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Abstract 
 

 

Irrigation is the primary source of anthropogenic freshwater consumptions. The 

exploitation of water resources to improve the food production through irrigation 

practices is expected to further increase in the upcoming decades. In fact, the 

population growth and climate changes are expected to put even more pressure 

on the available water resources. Despite irrigation having direct implications on 

the rational management of water resources, as well as on food production, a 

detailed knowledge of where irrigation actually occurs worldwide and of how 

much water is actually used for irrigation practices is missing. In this research, 

approaches to detect and map areas where irrigation actually occurs, as well as 

methods to estimate the amounts of water applied for irrigation, have been 

developed; the proposed methodologies exploit remote sensing soil moisture. Two 

case studies have been considered in this research: the first one is located within 

the Ebro basin, in North-eastern Spain, while the other one is the Upper Tiber 

basin, in central Italy. Several remotely sensed soil moisture products at different 

spatial resolutions have been tested to evaluate the best performing ones in 

detecting irrigation signals and thus mapping irrigated areas. In addition, 

quantitative estimates of the water amounts applied for irrigation have been 

performed. 

The irrigation detection and mapping activity has been carried out over both case 

studies. In the Spanish one, the capability to detect irrigation of several remote 

sensing products has been initially assessed. The following soil moisture data sets 

have been evaluated: SMAP (Soil Moisture Active Passive) at 1 km and 9 km, 

SMOS (Soil Moisture and Ocean Salinity) at 1 km, Sentinel-1 at 1 km, and ASCAT 

(Advanced SCATterometer) at 12.5 km. The 1 km versions of SMAP and SMOS are 

obtained through downscaling with the DISPATCH (DISaggregation based on 

Physical And Theoretical scale CHange) method. The detectability of irrigation by 

the considered products has been assessed through indices derived from the 

temporal stability theory here used under this new perspective. Furthermore, 

maps of irrigated areas have been produced through the K-means clustering 

algorithm. Over the agricultural areas in the Upper Tiber basin, in Italy, a double-

scale analysis has been carried out. In the analysis at 1 km spatial resolution, the 
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same procedure adopted over the case study in the Ebro basin to evaluate the 

detectability of irrigation through remotely sensed soil moisture has been applied. 

The following products have been used: SMAP at 1 km, the Sentinel-1 at 1 km 

version delivered by the Copernicus Global Land Service, and a plot-scale-born 

Sentinel-1 version (produced by THEIA) aggregated at 1 km. Note that the first 

two products are the same used over the Spanish case study also. In this analysis, 

as well as in the one carried out over the study area in the Ebro basin, surface soil 

moisture simulated by the SURFEX-ISBA (SURface EXternalisée - Interaction Sol 

Biosphère Atmosphère) land surface model has been used as support. In the plot-

scale analysis, THEIA Sentinel-1 data aggregated at 100 m have been used to 

produce high-resolution maps of irrigated areas through the K-means clustering 

algorithm.  

The irrigation quantification activity has been carried out over the study area in 

the Ebro basin only; two experiments have been performed: one exploiting SMAP 

at 1 km data and another one exploiting SMOS at 1 km data. Both data sets have 

been used to force the SM2RAIN algorithm adapted to estimate irrigation. A more 

realistic modeling of the evapotranspiration term has been implemented into the 

algorithm to properly reproduce the crop evapotranspiration according to the 

FAO (Food and Agriculture Organization) model. 

The analyses carried out are aimed at filling the existing gaps in the irrigation-

related research field; the obtained results are useful to assess the impact of 

irrigation practices on the hydrological cycle. 

 

KEYWORDS: Irrigation Mapping, Irrigation Estimates, Remote Sensing, Soil 

Moisture, Land Surface Modeling. 



Sommario 

 

 

ix 

 

Sommario 
 

 

L’irrigazione è la principale fonte di consumo di acqua dolce. Nei prossimi decenni 

è atteso un ulteriore sfruttamento della risorsa idrica per incrementare la 

produzione di cibo attraverso le pratiche irrigue. Si stima infatti che la crescita 

della popolazione e i cambiamenti climatici possano esercitare una pressione 

ancora maggiore sulle risorse idriche disponibili. Nonostante le importanti 

implicazioni che ha l’irrigazione sulla gestione razionale dell’acqua e sulla 

produzione di cibo, non si ha una conoscenza dettagliata di dove l’irrigazione 

effettivamente avvenga nel mondo e di quanta acqua venga effettivamente 

utilizzata per le pratiche irrigue. In questa ricerca sono stati sviluppati approcci 

per rilevare e mappare le aree dove effettivamente si verifica l’irrigazione e per 

stimare i volumi irrigui; le metodologie proposte sfruttano l’umidità del suolo 

rilevata da satellite. In questa ricerca sono stati considerati due casi di studio: il 

primo si trova nel bacino del fiume Ebro, nel Nord-Est della Spagna, mentre l’altro 

è il bacino superiore del Tevere, nell’Italia centrale. Diversi prodotti di umidità del 

suolo da satellite, caratterizzati da diverse risoluzioni spaziali, sono stati valutati 

al fine di determinare i più performanti nel rilevare segnali di irrigazione e quindi 

mappare le aree irrigate. Inoltre, sono state eseguite stime quantitative dei volumi 

di acqua utilizzati per pratiche irrigue. 

L’attività di rilievo e mappatura dell’irrigazione è stata condotta su entrambe le 

aree pilota. In quella spagnola, è stata valutata la capacità di rilevare l’irrigazione 

di diversi prodotti di umidità del suolo. Sono stati considerati i seguenti set di dati: 

SMAP (Soil Moisture Active Passive) a 1 km e 9 km, SMOS (Soil Moisture and Ocean 

Salinity) a 1 km, Sentinel-1 a 1 km e ASCAT (Advanced SCATterometer) a 12.5 km. 

Le versioni a 1 km di SMAP e SMOS sono ottenute tramite disaggregazione 

eseguita con il metodo DISPATCH (DISaggregation based on Physical And Theoretical 

scale CHange). La capacità di rilevare l’irrigazione da parte dei prodotti considerati 

è stata valutata tramite indici derivanti dalla teoria della stabilità temporale e usati 

in questo studio sotto una nuova prospettiva. Inoltre, sono state prodotte delle 

mappe delle aree irrigate attraverso l’algoritmo di classificazione K-means. 

Un’analisi a doppia scala spaziale è stata condotta sulle aree agricole all’interno 

del bacino superiore del Tevere, in Italia. Nell’ambito dell’analisi alla risoluzione 
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spaziale di 1 km, è stata applicata la stessa procedura già adottata per il caso di 

studio nel bacino dell’Ebro per valutare la possibilità di rilevare l’irrigazione 

tramite umidità del suolo da satellite. Sono stati utilizzati i seguenti prodotti: 

SMAP a 1 km, la versione a 1 km di Sentinel-1 fornita da Copernicus Global Land 

Service e una versione di Sentinel-1 originariamente prodotta de THEIA alla scala 

di parcella e aggregata a 1 km. Va sottolineato che i primi due prodotti menzionati 

sono stati utilizzati anche sull’area pilota in Spagna. Sia in questa analisi che in 

quella condotta nel bacino dell’Ebro, dati di umidità del suolo superficiale 

modellati tramite il modello di superficie terrestre SURFEX-ISBA (SURface 

EXternalisée - Interaction Sol Biosphère Atmosphère) sono stati utilizzati come 

supporto. Nell’analisi alla scala di parcella, sono stati impiegati i dati di Sentinel-1 

prodotti da THEIA e aggregati a 100 m al fine di produrre mappe di aree irrigate 

ad alta risoluzione tramite l’algoritmo di classificazione K-means. 

L’attività di quantificazione dell’irrigazione è stata finalizzata solamente per l’area 

pilota nel bacino dell’Ebro; sono stati condotti due esperimenti: uno utilizzando i 

dati da SMAP a 1 km e un altro sfruttando i dati da SMOS a 1 km. Entrambi i set 

di dati sono stati utilizzati per forzare la versione dell’algoritmo SM2RAIN 

adattata per la stima dell’irrigazione. Una modellazione più realistica 

dell’evapotraspirazione è stata implementata nell’algoritmo al fine di riprodurre 

adeguatamente l’evapotraspirazione delle colture secondo il modello FAO (Food 

and Agriculture Organization).  

Le analisi condotte sono finalizzate a colmare le lacune esistenti nel campo di 

ricerca relativo all’irrigazione; i risultati ottenuti sono utili per valutare l’impatto 

delle pratiche irrigue sul ciclo idrologico. 

 

PAROLE CHIAVE: Mappatura dell’Irrigazione, Stima dell’Irrigazione, 

Telerilevamento, Umidità del Suolo, Modellazione della Superficie Terrestre. 



Resum 

 

 

xi 

 

Resum 
 

 

El reg és el principal consum antropogènic d'aigua dolça. Es preveu que 

l'explotació dels recursos hídrics per a millorar la producció d'aliments mitjançant 

pràctiques de reg seguirà augmentant en els propers decennis. De fet, es preveu 

que el creixement demogràfic i els canvis climàtics exerceixin una pressió encara 

més gran sobre els recursos hídrics disponibles. Tot i que el reg té conseqüències 

directes en la gestió racional dels recursos hídrics, així com en la producció 

d'aliments, cal un coneixement detallat dels llocs en què realment es rega a tot el 

món i de quanta aigua s'utilitza realment per les pràctiques de reg. En aquesta 

investigació s'han elaborat mètodes per detectar i cartografiar les zones on 

realment es rega, així com mètodes per estimar les quantitats d'aigua que 

s'apliquen per al reg; les metodologies proposades utilitzen dades d'humitat del 

sòl provinents de la teledetecció espacial. En aquesta investigació s'han adoptat 

dos casos d'estudi: el primer es troba a la conca de l'Ebre, al nord-est d'Espanya, 

mentre que l'altre és la conca de l'Alt Tíber, a Itàlia central. S'han assajat diversos 

productes d'humitat del sòl obtinguts per teledetecció amb diferents resolucions 

espacials per avaluar els que millor funcionen en la detecció de reg i, per tant, en 

la cartografia de les zones de regadiu. A més, s'han realitzat estimacions 

quantitatives de les quantitats d'aigua aplicades per al reg. 

L'activitat de detecció i cartografia del reg s'ha dut a terme en els dos casos 

d'estudi. En l'espanyol s'ha avaluat inicialment la capacitat de detecció de reg de 

diversos productes de teledetecció. S'han avaluat els següents jocs de dades 

d'humitat del sòl: SMAP (Soil Moisture Active Passive) a 1 km i 9 km, SMOS (Soil 

Moisture and Ocean Salinity) a 1 km, Sentinel-1 a 1 km, i ASCAT (Advanced 

SCATterometer) a 12,5 km. Les versions d'1 km de SMAP i SMOS s'obtenen 

mitjançant la desagregació amb el mètode DISPATCH (DISaggregation based on 

Physical And Theoretical scale CHange). La detectabilitat del reg pels productes 

considerats s'ha avaluat mitjançant índexs derivats de la teoria d’estabilitat 

temporal aquí utilitzada sota aquesta nova perspectiva. A més, s'han elaborat 

mapes de les zones irrigades produïts a través de l'algoritme d'agrupament K-

mitjanes. A les zones agrícoles de la conca de l'Alt Tíber, a Itàlia, s'ha realitzat una 

anàlisi a doble escala. En l'anàlisi a 1 km de resolució espacial s'ha aplicat el mateix 
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procediment adoptat en el cas d'estudi de la conca de l'Ebre per avaluar la 

detectabilitat del regadiu mitjançant la humitat del sòl provinent de la teledetecció. 

S'han utilitzat els següents productes: SMAP a 1 km, la versió Sentinel-1 a 1 km 

publicada pel Copernicus Global Land Service, i una versió Sentinel-1 a escala de la 

parcel·la (produïda per THEIA) agregada a 1 km. Cal observar que els dos primers 

productes són els mateixos que també s’han utilitzat en el cas d'estudi espanyol. 

En aquesta anàlisi, així com en la realitzada sobre l'àrea d'estudi a la conca de 

l'Ebre, s'ha utilitzat com a suport el model de superfície continental SURFEX-ISBA 

(Surface EXternalisée - Interaction Sol Biosphère Atmosphère). En l'anàlisi a escala de 

parcel·la, les dades de THEIA Sentinel-1 agregades a 100 m s'han utilitzat per 

produir mapes d'alta resolució de les zones de regadiu mitjançant l'algoritme 

d'agrupament K-mitjanes. 

L'activitat de quantificació del reg s'ha dut a terme a la zona d'estudi a la conca de 

l'Ebre únicament; s'han realitzat dos experiments: un utilitzant SMAP amb dades 

a 1 km de resolució i un altre utilitzant SMOS amb dades a 1 km. Tots dos conjunts 

de dades s'han utilitzat per forçar l'algoritme SM2RAIN adaptat a l'estimació del 

reg. En l'algoritme s'ha aplicat una modelització més realista del terme 

d’evapotranspiració per reproduir adequadament l'evapotranspiració dels cultius 

segons el model de la FAO (Organització de les Nacions Unides per a l'Agricultura 

i l'Alimentació). 

Les anàlisis realitzades tenen per objecte satisfer les llacunes existents en el camp 

de la recerca relacionada amb el reg; els resultats obtinguts són útils per avaluar 

l'impacte de les pràctiques de reg en el cicle hidrològic. 

 

PARAULES CLAU: Cartografia de Reg, Estimacions de Reg, Teledetecció, 

Humitat del sòl, Modelització de la Superfície Continental. 
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Resumen 
 

 

El riego es el principal consumo antropogénico de agua dulce. Se prevé que la 

explotación de los recursos hídricos para mejorar la producción de alimentos 

mediante prácticas de riego seguirá aumentando en los próximos decenios. De 

hecho, se prevé que el crecimiento demográfico y los cambios climáticos ejerzan 

una presión aún mayor sobre los recursos hídricos disponibles. A pesar de que el 

riego tiene consecuencias directas en la gestión racional de los recursos hídricos, 

así como en la producción de alimentos, falta un conocimiento detallado de los 

lugares en los que realmente se riega en todo el mundo y de cuánta agua se utiliza 

realmente para las prácticas de riego. En esta investigación se han elaborado 

métodos para detectar y cartografiar las zonas donde realmente se riega, así como 

métodos para estimar las cantidades de agua que se aplican para el riego; las 

metodologías propuestas utilizan datos de humedad del suelo provenientes de la 

teledetección espacial. En esta investigación se han adoptado dos casos de estudio: 

el primero se sitúa en la cuenca del Ebro, en el noreste de España, mientras que el 

otro es la cuenca del Alto Tíber, en Italia central. Se han ensayado varios productos 

de humedad del suelo obtenidos por teledetección con diferentes resoluciones 

espaciales para evaluar los que mejor funcionan en la detección del riego y, por lo 

tanto, en la cartografía de las zonas de regadío. Además, se han realizado 

estimaciones cuantitativas de las cantidades de agua aplicadas para el riego. 

La actividad de detección y cartografía del riego se ha llevado a cabo en ambos 

casos de estudio. En el español se ha evaluado inicialmente la capacidad de 

detección de riego de varios productos de teledetección. Se han evaluado los 

siguientes conjuntos de datos de humedad del suelo: SMAP (Soil Moisture Active 

Passive) a 1 km y 9 km, SMOS (Soil Moisture and Ocean Salinity) a 1 km, Sentinel-1 

a 1 km, y ASCAT (Advanced SCATterometer) a 12,5 km. Las versiones de 1 km de 

SMAP y SMOS se obtienen mediante la desagregación con el método DISPATCH 

(DISaggregation based on Physical And Theoretical scale Change). La detectabilidad del 

riego por los productos considerados se ha evaluado mediante índices derivados 

de la teoría de la estabilidad temporal aquí utilizada bajo esta nueva perspectiva. 

Además, se han elaborado mapas de las zonas irrigadas producidos a través del 

algoritmo de agrupamiento K-medias. En las zonas agrícolas de la cuenca del Alto 
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Tíber, en Italia, se ha realizado un análisis a doble escala. En el análisis a 1 km de 

resolución espacial, se ha aplicado el mismo procedimiento adoptado en el caso de 

estudio de la cuenca del Ebro para evaluar la detectabilidad de la irrigación 

mediante la humedad del suelo por teledetección. Se han utilizado los siguientes 

productos: SMAP a 1 km, la versión Sentinel-1 a 1 km entregada por el Copernicus 

Global Land Service, y una versión Sentinel-1 a escala de parcela (producida por 

THEIA) agregada a 1 km. Obsérvese que los dos primeros productos son los 

mismos que también se utilizaron en el caso de estudio español. En este análisis, 

así como en el realizado sobre el área de estudio en la cuenca del Ebro, se ha 

utilizado como soporte el modelo de superficie terrestre SURFEX-ISBA (SURface 

EXternalisée - Interaction Sol Biosphère Atmosphère). En el análisis a escala de parcela, 

los datos del THEIA Sentinel-1 agregados a 100 m se han utilizado para producir 

mapas de alta resolución de las zonas de regadío mediante el algoritmo de 

agrupamiento K-medias.  

La actividad de cuantificación del riego se ha llevado a cabo en la zona de estudio 

de la cuenca del Ebro únicamente; se han realizado dos experimentos: uno 

explotando SMAP con datos a 1 km de resolución y otro explotando SMOS con 

datos a 1 km. Ambos conjuntos de datos se han utilizado para forzar el algoritmo 

SM2RAIN adaptado a la estimación del riego. En el algoritmo se ha aplicado una 

modelización más realista del término de evapotranspiración para reproducir 

adecuadamente la evapotranspiración de los cultivos según el modelo de la FAO 

(Organización de las Naciones Unidas para la Agricultura y la Alimentación). 

Los análisis realizados tienen por objeto colmar las lagunas existentes en el campo 

de la investigación relacionada con el riego; los resultados obtenidos son útiles 

para evaluar el impacto de las prácticas de riego en el ciclo hidrológico. 

 

PALABRAS CLAVE: Cartografía de Riego, Estimaciones de Riego, Teledetección, 

Humedad del Suelo, Modelización de la Superficie Terrestre.  
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Chapter 1 
 

Introduction 
 

 

1.1 Anthropogenic Pressure on Water Resources: Why Focus on 

Irrigation? 

The hydrological cycle consists of all the transformations and status changes 

undergone by water on Earth and regulated by the geophysical processes 

determining its circulation on the Earth’s surface and its exchanges with the 

atmosphere. All the forms under which water is present on Earth (e.g., rivers, 

lakes, oceans, glaciers) are also components of the cycle. The principal processes 

constituting the hydrological cycle are the precipitation, the infiltration, the 

evapotranspiration, and the runoff generation. A well-established and widely 

used representation of the cycle has been proposed by the United States Geological 

Survey (USGS); it is provided in Figure 1.1. The water cycle and the carbon cycle 

represent the two main biogeochemical cycles occurring on Earth and humans 

strongly interact with both them. 

 

Figure 1.1.  The illustration of the natural hydrological cycle proposed by the 

USGS. 



1. Introduction 

 

 

15 

 

Human interventions on the hydrological cycle can be summarized in three main 

categories, which are not independent on each other. The first one is represented 

by water withdrawals for several purposes, known as blue water uses. Humans 

are also responsible for soil water consumption through agricultural practices, e.g. 

irrigation (green water uses). Finally, water is also used for sanitary and waste 

disposal purposes, known as grey water uses. All the processes involved in the 

water cycle are directly or indirectly (or both) influenced by human activities. In 

addition, the natural distribution and circulation of water on the Earth’s surface 

are also altered by humans, which stock water into reservoirs for several purposes 

and modify the natural paths of water courses. Human interventions on the 

natural hydrological cycle have reached such a magnitude as they can no more be 

neglected in the global economy of the hydrological cycle. Abbot et al. (2019) 

suggest that even the way the hydrological cycle is typically represented (e.g., the 

one proposed by the USGS) needs to be updated by involving anthropic activities 

also (see Figure 1.2). 

 

Figure 1.2.  The water cycle representation proposed by Abbot et al. (201 9). 

The major water resources, expressed in 10 3 km3, are represented in panel a),  

while panel b) provides the water fluxes in 10 3 km3/year.  
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The entity of human interventions on the hydrological cycle and more generally 

the influence of anthropic activities on each natural system existing on Earth has 

led many scientists to classify the period we are living now into a new geological 

era, the Anthropocene (Steffen et al., 2011; Montanari et al., 2013; Savenije et al., 

2014).  Pokhrel et al. (2016) claim that nowadays human impacts on the natural 

environment rival global geophysical processes. From a hydrological point of 

view, of interest for this research, irrigation is the anthropogenic activity 

introducing the largest imbalances in the natural water cycle from the local to the 

global scale (Wada et al., 2014; Alter et al., 2015). Despite an increase of cropland 

by only 12%, the agricultural production has been doubled thanks to irrigation 

during the past decades (Rosegrant et al., 2012; Gleick, 2003). In fact, although only 

17% of the total croplands are irrigated, they account for 40% of the total food 

production worldwide. These rates are expected to further increase in the 

upcoming decades (Abdullah et al., 2006; Hunter et al., 2017; Ferguson et al., 2018). 

The ever-growing global population, as well as the ever-increasing living 

standards, are expected to further intensify the water depletion to boost the 

agricultural production, with stronger consequences over areas already facing 

water stress conditions and limited water availability (Vörösmarty et al., 2000; 

Rockström et al., 2012; Kummu et al., 2016). Hence, a massive extension of irrigated 

lands over arid and semi-arid areas, as well as a significant intensification of 

irrigated agriculture, is expected in the upcoming years to satisfy the foreseen 

growing demand (Ozdogan et al., 2010). According to the available estimates, over 

the 70% of water withdrawn from lakes, rivers, and groundwater resources is 

destined to irrigation practices (Cai and Rosegrant, 2002; FAO, 2006; Foley et al., 

2011), thus making irrigation the main consumer of fresh water resources. The 

major rates of irrigation water consumptions are attributable to Europe, Northern 

America, Northern India, and Eastern China (Zhou et al., 2016). Irrigation practices 

affect water availability, food production, and climate, since heavily irrigated areas 

experience evaporative cooling phenomena (Moore and Rojstaczer, 2002; 

Kueppers et al., 2007). Despite this, a detailed information on the actual extents of 

irrigated lands and on the amounts of water used for irrigation practices is 

generally lacking worldwide. Irrigation information is essential for research 

purposes also; in fact, irrigation often represents the missing variable to 

adequately solve the hydrological balance over agricultural areas and/or 

anthropized basins. The development of methods and algorithms to retrieve 

irrigation-related information through remote sensing can bring potential benefits 
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that are essential for many activities: 1) the assessment of food production through 

irrigation practices (Vörösmarty et al., 2000), 2) the modeling of global scale water 

demand for irrigation (Döll and Siebert, 2002), and 3) the quantification of 

irrigation impacts on river discharge (Haddeland et al., 2007), on the climate (Alter 

et al., 2015), and on groundwater resources (Breña-Naranjo et al., 2014; Hu et al., 

2016). Among the existing data sets on the spatial extent of irrigation practices, the 

Global Map of Irrigated Area (GMIA) developed by the Food and Agriculture 

Organization (FAO) of the United Nations (Siebert et al., 2015) is noteworthy. The 

data set contains the area equipped for irrigation (AEI) expressed as the percentage 

of each cell area and it is provided at a global scale on a ~10 km at the Equator 

spatial grid (5 arcmin resolution). Figure 1.3 shows the GMIA version 5.0 (Siebert 

et al., 2013).  

 

Figure 1.3.  Global map of areas equipped for irrigation derived from the 

GMIA data set and expressed as the percentage of each cell area (derived from 

Siebert et al., 2013).  

The map is based on national and sub-national surveys; hence, the data on the area 

equipped for irrigation does not represent the actually irrigated area. However, 

the data set is very useful to have an idea on the spatial distribution of irrigation 

infrastructures worldwide and for modeling purposes. The non-reproduction of 

the actually occurring irrigation is a common issue of the statistical-survey-based 

data sets, which, in addition, are often referred to specific years. The information 

provided in such data sets usually does not represent the spatial-temporal 

dynamics of irrigated areas and are often affected by not-negligible inconsistencies 

(Deines et al., 2017). The detailed assessment of water consumptions for irrigation 
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practices is even less explored than the irrigation mapping. Several obstacles, 

mainly the installation of monitoring systems and economic and legal limitations 

(e.g., illegitimate consumptions), make the information on the amounts of water 

actually applied for irrigation very difficult to be obtained and, at best, it is only 

available at a local scale and for short periods. Many studies adopt approaches 

aimed at modeling irrigation water requirements (Döll and Siebert, 2002; Wada et 

al., 2014). The outputs from these models represent a theoretical irrigation that 

generally does not reproduce the actually occurring one, as often crops are 

irrigated more or less than necessary, since the quantity of supplied water basically 

depends on the single farmers. As thoroughly explained in Chapter 2, remote 

sensing techniques have opened up new perspectives to spot where irrigation 

practices actually occur; in fact, observations of hydrological variables 

representing a proxy of irrigation (e.g., soil moisture) can be used to map irrigated 

areas and to retrieve the amounts of water actually applied for irrigation. 

1.2 Technical Details on Irrigation Practices 

The main aim of irrigation practices is to improve the productivity of an 

agricultural soil, thus optimizing it from an economic point of view. In general, a 

suitable soil for agricultural practices is characterized by an intermediate soil 

texture, fine enough to hold water into the soil’s pores through capillarity actions 

but still allowing the motion of water, and not too many coarse fragments, that 

facilitate a rapid loss of water because of deep percolation. According to the soils’ 

classification proposed by the USDA (United States Department of Agriculture) 

and provided in Figure 1.4, the sandy loam is the optimal soil texture class for 

agricultural purposes. Another important feature of an agricultural soil is its 

depth, which should be compatible with plants’ roots. Finally, excesses of salts and 

harmful substances should be avoided. 

The correct planning of irrigation practices requires the knowledge of two 

fundamental soil moisture values that can be derived from the soil retention curve: 

the field capacity and the wilting point (Mualem, 1986; Feki et al., 2018). When the 

soil moisture is higher than the field capacity, part of the water supplied to the 

crop is lost for deep percolation, as it exceeds the maximum amount absorbable by 

the plant. Conversely, soil moisture values lower than the wilting point lead the 

plant to stress conditions. An optimal irrigation practice begins before the wilting 

point, which should not be reached, and brings the soil moisture value close to the 
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field capacity; the optimal amount of water to be supplied to the crops can be 

determined through the water balance. 

 

Figure 1.4.  Triangle for determining the soil texture given the sand, silt, and 

clay fractions proposed by the USDA.  

The design of an irrigation infrastructure requires the knowledge of the timing and 

of the water amount to be delivered during each event; in fact, after an irrigation 

event, the soil wetness drops down according to a drying law that can be 

approximated through an exponential law. As already explained, irrigation should 

occur when the soil moisture is close to the wilting point thus bringing it to an 

optimal condition. An essential parameter to be taken into account is the global 

efficiency of the system, which is determined by the product between the irrigation 

efficiency and the transport efficiency. The first one is determined by the irrigation 

technique adopted, while the second one is linked to the delivery of water from 

the withdrawal point to the final destination. 

 A typical irrigation system consists of a source of supply (e.g., rivers, lakes, 

reservoirs, groundwater or nonconventional sources such as desalinization plants) 

with the necessary infrastructure (e.g., wells or pumps). The network is completed 

by the abduction system, the distribution system, the irrigation infrastructure, and 

the drainage network. The abduction and distribution are realized through 

pressurized pipes or free surface canals. The irrigation infrastructure depends on 

the particular irrigation technique adopted; the most widespread ones are flood 

irrigation, irrigation by submersion, irrigation by infiltration, sprinkler irrigation, 

and drip irrigation. Figure 1.5 provides an overview on the abovementioned 

techniques. In the flood irrigation, a tiny layer of water flows upon the soil. In the 

irrigation by submersion, not-negligible amounts of water stagnate on the crop; 
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this technique is typically adopted for rice fields. Over fields irrigated by 

infiltration, only a portion of the parcel is directly wetted, e.g., through furrows. 

The crops’ roots are fed by the water infiltrated into the soil. Underground pipes 

are also used for this technique. In sprinkler irrigation, the water reaches the soil 

as artificial rainfall. Finally, in drip irrigation systems, water is delivered close to 

the crop’s basis with low-entity but frequent irrigation events. 

The choice of the irrigation method depends on several factors: the kind of crop, 

the water availability, the topographic and hydrological soil features, the exposure 

to the wind, and economical factors. Flood irrigation is particularly suitable for 

intermediate soil textures and for slopes allowing the water flow; the irrigation by 

submersion requires soils with a low permeability. In the irrigation by infiltration, 

the soil texture plays a fundamental role, as it influences the distribution of water 

into the soil. In sprinkler irrigation, the wind is an important factor to be taken into 

account, as well as the sprinkler’s operating pressure. Drip irrigation is particularly 

suitable for tree crops, as the supplied water is localized at the basis of the plant. 

Finally, the drainage network is useful to move away the exceeding water, thus 

avoiding dangerous stagnations for the crops. The drainage systems are mainly 

realized through underground pipes conveying water into appropriate furrows. 

The depth at which such pipes are installed is of paramount importance for the 

system, as it influences the groundwater level. Furthermore, the design depth 

must ensure that the pipes are not interested by operations with agricultural 

machinery and must allow the delivery of the exceeding water to the disposal 

furrows. 
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Figure 1.5.  Overview on the irrigation techniques: a), b), c) flood irrigation, 

d) irrigation by submersion, e) Sentinel -2 image (August 14 t h, 2019) of the 

delta of the Ebro river in Spain where several rice fields irrigated by 

submersion can be observed, f) sprinkler irrigation, g) sprinkler irrigation 

through pivots, whose typical circles produced are shown in the h) Sentinel -

2 image (January 16 t h,  2020) captured on the Wadi ad-Dawasir desert, in Saudi 

Arabia, i) irrigation by infiltration occurring on a tobacco field located in the 

Italian study area of this research, which is described in Chapter 3, l) 

irrigation by infiltration through underground pipes, and m) drip irrigation 

on fruit trees.  

1.3 Objectives and Structure of the Thesis 

The main objective of this research is to develop methods exploiting remotely 

sensed data to address the most common research questions on the irrigation topic 

from a hydrological perspective, namely where and when irrigation practices 

actually occur as well as how much water is used for irrigation purposes. Hence, 

the development of approaches and algorithms to retrieve irrigation-related 

information through remotely sensed observation is the main activity described in 

this thesis. The final aim is supporting the assessment of the impacts due to the 

primary water-affecting anthropogenic activity on the natural hydrological cycle. 

