
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

Geometric Computer Vision
Techniques for Scene

Reconstruction

A dissertation submitted by Edgar Riba Pi at Univer-
sitat Autònoma de Barcelonato fulfil the degree of
Doctor of Philosophy.

Bellaterra, December 14, 2020

Director Dr. Daniel Ponsa
Universitat Autònoma de Barcelona
Dept. Ciències de la computació & Centre de Visió per Computador

Thesis Dr. Cecilio Angulo
committee Universitat Politècnica de Catalunya

Dept. d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial

Dr. Felipe Lumbreras
Universitat Autònoma de Barcelona
Dept. Ciències de la computació & Centre de Visió per Computador

Dr. Xavier Binefa
Universitat Pompeu Fabra
Departament de Tecnologies de la Informació i les Comunicacions

This document was typeset by the author using LATEX 2ε.

The research described in this book was carried out at the Centre de Visió per Computador,
Universitat Autònoma de Barcelona. Copyright © 2020 by Edgar Riba Pi. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and
retrieval system, without permission in writing from the author.

ISBN: 978-84-945373-1-8

Printed by Ediciones Gráficas Rey, S.L.

Acknowledgements

Everything started while I was doing my internship for my masters thesis in Paris at
Aldebaran Robotics and a colleague sent to me the link of opening PhD positions at
the CVC. I initially doubted whether to apply since I always considered myself to
have a more engineer background and at that time was not really aware about the
consequences of starting a PhD and how would affect to my career in the future.

I am an outgoing person which like challenges. This is the reason why I decided
to send an email to just ask information about the different open positions and
arrange a call meeting with Dani. That was my first contact with Dani, which later
has become my PhD supervisor during this last 5 years. I would like to thank him for
giving me this opportunity and the support for all the collaborations and internships
these years.

My stay at the CVC was very productive and gave me the opportunity to meet
amazing people such as Felipe, to whom I want to thank for the enormous number
of hours of discussion about redundant questions for geometry. The two Paus, Pep,
Albert, Xavi and Arnau for the good times spent in our cluster office in the basement;
Lorena, Iris, Xesco, Marc, Felipe, Bojana and the rest of the CARLA team for the nice
breakfasts and barbeque; Alexandra, Txell and the administration people to help
and listen me every time I wanted to organise hackathons or promote any crazy
open source initiative.

Probably I am missing a long list of people that I met during these years since
the number of collaborations and contacts I did has been remarkable. However,
I would specially like to thank Vassilis and Krystian to give me the opportunity to
start collaborating with them and guide me during my initial stage of the PhD. The
rest of the Imperial College people, Axel, Adri, Joan, Marina, Irene, Pablo, Yurun for
such good times in London and China.

My tight collaborations with the open source community brought me also the
opportunity to meet brilliant people like Gary and Ethan; Vincent, Vadim, Stefano,
Reza, Mona, Wes, Prassanna from OpenCV and Arraiy. During my stay in the US,
Camilo, Karsten, Ali, Matilda and Anguelos for such good times and never ending
discussions about open source and computer science. I would also specially thank
to Francesc, Luis, Antonio, Albert, Jordi and the rest of people from Kognia Sports
and IRI for helping me during my last stage of the PhD.

Finally, to Gore and Daga for the initial support to this long trip and bring
inspiration and meaning to my work. A strong mention to my family for trying to
understand my going and coming back trips, and not to forgive the ones that could
not make it to see the final result of this thesis.

i

Abstract

From the early stages of Computer Vision, scene reconstruction has been one of the
most studied topics leading to a wide variety of new discoveries and applications.
Object grasping and manipulation, localization and mapping, or even visual effect
generation are different examples of applications in which scene reconstruction
has taken an important role for industries such as robotics, factory automation,
or audio visual production. However, scene reconstruction is an extensive topic
that can be approached in many different ways with already existing solutions
that effectively work in controlled environments. Formally, the problem of scene
reconstruction can be formulated as a sequence of independent processes which
compose a pipeline. In this thesis, we analyse some parts of the reconstruction
pipeline from which we contribute with novel methods using Convolutional Neural
Networks (CNN) proposing innovative solutions that consider the optimisation
of the methods in an end-to-end fashion. First, we review the state of the art of
classical local features detectors and descriptors and contribute with two novel
methods that inherently improve pre-existing solutions in the scene reconstruction
pipeline.

It is a fact that computer science and software engineering are two fields that
usually go hand in hand and evolve according to mutual needs making easier
the design of complex and efficient algorithms. For this reason, we contribute
with Kornia, a library specifically designed to work with classical computer vision
techniques along with deep neural networks. In essence, we created a framework
that eases the design of complex pipelines for computer vision algorithms so that
can be included within neural networks and be used to backpropagate gradients
throw a common optimisation framework. Finally, in the last chapter of this thesis
we develop the aforementioned concept of designing end-to-end systems with
classical projective geometry. Thus, we contribute with a solution to the problem of
synthetic view generation by hallucinating novel views from high deformable cloths
objects using a geometry aware end-to-end system. To summarize, in this thesis we
demonstrate that with a proper design that combine classical geometric computer
vision methods with deep learning techniques can lead to improve pre-existing
solutions for the problem of scene reconstruction.

Key words: Computer Vision, Scene Reconstruction, Local Features, Differen-
tiable Operators, Views Synthesis Generation

iii

Resumen

Desde los inicios de la Visión por Computador, la reconstrucción de escenas ha
sido uno de los temas más estudiados que ha llevado a una amplia variedad de
nuevos descubrimientos y aplicaciones. La manipulación de objetos, la localización
y mapeo, o incluso la generación de efectos visuales son diferentes ejemplos de apli-
caciones en las que la reconstrucción de escenas ha tomado un papel importante
para industrias como la robótica, la automatización de fábricas o la producción
audiovisual. Sin embargo, la reconstrucción de escenas es un tema extenso que
se puede abordar de muchas formas diferentes con soluciones ya existentes que
funcionan de manera efectiva en entornos controlados. Formalmente, el problema
de la reconstrucción de escenas puede formularse como una secuencia de procesos
independientes. En esta tesis, analizamos algunas partes del pipeline de recons-
trucción a partir de las cuales contribuimos con métodos novedosos utilizando
Redes Neuronales Convolucionales (CNN) proponiendo soluciones innovadoras
que consideran la optimización de los métodos de forma end-to-end. En primer
lugar, revisamos el estado del arte de los detectores y descriptores de característi-
cas locales clásicas y contribuimos con dos métodos novedosos que mejoran las
soluciones preexistentes en el problema de reconstrucción de escenas.

Es un hecho que la informática y la ingeniería de software son dos campos que
suelen ir de la mano y evolucionan según necesidades mutuas facilitando el diseño
de algoritmos complejos y eficientes. Por esta razón, contribuimos con Kornia, una
libreria diseñada específicamente para trabajar con técnicas clásicas de visión por
computadora conjuntamente con redes neuronales profundas. En esencia, creamos
un marco que facilita el diseño de procesos complejos para algoritmos de visión por
computadora para que puedan incluirse dentro de las redes neuronales y usarse
para propagar gradientes dentro de un marco de optimización común. Finalmente,
en el último capítulo de esta tesis desarrollamos el concepto antes mencionado
de diseñar sistemas de forma conjunta con geometría proyectiva clásica. Por lo
tanto, proponemos una solución al problema de la generación de vistas sintéticas
mediante la alucinación de vistas novedosas de objetos altamente deformables
utilizando un sistema conjunto con la geometría de la escena. En resumen, en esta
tesis demostramos que con un diseño adecuado que combine los métodos clásicos
de visión geométrica por computador con técnicas de aprendizaje profundo puede
conducir a mejores soluciones para el problema de la reconstrucción de escenas.

Palabras clave: Visión por Computador, Reconstrucción de Escenas, Característi-
cas Locales, Operadores Diferenciables, Generación de Vistas Sintéticas

v

Resum

Des dels inicis de la Visió per Computador, la reconstrucció d’escenes ha estat un
dels temes més estudiats que ha portat a una àmplia varietat de nous descobri-
ments i aplicacions. La manipulació d’objectes, la localització i mapeig, o fins i
tot la generació d’efectes visuals són diferents exemples d’aplicacions en les que
la reconstrucció d’escenes ha pres un paper important per a indústries com la
robòtica, l’automatització de fàbriques o la producció audiovisual. No obstant això,
la reconstrucció d’escenes és un tema extens que es pot abordar de moltes formes
diferents amb solucions ja existents que funcionen de manera efectiva en entorns
controlats. Formalment, el problema de la reconstrucció d’escenes pot formular-se
com una seqüència de processos independents. En aquesta tesi, analitzem algunes
parts de la seqüència de reconstrucció a partir de les quals contribuïm amb nous
mètodes que fan servir Convolutional Neural Networks (CNN), proposant solucions
innovadores que consideren l’optimització dels mètodes de forma conjunta. En
primer lloc, revisem l’estat de l’art dels detectors i descriptors de característiques
local clàssiques i contribuïm amb dos mètodes nous que milloren intrínsecament
les solucions preexistents al problema de reconstrucció d’escenes.

És un fet que la informàtica i l’enginyeria del software són dos camps que
solen anar de la mà i evolucionen segons necessitats mútues facilitant el disseny
d’algoritmes complexos i eficients. Per aquesta raó, contribuïm amb Kornia, un
llibreria dissenyada específicament per treballar amb tècniques clàssiques de visió
per computador conjuntament amb xarxes neuronals profundes. En essència,
hem creat un marc que facilita el disseny de processos complexes per algoritmes
de visió per computador perquè es puguin incloure dins les xarxes neuronals i
usar-se per propagar gradients dins d’un marc d’optimització comú. Finalment,
en l’últim capítol d’aquesta tesi desenvolupem el concepte abans esmentat de
dissenyar sistemes de forma conjunta amb geometria projectiva clàssica. Per tant,
proposem una solució a el problema de la generació de vistes sintètiques mitjançant
l’al·lucinació de vistes noves d’objectes altament deformables utilitzant un sistema
conjunt amb la geometria de l’escena. En resum, en aquesta tesi demostrem que
amb un disseny adequat que combini els mètodes clàssics de visió geomètrica per
computador amb tècniques d’aprenentatge profund pot conduir a la millora de
solucions per al problema de la reconstrucció d’escenes.

Paraules clau: Visió per Computador, Reconstrucció d’Escenes, Característiques
Locals, Operadors Diferenciables, Generació de Vistes Sintètiques

vii

Contents

Abstract (English/Spanish/Catalan) iii

List of figures xiii

List of tables xv

1 Introduction 1

1.1 Scene Reconstruction . 2

1.1.1 Camera Pose Estimation . 3

1.1.2 Depth Maps Estimation . 4

1.2 Thesis contributions . 7

1.3 First Published Appearances contributions 8

2 Local Features Detection and Description 9

2.1 Introduction . 9

2.2 Feature Detection . 10

2.2.1 Related Work in Feature Detection 12

2.2.2 Key.Net Architecture . 14

2.2.3 Geometric Loss Function . 15

2.2.4 Experimental Evaluation . 20

ix

Contents

2.2.5 Detection Results . 22

2.2.6 Conclusions . 27

2.3 Feature description . 28

2.3.1 Related Work in Feature Description 29

2.3.2 Learning patch descriptors . 30

2.3.3 Experimental Evaluation . 33

2.3.4 Description Results . 34

2.3.5 Conclusion . 39

3 Differentiable Computer Vision 41

3.1 Motivation . 42

3.2 Related work . 44

3.2.1 Classical computer vision libraries 45

3.2.2 Deep learning and computer vision 46

3.3 Kornia: Computer Vision for PyTorch 47

3.3.1 Library structure . 48

3.4 Performance comparative . 55

3.4.1 Batched image processing . 55

3.5 Use cases . 62

3.5.1 End to end Low-dimensional embedding 62

3.5.2 Image registration by Gradient Descent 64

3.5.3 Multi-View Depth Estimation by Gradient Descent 66

3.5.4 Targeted adversarial attack on SIFT-matching 69

3.6 Conclusions . 71

x

Contents

4 View Synthesis Generation 73

4.1 Motivation . 74

4.2 Related Work . 75

4.3 Our approach . 76

4.4 Projective Geometry Network . 77

4.4.1 Problem Formulation . 77

4.4.2 Network architecture . 78

4.4.3 Loss functions . 79

4.5 Experimental setup . 81

4.6 Experimental Results . 83

4.6.1 Dataset . 83

4.6.2 Incremental training . 84

4.6.3 Quantitative Evaluation . 84

4.6.4 Ablation study . 86

4.7 Conclusions . 88

5 Conclusions and Future work 91

5.1 Conclusions . 91

5.2 Discussion and Futures Perspectives . 92

5.3 Scientific Articles . 93

5.3.1 International Conferences and Workshops 93

5.3.2 Journals . 94

5.4 Contributed Code . 94

5.5 Scientific Dissemination . 95

xi

Contents

5.5.1 Invited Talks and Tutorials . 95

5.5.2 In the Media . 96

5.5.3 Internships . 96

5.5.4 Community . 96

Bibliography 113

xii

List of Figures

1.1 Result obtained from a complete scene reconstruction pipeline . . . 2

1.2 Wide baseline stereo matching algorithm 3

1.3 Structure from Motion example . 4

1.4 Stereo vision system example . 5

1.5 Range Imaging example . 6

2.1 Local feature detection using VLFeat . 10

2.2 Features detection architecture . 14

2.3 Siamese training process . 18

2.4 Key.Net qualitative results with different windows sizes 19

2.5 Homography synthetic data generation 20

2.6 Key.Net quantitative results for different learnable blocks 22

2.7 Local feature description using VLFeat 29

2.8 Proposed triplet loss functions . 33

2.9 Descriptor network comparing the different loss function 37

2.10 Keypoint image matching quantitative results on real dataset 38

2.11 Keypoint image matching results with synthetic dataset 39

3.1 Kornia computer vision topics overview 43

xiii

List of Figures

3.2 Operation-wise benchmark respect to other vision libraries 56

3.3 Sobel edges benchmark compared to other vision libraries 57

3.4 Supported differentiable augmentations in Kornia 59

3.5 End to end Low-dimensional embedding qualitative results 63

3.6 Results of the image registration by gradient descent 65

3.7 Classical multi-view stereo cameras setup 66

3.8 Results of the depth estimation by gradient descent 67

3.9 Targeted adversarial attack on image matching 70

4.1 View Synthesis Generation from an input depth map 74

4.2 Proposed architecture for view synthesis generation 77

4.3 Sample images of the synthetic dataset 82

4.4 Evaluation on synthetic and real data for the Chamfer distance 85

4.5 Evaluation on synthetic and real data for the Percentage Correct Depth 85

4.6 Qualitative results on synthetic data . 87

4.7 Qualitative results on real data . 88

xiv

List of Tables

2.1 Key.Net quantitative results for M-SIP regions sizes 23

2.2 Key.Net repeteability results . 25

2.3 Key.Net matching scores results . 26

2.4 Key.Net number of parameters comparison 27

2.5 Patch pair classification results. 36

3.1 Comparison between different computer vision libraries. 44

3.2 Performance time comparison of Kornia and TorchVision using differ-
ent image sizes . 58

3.3 Speed benchmark among DA libraries 62

4.1 Quantitative results under different network configurations 89

xv

1 Introduction

Every single organism in an ecosystem has the property to have a life-form. Hu-
mans, as many of the other species organisms, are part of the biological evolution.
Darwin states in [1] that all species of organisms arise and develop through the
natural selection of small, inherited variations that increase the individuals ability
to compete, survive, and reproduce. As individual organisms, we are responsible
to observe, plan and execute a series of actions that will determine the interaction
with our surrounding environment. The capability of communicating with other
individuals, move from one place to the other, or search and grasp objects are just
examples of primitive actions that help us to interact with our environment. How-
ever, in order to perform many of those primitive actions it is needed to have and
use a perception system in order to gather and interpret sensory information. As
humans, our perception system can be extremely complex and composed by several
layers of sensory cells that respond to a specific type of physical stimulus which
eventually will be processed by our brains and used to perform specific actions.

The human perception system evolved such in a way that reconstructs our
environment and intrinsically creates an internal representation to assure this
interaction and eventually make us as specie to survive. In this direction, the
main motivation of this work is to study the different mechanisms that the human
perception system uses to reconstruct the environment and bridge it with computer
vision. Precisely, in this thesis we first study the problem of scene reconstruction -
understood as a sequential pipeline, we review the existing solutions and propose
new methods for two of the main tasks in classical multi-view scene reconstruction:
key-point detection and key-point description. With this aim, in this thesis we
have develop a new Python library (Kornia) that fills the gap between classical
computer vision systems and current deep learning based approaches. Using this
library a multi-camera scene reconstruction systems has been built, which is the
last contribution in this thesis.

1

Chapter 1. Introduction

Figure 1.1 – Result obtained from a complete scene reconstruction pipeline. Re-
construction obtained using Open Drone Maps an open source photogrammetry
toolkit to process aerial imagery into maps and 3D models. As can be seen, the
global structure of the scene is very accurate after the combination of several com-
puter vision techniques and multi-view geometry.

1.1 Scene Reconstruction

In the previous section we introduced the concept of Computer Vision and we
associated it to the process to reconstruct a scene similarly as the human perception
system does. However, we would like first ask ourselves the following question -
How much related is Computer Vision to the task of scene reconstruction ? To answer
this question, we should first define the problem. Formally, in computer vision and
computer graphics, scene reconstruction or 3D reconstruction is the process of
capturing the shape and appearance of real object, accomplished either by active or
passive methods [2]. In figure 1.1 we can appreciate the resulting reconstruction of
a scene combining several computer vision techniques and multi-view geometry.

There is an extensive literature about 3D reconstruction describing the different
methodologies and algorithms to solve the entire problem. Nevertheless, the scope
of this thesis is to not a give an exhaustive review of the state of the art for all the
existing approaches, yet we emphasize specific tasks in chapters 2, 3 and 4. In
the next sections, we aim to describe some of the most known approximations for

2

1.1. Scene Reconstruction

Figure 1.2 – Wide baseline stereo matching algorithm. The diagram of the com-
monly used wide baseline stereo matching algorithm [3] that shows the different
sub-tasks in the entire pipeline.

solving the 3D reconstruction problem based on the following approaches: camera
pose estimation for two-view image matching, stereo systems, range imaging with
RGB-D cameras, and monocular depth estimation for multi-view geometry.

1.1.1 Camera Pose Estimation

Choosing the right features to compute the relative pose between two cameras is
a crucial task to estimate the depth information of a scene. This can be achieved
by the classical process of establishing correspondences between pixels and/or
between images and estimating the geometric relation between the cameras. For-
mally, this process is described as the Wide Baseline Stereo (WBS) algorithm [4] that
later can be used as a building block for the application of 3D reconstruction. In
figure 1.2 we can see a visual example with the result of the WBS algorithm for the
case to align two-images from a different view using the described classical features
matching pipeline.

As we will see in chapter 2, in this thesis we give a strong focus on the detection
and description of local features in the context of the WBS algorithm. Thus, in the
first place - What is a local feature? As stated in [5] a Local Feature can be described
as an image pattern which differs from its intermediate neighborhood. Considering
that the most common image properties are intensity, color and texture; Local
Features can take different forms such as points, edgels or small image patches
which can be accompanied by a descriptor vector. Traditionally, local features have
been defined using hand-crafted methods [6, 7] that allowed to detect singular
elements from a single scene across different views in order robustly align the
images. However, similar to [8, 9] in this thesis in chapter 2 we review and propose
new methods for detecting and describing local features based on Convolutional
Neural Networks (CNN).

3

Chapter 1. Introduction

Figure 1.3 – Structure from Motion example. This figure shows an example of the
result of a Structure from Motion pipeline which reconstructs an entire scene given
a set of unordered images. The image is from Bundler [10].

Structure from Motion

One of the most popular applications where the camera pose estimation approach
can be directly applied is Structure from Motion (SfM) [11]. SfM can be described
as the technique associated to the field of photogrammetry that tries to estimate
a three dimensional representation from two or more images based on the local
motion between the different view information (see figure 1.3). The main principle
for SfM is based on the motion parallax theory that using the difference between
the displacement of the different views and from the depth information will be used
to estimate an accurate 3D representation of the world. Finding the structure from
motion it is directly related to stereo vision since in both cases it is needed to have a
geometric relation between the different image views.

1.1.2 Depth Maps Estimation

In the previous section we introduced how to solve the 3D reconstruction of a scene
using as a starting point the estimation of the relative pose between the cameras in
order to obtain a sparse reconstruction of the scene. In this section we give a general
overview for estimating dense depth maps using stereo systems, range imaging for
RGB-D cameras and monocular depth estimation using deep learning methods for
the case of multi-camera views.

Stereo systems

In classical computer vision exist alternatives for estimating the depth information
from a two different views with a known calibration and relative pose which sim-

4

1.1. Scene Reconstruction

(a) (b) (c)

Figure 1.4 – Stereo vision system example. The figure shows a sample from a stereo
camera setup from Tsukuba dataset [12]. The first two images (a) and (b) correspond
to the left and right camera of the setup. The image (c) represents the ground truth
depth map of this stereo pair.

plifies the problem. These are the stereo systems, which similarly to the human
binocular vision system, have two equidistant cameras, displaced horizontally to
obtain two different views on a scene. In order to produce the depth information,
the stereo systems compare the two images and estimate a disparity, which encodes
the difference in horizontal coordinates of the corresponding image points. The
values in this disparity map are inversely proportional to the scene depth at the
corresponding pixel location (see figure 1.4). Several works have proposed solutions
for stereo matching using classical methods [13] that are effective in controlled
environments. On the other hand, the stereo matching minimization problem is
NP-complete leading sometimes to expensive computational solutions. For this
reason, novel approaches based on CNN [14, 15] methods have been proposed that
improve the quality and convergence speed of the stereo vision matching algorithm.

Range Imaging

A different approach to estimate the depth information of a scene is using range
imaging techniques to produce a 2D image containing the distance to points in a
scene from a specific 3D point. The resulting image, commonly called range image
or depth map contains a distance value for every pixel in the image which with a
proper calibration can be directly related to a physical unit (see figure 1.5).

There are several devices to produce depth maps, usually referred as range
cameras or RGB-D cameras that directly produce the depth information of the scene.
These type of sensors project a known pattern on the scene by illuminating the
scene with a specially designed pattern, structured light, that permit to determine
the depth information from the reflected light. These type of devices are extensively

5

Chapter 1. Introduction

Figure 1.5 – Range Imaging example. The figure shows an RGB image (left) and the
ground truth depth (right) obtained from a Kinect sensor. This sample is from the
RGB-D Object Dataset [16].

used in robotics applications, or in controlled environments since they suffer from
the limited measurement range and outdoor sunlight sensitivity [17].

Monocular depth estimation

With the raise of deep neural networks showing their outstanding performance
over classical computer vision methods [18, 19], recent approaches have been
proposed also for the task of depth estimation using convolutional neural networks
(CNNs) [20]. Additionally, a variety of methods with different architectures have
shown that a pixel-level depth can be recovered from a single image in an end-
to-end manner based on recurrent neural networks (RNNs) [21], variational auto-
encoders (VAEs) [22] and generative adversarial networks (GANs) [23]. Following
this same direction, in chapter 4 we propose a novel end-to-end method to estimate
the depth information of a scene from different views combining classical geometric
computer vision techniques and deep learning.

6

1.2. Thesis contributions

1.2 Thesis contributions

In this thesis, we analyze the problem of scene reconstruction and we contribute
with novel methods for detecting and describing keypoints, a framework that eases
the transition from classical to end-to-end deep learning methods, and finally, an
end-to-end solution to estimate depth maps using a multi-view camera approach.
The rest of this thesis is organised as follows:

• In chapter 2, we study the problem of scene reconstruction in the context of
the described classical features matching pipeline focusing on the specific
tasks to detect and describe local features. The contributions made in this
chapter consist of two novel CNN-based modules to be integrated in the
traditional scene reconstruction pipeline: a keypoint detector and a keypoint
descriptor.

• In chapter 3, we study the integration of classical image processing algorithms
within the computational graph of a deep learning system in order to simplify
the design of end-to-end pipelines. We contribute with Kornia, a framework
that combines classical computer vision with modern auto-differentiable
deep learning technologies which makes use of different hardware accelera-
tion capabilities to run the algorithms in the GPUs and TPUs.

• In chapter 4, we study the problem of scene reconstruction in the context of a
multi-camera environment in which we transition from the classic methods to
an end-to-end approach. The contribution in this chapters consists in a novel
end-to-end CNN-based method that estimates depth maps of deformable
objects from an arbitrary camera view exploiting the geometry of the scene.

7

Chapter 1. Introduction

1.3 First Published Appearances contributions

The work described in this thesis has been submitted and/or published in different
conferences and journals. In the following, the publications related with each
chapter are listed:

• Chapter 2: Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikola-
jczyk. Learning local feature descriptors with triplets and shallow convolu-
tional neural networks. In BMVC, 2016.

• Chapter 2: Axel Barroso-Laguna, Edgar Riba, Daniel Ponsa, and Krystian
Mikolajczyk. Key.Net: Keypoint Detection by Handcrafted and Learned CNN
Filters. In ICCV, 2019.

• Chapter 3: Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, and
Gary Bradski. Kornia: an Open Source Differentiable Computer Vision Library
for PyTorch. In Winter Conference on Applications of Computer Vision (WACV),
2020.

