

Self-supervised deep learning
approaches to speaker

recognition

Umair Khan

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons
(http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX (h t t p : / / w w w . t d x . c a t /) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX.
No s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons
(framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus
continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis)
and the cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized
by the titular of the intellectual property rights only for private uses placed in investigation and
teaching activities. Reproduction with lucrative aims is not authorized neither its spreading nor
availability from a site foreign to the UPCommons service. Introducing its content in a window or
frame foreign to the UPCommons service is not authorized (framing). These rights affect to the
presentation summary of the thesis as well as to its contents. In the using or citation of parts of the
thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

This thesis is submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy (Ph.D.)

Self-supervised Deep Learning
Approaches to Speaker Recognition

Author:

Umair Khan

Thesis Advisor:

Prof. Francisco Javier Hernando Pericás

TALP Research Center,

Department of Signal Theory and Communications,

Universitat Politecnica de Catalunya (UPC) Barcelona, Spain.

Barcelona, November 2020

Abstract

In speaker recognition, i-vectors have been the state-of-the-art unsupervised tech-

nique over the last few years, whereas the recent x-vectors is becoming the state-of-

the-art supervised technique, these days. Recent advances in Deep Learning (DL)

approaches to speech and speaker recognition have improved the performance but

these techniques are constrained to the need of phonetic or/and speaker labels for the

background data. In practice, labeled background data is not easily accessible, es-

pecially when large training data is required. In i-vector based speaker recognition,

cosine and Probabilistic Linear Discriminant Analysis (PLDA) are the two basic

scoring techniques. Cosine scoring is an unsupervised technique whereas PLDA pa-

rameters are typically trained using speaker-labeled background data. The lack of

speaker labeled background data makes a big performance gap between these two

scoring techniques. The question is: how to fill this performance gap without using

speaker labels for the background data? In this thesis, the above mentioned problem

has been addressed using DL approaches without using and/or limiting the use of

labeled background data. Three main DL based proposals have been made.

In the first proposal, a Restricted Boltzmann Machine (RBM) based vector rep-

resentation of speech is proposed for the tasks of speaker clustering and speaker

tracking in TV broadcast shows. This representation will be reffered to as RBM

vector. A global model will be trained using all the available background data, which

will be reffered to as Universal Restricted Boltzmann Machine (URBM). Then, in

order to extract the desired RBM vectors for the test utterances, a single RBM will

be adapted from the URBM. The experiments, performed on AGORA database,

show that in speaker clustering task the proposed RBM vectors outperform the

baseline i-vectors, resulting in a relative improvement of 12% in terms of Equal

Impurity (EI). In the case of speaker tracking RBM vectors are used only in the

speaker identification part, where the relative improvement in terms of Equal Error

ii

Rate (EER) is 11% and 7% using cosine and PLDA scoring, respectively.

In the second proposal, DL approaches are proposed in order to increase the

discriminative power of i-vectors in speaker verification. We have proposed the use

of autoencoder in several different ways. Firstly, an autoencoder will be used as

a pre-training for a Deep Neural Network (DNN) training. This pre-training will

be carried out using a large amount of unlabeled background data. After this, a

DNN classifier will be trained using relatively small labeled data. The DNN will

be initialized with the parameters of the pre-trained autoencoder. Secondly, an

autoencoder will be trained in a new framework, to transform i-vectors into a new

representation. The purpose is to increase the discriminative power of i-vectors.

The training will be carried out based on the nearest neighbor i-vectors rather than

the same training i-vector. The nearest neighbor i-vectors will be chosen in an

unsupervised manner. The evaluation was performed on the speaker verification

trials of VoxCeleb-1 database. The results show that while using autoencoder pre-

training for a DNN classifier, we gain a relative improvement of 21% in terms of EER,

over i-vector/PLDA system. Whereas, applying the nearest neighbors approach to

train the autoencoder, a relative improvement of 42% is gained over i-vectors with

cosine scoring. Moreover, if we make use of the background data in the testing part,

a relative improvement of 53% is gained over i-vector/PLDA system.

In the third proposal, we will train an end-to-end speaker verification system

without using speaker labels. The idea is to utilize impostor samples along with the

nearest neighbor samples to make client/impostor pairs in an unsupervised manner.

The architecture will be based on a VGG-like Convolutional Neural Network (CNN)

encoder which will be trained as a siamese network with two branch networks. Fur-

thermore, another network with three CNN encoder branches will be trained using

triplet loss, in order to extract unsupervised speaker embeddings. The experimental

results show that both the end-to-end system and the speaker embeddings, despite

being unsupervised, show a comparable performance to a similar but fully super-

vised baseline. Moreover, the score combination of both the systems can further

improve the performance.