In order to do this, methodologies to map actually irrigated areas and to estimate 

irrigation water amounts have been developed. The proposed approaches are 

mainly based on remotely sensed soil moisture data.  

The manuscript is structured in the following chapters. Chapter 2 provides the 

state of the art on the irrigation detection, mapping, and quantification topics. An 
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overview on the relevant scientific literature selected on the basis of the affinity 

with the methodologies proposed in this thesis is provided. Chapter 3 provides a 

detailed description of the case studies, namely the Ebro basin, in Spain, and the 

Upper Tiber basin, in Italy. Chapter 4 describes the materials and the 

methodologies adopted in this research to detect the actual extents of irrigation 

practices and to estimate the water consumptions for this purpose. Chapter 5 

presents the results of the irrigation detection and mapping activity, while the 

results obtained in the irrigation quantification activity are provided in Chapter 6. 

The future perspectives of this research are discussed in Chapter 7. Finally, the 

conclusions of this work are summarized in Chapter 8.   
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Chapter 2 
 

Remote Sensing Techniques for Mapping and 

Estimating Irrigation 
 

 

The spread of spatial remote sensing technology has opened up perspectives of 

paramount importance in monitoring irrigated lands and irrigation practices 

worldwide. Remote sensing products have proven to be useful tools to identify 

where irrigation occurs; furthermore, studies describing approaches to retrieve the 

amounts of water applied for irrigation are recently increasing. 

There are multiple benefits in exploiting satellite-derived data to monitor irrigated 

lands. First and foremost, this technology provides a global scale view, thus 

ensuring the observation of irrigation practices under different climatic conditions. 

Remote sensing observations can be exploited to assess the vegetation status and 

its changes along time. Furthermore, remotely sensed data are less time and money 

costly than surveys requiring aerial photogrammetry over large areas (Ozdogan et 

al., 2010). Among all the advantages of this technology, there is a predominant one. 

Remote sensing allows to map the exact location of irrigation fields, i.e., the exact 

location where irrigation occurs. This aspect has important implications on the 

rational management of water resources and it often represents a step forward in 

understanding the actual distribution of freshwater over anthropized areas, where 

the available data on irrigation and on its extent are usually limited to statistical 

inventories often not up to date. In addition, remote sensing technology is useful 

to overcome the limitations due to inconsistencies affecting the available databases 

based on legal irrigation inventories. However, remote sensing has also 

limitations. The main one is the spatial resolution of the retrieved data, often too 

coarse to define irrigated areas or to adequately solve the signal from adjacent 

pixels over highly-mixed areas. In addition, some irrigation methods (i.e. drip 

irrigation) are often more difficult to detect than others. Finally, when using optical 

data, the cloud coverage represents a limit to the data availability. 
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In the following, an overview of the relevant scientific literature on the detection 

(and mapping) and on the quantification of irrigation through microwave and 

optical remotely sensed data, selected by considering the affinity of the proposed 

methodologies with those presented in this thesis, is provided. In particular, the 

selected literature about the detection and mapping of irrigation is presented in 

Section 2.1, while selected studies on the irrigation estimates topic are discussed in 

Section 2.2. 

2.1 Detecting and Mapping Irrigation 

Several studies have investigated the capability of remotely sensed products to 

detect irrigated areas by exploiting different kinds of data sets. The selected 

relevant works in this field can be grouped by the type of data used: optical data 

only, optical data with land surface modeling, microwave data only, microwave 

data with optical data, and microwave data with land surface modeling (see Figure 

2.1). 

 

Figure 2.1.  Selected relevant studies in the irrigation mapping framework 

divided according to the kind of remote sensing technique employed.  

Ozdogan and Gutman (2008) proposed a methodology to map irrigated areas by 

exploiting MODIS (MODerate resolution Imaging Spectroradiometer) data and 

applied it over the continental United States. The authors developed a four-steps 

algorithm requiring MODIS and ancillary data as input to produce a binary map 

of irrigated areas (irrigated/not irrigated) and to assess the percentage of the 

irrigated area within pixels classified as irrigated. Satisfactory results were 

obtained, especially under dryland irrigation conditions. Peña-Arancibia et al. 

(2014) implemented a Random Forest classification model to identify irrigated 

areas within the Murray-Darling basin (Australia), which is known to be highly 

influenced by human activities. The data used were remotely sensed indices of the 

vegetation phenology and the actual evapotranspiration, along with gauge-based 

precipitation. The surplus of evapotranspiration with respect to the precipitation 



2. Remote Sensing Techniques for Mapping and Estimating Irrigation 

 

 

25 

 

and the vegetation phenology were found to be the best irrigation predictors. 

Ambika et al. (2016) exploited NDVI (Normalized Difference Vegetation Index) 

data retrieved by the MODIS sensor to produce high-resolution (250 m) maps of 

irrigated areas over the agricultural zones of India for the period 2000-2015, 

obtaining high accuracies (R2 = 0.95). Deines et al. (2017) produced annual 

irrigation maps at high resolution (30 m) over the Republican River Basin in the 

United States during the period 1999-2016 by working with Landsat data on the 

Google Earth Engine (GEE) platform (Gorelick et al., 2017). A similar approach was 

proposed by Deines et al. (2019); in this study, Landsat data and the GEE 

computing platform were used to produce maps at 30 m resolution of annual 

irrigation over the High Plains Aquifer in the United States and covering the 

period 1984-2017. 

When the aim is to detect the irrigation signal, land surface modeling is often 

coupled with Earth observation derived data. In general, the philosophy behind 

this approach is the search for differences between the behaviour of observed and 

modeled hydrological (or vegetation status related) variables. Generally, modeled 

data sets do not take into account of irrigation. Models’ outputs represent the 

responses of the natural hydrological cycle, without any kind of human alteration; 

hence, if a remotely sensed data set contains the irrigation information, it can be 

detected by difference with modeled data sets. Romaguera et al. (2014) showed the 

potential in detecting irrigation by considering the differences between remotely 

sensed and modeled actual evapotranspiration over two pilot areas: the province 

of Sichuan in China and the Horn of Africa. Although the main aim of the study 

was to estimate the evapotranspiration rates due to irrigation practices, interesting 

results in detecting irrigated croplands were also obtained. In fact, high remotely 

sensed evapotranspiration rates were observed over an area in the Southwest of 

China, which is heavily irrigated according to the Global Irrigated Area Map 

(GIAM) proposed by Thenkabail et al. (2009). Hain et al. (2015) compared ALEXI 

(Atmosphere-Land EXchange Inverse) latent heat fluxes retrievals with energy 

fluxes modeled by the Noah land surface model over the CONUS (CONtiguous 

United States), finding good matches between irrigated lands and areas where 

non-precipitation water inputs (among others, the irrigation) affect the exchange 

of heat fluxes. 

The use of microwave data overcomes the limitations due to the cloud coverage, a 

typical optical data issue. Lawston et al. (2017) highlighted the potential of the 

enhanced 9 km version of SMAP (Soil Moisture Active Passive) to detect irrigation 
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over three semiarid areas in the Western United States. The track of irrigation 

practices in the remotely sensed soil moisture data was more clear where flood 

irrigation mainly occurs with respect to other irrigation techniques (i.e., sprinkler). 

Gao et al. (2018) analyzed several metrics calculated from Sentinel-1 SAR 

(Synthetic Aperture Radar) time series to map irrigated fields over the Urgell, an 

agricultural area located in Catalonia, Spain. In this study, a classification of 

irrigated crops, not irrigated fields and irrigated trees was performed trough the 

Support Vector Machine (SVM). The resulting maps were validated by 

comparisons with ground truth data from the SIGPAC (the Geographic 

Information System for Agricultural Parcels) data set, obtaining an overall 

accuracy of 81.08%. The main limitation of the method was the correct 

representation of fruit trees. Another approach for irrigation mapping through 

satellite data is merging microwave and optical data. Bousbih et al. (2018) used 

optical data retrieved form Sentinel-2 and Sentinel-1 SAR observations to produce 

annual maps of irrigated and rainfed areas over a semi-arid region in Tunisia. The 

validation with pilot fields showed an accuracy up to 77%. Bazzi et al. (2019) 

exploited both microwave (Sentinel-1 SAR time series) and optical (Sentinel-2 

retrieved NDVI time series) data to map irrigated areas in Catalonia. In order to 

disentangle the rainfall from the irrigation practices, Sentinel-1 signals at plot scale 

were compared with Sentinel-1 signals aggregated at 10 km. Different 

classification models were applied to SAR and optical data, obtaining overall 

accuracies of ~90%. A similar approach was proposed in Bazzi et al. (2020). In this 

study, Sentinel-1 SAR data and Sentinel-2 NDVI were exploited to detect irrigation 

at a plot scale over Catalonia and two additional pilot sites in France. 

As in the case of optical data, microwave remote sensing data also has been used 

along with land surface models’ outputs with the aim of detecting and mapping 

the irrigation extent. Kumar et al. (2015) evaluated the capability to detect 

irrigation over the CONUS area through remote sensing soil moisture products. 

The data sets used were: ASCAT (Advanced SCATterometer), ASMR-E 

(Advanced Microwave Scanning Radiometer-Earth Observing System), ESA CCI 

SM (European Space Agency Climate Change Initiative Soil Moisture), Windsat, 

and SMOS (Soil Moisture and Ocean Salinity). The detection of irrigated areas was 

performed through comparisons between remotely sensed and modeled soil 

moisture from the Noah land surface model, in which irrigation practices are not 

incorporated. Some potential in detecting irrigation signals in terms of positive 

biases between satellite and modeled soil moisture was obtained over the plains 
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of Nebraska with ASCAT data. Escorihuela and Quintana-Seguí (2016) performed 

a comparison between microwave remote sensing soil moisture products and soil 

moisture simulated with the SURFEX-ISBA (SURface EXternalisée – Interaction Sol 

Biosphère Atmosphère) land surface model over the Catalonia, in Spain. The 

remotely sensed data sets used were: ASCAT, ASMR-E, SMOS, and a SMOS 

version at 1 km obtained by downscaling the coarse resolution product through 

the DISPATCH (DISaggregation based on Physical And Theoretical scale CHange) 

algorithm (Merlin et al., 2013). Low correlations with the model’s output obtained 

over the Urgell area, heavily irrigated, compared with higher correlations found 

over areas with a similar flat topography showed the potential in detecting 

irrigation of the 1 km version of SMOS. Qiu et al. (2016) analyzed the trends of soil 

moisture over China from three different sources: the ESA CCI data set, the ERA-

Interim/Land (European ReAnalysis-Interim/Land) reanalysis, and in situ 

observations; the authors found discordances between remote sensing soil 

moisture and precipitation trends over irrigated areas, interpreting this issue as a 

signal of the irrigation practices. Zhang et al. (2018) evaluated the potential of 

microwave remote sensing products in detecting irrigation patterns in China. In 

this work, a passive microwave product (AMSR-E and its successor AMSR-2), an 

active microwave product (ASCAT), and a merged product (the ESA CCI data set) 

were compared with soil moisture from ERA-Interim to assess the detectability of 

irrigation in terms of differences in probability distribution functions between 

satellite and modeled soil moisture. The results showed some potential of the 

evaluated products, especially ASCAT, in detecting irrigation over arid areas in 

the North of China. 

Despite the significant increase in the number of studies in this topic during the 

last decade, an assessment of the suitability of microwave remote sensing soil 

moisture products for detecting and mapping irrigation over areas where high 

resolutions (1 km or less) are needed still lacks. This task represents one of the 

targets of the presented research. 

2.2 Irrigation Quantification 

Along with the detection of the irrigation extent and of the timing of irrigation 

practices, the estimate of the amounts of water applied for irrigation purposes is 

the third fundamental goal of the irrigation-related research field. 
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Remotely sensed observations of fluxes and of changes in stocks involved in the 

hydrological cycle can be used to estimate the amounts of irrigation water. Under 

this perspective, soil moisture and evapotranspiration have proven to be key 

variables to retrieve information on the applied irrigation amounts.  

Several studies exploiting satellite soil moisture observations to estimate irrigation 

used the adapted version of the SM2RAIN algorithm for the quantification of 

irrigation (e.g., Brocca et al., 2018; Jalilvand et al., 2019). The algorithm was 

originally developed to retrieve rainfall from soil moisture observations through a 

bottom-up approach (Brocca et al., 2014) and later modified to estimate irrigation. 

For further details on this topic, please refer to Chapter 4. 

The potential of the algorithm in retrieving water amounts applied for irrigation 

by exploiting coarse resolution soil moisture products was shown in Brocca et al. 

(2018). The adapted SM2RAIN algorithm was applied over nine pilot sites in 

Africa, Australia, Europe, and USA with remotely sensed soil moisture 

observations retrieved by SMAP, SMOS, ASCAT, and AMSR-2 as input. The study 

provided a qualitative assessment on the possibility to estimate irrigation amounts 

with the SM2RAIN approach, but the need of satellite products with low 

uncertainties over areas experiencing long periods of low rainfall rates was 

pointed out; furthermore, issues related to the spatial resolution suggested the 

need of high-resolution products (1 km or less). Jalilvand et al. (2019) applied the 

SM2RAIN approach to quantify irrigation amounts during the period 2012-2015 

over the Miandoab plain, in Iran. Soil moisture from the AMSR-2 data set along 

with rainfall and evapotranspiration data from different sources were used as 

model input. In the irrigated pixels, good averaged performances (R = 0.86 and 

RMSE = 12.895 mm/month) in reproducing benchmark irrigation data were 

obtained. However, other approaches exploiting remotely sensed soil moisture to 

retrieve irrigation water amounts exist. Zaussinger et al. (2019) developed a 

methodology to estimate the irrigation water use (IWU) over the CONUS area by 

integrating the differences between remotely sensed an modeled soil moisture 

variations. The data sets used were SMAP, ASCAT, AMSR-2, and MERRA-2 

(Modern-Era Retrospective analysis for Research and Applications-2) reanalysis. 

The results showed underestimates of the IWU with respect to benchmark 

irrigation water withdrawals data, mainly attributable to the coarse resolution of 

the considered data sets. However, IWU retrieved by exploiting SMAP data 

showed a good correlation with state-aggregated benchmark irrigation volumes (𝑟 

= 0.80). Zohaib and Choi (2020) proposed a similar approach highlighting the 
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potential use of coarse resolution soil moisture data to estimate IWU at a global 

scale: soil moisture from ERA-5 (European ReAnalysis-5) and from the ESA CCI 

data set were used.  

Another component of the hydrological cycle that proved to be a proxy of 

irrigation is the evapotranspiration rate. Romaguera et al. (2014), previously 

mentioned in the context of the irrigation detection, also addressed the irrigation 

quantification target by proposing an approach based on the differences between 

optical remote sensing and modeled evapotranspiration to estimate monthly 

evapotranspiration rates attributable to irrigation practices. Another 

evapotranspiration-based approach was proposed by van Eekelen et al. (2015); the 

authors produced maps of actual evapotranspiration over the Incomati basin in 

Southern Africa, obtained through the surface energy balance algorithm for land, 

SEBAL (Bastiaanssen et al., 1998). The distinction between evapotranspiration 

rates due to rainfall from those determined by irrigation practices was used to 

indirectly estimate annual values of water withdrawals due to irrigation. Peña-

Arancibia et al. (2016) combined remotely sensed data and hydrological modelling 

to estimate the amounts of water consumptions in the form of evapotranspiration 

and their sources over two sub-basins of the Murray-Darling basin, in Australia. 

Figure 2.2 provides a scheme summarizing the selected studies in the 

quantification of irrigation topic organized on the basis of the variable exploited 

(soil moisture or evapotranspiration). 

 

Figure 2.2.  Selected relevant studies in the irrigation quantification 

framework divided according to the kind of remotely sensed hydrological 

variable used.  

It is noteworthy that data assimilation represents an alternative approach to face 

the irrigation estimates topic (Lievens et al., 2017; Abolafia-Rosenzweig et al., 

2019). Several studies investigated the benefits of ingesting remote sensing 

observations (assuming that they properly reproduce the changes occurring in the 
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land fluxes due to irrigation) into models (Kumar et al., 2015, 2019; Lei et al., 2020) 

in order to balance inconsistencies due to unmodeled processes. As an example, 

Girotto et al. (2017) investigated the possibility to correct errors due to 

groundwater extraction and irrigation in the Catchment land surface model by 

assimilating GRACE Total Water Storage (TWS). The authors pointed out not-

negligible improvements in the estimation of some processes; nevertheless, the 

representation of other processes resulted to be impoverished. Nie et al. (2018) 

included a groundwater irrigation scheme and a data set of monthly time-varying 

greenness vegetation cover into the Noah-MP land surface model. However, the 

data assimilation framework is not further deepened here as it is not among the 

methodologies adopted in this thesis. 

Despite the increasing interest and number of applications in this research field, 

the existing studies mainly discuss potential applications of exploiting remotely 

sensed data to estimate water volumes applied for irrigation, or they show the 

capability of remote sensing technology in deriving information and observations 

linked to irrigation practices. Studies reproducing the actually occurred irrigation 

amounts with a certain accuracy are still missing, and this issue represents one of 

the steps forward prosecuted in this thesis. 
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Chapter 3 
 

Case Studies 
 

 

The two pilot sites considered in this research are now presented. They are the 

Ebro basin, in the North East of the Iberian Peninsula (presented in Section 3.1) 

and the Upper Tiber basin, in central Italy (presented in Section 3.2). The location 

of the sites is shown in Figure 3.1. For both the pilot areas, a detailed description 

of the administrative organization of irrigated lands, of the irrigation practices and 

related techniques employed, and of the available irrigation benchmark data sets 

is provided. Additional information on topographic and land cover characteristics 

of sub-areas where the analyses have been focused on is provided. 

 

Figure 3.1.  Location of the two pilot areas considered in this thesis: the Ebro 

basin (red) and the Upper Tiber basin  (blue). The administrative edges of the 

regions of Spain and Italy are marked in white.  



3. Case Studies 

 

 

32 

 

3.1 The Ebro Basin, Spain 

The Ebro is the main Mediterranean river of the Iberian Peninsula, with a length 

of ~928 km; its basin has a drainage area of ~85,550 km2. The domain is mainly 

characterized by a semi-arid climate, except for the Northwest, which has a 

continental influence, and for the Pyrenean area. Wide flat areas exist in the central 

part of the basin; the highest altitudes can be detected in its North side, where the 

Pyrenees and the Cantabrian Range are located. Within the basin, several clusters 

of irrigated lands exist (see Figure 3.2). Annual precipitation amounts are very 

heterogeneous in the area, ranging between ~2000 mm/year on the Pyrenean relief 

and ~200 mm/year in the central valley. The analyses presented in this thesis are 

mainly focused on the Eastern part of the basin, on a portion of 10,000 km2 (125 km 

× 80 km) falling between Catalonia and Aragon. This tile has been chosen because 

it contains the widest irrigated area of the whole basin, with an extension higher 

than 2000 km2. The spatial extent of the irrigated lands is shown in Figure 3.2. 

   

Figure 3.2.  Irrigated areas within the Ebro basin, available at the website 

dedicated to the hydrological plan of the Ebro basin. 1 

The focus area is mostly flat and the fields in the irrigated portion are heavily 

irrigated each year. The prevalent crops are forage and summer cereals; fruit trees 

are spread on the South and in the middle of the irrigated land, along the river 

channel that crosses it. An area destined to vineyard is also present. On the East 

side, the irrigable land is surrounded by a large area of rainfed cropland, which is 

mixed with sparse forests, shrubs, and olive groves in the South side, in the context 

                                                      

1 http://www.chebro.es/contenido.visualizar.do?idContenido=42695&idMenu=4780. 

http://www.chebro.es/contenido.visualizar.do?idContenido=42695&idMenu=4780
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of a typical Mediterranean landscape. In general, this portion is dry during 

summer; this condition contributes in creating a homogeneous and extended 

dryland which contrasts with the lush irrigated areas. The different wetness 

conditions coexisting in the focus area, exacerbated during the dry and thus of 

highest-intensity irrigation season, makes the site particularly suitable to spot 

where irrigation occurs through remotely sensed data. In fact, the considered area 

has been object of several studies aimed at evaluating the detectability of irrigation 

signals by remote sensing products (Escorihuela and Quintana-Seguí, 2016; 

Fontanet et al., 2018; Gao et al., 2018; Bazzi et al., 2019). In the analysis aimed to the 

detection of irrigation and to the mapping of its extents, the irrigated land 

contained in the focus area has been divided into two macro-areas according to the 

organization of the irrigation canals: the Urgell area, which falls in Catalonia and 

is supplied by the Urgell and the Algerri Balaguer canals, and the Catalan and 

Aragonese area, which falls between Catalonia and Aragon and receives water 

from the Catalan and Aragonese canal. The organization of the study area 

considered in the irrigation detection framework, together with the land cover 

map and with the map of the area equipped for irrigation, are shown in Figure 3.3.  

 

Figure 3.3.  Characteristics of the pilot site: a) location with respect to Spain 

(top left map) and partition of the irrigated areas: Urgell area (Eas t side) and 

Catalan and Aragonese area (West side), b) percentage of area equipped for 

irrigation according to the GMIA-FAO data set, and c) land cover map 

according to CLC for the year 2018. In a) and b) the irrigation canals are 

marked in magenta (Dari et al., 2021a).  
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The data on the area equipped for irrigation, expressed as a percentage of each cell 

area, is derived from the version 5.0 of the GMIA developed by FAO (Siebert et al., 

2015). The data set has a spatial resolution of 5 arcminutes, equivalent to ~10 km 

at the Equator. The GMIA data set merges multi-source statistical surveys at a 

(sub)national scale of area equipped for irrigation and of actually irrigated area 

with geospatial information on irrigation practices (mainly the location and the 

extent) obtained by satellite imagery, land cover maps, and vector and raster data 

(Siebert et al., 2013). The land cover map is derived from the Corine Land Cover 

(CLC); it is referred to the year 2018 and it has a spatial resolution of 100 m. The 

map is provided by the Copernicus Land Monitoring Service. It is noteworthy that, 

the CLC map distinguishes between “non-irrigated arable lands” and 

“permanently irrigated areas”.   

In the analysis aimed at estimating the amounts of irrigation water, the attention 

has been focused on the four districts (comunidades de regantes) in which the 

irrigated area is organized: the Urgell district, the Algerri Balaguer district, the 

Pinyana district, and the Catalan and Aragonese district. The latter has been 

further divided in its Northern (North Catalan and Aragonese) and Southern 

(South Catalan and Aragonese) partitions, which receive water for irrigation from 

two different reservoirs located at North of the district. The organization of the 

study area according to the irrigation districts, the Digital Elevation Model (DEM) 

of the irrigated land, and the density of the irrigation equipment are shown in 

Figure 3.4; The panel a) of the figure also shows the stations exploited to derive the 

irrigation benchmark volumes used to validate the irrigation amounts obtained 

through the methodology here proposed in the irrigation quantification 

framework. The DEM is derived from the EU-DEM v1.1; it has a spatial resolution 

of 25 m and it is provided by the Copernicus Land Monitoring Service. The data 

on the density of irrigation equipment is part of the geospatial information 

attached to the hydrological Plan of the Ebro basin.   

The irrigation districts have different characteristics in terms of dating, extension, 

and irrigation techniques adopted. The timing of the irrigation practices depends 

on several factors (mainly the crop type), but the highest-intensity irrigation period 

is between May and September; the irrigation frequency is determined by the 

adopted technique. The Urgell has a total area equal to 887.62 km2 (88,762 ha). The 

irrigation system is traditional and mainly works by inundation; irrigation 

generally occurs by turns, every two weeks. The Algerri Balaguer has been recently 

modernized and extended. New irrigation systems have been installed and 
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irrigation can theoretically be practiced each day. Drip irrigation is used for fruit 

trees, while sprinkler is adopted for herbaceous crops. The district has a total area 

of 70.79 km2 (7079 ha). Different irrigation techniques are employed in the Catalan 

and Aragonese district; sprinkler irrigation is the most widespread technique 

(employed over the 54% of the area), followed by drip irrigation (employed over 

the 28% of the area) and by flood irrigation (adopted over the 18% of the area). The 

total extension of the district is equal to 1161.52 km2; the area of the Northern 

partition is equal to 657.04 km2 (65,704 ha), while the Southern part has an area 

equal to 504.48 km2 (50,448 ha). The Pinyana district has an area equal to 149.74 

km2 (14,974 ha) and it is fed by water coming from the homonymous canal, which 

is the most ancient of Catalonia. Unfortunately, the information about the 

irrigation techniques employed in the Pinyana district are unavailable, but mixed 

techniques are expected to be adopted. 

 

Figure 3.4.  Details of the irrigated land within the area of interest: a) 

organization of the districts,  b) DEM of the irrigated area derived by the 

Copernicus EU-DEM v1.1, and c) irrigation density derived by the Ebro 

hydrological plan (Dari et al., 2020).  

3.2 The Upper Tiber Basin, Italy 

The Upper Tiber Basin, located in central Italy, has a drainage area of ~5000 km2 

referred to a portion of the Tiber whose length is ~140 km. The basin mainly falls 

within the Umbria region and it is characterized by a complex orography 

determined by the Apennines. The highest altitudes can be detected in the East 

side, while the West side is mainly hilly, with values ranging between 100 m a.s.l 

and 800 m a.s.l. The mean annual rainfall of the Umbria region is ~900 mm; the 
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mean annual temperature varies between 3.3 °C (generally observed in January) 

and 14.2 °C (usually detected in July). The highest rates of monthly rainfall are 

concentrated in autumn and winter seasons.  

In the performed analysis, a tile with an area slightly lower than 13,000 km2 (~92.5 

km × 138.5 km) that encloses the basin has been considered. This case study is 

deeply different from the precedent one in terms of management and organization 

of the irrigation practices. A first difference is imposed by the topography; in fact, 

the area is located in the upper central Apennines. For this reason, agricultural 

lands mainly arise over small flat areas placed between adjacent reliefs. 

Furthermore, the crop rotation is largely adopted, thus creating a complex 

irrigation mosaic each year. Another essential difference with the pilot site located 

in the Ebro basin is the general unavailability of accurate data on the kind of crops, 

as well as the lacking of information about the exact position and extent of irrigated 

areas. The only source of irrigation-related information are a few reports produced 

at a subnational scale. 

On the basis of the abovementioned considerations and by merging the limited 

information available, four agricultural areas in the flat portion of the pilot site 

have been identified. These areas represent the spatial domain where irrigation 

can occur, but they are not expected to be completely and uniformly irrigated. The 

selected agricultural lands, shown in Figure 3.5, they are the Upper Tiber area 

(122.33 km2), the Trasimeno area (152.09 km2), the Right Tiber area (280.12 km2), 

and the Left Tiber area (292.12 km2).  

 

Figure 3.5.  The Upper Tiber basin: a) location and b) land cover map according 

to CLC referred to the year 2018  (derived from Dari et al., 2021b) . 

The Upper Tiber area is immediately downstream of the Montedoglio dam, from 

which receives the predominant part of water amounts destined to irrigation 
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practices through the Sistema Orientale Montedoglio network. The area falls across 

two regions, Umbria and Tuscany; for this reason, the irrigation is managed by 

two consortia: the Comprensorio Alto Tevere Umbro for the portion in Umbria and 

the Comprensorio Valtiberina Toscana for the part in Tuscany. The Trasimeno area 

takes its name from the adjacent lake and receives water through the Sistema 

Occidentale Montedoglio network. The Right Tiber area contains the districts of the 

Central Tiber valley and of the Genna, Caina, and Nestore rivers’ valleys. The Left 

Tiber area encloses the districts of the Umbrian valley; in this portion, the irrigation 

is managed by a consortium called Consorzio della Bonificazione Umbra.  The figure 

also provides the land cover map at 100 m resolution referred to the year 2018, 

which is derived from the CLC data set. It is noteworthy that, in the land cover 

map referred to this domain the “permanently irrigated areas” class is not present. 

In addition, in order to avoid misunderstandings, the class “non-irrigated arable 

land” has been renamed as “agricultural land”, as it is the class associated to the 

areas where irrigation can occur. Additional details on the study area are provided 

in Figure 3.6, which shows a topographic characterization of the site through the 

Copernicus EU-DEM v1.1 at 25 m resolution and the area equipped for irrigation 

(resolution of ~10 km) derived from the GMIA. According to this data set, the 

portions with the highest rates of area equipped for irrigation are located in the 

Upper Tiber area and in the North side of the Left Tiber area. 

 

Figure 3.6.  Additional details on the Upper Tiber basin: a) DEM derived by 

the Copernicus EU-DEM v1.1 and b) percentage of area equipped for 

irrigation according to the GMIA-FAO data set.  
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Over the pilot agricultural sites, the most widespread crops are maize, wheat, and 

tobacco, which is widely cultivated in the Upper Tiber area. Other crops (e.g., 

sunflower, forage, etc.), as well as areas destined to vineyards, are also present. 

Sprinkler irrigation is the most employed technique, followed by drip irrigation; 

in a small system within the Left Tiber area, surface irrigation is still practiced. 
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Chapter 4 
 

Materials and Methods 
 

 

In this chapter, the materials and methodologies used to detect irrigation and to 

estimate the amounts of water applied for this purpose are described. Section 4.1 

provides information on the remotely sensed data employed, Section 4.2 presents 

the meteorological data sets used, Section 4.3 describes the SURFEX modeling 

platform and the performed simulations, and Section 4.4 presents the ground truth 

data sets. The proposed methodologies to detect and map irrigation extents and to 

quantify irrigation amounts are presented in Section 4.5 and Section 4.6, 

respectively. 

4.1 Remote Sensing Data 

In this section, the remotely sensed products used in this thesis are described. 

Within the framework of the detection and mapping of irrigation, six microwave 

soil moisture products have been exploited: SMAP at 1 km and 9 km, SMOS at 1 

km, Sentinel-1 at 1 km and at a plot scale, and ASCAT at 12.5 km. In the irrigation 

quantification activity, only SMOS and SMAP at 1 km data sets have been used. 

