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Abstract

Nowadays, the main computational bottleneck in computer-assisted industrial design
procedures is the necessity of testing multiple parameter settings for the same problem.
Material properties, boundary conditions or geometry may have a relevant influence
on the solution of those problems. Consequently, the effects of changes in these quan-
tities on the numerical solution need to be accurately estimated. That leads to sig-
nificantly time-consuming multi-query procedures during decision-making processes.
Microfluidics is one of the many fields affected by this issue, especially in the context of
the design of robotic devices inspired by natural microswimmers. Reduced-order mod-
elling procedures are commonly employed to reduce the computational burden of such
parametric studies with multiple parameters. Moreover, high-fidelity simulation tech-
niques play a crucial role in the accurate approximation of the flow features appearing
in complex geometries. This thesis proposes a coupled methodology based on the
high-order hybridisable discontinuous Galerkin (HDG) method and the proper gener-
alised decomposition (PGD) technique. Geometrically parametrised Stokes equations
are solved exploiting the innovative HDG-PGD framework. On the one hand, the pa-
rameters describing the geometry of the domain act as extra-coordinates and PGD is
employed to construct a separated approximation of the solution. On the other hand,
HDG mixed formulation allows separating exactly the terms introduced by the para-
metric mapping into products of functions depending either on the spatial or on the
parametric unknowns. Convergence results validate the methodology and more real-
istic test cases, inspired by microswimmer devices involving variable geometries, show
the potential of the proposed HDG-PGD framework in parametric shape design. The
PGD-based surrogate models are also utilised to construct separated response surfaces
for the drag force. A comparison between response surfaces obtained through the a
priori and the a posteriori PGD is exposed. A critical analysis of the two techniques
is presented reporting advantages and drawbacks of both in terms of computational
costs and accuracy.

Keywords: Reduced order models, Proper generalised decomposition, Hybridisable
discontinuous Galerkin, Parametrised geometry, Response surfaces, Microfluidics.
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of PGD modes is increased. An approximation of degree k = 5 is used
for all the variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155





1

Chapter 1

Introduction

1.1 Motivations

Since Richard Feynman’s 1959 famous speech “There’s Plenty of Room at the Bot-
tom” (Feynman, 1960), representing an invitation to enter new fields of physics,
scientists, moved their interests in small-scale phenomena (typically sub-millimetre)
rapidly achieving huge technology developments in various fields. Physics, biology,
medicine, microelectronics, and among other, microfluidics. Following the definition
given by Nguyen et al., (2019), microfluidics is "the science and engineering of systems
in which fluid behaviour differs from conventional flow theory primarily due to the
small length scale of the system". Today microfluidics is considered a multidisciplinary
field that involves engineering, physics, chemistry, biochemistry, nanotechnology, and
biotechnology. It has several practical applications in the design of systems that pro-
cess low volumes of fluids to achieve multiplexing, automation, and high throughput
screening (Ashraf et al., 2011; Teh et al., 2008). Microfluidics emerged at the begin-
ning of the 1980s and is employed in the development of inkjet printheads, DNA chips,
lab-on-a-chip technology, micro-propulsion, and micro-thermal technologies (Tabeling,
2005; Whitesides, 2006).

(a) Lab-on-a-chip (b) MEMS inkjet printheads (c) Artificial microswimmer

Figure 1.1: Microfluidics applications: Lab-on-a-chip 1, MEMS
inkjet printheads 2and artificial microswimmer 3.

1Image downloaded from https://www.dantecdynamics.com/solutions-applications/
applications/microfluidics/.

2Image downloaded from https://www.innovationservices.philips.com/looking-expertise/
mems-micro-devices/mems-applications/inkjet-printheads/.

3Image downloaded on the courtesy of Moran et al., (2019).

https://www.dantecdynamics.com/solutions-applications/applications/microfluidics/
https://www.dantecdynamics.com/solutions-applications/applications/microfluidics/
https://www.innovationservices.philips.com/looking-expertise/mems-micro-devices/mems-applications/inkjet-printheads/
https://www.innovationservices.philips.com/looking-expertise/mems-micro-devices/mems-applications/inkjet-printheads/
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As explained by Purcell, (1977) in the work considered the milestone of this studies,
at a small scale, everything behaves tremendously different from humans perception
of flow phenomena. It is known that at small scale viscous forces dominate inertial
ones and the governing equations are the Stokes’s one. For an object of characteristic
length L and velocity V , the Reynolds number, namely the ratio of inertial forces to
the viscous forces is LV/ν, where ν is called the kinematic viscosity. For water, ν
assumes the value of 10−2 cm2/s making the Reynolds number for a man swimming
in the water around 104, for a goldfish 102 while for the organisms living at the same
microfluidics scale 10−4 or 10−5. While fish or men propel themselves by accelerating
the surrounding water, these organisms cannot rely on inertia because it is irrelevant
for them and their motion is determined entirely by the forces exerted at the exact
moment the organism is moving. Clearly, on small swimming organisms or bacteria,
no external forces are exerted thus the motion must come from inside them. The only
possibility they have to move is thus to deform their body. But it is important to
note that not all deformations are useful to move. Several experiments have shown
the reversibility of the motion of coloured droplets piped in high viscosity glycerol
used to recreate low Reynolds number conditions at a larger scale (Heller, 1960). The
sequence of images illustrates in figure 1.2 show the various steps of the experiment.

Figure 1.2: Time reversibility of Stokes flow: Different steps of the
Taylor-Couette flow reversibility demonstration (Fonda et al., 2017).

The only condition at the base of the success of this experiment is the reciprocity of the
motion, in this case, a rotation. Other similar examples can be found in nature. The
scallop theorem (Lauga, 2011; Purcell, 1977) state that an organism trying to swim
by reciprocal motion at low Reynolds number can’t go anywhere. The scallop moves
opening its shell slowly and closing it fast squirting out water. Its movement only
depends on one hinge, and the reversibility of the only degree of freedom prevents
it to move when the viscous effects are larger than the inertial. To swim at low
Reynolds number an organism needs to perform a non-reciprocal motion that can
break the time-reversal symmetry. A minimum of two hinges is thus required to be
able to go through a repeated sequence of configurations inducing a net displacement.
If the scallop could also rotate upside down as figure 1.3 shows, it would break that
symmetry and indeed move in lack of inertia. It is worth noting that for a two hinges
organism, the moving cycle is described by a trajectory in the space of coordinates µ1

and µ2, representing the two degrees of freedom.

Turning to microfluidics and one of its various applications, this theorem symbolised
the beginning of modelling of artificial self-propelled microswimmers inspired by those



1.1. Motivations 3

 

Figure 1.3: Scallop theorem: Reciprocal vs non-reciprocal motion
characterized by two hinges at low Reynolds number.

existing in nature (Elgeti et al., 2015; Stone et al., 1996). A complete overview
about mathematical description of biofluid dynamics and locomotion at low Reynolds
can be found in Berg, (1993), Childress, (1981), and Lighthill, (1975). The reason
for this increasing interest in understanding optimal swimming strategies for natural
and artificial microswimmers hides in the final goal which is to design efficient self-
propulsion micro-robots (Gauger et al., 2006) usable for drug delivery applications
and minimally invasive surgical procedures.

The first two microswimmers studied were theorised in the pioneering work by Pur-
cell, (1977). The first is Purcell’s three-link swimmer (Becker et al., 2003; Tam et
al., 2007) made of three-linked segments where the two located at its extremity are
free to move independently. A symmetrised version of this swimmer has also been
studied (Avron et al., 2008). The second Purcell’s microswimmer is a toroidal device
powered by surface tank-treading and modelled only several years later by Leshansky
et al., (2008). The study of propulsion by a rotating flagellum used by a bacterium
such as Escherichia coli (Purcell, 1997; Taylor, 1952) inspired different studies. De-
vices made of a linear chain of colloidal magnetic particles acting as a flexible artificial
flagellum (Dreyfus et al., 2005) or helically shaped microswimmers (Keaveny et al.,
2013) are some examples. Another mechanical model available in the literature and
inspired to Purcell’s three-link swimmer is the three-linked-spheres microswimmer in-
troduced by Najafi et al., (2004) and consisting of three hard spheres, connected by
two arms of negligible thickness whose length can vary. Similar to this latter and
inspired by euglenoid movement, called metaboly and executed by some species of
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euglenids (Arroyo et al., 2012; Leander, 2008), is the Push-Me-Pull-You (PMPY) mi-
croswimmer proposed by Avron et al., (2005) and further studied by Alouges et al.,
(2009) and Silverberg et al., (2020). This artificial device is modelled by two spheres
also connected by an arm of negligible thickness whose length can vary as can vary
the distribution of mass in the two spheres. As shown in figure 1.4, during a stroke,
i.e. a periodic closed path in the space of the admissible shapes, large-amplitude
deformations causing the rearrangement of mass allows both the euglenids and its ar-
tificial reproduction to move. It is worth noting that all this proposed microswimmers
respect the rule of the two hinges (two free hinges, two variable distances, variable
distance and variable mass). Moreover, for all microswimmer, the shape deformation

Figure 1.4: Metaboly and PMPY stroke: Reconstructions of the
euglenoid movement (Arroyo et al., 2012) modelled with the PMPY

microswimmer(Avron et al., 2005; Silverberg et al., 2020)

trajectory which allows the motion is not unique. This increases the complexity of
the problem as the Stokes governing equations need to be solved for a multitude of
different possible configurations of the micro-device. In other words, to find the tra-
jectory that maximizes the movement of the swimmer, a multidimensional parametric
problem must be solved. The number of parametric dimensions is exactly the num-
ber of hinges characterising each swimmer and describing its shape. In this context,
surrogate models represent effective tools to explore the shape configurations of the
microswimmers and to devise virtual models of their movement

1.2 State of the art in DG methods for flow problems

Along with many numerical methods, the finite element method (FEM) has been ex-
tensively studied in the context of computational fluid dynamics (Zienkiewicz et al.,
1967). Despite its ability to handle complicated geometries and its potentiality in
going high-order, the oscillatory behaviour of the solution provided by this method
in convective-dominated problems, has prompted the CFD community to look for
viable alternatives. Finite volume methods (FVM) impose local conservation on a
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small volume surrounding each node of the mesh, volume on which the approxima-
tion is considered to be constant (LeVeque, 2002). Thanks to their propriety of flux
conservation, the amount of fluid entering a given volume is identical to that leaving
the adjacent volume, is now a standard approach in CFD. Indeed, FVM is nowadays
implemented in many open-source and commercial software, e.g. OpenFOAM, Fluent,
FLITE, CFX.

Since approximation is obtained with constant polynomials, the numerical solution
found is not the best accurate and one could improve it performing a h-refinement
with a consequential increase of the degrees of freedom of the problem and compu-
tational cost. For decades, these methods have been wildly studied improving their
efficiency and robustness until they became the standard for CFD. Recently, the en-
gineering accuracy that these methods achieve has started to be considered a limit
in different fields. For instance, in the aerodynamic performance analysis of flight
vehicles, since unsteady vortices are strongly dissipated by first-order and second-
order methods, the required mesh resolution for the flow makes such a simulation too
costly even on modern supercomputers (Dacles-Mariani et al., 1995; Strawn et al.,
2000). High-order methods are therefore needed to accurately resolve unsteady vor-
tices for vortex-dominated flows (Ekaterinaris, 2005). Another research field where a
high level of accuracy is required is computational aeroacoustics (CAA) where due to
the long-distance propagation of broadband acoustic waves a low-order method would
cause significant numerical dissipation or dispersion errors making high-order methods
preferable with respect these last one Wagner et al., (2007). Due to the complexity
and expensiveness of high order volume scheme based on polynomial reconstructions,
e.g. finite volume WENO schemes (Shu, 2003), alternative options related to the
FEM framework has started to be considered.

Going back in the years, simultaneously to the development of the FVM to solve con-
vection linked issues experienced by FEM, different strategies were proposed within
the FEM framework to circumvent the problem. Several possible stabilisations of
the FEM methods were developed, e.g. SUPG (Hughes, 1979), GLS (Hughes et al.,
1986), DW (Douglas et al., 1989), and a discontinuous version of the classical con-
tinuous Galerkin (CG) method. Discontinuous Galerkin (DG) method first appeared
in the study of neutron transport equation, i.e. a time-independent linear hyperbolic
equation, by (Reed et al., 1973) and have been further analysed by Johnson et al.,
(1986) and Lesaint et al., (1974) for the linear advection equation. Successive works
resulting in a series of papers (Cockburn et al., 1988, 1989, 1990) devised a high-
order accurate total variation bounded (TVB) Runge–Kutta Discontinuous Galerkin
(RKDG) method for the solution of non-linear systems of conservation laws. The
extension to compressible Navier–Stokes equations proposed by Bassi et al., (1997)
resulted in a technique soon after applied to elliptic problems (Brezzi et al., 2000) and
whose generalisation for convection-diffusion problems lead to the so-called local dis-
continuous Galerkin (LDG) method introduced in Cockburn et al., (1998) and further
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studied later in (Cockburn et al., 2002, 2004b). The conservative form of the LDG
numerical fluxes guarantees the scheme to be conservative and adjoint consistent. By
the way, for multidimensional problems, degrees of freedom belonging to elements
which are not immediate neighbours can be involved in the same equation making
result the stencil involved in LDG discretisation not compact. To circumvent this
issue, an improvement of the LDG method was proposed by Peraire et al., (2008) for
elliptic problems, the compact discontinuous Galerkin (CDG) which besides all the
inherited LDG proprieties uses more compact stencils. Discontinuous finite elements
for elliptic and parabolic equations were not a novelty in literature, they have been
developed and studied three decades before with the name of interior penalty method
(IP). The work done by Arnold et al., (2002) unifies this method in the case of elliptic
problems. Later, on the wave of success DG methods have extended to a wide vari-
ety of equations tightening up the rivalry with the wide used mixed and continuous
Galerkin methods such as the Raviart-Thomas (RT), see (Raviart et al., 1977) and
the Brezzi-Douglas-Marini (BDM), see (Brezzi et al., 1985), methods.

The CG method is considered the main numerical technique against which to make
both accuracy and computational cost evaluations. It is a method which allows com-
puting a continuous solution of a PDE through piecewise continuous polynomial shape
functions. The DG method, which complete overview can be found in Cockburn et al.,
(2000), contrary relies on the resolution of a PDE using discontinuous shape functions
defined element-by-element. That implies a domain decomposition and the consequent
duplication of the nodes lying on the internal edges of the elements. This feature rep-
resents both the main drawback and the main advantage of DG if compared with CG.
On the one hand, the number of degrees of freedom of the problem increases. On
the other hand, the problem can be solved independently element-by-element hence
it is easily parallelizable (Biswas et al., 1994). Moreover, due to their discontinuity
element-by-element nature, DG methods can be considered as generalisations of finite
volume methods, inheriting the ideas of numerical fluxes and slope limiters within a
finite element framework. They are locally conservative, stable, high-order accurate
that can easily handle complex geometries, irregular meshes with hanging nodes, and
approximations that have polynomials of different degrees in different elements. Thus,
they can easily handle adaptivity strategies which in hyperbolic problems has a par-
ticular relevance (Hartmann et al., 2003). That makes them particularly suitable for
the resolution of purely convective problems as their ability to capture discontinuities
without producing spurious oscillations near them. Increasing the polynomial degree
of the shape functions, the number of degrees of freedom in the volumetric interior of
an element increases more rapidly than the degrees of freedom on element boundaries.
Hence, despite the extra degrees of freedom, the DG methodology becomes more ef-
ficient for high-degree polynomial approximations. When the method is pushed to
high-order the communication between the element in DG is less demanding than the
one needed in CG. That makes DG particularly suitable and natural for high-order
approximations. Nevertheless, the increase in cost that both CG and DG have to
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face represents the reason for the limited application of these methods outside of the
academic context. As a consequence, both CG and DG techniques developed hybridis-
able counterparts, giving rise to the wave of research in this new topic. See Cockburn,
(2016) for an exhaustive overviews. One of the advantages of DG is its capability to
easily devise high-order schemes.

In recent years, high-order methods have gained the interest of the Computational
Fluid Dynamics (CFD) research community owing to the high accuracy and relia-
bility of their numerical solution. As thoroughly reported in Gassner et al., (2013),
applications dealing with transient turbulent flows, such as LES (Nagarajan et al.,
2003; Pasquetti, 2005), DNS (Bassi et al., 2016; Chapelier et al., 2014), computa-
tional aero-acoustics (Beck et al., 2014; Nguyen et al., 2011a), turbulent combustion
and vortex dominated flows (Wang, 2007), all rely on these methods as a solution of
the same accuracy based on a low order method would require a computational mesh
with a huge number of degrees of freedom and unaffordable computational costs (Lê et
al., 2011). The common belief that high order methods are in general more expensive
than low order methods has been slowing dismantled by many recent studies (Huerta
et al., 2013; Wang et al., 2013, e.g.). High order methods are not only competitive
but for a given accuracy are also computationally more convenient than low order
ones and their large scale application is only a matter of time (Kroll et al., 2015). As
explained by Wang et al., (2013) the most diffuse belief regarding high-order methods
is about their higher cost respect their low-order relatives. Comparing the solution
of a first-order method with the one obtained employing a high-order method on a
given mesh, the latter results to be more CPU time-consuming. This is a matter of
fact and it is undeniable. But it is also indisputable that this statement is untrue in
terms of accuracy. It is known that for an assigned mesh high-order method delivers
higher accuracy respect to low-order methods. A fair question to ask is thus, for a
target accuracy which between low and high-order methods are computationally more
competitive? Low-order methods will need a finer mesh to obtain a solution able to
prevail the high-order ones, which, on their side, can employ a coarser mesh. This rolls
the dice to decide a winner, in fact, on these reasons, recent studies have proved that
high-order methods are not necessarily expensive (Huerta et al., 2013). By the way,
despite their potential and their major accuracy for complex problems, high-order
methods are still not used in the design process for several reasons. They are more
complicated and hard to implement than low-order methods, less robust because of
the much reduced numerical dissipation, they have a high memory requirement if im-
plicit time-stepping is employed and robust high-order mesh generators are not readily
available. All of these represents the fields of current research (Wang et al., 2013).

One variation of the CG method contrasting the increase of degrees of freedom is
the CG method with static condensation, an implementation technique whose aim
is to reduce the size of the stiffness matrix (Guyan, 1965). Partitioning the vector



8 Chapter 1. Introduction

of degrees of freedom of the approximation into two smaller ones, containing the de-
grees of freedom associated with the internal and external nodes of the elements, the
stiffness matrix can be reorganized in a block structure. This allows obtaining the
Schur complement of the block diagonal matrix associated with the internal degrees
of freedom. In this way, the latter can be expressed in terms of the boundary ones end
removed from the system of equations, thus reducing the dimension of the original
system. What static condensation represents for primal methods, for mixed methods
takes the name of hybridisation (Veubeke, 1965). The first hybridised techniques ap-
peared in the context of DG are the hybrid DG method (Egger et al., 2010) where
hybridisation simply reduces the degrees of freedom (analogously to static condensa-
tion) or the hybrid high-order (HHO) method based on an elementwise reconstruction
operator (standing for the gradient of the primal solution) and a stabilization terms
enforcing the matching between local and hybrid degrees of freedom (Di Pietro et al.,
2014, 2015). Given the strong similarities with HDG, HHO has been bridged to the
latter in the work done by Cockburn et al., 2016. Differently from the aforementioned

(a) CG (b) CG with s.c. (c) DG (d) HDG

Figure 1.5: CG vs CG with static condensation vs DG vs HDG:
Degrees of freedom in a mesh of four fifth-order triangles for continuous
Galerkin, continuous Galerkin with static condensation, discontinuous

Galerkin, and hybridisable discontinuous Galerkin.

methods, a variation of the DG method based on a mixed formulations (Fortin et al.,
1991) contrasting the increase of degrees of freedom by hybridisation (Cockburn et al.,
2004a) is the hybridisable discontinuous Galerkin (HDG) method. The idea is first
proposed in Cockburn et al., (2009c) and then formulated for Stokes flow in Cockburn
et al., (2009b). HDG method relies on the definition of a hybrid variable lying on the
internal skeleton of the mesh. All the problem variables (i.e. internal and boundary
variables) can be expressed in terms of this hybrid variable solving an element-by-
element local problem. Then a global problem imposes the interelement continuity
of the solution and the normal component of the flux. The number of degrees of
freedom, therefore, is significantly reduced as the problem unknowns reduce solely to
the trace variable which is defined in a lower-dimensional space (i.e. the edges/faces
of the elements) with respect to other variables.

Another particularity of the HDG method follows from the introduction of the mixed
variable necessary to obtain a system of first-order PDEs. As all the HDG variables
converge with order k+1, where k is the degree of the interpolant functions, exploiting
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the definition of the mixed variable, an element-by-element local post-process can be
obtained for problems at least of the second order (Cockburn et al., 2012). The result
of this post-process is the superconvergence of the primal variable with order k+2.
Moreover, also in HDG as in DG, thanks to the discontinuity of the elements, the
degree of the approximating polynomial can be easily changed from one element to
the other making possible to implement a p-adaptivity strategy. In elliptic problems,
this procedure can be guided in a very natural way by a local a priori error indicator
devised from the superconvergence solution (Giorgiani et al., 2012, 2014; Sevilla et al.,
2018b). A comparison between CG with static condensation and HDG is proposed
in Kirby et al., (2012). This work demonstrates that the HDG approach generates a
global system for the approximation on the boundaries of the elements that although
larger in rank than the traditional static condensation system in CG, has significantly
smaller bandwidth at moderate polynomial degrees.

After their introduction, HDG methods have been extensively studied for convection-
diffusion equations in steady and unsteady problems (Nguyen et al., 2009c,d) and
second-order symmetric elliptic problems (Nguyen et al., 2010b). In particular, for
Stokes flow, several formulations have been proposed. The work produced by Cock-
burn et al., (2010) compare the velocity-pressure-gradient, velocity-pressure-vorticity
and the velocity-pressure-stress formulations showing several shared features of the
methods. In terms of accuracy, the gradient-based HDG method provides the most
accurate results and a post-processed velocity which converges with order k+2 for
k≥1. On the other hand, both the stress-based and the vorticity-based methods yield
a loss of superconvergence of the post-processed velocity for low-order approximations.
Nevertheless, recent works accomplished in recover optimal orders for the stress-based
approach. In Cockburn et al., (2017) the so-called M -decomposition framework is em-
ployed to enrich the local discrete space of approximation. This ensures the optimal
convergence of the mixed variable and superconvergence of the post-processed one.
An additional option consists of the HDG-Voigt approach introduced in Sevilla et al.,
(2018a) for linear elasticity and then applied to the Stokes flow equations in (Giacomini
et al., 2018) recovering, also in this case, the superconvergence of the post-processed
primal variable. An extension of the velocity-pressure-gradient formulation to Oseen
equations can be found in Cesmelioglu et al., (2013) with particular focus on the
stabilization condition applied to preserve the optimal convergence of all variables in
convection-dominated problems. A posteriori error analysis of HDG method for this
problem is developed in Araya et al., (2019). HDG mixed formulation for the incom-
pressible Navier-Stokes equations was developed by Nguyen et al., (2011b) and Qiu
et al., (2016) while the HHO counterpart appeared only a few years later (Di Pietro
et al., 2018). Novel studies proposed a relaxed H (div)-conforming discretisation of
the velocity field (Lederer et al., 2018, 2019). Turning to Stokes flows, HDG applica-
tion in a microfluidics framework is quite a novelty. Recent works employing a new
method inspired by the HDG and FVM frameworks, the face-centred finite volume
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(FCFV) method, were developed targeting microfluidics applications with mesh adap-
tivity (Giacomini et al., 2020a; Vieira et al., 2020). Works involving HDG related to
the efficient treatment of the geometry can be found in Sevilla et al., (2018b) where
the integration within a CAD environment was proposed and Solano et al., (2019)
where a suitable approximation for the Dirichlet boundary data was obtained using a
transferring technique based on integrating the extrapolated discrete gradient.

Regarding HDG axisymmetric formulation it is worth to cite the work done by (Sánchez-
Vizuet et al., 2019). In this paper an HDG solver for the semi-linear elliptic Grad-
Shafranov equation, used to compute the equilibrium magnetic configuration in ax-
isymmetric fusion reactors was developed. Due to the symmetry of the device, the
equation can be posed, as usually done in a two-dimensional domain corresponding to
a section of the toroidal reactor. As the plasma confinement region does not contain
the vertical axis, in this case corresponding with the axis of symmetry, the problem
becomes an interior Dirichlet boundary value problem. For that, it does not require
any additional hypothesis, as a computational domain containing the symmetry axis
would.

Last, it is necessary to recall the novelty of HDG coupling with model order techniques.
A combination of HDG with proper orthogonal decomposition (POD) creating the
HDG-POD method has been studied recently for the heat equation by Shen et al.,
(2019). Close to this contribution, but substantially different, lies the work extracted
from this thesis which involves the combination of HDG with another model order
reduction technique, the proper generalised decomposition (PGD) creating the HDG-
PGD method proposed in the published contribution Sevilla et al., (2020a).

1.3 State of the art in ROM

During design processes of many industrial applications, the various viable config-
urations cause the resolution of the same problem several times. One of the many
examples is the design of microswimmers in microfluidics. The variation of the ge-
ometry causes the necessity to know the flow solution for each possible shape defined
by the parameters of the model. These data are necessary to determine the optimal
stroke maximizing the motion of the microswimmer.

Reduced-order models (ROMs) have become commonplace in many areas of compu-
tational sciences and engineering (Chinesta et al., 2017; Peherstorfer et al., 2018).
They represent the response to the necessity of computing multiple queries of the
same problem in design and optimisation processes. Choosing a value of interest for
each parameter of the model, the parametric problem is solved for all the required
configurations. This is a very time-consuming procedure considering first, the huge
amount of parameter settings to be tested and second, that usually, CFD solutions
are not calculable instantly. In the best scenario, referring to industrial contexts, they
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could take one night, in the worst one, days or weeks. Typical high-tech industries
accept simulations of one night run to be able to take decisions the following morn-
ing. Anyway, this standard approach results to be the source of the great delays of
every decision-making process. A distinct approach consists of considering parame-
ters as extra-coordinates and solve a higher-dimensional problem. Direct resolutions
are limited because even for a small number of parameters curse of dimensionality
arises, making any resolution effort of this type unaffordable for nowadays technology.
As computational cost scales exponentially with the discretisation of the mesh, see
figure 1.6, a mesh of 1000 nodes for a four-dimensional problem (e.g. a very sim-
ple problem with two spatial dimensions plus two additional parametric dimensions)
would have 1012 unknowns. The necessity of resorting to a reduced model framework

Figure 1.6: Curse of dimensionality: Exponential increase of the
complexity in function of the number of dimensions considered, as-

suming N=1000 nodes in each of them.

is straight forward. With one of the various techniques available in the literature, it
is possible to solve the high-dimensional problem reducing drastically the computa-
tional cost. Once paid the price to calculate the surrogate model at the beginning of
the design or optimisation cycle (off-line phase), its evaluation can be done real-time
during the decision-making procedure (on-line phase) not requiring any additional
computational effort and thus shortening the whole process.

Model reduction techniques can be classified in a posteriori and a a priori techniques.
The former ones construct the reduced model from an initial collection of information
regarding the target problem. Usually, a series of snapshots obtained as full-order
solutions of the problem are used. The latter, on the contrary, do not need any
prior knowledge about the problem to obtain the surrogate model. The a posteriori
MOR techniques are numerous. Among them, the most famous and studied are the
proper orthogonal decomposition (POD), see Volkwein, (2011) and the reduced-basis
(RB), see Hesthaven et al., (2016), Quarteroni et al., (2015), and Rozza, (2014). In
recent years also new ones have been proposed such Hi-POD, a merging between the
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Figure 1.7: Multi-query vs ROM approaches: Comparison between
a multi-query approach, based on multiple full-order solutions, and a
reduced order model approach, split in off-line and on-line phases for

a problem with 2 parameters.

hierarchical model reduction, Hi-Mod (Perotto, 2014), with POD introduced by Baroli
et al., (2017) and the a posteriori PGD, see Díez et al., (2018, 2019). Among a priori
ones in the literature, it is worth to mention the hyperreduction method proposed
by Ryckelynck, (2005) and the proper generalised decomposition (PGD) of which a
complete overview is given. It is worth noting that all these techniques are not in
competition with standard numerical solvers as they are used in combination with
these latter, independently from their nature (e.g. SEM, FEM, FDM, FVM).

Introduced by Lumley, (1967) POD is typically applied to build bases for time-
dependent problems and is the leading model reduction tool for the unsteady Navier-
Stokes equations. It computes basis to represent in a low-dimensional fashion a high-
dimensional system introducing a new set of nm variables known as principal compo-
nents satisfying the orthogonality relation and with decreasing relevance. Practically,
it consists of three phases. First, the ns snapshots are generated by mean of the full
model resolutions. Second, the projection of the full model onto the reduced subspace
via singular value decomposition (SVD) of the correlation matrix assembled from the
snapshots. Third, the obtained basis are interpolated to reconstruct the parametric
dependence of the solution. The first two points form the off-line phase while the third
point is the on-line phase where the surrogate model is particularized for required con-
figurations. Recently, a POD-Galerkin framework has been developed (Baiges et al.,
2013; Chapelle et al., 2013) based on the combination of POD with Galerkin strate-
gies. This allowed POD to benefit of the robustness of the Galerkin projection making
it suitable also for the resolution of parametric variations of time-dependent problems.

Another commonly used a posteriori technique is RB, introduced for non-linear viscous
flows (Peterson, 1989). Analogously with the POD method, RB consists first of an
off-line phase where a fixed number of snapshots, here named truth approximations,
are collected using a full order model. A hierarchical Lagrangian reduced space can
be thus constructed. Second, the on-line phase consisting of fast and inexpensive
evaluations of the reduced model for all required parametric setting is performed via
Galerkin projection (Quarteroni et al., 2011). The main critical point of this method
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is the choice of the sampling forming the basis. If too few, the sampling may not be
representative of the parametric space and the approximation is poor. If too many,
the snapshots may be redundant and the following reduced system ill-conditioned. A
viable way to check if the approximation is accurate enough is the use of the error
estimator, based on the affinity assumptions and provided by the properties of the
Galerkin projection (Patera et al., 2007; Rozza et al., 2007). The inexpensive error
bounds permit to explore much larger subsets of the parameter domain in search
of most representative snapshots, and second, controlling the error, to minimize the
computational effort determining when the number of basis functions is enough.

Recently, a new a posteriori technique has been proposed by Baroli et al., (2017),
Hi-POD. As anticipated, it takes its name from the combination of two methods,
the Hierarchical Model (Hi-Mod) reduction and POD. Hi-Mod has been proposed
by Perotto et al., (2010) as a method able to local enrich one-dimensional solutions
of problems defined in domains with a geometrically dominant direction. Purely 1D
hemodynamic models for instance, completely drop the transversal dynamics which in
several cases may be locally important (e.g., in the presence of stenosis or aneurisms).
The approach consists of discretizing the main dynamics with a fine finite element
mesh while the transversal direction is modelled via spectral elements using a coarse
approximation. A key point of this method is the assumption of separability between
the main and the transversal directions of the space, a feature that brought to an
interesting comparison with another method based on the same hypothesis, the PGD,
particularly in its version which considers the separation of space coordinates (Perotto
et al., 2018). A comparison between the parametrised PGD and the parametrised
version of Hi-Mod, Hi-POD, is also present. This latter is used to solve problem
characterised by geometrical or material parametrisation and analogously than POD
is based on the calculation of snapshots (via Hi-Mod technique) and computation of
the POD basis via singular value decomposition (off-line phase) and interpolation of
the basis to compute a particularized solution (on-line phase).

Another newly proposed technique is the a posteriori PGD also known in the literature
as least-squares PGD (Modesto et al., 2015), algebraic PGD (Díez et al., 2018) or
encapsulated PGD (Díez et al., 2019). The a posteriori PGD framework relies on
constructing a reduced basis starting from a series of snapshots obtained with a full
model resolution technique. The ns snapshots are collected in a multidimensional
tensor structure counting of one spatial dimension plus one extra dimension for each
parameter of the model. The a posteriori PGD computes the separated approximation
of the multidimensional tensor in the form of a product of rank-one approximations
using, a greedy approach based on an alternate direction scheme.

A critical common aspect for previous techniques to devise competitive and accurate
a posteriori numerical strategies is the selection of the snapshots, that is, the sampling
procedure in the parametric space. Several techniques were proposed to address this
problem, starting from the classical Latin hypercube sampling (McKay et al., 2000)
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and centroidal Voronoi tessellation (Du et al., 1999) to greedy approaches, based
on a posteriori error estimates (Grepl et al., 2005; Veroy et al., 2005) and model-
constrained adaptive sampling (Bui-Thanh et al., 2008). Once the sampling points
are selected, the computation of the snapshots is generally performed in parallel,
exploiting the independence of each set of parameters to one another, to reduce the
computational cost of the off-line phase. Recently, an alternative strategy aiming to
reduce the number of required full-order solutions was proposed via an incremental
algorithm (Phalippou et al., 2020). The idea is to compute snapshots sequentially and
on-the-fly, corresponding to the values of the parameters identified by an appropriate
error estimate.

Differently from previously described techniques, a priori PGD automatically deter-
mines the number of terms of the reduced basis and do not require any prior knowledge
about the problem, circumventing the sampling step. Conceptually, PGD has been de-
veloped independently by Ladevèze, (1999) and Ammar et al., (2006, 2007). Similarly
to a posteriori PGD, it relies on a greedy algorithm which sequentially computes the
terms of the reduced solution projecting the high-dimensional problem on a selected
dimension, obtaining a lower-dimensional problem much cheaper to solve (Chinesta
et al., 2013b). This projection is made possible by an important assumption on
which the whole PGD technique depends, the separability of the solution. Separated
representations were introduced by Ladevèze, (1991) for the resolution of transient
problems in strongly non-linear models. The innovative approach consisted of a non-
incremental integration procedure to avoid the enormous computational costs that
those problem required. Using a standard incremental strategy, a transient problem
defined in 3D physical space would require the resolution of as many 3D problems as
the number of time steps selected, which could be millions. By contrast, using the
space-time separated representation the number of spatial resolutions, i.e. the number
of bases computed times the number of non-linear iterations needed to compute each
one, was much smaller (order of hundreds). The computational saving was consider-
able. Later, separated representations were extended to stochastic modelling (Nouy,
2010) and for solving kinetic theory multidimensional models suffering the so-called
curse of dimensionality (Ammar et al., 2006, 2007). Since its introduction PGD has
been widely investigated and been proposed to circumvent computational issues in dif-
ferent cases: multidimensional models, efficient transient non-incremental solutions,
space separation in degenerated domains, data-driven application systems (DDDAS),
inverse identification and parametric solutions which pave the way to efficient optimi-
sation and real-time simulations through computational vademecums (Chinesta et al.,
2011). In recent years, there has been an increase in non-intrusive implementations
of the PGD integrating commercial codes to solve multi-dimensional problems. Para-
metric stochastic equations (Giraldi et al., 2015), biomechanics problems (Zou et al.,
2018), production of multi-component systems (Quaranta et al., 2020), incompress-
ible flow problems (Tsiolakis et al., 2020a) also extended to fully-developed turbulent
flow (Tsiolakis et al., 2020b) are some examples of involved applications. However,
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intrusive implementations have also been explored for different fields. Among them,
Navier-Stokes equations (Dumon et al., 2011), design of 3D-printed architectured
materials (Sibileau et al., 2018), coupled magneto-mechanical problems addressed to
MRI scanner applications (Barroso et al., 2020a,b), harbour agitation (Modesto et al.,
2020) or crack propagation (Garikapati et al., 2020).

Among parametric problems, the case of geometrically parametrised PDEs has often
been considered a challenge for both a priori and a posteriori frameworks. Among a
posteriori techniques, RB have been widely used to solve flow problems in parametric
domains (Manzoni et al., 2017). Viscous internal flow problems (Negri et al., 2013,
2015; Rozza, 2011; Rozza et al., 2013) or Navier-Stokes problems with haemodynamics
applications (Manzoni, 2014; Manzoni et al., 2012a,b; Quarteroni et al., 2007) are
some examples. Targeted to the same applications are several recent works exploiting
the POD-Galerkin framework (Ballarin et al., 2015, 2016a,b, 2017, 2019). Turning to
a priori PGD, in terms of geometrically parametrised problems, early works focused
on solutions tailored to specific problems (Bognet et al., 2012; Chinesta et al., 2013a;
Heuzé et al., 2016; Leygue et al., 2010) or strategies only applicable in a context of low
order approximations (Ammar et al., 2014; Zlotnik et al., 2015). Similar to these works
where piecewise linear geometric parametrisations are used, other PGD approaches
that employ piecewise NURBS parametrisations have been proposed (Chamoin et al.,
2019). More recently, a general approach to deal with geometrically parametrised
problems in a CAD environment was proposed (Sevilla et al., 2020b). This work
focuses on PGD algorithms based on high-fidelity spatial solvers.