The above proposed approaches for speaker verification have their pros and cons

over each other. From the experiments it is clear that the best result was obtained

using the nearest neighbor autoencoder. However, its disadvantage is that it relies

on the background i-vectors in the testing part. Compared to this, the use of

iii

autoencoder pre-training for DNN is not bound by this factor but the DNN training

was carried out using speaker labels. On the other hand, the third proposal is free

from both these constraints and still performs pretty reasonably. Firstly, it is a fully

unsupervised approach. Secondly, it uses Mel-Spectrogram features in the testing

phase and therefore avoids i-vector extraction. And finally, it does not rely on the

background i-vectors in the testing phase.

Resumen

En el reconocimiento automático de hablantes, los i-vectors han sido la técnica no

supervisada preponderante en los últimos años, mientras que los x-vectors se están

convirtiendo en la técnica supervisada de última generación. Los avances recientes

en los enfoques de aprendizaje profundo Deep Learning (DL) para el reconocimiento

del habla y del hablante han mejorado el rendimiento, pero estas técnicas se limitan

a la necesidad de etiquetas fonéticas y/o del hablante para los datos de background.

En la práctica, los datos de background etiquetados no son fácilmente accesibles, es-

pecialmente cuando se requieren un volumen grande de datos de entrenamiento. En

el reconocimiento de locutor basado en i-vectors, la distancia coseno y el análisis dis-

criminante lineal probabilístico (PLDA) son las dos técnicas básicas de puntuación.

La puntuación de la distancia coseno es una técnica no supervisada, mientras que

los parámetros del PLDA normalmente se entrenan utilizando datos de fondo eti-

quetados por el hablante. La falta de datos etiquetados del hablante crea una gran

brecha de rendimiento entre estas dos técnicas de puntuación. La pregunta es:

¿cómo llenar esta brecha de rendimiento sin usar etiquetas del hablarte en los datos

de background? En esta tesis, el problema mencionado anteriormente se ha abor-

dado utilizando enfoques de DL sin utilizar y / o limitar el uso de datos etiquetados.

Se han realizado tres propuestas basadas en DL.

En la primera, se propone una representación vectorial de voz basada en la

máquina de Boltzmann restringida (RBM) para las tareas de agrupación de hablantes

y seguimiento de hablantes en programas de televisión.. Se propone entrenar un

modelo global utilizando todos los datos disponibles, al que se designa como Máquina

de Boltzmann restringida universal (URBM). A continuación, para extraer los vec-

tores de RBM deseados para los experimentso de prueba, se adaptaun solo RBM del

URBM. Los experimentos, realizados utilizando la base de datos AGORA, muestran

que en la tarea de agrupación de hablantes los vectores RBM propuestos superan a

vi

los i-vectors, lo que resulta en una mejora relativa del 12% en términos de igualdad

de impureza (EI). En el caso del seguimiento del hablante, los vectores RBM se

utilizan solo en la etapa de identificación del hablante, donde la mejora relativa en

términos de Equal Error Rate (EER) es del 11% y el 7%, utilizando la puntuación

de coseno y PLDA, respectivamente.

En la segunda propuesta, se utiliza DL para aumentar el poder discriminativo de

los i-vectors en la verificación del hablante. Se ha propuesto el uso del codificador

automático de varias formas. En primer lugar, se utiliza un codificador automático

como preentrenamiento de una red neuronal profunda (DNN). Este entrenamiento

previo se lleva a cabo utilizando una gran cantidad de datos de background sin eti-

quetar. Después, se entrena un clasificador DNN utilizando un conjunto reducido

de datos etiquetados. El DNN se inicializa con los parámetros del codificador au-

tomático preentrenado. En segundo lugar, se entrena un autocodificador en un

nuevo marco, para transformar i-vectors en una nueva representación. El propósito

es aumentar el poder discriminativo de los i-vectors. El entrenamiento se lleva a cabo

en base a los i-vectors vecinos más cercanos, en lugar del mismo i-vector de entre-

namiento. Los i-vectors vecinos más cercanos se eligen de forma no supervisada. La

evaluación se ha realizado con pruebas de verificación del hablante utilzando la base

de datos VoxCeleb-1. Los resultados muestran que al utilizar el preentrenamiento

con autocodificador para un clasificador DNN, obtenemos una mejora relativa del

21% en términos de EER sobre el sistema i-vector / PLDA. Sin embargo, aplicando

el enfoque de vecinos más cercanos para entrenar el autocodificador, se obtiene una

mejora relativa del 42% sobre los i-vectors usando distancia coseno. Además, si

utilizamos los datos de background en la etapa de prueba, se obtiene una mejora

relativa del 53% sobre el sistema i-vector / PLDA.