However, optical products also have been exploited within this framework, 

namely the NDVI v2.2 and the Fraction of Vegetation Cover (FCover) v2 products 

delivered by the Copernicus Global Land Service. The high-resolution (1 km) 

versions of SMOS and SMAP products are obtained by downscaling the coarse 

resolution data through the DISPATCH algorithm (Merlin et al., 2013), which is 

described in Section 4.1.2.5. The downscaling has been executed by isardSAT. The 

plot scale version of Sentinel-1 is obtained by merging Sentinel-1 SAR-derived data 

with Sentinel-2 optical data. The description of the data sets used is preceded by a 

brief description of the principles of the remote sensing. Particular attention is 

given to the remote sensing of soil moisture. Figure 4.1 shows the satellites 

carrying aboard the sensors whose measurements have been exploited in this 

study: SMOS, SMAP, METOP-B (ASCAT), Sentinel-1, and PROBA-V. 
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Figure 4.1.  Satellites carrying aboard the sensors whose measurements have 

been used in this study: a) SMOS, b) SMAP, c) METOP-B (ASCAT), d) Sentinel-

1, and e) PROBA-V. Note that satellites whose observations have not been 

directly used in this study but allowed the production of  some of the data sets 

considered are not shown (i.e., MODIS and Sentinel -2). 

4.1.1 Remote Sensing Principles 

Remotely sensed data constitute the basis for all the analyses carried out in the 

presented thesis. Hence, in this section, a brief description of the principles beyond 

the remote sensing technology is provided. 

In general, remote sensing is defined as the science that deals with acquiring 

information about the atmosphere and the Earth’s surface through measurements 

of the electromagnetic radiation emitted or reflected from the Earth in one or more 

ranges of the electromagnetic spectrum. The fundamental classification in active 

remote sensing and passive remote sensing is based on a simple principle. In the 

passive remote sensing, the sensor aboard a satellite or an aircraft only receives the 

electromagnetic radiation reflected or emitted by the target object, which is 

produced by an external source (e.g., the Sun). Conversely, in active remote 

sensing the sensor is concurrently the source of the emitted electromagnetic 

radiation and the recorder of its reflection after interactions with the target object. 

Electromagnetic waves (Figure 4.2) are the result of periodic disturbances of 

electric and magnetic fields. The propagation through space of an electromagnetic 

wave can be approximated by plane sine waves overlapped, with the electric field 

component and the magnetic field component generally orthogonal to each other 
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and both perpendicular with respect to the propagation direction. Defined the 

plane of incidence as the plane determined by the vertical and the direction of the 

propagation, the vertical polarization configuration is assumed when the electric 

field component is parallel to the plane of incidence, while in the horizontal 

polarization the same component is perpendicular to the plane of incidence. 

 

Figure 4.2.  The electromagnetic wave.  

Electromagnetic waves are characterized by their wavelength, 𝜆, and their 

frequency, 𝑓. Between these two parameters the following relationship exists: 

𝜆 =  
𝑐

𝑓
                 (4.1) 

in which 𝑐 indicates the speed of light, 𝑐 = 2.99792458×108 m/s. In the remote 

sensing technology, information on the Earth’s surface is obtained by measuring 

the transmission of the energy associated to an electromagnetic wave. The whole 

range of all the possible wavelengths in which the energy associated to an 

electromagnetic wave can be distributed is the electromagnetic spectrum, which is 

organized in seven portions going from lower frequencies and longer wavelengths 

to higher frequencies and shorter wavelengths: radio waves, microwaves, infrared, 

visible light, ultraviolet, X-rays, and gamma rays. Figure 4.3 shows the 

electromagnetic spectrum. The remote sensing technology uses different adjacent 

portions of the spectrum for different purposes. The most common bands 

exploited are microwaves, infrared, and visible radiation. The particular band 

used allows the distinction between microwave products and optical products. 

The main advantages of microwave remote sensing with respect to optical remote 

sensing are that the cloud coverage is not an issue and the capability to collect 

measurements during day and night. Furthermore, optical remote sensing is less 

sensitive to the dielectric constant of surface characteristics (e.g., canopy structure 

or roughness) with respect to microwave remote sensing (Dobson and Ulaby, 1981; 

Ulaby et al., 1986). Although soil moisture can be remotely sensed in the visible 
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band (through measurements of the albedo, defined as the solar radiation reflected 

from the Earth’s surface and which is linked with soil moisture), and in the infrared 

band (through measurements of the land surface temperature eventually 

combined with vegetation indices) also, the portion of the spectrum occupied by 

microwaves is the most exploited one for soil moisture measurements. 

Active and passive microwave remote sensing techniques exploit electromagnetic 

radiations with wavelengths varying between 10-3 m and 3.3×10-1 m, corresponding 

to a range of frequencies between 1 GHz and 300 GHz. The microwave region sub-

portion of interest in remote sensing application is provided in panel b) of Figure 

4.3. 

 

Figure 4.3.  The electromagnetic spectrum in panel a) and microwave region 

sub-portion of interest in remote sensing application in panel b).  

In general, interactions are higher when the wavelength and the dimension of the 

objects interacting with the radiation have similar magnitudes. For instance, L-

band radiation is known to be more penetrating with respect to C-band radiation. 

In fact, L-band radiation is characterized by strong interactions with the vegetation 

macrostructure and by low interaction with small vegetation; conversely, C-band 
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radiation is not able to penetrate the vegetation cover because of strong 

interactions with the leaves. 

In the active microwave remote sensing, a radar (Radio Detection And Ranging) 

system emits its own microwave radiation and the antenna measures the 

backscatter after the interaction between the signal and the target object. The 

backscatter is defined as the intensity of the signal scattering back to the sensor. 

The different backscatter entities recorded by the instrument allow to distinguish 

the different targets, while the time between the emitted and the received-back 

signal is useful to measure the distance from the target. 

The scattering behaviour over a certain surface is mainly governed by its dielectric 

and geometric properties, while the backscattering is influenced by several factors, 

like the roughness of the target surface, the polarization, the dielectric constant of 

the surface characteristics, the soil moisture, the vegetation cover, the topography, 

the observation frequency, and the incidence angle (Schmugge, 1985; Su et al., 

1996). In particular, in presence of vegetation, its contribution to the backscatter is 

determined by the sum of three terms, one linked to the direct backscattering from 

the plants, one referred to the direct backscatter from the soil, with canopy 

attenuation, and one due to multiple scattering between the plants and the soil. 

 The development of the SAR has opened new perspectives in radar applications. 

This technology allows to overcome a native radar issue, consisting in the inverse 

relation between the antenna length and the spatial resolution capability of the 

system. In a SAR system, a sequence of acquisitions obtained with an antenna of a 

certain length during its translation along the flight direction are properly 

combined together, thus simulating an acquisition by a much longer antenna. 

Passive microwave remote sensing of soil moisture is based on measurements of 

the brightness temperature, which characterizes the intensity of the radiation 

emitted or reflected by the Earth’s surface in the microwave portion of the 

electromagnetic spectrum, usually measured through a radiometer. In typical 

passive microwave applications, the brightness temperature mainly depends on 

the soil temperature. In order to estimate the soil moisture, the brightness 

temperature can be modeled through emissivity models or radiative transfer 

models. In emissivity models, the soil temperature is constant along the whole soil 

layer profile, while in radiative transfer models, the soil temperature varies along 

the different layers in which the soil is discretized. It is noteworthy that, the 
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brightness temperature depends on the vegetation cover and the surface 

roughness also.  

4.1.2 Microwave Products 

4.1.2.1 SMOS 

The SMOS mission was launched by the European Space Agency (ESA) on 

November 2nd, 2009 (Kerr et al., 2010). The objectives of the mission were to collect 

surface soil moisture observations over the land with a target accuracy of 0.04 

m3/m3 and measurements of salinity over the oceans. SMOS represents the second 

ESA’s Earth Explorer Opportunity mission, developed in synergy with the Spanish 

Centro para el Desarrollo Tecnológico Industrial (CDTI) and the French Centre National 

d’Estudes Spatiales (CNES). SMOS has a revisit period of 3 days at the Equator, 

which is overpassed at 06:00 and 18:00 LST during the ascending and descending 

orbits, respectively. 

The instrumentation aboard the SMOS satellite is an Y-shaped passive 2D 

interferometric radiometer operating at L-band frequency (1.4 GHz); the surface 

soil moisture is retrieved starting from multiangular observations of the brightness 

temperature collected by the antenna. The surface soil moisture data is retrieved 

through the Level-2 (L2) retrieval algorithm; auxiliary static (topography index, 

land use, soil texture) and dynamic (frost and thaw cycle, rainfall, temperature) 

data sets are exploited to produce the SMOS soil moisture product, which has a 

spatial resolution ranging from 35 to 50 km.  

Both SMOS and SMAP radiometers operate in the protected frequency allocation 

of 1.4-1.427 GHz; despite this, problems due to Radio-Frequency Interference (RFI) 

in this protect band were found to affect SMOS observations. This issue helped the 

development of a special flight hardware to detect and filter RFI aboard the SMAP 

satellite. 

In this work, a 1 km version of SMOS, obtained after downscaling the original 

coarse resolution data through the DISPATCH algorithm, has been used (Merlin 

et al., 2008). 

4.1.2.2 SMAP 

The SMAP mission, aimed to collect soil moisture observations and to monitor the 

freeze/thaw state at a global scale (Entekhabi et al., 2010), was launched by the 
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National Aeronautics and Space Administration (NASA) on January 31st, 2015. The 

revisit period of SMAP is of 2-3 days at the Equator, overpassed at 06:00 and 18:00 

Local Solar Time (LST) during the descending and ascending orbits, respectively. 

The retrieved surface soil moisture has an accuracy of 0.04 m3/m3, thus 

accomplishing the mission targets (Colliander et al., 2017). 

SMAP was originally designed to merge the benefits of active and passive remote 

sensing to improve the resolution of the retrievals obtained by the radiometer. For 

this reason, the native equipment was an L-band radiometer (1.4 GHz) and an L-

band radar (1.26 GHz), which were expected to provide surface soil moisture 

measurements at 3 km, 9 km, and 36 km resolutions. Nevertheless, because of the 

premature fail of the radar in July 2015, only the 9 km and 36 km sampling version 

have been available during the post-radar phase. Recently, a 3 km version has been 

released (Das et al., 2019); this product is obtained by merging SMAP data with 

data retrieved by Sentinel-1A/Sentinel-1B, as Sentinel SAR-derived data has been 

identified as a suitable substitute of the observations that were originally supposed 

to be obtained through the SMAP radar.  

The full name of 9 km sampling version is SMAP Level 2 Enhanced Passive Soil 

Moisture Product (L2_SM_P_E); the retrieval is based on the interpolation of the 

antenna temperature data in the SMAP original brightness temperature data 

through the Backus-Gilbert technique (Poe, 1990; Stogryn, 1978), followed by 

several calibrations and corrections (Chan et al., 2018). 

In the analyses described in the presented thesis, the 9 km sampling version 

(O’Neill et al., 2016) and a 1 km resolution version obtained through the 

DISPATCH downscaling algorithm have been used. 

4.1.2.3 Sentinel-1 

The Sentinel-1 constellation consists of two identical satellites, Sentinel-1A and 

Sentinel-1B. The first one was launched on April 3rd, 2014, while the second one on 

April 25th, 2016. Sentinel-1 is the first of six missions developed by ESA for the 

European Earth Observation program, Copernicus. 

The instrumentation aboard the Sentinel-1 spacecrafts is a single SAR operating at 

C-band frequency (C-SAR, 5.4 GHz). The two Sentinel-1 satellites have the same 

orbit and are 180° apart; their synergy, reached in 2016 when both the satellites 

became operational, ensures a coverage over Europe guaranteed with a revisit 

time of 1.5-4 days, but over the rest of the Earth the revisit time can drop up to 6 
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days. The C-SAR equipment aboard the Sentinel-1 satellites is able to collect 

observations in four different setups: the Interferometric Wide-swath mode (IW), 

the Wave Mode (WV), the Strip Map Mode (SM), and the Extra Wide-swath mode 

(EW). The main one over land, of interest for soil moisture, is the IW mode; in this 

setup, the Sentinel-1 C-SAR reaches a ground range detected (GRD) resolution of 

20 m x 22 m (Bauer-Marschallinger et al., 2018).  

In this work, two versions of Sentinel-1 soil moisture have been used. The first one 

is the Sentinel-1 Surface Soil Moisture (SSM) at 1 km delivered by the Copernicus 

Global Land Service. This product is obtained by adapting to high-resolution SAR 

data the change detection algorithm (Wagner et al., 1999; Hornáček et al., 2012), 

which was originally proposed by the Vienna University of Technology. The data 

is delivered as degree of saturation, i.e., ranging between 0 and 1. Furthermore, 

three masks are applied to the data set, one for pixels with low sensitivity, one for 

pixels with an excessive terrain slope, and one for pixels falling in water bodies. 

The second version of Sentinel-1 SSM used in this work has a plot scale resolution. 

The soil moisture maps at a plot scale are developed and delivered by a consortium 

led by the THEIA Data and Services Centre for Continental Surfaces. The soil 

moisture at a plot scale data set is obtained by merging Sentinel-1 SAR-derived 

data with observations from Sentinel-2 optical sensors. The maps are provided 

with a temporal resolution of 6 days and they are produced by applying over 

agricultural areas an inversion algorithm based on neural networks. The 

agricultural domain is obtained from several sources: the CLC, the THEIA Land 

Cover Scientific Expertise Centre (SEC), the French Registered Geographical 

Parcels data sets, and local land cover maps. Sentinel-2 images, after a correction 

for atmospheric effects, are used in the process chain to estimate soil moisture and 

to delimit homogeneous polygons to be extracted within the agricultural parcels’ 

edges. 

4.1.2.4 ASCAT 

ASCAT is a real aperture active radar that uses vertically polarized antennas and 

whose operational frequency is the C-band (5.3 GHz). The instrument is on board 

of the EUMETSAT METOP (METeorological OPerational) satellites. The METOP 

series consists of three satellites launched in succession to ensure the continuity of 

the mission observations. The first one, METOP-A, was launched on October 19th, 

2006; the second one, METOP-B, on September 17th, 2012, and finally METOP-C 

was launched on November 7th, 2018. 
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In its original design, ASCAT was not supposed to collect soil moisture 

observations, but wind speed and directions measurements over the oceans. 

Nevertheless, several studies focused on ESCAT, the precedent version of the 

instrument, showed the suitability of ASCAT in monitoring surface soil moisture 

(Pulliainen et al., 1998; Wen and Su, 2003; Wagner et al., 2007). The global coverage 

is reached by ASCAT every 1-3 days, while the Equator is crossed at 21:30 during 

the ascending pass and at 09:30 during the descending pass. 

The ASCAT soil moisture product, delivered as degree of saturation and thus 

ranging between 0 and 1, is produced through the change detection algorithm 

developed by the Vienna University of Technology (Wagner et al., 1999; Bartalis et 

al., 2007; Naeimi et al., 2009; Wagner et al., 2013). The spatial resolution of the 

ASCAT data is 25 km. In this work, the H115 soil moisture product resampled on 

a 12.5 km grid has been used. The data set, available from 2007 to 2018, is delivered 

by EUMETSAT H SAF. 

4.1.2.5 The DISPATCH Algorithm 

The DISPATCH method (Merlin et al., 2008) allows to disaggregate the original 

coarse resolution surface soil moisture data to higher resolutions by merging with 

optical data. DISPATCH is an evaporation-based downscaling algorithm, which 

can be defined as both physically-based and theoretical (Peng et al., 2017). The 

downscaling process consists in a redistribution of the high-resolution product 

around the mean value of the related coarse resolution data. The disaggregation is 

possible by means of the partitioning of the evaporation part on the surface soil 

layer (first 5 cm) from the transpiration part in the root zone, which is attributable 

to the vegetation cover. In this way, the ratio of actual to potential evaporation, 

also known as the Soil Evaporative Efficiency (SEE), can be estimated over the bare 

soil. The spatial relation existing between the SEE and the near-surface soil 

moisture makes the abovementioned redistribution of high-resolution data 

around the average value of the original coarse resolution product possible. The 

temporal resolution of the outputs of this process is the same of the low-resolution 

input data. In the DISPATCH method, the SEE is calculated through two optical 

remotely sensed products, the land surface temperature data and the NDVI 

detected by the MODIS sensor on board of the Terra (EOS AM) and Aqua (EOS 

PM) satellites. 
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The main advantage of the DISPATCH algorithm is that in situ measurements are 

not required to disaggregate the original low-resolution data. A method’s 

limitation is that its applicability is influenced by the cloudiness conditions (Peng 

et al., 2017), which affect the optical data necessary to realize the disaggregation. 

However, this limitation is overcome by the algorithm itself, which, in case of 

clouds coverage, keeps the soil moisture value of the input low-resolution data for 

the high-resolution pixel. 

Merlin et al. (2013) compared three versions of SMOS soil moisture at 40 km, 3 km 

and 100 m with in situ observations aggregated at the same spatial scales. The 3 

km and 100 m resolution versions were obtained through the DISPATCH 

algorithm. The analyses were carried out over pilot sites in Catalonia, an area 

studied also in the presented thesis. The authors highlighted a better 

representation of the spatio-temporal dynamics of soil moisture in terms of higher 

correlations with in situ measurements when using the downscaled products. In 

fact, the correlation between SMOS-derived and in situ soil moisture was equal to 

0.59 for the 40 km resolution version, equal to 0.67 for the 3 km version, and equal 

to 0.73 and to 0.86 for two different configurations of the 100 m resolution product. 

Similar results were obtained by Malbéteau et al. (2015), which evaluated the 

performances of 1 km DISPATCH downscaled versions of SMOS and AMSR-E soil 

moisture against in situ data over the South East of Australia. An increase in the 

correlation during summer over a semi-arid region was highlighted (from 0.37 to 

0.63 and from 0.47 to 0.73 for SMOS and AMSR-E in afternoon overpasses and 

from 0.63 to 0.78 and from 0.42 to 0.71 for SMOS and AMSR-E in morning 

overpasses). Molero et al. (2016) compared DISPATCH downscaled SMOS soil 

moisture with in situ observations under different climatic conditions, finding 

better correlation over semi-arid regions with respect to sub-humid areas. 

4.1.3 Optical Products 

The main application of optical products in the analyses described in this thesis 

can be found in the irrigation estimates framework, whose methodology is 

thoroughly described in Section 4.6. 

The data used are the NDVI v2.2 and the FCover v2, which contains information 

of the portion of each 1 km x 1 km pixel covered by vegetation. Both products are 

delivered by the Copernicus Global Land Service with a spatial resolution of 1 km 

and a temporal frequency of 10 days; the indices are obtained after processing the 
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data observed by the SPOT-VEGETATION (Satellite Pour l’Observation de la Terre – 

VEGETATION) sensor and its successor PROBA-V (Project for On-Board 

Autonomy – Vegetation) according to the method explained in Sterckx et al. (2014). 

The VEGETATION instrument, on board of the SPOT 4 and 5 Earth observation 

missions, stopped working in May 2014 after 16 years of service. In order to 

continue the mission’s observations, PROBA-V was launched by ESA in May 2013, 

with the new VEGETATION imaging instrument developed by adopting spectral 

channels close to those used in its precedent version. Detailed information about 

the PROBA-V mission are available in Dierckx et al. (2014). 

The NDVI data vary between a physical range of (-0.08, 0.92), while the FCover 

data between a physical minimum of 0 (vegetation cover absent) and a physical 

maximum of 1 (fully covered by vegetation); validation reports are available at the 

Copernicus Global Land Service website: https://land.copernicus.eu/global/. 

4.2 Meteorological Data 

Ancillary meteorological data sets have been exploited to perform the analyses 

described in this thesis. Regarding the pilot site located within the Ebro river basin, 

the SAFRAN (Système d’Analyse Fournissant des Reinsegnements Atmosphériques à la 

Neige) meteorological analysis system has been used (Durand et al., 1993). 

SAFRAN exploits ground observations merged with a first guess coming from 

numerical weather prediction modeling into an optimal interpolation algorithm. 

The output of this process is a gridded data set of temperature, wind speed, rainfall 

rate, and other meteorological variables at 5 km spatial resolution, with hourly 

time step. 

In the presented thesis, an updated version of the SAFRAN data set originally 

developed for Spain (Quintana-Seguí et al., 2016; 2017) with data until August 2014 

has been used; in this new version, Portugal has been involved, hence, the whole 

Iberian Peninsula is covered and the data is available until August 2017. The code 

used is the same adopted for the implementation of SAFRAN in France, with 

minor changes (Quintana-Seguí et al., 2008; Vidal et al., 2010). In the adopted 

version, the modeling-derived first guess mainly comes from the ERA-Interim 

data set, with the only exception of the precipitation, which does not use a first 

guess. Ground observations are taken from AEMET (Agencia Estatal de 

METeorología) meteorological station network. 

https://land.copernicus.eu/global/
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On the basis of the SAFRAN’s outputs, a 5 km resolution gridded data set of 

potential evapotranspiration calculated according to the FAO Penman-Monteith 

method has been built. The data set covers the period from September 1st, 2010 to 

September 1st, 2017. As an example, Figure 4.4 shows the potential 

evapotranspiration calculated for the day September 15th, 2015. The data set has 

been produced by exploiting relative humidity, temperature, and wind speed data 

from SAFRAN; the solar radiation data, also necessary to calculate the potential 

evapotranspiration according to the FAO Penman-Monteith equation, has been 

taken from the ERA-5 reanalysis (Hersbach et al., 2020) and resampled to the finer 

SAFRAN’s grid before the computations. Furthermore, rainfall rates produced by 

the SAFRAN system have been used as reference rainfall in the SM2RAIN 

elaborations carried out within the irrigation estimates framework, whose detailed 

explanation can be found in Section 4.6. 

 

Figure 4.4.  Example of the potential evapotranspiration calculated through 

the FAO Penman-Monteith equation and referred to September 15 t h, 2015. The 

data set, which has a spatial resolution of 5 km, has been built by exploiting 

atmospheric variables taken from SAFRAN and ERA -5. It covers the whole 

Iberian Peninsula for the period 2010-2017. 

Regarding the Upper Tiber basin in Italy, only rainfall records from ground 

observations have been used as additional meteorological data set. The exploited 

stations are part of network used to monitor the Umbria region, to which the pilot 
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basin belongs almost entirely. The rain gauge network consists of more than 90 

stations, which are shown in Figure 4.5. 

 

Figure 4.5.  Rain gauge network of the Umbria region (central Italy), marked 

with black edges. The Upper Tiber basin is represented with red edges.  

4.3 SURFEX Modeling Platform 

This section describes the modeling aspects involved in the presented thesis. 

Simulations with a LSM have been carried out in order to build a data set of 

modeled soil moisture over the pilot areas to be used together with the remotely 

sensed data in the performed analyses. A short description of the SURFEX 

modeling platform (Masson et al., 2013) is provided in Section 4.3.1, while Section 

4.3.2 describes the analyses performed over the two pilot areas. 

4.3.1 Model Description 

SURFEX is the surface modeling platform developed by Météo-France. SURFEX is 

composed of different and independent schemes that allow to calculate the 

exchange of fluxes (water, carbon, energy, snow, etc.) between the surface and the 
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atmosphere over four types of surfaces. Figure 4.6 shows a conceptualization of 

the modeling platform. 

 

Figure 4.6.  SURFEX modeling platform: modeled fluxes and their origin. 2 

SURFEX can be used in a stand-alone setting (offline mode), or it can be coupled 

with climate models and atmospherical models for numerical weather prediction. 

SURFEX can run at any user-defined spatial resolution; the heterogeneity existing 

within a generic pixel is taken into account through a tiling approach.  The main 

tiles provided in the model are: natural surfaces, urbanized areas, inland water 

and oceans. For the natural areas, the ISBA scheme is used. Areas where towns 

exist are described by the Town Energy Balance (TEB) scheme; lakes and oceans 

are described through multiple approaches and models. Each tile of the generic 

pixel receives the same atmospheric forcing associated to that pixel; hence, for each 

tile present in the mesh grid, the fluxes are computed through the appropriate 

scheme. The fluxes are then aggregated and sent back to the atmosphere. It is 

noteworthy that, lateral flows are not considered. The distribution of water on the 

Earth’s surface can be determined by post processing the SURFEX’s runoff outputs 

for each cell through river routing models. The structure of the modeling platform, 

including some possible coupled settings, is shown in Figure 4.7.  

                                                      

2 source: http://www.umr-cnrm.fr/surfex/ 

http://www.umr-cnrm.fr/surfex/
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Figure 4.7.  Flow chart showing the SURFEX’s structure ,  involving several 

coupling options (taken from the material of the SURFEX training course). 3  

In the performed analyses only the ISBA scheme has been used, since natural 

surfaces only have been simulated. ISBA (Noilhan and Planton, 1989; Mahfouf and 

Noilhan, 1996; Noilhan and Mahfouf, 1996) incorporates multiple algorithms to 

estimate the exchanges of water and energy between the soil-vegetation-snow 

continuum and the atmosphere, which have been updated in time (Boone et al., 

1999, 2000; Habets et al., 2003). Within the ISBA scheme, the surface is divided in 

patches linked to the land cover. Several versions of ISBA exist, that can be chosen 

before the simulation; they essentially differ in terms of the structure of the 

temperature and hydrology profiles modeled. In this thesis, simulations have been 

carried out by adopting the latest version of the model, SURFEX v8.1, which has 

been obtained from the Centre National de Recherches Météorologiques. The ISBA-DIF 

scheme has been used; in this version, the soil is divided in 14 layers by default 

and the root zone depends on the vegetation. 

                                                      

3 http://www.umr-cnrm.fr/surfex/spip.php?article423 

http://www.umr-cnrm.fr/surfex/spip.php?article423
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4.3.2 Land Surface Simulations 

The simulations have been carried out at 1 km resolution over both pilot sites. The 

adopted resolution is rather unusual, as the model is often ran at coarser spatial 

resolutions. Because of the computational effort required to run the model at high 

spatial resolution, over the Spanish pilot site, not the whole Ebro basin, but the 

area enclosed between two sub-catchments (identified by the Cinca and Segre 

rivers) only, has been simulated. The domain has been chosen in such a way as to 

cover the area where irrigation occurs (see Figure 4.8). The simulation over the 

Spanish case study covers the period ranging from 01/09/2010 to 01/09/2018, while 

the simulation over the Italian site covers the time span from 01/09/2010 to 

01/09/2019. 

 

Figure 4.8.  Portion of the Ebro basin simulated with SURFEX: area enclosed 

between the Cinca and Segre sub-basins, which is represented with red edges 

and shaded in grey.  

Over the pilot site in Italy, it has been possible to simulate the whole basin. For the 

simulation over the Spanish pilot site, a regular 1 km grid of 208 × 173 pixels has 

been adopted; for the Upper Tiber basin, the grid has the same spatial resolution 

and consists of 89 × 136 cells. The panel a) of the Figures 4.9 and 4.10 show the 

overlap of the adopted grids with the Spanish and the Italian pilot sites, 

respectively. It is noteworthy that, the same spatial grids have been adopted for all 

the analyses presented in this thesis; hence, all the spatially distributed data sets 

used (observed data, modeled data, ground truth data) have been resampled to 

the SURFEX-ISBA grids before the analyses. The land cover map used for the 

simulations is ECOCLIMAP II (Faroux et al., 2013); it is the default one for SURFEX 
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and has a spatial resolution of 1 km. The model has been forced with atmospheric 

forcing from the ERA-5 reanalysis (Herbach et al., 2020) provided by the European 

Centre for Medium-Range Weather Forecast (ECMWF) and downloaded from the 

Copernicus Climate Data Store. In order to run SURFEX-ISBA, the following 

atmospheric variables are needed at an hourly time step: 2 m air temperature and 

relative humidity, downward visible and infrared radiation, precipitation, and 

wind speed. Despite the input atmospheric data being at an hourly time step, the 

model has a higher resolution internal step of 15 minutes. The data has a spatial 

resolution of 0.25° × 0.25°. Hence, before the simulations, the input atmospheric 

data have been resampled to the 1 km grids adopted. In addition, in order to solve 

possible vertical mismatches between the high-resolution relief implemented in 

SURFEX (GTOPO30) and the coarser resolution relief of ERA-5, a lapse rate 

correction to relative humidity and temperature has been performed. The 

advantages in forcing ISBA simulations with atmospheric data from the ERA-5 

data set have been discussed in Albergel et al. (2018). In particular, input from 

ERA-5 proved to enhance the characterization of variables involved in the 

terrestrial hydrological cycle, e.g., soil moisture. 

For both the simulations carried out, the adopted vegetation scheme is determined 

by the climatology of the Leaf Area Index (LAI); hence, the vegetation is the same 

every simulated year.  

In the presented thesis, the SURFEX-ISBA simulations have been performed with 

the aim of building a modeled data set of soil moisture not taking into account of 

irrigation to be used, as a negative benchmark, together with remotely sensed data 

in the irrigation detection activity. The modeled surface soil moisture used in the 

analyses is obtained from the weighted average of the first two layers of the soil 

parametrization and it is representative of the first 4 cm of the soil. Although only 

the soil moisture has been actually used in the analyses, it is not the only output 

that has been kept; in fact, several output variables have been saved to be used in 

further analyses or in future studies linked to this thesis. Table 4.1 provides the list 

of the SURFEX-ISBA outputs that have been kept. Note that they are the same for 

both the simulations carried out. 
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Figure 4.9. Area enclosed between the Cinca and the Segre sub-basins: a) the 

1 km regular grid adopted for the SURFEX-ISBA simulations, b) the river 

network. 

 

Figure 4.10. The Upper Tiber basin: a) the 1 km regular grid adopted for the 

SURFEX-ISBA simulations, b) the river network.  

Finally, the river network has been implemented for both the study areas and it is 

shown in panel b) of Figures 4.9 and 4.10. The coupling is necessary to simulate 

river flow, as SURFEX only provides runoff and drainage rates for each grid cell 

as an output. Hence, these outputs need to be delivered to the river in order to 

compute river flow. This task has been addressed in the perspective of a future 

coupling with the RAPID (Routing Application for Parallel computatIon of 

Discharge) river routing model (David et al., 2011) within the Eaudyssée modeling 

platform. This coupled configuration is the SASER (SAfran-Surfex-Eaudyssèe-

Rapid) hydrological model. For both study areas, the river network has been built 

by processing information on the DEM and on the flow direction and 

accumulation from the HYDROSHEDS (HYDROlogical data and maps based on 

SHuttle Elevation Derivaties at multiple Scales) data set. This procedure allowed 

to reconstruct the confluence order of the river network cells. 
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An example of the model’s output is provided in Figure 4.11, which shows the 

spatial distribution of the mean surface soil moisture referred to the year 2016 over 

the pilot basin, obtained from the weighted average of variables WG1P1 and 

WG2P1 of Table 4.1. 

 

Table 4.1. Output variables from the SURFEX-ISBA simulations that have been saved.  