Starting from the reduced solution obtained using either a priori or a posteriori ap-
proaches, parametric response surfaces can also be efficiently devised. In this context,
a critical aspect is represented by the interpolation strategy used to evaluate the quan-
tities of interest depending on the solution manifold constructed using the ROMs. The
difficulty of effectively interpolating the reduced solution in a multidimensional man-
ifold was first addressed in Amsallem et al., (2008). Since then, different strategies
were proposed to reduce the dimensionality of the input space, e.g. via kernel princi-
pal component analysis (González et al., 2018) and manifold learning (Millán et al.,
2013). Recently, manifold learning techniques and collocation methods inspired by
sparse grids have been coupled with PGD-based separated representations of func-
tions of interest (Ibañez et al., 2017; Ibanez et al., 2018). The resulting methodolo-
gies, including sparse subspace learning and sparse PGD (Ibáñez et al., 2018), allow
to concurrently devise low-dimensional descriptions of the parameter space and func-
tional approximation of the solution manifold, leading to the so-called hybrid twins
paradigm (Chinesta et al., 2020). Although both a priori and a posteriori ROMs have
been utilised to solve parametrised PDEs and to devise parametric response surfaces,
it is not possible to know a priori which reduction approach will perform better for a
given problem and, to the best of the author’s knowledge, a comparison is presented
for the first time in Giacomini et al., (2020b).
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1.4 Objectives of the thesis

The primary objective of this thesis is to develop a new methodology combining
high-order method and model order reduction to solve multidimensional geometrically
parametrised problem. The reasons of using a high-order method such as hybridisable
discontinuous Galerkin (HDG) within a geometrically parametrised Stokes flow frame-
work are different. First, the use of HDG for the spatial discretisation guarantees that
equal order of approximation can be used for all the variables circumventing the so-
called Ladyzhenskaya-Babuška-Brezzi (LBB) condition. This is of special importance
in this work, where geometrically parametrised domains are considered with curved
boundaries. The use of the same degree of approximation for all the variables means
that standard isoparametric elements can be used. In contrast, the work in Sevilla
et al., 2020b, employing standard FEs, required the use of sub-parametric or super-
parametric formulations in the presence of curved boundaries due to the different
degree of approximation used for the velocity and pressure, as required to satisfy the
LBB condition. Second, the HDG mixed formulation allows separating exactly the
terms introduced by the parametric mapping. Different approaches, as the classical
FEM used in Sevilla et al., (2020b), leads to the need to use numerical separation
techniques to obtain such approximations. Third, the proposed HDG-PGD approach
facilitates the imposition of the Dirichlet boundary conditions as in the HDG context
all boundary conditions are weakly imposed. Last, looking to future perspectives and
applications, this new methodology is designed to face more complex problems exploit-
ing all the features of high-order techniques. For that reason, a digression about the
Oseen equation is also presented showing an application of the method to a different
problem, in particular, to flow problems defined in fluids with parametrised viscosity.
This is useful also to highlight the major challenge of operating in a parametrised
geometry respect to parametrised physical proprieties. Moreover, the merger of the
HDG-PGD solver for a geometrically parametrised Stokes equation with the one for
the Oseen equation with parametrised viscosity paves the way for the future develop-
ment of an HDG-PGD solver for Navier-Stokes equations with coupled parametrised
viscosity (i.e. Reynolds number) and parametrised domain. Between all the possible
model order reduction techniques that literature offers, the proper generalised decom-
position (PGD) have been chosen, mainly in its a priori framework. This coupling
shapes the so-called HDG-PGD methodology, formulated for the steady Stokes equa-
tion in geometrically parametrised domains. The a posteriori framework of the PGD
is also developed to devise a critical comparison between the two techniques coupled
with the HDG solver.

In particular, the following contributions have been realized:

1. Development and implementation of HDG formulation for axisym-
metric Stokes flow. Considering the Stokes equation, the classical HDG
formulation is obtained showing the proprieties of convergence of the method.
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Through a change of coordinates, the axisymmetric formulation is devised for
a three-dimensional problem. Introducing a suitable hypothesis it is shown
how the implementation of the axisymmetric formulation reduces to a classical
bi-dimensional problem accounting for one extra variable. The proposed for-
mulation is validated showing optimal rates of convergence for two academic
problems equipped with analytical solutions. No published contribution has
been extracted from this work.

2. Development and implementation of HDG-PGD formulation for ge-
ometrically parametrised Stokes flow. Starting from the Stokes equation,
the weak form of the multidimensional parametrised Stokes problem is devised.
Affine geometrical mapping is applied to operate on a reference parameter-
independent domain. Separability hypothesis is introduced and the HDG-PGD
Separability hypothesis is introduced and the HDG-PGD algorithm is described.
The multidimensional Stokes problem is thus solved with the proposed HDG-
PGD technique. First, the solver is validated for different scenarios using aca-
demic problems equipped with analytical solutions. Then, the method is ex-
ploited to solve problems of physical interest in microfluidics. This work outlined
the published paper “Hybridisable discontinuous Galerkin solution of geomet-
rically parametrised Stokes flows” (Sevilla, Borchini, Giacomini, and Huerta,
2020a).

3. Comparison between a priori and a posteriori PGD. The proposed a
priori solver is compared with an a posteriori PGD technique. Accuracy and
cost, calculated in terms of total calls to the spatial solver, are examined. In
particular, both techniques are used to devise response surfaces in context of
microfluidics applications. This work outlined the submitted paper “Separated
response surfaces for flows in parametrised domains: comparison of a priori and
a posteriori PGD algorithms” (Giacomini, Borchini, Sevilla, and Huerta, 2020b).

4. Development and implementation of HDG-PGD formulation for Os-
een equations with parametrised viscosity. Considering the Oseen equa-
tion, obtained from a linearisation of the steady Navier-Stokes equation, the
HDG formulation is devised. Exploiting the HDG-PGD framework defined, the
proposed HDG-PGD solver is used to solve the multidimensional Oseen equa-
tions with parametrised viscosity. No published contribution has been extracted
from this work.

1.5 Chapters overview

This section outlines the structure of the thesis detailing, in particular, the contents
of each one of the chapters.
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Chapter 2 is dedicated to the first contribution of the thesis and aims to devise the
HDG axisymmetric formulation for the Stokes equation. Two possible cases are anal-
ysed, whether the axis of symmetry intersects the computational domain or not. Re-
garding domains intersecting the axis of symmetry, a new boundary condition needs to
be introduced. A comparison between the resolution of a three-dimensional problem
via a classical three-dimensional HDG formulation and via the proposed axisymmetric
formulation is made focusing on the number of degrees of freedom used.

Chapter 3 is dedicated to the central contribution of this thesis, the formulation and
development of the HDG-PGD methodology for the Stokes equation in a geometri-
cally parametrised domain. The multidimensional problem is solved with the proposed
HDG-PGD technique exploiting a projection on a lower-dimensional space defined by
either space or parameters. Each term of the recursively computed reduced basis is
obtained solving a non-linear problem through an alternate direction algorithm. The
proposed solver is validated for different scenarios using academic problems equipped
with analytical solutions. Bi-dimensional, axisymmetric and three-dimensional prob-
lems are studied. Then, the method is employed to solve problems of physical interest
in microfluidics.

Chapter 4 presents the second main contribution of this thesis and develops a compar-
ison between two conceptually different model order reduction techniques in coupling
with the high-order solver HDG. The proposed a priori HDG-PGD solver is compared
with the a posteriori PGD technique introduced by Modesto et al., (2015) and Díez et
al., (2018, 2019). A critical comparison of the two reduction techniques is performed
stating attractive properties and drawbacks of both and extensive numerical experi-
ments are presented to validate this comparison. Both the influence of the number
of parameters affecting the shape of the geometry and the influence of their range of
variation on the reduced solution is investigated. Costs, calculated in terms of total
calls to the spatial solver, are examined and reported for both approaches. The two
techniques are applied to compute separate response surfaces to evaluate real-time
quantities of interest, e.g. the drag force, in the context of microfluidics applications.

Chapter 5 summarises the results presented and presents possible future perspectives
and developments starting from the work done in this thesis.

Appendix A develops one of the possible extensions presented in chapter 5 consisting
of the application of the HDG-PGD methodology to a different parametric problem.
Considering a linearisation of the convective term of the steady Navier-Stokes equa-
tion, the Oseen equations are obtained. Their parametric counterpart is discussed
for the case of parametrised material parameters. Preliminary numerical results for
diffusion-dominated and convection-dominated flows are presented using an academic
test case with parametrised viscosity.
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Chapter 2

HDG solution of Stokes flow
problems

2.1 Problem statement

Let us consider a domain Ω ⊂ Rnsd , where nsd is the number of spatial dimensions. The
strong form of the stationary Stokes problem is obtained by neglecting the transient
and convective effects in the full incompressible Navier–Stokes equations (Donea et
al., 2003). The so-called velocity-pressure formulation is so obtained and reads

−∇· (ν∇u− pInsd) = s in Ω,

∇·u = 0 in Ω,

u = uD on ΓD,

n ·
(
ν∇u− pInsd

)
= gN on ΓN ,

u ·D + n ·
(
ν∇u− pInsd

)
E = 0 on ΓS .

(2.1)

where unknowns u and p denote the velocity and the dynamic pressure, respectively,
ν>0 is the kinematic viscosity, s is the volumetric source and n is the outward unit
normal vector to ∂Ω. The boundary of the domain, ∂Ω, is partitioned into the
non-overlapping Dirichlet, ΓD, Neumann, ΓN , and slip, ΓS , boundaries such that
∂Ω=ΓD ∪ ΓN ∪ ΓS . On the Dirichlet boundary the velocity is given by uD. On the
Neumann boundary the pseudo-traction is given by gN . Finally, on the slip boundary,
the matrices D and E are given by D=[n,0nsd×(nsd−1)] and E=[0, t1, ..., tnsd−1], as
detailed in Giacomini et al., (2020c). The tangential vectors tk, for k=1, . . . nsd − 1

are such that {n, t1, ..., tnsd−1} form an orthonormal system of vectors.

Remark 1. As noted by Donea et al., (2003), a velocity-pressure formulation enforces
a pseudo-traction. To enforce a boundary traction an alternative formulation must be
considered, the so-called Cauchy-stress formulation (Giacomini et al., 2020c).

The free divergence condition in equation (2.1) induces the compatibility condition

〈1,uD · n〉ΓD + 〈1,u · n〉∂Ω\ΓD = 0, (2.2)



20 Chapter 2. HDG solution of Stokes flow problems

where 〈·, ·〉S denotes the standard L2 scalar product in any domain S ⊂ ∂Ω.

Besides, it is worth noting that, if ΓN=∅, an additional constraint to avoid the inde-
terminacy of the pressure is required. One common option (Cockburn et al., 2009b,
2014; Giacomini et al., 2018; Nguyen et al., 2010b) that is considered here, consists
of imposing the mean pressure on the boundary of the domain, namely〈 1

|∂Ω|
p, 1
〉
∂Ω

= 0. (2.3)

2.2 HDG formulation

This section briefly presents the HDG formulation for the Stokes problem. The presen-
tation is based on previous work on HDG methods found in Cockburn et al., (2009b,
2011, 2014) and Giacomini et al., (2018, 2020c).

2.2.1 Mixed formulation

Let us consider a subdivision of the domain Ω in nel disjoint subdomains Ωe such that

Ω =

nel⋃
e=1

Ωe. (2.4)

The interior boundaries of the subdomains define the so-called mesh skeleton or in-
ternal interface Γ as

Γ :=

[
nel⋃
e=1

∂Ωe

]
\ ∂Ω. (2.5)

Introducing the so-calledmixed variable L=−ν∇u, the Stokes problem can be written
as a first-order system of equations in the broken computational domain, namely

Le + ν∇ue = 0 in Ωe, and for e = 1, . . . , nel,

∇·
(
Le + peInsd

)
= s in Ωe, and for e = 1, . . . , nel,

∇·ue = 0 in Ωe, and for e = 1, . . . , nel,

ue = uD on ∂Ωe ∩ ΓD,

n ·
(
Le + peInsd

)
= −gN on ∂Ωe ∩ ΓN ,

ue ·D − n ·
(
Le + peInsd

)
E = 0 on ∂Ωe ∩ ΓS ,

Ju⊗ nK = 0 on Γ,

Jn ·
(
L+ pInsd

)
K = 0 on Γ,

(2.6)

where the last two equations, known as transmission conditions, impose the continuity
of the velocity and the normal flux on the mesh skeleton. Following Montlaur et al.,
(2008), the jump operator J·K is defined as the sum from the left, Ωl, and right, Ωr,
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elements of a given portion of the interface Γ, that is

J�K = �l +�r. (2.7)

2.2.2 Strong form of the local and global problems

The HDG method solves the mixed problem of equation (2.6) in two steps. First, the
so-called local problems are considered

Le + ν∇ue = 0 in Ωe, and for e = 1, . . . , nel,

∇·
(
Le + peInsd

)
= s in Ωe, and for e = 1, . . . , nel,

∇·ue = 0 in Ωe, and for e = 1, . . . , nel,

ue = uD on ∂Ωe ∩ ΓD,

ue = û on ∂Ωe \ ΓD,〈 1

|∂Ωe|
pe, 1

〉
∂Ωe

= ρe, for e = 1, . . . , nel,

(2.8)

where û is the so-called hybrid variable, which is an independent variable representing
the trace of the solution on the element faces, and ρe is the mean value of the pressure
on the boundary ∂Ωe. It is worth noting that the local problem is a pure Dirichlet
problem and therefore, the last condition in equation (2.8) is introduced to ensure the
uniqueness of the pressure. The local problems can be solved independently, element
by element, to write Le, ue and pe in terms of û and ρe along the interface Γ∪ΓN∪ΓS .

Second, the so-called global problem is defined to impose the continuity of the normal
flux on the inter-element faces and the Neumann and slip boundary conditions, namely

Jn ·
(
L+ pInsd

)
K = 0 on Γ,

n · (Le + peInsd) = −gN on ∂Ωe ∩ ΓN ,

ue ·D − n · (Le + peInsd)E = 0 on ∂Ωe ∩ ΓS .

(2.9)

It is worth noting that, due to the unique definition of the hybrid variable on each
face and the Dirichlet boundary condition in the local problems, there is no need to
enforce the continuity of the solution in the global problem.

The constraint of equation (2.2), induced by the incompressibility condition, is also
considered in the global problem and written in terms of the hybrid variable as

〈1,uD · n〉ΓD + 〈1, û · n〉(∂Ω\ΓD) = 0. (2.10)
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2.2.3 Weak form of the local and global problems

The following discrete functional spaces are introduced:

Vh(Ω) := {v ∈ L2(Ω) : v|Ωe ∈ Pk(Ωe) ∀Ωe , e = 1, . . . , nel},

V̂h(S) := {v̂ ∈ L2(S) : v̂|Γi ∈ Pk(Γi) ∀Γi ⊂ S ⊆ Γ ∪ ∂Ω},

V̂
h

:=
[
V̂h(Γ ∪ ΓN ∪ ΓS)

]nsd
,

Vh :=
[
Vh(Ω)

]nsd
,

Wh :=
[
Vh(Ω)

]nsd×nsd
,

where Pk(Ωe) and Pk(Γi) stand for the spaces of polynomial functions of complete
degree at most k in Ωe and on Γi respectively.

The weak form of the local problems, for e=1, . . . , nel, reads: given uD on ΓD and
ûh on Γ ∪ ΓN ∪ ΓS , find (Lhe ,u

h
e , p

h
e ) ∈Wh × Vh × Vh that satisfy

ALL(W ,Lhe ) +ALu(W ,uhe ) = LL(W ) +ALû(W , ûh),

AuL(v,Lhe ) +Auu(v,uhe ) +Aup(v, p
h
e ) = Lu(v) +Auû(v, ûh),

Apu(v,uhe ) = Lp(v) +Apû(v, ûh),

Aρp(1, p
h
e ) = Aρρ(1, ρ

h
e ),

(2.11)

for all (W ,v, v) ∈ Wh × Vh × Vh, where the bilinear and linear forms of the local
problem are given by

ALL(W ,L) :=−
(
W , ν−1L

)
Ωe
, ALu(W ,u) :=

(
∇·W ,u

)
Ωe
,

ALû(W , û) :=〈n ·W , û〉∂Ωe\ΓD , AuL(v,L) :=
(
v,∇·L

)
Ωe
,

Auu(v,u) :=〈v, τu〉∂Ωe , Aup(v, p) :=
(
v,∇p

)
Ωe
,

Auû(v, û) :=〈v, τ û〉∂Ωe\ΓD , Apu(v,u) :=
(
∇v,u

)
Ωe
,

Apû(v, û) :=〈v, û · n〉∂Ωe\ΓD , Aρp(w, p) :=〈w, |∂Ωe|−1p〉∂Ωe ,

Aρρ(w, ρ) :=wρ,

(2.12)

and
LL(W ) :=〈n ·W ,uD〉∂Ωe∩ΓD ,

Lu(v) :=
(
v, s
)

Ωe
+ 〈v, τuD〉∂Ωe∩ΓD ,

Lp(v) :=〈v,uD · n〉∂Ωe∩ΓD ,

(2.13)

respectively, where (·, ·)D denotes the standard L2 scalar product in a generic sub-
domain D and τ is the stabilisation tensor, whose selection has an important in-
fluence on the accuracy, stability and convergence properties of the resulting HDG
method (Cockburn et al., 2009c; Nguyen et al., 2009c,d, 2010b).
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Similarly, the weak form of the global problem is: find ûh ∈ V̂
h
and ρh ∈ Rnel that

satisfies

nel∑
e=1

{
AûL(v̂,Lhe ) +Aûu(v̂,uhe ) +Aûp(v̂, p

h
e ) +Aûû(v̂, ûh)

}
=

nel∑
e=1

{Lû(v̂)} ,

Apû(1, ûh) = −Lp(1),

(2.14)

for all v̂ ∈ V̂
h
, where the multi-dimensional bilinear and linear forms of the global

problem are given by

AûL(v̂,L) :=〈v̂,n ·L〉∂Ωe\(ΓD∪ΓS) − 〈v̂,n ·LE〉∂Ωe∩ΓS

Aûu(v̂,u) :=〈v̂, τu〉∂Ωe\(ΓD∪ΓS) − 〈v̂, (τu)·E〉∂Ωe∩ΓS

Aûp(v̂, p) :=〈v̂, pn〉∂Ωe\(ΓD∪ΓS)

Aûû(v̂, û) :=− 〈v̂, τ û〉∂Ωe\(ΓD∪ΓS) + 〈v̂, û·D + (τ û)·E〉∂Ωe∩ΓS

(2.15)

and
Lû(v̂) :=−〈v̂, gN 〉∂Ωe∩ΓN , (2.16)

respectively.

2.2.4 Discretisation

Introducing an isoparametric formulation with equal interpolation for all the local
and global variables (Sevilla et al., 2016b, 2018a,b), the discretisation of the weak
form of the local and global problems given by (2.11) and (2.14), respectively, can be
obtained. Local problem, leads to a system of equations for each element with the
following structure:

ALL ALu 0 0

AT
Lu Auu Aup 0

0 AT
up 0 aTρp

0 0 aρp 0


e


L

u

p

ζ


e

=


fL

fu

fp

0


e

+


ALû

Auû

Apû

0


e

û +


0

0

0

1


e

ρe, (2.17)

where L, u, p and û denote the nodal values of L, u, p and û respectively and the
constraint on the mean value ρ of the pressure on the element boundaries is enforced
using the Lagrange multiplier ζ.

Similarly, the discretisation of the global problem leads to a system of equations for
the trace of the velocity on the element boundaries and the mean value of the pressure
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in each element, namely

nel∑
e=1

{[
AûL Aûu Aûp

]
e


L

u

p


e

+ [Aûû]e û
}

=

nel∑
e=1

[fû]e,

1T [Apû]eû = −1T [fp]e.

(2.18)

As usual in an HDG context, the local problem of equation (2.17) is used to express
the gradient of the velocity, the velocity and the pressure in terms of the trace of the
velocity and the mean pressure. Introducing these expressions into the global problem
leads to the global system [

K̂ G

GT 0

]{
û

ρ

}
=

{
f̂û

f̂ρ

}
, (2.19)

where the only unknowns are the trace of the velocity and the mean pressure and

K̂ =

nel

A
e=1

[
AûL Aûu Aûp 0

]
e


ALL ALu 0 0

AT
Lu Auu Aup 0

0 AT
up 0 aTρp

0 0 aρp 0


−1

e


ALû

Auû

Apû

0


e

+ [Aûû]e,

GT =


1T [Apû]1

1T [Apû]2
...

1T [Apû]nel


e

,

f̂û =

nel

A
e=1

[̂fû]e −
[
AûL Aûu Aûp 0

]
e


ALL ALu 0 0

AT
Lu Auu Aup 0

0 AT
up 0 aTρp

0 0 aρp 0


−1

e


fL

fu

fp

0


e

,

f̂ρ = −


1T [fp]1

1T [fp]2
...

1T [fp]nel


e

.

2.2.5 Implementation details

Following Giacomini et al., (2020c) and Sevilla et al., (2016b), the matrices and vectors
appearing in the discrete form of the HDG can be particularized. The local elemental
variables u,p,L are defined in a reference element Ω̃(ξ), ξ=(ξ1, . . . , ξnsd) whereas the
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hybrid variable û, is defined on a reference face Γ̃(η),η=(η1, . . . , ηnsd) as

u(ξ) '
nen∑
j=1

ujNj(ξ), p(ξ) '
nen∑
j=1

pjNj(ξ),

L(ξ) '
nen∑
j=1

LjNj(ξ), û(η) '
nfn∑
j=1

ûjN̂j(η),

where uj ,pj ,Lj and ûj are the nodal value of the approximation, nen and nfn the
number of nodes in the element and face, respectively, and Nj and N̂j the polynomial
shape functions in the reference element and face, respectively. An isoparametric
transformation is used to map reference and local coordinates

x(ξ) =

nen∑
i=1

xiNi(ξ),

where vector xi, with i = 1, . . . , nen denotes the elemental nodal coordinates.

Following Sevilla et al., (2016b), the compact form of the interpolation functions are
introduced

N = [N1 N2 . . . Nnen ]
T , Nn = [N1n N2n . . . Nnenn]T ,

N̂ = [N̂1 N̂2 . . . N̂nfn ]
T , N̂n = [N̂1n N̂2n . . . N̂nfnn]T ,

∇N = [(J−1∇N1)T (J−1∇N2)T . . . (J−1∇Nnen)
T ]T ,

Nnsd = [N1Insd N2Insd . . . NnenInsd ]
T ,

Nn2sd
= [N1In2sd N2In2sd . . . NnenIn2sd ]

T ,

where n=(n1, . . . , nnsd) represents the outward unit normal vector to an edge or face,
J is the Jacobian of the isoparametric transformation and Insd and In2sd is the identity
matrix of dimension nsd and n2

sd, respectively.

The different matrices appearing in equation (2.17), computed for each element e=1, . . . , nel,
can be expresses as

[ALL]e = −
neip∑
g=1

ν−1Nn2sd
(ξeg)N

T
n2sd

(ξeg)w
e
g, [ALu]e =

neip∑
g=1

∇N(ξeg)N
T (ξeg)w

e
g,

[ALû]e =
∑

∂Ωe\ΓD

nfip∑
g=1

Nn(ξfg )N̂T (ξfg )wfg , [Auu]e =
∑
∂Ωe

nfip∑
g=1

N(ξfg )(τN(ξfg ))Twfg ,

[Aup]e =

neip∑
g=1

N(ξeg)∇NT (ξeg)w
e
g, [Auû]e =

∑
∂Ωe\ΓD

nfip∑
g=1

N(ξfg )(τN̂(ξfg ))Twfg ,

[Apû]e =
∑

∂Ωe\ΓD

nfip∑
g=1

N(ξfg )N̂T
n(ξfg )wfg , [Aρp]e =

∑
∂Ωe

nfip∑
g=1

NT (ξfg )wfg ,
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[fL]e =
∑

∂Ωe∩ΓD

nfip∑
g=1

Nn(ξfg )uTD(xµ(ξfg ))wfg ,

[fu]e =

neip∑
g=1

Nnsd(ξ
e
g)s

T (xµ(ξfg ))weg +
∑

∂Ωe∩ΓD

nfip∑
g=1

Nnsd(ξ
f
g )(τuD(xµ(ξfg )))Twfg ,

[fp]e =
∑

∂Ωe∩ΓD

nfip∑
g=1

Nn(ξfg )uTD(xµ(ξfg ))wfg .

Analogously the different matrices appearing in equation (2.18), computed for each
element e=1, . . . , nel, can be expresses as

[AûL]e =
∑

∂Ωe\(ΓD∪ΓS)

nfip∑
g=1

N̂(ξfg )NT
n(ξfg )wfg −

∑
∂Ωe∩ΓS

nfip∑
g=1

N̂(ξfg )(Nn(ξfg )E)Twfg ,

[Aûu]e =
∑

∂Ωe\(ΓD∪ΓS)

nfip∑
g=1

N̂(ξfg )(τN(ξfg ))Twfg −
∑

∂Ωe∩ΓS

nfip∑
g=1

N̂(ξfg )(τN(ξfg )E)Twfg ,

[Aûp]e =
∑

∂Ωe\(ΓD∪ΓS)

nfip∑
g=1

N̂(ξfg )NT (ξfg )wfg ,

[Aûû]e = −
∑

∂Ωe\(ΓD∪ΓS)

nfip∑
g=1

N̂(ξfg )(τN̂(ξfg ))Twfg +
∑

∂Ωe∩ΓS

nfip∑
g=1

N̂(ξfg )(N̂(ξfg )D)Twfg

+
∑

∂Ωe∩ΓS

nfip∑
g=1

N̂(ξfg )(τN̂(ξfg )E)Twfg ,

[fû]e = −
∑

∂Ωe∩ΓN

nfip∑
g=1

N̂(ξfg )gTN (xµ(ξfg ))wfg .

In the above expressions, ξeg and weg are the neip integration points and weights defined
on the reference element and ξfg and wfg are the nfip integration points and weights
defined on the reference edge/face.

2.2.6 Local postprocess of the primal variable

As wildly explained in the literature in Sevilla et al., (2016b) and Giacomini et al.,
(2020c), the solution of the HDG problem obtained solving (2.19) computes the opti-
mal solution for both u, p and L with optimal rate of convergence k+1 in L2 norm,
as the polynomial used to approximate these variables are of the same degree. From
this, follows that L, which is the gradient of the velocity, will be one degree lower
than u. This allows to develop the concept of superconvergence using local postpro-
cessing (Cockburn et al., 2008). Local postprocessing, thus, can be used to obtain a
superconvergent solution for primal variable, i.e. the velocity, called u∗, converging
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with order k+2 in L2 norm (Cockburn et al., 2008, 2009a). This is achieved by solving
the following equations element-by-element:∇·∇u∗ = −∇·L in Ωe,

n ·∇u∗ = −n ·L on ∂Ωe,
(2.20)

with the additional constraint: ∫
Ωe

u∗ dΩ =

∫
Ωe

u dΩ, (2.21)

where u∗ ∈ Pk+1(Ωe) and k is the polynomial degree of approximation. The week
form of the problem can be written as:

(∇v,∇u∗)Ωe = −(∇v,L)Ωe (2.22)

(u∗, 1)Ωe = −(u, 1)Ωe , (2.23)

for all v ∈ Pk+1(Ωe) and the solution u∗ converges asymptotically at a faster rate of
k+2 in L2 norm for uniform degree of the approximation polynomial k.

2.2.7 Numerical validation

The first example studied to validate the method is the so-called Wang flow (Wang,
1991) in Ω=[0, 1]2 ∈ R2. The analytical solution of the velocity (whose magnitude is
shown in figure 2.1) and pressure is given by

ux = 2ay − bλ exp(−λy) cos(λx),

uy = bλ exp(−λy) sin(λx),

p = 0,

(2.24)

with parameters selected as a=b=1, λ=10 and kinematic viscosity ν=1.

Figure 2.1: Wang flow: Analytical solution of the norm of the veloc-
ity field.
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Neumann boundary conditions are imposed on the bottom part of the domain, de-
fined as ΓN={(x, y) ∈ Ω | y=0}, whereas Dirichlet boundary conditions are im-
posed on ΓD=∂Ω \ ΓN . A consecutive refinement of uniform triangular meshes with
nel={16, 64, 256, 1024} is used to obtain convergence rates for different degrees of
polynomial functions, in particular k={1, 2, 3, 4}. Results are shown in figure 2.2.
Optimal convergence rates of at least order k+1 are obtained for all the variables and
k+2 for the postprocessed variable, respectively.

(a) L (b) u

(c) p (d) u∗

Figure 2.2: Wang flow: mesh convergence of the L2 norm of the
error for L, u, p and u∗.

2.3 HDG formulation in axisymmetric problems

This section is dedicated to the derivation and implementation of the HDG formulation
for Stokes problems under the hypothesis of axial symmetry. This derivation has not
been found anywhere in literature and does not appear in any publications extracted
from this thesis. Initially, the three-dimensional case of problem statement presented
in section 2.1 is written in cylindrical coordinates. Then, under proper assumptions
of axial symmetry and non-rotative flow, it is shown how a 3D axisymmetric problem
can be reduced to a 2D problem with one extra unknown.



2.3. HDG formulation in axisymmetric problems 29

2.3.1 Cylindrical coordinates

A cylindrical-Cartesian transformation allows to rewrite whatever problem from a
three-dimensional Cartesian reference system x=(x, y, z)T to cylindrical coordinates
r=(r, θ, z)T , where r is the radial distance from the z -axis and the angle θ, called
azimuth or angular position, defining a two-dimensional polar coordinate system in
the reference plane, which is an arbitrary plane orthogonal to the z -axis. To write
the Stokes problem in cylindrical coordinates let us previously recall some scholastic
relations. Cartesian coordinates x=(x, y, z)T and cylindrical coordinates r=(r, θ, z)T

are related by 
x = r cos θ,

y = r sin θ,

z = z,


r =

√
x2 + y2,

θ = atan2(y, x),

z = z,

(2.25)

where atan2 is the four-quadrant inverse tangent, which is a usual variation of the
arctangent function than produces azimuths such that θ ∈ [−π, π] and is defined as

atan2(y, x) =



arctan(y/x) if x > 0

arctan(y/x) + π if x < 0 and y ≥ 0

arctan(y/x) + π if x < 0 and y < 0

π/2 if x = 0 and y > 0

−π/2 if x = 0 and y < 0

undefined if x = 0 and y = 0.

(2.26)

The Jacobian for cylindrical to Cartesian and Cartesian to cylindrical mappings are
respectively

∂x

∂r
:=

cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

 ∂r

∂x
:=

 cos θ sin θ 0

−(sin θ)/r (cos θ)/r 0

0 0 1

 (2.27)

with the range of variation 0 ≤ r<∞, −π≤θ<π, and −∞<z<∞. It is worth noting
that det(∂x/∂r)=r, which is needed for the change of variables in the weak forms.

The cylindrical basis vectors (er, eθ, ez) can be written in terms of Cartesian ones
(ex, ey, ez) and viceversa

er = cos θex + sin θey,

eθ = − sin θex + cos θey,

ez = ez,


ex = cos θer − sin θeθ,

ey = sin θer + cos θeθ,

ez = ez.

(2.28)
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which are clearly orthonormal as er×eθ·ez=1. Moreover, a Cartesian vector field u
may be resolved in this basis

u = erur + eθuθ + ezuz,

where
ur = u · er, uθ = u · eθ, uz = u · ez.

Using the chain rule and relations (2.28), the expression of the gradient operator in
cylindrical coordinates can be determined from its Cartesian counterpart

∇r =
∂

∂x
ex +

∂

∂y
ey +

∂

∂z
ez =

∂

∂r
er +

1

r

∂

∂θ
eθ +

∂

∂z
ez. (2.29)

Thus, it is straightforward to apply this operator to scalar functions as in the Cartesian
case, namely

∇rv =
∂v

∂r
er +

1

r

∂v

∂θ
eθ +

∂v

∂z
ez. (2.30)

However, contrary to Cartesian coordinates where ∂ei/∂xj=0 for i, j=x, y, z, in cylin-
drical coordinates it is important to recall that, not all derivatives are zero. In par-
ticular, from (2.25) follows that

∂er
∂θ

= eθ,
∂eθ
∂θ

= −er (2.31)

while the other derivatives are zero. These properties are crucial when computing
derivatives of vectors or tensors. For instance, the gradient of a vector in cylindrical
coordinates is

∇rv = u⊗∇r = (vrer + vθeθ + vzez)⊗
(
er
∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z

)

=



∂vr
∂r

1

r

∂vr
∂θ

∂vr
∂z

∂vθ
∂r

1

r

∂vθ
∂θ

∂vθ
∂z

∂vz
∂r

1

r

∂vz
∂θ

∂vz
∂z

+
vr
r

∂er
∂θ
⊗ eθ +

vθ
r

∂eθ
∂θ
⊗ eθ

=



∂vr
∂r

1

r

∂vr
∂θ
− vθ

r

∂vr
∂z

∂vθ
∂r

1

r

∂vθ
∂θ

+
vr
r

∂vθ
∂z

∂vz
∂r

1

r

∂vz
∂θ

∂vz
∂z

 ,

(2.32a)
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while the divergence of a vector is

∇r·v =
( ∂
∂r

er +
∂

∂θ
eθ +

∂

∂z
ez
)
· (vrer + vθeθ + vzez)

=
∂vr
∂r

+
1

r

∂vθ
∂θ

+
∂vz
∂z

+
vr
r
eθ ·

∂er
∂θ

+
vθ
r
eθ ·

∂eθ
∂θ

=
1

r

∂(rvr)

∂r
+

1

r

∂vθ
∂θ

+
∂vz
∂z

.

(2.33a)

Previous expressions are used together with relations (2.31) to compute the divergence
of a gradient of a vector

∇r·∇rv =



∂2vr
∂r2

+
1

r

∂vr
∂r

+
1

r2

∂2vr
∂θ2

− 2

r2

∂vθ
∂θ
− vr
r2

+
∂2vr
∂z2

∂2vθ
∂r2

+
1

r

∂vθ
∂r

+
1

r2

∂2vθ
∂θ2

+
2

r2

∂vr
∂θ
− vθ
r2

+
∂2vθ
∂z2

∂2vz
∂r2

+
1

r

∂vz
∂r

+
1

r2

∂2vz
∂θ2

+
∂2vr
∂z2

,


, (2.34)

and analogously the divergence of a second-order tensor

∇r·W =



∂Wrr

∂r
+

1

r
Wrr +

1

r

Wrθ

∂θ
+
∂Wrz

∂z
− 1

r
Wθθ

∂Wθr

∂r
+

1

r
Wθr +

1

r

Wθθ

∂θ
+
∂Wθz

∂z
+

1

r
Wrθ

∂Wzr

∂r
+

1

r
Wzr +

1

r

Wzθ

∂θ
+
∂Wzz

∂z

 . (2.35)

2.3.2 Problem statement and axisymmetric hypothesis

Let us consider problem statement (2.1) defined in domain Ω0∈Rnsd with nsd=3. Let
us also assume that domain Ω0 is the results of a full rotation around the z -axis of
a 2D generator domain Ω ⊂ R2. By mean of a change of coordinates (2.1) can be
rewritten in cylindrical coordinates. The goal is still to find the velocity and pressure
fields as functions in a multidimensional space, namely u(x) and p(x):

−∇r· (ν∇ru− pInsd) = s in Ω× [−π, π),

∇r·u = 0 in Ω× [−π, π),

u = uD on ΓD × [−π, π),

n ·
(
ν∇ru− pInsd

)
= gN on ΓN × [−π, π),

u ·D + n ·
(
ν∇ru− pInsd

)
E = 0 on ΓS × [−π, π).

(2.36)

where ∇r is the nabla operator defined in cylindrical coordinates.

By definition, in axisymmetric problems, all variables are independent of the angular
coordinate θ. This allows reducing the dimension of the problem solving the equations
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only in the generator plane Ω. Under this hypothesis two different scenarios are
possible: the z -axis intersects or does not intersect the generator domain Ω. As it is
shown in the following, this small difference has a huge impact on the axisymmetric
HDG formulation as for one of the two cases a new boundary conditions must be
introduced.