• Chapter 3: Edgar Riba, Dmytro Mishkin, Jian Shi, Daniel Ponsa, Francesc
Moreno-Noguer, and Gary Bradski. A survey on Kornia: an Open Source
Differentiable Computer Vision Library for PyTorch. In Journal of Engineering
Applications of Artificial Intelligence (under review).

• Chapter 3: Jian Shi, Edgar Riba, Dmytro Mishkin, and Francesc Moreno-
Noguer. Differentiable Data Augmentation with Kornia. In Neurips 2020
Workshop: Workshop on differentiable computer vision, graphics, and physics
applied to machine learning, 2020.

• Chapter 4: Edgar Riba, Jordi Sanchez-Riera, Yurun Tian, Fan Zhang, Albert
Pumarola, Yiannis Demiris, Krystian Mikolajczyk, and Francesc Moreno-
Noguer. Novel View Synthesis of Depth Maps for Cloth Manipulation. In ICRA
2021 (under review).

• Chapter 4: Edgar Riba, Jordi Sanchez-Riera, Albert Pumarola, Fan Zhang,
Yurun Tian, Yiannis Demiris, Krystian Mikolajczyk, and Francesc Moreno-
Noguer. Depth Map Synthesis for Deformable Clothes. In CVPR 2021 (under
review).

8

2 Local Features Detection and Description

2.1 Introduction

In this chapter we focus on the concept of local features and its usage within a 3d
reconstruction pipeline. Precisely, as we introduced in the previous chapter we
empathize on the classical features matching pipeline, or Wide Baseline Stereo
(WBS) algorithm which can be decomposed in several sub-tasks to be processed
independently. First, in section 2.2 we analyze the problem of the detection of
points of interest in the scene, then, in section 2.3 how to describe the points in
order to match them between different views robustly.

Local features is one of the most studied topics by the Computer Vision commu-
nity which resulted to a wide list of different applications such as image stitching,
camera calibration and obviously for scene reconstruction, which is the topic of this
thesis. Local features detection can be formally described as the problem of finding
discriminative regions in an image from which several properties as the location,
orientation or the shape. On the other hand, the task to extract local features de-
scriptors consist in computing embeddings from the small image patches which
later are used for the matching task as seen in the WBS pipeline figure 1.2. Thus, the
scope of this thesis is just to cover and propose novel solutions for the two initial
steps of the classic pipeline within the scene reconstruction context.

Traditionally, several of the proposed methods to solve features detection use
low level image processing techniques that brought to a wide number of well
founded algorithms based on robust and handcrafted methods [6, 7], as can be
seen in figure 2.1. However, in this thesis we propose a novel approach for key-
points detection task that combines handcrafted and learned CNN filters within
a shallow multi-scale architecture. Handcrafted filters provide anchor structures
for learned filters, which localize, score and rank repeatable features. Scale-space
representation is used within the network to extract keypoints at different levels.
We design a loss function to detect robust features that exist across a range of scales
and to maximize the repeatability score. The proposed method, named Key.Net
model is trained on data synthetically created from ImageNet [24] and evaluated on
HPatches benchmark [25]. Results are provided to show that the approach outper-
forms state-of-the-art detectors in terms of repeatability, matching performance

9

Chapter 2. Local Features Detection and Description

(a) (b)

Figure 2.1 – Local feature detection using VLFeat. Example showing the result of
a local features detection algorithm using the VLFeat library [26] with the SIFT [6]
detector. Left: the original RGB image. Right: the image in grayscale containing the
found keypoints represented as circles, where the radius show the estimated size of
the keypoint. Image is courtesy of the VLFeat examples website.

and complexity.
Additionally, it has recently been demonstrated that local feature descriptors

based on convolutional neural networks (CNN) can significantly improve the match-
ing performance and with it the final 3d reconstruction of a scene. Previous work on
learning such descriptors has focused on exploiting pairs of positive and negative
patches to learn discriminative CNN representations. In this thesis, we propose
a new method that utilizes triplets of training samples, together with in-triplet
mining of hard negatives. We show that the method achieves state of the art results,
without the computational overhead typically associated with mining of negatives
and with lower complexity of the network architecture. The approach is compared
to recently introduced convolutional local feature descriptors, and demonstrate the
advantages of the proposed methods in terms of performance and speed.

2.2 Feature Detection

Recent advances in local feature detectors and descriptors has led to remarkable
improvements in areas such as image matching, object recognition, self-guided
navigation or 3D reconstruction. Although the general direction of image matching
methods is moving towards learned based systems, the advantage of learning meth-
ods over handcrafted ones has not been clearly demonstrated in keypoint detection

10

2.2. Feature Detection

[27] bringing initial approximations less efficient and with a high computational
cost. However, the growing popularity of augmented reality (AR) headsets, as well
as AR smartphone apps, has drawn more attention to reliable and efficient local fea-
ture detectors that could be used for surface estimation, sparse 3D reconstruction,
3D model acquisition or objects alignment, among others.

Traditionally, local feature detectors were based on engineered filters. For in-
stance, approaches such as Difference of Gaussians [6], Harris-Laplace or Hessian-
Affine [28] use combinations of image derivatives to compute feature maps, which
is remarkably similar to the operations in trained CNN’s layers. Intuitively, with
just a few layers, a network could mimic the behavior of traditional detectors by
learning the appropriate values in its convolutional filters. However, the improve-
ments upon handcrafted detectors offered by recently proposed fully CNN based
methods [29, 30, 31, 32, 33] are limited in terms of widely accepted metrics such as
repeatability which measures the closeness between the detected keypoint location
and its ground truth. In contrast to the method that we propose later, in addition
to the keypoint location, in some cases the estimation of the scale (or surrounding
region) and even the affine transformation is required. However, those methods usu-
ally lack in terms of accuracy when estimating the affine parameters of the feature
regions. Robustness to scale variations seems particularly problematic while other
parameters such as dominant orientation can be regressed well by CNNs [29, 34].

These problems in previous approaches motivates our novel architecture, termed
Key.Net, that makes use of handcrafted and learned filters as well as a multi-scale
representation to identify keypoints at different scales. The Key.Net architecture is
illustrated in figure 2.2. Introducing handcrafted filters, which act as soft anchors,
makes possible to generate a model with fewer parameters that state of the art
detectors while maintaining the performance in terms of repeatability. The model
operates on a multi-scale representation of full-size images and returns a response
map containing a keypoint score for every pixel. The multi-scale input allows the
network to propose stable keypoints across scales thus providing robustness to
scale changes considering that the network does not explicitly predict the affine
parameters for the scale.

Ideally, a robust detector is able to propose the same keypoints for images that
undergo different geometric or photometric transformations. A number of related
works have focused their objective function to address this issue, although they
were based either on local patches [31, 32] or global map regression loss [9, 33, 35].
In contrast, we extend the covariant constraint loss used in previous works to a new
objective function that combines local and global information in order to predict
more stable keypoints across the different scales. The Key.Net architecture produces
as an output a response map which needs an operator to extract discrete keypoint
locations to evaluate the geometric loss function. For this reason, we design a

11

Chapter 2. Local Features Detection and Description

fully differentiable operator, Multi-scale Index Proposal, that proposes keypoints
at multi-scale regions. We extensively evaluate the method in recently introduced
HPatches benchmark [25] in terms of accuracy and repeatability according to the
protocol from [36].

In summary, the contribution presented in this section is a multi-scale feature
detection method with a shallow architecture based on:

1. the Key.Net network that generates a response map for those potential regions
in the input image that might contain a keypoint.

2. a differentiable operator to extract and rank the stable keypoints across the
scales.

The rest of the section is organized as follows. A revision in keypoint detection is
shown in section 2.2.1. Section 2.2.2 presents the proposed hybrid Key.Net architec-
ture of handcrafted and learned CNNs filters and section 2.2.3 introduces the loss.
Implementation and experimental details are given in section 2.2.4 and the results
are presented in section 2.2.5.

2.2.1 Related Work in Feature Detection

There are many surveys that extensively discuss feature detection methods [27, 37].
In this section related works are presented and organized in two main categories:
handcrafted and learned based detectors.

Handcrafted Detectors

Traditional feature detectors localize geometric structures through engineered al-
gorithms, which are often referred to as handcrafted. Harris [38] and Hessian [39]
detectors used first and second order image derivatives to find corners or blobs in
images. Those detectors were further extended to handle multi-scale and affine
transformations [28, 40]. Region based methods such as SIFT [6] looked for blobs
over multiple scale levels, and MSER [41] segmented and selected stable regions
as keypoints. Later, SURF [42] accelerated the detection process by using integral
images and an approximation of the Hessian matrix; and ORB [7] proposed an alter-
native to SIFT by proposing an oriented version the FAST [43] detector. Multi-scale
improvements were proposed in KAZE [44] and its extension, A-KAZE [45], where
Hessian detector was applied to a non-linear diffusion scale space in contrast to
widely used Gaussian pyramid. Although corner detectors proved to be robust and
efficient, other methods seek alternative structures within images.

12

2.2. Feature Detection

Learned Detectors

The success of learned methods in general object detection and feature descrip-
tors motivated the research community to explore similar techniques for feature
detectors. FAST [43] was one of the first attempts to use machine learning to derive
a corner keypoint detector. Further works extended FAST by optimizing it [46],
adding a descriptor [47] or orientation estimation [7].

Latest advances in CNNs also made an impact on feature detection. TILDE [35]
trained multiple piece-wise linear regression models to identify interest points that
are robust under severe weather and illumination changes. DNet [31] introduced a
new formulation to train a CNN based on feature covariant constraints. Previous
detector was extended in [32] (TCDET) by adding predefined detector anchors,
showing improved stability in training. In [30] were presented two networks, Magic-
Point, and MagicWarp, which first extracted salient points and then a parameterized
transformation between pairs of images. MagicPoint was extended in [9] to Super-
Point, which included a salient detector and descriptor. LIFT [29] implemented an
end-to-end feature detection and description pipeline, including the orientation
estimation for every feature. Quadruple image patches and a ranking scheme of
point responses as cost function were used in [48] to train a neural network. In
[49], authors proposed a pipeline to automatically sample positive and negative
pairs of patches from a region proposal network to optimize jointly point detec-
tions and their representations. Recently, LF-Net [33] estimated position, scale and
orientation of features by optimizing jointly the detector and descriptor.

13

Chapter 2. Local Features Detection and Description

up

3M

H

W

M

Figure 2.2 – Features detection architecture. The proposed Key.Net architecture
combines handcrafted and learned filters to extract features at different scale levels.
Feature maps are upsampled and concatenated. Last learned filter combines the
Scale Space Volume to obtain the final response map.

2.2.2 Key.Net Architecture

In this section we present a method to detect keypoints which attempts to combine
the strong points of both handcrafted and learned-based approaches with the aim
to obtain results comparable to the best learned-based detectors with the efficiency
and low cost of hand-crafted solutions. The proposed architecture, named Key.Ney,
can be seen in figure 2.2.

Handcrafted and Learned Filters

The design of the handcrafted filters is inspired by the success of Harris [38] and
Hessian [39] detectors, which used first and second order derivatives to compute
the salient corner responses. A complete set of derivatives is called LocalJet [50]
and they approximate the signal in the local neighborhood as known from Taylor

14

2.2. Feature Detection

expansion:

Ii1,...,in = I0 ∗∂i1,...,in gσ(~x), (2.1)

where gσ denotes a Gaussian of width σ centered at ~x =~0, and in denotes the
derivative direction and order. Since higher order derivatives i.e., n > 2 are sensitive
to noise and require large kernels, the subset of LocalJet that we have considered,
includes derivatives and their combinations up to the second order only:

• First Order. From image I we derive 1st order gradients Ix and Iy . In addition,
we compute Ix ∗ Iy , Ix

2 and Iy
2 as in the second moment matrix of Harris

detector [38].
• Second Order. From image I , 2nd order derivatives Ixx , Iy y and Ix y are also

included as in the Hessian matrix used in Hessian and DoG detectors [6, 51].
We also add Ixx ∗ Iy y and I 2

x y because of the performance boost that induce
in Hessian detectors.

In addition we include a convolutional layer with M learnable filters, a batch
normalization layer and a ReLU activation function in order to complement the
handcrafted features. The hardcoded filters reduce the number of total learnable
parameters to train the architecture, improving the stability and convergence during
backpropagation.

Multi-scale Pyramid

The design of the proposed architecture has been done to be robust to small scale
changes without the need for computing several forward passes and iterate over the
scale space. As illustrated in figure 2.2, the network includes three scale levels of the
input image which is blurred and downsampled by a factor of 1.2. All the feature
maps resulting from the handcrafted filters are concatenated to feed the stack of
learned filters in each of the scale levels. All three streams share the weights, such
that the same type of anchors result from different levels and form the set of candi-
dates for final keypoints. Feature maps from all scale levels are then upsampled,
concatenated and fed to the last convolutional filter to obtain the final response
map.

2.2.3 Geometric Loss Function

In the proposed architecture, given an image it produces a response map that will
be used later to extract the keypoints needed by the classical scene reconstruction
pipeline. The learning process of the parameters in our architecture will be based
on a geometric loss function which needs to be very carefully designed in order to
backpropagate the gradients through the entire pipeline.

15

Chapter 2. Local Features Detection and Description

In supervised training, the loss function relies on the ground truth. In the case
of keypoints, ground truth is not well defined as keypoint locations are useful as
long as they can be accurately detected regardless of geometric or photometric
image transformation. Some learned detectors [31, 33, 48] train the network to
identify keypoints without constraining their locations, where only the homography
transformation between images is used as ground truth to calculate the loss as a
function of keypoints repeatability.

Other works [9, 32, 35] show the benefits of using anchors to guide their training
which work as a reference respect to the potential neighbours keypoints. Although
anchors make the training more stable and lead to better results, they prevent the
network from proposing new keypoints in case there is no anchor in the proximity.
In contrast, the handcrafted filters in Key.Net provide a weak constraint with the
benefit of the anchor-based methods while allowing the detector to propose new
stable keypoints. The proposed approach, only takes the geometric transformation
between images is required to guide the loss.

Index Proposal Layer

This section introduces the Index Proposal (IP) layer, the differentiable operator
used as base to extract the sub-pixel coordinates of the keypoints from the produced
response maps by the network. The operator is later extended to its multi-scale
version in section 2.2.3 to enforce the detection across the different scale in the
features domain.

Extracting coordinates for training keypoint detectors has been widely studied
and showed great improvements: [29, 31, 32] extracted coordinates in reference to
the patch size, SuperPoint [9] used a channel-wise softmax to get maxima belonging
to fix grids of 8x8, and [52] used a spatial softmax layer to compute the global
maxima of a feature map, obtaining one keypoint candidate per feature map. In
contrast to previous methods, our IP layer is able to return multiple global keypoint
coordinates centered on local maxima from a single image without constraining
the number of keypoints to the depth of the feature map [52] or the size of the grid
[9]. This condition is beneficial in the sense that the network is not constrained by
the internal design and later makes very practical to extract an arbitrary number of
keypoints.

Similarly to handcrafted techniques, keypoint locations are indicated by local
maxima of the filter response map R output by Key.Net. Spatial softmax operator is
an effective method for extracting the location of a soft maximum within a window
[9, 29, 33, 52]. Therefore, to ensure that the IP layer is fully differentiable, we rely
on spatial softmax operator to obtain the coordinates of a single keypoint per
window. Consider a window wi of size N ×N in R, with the score value at each

16

2.2. Feature Detection

coordinate [u, v] within the window, then we compute mi by exponentially scaling
and normalizing wi :

mi (u, v) = ewi (u,v)∑N
j ,k ewi (j ,k)

. (2.2)

Due to the exponential scaling the maximum value in wi dominates and its coor-
dinate is the expected location calculated as the weighted average [ūi , v̄i] gives an
approximation of the maximum coordinates mi as follows:

[xi , yi]T = [ūi , v̄i]T =
N∑

u,v
[W ¯mi ,W T ¯mi]T + cw , (2.3)

where W is a kernel of size N ×N with index values j = 1 : N along its columns,
pointwise product ¯, and cw is the top-left corner coordinates of window wi . This
is similar to non-maxima suppression (NMS) but unlike NMS, the IP layer is dif-
ferentiable and it is a weighted average of the global maxima of the window rather
than the exact location of it. Depending on the base of the power expression in
equation 2.2, multiple local maxima may have a more or less significant effect on
the resulting coordinates.

A detector is covariant if same features are detected under varying image trans-
formations. Covariant constraint was formulated as a regression problem in [31].
Given images Ia and Ib , and ground truth homography Hb,a between them, the
loss L is based on the squared difference between the coordinates extracted by IP
layer and its ground truth coordinates extracted by a non-differentaible NMS in the
corresponding windows from Ia and Ib :

LI P (Ia , Ib , Ha,b , N) =
N xN∑

i
αi‖[xi , yi]T

a −Hb,a[x̂i , ŷi]T
b ‖2,

and αi = Ra(xi , yi)a +Rb(x̂i , ŷi)b , (2.4)

where Ra and Rb are the response map of Ia and Ib with coordinates related by the
homography Hb,a . We skip homogeneous coordinates for simplicity. x̂ and ŷ are
obtained from applying Hb,a to (x, y). The information in αi is the accumulation of
the response map of each image once they are put in correspondence with the Ha,b

which controls the contribution of each location based on its score value. Gradients
are only back-propagated where IP layer was applied, therefore, we switch Ia and
Ib and combine both losses to enforce consistency.

17

Chapter 2. Local Features Detection and Description

Figure 2.3 – Siamese training process. Image Ia and Ib go through Key.Net to gener-
ate their response maps, Ra and Rb . M-SIP proposes interest point coordinates for
each one of the windows at multi-scale regions. The final loss function is computed
as a regression of coordinate indexes from Ia and transformed coordinate indexes
from Ib (see in equation 2.4).

Multi-scale Index Proposal Layer

IP layer returns one location per window, therefore, the number of keypoints per
image strongly depends on the predefined window size N . In particular, if N is big
with an increasing size only a few dominant keypoints survive in the image. In [53],
authors demonstrated improved performance of local features by accumulating
image features not only within a spatial window but also within the neighboring
scales. We propose to extend IP layer loss by incorporating multi-scale represen-
tation of a local neighborhood. Multiple window sizes encourage the network to
find keypoints that exist across a range of scales. The additional benefit of including
larger windows is that other keypoints within the window can act as anchors for the
estimated location of the dominant keypoint. Similar idea proved successful in [54],
where stable region boundaries are used.

We, therefore, propose the Multi-Scale Index Proposal (M-SIP) layer. M-SIP
splits multiple times the response map into grids, each with a window size of
Ns ×Ns and computes the candidate keypoint position for each window as shown
in figure 2.3. Our proposed loss function is the average of covariant constraint losses
from all scale levels:

LMSI P (Ia , Ib , Ha,b) =∑
s
λs LI P (Ia , Ib , Ha,b , Ns), (2.5)

18

2.2. Feature Detection

Figure 2.4 – Key.Net qualitative results with different windows sizes. Keypoints
obtained after adding larger context windows to M-SIP operator. The points that
are more stable remain as the M-SIP operator increases its window size. While the
feature maps in the middle row contain points around edges or non discriminative
areas from the initial scales, the bottom row shows detections from the lower scales
which shows that are more robust under geometric transformations.

19

Chapter 2. Local Features Detection and Description

Figure 2.5 – Homography synthetic data generation. We apply random geometric
and photometric transformations to images and extract pairs of corresponding
regions as the training set. Red crop is discarded by checking the response of the
handcrafted filters.

where s is the index of the scale level with Ns as window size, LI P is the covariant
constraint loss and λs is the control parameter at scale level s, that decreases
proportionally to the increasing window area as larger windows lead to a larger loss,
which is somewhat similar to the scale-space normalisation [28].

The combination of different scales imposes an intrinsic process of simultane-
ous scoring and ranking of keypoints within the network. In order to minimize the
loss, the network will learn to give higher scores to the pixel locations centered on
image features that remain dominant across a range of scales. Figure 2.4 shows
different response maps for increasing window size.

2.2.4 Experimental Evaluation

In this section, we present implementation details, metrics and the dataset used for
evaluating the method.

Training Data

We generate a synthetic training set from ImageNet ILSVRC 2012 [55] dataset. We
apply random geometric transformations to images and extract pairs of corre-
sponding regions as our training set. The process is illustrated in figure 2.5. The
parameters of the transformations are: scale [0.5,3.5], skew [−0.8,0.8] and rotation
[−60◦,60◦] which are common transformations seen across scene reconstruction
datasets. Textureless regions are discarded by checking if the mean response of any
of the handcrafted filters is lower than a threshold. We modify contrast, brightness

20

2.2. Feature Detection

and hue value in HSV space to one of the images to improve network’s robustness
against illumination changes. In addition, for each pair, we generate a binary mask
that indicates the common area between images. Mask is used in training to avoid
regressing indexes of keypoints that are not present in the common region. There
are 12,000 image pairs of size 192 × 192. We use 9,000 of them as the training data
and 3,000 as validation set.

Evaluation Metrics

We follow the evaluation protocol proposed in [36] and improved in the follow up
works [27, 29, 31, 32] which is based on the repeatability scores. The repeatability
score for a pair of images is computed as the ratio between the number of corre-
sponding keypoints and the lower number of keypoints detected in one of the two
images. We take the top-k extracted keypoints to compare across methods and allow
each keypoint to match only once as in [35, 46]. In addition, as exposed by [27], we
address the bias from the magnification factor that was applied to accelerate the
computation of the overlap error between multi-scale keypoints.

Keypoints are identified by spatial coordinates and scales at which the features
were detected, the last defined by a squared around the center. To identify corre-
sponding keypoints we compute the Intersection-over-Union error, εI oU , between
the areas of the two candidates. To evaluate the accuracy of keypoint location
and scale independently, we perform two sets of experiments. One is based on
the scales extracted from the scale space and the other assumes the scales are
correctly detected by using the ground truth parameters. In our benchmark, we
use top 1,000 interest points that belong to the common region between images
and a match is considered correct when εI oU is smaller than 0.4 i.e., the overlap
between corresponding regions is more than 60%. The scales are normalized as in
[27], which sets the larger size in a pair of points to 30 pixels, and rescales the other
one accordingly. Non-maxima suppression of 15×15 is performed at inference time
during evaluation.

HPatches [25] dataset is used for testing. HPatches contains 116 sequences,
which are split between viewpoint and illumination transformations, 59 and 57
sequences respectively. HPatches offers predefined image patches for evaluating
descriptors, instead, we use full images for evaluating keypoint detectors.

Experimental Setup

Training is performed in a siamese pipeline, with two instances of Key.Net that share
the weights and are updated at the same time. Each convolutional layer has M = 8
filters of size 5×5, with He [56] weights initialization and L2 kernel regularizer. We
compute the covariant constraint loss LM-SI P for five scale levels, with the size of

21

Chapter 2. Local Features Detection and Description

0.72 0.74 0.76 0.78 0.80
Repeatability

1

2

3

4

5

Nu
m

be
r L

ea
rn

ab
le

 B
lo

ck
s

Full Learnable
1st Order
2nd Order
1st and 2nd Order

Figure 2.6 – Key.Net quantitative results for different learnable blocks. Repeata-
bility results for different combinations of handcrafted filters and a number of
learnable layers (M = 8 filters each). A higher number of layers leads to better
results. All repeatability scores are computed on synthetic validation set from
ImageNet.

the M-SIP windows Ns ∈ [8,16,24,32,40] and loss term λs ∈ [256,64,16,4,1], that
were determined by performing a hyperparameter search on the validation set.
Larger candidate window sizes have greater mean errors between coordinate points
since the maximum distance is proportional to the window size. Thus, λs has the
largest value for the smallest window. We use a batch size of 32, an Adam Optimizer
with a learning rate of 10−3 and a decay factor of 0.5 after 30 epochs. On average, the
architecture converges in 20 epochs, 2h on a machine with an i7-7700 CPU running
at 3.60GHz and a NVIDIA GeForce GTX 1080 Ti. Evaluation benchmark, synthetic
data generator, Key.Net network, and loss are implemented using TensorFlow and
are available on GitHub1.

2.2.5 Detection Results

In this section, we present the experiments and discuss the results. We first show
results on validation data for several variants of the proposed architecture. Next,
Key.Net repeatability scores in single-scale and multi-scale are presented along with
the state-of-the-art detectors on HPatches. Moreover, we evaluate the matching per-

1https://github.com/axelBarroso/Key.Net

22

2.2. Feature Detection

M-SIP Region Sizes
W8x8 W16x16 W24x24 W32x32 W40x40 Repeatability
X - - - - 70.5
X X - - - 74.6
X X X - - 76.8
X X X X - 77.6
- - - - X 65.7
- - - X X 71.4
- - X X X 73.2
- X X X X 74.9
X X X X X 79.1

Table 2.1 – Key.Net quantitative results for M-SIP regions sizes. Comparison of
repeatability results for the various number of levels in M-SIP operator. We show
different combinations of context losses as the final loss, from smaller to larger
regions. The best result is obtained when using five window sizes from 8×8 up to
40×40.

formance, the number of learnable parameters and inference time of our proposed
detector and compare to other techniques.

Preliminary Analysis

We study several combinations of loss terms, different handcrafted filters and the
effects of the number of learnable layers or pyramid levels within the architecture.