Name Description Unit 

LEGC_ISBA Bare ground evaporation for the tile nature W/m2 

LEVC_ISBA Total vegetation evaporation for the tile nature W/m2 

EVAPC_ISBA Total evaporative flux for the tile nature kg/m2/s 

DRAINC_ISBA Drainage for the tile nature kg/m2/s 

RUNOFFC_ISBA Runoff for the tile nature kg/m2/s 

SNOMLTC_ISBA Snow melting rate kg/m2/s 

WG1PI Soil moisture in the first soil layer m3/m3 

WG2P1 Soil moisture in the second soil layer m3/m3 

WG3P1 Soil moisture in the third soil layer m3/m3 

TS_ISBA Total surface temperature over the tile nature K 

SWI1_ISBA Soil wetness index in the first soil layer - 

TSWI1_ISBA Total soil wetness index (liquid + solid) in the first soil layer - 

SWI2_ISBA Soil wetness index in the second soil layer - 

TSWI2_ISBA Total soil wetness index (liquid + solid) in the second soil layer - 

SWI3_ISBA Soil wetness index in the third soil layer - 

TSWI3_ISBA Total soil wetness index (liquid + solid) in the third soil layer - 

TSWI_T_ISBA Total soil wetness index in the whole soil column - 

PSNG_ISBA Snow fraction over ground averaged over the tile nature - 

PSNV_ISBA Snow fraction over vegetation averaged over the tile nature - 

PSN_ISBA Total snow fraction over the tile nature - 

WGTOT_T_ISBA Total water content kg/m2/s 

DSN_T_ISBA Total snow depth m 
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Figure 4.11.  Example of SURFEX-ISBA model output: mean surface soil 

moisture in 2016 over the two pilot basins in the Spanish focus area (left side) 

and in the focus area in Italy (right side).  

4.4 Ground Truth Data Sets 

In this section, the ground truth data sets exploited as a benchmark to validate the 

proposed methodologies to map irrigation and to quantify how much water is 

used for this purpose are described. As explained in Chapter 3, the Ebro basin is a 

data rich area in terms of irrigation. For this area, detailed information on where 

irrigation occurs and on how much water is used for these practices is easily 

available. Conversely, for the Upper Tiber basin, it has been possible to collect only 

confidential information about irrigation practices occurring over selected pilot 

fields.  

4.4.1 Information on the Irrigation Extent 

For the pilot area within the Ebro basin, the ground truth data set on the spatial 

occurrence of irrigation is the map of crops in Catalonia. It is an open access 

database produced on the same spatial domain of the SIGPAC, delivered by the 

Department d’Agricultura, Ramaderia, Pesca i Alimentació. The source of the 

information contained in the maps of crops is the DUN (Declaració Unica Agrària), 

a mandatory document describing the agricultural activities that each owner of 

productive parcels must provide each year. In order to create the geospatial 

information, the DUN is integrated with the agricultural parcels data produced by 

SIGPAC. Prior to their publication, the maps of crops are optimized through some 

corrections. All the non-agricultural areas (i.e., pastures, unproductive areas, 

forests, urbanized areas) are masked out. Furthermore, parcels with incomplete 
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DUN documentation, as well as those with extensions lower than 50 m2 are 

discarded; finally, occasional complex geometries are simplified. It is noteworthy 

that, the combined effects of the abovementioned correction produce a reduction 

in the declared area by less than 1%. The resulting maps provide, for each field, 

the extension, the geographic and administrative localization, the kind of crop, and 

the irrigation coefficient (a binary irrigated/non-irrigated information). The data 

set is available at: http://agricultura.gencat.cat/ca/serveis/cartografia-

sig/aplicatius-tematics-geoinformacio/sigpac/mapa-cultius/. It is noteworthy that 

the ground truth data are characterized by a few shortcomings, mainly attributable 

to incomplete declarations provided in the DUN document; in fact, it may happen 

that when two crops are planted during the same year (e.g., winter cereals and 

summer cereals), only one of them is declared. Also, sometimes it happens that 

irrigation is declared but not performed over a certain parcel. 

For the Upper Tiber basin in Italy, only scattered confidential information on a few 

pilot fields has been collected. Hence, an organized and detailed geospatial data 

set of irrigation ground truth is not available. 

4.4.2 Benchmark Irrigation Volumes 

Benchmark irrigation volumes applied over the districts in the pilot area in Spain 

have been collected from several sources. The main one is the database of the 

volumes of water flowing through the irrigation canals network supplying water 

to the districts. This kind of data is provided by the Automatic Hydrologic 

Information System of the Ebro river basin (SAIH Ebro), available at: 

http://www.saihebro.com/saihebro/index.php?url=/datos/canales. Figure 4.12 

provides an overview on the SAIH portal and on the available data.  

For the Pinyana district, the only one not belonging to the SAIH system, monthly 

volumes of irrigation water have been provided by the canal’s technical office. 

Another alternative source of benchmark irrigation amount is the hydrological 

plan of the Ebro basin, which provides yearly cumulated estimates determined on 

the basis of a twelve-years collection of historical data, from 2000 to 2012.  

Regarding the Upper Tiber basin, the data on the irrigation amounts and on the 

kind of crop for four pilot fields, two within the Upper Tiber area and two within 

the Left Tiber area, have been collected. The location of the fields, as well as the 

kind of cultivated crop, are shown in Figure 4.13.  

http://www.saihebro.com/saihebro/index.php?url=/datos/canales
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Figure 4.12.  The SAIH system: a) irrigation data page interface, b) study area 

and considered stations, c) example of data from some of the stations used.  

The data in the Upper Tiber domain covers the period 2017-2019. The UT1 pilot 

field has been irrigated in 2017 and 2018. Wheat has been planted but not irrigated 

in 2019. In 2017 and 2018, the crop types have been tobacco and maize, 

respectively. Conversely, the pilot field UT2 has not been irrigated in 2017, but in 

2018 and 2019. Sunflower has been cultivated in 2017, while tobacco in 2018 and 

2019. For the plots in the Left Tiber area, only the data for 2019 is available; the 

both pilot fields have been irrigated, tobacco has been planted in LT1 while pea in 

LT2. 

It is noteworthy that, while in the pilot area in the Ebro basin a district scale 

information has been exploited, for the Upper Tiber basin a plot scale information 

has been considered. 
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Figure 4.13  Pilot fields in the Upper Tiber basin for which irrigation amounts 

have been collected: a) location with respect to the whole study area, b) kinds 

of crops and related binary information on irrigation (irrigated/non -

irrigated). Adapted from Dari et al. (2021b).  

4.5 Methodology for Detecting and Mapping Irrigation 

In this section, the theories at the basis of the methodology developed to detect 

and map irrigated areas over the two considered pilot sites at different spatial 

resolutions through remotely sensed soil moisture are described. Within this 

framework, the major novelty proposed in this thesis is to exploit under a new 

perspective the indices derived from the temporal stability theory, a well-

established technique widely used to optimize the in-situ monitoring of soil 

moisture. In fact, the temporal stability theory allows to calculate indices 

describing the spatio-temporal behaviour of soil moisture; hence, they can be used 

to detect if particular irrigation-related patterns occur under certain conditions. 

The activity aimed to the irrigation mapping carried out in the Spanish pilot site 
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consists of two main phases. The flow chart describing the methodology adopted 

to produce maps of irrigated areas over this domain through remote sensing soil 

moisture is provided in Figure 4.14. In the first step, the capability to detect 

irrigation of several remote sensing soil moisture products has been assessed 

through the temporal stability derived indices. The data sets used are DISPATCH 

downscaled versions of SMOS and SMAP at 1 km, SMAP at 9 km, Sentinel-1 at 1 

km, and ASCAT at 12.5 km. The surface soil moisture simulated at 1 km resolution 

by SURFEX-ISBA has been used as a support for the analyses. In the second step, 

maps of irrigated areas referred to the periods May-September 2016 and 2017 have 

been produced through the K-means algorithm; the best performing products 

arising from the first phase have been exploited for this purpose. The resulting 

maps have been validated according to two different validation procedures.  

Over the Upper Tiber area, which is characterized by a more complex topography 

than the pilot area in Spain, a double-scale analysis on the detectability of irrigation 

through remote sensing soil moisture has been performed. The temporal stability 

derived indices have been exploited to assess if 1 km resolution is enough to spot 

where irrigation occurs in such a complex domain; hence, soil moisture data at a 

plot scale has been used as an input for the K-means clustering algorithm to 

develop maps of irrigated/not irrigated fields for the periods June-September 2017, 

2018, and 2019. In the analysis at 1 km spatial resolution the data sets used are 

SMAP downscaled through the DISPATCH algorithm, the Sentinel-1 product 

delivered by the Copernicus Global Land Service, and the Sentinel-1 product 

delivered by THEIA at a plot scale resolution and aggregated at 1 km; furthermore, 

surface soil moisture at 1 km simulated with SURFEX-ISBA has been used as 

additional data sets. In the analysis at a plot scale resolution, the Sentinel-1 soil 

moisture data developed by THEIA and aggregated at 100 m resolution has been 

used.  

The results of the analyses aimed at detecting and mapping irrigation extents 

performed in this thesis are presented and widely discussed in Chapter 5. 

In the following, the temporal stability theory, the K-means algorithm, and the 

validation procedures adopted within this framework are explained. 
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Figure 4.14.  Flow chart describing the proposed methodology to map irrigated 

areas in the pilot site located within the Ebro basin, in Spain  (Dari et al., 

2021a).  

4.5.1 Temporal Stability Theory 

The temporal stability theory was originally proposed by Vachaud et al. (1985). 

The method has been widely used to optimize the soil moisture monitoring; in fact, 

through the relative differences approach, it is possible to find optimal 

measurement points, representative of the average wetness of the whole 

monitored area. Obviously, this aspect is of paramount importance for the in-situ 

monitoring of large areas, as it allows to reduce waste of time, energy, and fatigue. 

Several studies adopted the temporal stability methodology to optimize soil 

moisture monitoring at several spatial scales (Brocca et al., 2010; Gao et al., 2015; 
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Dari et al., 2019). Recently, Morbidelli et al. (2019) investigated the possibility of 

adopting the same techniques to optimize the rain gauge network design. In this 

work, the indices at the basis of the theory are exploited under a new perspective, 

aimed to evaluate the capability of remotely sensed soil moisture products to 

detect irrigation signals. The idea mainly relies on the capability of the temporal 

stability derived indices to express the spatial and temporal dynamics of soil 

moisture. 

Let 𝜃𝑥𝑡 be the soil moisture value at a certain pixel 𝑥 of a grid at the observation 

day 𝑡. By indicating, for each day, the spatial mean referred to the entire considered 

area with �̅�𝑡, the relative differences for each pixel and for each observation day, 

𝛿𝑥𝑡, are expressed by: 

𝛿𝑥𝑡 =
𝜃𝑥𝑡  − �̅�𝑡

 �̅�𝑡
                (4.2) 

the temporal mean, 𝛿�̅�, and the standard deviation, 𝜎(𝛿𝑥), of the relative 

differences can be calculated for each pixel 𝑥 by the following Equations (4.3) and 

(4.4), respectively: 

𝛿�̅� = (
1

𝑇
) ∑ 𝛿𝑥𝑡

𝑇
𝑡=1               (4.3) 

𝜎(𝛿𝑥) = √(
1

𝑇−1
) ∑ (𝛿𝑥𝑡 − 𝛿�̅�)

2𝑇
𝑡=1             (4.4) 

in which 𝑇 is the total number of observation days considered. 

In the canonical applications of the temporal stability theory, measurements points 

showing  𝛿�̅� close to 0 and low values of 𝜎(𝛿𝑥), are chosen as optimal points, as 

they provide soil moisture observations stably representative of the mean areal 

value. For instance, Dari et al. (2019) applied this methodology to a data set of soil 

moisture observations collected during 23 measurements campaigns at 20 pilot 

sites within a catchment with heterogeneous topography located in the Umbria 

region (central Italy). The authors found that, during wet periods, just one optimal 

point was enough to represent the mean value of an area of ~500 km2 with R2 = 

0.857 and RMSE = 1.2% vol/vol; during dry periods, the catchment-mean soil 

wetness conditions were reproduced with R2 = 0.846 and RMSE = 1.6% vol/vol by 

exploiting two optimal points concurrently. The main results of the study by Dari 

et al. (2019) are summarized in Figure 4.15. 

The relative difference is an index describing the spatial variability of soil 

moisture. Mittelbach and Seneviratne (2012) proposed an alternative perspective 

focused on the temporal dynamics of soil moisture. In order to quantify the 
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deviation of the soil moisture at a certain pixel 𝑥 from its temporal mean, the 

temporal anomalies, 𝐴𝑥𝑡, can be calculated as: 

𝐴𝑥𝑡 =
𝜃𝑥𝑡− �̅�𝑥

�̅�𝑥
                (4.5) 

in which �̅�𝑥 indicates the temporal mean calculated for the pixel 𝑥. The spatial and 

the temporal mean of the anomalies are indicated with �̅�𝑥 and �̅�𝑡, respectively.  

The temporal stability theory provides indices able to express how a soil moisture 

data set varies both in space and time. For this reason, in this research, the spatial 

relative differences and the temporal anomalies have been used to evaluate the 

capability of remotely sensed soil moisture product to detect irrigation over the 

pilot areas at different spatial scales. Hence, a new application for key variables of 

a well-established theory born for other purposes has been found. Furthermore, 

the temporal stability derived indices have been also exploited as input parameters 

for mapping irrigated areas through the K-means clustering algorithm, which is 

described in the following section. 

 

Figure 4.15.  Main results obtained by Dari et al. (2019). In the upper panel, 

the mean (markers) and the standard deviation (vertical bars) for the 20 

measurement points referred to: a) the whole measurement campaign, b) dry  

periods, and c) wet periods. In the lower panel, the areal mean is compared 

with the optimal points during: a) the whole period, b) the dry periods, and 

c) the wet periods.  
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4.5.2 The K-means Algorithm 

K-means is a well-known clustering algorithm that allows the grouping of 𝑛 data 

points into 𝑘 clusters on the basis of precise input data features. The algorithm is 

thoroughly described in MacQueen (1967); it delimits each cluster by assigning a 

centroid that is determined through an iterative process starting with a random 

choice among the available input data. The grouping is performed by assigning 

each data point to the nearest centroid. In this way, clusters of data point with the 

same features are identified. The method is based on the minimization of the 

Euclidian distance, 𝑑, between the input vector of the data points and the vector of 

the centroids, calculated as: 

𝑑 =  ∑ ∑ ‖𝑥𝑗 −  𝐶𝑖‖𝑛
𝑗=1

𝑘
𝑖=1              (4.6) 

in which 𝑥𝑗 is the j-th element of the input data vector, with 𝑗 = 1, … , 𝑛, while 𝐶𝑖 is 

the i-th element of the centroids vector, with 𝑖 = 1, … , 𝑘. 

In this work, the K-means algorithm has been used in different configurations to 

produce maps of irrigated areas at different spatial scales over the two pilot areas. 

More in detail, in the analysis performed over the pilot area in Spain, the algorithm 

has been used to classify three different kinds of surfaces by exploiting remotely 

sensed and modeled soil moisture as input. Maps of the actually irrigated areas, 

the dryland, and forest or natural areas have been produced at 1 km spatial 

resolution. Hence, three clusters have been considered. In order to group the data 

according to the clusters, four sets of features have been used. The first one consists 

in the standard deviation of the spatial relative differences and the mean temporal 

anomaly calculated for the remote sensing soil moisture, in the second one the 

mean of the spatial relative differences and the mean of the temporal anomalies 

have been exploited; in the third one, the correlation between the modeled and the 

remotely sensed soil moisture has been added to the features used in the first set. 

Similarly, in the fourth set, the correlation has been added to the input data already 

used in the second set. In all the clustering experiments carried out, all the input 

features exploited are referred to the period when irrigation mainly occurs over 

the pilot area, i.e., from May to September of each considered year. 

Over the pilot area in Italy, the K-means algorithm has been used to produce 

binary maps of irrigated or non-irrigated areas at a plot scale. Hence, only two 

clusters have been considered over this domain. Furthermore, only one set of 

features has been used as input for the clustering, composed by the mean of the 
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spatial relative differences and the mean of the temporal anomalies, both 

calculated over the highest irrigation intensity period of the pilot area, i.e., from 

June to September of each considered year. 

4.5.3 Validation 

Regarding the irrigation mapping activity carried out over the pilot area in the 

Ebro basin, maps of the three prevalent classes detectable, i.e., dryland (D), forest 

or natural areas (F), and irrigated areas (I) have been produced for the periods 

May-September 2016 and 2017. The maps have been validated according to two 

alternative validation procedures described in the following. They differ from each 

other for the kind of information contained into the SIGPAC crops maps data that 

has been considered to derive the benchmark ground truth maps; in fact, in the 

first validation the irrigation coefficient information is considered, while in the 

second one the attribute referred to the kind of crop has been exploited. As 

explained in Section 4.4.1, the SIGPAC crops maps are produced for the Catalonia 

autonomous community only, while the study area belongs to a lesser extent to 

the Aragon autonomous community also; hence the validation procedures have 

been performed over an area equal to the 71% of the total. 

For both the validations carried out, the SIGPAC data have been pre-processed. In 

the first validation procedure, benchmark maps of dryland (D), forest or natural 

areas (F), and irrigated areas (I) have been produced starting from the irrigation 

attribute. It consists of a binary information (irrigated/not irrigated) for each parcel 

of the domain. The SIGPAC data set was born at a plot scale resolution; hence, as 

a first step, this information has been projected on a 100 m regular grid. As a result 

of this procedure, maps at 100 m resolution of irrigated and non-irrigated pixels 

have been obtained. The portions where the data set is not available have been 

interpreted as forest or natural areas pixels. In fact, the SIGPAC data is produced 

on agricultural areas only, after masking out natural areas, urbanized areas, and 

water bodies. This issue is not expected to introduce errors, as in the proposed 

method urban areas and water bodies are masked out before the validation. As a 

second step, the 100 m resolution maps have been aggregated at 1 km resolution 

on the grid adopted for the SURFEX-ISBA simulation. In this step, the 

predominant class among those of the 100 m × 100 m contained in a 1 km × 1 km 

pixel has been assigned to the latter. A supplementary condition has been 

considered for disentangling the dryland from the forest or natural areas: a 1 km × 

1 km pixel has been considered as forest or natural area only in case of a 
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predominant kind of 100 m x 100 m pixels contained in it with this attribute and 

in double quantity compared to the dryland pixels. This additional constraint has 

been adopted to assign a homogeneous class to complex areas, e.g., the dryland 

portion in the South of Urgell, where shrubs, forest, and olive trees are highly 

mixed together and difficult to distinguish. 

The choice of performing a second validation is led by considerations on the 

SIGPAC classification between irrigated/not irrigated used for the first validation 

procedure. Actually, this partition is referred to the possibility of a certain field to 

be reached by the irrigation infrastructure, but this condition does not ensure that 

the field is actually irrigated (e.g., it may happen that the field irrigation 

instrumentation is not installed). Hence, a second validation exploiting another 

kind of information contained in the SIGPAC data set has been performed. It is the 

attribute referred to the kind of cultivation. Crops that for sure are irrigated in the 

period of interest (May - September) have been considered: forage, summer 

cereals, and fruit trees. From this perspective, the parcels with the selected crops 

have been considered as irrigated, those with other crops have been treated as 

dryland, and finally the remaining portions have been considered as forest or 

natural areas. Starting from this partitioning of the SIGPAC data at a plot scale, 

benchmark maps at 1 km resolution have been developed according to the same 

procedure previously described for the first validation method. Figure 4.16 shows 

the different kinds of information contained in the SIGPAC data set exploited to 

perform the two validations. 

 

Figure 4.16.  SIGPAC-derived information on the irrigation coefficient (left 

side) and the kind of crops (right side) adopted in the first and the second 

validation procedures, respectively. The data set is available for Catalonia 

only, whose edges are marked in red.  
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4.6 Methodology for Estimating Irrigation Amounts 

This section describes the method developed to retrieve the amounts of water 

applied for irrigation. It is noteworthy that the approach has been applied over the 

pilot site in the Ebro basin only. 

Within this framework, two irrigation-estimate experiments have been carried out 

at a spatial resolution of 1 km: one exploiting DISPATCH downscaled SMAP data 

and another one using DISPATCH downscaled SMOS data. The SMAP experiment 

covers the period from January 2016 to September 2017, while an extension back 

to January 2011 has been possible with the SMOS experiment. By merging the two 

experiments, a data set of almost seven years of estimated irrigation from remotely 

sensed soil moisture has been built.  

The irrigation water amounts have been obtained through a modified version of 

the SM2RAIN algorithm (Brocca et al., 2014; 2015; 2016), originally developed to 

estimate rainfall from soil moisture variation as input and later adapted to retrieve 

irrigation (Brocca et al., 2018). In this thesis, a finer modeling of the 

evapotranspiration process has been introduced into the SM2RAIN algorithm. In 

order to do this, the modeling of the crop evapotranspiration according to the 

FAO-56 (Food and Agriculture Organization) model has been implemented into 

the algorithm. The results of this activity are presented in Chapter 6. In the 

following sections, the SM2RAIN algorithm and its configuration developed in 

this study to quantify irrigation, as well as the procedure for the validation of the 

results, are described. 

4.6.1 The SM2RAIN Algorithm 

SM2RAIN is a “bottom-up” approach originally developed for estimating 

precipitation rates through an inversion of the water balance with soil moisture 

observations as input. The algorithm has been initially implemented with in situ 

observations over pilot sites in Italy, Spain, and France (Brocca et al., 2013). In 

Brocca et al. (2015) the method has been tested over a large number of case studies 

in Europe. As a further development, the algorithm has been applied over large 

domains with remotely sensed soil moisture products as input (Brocca et al., 2014; 

Koster et al., 2016). A comparison between “bottom-up” approaches, involving 

SM2RAIN also, can be found in (Brocca et al., 2016). In the same work, the authors 

have proved the benefits in merging well consolidated rainfall products with 

“bottom-up” methods. A similar approach has been adopted by Ciabatta et al. 
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(2017) over Italy. It is noteworthy that, the SM2RAIN algorithm has led to the 

production and release of three global rainfall data sets freely available: SM2RAIN-

ASCAT (Brocca et al., 2019), GPM+SM2RAIN (Massari et al., 2020), and SM2RAIN-

CCI (Ciabatta et al., 2018). SM2RAIN-ASCAT covers the period 2007-2019, has a 

spatial resolution of 12.5 km and a daily temporal resolution. GPM+SM2RAIN is 

produced for the period 2007-2018 with a spatial resolution of 0.25° and a daily 

temporal resolution. Finally, SM2RAIN-CCI has the same spatial and temporal 

resolution of GPM+SM2RAIN, but it is delivered for the period 1998-2015. 

Recently, the SM2RAIN algorithm has been adapted to quantify irrigation from 

soil moisture observations. The method has been applied with both coarse 

resolution satellite soil moisture (Brocca et al., 2018; Jalilvand et al., 2019) and in 

situ measurements (Filippucci et al., 2020). The idea beyond this new approach is 

that over agricultural areas the total amount of water entering into the soil, which 

is the algorithm’s output, is the sum of rainfall plus irrigation. As an example, the 

simplification provided in Figure 4.17 can be a useful support.  

 

Figure 4.17.  Conceptualization explaining the potential of remotely sensed 

soil moisture and of SM2RAIN in estimating irrigation.  

In a hypothetical condition of absence of rainfall, a modeled soil moisture data set 

would show a decreasing trend in time, following a drying law. The model is 

expected to not take into account of irrigation; hence, even in case of irrigation 

occurrence, the trend would remain the same. Conversely, by assuming that a 

certain remote sensing product is able to detect irrigation, the trend of the observed 

soil moisture would show an increase as a consequence of irrigation before starting 

a new decrease. In general, the remotely sensed soil moisture can be affected by 
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both rainfall and irrigation. The sum of these two magnitudes is the total water 

entering into the soil in a certain range of time and it is quantified by SM2RAIN. If 

the rainfall is removed from this amount, the irrigation rate can be theoretically 

estimated. Figure 4.18 shows the flow chart of the proposed methodology to 

estimate irrigation over the pilot area in Spain, which is described in the following. 

The soil water balance equation can be expressed in a general form as: 

𝑛𝑍
𝑑𝑆(𝑡)

𝑑𝑡
= 𝑖(𝑡) + 𝑟(𝑡) − 𝑔(𝑡) − 𝑠𝑟(𝑡) − 𝑒(𝑡)            (4.7) 

where 𝑛 [-] indicates the soil porosity, 𝑍 [mm] is the considered soil layer depth, 

𝑆(𝑡) [-] is the relative soil moisture, 𝑡 [days] represents the time, 𝑖(𝑡) [mm/day] is 

the irrigation rate, 𝑟(𝑡) [mm/day] indicates the rainfall rate, 𝑔(𝑡) [mm/day] 

represents the drainage rate, determined by the sum of deep percolation and 

subsurface runoff, 𝑠𝑟(𝑡) [mm/day] is the surface runoff and 𝑒(𝑡) [mm/day] 

indicates the actual evapotranspiration. Equation (4.7) can also be written as: 

𝑛𝑍
𝑑𝑆(𝑡)

𝑑𝑡
= 𝑊𝑖𝑛(𝑡) − 𝑔(𝑡) − 𝑠𝑟(𝑡) − 𝑒(𝑡)           (4.8) 

in which the total amount of water entering into the soil, 𝑊𝑖𝑛(𝑡) = 𝑖(𝑡) + 𝑟(𝑡) 

[mm/day] is pointed out. The adoption of determined assumptions for specific 

cases, which are described in the following sections, allows to compute the 𝑊𝑖𝑛(𝑡) 

term through Equation (4.8). Hence, the irrigation rate can be computed by 

removing the rainfall rate from the total amount of water entering into the soil. In 

this thesis, the SM2RAIN algorithm has been used in two different configurations 

over the pilot area in the Ebro basin: one for the calibration of the model’s 

parameters and another one for estimating the irrigation water amounts. The 

details of the two configurations are provided in the next two sections. 
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Figure 4.18.  Flow chart of the method developed in this work of thesis to 

estimate irrigation water amounts (Dari et al., 2020).  

4.6.1.1 Calibration 

The calibration step has been carried out over the wide dryland area located on the 

East side of the irrigation districts (see Figure 4.18). As explained in Chapter 3, this 

portion is mainly constituted by rainfed cropland mixed with sparse forest and 

shrubs. The whole area is not irrigated; hence, the irrigation rate term, 𝑖(𝑡), is 

assumed equal to zero and the total amount of water that enters into the soil is 

determined by rainfall only, 𝑊𝑖𝑛(𝑡) = 𝑟(𝑡). Equation (4.8) is rewritten as: 

𝑍∗ 𝑑𝑆(𝑡)

𝑑𝑡
= 𝑟(𝑡) − 𝑔(𝑡) − 𝑠𝑟(𝑡) − 𝑒(𝑡)            (4.9) 

where 𝑍∗ = 𝑛𝑍 [mm] is the water capacity of the soil layer. A power law is adopted 

to describe the relation between the drainage rate and the soil moisture:  

𝑔(𝑡) = 𝑎𝑆(𝑡)𝑏             (4.10) 
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in which 𝑎 and 𝑏 are drainage parameters. The surface runoff rate is assumed to 

be negligible (Brocca et al., 2015): 

𝑠𝑟(𝑡) = 0             (4.11) 

The actual evapotranspiration rate is assumed to be equal to the potential 

evapotranspiration, 𝐸𝑇0(𝑡) [mm/day], limited by the water content available in the 

investigated soil layer: 

𝑒(𝑡) = 𝐸𝑇0(𝑡)𝑆(𝑡)            (4.12) 

In the proposed approach, the FAO Penman-Monteith method (Allen et al., 1998) 

has been used to calculate the potential evapotranspiration: 

𝐸𝑇0(𝑡) =
0.408𝛥(𝑅𝑛−𝐺)+ 𝛾

900

𝑇+273
𝑢2(𝑒𝑠−𝑒𝑎)

𝛥+𝛾(1+0.34𝑢2)
          (4.13) 

in which 𝛥 [kPa/°C] is the slope of the vapour pressure curve, 𝑅𝑛 [MJ/m2day] 

indicates the net radiation at the crop surface, 𝐺 [MJ/m2day] represents the soil 

heat flux density, 𝑇 [°C] is the mean daily air temperature at 2 m height, 𝑢2 [m/s] 

is the wind speed at 2 m height, 𝑒𝑠 [kPa] represents the saturation vapour pressure, 

𝑒𝑎 [kPa] is the actual vapour pressure, and 𝛾 [kPa/°C] indicates the psychrometric 

constant. The Equation (4.13) is derived from the original Penman-Monteith 

formulation (Penman, 1948; Monteith, 1965) under the assumption of a terrestrial 

surface covered by a standard grass crop of 12 cm height, with a fixed surface 

resistance of 70 s/m and a fixed value of albedo equal to 0.23. As explained in 

Section 4.2, the potential evapotranspiration has been calculated starting from four 

fundamental atmospheric variables, three of them taken from the SAFRAN data 

set (the wind speed, the air relative humidity, and the air temperature) and one of 

them obtained by the ERA-5 data set (the solar net radiation). 

As a result of the above discussed assumptions, Equation (4.8) can be formulated 

as follows: 

𝑟(𝑡) = 𝑍∗ 𝑑𝑆(𝑡)

𝑑𝑡
+ 𝑎𝑆(𝑡)𝑏 + 𝐸𝑇0(𝑡)𝑆(𝑡)          (4.14) 

then, the rainfall rate over the dryland area can be calculated and compared with 

reference rainfall from SAFRAN in order to calibrate the three model’s parameters: 

𝑍∗, 𝑎, 𝑏. More in detail, the calibration has been performed through a proper 

objective function by minimizing the root mean square difference between the 

SM2RAIN-derived rainfall, calculated according the Equation (4.14), and the 

benchmark rainfall from the SAFRAN data set. For both the experiments carried 

out within this framework, the calibration process has been performed by working 
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at 5-days temporal aggregation, which maximized the performances in 

reproducing the actually occurred rainfall rates. As an output of the procedure, the 

spatial distributions of  𝑍∗, 𝑎, and 𝑏 over the calibration domain are obtained; the 

median values have been then used as fixed parameters for the irrigation estimates 

step. 