En la tercera propuesta, entrenamos un sistema de verificación de locutor de

principio a fin sin usar etiquetas de locutor. La idea es utilizar muestras de im-

postores junto con las muestras del vecino más cercano para formar pares cliente /

impostor sin supervisión. La arquitectura se basar en un codificador de red neuronal

convolucional (CNN) similar a VGG, que se entrenará como una red siamesa con

dos redes de ramas. Además, se entrenará otra red con tres ramas de codificador

CNN utilizando función de pérdida de triplete, con el fin de extraer embeddings

de locutores sin supervisión. Los resultados experimentales muestran que tanto el

sistema de principio a fin como las embeddings de locutores, a pesar de no estar

vii

supervisadas, muestran un rendimiento comparable a una referencia similar pero

completamente supervisada. Además, la combinación de puntuación de ambos sis-

temas puede mejorar aún más el rendimiento.

Los enfoques propuestos anteriormente para la verificación del hablante tienen

sus pros y sus contras. A partir de los experimentos, queda claro que el mejor

resultado se obtuvo utilizando el autocodificador con el vecino más cercano. Sin

embargo, su desventaja es que se basa en los i-vectores de background en la etapa

de prueba. El uso del preentrenamiento del codificador automático para DNN no

está sujeto a este factor, pero el entrenamiento de DNN se llevó a cabo utilizando

etiquetas de locutores. Por otro lado, la tercera propuesta está libre de estas dos

limitaciones y funciona de manera bastante razonable. En primer lugar, es un

enfoque totalmente no supervisado. En segundo lugar, utiliza características de

Mel-Spectrogram en la fase de prueba y, por lo tanto, evita la extracción de i-vector.

Y finalmente, no depende de los i-vectores de background en la fase de prueba.

Acknowledgments

First of all I would like to thank the Almighty ALLAH, who has always blessed me.

Because of His blessings I got the confidence to manage this thesis and all other

hardships in my life.

This thesis wouldn’t be possible without the supervision and ideas of my advi-

sor, Prof. Dr. Francisco Javier Hernando Pericás. I would like to thank him for

his support and cooperation throughout this long journey. Working with him in

TALP research center has given me confidence in developing skills and to work in

a competitive environment. He provided me opportunities to enhance my research

capabilities, specially in the area of Speaker Recognition.

I would like to thank all my colleagues in the TSC department for their support

and cooperation. In the TALP research center, I would like to thank Miquel India

who has always guided me whenever I needed. I am also very thankful to Abraham

Woubie, Omid Ghahabi and Pooyan Safari for their expert advises in the area of

Speaker Recognition.

Finally, I am extremely thankful to my parents and siblings. They have always

supported me and prayed for my success. My wife, Shaista, was always with me

throughout the journey of this PhD. She deserves a very very special thanks. It is

only because of her moral support that this thesis has come to a successful comple-

tion. Last but not the least, I am grateful to all my friends who are always there

whenever I feel down in hard times.

Contents

List of Figures xviii

List of Tables xxii

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 4

1.3 Outline . 6

2 State of the Art in Speaker Recognition 9

2.1 Speaker Recognition Tasks . 10

2.2 Conventional Techniques . 16

2.2.1 Feature Extraction . 16

2.2.2 Supervectors and i-Vectors . 17

2.2.3 i-Vector Backends . 19

2.2.4 Score Normalization and Calibration 22

2.3 Deep Learning Approaches . 24

2.3.1 Frontends . 25

2.3.2 Backends . 29

2.3.3 End-to-end Systems . 30

2.4 Evaluation Metrics . 31

3 RBM Vectors for Speaker Clustering and Tracking 35

3.1 RBM Vector Representation . 36

3.1.1 Universal RBM Training . 38

3.1.2 Adaptation and RBM Vector Extraction 39

3.2 Speaker Clustering . 41

xii Contents

3.3 Speaker Tracking . 42

3.4 Experimental Setup and Database 46

3.5 Results . 47

3.5.1 Speaker Clustering . 47

3.5.2 Speaker Tracking . 49

3.6 Conclusion . 54

4 DNN speaker embeddings by means of autoencoder pre-training 55

4.1 Autoencoder Pre-Training for DNN 56

4.2 Experimental Setup and Database 60

4.3 Results . 61

4.4 Conclusion . 63

5 Unsupervised training of autoencoder speaker embeddings using

k-nearest neighbors 67

5.1 Selection of Nearest Neighbor i-Vectors 68

5.2 Nearest Neighbor Autoencoder . 69

5.3 Average Pooled Nearest Neighbor Autoencoder 71

5.4 Experimental Setup and Database 74

5.5 Results . 75

5.5.1 Nearest Neighbor Autoencoder 75

5.5.2 Average Pooled Nearest Neighbor Autoencoder 79

5.6 Conclusion . 81

6 Unsupervised training of siamese networks for speaker verification 83

6.1 Clients and Impostor Selection . 84

6.2 Proposed Siamese Architectures . 86

6.2.1 Double-Branch for End-to-End Speaker Verification 86

6.2.2 Triple-Branch for Speaker Embeddings 88

6.2.3 CNN Encoder . 89

6.3 Experimental Setup and Database 90

6.4 Results . 91

6.5 Conclusion . 94

Contents xiii

7 Conclusions and Future Work 95

7.1 Conclusions . 95

7.2 Future Research Lines . 97

Publications 99

Bibliography 101

Acronyms

AHC Agglomerative Hierarchical Clustering.