• Filter Combinations are analyzed in figure 2.6. We show results for 1st and
2nd order filters as well as their combination. All networks have the same
number of filters, however, we either freeze first layer of 10 filters with hand-
crafted kernels (c.f. section 2.2.2) or learn them depending on the variant
of our network, e.g, in Fully Learnable Key.Net there are no handcrafted fil-
ters as all are randomly initialized and learned. The results show that the
information provided by handcrafted filters is essential when the number of
learnable layers is small. Handcrafted filters act as soft constraints, which
directly discard areas without gradients, i.e. non-discriminative with low
repeatability. However, as we add more learnable blocks, repeatability scores
for combined and fully learnable networks become comparable. Naturally,
gradient-based handcrafted filters are simple, and architectures with enough
complexity can learn them.

• Multiple Pyramid Levels at the input to the network also affect the detection
performance as shown in table 2.1. For a single pyramid level, only the original

23

Chapter 2. Local Features Detection and Description

image is used as input. Adding pyramid levels is similar to increasing the size
of the receptive fields in the architecture. Our experiment suggests that using
more than three levels does not lead to significantly improved results. On
the validation set, we obtain a repeatability score of 72.5% for one level, an
increase of 6.6% for three, and 7.0% for five levels. We, therefore, use three
levels, which achieve good performance while keeping the computational
cost low.

Detection algorithm comparison

This section presents the results for state-of-the-art local feature detectors along
with our proposed method. Table 2.2 shows the repeatability score, average intersection-
over-union error ε̄I oU . Suffixes -TI and -SI, refer to translation (detection at a single
scale only) and scale invariance (detection at multiple scales), respectively. Key-
point location is only evaluated under L by assuming correct scale detection, while
scale and location (SL) use the actual detected scale and location for computing the
overlap error.

In addition to Key.Net, we evaluate in these experiment the performance of
Tiny-Key.Net, which is a reduced size architecture with all handcrafted filters but
only one learnable layer with one filter (M = 1) and a single downscaling factor in
the input. The idea behind Tiny-Key.Net is to demonstrate how far the complexity
can be reduced while keeping good performance. Key.Net and Tiny-Key.Net are
extended to scale invariance by evaluating the detector on several scaled images,
similar to [32]. We also show results on single scale input Key.Net-TI, to compare it
directly with other TI detectors such as SuperPoint or TILDE. We manually set the
threshold of algorithms to return at least 1,000 points per image. As MSER proposes
regions without scoring or ranking, we randomly pick 1,000 points to compute
the results. We repeat this experiment ten times and average the results for MSER.
Key.Net has the best results on viewpoint sequences, in terms of both, location and
scale. Tiny-Key.Net does not perform as well as Key.Net but it is within the top three
repeatability scores, after Key.Net-TI and Key.Net-SI.

On illumination sequences, Key.Net-TI performs the best among TI detectors,
which are not affected by scale estimation errors. TCDET, which uses points de-
tected by TILDE as anchors, is the most accurate in location estimation compared
to other SI detectors. Note that TILDE based detectors were specifically designed
and trained for illumination sequences. LF-Net is the best SI detector according to
SL overlap, not suffering much from incorrect scale estimations.

24

2.2.
Featu

re
D

etectio
n

Viewpoint Illumination

Repeatability ε̄I oU Sr ang e Repeatability ε̄I oU Sr ang e

SL L SL L SL SL L SL L SL

SIFT-SI [6] 43.1 57.6 0.18 0.12 78.6 47.8 60.4 0.18 0.12 84.5
SURF-SI [42] 46.7 60.3 0.18 0.18 24.8 53.0 64.0 0.15 0.11 27.4
FAST-TI [43] 30.4 63.1 0.21 0.10 - 63.6 63.6 0.09 0.09 -
MSER-SI [41] 56.4 62.8 0.12 0.08 503.7 46.5 54.5 0.12 0.10 524.8
Harris-Laplace-SI [51] 45.1 62.0 0.20 0.13 95.9 52.7 62.0 0.17 0.08 90.4
KAZE-SI [44] 53.3 65.7 0.20 0.11 12.5 56.9 65.7 0.12 0.10 12.7
AKAZE-SI [45] 54.0 65.6 0.19 0.10 13.5 64.9 69.1 0.11 0.09 13.6
TILDE-TI [35] 31.0 65.1 0.20 0.15 - 70.4 70.4 0.11 0.11 -
LIFT-SI [29] 43.4 59.4 0.20 0.13 13.3 51.6 65.4 0.18 0.12 13.8
DNet-SI [31] 49.4 62.2 0.21 0.14 11.4 59.1 65.1 0.14 0.13 17.1
TCDET-SI [32] 49.6 61.6 0.23 0.16 6.7 66.9 71.0 0.16 0.15 11.4
SuperPoint-TI [9] 33.3 67.1 0.20 0.17 - 69.9 69.9 0.10 0.10 -
LF-Net-SI [33] 32.3 62.2 0.23 0.12 2.00 68.6 69.1 0.10 0.10 2.0

Tiny-Key.Net-SI 57.8 70.3 0.20 0.12 7.6 56.1 62.8 0.14 0.11 7.6
Key.Net-TI 34.2 71.5 0.20 0.11 - 72.0 72.0 0.10 0.10 -
Key.Net-SI 59.6 72.6 0.19 0.14 7.6 61.3 66.2 0.12 0.10 7.6

Table 2.2 – Key.Net repeteability results. Repeatability results (%) for translation (TI) and scale (SI) invariant detectors
on HPatches. We also report average overlap error ε̄I oU and ratio of maximum to minimum extracted scale SRang e . In
SL, scales and locations are used to compute overlap error, meanwhile, in L, only locations are used and scales are
assumed to be correctly estimated. Key.Net and Tiny-Key.Net are the best algorithms on viewpoint, for both L and SL.
On illumination sequences, translation invariant Key.Net-TI obtains the best accuracy.

25

Chapter 2. Local Features Detection and Description

Matching Score

View Illum

MSER [41] + HardNet [57] 11.7 18.8
SIFT [6] + HardNet [57] 23.2 24.8
HarrisLaplace [51] + HardNet [57] 30.0 31.7
AKAZE [45] + HardNet [57] 36.4 41.4
TILDE [35] + HardNet [57] 32.3 40.3
LIFT [29] + HardNet [57] 30.3 32.8
DNet [31] + HardNet [57] 33.5 34.7
TCDET [32] + HardNet [57] 27.6 36.3
SuperPoint [9] + HardNet [57] 37.4 43.0
LF-Net [33] + HardNet [57] 26.9 43.8

LIFT [29] 21.8 26.5
SuperPoint [9] 38.0 41.5
LF-Net [33] 23.0 29.1

Tiny-Key.Net + HardNet [57] 37.9 37.3
Key.Net + HardNet [57] 38.4 40.7

Table 2.3 – Key.Net matching scores results. Matching score (%) of best detec-
tors together with HardNet and state-of-the-art detector/descriptors. Results on
HPatches sequences, both viewpoint, and illumination. Key.Net architecture get
the best matching score for viewpoint, while LF-Net+HardNet for illumination
sequences.

Keypoint matching analysis

In order to demonstrate that the detected features are useful for matching, table 2.3
shows the percentage of keypoints that have been put in correspondence matching
scores for the different detectors combined with HardNet descriptor [57]. As our
method only focuses on the detection part, and for a fair comparison, we used
the same descriptor and discard the orientation for all methods that provide it
since our method do not estimate the keypoint orientation. In addition, we include
in the table LIFT[29], SuperPoint[9] and LF-Net[33] with their descriptors, but
ignoring their orientation estimation. The matching score is computed as the
ratio between features matched and detected top 1k best ranked points. Best
matching percentages matching scores are obtained by Key.Net on viewpoint, and
LF-Net+HardNet on illumination. Feature detectors that were optimized jointly with

26

2.2. Feature Detection

a descriptor [9, 29, 33] have better matching score than regular learned detectors
on illumination sequences, but not on viewpoint. Handcrafted AKAZE performs
close to the top learned methods.

Efficiency

We also compare the number of learnable parameters, indicating then the com-
plexity of the predictor, therefore, an increased risk of overfitting and a need for
large training data. Table 2.4 shows the approximate number of parameters for
different architectures. Learnable parameters that are not used during inference in
the detector part are not counted for SuperPoint and LF-Net detectors. The highest
complexity is from SuperPoint with 940k learnable parameters. Key.Net has nearly
160 times fewer parameters and Tiny-Key.Net has 3,100 times fewer parameters
than SuperPoint with better repeatability for viewpoint scenes. The inference time
of an image of 600 × 600 is 5.7ms (175 FPS) and 31ms (32.25 FPS) for Tiny-Key.Net
and Key.Net, respectively.

Number of Learnable Parameters

TCDET SuperPoint LF-Net Key.Net Tiny-Key.Net

548k 940k 39k 5.9k 280
Table 2.4 – Key.Net number of parameters comparison. Comparison of the num-
ber of learnable parameters for state-of-the-art architectures. Tiny-Key.Net has only
one learnable block with one filter.

2.2.6 Conclusions

In this section we introduced an approach to detect local features that combines
handcrafted and learned CNN filters that can be easily replaced by any existing
detection method in the reconstruction pipeline. We have proposed a multi-scale
index proposal layer that finds keypoints across a range of scales, with a loss function
that optimizes the robustness and discriminating properties of the detections. We
demonstrated how to compute and combine differentiable keypoint detection
loss for multi-scale representation. Evaluation results on large benchmark show
that combining handcrafted and learned features as well as multi-scale analysis
at different stages of the network improves the repeatability scores compared to
other state-of-the-art keypoint detection methods. We further show that using
handcrafted filters significantly reduce the complexity of the architecture leading to
a detector with 280 learnable parameters and inference of 175 frames per second.

27

Chapter 2. Local Features Detection and Description

2.3 Feature description

In the previous section we described the process to detect interesting points in the
image using classical and CNN based algorithms. We also reviewed the state of
the art and proposed a new method based on CNNs that improves the pre-existing
algorithms. Thus, in order to complete a reconstruction pipeline using local features
(see again figure 1.2), as we have discussed during the introduction of this thesis it
is also necessary to not only detect but also describe the detected points. As seen in
figure 2.7 the classical approach for describing local regions is to extract small first
image patches and compute a descriptor based on the properties obtained from the
detection algorithm. There is a wide variety of methods to compute descriptors from
the image patches using classical methods such as the very well known SIFT [6] that
bases on computing histograms of gradients and has inspired a whole generation
of researchers in this field.

However, it has recently been demonstrated that local feature descriptors based
on convolutional neural networks (CNN) can significantly improve the matching
performance and with it the final 3d reconstruction of a scene. Previous work on
learning such descriptors has focused on exploiting pairs of positive and negative
patches to learn discriminative CNN representations. In this thesis, we propose
a new method that utilizes triplets of training samples, together with in-triplet
mining of hard negatives. We show that the method achieves state of the art results,
without the computational overhead typically associated with mining of negatives
and with lower complexity of the network architecture. The approach is compared
to recently introduced convolutional local feature descriptors, and demonstrate
the advantages of the proposed methods in terms of performance and speed. In
addition, different loss functions associated with triplets are examined using basic
geometric constraints.

In this section, we investigate the use of triplets in learning local feature descrip-
tors with convolutional neural networks including the following contributions:

1. we examine different different loss functions for triplet based-learning.
2. we investigate the performance of these methods in terms of patch matching,

and patch pairs classification in widely used benchmarks.
3. we show that in-triplet hard negative mining can lead to improved results.
4. we demonstrate that excellent descriptor performance can be obtained with

a shallow network thus avoiding computationally complex architectures and
expensive mini-batch hard negative mining.

28

2.3. Feature description

(a) (b)

Figure 2.7 – Local feature description using VLFeat. Example showing the result
of a local features detection algorithm using the VLFeat library [26] with the SIFT [6]
descriptor. Left: the original RGB image. Right: the image in grayscale containing
the detected keypoints including the region from where descriptor will be extracted
according to the keypoint size and orientation. This image has been obained from
the VLFeat examples website.

2.3.1 Related Work in Feature Description

Finding correspondences between images via local descriptors is one of the most
extensively studied problems in computer vision due to the wide range of applica-
tions. The field has witnessed several breakthroughs in this area such as SIFT [58],
invariant region detectors [28], fast binary descriptors [59], optimised descriptor
parameters [60, 61] which have made a significant and wide impact in various com-
puter vision tasks. Recently end-to-end learnt descriptors [8, 62, 63, 64] based on
CNN architectures and training on a large dataset of positive and negative sample
pairs, were demonstrated to significantly outperform state of the art features. This
was a natural adoption of CNN to local descriptors as deep learning had already
been shown to significantly improve in many computer vision areas [65].

Recent work on deep learning for learning feature embeddings examines the use
of triplets of samples instead of solely focusing on pairs [66, 67, 68]. Different loss
functions are proposed in these works, but a systematic study of their characteristics
is yet to be done. In addition, these works are focused on more general embeddings
(e.g. product similarity, 3D description of objects, MNIST classification).

The design and implementation of local descriptors has undergone a remark-
able evolution over the past two decades ranging from differential or moment

29

Chapter 2. Local Features Detection and Description

invariants, correlations, PCA projected patches, histograms of gradients or other
measurements, etc. An overview of pre-2005 descriptors with SIFT [58] identified as
the top performer can be found in [69]. Its benchmark data accelerated the progress
in this field and there have been a number of notable contributions, including
recent DSP-SIFT [70], falling into the same category of descriptors as SIFT but the
improvements were not sufficient to supersede SIFT in general. The research fo-
cus shifted to improve the speed and memory footprint e.g. as in BRIEF [59] and
the follow up efforts. Introduction of datasets with correspondence ground truth
[60] stimulated development of learning based descriptors which try to optimise
descriptor parameters and learn projections or distance metrics [61, 71] for better
matching.

End-to-end learning of patch descriptors using CNN has been attempted in
several works [8, 62, 63, 64] and consistent improvements were reported over the
state of the art descriptors. Interest in the field started from results shown in [62] that
the features from the last layer of a convolutional deep network trained on ImageNet
[72] can outperform SIFT. This was a significant result, since the convolutional
features from ImageNet were not specifically learnt for such local representations.
Learning a CNN from local patches extracted from local features only, based on
a siamese architecture with hinge contrastive loss [73] was demonstrated in [8,
63, 64] to significantly improve the matching performance. This approach was
originally proposed in [74], however due to the limited evaluation this work was not
immediately followed.

Note that in [8, 64] both feature layers and metric layers are learnt in the same
network. Thus, the final contrastive loss is optimised in terms of the abstract
metric learned in the last layer of the network. On the contrary, [63] directly uses
the features extracted after the convolutional layers of the CNN, without training
a specialised distance layer. This allows the extracted descriptors to be used in
traditional pipelines. However, the experiments from [8] show that metric learning
performs better than generic L2 matching. Another important observation from [8]
is that multiscale architectures perform better than the single scale ones. However,
this is not unique to the CNNs, since previous works have shown that aggregating
descriptors from multiple scales, improves the results.

2.3.2 Learning patch descriptors

In this section, we first discuss the two most commonly used loss functions when
learning with triplets, and we then investigate their characteristics. A patch de-
scriptor is considered as a non-linear encoding resulting from a final layer of a
convolutional neural network. Letx ∈ Rn×n represent the patch given as input
to the network and f (x) ∈ RD represent the D features given as output from the

30

2.3. Feature description

network. For all of the methods below, the goal is to learn the embedding f (x)
s.t. || f (x1)− f (x2)||2 is low if x1 and x2 are extracted from the same physical point
location i.e. positive match, and high otherwise.

Learning with pairs

Learning with pairs involves training from samples of the form {x1, x2,`}, with `

being a label for the patch pair, which is −1 for negative pairs, and 1 for positive
pairs. The contrastive loss is defined as

l (x1, x2;`) =
{ || f (x1)− f (x2)||2 if `= 1

max(0,µ−|| f (x1)− f (x2)||2) if `=−1
(2.6)

where µ is an arbitrarily set margin. Note that the weights of the CNN in f (·) need
to be regularised, otherwise the margin would have no effect. Intuitively the hinge
embedding loss penalizes positive pairs that have large distance and negative pairs
that have small distance (less than µ).

Note that learning local feature descriptors is a more specific problem than
general image classification such as in ImageNet, since the transformations a local
patch can undergo are limited compared to different objects of the same visual
category. In addition, patches in pairs representing negative examples are usually
very different, thus make it easy for the learning process to optimize the distances.
This issue is identified in [63], where the majority of the negative patch pairs (`=−1)
do not contribute to the update of the gradients in the optimization process as their
distance is already larger than µ parameter in Eq. (2.6). To address this issue hard
negative mining was proposed [63] to include more negative pairs in the training.
The hard negative training pairs were identified by their distance and a subset of
these examples were re-fed to the network for gradient update in each iteration.
Note that while this process leads to more discriminative convolutional features, it
also comes at a very high computational cost, since in each epoch, a subset of the
training data need to be backpropagated again through the network. Specifically,
the best performing architecture from [63], required 67% of the computational cost
to be spent for mining hard negatives.

Learning with triplets

Recent work in [67] shows that learning representations with triplets of examples,
gives much better results than learning with pairs using the same network. Inspired
by this, we focus on learning feature descriptors based on triplets of patches.

Learning with triplets involves training from samples of the form {a, p ,n}, where
a is the anchor, p positive, which is a different sample of the same class as a, and n

31

Chapter 2. Local Features Detection and Description

negative is a sample belonging to a different class. In our case, a and p are different
viewpoints of the same physical point, and n comes from a different keypoint.
Furthermore, optimising the parameters of the network brings a and p close in
the feature space, and pushes a and n far apart. For brevity, we shall write that
δ+ = || f (a)− f (p)||2 and δ− = || f (a)− f (n)||2. We can categorise the loss functions
that have been proposed in the literature for learning convolutional embeddings
with triplets into two groups, the ranking-based losses and the ratio-based losses
[66, 67, 68]. Below we give a brief review of both categories, and discuss their
differences.

Margin ranking loss. This ranking loss that was first proposed for learning
embeddings using convolutional neural networks in [66] is defined as

λ(δ+,δ−) = max(0,µ+δ+−δ−) (2.7)

where µ is a margin parameter. The margin ranking loss is a convex approximation
to the 0−1 ranking error loss, which measures the violation of the ranking order of
the embedded features inside in the triplet. The correct order should be δ− > δ++µ.
If that is not the case, then the network adjusts its weights to achieve this result. As it
can be seen the formulation also involves a margin, similarly to Eq.(2.6). Note that if
this marginal distance difference is respected, the loss is 0, and thus the weights are
not updated. Fig. 2.8 (b) illustrates the loss surface of λ(δ+,δ−). The loss remains 0
until the margin is violated, and after that, there is a linear increase. Also note that
the loss in not upper bounded, only lower bounded to 0.

Ratio loss. In contrast to the ranking loss that forces the embeddings to be
learned such that they satisfy ranking of the form δ− > δ++µ, a ratio loss is inves-
tigated in [67] which optimises the ratio distances within triplets. This loss learns
embeddings such that δ−

δ+ →∞.

λ̂(δ+,δ−) = (
eδ+

eδ+ +eδ−
)2 + (1− eδ−

eδ+ +eδ−
)2 (2.8)

As one can examine from Eq. 2.8, the goal of this loss function is to force (eδ+
eδ++eδ−)2 to

0, and (eδ−
eδ++eδ−)2 to 1. Note that both are achieved by the first term of the equation,

but we report here the original formulation from [67]. There is no margin associated
with this loss, and by definition we have 0 ≤ λ̂≤ 1 for all values of δ−,δ+. Note that
unlike the margin-ranking loss, where λ= 0 is possible, every training sample in this
case is associated with some non-negative loss value. Figure. 2.8 (d) shows the loss
surface of λ̂(δ+,δ−), which compared to the ranking based loss has a clear slope
between the two loss levels, and the loss reaches a plateau quickly when δ− > δ+.
Also note that this loss is upper bounded to 1.

32

2.3. Feature description

Figure 2.8 – Proposed triplet loss functions. (a) Margin ranking loss. It seeks to
push n outside the circle defined by the margin µ, and pull p inside. (b) Margin
ranking loss values in function of δ−,δ+ (c) Ratio loss. It seeks to force δ+ to be
much smaller than δ−. (d) Ratio loss values in function of δ−,δ+

In-triplet hard negative mining with anchor swap

All previous works that exploit the idea of triplet based learning use only two of the
possible three distances within each triplet w.r.t. one sample used as an anchor,
thus ignoring the third distance δ

′
− = || f (p)− f (n)||2. Note that since the feature em-

bedding network already computes the representations for f (a), f (p), f (n), there is
no need for extra convolutional overhead to compute δ

′
− except evaluating the L2

distance.
We define the in-triplet hard negative as δ∗ = mi n(δ−,δ

′
−). If δ∗ = δ′

−, we swap
{a, p}, and thus p becomes the anchor, and a becomes the positive sample. This
ensures that the hardest negative inside the triplet is used for backpropagation.
Subsequently, the margin ranking loss becomes λ(δ+,δ∗) = max(0,µ+δ+−δ∗). A
similar expression can be devised for the ratio loss. This simple technique can lead
to improved results without computational overhead, as we experimentally show in
section 2.3.4.

2.3.3 Experimental Evaluation

To demonstrate the impact that triplet based training has on the performance of
CNN descriptors we use a simple network architecture : {Conv(7,7)-Tanh-Pool(2,2)-
Conv(6,6)-Tanh-FC(128)} implemented in Torch [75] with the following simplified
training process. CNN is trained from 5M triplets sampled on-the-fly using patches
from [71]. We do not use data augmentation unlike in typical CNNs for general
classification or convolutional feature descriptors from [8][64]. When forming a
triplet for training we choose randomly a positive pair of patches that originate from
the same physical point and a randomly sampled patch from another keypoint.
This is in contrast to other works where carefully designed schemes of choosing

33

Chapter 2. Local Features Detection and Description

the training data are used in order to enhance the performance [64, 66]. For the
optimization the Stochastic Gradient Descend [76] is used, and the training is done
in batches of 128 items, with a learning rate of 0.1 which is temporally annealed,
momentum of 0.9 and weight decay of 10−6. We also reduce the learning rate every
epoch. The convolution methods are from the NVIDIA cuDNN library [77]. The
training of a single epoch with 5M training triplets takes approximately 10 minutes
in an NVIDIA Titan X GPU.

It is worth noting that the CNN used in our experiments consists of only two
convolutional layers, while all of the other state-of-the art deep feature descriptors
consist of four or more layers [8, 63, 64]. Our motivation for such shallow network
is to develop a descriptor for practical applications including those requiring real
time processing. This is a challenging goal given that all previously introduced
descriptors are computationally very intensive, thus impractical for most applica-
tions. This design is also inspired by the approach introduced in [61], where pooling
of the responses of Gaussian filters and a simple linear projection produced very
good results. Thus, we build a simple hierarchical network that is based on 100
convolutional filters, followed by a linear transformation that projects the responses
of the filters to the desired output dimensionality. Several other implementation
variants are possible such as different non-linearity layers (e.g. ReLU as in [8, 64]),
extra normalization layers, or multiscale architectures but these are likely to fur-
ther improve the results and are beyond the scope of this work. We provide all the
learned models and the training code for all the variants in GitHub2.

2.3.4 Description Results

In this section we evaluate the proposed local feature descriptor within the two
most popular benchmarks in the field of local descriptor matching (patch pair clas-
sification and nearest neighbour patch matching) and we test on different datasets
to show that it can generalise well. We compare our method to SIFT [58], Convex
optimization [61] and the recently introduced convolutional feature descriptors
MatchNet [64], DeepCompare [8] and DeepDesc [63], which are currently the state
of the art in terms of matching accuracy. The original code was used in all the
experiments. More details can be found in the supplementary materials. We name
our four variants TFeat-ranking for the networks learnt with the ranking loss,
TFeat-ranking* for the networks learnt with the ranking loss with anchor swap,
TFeat-ratio for the ratio loss, and TFeat-ratio* for the ratio loss with anchor
swap.

2https://github.com/vbalnt/tfeat

34

2.3. Feature description

Note that for a fair comparison, we do not use the multi-scale 2ch architectures
from [8]. Multi-scale approaches use multiple patches from each example, with
extra inputs in form of cropped sub-patches around the center of each patch. This
introduces information from different samples in the scale-space and it has been
shown to lead to significant improvements in terms of matching accuracy [70].
Such approach can be used for various descriptors (e.g. MatchNet-2ch, TFeat-
2ch, DeepDesc-2ch). The evaluation is done with two different evaluation metrics
frequently found in the literature, patch pair classification success in terms of ROC
curves [60], and mean average precision in terms of correct matching of feature
points between pairs of images [69]. Note that these two metrics are of very different
nature, the former measures how succesfull a classification of positive and negative
patch pairs is, and the latter is evaluating the performance of a descriptor in nearest
neighbour matching scenario where the task is to find correspondences in two large
sets of descriptors.

Patch pair classification benchmark

The evaluation procedure designed in this benchmark measures the ability of a
descriptor to discriminate positive patch pairs from negative ones in the Photo Tour
dataset [71]. This dataset consists of three subsets Liberty,Yosemite & Notredame,
with each containing more than 500k patch pairs extracted around keypoints. We
follow the protocol proposed in [71] where the ROC curve is generated by theshold-
ing the distance scores between patch pairs. The number reported here is the false
positive rate at 95% true positive rate (FPR95), as used in many influencial works in
the field. For the evaluation we use the 100K patch pairs proposed as defined in the
benchmark. For the training we use two out of the three subsets for training and
the remaining for testing. Note that some methods such as DeepDesc [63], does not
report performance with training based on a single dataset, therefore for each test
set, the training is performed on the other two datasets.