Case 1: The z -axis does not intersect Ω If z -axis does not intersects Ω (e.g. a
hollow cylinder), no further hypothesis is required and the resolution of the problem
follows the classical HDG approach presented in section 2.2. In this case, the axisym-
metric hypothesis simply helps to reduce the dimension of the integration domain. A
three-dimensional Cartesian integral can be computed exploiting a 2π-rotation of a
two dimensional integral around the axis of symmetry, simply accounting of the dif-
ferential terms arising from the Cartesian-cylindrical change of coordinates. In other
words, the whole rotation of each element Ωe of the generator domain Ω∈R2 produces
a toroidal prism, and the union of all these prisms reconstructs Ω0∈R3. In this case,
the axisymmetric problem statement reads

−∇r· (ν∇ru− pInsd) = s in Ω× [−π, π),

∇r·u = 0 in Ω× [−π, π),

u = uD on ΓD × [−π, π),

n ·
(
ν∇ru− pInsd

)
= gN on ΓN × [−π, π),

u ·D + n ·
(
ν∇ru− pInsd

)
E = 0 on ΓS × [−π, π),

(2.37)

where θ-dimension is simply integrated resulting in a scaling term 2π for all variables.

Case 2: The z -axis intersects Ω A completely different and more complex sce-
nario appears when the axis of symmetry intersects the domain Ω (i.e. coincides with
one of its boundaries). In this case, an extra artificial boundary must be accounted
for apart from the Dirichlet, Neumann and Slip. Conceptually, while the behaviour
of the elements which do not intersect the new boundary ΓA is univariate respect
the previous case, those having one of their faces in contact with it must be treated
differently. The idea of exploiting rotation to reduce the integration dimension still
holds, but as a new boundary is introduced, a new boundary condition is required.
The Axisymmetric boundary ΓA is thus defined such that ∂Ω=ΓD ∪ ΓN ∪ ΓS ∪ ΓA.
Being a boundary with a physical symmetry imposed, boundary conditions on ΓA are
identical to those imposed for free slip condition on ΓS , u ·n=0 and n ·∇ru tk=0 for
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k=1, . . . nsd − 1. In this case, the axisymmetric problem statement reads

−∇r· (ν∇ru− pInsd) = s in Ω× [−π, π),

∇r·u = 0 in Ω× [−π, π),

u = uD on ΓD × [−π, π),

n ·
(
ν∇ru− pInsd

)
= gN on ΓN × [−π, π),

u ·D + n ·
(
ν∇ru− pInsd

)
E = 0 on ΓS × [−π, π),

u ·D + n · ν∇ruE = 0 on ΓA.

(2.38)

It is worth noting that the last equation is defined only on the artificial axisymmetric
boundary ΓA which physically does not represent any three-dimensional surface as
other boundaries do. The only aim of this condition is to close the problem without
which the final HDG system of equations would results indeterminate, leaving the
degrees of freedom of û lying on ΓA unconstrained. Analogously to Case 1, where
involved (i.e. except in last equation of system (2.38)), θ-dimension is simply integrated
resulting in a scaling term 2π for all variables.

In the following, HDG formulation is developed only for the second case where z -axis
intersects Ω as (2.37) is a particular case of (2.38) where ΓA=∅.

2.3.3 Strong form of the local and global problems

Following HDG rationale (2.38) is solved in two steps. First local problems are solved
element by element

Le + ν∇rue = 0 in Ωe × [−π, π), and for e = 1, . . . , nel,

∇r·
(
Le + peInsd

)
= s in Ωe × [−π, π), and for e = 1, . . . , nel,

∇r·ue = 0 in Ωe × [−π, π), and for e = 1, . . . , nel,

ue = uD on (∂Ωe ∩ ΓD)× [−π, π),

ue = û on (∂Ωe \ ΓD)× [−π, π),〈 1

|∂Ωe|
pe, 2π

〉
∂Ωe

= ρe, for e = 1, . . . , nel.

(2.39)

Note that the hybrid variable û beside on the Neumann and Slip boundaries is also de-
fined on the artificial Axisymmetric boundary. This guarantees that all local problems
are still pure Dirichlet problems and that each of them can be solved independently,
element by element, to write Le, ue and pe in terms of û and ρe along the interface
Γ ∪ ΓN ∪ ΓS ∪ ΓA. Moreover, it is worth to notice that being pure Dirichlet problem,
each local problem fall in the class of problems whose boundary does not intersect ΓA

thus its resolution only requires to account some small changes in the differential of
integration arising from the change of coordinates (i.e. it behaves exactly as problems
belonging to Case 1).
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Second, the so-called global problem is defined accounting also of the extra condition
on ΓA, namely

Jn ·
(
L+ pInsd

)
K = 0 on Γ× [−π, π),

n · (Le + peInsd) = −gN on (∂Ωe ∩ ΓN )× [−π, π),

ue ·D − n · (Le + peInsd)E = 0 on (∂Ωe ∩ ΓS)× [−π, π),

ue ·D − n ·LeE = 0 on (∂Ωe ∩ ΓA).

(2.40)

2.3.4 3D weak form of the local and global problems

Exploiting the functional spaces defined in section 2.2.3 the weak form of the local
problems, for e=1, . . . , nel, reads: given uD on ΓD and ûh on Γ∪ ΓN ∪ ΓS ∪ ΓA, find
(Lhe ,u

h
e , p

h
e ) ∈Wh × Vh × Vh that satisfy

ArLL(W ,Lhe ) +ArLu(W ,uhe ) = LrL(W ) +ArLû(W , ûh),

AruL(v,Lhe ) +Aruu(v,uhe ) +Arup(v, p
h
e ) = Lru(v) +Aruû(v, ûh),

Arpu(v,uhe ) = Lrp(v) +Arpû(v, ûh),

Arρp(1, p
h
e ) = Arρρ(1, ρ

h
e ),

(2.41)

for all (W ,v, v) ∈ Wh × Vh × Vh, where the multi-dimensional bilinear and linear
forms of the local problem are given by

ArLL(W ,L) :=−
(
W , ν−1L 2πr

)
Ωe
,

ArLu(W ,u) :=
(
∇r·W ,u 2πr

)
Ωe
,

ArLû(W , û) :=〈n ·W , û 2πr〉∂Ωe\ΓD ,

AruL(v,L) :=
(
v,∇r·L 2πr

)
Ωe
,

Aruu(v,u) :=〈v, τu 2πr〉∂Ωe ,

Arup(v, p) :=
(
v,∇rp 2πr

)
Ωe
,

Aruû(v, û) :=〈v, τ û 2πr〉∂Ωe\ΓD ,

Arpu(v,u) :=
(
∇rv,u 2πr

)
Ωe
,

Arpû(v, û) :=〈v, û · n 2πr〉∂Ωe\ΓD ,

Arρp(w, p) :=〈w, |∂Ωe|−1p 2πr〉∂Ωe ,

Arρρ(w, ρ) :=wρ 2π,

(2.42)

and
LrL(W ) :=〈n ·W ,uD 2πr〉∂Ωe∩ΓD ,

Lru(v) :=
(
v, s 2πr

)
Ωe

+ 〈v, τuD 2πr〉∂Ωe∩ΓD ,

Lrp(v) :=〈v,uD · n 2πr〉∂Ωe∩ΓD ,

(2.43)

respectively.
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Similarly, the weak form of the global problem is: find ûh ∈ V̂
h
and ρh ∈ Rnel that

satisfies

nel∑
e=1

{
ArûL(v̂,Lhe ) +Arûu(v̂,uhe ) +Arûp(v̂, p

h
e ) +Arûû(v̂, ûh)

}
=

nel∑
e=1

{Lrû(v̂)} ,

Arpû(1, ûh) = −Lp(1),

(2.44)

for all v̂ ∈ V̂
h
, where the multi-dimensional bilinear and linear forms of the global

problem are given by

ArûL(v̂,L) :=〈v̂,n ·L 2πr〉∂Ωe\(ΓD∪ΓS∪ΓA)

− 〈v̂,n ·LE 2πr〉∂Ωe∩ΓS

− 〈v̂,n ·LE〉∂Ωe∩ΓA

Arûu(v̂,u) :=〈v̂, τu 2πr〉∂Ωe\(ΓD∪ΓS∪ΓA)

− 〈v̂, (τu)·E 2πr〉∂Ωe∩ΓS

− 〈v̂, (τu)·E〉∂Ωe∩ΓA

Arûp(v̂, p) :=〈v̂, pn 2πr〉∂Ωe\(ΓD∪ΓS∪ΓA)

Arûû(v̂, û) :=− 〈v̂, τ û 2πr〉∂Ωe\(ΓD∪ΓS∪ΓA)

+ 〈v̂, (û·D + (τ û)·E) 2πr〉∂Ωe∩ΓS

+ 〈v̂, û·D + (τ û)·E〉∂Ωe∩ΓA

(2.45)

and
Lrû(v̂) :=−〈v̂, gN 2πr〉∂Ωe∩ΓN , (2.46)

respectively. It is worth noting that the only differences between forms of section 2.2.3
and those defined here are the scaling term 2π, following from the integration of θ-
dimension, the extra term r appearing in the differential after the Cartesian-cylindrical
change of coordinates, and the bi-dimensional integrations on ΓA appearing only in
global problem forms.

2.3.5 Axysimmetric formulation as extension of the bi-dimensional
formulation

Beside the new boundary, another difference between equations (2.39)-(2.40) and equa-
tions (2.8)-(2.9) hides in the nabla operator. When applied to vectors or tensors in
cylindrical coordinates, extra terms arise. Accordingly to the definition of the gra-
dient of a vector in cylindrical coordinates defined in (2.32), under axisymmetrical
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hypothesis component Lzθ of the mixed variable vanishes

L =


Lrr Lrθ Lrz

Lθr Lθθ Lθz

Lzr 0 Lzz

 , (2.47)

meanwhile the velocity vector remains u=(ur, uθ, uz)
T . Note that the assumption

of axisymmetric motion does not imply that circumferential velocities uθ are zero.
There are many examples of axisymmetric flows involving swirl or rotation such as a
rotating flow in a cylindrical cavity or the swirling flow in a gas. By the way, under the
additional hypothesis of non-rotative flow uθ is null. Consequentially, also components
Lrθ, Lθr,Lθz of L vanish and mixed variable tensor reads

L =

Lrr 0 Lrz

0 Lθθ 0

Lzr 0 Lzz

 . (2.48)

In agreement with the dimension of L, outward unit normal vector n is defined in
Rnsd with nsd=3. In particular given the axisymmetric nature of the problem follows
that n=(nr, 0, nz)

T as the outward normal is always orthogonal to the plane r-z.

That, with the simplification of u and L, allows seeing a three-dimensional non-
rotative axisymmetric problem as a two-dimensional problem defined in the generator
domain accounting of one extra variable. It is worth noting that the axisymmetric
mixed variable can be seen as the classic mixed variable associated to space (z, r) plus
an extra component due to the axisymmetric nature of the problem, Lθθ. For that
purpose, a new variable Λ is introduced representing this fifth component of L and
associated to a scalar test function λ representing the fifth component of W , namely
Wθθ. This implies

n =

(
nr

nz

)
, u =

(
ur

uz

)
, L =

(
Lrr Lrz

Lzr Lzz

)
. (2.49)

It is important to clarify the significance of Λ. As previously said it represents com-
ponent Lθθ of the three-dimensional mixed variable tensor. Its definition follows from
the attempt to preserve as much as possible the bi-dimensional structure of the 2D
formulation and seeing axial symmetry as a possible extension. Moreover, in this
fashion, it is also possible to consider shape functions living in functional space gen-
erated by nsd=2, instead of nsd=3 as from a theoretical point of view is needed. This
brings enormous advantages from an implementation perspective as it allows to re-use
entirely the 2D formulation. For that reason, here, Λ has not been included inside L,
while, in all respect, it is a part of it. By the way, out of this chapter, principally used
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to introduce axisymmetric HDG formulation, when one refers to L in the axisymmet-
ric case (e.g. error computation, rate of convergence), always refers to matrix (2.48),
thus accounting of term Lθθ, i.e. Λ. In other words, the axisymmetric mixed variable
L incorporates Λ, becoming LAxi=[L2D,Λ].

2.3.6 2D weak form of the local and global problems

Weak forms of local (2.41) and global problems (2.44) can thus be rewritten accounting
of previous considerations, thus using shape functions properly defined for a Cartesian
domain with nsd=2 where (z, r) ∈ Ω ⊂ R2.

The weak form of the local problems, for e=1, . . . , nel, reads: given uD on ΓD and
ûh on Γ ∪ ΓN ∪ ΓS ∪ ΓA, find (Lhe ,u

h
e , p

h
e ,Λ

h
e ) ∈Wh × Vh × Vh × Vh that satisfy

ArLL(W ,Lhe ) +AθLu(W ,uhe ) = LrL(W ) +ArLû(W , ûh),

AθΛΛ(λ,Λhe ) +AθΛu(λ,uhe ) = 0,

AθuL(v,Lhe ) +AθuΛ(v,Λhe ) +Aruu(v,uhe ) +Aθup(v, p
h
e )

= Lru(v) +Aruû(v, ûh),

Aθpu(v,uhe ) = Lrp(v) +Arpû(v, ûh),

Arρp(1, p
h
e ) = Arρρ(1, ρ

h
e ),

(2.50)

for all (W ,v, v, λ) ∈Wh×Vh×Vh×Vh, where forms equipped with the superindex
r are those defined in (2.42) neglecting θ dimension, while the ones equipped with the
superindex θ are defined in the following

AθLu(W ,u) :=
(
∇·W ,u 2πr

)
Ωe

+
(
er/r ·W ,u 2πr

)
Ωe
,

AθΛΛ(λ,Λ):=−
(
λ, ν−1Λ 2πr

)
Ωe
,

AθΛu(λ,u) :=−
(
λ, er/r · u 2πr

)
Ωe
,

AθuL(v,L) :=
(
v,∇·L 2πr

)
Ωe

+
(
v, er/r ·L 2πr

)
Ωe
,

AθuΛ(v,Λ):=−
(
v, er/rΛ 2πr

)
Ωe
,

Aθup(v, p) :=
(
v,∇p 2πr

)
Ωe
,

Aθpu(v,u) :=
(
∇v,u 2πr

)
Ωe

+
(
er/r p,u 2πr

)
Ωe
.

(2.51)

It is worth noting that nabla operator is now the operator associated to the bi-
dimensional Cartesian space (z, r), i.e. ∇= [∂/∂z, ∂/∂r]T .

Similarly, the weak form of the global problem is: find ûh ∈ V̂
h
and ρh ∈ Rnel that

satisfies

nel∑
e=1

{
ArûL(v̂,Lhe ) +Arûu(v̂,uhe ) +Arûp(v̂, p

h
e ) +Arûû(v̂, ûh)

}
=

nel∑
e=1

{Lrû(v̂)} ,

Arpû(1, ûh) = −Lrp(1),

(2.52)
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for all v̂ ∈ V̂
h
, where the multi-dimensional bilinear and linear forms of the global

problem are the same ones defined in (2.45).

Remark 2. As it is observable from previous definitions, axisymmetric extra con-
tributions just affect the volumetric terms of the l.h.s. of the equations, where nabla
operator is applied. In fact, it is easy to see, developing a 3D formulation in cylindri-
cal coordinates, that all boundary terms related to the θ-dimension vanish because of
axisymmetric and non rotative flow hypothesis (∂/∂θ=0, uθ=0, nθ=0).

2.3.7 Discretisation

Analogously to section 2.2.4, introducing an isoparametric formulation with equal
interpolation for all the local and global variables, the discretisation of the weak
form of the local and global problems given by (2.41) and (2.44), respectively, can
be obtained. Owning one extra unknown respect to (2.11), local problem, leads to a
system of equations similar to 2.17 but owning one extra rows and one extra column

ALL 0 ALu 0 0

0 AΛΛ AΛu 0 0

AuL AuΛ Auu Aup 0

0 0 Apu 0 aTρp

0 0 0 aρp 0


e



L

Λ

u

p

ζ


e

=



fL

0

fu

fp

0


e

+


ALû

0

Auû

Apû

0


e

û +



0

0

0

0

1


e

ρe, (2.53)

where L, Λ, u, p and û denote the nodal values of the unknown spatial functions L,
Λ, u, p and û respectively and the constraint on the mean value ρ of the pressure on
the element boundaries is enforced using the Lagrange multiplier ζ.

Analogously, the discretisation of the global problem of the spatial iteration leads to
a system of equations identical to the one defined in (2.54), namely

nel∑
e=1

{[
AûL Aûu Aûp

]
e


L

u

p


e

+ [Aûû]e û
}

=

nel∑
e=1

[fû]e,

1T [Apû]eû = −1T [fp]e.

(2.54)

since Λ does not appear in the global problem.

Finally, exploiting the same strategy of section 2.2.4, i.e. expressing local variables in
terms of the global ones, the final global system is obtained[

K̂ G

GT 0

]{
û

ρ

}
=

{
f̂û

f̂ρ

}
, (2.55)

which once solved, returns the value of the global variables required to obtained the
elemental value of all local variables, L, u, p and Λ.



2.3. HDG formulation in axisymmetric problems 39

2.3.8 Numerical validation

To validate the HDG axisymmetric formulation developed in the previous sections,
two academic examples with a known analytical solution are proposed. The first one
consists of the Poiseuille flow insides a channel solved for both bi-dimensional and
axisymmetric cases while the second consists in the axisymmetric flow past a sphere.

Plane Poiseuille flow

In the first example considered, the fully developed plane Poiseuille flow, the domain
of interest is the rectangle Ω=[0, L]× [−R,R] ∈ R2, with L=3 and R=1, and the ana-
lytical solution in Cartesian coordinates, shown in figure 2.3 is given by the following
velocity and pressure fields where V is the maximum value of the velocity magnitude

ux = V
(

1− y2

R2

)
uy = 0

p = −2V
R2

z + const

(2.56)

Numerical experiments are performed on a sequence of structured triangular meshes,

(a) u (b) p

Figure 2.3: Plane Poiseuille flow: analytical solution of velocity mag-
nitude and pressure for the plane Poiseuille flow.

where the coarsest is formed of 32 elements. Dirichlet boundary conditions are im-
posed on all the boundaries of the domain. In figure 2.4, optimal rates of convergence
are shown for variables L, u, p, û and u∗ only for degree k=1.

Being the analytical solution a quadratic polynomial, interpolation functions of degree
k=2 solve the problem exactly. Optimal rates of convergence are obtained for all
variables.
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Figure 2.4: Plane Poiseuille flow: mesh convergence of the L2 norm
of the error for L, u, p, û and u∗.

Axysimmetric Poiseuille flow

In the axysimmetric version of the Poiseuille flow, the considered domain is a full
rotation of the plane case half-domain Ω=[0, L] × [0, R] ∈ R2, with L=3 and R=1,
around the z -axis, such that Ω0=Ω× [−π, π] and the analytical solution in cylindrical
coordinates, shown in figure 2.5, is given by the following velocity and pressure fields
where again V is the maximum value of the velocity magnitude

ur = 0,

uθ = 0,

uz = V
(

1− r2

R2

)
p = −4V

R2
z + const

(2.57)

Note that the only change between the two analytical solutions of equations (2.56)

(a) u (b) p

Figure 2.5: Axysimmetric Poiseuille flow: analytical solution of ve-
locity magnitude and pressure for the axysimmetric Poiseuille flow.

and (2.57) is in the definition of the pressure, while the velocity in the flow direction
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(x and z, respectively) is equal, as it is the velocity in other directions, i.e. null.

Numerical experiments are performed on the same set of meshes used for the previous
example. In figure 2.6, optimal rates of convergence are shown only for degree k=1,

Figure 2.6: Axysimmetric Poiseuille flow: mesh convergence of the
L2 norm of the error for L, u, p, û, Λ and u∗.

owing to the same reasons for the plane case.

Axisymmetric Stokes flow past a sphere

The second validation example, as anticipated, considers the Stokes flow past a sphere.
The domain of interest is selected as the region confined by two concentric spheres
with radius Rin and Rout respectively, with Rin<Rout. The domain considered the
axial symmetry of the problem is defined as Ω={r ∈ R2 | r ≥ 0 and Rin ≤ ρ ≤ Rout},
with ρ=

√
r2 + z2, Rin=1 and Rout=5. The analytical solution, shown in figure 2.7, is

given by the following velocity and pressure fields in polar coordinates

uρ =
v∞
2ρ3

(
2ρ3 − 3Rinρ

2 +R3
in
)

cosφ,

uθ = 0,

uφ = − v∞
4ρ3

(
4ρ3 − 3Rinρ

2 +R3
in
)

sinφ,

p = p∞ −
3

2ρ2
νv∞Rin cosφ,

(2.58)

where v∞ and p∞ are the magnitude of the velocity and the pressure of the undis-
turbed flow, far away from the obstacle. It is worth noting that in other to avoid
misunderstandings, being variable r the distance from the z-axis in cylindrical coordi-
nates, variable ρ has been introduced to describe the Cartesian radius in polar coor-
dinates, which is consistently defined as ρ=

√
x2 + y2 + z2=

√
r2 + z2. The analogous
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equations in cylindrical coordinates are easily obtainable with few extra computations

ur = uρ cosφ− uφ sinφ,

uθ = uθ,

uz = uρ sinφ+ uφ cosφ,

p = p∞ −
3

2r3
νv∞Rinz,

(2.59)

where z=ρ cosφ and r=ρ sinφ following from the mapping between polar and cylin-
drical coordinates. Note that in literature (Childs, 2010; White et al., 2006), in the
majority of the cases, equation (2.58) is presented with the two angles θ and φ inverted.
The choice here has been made in agreement with the definition of axisymmetry made
in this work (∂/∂θ=0).

(a) u (b) p

Figure 2.7: Axisymmetric flow past a sphere: analytical solution of
velocity magnitude and pressure for a sphere of unitary radius.

To qualitatively compare the 2D axisymmetric formulation with the corresponding
3D, figure 2.8 shows the 3D reconstruction of the axisymmetric flow past a sphere
computed on a triangular mesh of 1024 elements and using degree k = 4 while 2.9
shows the HDG solution obtained solving the three-dimensional problem in Cartesian

(a) u (b) p

Figure 2.8: Axisymmetric flow past a sphere: 3D reconstruction of
the HDG solution of velocity magnitude and pressure for a sphere of

unitary radius.
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coordinates on a tetrahedral mesh of 747 elements using degree k = 4. The size of the
HDG global problems associated with both cases are 15680 and 71190, respectively.

(a) u (b) p

Figure 2.9: Flow past a sphere: HDG solution of velocity magnitude
and pressure for a sphere of unitary radius.

To prove the advantages of the axisymmetric formulation, a study on a physical quan-
tity of interest is performed. A typical quantity of interest in this problem is the drag
force, whose exact value is given by FD=6πνv∞Rin.

The computation was performed using four triangular meshes where the coarsest
counts of 64 elements end others are obtained by a sequential refinement. Analo-
gous refinement is also considered for the tetrahedral mesh, where computations are
bounded by memory limits. Figure 2.10 shows the numerical error of the drag force as
a function of the degrees of freedom of the global problem. In all cases, convergence

Figure 2.10: Axisymmetric and 3D flow past a sphere: evolution of
the error in the drag of a sphere of unitary radius for different degrees

of approximations.

to exact value is observed, and the superiority of using high-order approximations is
appreciated. Moreover, it is visible the enormous saving in terms of degrees of freedom
that an axisymmetric strategy provides.
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To further validate the methodology figure 2.11 shows rates of convergence of the local
variables, the trace of the velocity and the postprocessed velocity for the axisymmetric
problem.

(a) L (b) u

(c) p (d) û

(e) u∗ (f) Λ

Figure 2.11: Axisymmetric flow past a sphere: mesh convergence
of the L2 norm of the error for L, u, p, û, u∗ and Λ for a sphere of

unitary radius.

It is worth noting that optimal rates are obtained for all the numerical variables except
u∗ where a sub-optimal rate of convergence is observed for degree k=1. As explained
in Sevilla et al., (2018b), the sub-optimal rate of convergence is due to the polygonal
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approximation of the boundary, which in this case is done using an isoparametric
approach, i.e. using k=1 a linear approximation is performed. As the geometric error
converges with order k=2, it prevents the error of the numerical solution to converge
faster. A possible way to circumvent this issue is proposed in Sevilla et al., (2018b)
by mean of NEFEM elements where an exact description of the geometry boundary
is used.
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Chapter 3

HDG-PGD solution of
geometrically parametrised Stokes
flows

In this chapter1, HDG formulation for the Stokes equations derived in chapter 2 is
extended to parametrized problem, in particular to those defined on a parametrised
domain. The full-order resolution of these multi-dimensional parametric problems
is quickly tied by the so-called curse of dimensionality, thus a proper generalised
decomposition framework is introduced.

3.1 Problem statement

3.1.1 The Stokes problem on a parametrised domain

Let us consider a parametrised domain Ωµ ⊂ Rnsd , where nsd is the number of spa-
tial dimensions and µ ∈ I ⊂ Rnpa is a set of geometric parameters that controls the
boundary representation of the domain, with npa being the number of geometric pa-
rameters. It is worth noting that the set of geometric parameters can be written as
I := I1 × I2 × · · · × Inpa with µj ∈ Ij for j=1, . . . , npa.

For any set of parameters µ, the goal is to find the parametric velocity, u(xµ), and
pressure, p(xµ), fields that satisfy the Stokes problem given by

−∇· (ν∇u− pInsd) = s in Ωµ,

∇·u = 0 in Ωµ,

u = uD on ΓµD,

nµ ·
(
ν∇u− pInsd

)
= gN on ΓµN ,

u ·Dµ + nµ ·
(
ν∇u− pInsd

)
Eµ = 0 on ΓµS ,

(3.1)

1This chapter is a modified version of the published article “Hybridisable discontinuous Galerkin
solution of geometrically parametrised Stokes flows” (Sevilla, Borchini, Giacomini, and Huerta,
2020a).
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where ν>0 is the kinematic viscosity, s is the volumetric source and nµ is the out-
ward unit normal vector to ∂Ωµ. The boundary of the domain, ∂Ωµ, is partitioned
into the non-overlapping Dirichlet, ΓµD, Neumann, ΓµN , and slip, ΓµS , boundaries such
that ∂Ω

µ
= Γ

µ
D ∪ Γ

µ
N ∪ Γ

µ
S . On the Dirichlet boundary the velocity is given by

uD. On the Neumann boundary the pseudo-traction is given by gN . Finally, on
the slip boundary, the matrices Dµ and Eµ are given by Dµ=[nµ,0nsd×(nsd−1)] and
Eµ=[0, tµ1 , ..., t

µ
nsd−1], as detailed in Giacomini et al., (2020c). The tangential vectors

tµk , for k=1, . . . nsd − 1 are such that {nµ, tµ1 , ..., t
µ
nsd−1} form an orthonormal system

of vectors.

The free divergence condition in equation (3.1) induces the compatibility condition

〈1,uD · nµ〉Γµ
D

+ 〈1,u · nµ〉∂Ωµ\Γµ
D

= 0, (3.2)

where 〈·, ·〉S denotes the standard L2 scalar product in any domain S ⊂ ∂Ωµ.

In addition, it is worth noting that, if ΓµN=∅, an additional constraint to avoid the
indeterminacy of the pressure is required. One common option (Cockburn et al.,
2009b, 2014; Giacomini et al., 2018; Nguyen et al., 2010b) that is considered here,
consists of imposing the mean pressure on the boundary of the domain, namely〈 1

|∂Ωµ|
p, 1
〉
∂Ωµ

= 0. (3.3)

3.1.2 The multi-dimensional parametric Stokes problem

The classical strategy to solve the parametric Stokes problem is to solve equation (3.1)
for every set of parameters µ∈I. However, this strategy is not well suited when fast
queries are required.

Reduced order models have demonstrated to be a viable alternative to compute multi-
dimensional parametric solutions in an offline phase. Once the offline solution is
available, the computation of the solution for a given set of parameters has a very
small computational cost, being very well suited for applications where fast queries
are required.

The multi-dimensional parametric problem arises from interpreting µ as additional
parametric coordinates, rather than parameters of the problem. In the context of the
Stokes problem considered here, the strategy is to consider the velocity and pressure
fields as functions in a multidimensional space, namely u(xµ,µ) and p(xµ,µ). The
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multi-dimensional parametric Stokes problem can be written as

−∇µ· (ν∇µu− pInsd) = s in Ωµ × I,

∇µ·u = 0 in Ωµ × I,

u = uD on ΓµD × I,

nµ ·
(
ν∇µu− pInsd

)
= gN on ΓµN × I,

u ·Dµ + nµ ·
(
ν∇µu− pInsd

)
Eµ = 0 on ΓµS × I.

(3.4)

For the multi-dimensional problem, the compatibility condition induced by the free
divergence condition can be written as

〈1,uD · nµ〉Γµ
D×I

+ 〈1,u · nµ〉(∂Ωµ\Γµ
D)×I = 0 (3.5)

and the additional constraint to avoid the indeterminacy of the pressure, required
when ΓµN=∅, becomes 〈 1

|∂Ωµ|
p, 1
〉
∂Ωµ×I

= 0. (3.6)

3.2 Hybridisable discontinuous Galerkin formulation

Let us consider a subdivision of the domain Ωµ in nel disjoint subdomains Ωµe such
that

Ω
µ

=

nel⋃
e=1

Ω
µ
e . (3.7)

The interior boundaries of the subdomains define the so-called mesh skeleton or in-
ternal interface Γµ as

Γµ :=

[
nel⋃
e=1

∂Ωµe

]
\ ∂Ωµ. (3.8)

A partition of the parametric domains Ij , for j = 1, . . . , npa, in njel disjoint subdomains
Ije such that

Ij =

njel⋃
e=1

Ije, (3.9)

is also considered to use a Galerkin approach for the parametric problems. This is in
contrast with other approaches that use collocation for the parametric problems.

3.2.1 Mixed formulation

Introducing the so-called mixed variable L= − ν∇µu, the Stokes problem can be
written as a first-order system of equations in the broken computational domain,
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namely

Le + ν∇µue = 0 in Ωµe × I, and for e = 1, . . . , nel,

∇µ·
(
Le + peInsd

)
= s in Ωµe × I, and for e = 1, . . . , nel,

∇µ·ue = 0 in Ωµe × I, and for e = 1, . . . , nel,

ue = uD on
(
∂Ωµe ∩ ΓµD

)
× I,

nµ ·
(
Le + peInsd

)
= −gN on

(
∂Ωµe ∩ ΓµN

)
× I,

ue ·Dµ − nµ ·
(
Le + peInsd

)
Eµ = 0 on

(
∂Ωµe ∩ ΓµS

)
× I,

Ju⊗ nµK = 0 on Γµ × I,

Jnµ ·
(
L+ pInsd

)
K = 0 on Γµ × I,

(3.10)
where the last two equations, known as transmission conditions, impose the continuity
of the velocity and the normal flux on the mesh skeleton. Following Montlaur et al.,
(2008), the jump operator J·K is defined as the sum from the left, Ωl, and right, Ωr,
elements of a given portion of the interface Γµ × I, that is

J�K = �l +�r. (3.11)

3.2.2 Strong form of the local and global problems

The HDG method solves the mixed problem of equation (3.10) in two steps. First,
the so-called local problems are considered

Le + ν∇µue = 0 in Ωµe × I, and for e = 1, . . . , nel,

∇µ·
(
Le + peInsd

)
= s in Ωµe × I, and for e = 1, . . . , nel,

∇µ·ue = 0 in Ωµe × I, and for e = 1, . . . , nel,

ue = uD on
(
∂Ωµe ∩ ΓµD

)
× I,

ue = û on
(
∂Ωµe \ ΓµD

)
× I,〈 1

|∂Ωµe |
pe, 1

〉
∂Ωµ

e ×I
= ρe, for e = 1, . . . , nel,

(3.12)

where û is the so-called hybrid variable, which is an independent variable representing
the trace of the solution on the element faces, and ρe is the mean value of the pressure
on the boundary ∂Ωe. It is worth noting that the local problem is a pure Dirichlet
problem and therefore, the last condition in equation (3.12) is introduced to ensure
the uniqueness of the pressure. The local problems can be solved independently,
element by element, to write Le, ue and pe in terms of û and ρe along the interface
Γµ∪ΓµN∪ΓµS .
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Second, the so-called global problem is defined to impose the continuity of the normal
flux on the inter-element faces and the Neumann and slip boundary conditions, namely

Jnµ ·
(
L+ pInsd

)
K = 0 on Γµ × I,

nµ · (Le + peInsd) = −gN on
(
∂Ωµe ∩ ΓµN

)
× I,

ue ·Dµ − nµ · (Le + peInsd)E
µ = 0 on

(
∂Ωµe ∩ ΓµS

)
× I.

(3.13)

It is worth noting that, due to the unique definition of the hybrid variable on each
face and the Dirichlet boundary condition in the local problems, there is no need to
enforce the continuity of the solution in the global problem.

The constraint of equation (3.5), induced by the incompressibility condition, is also
considered in the global problem and written in terms of the hybrid variable as

〈1,uD · nµ〉Γµ
D×I

+ 〈1, û · nµ〉(∂Ωµ\Γµ
D)×I = 0. (3.14)

3.2.3 Weak form of the local and global problems

The following discrete functional spaces are introduced:

Vh(Ωµ) := {v ∈ L2(Ωµ) : v|Ωµ
e
∈ Pk(Ωµe ) ∀Ωµe , e = 1, . . . , nel},

V̂h(S) := {v̂ ∈ L2(S) : v̂|Γµ
i
∈ Pk(Γµi ) ∀Γµi ⊂ S ⊆ Γµ ∪ ∂Ωµ},

Lh(Ij) := {v ∈ L2(Ij) : v|Ije ∈ P
k(Ije) ∀Ije , e = 1, . . . , njel},

Lh(I) := Lh(I1)⊗ · · · ⊗ Lh(Inpa),

Vhµ := Vh(Ωµ)⊗Lh(I),

V̂
h

µ :=
[
V̂h(Γµ ∪ ΓµN ∪ ΓµS )⊗Lh(I)

]nsd
,

Vh
µ :=

[
Vh(Ωµ)⊗Lh(I)

]nsd
,

Wh
µ :=

[
Vh(Ωµ)⊗Lh(I)

]nsd×nsd
,

where Pk(Ωµe ), Pk(Γµi ) and Pk(Ije) stand for the spaces of polynomial functions of
complete degree at most k in Ωµe , on Γµi and in Ije respectively.

The weak form of the local problems, for e=1, . . . , nel, reads: given uD on ΓµD and
ûh on Γµ ∪ ΓµN ∪ ΓµS , find (Lhe ,u

h
e , p

h
e ) ∈Wh

µ × Vh
µ × Vhµ that satisfy

ALL(W ,Lhe ) +ALu(W ,uhe ) = LL(W ) +ALû(W , ûh),

AuL(v,Lhe ) +Auu(v,uhe ) +Aup(v, p
h
e ) = Lu(v) +Auû(v, ûh),

Apu(v,uhe ) = Lp(v) +Apû(v, ûh),

Aρp(1, p
h
e ) = Aρρ(1, ρ

h
e ),

(3.15)
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for all (W ,v, v) ∈ Wh
µ × Vh

µ × Vhµ , where the multi-dimensional bilinear and linear
forms of the local problem are given by

ALL(W ,L) :=−
(
W , ν−1L

)
Ωµ
e ×I

, ALu(W ,u) :=
(
∇µ·W ,u

)
Ωµ
e ×I

,

ALû(W , û) :=〈nµ ·W , û〉(∂Ωµ
e \Γµ

D)×I , AuL(v,L) :=
(
v,∇µ·L

)
Ωµ
e ×I

,

Auu(v,u) :=〈v, τµu〉∂Ωµ
e ×I , Aup(v, p) :=

(
v,∇µp

)
Ωµ
e ×I

,

Auû(v, û) :=〈v, τµû〉(∂Ωµ
e \Γµ

D)×I , Apu(v,u) :=
(
∇µv,u

)
Ωµ
e ×I

,

Apû(v, û) :=〈v, û · nµ〉(∂Ωµ
e \Γµ

D)×I , Aρp(w, p) :=〈w, |∂Ωµe |−1p〉∂Ωµ
e ×I ,

Aρρ(w, ρ) :=
(
w, ρ

)
I ,

(3.16)

and
LL(W ) :=〈nµ ·W ,uD〉(∂Ωµ

e ∩Γµ
D)×I ,

Lu(v) :=
(
v, s
)

Ωµ
e ×I

+ 〈v, τµuD〉(∂Ωµ
e ∩Γµ

D)×I ,

Lp(v) :=〈v,uD · nµ〉(∂Ωµ
e ∩Γµ

D)×I ,

(3.17)

respectively, where (·, ·)D denotes the standard L2 scalar product in a generic sub-
domain D and τµ is the stabilisation tensor, whose selection has an important in-
fluence on the accuracy, stability and convergence properties of the resulting HDG
method (Cockburn et al., 2009c; Nguyen et al., 2009c,d, 2010b). The choice of the
stabilisation tensor for geometrically parametrised problems will be discussed in the
next section.