4.6.1.2 Irrigation Quantification 

The irrigation quantification step has been carried out for the pilot districts. Over 

the irrigated crops in this domain, the total amount of water entering into the soil 

is the sum of the rainfall and irrigation rates, 𝑊𝑖𝑛(𝑡) = 𝑖(𝑡) + 𝑟(𝑡). The previously 

described assumptions adopted for the drainage rate and for the surface runoff in 

the calibration step and reported in Equation (4.10) and (4.11), respectively, can be 

considered still valid. In this step, the dual crop approach proposed in the FAO 

paper n. 56 (Allen et al., 1998) has been integrated into SM2RAIN to adequately 

represent the evapotranspiration rate, 𝑒(𝑡). According to this approach, the crop 

evapotranspiration is obtained from the reference potential evapotranspiration, 

calculated through the Equation (4.13), multiplied by the crop coefficient, 𝐾𝑐 [-], a 

parameter describing the crop status and its development: 

𝑒(𝑡) = 𝐾𝑐𝐸𝑇0(𝑡)             (4.15) 

according to the dual crop coefficient approach, the contributions of the crop 

transpiration is calculated separately from the evaporative contribution from the 

bare soil; hence, the crop coefficient is determined as the sum of two terms: 

𝐾𝑐 = 𝐾𝑐𝑏 + 𝐾𝑒             (4.16) 

in which 𝐾𝑐𝑏 [-] is the basal crop coefficient and quantifies the transpiration rate 

due to the plant, while 𝐾𝑒 [-] is the soil water evaporation coefficient, referred to 

the evaporation rate from the soil surface. The Equation (4.16) can be generalized 

to take into account of the possible occurrence of stress conditions due to scarce 

water availability as follows: 

𝐾𝑐 = 𝐾𝑠𝐾𝑐𝑏 + 𝐾𝑒            (4.17) 

where 𝐾𝑠 [-] is the water stress coefficient. The three terms of Equation (4.15) 𝐾𝑠, 

𝐾𝑐𝑏, and 𝐾𝑒 can be calculated through proper equations furnished in the FAO 

guidelines. Nevertheless, the application of these formulas over a wide and crop-

composite area as the pilot site is difficult, since plenty of variables and a detailed 

knowledge of each single crop at plot scale are required for the rigorous 
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calculation. To overcome this issue, in this thesis empirical parametrizations based 

on optical remotely sensed data have been developed to approximate each term of 

Equation (4.17). Optical products have been widely used to assess and model the 

evolution of the crops (Simonneaux et al., 2008). In many studies, a linear relation 

existing between 𝐾𝑐𝑏 and the NDVI has been pointed out (to cite a few, Ray and 

Dadhwal, 2001; Calera-Belmonte et al., 2005; Duchemin et al., 2006; Er-Raki et al., 

2007; Toureiro et al., 2016). In the approach proposed in this thesis, the basal crop 

coefficient, 𝐾𝑐𝑏, has been obtained by scaling the NDVI between its maximum and 

a minimum value equal to 0.2 for each pixel in the irrigated domain. Hence, 

dynamic values of 𝐾𝑐𝑏 ranging between 0.2 and 1 have been obtained. The 

minimum has been chosen on the basis of reference crop production curves 

referred to the most widespread crops in the area of interest. Stress conditions due 

to water limitation have been taken into account through the following equation, 

which puts in relation 𝐾𝑠 and the relative soil moisture: 

{
𝐾𝑠 =

𝑆(𝑡)

𝑝
, 𝑆(𝑡) < 𝑝

𝐾𝑠 = 1, 𝑆(𝑡) ≥ 𝑝
            (4.18) 

where the 𝑝 [-] parameter is defined as a soil moisture threshold below which 

stress occurs. If the relative soil moisture is higher than the 𝑝 threshold, there is no 

stress (𝐾𝑠 = 1), while a drop below the  𝑝 threshold of the relative soil moisture 

determines the beginning of stress conditions, modeled as a linear decrease of 𝐾𝑠. 

A 𝑝 value equal to 0.45 has been adopted for both the irrigation-estimate 

experiments carried out over the pilot area in the Ebro basin presented in this 

thesis. Hence, stress is assumed to begin when the relative soil moisture drops 

below the 45%. Some clarifications about the choice of this value are necessary. The 

value of 0.45 has been chosen because it has proven to be the most suitable one in 

reproducing the long-term magnitudes of actually occurred irrigation over the 

pilot area. It is important to highlight that, in the proposed approach, the 

beginning of stress conditions is determined through a surface soil moisture 

threshold, but in the real physics of the process plants can take water from the root 

zone also. Finally, it is noteworthy that, in both the experiments carried out severe 

stress conditions rarely occur. The FAO guidelines propose an energy-based 

limitation for determining 𝐾𝑒; according to this approach, the coefficient has an 

upper limit that depends on the fraction of soil surface wetted and exposed, over 

which the evaporation process occurs, and on the maximum 𝐾𝑐 value ensuring the 

non-exceedance of the available energy. In the methodology proposed in this 
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thesis, a water-limitation approach is adopted instead of an energy-based 

approach. The coefficient describing the evaporation from the soil surface is 

formulated as: 

𝐾𝑒 = (1 − 𝑓𝑐)𝑆(𝑡)            (4.19) 

in which 𝑓𝑐 represents the fraction of vegetation cover, taken from the Copernicus 

FCover data set (see Section 4.1.3). The proposed formulation is equivalent to 

assume that, over the bare soil portion of an irrigated pixel, the evaporation is 

limited by the available water in the soil layer. It is noteworthy that, Equation (4.19) 

is consistent with the formulation of the actual evapotranspiration adopted over 

the dryland area in the calibration step, where the contribution of the transpiration 

is not predominant. For this reason, a coarser approach for representing the 

evapotranspiration process has been adopted over the calibration domain with 

respect to the finer modeling used for the irrigated land. The above discussed 

assumptions led to the building of a dynamic 𝐾𝑐 both in space and time. As an 

example, the spatial distributions of the mean values of the coefficients 𝐾𝑠 and 𝐾𝑐 

calculated for the period May-September 2016 are shown in Figure 4.19. 

 

Figure 4.19.  Spatial distributions of the mean values of the coefficients 𝐾𝑠 and 

𝐾𝑐 calculated for the period May-September 2016.  

The above discussed assumptions allow Equation (4.8) to be rewritten as follows: 

𝑊𝑖𝑛(𝑡) = 𝑍∗ 𝑑𝑆(𝑡)

𝑑𝑡
+ 𝑎𝑆(𝑡)𝑏 + 𝐾𝑐𝐸𝑇0(𝑡)         (4.20) 

where the SM2RAIN parameters 𝑍∗, 𝑎, and 𝑏 are fixed to the median values of their 

distributions resulting from the calibration. Equation (4.20) allows to compute the 

total amount of water entering into the soil layer at a daily temporal resolution. 

Then, the irrigation rates can be retrieved by removing the rainfall rates from the 
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total, 𝑖(𝑡) = 𝑊𝑖𝑛(𝑡) − 𝑟(𝑡). If the 𝑖(𝑡) term assumes negative values, it is assumed 

equal to zero.   

4.6.1.3 Assessment of the Model’s Parameters Uncertainty 

An analysis aimed to assess the model sensitivity to its parameters has been 

performed for the SMAP experiment, which is referred to a shorter period with 

respect to the SMOS experiment.  The uncertainty to the three canonical SM2RAIN 

parameters involved in the calibration phase (𝑍∗, 𝑎, and 𝑏) has been investigated 

apart from the uncertainty due to the soil-moisture-based stress threshold 𝑝.  

The computations aimed at estimating the irrigation water amounts have been 

performed by keeping the values of 𝑍∗, 𝑎, and 𝑏 fixed to the median values of their 

spatial distributions over the calibration domain. The model sensitivity to 𝑍∗, 𝑎, 

and 𝑏 has been assessed through a set of alternative simulations, in which random 

combinations of the three parameters have been adopted. The additional 

simulations have been carried out by adopting all the possible combinations of the 

25th, 50th, and 75th percentiles of the distributions of the three parameters resulting 

from the calibration step. A total of twenty-six additional simulations have been 

performed to build a confidence interval around the main one, which is carried 

out by adopting the median values of each parameter’s distribution, 

corresponding to the 50th percentile. The model’s sensitivity to the stress threshold, 

𝑝, has been assessed by adopting the main simulation (in whose configuration 𝑍∗, 

𝑎, and 𝑏 are equal to the median values of their distributions) and by increasing 𝑝 

from 0.3 to 0.6 with steps of 0.01. The thirty additional simulations resulting from 

this procedure allowed to build the confidence interval around the main 

elaboration used to assess the sensitivity to 𝑝. 

4.6.2 Validation 

The validation of the estimated irrigation amounts over the pilot districts within 

the study area in the Ebro basin has been carried out through comparisons with 

the benchmark irrigation volumes from different data sets described in Section 

4.4.2. For each district, the sources of the benchmark volumes adopted are shown 

in Table 4.2. Please note that the stations belonging to the SAIH system are shown 

in the panel b) of Figure 4.12. 

In the SMAP experiment, the volumes of water flowing through the irrigation 

canals C116, “Cabecera Urgell”, and C117, “Auxiliar Urgell”, have been exploited to 
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derive the benchmark values for the Urgell district. Unfortunately, the data about 

the water supplying this district are missing for the period July 2016 – February 

2017. For this reason, the alternative source of data represented by the 

Hydrological Plan of the Spanish Part of the Ebro River Basin has been used for 

the 2016. Conversely, the SAIH-derived data have been exploited for the sub-

period from January to September 2017, by assuming that the missing amounts 

referred to January 2017 are negligible. The benchmark irrigation volumes for the 

Algerri Balaguer district and for both the partitions of the Catalan and Aragonese 

district have been deduced from the SAIH system. The water pumped at the 

station E271 has been considered for the Algerri Balaguer, while the volumes 

recorded at the stations C081 (“El Ciego”) and C101 (“Coll de Foix”) have been used 

for the Northern and Southern partitions of the Catalan and Aragonese district, 

respectively. As explained in the Section 4.4.2, the monthly irrigation amounts for 

the Pinyana district have been furnished by the canal’s technical office. 

In order to be compared with SM2RAIN-derived irrigation estimates, the 

benchmark irrigation volumes have been converted to the equivalent thickness of 

water (in mm) by dividing them by the area of interest; hence, a homogeneous 

layer of irrigation water has been compared with the satellite-derived estimates 

over each pilot district. It is noteworthy that a very small part of the Urgell located 

in its East side and characterized by low irrigation density has not been considered. 

It is important to point out that only the portion of water actually reaching the soil 

can be detected through remote sensing techniques. Hence, the gross benchmark 

irrigation amounts have been adjusted by considering possible losses due to the 

irrigation efficiency. Several parameters have been evaluated to estimate the entity 

of the losses: the employed irrigation techniques, the dating of the irrigation 

systems, and statistics derived from studies on this topic carried out over the area 

of interest. Canela et al. (1991) studied the efficiency (defined as the rate of applied 

water reaching the root zone) of the flood irrigation system existing in Urgell. 

Higher efficiencies (mean of 90%) in the lower part of the district with respect to 

lower efficiencies (mean of 66%) in the upper part were found. Cots et al. (1993) 

determined a mean irrigation efficiency of 77% over the Urgell. Maté et al. (1994) 

selected various crops in the Catalan and Aragonese district where studying the 

efficiency of the irrigation systems there; the authors obtained efficiencies ranging 

between 62% for the sunflower and 89% for fruit trees. In general, higher 

efficiencies for sprinkler systems with respect to flood irrigation systems are 
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expected; in addition, among all the existing irrigation techniques, drip irrigation 

should ensure the maximum efficiencies. 

The entities of the losses adopted for each district have been established on the 

basis of the abovementioned considerations. For the Urgell district, where 

irrigation mainly occurs through its old flood system, a reduction equal to the 30% 

of the total amount of delivered water has been assumed. For the Catalan and 

Aragonese district, where mixed irrigation techniques are adopted, losses equal to 

the 15% of the total have been assumed. A reduction of the 10% has been applied 

to the water pumped to the Algerri Balaguer district, whose irrigation system is 

the most recent one of the entire study area. Finally, losses equal to the 30% of the 

total have been assumed for the Pinyana district, which is the most ancient system 

among those considered.  

Regarding the irrigation-estimate experiment carried out by exploiting SMOS 

data, the same sources of benchmark irrigation previously described have been 

adopted. The prevision based on historical data already used for the Urgell in 2016 

has been kept for the previous years also over the same domain; for the Algerri 

Balaguer and for the Catalan and Aragonese district, SAIH data have been 

exploited. Unfortunately, the benchmark irrigation volumes referred to the period 

2011-2015 for the Pinyana district are not available. The net irrigation benchmark 

values adopted for comparisons with satellite-derived estimates have been firstly 

converted in water layer thickness (in mm) and later reduced according to the 

losses due to the efficiency of the irrigation systems by following the same 

procedure previously described for the SMAP experiment. Table 4.2 provides, for 

each district, the areas considered to convert the irrigation volumes to irrigation 

thicknesses, the sources of the benchmark data, and the assumed losses. 
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Table 4.2. Areas of the irrigation districts used to convert the benchmark irrigation 

volumes to irrigation thicknesses, sources of benchmark data adopted, and assumed losses 

due to the irrigation systems efficiency (Dari et al., 2020).  

District Area [km2] Irrigation Benchmark Source Losses 

Urgell 811.67 

Ebro Hydrological Plan / Water flowing 

through the irrigation canals (SAIH Ebro, 

stations C116 and C117) 

30% 

Catalan and 

Aragonese - North 
657.04 

Water flowing through the irrigation canals 

(SAIH Ebro, station C081) 
15% 

Catalan and 

Aragonese - South 
504.48 

Water flowing through the irrigation canals 

(SAIH Ebro, station C101) 
15% 

Algerri Balaguer 70.79 
Water pumped to the district (SAIH Ebro, 

station E271) 
10% 

Pinyana 149.74 Data furnished by the canal’s technical office 30% 
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Chapter 5 
 

Results of the Irrigation Detection and 

Mapping Activity 
 

 

In this chapter, the results achieved in the irrigation detection and mapping 

activity are presented. In detail, the results obtained over the pilot area located in 

the Ebro basin are described in Section 5.1, while Section 5.2 provides a description 

of the analyses carried out over the Upper Tiber basin. It is noteworthy that, for all 

the analyses whose results are described in this chapter and in the next one, all the 

gridded data sets used have been resampled on the 1 km spatial resolution regular 

grids used for the SURFEX-ISBA simulations (see Figures 4.9 and 4.10). Hence, 

spatially coherent data sets have been obtained through this procedure. 

5.1 Results over the Pilot Area in the Ebro Basin 

In this section, the results of the investigation on the capability of several remotely 

sensed data sets in detecting the irrigation signals are firstly presented; the data 

sets used are: SMAP at 1 km resolution (downscaled through the DISPATCH 

algorithm) and at 9 km sampling, SMOS at 1 km resolution (downscaled through 

the DISPATCH algorithm), Sentinel-1 at 1 km resolution, and ASCAT at 12.5 km. 

Henceforth, the downscaled products are called “SMOS at 1 km” and “SMAP at 1 

km”, while the other data sets “SMAP”, “Sentinel-1”, and “ASCAT”. Table 5.1 

summarizes the main characteristics of the remote sensing soil moisture used. The 

analysis proposed in this ambit is mainly oriented to high-resolution (1 km) 

products; however, the SMAP and ASCAT products have been involved in the 

analysis to investigate the detectability of irrigation signals over the study area 

through coarser resolution products also. Unlike for SMAP, coarse resolution 

SMOS data has not been considered along with its downscaled version; the reason 

relies in the lower accuracy often detected for SMOS with respect to SMAP data 

(Chen et al., 2018). In general, the performances of each remote sensing data set in 

spotting irrigation is evaluated by means of the temporal stability derived indices, 
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useful to characterize the spatial-temporal variability of the retrieved soil moisture 

observations. The surface soil moisture modeled with SURFEX-ISBA also has been 

involved in the analysis; its role is that of negative benchmark, as in the model 

irrigation is not taken into account. Hence, the modeled data reproduces a natural, 

non-human-altered, situation. 

Table 5.1. Overview of the main features of the remote sensing soil moisture products used 

in the analysis aimed to evaluate the detectability of irrigation over the pilot area in the 

Ebro basin: sensor aboard the satellite, operating band, and spatial resolution.  

Product Sensor Operating Band Spatial Resolution 

SMOS at 1 

km 

Y-shaped passive 2D 

interferometric 

radiometer 

L-band (1.4 GHz) 
1 km – downscaled through the 

DISPATCH algorithm 

SMAP at 1 

km 

radiometer 

radar – not working 

radiometer:  

L-band (1.4 GHz) 

radar: 

 L-band (1.26 GHz) – 

not working 

1 km – downscaled through the 

DISPATCH algorithm 

SMAP 
radiometer 

radar – not working 

radiometer:  

L-band (1.4 GHz) 

radar:  

L-band (1.26 GHz) – 

not working 

9 km sampling 

Sentinel-1 SAR C-band (5.4 GHz) 1 km  

ASCAT 
real aperture active 

radar 
C-band (5.3 GHz) 12.5 km sampling 

 

The analyses aimed at evaluating the capability of the considered data sets in 

detecting irrigation are described in Section 5.1.1, while Section 5.1.2 presents the 

following step of this study, namely the irrigation mapping. In fact, the best 

performing products in detecting irrigation arising from the precedent step have 

then been exploited as an input for the K-means clustering algorithm to map 

irrigated areas. Although the analyses carried out over the pilot area in Spain cover 

the period 2016-2017, many results are focused on the time span going from May 
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to September of the two selected years, which is when irrigation mainly occurs 

over the study area. 

5.1.1 Temporal Stability Derived Indices 

The spatial relative differences quantify how much the soil moisture value in a 

certain pixel differs from the spatial mean of the entire area considered during the 

same observation day. For this reason, the index is particularly suitable to evaluate 

the capability of a remotely sensed data set in detecting irrigation. In fact, it is 

expected to assume higher values over the irrigated areas, human-induced to be 

adequately wet during the dry season, with respect to the dryland. The particular 

landscape that characterizes the study area is expected to emphasize this 

behaviour, thus making the pilot site particularly suitable for the proposed 

purposes. In Figure 5.1, the panels a.1), b.1), and c.1) show the time series of the 

areal mean relative differences calculated for the Urgell area, for the Catalan and 

Aragonese area, and for the dryland area, which are represented in panels a), b), 

and c), respectively. The volumes of water flowing through the irrigation canals 

that supply water to the Urgell area and to the Catalan and Aragonese area are 

shown in panels a.2) and b.2), respectively. These data are taken from the SAIH 

system. More in detail, the flow data supplying the Urgell has been recorded by 

the stations “C116-Cabecera Urgell” and “C117-Auxiliar de Cabecera Urgell”, while 

for the Catalan and Aragonese area the stations exploited are “C081-El Ciego” and 

“C101-Coll de Foix”. It is noteworthy that, during the period from July 2016 to 

February 2017, the data about irrigation data supplying the Urgell area are missing 

because of an interruption in the recording. 

The time series provides a first insight on the capability to detect irrigation at a 

district scale of the selected data sets. The evaluation is performed by looking at 

which product shows higher values of the spatial relative difference in the 

irrigated areas concurrently with lower values in the surrounding dryland during 

the highest-intensity periods, which are shaded in grey in Figure 5.1.  
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Figure 5.1.  The panels  a.1), b.1) and c.1) show the time series of the weekly 

spatial relative differences averaged inside the corresponding areas: a) Urgell 

area, b) Catalan and Aragonese area, and c) the dryland.  The daily flow 

recorded in the canals feeding the Urgell and the Catalan and Aragonese areas  

are shown in panels a.2) and b.2),  respectively. Note that for panel c.1) a  

different y-axis range has been adopted (Dari et al., 2021a).  
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SMAP at 1 km results the best performing high-resolution (1 km) product over the 

Urgell area; in fact, for this data set, mean relative differences equal to 0.274 during 

May-September 2016 and equal to 0.266 during May-September 2017 in face of 

values equal to -0.078 and to -0.088, respectively, obtained during the same periods 

over the dryland surrounding the irrigation districts are obtained. Good 

performances are observed for SMOS at 1 km in the first half of the highest-

intensity irrigation period of 2016; in the second half of the same period, as well as 

during May-September 2017, the relative differences drop down. Sentinel-1 seems 

not to show irrigation signals detected over the Urgell area. Regarding the coarser 

resolution data sets, ASCAT performs better than SMAP; ASCAT-derived mean 

relative differences are equal to 0.121 for the period May-September 2016 and to 

0.111 for May-September 2017. The values referred to the dryland area during the 

same periods are equal to -0.045 and to -0.023. 

Over the Catalan and Aragonese area, mean relative differences equal to 0.286 and 

to 0.481 referred to the periods May-September 2016 and 2017, respectively, have 

been obtained with SMOS at 1 km, which results the best performing product over 

the area. For the same product, values equal to -0.100 and to -0.112 are obtained 

over the dryland area during the same periods. The performances of SMAP at 1 

km over the Catalan and Aragonese area are comparable to those of SMOS at 1 km. 

Conversely, Sentinel-1 keeps on not showing irrigation signals according to the 

considered metric. Unsatisfactory performances over the Catalan and Aragonese 

area are obtained for the coarser resolution products involved in this analysis. 

For both the irrigated macro-areas, the mean relative differences calculated with 

the SURFEX-ISBA modeled soil moisture show similar trends, consisting in 

slightly lower values than the spatial mean during the summer seasons in 2016 

and 2017 with respect to the rest of the investigated period. Over the dryland, the 

trend is almost constant in time. The reasons for this behaviour mainly rely in the 

absence of the irrigation information in the modeled soil moisture, whose spatial 

distribution is determined by the soil map and by the vegetation scheme 

implemented in the model. In fact, in the ISBA version used in this research, the 

vegetation scheme is prescribed and it is based on the climatology of the Leaf Area 

Index (LAI); hence, the cycle of the vegetation is the same every simulated year. 

Along with spatial-averaged time series providing information at an irrigation 

district spatial scale, the analysis of the spatial distribution of the relative 

differences is helpful in highlighting possible sub-areas where irrigation actually 
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occurs. In fact, by considering the averaged value for each irrigated macro-area 

only can be misleading, as it is not always true that the entire irrigable area is 

actually irrigated. The maps of the spatial relative differences averaged in time 

during the highest-intensity irrigation periods (May-September) of 2016 and 2017 

are provided in Figures 5.2 and 5.3. More in detail, the maps referred to the high-

resolution (1 km) products are shown in Figure 5.2, while the maps produced for 

the coarser resolution data sets are provided in Figure 5.3.  

For both DISPATCH downscaled products, the spatial distribution of the mean 

relative differences during the focus period in 2016 shows expected higher values 

over the irrigated land with respect to the dryland area. During May-September 

2017, the contrast between the irrigated areas (wet) and the surrounding dryland 

(dry) are still well reproduced by SMAP at 1 km; conversely, during the same 

period, slightly negative values of the relative differences are obtained for SMOS 

at 1 km over the Urgell. In the maps of the relative differences computed with soil 

moisture data retrieved by Sentinel-1, negative values can be observed over the 

Urgell area; slightly positive values are detected in the middle of the Catalan and 

Aragonese area. The dryland is not well reproduced, except for its Northern side, 

where rainfed croplands are located. As previously said, the maps derived from 

SURFEX-ISBA soil moisture represent a reference for a situation not taking into 

account of irrigation. In fact, they show a dry condition over the flat agricultural 

areas. Finally, the maps referred to SMAP and ASCAT clearly point out their 

limitations over the pilot area for this kind of application, due to the coarse 

resolution. 

The temporal anomalies allow to evaluate the capability of the considered 

microwave soil moisture products to detect irrigation by analysing the same 

problem under a temporal perspective rather than a spatial one. In fact, this second 

index quantifies the difference between the soil moisture value observed in a 

certain pixel during a certain observation day and its temporal mean, which in this 

application has been calculated for the entire study period. The time series of the 

weekly-aggregated temporal anomalies spatially averaged over the Urgell area, 

the Catalan and Aragonese area, and the dryland are provided in Figure 5.4. The 

main advantage of the analysis in terms of temporal anomalies is that by looking 

at the temporal dynamics of soil moisture, the results are not influenced by static 

patterns, e.g., soil texture, that may affect soil moisture observations. Similarly to 

the analysis in terms of spatial relative differences, in the temporal analysis good 

performances in detecting irrigation are represented by higher values of the 
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considered metric within the irrigable lands with respect to the dryland over the 

irrigation seasons. 

 

Figure 5.2.  Maps of the spatial relative differences averaged during the 

periods May-September 2016 (upper panel) and 2017 (lower panel). The maps 

are referred to the high-resolution (1 km) products used in this analysis (Dari 

et al., 2021a).  

 

Figure 5.3.  Maps of the spatial relative differences averaged during the 

periods May-September 2016 (upper panel) and 2017 (lower panel). The maps 

are referred to the coarser resolution products used in this analysis (Dari et 

al., 2021a).  
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Both SMOS and SMAP at 1 km show mean temporal anomalies calculated for the 

irrigated macro-areas higher than those calculated for the dryland during the 

highest-intensity irrigation periods of 2016 and 2017, which are shaded in grey in 

Figure 5.4. The only exception is detectable for SMOS at 1 km over the Urgell area 

during the period May-September 2017. Mean positive temporal anomalies can be 

observed for Sentinel-1 over the irrigable lands; however, the same happens for 

the dryland too. Hence, the different wetness conditions coexisting in the pilot area 

are not well reproduced. In general, SURFEX-ISBA data show lower temporal 

anomalies during the highest irrigation intensity periods. This is an expected result 

from a modeled data set not considering irrigation, in which the temporal 

dynamics of soil moisture are mainly determined by precipitation events. Finally, 

no clear discrepancies attributable to irrigation between the time series of the 

temporal anomalies over the irrigated areas and the dryland can be observed for 

SMAP and ASCAT. 

 

Figure 5.4.  Time series of the weekly-aggregated temporal anomalies 

averaged over: a) the Urgell area, b) the Catalan and Aragonese area, and c) 

the dryland (Dari et al.,  2021a).  

In line with what said for the analysis performed through the spatial relative 

differences, the analysis of the district-averaged indices must be coupled with a 

spatially distributed information if the aim is to spot the actually occurrence of 
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irrigation. Hence, maps of the temporal anomalies averaged during the periods 

May-September 2016 and 2017 are provided in Figures 5.5 and 5.6.  

 

Figure 5.5.  Maps of the temporal anomalies averaged during the periods May -

September 2016 (upper panel) and 2017 (lower panel). The maps are referred 

to the high-resolution (1 km) products used in this analysis (Dari et al.,  202 1a). 

 

Figure 5.6.  Maps of the temporal anomalies averaged during the periods May -

September 2016 (upper panel) and 2017 (lower panel). The maps are referred 

to the coarser resolution products used in this analysis (Dari et al., 202 1a).  

In this case, good performances in detecting irrigation evaluated through the 

temporal anomalies are represented by both positive (pixel wetter to its two-years 
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temporal mean during the irrigation season) or close to zero (pixel close to its two-

years temporal mean during the irrigation season) values of this metric over the 

irrigable lands concurrently with lower values over the dryland. 

Satisfactory results are obtained for both the downscaled products during the 

periods May-September 2016 and 2017; in fact, the mean temporal anomalies 

calculated for these data sets are generally higher than or equal to zero over the 

irrigated areas. In particular, a homogeneous pattern of positive temporal 

anomalies recurs over the Urgell (except for the maps referred to SMOS at 1 km 

during the focus period in 2017). Over the Catalan and Aragonese area, higher 

temporal anomalies during the irrigation season in 2017 with respect to the same 

period of 2016 can be observed for both downscaled products. It is noteworthy 

that, the maps referred to SMAP and SMOS at 1 km show higher anomalies within 

the irrigable lands with respect to the dryland at East of the Urgell area. Sentinel-

1 data provide an unexpected and mostly uniform humid condition, thus 

corroborating the unsatisfactory results previously described. The maps referred 

to SMAP and ASCAT still highlight their limitations over the pilot area for this 

kind of application due to the coarse resolution. Finally, the SURFEX-ISBA-

derived maps provide a uniform dry situation, which is expected during the dry 

season from a modeled data set in which irrigation is not considered. 

5.1.2 Correlation Analysis 

An additional statistical feature that can be interpreted as a proxy of irrigation is 

the correlation between remotely sensed and modeled soil moisture during the 

irrigation season. Hence, the correlation between each remotely sensed soil 

moisture data set and the SURFEX-ISBA soil moisture during the highest-intensity 

irrigation periods in 2016 and 2017 has been calculated. The Pearson correlation 

coefficient (�̅�) between the remote sensing products and the SURFEX-ISBA output 

and averaged over the Urgell area, over the Catalan and Aragonese area, and over 

the dryland is provided in Figure 5.7. Considering that in the adopted 

configuration the modeled soil moisture does not take into account of irrigation, 

and by assuming that precipitations are correct, low (scarce correlation) or 

negative (inverse correlation) �̅� values obtained for an irrigated area can be 

attributed to the capability to contain the irrigation information of the remotely 

sensed product. According to this approach, SMOS at 1 km is the data set showing 

the clearest signal attributable to the irrigation, as it is less correlated with modeled 

soil moisture over the irrigated macro-areas with respect to what happens over the 
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dryland. A similar result was obtained, over the Urgell, by Escorihuela and 

Quintana-Seguí (2016). For SMAP at 1 km, the lowest correlation values are 

obtained over the Urgell area; then, �̅� increase over the Catalan and Aragonese 

area, but it remains lower than over the dryland, where the highest values for this 

product are obtained. In line with the results presented in the previous section, 

Sentinel-1 does not provide clearly irrigation-related results. SMAP retrieved soil 

moisture is the most correlated with modeled soil moisture from SURFEX-ISBA, 

independently by the area or the period considered. Hence, this data set does not 

show any kind of signal interpretable as irrigation. Finally, ASCAT provides the 

lowest correlation values, which are often negative. However, this happens over 

the irrigated areas and over the dryland indiscriminately; hence, this issue cannot 

be interpreted as an irrigation signal.  

 

Figure 5.7.  Heatmap showing the areal mean correlation between satellite and 

modeled soil moisture data sets during the periods May-September 2016 and 

2017 over the Urgell area, the Catalan and Aragonese area and the dryland  

area surrounding the irrigation districts.  

This result can be likely attributed to the coarse resolution of the data set, too low 

with respect to the extent of the irrigated areas over the pilot site to properly 

disentangle the signal from the irrigated pixels from the signal coming from the 

adjacent dryland. 
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The spatial distribution of the correlation values during May-September 2016 and 

2017, calculated for the high-resolution (1 km) soil moisture product only, is 

provided in Figure 5.8. Comparable distributions are obtained for the DISPATCH 

downscaled products. During the highest-intensity irrigation periods in 2016, both 

SMOS and SMAP at 1 km show a low correlation pattern in the Urgell. This 

behaviour is less visible during the focus period in 2017, but correlation over the 

irrigable land still remains lower than over the dryland, especially in its Northern 

part, which is mainly occupied by rainfed croplands. Unclear correlation patterns 

are detected for Sentinel-1 in May-September 2016. During the same season in 

2017, except for the upper part of the dryland, the correlation patterns are almost 

the opposite of what expected. 