The results for each of the combinations of training and testing using the three
subsets of the Photo Tour dataset are shown in Table 2.5 including the FPR95 average
across all possible combinations. Our networks outperform all the previously intro-
duced single-scale convolutional feature descriptors, and in some cases with large
margins except from one training-test combination where the 4096-dimensional
version of MatchNet outperforms our TFeat variants. However, even in this case,
the version of MatchNet with comparable dimensionality to our descriptors is out-
performed by three of our variants. Also note that MatchNet is specifically designed
for patch pair classification, since it also includes a similarity metric layer trained
on top of the feature layer.

35

Chapter 2. Local Features Detection and Description

Training Not Lib Not Yos Yos Lib
Testing Yos Lib Not

Descriptor # mean

SIFT [58] 128 27.29 29.84 22.53 26.55
ImageNet4conv [62] 128 30.22 14.26 9.64 18.04
ConvexOpt [61] 80 10.08 11.63 11.42 14.58 7.22 6.17 10.28
DeepCompare siam [8] 256 15.89 19.91 13.24 17.25 8.38 6.01 13.45
Deepcompare siam2stream 512 13.02 13.24 8.79 12.84 5.58 4.54 9.67
DeepDesc [63] 128 16.19 8.82 4.54 9.85
MatchNet [64] 512 11 13.58 8.84 13.02 7.7 4.75 9.82
MatchNet [64] 4096 8.39 10.88 6.90 10.77 5.76 3.87 7.75
TFeat-ratio 128 8.32 10.25 8.93 10.13 4.12 3.79 7.59
TFeat-ratio* 128 7.24 8.53 8.07 9.53 4.23 3.47 6.84
TFeat-margin 128 7.95 8.10 7.64 9.88 3.83 3.39 6.79
TFeat-margin* 128 7.08 7.82 7.22 9.79 3.85 3.12 6.47

Table 2.5 – Patch pair classification results. Results from the Photo-Tour dataset
[71]. Numbers are reported in terms of FPR95 following state of the art in this field
(see text for more details). Italics indicate the descriptors introduced here, and
bold numbers indicate the top performing descriptor. Yos:Yosemite, Lib:Liberty,
Not:Notredame.

Nearest neighbour patch matching benchmark

In this benchmark we perform an evaluation in the task of matching two images
by putting in correspondence the detected keypoints which is the main problem
where descriptors are used to perform scene reconstruction. To measure the near-
est neighbour matching performance, we establish correspondence ground truth
using the homographies and the overlap error from [69]. We consider two feature
points between the two images in correspondence if the overlap error between
the detected regions is less than 50%. Note that a region from one image can be
in correspondence with several regions from the other image. Each image has
an associated set of approximately 1K patches that have been extracted from the
keypoints detected using two classic detectors (DoG and HarrisAffine).

The results are presented with precision-recall curves as it was originally pro-
posed in [69]. More specifically, for each patch from the left image we find its nearest
neighbour in the right image. Based on the ground truth overlap we identify the
false positives and true positives, and generate precision-recall curves. The area
under the precision-recall curve is the reported mean-average precision [8, 60, 70].
For this experiment, we use the vl_benchmarks [26] library (vl_covdet function),

36

2.3. Feature description

 0.55

 0.56

 0.57

 0.58

 0.59

 0.6

1 5 10 20 30 40 50 60

m
A

P

epoch

DoG

margin-ranking
w/ anchor swap

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0.58

 0.59

 0.6

1 5 10 20 30 40 50 60
m

A
P

epoch

DoG
ratio

w/ anchor swap

 0.865

 0.87

 0.875

 0.88

 0.885

 0.89

1 5 10 20 30 40 50 60

m
A

P

epoch

HarAff
margin-ranking
w/ anchor swap

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

1 5 10 20 30 40 50 60

m
A

P

epoch

HarAff
ratio

w/ anchor swap

Figure 2.9 – Descriptor network comparing the different loss function. Ratio
based loss function overfits in the process of separating the positive and negative
pairs within a triplet, and does not perform well in the nearest neighbour matching
experiment. On the contrary, learning with triplets and margin ranking does not
suffer from this problem which shows that ranking methods are more suitable for
nearest neighbor matching scenarios.

with some minor modifications to limit the descriptors extracted from an image to
1K, which is important to avoid bias by different numbers of features in different
images. For all the experiments below, the descriptors are trained on the Liberty
dataset with patches extracted using the DoG detector [71].

For the testing the nearest neighbor matching benchmark two datasets are
mainly used in the literature, Oxford matching dataset [69], which is of small size,
but include images acquired by a camera, and the generated matching dataset [62]
which is much larger in volume but created synthetically. In the following sections,
we discuss our testing results in those two datasets.

Ratio loss vs. margin loss. In this experiment we want to ascertain which
triplet loss funtion lead to a better image matching performance. Fig 2.9 shows
the performance of the same network trained for the same number of epochs on
the Liberty dataset. We report the m AP of image matching in the Oxford dataset.
It can be observed that the margin based loss increases the performance as more
epochs are used in the training process. No over-fitting is noticed when training
and testing patch classification (e.g. training with ratio loss on Liberty and testing
on Yosemite or Notredame). Interestingly, the ratio loss seems to decrease the
patch matching performance as the network is trained for more epochs. This also
hints that other methods from the literature that were only tested in the patch
classification scenario, may not perform well in matching. In our view, this shows
that evaluating descriptors only in terms of ROC curves is not representative for
realistic matching scenarios. Finally, the results show that the loss functions with
anchor swapping perform better than without swapping. Note that this simple
technique can lead to improved results with no additional computational overhead
both in the foward and backward passes.

37

Chapter 2. Local Features Detection and Description

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

bark bikes boat graf leuven trees ubc wall mean

m
A

P

Oxford-DoG

SIFT
DCompare

DCompare-2str

DeepDesc
MatchNet

Tfeat-m

Tfeat-m*
Tfeat-r

Tfeat-r*

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

bark bikes boat graf leuven trees ubc wall mean

Oxford-HarAff

SIFT
DCompare

DCompare-2str

DeepDesc
MatchNet

Tfeat-m

Tfeat-m*
Tfeat-r

Tfeat-r*

Figure 2.10 – Keypoint image matching quantitative results on real dataset. Eval-
uation on the Oxford image matching dataset [69], for two different types of feature
extractors, DoG and HarrisAffine.

Keypoint matching. Figure 2.10 presents the m AP results for Oxford bench-
mark, across all image sequences from the Oxford dataset, for two different keypoint
detectors, DoG and Harris-Affine. However, all networks are trained just on DoG
keypoints. In the case of our ratio loss, we use the networks from the first epoch
since the performance in general exhibits better results (cf. Fig 2.9). In the case
of the DoG keypoints, our networks outperform all the others in terms of m AP .
The second best performing descriptor is the DeepDesc descriptor from [63]. We
stress again here, that this descriptor was not one of the best performing ones in
the pair classification benchmark as shown in Table 2.5. This confirms our findings
that the classification benchmark is not a representative measure for the common
real-world application of descriptors which often relies on nearest neighbor match-
ing. When using Harris-Affine keypoints our descriptor still outperforms the others,
although with a smaller margin.

Figure 2.11 shows the results across various synthetic transformations of image
pairs. Our descriptor gives the top scores in most sequences. It is also worth noting,
that even though this dataset has some severe deformations as well as nonlinear
filtering, the overall performance for both types of feature extractors is higher than
for the Oxford dataset. This shows that synthetic deformations are less challenging
for descriptors than some real-world changes as the ones found in Oxford dataset.

Efficiency

One of the main motivations behind this work, was the need for a fast and practical
feature descriptor based on CNN. The small network trained with triplets that we
used in our experiments, is very efficient in terms of descriptor extraction time.
We compare the extraction time per patch, averaged over 20K patches, of recently
introduced convolutional feature descriptors. The extraction is done with NVIDIA
Titan X GPU. Our descriptor is 10 times faster than DeepCompare [8], and 50 times
faster than MatchNet [64] and DeepDesc [63]. In fact, when running on GPU, we
reach speeds of 10µs per patch which is comparable with the CPU speeds of the fast

38

2.3. Feature description

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

m
A

P
 -

 D
o
G

Generated-matching dataset (synthetic transformations)

SIFT
DCompare

DCompare-2str

DeepDesc
MatchNet

Tfeat-m

Tfeat-m*
Tfeat-r

Tfeat-r*

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

blur1 blur2 blur3 blur4
light1

light2
light3

light4
nonlnr1

nonlnr2
nonlnr3

persp1
persp2

persp3
persp4

rotat1
rotat2

rotat3
zoom1

zoom2
zoom3

zoom4
zoom5

mean

m
A

P
 -

 H
a
rA
ff

Figure 2.11 – Keypoint image matching results with synthetic dataset. Evaluation
on the generated-matching dataset [62], for two different types of feature extractors,
DoG and HarrisAffine.

binary descriptors[59]. This is a significant advantage over the previously proposed
descriptors and makes CNN based descriptors applicable to practical problems
with large datasets.

2.3.5 Conclusion

In this section we have introduced a new approach to train a CNN architecture
for extracting local image descriptors in the context of patch matching. Similar
to the detection algorithm presented in section 2.2, our proposal can be easily
included within a scene reconstruction pipeline. The results show that using triplets
for training results in a better descriptor and faster learning. Also the descriptor
dimensionality is significantly smaller than other CNN based descriptors. We show
that due to these properties the proposed network is less prone to over-fitting and
has good generalisation properties. In addition, the high computational cost of
hard negative mining has been successfully replaced by the very efficient triplet
based loss. We also demonstrate that ratio-loss based methods are more suitable
for patch pair classification, and margin-loss based methods work better in nearest
neighbour matching applications. This indicates that a good performance on patch
classification does not necessarily generalise to a good performance in nearest
neighbour based frameworks.

39

3 Differentiable Computer Vision

In the previous chapter we discussed the usage of classical and CNN methods for
the tasks to detect and describe local features in a scene reconstruction pipeline.
Those tasks can be understood as black boxes inside a pipeline making them trivial
to replace in terms of design or executed as separated processes. Thus, having
independent processes in a pipeline can be beneficial in some aspects but it is
known that deep learning systems work better when the entire pipeline is jointly
optimised. To do that, there is a need for adapting pre-existing methods so that
can be included inside the same computational graph as the learnable blocks and
allow to back-propagate the gradients through the entire pipeline. For this reason,
in this chapter we propose a framework that bridges classical computer vision and
deep learning under the paradigm of differentiable programming. In addition, the
framework eases the transition to implement jointly methods such as end to end
pipelines for scene reconstruction as we will see in the last chapter of this thesis.

We present Kornia, an open source computer vision library built upon a set of
differentiable routines and modules that aims to solve generic computer vision
problems. The package uses PyTorch as its main backend, not only for efficiency
but also to take advantage of the reverse auto-differentiation engine to define
and compute the gradient of complex functions. Inspired by OpenCV, Kornia is
composed of a set of modules containing operators that can be integrated into
neural networks to train models to perform a wide range of operations including
image transformations, camera calibration, epipolar geometry, and low level image
processing techniques, such as filtering and edge detection that operate directly on
high dimensional tensor representations on graphical processing units, generating
faster systems.

41

Chapter 3. Differentiable Computer Vision

3.1 Motivation

Computer vision has driven a lot of technological advances in modern society for
many different industries such as Automotion to improve the perception algorithms
for self-driving cars; Factory Automation precisely in robotics field; or Audio Visual
Production for visual effects generation. One of the key components of this achieve-
ments has been thanks to open source software that provided to the community
free and accessible implementations of the main computer vision and machine
learning algorithms.

There exist several open-source libraries widely used by the computer vision
community which are tailored to process images using Central Processing Units
(CPUs) such as OpenCV [78], scikit-image [79], or Pillow [80] and many others that
are optimised for specific use cases. However, nowadays many of the top perform-
ing computer vision algorithms rely on deep learning models, with the huge need
to process images in parallel using Graphical Processing Units (GPUs) in order
to achieve high-performance requirements. Within that context, during the last
couple of years many frameworks for deep learning have gained a lot popularity;
to mention some of them: PyTorch [81], Tensorflow [82], Caffe [83], MXNet [84], or
MatConvNet [85]. In concrete, PyTorch [81] due to its reverse-mode automatic dif-
ferentiation engine, dynamic computation graph, distributed learning, eager/script
execution modes and its intuitive API introduces a different paradigm within the
community. PyTorch and its ecosystem provide a few packages to work with images
such as its most popular toolkit, torchvision, which is mainly designed to perform
data augmentation, read popular datasets and implementations of state-of-the-art
models for tasks such as detection, segmentation, image generation, and landmark
detection. Despite all these virtues, PyTorch is still lacking in implementations for
classical vision algorithms using their native tensor data structures and making
them efficient to be used on GPUs or any high-permanence device supported by
PyTorch.

This thesis introduces Kornia, an open source computer vision library built
on top of PyTorch that is intended to help students, researchers, companies and
entrepreneurs to implement computer vision applications oriented towards deep
learning. Our library, in contrast to standard vision frameworks, provides classical
and advanced image processing algorithms implemented such that they can be
embedded into deep networks. Kornia is designed to fill the gap between PyTorch
and computer vision communities and it is based on some of the pre-existing open
source solutions for computer vision (Pillow Image (PIL), skimage, torchvision,
Tensorflow.image), but with a strong inspiration on OpenCV [78]. As shown in
Table 3.1, Kornia, in contrast to other existing libraries, which are limited to its usage

42

3.1. Motivation

Color Enhancement Filtering Features Geometry

Figure 3.1 – Kornia computer vision topics overview. Kornia implements routines
for low level image processing tasks using native PyTorch operators and taking
advantage of its high-performance optimizations. The purpose of the library is to be
used as a base for large-scale vision projects, data augmentation frameworks, or for
creating computer vision layers inside of neural network layers that allow for back-
propagating the error through them. The results in this figure are obtained from
a given batch of image tensor using data parallelism in the GPU. More examples
showing the usage of the library on this specific tasks plus other related to vision
are provided in the kornia-examples repository.

in CPU and similar to tf.image making use of differentiability on the GPU, tries to
combine the simplicity of OpenCV and PyTorch in order to leverage differentiable
programming for computer vision borrowing some properties from PyTorch such
as differentiability, GPU acceleration, distributed data-flow and production quality
code. Figure 3.1 shows different examples of using the library in several classical
computer vision tasks.

In addition to introducing Kornia, in this chapter we contribute with some
demos showcasing how Kornia and its components eases the implementation of
several common computer vision tasks like image reconstruction, image registra-
tion, depth estimation or local features detection. During the different sections, it is
also included an extensive explanation of the different capabilities and algorithms

43

https://github.com/kornia/kornia-examples

Chapter 3. Differentiable Computer Vision

CPU GPU Batched Differentiable ND-Array
scikit-image X × × × ×
Numpy and scipy X × × × ×
Albumentations X × × × ×
torchvision X × × × ×
OpenCV X X × × ×
Nvidia Dali X X X × ×
tf.image X X X X X
Kornia X X X X X

Table 3.1 – Comparison between different computer vision libraries. Kornia and
tensorflow-image are the only frameworks that fully support batched operators and
differentiable on the GPU.

that can be found in each of the different modules of the library, including short
coding examples and links with fully working examples; we also include some addi-
tional experiments to benchmark against other frameworks and evaluate its usage
depending on the batch size; and finally, we showcase an example about how easily
can Kornia be integrated within an end to end training system.

The rest of the chapter is organized as follows: we review the state of the art in
terms of open source software for computer vision and machine learning in Section
3.2; Section 3.3 describes the design principles of the proposed library and all its
components, and Section 3.5 introduces use cases that can be implemented using
the library’s main features. Kornia is public available in GitHub1 with an Apache
License 2.0 and can be installed in any Linux, MacOS or Windows operating system,
having PyTorch as a single dependency, through the Python Package Index (PyPI)
using the following command:

pip install kornia

3.2 Related work

In this section we review the state of the art for computer vision software libraries.
Related works will be divided in two main categories: classical computer vision
and deep learning oriented frameworks. The former are focused on the very first

1https://github.com/kornia/kornia

44

https://github.com/kornia/kornia

3.2. Related work

libraries that implement mostly algorithms optimized for the CPU, and the second
category targets solutions for GPU.

3.2.1 Classical computer vision libraries

Nowadays, there is a wide variety of options for frameworks that implement com-
puter vision algorithms. However, during the early days of computer vision, it was
difficult to find any available and free accessible software for image processing
algorithms. All existing software for computer vision was mostly developed within
universities or at small teams in companies, and it was not shipped in any form
nor released to the public domain. An example of this type of proprietary software
specific for Machine Vision, was the Matrox Imaging Library (MIL) [86].

It was not until Intel released the first version of the Open Source Computer
Vision Library (OpenCV) that changed the paradigm for the existing Computer
Vision software by that time making it accessible for everyone. OpenCV [78] ini-
tially implemented computer vision algorithms for real-time ray tracing, visual
interfaces and 3D display walls. All the algorithms were made available with a
permissive library not only for research, but also for production and commercial
usage. OpenCV changed the paradigm within the computer vision community
given the fact that most state of art algorithms in computer vision were now put
in an common framework written very efficiently in C, becoming in that way a
reference within the community.

The computer vision community shifted to improving or besting existing algo-
rithms and started sharing their code with the community. This resulted in new
code optimized mostly for CPU. Vedaldi et al. introduced VLFeat [26], an open
source library that implements popular computer vision algorithms specializing
in image understanding and local features extraction and matching. VLFeat was
written in C for efficiency and compatibility, with interfaces in MATLAB. For ease of
use, it supported Windows, Mac OS X, and Linux, and has been a reference due to
their efficient implementations for local features extraction and matching such as
Fisher Vector [87], VLAD [88], SIFT [89], and MSER [90].

MathWorks released a proprietary Computer Vision Toolbox inside one of its
famous product MATLAB [91] that covered many of the main computer vision, 3D
vision, and video processing algorithms which has been used by many computer
vision students and researchers becoming quite standard within the researcher
community. The computer vision community have been using MATLAB for some
decades, and many still use it.

Over time, new projects such as Numpy [92] which includes powerful N-dimensional
array objects manipulation and very optimised linear algebra support, started to
position themselves as the angular stone for scientific computing within the Python

45

Chapter 3. Differentiable Computer Vision

language community. Another example is Scikit-learn [93] that with same philoso-
phy as Numpy, partially implements machine learning algorithms for classification,
regression and clustering including support vector machines, random forests, gra-
dient boosting and k-means. A similar project, Scikit-image [79] implements open
source collections of algorithms for image processing making it compatible with
this new group of Python scientific packages.

3.2.2 Deep learning and computer vision

Computer vision frameworks have been optimized for CPU to fulfill realtime re-
quirements for different applications, however, the recent success of deep learning
changed the way how computer vision system are designed. A. Krizhevsky et al. in-
troduced to the community Alexnet [24] continuing the old ideas from Yann LeCun’s
Convolutional Neural Networks (CNNs) [94] paper with an architecture similar to
LeNet-5 and achieved the best results by far in The ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2012 [72] image classification task. This was a
breakthrough moment for the computer vision community, and changed the way
computer vision was understood.

In terms of deep learning software, new frameworks such Caffe [83], Torch
[95], MXNet [84], Chainer [96], Theano [97], MatConvNet [85], PyTorch [81], and
Tensorflow [82] appeared on the scene with efficient implementations of classical
operators for computer vision such as convolutions. All these frameworks included
optimisations using the GPU and parallel programming [98] as an approach to
handle the need for large amounts of data processing in order to train large deep
learning models.

With the rise of deep learning, most standard computer vision frameworks are
now being used to perform pre-processing, or data augmentation on the CPU,
which for some use cases like volumetric data in medical imaging or multi-spectral
data is quite limited due to the need of parallelism to not decrease performance in
both, training and inference time. Examples of libraries that are currently used to
perform pre- and post-processing on the CPU within the deep learning frameworks
are OpenCV or Pillow.

Given that most deep learning frameworks still use standard vision libraries to
perform the pre- and post-processing on CPU and similar to Tensorflow.image as
Table 3.1 shows, Kornia fill this gap within the PyTorch ecosystem by introducing
a computer vision library that implements classical computer vision algorithms
taking advantage of the different properties that modern frameworks for deep
learning like PyTorch can provide.

46

3.3. Kornia: Computer Vision for PyTorch

3.3 Kornia: Computer Vision for PyTorch

Kornia2 can be defined as a computer vision library for PyTorch, inspired by
OpenCV and with strong GPU support. Kornia allows users to write code as if
they were using native PyTorch providing high level interfaces to vision algorithms
computed directly on tensors. In addition, some of the main PyTorch features are
inherited by Kornia such as a high performance environment with easy access to
automatic differentiation, executing models on different devices (CPU, GPU or
Tensor Porcessing Unit – TPU), parallel programming by default, communication
primitives for multiprocess parallelism across several computation nodes and code
ready for production. In the following, we elaborate on these properties.

Differentiable. Any image processing algorithm that can be defined as a Direct
Acyclic Graph (DAG) structure can be incorporated in a neural network and can be
optimized during training, making use of the reverse-mode [99] auto-differentiation
[100], compute gradients via backpropagation [101]. In practice, this means that
computer vision functions are operators that can be placed as layers within the
neural networks for training via backpropagating through them.

Transparent API. A key component in the library design is its easy way to seam-
lessly add hardware acceleration to your program with a minimum effort. The
library API is agnostic to the input source device, meaning that the algorithms
can either be executed in several device type such as CPU, GPU or the recently
introduced TPU.

Parallel programming. Batch processing is another important feature that
enables to run vision operators using data parallelism by default. The assumption
for the operators is to receive N-channel image tensors as input batches, contrary
to standard vision libraries with single 1-3 channel images. Hence, working with
multispectral, hyperspectral or volumetric image can be done in a straight-forward
manner using Kornia.

Distributed. It provides support for communication primitives for multi-process
parallelism across several computation nodes running on one or more group of
local or cloud based machines. The library design allows users to run their applica-
tions in different distributed systems, or even able to process large vision pipelines
in an efficient way.

Production. Since version v1.0.0, PyTorch has the feature to serialize and op-

2https://kornia.org

47

https://kornia.org

Chapter 3. Differentiable Computer Vision

timize models for production purposes. Based on its just-in-time (JIT) compiler,
PyTorch traces the models, creating TorchScript programs at runtime in order to be
run in a standalone C++ program using kernel fusion to do faster inference. This
makes our library a perfect fit also for built-in vision products.

What Kornia is NOT

Kornia aims to be a reimplementation for OpenCV for research purposes in the
sense that mimics some of the main functionalities adding the ability to backpropa-
gate through the different operators. However, note that Kornia does not seek to
be a replacement for OpenCV since it is not optimised for production purposes
or to achieve high-performance in embedded devices. Even though the project
is backed up by the OpenCV.org, there is no intention to merge in any form both
projects in the mid-term. Kornia can be understood as a set of tools for training
neural networks to be later used in production using other optimised frameworks.

3.3.1 Library structure

The internal structure of the library is designed to cover different computer vision
areas, including color conversions, low level image processing, geometric transfor-
mations and some utilities for training such as specific loss functions, conversions
between data layouts for different frameworks, or functionalities to easily visualise
images and debug models during training. Similar to other frameworks, the library
is composed of several sub-modules grouped by generic computer vision topics:

kornia.augmentations: The library provides a fully functional set of routines that
can be used to perform data augmentation for training deep networks. This module
implements in a high level logic several functionalities found across the other mod-
ules. The main feature of this module, and similar to the rest of the library, is that
it can perform data augmentation routines in a batch mode, using any supported
device, and can be used for backpropagation. Some of the available functionalities
which are worth to mention are the following: random rotations; affine and perspec-
tive transformations; several random color intensities transformations, image noise
distortion, motion blurring, and many of the different differentiable data augmen-
tation policies proposed in [102, 103]. In addition, we include a novel feature which
is not found in other augmentations frameworks, which allows the user to retrieve
the applied transformation or chained transformations after each cal. For instance,
the generated random rotation matrix which can be used later to undo the image
transformation itself, or to be applied to additional metadata such as the label
images for semantic segmentation, or to the bounding boxes or landmark keypoints

48

3.3. Kornia: Computer Vision for PyTorch

for object detection tasks. This is very valuable for research purposes since it gives
the user the flexibility to perform complex data augmentations pipelines. A snippet
showcasing a small example is shown in Example 1. In addition, in section 3.4.1 we
will review performance benchmarks for this module.

Example 1: Data augmentation pipeline

Example showing how flexible is Kornia to define a data augmentation
pipeline using other PyTorch components. Concretely, this pipeline takes
a batch of tensor images and randomly applies a vertical flip, retrieves the
applied affine transformation, and finally applies a color jitter transforma-
tion based on the user defined preference. The code for this example can be
found in the following link.

Code

class DataAugmentationPipeline(torch.nn.Module):
"""Module to perform data augmentation using Kornia."""
def __init__(self, apply_color_jitter: bool = True) -> None:

super().__init__()
self._apply_color_jitter = apply_color_jitter
self.transforms = torch.nn.Sequential(

K.augmentation.RandomVerticalFlip(
p=0.5, return_transform=True

),
)
self.jitter = K.augmentation.ColorJitter(

brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1
)

@torch.no_grad() # disable gradients for efficiency
def forward(self, x: torch.Tensor):

x_out, trans = self.transforms(x)
if self._apply_color_jitter:

x_out = self.jitter(x_out)

49

https://colab.research.google.com/drive/1iWUVw5jRBiUm0X48cROZO8yWCWN27sbG

Chapter 3. Differentiable Computer Vision

kornia.color: Conversions between color spaces are useful when working with 3-
band color images. For this purpose, we provide several functionalities to perform
operations that have a similar behaviour as those found in the existing libraries
such as OpenCV [78] or Scikit-image [79]. We have introduced small modifications
in order to support floating point precision. The functionality found in this module
covers operations to map back and forth between the most common color space
representations, including Grayscale, RGB, RGBA, BGR, HSV, YCbCr, CIE-XYZ, CIE-
Luv or CIE-Lab. In addition, we provide high level interfaces to manipulate color
properties to perform intensities normalisation, compute color histograms, or ad-
just color properties like the brightness, contrast, hue, gamma spectrum, saturation
and blending operations to combine different images. We next show in Example 2,
an example of how color conversion can be done.