ASR Automatic Speech Recognition.

BIC Bayesian Information Criterion.

BNF Bottle Neck Features.

CD Cosine Distance.

CD-1 Contrastive Divergence-1.

CI Cluster Impurity.

CNN Convolutional Neural Network.

DBN Deep Belief Network.

DET Detection Error Trade-off.

DL Deep Learning.

DNN Deep Neural Network.

EER Equal Error Rate.

EI Equal Impurity.

EM Expectation Maximization.

FA False Alarm.

FAR False Acceptance Rate.

xvi Acronyms

FC Fully Connected.

FF Frequency Filtering.

FRR False Rejection Rate.

GLR Generalized Likelihood Ratio.

GMM Gaussian Mixture Models.

ICR Information Change Rate.

IT Impurity Trade-off.

JFA Joint Factor Analysis.

LDA Linear Discriminant Analysis.

LFCC Linear Frequency Cepstral Coefficient.

LLR Log-Likelihood Ratio.

LPC Linear Predictive Coefficient.

MAP Maximum A Posteriori.

MDR Miss Detection Rate.

MFCC Mel-Frequency Cepstral Coefficients.

minDCF minimum of the Detection Cost Function.

MSE Mean Square Error.

MST Missed Speaker Time.

MVN Mean Variance Normalization.

PCA Principal Component Analysis.

PLDA Probabilistic Linear Discriminant Analysis.

PLP Perceptual Linear Predictive.

Acronyms xvii

RBM Restricted Boltzmann Machine.

ReLU Rectified Linear Units.

SAD Speech Activity Detection.

SGD Stochastic Gradient Descent.

SI Speaker Impurity.

SVM Support Vector Machine.

t-SNE t-Distributed Stochastic Neighbor Embedding.

TDNN Time Delay Neural Network.

TV Total Variability.

UBM Universal Background Model.

URBM Universal Restricted Boltzmann Machine.

WCCN Within-Class Covariance Normalization.