 

Figure 5.8.  Maps of the spatial distribution of the correlation between satellite 

and modeled soil moisture for the periods May -September 2016 (upper panel) 

and May-September 2017 (lower panel).  The maps are referred to the high-

resolution (1 km) products used in this analysis  (Dari et al., 2021a).  

5.1.3 K-means Clustering Classification 

On the basis of the best performing products arising from the previously described 

investigation, namely SMOS and SMAP at 1 km, the analysis aimed to map 

irrigated areas has been refined. The DISPATCH downscaled products have been 

exploited to map the three prevalent classes of natural surfaces detectable over the 
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pilot area (irrigated areas, dryland, and forest or natural areas) through the K-

means algorithm; hence, three clusters have been considered. The classification has 

been performed by merging information derived from satellite and modeled soil 

moisture as input for the clustering. The method does not require any training step, 

as it is only based on statistical and temporal stability derived features, which are 

expected to assume a determined behaviour over the irrigable lands during the 

highest-intensity irrigation periods; the input parameters are summarized in Table 

5.2. 

Table 5.2. The sixteen parameters combinations adopted to perform the clustering 

(adapted from Dari et al., 2021a).  

MAY-SEPTEMBER 2016 MAY-SEPTEMBER 2017 

Category Input parameters Code Category Input parameters Code 

Satellite soil 

moisture 

based 

𝜎(𝛿𝑥), �̅�𝑥 from 

SMOS at 1 km 
ST.A.SMOS16 

Satellite soil 

moisture 

based 

𝜎(𝛿𝑥), �̅�𝑥 from 

SMOS at 1 km 
ST.A.SMOS17 

𝜎(𝛿𝑥), �̅�𝑥 from 

SMAP at 1 km 
ST.A.SMAP16 

𝜎(𝛿𝑥), �̅�𝑥 from 

SMAP at 1 km 
ST.A.SMAP17 

𝛿�̅�, �̅�𝑥 from 

SMOS at 1 km 
D.A.SMOS16 

𝛿�̅�, �̅�𝑥 from 

SMOS at 1 km 
D.A.SMOS17 

𝛿�̅�, �̅�𝑥 from 

SMAP at 1 km 
D.A.SMAP16 

𝛿�̅�, �̅�𝑥 from 

SMAP at 1 km 
D.A.SMAP17 

Merging 

modeled 

and 

remotely 

sensed soil 

moisture 

𝜎(𝛿𝑥), �̅�𝑥, 𝑟𝑥 from 

SMOS at 1 km 
ST.A.C.SMOS16 

Merging 

modeled 

and 

remotely 

sensed soil 

moisture 

𝜎(𝛿𝑥), �̅�𝑥, 𝑟𝑥 from 

SMOS at 1 km 
ST.A.C.SMOS17 

𝜎(𝛿𝑥), �̅�𝑥, 𝑟𝑥 from 

SMAP at 1 km 
ST.A.C.SMAP16 

𝜎(𝛿𝑥), �̅�𝑥, 𝑟𝑥 from 

SMAP at 1 km 
ST.A.C.SMAP17 

𝛿�̅�, �̅�𝑥, 𝑟𝑥 from 

SMOS at 1 km 
D.A.C.SMOS16 

𝛿�̅�, �̅�𝑥, 𝑟𝑥 from 

SMOS at 1 km 
D.A.C.SMOS17 

𝛿�̅�, �̅�𝑥, 𝑟𝑥 from 

SMAP at 1 km 
D.A.C.SMAP16 

𝛿�̅�, �̅�𝑥, 𝑟𝑥 from 

SMAP at 1 km 
D.A.C.SMAP17 

 

 The parameters exploited as input for the clustering are the mean relative 

difference, 𝛿�̅�, the standard deviation of the relative differences, 𝜎(𝛿𝑥), the mean 

of the temporal anomaly, �̅�𝑥, and the correlation between satellite and modeled 

soil moisture, 𝑟𝑥; 𝛿�̅� and �̅�𝑥 are expected to assume higher values over the irrigated 

land, while 𝜎(𝛿𝑥) and 𝑟𝑥 are supposed to show lover values over irrigated areas. 

The modeled data has been involved in the clustering experiments to investigate 

whether it can add information in the irrigation mapping with respect to 

considering remotely sensed data only. Eight combinations of the input 
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parameters have been used to produce an equal number of classifications referred 

to May-September 2016 and 2017, for a total of sixteen experiments carried out. 

The performed experiments can be divided in two groups: one exploiting soil 

moisture only as input for the algorithm (clustering with two input parameters 

and three clusters) and another one merging information from modeled and 

remotely sensed soil moisture as input for the algorithm (clustering with three 

input parameters and three clusters). The maps resulting from this process have 

been validated according to two alternative validations, which are described in the 

following. 

5.1.3.1 First Validation Procedure 

As explained in Chapter 4, in the first validation procedure carried out the 

information about the irrigation attribute of the SIGPAC ground truth data set has 

been exploited to produce benchmark maps of dryland (D, corresponding to non-

irrigated fields), irrigated areas (I, corresponding to irrigated fields), and forest or 

natural areas (F, corresponding to the remaining portions). These maps have been 

compared with those derived from the clustering process. It is noteworthy that the 

data outside the Catalan edges (not available in the ground truth data set), the 

urban areas, and the inland water bodies have been masked out before the 

validation. The confusion matrices synthetizing the performances of the various 

experiments in reproducing the ground truth are provided in Figure 5.9. In each 

matrix, referred to a specific experiment, the classes derived from the clustering 

process are provided on the X-axis, while on the Y-axis the ground truth classes 

are shown. High values along the matrices’ diagonals indicate well-performing 

classifications. 

During the highest-intensity irrigation period in 2016, overall better results are 

obtained for classifications exploiting SMAP at 1 km data rather than SMOS at 1 

km data as input. The dryland area is satisfactory reproduced in all the 

experiments referred to the period May-September 2016, with percentages of 

dryland pixels well classified by the proposed method ranging between 61% and 

83%. Several experiments show not-negligible confusion between forest or natural 

areas and irrigated land. Nevertheless, in the classification identified by the code 

ST.A.SMAP16, the 60% of natural pixels and the 51% of the irrigated pixels are 

well classified. Low rates of dryland pixels wrongly classified as irrigated pixels 

can be detected in all the experiments carried out, with percentages ranking 

between 0% and 7%; it is noteworthy that, in four classifications referred to the 
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highest-intensity irrigation season in 2016, this percentage is equal to 0%. The 

percentages of irrigated areas wrongly classified as dryland, ranging between 6% 

and 26% (a value higher than 20% is reached in one experiment only), are 

satisfactory. Hence, even if not all the experiments carried out are expected to work 

properly, the method provides overall satisfactory results in disentangling 

between irrigated areas and the dryland.  

 

Figure 5.9. Confusion matrices resulting from the first validation referred to May-

September 2016 (upper panel) and 2017 (lower panel). The ground truth classes 

are represented on the Y-axis, while the clustering-derived classes are shown on 

the X-axis. D indicates the dryland, F the forest or natural areas, and I the irrigated 

land (Dari et al., 2021a). 
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Similar results are obtained during the period May-September 2017. In the 

classifications referred to this period, the dryland is still well reproduced, with 

percentages ranging between 68% and 83%. Although in the experiment 

ST.A.SMAP17 the 65% of the ground truth irrigated pixels are well reproduced 

and in the classification with code D.A.SMOS17 the 58% of the forest or natural 

areas are well classified, confusion between natural and irrigated areas still persists 

in many experiments. The overall better performances of the experiments 

exploiting SMAP at 1 km data as input are confirmed, as well as the overall 

satisfactory performances in distinguishing irrigated areas from the dryland. In 

fact, the percentage of dryland pixels misinterpreted as irrigated varies between 

1% and 5%; the rates of irrigated areas confused with the dryland range between 

6% and 28% (values higher than 20% reached in two experiments only). 

5.1.3.2 Second Validation Procedure 

An alternative procedure exploiting the information on the crop type provided in 

the ground truth data set rather than the irrigation information has been 

performed. This validation, specific for summer crops, is based on the 

consideration that it may happen that a certain parcel carries the irrigation 

attribute associated to it, as it can be reached by the irrigation infrastructure, but it 

has not been actually irrigated during the focus period to which the clustering-

derived maps have been produced, namely from May to September 2016 and 2017. 

In this second validation, SIGPAC-derived maps of selected summer crops (forage, 

fruit trees, and summer cereals), other crops, and remaining portions have been 

used as benchmark maps of irrigated areas (I), dryland areas (D), and forest or 

natural areas (F), respectively. The confusion matrices referred to the second 

validation carried out in this study are shown in Figure 5.10. 

For both focus periods, a systematic enhancement in the classification of irrigated 

areas and of the natural areas along with slightly less-performing detections of the 

dryland can be observed. The percentages of dryland pixels properly classified 

during May-September 2016 range between 54% and 78%, while during May-

September 2017 the percentage varies between 60% and 78%. For both considered 

highest-intensity irrigation periods, the experiment configuration that best 

represent the forest or natural areas is the same: D.A.SMOS16 in 2016 (62% of 

natural pixels well classified) and D.A.SMOS17 in 2017 (59% of natural pixels well 

reproduced). The best performing experiments in correctly classifying the 
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irrigated areas are: ST.A.SMAP16 (65% of irrigated pixels well classified) and 

ST.A.SMAP17 (78% of irrigated pixels well recognized). 

 

Figure 5.10.  Confusion matrices resulting from the second validation referred 

to May-September 2016 (upper panel) and 2017 (lower panel). The ground 

truth classes are represented on the Y-axis, while the clustering-derived 

classes are shown on the X-axis. D indicates the dryland, F the forest or 

natural areas, and I the irrigated land (Dari et al., 202 1a).  

The overall better performances obtained for experiments exploiting SMAP at 1 

km data as input, as well as the almost total lack of confusion between irrigated 

areas and the dryland are common aspects between the two validations carried 

out. In fact, in this second validation the rate of dryland pixels confused with 

irrigated pixels varies between 1% and 9% during the focus period in 2016 and 

between 2% and 9% during the focus period in 2017. The percentage of irrigated 
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pixels misinterpreted as dryland ranges between 2% and 14% during the focus 

period in 2016 and between 1% and 18% during the focus period in 2017. It is 

noteworthy that not negligible percentages of irrigated pixels wrongly classified 

as forest or natural pixels still persist. 

5.1.3.3 Sensitivity to the Aggregation Threshold 

As thoroughly explained in Chapter 4, the ground truth data set used in this 

analysis has been aggregated from a plot scale to 1 km resolution in order to be 

compared with the clustering-derived maps. In order to assess the loss of 

information due to this pre-processing step and how it impacts on the 

performances of the proposed classifications, two data sets containing binary 

information have been derived from the irrigation and the crop type attributes 

used to perform the validations. Each data set contains the irrigated crops only and 

the summer crops only, respectively, within the irrigable lands. These data sets 

have been obtained through two steps. In the first one, the plot scale data have 

been projected on a 100 m spatial resolution regular grid; then, the 100 m resolution 

data have been aggregated at 1 km by assigning to each 1 km × 1 km pixel the 

irrigated class (or the summer crops class) in presence of rates of 100 m × 100 m 

pixels contained in it higher than 30%, 40%, 50%, 60% of the total. Sixteen 

alternative ground truth data sets (eight for 2016 and eight for 2017) have been 

obtained through this procedure; they contain information on irrigated pixels or 

summer crops pixels only at different aggregation thresholds: 0.3, 0.4, 0.5, and 0.6. 

Figure 5.11 provides the percentages of the irrigated pixels (or summer crops 

pixels) well classified by the clustering for the different aggregation thresholds 

considered. 

For both kinds of exploited information and both focus periods, the already well 

performing classifications further increase the related scores, even reaching the 

90% of pixel with summer crops well recognized by the clustering. Conversely, the 

adoption of less restrictive aggregation thresholds does not reflect in an 

enhancement of the already unsatisfactory performing experiments. What 

proposed in this section is a simplified experiment, in which only binary 

distinctions and not three classes are concurrently adopted, but it provides the 

magnitudes of the partial loss of information that occurs in the aggregation of the 

plot-scale-born data set to the remotely sensed data resolution (1 km). 

Furthermore, this experiment further validates the capability of the proposed 

method in reproducing well homogeneous irrigation patterns. 
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Figure 5.11.  Heatmaps representing the classification accuracy of the irrigated 

pixels at different aggregation thresholds (T1 = 0.3, T2 = 0.4, T3 = 0.5, T4 = 0.6) 

considering: a) all the pixels inside the irrigable land marked as irrigated in 

the ground truth data set  (SIGPAC) and b) only the pixels in the same domain 

carrying the information about the selected summer crops: forage, summer 

cereals, and fruit trees (Dari et al., 202 1a).  

5.1.3.4 Definitive Classifications 

Among all the experiments carried out, whose results have been presented in the 

Sections 5.1.3.1 and 5.3.1.2, the best ones for each focus period have been kept as 

definitive classifications. According to both validation procedures, the best 

performing experiments exploit the same input parameters. For each focus period, 

two classifications have been selected: the experiment that overall best reproduces 

the irrigated land, namely ST.A.SMAP16 for 2016 and ST.A.SMAP17 for 2017, and 

the best-performing experiment in well classifying all the three classes 

concurrently, namely D.A.C.SMAP16 for 2016 and D.A.C.SMAP17 for 2017. The 
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definitive classifications proposed, together with the reference ground truth maps, 

are provided in Figure 5.12. The irrigated areas are represented in blue, the 

dryland in brown, and the forest or natural areas in green; the irrigation canals 

network is also shown (magenta lines). As explained in Chapter 4, inland water 

bodies and cities have been masked out. The maps also show the border which 

separates Catalonia, for which the ground truth data set is available, and Aragon, 

over which it has not been possible to quantitatively validate the proposed maps. 

Despite good agreement between the proposed classifications and the benchmark 

can be observed, some disturbances due to a system of reservoirs in the North side 

and to the presence of evergreen forests in the South-East can be detected.  

5.1.4 Discussion and Remarks 

The activity aimed to detect and map irrigation over the study area in the Ebro 

basin provide an assessment of the best performing products among those 

evaluated; furthermore, a method to map irrigated areas is proposed. The 

enhanced resolution L-band passive microwave based products prove to be the 

most skilful ones in detecting irrigation over the pilot area. The analysis of the 

spatial dynamics of soil moisture, carried out through the spatial relative 

differences, indicates SMOS at 1 km as the best performing product over the 

Catalan and Aragonese area and SMAP at 1 km as the most capable to detect 

irrigation over the Urgell area. The analysis of the temporal dynamics of soil 

moisture, carried out through the temporal anomalies, shows a strong irrigation-

related pattern for both SMAP and SMOS at 1 km during May-September 2016 

over the Urgell, where flood irrigation is the most employed technique. The same 

pattern is not observed for SMOS at 1 km during the focus period in 2017, because 

of a source of RFI detected in the Urgell since the end of 2016 onwards and not 

properly solved by the post-processing through the RFI filter. The probability of 

RFI occurrence over the Urgell area is provided in Figure 5.13. Starting from the 

second half of 2016, the RFI probability begins increasing up to values of ~0.7 

reached in 2017. It is noteworthy that this issue does not affect SMOS at 1 km data 

over the Catalan and Aragonese area during 2016. The SMAP at 1 km data is not 

affected by RFI because SMAP’s radar and radiometer electronics, as well as the 

algorithms, are more recent than the SMOS mission. Hence, on the basis of the 

SMOS mission experience, the SMAP mission has been designed to include on 

board filters to mitigate RFI effects (Entekhabi et al., 2010). 
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Figure 5.12.  Ground truth (a) and definitive clustering derived (b) maps for 

the periods May-September 2016 and May-September 2017. The irrigated areas 

are represented in blue, the forest or natural areas in green and the dryland 

in brown (Dari et al., 2021a).  
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Figure 5.13.  Time series of the probability of RFI occurrence referred to two 

locations: Algerri-Balaguer (red) and Urgell (blue).  Taken from Dari et al.  

(2021a).  

Sentinel- 1 provides unsatisfactory performances in both spatial and temporal 

analyses; this issue can be mainly attributed to a higher sensitivity to surface 

characteristics (e.g., the roughness and the vegetation cover) characterizing the C-

band SAR data with respect to observations retrieved by L-band passive sensors. 

A complementary reason for the unsatisfactory performances obtained with 

Sentinel-1 can be the missing implementation of corrections for seasonal 

vegetation effects in the retrieval algorithm. The coarser resolution products 

evaluated (SMAP and ASCAT) are not able to detect the finer-scale differences 

existing over the pilot site landscape and thus spotting irrigation, mainly because 

of their resolution. In fact, these products showed potential in detecting irrigation 

over large areas in the continental US (Kumar et al., 2015; Lawston et al., 2017). 

As a difference with many existing classification methods that need training 

processes before to be applied or decision tree structures (Thenkabail et al., 2007; 

Ozdogan and Gutman, 2008; Jin et al., 2016; Teleguntla et al., 2017), the 

methodology proposed in this thesis does not require any training. Its strength 

relies on the temporal stability derived indices, which are expected to assume 

precise different behaviours over the irrigated land and over the other surfaces. 

Both procedures adopted in the performed study point out the capability of the 

method in separating irrigated areas from rainfed agricultural areas. This aspect is 

very useful to spot the actually irrigated portion of areas known to be equipped 

for irrigation. The recursive confusion occurring between irrigated areas and forest 

or natural areas represents the main limitation of the proposed methodology. The 
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rate of forest or natural pixels wrongly classified as irrigated pixels in the North of 

the focus area is mainly attributable to a system of reservoirs providing water to 

the irrigation districts. These water bodies alter the soil wetness conditions 

retrieved by the satellite and leads to wrong classifications. The percentages of 

irrigated pixels wrongly classified as natural pixels are mainly due to the limits of 

the methods in adequately reproducing areas where fruit trees are the main 

cultivation and strongly mixed areas, like the one located in the North of the 

Urgell, where fruit trees coexist with abandoned fields and corn crops. 

Nevertheless, the fact that these areas are misinterpreted as natural areas instead 

of dryland is comforting. The wrong classification of fruit trees, already 

experienced in Gao et al. (2018), is mainly attributable to the irrigation technique 

employed; areas where fruit trees exist are drip irrigated, so they generally result 

less humid than areas destined to other crops. This issue determines a wrong 

classification during the clustering. 

The clustering experiments highlight better performances of SMAP at 1 km with 

respect to SMOS at 1 km. Although if the higher accuracy of coarse resolution 

SMAP data with respect to coarse SMOS data is a well-known issue (Chen et al., 

2018), both the DISPATCH downscaled versions of the products perform well in 

detecting irrigation, but in the clustering the RFI problems affecting the SMOS at 

1 km product make its performances drop down. 

Finally, the analysis on the sensitivity to the aggregation threshold highlights that 

the adoption of less restrictive thresholds when aggregating the ground truth data 

to 1 km lead to a gain in accuracy for already well performing experiments only.  

The following remarks can be drawn from the above discussed results: 

1. The spatial scale of the irrigation practices over the pilot area in the Ebro 

basin point out the need of high-resolution (1 km or less) soil moisture data 

sets to detect irrigation; 

2. the temporal stability derived indices are suitable to evaluate the capability 

to detect irrigation of remotely sensed products, as they express the spatial-

temporal dynamics of soil moisture; 

3. SMOS and SMAP at 1 km are the best performing products in detecting 

irrigation; the downscaling through MODIS optical data surely represents 

an enhancement making the DISPATCH downscaled products able to 

obtain reliable information on where irrigation actually occurs; 
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4. the proposed methodology is particularly performing in disentangling 

irrigated areas from rainfed areas; 

5. for both focus periods, the best classifications are the same; more in detail, 

ST.A.SMAP16 and ST.A.SMAP17 are the experiments that best reproduce 

the irrigated areas and exploit remotely sensed soil moisture only. This is 

comforting, as a very low number of models running at 1 km over large 

regions exist; 

6. the experiments D.A.C.SMAP16 and D.A.C.SMAP17 are those that overall 

best reproduce all the three classes concurrently; note that they merge 

modeled and remotely sensed soil moisture as input. 

5.2 Results in the Upper Tiber Basin 

In this section, the results obtained over the agricultural pilot areas in the Upper 

Tiber basin are presented. The more complex topography of this case study with 

respect to the study area in the Ebro basin has led to the choice of performing a 

double-scale analysis. The results obtained from analyses carried out at 1 km 

spatial resolution are provided in Section 5.2.1, while Section 5.2.2 describes the 

results obtained at a plot scale. Discussion and remarks are provided in Section 

5.2.3. Henceforth, the Sentinel-1 product at 1 km delivered by the Copernicus 

Global Land Service is called “Copernicus Sentinel-1”, while the plot-scale data set 

produced by THEIA and aggregated at 1 km is called “THEIA Sentinel-1 at 1 km”. 

The 100 m aggregated version used in the field scale analysis is called “THEIA 

Sentinel-1”. The DISPATCH downscaled SMAP data set is called “SMAP at 1 km”, 

in accordance with the previously described analysis. Table 5.3 summarizes the 

main characteristics of the remote sensing soil moisture used. 
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Table 5.3. Overview of the main features of the remote sensing soil moisture products used 

in the double-scale analysis aimed to evaluate the detectability of irrigation over the pilot 

area in the Upper Tiber basin: sensor aboard the satellite, operating band, and spatial 

resolution.  

Product Sensor Operating Band Spatial Resolution 

SMAP at 1 

km 

radiometer 

radar – not working 

radiometer:  

L-band (1.4 GHz) 

radar: 

 L-band (1.26 GHz) – 

not working 

1 km – downscaled through the 

DISPATCH algorithm 

Copernicus 

Sentinel-1 
SAR C-band (5.4 GHz) 1 km 

THEIA 

Sentinel-1 at 

1 km 

SAR C-band (5.4 GHz) 
Plot-scale obtained by merging with 

Sentinel-2, aggregated at 1 km 

THEIA 

Sentinel-1 
SAR C-band (5.4 GHz) 

Plot-scale obtained by merging with 

Sentinel-2, aggregated at 100 m 

 

5.2.1 Analysis at 1 km Spatial Resolution 

The main aim of the analysis at 1 km is to investigate if products at this spatial 

resolution are capable to detect irrigation occurring at the scale of the agricultural 

sites in the Upper Tiber basin. The 1 km resolution has proven to be suitable to 

detect irrigation practices over the pilot area in the Ebro basin; hence, this analysis 

represents an extension of the proposed methodology over a more complex area. 

For this reason, the same approach has been adopted; namely, the detectability of 

irrigation by the considered products has been carried out by investigating the 

spatial and temporal dynamics of retrieved soil moisture through the temporal 

stability derived indices. Again, the surface soil moisture output from SURFEX-

ISBA simulations has been involved into the analysis with the aim of representing 

a not irrigated benchmark situation. 

Figure 5.14 shows the weekly time series of the spatial relative differences 

averaged over the four pilot agricultural areas (see Figure 3.5). For each domain, 

the spatially-averaged time series of the NDVI are also provided. Note that the 

modeled soil moisture data set ends in September 2019.  
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Figure 5.14.  Weekly time series of the spatial relative differences according to 

all the considered data sets and averaged over the four pilot agricultural 

areas: Upper Tiber, Trasimeno, Left Tiber, and Right Tiber. For each domain, 

the spatially-averaged time series of the NDVI are also shown (adapted from 

Dari et al., 2021b). 

As explained in Section 5.1.1, if a remotely sensed soil moisture product carries the 

irrigation information, it is expected to show high anomaly values of relative 

differences during the highest irrigation intensity season, corresponding in this 

case with the period June-September. Note that the comparison between the 

irrigated land and the dryland performed for the study area in Spain is not possible 

over this case study. In fact, in the Upper Tiber basin, large uniform irrigated and 

not irrigated zones in clear contrast to each other and with similar topographic 

features do not exist. Actually, the irrigated and not irrigated portions within the 
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pilot agricultural areas are highly mixed together. For this reason, it is interesting 

to investigate if products at 1 km spatial resolution are skilful enough in 

adequately solving the signal from adjacent irrigated and not irrigated areas. The 

performed spatial analysis provides promising results over the Upper Tiber 

agricultural area for all the remotely sensed data sets evaluated. Increases in 

spatial relative differences can be detected for the SMAP at 1 km data during the 

focus periods in 2017, 2018, and 2019. Copernicus Sentinel-1 show a similar 

behaviour in 2017 and 2019. During June-September 2018, the spatially averaged 

values of the relative differences remain lower than during the same period of the 

remaining considered years. The THEIA Sentinel-1 at 1 km data set shows a 

behaviour similar to the one observed for the Copernicus Sentinel-1 data, with 

positive relative differences over the Upper Tiber area during the highest-intensity 

irrigation season clearer in 2017 and 2019 with respect to 2018. An interesting result 

is that an analogous behaviour can be observed in the time series of modeled soil 

moisture over the Upper Tiber area and the Right Tiber area; this data set surely 

does not contain the irrigation information. This issue leads us to think that the 

promising results obtained by the spatial analysis at 1 km over the Upper Tiber 

agricultural area are not exclusively attributable to irrigation. The fact that positive 

relative differences are detected during June-September for the SURFEX-ISBA data 

set also suggests that the results obtained through the remotely sensed data sets 

are affected by static patterns (e.g. soil texture). Another factor potentially affecting 

the promising results over the Upper Tiber agricultural area can be deduced by 

the NDVI time series (lower panel of Figure 5.14). For all the pilot agricultural 

portions except for the Upper Tiber, only one peak during spring can be observed. 

Conversely, over the Upper Tiber area, after the first peak in spring, the spatially-

averaged NDVI rises again. This behaviour can be likely attributed to the irrigated 

crops, more uniformly distributed over the Upper Tiber area with respect to the 

others considered in this study. This trend seems to be reflected in the SMAP at 1 

km and THEIA Sentinel-1 km data sets, both produced by merging the soil 

moisture information with the NDVI. Hence, if from one hand the vegetation 

conditions may affect the results, on the other they corroborate the district-scale 

signal detected by almost all the evaluated products and partly attributable to 

irrigation. In fact, well-developed vegetation is expected where irrigation occurs. 

The spatial averages at the scale of the agricultural areas can bring to a loss of 

information about irrigation events occurring over sub-areas, especially if the 

spatial scale at which the irrigation practices generally occur over these districts is 
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considered. For this reason, the maps of the mean spatial relative differences 

during the periods June-September of 2017, 2018, and 2019 have been produced 

(see Figure 5.15). The maps help in detecting portions of the pilot agricultural areas 

showing positive relative differences during the highest-intensity irrigation season 

that can be interpreted as an irrigation track contained into the remotely sensed 

soil moisture data sets. 

 

Figure 5.15.  Maps of the spatial relative differences averaged during the 

periods June-September 2017 (upper panel), 2018 (middle panel), and 2019 

(lower panel). Derived from Dari et al. (2021b).  

For the SMAP at 1 km data set, positive relative differences can be observed over 

the Upper Tiber area for all the three focus years. Recursive patterns of relative 
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differences higher than zero can be observed over the Trasimeno area; this result 

may be affected by the adjacent lake. The Right Tiber area is generally drier than 

the others according to this metric. Except for pattern of slightly positive relative 

differences in the highest irrigation intensity season in 2017 and 2018, dry 

conditions are detected for the Left Tiber area also. Both versions of Sentinel-1 

considered in this study provide mean positive relative differences over the Upper 

Tiber area in June-September 2017 and 2019, less in 2018. Recursive areas where 

the considered index shows values higher than zero can be detected in the 

Trasimeno area and in the Right Tiber area for the Copernicus Sentinel-1 data set 

in June-September 2018 and 2019. Scattered low-entity positive relative differences 

areas can be observed for THEIA Sentinel-1 at 1 km data. In the maps referred to 

the SURFEX-ISBA outputs, patterns of positive relative differences are obtained 

over the Upper Tiber area and portions of the Trasimeno and Left Tiber areas; 

surely, these results are not attributable to irrigation. Hence, the modeled soil 

moisture is a useful support to correctly interpret the remote sensing derived 

results. However, the patterns of positive relative differences are characterized by 

low values (less than 0.2). This issue suggests that the promising results obtained 

over the Upper Tiber area, which are common to almost all the remotely sensed 

products, are influenced but not fully determined by static pattern also reproduced 

by the model. The analysis in terms of temporal anomalies can help in 

disentangling the effects due static features from other factors (e.g., irrigation). The 

weekly time series of the temporal anomalies averaged over the pilot agricultural 

areas are shown in Figure 5.16. 

No irrigation signals can be deduced from the trends of the temporal anomalies 

averaged over the pilot agricultural areas. In fact, all the considered products 

show, for each pilot area, lower temporal anomalies in the dry season with respect 

to the rest of the year, as expected in absence of irrigation. As already explained, 

by only looking at spatial means can be misleading, especially over 

topographically complex and highly-mixed areas. Hence, maps of the temporal 

anomalies averaged during the period June-September of 2017, 2018, and 2019 

have been produced (see Figure 5.17). Positive or close-to-zero mean temporal 

anomalies detected during the highest-intensity irrigation periods are attributable 

to irrigation practices. In fact, positive or close-to-zero values of this metric indicate 

that a certain pixel is wetter than or close to its 3-years temporal mean during a 

period naturally expected to be dry. 



5. Results of the Irrigation Detection and Mapping Activity 

 

 

110 

 

 

Figure 5.16.  Weekly time series of the temporal anomalies according to all the 

considered data sets and averaged over the pilot agricultural areas : Upper 

Tiber, Trasimeno, Left Tiber, and Right Tiber  (adapted from Dari et al., 2021b).  

In general, a drier condition in 2017 with respect to 2018 and 2019 is observed for 

all the data sets, including the SURFEX-ISBA modeled soil moisture. No positive 

patterns of mean temporal anomalies are detected for the SMAP at 1 km data set; 

however, slightly negative (less than -0.1 or –0.2) values can be observed for the 

Upper Tiber and the Left Tiber areas during June-September 2018 and 2019. The 

two Sentinel-1 versions show similar patterns, especially in June-September 2018 

and 2019. Slightly negative values are detected over the Upper Tiber area and 

scattered areas where positive temporal anomalies are obtained can be observed. 