Example 2: Color Space Conversion

Example showing how to load and decode an image using OpenCV and
apply a color space conversion using Kornia, and with a torch tensor image
representation. The code for this example can be found in the following
link.

Code

load image in numpy using OpenCV
img: np.ndarray = cv2.imread("simba.png", cv2.IMREAD_COLOR)

load image in torch.Tensor
img_bgr: torch.Tensor = K.image_to_tensor(img)
img_rgb = K.bgr_to_rgb(img_bgr)
img_rgb = K.normalize(img_rgb, 0., 255.)

apply color transforms
img_gray = K.rgb_to_grayscale(img_rgb)

50

https://colab.research.google.com/drive/1dgT9-QLZiTjxPK9Ej4YnyV953uTQKBCm

3.3. Kornia: Computer Vision for PyTorch

kornia.features: Local features detection and description are a key ingredient in
a wide range of computer vision algorithms, for e.g. image stitching, structure
from motion, or image retrieval. Kornia provides operators to detect local features,
compute descriptors, and perform feature matching. The module contains differ-
entiable versions of the Harris corner detector [104], Shi-Tomasi corner detector
detector [105], Hessian detector [106], their scale and affine covariant versions [107],
DoG [89], patch dominant gradient orientation [89] and the SIFT descriptor [89]
and recent deep learning based methods such as HardNet [108] or SOSNet [109].

Example 3: Feature detection and Matching

Example showing the use of several components for local feature detection,
matching and geometry verification. The code for this example can be
found in the following link.

Code

Define local deature detector and descriptor
PS = 32 # patch size
detector = K.ScaleSpaceDetector(num_features=2000)

descriptor = K.HardNet(pretrained=True)

detect and extract patches
lafs, resps = detector(timg_gray)
patches = K.extract_patches_from_pyramid(timg_gray, lafs, 32)
descs = descriptor(patches.view(B * N, CH, H, W)).view(B, N, -1)

Matching
tentatives, scores = K.match_smnn(descs[0], descs[1], 0.95)
kps = KF.laf.get_laf_center(lafs)
kps_tent1 = kps[0:1,tentatives[:,0]]
kps_tent2 = kps[1:2,tentatives[:,1]]

Finding homography
H = K.find_homography_dlt_iterated(

kps_tent1, kps_tent2, 1-scores.view(1,-1)
)

51

https://colab.research.google.com/drive/1hl6ex1i8eNaoIZICxNqIO40PGcb8Txdo

Chapter 3. Differentiable Computer Vision

kornia.filters: Image filtering is another traditional operation in image process-
ing and computer vision used in a number applications, from noise removal to
fancy work-arts creation. This module provides operators to perform linear and
non-linear filtering operations on tensor images. High level functions to convolve
tensors with hand-crafted kernels; for computing first and second order image or
n-dimensional tensor derivatives; high level differentiable implementations for
blurring algorithms such as Gaussian, Box, Median or Motion blurs; Laplace, and
Sobel[110] edges detector. The functionalities found in this module can be either
used for creating accelerated computer pipelines or, as we will see in section 3.5.1,
to compute loss functions to maintain image properties during reconstructions
processes. Example 4 shows a use-case of this functionality.

Example 4: Image filtering and Edge detection

Example about how to load an image using OpenCV, apply 2D Gaussian blur
filtering and computing the Sobel edges on a RGB torch tensor image. The
code for this example can be found in the following link.

Code

load image in numpy using OpenCV
img: np.ndarray = cv2.imread("goku.png", cv2.IMREAD_COLOR)

load image in torch.Tensor
img_bgr: torch.Tensor = K.image_to_tensor(img, keepdim=False)
img_rgb = K.bgr_to_rgb(img_bgr).float() / 255.
img_gray = K.rgb_to_grayscale(img_rgb)

apply a gaussian blur
img_edge = K.sobel(img_gray)
img_blur = K.gaussian_blur2d(img_rgb, (11, 11), (10.5, 10.5))

52

https://colab.research.google.com/drive/1IiNHo5TjgQShrI7XoMOtam3PyZ9FNToh

3.3. Kornia: Computer Vision for PyTorch

kornia.geometry: Geometric image transformations is another key ingredient in
computer vision to manipulate images. Since geometry operations are typically
performed in 2D or 3D, we provide several algorithms to work with both cases.
This module, the original core of the library, consists of the following submodules:
camera, conversions, depth, epipolar, homography, linalg, subpix, transform
and warp. We next describe each of them and followed by Example 5 that show a
short snippet code to perform a simple image perspective transformation.

• camera: A set of routines specific to different types of camera representations
such as pinhole or orthographic models containing functionalities such as
projecting and unprojecting points from the camera to a world frame.

• conversions: Routines to perform conversions between angle representa-
tion, pixel coordinates, rotation matrices and quaternions.

• depth: A set of layers to manipulate depth maps such as how to compute
3d point clouds given depth maps and calibrated cameras; compute surface
normals per pixel and warp tensor frames given calibrated cameras setup.

• epipolar:A set of functionalities to work with epipolar geometry and utilites
that can be used as a base for Structure from Motion (SfM) or SLAM problems.

• homography: An API to work with homography estimation including the
Direct Linear Transform (DLT) algorithm with its iterated version towards
differentiable RANSAC.

• linalg: Functions to perform general rigid-body homogeneous transfor-
mations. We include implementations to transform points between frames
and for homogeneous transformations, manipulation such as composition,
inverse and to compute relative poses.

• subpix: A set of operators to perform differentiable sub-pixel coordinates
extraction. Useful to work or implement along with geometric based loss
functions to regress 2d or 3d coordinates.

• transforms: The module provides low level interfaces to manipulate 2d
images, with routines for rotating, scaling, translating, shearing; cropping
functions in several modalities such as central crops, crop and resize; flipping
transformations in the vertical and horizontal axis; resizing operations (see
Example 5 below).

• warp: An API to perform several types of tensor warping operations, includ-
ing 2d and 3d affine transformations and utilities to compute such transfor-
mations.

53

Chapter 3. Differentiable Computer Vision

Example 5: Geometric Image transformation

Example showing how to compute the perspective transformation matrix to
warp one image into another given four control points. The code for this
example can be found in the following link.

Code

the source points are the region to crop corners
points_src = torch.tensor([[

[125., 150.], [562., 40.], [562., 282.], [54., 328.],
]])

the destination points are the image vertexes
h, w = img_rgb.shape[-2:] # destination size
points_dst = torch.tensor([[

[0., 0.], [w - 1., 0.], [w - 1., h - 1.], [0., h - 1.],
]])

compute perspective transform
M: torch.tensor = K.get_perspective_transform(

points_src, points_dst)

warp the original image by the found transform
img_warp: torch.tensor = K.warp_perspective(

img_rgb, M, dsize=(h, w))

kornia.contrib: Inspired by other libraries, we also include a contrib module to col-
lect experimental operators and user contributions. Currently it contains routines
for splitting tensors in blocks (see Example 6), or recent paper implementations
such as modules combining learned features with gaussian blurring that can be
inserted within the networks to improve stability and robustness against image
shifting [111].

54

https://colab.research.google.com/drive/1TgRiOs9x0W98axsb9jDTnYul0pGCeGQv

3.4. Performance comparative

Example 6: Extract image patches

Example showing how to split an image tensor into patches, sort the patches
in order to create a mosaic. The code for this example can be found in the
following link.

Code

load image in numpy using OpenCV
img: np.ndarray = cv2.imread("wally.jpg", cv2.IMREAD_COLOR)

load image in torch.Tensor
img_bgr: torch.Tensor = K.image_to_tensor(img, keepdim=False)
img_rgb = K.bgr_to_rgb(img_bgr)
img_rgb = K.normalize(img_rgb.float(), 0., 255.)

extract tensor patches
patches = K.extract_tensor_patches(

img_rgb, window_size=32, stride=32
)

3.4 Performance comparative

In this section we show quantitative and qualitative results on experiments compar-
ing our image processing API compared to other existing image processing libraries.
In order to remark the benefits of using Kornia with respect to other computer
vision libraries we have measured the cost of processing a batch of images with
classical image processing algorithms.

3.4.1 Batched image processing

As stated in section 3.3.1, Kornia provides implementations for low level image
processing, e.g. color conversions, filtering and geometric transformations that

55

https://colab.research.google.com/drive/1JEPVShMILiFd4VfbJ5P3qTrqajSfR0Xv

Chapter 3. Differentiable Computer Vision

Figure 3.2 – Operation-wise benchmark respect to other vision libraries.
Operation-wise per-sample timing benchmark with different batch sizes with fixed
image size 224x224.

implicitly use native PyTorch operators such as 2D convolutions and simple matrix
multiplications, all optimized for different hardware devices. Our API can be com-
bined with other PyTorch components allowing to run vision algorithms via parallel
programming, or even sending composed functions to distributed environments.

Although the scope of this library is not to provide explicit optimized code for
computer vision we want to show an experiment comparing the performance of
our library with respect to other existing vision libraries, namely OpenCV [78], PIL,
skimage [79] and scipy [93]. The purpose of this experiment is to give a brief idea
of how our implementations compare to libraries that are very well optimized for
specific computer vision algorithms. The setup of the experiment assumes as input
an RGB tensor of images with a fixed resolution of (256x256), and varying the size of
the batch. In this experiment, we first compared different operator across some of
the most used vision packages (see figure 3.2), and second, we compute Sobel edges

56

3.4. Performance comparative

Figure 3.3 – Sobel edges benchmark compared to other vision libraries. Results
of the benchmark comparing Kornia to other state-of-the-art vision libraries. We
measure the elapsed time for computing Sobel edges (lower is better).

500 times measuring the median elapsed time between samples (see figure 3.3.
The results show that for small batches, Kornia’s performance is similar to those
obtained using other libraries. It is worth noting that when we use a large batch size,
the performance for our CPU implementation is the lowest, but when using the
GPU we get the best timing performance. The machine used for this experiment
was an Intel(R) Xeon(R) CPU E5-1620 v3 @ 3.50GHz and a Nvidia Geforce GTX 1080
Ti.

In a second experiment we have evaluated the Kornia augmentation module,
which is designed and optimized for batch accelerated augmentations. We firstly
assessed the operation-level time-efficiency of Kornia and TorchVision with batch
size 1, under image sizes ranging from 224x224 to 600x600. As shown in Table 3.2,
the time perfomance of Kornia and TorchVision are comparable when process
single RGB image.

57

Chapter 3. Differentiable Computer Vision

Image Size 224 240 260 300 380 456 528 600

Operation Library

ColorJitter Kornia 12.73 11.33 12.13 13.30 15.13 17.46 19.87 22.94
TorchVision 11.36 12.04 12.64 13.30 15.31 17.30 20.18 23.03

RandomAffine Kornia 2.22 2.14 2.22 2.35 2.27 2.21 2.32 2.19
TorchVision 2.74 2.51 2.61 2.55 2.35 2.22 2.22 2.26

RandomCenterCrop Kornia 2.29 2.26 2.25 2.38 2.31 2.40 2.31 2.40
TorchVision 2.48 2.48 2.37 2.49 2.44 2.38 2.45 2.34

RandomCrop Kornia 2.57 2.57 2.57 2.72 2.59 2.64 2.52 2.56
TorchVision 2.90 2.72 2.59 2.65 2.60 2.59 2.65 2.56

RandomErasing Kornia 1.30 1.33 1.46 1.48 1.65 1.99 2.36 2.68
TorchVision 1.51 1.35 1.41 1.52 1.93 1.94 2.25 2.58

RandomGrayscale Kornia 0.62 0.56 0.60 0.56 0.59 0.57 0.74 0.57
TorchVision 0.68 0.59 0.61 0.59 0.59 0.59 0.72 0.60

RandomHorizontalFlip Kornia 0.52 0.54 0.52 0.58 0.47 0.48 0.64 0.48
TorchVision 0.56 0.58 0.47 0.48 0.49 0.49 0.48 0.51

RandomPerspective Kornia 3.84 4.02 4.02 4.27 4.34 5.05 5.55 6.25
TorchVision 4.70 3.88 4.08 3.99 4.44 5.14 5.44 5.73

RandomResizedCrop Kornia 2.99 2.92 2.98 2.88 3.05 3.02 2.89 2.88
TorchVision 3.27 2.97 3.15 2.96 3.04 3.04 2.96 2.97

RandomRotate Kornia 1.95 1.84 1.87 2.01 1.95 1.90 1.94 2.02
TorchVision 2.08 1.93 2.08 1.92 2.01 1.94 2.07 1.93

RandomVerticalFlip Kornia 0.63 0.71 0.62 0.55 0.59 0.57 0.62 0.65
TorchVision 0.70 0.62 0.55 0.56 0.60 0.56 0.65 0.61

Table 3.2 – Performance time comparison of Kornia and TorchVision using differ-
ent image sizes. The results are computed as the average time cost (milliseconds) of
10 runs for each operation. Note that both libraries have very similar computation
time performances.

We have performed a third experiment aimed to evaluate both from the practi-
cal view and in terms of performance the usage of Kornia for data auguemtation
purposes. Data augmentation (DA) is a widely used technique to increase the vari-
ance of a dataset by applying random transformations to data examples during
the training stage of a learning system. Generally, image augmentations can be
divided in two groups: color space transformations that modify pixel intensity
values (e.g. brightness, contrast adjustment) and geometric transformations that
change the spatial locations of pixels (e.g. rotation, flipping, affine transformations).
Whilst training a neural network, DA is an important ingredient for regularization
that alleviates overfitting problems [112]. An inherent limitation of most current

58

3.4. Performance comparative

Color Space Augmentations

Normalize Denormalize ColorJitter
Solarize Equalize Sharpness
MixUp CutMix Grayscale

2D Spatial Augmentations (on 4d tensor)

CenterCrop Affine ResizedCrop
Perspective HorizontalFlip VerticalFlip
Erasing Rotation Crop

3D Volumetric Augmentations (on 5d tensor)

CenterCrop3D Crop3D Perspective3D
HorizontalFlip3D VerticalFlip3D DepthicalFlip3D

Figure 3.4 – Left: Subset of supported differentiable augmentations under Kornia
0.4.1. Right: Our proposed scheme to represent differentiable data augmentation
showing the gradients flow of the different transformations go forth and back throw
the augmentations pipeline. Black arrow represents the forward pass while orange
arrow represents backpropagation.

augmentation frameworks is that they mostly rely on non-differentiable functions
executed outside the computation graphs.

In order to optimize the augmentation parameters (e.g. degree of rotation) by a
specific objective function, differentiable data augmentation (DDA) is used. Earlier
works like spatial Transformers [113] formulated spatial image transformations in
a differentiable manner, allowing backpropagation through pixel coordinates by
using weighted average of the pixel intensities. Recent works proposed to use DDA
to improve GAN’s training [114], and to optimize augmentation policies [115, 116].

59

Chapter 3. Differentiable Computer Vision

Example 7 shows how to integrate data augmentation as a layer in the compu-
tational graph of a deep learning architecture. This approach approach offers the
following advantages:
• Automatic differentiation. Gradients of augmentation layers could be computed

whilst forward pass by taking the advantage of PyTorch autograd engine.
• Higher reproducibilities. Augmentation randomness is controlled by PyTorch

random state for the reproducible DA under the same random seed. In addi-
tion, DA pipeline can be serialized along with any neural networks by simply
torch.save and torch.load.

Example 7: DDA Pipeline

import kornia.augmentation as K

class MyAugmentationPipeline(nn.Module):
def __init__(self):

super(MyAugmentationPipeline, self).__init__()
self.mixup = K.RandomMixUp(p=1.)
self.aff = K.RandomAffine(360, p=0.5)
self.jitter = K.ColorJitter(0.2, 0.3, 0.2, 0.3, p=0.5)
self.crp = K.RandomCrop((200, 200))

def forward(self, input, label):
input, label = self.mixup(input, label)
input = self.crp(self.jitter(self.aff(input)))
return input, label

aug = MyAugmentationPipeline()

On-device Computations

augmented = aug(images.to('cuda:0')) # in device cuda:0
augmented = aug(images.to('cuda:1')) # in device cuda:1

Save and Load

torch.save(aug, "./saved_da.pt")
aug_restored = torch.load("./saved_da.pt")

Our framework provides an easy and intuitive solution to backpropagate the
gradients through augmentation layers using the native PyTorch workflow. In any
augmentations, kornia.augmentation takes nn.Parameter as differentiable pa-
rameters while torch.tensor as static parameters. The following Example 8 shows
how to optimize the differentiable parameters (including brightness, contrast, satu-

60

3.4. Performance comparative

ration) of kornia.augmentation.ColorJitter and backpropagate the gradients
based on the computed error from a loss function.

Example 8: Optimizable DA

import kornia.augmentation as K
import torch; import torch.nn as nn

t = lambda x: torch.tensor(x); p = lambda x: nn.Parameter(t(x))
torch.manual_seed(42);

images = torch.tensor(img, requires_grad=True)

jitter = K.ColorJitter(
p([0.8, 0.8]), p([0.7, 0.7]), p([0.6, 0.6]), t([0.1, 0.1]))

out = jitter(images)

loss = nn.MSELoss()(out, images)
optimizer_img = torch.optim.SGD([images], lr=1e+5)
optimizer_param = torch.optim.SGD(jitter.parameters(), lr=0.1)

loss.backward()
optimizer_img.step()
optimizer_param.step()

Updated Image

From left to right: the original input, augmented image and gradient-
updated image.

Updated Parameters

brightness -> [0.8048, 0.8363] contrast -> [0.7030, 0.7323]
saturation -> [0.5999, 0.5976] hue -> [0.1000, 0.1000]

Existing libraries such as TorchVision (based on PIL) and Albumentations [117]
(based on OpenCV) are optimized for CPU processing taking the advantage of multi-
threading. However, our framework is optimized for GPU batch processing that runs
in a synchronous manner as a precedent module for neural networks. The different
design choices among those libraries determined the difference in the performance

61

Chapter 3. Differentiable Computer Vision

under different circumstances (e.g. hardware, batch sizes, image sizes). As we state
in Table 3.3, TorchVision/Albumentations show a better performance when lower
computational resources are required (e.g. small image size, less images), while
Kornia DDA gives a better performance when there is a CPU overhead. For the
performance experiments, we used Intel Xeon E5-2698 v4 2.2 GHz (20-Core) and 4
Nvidia Tesla V100 GPUs. The code for the experiments will be publicly provided to
compare against other hardware.

Num. GPUs for
Comparison Among Different Image Sizes
(Kornia / Albumentations / TorchVision)

Data Parallelism 32x32 224x224 512x512

1 14.28 / 12.07 / 12.33 14.23 / 12.10 / 12.48 14.22 / 12.08 / 12.77

2 15.99 / 16.47 / 14.06 12.85 / 12.93 / 13.91 12.93 / 13.34 / 14.03

3 16.61 / 17.88 / 15.21 12.97 / 14.46 / 15.00 13.08 / 13.96 / 15.36

4 16.87 / 18.99 / 15.66 13.32 / 15.38 / 15.94 13.44 / 15.84 / 16.12

Table 3.3 – Speed benchmark among DA libraries. The results are computed as the
time cost (seconds) of training 1 epoch of ResNet18 using 2560 random generated
faked data. Specifically, DA methods compared are RandomAffine, ColorJitter and
Normalize. Batch size is 512 in all the experiments. The add-on GPU memory cost
from kornia.augmentation is negligible.

3.5 Use cases

This section presents practical examples of the library use for well known classi-
cal vision problems demonstrating its easiness for computing the derivatives of
complex loss functions and releasing the user of that part. We then provide an end
to end training example for low-dimensional embedding application showcasing
the usage of image processing functions as loss functions. Next, we describe an
example of image registration leveraging on our differentiable warpers. Finally,
we provide an example demonstrating the applicability of our differentiable lo-
cal features implementations to solve a classical wide baseline stereo matching
problem.

3.5.1 End to end Low-dimensional embedding

Encoding images into low-dimensional spaces is a well know topic in computer
vision that has been studied for many years. The current trend addresses the

62

3.5. Use cases

Figure 3.5 – End to end Low-dimensional embedding qualitative results. Results
obtained in the experiment for learning low-dimensional embeddings and using
them to decode the original image using the equation loss (3.1). Row 1: The original
images used as input for the network. Row 2: the reconstructed images using
α = 1 which means that the network optimises for the L1 distance. Row 3: the
reconstructed images usingα= 0.5 where the network optimises for the L1 distance
at the same time as for the Sobel Edges. We can be appreciate that the images in the
last row keep the structure of the edges in the central part of the faces.

problem using Convolutional Autoencoder architectures and its variants, such as
Variational Auto Encoders (VAE). However, many of the proposed methods do not
take into account image properties in the decoding phase. In this example, we
showcase how easily Kornia components could allow to introduce these properties
while training the networks, and exploit the differentiability property to enforce e.g.
robustness in the edges reconstruction, or even make use of the color properties to
go from one color space to another and backpropagate the gradients using those
constraints.

Implementation. In order to showcase the explained problem, we have taken
the architecture from one of the state of the art methods for image encoding Deep
Feature Consistent Variational Autoencoder [118] slightly modifiying the network
to get rid of the variational part. For training, we have chosen a popular dataset
for this task - CelebA dataset [119] which is made of a set of images with aligned
and cropped faces of famous celebrities. The experiment consists in evaluating the
network qualitatively in a validation set composed by 30% of the images from the
original set. Our baseline to compare with consists of a loss function that optimises

63

Chapter 3. Differentiable Computer Vision

the L1 distance between the input image and the reconstructed by the network in
RGB color space. We further evaluate the performance by adding constraints to the
network during the learning process. Concretely, in this toy example we propose
to add extra losses that aim to keep the Sobel edges between the original and the
reconstructed image. As we can see in Figure 3.5, when the network is trained using
a single loss, the reconstructed images look more smooth respect to when we train
using a composed loss function including the Sobel edges detector as a variable to
optimize during the reconstruction. The final loss we used has the following shape:

Loss =α| I − Î |+ (1−α)∗| Sobel(I)−Sobel(Î) | (3.1)

This example opens a full research path to explore all these possibilities towards
using very known image properties constraints within our neural network guiding
the gradients towards a more realistic solution. The intention of this experiment is
not to provide a solution to the problem since it might require a complex grid search
parameters search, but instead, to illustrate researchers how to build sophisticated
loss functions based on Kornia differentiable components for image processing.

3.5.2 Image registration by Gradient Descent

In the following, we show the potential of the library for tasks reasoning about
the 2D planar geometry (e.g. marker-based camera pose estimation or spatial
transformer networks [120]). Kornia provides a set of differentiable operators to
perform geometric image transformations such as rotations, translations, scalings,
shearings, as well as affine and homography transformation. At the core of the
geometry module, we have implemented an operator kornia.HomographyWarper,
which, based on the homography matric, warps a tensor in the reference frame A to
a reference frame B in a very efficient way.

Implementation. The task to solve is image registration using a multi-scale
version of the Lucas-Kanade [121] strategy. Given a pair of images Ia and Ib , it
optimizes the parameters of the homography H b

a that minimizes the photometric
error between Ib and the transformation of Îb denoted as ω(Ia , H b

a). Thanks to the
Pytorch Autograd engine, this can be implemented without explicitly computing
the derivatives of the loss function from equation 3.2, resulting in a very compact
and intuitive code.

Loss =
N∑

u,v
‖Ib −ω(Ia , H b

a)‖1 (3.2)

The loss function is optimized at each level of a multi-resolution pyramid, from
the lower to the upper resolution levels. Figure 3.6 shows the original images,

64

3.5. Use cases

warped images and the error per pixel with respect to the ground truth warp at
each of the scale levels. We use the Adam [122] optimizer with a learning rate of
1e − 3, iterating 200 times at each scale level. As a side note, pixel coordinates
are normalized in the range of [−1,1], meaning that there is no need to re-scale
the optimized parameters between pyramid levels. The code for this example is
provided in the following link.

Level 1 Level 2 Level 3 Level 4 Level 5

Figure 3.6 – Results of the image registration by gradient descent. Each column
represents a different level of the image pyramid used to optimize the loss function.
Row 1: original source image; Row 2: original destination image; Row 3: source
image warped to destination at the end of the optimization loop at that specific scale
level. Row 4: photometric error between the warped image using the estimated
homography and the warped image using the ground truth homography. The
algorithm starts to converge in the lower scales refining the solution as it goes to
the upper levels of the pyramid.

65

https://github.com/kornia/kornia-examples/blob/master/homography.ipynb

Chapter 3. Differentiable Computer Vision

3.5.3 Multi-View Depth Estimation by Gradient Descent

In this use case we have implemented a fully differential generic multi-view pipeline,
using our framework, for machine learning research and applications. For this pur-
pose, Kornia provides the kornia.DepthWarper operator that takes an arbitrary
number of calibrated camera views and warps them to a reference camera frame
given the depth in the reference frame.