List of Figures

2.1 Block diagram of a speaker identification system 10

2.2 Block diagram of a speaker verification system 11

2.3 Agglomerative Hierarchical Clustering 14

2.4 Block diagram of i-vector extraction process 18

2.5 Possible Deep Learning Approaches to Speaker Recognition. 24

2.6 A typical architecture of BNF features extractor. 25

2.7 A typical architecture of speaker embeddings extractor. 26

2.8 A typical architecture of x-vector extractor. 27

2.9 A typical siamese architecture of an end-to-end speaker verification

system. 31

2.10 False Acceptance Rate (FAR) and False Rejection Rate (FRR) . . . 32

2.11 Detection Error Trade-off (DET) Curve 33

3.1 Block diagram showing different stages of the RBM vector extraction. 37

3.2 Comparison of the weight matrices of URBM and randomly selected

adapted RBMs. 38

3.3 Examples of 400-dimensional RBM vectors. The figure shows two

pairs of RBM vectors from the test audios. Each pair belong to the

same speaker. We rearrange the RBM vectors in the form 10×40 for

the convenience of visualization. The ordering of the RBM vector is

the same for all. 40

3.4 Architecture of Our Two Step Speaker Tracking System using RBM

vectors. 43

3.5 IT curves for the proposed RBM vectors with i-vectors using cosine

scoring and average linkage algorithms for clustering. 49

xx List of Figures

3.6 IT curves for the proposed RBM vectors with i-vectors using different

scoring and linkage algorithms for clustering. 50

3.7 Speaker segmentation results in terms of FAR and MDR in %. Results

are obtained using different Window sizes (d) and a constant shift i.e.,

∆ = 0.25 s. A collar of ±0.25 s is accepted around a speaker change

point. 51

3.8 Comparison of DET curves for the proposed RBM vectors with 800

dimensional i-vectors. Different lengths of RBM vectors are evaluated

using cosine and PLDA scoring. The lengths of RBM vectors and i-

vectors are given in parenthesis. 53

4.1 Block diagram of the proposed speaker embeddings extraction from

i-vectors using autoencoder pre-training. 56

4.2 Autoencoder pre-training for the DNN. 57

4.3 DNN training as a classifier. 58

4.4 Comparison of the training convergence, in terms of validation loss

against number of epochs, between the conventional and the proposed

training of the DNN classifier. 61

4.5 DET plots of the baseline and the proposed speaker embeddings,

using only encoder and full autoencoder initialization for the DNN. . 62

4.6 Comparison of the t-SNE Plots, between raw i-vectors, conventional

and proposed speaker embeddings. All the vectors were reduced to 2

dimensional space. 64

5.1 Visualization of selection of neighbor i-vectors. 68

5.2 Block diagram of the proposed training of the autoencoder. The loss

is computed between input i-vector and it’s nearest neighbor. 70

5.3 Block diagram of the proposed Autoencoder vector extraction for the

test i-vectors. 71

5.4 Block diagram of the proposed system. Solid arrows corresponds to

the training phase, while dotted arrows corresponds to the proposed

vector extraction and testing phase. 72

5.5 Proposed DNN architecture. 73

5.6 DET curves for the proposed ae-vectors and i-vectors evaluated for

different values of threshold using cosine scoring. 76

List of Figures xxi

5.7 DET curves with different values of k using cosine scoring. 78

5.8 DET curves for the fusion of i-vector/PLDA and the proposed ae-

vectors with k equal to 15. 79

5.9 DET curves using MSE loss with different values of k. 80

6.1 Block diagram of our double-branch siamese network. In testing

phase decision scores for speaker verification are obtained form last

FC layer. 87

6.2 Block diagram of our triple-branch siamese network. Speaker em-

beddings are extracted from the last FC layer of any CNN encoder

branch. 88

6.3 DET curves for the proposed double- and triple-branch siamese net-

work, compared with the supervised baseline. Different plots are

shown for different values of k. 92

List of Tables

3.1 Comparison of speaker clustering results for the proposed RBM vec-

tors with i-vectors, in terms of EI in %. The dimensions of vectors

are given in parenthesis. Each column shows EI in % for different

scoring and linkage combinations. 48

3.2 Comparison of speaker tracking results for the proposed RBM vectors

with 800 dimensional i-vectors, in terms of EER in %. The lengths of

RBM vectors and i-vectors are given in parenthesis. Column 2 and 3

represents EER in % for cosine and PLDA Scoring respectively. . . . 51

4.1 Performance comparison, in terms of EER (%), between the baseline

and the proposed speaker embeddings. 62

5.1 EER and minDCF for the proposed ae-vectors and i-vectors evaluated

for different values of threshold using cosine scoring. 76

5.2 EER and minDCF for the proposed ae-vectors and i-vectors for dif-

ferent values of k using cosine scoring. 77

5.3 Fusion of i-vector/PLDA and the proposed ae-vectors with k equal

to 15. 78

5.4 EER(%) for the proposed vectors using both CD and MSE losses

with different values of k. Using i-vectors, the EER(%) is equal to

17.61 and 9.54 for cosine and PLDA, respectively (Khan, India, &

Hernando, 2019). 80

5.5 EER(%) with & without a threshold of 0.0 applied on high values of k. 81

6.1 Architecture of the VGG based CNN Encoder. In and Out Dim.

refers to the input and output feature maps of the layer. Feat Size is

the dimension of every output feature map. 89

xxiv List of Tables

6.2 EER in % for the proposed double- and triple-branch siamese net-

works, compared with the supervised baseline. Different results are

shown for different values of k. 91

6.3 Comparison of the different proposed approaches. Evaluation was

performed on VoxCeleb-1 test set. 93

Chapter 1

Introduction

T he process of automatically retrieving the identity of a person from his speech,

i.e., speaker identification, and/or in some cases automatically verifying the

identity being claimed by a person, i.e., speaker verification, is known as speaker

recognition. The whole process of speaker recognition only relies on the speech sig-

nals spoken by the person. Therefore, it is supposed that the person should have

unique voice characteristics. These characteristics should be able to carry enough

information about the identity of the person which is known as Voice Biometrics.

Thus, speaker recognition can be used as biometric identity, in addition to or in-

stead of, other common biometric identities like fingerprint, face recognition and iris

recognition etc. In certain scenarios, voice biometrics is more convenient than the

other biometric identities, for instance, the customer service center of a bank can

recognize their clients by using their voice characteristics recorded during an ongo-

ing phone call with the client. Moreover, when the luminance of the environment

is not sufficient for using face or iris recognition, one can use voice as a biometric

identity which is not affected by the lack of luminance. Apart from speaker identi-

fication and verification tasks, where a single speaker is identified or verified, there

are several other tasks that use voice as a speaker identity in a multiple speaker

applications e.g., speaker segmentation, speaker clustering, speaker diarization and

tracking etc. This thesis focuses mainly on speaker verification and partially on

speaker clustering and tracking tasks.