The model shows evenly distributed dry conditions, as expected by a modeled 

data set during the summer season. Note that in this case negative close-to-zero 

values are not an irrigation signal, but the result of the smaller range of variability 

characterizing the modeled data with respect to remotely sensed observations. 
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Figure 5.17.  Maps of the temporal anomalies averaged during the periods 

June-September 2017 (upper panel), 2018 (middle panel), and 2019 (lower 

panel). Adapted from Dari et al. (2021b).  

5.2.2 Analysis at a Plot Scale Spatial Resolution 

The analysis at a plot scale (100 m) spatial resolution, for which the THEIA 

Sentinel-1 product has been used, allows to investigate the spatial-temporal 

dynamics of soil moisture over the single agricultural field. Figures 5.18 and 5.19 

show the spatial relative differences and the temporal anomalies, respectively, 

averaged during June-September 2017, 2018, and 2019.  
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Figure 5.18.  Maps of the spatial relative differences averaged during the 

periods June-September 2017 (upper panel), 2018 (middle panel), and 2019 

(lower panel). For each agricultural pilot area (Upper Tiber, Trasimeno, Left 

Tiber, and Right Tiber), a dedicated map has been produced  (Dari et al.,  

2021b).  

In this case, because of the considered spatial resolution, the maps are provided 

for each agricultural area separately. Despite this, the information is too much 

detailed to analyse the obtained results as previously done for the analysis at 1 km 

spatial resolution. Nevertheless, an overall good agreement between the spatial 

and the temporal analysis can be observed. The K-means clustering algorithm 

represents a useful tool to synthetize the results obtained for this fine-resolution 

analysis and to support the related discussion. A binary classification of irrigated 

and non-irrigated areas has been produced by exploiting the mean spatial relative 

differences and the mean temporal anomalies during June-September 2017, 2018, 
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and 2019 as input data points. Hence, a classification considering two clusters and 

two input parameters (shown in Figures 5.18 and 5.19) has been performed. 

 

Figure 5.19.  Maps of the temporal anomalies averaged during the periods 

June-September 2017 (upper panel), 2018 (middle panel), and 2019 (lower 

panel). For each agricultural pilot area (Upper Tiber, Trasi meno, Left Tiber, 

and Right Tiber), a dedicated map has been produced  (Dari et al., 2021b).  

The results of the K-means clustering are shown in Figure 5.20, where fields 

classified as irrigated are represented in green and fields classified as not irrigated 

are shown in brown. A first interesting result emerging from the classification 

maps is the high rate of fields classified as irrigated over the Upper Tiber area 

during all the three focus periods in 2017, 2018, and 2019. This agricultural area is 

known to be the most evenly cultivated and irrigated one among those evaluated 

in this study. Sunflowers, maize, and mostly tobacco are cultivated. The performed 
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classification reproduces well the irrigation density expected for the Upper Tiber 

area. Unfortunately, despite the detail of the information reached with the filed-

scale analysis and thus its potential utility, a comprehensive validation cannot be 

performed over the Upper Tiber basin case study. In fact, a detailed irrigation-

related data set, as the SIGPAC crops maps available for Catalonia, does not exist 

for the considered study area. Hence, the few information on irrigation practices 

collected over four pilot fields have been used to test the robustness of the 

proposed classification. According to the ground truth irrigation data (see Figure 

4.13) the UT1 field should result irrigated in 2017 and 2018, not in 2019. 

Conversely, UT2 should be classified as irrigated in 2018 and 2019, not in 2017. 

Finally, for the LT1 and LT2 pilot fields, only the data for 2019 is available; both 

fields should be classified as irrigated. The performances of the clustering-derived 

classification are shown in the scatter plots provided in Figure 5.21. 
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Figure 5.20.  Maps of the clustering-derived classifications during the periods 

June-September 2017 (left column), 2018 (middle column), and 2019 (right 

column); each row is referred to a pilot agricultural area . Irrigated pixels are 

represented in green, while not irrigated ones are shown in brown (Dari et 

al., 2021b).  
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Figure 5.21 .  Input data points exploited in the clustering. The mean relative 

differences and the mean temporal anomalies calculated for the periods of 

interest are provided on the x-axis and on the y-axis, respectively. The cluster 

of the 100 m resolution pixel classified as irrigated is represented in green, 

while the cluster grouping the non-irrigated 100 m resolution pixel is 

represented in brown. The data points referred to the pilot fields are in dicated 

with a square whose colour is black (magenta) if the irrigation occurrence is 

correctly (wrongly) reproduced by the proposed method (Dari et al., 2021b).  
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The actually irrigation/non-irrigation occurrence of the UT1 field is well 

reproduced by the proposed methodology. Regarding the UT2 field, the K-means 

algorithm fails in 2017, when it wrongly classifies the not irrigated field as 

irrigated. The irrigation occurrence in 2018 is well reproduced, while in 2019 the 

soil moisture data is not available. The occurrence of irrigation over the LT1 and 

LT2 pilot fields is well reproduced by the proposed classification. Despite the 

limited dimension of the ground truth data set does not ensure the 

representativeness of the obtained results, it is noteworthy that, when both soil 

moisture and benchmark irrigation data are available, the proposed method fails 

only once.  

In order to test the detectability of irrigation events occurring over the pilot 

agricultural sites, the trends of the THEIA Sentinel-1 surface soil moisture against 

with in-situ rainfall and irrigation measurements are evaluated. Figure 5.22 shows 

the time series of the THEIA Sentinel-1 soil moisture, ground-observed rainfall, 

and irrigation for the pilot points UT1 and UT2. The same kind of information is 

provided for the pilot fields LT1 and LT2 in Figure 5.23.  

 

Figure 5.22.  Time series of THEIA Sentinel -1 soil moisture, ground-observed 

rainfall, and irrigation over the pilot fields UT1 (upper panel) and UT2 (lower 

panel) in 2017-2019. The irrigation seasons are highlighted with different 

colours on the basis of the crop type. 
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Figure 5.23.  Time series of THEIA Sentinel -1 soil moisture, ground-observed 

rainfall, and irrigation over the pilot fields LT1 (upper panel) and LT2 (lower 

panel) in 2019. The irrigation seasons are highlighted  with different colours 

on the basis of the crop type. 

A common issue is found when Tobacco is cultivated (brown shaded area); in fact, 

the soil moisture increases up to the saturation condition during the irrigation 

season and then high values are kept until the end of October. An interesting result 

is obtained for the Maize in the UT1 plot during 2018 (yellow shaded area). In this 

case, the soil moisture time series seems to be more responsive to the irrigation 

amounts. Similarly, the brief irrigation season occurred in June 2019 over the LT2 

field is reproduced by the THEIA Sentinel-1 data. 

5.2.3 Discussion and Remarks 

Interesting results emerge from the double-scale analysis carried out over the 

Upper Tiber basin. The main aim of this study is to test the applicability of the 

methodology developed for the case study in the Ebro basin over a more complex 

area, where irrigation practices are less evenly distributed and occur at a finer 

spatial scale. However, the detectability of irrigation at 1 km spatial resolution has 

been investigated; the only agricultural area where irrigation is evenly detected by 

all the remotely sensed soil moisture products, at least according to the spatial 

analysis, is the Upper Tiber area. Nevertheless, the clear district-scale signal is not 

corroborated by the temporal analysis. It is noteworthy that positive spatial 

relative differences over the Upper Tiber area detected for the modeled data set 
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also, thus suggesting that the results are partly influenced by static patterns, e.g., 

soil texture. In addition, as shown in Figure 5.14, the time series of the spatial 

relative differences referred to the Upper Tiber area show an increase during the 

irrigation season that is kept after the end of this period. This behaviour is reflected 

on the NDVI time series. This circumstance, along with the consideration that the 

most common crop over this area is tobacco, suggests that the height reached by 

these plants can likely have some effects on the retrieved soil moisture. It is 

noteworthy that, a similar issue is found in the plot-scale resolution soil moisture 

time series over the pilot fields where tobacco is cultivated. For this kind of crop, 

the harvesting begins before middle September. However, the process is not 

immediate, as first the leaves at the basis of the plant and then those above are 

gradually harvested. Hence, tobacco plants can be still present and affect the 

retrieved soil moisture even after September. The Sentinel-1 versions evaluated in 

the analysis at 1 km spatial resolution show potential in detecting scattered sub-

portions of the pilot agricultural areas, where irrigation signal can be observed 

according to both spatial and temporal analyses. An overall good agreement 

between the patterns of spatial relative differences and temporal anomalies 

obtained through the Copernicus Sentinel-1 and the THEIA product aggregated at 

1 km can be observed in Figures 5.15 and 5.17. The spatial extent of the irrigation 

practices over the agricultural areas in the Upper Tiber basin and the uneven 

distribution in space of the irrigated fields, together with the crop rotation, suggest 

to test the detectability of irrigation through plot-scale resolution products. The K-

means clustering classification, exploiting the mean of the spatial relative 

differences and the mean of the temporal anomalies calculated through THEIA 

Sentinel-1 data as input, allows to produce high-resolution (100 m) binary maps of 

irrigated and not irrigated fields (see Figure 5.20). Unfortunately, the lack of 

information about irrigation practices on a consistent number of pilot fields 

represents a limitation. However, promising results are obtained by considering 

the few ground-truth data available. The high-resolution (100 m) maps of irrigated 

areas referred to the periods June-September 2017, 2018, and 2019, show higher 

rates of irrigated fields over the Upper Tiber area with respect to the other pilot 

districts; this is a comforting result, as the Upper Tiber is known to be the most 

evenly irrigated agricultural district. Furthermore, the validation carried out 

through the few information available shows a good agreement between the 

proposed maps and the actual irrigation occurrence. In fact, where both ground-

truth and soil moisture data are available, the algorithm well classifies the 
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irrigated/non-irrigated fields six times out of seven. The perspective of obtaining 

soon a larger ground-truth data set will make a more comprehensive and thus 

robust validation possible. The THEIA Sentinel-1 data shows potential in detecting 

irrigation events. Nevertheless, the well-developed vegetation conditions can be 

responsible of disturbances affecting the retrieved soil moisture conditions (El Hajj 

et al., 2017; Le Page et al., 2020). Finally, another potential limitation of the plot-

scale THEIA Sentinel-1 data is the temporal frequency (6 days), which can 

represent an issue in reproducing irrigation events occurring with a certain 

temporal distance from the SAR acquisition (Bousbih et al., 2018; Bazzi et al., 2019; 

Le Page et al., 2020). 

The above discussed results lead to the following final remarks: 

1. The analysis at 1 km resolution reveals some potential in detecting the 

uniform irrigation pattern existing in the Upper Tiber area. This result, 

obtained for all the considered products, is more evident for the spatial 

analysis with respect to the temporal one; hence, an influence due to static 

patterns (e.g., soil texture) is expected and needs to be further investigated; 

2. The Copernicus Sentinel-1 and the THEIA Sentinel-1 aggregated at 1 km 

show potential in detecting scattered irrigation in accordance to both 

spatial and temporal analyses; 

3. The proposed maps of irrigated areas at a plot scale resolution (100 m) 

show promising results in reproducing the spatial distribution of irrigated 

fields by exploiting remotely sensed soil moisture only. The limited ground 

truth information available show good accordance with the clustering-

derived maps, but a larger data set on the actual occurrence of irrigation is 

needed in order to perform a more comprehensive and thus reliable 

validation. 

4. Plot-scale THEIA Sentinel-1 data is able to reproduce the soil moisture 

dynamics on the single agricultural field and thus to detect irrigation 

events. Nevertheless, limitations due to the influence of vegetation and to 

the low temporal frequency are pointed out. 
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Chapter 6 
 

Results of the Irrigation Quantification 

Activity 
 

 

In this chapter, the results of the irrigation quantification activity are provided. As 

explained in Chapter 4, the methodology developed to estimate irrigation water 

amounts from remotely sensed soil moisture has been applied in the pilot area in 

the Ebro basin only; the experiment exploiting SMAP at 1 km data (henceforth 

SMAP experiment) is described in Section 6.1, while in Section 6.2 the results of 

the experiment exploiting SMOS at 1 km data (henceforth SMOS experiment) are 

presented. 

6.1 SMAP Experiment 

In the SMAP experiment the amounts of irrigation water applied to the pilot 

districts during the period January 2016 – September 2017 have been estimated 

and compared with benchmark irrigation volumes. An analysis aiming to assess 

the sensitivity of the results to the model’s parameters has been also performed. 

The SM2RAIN algorithm has been calibrated over the dryland at East of the Urgell 

district during the whole period considered for the irrigation estimates. The 

median values of the distributions of the parameters  𝑍∗, 𝑎, and 𝑏 (see Section 

4.6.1.1) resulting from the calibration have been used as fixed values for each pixel 

of the irrigated domain during the irrigation estimates step; for this experiment 

these values are: 𝑍∗= 32.930 mm, 𝑎 = 0.882 mm and 𝑏 = 7.704. The time series of the 

estimated irrigation amounts spatially averaged over each district, together with 

the associated benchmark amounts and with spatially averaged rainfall from the 

SAFRAN data set are provided in Figure 6.1. Note that the time series referred to 

Urgell, Algerri Balaguer, and North and South Catalan and Aragonese are 5-days 

aggregated, while the results for the Pinyana disctict are monthly aggregated, in 

order to directly compare them with the benchmark amounts, available at a 
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monthly temporal resolution. In addition, for the Pinyana district the results are 

represented through bars. 

 

Figure 6.1.  Time series of spatially averaged estimated irrigation amounts 

(black line), gross benchmark irrigation (dark grey dashed line), benchmark 

irrigation with losses taken into account (light grey shaded area), and 

spatially averaged rainfall from SAFRAN (ligh t blue bars). For all the districts 

except Pinyana, the data are 5-days aggregated, while for the Pinyana district 

the data are monthly aggregated and represented through bars with the same 

colours code adopted for the other districts (Dari et al., 2020).  

The Pearson correlation coefficient (𝑟) and the RMSE are used to evaluate the 

performances of the proposed method in reproducing the actually occurred 

irrigation. The scores are calculated by considering the aggregated irrigation water 

amounts and the benchmark values reduced according to the losses due to 
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irrigation efficiency. A good agreement (RMSE = 4.37 mm/5-days and 𝑟 = 0.73) 

between estimated and benchmark irrigation can be observed over the Urgell 

district; unfortunately, the analysis over this district is limited because of the 

missing data in the benchmark irrigation volumes. Over the Algerri Balaguer 

district, a similar 𝑟, equal to 0.76, associated with a RMSE equal to 6.11 mm/5-days 

is obtained. In this case, false estimated irrigation during the winter season and 

underestimates during the peaks of the highest-intensity irrigation season (from 

July to September) are observed. The lowest 𝑟 value (0.58) is obtained for the North 

Catalan and Aragonese district; conversely, for this area the RMSE is satisfactory 

(4.20 mm/5-days). The South Catalan and Aragonese is the district where the best 

overall performances are observed; the RMSE results equal to 3.04 mm/5-days, 

while 𝑟 is equal to 0.82. Over the Pinyana district, although if good agreement 

between monthly aggregated trends of estimated and benchmark irrigation 

amounts (r = 0.81) is found, not-negligible underestimates are obtained (RMSE = 

36.85 mm/month). It is noteworthy that, even if the RMSE values obtained over the 

Algerri Balaguer and the Pinyana district are comparable, they can be attributed 

to different issues; in fact, the error over the Algerri Balaguer is determined by 

false irrigation during winter and underestimates during the highest irrigation 

intensities periods, while the error over the Pinyana district is due to systematic 

underestimates produced by the method. 

Figure 6.2 shows, for each district, the aggregated magnitudes of estimated 

irrigation amounts against the cumulated benchmark values during 2016 and the 

considered portion of 2017. The estimated irrigation amounts are represented 

through black bars, the benchmark values reduced according to the losses due to 

the efficiency of the particular irrigation system are represented through light grey 

bars, while the bars with dashed edges represent the gross benchmark amounts. 

The colours of the circles above the bars of each district express the magnitude of 

the difference between the estimated and the reference long-term magnitudes; red 

indicates an underestimate, while an overestimate is represented in blue. It 

appears clear how, for four of the five pilot districts, the cumulated values of the 

actually occurred irrigation amounts are well reproduced by the proposed 

methodology. The only exception is the Pinyana district, where not-negligible 

underestimates are obtained (-337.57 mm in 2016 and -186.75 mm in January-

September 2017). Good performances are obtained over the Urgell district (even if 

an overestimate equal to +80 mm in 2016 is obtained), the Algerri Balaguer district, 

and the South Catalan and Aragonese district. Over the North Catalan and 
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Aragonese area the proposed method produces an underestimate of -116.97 mm 

with respect to the actually occurred irrigation in 2016, while a good agreement is 

obtained during the periof January-September 2017. 

 

Figure 6.2.  Estimated and observed cumulated irrigation amounts during 2016 

(on the left) and January-September 2017 (on the right) over the pilot districts:  

Urgell (URG), Algerri Balaguer (AB), North Catalan and Aragonese (N CA), 

South Catalan and Aragonese (SCA), and Pinyana (PIN). The black bars 

represent the estimated irrigation amounts, the light grey bars are referred to 

the benchmark values reduced by considering the losses due to irrigation 

efficiency, and the bars with dashed edges represent the gross benchmark 

values. The colours of the circles  above the bars indicate the differences 

between the estimated and the benchmark amounts (Dari et al., 2020).  

Figure 6.3 shows the spatial distribution of the SM2RAIN-derived irrigation 

estimates cumulated during the whole 2016 and January-September 2017. Some 

irrigation-related patterns, for instance those in the central and upper parts of the 

Urgell or at the West side of Algerri Balaguer, are recursive in both maps. It is 

noteworthy that, the same patterns can be observed in the maps of irrigated areas 

proposed in this research (see Figure 5.12). In general, over the Urgell, where 

inundation irrigation is the most widespread technique, evenly distributed high 

rates of cumulated irrigation amounts can be detected. The intense irrigation-

related pattern in the Algerri Balaguer district is less evident going to the East side, 

which actually is not irrigated; in fact, a protected area destined to bird reserve is 

located at East of the Algerri Balaguer. Recursive areas of high long-term 

magnitudes of estimated irrigation can be spotted in both Northern and Southern 

partitions of the Catalan and Aragonese district. Finally, evenly distributed low 
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rates of cumulated SM2RAIN-derived irrigation amounts can be observed over the 

Pinyana district, corroborating the previous results showing poor performances of 

the proposed method in retrieving the amounts of water applied for irrigation over 

this district. 

 

Figure 6.3.  Maps of the estimated irrigation water amounts cumulated for the 

whole 2016 (left side) and for the period January-September 2017 (right side) 

over the pilot districts: URG stands for Urgell, AB for  Algerri Balaguer , NCA 

for North Catalan and Aragonese, SCA for South Catalan and Aragonese, and 

PIN for Pinyana (Dari et al., 2020).  

In the SMAP experiment, a complementary analysis aimed to assess which 

SM2RAIN term contributes the most in determining the total amount of water 

entering into the soil has been performed. Figure 6.4 provides, for each district, the 

spatially averaged contribution of each SM2RAIN’s term to the model’s output 

(irrigation rates plus rainfall rates). The drainage contribution is represented 

through the red shaded area, the soil moisture variation through the blue shaded 

area, and the actual evapotranspiration term through the green shaded area. The 

final model output is represented through the black line. SAFRAN-derived rainfall 

rates (blue bars) and estimated irrigation rates (magenta bars), both averaged over 

each related district, are also shown. In each plot of Figure 6.4, a pie chart is also 

provided; it expresses the percentage of each term’s contribution to the total, 

computed when soil moisture variations are higher than zero. In fact, while the 

𝑔(𝑡) and 𝑒(𝑡) terms represent fluxes and thus assume values greater than or equal 

to zero, the 𝑛𝑍𝑑𝑆(𝑡)/𝑑𝑡 term represents a change in a stock and can assume both 

positive or negative values. During periods in which neither rainfall or irrigation 

events occur, the surface soil moisture assumes a decreasing trend following a 

drying law. Under these conditions, the contribution of soil moisture variations is 

negative and it equilibrates the contributions of actual evapotranspiration and 

drainage that keep on being positive. Hence, a negative soil moisture variation is 

necessary to balance consumptions of the available water content in the control 
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volume of soil, thus solving the balance. This is the main reason why the 

percentages of each contribution to the total shown in the pie charts has been 

calculated for periods when the 𝑛𝑍𝑑𝑆(𝑡)/𝑑𝑡 term is positive only, i.e., after rainfall 

or irrigation events. It is noteworthy that soil moisture also plays an indirect role 

consisting in modulating the potential evapotranspiration over the bare soil.  

 

Figure 6.4.  5-days aggregated time series of the contributions of the drainage, 

𝑔(𝑡), of the soil moisture variation, 𝑛𝑍𝑑𝑆(𝑡)/𝑑𝑡, and of the actual 

evapotranspiration, 𝑒(𝑡), to the total SM2RAIN-derived amount of water 

entering into the soil, 𝑊𝑖𝑛(𝑡).  SAFRAN-derived rainfall rates and the estimated 

irrigation rates are also shown (bar charts). All the data are spatially averag ed 

over the related districts. The pie charts show the percentages of each 

contribution to the total, calculated when the soil moistur e variation is 

positive (Dari et al., 2020).  
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Hence, the pie charts of Figure 6.4 only show the direct contribution of soil 

moisture variations to the total, as their indirect role is difficult to be quantitatively 

estimated. For all the pilot districts, the drainage rate brings a negligible 

contribution to the total, ranging between 0.2% and 0.4% of the total. Similar 

results were recently obtained by Jalilvand et al. (2019), in which coarser resolution 

soil moisture products were used. The direct contribution of soil moisture 

variations ranges between 38.5% and 45.7% of the total. The actual 

evapotranspiration term is the predominant one for all the pilot irrigation districts; 

the percentages associated to it vary between 54.0% and 61.1% of the total. 

The results of the assessment of the uncertainty due to the parameters 𝑍∗, 𝑎, and 𝑏 

are shown in Figure 6.5, in which the 10-days aggregated values of the district-

averaged estimated irrigation amounts obtained through the main simulation 

previously described are represented through the black line. The additional 

simulations obtained by randomly considering the 25th, 50th, and 75th percentiles of 

the three parameters’ distributions are represented in light grey and constitute a 

confidence interval on which this analysis is based.  

 

Figure 6.5. 10-days aggregated time series of the districts -averaged estimated 

irrigation with the related confidence interval, expressing the uncertainty due 

to the 𝑍∗,  𝑎, and 𝑏 parameters and whose amplitude is expressed through the 

upper horizontal bar (Dari et al., 2020).  
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The amplitude of the interval in time is expressed by the horizontal bar above each 

plot. For all the pilot districts, the amplitude of the confidence interval is small 

(lower than 2-3 mm/10-days) during the highest-intensity irrigation periods in 

2016 and 2017. Outside the May-September time window, the amplitude of the 

confidence interval rises, reaching the maximum values at the end of 2016. The 

overall maximum amplitudes detectable range between 7.1 mm/10-days (for the 

Algerri Balaguer district) and 9.7 mm/10-days (for the Pinyana district). 

The sensitivity to the 𝑝 parameter has been evaluated separately from the other 

parameters and according to another procedure, whose results are shown in 

Figure 6.6. The 10-days aggregated spatial averages of the estimated irrigation 

amounts over each district through the main simulation are represented with the 

black line, while the additional simulations obtained by keeping 𝑍∗, 𝑎, and 𝑏 fixed 

to the median values of their distributions determined during the calibration step 

and by increasing the 𝑝 value from 0.3 to 0.6 with steps of 0.01 are represented in 

light grey.  

 

Figure 6.6.  10-days aggregated time series of the districts -averaged retrieved 

irrigation with the related confidence interval, expressing the uncertainty due 

to the 𝑝 parameter and whose amplitude is expressed through the upper 

horizontal bar (Dari et al., 2020).  

Conversely from what happens for the parameters 𝑍∗, 𝑎, and 𝑏, the uncertainty 

due to the 𝑝 parameter is higher when irrigation mainly occurs, i.e., from May to 
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September; this is an expected result, as this parameter regulates the stress 

conditions in the modeling of the crop evapotranspiration. The widest amplitudes 

of the confidence interval referred to the uncertainty to the 𝑝 parameter are 

detected during the highest-intensity irrigation season in 2017 and vary between 

11.1 mm/10-days (for the Pinyana district) and 14.7 mm/10-days (for the South 

Catalan and Aragonese district). 

6.2 SMOS Experiment 

The SMOS experiment, carried out by adopting the same model configuration as 

the SMAP experiment and covering the period from January 2011 to September 

2017 has a dual target, namely to compare the performances of the two high-

resolution (1 km) soil moisture data sets during the overlapping period (January 

2016 – September 2017) and to extend the irrigation estimates back to 2011. The 

calibration phase, performed through an objective function aimed to minimize the 

root mean square difference between the retrieved rainfall over the dryland at East 

of the Urgell and the SAFRAN-derived rainfall, provides the following values for 

the 𝑍∗, 𝑎, and 𝑏 parameters: 𝑍∗ = 22.896 mm, 𝑎 = 13.770 mm and 𝑏 = 3.864. 

The long-term magnitudes of the estimated irrigation amounts in the SMOS 

experiment are shown in Figure 6.7. For each district, the cumulated SMOS-

derived irrigation amounts are represented through orange bars, the cumulated 

benchmark values reduced by considering the losses associated to the system of 

the irrigation system are shown with light grey bars, and the cumulated gross 

benchmark values are represented through bars with dashed edges. In order to 

facilitate the comparison between the two irrigation estimates experiments carried 

out, the cumulated SMAP-derived irrigation amounts are also shown (black bars). 

The circles above the bars assume different colours on the basis of the magnitudes 

of the differences between the irrigation amounts estimated through the SMOS 

experiment and the net benchmark volumes, with underestimates indicated in red 

and overestimates in blue. 
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Figure 6.7.  Cumulated irrigation amounts estimated through the experiment 

with SMOS at 1 km data set (orange bars) and through experiment exploiting 

SMAP at 1 km data set (black bars) agai nst benchmark values reduced by 

considering the losses due to irrigation efficiency (light grey bars) and gross 

benchmark values (bars with dashed edges). The colours of the circles indicate 

the differences between the SMOS-derived estimates and the benchmark 

amounts (Dari et al., 2020).  
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 Over the Urgell district and the Algerri Balaguer district, the SMOS-derived 

irrigation estimates are slightly lower than the SMAP-derived ones. This issue is 

attributable to the RFI problems affecting soil moisture data retrieved by SMOS 

over these areas since mid-2016 already discussed in the previous chapter of this 

thesis. For both partitions of the Catalan and Aragonese district, as well as for the 

Pinyana district, the SMOS-derived irrigation estimates are comparable to those 

retrieved in the SMAP experiment; over the Northern and Southern partitions of 

the Catalan and Aragonese district the SMOS experiment provides even higher 

performances with respect to the SMAP experiment. By looking at the 

performances of the SMOS experiment only in reproducing the actually occurred 

irrigation over the pilot districts, estimates consistent with net benchmark amounts 

are overall obtained. Unfortunately, it has not been possible to obtain benchmark 

irrigation amounts for the Pinyana district; hence, the performances of the SMOS 

experiment cannot be clearly determined over this area. Nevertheless, the 

similitudes with the SMAP-derived estimates suggest that the actually occurred 

irrigation over this district is confirmed to be not adequately estimated through 

the proposed approach. Good accordance between the cumulated SMOS-derived 

estimates and the cumulated net benchmark values are observed over the Urgell 

and the Algerri Balaguer districts until 2016, when the abovementioned RFI issues 

start affecting the SMOS-retrieved soil moisture. Not-negligible underestimates 

(up to -185.93 mm) are detected over the Northern partition of the Catalan and 

Aragonese district during the period 2013-2015. Finally, the water actually applied 

for irrigation over the Southern partition of the Catalan and Aragonese district 

results well reproduced by the irrigation estimates produced through the SMOS 

experiment. 

As a result of the merging of the two irrigation-estimate experiments carried out, 

a data set of almost 7 years (from January 2011 to September 2017) of estimated 

irrigation amounts has been obtained. The first five years of the data set are 

derived from the SMOS experiment, while the remaining period is covered by the 

SMAP experiment. The spatial distribution of the cumulated SMOS-derived 

irrigation amounts during the period 2011-2015 are provided in Figure 6.8. It is 

noteworthy that during this time span SMOS data is not affected by RFI problems. 

In fact, patterns of high cumulated irrigation amounts over the Urgell and the 

Algerri Balaguer can be observed. In particular, recursive evenly distributed high 

irrigation amounts are observed in the Upper part of the Urgell. This pattern has 

been found in the SMAP experiment also during the remaining years (see Figure 
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6.3). Both Southern and Northern partitions of the Catalan and Aragonese district 

show similar long-term magnitudes patterns of estimated irrigation. As an 

example, the central portion of the South Cataland and Aragonese district, where 

a non-irrigated area destined to vineyard exist, is well reproduced through 

negligible cumulated irrigation amounts. It is noteworthy that, the same area is 

well reproduced by the SMAP experiment during 2016 and the considered portion 

of 2017 also, thus consolidating the reliability of the merged data set. According to 

the SMOS experiment also, Pinyana is the district showing the lowest cumulated 

irrigation values.  

 

Figure 6.8.  Maps of the estimated irrigation water amounts cumulated for 

each year in the period 2011-2015 over the pilot districts: Urgell (URG), 

Algerri Balaguer (AB), North Catalan and Aragonese (NCA), South Catalan 

and Aragonese (SCA), Pinyana (PIN).  
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Although the analysis carried out by using DISPATCH downscaled SMOS data is 

less detailed than the one performed with DISPATCH downscaled SMAP data, it 

shows the suitability of SMOS soil moisture at 1 km also to be used to retrieve the 

amounts of water actually applied for irrigation through the proposed 

methodology. 

6.3 Discussion and Remarks 

In this research, a methodology to retrieve water amounts actually applied for 

irrigation practices by exploiting high-resolution (1 km) soil moisture products is 

proposed. The pilot area in the Ebro basin, rich in terms of irrigation-related 

information, has proven to be particularly suitable to assess the robustness of the 

approach. Furthermore, this analysis fills the gap between the potential of coarse 

resolution soil moisture data to detect irrigation signals shown in previous studies 

(Brocca et al., 2018; Zaussinger et al., 2019) and the need for high-resolution 

products to adequately capture small-scale irrigation practices. 