Similarly, the weak form of the global problem is: find ûh ∈ V̂
h

µ and ρh ∈ Rnel⊗Lh(I)

that satisfies

nel∑
e=1

{
AûL(v̂,Lhe ) +Aûu(v̂,uhe ) +Aûp(v̂, p

h
e ) +Aûû(v̂, ûh)

}
=

nel∑
e=1

{Lû(v̂)} ,

Apû(1, ûh) = −Lp(1),

(3.18)

for all v̂ ∈ V̂
h

µ , where the multi-dimensional bilinear and linear forms of the global
problem are given by

AûL(v̂,L) :=〈v̂,nµ ·L〉(∂Ωµ
e \(Γµ

D∪Γµ
S ))×I − 〈v̂,nµ ·LEµ〉(∂Ωµ

e ∩Γµ
S )×I

Aûu(v̂,u) :=〈v̂, τµu〉(∂Ωµ
e \(Γµ

D∪Γµ
S ))×I − 〈v̂, (τµu)·Eµ〉(∂Ωµ

e ∩Γµ
S )×I

Aûp(v̂, p) :=〈v̂, pnµ〉(∂Ωµ
e \(Γµ

D∪Γµ
S ))×I

Aûû(v̂, û) :=− 〈v̂, τµû〉(∂Ωµ
e \(Γµ

D∪Γµ
S ))×I

+ 〈v̂, û·Dµ + (τµû)·Eµ〉(∂Ωµ
e ∩Γµ

S )×I

(3.19)

and
Lû(v̂) :=−〈v̂, gN 〉(∂Ωµ

e ∩Γµ
N )×I , (3.20)

respectively.
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The local problem of equation (3.15) is used to write the velocity, ue, pressure, pe,
and gradient of the velocity Le, as a function of the hybrid variable, û, and the
mean value of the pressure in each element, ρe. Inserting these expressions in the
global problem of equation (3.18) leads to a global problem with û, and ρ being the
only unknowns. Once the global problem is solved, the local problem can be solved,
element-by-element, to retrieve the velocity, pressure and the gradient of the velocity
in each element.

3.3 The proper generalised decomposition strategy

The solution of the parametric problem of dimension nsd+npa, presented in the pre-
vious section, with the standard HDG approach is usually not affordable, even for a
relatively small number of parameters. To circumvent the curse of dimensionality,
this section proposes the use of the PGD framework. As it will be shown in this
section, the use of an HDG formulation has important advantages compared to other
formulations such as standard finite elements (Sevilla et al., 2020b).

To simplify the presentation, the subindex e and the superindex h used in the previous
section to specify the element and the discrete approximations will be omitted here,
unless they are needed to follow the development.

3.3.1 Separated spatial mapping to obtain generalised solutions

As discussed in detail in Patera et al., (2007), Rozza, (2014), and Sevilla et al.,
(2020b), the solution of the parametric problem described in section 3.2 requires that
the bilinear and linear forms in the weak form can be expressed, or well approximated,
by a sum of products of parametric functions and operators that are parameter-
independent. To enforce the affine parameter dependence, the integrals appearing
in the weak form must involve domains that are not dependent upon the parameters.
Following the work of Ammar et al., (2014), Sevilla et al., (2020b), and Zlotnik et al.,
(2015), a mapping between a parameter-independent reference domain, Ω, and the
geometrically parametrised domain is considered, namely

Mµ : Ω× I −→ Ωµ

(x,µ) 7−→ xµ = Mµ(x,µ).
(3.21)

The coordinates of the reference, or undeformed, domain are denoted by x whereas
the coordinates of the parametric, or deformed, domain are denoted by xµ. To ensure
the affine parameter dependence, the mapping is assumed to be given in separated
form as

Mµ(x,µ) =

nM∑
k=1

Mk(x)φk(µ), (3.22)
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where nM is the number of terms required to express the mapping in a separable form.

Remark 3. To simplify the presentation here, it is assumed that the separated repre-
sentation of the mapping is given analytically. As mentioned earlier, a general strategy
to construct a separable mapping was described in Sevilla et al., (2020b) using an exact
boundary description of the computational domain by means of NURBS.

The separated representation of the mapping leads to the following separated repre-
sentation of its Jacobian

Jµ(x,µ) =
∂xµ

∂x
(x,µ) =

nM∑
k=1

Jk(x)φk(µ). (3.23)

The separated description of the mapping is used to obtain a separated expression of
the determinant and the adjoint of the Jacobian.

Using the Leibniz formula, a separated representation of the determinant is obtained,
namely

det(Jµ) =
( nM∑
k=1

φkJk11

)( nM∑
k=1

φkJk22

)
−
( nM∑
k=1

φkJk12

)( nM∑
k=1

φkJk21

)
in two dimensions and

det(Jµ) =
∑
σ∈S3

sgn(σ)
3∏
l=1

( nM∑
k=1

φkJklσ(l)

)
,

in three dimensions, where S3 denotes the set of permutations of the integers {1, 2, 3},
with σ(l) being the element in position l after the reordering, sgn(σ) is the signature
of σ (i.e. +1 for even σ and −1 for odd σ) and δiσ(i) is the classical Kronecker delta.

Similarly, using the Leverrier’s algorithm, a separated representation of the adjoint is
obtained, namely

adj(Jµ) =

nM∑
k=1

φk
(

tr(Jk)I2 − Jk
)

and

adj(Jµ) =

nM∑
k=1

φk
(

tr(Jk)I3 − Jk
)

+

nM∑
k=1

nM∑
l=1

φkφl

(1

2

(
tr(Jk) tr(Jl)− tr(JkJl)

)
I3 − tr(Jk) Jl + JkJl

)
in three dimensions.
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The separated expression of the determinant of the Jacobian and its adjoint are written
in compact form as

det(Jµ)(x,µ) =

nd∑
k=1

Dk(x)θk(µ) (3.24)

and

adj(Jµ)(x,µ) =

na∑
k=1

Ak(x)ϑk(µ), (3.25)

respectively.

It is worth noting that the number of terms required to write the determinant and
the adjoint in a separated form, nd and na respectively, is higher than the number of
terms required to describe the mapping in a separated form nM.

3.3.2 Affine parameter dependence of the HDG bilinear and linear
forms

Introducing the mapping Mµ of equation (3.21) into the weak form of the local and
global problems, it is possible to write the integrals over the reference domain, Ω, and
its boundary, ∂Ω, not dependent on the parameters µ. The bilinear and linear forms
for the local problems can be written as

ALL(W ,L) = −
(
W , ν−1 det (Jµ)L

)
Ωe×I ,

ALu(W ,u) =
(

adj (Jµ)∇·W ,u
)

Ωe×I ,

ALû(W , û) = 〈adj (Jµ)n ·W , û〉(∂Ωe\ΓD)×I ,

AuL(v,L) =
(
v, adj (Jµ)∇·L

)
Ωe×I ,

Auu(v,u) = 〈v, τu〉∂Ωe×I ,

Aup(v, p) =
(
v, adj (Jµ)∇p

)
Ωe×I ,

Auû(v, û) = 〈v, τ û〉(∂Ωe\ΓD)×I ,

Apu(v,u) =
(

adj (Jµ)∇v,u
)

Ωe×I ,

Apû(v, û) = 〈v, û · adj (Jµ)n〉(∂Ωe\ΓD)×I ,

Aρp(w, p) = 〈w, |∂Ωe|−1p〉∂Ωe×I ,

Aρρ(w, ρ) =
(
w, ρ

)
I ,

(3.26)

and
LL(W ) = 〈adj (Jµ)n ·W ,uD〉(∂Ωe∩ΓD)×I ,

Lu(v) =
(
v,det (Jµ)s

)
Ωe×I + 〈v, τuD〉(∂Ωe∩ΓD)×I ,

Lp(v) = 〈v,uD · adj (Jµ)n〉(∂Ωe∩ΓD)×I ,

(3.27)
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respectively, where the adjoint operator is defined as adj(A)= det(A)A−1 and the
stabilisation parameter in the deformed domain is chosen as

τµ :=
1

‖ adj(Jµ)n‖
τ . (3.28)

The scaling factor ‖adj(Jµ)n‖ in equation (3.28) accounts for the increased or de-
creased area of the deformed face, ∂Ωµe , with respect to the reference one, ∂Ωe. This
definition, inspired by the expression of the penalty coefficient in classical interior
penalty DG methods (Arnold, 1982), ensures that the larger the deformation of the
face, the smaller the value of τµ is. This ensures that a weaker continuity is imposed
for large deformations and it is justified by the expected loss of accuracy in the hybrid
variable when the mapping introduces a large deformation.

Following previous work on HDG methods for Stokes problems (Giacomini et al.,
2018), the stabilisation parameter in the reference domain is selected as τ=(τν/`)Insd ,
where τ is a numerical parameter, selected as τ=10 in this work, and ` is a charac-
teristic length of the domain.

Remark 4. As mentioned above, it holds that ‖ adj(Jµ)n‖ = |∂Ωµe |/|∂Ωe|. Hence, no
parametric dependence appears in the arguments of the bilinear form Aρp.

Analogously, the bilinear and linear forms for the global problem can be written as

AûL(v̂,L) =〈v̂, adj (Jµ)n ·L〉(∂Ωe\(ΓD∪ΓS))×I

− 〈v̂, adj (Jµ)n ·LE〉(∂Ωe∩ΓS)×I

Aûu(v̂,u) =〈v̂, τu〉(∂Ωe\(ΓD∪ΓS))×I − 〈v̂, (τu)·E〉(∂Ωe∩ΓS)×I

Aûp(v̂, p) =〈v̂, p adj (Jµ)n〉(∂Ωe\(ΓD∪ΓS))×I

Aûû(v̂, û) =− 〈v̂, τ û〉(∂Ωe\(ΓD∪ΓS))×I

+ 〈v̂, û·adj (Jµ)D + (τ û)·E〉(∂Ωe∩ΓS)×I

(3.29)

and
Lû(v̂) = −〈v̂, gN 〉(∂Ωe∩ΓN )×I , (3.30)

respectively.

Remark 5. The derivation of the terms on the slip boundary in (3.29) follows from
the relationship 〈v̂,nµ ·H〉(∂Ωµ

e ∩Γµ
S )×I = 〈v̂, adj (Jµ)n ·H〉(∂Ωe∩ΓS)×I and the defini-

tion (3.28). The slip boundary condition is used here to enforce a symmetry condition
and therefore, it is assumed that the orientation of the vectors {nµ, tµ1 , ..., t

µ
nsd−1}

is preserved by the mapping Mµ. It is worth noting that this does not imply that
ΓµS = ΓS as it will be shown with numerical examples.

Remark 6. As is typical in the context of shape optimisation (Allaire et al., 2007),
in (3.30) it is assumed that Neumann boundaries, where a traction (or pseudo-traction)
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is imposed, are fixed, that is, ΓµN=ΓN . On the contrary, deformable Neumann bound-
aries, also known as free boundaries, are traction-free, whence gN is null.

3.3.3 Separated representation of the data

As usual in a PGD context, the data is assumed to be given in separated form. For
the Stokes problem under consideration, this means that the Dirichlet and Neumann
data and the source term can be written as

uD=

nD∑
l=1

glD(x)λlD(µ),

gN =

nN∑
l=1

glN (x)λlN (µ),

s=

nS∑
l=1

glS(x)λlS(µ).

(3.31)

Even if the data is not directly given in this form, it is possible to obtain a good
approximation in a separated form, see Chinesta et al., (2013b).

3.3.4 Separated representation of the primal, mixed and hybrid vari-
ables

The standard PGD approach consists of assuming a separated representation of all the
variables. For instance, for the velocity field, it is assumed that its PGD approximation
can be written as

um
PGD

(x,µ) =
m∑
k=1

f̃u
k
(x) ψ̃k(µ),

where f̃u
k
and ψ̃k are the k-th spatial and parametric modes respectively and the total

number of modes is a priori unknown and automatically determined by the algorithm
based on a user-defined tolerance, as described in the next section.

In practice, it is advantageous (Sevilla et al., 2020b) to write the separated approxi-
mation as

um
PGD

(x,µ) = σmu f
m
u (x)ψm(µ) + um−1

PGD
(x,µ),

where fmu and ψm are the normalised m-th spatial and parametric modes, respec-
tively, and σmu is the amplitude of the m-th mode, namely fmu := f̃u

m
/‖f̃u

m‖, ψm :=

ψ̃m/‖ψ̃m‖ and σmu := ‖f̃u
m‖‖ψ̃m‖.

This alternative expression enables to directly use the amplitude of the modes, σmu , to
determine when it is feasible to stop adding new modes. In addition, as explained in
detail in the next section, the expression of equation (3.3.4) suggests that the modes
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are computed sequentially. So, assuming that the first m−1 modes are known, the
next section will focus on detailing how the new mode m is computed.

In this work, the implementation follows the predictor-corrector PGD rationale, which
has been shown (Tsiolakis et al., 2020a) to improve the original algorithm, because
it applies the alternating direction method to the Jacobian of the high-dimensional
nonlinear problem. This improves the convergence for each mode because it is easier
to select the initial prediction and provides a faster convergence.

Each variable of the HDG formulation, presented in section 3.2, is written as a rank-m
separable approximation, that is

Lm
PGD

(x,µ) = σmL [Fm
L (x)ψm(µ) +∆Lm

PGD
(x,µ)] +Lm−1

PGD
(x,µ),

um
PGD

(x,µ) = σmu [fmu (x)ψm(µ) +∆um
PGD

(x,µ)] + um−1
PGD

(x,µ),

pm
PGD

(x,µ) = σmp [fmp (x)ψm(µ) +∆pm
PGD

(x,µ)] + pm−1
PGD

(x,µ),

ûm
PGD

(x,µ) = σmû [fmû (x)ψm(µ) +∆ûm
PGD

(x,µ)] + ûm−1
PGD

(x,µ),

ρm
PGD

(x,µ) = σmρ [fmρ (x)ψm(µ) +∆ρm
PGD

(x,µ)] + ρm−1
PGD

(x,µ),

(3.32)

where σmL F
m
L ψm, σmu f

m
u ψm, σmp fmp ψm, σmû f

m
û ψm and σmρ fmρ ψm are the predictors of

them-th mode in the PGD expansion, whereas σmL ∆L
m
PGD
, σmu ∆umPGD , σ

m
p ∆p

m
PGD
, σmû ∆û

m
PGD

and σmρ ∆ρmPGD are the corresponding correction terms. Introducing the variation ∆, the
correctors are defined as

∆Lm
PGD

(x,µ) := ∆FL(x)ψm(µ) + Fm
L (x)∆ψ(µ) +∆FL(x)∆ψ(µ),

∆um
PGD

(x,µ) := ∆fu(x)ψm(µ) + fmu (x)∆ψ(µ) +∆fu(x)∆ψ(µ),

∆pm
PGD

(x,µ) := ∆fp(x)ψm(µ) + fmp (x)∆ψ(µ) +∆fp(x)∆ψ(µ),

∆ûm
PGD

(x,µ) := ∆f̂u(x)ψm(µ) + fmû (x)∆ψ(µ) +∆f̂u(x)∆ψ(µ),

∆ρm
PGD

(x,µ) := ∆fρ(x)ψm(µ) + fmρ (x)∆ψ(µ) +∆fρ(x)∆ψ(µ),

(3.33)

where the last term denotes a high-order variation and it is henceforth neglected.

Each term, or mode, of the PGD approximation is the product of a function that de-
pends upon the spatial coordinates and a function that depends upon the parameters.
In addition, the parametric functions are assumed to be the product of functions that
depend upon a single parameter, namely

ψm(µ) =

npa∏
j=1

ψmj (µj). (3.34)

Remark 7. This work considers the so-called single-parameter approach, where the
parametric function of the m-th mode, ψm, is the same for all the variables. Other
approaches, including a different parametric function for each variable or even the
use of vector-valued parametric functions in the approximation of vector fields are
discussed in Díez et al., (2017). It is worth noting that using the same parametric
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function for all the variables is particularly beneficial in the context of HDG due to
the large number of functions involved, not only velocity and pressure but also the trace
of the velocity, the velocity gradient and the mean value of the pressure.

The tangent manifold for L is characterised by choosingW as variations of FLψ, that
is

W = δFLψ
m + σmL F

m
L δψ, (3.35)

for δFL ∈Wh and δψ ∈ Lh(I). Similarly, the tangent manifolds for u, p, û and ρ are
characterised by choosing

v = δfuψ
m + σmu f

m
u δψ, v = δfpψ

m + σmp f
m
p δψ,

v̂ = δf̂uψ
m + σmû f

m
û δψ, w = δfρψ

m + σmρ f
m
ρ δψ,

(3.36)

for δfu ∈ Vh, δfp ∈ Vh, δf̂u ∈ V̂
h
and δfρ ∈ Rnel . Note that the functional spaces

Wh,Vh,Vh, V̂
h
are those defined in section 2.2.3 for a spatial problem.

3.3.5 Alternating direction scheme

With the separated structure of the PGD approximations, the weighting functions and
the bilinear and linear HDG forms described in the previous sections, it is possible
to drastically reduce the complexity of the problem. The PGD uses a fixed-point
iteration scheme for the high-dimensional nonlinear problem solved with an alternating
direction strategy to reduce the computational cost (iterating along low-dimensional
problems).

First, in the so-called spatial iteration, the parametric function of the m-th mode
is assumed known and the spatial functions are determined. As it will be shown,
this step requires to solve a system of equations with a very similar structure to
the non-parametric HDG problem. Second, in the so-called parametric iteration, the
parametric function is computed using the spatial functions determined in the first
step. This process is repeated until convergence is achieved. It is worth noting that
the order of the spatial and parametric iterations can be swapped without affecting
the alternating direction algorithm.

Let us assume that we have computed the first m−1 modes and it is of interest to
compute the m-th mode. In the next two sections, the alternating direction strategy
to compute the spatial and parametric modes is detailed.

The spatial iteration

In the spatial iteration, it is assumed that the parametric function ψm and the spatial
predictions σmL F

m
L , σmu f

m
u , σmp fmp , σmû f

m
û and σmρ f

m
ρ are known and the goal is to

compute the corresponding corrections σmL ∆FL, σ
m
u ∆fu, σmp ∆fp, σmû ∆f̂u and σmρ ∆fρ.
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As usual in a PGD context, it is assumed that no previous knowledge of the solution is
available and therefore, the trivial initial guess of ψm=1 is employed for the parametric
function.

Taking into account that δψ=0 when ψm is known and introducing the expression of
the PGD approximations and the weighting functions in the weak form of the HDG
local problems, the following weak form of the local problem for the spatial iteration
is obtained: find (σmL ∆FL, σ

m
u ∆fu, σ

m
p ∆fp) ∈Wh × Vh × Vh that satisfy

nd∑
k=1

βkθAkLL(δFL, σ
m
L ∆FL) +

na∑
k=1

βkϑAkLu(δFL, σ
m
u ∆fu)

=RmL (δFLψ
m) +

na∑
k=1

βkϑAkLû(δFL, σ
m
û ∆f̂u),

na∑
k=1

βkϑAkuL(δfu, σ
m
L ∆FL) + βAuu(δfu, σ

m
u ∆fu)

+

na∑
k=1

βkϑAkup(δfu, σmp ∆fp) =Rmu (δfuψ
m) + βAuû(δfu, σ

m
û ∆f̂u),

na∑
k=1

βkϑAkpu(δfp, σ
m
u ∆fu) =Rmp (δfpψ

m) +

na∑
k=1

βkϑAkpû(δfp, σ
m
û ∆f̂u)

βAkρp(1, σmp ∆fp) =Rmp (ψm) + βAρρ(1, σmρ ∆fρ),

(3.37)

for all (δFL, δfu, δfp) ∈Wh × Vh × Vh.

The bilinear and linear forms of the local problem are detailed in equation (3.38)

AkLL(δFL,FL) := −
(
δFL, ν

−1DkFL
)

Ωe
,

AkLu(δFL,fu) :=
(
Ak∇· δFL,fu

)
Ωe
,

AkLû(δFL, f̂u) := 〈Akn · δFL, f̂u〉∂Ωe\ΓD ,

AkuL(δfu,FL) :=
(
δfu,A

k∇·FL
)

Ωe
,

Auu(δfu,fu) := 〈δfu, τfu〉∂Ωe ,

Akup(δfu, fp) :=
(
δfu,A

k∇fp
)

Ωe
,

Auû(δfu, f̂u) := 〈δfu, τ f̂u〉∂Ωe\ΓD

Akpu(δfp,fu) :=
(
Ak∇δfp,fu

)
Ωe
,

Akpû(δfp, f̂u) := 〈δfp, f̂u ·Akn〉∂Ωe\ΓD ,

Aρp(δfρ, fp) := 〈δfρ, |∂Ωe|−1fp〉∂Ωe ,

Aρρ(δfρ, fρ) := δfρ fρ,

(3.38)
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and equation (3.39), respectively

RmL (δFLψ) :=

na∑
k=1

nD∑
l=1

〈Akn · δFL, glD〉∂Ωe∩ΓDA
k
ϑ(ψ, λlD)

−
m∑
i=1

nd∑
k=1

AkLL(δFL, σ
i
LF

i
L)Akθ(ψ,ψi)

−
m∑
i=1

na∑
k=1

{
AkLu(δFL, σ

i
uf

i
u )−AkLû(δFL, σ

i
ûf

i
û )
}
Akϑ(ψ,ψi)

Rmu (δfuψ) :=

nd∑
k=1

nS∑
l=1

(
δfu, D

kglS
)

Ωe
Akθ(ψ, λlS)

+

nD∑
l=1

〈δfu, τglD〉∂Ωe∩ΓDA(ψ, λlD)

−
m∑
i=1

na∑
k=1

{
AkuL(δfu, σ

i
LF

i
L) +Akup(δfu, σipf ip )

}
Akϑ(ψ,ψi)

−
m∑
i=1

{
Auu(δfu, σ

i
uf

i
u )−Auû(δfu, σ

i
ûf

i
û )
}
A(ψ,ψi)

Rmp (δfpψ) :=

na∑
k=1

nD∑
l=1

〈δfp, glD ·Akn〉∂Ωe∩ΓDA
k
ϑ(ψ, λlD)

−
m∑
i=1

na∑
k=1

{
Akpu(δfp, σ

i
uf

i
u )−Akpû(δfp, σ

i
ûf

i
û )
}
Akϑ(ψ,ψi)

Rmp (δfρψ) :=−
m∑
i=1

{
Aρp(δfρ, σipf ip )−Aρρ(δfρ, σiρf iρ )

}
A(ψ,ψi).

(3.39)

The constants in equation (3.37) are given by

βkθ := Akθ(ψm, ψm) βkϑ := Akϑ(ψm, ψm), β := A(ψm, ψm), (3.40)

where the bilinear forms involved in the definitions of these constants are introduced
in equation (3.41)

Akθ(δψ, ψ) :=
(
δψ, θkψ

)
I ,

Akϑ(δψ, ψ) :=
(
δψ, ϑkψ

)
I ,

A(δψ, ψ) :=
(
δψ, ψ

)
I .

(3.41)

As mentioned earlier, in remark 7, this work considers the same parametric function
for all the variables. It is worth noting that this choice reduces the number of different
constants in equation (3.37).
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Similarly, the weak form of the global problem is: find σmû ∆f̂u ∈ V̂
h
and σmρ ∆fρ ∈ Rnel

that satisfy

nel∑
e=1

{
na∑
k=1

βkϑAkûL(δf̂u, σ
m
L ∆FL) + βAûu(δf̂u, σ

m
u ∆fu)

+

na∑
k=1

βkϑAkûp(δf̂u, σmp ∆fp) + βAûû(δf̂u,σ
m
û ∆f̂u)

+

na∑
k=1

βkϑAkûû(δf̂u, σ
m
û ∆f̂u)

}
=

nel∑
e=1

Rmû (δf̂uψ
m),

(3.42a)

for all δf̂u ∈ V̂
h
, with the incompressibility constraint

na∑
k=1

βkϑAkpû(1, σmû ∆f̂u) = Rmρ (ψm), e = 1, . . . , nel. (3.42b)

The bilinear and linear forms of the global problem are detailed in equation (3.43)

AkûL(δf̂u,FL) := 〈δf̂u,Akn · FL〉∂Ωe\(ΓD∪ΓS) − 〈δf̂u,Akn · FLE〉∂Ωe∩ΓS ,

Aûu(δf̂u,fu) := 〈δf̂u, τfu〉∂Ωe\(ΓD∪ΓS) − 〈δf̂u, (τfu)·E〉∂Ωe∩ΓS ,

Akûp(δf̂u, fp) := 〈δf̂u, fpAkn〉∂Ωe\(ΓD∪ΓS),

Aûû(δf̂u, f̂u) := −〈δf̂u, τ f̂u〉∂Ωe\(ΓD∪ΓS) + 〈δf̂u, (τ f̂u)·E〉∂Ωe∩ΓS ,

Akûû(δf̂u, f̂u) := 〈δf̂u, f̂u ·AkD〉∂Ωe∩ΓS ,

(3.43)

and equation (3.44), respectively

Rmû (δf̂uψ) :=−
nN∑
l=1

〈δf̂u, glN 〉∂Ωe∩ΓNA(ψ, λlN )

−
m∑
i=1

{
Aûu(δf̂u, σ

i
uf

i
u ) +Aûû(δf̂u, σ

i
ûf

i
û )
}
A(ψ,ψi)

−
m∑
i=1

na∑
k=1

{
AkûL(δf̂u, σ

i
LF

i
L)Akϑ(ψ,ψi)

+
[
Akûp(δf̂u, σipf ip ) +Akûû(δf̂u, σ

i
ûf

i
û )
]
Akϑ(ψ,ψi)

}
,

Rmρ (δfρψ) :=−
na∑
k=1

nD∑
l=1

〈δfρ, glD ·Akn〉∂Ωe∩ΓDA
k
ϑ(ψ, λlD)

−
m∑
i=1

na∑
k=1

Akpû(δfρ, σ
i
ûf

i
û )Akϑ(ψ,ψi).

(3.44)
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The parametric iteration

After computing the spatial corrections following the procedure described in the pre-
vious section, the spatial modes are updated, namely

σmL F
m
L ← σmL F

m
L + σmL ∆FL,

σmu f
m
u ← σmu f

m
u + σmu ∆fu,

σmp f
m
p ← σmp f

m
p + σmp ∆fp,

σmû f
m
û ← σmû f

m
û + σmû ∆f̂u,

σmρ f
m
ρ ← σmρ f

m
ρ + σmρ ∆fρ,

(3.45)

where the constant σm� on the left hand side denotes the amplitude of the newly
computed m-th mode of the function �, e.g. σmp ← ‖σmp fmp +σmp ∆fp‖.

In the parametric iteration, the goal is to compute the parametric correction ∆ψ

given the prediction ψm and the known spatial functions in (3.45). Following the
assumption that such functions are known, it holds that δFL=δfu=δfp=δf̂u=δfρ=0.
Introducing the expression of the PGD approximations and the weighting functions
in the weak form of the HDG local problems, the following weak form of the local
problem for the spatial iteration is obtained: find ∆ψ ∈ Lh(I) such that

nd∑
k=1

γkLLAkθ(δψ,∆ψ) +

na∑
k=1

γkLuAkϑ(δψ,∆ψ)

=RmL (σmL F
m
L δψ) +

na∑
k=1

γkLûAkϑ(δψ,∆ψ),

na∑
k=1

γkuLAkϑ(δψ,∆ψ) + γuuA(δψ,∆ψ)

+

na∑
k=1

γkupAkϑ(δψ,∆ψ) =Rmu (σmu f
m
u δψ) + γuûA(δψ, ψm),

na∑
k=1

γkpuAkϑ(δψ,∆ψ) =Rmp (σmp f
m
p δψ) +

na∑
k=1

γkpûAkϑ(δψ,∆ψ),

γρpA(δψ,∆ψ) =Rmp (δψ) + γρρA(δψ,∆ψ),

(3.46)

for all δψ ∈ Lh(I).
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Similarly, the weak form of the global problem is: find ∆ψ ∈ Lh(I) that satisfies

nel∑
e=1

{
na∑
k=1

γkûLAkϑ(δψ,∆ψ) + γûuA(δψ,∆ψ) +

na∑
k=1

γkûpAkϑ(δψ,∆ψ)

+γûûA(δψ,∆ψ) +

na∑
k=1

γkûûAkϑ(δψ,∆ψ)

}
=

nel∑
e=1

Rmû (σmû f
m
û δψ),

na∑
k=1

γkρûAkϑ(δψ, ψm) =Rmρ (δψ),

(3.47)

for all δψ ∈ Lh(I).

The constants in equations (3.46) and (3.47) are defined as

γkLL := AkLL(σmL F
m
L , σmL F

m
L ), γkLu := AkLu(σmL F

m
L , σmu f

m
u ),

γkLû := AkLû(σmL F
m
L , σmû f

m
û ), γkuL := AkuL(σmu f

m
u , σmL F

m
L ),

γuu := Auu(σmu f
m
u , σmu f

m
u ), γkup := Akup(σmu fmu , σmp f

m
p ),

γuû := Auû(σmu f
m
u , σmû f

m
û ), γkpu := Akpu(σmp f

m
p , σmu f

m
u ),

γkpû := Akpû(σmp f
m
p , σmû f

m
û ), γρp := Aρp(1, σmp fmp ),

γρρ := Aρρ(1, σmρ fmρ ),

γkûL := AkûL(σmû f
m
û , σmL F

m
L ), γûu := Aûu(σmû f

m
û , σmu f

m
u ),

γkûp := Akûp(σmû fmû , σmp f
m
p ), γûû := Aûû(σmû f

m
û , σmû f

m
û ),

γkûû := Akûû(σmû f
m
û , σmû f

m
û ), γkρû := Akpû(1, σmû f

m
û ).

(3.48)

The choice of a single parameter approximation implies that we can combine equa-
tions (3.46) and (3.47) to obtain the following parametric problem: find ∆ψ ∈ Lh(I)

that satisfies

nd∑
k=1

γkLLAkθ(δψ,∆ψ) +

na∑
k=1

γkϑAkϑ(δψ,∆ψ) + γA(δψ,∆ψ) = Rm(δψ), (3.49)

for all δψ ∈ Lh(I), where

γkϑ :=γkLu − γkLû + γkuL + γkup + γkpu − γkpû + γkûL + γkûp + γkûû + γkρû,

γ :=γuu − γuû + γρp − γρρ + γûu + γûû,

Rm(δψ) :=RmL (σmL F
m
L δψ) +Rmu (σmu f

m
u δψ) +Rmp (σmp f

m
p δψ)

+Rmp (δψ) +Rmû (σmû f
m
û δψ) +Rmρ (δψ).

(3.50)

Remark 8. Alternative formulations of the parametric problem may be devised, e.g. by
considering only equation (3.46) or (3.47). In this work, equation (3.57) has been
considered in the parametric iteration in order to account for the information of both
the local and the global HDG problems.
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As detailed in equation (3.34), the parametric iteration involves npa geometric parame-
ters. To reduce the size of the problem of the parametric iteration, npa one-dimensional
problems are solved sequentially, as commonly done in a PGD framework (Chinesta
et al., 2014).

An important implementation detail

The resolution of the parametric problem is a linearisation of a non-linear problem.
In the computation of PGD modes of minor relevance, thus associated with smaller
amplitudes, if the ADA does not converge the maximum number of non-linear iteration
is reached. That signifies including in the PGD reduced basis a mode which has not
converged. Nevertheless, that is not an issue. Due to the nature of the PGD algorithm,
with the next computed mode, usually, the error introduced into the approximation
by the term not converging is lightened. In these circumstances, where the ADA
does not converge, numerical experiments have shown the appearance of peaks in the
computed parametric modes. This phenomenon results in creating oscillations and
causing the PGD algorithm to stuck or diverge. Additional analyses showed that this
issue appears when the algebraic matrix associated with the parametric problem is
indefinite, i.e. accounts of both positive and negative eigenvalues.

In this work, to avoid this issue, a check on the parametric algebraic matrix associated
with the mode computed, when the number of iterations performed has reached the
maximum value, is done. In the case the matrix results indefinite, some extra iterations
are performed, usually one or two, until the resulting not converging mode is smooth.
Other possibilities, such as discarding the computed m-th mode and changing the
initial parametric guess of the ADA or applying the PGD compression on the reduced
basis before restarting the computation of the m-th mode are some other attempted
strategies. Increasing the maximum number of iterations and refining the parametric
mesh are also investigated options. All of them do not circumvent the problem but
only delays it providing, sometimes, the convergence of the considered m-th mode but
causing to experience the same issue in the computation of the successive one.
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3.3.6 The HDG-PGD algorithm

The HDG solver for geometrically parametrised Stokes equation is described in algo-
rithm 1. Differently from traditional PGD strategies relying on continuous Galerkin
approximations, Dirichlet boundary conditions do not require a special treatment in
the context of HDG-PGD. More precisely, Dirichlet conditions are imposed in a weak
sense and appear in the linear forms (3.17) of the HDG local problem.

Algorithm 1 The HDG-PGD implementation
Require: For the greedy enrichment loop, the value η? of the tolerance. For the

alternating direction iterations, the values ηû and ηr◦ of the tolerances for the
mode amplitude σû and the residuals r◦ obtained from the linear forms in 3.39
and 3.44, respectively. For the spatial and parametric problems, the typical values
typ◦ of the residuals. ◦ = û, ψ.

1: Set m← 1 and initialise the amplitude of the spatial mode σ1
û ← 1.

2: while σmû > η? σ1
û do

3: Set q ← 1 and initialise the parametric predictor ψm←1.
4: Compute the spatial constants (3.40).
5: Solve the HDG global (3.42a)-(3.42b) and local problems (3.37).
6: Initialise εû ← 1, εr◦ ← typ◦.
7: while εû > ηû or εr◦ > ηr◦ do
8: Compute the parametric constants (3.48).
9: Solve the parametric linear system (3.57).
10: Update the parametric predictor ψm←(ψm +∆ψ)/‖ψm +∆ψ‖.
11: Compute the spatial constants (3.40).
12: Solve the HDG global (3.42a)-(3.42b) and local problems (3.37).
13: Normalise the spatial predictor σmû ←‖σmû f

m
û + σmû ∆f̂u‖.

14: Update the spatial predictor σmû f
m
û ←σmû f

m
û + σmû ∆f̂u.

15: Update the stopping criteria for the mode amplitude εû←‖σmû ∆f̂u‖/σmû and
the residuals εr◦←‖r◦‖.

16: Increase the counter of the alternating direction iterations q ← q+1.
17: end while
18: Increase the mode counter m← m+1.
19: end while

In the greedy enrichment loop, first a predictor of the spatial mode is computed as
the solution of the HDG global and local problems using a guess for the parametric
mode (Algorithm 1 - Steps 3-5). Then, the alternating direction scheme computes
the corrections of the parametric (Algorithm 1 - Steps 8-10) and spatial mode (Algo-
rithm 1 - Steps 11-14) solving a parametric linear system and the HDG global and
local problems, respectively. As susual when solving a nonlinear system of equations,
the nonlinear iterations of the alternating direction scheme stop when the amplitude
σmû ∆f̂u of the correction is negligible with respect to the amplitude σmû of the current
mode and the residuals of the spatial and parametric problems are below a given
tolerance (Algorithm 1 - Steps 7 and 15). The stopping criterion for the greedy en-
richment algorithm relies on the relative amplitude σmû of the current mode being
negligible with respect to the first mode σ1

û (Algorithm 1 - Step 2).
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Alternative stopping criteria based on normalising the amplitude of the current mode
with respect to the cumulative amplitudes of the previous modes have also been
considered in the literature, see e.g. Tsiolakis et al., (2020a). Note that for the purpose
of normalisation (Algorithm 1 - Step 14), an appropriate norm needs to be defined
and the L∞ norm has been utilised for the simulations in section 3.4.

Discretisation of the spatial and parametric problems

The discretisation of the local problems of the spatial iteration using an isoparamet-
ric formulation with equal interpolation for all the variables (Sevilla et al., 2016b,
2018a,b), leads to a system of equations for each element with the following structure:

ALL ALu 0 0

AT
Lu Auu Aup 0

0 AT
up 0 aTρp

0 0 aρp 0


e


FL

Fu

Fp

Fζ


e

=


fL

fu

fp

0


e

+


ALû

Auû

Apû

0


e

F̂u +


0

0

0

1


e

Fρ, (3.51)

where FL, Fu, Fp and F̂u denote the nodal values of the unknown spatial functions
σmL ∆FL, σ

m
u ∆fu, σmp ∆fp and σmû ∆f̂u respectively and the constraint on the mean

value Fρ of the pressure on the element boundaries is enforced using the Lagrange
multiplier Fζ .