2 Introduction

1.1 Motivation

The emerging technology of Deep Learning (DL) has been successfully applied to

various tasks of speech technologies in recent decades (Mohamed et al., 2010; Dahl et

al., 2011; Senior et al., 2015). Their success has influenced the research community

to make use of DL in speaker recognition tasks as well (Lei et al., 2014a; Richardson

et al., 2015; K. Chen & Salman, 2011; Kenny et al., 2014; Liu et al., 2015). Unsu-

pervised approaches, like autoencoders, Restricted Boltzmann Machine (RBM) and

Deep Belief Network (DBN), as well as supervised approaches, like Deep Neural

Network (DNN), have been widely used for speaker recognition. The application

of DL in a speaker recognition system can be widely classified in three different

categories, i.e., at the frontend, at the backend, and as an end-to-end system.

At the frontend, DL can be applied to extract the so called Bottle Neck Fea-

tures (BNF), with the help of senone or phoneme state labels of speech. The

BNF features can be used either to compute Gaussian Mixture Models (GMM)

log-likelihood (Deng & Yu, 2014; Yamada et al., 2013) or to train a Gaussian Mix-

ture Models–Universal Background Model (GMM)–(UBM) in a standard i-vector

(Dehak et al., 2011) extraction process (Ghalehjegh & Rose, 2015; Lozano-Diez et

al., 2016). These features can also be appended to the original acoustic features and

can be used in several speaker recognition tasks (Lee et al., 2009; Liu et al., 2015;

Jorrín et al., 2017; Jati & Georgiou, 2017; Anna et al., 2017). However, the BNF

extraction is costly is terms of computations as compared to the acoustic features.

Furthermore, it requires phonetic labels for the speech data. This can be difficult

in practice, specially when a large amount of background data is required for the

DNN training.

A more popular trend, to use DL at the frontend of a speaker recognition sys-

tem, is to learn a vector based representation of speech utterances. In most cases,

this vector based representation is obtained provided that the speaker labels for

the background data are available, such as in (Variani et al., 2014a; Isik et al.,

2015; Liu et al., 2015; Bhattacharya et al., 2017; Snyder et al., 2018). Such vector

based representation of speech is commonly known as speaker embeddings. Speaker

embeddings, like i-vectors, are scored with commonly used scoring techniques, for

instance cosine (Dehak et al., 2010) and Probabilistic Linear Discriminant Analy-

sis (PLDA) (Prince & Elder, 2007) backends. Usually, speaker embeddings can be

1.1 Motivation 3

obtained using a supervised approach. However, there exist very few unsupervised

DL approaches to speaker embeddings extraction (Vasilakakis et al., 2013). These

approaches often compromise on the performance of the system. Therefore, both

the BNF features and speaker embeddings DL approaches are typically constrained

to labeled background data, either phonetic labels (in the case of BNF features) or

speaker labels (in the case of speaker embeddings).

At the backend, one possibility of applying DL in speaker recognition is to post-

process the already existing i-vectors. For instance in (Senoussaoui et al., 2012;

Stafylakis et al., 2012c) different combinations of RBMs are applied for i-vector

classification. On the other hand, in (Stafylakis et al., 2012a; Isik et al., 2015), the

authors proposed DL approaches in order to improve the discriminative power of

i-vectors. In other words, it transforms i-vectors into new vectors which are scored

using cosine or PLDA backends. Similarly, in (Ghahabi & Hernando, 2017) decision

scores were directly obtained from DNNs, without using cosine and PLDA scoring

backends.

Unlike the above trends, an end-to-end system is typically trained by feeding the

feature vectors at the input and obtaining decision scores at the output, without a

backend scoring technique. Thus, end-to-end systems are more challenging to train

and optimize. Feeding directly the audio samples, at the input, is a huge problem

in terms of computational complexity. Therefore, most of the end-to-end systems,

nowadays, are still based on the handcrafted features like Mel-Frequency Cepstral

Coefficients (MFCC). In the past years, there have been several attempts to DL

based end-to-end systems, for instance in (Heigold et al., 2016; S.-X. Zhang et al.,

2016; C. Zhang & Koishida, 2017; Dey et al., 2018; Heo et al., 2017). In some

cases, for example in (S.-X. Zhang et al., 2016; Heigold et al., 2016), the training is

performed in several steps. Firstly, the frontend speaker embeddings part is trained,

usually, using multi-class speaker labels. Then, the backend part is added to the

network and a joint fine tuning is performed using binary class labels.