In the SMAP experiment satisfactory results have been obtained for four of the five 

pilot districts. Over the areas where the method is capable to retrieve the actually 

occurred irrigation amounts, both long-term magnitudes and irrigation timing are 

well reproduced. The correlation calculated between the estimated irrigation 

amounts and the net irrigation benchmark volumes between 0.58 (observed for the 

Northern partition of the Catalan and Aragonese district) and 0.82 (referred to the 

Southern partition of the Catalan and Aragonese district). The RMSE between 

estimated and reference irrigation amounts ranges between 3.04 mm/5-days 

(found for the Southern partition of the Catalan and Aragonese district) and 6.11 

mm/5-days (observed for the Algerri Balaguer district). It is noteworthy that, 

according to both metrics, the Southern portion of the Catalan and Aragonese 

district is where the overall best performances are obtained. During the winter 

season in 2016, irrigation events not reflected in the benchmark data can be 

observed for the Algerri Balaguer. These events may be explained as false 

irrigation produced by SM2RAIN or as actually occurred irrigation with a certain 

delay with respect to the time when the water has been pumped from the river 

feeding the irrigation canal. The Algerri Balaguer system is equipped with three 

reservoirs to stock water to be delivered to the crops later than the withdrawn from 

the river. The presence of the reservoirs and their use can also explain the 

underestimates obtained during summer over the Algerri Balaguer. In this 
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research, the water pumped to the district has been taken as instant reference real 

irrigation, but probably only part of this water amount is immediately delivered 

to the crops and another part is stored into the reservoirs in order to be delivered 

later. It is noteworthy that an eventual delay between the withdrawn of water from 

the river and the supply of this water to the irrigated fields may negatively affect 

the RMSE and 𝑟 values found over the district. 

Despite Algerri Balaguer being the district where this issue is more evident, as 

winter irrigation is not apparently reflected by the benchmark values, amounts of 

estimated irrigation between the end of 2016 and the beginning of 2017 are 

observed over all the districts. For instance, an interesting result is represented by 

not negligible irrigation events occurred in winter 2016 over the North Catalan and 

Aragonese district and reproduced by the proposed method. In general, the winter 

irrigation events can be false irrigation alarms occurring when the total amount of 

water entering into the soil is not equilibrated by the rainfall removal. An issue 

explaining the false irrigation events during winter may be the missing 

precipitation in the SAFRAN data set. In fact, if the data set does not properly 

capture an event, an underestimate in the rainfall removal phase occurs, thus 

overestimating irrigation. It is noteworthy that SAFRAN has proven to be accurate 

over the study area (Quintana-Seguí et al., 2017), but its spatial resolution (5 km) 

may represent an issue for the proposed application, in which a spatial resolution 

of 1 km is adopted. However, the inclusion of a major number of precipitation 

stations from the SAIH system into SAFRAN is foreseen. 

Several complementary causes can explain the unsatisfactory performances 

obtained over the Pinyanan district. Mainly, a “contamination” due to an adjacent 

not irrigated area and large uncertainties associated to the benchmark irrigation 

amounts and to the associated losses. The Pinyana irrigation canal, as well its 

irrigation system, is the most ancient one of the pilot area. Not all the water 

delivered through this canal is used for irrigation practices, but the withdrawal for 

other purposes are actually negligible. The main issue is probably the scarce 

distribution efficiency. The Pinyana canal is an old free surface one, hence, the 

associated losses may be higher than assumed.  

Despite the evapotranspiration term has proven to be not essential in SM2RAIN 

applications aimed to retrieve rainfall (Brocca et al., 2015), the SMAP experiment 

points out the importance of a correct modeling of this process to estimate 

irrigation over semi-arid areas. The same result can be found in Jalilvand et al. 
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(2019). In this study, the evapotranspiration term plays the leading role in 

determining the SM2RAIN output, followed by the direct contribution of soil 

moisture variations. Soil moisture plays a much complex role in the soil water 

balance. In fact, according to the proposed water-limited approach, the soil 

moisture affects the evapotranspiration estimate also, as it modulates the potential 

one over the bare soil portion of irrigated pixels. This effect is clearly visible in 

Figure 6.9, where several variables referred to a control point located in the Urgell 

district are shown; in particular, the upper panel shows the occurrence of periods 

characterized by irrigation estimates (blue line) lower than the potential 

evapotranspiration rates (red line) in presence of low soil moisture values (light 

blue line in the lower panel). Furthermore, soil moisture is also involved in the 

regulation of the occurrence of stress conditions. 

The analysis aimed to assess the uncertainties associated to the SM2RAIN’s 

parameters highlights that the retrieved irrigation estimates are scarcely affected 

by the parameters 𝑍∗, 𝑎, and 𝑏. In fact, the amplitude of the confidence interval 

associated to these parameters reaches the minimum values during the highest-

intensity irrigation periods, while the maximum amplitudes are reached at the end 

of 2016. Conversely, the amplitudes of the confidence interval referred to the 

uncertainty linked to the 𝑝 parameter reach the maximum values when irrigation 

mainly occurs. This is expected since the 𝑝 parameter is involved in the crop 

evapotranspiration process. In the FAO model, stress is taken into account by 

computing the fraction of water available for crops. This amount of water is the 

root zone soil moisture and it is derived from tables where reference values for 

each crop are provided. For many crops, a fraction equal to 0.5 is recommended. 

In the parametrization proposed in this research, the occurrence of stress 

conditions is determined through a surface soil moisture threshold. Hence, not the 

whole soil water profile is take into account. Furthermore, the threshold adopted 

for the beginning of the stress conditions is static both in space and time. For this 

reason, the build of a dynamic modeling for 𝑝, in which the parameter can vary 

for each crop type and in time, is among the future developments of the proposed 

approach. 
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Figure 6.9.  Time series of several variables referred to a control point in the 

Urgell district. Upper panel: estimated irrigation (blue line) and potential 

evapotranspiration (red line). Lower panel: soil moisture from SMAP at 1 km 

data set (light blue line), soil moisture from ISBA (black line), and NDVI 

(green dots).  

The SMOS experiment shows the reliability of the SMOS at 1 km data set also in 

retrieving the amounts of water applied for irrigation. Except for the areas where 

the already discussed RFI problems affect the result, the SMOS-derived estimates 

result close to the SMAP-derived ones. Over the Catalan and Aragonese district, 

the SMOS experiment even reaches better performances than the SMAP 

experiment in reproducing the actually occurred irrigation. A good agreement 

between the SMOS-derived estimates and the benchmark amounts is generally 

obtained also for the period 2011-2015. 

On the basis of the above discussed results, the following remarks can be drawn: 

1. The proposed methodology is capable to quantitatively estimate the 

actually occurred irrigation events over four of the five pilot districts; 

2. where the method performs well, not only the long-term cumulated 

irrigation amounts, but their timing and spatial distribution also are well 

reproduced; 

3. the evapotranspiration term cannot be neglected in SM2RAIN applications 

aimed to estimate irrigation over semi-arid regions. In fact, this process 

plays the leading role in determining the total amount of water entering 

into the soil, even more than the direct contribution of soil moisture, which 

also plays indirect roles difficult to be quantitatively assessed; 

4. the retrieved irrigation estimates are less sensitive to the SM2RAIN’s 

parameters 𝑍∗, 𝑎, and 𝑏 during the highest-intensity irrigation periods. 
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Conversely, the uncertainties due to the 𝑝 parameter are higher when 

irrigation mainly occurs; 

5. the comparable performances of the DISPATCH downscaled SMOS and 

SMAP data sets allow to build a reliable data set of estimated irrigation 

covering a time span of almost seven years, from January 2011 to 

September 2017. 
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Chapter 7 
 

Future Perspectives 
 

 

In this chapter, the future developments foreseen for this research are presented. 

They mainly regard further improvements in the irrigation detection and 

quantification tasks, described in Section 7.1, and the inclusion of irrigation into 

SURFEX simulations, described in Section 7.2. Finally, the IRRIGATION+ project 

is presented in Section 7.3. 

7.1 Detecting and Quantifying Irrigation  

As explained in Chapter 5, the collection of more ground truth irrigation data over 

the pilot agricultural areas in the Upper Tiber basin represents a future 

development to be addressed in order to perform a robust validation of the 

clustering-derived maps of irrigated areas at a plot scale. However, benchmark 

irrigation volumes at a plot scale are desirable for the pilot area in the Ebro basin 

also. The results obtained by the analysis on the irrigation detectability carried out 

over the two pilot areas, which are thoroughly different from each other, provide 

insights on the crucial role played by the spatial resolution of the remote sensing 

data; in fact, irrigation is practiced worldwide over domains whose extension is 

widely varying because of several factors, e.g., the topography. The link between 

the extension of the irrigated areas and the required resolution of soil moisture 

data for irrigation detection and mapping purposes highlighted by the presented 

results is useful under the perspective of an extension to larger scales of the 

proposed methodologies. In fact, the use of temporal stability derived indices to 

identify where irrigation occurs is expected to be easily applied over larger 

domains (i.e., at the Country scale). Further investigations on the possibility to 

retrieve the amounts of water actually applied for irrigation are surely among the 

future perspectives of the presented research. This task can be declined according 

to several activities, namely the application of the proposed methodology to 

estimate irrigation quantities over the Upper Tiber basin also, the exploration of 

alternative methods to retrieve the irrigation water amounts, and modifications to 



7. Future Perspectives 

 

 

139 

 

the proposed SM2RAIN configuration. Concerning the application of the 

presented methodology over the pilot agricultural areas in the Upper Tiber basin, 

some clarifications need to be done. As discussed in Chapter 5, the complexity in 

terms of topography and the spatial extent of the irrigation events over this area 

make the adoption of soil moisture products at very high resolution necessary. In 

fact, even if the preliminary results at 1 km show some potential in detecting only 

uniform irrigation patterns over the Upper Tiber area, the prevalent characteristics 

of the area suggest the adoption of soil moisture products at a plot scale. 

Furthermore, the results obtained by the spatial analysis at 1 km are not clearly 

confirmed by the temporal analysis; hence, further investigations are needed. The 

results obtained with the THEIA Sentinel-1 soil moisture suggest to test this 

product in analyses aimed to quantify irrigation amounts at a plot scale. For the 

pilot fields within the Upper Tiber basin, the benchmark amounts of water applied 

for irrigation are already available. Over these fields, SM2RAIN experiments 

exploiting soil moisture data from the THEIA Sentinel-1 data set can be performed. 

It is noteworthy that the modeling of the evapotranspiration will be probably 

modified. In fact, it is not easy to obtain all the variables needed to implement the 

dual crop coefficient approach proposed in the FAO model (Equation 4.13), as at 

the considered spatial scale they should be ground-observed. Hence, two options 

are possible for the implementation of the proposed SM2RAIN setting over the 

pilot fields located in the Upper Tiber area and in the Left Tiber area. Over the 

single plot, the solver equation is hereby reported as Equation 7.1:  

𝑊𝑖𝑛(𝑡) = 𝑍∗ 𝑑𝑆(𝑡)

𝑑𝑡
+ 𝑎𝑆(𝑡)𝑏 + 𝑒(𝑡)                 (7.1) 

The two possible options regard the representation of the 𝑒(𝑡) term. A first way 

consists in applying the single crop coefficient approach; in this case, the 𝑒(𝑡) term 

is calculated according to Equation (4.15) and the 𝐾𝑐 coefficient can be derived 

from curves referred to the specific crop cultivated over the pilot field, or it can be 

approximated through the relation existing with the NDVI. The advantage of 

using 𝐾𝑐 curves specific for crops or regions is that they take into account processes 

not captured by the NDVI, e.g., the growing of the fruit, which needs water but 

does not impact on the LAI. It is noteworthy that the rigorous application of the 

FAO model requires the 𝐸𝑇0(𝑡) term calculated according to the Penman-Monteith 

equation. As previously explained, the implementation of such method is difficult 

at the considered spatial scale. Hence, simplified formulations (e.g., the 

Hargreaves formula or the Thornthwaite equation) coupled with a coarser 



7. Future Perspectives 

 

 

140 

 

modeling can be considered. For instance, the approach in which the potential 

evapotranspiration is only limited by the available water content already adopted 

in previous studies (Brocca et al., 2018; Filippucci et al., 2020) is an option. Another 

issue is represented by the calibration step, which can be performed over the same 

plot by masking out periods when irrigation rates are higher than zero (calibration 

during non-irrigation periods). 

Another future step of the presented research is the assessment of the loss in 

reliability when using evapotranspiration observations from available data sets 

over the study area in the Ebro basin. Very preliminary investigations on this issue 

have been already done. Considering the SMAP experiment described in Chapter 

6 as a benchmark, two alternative simulations performed by “degrading” the 

accuracy of the evapotranspiration information have been carried out. In the first 

of the two additional simulations, the potential evapotranspiration retrieved by 

MODIS sensor has been used. In this case, the SM2RAIN settings have been kept 

equal to the benchmark simulation. Instead, in the second additional simulation, 

the actual evapotranspiration has been directly taken from MODIS observations. 

The cumulated irrigation amounts obtained through these two experiments, 

together with gross and net benchmark amounts are shown in Figure 7.1; in detail, 

panel a) shows the results obtained by using exactly the same approach described 

in Chapter 6 with potential evapotranspiration from MODIS data instead of 

computed according to the Penman-Monteith method. Panel b) provides the 

results obtained in the simulation performed by taking the actual 

evapotranspiration rates directly from MODIS sensor. In the experiment 

exploiting potential evapotranspiration from MODIS, the retrieved irrigation 

overestimates the actually occurred one over all the districts, except for Pinyana. 

This issue can be explained by higher potential evapotranspiration rates in the 

MODIS-derived data with respect to those calculated in the benchmark simulation 

described in Chapter 6. It is noteworthy that the 𝑝 parameter, regulating the 

beginning of stress conditions, has been maintained equal to 0.45; this is another 

factor affecting the results. Conversely, no losses in accuracy are obtained when 

putting the actual evapotranspiration from MODIS directly into the algorithm; in 

fact, the long-term magnitudes are well reproduced in this case, as differences 

rarely drop below -100 mm and are often close to zero. Overestimates are never 

observed for this experiment.  
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Figure 7.1.  In panel a), long-term magnitudes obtained by the experiment 

using potential evapotranspiration from MODIS. In panel b), the same results 

obtained by the simulation exploiting actual evapotranspiration from MODIS. 

Each panel shows the estimated (black bars)  and the observed cumulated 

irrigation amounts (light grey bars) during 2016 (on the left) and January-

September 2017 (on the right) over the pilot districts: Urgell (URG), Algerri  

Balaguer (AB), North Catalan and Aragonese (NCA), South Catalan and 

Aragonese (SCA), and Pinyana (PIN). The colours of the circles  above the bars 

indicate the differences between the esti mated and the benchmark amounts.  

Nevertheless, the spatial distribution of the cumulated irrigation amounts 

obtained by these two additional experiments reveals the inaccuracy in 

reproducing the areas where the highest irrigation rates are located in the 
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experiment using actual evapotranspiration from MODIS (see Figure 7.2). In fact, 

while the spatial distribution of the cumulated irrigation amounts obtained in the 

experiment using MODIS potential evapotranspiration is consistent with the 

benchmark simulation, the same is not valid for the experiment exploiting MODIS 

actual evapotranspiration. The reason relies in the different SM2RAIN settings 

adopted for the two simulations; in the one with MODIS potential 

evapotranspiration, the setting for the evapotranspiration term is the same 

adopted in the benchmark simulation; hence, the spatial distributions of the 

retrieved irrigation and of the crop coefficient are linked. Conversely, the irrigation 

patterns obtained by the experiment exploiting MODIS actual evapotranspiration 

are not much reliable, as they are almost constant over all the irrigation domain, 

with the only exception of a middle horizontal portion where higher rates are 

observed. 

 

Figure 7.2.  Maps of the estimated irrigation water amounts cumulated for the 

whole 2016 (left side) and for the period January-September 2017 (right side) 

over the pilot districts: URG stands for Urgell, AB for Algerri Balaguer , NCA 

for North Catalan and Aragonese, SCA for South Catalan and Aragonese, and 

PIN for Pinyana. Panel a) is referred to the experiment exploiting MODIS 

potential evapotranspiration and panel b) to the one exploiting MODIS actual 

evapotranspiration.  
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This issue is attributable to the actual evapotranspiration data set; in fact, similar 

patterns can be observed in the maps of the mean value of this variable during the 

highest-intensity irrigation periods in 2016 and 2017, which are provided in Figure 

7.3.  

However, the above discussed experiments only represent a preliminary analysis 

in the context of a more complex study related to this research. In fact, a 

comprehensive assessment of the performances obtained by applying the 

methodology described in Chapter 6 by exploiting multi-sources rainfall and 

evapotranspiration data is among the future perspectives of this work. 

 

Figure 7.3.  Spatial distribution of the mean actual evapotranspiration 

observed by the MODIS sensor during the period May-September 2016 (left 

side) and 2017 (right side) over the pilot area in the Ebro basin.  

Plot-scale investigations on the potential in detecting and estimating irrigation 

over the study area within the Ebro basin through the Sentinel-1 data delivered by 

THEIA are foreseen, as well as comparisons with results obtained in similar 

studies (e.g., Bazzi et al., 2019). 

Finally, other approaches aimed to the quantification of irrigation through 

remotely sensed data can be tested and compared with the method developed in 

this research. As an example, the approach proposed by Zaussinger et al. (2019) 

exploits the differences between remotely sensed and modeled soil moisture to 

retrieve the amounts of water applied for irrigation. Figure 7.4 provides a sketch 

synthetizing the idea beyond the approach.  
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Figure 7.4.  Sketch representing the idea beyond the method proposed by 

Zaussinger et al. (2019) to estimate irrigation through differences between 

remotely sensed and modeled soil moisture. 

A remotely sensed soil moisture data set containing the irrigation information is 

influenced by both rainfall and irrigation events; conversely, a modeled soil 

moisture data is responsive to rainfall only, as it does not contain any irrigation 

information. Hence, by identifying irrigation events through the concomitance of 

a decrease in the modeled soil moisture and an increase in the observed one in 

absence of rainfall, the irrigation amounts can be retrieved by integrating all the 

differences between remotely sensed and modeled soil moisture during irrigation 

events. The approach is equivalent to attribute the differences between observed 

and modeled soil moisture to irrigation practices. The described method 

represents an alternative to the SM2RAIN-based approach to estimate irrigation. 

The implementation of such method through the DISPATCH downscaled 

products and SURFEX-ISBA outputs represents a future perspective of this 

research in the irrigation quantification framework. 

7.2 Irrigation in SURFEX 

Even if not yet published, a new version of SURFEX-ISBA involving a finer 

modelling of irrigation has been recently developed by Météo-France (Druel et al., 

2019). In fact, an irrigation scheme was already available in SURFEX v8.1. In the 

new version, an irrigation scheme can be activated over irrigated areas when soil 

moisture drops below a threshold value. In this soil-moisture-deficit approach, the 

model is capable to simulate sprinkler, drip, and flood irrigation methods. An 

example of daily simulated irrigation over the Southern France and the Northern 

Spain averaged during the period 1979-1981 is provided in Figure 7.5; in this 

simulation, sprinkler irrigation has been adopted everywhere, as a detailed map 
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of the employed irrigation techniques is not available yet. The heavily irrigated 

pilot area in the Ebro basin can be immediately detected. The implementation of 

an irrigation scheme within SURFEX-ISBA opens important perspectives for this 

study. The outputs from simulations carried out with the irrigation scheme 

activated can be compared with those obtained with the canonical SURFEX-ISBA 

configuration in which the SM2RAIN-derived data set of estimated irrigation 

described in Chapter 6 is added to the atmospheric forcing or directly to the soil in 

order to assess the different impacts of the two configurations on the components 

of the hydrological cycle. Furthermore, comparisons between SURFEX-ISBA 

simulations in which the estimated irrigation is added to the atmospheric forcing 

(equivalent to assume that the irrigation amounts are supplied through sprinklers) 

or directly to the soil (thus simulating flood irrigation or drip irrigation) and 

SURFEX-ISBA simulations in which the irrigation scheme is not activated 

(reproducing the natural physical processes only) are useful to assess the impact 

of irrigation practices on the natural hydrological cycle. 

 

Figure 7.5.  Output of SURFEX-ISBA simulation with the new irrigation 

scheme activated (courtesy of Pere Quintana-Seguí).  

7.3 The IRRIGATION+ Project 

The presented research fits perfectly into the activities foreseen by the 

IRRIGATION+ project, funded by ESA and started in March 2020. The project was 

born with the aim of advancing the comprehension of all the irrigation-related 
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issues (its extent, its timing, and how much water is used for it) through Earth 

Observation capabilities. The main targets of the project are: 

1. The development of algorithms and methods to detect, map and quantify 

irrigation at three different spatial scales, from the plot scale to global scale. 

Local scale (less than 100 m) analyses can support the agricultural water 

management. Catchment and sub-catchment (~1 km) investigations are 

useful for water management purposes; finally, regional and global scale 

(more than 10 km) analyses are useful to support large-scale climate and 

hydrological studies; 

2. the production of satellite-derived data sets from local to global scale as a 

basis for the operationalization of the irrigation products; 

3. the assessment of the impact of the developed irrigation products on the 

society and on the science. 

Five pilot areas have been chosen to develop and test the output products from the 

IRRIGATION+ project. The first case study is the Pianura Padana, in Northern 

Italy; it is the widest productive agricultural area of Italy. Information on amounts 

of water applied for irrigation purposes are available for four sites: Faenza, San 

Michele Fosdondo, Budrio, and Brunel. The second study area is the focus area 

within the Ebro basin investigated in this research. It is noteworthy that, along 

with all the features already described that make this site particularly suitable for 

irrigation-related studies, the area will also be involved in the HyMeX 

(HYdrological cycle in the Mediterranean Experiment) LIAISE campaign. A big 

amount of useful data is expected to be collected through such campaign: 

meteorological data, surface energy budget data, soil moisture, land surface 

temperature, and reference irrigation data. The third study area is the Adour 

Garonne basin, in France. For this domain, irrigation, rainfall, and soil tensiometry 

data from twenty-five pilot plots located in the Tarn and the Lot departments are 

available. The fourth case study, particularly suitable for testing 

evapotranspiration-based approaches, is the Hex Valley, Western Cape, South 

Africa. The last study area is the Lower Saxony, in Germany. For this area, about 

7000 irrigation events during the summer season in 2016, 2017, and 2018 are 

available for four pilot sites. It is noteworthy that, additional data sets from 

additional case studies will also be evaluated.  

For the irrigation quantification activity, several approaches will be exploited; they 

are the SM2RAIN approach, the soil moisture delta approach, data assimilation 
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techniques, and an evapotranspiration-based approach. Note that the SM2RAIN 

approach is the method adopted in this research and the soil moisture delta 

approach is the method proposed in Zaussinger et al. (2019). For the irrigation 

mapping activity two main methods will be adopted: one SVM-based (Bousbih et 

al., 2018) and another one exploits Sentinel-1 SAR time series (Gao et al., 2018; 

Bazzi et al., 2019). Finally, the irrigation timing will be assessed through an 

algorithm based on the comparison between derivative of observed soil moisture 

and derivative of a soil water balance. 

It is noteworthy that, among the assessments of the impact of the developed 

irrigation products on science, a case study is represented by the irrigation 

parametrization described in Section 7.2. The SASER modelling chain, with the 

new SURFEX-ISBA scheme activated, will be tested over the Urgell and the 

outputs will be compared with irrigation estimates produced by the project and 

data collected from the LIAISE campaign. Finally, the impacts of irrigation 

practices on evapotranspiration and drainage will be evaluated through 

comparisons between irrigated and non-irrigated simulations. 
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Chapter 8 
 

Conclusions 
 

 

In this research, methodologies aimed to detect and map irrigated areas and to 

quantify the amounts of water used for this purposes have been developed. The 

proposed approaches, mainly based on remote sensing soil moisture, have been 

tested over two case studies, namely a heavily irrigated area within the Ebro basin, 

in Spain, and agricultural areas in the Upper Tiber basin, in Italy. The capability to 

detect irrigation of several remote sensing data sets has been investigated over the 

study area in Spain. The evaluated data sets are DISPATCH downscaled SMOS 

and SMAP versions at 1 km, SMAP at 9 km, Sentinel-1 at 1 km, and ASCAT at 12.5 

km. The capability to detect irrigation of the considered products has been 

evaluated through indices describing the spatial-temporal dynamics of soil 

moisture and derived from the temporal stability theory. Then, a method 

exploiting the best-performing products to map irrigated areas through the K-

means clustering algorithm has been developed. For the case study in Italy, the 

irrigation detection and mapping activity has been carried out by performing a 

double-scale analysis (1 km and plot-scale). The choice of such investigation has 

been determined by the topographic features of the study area, much complex 

than in the case study in the Ebro basin. In addition, except for the Upper Tiber 

area, irrigation is not evenly distributed, as the crop rotation is largely adopted. In 

the analysis at 1 km spatial resolution, the detectability of irrigation through 

several products has been investigated; they are the DISPATCH downscaled 

version of SMAP at 1 km and the Sentinel-1 at 1 km version delivered by the 

Copernicus Global Land Service, both used in the case study in the Ebro basin also, 

and a field-scale-born Sentinel-1 version produced by THEIA and aggregated at 1 

km. In the analysis at a plot scale, the THEIA Sentinel-1 product, aggregated at 100 

m, has been used. The detectability of irrigation signals has been assessed through 

the same approach adopted in the Spanish case study, namely by exploiting 

indices derived from the temporal stability theory. Maps of irrigated areas at high-

resolution (100 m) have been produced through the K-means clustering algorithm. 
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Both the analyses aimed to detect irrigation signals carried out in the two study 

areas have been supported by an additional data set of soil moisture modeled 

through the SURFEX-ISBA land surface model. Irrigation estimates have been 

performed on the focus area in the Ebro basin only; two experiments have been 

performed: one exploiting DISPATCH downscaled SMAP data at 1 km and one 

exploiting DISPATCH downscaled SMOS data at 1 km. Both soil moisture data 

sets have been used as an input for the SM2RAIN algorithm, adapted to retrieve 

the irrigation water amounts. In this research, the guidelines provided in the FAO 

paper n. 56 have been implemented into the algorithm to adequately reproduce 

the crop evapotranspiration. 

The main results of the irrigation detection and mapping analyses carried out over 

the case study in the Ebro basin during the period 2016-2017 are summarized in 

the following. 

• 1 km spatial resolution is suitable to detect irrigation occurring over the 

pilot area in the Ebro basin through remote sensing soil moisture. 

• Indices derived from the temporal stability theory are useful tools to assess 

the capability to detect irrigation of remote sensing products, as they 

describe the spatial-temporal dynamics of soil moisture. 

• The DISPATCH downscaled L-band passive microwave products, namely 

SMAP and SMOS at 1 km, are the best performing data sets in detecting 

irrigation over the study area in the Ebro basin. Reliable information on 

where irrigation actually occurs is retrieved from these products. The 

worsening of the performances obtained by SMOS at 1 km in 2017 is 

attributable to RFI issues. 

• The proposed methodology to map irrigated areas is particularly 

performing in distinguishing between irrigated areas and rainfed 

agricultural areas. 

• According to both the validations carried out, ST.A.SMAP16 and 

ST.A.SMAP17 (please refer to Table 5.1 for the meaning of the codes) are 

the experiments that best reproduce irrigated areas. These classifications 

exploit remotely sensed soil moisture only; this is an interesting and 

comforting result, considering the scarcity of models running at 1 km 

spatial resolution over large areas. The better performances of the SMAP at 

1 km data set with respect to the SMOS at 1 km data set are mainly 

attributable to the RFI problems affecting the latter. 
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• The experiments D.A.C.SMAP16 and D.A.C.SMAP17, merging remotely 

sensed and modeled soil moisture as input, are the best performing ones in 

concurrently reproducing all the three considered classes: the irrigated 

areas, the dryland, and the forest or natural areas. 

The main results of the double-scale irrigation detection and mapping analysis 

carried out over the agricultural areas within the Upper Tiber basin during the 

period 2017-2019 are summarized in the following. 

• Some potential in detecting uniform irrigation patterns over the Upper 

Tiber agricultural area is found in the analysis at 1 km spatial resolution. 

The result is common to all the remotely sensed products used and it is 

more evident for the analysis based on the spatial relative differences with 

respect to the investigation based on the temporal anomalies. For this 

reason, potential influences due to static patterns (e.g., soil texture) make 

further studies required. 

• The Copernicus Sentinel-1 and THEIA Sentinel-1 aggregated at 1 km 

products show promising results in spotting scattered irrigation, 

confirmed by both spatial and temporal analyses. 

• K-means clustering derived maps of irrigated areas at 100 m spatial 

resolution provide satisfactory results in reproducing the spatial 

distribution of irrigated fields. These classifications exploit remotely 

sensed soil moisture only. According to the limited ground truth 

information available, the clustering-derived maps appear reliable in 

reproducing the actually occurring irrigation events. A larger ground truth 

data set to perform a more comprehensive and reliable validation is 

desirable. 

• THEIA Sentinel-1 soil moisture shows promising results in detecting 

irrigation events, even though limitations mainly due to the influence of 

the vegetation cover and to the low temporal frequency (6 days) are 

pointed out. 

The main results of the SMAP experiment (period of interest: January 2016 – 

September 2017) and of the SMOS experiment (period of interest: January 2011 – 

September 2017) aimed to estimate the amounts of water actually applied for 

irrigation are summarized as follows. 
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• The proposed approach performs well in quantitatively reproducing the 

actually occurring irrigation over four of the five pilot districts. 

• The methodology performs well not only in reproducing the long-term 

magnitudes of occurring irrigation, but the timing and the spatial 

distribution of irrigation events also. However, false irrigation alarms 

during winter are detected. 

• The investigation aimed to determine which SM2RAIN term is the 

predominant one in determining the algorithm’s output highlights the 

importance of a correct representation of the evapotranspiration term in 

SM2RAIN applications aimed to estimate irrigation over semi-arid regions. 

In fact, this term plays the leading role in determining the algorithm’s 

output, more than the direct contribution of soil moisture variations. 

However, soil moisture plays indirect roles also, which are difficult to be 

quantitatively assessed. 

• The obtained estimates are less sensitive to the algorithm’s parameters 𝑍∗, 

𝑎, and 𝑏 during the highest irrigation intensity season. The same is not 

valid for the 𝑝 parameter, whose associated uncertainties are larger when 

irrigation mainly occurs. 

• The DISPATCH downscaled products, namely SMAP and SMOS at 1 km, 

provide comparable results in estimating irrigation. Hence, a data set 

merging irrigation estimates obtained from the two experiments carried 

out and covering the period from January 2011 to September 2017 is 

produced. 

The presented research has produced many interesting results that hopefully are 

only the first step of many future developments, which include the use of better 

validation data sets, models improvements, and the use of even more performing 

remote sensing products. 
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