The only difference between the local system obtained in the spatial iteration of the
proposed HDG-PGD approach and the local system of a standard HDGmethod (Sevilla
et al., 2018a,b) lies in the construction of the blocks forming the matrices A�} and
vectors f�. As an example, let us consider the matrix ALL. In the proposed HDG-
PGD framework, this matrix is defined as

(ALL)IJ = −
nd∑
k=1

βkθ
(
NI , ν

−1DkNJ

)
Ωe

In2sd (3.52)

whereas in a standard HDG approach, the corresponding matrix is defined as

(ALL)IJ = −
(
NI , ν

−1NJ

)
Ωe

In2sd . (3.53)

In the above expressions {NI} denotes the set of shape functions used to define the
spatial approximation of the mixed variable.

Similarly, the discretisation of the global problem of the spatial iteration leads to a
system of equations for the trace of the velocity on the element boundaries and the
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mean value of the pressure in each element, namely

nel∑
e=1

{[
AûL Aûu Aûp

]
e


FL

Fu

Fp


e

+ [Aûû]e F̂u

}
=

nel∑
e=1

[fû]e,

1T [Apû]eF̂u = −1T [fp]e.

(3.54)

As usual in an HDG context, the local problem of equation (3.51) is used to express
the spatial part of the gradient of the velocity, the velocity and the pressure in terms
of the spatial part of the trace of the velocity and the mean pressure. Introducing
these expressions into the global problem, leads to the global system[

K̂ G

GT 0

]{
F̂u

Fρ

}
=

{
f̂û

f̂ρ

}
, (3.55)

where the only unknowns are the spatial parts of the trace of the velocity and the
mean pressure.

In a similar fashion, the discretisation of the parametric problem (3.57) using Lagrange
shape functions leads to an algebraic system of equations

MFψ = fψ, (3.56)

whose unknowns Fψ denotes the nodal values of the unknown parametric function
∆ψ and the weighted matrix M is the sum of different contributions

M =

nd∑
k=1

γkLL
(
NI , θ

kNJ

)
I +

na∑
k=1

γkϑ
(
NI , ϑ

kNJ

)
I + γ

(
NI , NJ

)
I , (3.57)

and {NI} in this case denotes the set of shape functions used to define approximation
of the parametric variable.

A remark for a computationally efficient implementation

The evaluation of the right hand sides of the PGD spatial and parametric iterations
tends to become computationally expensive when approximations with a large number
of modes are considered. Indeed, the number of terms involved in such computation
experiences a geometric growth rate during the iterations of the greedy algorithm.

In order to ease the computational burden of the overall algorithm, the number of
terms in the modal approximations um

PGD
, pm

PGD
,Lm

PGD
, ûm

PGD
and ρm

PGD
is reduced. It is well

known that the terms in the PGD reduced basis are not orthogonal to each other
and repeated information may appear. Hence, orthogonal separable approximations
featuring m̃ < m modes are constructed via the PGD compression (Díez et al., 2019;
Modesto et al., 2015), that is, a least-squares higher-order projection minimising the
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L2 norm of the difference between target and test functions, namely

Lm̃
PGD

= arg min
W∈Wh

‖W −Lm
PGD
‖L2(Ω×I),

um̃
PGD

= arg min
v∈Vh

‖v − um
PGD
‖L2(Ω×I),

pm̃
PGD

= arg min
v∈Vh

‖v − pm
PGD
‖L2(Ω×I),

ûm̃
PGD

= arg min
v̂∈V̂h

‖v̂ − ûm
PGD
‖L2(Γ∪ΓN∪ΓS×I),

ρm̃
PGD

= arg min
q∈Rnel⊗Lh(I)

‖q − ρm
PGD
‖L2(Rnel×I).

From a practical point of view, the PGD compression is applied during the enrichment
strategy described in algorithm 1. A trade-off between the cost of performing the
greedy iterations with a larger number of modes and the extra cost required by the
PGD compression needs to be achieved. For the simulations in section 3.4, PGD
compression is applied every ten new computed modes for the analytical examples
and every five for the microfluidics test cases.

3.3.7 Local postprocess of the primal variable

For a multi-dimensional geometrically parametrised problem, the local postprocess
necessary to obtain the superconvergent solution u∗ analogous to system of equa-
tions (2.22) reads: given u ∈ Vh

µ and L ∈Wh
µ find u∗ ∈ Uh

µ that satisfies

(
∇µv,∇µu∗

)
Ωµ
e ×I

= −
(
∇µv, ν−1L

)
Ωµ
e ×I(

w,u∗
)

Ωµ
e ×I

=
(
w,u

)
Ωµ
e ×I

,
(3.58)

where the tangent manifolds for u is equal to v ∈ Uh
µ, defined as

Uh(Ωµ) := {v ∈ L2(Ωµ) : v|Ωµ
e
∈ Pk+1(Ωµe ) ∀Ωµe , e = 1, . . . , nel},

Uh :=
[
Uh(Ω)

]nsd
,

Uh
µ :=

[
Uh(Ωµ)⊗Lh(I)

]nsd
,

and w ∈ Lh(I), with Lh(I) defined in section 3.2.3.

Analogously to section 3.3.1 a separable mapping between a parameter-independent
domain and the geometrically parametrised domain allows to rewrite system (3.58) as(

adj(Jµ)∇v, adj(Jµ) det(Jµ)−1∇u∗
)

Ωe×I = −
(

adj(Jµ)∇v, ν−1L
)

Ωe×I(
w,det(Jµ)u∗

)
Ωe×I = −

(
w,det(Jµ)u

)
Ωe×I .

(3.59)

for all v ∈ Uh
µ.
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Within an HDG-PGD framework, where single-parameter approach is considered, a
rank-m separable approximation assumed for all the variables of equation (3.32) is
also extended to u∗, namely

u∗,m
PGD

(x,µ) = σ∗,mu f∗,mu (x)ψm(µ) + u∗,m−1
PGD

(x,µ). (3.60)

It is worth noting that unlike other variables, u∗ is approximated introducing only
predictors σ∗,mu f∗,mu ψm of the m-th mode in the PGD expansion whereas the cor-
responding correction terms are not necessary. This is because the postprocessed
velocity mode is computed only when the alternating direction algorithm of the m-
enrichment is ended. In other words, for each enrichment, given the final values of
the prediction of σmu f

m
u ψm and σmL F

m
L ψm it is easy to obtain σ∗,mu f∗,mu ψm.

Introducing equation 3.60 in (3.59) and restricting the problem to the computation of
the m-th mode of the postprocessed velocity, weak form 3.59 becomes: given σmu f

m
u ∈

Vh and σmL F
m
L ∈Wh find σ∗,mu f∗,mu ∈ Uh that satisfies(

adj(Jµ)∇v, adj(Jµ) det(Jµ)−1∇σ∗,mu f∗,mu ψm
)

Ωe×I

= −
(

adj(Jµ)∇v, ν−1σmL F
m
L ψm

)
Ωe×I(

det(Jµ)σ∗,mu f∗,mu ψm, ψm
)

Ωe×I

= −
(

det(Jµ)σmu f
m
u ψm, ψm

)
Ωe×I ,

(3.61)

with v=δfuψ
m tangent manifolds for u∗. The separated expression of the determinant

of the Jacobian and its adjoint defined in equations (3.24) and (3.25) only partly allow
to rewrite weak form (3.61) in a separable form(

adj(Jµ)∇v, adj(Jµ) det(Jµ)−1∇σ∗,mu f∗,mu ψm
)

Ωe×I

= −
na∑
k=1

βkϑ
(
∇δfu,A

kσmL F
m
L

)
Ωe

nd∑
k=1

βkθ
(
Dkσ∗,mu f∗,mu , 1

)
Ωe

= −
nd∑
k=1

βkθ
(
Dkσmu f

m
u , 1

)
Ωe
.

(3.62)

As there is not any analytical result ensuring the separability of the inverse of the
determinant of the Jacobian, in a general framework it is not separable and it can not
be represented in an exact separable form.

To overcome this issue and be able to create a vademecum also for the postprocess
velocity in a parametrized geometrical framework it is necessary to approximate this
term by mean of the higher-order PGD projection as done in Sevilla et al., (2020b).
Due to the high computational cost of this procedure, this relevant feature of the
HDG method is not investigated further for geometrically parametrised problems.
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3.4 Numerical examples

This section presents six numerical examples. The first three examples are used to
validate the implementation of the proposed approach as well as to study a number
of properties of the proposed ROM. The last three examples are inspired from two
applications taken from the biomechanics community and involve the Stokes flow
around two cylinders, a microswimmer formed by two spheres and the flow around a
sphere in a corrugated channel. All the examples consider geometric parameters as
extra coordinates within the proposed PGD approach.

3.4.1 Coaxial Couette flow

The first example considers the well known coaxial Couette flow problem (Childs,
2010), consisting of the flow confined within two infinite coaxial circular cylinders
with radius Rin and Rout respectively, with Rin<Rout. The boundary conditions
introduce the known angular velocities, Ωin and Ωout, at Rin and Rout, respectively.
The problem has analytical solution, given by the azimuthal component of the velocity
as

vφ =
R2

outΩout −R2
inΩin

R2
out −R2

in
r +

(Ωin − Ωout)R
2
outR

2
in

R2
out −R2

in

1

r
(3.63)

where r is the distance to the axis of the cylinders.

Geometric mapping To demonstrate the applicability of the proposed ROM the
problem is considered in two dimensions, with Ωµ={xµ ∈ R2 | µ1 ≤ rµ ≤ Rout},
with Rout=5 and µ1 ∈ I=I1=[1, 3] and where rµ =

√
(xµ)2 + (yµ)2. The reference

domain is chosen to be Ω={x ∈ R2 | 1 ≤ r ≤ Rout} and the mapping between
the reference and the geometrically parametrised domains is defined by the general
separable expression of equation (3.21) with the mapping of equation (3.22) given by

M1(x) =
1

r
x ψ1(µ) =

Rout(µ− 1)

Rout − 1
,

M2(x) = x ψ2(µ) =
Rout − µ
Rout − 1

,

(3.64)

and the Jacobian of the mapping is also written in the general separated form of
equation (3.23), with

J1(x) =
1

r3

[
y2 −xy
−xy x2

]
, J2(x) = I2. (3.65)

where r =
√
x2 + y2.
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Off-line phase For the numerical experiments in this section, four triangular meshes
of the reference domain are generated, as shown in figure 3.1. The meshes have
128, 512, 2,048 and 8,192 elements respectively. The proposed HDG-PGD framework

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 3.1: Coaxial Couette flow: Four triangular meshes of the
reference domain.

is used to obtain the generalised solution of the parametric Stokes problem. The
computation was performed using the second mesh shown in figure 3.1 with a degree
of approximation k=4 for all the variables and with a mesh of 1,000 elements in the
parametric dimension with also k=4.

The first eight normalised modes of the magnitude of the velocity field are displayed
in figure 3.2. As usual in a the context of ROMs, the first modes capture the most
relevant and global features of the solution whereas the features captured for the next
modes only introduce localised features.

(a) m = 1 (b) m = 2 (c) m = 3 (d) m = 4

(e) m = 5 (f) m = 6 (g) m = 7 (h) m = 8

Figure 3.2: Coaxial Couette flow: First eight normalised spatial
modes of the velocity field.

Figure 3.3 shows the first eight normalised parametric modes computed. It can be ob-
served that the first three modes are smooth, whereas the next modes, that have a less
relevant contribution to the generalised solution, show a more oscillatory character.
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Figure 3.3: Coaxial Couette flow: First eight normalised parametric
modes.

To quantify the importance of the modes on the generalised solution, figure 3.4 shows
the relative amplitudes of the modes with respect to the amplitude of the first mode for
all the variables. It can be clearly observed that the fourth mode has an amplitude

Figure 3.4: Coaxial Couette flow: Convergence of the mode ampli-
tudes.

that is already more than 100 times smaller than the amplitude of the first mode.
After computing only nine modes the relative amplitude is already of the order of
10−6. It is worth noting that in practice it is not required to add modes with such a
lower relative amplitude with respect to the first mode, but in this first example nine
modes are computed to show the rapid decrease in their amplitudes.

On-line phase Once the generalised solution is computed, it is of interest to quan-
tify its accuracy.

Figure 3.5 shows the absolute value of the error of the velocity magnitude using as
the number of modes is increased for three relevant configurations corresponding to
the parameter µ1=1, µ1=2 and µ1=3. The results show that with only one PGD
mode an absolute error below 10−1 is already obtained for all three configurations,
with more accurate results for the case with µ1=2. With two PGD modes the error
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(a) µ1 = 1, m = 1 (b) µ1 = 1, m = 2 (c) µ1 = 1, m = 3 (d) µ1 = 1, m = 4

(e) µ1 = 2, m = 1 (f) µ1 = 2, m = 2 (g) µ1 = 2, m = 3 (h) µ1 = 2, m = 4

(i) µ1 = 3, m = 1 (j) µ1 = 3, m = 2 (k) µ1 = 3, m = 3 (l) µ1 = 3, m = 4

Figure 3.5: Coaxial Couette flow: Absolute value of the error of
the velocity magnitude using n PGD modes and for different values of
the geometric parameter µ1. A quartic approximation is used for all

variables in the second mesh of figure 3.1.

drops substantially, being less than 7× 10−3 in all cases, and with only PGD modes
the error is below 2× 10−4 for the three configurations considered.

To further illustrate the accuracy of the proposed HDG-PGD approach, the relative
error in the L2(Ω× I) norm, defined as

εPGD =


∫
I1

∫
Ω

(uPGD − u) · (uPGD − u)dΩ dµ∫
I1

∫
Ω
u · u dΩ dµ


1/2

, (3.66)

is studied and compared to the error of the full order HDG approach.

Figure 3.6 shows the evolution of εPGD, for all the variables, as the number of PGD
modes is increased, for different meshes using a quadratic degree of approximation.
The discontinuous lines show the relative error of the full order HDG method, mea-
sured in the L2(Ω×I) norm. It is worth noting that the computation of the error for
the full order approach requires the computation of a large number of solutions. More
precisely, the number of HDG solutions required is equal to the number of elements
in the parametric space multiplied by number of integrations points in each element.
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The results show that the error of the proposed ROM converges monotonically to

(a) L (b) u

(c) p (d) û

Figure 3.6: Coaxial Couette flow: convergence of the L2 norm of the
error for L, u, p and û as the number of PGD modes is increased. A

quadratic approximation is used for all the variables.

the error of the full order approach with as the number of modes is increased. In all
cases the number of PGD modes required to reach the maximum accuracy on a given
mesh is lower than six. Furthermore, the results in figure 3.6 illustrate the increased
level of accuracy obtained as the spatial and parametric discretisations are refined.
Analogous results, not reported here for brevity, are obtained for lower and higher
orders of approximation.

Next, the optimal approximation properties of the proposed HDG-PDG method are
studied by performing a mesh convergent study.

Figure 3.7 shows the evolution of the relative error in the L2(Ω×I) norm as a function
of the characteristic element size, h, for different orders of approximation and for all
the variables of the HDG formulation. The optimal rate of convergence, equal to hk+1,
is approximately observed for all the variables. In each case, the minimum number of
PGD modes required to achieve the accuracy of the full order method is selected, as
previously discussed when presenting the results of figure 3.6.
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(a) L (b) u

(c) p (d) û

Figure 3.7: Coaxial Couette flow: mesh convergence of the L2 norm
of the error for L, u, p and û.

Finally, it is worth mentioning the differences between the proposed HDG-PGD ap-
proach presented here and the recently proposed PGD approach for geometrically
parametrised domains in Sevilla et al., (2020b) using standard finite elements for the
spatial discretisation. First, the current approach does not require the higher order
PGD projection to separate the inverse of the determinant of the Jacobian, given the
first-order character of the problem solved with HDG. Second, the current approach
enables the use of the same degree of approximation for velocity and pressure, contrary
to the standard FE approach where specific choices are required to satisfy the LBB
condition. In the context of geometrically parametrised domains with curved bound-
aries this implies that the current approach enables the use of isoparametric elements
whereas super-parametric or sub-parametric elements are required in the FE context.
Third, the weak imposition of the Dirichlet boundary conditions, as usually done in a
DG context, facilitates the construction of the generalised solution without the need
for specific choices for the modes that satisfy the Dirichlet boundary conditions, as
required by other approaches. Finally, the results in figure 3.7 can be compared to
the results in Sevilla et al., (2020b).
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3.4.2 Axisymmetric Stokes flow past a sphere

The second example considers the Stokes flow past a sphere, a typical test case for
axisymmetric Stokes flow solvers. The domain of interest is selected as the region con-
fined by two concentric spheres with radius Rin and Rout respectively, with Rin<Rout.
This problem also has analytical solution, given, in polar coordinates, by the following
velocity and pressure fields

uρ =
v∞
2ρ3

(
2ρ3 − 3Rinρ

2 +R3
in
)

cosφ,

uθ = 0,

uφ = − v∞
4ρ3

(
4ρ3 − 3Rinρ

2 +R3
in
)

sinφ,

p = p∞ −
3

2ρ2
νv∞Rin cosφ,

(3.67)

where v∞ and p∞ are the magnitude of the velocity and the pressure of the undisturbed
flow, far away from the obstacle and ρ=

√
r2 + z2 (see (2.59) for velocity and pressure

fields in cylindrical coordinates). A typical quantity of interest in this problem is the
drag force, whose exact value is given by FD=6πνv∞Rin.

For the numerical experiments in this section, four triangular meshes of the reference
domain are generated, as shown in figure 3.8. A no-slip boundary condition is imposed

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 3.8: Axisymmetric flow past a sphere: Four triangular meshes
of the reference domain.

on the inner sphere, a Dirichlet boundary condition corresponding to the exact solution
on the outer boundary and axial symmetry is imposed on the rest of the boundary.
The axial symmetry is imposed by selecting α=β=0 in the matrices Dµ and Eµ in
equation (3.1). As mentioned earlier, in Remark 5, the portion of the boundary where
the axial symmetry is imposed depends on the geometric parameter, but the normal
and tangent to the boundary are independent on the geometric changes. Therefore,
the matrices D and E do not depend upon the geometric parameters.

Geometric mapping Similar to the previous example, the geometric parameter
considered here is the radius of the inner sphere. The parametric domain considers
the axial symmetry of the problem is defined as Ωµ={rµ ∈ R2 | rµ ≥ 0 and µ1 ≤
ρµ ≤ Rout}, with bR=(z, r), Rout=5 and µ1 ∈ I=I1=[1, 3]. The reference domain is
chosen to be Ω={r ∈ R2 | r ≥ 0 and 1 ≤ ρ ≤ Rout}.



78 Chapter 3. HDG-PGD solution of geometrically parametrised Stokes flows

The mapping between the reference and the geometrically parametrised domains is
analogous to the one utilised in the previous example, but considering an axisymmetric
domain

M1(r) =
1

ρ
r ψ1(µ) =

Rout(µ− 1)

Rout − 1
,

M2(r) = r ψ2(µ) =
Rout − µ
Rout − 1

.

(3.68)

The Jacobian of the mapping is also written in the general separated form of equa-
tion (3.23), with

J1(r) =
1

ρ3

[
r2 −zr
−zr z2

]
, J2(r) = I2. (3.69)

Off-line phase The proposed ROM is used to obtain the generalised solution of the
parametric axisymmetric Stokes problem. The computation was performed using the
second mesh with a degree of approximation k = 4 for all the variables and with a
mesh of 1,000 elements in the parametric dimension with also k = 4.

The first four normalised modes of the magnitude of the velocity field and the pressure
are shown in figures 3.9 and 3.10.

(a) m = 1 (b) m = 2 (c) m = 3 (d) m = 4

(e) m = 5 (f) m = 6 (g) m = 7 (h) m = 8

Figure 3.9: Axisymmetric flow past a sphere: First eight normalised
spatial modes of the norm of the velocity field.

(a) m = 1 (b) m = 2 (c) m = 3 (d) m = 4

(e) m = 5 (f) m = 6 (g) m = 7 (h) m = 8

Figure 3.10: Axisymmetric flow past a sphere: First eight normalised
spatial modes of the pressure field.
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Figure 3.11 shows the first eight normalised parametric modes computed. It is worth

Figure 3.11: Axisymmetric flow past a sphere: First eight normalised
parametric modes.

noting that despite the different nature of the flow and the axisymmetric boundary
condition, the parametric modes have a similar behaviour when compared to the
modes obtained in the previous example. This is mainly attributed to the geometric
parameter describing an analogous variation of the computational domain.

As in the previous example, the evolution of the relative amplitude of the modes is
shown in 3.12. The rapid decrease shows that it is possible to compute a generalised

Figure 3.12: Axisymmetric flow past a sphere: Convergence of the
mode amplitudes.

solution to this problem with a very small number of modes. With eight modes the
relative amplitude is already below 10−5.

On-line phase Once the generalised solution is computed, it is of interest to quan-
tify its accuracy.

Figure 3.13 and figure 3.14 shows the absolute value of the error of the velocity mag-
nitude and pressure using as the number of modes is increased for three relevant
configurations corresponding to the parameter µ1=1, µ1=2 and µ1=3.
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(a) µ1 = 1, m = 1 (b) µ1 = 1, m = 2 (c) µ1 = 1, m = 3 (d) µ1 = 1, m = 4

(e) µ1 = 2, m = 1 (f) µ1 = 2, m = 2 (g) µ1 = 2, m = 3 (h) µ1 = 2, m = 4

(i) µ1 = 3, m = 1 (j) µ1 = 3, m = 2 (k) µ1 = 3, m = 3 (l) µ1 = 3, m = 4

Figure 3.13: Axisymmetric flow past a sphere: Absolute value of the
error of the velocity magnitude using n PGD modes and for different
values of the geometric parameter µ1. A quartic approximation is used

for all variables in the second mesh of figure 3.8.

(a) µ1 = 1, m = 1 (b) µ1 = 1, m = 2 (c) µ1 = 1, m = 3 (d) µ1 = 1, m = 4

(e) µ1 = 2, m = 1 (f) µ1 = 2, m = 2 (g) µ1 = 2, m = 3 (h) µ1 = 2, m = 4

(i) µ1 = 3, m = 1 (j) µ1 = 3, m = 2 (k) µ1 = 3, m = 3 (l) µ1 = 3, m = 4

Figure 3.14: Axisymmetric flow past a sphere: Absolute value of
the pressure magnitude using n PGD modes and for different values
of the geometric parameter µ1. A quartic approximation is used for

all variables in the second mesh of figure 3.8.

The results show that with only one PGD mode an absolute error of the order of 10−1

or below is already obtained for all three configurations for both velocity and pressure.
Analogously to the previous example more accurate results are obtained for the case
with µ1=2. The error drops substantially, being less than 3.8×10−3, in all cases with
three and four modes for velocity and pressure, respectively.



3.4. Numerical examples 81

To further illustrate the accuracy of the proposed HDG-PGD approach, the relative
error in the L2(Ω × I) norm, defined in (3.66) is studied and compared to the error
of the full order HDG approach.

(a) L (b) u

(c) p (d) û

Figure 3.15: Axisymmetric flow past a sphere: convergence of the
L2 norm of the error for L, u, p and û as the number of PGD modes
is increased. A quadratic approximation is used for all the variables.

Figure 3.15 shows the evolution of εPGD, for all the variables, as the number of PGD
modes is increased, for different meshes using a quadratic degree of approximation.
The discontinuous lines in figure 3.15 show the relative error of the full order HDG
method, measured in the L2(Ω× I) norm.

Next, similarly with the previous example, the optimal approximation properties of
the proposed HDG-PGD method are studied by performing a mesh convergent study.

Figure 3.16 shows the evolution of the relative error in the L2(Ω × I) norm as a
function of the characteristic element size, h, for different orders of approximation
and for all the variables of the HDG formulation. The optimal rate of convergence,
equal to hk+1, is approximately observed for all the variables.
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(a) L (b) u

(c) p (d) û

Figure 3.16: Axisymmetric flow past a sphere: mesh convergence of
the L2 norm of the error for L, u, p and û.

Finally, the accuracy of the HDG-PGD approach on the drag force is studied for
three different configurations corresponding to µ1=1, µ1=2 and µ1=3. Figure 3.17
shows evolution of the error in the drag force as the number of of degrees of freedom
is increased for the three different geometric configurations and for different orders
of approximation. The number of degrees of freedom refers to the size of the HDG
global problem as this is the most time consuming part of the spatial iteration. The

(a) µ1 = 1 (b) µ1 = 2 (c) µ1 = 3

Figure 3.17: Axisymmetric flow past a sphere: evolution of the error
in the drag force as the number of modes is increased for three different

geometric configurations.
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results show the variation of the drag force induced by the variation of the geometric
parameter and how the generalised solution produces accurate results for any value of
the geometric parameter. In all cases, convergence to exact value is observed, and the
superiority of using high-order approximations is clearly appreciated. For the first con-
figuration, the results in figure 3.17(a) show that with a linear approximation requires
the solution of a global problem with 24,832 degrees of freedom to obtain relative error
in the drag force of 0.0181. In contrast , using a quartic approximation, the error in
the first mesh is 0.0021, solving a global problem with only 416 degrees of freedom,
that is an error one order of magnitude lower with almost 20 times less degrees of
freedom. The results also show that for higher values of the geometric parameter the
solution is slightly more difficult to capture and the number of degrees of freedom
required is slightly higher. In fact, the advantages of high-order approximations are
more noticeable for the case of µ1=3.

3.4.3 Stokes flow past a sphere

The third example considers as well the Stokes flow past a sphere, but contrary from
the previous one, in a 3D fashion.

The domain of interest is again selected as the region confined by two concentric
spheres with radius Rin and Rout respectively, with Rin<Rout. The analytical solution
(3.67), in Cartesian coordinates, is given by the following velocity and pressure fields

ux = v∞ + v∞
R3

in
4r3

(
3x2

r2
− 1

)
− v∞

3Rin

4r

(
x2

r2
+ 1

)
,

uy = v∞
3Rinxy

4r3

(
R2

in
r2
− 1

)
,

uz = v∞
3Rinxz

4r3

(
R2

in
r2
− 1

)
,

p = p∞ −
3

2r3
νv∞Rinx,

(3.70)

with r=
√
x2 + y2 + z2 where v∞ and p∞ are the magnitude of the velocity in the

x -direction and the pressure of the undisturbed flow, far away from the obstacle.

The geometry of the reference domain, corresponding to µ1=1, is shown in fig-
ure 3.18(a). A no-slip boundary condition is imposed on the inner sphere, a Dirichlet
boundary condition corresponding to the exact solution on the outer boundary. Given
the symmetric nature of the problem, to reduce its computational cost, only one forth
of the domain is considered introducing a free slip boundary condition on the two
interfaces of symmetry (shown in figure 3.18(b)).

Also in this case, as mentioned in Remark 5, the portion of the boundary where
the symmetry is imposed depends on the geometric parameter, but the normal and
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(a) Geometry (b) Mesh

Figure 3.18: Flow past a sphere: Geometry of the domain and com-
putational mesh of a quarter of the domain.

tangent to the boundary are independent on the geometric changes. Therefore, the
matrices D and E do not depend upon the geometric parameters.

Remark 9. The assumption that matrices D and E do not depend upon the geo-
metric parameters because of the orthogonality between the vector n and the surface
of symmetry is crucial to obtain a converging algorithm when a symmetrical surface
is used, moreover in a three dimensional framework. During the development of this
thesis, has been noticed that it is critical to ensure that all the points of the computa-
tional mesh belonging to a symmetric surface lye exactly on that surface (with almost
no margin of error).

Geometric mapping The mapping between the reference and the geometrically
parametrised domains is analogous to the mapping utilised in the previous example,
given by the two terms in equation (3.64), but for a three dimensional Cartesian
domain. The separated mapping is

M1(x) =
1

r
x ψ1(µ) =

Rout(µ− 1)

Rout − 1
,

M2(x) = x ψ2(µ) =
Rout − µ
Rout − 1

.

(3.71)

and the Jacobian of the mapping written in the general separated form of equa-
tion (3.23) results

J1(x) =
1

r3

y
2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 , J2(x) = I3, (3.72)

where r=
√
x2 + y2 + z2.
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Off-line phase The proposed ROM is used to obtain the generalised solution of the
parametric Stokes problem.

The computation was performed using the second mesh with a degree of approximation
k=4 for all the variables and with a mesh of 1,000 elements in the parametric dimension
with also k=4.

The first eight normalised modes of the magnitude of the velocity field and the pressure
are shown in figures 3.19 and 3.20.

(a) m = 1 (b) m = 2 (c) m = 3 (d) m = 4

(e) m = 5 (f) m = 6 (g) m = 7 (h) m = 8

Figure 3.19: Flow past a sphere: First eight normalised spatial
modes of the norm of the velocity field.

(a) m = 1 (b) m = 2 (c) m = 3 (d) m = 4

(e) m = 5 (f) m = 6 (g) m = 7 (h) m = 8

Figure 3.20: Flow past a sphere: First eight normalised spatial
modes of the pressure field.

Figure 3.21 shows the first eight normalised parametric modes computed. It is worth
noting the expected similarity between the majority of the spatial modes represented
in figures 3.9 and 3.19, 3.10 and 3.20 and parametric ones shown in figures3.11 and
3.21 respectively.
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Figure 3.21: Flow past a sphere: First eight normalised parametric
modes.

As in the previous example, the evolution of the relative amplitude of the modes is
shown in 3.22. The rapid decrease shows that it is possible to compute a generalised
solution to this problem with a very small number of modes. With nine modes the
relative amplitude is already below 10−5.

Figure 3.22: Flow past a sphere: Convergence of the mode ampli-
tudes.

On-line phase Once the generalised solution is computed, it is of interest to quan-
tify its accuracy.

Figure 3.22 and figure 3.23 shows the absolute value of the error of the velocity mag-
nitude and pressure using as the number of modes is increased for three relevant
configurations corresponding to the parameter µ1=1, µ1=2 and µ1=3.

(a) µ1 = 1, m = 1 (b) µ1 = 1, m = 2 (c) µ1 = 1, m = 3 (d) µ1 = 1, m = 4
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(e) µ1 = 2, m = 1 (f) µ1 = 2, m = 2 (g) µ1 = 2, m = 3 (h) µ1 = 2, m = 4

(i) µ1 = 3, m = 1 (j) µ1 = 3, m = 2 (k) µ1 = 3, m = 3 (l) µ1 = 3, m = 4

Figure 3.22: Stokes flow past a sphere: Absolute value of the error
of the velocity magnitude using n PGD modes and for different values
of the geometric parameter µ1. A quartic approximation is used for

all variables in the mesh of figure 3.18.

(m) µ1 = 1, m = 1 (n) µ1 = 1, m = 2 (o) µ1 = 1, m = 3 (p) µ1 = 1, m = 4

(q) µ1 = 2, m = 1 (r) µ1 = 2, m = 2 (s) µ1 = 2, m = 3 (t) µ1 = 2, m = 4

(u) µ1 = 3, m = 1 (v) µ1 = 3, m = 2 (w) µ1 = 3, m = 3 (x) µ1 = 3, m = 4

Figure 3.23: Stokes flow past a sphere: Absolute value of the pressure
magnitude using n PGDmodes and for different values of the geometric
parameter µ1. A quartic approximation is used for all variables in the

mesh of figure 3.18.
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Similarly to results shown in figures 3.13 and 3.13 with only one PGDmode an absolute
error of the order of 10−1 or below is already obtained for all three configurations for
both velocity and pressure. The more accurate results are obtained in agreement with
previous results for the case with µ1=2. From 3 to 4 modes the error saturates for the
given mesh, for both velocity and pressure, showing improvements of the accuracy of
the solution only for µ1=3. This is in agreement with next results.

To further illustrate the accuracy of the proposed HDG-PGD approach, the relative
error in the L2(Ω × I) norm, defined in (3.66) is studied and compared to the error
of the full order HDG approach.

Figure 3.15 shows the evolution of εPGD, for all the variables, as the number of PGD
modes is increased, for different degree of approximation and mesh drawn in Figure
3.18. The discontinuous lines in figure 3.24 show the relative error of the full order
HDG method, measured in the L2(Ω× I) norm.

(a) L (b) u

(c) p (d) û

Figure 3.24: Flow past a sphere: convergence of the L2 norm of the
error for L, u, p and û as the number of PGD modes is increased for

linear to quartic approximations.

Also in this case excellent agreement between the two errors is observed.
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Finally, the accuracy of the HDG-PGD approach on the drag force is studied for three
different configurations corresponding to µ1=1, µ1=2 and µ1=3.

Figure 3.25 shows evolution of the drag force for different orders of approximation and
mesh of Figure 3.18(b). The number of degrees of freedom refers to the size of the
HDG global problem as this is the most time consuming part of the spatial iteration.

(a) µ1 = 1 (b) µ1 = 2 (c) µ1 = 3

Figure 3.25: Flow past a sphere: evolution of the error in the drag
force as the number of modes is increased for three different geometric

configurations.

Figure 3.26 shows evolution of the error of the drag force associated to Figure 3.18(b)
compared with the analogous error computed with axisymmetric strategy for different
orders of approximation on the first mesh of Figure 3.8.

(a) µ1 = 1 (b) µ1 = 2 (c) µ1 = 3

Figure 3.26: Flow past a sphere: comparison between the error in the
drag force for three different geometric configurations obtained with a
3D and axisymmetric strategy in function of the number of degrees of

freedom used.

For all parameters, convergence to exact value is observed, and the superiority of using
high-order approximations is clearly appreciated. Moreover, it is visible the saving on
in terms of degrees of freedom that an axisymmetric strategy provides.
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3.4.4 Stokes flow around two cylinders

The next example is taken from Sevilla et al., (2020b) and considers the Stokes flow
around two cylinders. The problem consists of two circles that can change their mutual
distance and individual area, whilst maintaining the total area of the two objects. The
two cylinders are placed in a rectangular channel of length L and width D.

Two geometric parameters are considered in this example. The first one, µ1 ∈
I1=[−1, 1], controls the radius of the two circles in such a way that the total area
is maintained. The second parameter, µ2 ∈ I2=[−1, 1], controls the distance between
the centre of the two cylinders. The value of µ1 = −1 corresponds to the configuration
where the radius of the first sphere is R1=1.0733 and the radius of the second sphere
is R2=0.3578, whereas the value of µ=1 corresponds to the opposite situation, with
R1=0.3578 and R2=1.0733. Both configurations correspond to the cases where the
area of one of the circles is 90% and 10% respectively of the total area occupied by
both circles. The value of µ2=−1 corresponds to the case where the distance between
the spheres is maximum, with the centres of the spheres placed at (−7.75, 0) and
(7.75, 0) respectively. The value of µ2=1 corresponds to the case where the distance
between the spheres is minimum, with the centres of the spheres placed at (−6.25, 0)

and (6.25, 0) respectively.

The reference domain shown in figure 3.27 is chosen as the bi-dimensional rectangle
Ω= ([−L,L]× [−H,H])\(B+ ∪ B−), with L=20, H=7, x0=(7, 0), Rref=0.8 and where

B± = {x ∈ R2 | ‖x± x0‖ ≤ Rref}. (3.73)

Analogously to the example presented in section 3.4.3, to reduce the computational
costs of the problem, only on half of the domain is considered introducing a slip
boundary condition. On the left part of the boundary a Dirichlet boundary condition,
corresponding to a horizontal velocity of magnitude one, is imposed. On the right
part of the boundary a homogeneous Neumann boundary condition is imposed. On

Figure 3.27: Stokes flow around two cylinders: Domain and compu-
tational mesh.

the surface of the two spheres a no-slip boundary condition is enforced and on the
upper part of the boundary a slip boundary condition is imposed. The computational
triangular mesh used to solve the problem is highlighted in figure 3.27. The mesh has
208 elements, leading to a system in the HDG global problem of 3500 equations for a
degree of approximation k=4.
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Geometric mapping The mapping used in the example involving the flow around
two cylinders is designed as the composition of two mappings. The first mapping,
Mµ1 , is defined to account for the change of radius of the two circles and it is written
in the general separable expression of equation (3.22) with

M1
1(x) =


1

r
x−0 if ‖x−0 ‖ ≤ Rout

0 otherwise
ψ1

1(µ1) = A(R+(µ1)),

M2
1(x) =

{
x−0 if ‖x−0 ‖ ≤ Rout

0 otherwise
ψ2

1(µ1) = B(R+(µ1)),

M3
1(x) =

{
rx−0 if ‖x−0 ‖ ≤ Rout

0 otherwise
ψ3

1(µ1) = C(R+(µ1)),

M4
1(x) =

{
r2x−0 if ‖x−0 ‖ ≤ Rout

0 otherwise
ψ4

1(µ1) = D(R+(µ1)),

M5
1(x) =

{
x0 if ‖x−0 ‖ ≤ Rout

0 otherwise
ψ5

1(µ1) = 1,

M6
1(x) =


1

r
x+

0 if ‖x+
0 ‖ ≤ Rout

0 otherwise
ψ6

1(µ1) = A(R−(µ1)),

M7
1(x) =

{
x+

0 if ‖x+
0 ‖ ≤ Rout

0 otherwise
ψ7

1(µ1) = B(R−(µ1)),

M8
1(x) =

{
rx+

0 if ‖x+
0 ‖ ≤ Rout

0 otherwise
ψ8

1(µ1) = C(R−(µ1)), ,

M9
1(x) =

{
r2x+

0 if ‖x+
0 ‖ ≤ Rout

0 otherwise
ψ9

1(µ1) = D(R−(µ1)),

M10
1 (x) =

{
−x0 if ‖x+

0 ‖ ≤ Rout

0 otherwise
ψ10

1 (µ1) = 1,

(3.74)

where x±0 =x±x0, Rout=3 and, as detailed in section 3.4.4, x0=(7, 0) and Rref=0.8.
The radius of the sphere centred at x0 is defined asR+(µ1)=−0.0845µ2

1+0.3578µ1+0.8

so that it takes value 0.3578 for µ1= − 1, 0.8 for µ1=0 and 1.0733 for µ1 = 1. The
radius of the sphere centred at −x0 is defined in terms of R+(µ1) in such a way that
the total area of the two spheres is maintained, namely (R+)2+(R−)2=32/25.