As discussed above, most of the different trends of DL approaches to speaker

recognition are typically constrained to labeled background data. On the other hand,

i-vector extraction is an unsupervised process which does not require phonetic or

speaker labels. The two commonly scoring techniques, i.e., cosine and PLDA, are

widely used to decide if two i-vectors belong to the same speaker. Unlike cosine scor-

ing, PLDA parameters are trained using speaker labeled background data. Usually,

4 Introduction

a large number of speakers having several utterances per speaker are required. In

practice, access to the speaker labeled background data is costly. This results in a

huge performance gap between cosine and PLDA scoring for i-vectors. In (Khoury et

al., 2014; Novoselov, Pekhovsky, & Simonchik, 2014), automatic labeling techniques

were proposed but they could not appropriately estimate the true labels because

the results reported were still far from that of PLDA with actual labels. Similarly,

in (Ghahabi & Hernando, 2014a,b, 2018, 2017) several alternative DL based ap-

proaches were proposed without using speaker-labeled background data. However,

most of their results were based on fusion strategies with i-vector/PLDA, in order

to obtain good performance. Moreover, their approach was based on training a sep-

arate DL based model for every target speaker in the database, which may not be

convenient in some cases.

1.2 Objectives

The main objective of this thesis is to take advantage of the recent advancements in

DL approaches for speaker recognition while minimizing/avoiding the requirement

of labeled background data. In order to accomplish this objective, we have applied

DL in three different ways, i.e, to learn a vector based representation of speech,

to increase discriminative power of i-vectors, and to train an end-to-end speaker

verification system. We have addressed one major objective in speaker clustering

and tracking tasks, and two major objectives in speaker verification task. Following

are the specific aims and objectives of this thesis explained in details.

I. To apply unsupervised DL approach in order to learn a vector based rep-

resentation of speech using RBM for speaker clustering and tracking tasks.

Such vector based representation was reffered to as RBM vector, and was first

proposed in (Safari et al., 2016) for the task of speaker verification. In this

objective, we make use of RBM vectors for the tasks of speaker clustering and

speaker tracking in TV broadcast shows. A global model, reffered to as Uni-

versal Restricted Boltzmann Machine (URBM), is trained with a large amount

of unlabeled background data. Then, an adapted RBM model is trained for

every speech utterance. In order to extract the desired RBM vectors, the

weight matrices of the adapted RBM models are concatenated and whitened.

More details are found in Chapter 3.

1.2 Objectives 5

II. One possible way of using DL in speaker recognition is to combine it with the

existing unsupervised state of the art approaches i.e., i-vectors. In this objec-

tive we make use of unsupervised DL techniques with the help of autoencoder

pre-training and nearest neighbors approach for i-vector speaker verification.

In order to increase the discriminative power of i-vectors, we propose the use

of autoencoder training in several ways. In the first case, we train an unsu-

pervised autoencoder as a pre-training for a supervised DNN classifier. This

will be reffered to as hybrid autoencoder-DNN. This hybrid autoencoder-DNN

training converges faster than the conventional DNN. Moreover, the accuracy

of the speaker verification system is also improved. Detailed explanation can

be found in Chapter 4. In the second case, we propose to make use of the

nearest neighbor i-vectors for speaker verification. During the training, the

autoencoder tries to reconstruct a nearest neighbor i-vector instead of the

same training i-vector. In this way, the network learns speaker variability in

an implicit way. In the third case, the autoencoder is trained by feeding a

large set of nearest neighbor i-vectors at the input. Further details are stated

in Chapter 5.

III. To make use of impostor i-vectors along with the nearest neighbor i-vectors in

a Convolutional Neural Network (CNN) based end-to-end speaker verification

system. In this objective, we divide the database into two partitions having

equal number of utterances. From one partition we select potential nearest

neighbor i-vectors, while from the other partition we select potential impostor

i-vectors. In this way we generate the client and impostor pairs in an unsuper-

vised manner. Using these training pairs we train a VGG-like (Simonyan &

Zisserman, 2014) CNN encoder based end-to-end speaker verification system.

The network is trained as a double-branch siamese network for a binary clas-

sification problem. Moreover, we also trained a triple-branch siamese network

using triplet loss, which is aimed to extract unsupervised speaker embeddings.

In the testing phase, for the double-branch siamese network we directly ob-

tained speaker verification scores, whereas for the triple-branch siamese net-

work we extracted speaker embeddings and then scored them using cosine

scoring. In Chapter 6, both the networks and the CNN encoder architectures

are explained in detail.

6 Introduction

1.3 Outline

The rest of the thesis is organized in the following manner.

Chapter 2 briefly reviews speaker recognition as well as the main state-of-the-

art approaches used in the past. It describes the possible uses of DL techniques in

i-vector based speaker recognition. After this, some recent developments and trends

in speaker recognition using DL approaches, i.e., DL front-ends, like, BNF features

and speaker embeddings, DL backends and DL based end-to-end systems, are briefly

discussed. Finally, it explains the different evaluation metrics for measuring the

performance of speaker verification, clustering and tracking systems.

Chapter 3 describes the impact of RBM vectors for the tasks of speaker clustering

and speaker tracking. Different lengths for extracting the RBM vectors are inves-

tigated and compared with the state-of-the-art systems. Evaluation experiments

are performed on AGORA database which contains audio recordings of Catalan TV

broadcast shows.

