2
fQ

T
f . (B.14)

Applying the MIL to the matrix inside the square brackets of (B.14), we arrive at

I −Σ
1
2
fQ

T
f S

T
(
SQfΣ

1
2
f Σ

1
2
fQ

T
f S

T + µI
)−1

SQfΣ
1
2
f

=
(
I + 1

µ
Σ

1
2
fQ

T
f S

TSQfΣ
1
2
f

)−1
. (B.15)
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That in turn implies

Kf − T̃f = µQfΣ
1
2
f

(
µI + Σ
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2
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2
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(
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1
2
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f S
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2
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2
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2
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2
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2 Σ
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f S
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(Σf + µI) 1
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2
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1
2
f (Σf + µI)− 1

2 (I − P )−1(Σf + µI)− 1
2 Σ

1
2
fQ

T
f (B.16)

where

P := Σf (Σf + µI)−1 − (Σf + µI)− 1
2 Σ

1
2
fQ

T
f S

TSQfΣ
1
2
f (Σf + µI)− 1

2 . (B.17)

Regarding the eigenvalues of Kf − T̃f in (B.16), we can bound them for k = 1, . . . , NL as

λk(Kf − T̃f ) = µλk(QfΣ
1
2
f (Σf + µI)− 1

2 (I − P )−1(Σf + µI)− 1
2 Σ

1
2
fQ

T
f )

= µλk(Σ
1
2
f (Σf + µI)− 1

2 (I − P )−1(Σf + µI)− 1
2 Σ

1
2
f )

= µλk((I − P )−1(Σf + µI)−1Σf )

≤ µσNL
σNL + µ

λk((I − P )−1) (B.18)

where λk(·) denotes the kth eigenvalue of a matrix, and we have applied Lemma B.1 on the
third equality and the last inequality. Knowing that λk(I − P ) = I − λk(P ) we can now
bound the eigenvalues of P as

λk(P )=λk(Σ
1
2
f (Σf+µI)− 1

2QT
f (I−STS)Qf (Σf+µI)− 1

2 Σ
1
2
f )

= λk(QT
f (I − STS)Qf (Σf + µI)−1Σf )

≤ σNL
σNL + µ

λk(QT
f (I − STS)Qf )

= σNL
σNL + µ

λk(Is) (B.19)

where we have applied Lemma B.1 on the second and third inequalities, and Is := diag[0, 0, . . . , 1, 1]
has s zeros on its diagonal. Since λk(I − P ) = 1 − λk(P ) ∀k = 1, . . . , NL, we have that
I − P � I − σNL

σNL+µIs, and thus

(I − P )−1 � I ′s + σNL + µ

µ
Is (B.20)
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where I ′s := I − Is. Finally, combining (B.20) with (B.18) yields

Kf − T̃f �
µσNL
σNL + µ

I ′s + σNLIs (B.21)

which concludes the proof.

Using Lemmas B.1 and B.2, we can proceed to establish a bound on the bias and variance.
Considering the eigendecomposition Kf − T̃f = LΛLT , we can write the bias in (B.9) as

bias =
∥∥LΛLTγ

∥∥2
2 . (B.22)

With γ̃ := LTγ, and using Lemma B.2 the bias is bounded as

bias = ‖LΛγ̃‖22 = γ̃TΛ2γ̃

≤ µ2σ2
NL

(σNL + µ)2 γ̃
T I ′sγ̃ + σ2

NLγ̃
T Isγ̃

= µ2σ2
NL

(σNL + µ)2

s∑
i=1

γ̃i
2 + σ2

NL

NL∑
i=s+1

γ̃2
i . (B.23)

To bound the variance in (B.10), recall that e is a Gaussian random vector with covariance
matrix ν2I, while ē has covariance matrix ν2SST . Then (B.10) is a quadratic form in e,
whose variance becomes

var = Ee
{

1
µ2

∥∥(Kf − T̃f )ST ē
∥∥2

2

}
= ν2

µ2Tr(S(Kf − T̃f )2ST )

= ν2

µ2Tr((Kf − T̃f )2STS). (B.24)

The matrix inside the trace in (B.24) has NL− s zero entries in its diagonal. Lemma B.2,
on the other hand, implies that diagonal entries of Kf − T̃f are smaller than its largest
eigenvalue; that is,

[
Kf − T̃f

]
i,i
≤ σNL. Coupling this with (B.24) yields

var ≤ sν2σ2
NL

µ2 . (B.25)

Finally, combining the bias bound in (B.23) with the variance bound in (B.25), yields the
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bound for the MSE as

MSE ≤ µ2σ2
NL

(σNL + µ)2

s∑
i=1

γ̃i
2 + σ2

NL

NL∑
i=s+1

γ̃2
i + sν2σ2

NL

µ2 . (B.26)
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