The piecewise nature of the mapping is illustrated in figure 3.28, in the vicinity of one
of the spheres. Notice that the number of terms composing the mapping are chosen
arbitrarily depending on the required regularity. Imposing properly conditions on the
smoothness of both the mapping and its derivatives, the parametric modes can be
particularized.
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A linear mapping can be devised imposing its continuity in the inner and outer radius.
The parametric modes are particularised by

A(R) =
Rout(R−Rref)

Rout −Rref
, B(R) =

Rout −R
Rout −Rref

,

C(R) = 0, D(R) = 0.

(3.75)

A quadratic mapping can be devised imposing its continuity in the inner and outer
radius and the continuity of the first derivative in the outer radius. The parametric
modes are particularised by

A(R) =
R2

out(R−Rref)

(Rout −Rref)2
, B(R) =

(R2
out − 2RRout +R2

ref)

(Rout −Rref)2
,

C(R) =
(R−Rref))

(Rout −Rref)2
, D(R) = 0.

(3.76)

A cubic mapping can be devised imposing its continuity and the continuity of the first
derivative in the inner and outer radius. The parametric modes are particularised by

A(R) =
R2

out(Rout − 3Rref)(R−Rref))

(Rout −Rref)3
,

B(R) =
R3

out − 3R2
outRref − 3RoutR

2
ref + 6RRoutRref −R3

ref
(Rout −Rref)3

,

C(R) =
3(Rout +Rref)(Rref −R)

(Rout −Rref)3
,

D(R) =
2(R−Rref)

(Rout −Rref)3
.

(3.77)

The second mapping, Mµ2 , is defined to account for the change of distance between
the spheres and it is written in the general separable expression of equation (3.22)
with

M1
2(x) =

{
d(x)

0

}
ψ1

2(µ2) = −µ2/2,

M2
2(x) = x ψ2

2(µ2) = 1,

(3.78)

where the function d(x) is given by

d(x) :=



ζ + ξx+ ψx2 if x ∈ [−L,−x0 −Rint]

−1 if x ∈ [−x0 −Rint,−x0 +Rint]

α+ βx+ γx2 + δx3 if x ∈ [−x0 +Rint, x0 −Rint]

1 if x ∈ [x0 −Rint, x0 +Rint]

−ζ + ξx− ψx2 if x ∈ [x0 +Rint, L]

, (3.79)

with Rint=4 and L=20.
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Analogously with the first mapping, linear piecewise or smoother mappings can be
obtained particularising properly constants α, β, γ, δ, ζ, ξ, ψ.

A piecewise linear mapping can be devised imposing its continuity. In this fashion
constants results

α = 0, β =
1

x0 −Rint
,

γ = 0, δ = 0,

ζ =
L

x0 +Rint − L
, ξ =

1

x0 +Rint − L
,

ψ = 0.

(3.80)

A piecewise quadratic and cubic mapping can be devised imposing its continuity and
the continuity of its first derivative. In this fashion constants results

α = 0, β =
3

2(x0 −Rint)
,

γ = 0, δ = − 1

2(x0 −Rint)3
,

ζ = −L(2Rint + 2x0 − L)

(Rint + x0 − L)2
, ξ =

2(Rint + x0)

(Rint + x0 − L)2
,

ψ = − 1

(Rint + x0 − L)2
.

(3.81)

As illustrated in figure 3.28 both mappings are defined in a piecewise form. It is

(a) Mµ1 (b) Mµ2

Figure 3.28: Illustration of the piecewise nature of the mappings
Mµ1

and Mµ2
detailed in equations (3.74) and (3.78) respectively in

the vicinity of the sphere centred at x0.

worth noting that the use of smoother mappings, allows to impose the continuity of
its derivatives, in that way the requirement of a conforming mesh given the piecewise
nature of the mapping decays. This represents a great advantage in terms of freedom
in generating the mesh but on the other hand it has several numerical drawbacks.
First, if compared with the use of a linear mapping, a higher number of integration
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points are required to ensure that errors due to the numerical integration are lower
than the interpolation error. Second, the terms of the separable approximation, for the
first mapping, increase and with them the computational complexity of the problem.
For that reasons, the mappings selected are only C0 on the artificial interfaces denoted
by discontinuous lines in figure 3.28. Therefore, to facilitate the numerical integration
of the terms involving the Jacobian and the adjoint of the mapping, the computational
meshes selected are conforming with these interfaces, as it can be observed in the mesh
displayed in figure 3.27.

Off-line phase The computation was performed using the mesh of figure 3.27 with
a degree of approximation k=4 for all the variables and with a mesh of 50 elements
in each parametric dimension with also k=4. The first six spatial modes for the
velocity and pressure computed with the proposed HDG-PGD technique are shown
in figures 3.29 and 3.30.

(a) m = 1 (b) m = 2 (c) m = 3

(d) m = 4 (e) m = 5 (f) m = 6

Figure 3.29: Stokes flow around two cylinders: First six normalised
spatial modes of the velocity field.

(a) m = 1 (b) m = 2 (c) m = 3

(d) m = 4 (e) m = 5 (f) m = 6

Figure 3.30: Stokes flow around two cylinders: First six normalised
spatial modes of the pressure field.

Figure 3.31 shows the first six normalised parametric modes computed. In this exam-
ple there are more parametric modes that have an important influence over the whole
range of values for both µ1 and µ2. Moreover it is observable that the majority of the
parametric modes associated to µ1 are symmetric,this implies that the two spheres
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for the given range of µ2 behave at the same way. On the other hand, the first six
parametric modes associated to the distance have a normalised value near one for the
whole range of values of µ2. This implies that µ1 has a more relevant effect on the
solution while µ2 begins to affect the computations from mode 7.

(a) (b)

Figure 3.31: Stokes flow around two cylinders: First eight nor-
malised parametric modes.

The evolution of the relative amplitude of the modes is displayed in figure 3.32. The
results show that with 9 modes the relative amplitude of the hybrid variable, used to
check convergence, is below 10−3, with 16 modes is below 10−5 while with 20 modes
is below 10−6.

Figure 3.32: Stokes flow around two cylinders: Convergence of the
mode amplitudes.

On-line phase To illustrate the variation in the geometry induced by the parame-
ters as well as the different flow features that are induced by the geometric changes,
figure 3.33 shows the magnitude of the velocity and the pressure fields in the three
dimensional domain for three different configurations. The first configuration, shown
in figures 3.33(a) and 3.33(d), corresponds to the case where the distance between
the spheres is maximum and the sphere closer to the inflow boundary has maximum
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radius. The opposite scenario, with the distance between spheres is minimum and the
sphere closer to the inflow boundary has minimum radius in shown in figures 3.33(c)
and 3.33(f). Finally, the configuration displayed in figures 3.33(b) and 3.33(e) corre-
sponds to the case when the distance between the spheres is half the maximum value
and the radius of both spheres is the same.

(a) µ1 = −1,µ2 = −1 (b) µ1 = 0,µ2 = 0 (c) µ1 = 1,µ2 = 1

(d) µ1 = −1,µ2 = −1 (e) µ1 = 0,µ2 = 0 (f) µ1 = 1,µ2 = 1

Figure 3.33: Stokes flow around two cylinders: Velocity (top) and
pressure (bottom) fields for three different geometric configurations.

Once the on-line solution is obtained, in order to verify its accuracy with respect the
full order solution computed on the same mesh, the relative value of the error (i.e. the
absolute value divided by the norm of the maximum of the field) of the velocity
magnitude and pressure is computed.

(a) µ1 = −1, µ2 = 0 (b) µ1 = 0, µ2 = 1 (c) µ1 = 1, µ2 = 2

(d) µ1 = −1, µ2 = 0 (e) µ1 = 0, µ2 = 1 (f) µ1 = 1, µ2 = 2

Figure 3.34: Stokes flow around two cylinders: Relative value of the
error of the velocity magnitude (top) and pressure (bottom) fields for

three different geometric configurations.

Finally, to further illustrate the general accuracy of the proposed HDG-PGD solution,
in absence of an analytical solution, the relative error between the reduced and the
full order solution in the L2(Ω× I) norm, defined as

εPGD-HDG =


∫
I1

∫
Ω

(uPGD − uHDG) · (uPGD − uHDG)dΩ dµ∫
I1

∫
Ω
uHDG · uHDG dΩ dµ


1/2

, (3.82)
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is computed for different discretisations of the parametric space accounting of different
number of elements and a quadratic degree of approximation. Figure 3.35 shows the
evolution of εPGD-HDG, for all the variables, as the number of PGD modes is increased.
It is worth observing how εPGD-HDG saturates when an enough number of modes is

(a) L (b) u

(c) p (d) FD

Figure 3.35: Flow past a sphere: L2 norm of the error for L, u, p
and FD.

considered, and how the saturation error decreases refining the parametric mesh. As
known, this operation is computationally inexpensive as each parametric direction
consists of a 1D problem.

3.4.5 Axisymmetric Stokes flow around two microswimmers

The next example considers the Stokes flow around the so-called push-me-push-you
microswimmer, proposed in Avron et al., (2005). This swimmer consists of two spher-
ical bladders that have the ability to change their mutual distance and individual
volume, whilst maintaining the total volume of the two spheres. The swimmer is
placed in a cylindrical channel of length L and diameter D.
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Two geometric parameters are considered in this example according with the study
developed in Alouges et al., (2009). The first one, µ1 ∈ I1=[−1, 1], controls the
radius of the two spheres in such a way that the total volume of the two spheres is
maintained. The second parameter, µ2 ∈ I2=[−3, 2], controls the distance between
the centre of the two spheres. The value of µ1=− 1 corresponds to the configuration
where the radius of the first sphere is R1=0.3096 and the radius of the second sphere
is R2=0.116, whereas the value of µ=1 corresponds to the opposite situation, with
R1=0.116 and R2=0.3096. The value of µ2= − 3 corresponds to the case where the
distance between the spheres is maximum, with the centres of the spheres placed at
(−3, 0) and (3, 0) respectively. The value of µ2=2 corresponds to the case where the
distance between the spheres is minimum, with the centres of the spheres placed at
(−0.5, 0) and (0.5, 0) respectively.

Using the axial symmetry of the problem, the computational reference domain is
chosen as Ω= ([−L,L]× [0, H]) \ (B+ ∪ B−), where

B± = {r ∈ R2 | ‖r ± r0‖ ≤ Rref}, (3.83)

where L=6, H=2, r0=(1.5, 0) and Rref=0.116. Figure 3.36 shows the triangular mesh
of the reference domain used for this numerical example. The mesh has 1,426 elements,
leading to a system in the HDG global problem of 22,260 equations for a degree of
approximation k=4. On the left part of the boundary a Dirichlet boundary condition,
corresponding to a horizontal velocity of magnitude one, is imposed. On the right
part of the boundary a homogeneous Neumann boundary condition is imposed. On
the surface of the two spheres a no-slip boundary condition is enforced and on the
rest of the boundary a slip boundary condition is imposed.

Figure 3.36: Axisymmetric flow around two microswimmers: Com-
putational mesh.

It is worth to comment the visible difference between the meshes shown in figures 3.27
and 3.36. The two meshes refer to a comparable problem, and, as the next paragraph
shows, are also associated with a similar mapping. By the way, while in the former
the reference configurations correspond to a possible configuration, in the latter it
does not. This computational mesh is the results of numerous numerical experiments
where the influence of the reference configuration on the PGD approximation has been
studied. While changes in the value of r0, i.e. the position of the spheres, has not
brought significant variations in the reduced solution, changes in the ratio Rout/Rref

and the value of Rint did. The most suitable configuration would be a value Rref large
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enough to include all the particularities of the flow around each sphere. Due to the
piecewise definition of the mapping, the value of Rout is limited by the value of Rint,
which itself is limited by the second value of the range I2 considered. As the spheres in
this example can get much closer respect the cylinders of the previous one, the design
of the reference mesh complicates. A good compromise has been considering a similar
value for the ratio Rout/Rref, in this case, resulting in Rout/Rref=3.8793 while for the
previous example in Rout/Rref=3.75. Being Rout limited, the only option available was
decreasing Rref. This issue can be avoided through a smoother deforming mapping,
as done for instance in Sevilla et al., (2020b) where the geometric mapping is built
solving a solid mechanics problem (Persson et al., 2009; Poya et al., 2016; Xie et al.,
2013).

Geometric mapping The mapping used in the example involving the flow around
two microswimmers is analogous to the one defined for the previous example, but
with a different parametric setting and coordinates system. For analogous reasons,
the mappings selected are only C0 on the artificial interfaces denoted by discontinuous
lines in figure 3.28. The first mapping, Mµ1 , is defined to account for the change
of radius of the two spheres and it is written in the general separable expression of
equation (3.22) with

M1
1(r) =


1

ρ
r−0 if ‖r−0 ‖ ≤ Rout

0 otherwise
ψ1

1(µ1) =
Rout(R

+(µ1)−Rref)

Rout −Rref
,

M2
1(r) =

{
r−0 if ‖r−0 ‖ ≤ Rout

0 otherwise
ψ2

1(µ1) =
Rout −R+(µ1)

Rout −Rref
,

M3
1(r) =

{
r0 if ‖r−0 ‖ ≤ Rout

0 otherwise
ψ3

1(µ1) = 1,

M4
1(r) =


1

ρ
r+

0 if ‖r+
0 ‖ ≤ Rout

0 otherwise
ψ4

1(µ1) =
Rout(R

−(µ1)−Rref)

Rout −Rref
,

M5
1(r) =

{
r+

0 if ‖r+
0 ‖ ≤ Rout

0 otherwise
ψ5

1(µ1) =
Rout −R−(µ1)

Rout −Rref
,

M6
1(r) =

{
−r0 if ‖r+

0 ‖ ≤ Rout

0 otherwise
ψ6

1(µ1) = 1,

(3.84)

where r±0 =r±r0, Rout=0.45 and, as detailed in section 3.4.5, r0=(1.5, 0) andRref=0.116.
The radius of the sphere centred at r0 is defined asR+(µ1)=−0.0372µ2

1+0.0968µ1+0.25

so that it takes value 0.116 for µ1=−1, 0.25 for µ1=0 and 0.3096 for µ1=1. The radius
of the sphere centred at −r0 is defined in terms of R+(µ1) in such a way that the total
volume of the two spheres is maintained, namely (R+)3+(R−)3=1/32. The piecewise
nature of the mapping is illustrated in figure 3.28, in the vicinity of one of the spheres.
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The second mapping, Mµ2 , is defined to account for the change of distance between
the spheres and it is written in the general separable expression of equation (3.22)
with

M1
2(r) =

{
d(z)

0

}
ψ1

2(µ2) = −µ2/2,

M2
2(r) = r ψ2

2(µ2) = 1,

(3.85)

where the function d(z) is given by

d(z) :=



z + L

z0 +Rint − L
if z ∈ [−L,−z0 −Rint]

−1 if z ∈ [−z0 −Rint,−z0 +Rint]
z

z0 −Rint
if z ∈ [−z0 +Rint, z0 −Rint]

1 if z ∈ [z0 −Rint, z0 +Rint]
z − L

z0 +Rint − L
if z ∈ [z0 +Rint, L]

, (3.86)

with Rint=0.47 and, as detailed in section 3.4.5, L=6.

Off-line phase The first four spatial modes for the velocity and pressure computed
with the proposed HDG-PGD are shown in figures 3.37 and 3.38. The computation

(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 4

Figure 3.37: Axisymmetric flow around two microswimmers: First
four normalised spatial modes of the velocity field.

(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 4

Figure 3.38: Axisymmetric flow around two microswimmers: First
four normalised spatial modes of the pressure field.
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was performed using the mesh of figure 3.36 with a degree of approximation k=4 for all
the variables and with a mesh of 10,000 elements in each parametric dimension with
also k=4. It is worth noting that the cost of the one-dimensional parametric problems
is negligible when compared to the cost of the spatial iteration. Therefore, a large
number of elements is used in the parametric dimension to ensure that the variation
induced by the geometric parameters are captured with no a priori knowledge of the
solution.

Figure 3.39 shows the first eight normalised parametric modes computed. As in pre-

(a) (b)

Figure 3.39: Axisymmetric flow around two microswimmers: First
eight normalised parametric modes.

vious example, in this example there are more parametric modes that have an im-
portant influence over the whole range of values for both µ1 and µ2. For instance,
in figure 3.39(a) the first, third, fifth and six parametric modes have a normalised
value near one for the whole range of values of µ1. A similar behaviour is observed
for the second parameter µ2. In addition, the second parameter, corresponding to the
distance between the spheres it can be observed that many of the modes have a much
more relevant influence near µ2=2. This is expected as this configuration corresponds
to the case where the distance between the spheres is minimum and therefore induces
an important variation in the flow field because the first sphere will influence the flow
that is reaching the second sphere.

The evolution of the relative amplitude of the modes is displayed in figure 3.40. The
results show that with 24 modes all the relative amplitude of the hybrid variable, used
to check convergence, is below 10−3. A slower decrease of the relative amplitudes
when compared with the previous examples can be observed. This is attributed to
two factors. First, this problem considers two geometric parameters and, second, the
range of variation of the distance is relatively high when compared to the minimum
radius of the spheres.
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Figure 3.40: Axisymmetric flow around two microswimmers: Con-
vergence of the mode amplitudes.

On-line phase To illustrate the variation in the geometry induced by the parame-
ters as well as the different flow features that are induced by the geometric changes,
figure 3.41 shows the magnitude of the velocity and the pressure fields in the three
dimensional domain for three different configurations.

(a) µ1 = −1, µ2 = −3 (b) µ1 = 0, µ2 = 0 (c) µ1 = 1, µ2 = 2

(d) µ1 = −1, µ2 = −3 (e) µ1 = 0, µ2 = 0 (f) µ1 = 1, µ2 = 2

Figure 3.41: Axisymmetric flow around two microswimmers: Ve-
locity (top) and pressure (bottom) fields for three different geometric

configurations.

(a) µ1 = −1, µ2 = −3 (b) µ1 = 0, µ2 = 0 (c) µ1 = 1, µ2 = 2

Figure 3.42: Axisymmetric flow around two microswimmer: Velocity
streamlines associated to velocity fields of figures 3.41(a)-3.41(c) for

three different geometric configurations.
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The first configuration, shown in figures 3.41(a) and 3.41(d), corresponds to the case
where the distance between the spheres is maximum and the sphere closer to the
inflow boundary has maximum radius. The opposite scenario, with the distance be-
tween spheres is minimum and the sphere closer to the inflow boundary has minimum
radius in shown in figures 3.41(c) and 3.41(f). Finally, the configuration displayed in
figures 3.41(b) and 3.41(e) corresponds to the case when the distance between the
spheres is half the maximum value and the radius of both spheres is the same.

Once the on-line solution is obtained, as done for the previous example in order to
verify its accuracy with respect the full order solution computed on the same mesh,
the relative value of the error of the velocity magnitude and pressure is computed.
The results show that a relative error of the order of 3.1× 10−3 or below is obtained

(a) µ1 = −1, µ2 = 0 (b) µ1 = −1, µ2 = 0

(c) µ1 = 0, µ2 = 1 (d) µ1 = 0, µ2 = 1

(e) µ1 = 1, µ2 = 2 (f) µ1 = 1, µ2 = 2

Figure 3.43: Axisymmetric flow around two microswimmer: Relative
value of the error of the velocity magnitude (left) and pressure (tight)

fields for three different geometric configurations.

for all three configurations for both velocity and pressure. The more accurate results
are obtained for the case with µ1=0 and µ2=0. It is worth to specify that this is not
related with the choice of the reference configuration but mainly with the choice of
the parametric domains. Results obtained with different reference configurations, not
reported in this document, shown in fact analogous results.

To analyse the accuracy of the proposed approach, figure 3.44 compares the drag
force on the two spheres as a function of the µ2, controlling the distance between
the spheres, and for three different configurations of the µ1, controlling the radius of
both spheres. The results obtained with the HDG-PGD approach are compared to
the results of the standard HDG method on a reference mesh. Both solutions show
an excellent agreement in all cases, with an overlap between the symbols used to plot
the results of the standard HDG method and the discontinuous line used to plot the
results of the proposed PGD approach.
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(a) First sphere (b) Second sphere

Figure 3.44: Axisymmetric flow around two microswimmer: Com-
parison of the drag computed on the first and second sphere with the
proposed HDG-PGD approach against a reference solution for different

configurations.

Finally, to stress the potential of the proposed approach, figure 3.45 shows the drag
force on the two spheres and the total drag as a function of both geometric parameters.
This figure shows that generalised solution computed with the HDG-PGD approach

(a) First sphere (b) Second sphere (c) Total

Figure 3.45: Axisymmetric flow around two microswimmer: Drag
force on the individual spheres and the total drag over the two spheres.

can be used to rapidly explore the whole space of parameters and used to find optimal
strokes, of interest in many applications (Alouges et al., 2009).
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3.4.6 Stokes flow around a sphere in a corrugated channel

The last example, inspired from the studies in Vieira et al., (2020) and Yang et al.,
(2017), considers the flow past a sphere placed in a corrugated channel.

The corrugated channel has a height of 1µm and the undulatory profile is defined by
the expression

y =

1
2 (fω + fn) + 1

2 (fω − fn) cos
(

16πx
7L

)
if |x| < 7

16L,

fn if 7
16L ≤ |x| ≤

1
2L,

(3.87)

where L=12.5µm, fω=2µm and the value of fn controls the oscillation of the bound-
ary. A sphere of radius R, centred at the origin, is placed inside the corrugated
channel. A Dirichlet boundary condition is imposed at one end of the channel, given
by uD(x)=

{
64(y2 − 1/4)(z2 − 1/4), 0, 0

}T , and a homogeneous Neumann boundary
condition is imposed at the other end. A homogeneous Dirichlet boundary condition
is on the rest of the boundary of the domain, corresponding to material walls.

To demonstrate the applicability and potential of the proposed methodology in three
dimensions, two geometric parameters are considered. The first parameter µ1 ∈ [−1, 1]

is used to control the radius of the sphere, defined as R(µ1)=(µ1 + 2)/10. The second
parameter µ2 ∈ [0, 2] controls the amplitude of the corrugated channel, given by
fn=1/2+µ2. The geometry of the reference domain, corresponding to µ1=µ2=0,
is shown in figure 3.46(a). Exploiting the symmetry of the problem, a mesh of a

(a) Geometry (b) Mesh

Figure 3.46: Flow around a sphere in a corrugated channel: Ge-
ometry of the domain and computational mesh of a quarter of the

domain.

quarter of the domain is considered, with 2,191 tetrahedral elements, as depicted in
figure 3.46(b).
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Geometric mapping Similarly to the previous example, the mapping used in the
example involving the flow around a sphere in a corrugated channel is designed as the
composition of two mappings.

The first mapping, Mµ1 , is defined to account for the change of radius of the sphere
and it is written in the general separable expression of equation (3.22) with

M1
1(x) =


1

r
x if ‖x‖ ≤ Rout

0 otherwise
ψ1

1(µ1) =
Rout(R(µ1)−Rref)

Rout −Rref
,

M2
1(x) =

{
x if ‖x‖ ≤ Rout

0 otherwise
ψ2

1(µ1) =
Rout −R(µ1)

Rout −Rref
,

M3
1(x) =

{
x if ‖x‖ > Rout

0 otherwise
ψ3

1(µ1) = 1,

(3.88)

where Rout=0.4 and Rref=0.2 and the radius of the sphere, centred at the origin, is
defined as R(µ1)=(µ1+2)/10. The associated spatial modes of the Jacobian of the
mapping result

J1
1(x) =

1

r3

y
2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 , J2
1(x) = J3

1(x) = I3. (3.89)

The second mapping, Mµ2 , is defined to account for the change of amplitude in the
undulatory part of the channel. It only affects the y coordinate and, more precisely,
only the definition of fn in equation (3.87). More precisely, the profile of the channel
is given by equation (3.87) with fn=1/2+µ2 so that the mapping results

M1
2(x) =

{
x if ‖x‖ ≤ fω/4

0 otherwise
ψ1

1(µ2) = 1,

M2
2(x) =

{
h(x) if ‖x‖ > fω/4

0 otherwise
ψ2

1(µ2) = µ2,

(3.90)

where h(x) = (x, 4/9y2 +5/9y+1/9, z). The associated spatial modes of the Jacobian
are

J1
2(x) = I3, J2

2(x) =

1 0 0

0 8/9y + 5/9 0

0 0 1

 . (3.91)

Remark 10. It is worth to note that for this example a quadratic mapping has been
applied. The imposed constraints are the continuity of both the mapping and its deriva-
tive in x=(0, fω/4, 0). For that reason the use of a computational mesh conforming
with the mapping is not required.
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Off-line phase The computation was performed using the mesh of figure 3.46(a)
with a degree of approximation k=3 for all the variables and with a mesh of 10,000
elements in each parametric dimension with also k=3.

(a) m = 1 (b) m = 2 (c) m = 3

(d) m = 4 (e) m = 5 (f) m = 6

Figure 3.47: Flow around a sphere in a corrugated channel: First
six normalised spatial modes of the velocity field.

(a) m = 1 (b) m = 2 (c) m = 3

(d) m = 4 (e) m = 5 (f) m = 6

Figure 3.48: Flow around a sphere in a corrugated channel: First
six normalised spatial modes of the pressure field.
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The first four spatial modes for the velocity and pressure computed with the proposed
HDG-PGD are shown in figures 3.47 and 3.48.

Figure 3.49 shows the first six normalised parametric modes computed. Compared to

(a) (b)

Figure 3.49: Flow around a sphere in a corrugated channels: First
six normalised parametric modes.

previous examples, the results show that more modes have an influence over the whole
range of parameters, illustrating the more complex nature of this three dimensional
example.

The evolution of the relative amplitude of the modes is displayed in figure 3.50. In

Figure 3.50: Flow around a sphere in a corrugated channel: Conver-
gence of the mode amplitudes.

this example, 12 modes are required to ensure the relative amplitude of the hybrid
variable, used to check convergence, is below 10−3.

On-line phase Figure 3.51 shows the magnitude of the velocity and the pressure
fields in the channel for three different configurations.

The results illustrate the variation in the velocity and pressure fields as the amplitude
of the channel and the radius of the sphere is increased.
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(a) µ1 = −1, µ2 = 0 (b) µ1 = 0, µ2 = 1 (c) µ1 = 1, µ2 = 2

(d) µ1 = −1, µ2 = 0 (e) µ1 = 0, µ2 = 1 (f) µ1 = 1, µ2 = 2

Figure 3.51: Flow around a sphere in a corrugated channel: Ve-
locity (top) and pressure (bottom) fields for three different geometric

configurations.

Once the on-line solution is obtained, in order to verify its accuracy with respect the
full order solution computed on the same mesh, the relative value of the error of the
velocity magnitude and pressure is computed. The results show that a relative error

(a) µ1 = −1, µ2 = 0 (b) µ1 = −1, µ2 = 0

(c) µ1 = 0, µ2 = 1 (d) µ1 = 0, µ2 = 1
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(e) µ1 = 1, µ2 = 2 (f) µ1 = 1, µ2 = 2

Figure 3.51: Flow around a sphere in a corrugated channel: Relative
value of the error of the velocity magnitude (left) and pressure (right)

fields for three different geometric configurations.

of the order of 2.5 × 10−2 or below is obtained for all three configurations for both
velocity and pressure. The more accurate results are obtained for the case with µ1=0

and µ2=1.

To assess the accuracy of the computed generalised solution computed with the pro-
posed approach, a reference solution is computed for the three configurations displayed
in figure 3.51. The reference solutions are computed on a much finer mesh with a
standard HDG solver. As a quantity of interest, the drag on the sphere is measured.
Figure 3.52 shows the evolution of the error of the drag force as the number of PGD
modes is increased. To further analyse the accuracy of the computed generalised

(g) µ1 = −1, µ2 = 0 (h) µ1 = 0, µ2 = 1 (i) µ1 = 1, µ2 = 2

Figure 3.52: Flow around a sphere in a corrugated channel: Evo-
lution of the error on the drag force as the number of PGD modes is
increased. The horizontal line denotes the reference error computed

on a finer mesh with the standard HDG method.

solution, the error of an HDG solution, computed in each configuration using the
same spatial resolution as the one used in the HDG-PGD formulation is considered.
The results show that the error of the HDG-PGD approach tends to the error of the
HDG solution computed for each configuration, showing the ability of the proposed
approach to accurately capture the solution for different geometric configurations.

As mentioned in the previous example, the proposed approach provides a generalised
solution that can be used to perform fast queries of different quantities of interest. To
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illustrate the potential of the developed HDG-PGD approach, figure 3.53 shows the
drag force on the sphere and the pressure drop, measured as the difference between
the pressure at the inlet and outlet, as a function of the geometric parameters µ1 and
µ2.

(a) Drag (b) Pressure drop

Figure 3.53: Flow around a sphere in a corrugated channel: Drag
force on the sphere and difference between the pressure at the inlet

and the outlet.

The results show that the drag force is not sensitive to the variation of the amplitude
of the channel oscillation but very dependent on the radius of the sphere. In contrast,
the pressure drop shows a dependency on both geometric parameters.
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Chapter 4

Comparison of a priori and a
posteriori PGD algorithms

In this chapter1the parametric problem (3.4), whose resolution needs to be efficiently
computed for a large number of configurations, is solved through two PGD-based
strategies. The a priori HDG-PGD technique and the a posteriori PGD described in
section 1.3. That allows constructing response surfaces for the real-time evaluation of
quantities of interest in terms of separated functions.

4.1 The a priori PGD algorithm

The a priori PGD algorithm introduced in section 3.3.6 of the previous chapter is here
recalled.

Algorithm 2 The a priori PGD algorithm
Require: For the greedy enrichment loop, the value η? of the tolerance. For the AD

loop, the number of iterations ni.
1: Set m← 1 and initialise the amplitude of the spatial mode σ1

û ← 1.
2: while σmû /σ

1
û > η? do

3: Set q ← 1 and initialise the parametric prediction.
4: Solve the HDG global and local problems to compute the spatial prediction.
5: while q < ni do
6: Solve the parametric linear system to compute the parametric correction.
7: Update the parametric prediction with the correction.
8: Solve the HDG global and local problems to compute the spatial correction.
9: Update the spatial prediction with the correction.

10: Increase the counter of the AD iterations q ← q + 1.
11: end while
12: Increase the mode counter m← m+ 1.
13: end while

1This chapter is a modified version of the submitted article “Separated response surfaces for flows
in parametrised domains: comparison of a priori and a posteriori PGD algorithms” (Giacomini,
Borchini, Sevilla, and Huerta, 2020b).
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Given a guess for the prediction of the parametric mode, the loop for the PGD enrich-
ment first determines a prediction of the spatial mode by solving the HDG global and
local problems (Algorithm 2 - Step 4). Then, the AD scheme computes the parametric
(Algorithm 2 - Steps 6-7) and spatial (Algorithm 2 - Steps 8-9) corrections solving a
parametric linear system and the HDG global and local problems, respectively. The
procedure in the AD scheme is then repeated until the maximum number of iterations
ni is achieved. Finally, the greedy iterations stop when the ratio of the amplitude of
the current mode to the one of the first mode is negligible (Algorithm 2 - Step 2).
The resulting a priori PGD strategy is reported in algorithm 2.

4.2 A posteriori proper generalised decomposition

Contrary to the a priori PGD, the a posteriori framework relies on constructing a
reduced basis starting from a series of snapshots. Each snapshot is defined as a vector

UT
s :=

[
ûT , ρT , uT , pT , LT

]
s

, s = 1, . . . , ns, (4.1)

where û, ρ, u, p and L denote the vectors of nodal values of the unknowns of prob-
lem (3.4), computed using the full-order HDG spatial solver for a given set of the
parameters. Hence, the size of each snapshot vector is equal to the number of degrees
of freedom of the HDG global and local problems. The ns snapshots are thus gathered
in a multidimensional tensor structure G. For the case of a unique parameter, this is
given by a tensor of order 2, that is, a matrix

G =
[
U1, U2, . . . , Uns

]
, (4.2)

where the lines correspond to the degrees of freedom of the HDG spatial discretisa-
tion and the columns are associated with the snapshots in the parametric interval. In
case more than one parameter is considered, a matrix of the form in equation (4.2)
is constructed in each parametric direction. The resulting structure is thus a multi-
dimensional tensor of order npa+1, with one dimension for each parameter plus one
dimension for the space.

The a posteriori PGD, also known as PGD separation or least-squares PGD (Díez
et al., 2018, 2019; Modesto et al., 2015), computes the separated approximation of G

in the form of product of rank-one approximations (3.32) using a greedy approach,
that is, given m−1 modes, the m-th term in the PGD expansion is computed as(

fmU ,ψ
m
1 , . . . ,ψ

m
npa

)
= arg min

∥∥∥G−Gm−1
PGD
− σmU f̃mU ⊗ ψ̃

m

1 ⊗ · · · ⊗ ψ̃
m

npa

∥∥∥
2
, (4.3)

where each vector f̃mU , ψ̃
m

1 , . . . , ψ̃
m

npa is sought in a subspace of Rd of appropriate di-
mension, namely the sizes of f̃mU and ψ̃

m

j , j=1, . . . , npa being the number of degrees
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of freedom of the HDG spatial solution U and of the parametric discretisations in the
directions Ij , j=1, . . . , npa, respectively.

From a practical point of view, the nonlinear problem (4.3) is solved using an AD
scheme. It is worth noticing that in this context, both spatial and parametric iterations
are determined as rank-one approximations on a purely algebraic level and they do
not require any information on the underlying multidimensional HDG discretisation.
Hence, their computation relies on elementary tensorial operations, i.e. products and
sums of separated objects (Díez et al., 2019), and the resulting cost is proportional
to the size of the vectors of spatial and parametric modes. The resulting a posteriori
PGD strategy is reported in algorithm 3. First, a set of ns snapshots is constructed
using the full-order HDG spatial solver (Algorithm 3 - Step 1). Then, in each PGD
enrichment iteration, the parametric mode is initialised with a user-defined guess and
the AD loop alternately computes the spatial (Algorithm 3 - Step 6) and parametric
(Algorithm 3 - Step 7) modes solving two rank-one problems at the algebraic level.
The above routine is repeated until a convergence criterion (Algorithm 3 - Step 8) is
fulfilled or the maximum number of iterations ni is achieved. Similarly to the a priori
PGD algorithm, the greedy enrichment loop stops when the ratio of the amplitude of
the current mode to the one of the first mode is negligible (Algorithm 3 - Step 3).

Algorithm 3 The a posteriori PGD algorithm
Require: For the greedy enrichment loop, the value η? of the tolerance. For the AD

loop, the value ησ of the tolerance on the amplitude variation and the maximum
number of iterations ni.

1: Compute ns snapshots solving the HDG global and local problems.
2: Set m← 1 and initialise the amplitude of the spatial mode σ1

û ← 1.
3: while σmû /σ

1
û > η? do

4: Set q ← 1 and initialise the parametric mode.
5: while εσ > ησ or q < ni do
6: Compute the rank-one spatial mode.
7: Compute the rank-one parametric mode.
8: Update the stopping criterion εσ = (σm,qû − σm−1

û )/σm,qû .
9: Increase the counter of the AD iterations q ← q + 1.