Multi-view reconstruction is a well understood problem with a good geometric
model [123], and many approaches for matching and optimization [124, 125, 126] in
addition to recent promising deep learning approaches [127] making use of CNN’s
to extract robust features in order to create more accurate 3D reconstructions. We
have found current machine learning approaches [128, 129] to be limiting, in the
sense that they have not been generalized to arbitrary numbers of views (spatial or
temporal) being developed for datasets which are only stereo and with low resolu-
tion. Moreover, most machine learning approaches assume that there is high quality
ground truth depth provided as commonly available datasets, which limits their
applicability to new datasets or new camera configurations. Classical approaches
such as planesweep, patch match or DTAM [130] have not been implemented with
deep learning in mind, and do not fit easily into existing deep learning frameworks.

Figure 3.7 – Classical multi-view stereo cameras setup. Setup with three cameras
and the 2D point projections of a 3D point in the world reference frame. In the
setup we describe in the text, we assume the internal parameters K of the cameras
are known, as well as their relative homogeneous transformations T i

j . The subscript

r e f denotes the reference camera.

66

3.5. Use cases

Level 1 Level 2 Level 3 Level 4 Level 5

Figure 3.8 – Results of the depth estimation by gradient descent. The results show
the depth map produced by the given set of calibrated camera images over different
scales. Each column represents a level of a multi-resolution image pyramid. Row 1
to 3: source images, where the 2nd row is the reference view; Row 4: images from row
1 and 3 warped to the reference camera given the depth at that particular scale level.
Rows 5 & 6: estimated depth map and the error per pixel compared to the ground
truth depth map in the reference camera. The data used for these experiments was
extracted from SceneNet RGB-D dataset [131], containing photorealistic indoor
image trajectories.

67

Chapter 3. Differentiable Computer Vision

Implementation. We start with a simple formulation to estimate depth images
using gradient descent on a variety of losses based on state of the art classical
approaches (photometric, depth consistency, depth piece-wise smoothness, and
multi-scale pyramids). The multi-view reconstruction pipeline receives as input
a set of views, including RGB images and calibrated intrinsic camera models Ki

and relative pose estimates T i
ref. Then, the system estimates the depth image dref

for a reference view. Since we assume a calibrated setup as shows figure 3.7, the
depth value of a given pixel uref = [uref, vref] in the reference view, dref, can be used
to compute the corresponding pixel location ui = [ui , vi] in any of the other views
through simple projective geometry H i

ref = Ki ·T i
ref ·K −1

ref . Given this, we can warp
views onto each other using a differentiable bilinear sampling, as proposed in [132],

˜Iref =ω(Ii , H i
ref,dref).

Similar to [124, 133, 134], depth is estimated by minimizing a photometric error
between the views warped to the reference view:

Lphoto1 =
1

n

n∑ 1−SSIM(Iref, ˜Iref)

2
(3.3)

Lphoto2 =
1

n

n∑|Iref − ˜Iref| (3.4)

where SSIM is the Structural Similarity Index Measurement used as a loss func-
tion.

We compute an additional loss to encourage disparities to be locally smooth
with a penalty on the disparity gradients weighted by image gradients as

Lsmooth = 1

n

n∑|∂x d |e−‖∂x Ii ‖+|∂y d |e−‖∂y Ii ‖ (3.5)

Finally, losses are combined with a weighted sum:

Ltotal =αLphoto1 + (1−α)Lphoto2 +λLsmooth (3.6)

These losses could be easily modified or extended, depending on how well their
inherent assumption fit the data, e.g. photometric consistency only holds for small
view displacements.

Figure 3.8 shows partial results obtained by the depth algorithm implemented
using Kornia. The algorithm receives as input 3 calibrated RGB images (320x240).
We used Stochastic Gradient Descent (SGD) with momentum and compute the
depth at 7 different scales by blurring the image and down-sampling the resolution
by a factor of 2 from the previous size. To compute the loss, we up-sample to the
original size using bilinear interpolation. The refinement at each level was done for
500 iterations starting from the lowest resolution. The initial values for depth were

68

3.5. Use cases

obtained by a random uniform sampling in a range between 0 and 1. The code for
this example is provided in the following link.

3.5.4 Targeted adversarial attack on SIFT-matching

In this final use case we show how to implement a fully differential wide baseline
stereo matching with local feature detectors and descriptors usingkornia.features.
We demonstrate the differentiability by making a targeted adversarial attack on the
wide baseline matching pipeline.

Local feature detectors and descriptors are the workhorses of 3d reconstruc-
tion [135, 136], visual localization [137] and image retrieval [138]. Although learning-
based methods now seem to dominate [139], recent benchmark top-performers still
use Difference-of-Gaussians aka SIFT detector [140]. SIFT descriptor is still one of
the best for 3d reconstruction tasks [141]. Thus, we believe that community would
benefit from having GPU-accelerated and differentiable version of the classical
tools provided under kornia.features.

Adversarial attacks. Adversarial attacks is an area of research which recently
gained popularity after the seminal work of Szegedy et al. [142], showing that small
perturbations in the input image can switch the neural network prediction outcome.
There exist several works showing that CNN-based solutions for classification [143],
segmentation [144], object detection [145] and image retrieval [146] are all prone
to such attacks. The only paper about attack on local feature matching is [147],
which proposed to place special noisy patches on response peak locations, killing
the matching process for matching pairs. Yet, the authors do not know of any paper
devoted to targeted adversarial attacks on local features-based image matching.
Most attack methods are "white-box" [143], which means they require access to
the model gradients w.r.t the input. This makes them an excellent choice for a
kornia.features differentiability demonstration.

Implementation. The two view matching task is posed as follows [3]: given
two images Ia and Ib of the same scene, find the correspondences between pixels
in images. This is typically solved by detecting local features, describing the local
patches with a descriptor and then matching by minimum descriptor distance with
some filtering. Kornia provides all these ingredients.

We consider the following adversarial attack: given a non-matching image pair
Ia , Ib , and the desired homography H b

a , modify images so that the correspondence
finding algorithm will output a non-negligible number of matches consistent with
the homography H b

a . This means that both local detectors should fire in specific
locations and the local patches around that location should be matchable by a given
loss function such as:

69

https://github.com/kornia/kornia-examples/blob/master/depth_estimation.ipynb

Chapter 3. Differentiable Computer Vision

Figure 3.9 – Targeted adversarial attack on image matching. From left to right:
original images, which do not match; images, optimized by gradient descent to
have local features that match; the result of the attack: matching features (Hessian
detector + SIFT descriptor), which survived RANSAC geometric verification

Ltotal = Lloc +αLdesc +βLreg (3.7)

Lloc =
1

n

n∑
(p1 −H p2)2 (3.8)

Ldesc =
1

n

n∑
(1+d(D1,D2)−d(D1,D2neg)) (3.9)

Lreg = 1

n

n∑
(I − Iinit)

2 (3.10)

where p1 is keypoint detected in Ia , p2 is closest reprojected by the H b
a keypoint

detected in image Ib , σ1 and σ2 are their scales, D1 and D2 – their descriptors,
D2neg - hard negative in batch, d(·, ·) – L2 distance, and Iinit is original unmodified
version of Ia and Ib .

The detector used in this example is the Hessian blob detector [106]; the de-
scriptor is the SIFT [89]. We keep the top-2500 keypoints and use the Adam [122]
optimizer with a learning rate of 0.003. Figure 3.9 shows the original images, op-
timized images and optimized images with matching features visualized. The
perturbations are not quite imperceptible, but that it is not the goal of the current

70

3.6. Conclusions

example. The code for this example is provided in the following link.

3.6 Conclusions

In this chapter we have introduced Kornia, a library for computer vision in PyTorch
that implements traditional vision algorithms in a differentiable manner making
use of hardware acceleration to improve performance. We demonstrated that using
our library, classical vision problems such as image registration by homography,
depth estimation, or local features matching can be very easily solved with a high
performance similar to existing libraries making use of GPU acceleration and batch
parallelism. By leveraging this project, we believe that classical computer vision
libraries can take a different role within the deep learning environments as com-
ponents of layers of the networks as well as pre- and post-processing of the results.
This has been demonstrated in the chapter in a varied set of use cases. In addition,
one more reason why combining traditional and deep learning methods through
Kornia is the fact that it can help to minimize the time-cost of having engineers
tuning hyper-parameters for classical vision methods where instead those param-
eters can be easily optimised for specific tasks making more powerful the use of
differentiability. The proposed library has been well received by the community
in particular the computer vision researcher that use PyTorch. At the time of the
submission of this thesis, Kornia has more than 3400 GitHub stars, 350 forks and up
to 75 contributors and it’s been used by more than 175 research projects.

71

https://github.com/kornia/kornia-examples/blob/master/local-feature-adversarial-attack.ipynb

4 View Synthesis Generation

In chapter 2 we discussed how to approach scene reconstruction using classical
and CNN based methods. We first reviewed specific parts of the pipeline that uses
local features to detect and describe regions of interest later used to perform the 3d
reconstruction. Having a pipeline where you can switch and replace some compo-
nents eases those cases where you want to parallelize processes, detect errors or
even perform offline optimisation of those specific parts. However, as we remarked
in chapter 3, the trend for deep learning is to design the entire pipeline in an end
to end fashion and optimise all the components of the pipeline under the same
optimisation framework. For this reason, we introduced Kornia a framework that
provides a wide variety of tools to combine classical vision with deep neural net-
works. In this chapter we are going focus on the design of a system to perform scene
reconstruction trained following the mentioned end-to-end trend, and combin-
ing classical computer vision functions of projective geometry inside the system
computational graph.

In the next sections we present a novel approach for synthesizing realistic depth
maps of deformable clothes from arbitrary views. Given a depth map of a hanging
cloth captured from a camera, our model renders the depth map of how this cloth
would be seen under a new camera pose, realistically hallucinating the occluded
parts and their most likely creases and folds. While view synthesis is a well known
problem in the RGB domain, it is still quite unexplored for inferring novel geometry,
and specially for highly deformable objects. In this scenario the problem becomes
specially challenging due to the large amount of ambiguities and possible shapes. In
order to tackle this problem we propose a novel architecture that performs geometry
and occlusion reasoning in the feature space and combines it with adversarial
learning. Extensive evaluation shows that our approach, while being relatively
simple, is able to generate novel views of complex cloth configurations in both
simulated and real scenarios.

73

Chapter 4. View Synthesis Generation

Figure 4.1 – View Synthesis Generation from an input depth map. Given a depth
map of a deformable cloth (left) and a desired pose defined by a SE(3) rigid trans-
formation, our model generates novel view synthesis preserving the geometry of
the input in a high resolution output depth map. In the top row can be seen the
depth map estimated by the network while in the bottom is shown the normals
map obtained from the predicted depth.

4.1 Motivation

Being able to generate novel depth maps of a deformable cloth under an arbitrary
camera view and from a single depth image, can open the door to a number of new
exciting applications in different areas, including augmented reality, virtual reality,
3D content production and robotics.

While recent advances in convolutional neural networks [148, 149, 150, 151] and
in particular in those architectures based on the implicit function [152, 153] have
addressed this problem for rigid objects, articulated objects and clothes under mild
deformations, there exist no work in doing so for highly deformable and wrinkled
clothes, such as the one shown in Fig. 4.1. This example corresponds to a T-shirt
hanging from a point. Observe that the folds and creases seen from the input
depth map rapidly disappear when moving away from the frontal view, while new
folds appear. The complexity of this problem also invalidates other geometric
approaches that have been used for cloth modelling, like [154, 155, 156, 157], which
typically use triangular meshes to represent the underlying shape. In order to keep
computational complexity bounded, the resolution of these meshes is quite limited,
typically a few tens of vertices, preventing to correctly model complex deformations.

In this chapter we propose a novel and efficient network to represent depth
maps of complex clothing deformations and generating novel views of it. The
main novelty of the network we propose is in its capacity to perform geometry and

74

4.2. Related Work

occlusion reasoning in the feature space. Concretely, given an input depth map, we
initially compute features with an off-the-shelf image encoder-decoder. We then
perform projective feature warping according to the desired novel viewpoint we aim
to render, and occlusion reasoning, still in the feature domain. We show that these
operations, together with an adversarial loss in the spatial domain, allow generating
very accurate depth maps, realistically hallucinating the occluded creases and folds.

We train and evaluate the proposed network on synthetic and real data, and in
both cases we demonstrate its ability to hallucinate unseen and intricate details
of deformed cloth. Additionally, the proposed architecture builds upon convolu-
tional blocks, allowing to be executed very efficiently providing the output in a few
milliseconds.

In summary, our main contributions are the following:

• A novel approach to synthesize depth maps of deformable clothes from arbi-
trary viewpoints.

• A novel network that leverages on geometry and occlusion reasoning in the
feature space.

• A new synthetic dataset of highly deformed cloth with ground truth depth
maps.

4.2 Related Work

Inferring multiple viewpoints of an object given an arbitrary image of that ob-
ject is a highly complex task, especially in the case of non rigid surfaces such as
clothes. Many techniques estimate accurate 3D triangular meshes of deformable
surfaces from either single images [155, 158, 159] (shape-from-template) or video
sequences [160, 161, 162, 163] (non-rigid shape from motion). These approaches
typically rely on the fact that 2D point correspondences between images can be
readily established, which is a strong assumption for highly wrinkled and folded
clothes.

Other approaches are more focused on identifying semantically meaningful
structures using handcrafted features, to extract generic keypoints [164], grasp-
ing points [165, 166], wrinkles [167, 168], edges and corners [169], volumetric fea-
tures [170] and cloth parts [171]. Unfortunately, in the case of severe deformed
clothes these handcrafted features are not always valid or easy to obtain. For in-
stance, given an arbitrary configuration of a deformed cloth, it could be possible
that the semantic features that we are searching for lie in the back side of the cloth,
hence, would not be visible and our method would fail.

More recent methods, that are based on neural networks [150, 172, 173] or
GANs [174] try to take advantage of object symmetries to obtain very good view

75

Chapter 4. View Synthesis Generation

estimations or directly reconstruct a whole object using RGB or depth images
[148, 149, 151] or depth [175]. However, these methods assume rigid objects or just
minor deformations of non rigid objects [156, 157], where a cloth is represented
by a low resolution triangular mesh. This is a limited representation for real life
clothes. Many clothes, such as shirts, pants, dresses among others have complicated
structures with several seams, that can produce very complex deformations, with
strong occlusions. Most of the literature, however, tackle a simplified problem and
focus on reconstructing folds and wrinkles from clothes worn by a human body
model [176, 177, 178, 179], which helps to constrain in great measure the type of
folds that are formed on the cloth.

These are not the cases we are interested in this chapter, as we aim to reason
about cloth objects that are severely deformed. For instance, as shown in Fig. 4.1, we
assume a cloth garment hung from a single point, which generates many wrinkles,
folds and self-occlusions. In order to tackle these type of scenarios, we need to go
beyond state-of-the-art.

4.3 Our approach

Our framework for estimating the depth of a deformable object from an input
depth map and desired rigid transformation is shown in Fig. 4.2. We have designed
our architecture based on a Deep Generative Adversarial Neural Network scheme
which intrinsically uses projective geometry theory to reason about the global
geometric aspect of the problem. The network is composed of a primary branch,
the Generator, that regresses the depth map viewed from a desired pose from which
we analytically estimate a normal map and a segmentation mask to separate the
object from the background. This principal branch is responsible to learn geometric-
aware features using a classic projective geometry pipeline to project learnt features
from one view to another. In this same branch, we include another network that
combines the original and projected features with and encoding of the applied rigid
transformation that is responsible to reason about the potential occlusions and
projection order. In addition, we consider a second branch, the Critic, that takes the
produced depth map and learns to discriminate whether is realistic enough to solve
the task and produce more robust solutions to the problem. In the results section
we will show that after adapting the projective geometry at the features level, our
architecture is able to generate novel synthetic views of deformable cloth depth
maps under large camera view changes.

76

4.4. Projective Geometry Network

Figure 4.2 – Proposed architecture for view synthesis generation. The proposed
architecture consists of two main branches that fulfils in a classic Deep Generative
Adversarial Network scheme. The first, is the Generator that has two prediction
heads: foreground/background respect to the object and depth regression from
which we perform an analytical estimation of the normals. The second, the Critic
takes the estimated depth map and classifies as a real or fake sample to help for a
better generalisation during the depth regression.

4.4 Projective Geometry Network

In this section we give the formulation of the problem that we want to solve and
describe the proposed network architecture, which is composed by different com-
ponents from classical projective geometry. In addition, we also define the different
loss functions, including the adversarial training scheme used only during the
training of the model.

4.4.1 Problem Formulation

Let Xw be the 3D world coordinates of a deformed cloth, and Din ∈RH×W the depth
map representation when seen from a particular perspective defined by a camera
pose Tin

w ∈ SE(3) that relates the mapping of the object 3D coordinates from a source
camera to a world coordinates system. We aim at designing a Deep Generative
Neural Network framework that given an input depth map Din and a desired output
pose Tout

w , synthesizes a new depth map Dout ∈RH×W by inherently projecting the
latent but unavailable Xw to the desired camera reference frame which can be
formally described by the following mapping (Din,Tout) → Dout.

77

Chapter 4. View Synthesis Generation

We assume that the camera calibration parameters are known, namely K that
describes the focal lengths (fu , fv), and principal point (cu ,cv) which are later used
to project the object coordinates from the camera frame to the world coordinate
system. Our approach is solved in a supervised manner sampling tuples defined by
{Di

in,Ti
out,Di

out}
N
i=1 from the dataset used both for training and evaluation (different

splits). With our method we do not intend to do an explicit reconstruction of the
object shape, but instead learn geometric invariant features through a process of
features projection from one view to another for later combining and reason about
the occlusions.

4.4.2 Network architecture

Given an input depth image Din, of size H ×W , the initial step consists in extracting
a set of dense local features per pixel. Following [180] we feed Din into a first
encoder-decoder network which is configured in such a way that the bottleneck
has small downsampling factor of 2. Let us denote these features as φ1(Din) → Fin

of size F ×H ×W . The intuition is that these local features will keep information of
the 3D local structures in order to later reason about the depth ordering to perform
the view projection.

Projective features warping. In order to make the features robust to viewpoint
changes, we have designed a differential operator that using simple projective
geometry warps the learnt features Fin to the desired output pose Tout

w . The operator
assumes to have a calibrated setup, which using the following equation:

Hout
in = K ·Tout

w · (Tin
w)-1 ·K-1 (4.1)

This expression will give us the transformation to project features from one view to
the desired output pose. Following a similar approach as in [181, 182] we can later
perform a differentiable bilinear sampling such that:

ω(Fin,Hout
in ,Din) → Fproj (4.2)

That is, projects Fin according to Hout
in , obtaining Fproj. This operator will produce a

stack of features of size F ×H ×W that will help later the system to be invariant to
viewpoint changes.

Occlusion comprehension. One of the challenges for our method is the way occlu-
sions are solved when we project features between two different views. Initially, our
system assumes no knowledge about the explicit shape of the object, in the sense
that during the features projection there is no notion about the depth ordering, or
in other terms, what is front or behind. Since we want to let our system to reason

78

4.4. Projective Geometry Network

about how to handle occlusions, we will take the original and warped features along
with an embedding of the desired pose and feed them to a second network:

φ2(Fin,Fproj,φ3(Tout
in)) → Fshared (4.3)

This expression generates Fshared, which will encode the combined information
from the input depth map and its projection. We denote this second network as an
auto-encoder with a downsampling factor of 8. A large factor, will force the network
to have also a large receptive field so that the captured information comes from the
whole scene and make easy to resolve the occluded information.

Task aware prediction. Our system has a pre-final step where Fshared is fed to the
two different network heads. The final heads of the network are small learnt kernels
of 1x1 that will specialise for each of the sub-tasks. The first, produces Dout with
the actual regression values of the depth map and from which using analytical
methods, we estimate the normal maps. Finally, the second head produces Dmask

that represents a segmentation mask of foreground and background of the object
respect to the scene.

Depth critic. In our method we implement a critic network D as in PatchGan [183]
that maps from an input depth map to a matrix YI ∈ R26x26, where YI [i , j] repre-
sents a probability for each patch overlapping i j to be a real sample. This critic
network enforces high frequency correctness in order to reduce the blurriness of
the generated depth maps and make them more close to the ones from the training
distribution.

4.4.3 Loss functions

The training of our model is a composition of losses that tries to enforce different
aspects of the cloth configuration and preserve implicit consistency on the 3D
shape. As described in the previous section, our architecture has two different
output heads, the first to predict a depth map and the second a mask. We next
describe in detail the different losses used for optimising the model parameters:

Weighted depth regression loss. The main loss function for our model optimises
the depth pixels values produced by our model with respect to the ground truth
data. We define this cost function in terms of a weighted Mean Square Error that
will be evaluated on the foreground object:

LD = 1

n

∑
t
λt · ‖Dout(t)−DGT(t)‖2

2 , (4.4)

where DGT is the ground truth depth map and n are the number of foreground

79

Chapter 4. View Synthesis Generation

pixels t , i.e. pixels with a depth value. We define λt as weighting term which is
computed by projecting the original input depth map Din to produce a coarse depth
map Dcoarse and compare against DGT to obtain a mask of the occluded regions. λt

can be seen as an attention mechanism during the training to make the model to
optimise better the parts of the cloth with missing or occluded information.

Binary mask loss. The second loss we consider is a binary classification loss func-
tion which accounts for the number of valid pixels in the output depth image. This
loss is defined in terms of a Cross Entropy using the depth values to the infinity to
define the ground truth mask:

LM =− 1

n

∑
t

Dmask(t) · log(D̂mask(t)) (4.5)

where D̂mask is the ground truth for the valid depth map, and n the total number of
foreground pixels t in the depth images.

Depth gradients regularisation. Predicting the folds in the cloth is a difficult task
for the network without an extra supervision. For this reason, we add an extra term
loss that will try to constrain the network to preserve the predicted gradients on the
depth image with respect to the ground truth. This loss is computed as follows:

LS = | Sobel(Dout)−Sobel(DGT) | (4.6)

where Sobel is a differentiable Sobel edge operator [182] that computes the nor-
malised edge image gradients within the depth domain.

Normal maps regularisation. We want our method to be robust under geometric
transformations. Similar to the depth gradients regularisation method, we force our
loss function to optimise the normal maps computed from the output depth map
Dout. Our final loss function, contains an extra term so that the computed normals
from the predicted depth are forced to be close from the ground truth ones. The
normal loss can be written in terms of a cosine similarity:

LN = 1

n

∑
t

Nout(t) ·NGT(t)

max(‖Nout(t)‖2 · ‖NGT(t)‖2,ε)
, (4.7)

where Nout and NGT are the Normal maps computed from the depth map prediction
and ground truth, respectively. ε is a small value to prevent division by zero, and
again, n are the number of foreground pixels t . In order to compute the normal
maps, we use a differentiable operator [182, 184] that using the camera calibration
matrix (referred as K), maps the depth map to a point cloud and from neighbour
points computes the 3D spatial gradients. Then, we can compute an approximation

80

4.5. Experimental setup

of the normal maps with the cross product of the derivatives at each 3D point.

Adversarial loss. In order to optimize our main network branch, namely the gen-
erator G , and force it to produce depth maps that follow the same distribution as
the training data, we use a modified version of the standard GAN algorithm [185]
proposed by WGAN-GP [186]. Specifically, the original GAN formulation is based on
the Jensen-Shannon (JS) divergence loss function and follows a min-max strategy
game between the generator G and the critic D. The last tries to correctly classify
real and fake depth images while the generator will try to foul the critic. This loss is
extremely unstable and not continuous with respect to the parameters coming from
the generator and can easily saturate the system leading to vanishing gradients in
the critic. This issue is solved in WGAN [187] which proposes to replace the JS with
the continuous Earth Mover Distance. In order to maintain the Lipschitz constraint,
WGAN-GP [186] proposes to add a penalty term for the critic network computed as
the norm of the gradients with respect to the critic input. In our work we formulate
the loss as follows:

LA = EI∼Po [D(G(Din))]−EI∼Po [D(Dout)]+λg pEĨ∼PĨ
[(||∇Ĩ D(Ĩ)||2 −1)2] (4.8)

where λg p is a penalty coefficient.

Total loss. Our final loss is the average of the different losses described before:

Loss = 1

5
(LD +LM +LS +LN +LA) (4.9)

4.5 Experimental setup

The model is trained with a synthetically generated dataset, using depth images
of size H ×W = 512× 512. The image features φ1 and φ2 are obtained from an
auto-encoder with skipped connections [180] and a downscaling factor of 2 and
8, respectively. The resulting feature maps from φ1(Din) are of size of F ×H ×W =
32×512×512.The computed embedding for φ3(Tout

in) has also size of 32, which is
later expanded and concatenated to every pixel of Fin and Fout. The head for pre-
dicting the output depth map Dout has a non-linearity TanH to keep the distribution
normalized. We use Adam solver [188] with a learning rate of 0.0001 for both the
generator and discriminator, β1 = 0 , β2 = 0.999 and a Cosine Annealing learning
rate scheduling [189]. The model is trained with a batch size of 8 in a single Nvidia®

GTX 1080 for 1 day.

81

Chapter 4. View Synthesis Generation

Figure 4.3 – Sample images of the synthetic dataset. We build a large dataset of
deforming clothes viewed by a ring of 36 depth cameras. The cloth model is hung
from a different position (rows) and captured from several cameras (columns).

82

4.6. Experimental Results

4.6 Experimental Results

To evaluate the proposed method, we experiment with both synthetic and real
datasets. In the following, we first describe our configuration of the two datasets,
then explain in detail the training strategy, and finally provide both quantitative
and qualitative results.

4.6.1 Dataset

Synthetic data generation. We show in Fig. 4.3 three different examples of the se-
quences (sampled at 20deg) we produce using the physics cloth engine of Blender [190].
The setup for generating these depth maps consists in a deformed t-shirt model
surrounded by a rig of 36 cameras in a circle separated by steps of 10 degrees. Specif-
ically, the bounding box defined by the deformed mesh lies at the center of the
circle, and we set the radius to 120cm to ensure the whole t-shirt mesh is completely
visible by all cameras.

A 3D human body design suite [191] is used to obtain the t-shirt model. This
model is defined by a quad mesh with 3.500 vertices, which is the best topology
for the cloth physics engine simulator. The cloth physics engine is based on a
spring mass model, which contains several cloth fabric presets as well as several
parameters that are tunable for adjusting the behaviour of the simulation. We use
the cotton preset in the case of the t-shirt, and just modify the bending and stiffness
parameters to achieve more realistic deformations. The t-shirt mesh is hung from a
point and let deform by gravity. The deformation process is run for 250 steps on
each physics simulation to ensure a rest position is achieved. Before running each
simulation, the mesh is randomly rotated, and a vertex is also randomly chosen as a
hanging point.

The complete dataset consists of 1.000 simulations and for each simulation the
depth image, normal image, background segmentation, and intrinsic and extrinsic
camera matrices are recorded. We pick 100 simulations for training the network, 30
for validation and 30 for test. There is no overlap between the three splits.

Real data generation. A t-shirt is grasped by a Baxter robot and naturally hung
under gravity. We manually adjusted real-world setup to roughly match the appear-
ance and dynamics of the simulation. Specifically, an Intel RealSense L515 camera
is placed 120cm away from the grasping point. The robot continuously rotates the
t-shirt while depth images are captured in the meanwhile.

The whole real dataset consists of 100 sequences, with 36 depth images (every
10 rotation degree) in each sequence. The clothes are grasped from different points
in different sequences. The entire acquisition process takes approximately 16 hours.

83

Chapter 4. View Synthesis Generation

We segment the garment from the background by thresholding the depth between
110cm and 130cm. Then, the acquired depth images are cropped to remove the
non-garment parts of the image and resized to 512×512 pixels. We use 50 out of
100 sequences for training the network, 15 for validation and 15 for test.

4.6.2 Incremental training

During the study to determine the maximum rotation angle by our system we found
that training our model from scratch does not converge to an optimal solution. We
experimentally found that the best approach to tackle this problem is using the
so well known Curriculum Learning training technique and train our system in a
incremental manner starting with "easy" data samples and increase the complexity
of the task by showing to our model more "difficult" samples with coming views
with larger angle rotations.

The process we adopt to sample our training data is as follows: First, a subset
of simulations is randomly sampled from the total number of simulations in the
dataset. Second, we randomly pick two depth maps for each of the simulation,
one shall be the input depth map Din and the other the output Dout. We will also
annotate the training sample with the rotational angle between the two depth maps.

To train the network, we need several interactions. To be more specific, in
the first iteration, we sample source and destination depth which are are most 10
degrees apart. The network is trained until converge and ensuring a validation
loss below a certain threshold. Then, in the next iteration, we increase the training
dataset by including more samples from rotations up to 20 degrees, and we start
the training again initialising the weights with the ones obtained from the previous
stage. We repeat this incremental process for 40, 60, 80 ... 180 degrees. We observed
that by following this training procedure we can obtain a faster training convergence
for large rotation angles.

4.6.3 Quantitative Evaluation

We next evaluate the accuracy of our trained model under different rotation angles
using both the synthetically generated and real datasets. In order to perform the
evaluation, we compare against Baseline which is a coarse depth map obtained by
analytically rotating the 3D points of the input depth map to the desired view.

We report the evaluation on the synthetic data using the best performing model.
The model has been trained using up to 180 degrees of rotation following the
described Curriculum Learning approach. For the real data, we have taken the
model trained on the synthetic dataset and finetuned using the real training data.

In order to report the evaluation, we use two different metrics: the bidirectional

84

4.6. Experimental Results

Figure 4.4 – Evaluation on synthetic and real data for the Chamfer distance. Eval-
uation of the network performance when generating novel views from the same
input depth map under different rotation angles. Baseline is the analytic geometric
rotation of the input depth map. Model is the result obtained from our network.
Model sparse is the result of the proposed model, evaluated only on the image
pixels that have a valid depth after the projection between the two views. Chamfer
distance vs the rotation for synthetic (left) and real (right) data. The lower the better.

Sy
n

th
et

ic
R

ea
l

Figure 4.5 – Evaluation on synthetic and real data for the Percentage Correct
Depth. Similar to the figure 4.4, we show the performance of our network in terms
of Percentage Correct Depth (PCD) at different accuracy: [1, 5, 10] cm. The higher
the better.

85

Chapter 4. View Synthesis Generation

Chamfer Distance and the Percentage of Correct Depth (PCD), which are defined as
follows.

Let D̂ be the estimated depth map and DGT the ground truth depth map. The
bidirectional Chamfer Distance is computed as follows:

Chamfer(D̂,DGT) = 1

2
(KNN(D̂ → DGT)+KNN(DGT → D̂)) (4.10)

where KNN(D̂ → DGT) represents the average Euclidean distance for all points of D̂
to their nearest neighbor in DGT. Note that KNN(·, ·) is not a true distance measure
because it is not symmetric. This is why we compute it bidirectionally.

We also asses the accuracy of our method under different error thresholds using
the Percentage of Correct Depth (PCD), which represents the percentage of predicted
depth pixels with a depth error below a certain threshold. For instance, PCD@k
represents the per- centage of predicted depth pixels with a depth error below k.

In Fig. 4.4 and 4.5 we report the described error metrics for both the synthetic
and real data experiments. As can be appreciated, our method is able to generate
results with a higher accuracy compared to the baseline in all the rotation angles. In
the first column experiments we demonstrate that how our model is always below
the baseline in terms of the Chamfer Distance error. In this particular case, we also
report the error of “Model sparse”, in which the error is only evaluated on the (u, v)
pixels of the depth image for which the baseline has valid depth values after the
projection from the original view. The reported error for “Model sparse”, is very
similar to the full model performance, which indicates that the model is able to
correctly predict both the already seen points, as those that needs to hallucinate.

When considering the PCD metric, our model also consistently imporved the
baseline. It is worth noticing that for our model PCD@5cm surpasses always 0.8,
that is, at least 80% of the estimated depth points have an error of 5cm or less. The
magnitude of this error would give to us enough precision to use the method in
some the applications mentioned before such as augmented or virtual reality.

Fig. 4.6 and 4.7 show visual results of the generated data using our best per-
forming model under a range of [−180,180] degrees of rotation. Note that for large
rotations (±180 degrees) the baseline is affected by gross errors and displays er-
roneous folds. Our approach, although a bit blurry, is able to recover the main
structures of folds and creases.

4.6.4 Ablation study

In the following we evaluate the performance of the network under different configu-
rations (with and without the adversarial loss). The study, similar to the experiments

86

4.6. Experimental Results

Figure 4.6 – Qualitative results on synthetic data. Outputs produced by our model
under two different simulations (Left to Right blocks) showing several rotations
from -180 to 180 degrees in the Z-axis (Left to Right columns). Row 1: Input depth
map used to hallucinate the novel views. Row 2-3: Ground truth depth and normals
maps from the evaluation set. Row 4: Baseline computed from the input depth
map. Row 5-6: Predicted Depth map and the normals computed analytically from
the predicted Depth.

discussed in Figure 4.4 reports the Chamfer distance metric between ground truth
and estimated point clouds and the Cosine Distance between normal maps. For
further comparison, we also include the performance of the model Baseline. As
observed in the Table 4.1, the use of the GAN loss brings certain improvement
both in the real and synthetic experiments. Our model, with and without GAN,
significantly improves the Baseline.

87

Chapter 4. View Synthesis Generation

Figure 4.7 – Qualitative results on real data. Results obtained with our network on
a sequence captured from a real camera setup. Similar to Figure. 4.6, the network
produce new views from different rotation in the Z-axis from -180 to 180 degrees.
Row 1: Input depth map. Row 2-3: Ground truth depth and normals maps. Row 4:
Baseline computed from the input depth map. Row 5-6: Predicted Depth map and
the normals computed analytically from the predicted Depth.

4.7 Conclusions

In this chapter we have proposed an approach to synthesize novel views of depth
maps for deforming clothes. We have shown that encoding the input depth map
using spatial-aware features, and geometrically transforming these features, allows
hallucinating complex details, like folds and creases, which were not visible in the
input depth map. Moreover, we have shown that our method is capable to recuper-
ate many details in very extreme viewpoints where the geometric information is
very little, since it is lost by the self-occlusions. We have presented several quanti-
tative results on a synthetic dataset and proof that the proposed method also can
work with real data captured by a depth sensor. Finally, the system is based on

88

4.7. Conclusions

Synthetic Data Real Data
Method Chamfer↓ Cosine↓ Chamfer↓ Cosine↓
Baseline 0.2147 ± 0.11 - 1.4500 ± 0.56 -
Network w/o GAN 0.0568 ± 0.02 0.8320 2.0092 ± 0.23 0.6528
Network with GAN 0.0348 ± 0.01 0.8314 0.5530 ± 0.17 0.6216

Table 4.1 – Quantitative results under different network configurations. The table
shows the results in terms of Chamfer distance mean and standard deviation and
the Cosine Distance between the normals maps for the Baseline and the model
trained with and without the Adversarial loss. The evaluation has been done from
-180 to 180 degrees of rotation.

purely convolutional blocks, allowing to perform inference in a few milliseconds
and uses the library proposed in chapter 3 to include classical projective geometry
techniques within the computational graph.

89

5 Conclusions and Future work

5.1 Conclusions

In this PhD dissertation we have addressed the problem of scene reconstruction
using local features and later as an end to end pipeline including some of the
ideas from projective geometry. During this thesis we have reviewed the different
approaches proposed during the last decade and contributed with methods that
empirically show an improvement over the state of the art. Even though scene
reconstruction can be considered as a solved problem in controlled conditions,
we have seen during the different chapters of this thesis that there is still space for
improvements in each step of the pipeline, or even in the pipeline itself.

In chapter 2, we have faced the reconstruction problem using local features to
detect and describe regions of interest to find the image correspondences needed by
classical scene reconstruction pipelines. In addition, we have contributed with two
different methods that use CNNs for detecting keypoints and compute descriptors
from image patches. We have demonstrated through experimental results that both
methods can improve the results over pre-existing methods for the specific task
of image matching. In addition, we have proposed two differentiable operators
to extract the keypoints localization and a triplet loss function based on geometry
constraints. Both methods can easily replace keypoint detection and description
modules of classical scene reconstruction pipelines, and can be also used in other
related problems like SLAM or image mosaicing. The outcome in terms of scientifi-
cic publications for the work presented in this chapter have been two conference
papers [192, 193] in collaboration with the Imperial College London.

In chapter 3, we have introduced Kornia, our PyTorch based library that eases
the design of end-to-end pipelines by implementing classical computer vision algo-
rithms into a differentiable programming paradigm. We have showed different uses
cases where Kornia has been used to recast classical computer vision algorithms
in a differentiable manner. We also provided benchmarks showing the potential of
the library to be used as a tool to implement efficiently existing algorithms or data
augmentation in high performance devices. The so well adoption of the framework

91

Chapter 5. Conclusions and Future work

by the community it is an indicator that having the ability to include the ideas of
traditional methods inside deep learning architectures has a lot of potential and
incentives the development of new computer vision solutions. The work of this
chapter have produced a conference paper [184] in collaboration with the company
Arraiy, Inc.

In chapter 4, we have contributed with an end-to-end system based on Kornia,
devoted to estimate the depth maps of unseen views of clothing. We have experi-
mented with synthetically generated and real data and showed the performance
of the method over different degrees of rotation. The obtained results show that
including geometric constraints within the end to end network is very beneficial in
front of new data and helps with the generalization of the problem. The work on
this chapter have been done in collaboration with the Institut de Robotica Industrial
de Barcelona leading to two different paper submissions [194, 195].

5.2 Discussion and Futures Perspectives

Along the different chapters in this thesis we have presented the different contri-
butions for the specific problem of scene reconstruction. We presented the works
showing the transition from methods using classical computer vision methods to
smoothly include deep learning components. We would like to describe our experi-
ence and findings in a chronological order to give a more reasonable understanding
about the How and Why of the work presented in this thesis.

The aim of this thesis was to understand the scene reconstruction pipeline
and for this reason we first analyzed the different solutions that the community
was proposing by that time in a more practical point of view. We first got involved
and contributed to the OpenDroneMaps project which had already implemented
an end-to-end pipeline with the classical approach described in chapter 2. The
different contributions in this project helped us to have a good understanding of
what was happening internally in the scene reconstruction pipeline. At this point,
our initial intuition was to take one of the main sub-tasks in the pipeline and use it
as an entry point to explore novel solutions for improving the entire pipeline.

As we described in section 2.3, local features descriptors was the first and a
relatively easy task where we could completely replace pre-existing solutions in the
local features domain by a CNN and improve upon the state the art methods [196].
Our next step was following the same direction to solve small tasks in the recon-
struction pipeline which as described in section 2.2, led to the study of local features
detectors. However, was at this moment where we started to think about this idea of
combining deep learning components with the classical ideas of computer vision
which led later to mix handcrafted and learnt deep features. In addition, in the

92

5.3. Scientific Articles

publication of Key.Net [192] we also contributed with a differentiable operator that
could be used to chain the two tasks of detection and descriptor, and potentially be
used to design other high level tasks such as SfM or SLAM systems.

With all this ideas in mind of mixing classical computer vision methods with
deep learning and combine them in a single framework was one of the main reasons
why we started the Kornia [184]project. The use of classical algorithms which
already had years of maturity and the fact that can be included within the networks
and serve as constraints opens a new field toward differentiable programming
or also known as Software 2.0. This same fact also opens the door to Computer
Vision 2.0. and helps with the design to improve the most known algorithms in
the classical computer vision community. Given that our interest was also in the
study of the geometry in the scene reconstruction pipeline, we wanted to prove
our hypothesis and marry the ideas of designing a jointly optimizable end-to-end
pipeline to combine projective geometry with deep learnt features to reconstruct
part of the scene [195].

As a final remark, along this thesis we have seen that deep learning have taken
over most of the existing works in the computer vision community. It can be
also noticed that the computer vision community has completely switched from
classical methods to pure deep learned networks in order to solve tasks with well
founded methods. However, through the different contributions in this thesis we
have showed that there is still room for the classical ideas to be used along with
new methods and technologies. For this reason, we believe that in the long run the
combination of classical computer vision and deep learning can be very beneficial
for the community and can open a wide variety of research lines and opportunities.

5.3 Scientific Articles

5.3.1 International Conferences and Workshops

The work developed during this thesis has been presented in several international
conferences and submitted to two journals.

• Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, and Gary Bradski.
Kornia: an Open Source Differentiable Computer Vision Library for PyTorch.
In Winter Conference on Applications of Computer Vision (WACV), 2020.

• Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learn-
ing local feature descriptors with triplets and shallow convolutional neural
networks. In BMVC, 2016.

• Axel Barroso-Laguna, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk.
Key.Net: Keypoint Detection by Handcrafted and Learned CNN Filters. In

93

Chapter 5. Conclusions and Future work

ICCV, 2019.
• Edgar Riba, Jordi Sanchez-Riera, Yurun Tian, Fan Zhang, Albert Pumarola,

Yiannis Demiris, Krystian Mikolajczyk, and Francesc Moreno-Noguer. Novel
View Synthesis of Depth Maps for Cloth Manipulation. In ICRA 2021 (under
review).

• Edgar Riba, Jordi Sanchez-Riera, Albert Pumarola, Fan Zhang, Yurun Tian,
Yiannis Demiris, Krystian Mikolajczyk, and Francesc Moreno-Noguer. Depth
Map Synthesis for Deformable Clothes. In CVPR 2021 (under review).

• Jian Shi, Edgar Riba, Dmytro Mishkin, and Francesc Moreno-Noguer. Dif-
ferentiable Data Augmentation with Kornia. In Neurips 2020 Workshop Dif-
fCVGP, 2020.

5.3.2 Journals

• Edgar Riba, Dmytro Mishkin, Jian Shi, Daniel Ponsa, Francesc Moreno-Noguer,
and Gary Bradski. A survey on Kornia: an Open Source Differentiable Com-
puter Vision Library for PyTorch. In EEAI, 2020. (under review).

• Edgar Riba, Jordi Sanchez-Riera, Yurun Tian, Fan Zhang, Albert Pumarola,
Yiannis Demiris, Krystian Mikolajczyk, and Francesc Moreno-Noguer. Novel
View Synthesis of Depth Maps for Cloth Manipulation. In RAL, 2021 (under
review).

5.4 Contributed Code

Among the different activities performed during this thesis, part of the work has
been involved in the development of software in different open source initiatives.
In the follow I list the main open source projects that I have been involved during
the thesis that helped me to get a good understanding about computer vision and
deep learning:

• Kornia: differentiable computer vision library for PyTorch. I am the project
leader and core maintainer of the project and community leader.
URL: https://github.com/kornia/kornia.

• tiny-dnn: a header only, dependency-free deep learning framework in C++14.
I maintained this small library that implements deep learning functionalities
in C++ and later integrated into OpenCV as part of the Google Summer of
Code.
URL: https://github.com/tiny-dnn/tiny-dnn.

• TFeat: Python repository to reproduce the results presented in [193]. I co-
maintain the repository with the other authors.

94

https://github.com/kornia/kornia
https://github.com/tiny-dnn/tiny-dnn

5.5. Scientific Dissemination

URL: https://github.com/vbalnt/tfeat.
• TripletLoss: Python code that implement the margin and the ratio triplet

losses in PyTorch from [193]. I originally integrated the triplet loss function in
the main PyTorch repository.

• KeyNet: Python repository to reproduce the results presented in [192]. I co-
maintain the repository with the other authors.
URL: https://github.com/axelBarroso/Key.Net.

5.5 Scientific Dissemination

In the following there is a list the different talks at conferences and tutorials, appear-
ances in the media, internships and research stays that I have achieved during the
duration of this thesis:

5.5.1 Invited Talks and Tutorials

• Edgar Riba, Mona Fathollahi, Wesley Chaney, Ethan Rublee and Gary Brad-
ski. torchgeometry: when PyTorch meets geometry. In PyTorch Developer
Conference Poster Session, 2018

• Vassileios Balntas, Dmytro Mishkin, Edgar Riba. Local Features: From SIFT
to Differentiable Methods. In, CVPR 2020 Tutorial.

• Vassileios Balntas, Dmytro Mishkin, Edgar Riba. Local Features: From SIFT
to Differentiable Methods. In, WACV 2020 Tutorial

• Edgar Riba (Organizer). Kornia Hackathon 2019. Satellite event of Deep
Learning Symposium BCN 2019.

• Edgar Riba. Differentiable Computer Vision: an introduction to Kornia.
WACV 2020 Tutorial.

• Edgar Riba. Differentiable Computer Vision: an introduction to Kornia. GDG
Spain 2020, Youtube podcast.

• Edgar Riba. Differentiable Computer Vision: an introduction to Kornia.
Nvidia GTC 2020.

• Edgar Riba. Differentiable Computer Vision: an introduction to Kornia. IRI
Robotics and AI Summer School 2020.

• Edgar Riba. Differentiable Computer Vision: an introduction to Kornia. Py-
BCN 2020.

95

https://github.com/vbalnt/tfeat
https://github.com/axelBarroso/Key.Net

Chapter 5. Conclusions and Future work

5.5.2 In the Media

The appearances in the social media and news to disseminate part of the work done
in this thesis:

• How a research scientist built Kornia: an open source differentiable library for
PyTorch. Medium, PyTorch, 2019.

• Kornia: an Open Source Differentiable Computer Vision Library for PyTorch.
OpenCV Blog, 2020.

• OpenCV 20th Anniversary Series. Video2-min6. https://youtu.be/w69BQYgM7xI

5.5.3 Internships

The internships and research stays carried out that led part of the publications
presented during the thesis:

• Arraiy, Inc., Mountain View, CA, USA.
Host: Dr. Gary Bradski
Date: April 2017-November 2017

• Imperial College London, UK.
Host: Dr. Krystian Mikolajzcyk
Date: June 2018-November 2018

• Institut de Robotica Industrial de Barcelona, Barcelona, ES.
Host: Dr. Francesc Moreno-Noguer.
Date: September 2019-Present

5.5.4 Community

List of the different open source communities, affiliations and side projects I con-
tributed during the duration of the thesis:

• Kornia.org Project Leader, 2018-Present.
• Active member of the PyTorch community, 2016-Present.
• Technical Committee Member at OpenCV.org, 2018-Present.
• Google Summer of Code Mentor at OpenCV, Summer [2017, 2018, 2019, 2020].
• Google Summer of Code Student at OpenCV, Summer 2016.

96

https://youtu.be/w69BQYgM7xI

Bibliography

[1] Charles Darwin. On the Origin of Species by Means of Natural Selection.
Murray, 1859.

[2] Theo Moons, Luc Van Gool, and Maarten Vergauwen. 3d reconstruction from
multiple images: Part 1 - principles. Foundations and Trends in Computer
Graphics and Vision, 4:287–404, 01 2009.

[3] Philip Pritchett and Andrew Zisserman. Wide baseline stereo matching. In
ICCV, pages 754–, 1998.

[4] Cordelia Schmid and Roger Mohr. Matching by local invariants, 1995.

[5] Tinne Tuytelaars and Krystian Mikolajczyk. Local invariant feature detectors:
a survey. Now Publishers Inc, 2008.

[6] D. G Lowe. Distinctive image features from scale-invariant keypoints. IJCV,
2004.

[7] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative
to sift or surf. ICCV, 2011.

[8] Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches
via convolutional neural networks. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

[9] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint:
Self-supervised interest point detection and description. CVPR Workshop,
2018.

[10] Noah Snavely, Steven Seitz, and Richard Szeliski. Photo tourism: exploring
photo collections in 3d. acm trans graph 25(3):835-846. ACM Trans. Graph.,
25:835–846, 07 2006.

[11] S. Ullman. The Interpretation of Visual Motion. Artificial Intelligence. MIT
Press, 1979.

97

Bibliography

[12] Martin Peris, Sara Martull, Atsuto Maki, Yasuhiro Ohkawa, and Kazuhiro
Fukui. Towards a simulation driven stereo vision system. In Proceedings of
the 21st International Conference on Pattern Recognition, ICPR 2012, Tsukuba,
Japan, November 11-15, 2012, pages 1038–1042. IEEE Computer Society, 2012.

[13] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(11):1222–1239, 2001.

[14] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner Hazırbaş,
Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox.
Flownet: Learning optical flow with convolutional networks, 2015.

[15] A. Ahmadi and I. Patras. Unsupervised convolutional neural networks for mo-
tion estimation. In 2016 IEEE International Conference on Image Processing
(ICIP), pages 1629–1633, 2016.

[16] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view rgb-
d object dataset. In 2011 IEEE International Conference on Robotics and
Automation, pages 1817–1824, 2011.

[17] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. Cnn-slam:
Real-time dense monocular slam with learned depth prediction, 2017.

[18] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Oct 2017.

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. CoRR, abs/1505.04597, 2015.

[20] Ravi Garg, Vijay Kumar B. G, and Ian D. Reid. Unsupervised CNN for single
view depth estimation: Geometry to the rescue. CoRR, abs/1603.04992, 2016.

[21] Rui Wang, Stephen M. Pizer, and Jan-Michael Frahm. Recurrent neural net-
work for (un-)supervised learning of monocular videovisual odometry and
depth. CoRR, abs/1904.07087, 2019.

[22] Punarjay Chakravarty, Praveen Narayanan, and Tom Roussel. GEN-SLAM:
generative modeling for monocular simultaneous localization and mapping.
CoRR, abs/1902.02086, 2019.

98

Bibliography

[23] Filippo Aleotti, Fabio Tosi, Matteo Poggi, and Stefano Mattoccia. Generative
Adversarial Networks for Unsupervised Monocular Depth Prediction, pages
337–354. Springer International Publishing, Cham, 2019.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In F. Pereira, C.J.C. Burges,
L. Bottou, and K.Q. Weinberger, editors, NIPS, pages 1097–1105, 2012.

[25] V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk. Hpatches: A benchmark
and evaluation of handcrafted and learned local descriptors. CVPR, 2017.

[26] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of com-
puter vision algorithms. http://www.vlfeat.org/, 2008.

[27] K. Lenc and A. Vedaldi. Large scale evaluation of local image feature detectors
on homography datasets. BMVC, 2018.

[28] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors.
ICCV, 2004.

[29] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua. Lift: Learned invariant feature
transform. ECCV, 2016.

[30] D. DeTone, T. Malisiewicz, and A. Rabinovich. Toward geometric deep slam.
arXiv preprint arXiv:1707.07410, 2017.

[31] K. Lenc and A. Vedaldi. Learning covariant feature detectors. ECCV, 2016.

[32] X. Zhang, X.Y. Felix, S. Karaman, and S. F. Chang. Learning discriminative and
transformation covariant local feature detectors. CVPR, 2017.

[33] Y. Ono, E. Trulls, P. Fua, and K. Moo Yi. LF-Net: Learning Local Features from
Images. NIPS, 2018.