10: end while
11: Increase the mode counter m← m+ 1.
12: end while

4.3 Devising separated response surfaces

Once the reduced solution is computed for all the variables using either the a pri-
ori or the a posteriori algorithms presented above, parametric response surfaces can
be easily devised as a postprocess of the separated PGD solutions. More precisely,
separated response surfaces are obtained as explicit functions of the parameters of in-
terest. For the case of the drag force on an object of surface B, the rank-m separated
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approximation is given by

FmDPGD(µ) =

∫
B

(
−pm

PGD
(x,µ)Insd − (Lm

PGD
(x,µ) +Lm

PGD
(x,µ)T )

)
n dΓ

=

m∑
j=1

Djψj(µ)
(4.4)

where the Dj corresponds to the drag coefficient of the j-th spatial mode and is ob-
tained as

Dj :=

∫
B

(
−σjp f jp (x)Insd − σ

j
L(F j

L (x) + F j
L (x)T )

)
n dΓ. (4.5)

It is worth noticing that the accuracy of the separated response surface of a quantity
of interest directly depends upon the precision achieved by the PGD approximation of
the variables utilised for its computation (e.g. pressure and gradient of velocity in the
case of the drag). In this context, the HDG method used as full-order solver allows
to achieve optimal convergence of order k+1 for both the pressure and the mixed
variable representing the gradient of velocity (Giacomini et al., 2018; Sevilla et al.,
2020a). Thus, it provides additional accuracy in the approximation of the viscous
part of the drag with respect to classical primal finite element formulations, in which
this is obtained as a postprocess of the computed velocity field. To construct sepa-
rated approximations assessing the accuracy in a given quantity of interest, interested
readers are referred to García-Blanco et al., (2017, 2018), where PGD algorithms with
goal-oriented error control were investigated.

4.4 Critical comparison of a priori and a posteriori PGD
algorithms

Both the a priori and a posteriori approach introduced above have attractive proper-
ties and their performance differs depending upon the problem under analysis and the
parameters of interest. As it is not possible to know which of the two methodologies
will perform better for a given problem, this section offers a critical comparison of the
two approaches, highlighting the main advantages and disadvantages of each method.
It is worth noticing that geometric parameters are one of the more challenging prob-
lems to consider in the context of parametric PDEs as the changes induced by such
parameters not only have an influence on the discretised equations but also on the
computational spatial domain.

The main drawback of the a posteriori PGD approach is that the user is required
to select of a set of snapshots, corresponding to the simulations of the full-order
problem, for a given set of values of the parameters. In order to provide a comparison
of the cost of a priori and a posteriori PGD in terms of full-order solves, in this
work no problem-specific sampling is considered and the snapshots are computed in
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correspondence of the nodes of the parametric intervals used by the a priori algorithm.
Although more advanced sampling techniques have been proposed, see chapter 1, the
selected points are expected to produce accurate representations of the solution in
the parametric domain inheriting the good approximation properties of the utilised
Fekete nodal distributions. Despite the vast literature on sampling methods, it is not
possible to initially know the number of snapshots the a posteriori ROM will require
to capture the multidimensional solution accurately. In contrast, the a priori PGD
approach requires no previous knowledge of the solution and no snapshots need to
be selected by the user. Instead, a set of modes is automatically constructed in the
enrichment process and the required number of terms is automatically determined by
the greedy algorithm according to a user-defined tolerance. An important advantage
of the a posteriori approach is that the snapshots can be computed in parallel as
they are completely independent of each other. In contrast, the a priori approach
computes the modes sequentially within the enrichment process. The computation of
each mode involves several calls to the spatial solver in order to obtain the solution
of the nonlinear problem by using the AD scheme.

The main drawback of the a priori PGD approach is that its standard implementa-
tion is generally intrusive with respect to the spatial solver (Sevilla et al., 2020a,b).
This means that access to the code is required to devise the PGD algorithm starting
from the spatial solver. Despite some recent advances towards non-intrusive imple-
mentations of the a priori PGD (Courard et al., 2016; Tsiolakis et al., 2020a; Zou
et al., 2018), this aspect still represents an important challenge for the application
of the methodology in an industrial context, where the use of commercial software is
preferred. On the contrary, the a posteriori approach does not require access to the
code sources as it simply relies on a set of snapshots, which can be obtained using any
computational code.

Concerning the two types of separated approximations introduced in section 3.3.4, it
is worth mentioning that equation (3.32) and (3.33) are equivalent. In the latter, the
computation of each new mode is split into a prediction and a correction step. This
approach is fostered for the a priori PGD as it allows to refine the stopping criterion of
the AD scheme (Algorithm 2 - Step 5) by introducing an additional check to end the
iteration loop when the amplitude of the correction is negligible with respect to the
amplitude of the current mode, see Sevilla et al., (2020a). This test has been omitted
in the present work to perform a more transparent comparison with the a posteriori
PGD algorithm in which no information is provided a priori to reduce the number of
computed snapshots.

The points previously discussed are general for any parametric problem, but a crucial
aspect specific to geometrically parametrised problems concerns the mesh generation
process. In the a priori PGD framework, a reference configuration is used, see Ammar
et al., (2014), Sevilla et al., (2020a,b), and Zlotnik et al., (2015). Hence, only one
mesh is required to obtain the solution for any geometric configuration of interest. In
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contrast, the a posteriori PGD approach requires a different mesh for each snapshot. In
addition, it is worth noticing that the different meshes need to have the same number
of nodes and connectivity matrix. A common approach is thus to generate one mesh
and morph it to obtain the mesh corresponding to each geometric configuration of
interest. In this context, special attention need to be paid to the morphing algorithm,
especially in a high-order framework, as the deformation can induce a significant
decrease in the quality of the meshes.

4.5 Numerical results

This section presents a set of numerical examples to investigate the performance of a
priori and a posteriori PGD approaches in the context of Stokes flows in geometrically
parametrised domains. The problem of interest is the so-called PMPY microswimmer,
studied in section 3.4.5. The swimmer consists of two bladders of spherical shape that
can change their volume and mutual distance, with the constraint that the total
volume of the two bladders is kept constant. Several test cases involving one and two
geometric parameters, with different ranges of values, are investigated in the remaining
parts of this section.

4.5.1 Problem setup and comparison criteria

The computational domain and the computational mesh for the PMPY microswim-
mer are identical to those considered in 3.4.5. The interval for the first parameter is
I1=[−1, 1]. For µ1=−1, the radius of the two spheres are R1=0.3096 and R2=0.116 re-
spectively, whereas for µ1=1 the radii of the two spheres are R1=0.116 and R2=0.3096,
respectively. For the second parameter, two different intervals are considered in order
to study the influence of the variability introduced by geometric parameters on the
accuracy of both the a priori and the a posteriori PGD algorithms. The first interval
is I2=[−2,−1] and it induces a maximum and minimum distance between the blad-
ders equal to Dmax=5 and Dmin=4, respectively. The second interval considered is
I2=[−3, 2] and it induces a maximum and minimum distance between the bladders
equal to Dmax=6 and Dmin=1, respectively.

For the a priori PGD approach, 10 elements are used to discretise the parametric
domain I1, whereas 20 and 100 elements are employed for the intervals I2=[−2,−1]

and I2=[−3, 2], respectively. The different number of elements in each parametric
interval has been selected after observing that the variation in the flow induced by
the first parameter is weaker than the variation induced by the second one (Sevilla
et al., 2020a,b). It is worth noticing that the set of nodes used to discretise the
second parametric dimension in the first case, I2=[−2,−1], is a subset of the nodes
selected for the second case, where I2=[−3, 2]. In all the numerical tests, a degree of
approximation k=4 is utilised for both the spatial and the parametric discretisations
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and non-uniform Fekete nodal distributions are employed. For the a posteriori PGD
algorithm, the snapshots are computed in correspondance of the position of the nodes
in the parametric space utilised for the a priori approach.

To compare the accuracy of the a priori and the a posteriori PGD algorithms, two
error measures are considered.

First, a multidimensional L2(Ω×I) error is defined for each variable, namely velocity,
pressure and gradient of the velocity, by using a reference solution. For instance, the
multidimensional L2(Ω× I) error measure for the velocity field is given by

Eu :=

(∫
I
∫

Ω(uPGD(x,µ)− uREF(x,µ))·(uPGD(x,µ)− uREF(x,µ))dΩ dµ∫
I
∫

Ω uREF(x,µ)·uREF(x,µ) dΩ dµ

)1/2

. (4.6)

It is worth noticing that the evaluation of the multidimensional error in equation (4.6)
requires a reference solution for each integration point of the parametric space. This is
done by generating a new mesh and performing a new full-order computation for each
geometric configuration described by an integration point in the parametric space.
Each reference solution is computed via HDG with a higher order polynomial approx-
imation and a finer mesh to ensure that the difference between the numerical PGD
solutions and the reference solution provides an accurate description of the error of the
reduction strategy. For the example with I1=[−1, 1] and I2=[−3, 2], a total of 25,000
reference solutions were required to compute this error measure, since five integration
points in each parametric element are utilised for k=4.

Second, the separated response surface for the drag force FD and its error are considered
to assess the accuracy of the PGD-based strategies analysed. More precisely, the L2(I)

error measure for the drag force in the parametric space is defined as

ED =

(∫
I(FDPGD(µ)− FDREF(µ))2 dµ∫

I FDREF(µ)2 dµ

)1/2

, (4.7a)

whereas the error in the quantity of interest FD as a function of the parameters is given
by

εD(µ) =
|FDPGD(µ)− FDREF(µ)|

|FDREF(µ)|
. (4.7b)

4.5.2 One geometric parameter

In this section, two geometric mappings, affecting independently the radius of the
spherical bladders and their distance, are considered. An extensive comparison of
accuracy and computational cost of the a priori and the a posteriori PGD approaches
is presented for these two cases and special attention is devoted to the PGD-based
separated response surfaces for the drag force.
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Varying the radius of the spherical bladders

The first example involves the simulation of the Stokes flow past the PMPY mi-
croswimmer when the domain is parametrised using µ1 and the distance between the
centres of the two spheres is fixed and equal to 3. To evaluate the influence of the
number of nonlinear iterations in the AD scheme of the a priori PGD, different num-
bers of iterations are considered, namely ni=1, 2, 3, 5. In addition, to evaluate the
influence of the number of snapshots used in the a posteriori PGD approach, different
numbers of snapshots are employed, namely ns=11, 21, 41.

First, the effect of the geometric mapping on the quality of the meshes is investigated.
Figure 4.1 displays the mesh quality, measured as the scaled Jacobian of the isopara-
metric mapping (Poya et al., 2016; Xie et al., 2013), of two deformed configurations
with the radius of the bladders as geometric parameter. The mesh quality map shows

(a) µ1 = −1

(b) µ1 = 1

Figure 4.1: Mesh quality of two deformed configurations for the
mapping with µ1 as a geometric parameter.

that for the sphere with minimum radius, 0.116, the quality is lower than one only in
the elements with an edge on the boundary or on the interior interface used to define
the piecewise geometric mapping described in Sevilla et al., (2020a). This is due to the
use of the mesh generation technique described in Poya et al., (2016) and Xie et al.,
(2013), where only the elements in contact with curved entities are represented with
high-order polynomials. In contrast, for the sphere with maximum radius, 0.3096,
all the elements in the region where the mapping is different from the identity are
deformed.

Figure 4.2 shows the evolution of the L2(Ω×I1) error measure for velocity and pressure
as a function of the number of modes, m, for both the a priori and the a posteriori
PGD approaches. The results in figure 4.2(a) show that the a posteriori approach is
able to provide highly accurate results, with an error below 10−3, with only five modes
and using 11 snapshots. If a higher accuracy is required, the experiments show that
increasing the number of snapshots to 21 is not sufficient and this number need to be
increased to 41 in order to be able to reduce the error below 10−4.
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(a) u (b) p

Figure 4.2: Evolution of the L2(Ω×I1) error for (a) velocity and (b)
pressure as a function of the number of PGD modes for the problem
with one geometric parameter controlling the radius of the spherical
bladders. The legend details the number ns of snapshots used by the
a posteriori PGD approach (blue) and the number ni of nonlinear AD

iterations used by the a priori PGD approach (red).

For the a priori approach, the results show that with only one iteration in the AD
scheme, the accuracy of the computed modes is limited and the error stagnates at a
level almost two orders of magnitude higher than the corresponding results obtained
performing two iterations. In addition, this example also shows that two iterations is
the optimal value as higher values, for instance three or five iterations, provide results
with almost the same accuracy but they require additional solutions of the spatial
problem. With two iterations in the AD scheme, the a priori PGD approach requires
up to 20 modes to reach an accuracy that is comparable to the accuracy obtained by
the a posteriori approach with five modes and 41 snapshots.

To further analyse the accuracy of the two PGD approaches, the evolution of the
L2(Ω × I1) error for the gradient of velocity and the L2(I1) error for the drag force
on the two spherical bladders is computed as a function of the number of modes
(Fig. 4.3). It can be observed that the results for the gradient of velocity are very
similar, qualitatively and quantitatively, to the ones presented in figure 4.2(b) for the
pressure field. This is due to the extra accuracy provided by the HDG formulation in
the gradient of velocity, compared to other approaches based on primal formulations.
Furthermore, this example also confirms that the accuracy that is obtained in the drag
force is similar to the accuracy obtained in the pressure and in the gradient of velocity,
from which it is computed. In all cases, the a posteriori PGD approach requires five
modes and 41 snapshots to construct a solution with an error in the drag force below
10−3, whereas the a priori approach achieves a similar level of accuracy using two
iterations and 15 modes. Hence, the results show that the two PGD approaches
require a similar computational cost to reach an error in the drag force below 10−3.
The a priori approach requires the solution of 45 spatial problems (i.e. 15 modes, each
computed with two iterations of the AD scheme plus the initial solve to perform the
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(a) L (b) FD

Figure 4.3: Evolution of (a) the L2(Ω×I1) error for the gradient of
velocity and (b) the L2(I1) error for the drag force as a function of the
number of PGD modes for the problem with one geometric parameter
controlling the radius of the spherical bladders. The legend details the
number ns of snapshots used by the a posteriori PGD approach (blue)
and the number ni of nonlinear AD iterations used by the a priori

PGD approach (red).

prediction of the mode, see algorithm 2), whereas the a posteriori approach utilises
41 snapshots to reach the same level of accuracy.

It is very important to emphasise that no compression of the modes obtained in the a
priori approach, see Modesto et al., (2015), has been performed to enable the reader
to clearly see the number of calls to the spatial solver required. However, the number
of modes computed by the two approaches is expected to be the same when the PGD
compression is performed. It is also worth noticing that both the a priori and the a
posteriori algorithms stagnate at the same level of error as this is the error induced
by the hypothesis of separability of the exact solution of the problem.

In a similar fashion, separated response surfaces for quantities of interest can be
devised as explicit functions of the parameter. Figure 4.4 reports the response surface
of the drag force as a function of the radius of the two spherical bladders, computed
using the a priori PGD. As expected, the drag is maximum on the first sphere when
its radius is maximum (i.e. µ1=−1) and it decreases monotonically until reaching the
configuration of minimum radius for µ1=1. An analogous behaviour is observed for
the second sphere, with the drag force spanning from its minimum value at µ1=−1

to its maximum at µ1=1. Moreover, the forces on the two spheres are equal for the
geometric configuration of µ1=0, that is, when the two bladders have the same volume
(Fig. 4.4(a)). For the sake of completeness, figure 4.4(b) displays the total drag on
the two spheres as a function of the geometric parameter µ1. The results obtained
with the a posteriori PGD are qualitatively and quantitatively similar, whence they
are omitted for the sake of brevity. A detailed comparison of the accuracy of the two
approaches is presented in section 4.5.2.
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(a) Drag force on each sphere (b) Total drag force

Figure 4.4: Response surfaces of the drag force as a function of the
radius µ1 of the first sphere.

Varying the distance between the spherical bladders

The second example considers a geometrically parametrised problem, where the pa-
rameter controls the distance between two equal spherical bladders with radius 0.25.
It is worth recalling that the reference geometry in figure 3.36 is characterised by
two equal spheres of radius Rref=0.116. Hence, for the cases studied in this section,
the geometric mapping accounts for both a parameter-dependent variation of the dis-
tance between the two bladders and an expansion of the spheres, independent of the
parameter.

Two intervals I2 are considered to analyse the sensitivity of the PGD solutions to the
range of variations of the parameter.

The first interval is taken as I2=[−2,−1] and figure 4.5 reports the evolution of the
L2(Ω × I2) error for velocity, pressure and gradient of velocity and the L2(I2) error
for the drag force as a function of the number m of modes. The results show that with
only four modes, the a posteriori PGD approach is able to produce the most accurate
results for all the variables, including the drag force computed from the pressure and
the gradient of velocity. It is worth noticing that in this example the accuracy of
the a posteriori approach in the drag force does not improve when increasing the
number of snapshots and 21 snapshots are sufficient to provide a drag force with
an error below 10−5. For the a priori approach, five modes computed with two AD
iterations are required to obtain the maximum accuracy in all the variables. With
one iteration, the error in the drag force is more than one order of magnitude higher
than the one obtained with two iterations. Furthermore, a higher number of iterations
does not produce any gain in accuracy despite the increased computational cost. In
this case, the two PGD approaches show similar performance as the a priori algorithm
provides an error in the drag force below 10−5 with 12 solutions of the spatial problem
(i.e. four modes, each computed with two iterations of the AD scheme plus the initial
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(a) u (b) p

(c) L (d) FD

Figure 4.5: Evolution of (a-c) the L2(Ω × I2) error for velocity,
pressure and gradient of velocity and (d) the L2(I2) error for the drag
force as a function of the number of PGD modes for the problem
with one geometric parameter controlling the distance between the
spherical bladders and I2=[−2,−1]. The legend details the number
ns of snapshots used by the a posteriori PGD approach (blue) and
the number ni of nonlinear AD iterations used by the a priori PGD

approach (red).

solve to perform the prediction of the mode, see algorithm 2), whereas the a posteriori
approach requires 21 snapshots for a similar level of accuracy.

Second, the parametric interval is extended to I2=[−3, 2]. Figure 4.6 displays the
mesh quality, measured as the scaled Jacobian of the isoparametric mapping, of two
deformed configurations with the distance between the bladders as geometric param-
eter. The results report that the mesh quality is not affected by the mapping con-
sidered as the change in distance is piecewise linear and the lower mesh quality only
concentrates in the vicinity of the spheres. This is due to the deformation required to
transform the reference mesh with radius 0.116 into the geometric configuration under
analysis, associated with the bladders of equal volume, in which the radius achieve
the value 0.25.

Figure 4.7 shows the evolution of the L2(Ω × I2) error for velocity, pressure and
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(a) µ2 = −3

(b) µ2 = 2

Figure 4.6: Mesh quality of two deformed configurations for the
mapping with µ2 as a geometric parameter.

gradient of velocity and the L2(I2) error for the drag force as a function of the number
m of modes. It is worth empasising that a simple visual comparison of the results in
figures 4.5 and 4.7 clearly illustrates the challenge that a larger interval of variation
of the geometric parameter induces for both PGD approaches.

The results show that the a posteriori approach requires 10 modes in order to reach the
maximum accuracy for velocity, pressure and gradient of velocity. In addition, it can
be observed that the a posteriori algorithm requires eight modes and 201 snapshots
to provide an error in the drag force below 10−5. A higher number of snapshots does
not lead to a further reduction in the error, whereas a lower number of snapshots,
101, is responsible for a slight increase in the error. Concerning the a priori PGD,
the AD scheme with one iteration leads to a stagnated error that is several orders
of magnitude higher than the one obtained with two or more iterations. For two
iterations, the number of modes required to reach the maximum accuracy is 15 and
for three or five iterations the number of modes required varies between 10 and 12.
When the drag force is considered, the a priori approach shows that an accuracy
below 10−5 can be obtained with two iterations and 14 modes, three iterations and 10
modes or five iterations and 10 modes. The most efficient alternative thus consists of
computing 10 modes with three AD iterations for a total of 40 spatial solves, requiring
a marginally lower cost than the computation of 14 modes with two AD iterations,
that is, 42 calls to the HDG spatial solver.

Comparing the performance of the a priori and a posteriori approaches for this more
challenging problem, it is clear that the a priori approach is capable of producing the
same accuracy as the a posteriori approach with a significant lower computational
cost. For instance, to reach an accuracy in the drag force below 10−5, the a priori
approach requires 40 solutions of the spatial problem whereas the same level of accu-
racy cannot be reached by the a posteriori approach with 101 snapshots. In this case
the a posteriori approach requires 201 snapshots, which is five times more than the a
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(a) u (b) p

(c) L (d) FD

Figure 4.7: Evolution of (a-c) the L2(Ω × I2) error for velocity,
pressure and gradient of velocity and (d) the L2(I2) error for the drag
force as a function of the number of PGD modes for the problem
with one geometric parameter controlling the distance between the
spherical bladders and I2=[−3, 2]. The legend details the number
ns of snapshots used by the a posteriori PGD approach (blue) and
the number ni of nonlinear AD iterations used by the a priori PGD

approach (red).

priori method. Although this may seem a clear disadvantage of the a posteriori PGD,
it is worth recalling that the 201 snapshots could be computed in parallel whereas
the solution of the spatial problems in the a priori approach needs to be performed
sequentially. In addition, different sampling methods could be considered for the a
posteriori approach in order to potentially reduce the number of snapshots required,
but this is out of the scope of the current work.

As in the previous example, the separated response surface of the total drag force on
the two spheres is computed using the a priori PGD algorithm. It is worth noticing
that the range of values of µ2 considered in figure 4.8(a) is a subinterval of the one
analysed in figure 4.8(b). The scales of the two figures confirm the higher variability of
the flow quantities when larger parametric intervals are considered and the consequent
additional difficulties faced by the PGD-ROM strategies to cope with the sensitivity
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to the range of values considered.

(a) I2 = [−2,−1] (b) I2 = [−3, 2]

Figure 4.8: Response surfaces of the total drag force as a function
of the distance µ2 between the two spheres, for two different ranges of

values of the parameter.

Accuracy of a priori and a posteriori response surfaces

The previous examples with one geometric parameter have shown that, when the
error in equation (4.7a) is considered, the computational cost of the a priori PGD is
as competitive as the a posteriori one and outperforms it for a larger range of the
parametric interval. However, this quantity measures the average accuracy over the
whole parametric domain, without considering the worst case scenarios, that is, the
cases where the maximum error is observed. To further compare the two approaches,
figure 4.9 displays the value of the error in equation (4.7b) in the drag force, as a
function of the parameter µ1 for the first example with one geometric parameter
controlling the radius of the spherical bladders. The minima observed for both the

(a) Error measure (b) Smoothed error measure

Figure 4.9: Error in the drag, defined in equation (4.7b), as a func-
tion of the parameter µ1.
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a priori and the a posteriori approaches in figure 4.9(a) coincide with the midpoints
of the elements I1

e , e=1, . . . , n1
el as these locations correspond to both a high-order

node and an integration point for the fourth-order polynomial approximation used in
each element of the parametric space. More importantly, the results show that the
accuracy of the a priori and the a posteriori approaches is almost identical, not only
when measured in the L2(I1) norm (Fig. 4.3(b)), but also when the pointwise error
in the drag force is displayed for every configuration in I1. To capture the qualitative
behaviour of the error as a function of µ1, a smoothing is displayed in figure 4.9(b).
The results clearly show that the error is slightly higher near the boundary of the
parametric interval. The smoothing is performed by considering a single value for the
error in each element, obtained as the average of the error at all integration points.

Similarly, figure 4.10 compares the value of the smoothed error measure in the drag
force as a function of the parameter µ2 for the second example, with one geometric
parameter controlling the distance between the spherical bladders. Both cases previ-

(a) I2 = [−2,−1] (b) I2 = [−3, 2]

Figure 4.10: Smoothed error measure in the drag force, defined in
equation (4.7b), as a function of the parameter µ2.

ously studied, with I2=[−2,−1] and I2=[−3, 2] are displayed, showing the increased
difficulty of computing an accurate response surface as the range of values in the
parametric space increases. For I2=[−2,−1], the accuracy is almost independent of
the value of the parameter, whereas for I2=[−3, 2] a more significant dependence is
observed, especially near µ2=2, that is, when the distance between the spherical blad-
ders is minimum. It is clear that for large values of µ2, there is a strong influence in
the flow impinging onto the second sphere caused by its proximity to the first sphere.

Finally, the comparison of the results in figures 4.9 and 4.10 clearly illustrates the
rationale behind the choice of the resolution for the discretisation of the intervals I1

and I2. Given the limited variation of the solution in figure 4.9(b), only 10 elements
were considered in the first parametric dimension, whereas the discretisation of the
second parametric dimension contains 20 elements for the interval I2=[−2,−1] and
100 elements for the case of I2=[−3, 2].
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4.5.3 Two geometric parameters

In this section, the two geometric parameters studied separately in the previous ex-
amples are considered in a unique simulation.

First, the interval for the parameter that controls the distance is set to I2=[−2,−1].
Figure 4.11 shows the evolution of the L2(Ω × I) error for velocity, pressure and
gradient of velocity and the L2(I) error for the drag force as a function of the number
m of modes. The results reveal that the a posteriori approach provides almost identical

(a) u (b) p

(c) L (d) FD

Figure 4.11: Evolution of (a-c) the L2(Ω × I) error for velocity,
pressure and gradient of velocity and (d) the L2(I) error for the drag
force as a function of the number of PGD modes for the problem with
two geometric parameters and I2=[−2,−1]. The legend details the
number ns of snapshots used by the a posteriori PGD approach (blue)
and the number ni of nonlinear iterations used by the a priori PGD

approach (red).

accuracy using 231 and 861 snapshots. The errors in velocity and pressure are below
10−2 and the error in the gradient of velocity is almost 10−2. In this case, four modes
are sufficient to obtain the maximum accuracy in velocity, pressure and gradient of
velocity, whereas an additional mode is required to achieve the most accurate results
in the drag force. Using 3,321 snapshots, the a posteriori PGD computes 10 modes
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and provides much more accurate results, with an error one order of magnitude lower,
compared to the computation with 861 snapshots. To obtain an error in the drag force
below 10−2, the a posteriori approach requires four modes and 231 snapshots, whereas
seven modes and 3,321 snapshots are required to achieve an error below 10−3. When
the a priori PGD algorithm is employed, one nonlinear iteration in the AD scheme is
sufficient to obtain an accuracy almost identical to the one provided by the a posteriori
approach with 231 and 861 snapshots. In addition, by considering only two nonlinear
iterations, the a priori approach is capable of producing the same accuracy as the a
posteriori PGD with 3,321 snapshots. In both cases, the number of modes required
by the a priori and the a posteriori approaches to obtain the maximum accuracy is
the same.

For this example, the a priori approach is therefore extremely competitive as, for an
error in the drag force below 10−2, it only requires the solution of 10 spatial problems
(i.e. five modes, each computed with one iteration of the AD scheme plus the initial
solve to perform the prediction of the mode, see algorithm 2), whereas the a posteriori
approach needs 231 snapshots. For higher accuracy, namely for an error in the drag
force below 10−3, the a priori approach requires the solution of 21 spatial problems
(i.e. seven modes, each computed with two iterations of the AD scheme plus the initial
solve to perform the prediction of the mode, see algorithm 2), whereas 3,321 snapshots
are needed by the a posteriori approach. As mentioned in section 4.2, the a posteriori
approach benefits from the possibility to compute the snapshots in parallel, but this
example shows that the number of calls to the spatial solver required is significantly
larger than the ones performed using the a priori algorithm. In addition, the results
suggest that the higher the accuracy requested by the user, the more competitive the
a priori approach is. In this example, for an error in the drag force below 10−2, the
a priori approach requires less than 5% of the number of calls to the HDG solver
performed by the a posteriori PGD algorithm, whereas for an error in the drag force
below 10−3, the number of spatial solutions required by the a priori approach is less
than 1% of the corresponding a posteriori approximation.

The last example considers the more challenging scenario with two geometric param-
eters and with the interval for the distance between the bladders equal to I2=[−3, 2].
Figure 4.12 reports the evolution of the L2(Ω×I) error for velocity, pressure and gra-
dient of velocity and the L2(I) error for the drag force as a function of the number m
of modes. The results are qualitatively similar to the previous example but the num-
ber of snapshots and modes required by the a posteriori and a priori PGD approaches
changes significantly. The a posteriori approach with 1,111 and 4,221 snapshots pro-
vide almost identical accuracy in all the variables. In this case, 15 modes are sufficient
to provide the maximum accuracy in velocity, pressure and gradient of velocity. One
order of magnitude more accurate results are obtained if the number of snapshots is
increased to 16,441. In terms of the drag force, with 1,111 snapshots and 10 modes the
a posteriori approach is able to provide an accuray below 10−2. To obtain an accuracy
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(a) u (b) p

(c) L (d) FD

Figure 4.12: Evolution of (a-c) the L2(Ω × I) error for velocity,
pressure and gradient of velocity and (d) the L2(I) error for the drag
force as a function of the number of PGD modes for the problem
with two geometric parameters and I2=[−3, 2]. The legend details
the number ns of snapshots used by the a posteriori PGD approach
(blue) and the number ni of nonlinear iterations used by the a priori

PGD approach (red).

below 10−3, the a posteriori approach requires 16,441 snapshots and 13 modes. In this
example, the a priori approach with only one nonlinear AD iteration is not able to
produce results with an error in the drag force below 10−2. It is worth noticing that,
despite an accurate velocity field is obtained, the error in both pressure and gradient
of velocity is higher than 10−2. However, by performing only two nonlinear iterations
in the AD scheme and computing enough modes, the error in the velocity field drops
of two orders of magnitude and accurate results are obtained for both pressure and
gradient of velocity, with an error below 10−3.

The a priori approach with 14 modes and two nonlinear iterations provides a solution
with an error in the drag force below 10−3. To obtain the same accuracy, the a
posteriori approach also requires 14 modes but the number of snapshots needed for
this challenging problem is 16,441. This means that the a posteriori approach requires
391 times extra spatial solutions to provide the same error as the a priori approach.
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The results illustrate again that the higher the accuracy required and the higher the
variability in the solution introduced by the geometric parameters, the more beneficial
is the use of the a priori approach.

Accuracy of a priori and a posteriori response surfaces

The separated response surfaces for the total drag force on the spheres computed
using the a priori PGD are presented in figure 4.13, as a function of the parameters
µ1 and µ2. The results confirm the increased sensitivity of the quantity of interest to

(a) I2 = [−2,−1] (b) I2 = [−3, 2]

Figure 4.13: Response surfaces of the total drag force as a function
of the radius µ1 of the first sphere and the distance µ2 between the
two bladders, for two different ranges of values of the parameter µ2.

the extended range of the parameter µ2, as already observed in figure 4.8, with the
appearence of localised variations of the drag force in the vicinity of the value µ2=2

(Fig. 4.13(b)).

The previous two examples with two geometric parameters have shown that the a pri-
ori PGD approach is competitive when the multidimensional error measure in equa-
tion (4.7a) is considered. To further analyse the performance of both PGD approaches,
figure 4.14 reports the smoothed pointwise error of the drag force as a function of the
two parameters µ1 and µ2 for the first example in this section, when the second pa-
rameter belongs to the interval I2=[−2,−1]. The results show that both the a priori
and the a posteriori approaches produce almost identical results for each value of the
two geometric parameters. The behaviour is very similar to the one observed for the
solution with only one parameter, as reported in figures 4.9(b) and 4.10(a). A slightly
higher error is observed for the a priori PGD near the left and right boundaries of the
parametric domain, corresponding to the maximum and minimum radius of the first
sphere, respectively. In addition, the accuracy obtained is almost independent on the
value of the second parameter. This is attributed to the fact that, with the interval
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(a) εD, a priori PGD (b) εD, a posteriori PGD

Figure 4.14: Error map for the drag force as a function of the two
parameters µ1 ∈ [−1, 1] and µ2 ∈ [−2,−1].

I2=[−2,−1] considered here, the minimum distance between the spheres does not
induce a significant variation of the flow impinging onto the second sphere.

The same study is repated for the case of I2=[−3, 2]. Figure 4.15 shows the smoothed
error of the drag force as a function of the two parameters µ1 and µ2 for the second
example, with µ2 ∈ [−3, 2]. Despite the L2(I) error measure is almost identical

(a) εD, a priori PGD (b) εD, a posteriori PGD

Figure 4.15: Error map for the drag force as a function of the two
parameters µ1 ∈ [−1, 1] and µ2 ∈ [−3, 2].

for the a priori and the a posteriori PGD approaches (Fig. 4.12(d)), the error map
displays important differences between the two methods. More precisely, the error
map of the a priori approach reveals higher error in the vicinity of the boundary of
I, whereas the error of the a posteriori PGD does not show such increase near the
boundary. It is worth noticing that the higher errors observed in the a priori approach
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are very localised and therefore they are not observed when the L2(I) error measure
is computed. In addition, the higher errors are not only observed for the maximum
value of the parameter µ2 but also for lower values of µ2.

This result reveals the increased difficulty in addressing problems with more than
one geometric parameter with the a priori approach. Furthermore, the study shows
that the conclusions of independent studies with only one geometric parameter do not
extend to problems with the same parameters considered in a single simulation.
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Chapter 5

Conclusions and future
developments

5.1 Summary and contributions

In the following, the more relevant contributions of this thesis are summarised.

Chapter 2 devised the HDG formulation for axisymmetric Stokes flow problems. The
more challenging case, where the axis of symmetry intersects the computational do-
main, was considered, which to the best of the author’s knowledge, had never been
formulated in the context of HDG. The proposed formulation shows that in this sce-
nario, the boundary condition imposed in the axis of symmetry is a slip condition.
The formulation developed shows that this boundary condition only influences the
global problem of the HDG formulation and not the element-by-element local prob-
lems. Next, under the additional hypothesis of non-rotative flow uθ=0, the three-
dimensional axisymmetric problem was reduced to a bi-dimensional problem with one
extra unknown, Λ representing the fifth nonzero component of the mixed variable,
corresponding to the gradient of the velocity tensor. The proposed formulation al-
lows re-using completely a bi-dimensional HDG implementation accounting of some
extra-terms arising from the hypothesis of axisymmetry. The numerical results demon-
strated the optimal rates of convergence for all variables, including the new variable
Λ. Finally, a comparison between axisymmetric and three-dimensional formulations
for the same physical problem of the flow past a sphere was presented. The results
showed the significant saving in terms of degrees of freedom that an axisymmetric
strategy provides for a given accuracy in a quantity of interest analysed, e.g. the drag
force.

Chapter 3 proposed the HDG-PGDmethodology for geometrically parametrised Stokes
flows. Considering the Stokes equation in a domain Ωµ, where the superindex µ

denotes the parametric dependence of the spatial domain Ω, the multidimensional
geometrically parametrised Stokes equation was stated. The HDG strong and weak
forms were obtained for both local and global problems in a multidimensional frame-
work, explicitly stating the bilinear and linear forms appearing. The adoption of an
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HDG formulation enables the use of equal order of approximation for all the variables
circumventing the LBB condition. That is advantageous in the context of geomet-
rically parametrised problems in complex domains as it enables the use of standard
isoparametric formulations. Finally, the use of an HDG formulation implies that no
special treatment of the Dirichlet boundary conditions is required. Given the mul-
tidimensional nature of the problem, a reduced order model framework, based on
the PGD, was introduced. Analogously to other ROMs for parametric PDEs (Pa-
tera et al., 2007; Rozza, 2014), HDG local and global weak forms were defined on
a parameter-independent reference domain for which a single mesh was generated.
That was possible introducing a proper affine dependence of the domain on the pa-
rameters µ whose separated representation, in this case, was assumed to be given
analytically. Also, the separated description of the determinant and the adjoint of the
Jacobian of the mapping were obtained using the Leibniz formula and the Leverrier’s
algorithm, respectively. The use of a method such HDG was shown to be crucial
in achieving the separability of all the terms appearing in the forms arisen from the
introduction of the mapping. Each term, or mode, of the PDG approximation was
computed solving a non-linear problem exploiting an alternate direction algorithm
(ADA). The HDG-PGD algorithm was implemented following a predictor-corrector
PGD rationale, presented in Tsiolakis et al., (2020a). The HDG local postprocess used
to devise a superconvergence solution is analysed in geometrically parametrised frame-
works showing the necessity of the high-order PGD projection to obtain a reduced
basis for the postprocessed velocity. The applicability and potential of the proposed
HDG-PGD technique is demonstrated using several numerical examples. Academic
test cases with analytical solutions are used to demonstrate the optimal approxima-
tion properties of the developed HDG-PGD approach. More complex examples in
two and thee dimensions involving two geometric parameters are used to show the
potential of the proposed ROM. The application examples, relevant to the microflu-
idics community, show the flow around a microswimmer and the flow in a corrugated
channel with a spherical obstacle. In both cases the ability of the proposed ROM to
compute parametric solutions and response surfaces is demonstrated.