[34] K. Moo Yi, Y. Verdie, P. Fua, and V. Lepetit. Learning to assign orientations to
feature points. CVPR, 2016.

[35] Y. Verdie, K. Yi, P. Fua, and V. Lepetit. Tilde: a temporally invariant learned
detector. CVPR, 2015.

[36] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors.
TPAMI, 2005.

[37] T. Tuytelaars, K. Mikolajczyk, and others. Local invariant feature detectors: a
survey. Foundations and Trends in Computer Graphics and Vision, 2008.

99

http://www.vlfeat.org/

Bibliography

[38] C. Harris and M. Stephens. A combined corner and edge detector. Alvey
Vision Conference, 1988.

[39] P. Beaudet. Rotationally invariant image operators. ICPR, 1978.

[40] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffal-
itzky, T. Kadir, and L. Van Gool. A comparison of affine region detectors. IJCV,
2005.

[41] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from
maximally stable extremal regions. Image and Vision Computing, 2004.

[42] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features
(surf). Computer Vision and Image Understanding, 2008.

[43] E. Rosten and T. Drummond. Machine learning for high-speed corner detec-
tion. ECCV, 2006.

[44] P. Alcantarilla, A. Bartoli, and A. J Davison. Kaze features. ECCV, 2012.

[45] P. Alcantarilla, J. Nuevo, and A. Bartoli. Fast explicit diffusion for accelerated
features in nonlinear scale spaces. BMVC, 2013.

[46] E. Rosten, R. Porter, and T. Drummond. Faster and better: A machine learning
approach to corner detection. TPAMI, 2010.

[47] S. Leutenegger, M. Chli, and R. Y Siegwart. Brisk: Binary robust invariant
scalable keypoints. ICCV, 2011.

[48] Nikolay Savinov and Akihito Seki. Quad-networks: unsupervised learning to
rank for interest point detection. CVPR, 2017.

[49] G. Georgakis, S. Karanam, Z. Wu, J. Ernst, and J. Košecká. End-to-end learning
of keypoint detector and descriptor for pose invariant 3d matching. CVPR,
2018.

[50] L. Florack, B.T.H. Romeny, M. Viergever, and J. Koenderink. The gaussian
scale-space paradigm and the multiscale local jet. IJCV, 2002.

[51] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest
points. ICCV, 2001.

[52] S. Suwajanakorn, N. Snavely, J. Tompson, and M. Norouzi. Discovery of latent
3d keypoints via end-to-end geometric reasoning. NIPS, 2018.

100

Bibliography

[53] J. Dong and S. Soatto. Domain-size pooling in local descriptors: Dsp-sift.
CVPR, 2017.

[54] O. Stepan and J Matas. Object recognition using local affine frames on distin-
guished regions. BMVC, 2002.

[55] O. Russakovsky, J. Deng, Hao Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li. Imagenet large
scale visual recognition challenge. CoRR, 2014.

[56] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. ICCV, 2015.

[57] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas. Working hard to know
your neighbor’s margins: Local descriptor learning loss. NIPS, 2017.

[58] David G. Lowe. Distinctive image features from scale-invariant keypoints.
Int. J. Comput. Vision, 60(2):91–110, November 2004.

[59] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief:
Binary robust independent elementary features. In Proceedings of the 11th
European Conference on Computer Vision: Part IV, ECCV’10, pages 778–792,
Berlin, Heidelberg, 2010. Springer-Verlag.

[60] S. Winder, G. Hua, and M. Brown. Picking the best daisy. In Proceedings of
the International Conference on Computer Vision and Pattern Recognition
(CVPR09), Miami, June 2009.

[61] K. Simonyan, A. Vedaldi, and A. Zisserman. Learning local feature descrip-
tors using convex optimisation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2014.

[62] Philipp Fischer, Alexey Dosovitskiy, and Thomas Brox. Descriptor matching
with convolutional neural networks: a comparison to sift, 2015.

[63] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua,
and Francesc Moreno-Noguer. Discriminative learning of deep convolutional
feature point descriptors. International Conference on Computer Vision, 2015.

[64] Xufeng Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg. Matchnet: Unifying
feature and metric learning for patch-based matching. In 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 3279–3286,
2015.

101

Bibliography

[65] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[66] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang,
James Philbin, Bo Chen, and Ying Wu. Learning fine-grained image similarity
with deep ranking. CoRR, abs/1404.4661, 2014.

[67] Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. CoRR,
abs/1412.6622, 2014.

[68] Paul Wohlhart and Vincent Lepetit. Learning Descriptors for Object Recog-
nition and 3D Pose Estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015.

[69] K Mikolajczyk and C Schmid. A performance evaluation of local descriptors.
Proceedings of the International Conference on Pattern Recognition, pages
257–263, 2003.

[70] Jingming Dong and Stefano Soatto. Domain-size pooling in local descriptors:
DSP-SIFT. CoRR, abs/1412.8556, 2014.

[71] G. Hua M. Brown and S. Winder. Discriminative learning of local image
descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2010.

[72] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. IJCV, pages 1–42, April 2015.

[73] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an
invariant mapping. In Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, volume 2, pages 1735–1742, 2006.

[74] M. Jahrer, Michael Grabner, and Horst Bischof. Learned local descriptors
for recognition and matching. In Proceedings of the Computer Vision Winter
Workshop 2008, pages 39–46, 2008.

[75] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environ-
ment for machine learning. In BigLearn, NIPS Workshop, 2011.

[76] Léon Bottou. Stochastic gradient tricks. In Grégoire Montavon, Genevieve B.
Orr, and Klaus-Robert Müller, editors, Neural Networks, Tricks of the Trade,
Reloaded, Lecture Notes in Computer Science (LNCS 7700), pages 430–445.
Springer, 2012.

102

Bibliography

[77] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for
deep learning. CoRR, abs/1410.0759, 2014.

[78] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[79] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François
Boulogne, Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu,
and the scikit-image contributors. scikit-image: image processing in Python.
PeerJ, 2:e453, 6 2014.

[80] Fredrik Lundh. The python imaging library (pil), 1995.

[81] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In NIPS-W, 2017.

[82] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[83] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the 22Nd ACM
International Conference on Multimedia, MM ’14, pages 675–678, New York,
NY, USA, 2014. ACM.

[84] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems.
CoRR, abs/1512.01274, 2015.

[85] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural networks for
matlab. In ACM International Conference on Multimedia, 2015.

[86] Matrox. Matrox imaging library (mil), 1976.

103

Bibliography

[87] Jorge Sánchez, Florent Perronnin, Thomas Mensink, and Jakob Verbeek. Im-
age classification with the fisher vector: Theory and practice. IJCV, 105(3):222–
245, December 2013.

[88] Herve Jegou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregating
local descriptors into a compact image representation. In CVPR, 2010.

[89] David G. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV 2004, 60(2):91–110, 2004.

[90] Jiri Matas, Ondrej Chum, Martin Urban, and Tomás Pajdla. Robust wide
baseline stereo from maximally stable extremal regions. In BMVC, 2002.

[91] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Mas-
sachusetts, 2010.

[92] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[93] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[94] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov
1998.

[95] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environ-
ment for machine learning. In BigLearn, NIPS Workshop, 2011.

[96] Seiya Tokui, Ryosuke Okuta, Takuya Akiba, Yusuke Niitani, Toru Ogawa,
Shunta Saito, Shuji Suzuki, Kota Uenishi, Brian Vogel, and Hiroyuki Ya-
mazaki Vincent. Chainer: A deep learning framework for accelerating the
research cycle. In Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, KDD ’19, pages 2002–2011,
New York, NY, USA, 2019. ACM.

[97] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan
Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-farley, and
Yoshua Bengio. Theano: A cpu and gpu math compiler in python. In Proceed-
ings of the 9th Python in Science Conference, pages 3–10, 2010.

104

Bibliography

[98] Shane Cook. CUDA Programming: A Developer’s Guide to Parallel Computing
with GPUs. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
edition, 2013.

[99] B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given by
Algorithms. PhD thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana-Champaign, IL, January 1980.

[100] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second edition, 2008.

[101] Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):947–
954, 1960.

[102] Gaurav Fotedar, Nima Tajbakhsh, Shilpa P. Ananth, and Xiaowei Ding. Ex-
treme consistency: Overcoming annotation scarcity and domain shifts. CoRR,
abs/2004.11966, 2020.

[103] B. Huang and H. Ling. Deltra: Deep light transport for projector-camera
systems. arXiv:2003.03040, 2020.

[104] Chris Harris and Mike Stephens. A combined corner and edge detector. In In
Proc. of Fourth Alvey Vision Conference, pages 147–151, 1988.

[105] Jianbo Shi and Carlo Tomasi. Good features to track, 1994.

[106] P. R. Beaudet. Rotationally invariant image operators. In IJCPR, pages 579–583,
Kyoto, Japan, November 1978.

[107] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest
point detectors. IJCV 2004, 60(1):63–86, 2004.

[108] Anastasiya Mishchuk, Dmytro Mishkin, Filip Radenovic, and Jiri Matas. Work-
ing hard to know your neighbor’s margins: Local descriptor learning loss,
2017.

[109] Yurun Tian, Xin Yu, Bin Fan, Fuchao Wu, Huub Heijnen, and Vassileios Bal-
ntas. Sosnet: Second order similarity regularization for local descriptor learn-
ing, 2019.

[110] Nick Kanopoulos, Nagesh Vasanthavada, and Robert L Baker. Design of an
image edge detection filter using the sobel operator. IEEE Journal of solid-
state circuits, 23(2):358–367, 1988.

105

Bibliography

[111] Richard Zhang. Making convolutional networks shift-invariant again. In
ICML, 2019.

[112] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[113] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu.
Spatial transformer networks. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 28, pages 2017–2025. Curran Associates, Inc., 2015.

[114] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable
augmentation for data-efficient gan training. arXiv preprint arXiv:2006.10738,
2020.

[115] Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama.
Meta approach to data augmentation optimization. arXiv preprint
arXiv:2006.07965, 2020.

[116] Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Faster
autoaugment: Learning augmentation strategies using backpropagation.
arXiv preprint arXiv:1911.06987, 2019.

[117] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Pari-
nov, Mikhail Druzhinin, and Alexandr A. Kalinin. Albumentations: Fast and
flexible image augmentations. Information, 11(2), 2020.

[118] Xianxu Hou, LinLin Shen, Ke Sun, and Guoping Qiu. Deep feature consistent
variational autoencoder. CoRR, abs/1610.00291, 2016.

[119] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face
attributes in the wild. In Proceedings of International Conference on Computer
Vision (ICCV), December 2015.

[120] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer
networks. In Advances in neural information processing systems, pages 2017–
2025, 2015.

[121] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying
framework. Int. J. Comput. Vision, 56(3):221–255, February 2004.

[122] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. In ICLR, Dec 2015.

106

http://www.deeplearningbook.org

Bibliography

[123] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, New York, NY, USA, 2 edition, 2003.

[124] Richard A. Newcombe, Steven J. Lovegrove, and Andrew J. Davison. Dtam:
Dense tracking and mapping in real-time. In ICCV, pages 2320–2327, 2011.

[125] Michael Bleyer, Christoph Rhemann, and Carsten Rother. Patchmatch stereo
- stereo matching with slanted support windows. In BMVC, January 2011.

[126] Laura Sevilla-Lara, Deqing Sun, Varun Jampani, and Michael J. Black. Optical
flow with semantic segmentation and localized layers. CoRR, abs/1603.03911,
2016.

[127] Wenjie Luo, Alexander Schwing, and Raquel Urtasun. Efficient deep learning
for stereo matching. In CVPR, pages 5695–5703, 2016.

[128] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner Hazir-
bas, Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas
Brox. Flownet: Learning optical flow with convolutional networks. CoRR,
abs/1504.06852, 2015.

[129] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy,
and Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with
deep networks. CoRR, abs/1612.01925, 2016.

[130] Richard A. Newcombe, Steven J. Lovegrove, and Andrew J. Davison. Dtam:
Dense tracking and mapping in real-time. In Proceedings of the 2011 Interna-
tional Conference on Computer Vision, ICCV ’11, pages 2320–2327, Washing-
ton, DC, USA, 2011. IEEE Computer Society.

[131] John McCormac, Ankur Handa, Stefan Leutenegger, and Andrew J.Davison.
Scenenet rgb-d: Can 5m synthetic images beat generic imagenet pre-training
on indoor segmentation. ICCV, 2017.

[132] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and koray kavukcuoglu.
Spatial transformer networks. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, NIPS, pages 2017–2025, 2015.

[133] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsupervised
monocular depth estimation with left-right consistency. In CVPR, 2017.

[134] Sudeep Pillai, Rares Ambrus, and Adrien Gaidon. Superdepth: Self-
supervised, super-resolved monocular depth estimation. CoRR,
abs/1810.01849, 2018.

107

Bibliography

[135] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion
revisited. In CVPR, pages 4104–4113, 2016.

[136] Aji Resindra, Akihiko Torii, and Masatoshi Okutomi. Structure from motion
using dense cnn features with keypoint relocalization. IPSJ Transactions on
Computer Vision and Applications, 10, Dec 2018.

[137] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk. From coarse to fine:
Robust hierarchical localization at large scale. In CVPR, 2019.

[138] Tianwei Shen, Zixin Luo, Lei Zhou, Runze Zhang, Siyu Zhu, Tian Fang, and
Long Quan. Matchable image retrieval by learning from surface reconstruc-
tion, 2018.

[139] Gabriela Csurka and Martin Humenberger. From handcrafted to deep local
invariant features. CoRR, abs/1807.10254, 2018.

[140] Eduard Trulls. CVPR 2019 Workshop. Image Matching: Local Features &
Beyond., 2019.

[141] Johannes Lutz Schönberger, Hans Hardmeier, Torsten Sattler, and Marc Polle-
feys. Comparative Evaluation of Hand-Crafted and Learned Local Features.
In CVPR, 2017.

[142] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural net-
works. In ICLR, 2014.

[143] Wieland Brendel, Jonas Rauber, Alexey Kurakin, Nicolas Papernot, Behar
Veliqi, Marcel Salathé, Sharada P Mohanty, and Matthias Bethge. Adversar-
ial vision challenge. In 32nd Conference on Neural Information Processing
Systems (NIPS 2018) Competition Track, 2018.

[144] Anurag Arnab, Ondrej Miksik, and Philip H. S. Torr. On the robustness of
semantic segmentation models to adversarial attacks. In CVPR, 2018.

[145] Shang-Tse Chen, Cory Cornelius, Jason Martin, and Duen Horng (Polo) Chau.
Shapeshifter: Robust physical adversarial attack on faster R-CNN object
detector. In ECML-PKDD, pages 52–68, 2018.

[146] Jie Li, Rongrong Ji, Hong Liu, Xiaopeng Hong, Yue Gao, and Qi Tian. Universal
perturbation attack against image retrieval. In ICCV, 2019.

108

Bibliography

[147] Muhammad Latif Anjum, Zohaib Ali, and Wajahat Hussain. Adversarial
examples for handcrafted features. In BMVC, 2019.

[148] Jacob Varley, Chad DeChant, Adam Richardson, Avinash Nair, Joaquín Ruales,
and Peter Allen. Shape completion enabled robotic grasping. In Intelligent
Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on. IEEE,
2017.

[149] Yichao Zhou, Shichen Liu, and Yi Ma. Learning to detect 3d reflection sym-
metry for single-view reconstruction, 2020.

[150] Nicolai Häni, Selim Engin, Jun-Jee Chao, and Volkan Isler. Continuous object
representation networks: Novel view synthesis without target view supervi-
sion. In Proc. NeurIPS, 2020.

[151] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. Perspective
transformer nets: Learning single-view 3d object reconstruction without 3d
supervision. In Advances in Neural Information Processing Systems, 2016.

[152] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neu-
mann. Disn: Deep implicit surface network for high-quality single-view 3d
reconstruction. In Advances in Neural Information Processing Systems 32,
2019.

[153] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions
in feature space for 3d shape reconstruction and completion. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[154] Mathieu Salzmann and Pascal Fua. Deformable Surface 3D Reconstruction
from Monocular Images, volume 2. Morgan and Claypool, 09 2010.

[155] Albert Pumarola, Antonio Agudo, Lorenzo Porzi, Alberto Sanfeliu, Vincent
Lepetit, and Francesc Moreno-Noguer. Geometry-aware network for non-
rigid shape prediction from a single view. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[156] Vladislav Golyanik, Soshi Shimada, Kiran Varanasi, and Didier Stricker. Hdm-
net: Monocular non-rigid 3d reconstruction with learned deformation model.
In International Conference on Virtual Reality and Augmented Reality, 2018.

[157] Aggeliki Tsoli and Antonis. A. Argyros. Patch-based reconstruction of a tex-
tureless deformable 3d surface from a single rgb image. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) Workshops,
2019.

109

Bibliography

[158] Shaifali Parashar, Daniel Pizarro, and Adrien Bartoli. Local deformable 3d re-
construction with cartan’s connections. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), PP:1–1, 06 2019.

[159] F. Moreno-Noguer and P. Fua. Stochastic exploration of ambiguities for non-
rigid shape recovery. IEEE transactions on pattern analysis and machine
intelligence, 35(2):463–475, Jan 2013.

[160] Antonio Agudo, Francesc Moreno-Noguer, Begoña Calvo, and J. M. M. Mon-
tiel. Sequential non-rigid structure from motion using physical priors. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 38:979–994, 2016.

[161] Antonio Agudo and Francesc Moreno-Noguer. Combining local-physical
and global-statistical models for sequential deformable shape from motion.
International Journal of Computer Vision (IJCV), 122(2):371–387, 2017.

[162] A. Chhatkuli, D. Pizarro, T. Collins, and A. Bartoli. Inextensible non-rigid
shape-from-motion by second-order cone programming. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[163] F. Moreno-Noguer and J. M. Porta. Probabilistic simultaneous pose and
non-rigid shape recovery. In CVPR 2011, pages 1289–1296, 2011.

[164] Edgar Simo-Serra, C. Torras, and F. Moreno-Noguer. Dali: Deformation and
light invariant descriptor. International Journal of Computer Vision, 115:136–
154, 2015.

[165] A. Ramisa, G. Alenya, F. Moreno-Noguer, and C. Torras. A 3d descriptor
to detect task-oriented grasping points in clothing. Pattern Recognition,
60(C):936–948, 2016.

[166] Andreas Doumanoglou, Tae-Kyun Kim, Xiaowei Zhao, and Sotiris Malassiotis.
Active random forests: An application to autonomous unfolding of clothes.
In European Conference on Computer Vision (ECCV), 2014.

[167] Ariel Kapusta, Zackory Erickson, Henry M Clever, Wenhao Yu, C Karen Liu,
Greg Turk, and Charles C Kemp. Personalized collaborative plans for robot-
assisted dressing via optimization and simulation. Autonomous Robots,
43(8):2183–2207, 2019.

[168] Luz María Martínez and Javier Ruiz-del Solar. Recognition of grasp points for
clothes manipulation under unconstrained conditions. arXiv, pages arXiv–
1706, 2017.

110

Bibliography

[169] Christos Kampouris, Ioannis Mariolis, Georgia Peleka, Evangelos Skartados,
Andreas Kargakos, Dimitra Triantafyllou, and Sotiris Malassiotis. Multi-
sensorial and explorative recognition of garments and their material prop-
erties in unconstrained environment. In IEEE international conference on
robotics and automation (ICRA), 2016.

[170] Yinxiao Li, Yonghao Yue, Danfei Xu, Eitan Grinspun, and Peter K Allen. Folding
deformable objects using predictive simulation and trajectory optimization.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2015.

[171] Arnau Ramisa, Guillem Alenya, Francesc Moreno-Noguer, and Carme Tor-
ras. Using depth and appearance features for informed robot grasping of
highly wrinkled clothes. In IEEE International Conference on Robotics and
Automation (ICRA), 2012.

[172] Albert Pumarola, Stefan Popov, Francesc Moreno-Noguer, and Vittorio Ferrari.
C-flow: Conditional generative flow models for images and 3d point clouds.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020.

[173] Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen Zhou, and Shengping
Zhang. Pix2vox: Context-aware 3d reconstruction from single and multi-view
images. In ICCV, 2019.

[174] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-
Liang Yang. Hologan: Unsupervised learning of 3d representations from
natural images. In The IEEE International Conference on Computer Vision
(ICCV), Nov 2019.

[175] B. Yang, H. Wen, S. Wang, R. Clark, A. Markham, and N. Trigoni. 3d object
reconstruction from a single depth view with adversarial learning. In 2017
IEEE International Conference on Computer Vision Workshops (ICCVW), 2017.

[176] Erhan Gundogdu, Victor Constantin, Amrollah Seifoddini, Minh Dang, Math-
ieu Salzmann, and Pascal Fua. Garnet: A two-stream network for fast and
accurate 3d cloth draping. In IEEE International Conference on Computer
Vision (ICCV), 2019.

[177] Igor Santesteban, Miguel A. Otaduy, and Dan Casas. Learning-Based Anima-
tion of Clothing for Virtual Try-On. Computer Graphics Forum, 2019.

111

Bibliography

[178] Garvita Tiwari, Bharat Bhatnagar, Tony Tung, and Gerard Pons-Moll. Sizer:
A dataset and model for parsing 3d clothing and learning size sensitive 3d
clothing. In European Conference on Computer Vision (ECCV), 2020.

[179] Chaitanya Patel, Zhouyingcheng Liao, and Gerard Pons-Moll. Tailornet: Pre-
dicting clothing in 3d as a function of human pose, shape and garment style.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[180] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. CVPR, 2017.

[181] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and koray kavukcuoglu.
Spatial transformer networks. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 28, pages 2017–2025. Curran Associates, Inc., 2015.

[182] E. Riba, D. Mishkin, J. Shi, D. Ponsa, F. Moreno-Noguer, and G. Bradski. A
survey on kornia: an open source differentiable computer vision library for
pytorch, 2020.

[183] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image
translation with conditional adversarial networks, 2018.

[184] Edgar Riba, Dmytro Mishkin, Dani Ponsa, Rublee Ethan, and Gary Bradski.
Kornia: an open source differentiable computer vision library for pytorch. In
Winter Conference on Applications of Computer Vision, 2020.

[185] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 27, pages 2672–2680. Curran Associates, Inc., 2014.

[186] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. Improved training of wasserstein gans. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30, pages
5767–5777. Curran Associates, Inc., 2017.

[187] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017.

[188] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion, 2017.

112

Bibliography

[189] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with
restarts. CoRR, abs/1608.03983, 2016.

[190] Blender. https://www.blender.org. Accessed: 2020-10-16.

[191] Makehuman. http://www.makehumancommunity.org. Accessed: 2020-10-
16.

[192] Axel Barroso-Laguna, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk.
Key.net: Keypoint detection by handcrafted and learned cnn filters. In 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pages 5835–
5843, 2019.

[193] V. Balntas, E. Riba, D. Ponsa, and K. Mikolajczyk. Learning local feature
descriptors with triplets and shallow convolutional neural networks. BMVC,
2016.

[194] Edgar Riba, Jordi Sanchez-Riera, Yurun Tian, Fan Zhang, Albert Pumarola,
Yiannis Demiris, Krystian Mikolajczyk, and Francesc Moreno-Noguer. Novel
view synthesis of depth maps for cloth manipulation. In ICRA (under review),
2021.

[195] Edgar Riba, Jordi Sanchez-Riera, Albert Pumarola, Yurun Tian, Fan Zhang,
Yiannis Demiris, Krystian Mikolajczyk, and Francesc Moreno-Noguer.
Depthmap synthesis for deformable clothes. In CVPR (under review), 2021.

[196] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learn-
ing local feature descriptors with triplets and shallow convolutional neural
networks. In Proceedings of the British Machine Vision Conference (BMVC),
2016.

113

https://www.blender.org
http://www.makehumancommunity.org

	Abstract (English/Spanish/Catalan)
	List of figures
	List of tables
	Introduction
	Scene Reconstruction
	Camera Pose Estimation
	Depth Maps Estimation

	Thesis contributions
	First Published Appearances contributions

	Local Features Detection and Description
	Introduction
	Feature Detection
	Related Work in Feature Detection
	Key.Net Architecture
	Geometric Loss Function
	Experimental Evaluation
	Detection Results
	Conclusions

	Feature description
	Related Work in Feature Description
	Learning patch descriptors
	Experimental Evaluation
	Description Results
	Conclusion

	Differentiable Computer Vision
	Motivation
	Related work
	Classical computer vision libraries
	Deep learning and computer vision

	Kornia: Computer Vision for PyTorch
	Library structure

	Performance comparative
	Batched image processing

	Use cases
	End to end Low-dimensional embedding
	Image registration by Gradient Descent
	Multi-View Depth Estimation by Gradient Descent
	Targeted adversarial attack on SIFT-matching

	Conclusions

	View Synthesis Generation
	Motivation
	Related Work
	Our approach
	Projective Geometry Network
	Problem Formulation
	Network architecture
	Loss functions

	Experimental setup
	Experimental Results
	Dataset
	Incremental training
	Quantitative Evaluation
	Ablation study

	Conclusions

	Conclusions and Future work
	Conclusions
	Discussion and Futures Perspectives
	Scientific Articles
	International Conferences and Workshops
	Journals

	Contributed Code
	Scientific Dissemination
	Invited Talks and Tutorials
	In the Media
	Internships
	Community

	Bibliography

	Títol de la tesi: Geometric Computer Vision
Techniques for Scene
Reconstruction
	Nom autor/a: Edgar Riba Pi