Chapter 4 presented a comparison of a priori and a posteriori PGD algorithms for the
solution of geometrically parametrised Stokes flow problems. The a priori PGD is used
in combination with the high-order HDG solver. For both methods, separated response
surfaces of a quantity of interest in microfluidics applications are devised. Extensive
numerical experiments are performed to test the sensitivity of the two PGD approaches
to the range of the parametric intervals and the number of parameters considered. For
problems with a unique geometric parameter inducing limited variations in the flow,
accuracy and performance of the two approaches are comparable. When the range of
variation of the parameters is extended, the a priori approach requires a significantly
lower computational cost, measured in terms of the number of full-order HDG solves,
with respect to the a posteriori PGD.
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Appendix A presented the HDG-PGD method for viscosity parametrised Oseen flow.
This chapter intended to apply the HDG-PGD technique to a problem whose para-
metric nature was concealed not in the geometry, as done for previous cases, but in
some physical proprieties, e.g. material proprieties or boundary conditions. As Stokes
problems scale linearly with the variation of the viscosity and boundary conditions,
the Oseen equation was considered. Separability of both viscosity and convective term
were discussed showing the less complexity of a problem affected by material param-
eters with respect geometrical ones. The reduced basis of the postprocessed velocity
could be devised without the need of extra computations. Focusing on a viscosity
parametrised Oseen flow, an academic example commonly used for validation pur-
poses was proposed (Kovasznay, 1948). A range for the viscosity accounting of both
convected-dominated and diffusion-dominated representations of the Kovasznay flow
was studied. Results of the off-line phase and on-line phase are presented. With only
a few terms of the PGD approximation, the reduced solver could reproduce almost
identically the results given by a full-order solver.

5.2 Future developments

The multitude of fields where HDG method was already applied and the potentiality
of PGD framework to solve parametric problems makes the HDG-PGD methodology
easily extendible to several applications in various contexts. The possible develop-
ments strictly related to this work are the following.

1. Integration of NEFEM within the HDG-PGD framework. Follow-
ing the work done by Sevilla et al., (2018b), the NURBS-enhanced finite ele-
ment method (NEFEM) can combine with a hybridisable discontinuous Galerkin
(HDG) framework. That allows eliminating the uncertainty induced by a poly-
nomial approximation of curved boundaries that is common within an isopara-
metric approach. The parameters controlling the geometry consists of the con-
trol points characterising the NURBS curves or surfaces. Merging the two works
and the one proposed in this thesis a resulting HDG-PGD methodology involv-
ing geometry integrated with computer-aided design can be developed. Besides
the removal of the geometric error, this description helps in the definition of
the affine mapping required for the resolution of geometrically parametrised
problems, which sometimes can not be defined analytically. Moreover, this
framework would also remove the necessity of conforming meshes due to the
polynomial piecewise nature of the mappings.

2. Development and implementation of HDG-PGD formulation for in-
compressible Navier-Stokes equations. A second possible development
follows from the application of the proposed HDG-PGD methodology to the
parametrised Oseen flow shown in Appendix A. It consists of an extension
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to nonlinear problems following the rationale presented in Dumon et al., 2011
and Tsiolakis et al., 2020a. This formulation would allow solving Navier-Stokes
problems for parametric viscosity, thus parametric Reynolds number, consider-
ing the many phenomena characterising convected dominated flows which at low
Reynolds number do not appear. The PGD framework has been for the first
time applied to incompressible Navier-Stokes equations in the turbulent regime
using the Spalart-Allmaras turbulence model by Tsiolakis et al., 2020b to solve
parametric flow control problems. All these problems could be extended to a
geometrically parametrised framework. To that purpose, it is worth to note
that the implementation of the HDG-PGD algorithm for the Oseen flow with
parametric viscosity already accounts of possible variations of the geometry.
Consequently, the integration of the geometrically parametrised framework for
Navier-Stokes problems is direct.

3. Development and implementation of HDG-PGD formulation for com-
pressible Navier-Stokes equations A further development of this methodol-
ogy could be the numerical resolution of the compressible Navier-Stokes equa-
tions accounting of the geometric design variables as extra parameters. Similarly
to microfluidics context, the importance of fast and accurate evaluations of drag
and aerodynamic noise around vehicles for aero-acoustics in today’s industry
is crucial because of its impact in the overall design time. The application of
hybrid discretisation techniques to compressible flow problems firstly appeared
in Peraire et al., (2010) and more recently in Williams, (2018) with a conse-
quent development of shock-capturing techniques (Persson, 2013; Vila-Pérez et
al., 2019). The technique developed in this thesis could be implemented in a
compressible context for the simulation of aerospace flows.
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Appendix A

Proper generalised decomposition
for material parameters

A.1 Problem statement

This chapter is dedicated to the formulation of the HDG-PGD methodology for flow
problems where the parametric dependence is not concealed in the geometry, but in
some physical properties (e.g. material proprieties, boundary conditions). As Stokes’
equations scale linearly with a variation of the viscosity or a variation of boundaries
conditions, a more complex problem is introduced. For that purpose, a linearisation
of the steady Navier–Stokes equations, known as Oseen equations, is considered.

A.1.1 The multi-dimensional parametric Oseen problem

Inspired by the work done in Giacomini et al., (2020c) to develop HDG formulation for
Oseen equations, following the approach defined in Section 3.1 it is possible to write
a multi-dimensional parametric Oseen problem. Let us consider a domain Ω ⊂ Rnsd ,
where nsd is the number of spatial dimensions and µ ∈ I ⊂ Rnpa is a set of material
parameters that controls some material proprieties of the problem (e.g. viscosity ν)
or boundary conditions with npa being the number of parameters. For any set of pa-
rameters µ, the goal is to find the parametric velocity, u(x,µ), and pressure, p(x,µ).
The multi-dimensional parametric Oseen problem reads

−∇· (ν∇u− pInsd − u⊗ a) = s in Ω× I,

∇·u = 0 in Ω× I,

u = uD on ΓD × I,

n ·
(
ν∇u− pInsd − u⊗ a

)
= gN on ΓN × I,

u ·D + n ·
(
ν∇u− pInsd − u⊗ a

)
E = 0 on ΓS × I.

(A.1)
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where a is a solenoidal field. Compatibility conditions and the additional constraint to
avoid the indeterminacy of the pressure, required when ΓN=∅, are identical to those
defined in (3.5) and (3.6).

A.1.2 Strong form of the local and global problems

Following section 3.2 let us consider a subdivision of the domain Ω in nel disjoint
subdomains Ωe and the union of the interior boundaries of the subdomains which
defines the mesh skeleton or internal interface Γ as in (3.8). Introducing the so-called
mixed variable L=− ν∇u, the Oseen problem can be written as a first-order system
of equations in the broken computational domain, namely

Le + ν∇ue = 0 in Ωe × I,

∇·
(
Le + peInsd + u⊗ a

)
= s in Ωe × I,

∇·ue = 0 in Ωe × I,

ue = uD on (∂Ωe ∩ ΓD)× I,

n ·
(
Le + peInsd

)
= −gN on (∂Ωe ∩ ΓN )× I,

ue ·D − n ·
(
Le + peInsd + ue ⊗ a

)
E = 0 on (∂Ωe ∩ ΓS)× I,

Ju⊗ nK = 0 on (∂Ωe ∩ Γ)× I,

Jn ·
(
L+ pInsd + u⊗ a

)
K = 0 on (∂Ωe ∩ Γ)× I.

(A.2)

for e=1, . . . , nel. It is worth to notice that here normal flux is composed not only by
a diffusive part as happened in (3.10) but also by a convective part.

From (A.2) following the classical HDG approach, first the so–called local problems
are obtained

Le + ν∇ue = 0 in Ωe × I, and for e = 1, . . . , nel,

∇·
(
Le + peInsd + ue ⊗ a

)
= s in Ωe × I, and for e = 1, . . . , nel,

∇·ue = 0 in Ωe × I, and for e = 1, . . . , nel,

ue = uD on (∂Ωe ∩ ΓD)× I,

ue = û on (∂Ωe \ ΓD)× I,〈 1

|∂Ωe|
pe, 1

〉
∂Ωe×I

= ρe, for e = 1, . . . , nel,

(A.3)

and second, the so-called global problem
Jn ·

(
L+ pInsd + u⊗ a

)
K = 0 on Γ× I,

n · (Le + peInsd + ue ⊗ a) = −gN on (∂Ωe ∩ ΓN )× I,

ue ·D − n · (Le + peInsd + ue ⊗ a)E = 0 on (∂Ωe ∩ ΓS)× I.

(A.4)
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The constraint of equation (3.5), induced by the incompressibility condition, is also
considered in the global problem and written in terms of the hybrid variable as

〈1,uD · n〉ΓD×I + 〈1, û · n〉(∂Ω\ΓD)×I = 0. (A.5)

A.1.3 Weak form of the local and global problems

Proceeding analogously to section 3.2.3, the following discrete functional spaces are
introduced:

Vh(Ω) := {v ∈ L2(Ω) : v|Ωe ∈ Pk(Ωe) ∀Ωe , e = 1, . . . , nel},

V̂h(S) := {v̂ ∈ L2(S) : v̂|Γi ∈ Pk(Γi) ∀Γi ⊂ S ⊆ Γ ∪ ∂Ω},

Lh(Ij) := {v ∈ L2(Ij) : v|Ije ∈ P
k(Ije) ∀Ije , e = 1, . . . , njel},

Lh(I) := Lh(I1)⊗ · · · ⊗ Lh(Inpa),

Vhµ := Vh(Ω)⊗Lh(I),

V̂
h

µ :=
[
V̂h(Γ ∪ ΓN ∪ ΓS)⊗Lh(I)

]nsd
,

Vh
µ :=

[
Vh(Ω)⊗Lh(I)

]nsd
,

Wh
µ :=

[
Vh(Ω)⊗Lh(I)

]nsd×nsd
,

where Pk(Ωe), Pk(Γi) and Pk(Ije) stand for the spaces of polynomial functions of
complete degree at most k in Ωe, on Γi and in Ije respectively.

The weak form of the local problems, for e = 1, . . . , nel, reads: given uD on ΓD and
ûh on Γ ∪ ΓN ∪ ΓS , find (Lhe ,u

h
e , p

h
e ) ∈Wh

µ × Vh
µ × Vhµ that satisfy

ALL(W ,Lhe ) +ALu(W ,uhe ) = LL(W ) +ALû(W , ûh),

AuL(v,Lhe ) +Auu(v,uhe ) +Aup(v, p
h
e ) = Lu(v) +Auû(v, ûh),

Apu(v,uhe ) = Lp(v) +Apû(v, ûh),

Aρp(1, p
h
e ) = Aρρ(1, ρ

h
e ),

(A.6)
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for all (W ,v, v) ∈ Wh
µ × Vh

µ × Vhµ , where the multi-dimensional bilinear and linear
forms of the local problem are given by

ALL(W ,L) :=−
(
W , ν−1L

)
Ωe×I ,

ALu(W ,u) :=
(
∇·W ,u

)
Ωe×I ,

ALû(W , û) :=〈n ·W , û〉(∂Ωe\ΓD)×I ,

AuL(v,L) :=
(
v,∇·L

)
Ωe×I ,

Auu(v,u) :=〈v, τu〉∂Ωe×I −
(
∇v,u⊗ a

)
Ωe×I ,

Aup(v, p) :=
(
v,∇p

)
Ωe×I ,

Auû(v, û) :=〈v, (τ − (a · n) Insd)û〉(∂Ωe\ΓD)×I ,

Apu(v,u) :=
(
∇v,u

)
Ωe×I ,

Apû(v, û) :=〈v, û · n〉(∂Ωe\ΓD)×I ,

Aρp(w, p) :=〈w, |∂Ωe|−1p〉∂Ωe×I ,

Aρρ(w, ρ) :=
(
w, ρ

)
I ,

(A.7)

and
LL(W ) :=〈n ·W ,uD〉(∂Ωe∩ΓD)×I ,

Lu(v) :=
(
v, s
)

Ωe×I + 〈v, (τ − (a · n) Insd)uD〉(∂Ωe∩ΓD)×I ,

Lp(v) :=〈v,uD · n〉(∂Ωe∩ΓD)×I ,

(A.8)

respectively. Similarly, the weak form of the global problem is: find ûh ∈ V̂
h

µ and
ρh ∈ Rnel ⊗Lh(I) that satisfies

nel∑
e=1

{ AûL(v̂,Lhe ) +Aûu(v̂,uhe ) +Aûp(v̂, p
h
e ) +Aûû(v̂, ûh) } =

nel∑
e=1

{Lû(v̂)} ,

Apû(1, ûh) = −Lp(1),

(A.9)

for all v̂ ∈ V̂
h

µ , where the multi-dimensional bilinear and linear forms of the global
problem are given by

AûL(v̂,L) :=〈v̂,n ·L〉(∂Ωe\(ΓD∪ΓS))×I − 〈v̂,n ·LE〉(∂Ωe∩ΓS)×I

Aûu(v̂,u) :=〈v̂, τu〉(∂Ωe\(ΓD∪ΓS))×I − 〈v̂, (τu)·E〉(∂Ωe∩ΓS)×I

Aûp(v̂, p) :=〈v̂, pn〉(∂Ωe\(ΓD∪ΓS))×I

Aûû(v̂, û) :=− 〈v̂, (τ − (a · n) Insd)û〉(∂Ωe\(ΓD∪ΓS))×I

+ 〈v̂, û·D + ((τ − (a · n) Insd)û)·E〉(∂Ωe∩ΓS)×I

(A.10)

and
Lû(v̂) :=−〈v̂, gN 〉(∂Ωe∩ΓN )×I , (A.11)

respectively.
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Remark 11. Compared to the stabilisation tensor τ defined in equations (3.16) and
(3.19) for the purely diffusive case (i.e. Stokes), in this case, stabilization of the con-
vective term has also to be considered. It has been proved (Cesmelioglu et al., 2013)
that a non-optimal choice of these parameters can bring to a gradual loss of optimal
convergence as the Reynold number increases (e.g. convection dominated problems).
For a more detailed analysis on the choice of the stabilization, parameters see Giaco-
mini et al., (2020c).

A.2 The proper generalised decomposition

A.2.1 Separated representation

As detailed in section 3.3, to apply a proper generalised decomposition framework
to a problem of dimension nsd+npa it is required that the bilinear and linear forms
in the weak form can be expressed, or well approximated, by a sum of products of
parametric functions and operators that are parameter-independent.

Similarly to section 3.3.3, data is assumed to be given in separated form. For Oseen
equations beside boundary conditions and the source term which also appear for
Stokes’s in (3.31) two additional terms are needed

ν−1 =

nν∑
k=1

Nk(x)N k(µ),

a=

nC∑
k=1

Ck(x)Ck(µ).

(A.12)

Remark 12. It is worth to observe that as a consequence of the definition of the
mixed variable, the required term to be written in a separable form is the inverse of
the viscosity and not the viscosity itself. In a general framework when a function
is separable, its inverse is not. This signifies the necessity of some extra computa-
tions (e.g. higher order PGD projection, see Díez et al., 2018) to obtain the required
separable approximation. Anyway in the particular case of an Oseen problem with
parametrised viscosity, follows nν=1, N1(x)=1 and N 1(µ)=ν thus the separable ap-
proximation of ν−1 is immediate and exact.

Following section 3.3.4 each variable of the HDG formulation, is written as a rank-m
separable approximation such as (3.32) and (3.33) under the assumption of single-
parameter approach (Remark 7). Moreover a proper tangent manifold is also consid-
ered for each variable.
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A.2.2 Alternating direction scheme

With the separated structure of the PGD approximations, using the same strategy
proposed in section 3.3.5 it is possible to solve the high-dimensional problem with an
affordable cost.

The spatial iteration

Introducing the expression of the PGD approximations and the weighting functions in
the weak form of the HDG local problems, the following weak form of the local problem
for the spatial iteration is obtained: find (σmL ∆FL, σ

m
u ∆fu, σ

m
p ∆fp) ∈Wh ×Vh × Vh

for all (δFL, δfu, δfp) ∈Wh × Vh × Vh that satisfy

nν∑
k=1

βkνAkLL(δFL, σ
m
L ∆FL) + βALu(δFL, σ

m
u ∆fu)

=RmL (δFLψ
m) + βALû(δFL, σ

m
û ∆f̂u),

βAuL(δfu, σ
m
L ∆FL) +

nC∑
k=1

βkCAkuu(δfu, σ
m
u ∆fu) + βAuu(δfu, σ

m
u ∆fu)

+βAup(δfu, σmp ∆fp) =Rmu (δfuψ
m) +

nC∑
k=1

βkCAkuû(δfu, σ
m
û ∆f̂u)

+βAuû(δfu, σ
m
û ∆f̂u),

βApu(δfp, σ
m
u ∆fu) =Rmp (δfpψ

m) + βApû(δfp, σ
m
û ∆f̂u)

βAρp(1, σmp ∆fp) =Rmp (ψm) + βAρρ(1, σmρ ∆fρ).

(A.13)

The bilinear and linear forms of the local problem are detailed in equation (A.14)

AkLL(δFL,FL) := −
(
δFL, N

kFL
)

Ωe
,

ALu(δFL,fu) :=
(
∇· δFL,fu

)
Ωe
,

ALû(δFL, f̂u) := 〈n · δFL, f̂u〉∂Ωe\ΓD ,

AuL(δfu,FL) :=
(
δfu,∇·FL

)
Ωe
,

Auu(δfu,fu) := 〈δfu, τfu〉∂Ωe ,

Akuu(δfu,fu) := −
(
∇δfu,fu ⊗Ck

)
Ωe
,

Aup(δfu, fp) :=
(
δfu,∇fp

)
Ωe
,

Auû(δfu, f̂u) := 〈δfu, τ f̂u〉∂Ωe\ΓD

Akuû(δfu, f̂u) := −〈δfu, (Ck · n)f̂u〉∂Ωe\ΓD

Apu(δfp,fu) :=
(
∇δfp,fu

)
Ωe
,

Apû(δfp, f̂u) := 〈δfp, f̂u · n〉∂Ωe\ΓD ,

Aρp(δfρ, fp) := 〈δfρ, |∂Ωe|−1fp〉∂Ωe ,

Aρρ(δfρ, fρ) := δfρ fρ,

(A.14)
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and equation (A.15), respectively

RmL (δFLψ) :=

nD∑
l=1

〈n · δFL, glD〉∂Ωe∩ΓDA(ψ, λlD)

−
m∑
i=1

nν∑
k=1

AkLL(δFL, σ
i
LF

i
L)Akν(ψ,ψi)

−
m∑
i=1

{
AkLu(δFL, σ

i
uf

i
u )−ALû(δFL, σ

i
ûf

i
û )
}
A(ψ,ψi)

Rmu (δfuψ) :=

nS∑
l=1

(
δfu, g

l
S

)
Ωe
A(ψ, λlS)

+

nD∑
l=1

〈δfu, τglD〉∂Ωe∩ΓDA(ψ, λlD)

−
nC∑
k=1

nD∑
l=1

〈δfu, (Ck · n)glD〉∂Ωe∩ΓDA
k
C(ψ, λlD)

−
m∑
i=1

{ AuL(δfu, σ
i
LF

i
L) +Auu(δfu, σ

i
uf

i
u )

+Aup(δfu, σipf ip )−Auû(δfu, σ
i
ûf

i
û ) }A(ψ,ψi)

−
m∑
i=1

nC∑
k=1

{
Auu(δfu, σ

i
uf

i
u )−Auû(δfu, σ

i
ûf

i
û )
}
AkC(ψ,ψi)

Rmp (δfpψ) :=

nD∑
l=1

〈δfp, glD · n〉∂Ωe∩ΓDA(ψ, λlD)

−
m∑
i=1

na∑
k=1

{
Akpu(δfp, σ

i
uf

i
u )−Akpû(δfp, σ

i
ûf

i
û )
}
A(ψ,ψi)

Rmp (δfρψ) :=−
m∑
i=1

{
Aρp(δfρ, σipf ip )−Aρρ(δfρ, σiρf iρ )

}
A(ψ,ψi).

(A.15)

The constants in equation (A.13) are given by

βkν := Akν(ψm, ψm) βkC := AkC(ψm, ψm), β := A(ψm, ψm), (A.16)

where the bilinear forms involved in the definitions of these constants are introduced
in equation (A.17)

Akν(δψ, ψ) :=
(
δψ,N kψ

)
I ,

AkC(δψ, ψ) :=
(
δψ, Ckψ

)
I ,

A(δψ, ψ) :=
(
δψ, ψ

)
I .

(A.17)
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Similarly, the weak form of the global problem is: find σmû ∆f̂u ∈ V̂
h
and σmρ ∆fρ ∈ Rnel

that satisfy

nel∑
e=1

{
βAûL(δf̂u, σ

m
L ∆FL) + βAûu(δf̂u, σ

m
u ∆fu)

+ βAûp(δf̂u, σmp ∆fp) + βAûû(δf̂u, σ
m
û ∆f̂u)

+

nC∑
k=1

βkCAkûû(δf̂u, σ
m
û ∆f̂u)

}
=

nel∑
e=1

Rmû (δf̂uψ
m),

(A.18a)

for all δf̂u ∈ V̂
h
, with the incompressibility constraint

βAkpû(1, σmû ∆f̂u) = Rmρ (ψm), e = 1, . . . , nel. (A.18b)

The bilinear and linear forms of the local problem are detailed in equation (A.19)

AûL(δf̂u,FL) := 〈δf̂u,n · FL〉∂Ωe\(ΓD∪ΓS) − 〈δf̂u, (n · FL)E〉∂Ωe∩ΓS ,

Aûu(δf̂u,fu) := 〈δf̂u, τfu〉∂Ωe\(ΓD∪ΓS) − 〈δf̂u, (τfu)·E〉∂Ωe∩ΓS ,

Aûp(δf̂u, fp) := 〈δf̂u, fpn〉∂Ωe\(ΓD∪ΓS),

Aûû(δf̂u, f̂u) := 〈δf̂u, f̂u · (D + τ ·E〉∂Ωe∩ΓS − 〈δf̂u, τ f̂u〉∂Ωe\(ΓD∪ΓS),

Akûû(δf̂u, f̂u) := −〈δf̂u, f̂u · (Ck · n)·E〉∂Ωe∩ΓS

+ 〈δf̂u, (Ck · n)f̂u〉∂Ωe\(ΓD∪ΓS),

(A.19)

and equation (A.20), respectively

Rmû (δf̂uψ) :=−
nN∑
l=1

〈δf̂u, glN 〉∂Ωe∩ΓNA(ψ, λlN )

−
m∑
i=1

{ AûL(δf̂u, σ
i
LF

i
L) +Aûu(δf̂u, σ

i
uf

i
u )

+Aûp(δf̂u, σipf ip ) +Aûû(δf̂u, σ
i
ûf

i
û ) }A(ψ,ψi)

−
m∑
i=1

nC∑
k=1

Akûû(δf̂u, σ
i
ûf

i
û )AkC(ψ,ψi),

Rmρ (δfρψ) :=−
nD∑
l=1

〈δfρ, glD · n〉∂Ωe∩ΓDA(ψ, λlD)

−
m∑
i=1

Apû(δfρ, σ
i
ûf

i
û )A(ψ,ψi).

(A.20)

A.2.3 The parametric iteration

After computing the spatial corrections following the procedure described in Sec-
tion 3.3.5, the spatial modes are updated and the parametric iteration is solved.
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Introducing the expression of the PGD approximations and the weighting functions
in the weak form of the HDG local problems, the following weak form of the local
problem for the parametric iteration is obtained: find ∆ψ ∈ Lh(I) such that

nν∑
k=1

γkLLAkν(δψ,∆ψ) + γLuA(δψ,∆ψ)

=RmL (σmL F
m
L δψ) + γLûA(δψ,∆ψ),

γuLA(δψ,∆ψ) +

nC∑
k=1

γkuuAkC(δψ,∆ψ) + γuuA(δψ,∆ψ) + γupA(δψ,∆ψ)

=Rmu (σmu f
m
u δψ) +

nC∑
k=1

γkuûAkC(δψ,∆ψ) + γuûA(δψ,∆ψ),

γpuA(δψ,∆ψ) =Rmp (σmp f
m
p δψ) + γpûA(δψ,∆ψ),

γρpA(δψ,∆ψ) =Rmp (δψ) + γρρA(δψ,∆ψ),

(A.21)

for all δψ ∈ Lh(I).

Similarly, the weak form of the global problem is: find ∆ψ ∈ Lh(I) that satisfies

nel∑
e=1

{
γûLA(δψ,∆ψ) + γûuA(δψ,∆ψ) + γûpA(δψ,∆ψ)

+

nC∑
k=1

γkûûAkC(δψ,∆ψ) + γûûA(δψ,∆ψ)

}
=

nel∑
e=1

Rmû (σmû f
m
û δψ),

γρûA(δψ, ψm) =Rmρ (δψ),

(A.22)

for all δψ ∈ Lh(I).

The constants in equations (A.21) and (A.22) are defined as

γkLL := AkLL(σmL F
m
L , σmL F

m
L ), γLu := ALu(σmL F

m
L , σmu f

m
u ),

γLû := ALû(σmL F
m
L , σmû f

m
û ), γuL := AuL(σmu f

m
u , σmL F

m
L ),

γkuu := Akuu(σmu f
m
u , σmu f

m
u ), γuu := Auu(σmu f

m
u , σmu f

m
u ),

γup := Aup(σmu fmu , σmp f
m
p ), γkuû := Akuû(σmu f

m
u , σmû f

m
û ),

γuû := Auû(σmu f
m
u , σmû f

m
û ), γpu := Apu(σmp f

m
p , σmu f

m
u ),

γpû := Apû(σmp f
m
p , σmû f

m
û ), γρp := Aρp(1, σmp fmp ),

γρρ := Aρρ(1, σmρ fmρ ),

γûL := AkûL(σmû f
m
û , σmL F

m
L ), γûu := Aûu(σmû f

m
û , σmu f

m
u ),

γûp := Akûp(σmû fmû , σmp f
m
p ), γkûû := Akûû(σmû f

m
û , σmû f

m
û ),

γûû := Aûû(σmû f
m
û , σmû f

m
û ), γρû := Akpû(1, σmû f

m
û ).

(A.23)

The choice of a single parameter approximation implies that we can combine equa-
tions (A.21) and (A.22) to obtain the following parametric problem: find ∆ψ ∈ Lh(I)



148 Appendix A. Proper generalised decomposition for material parameters

that satisfies

nν∑
k=1

γkLLAkν(δψ,∆ψ) +

nC∑
k=1

γkCAkC(δψ,∆ψ) + γA(δψ,∆ψ) = Rm(δψ), (A.24)

for all δψ ∈ Lh(I), where

γkC :=γkuu − γkuû + γkûû,

γ :=γLu − γLû + γuL + γuu + γup − γuû + γρp − γρρ
+ γûL + γûu + γûp + γûû,

Rm(δψ) :=RmL (σmL F
m
L δψ) +Rmu (σmu f

m
u δψ) +Rmp (σmp f

m
p δψ)

+Rmp (δψ) +Rmû (σmû f
m
û δψ) +Rmρ (δψ).

(A.25)

A.2.4 Local postprocess of the primal variable

For a multi-dimensional problem, the local postprocess necessary to obtain the super-
convergent solution u∗ analogous to system of equations (2.22) reads: given u ∈ Vh

µ

and L ∈Wh
µ find u∗ ∈ Uh

µ that satisfies

(
∇v,∇u∗

)
Ωe×I = −

(
∇v, ν−1L

)
Ωe×I(

w,u∗
)

Ωe×I = −
(
w,u

)
Ωe×I ,

(A.26)

where the tangent manifolds for u is equal to v ∈ Uh
µ, defined as

Uh(Ω) := {v ∈ L2(Ω) : v|Ωe ∈ Pk+1(Ωe) ∀Ωe , e = 1, . . . , nel},

Uh :=
[
Uh(Ω)

]nsd
,

Uh
µ :=

[
Uh(Ω)⊗Lh(I)

]nsd
,

and w ∈ Lh(I), with Lh(I) defined in sectionA.1.3.

Analogously with section 3.3.7, a rank-m separable approximation is assumed for u∗,
namely

u∗,m
PGD

(x,µ) = σ∗,mu f∗,mu (x)ψm(µ) + u∗,m−1
PGD

(x,µ). (A.27)

where the corresponding correction terms have been omitted because unnecessary.
Introducing equation A.27 in (A.26) and solving the system for the m-th mode, it is
obtained (

∇v,∇σ∗,mu f∗,mu ψm
)

Ωe×I = −
(
∇v, ν−1σmL F

m
L ψm

)
Ωe×I(

σ∗,mu f∗,mu ψm, ψm
)

Ωe×I = −
(
σmu f

m
u ψm, ψm

)
Ωe×I ,

(A.28)

with tangent manifolds for u similar to the one defined in (3.36), but considering
only the spatial variation and neglecting the parametric ones, namely v=δfuψ

m with
δfu ∈ Uh.
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Thanks to the separable form of ν−1 system (A.28) can be simplified introducing
proper constants defined in (A.16). The weak form reads: given σmu f

m
u ∈ Vh and

σmL F
m
L ∈Wh find σ∗,mu f∗,mu ∈ Uh that satisfies

β
(
∇δfu,∇σ∗,mu f∗,mu

)
Ωe

= −
nν∑
k=1

βkN
(
∇δfu, N

kσmL F
m
L

)
Ωe

β
(
σ∗,mu f∗,mu , 1

)
Ωe

= −β
(
σmu f

m
u , 1

)
Ωe
,

(A.29)

for δfu ∈ Uh. Solving spatial problem (A.29) for each m-mode computed allows
constructing a PGD vademecum also for the postprocessed solution which, analogously
to those computed for local and global variables, can be particularized in the on-line
phase.

A.3 Numerical example: Kovazsnay flow with parametrised
viscosity

To validate the proposed technique the Kovasznay flow is introduced. Obtained in
Kovasznay, (1948), Kovasznay flow is a solution of the Oseen problem with a=u.

A multi-dimensional parametrised version of this problem can be created assuming
viscosity as an extra-variable and looking for a solution depending on it. This problem
has a known analytical solution (shown in figures A.1 and A.2) given by

ux(x,µ) = 1− exp(2λx) cos(2π(2y − 0.5)),

uy(x,µ) = λ/2π exp(2λx) sin(2π(2y − 0.5)),

p(x,µ) = −1/2 exp(4λx) + C.

(A.30)

where
λ = Re/2−

√
Re2/4 + 4π2,

C = [1 + exp(4λ)− (1/2λ)(1− exp(4λ))].
(A.31)

The purpose of this section, is to solve the parametrised Kovasznay for all (x,µ) in the
higher dimensional domain Ω×I, where Ω=[0, 0.5]× [0, 1] ⊂ R2 and I=I1=[0.001, 1].
On ∂Ω pure Dirichlet boundary conditions are imposed, thus ∂Ω=ΓD.

A.3.1 Separated representation of the data

Following the theory, as explained in Section A.2.1, a separated representation of the
data is required. It is worth to notice that for Kovasznay flow, the convective field
is chosen equal to the velocity u, thus the same separable approximation obtained
for a holds also for the Dirichlet datum uD that is immediate, unlike the source
term s which requires few more efforts. Finally observing, that the problem is a pure
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(a) µ = 10−3 (b) µ = 0.05 (c) µ = 1

Figure A.1: Kovasznay flow: Analytical solution of the norm of the
velocity field for different values of µ.

(a) µ = 10−3 (b) µ = 0.05 (c) µ = 1

Figure A.2: Kovasznay flow: Analytical solution of the pressure field
for different values of µ.

Dirichlet problem, a separable approximation of the pressure is also required to impose
the extra condition used to remove its indeterminacy.

While the separated form of the inverse of the viscosity is exact and immediate (nν=1,
N1(x)=1 and N 1(µ)=µ being µ = ν), the exponential appearing in the analytical
form of the solution makes an exact separation impossible for velocity and pressure.
To circumvent this obstacle an HO-SVD can be applied, or else a more scholastic
Taylor expansion.

To reduce as much as possible the approximation error, both exponential functions
appearing in (A.30) have been Taylor expanded by mean of an approximation of 25
terms centred in x0=1/4. With just a few extra calculations, the analytical source term
can be computed and approximated by mean of the same technique. The expanded
forms of analytical solutions read

u(x,µ) =


1− T 1

25(x,µ) cos(2π(2y − 0.5))

(λ(µ)/2π) T 1
25(x,µ) sin(2π(2y − 0.5))

p(x,µ) = −1/2 T 2
25(x,µ) + C(µ),

(A.32)
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where

exp(2λx) ≈ T 1
25(x,µ) =

25∑
n=0

(2λx− 1/4)n

n!

exp(4λx) ≈ T 2
25(x,µ) =

25∑
n=0

(4λx− 1/4)n

n!
.

(A.33)

which being separable transmit their separability to all their spatial derivatives, in-
cluded the source term, which is a linear combination of them.

A.3.2 Off-line phase

The proposed ROM is used to obtain the generalised solution of the parametric Oseen
problem. For the numerical experiment a uniform triangular mesh with 64 elements is
generated. The computation was performed using a degree of approximation k=5 for
all the variables and with a mesh of 500 elements in the parametric dimension with
also k=5.

The first eight normalised modes of the magnitude of the velocity field and the pressure
are shown in figures A.3 and figure A.4, respectively.

(a) m = 1 (b) m = 2 (c) m = 3 (d) m = 4

(e) m = 5 (f) m = 6 (g) m = 7 (h) m = 8

Figure A.3: Kovasznay flow: First eight normalised spatial modes of
the norm of the velocity field.

The first eight normalised parametric modes are shown in figure A.5. It is worth
noting the increase of amplitude and frequency of parametric modes by increasing
the number of modes and approaching to the left extreme of the parametric interval.
This is mainly attributed to the scale at which the convective term becomes more
dominant.
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(a) m = 1 (b) m = 2 (c) m = 3 (d) m = 4

(e) m = 5 (f) m = 6 (g) m = 7 (h) m = 8

Figure A.4: Kovasznay flow: First eight normalised spatial modes of
the pressure field.

Figure A.5: Kovasznay flow: First eight normalised parametric
modes.

Figure A.6: Kovasznay flow: Convergence of the mode amplitudes.

The evolution of the relative amplitude of the modes is shown in A.6. The rapid
decrease shows that it is possible to compute a generalised solution to this problem
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with a very small number of modes. With twelve compressed modes the relative
amplitude is already below 10−5. This off-line solution has been obtained computing
a total of 156 modes reaching a maximum of 10 iterations in the alternating direction
algorithm for each enrichment.

A.3.3 On-line phase

Once the generalised solution is computed, it is of interest to quantify its accuracy.

Figures A.7 and A.8 shows the absolute value of the error of the velocity magni-
tude and pressure using as the number of modes is increased for three relevant con-
figurations corresponding to the parameter values µ1={0.001, 0.05, 1} associated to
Reynolds numbers Re = {1000, 20, 1}. It is worth noting that the configurations anal-
ysed include both convection-dominated and diffusion-dominated flow regimes.

(a) µ1 = 10−3, m = 1 (b) µ1 = 10−3, m = 3 (c) µ1 = 10−3, m = 4 (d) µ1 = 10−3, m = 5

(e) µ1 = 0.05, m = 1 (f) µ1 = 0.05, m = 3 (g) µ1 = 0.05, m = 4 (h) µ1 = 0.05, m = 5

(i) µ1 = 1, m = 1 (j) µ1 = 1, m = 3 (k) µ1 = 1, m = 4 (l) µ1 = 1, m = 5

Figure A.7: Kovasznay flow: Absolute value of the error of the ve-
locity magnitude using m PGD modes and for different values of the
material parameter µ1. An approximation of degree k = 5 is used for

all variables.
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(a) µ1 = 10−3, m = 1 (b) µ1 = 10−3, m = 3 (c) µ1 = 10−3, m = 4 (d) µ1 = 10−3, m = 5

(e) µ1 = 0.05, m = 1 (f) µ1 = 0.05, m = 3 (g) µ1 = 0.05, m = 4 (h) µ1 = 0.05, m = 5

(i) µ1 = 1, m = 1 (j) µ1 = 1, m = 3 (k) µ1 = 1, m = 4 (l) µ1 = 1, m = 5

Figure A.8: Kovasznay flow: Absolute value of the error of the pres-
sure field using m PGD modes and for different values of the material
parameter µ1. An approximation of degree k = 5 is used for all vari-

ables.

The results show that with few PGD modes the absolute error is still quite large,
particularly for the case with µ1=0.001 which is the configuration representing the
convection dominated solution. With five PGD modes, the error drops substantially,
being less than 8× 10−3 for the velocity and less than 2.2× 10−2 for the pressure.
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To further illustrate the accuracy of the proposed HDG-PGD approach, the relative
error in the L2(Ω × I) norm, defined in equation (3.66) is studied and compared to
the error of the full order HDG approach. Figure A.9 shows the evolution of εPGD as
the number of PGD modes is increased for all local variables, global variable û and
the postprocess velocity u∗ to whom is dedicated next section. The discontinuous

(a)

Figure A.9: Kovasznay flow: L2 norm of the error for L, u, p and
û as the number of PGD modes is increased. An approximation of

degree k = 5 is used for all the variables.

lines in figure A.9 show the relative error of the full order HDG method, measured in
the L2(Ω×I) norm. The results show that the error of the proposed ROM converges
monotonically to the error of the full order approach with as the number of modes is
increased. In all cases, the number of PGD modes required to reach the maximum
accuracy for each variable on the given mesh is equal or lower than eight.
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