Chapters 4 and 5 explain our proposed algorithms using DL techniques in the

task of i-vector based speaker verification. In these two chapters, all the neural

networks are trained using utterance level features i.e., i-vectors. In Chapter 4, we

describe our proposed DNN speaker embeddings using autoencoder pre-training.

The autoencoder was trained in an unsupervised manner, whereas the DNN train-

ing was carried out in a supervised way. In Chapter 5, we avoid the supervised

DNN training by using only unsupervised autoencoder. In this chapter, we explain

our proposed unsupervised autoencoder speaker embeddings using k nearest neigh-

bor approach. The unsupervised k nearest neighbor selection algorithms are also

discussed in this chapter. Experimental results are given on VoxCeleb database.

The previous proposals are only applicable in the i-vector space because they

aim at improving the discriminative power of i-vectors. Hence, in Chapter 6 we

describe our CNN based siamese networks which are trained using frame level fea-

tures i.e., spectrograms. Two siamese networks, trained in an unsupervised manner,

are aimed to perform an end-to-end speaker verification task and to extract speaker

embeddings, respectively. The unsupervised nearest neighbors and impostor sam-

ples were used as client/impostor pairs in these approaches. In this chapter, we

explain the details of the CNN encoder architecture used as a branch in both the

siamese networks. The performance of the proposed CNN based siamese networks

1.3 Outline 7

is evaluated on VoxCeleb database.

Finally, in Chapter 7 some conclusions are drawn as the findings of this thesis.

It also gives directions for possible future research lines in this area.

Chapter 2

State of the Art in Speaker

Recognition

T his chapter briefly explains the state of the art approaches in the area of

Speaker Recognition. It briefly explains the different speaker recognition

tasks e.g., speaker identification and verification, speaker segmentation and cluster-

ing, and speaker diarization and tracking. This chapter also contains a brief intro-

duction of the convectional pre-processing and speaker modelling techniques used in

speaker recognition, like feature extraction and supervectors and i-vectors. More-

over, the different scoring techniques for i-vectors, like cosine and Probabilistic Lin-

ear Discriminant Analysis (PLDA), along with session compensation techniques like

Within-Class Covariance Normalization (WCCN) and Linear Discriminant Analysis

(LDA) are also described. Furthermore, some score normalization and calibration

techniques are briefly explained.

Afterwards, this chapter explains the recent advancements using Deep Learning

(DL) approaches to speaker recognition. These approaches are broadly categorized

in DL frontend, backend and end-to-end systems. The frontend approaches include

the popular trends of Bottle Neck Features (BNF) and the so called speaker em-

beddings extractors like x-vectors (Snyder et al., 2018). The backend approaches

include i-vector post-processing and scoring techniques using DL, whereas the end-

to-end approaches consist of the popular siamese networks. In this thesis we have

contributed in the tasks of speaker verification, speaker clustering and speaker track-

ing. Therefore, the different evaluation metrics used in these tasks are also explained

at the end of this chapter.

10 State of the Art in Speaker Recognition

Feature
Extraction

Target	Speaker
Modeling

Target
utterance

Similarity
	Measure

Maximum	
Similarity

Feature
Extraction

Test	Speaker
Modeling

Test	
utterance

Training	Phase

Testing	Phase

Database

All	Target	
Models

Figure 2.1: Block diagram of a speaker identification system

2.1 Speaker Recognition Tasks

Speaker recognition is a general term used for any task that involves recognizing of a

person using his/her voice characteristics. Speaker recognition is mainly categorized

in speaker identification and speaker verification. Speaker identification is a task

in which a person is being recognized among multiple enrolled speakers. Whereas,

speaker verification is a task in which a test person’s voice is matched only with the

claimed identity, which, based on the score, is either accepted or rejected. Despite

of these two main tasks, there are other applications as well, for example, speaker

segmentation, speaker clustering, speaker tracking, speaker diarization or speaker

indexing etc. These tasks are briefly explained as follows.

Speaker Identification

Speaker identification is a multi-class classification problem where a test speech is

identified against one of the multiple pre-enrolled speakers. This is called a closed-

set approach. In an open-set approach, the test speech can also be identified as

an unknown speaker, if it is not matched to either of the pre-enrolled speakers. In

Figure 2.1 a speaker identification system is shown. It has two main phases, i.e.,

training phase and testing phase. In the training phase, first of all useful features

are extracted for all the target speakers. Using these features, speaker models are

trained, e.g., Gaussian Mixture Models (GMM) (Reynolds & Rose, 1995) and i-

2.1 Speaker Recognition Tasks 11

Feature
Extraction

Target	Speaker
Modeling

Target
utterance

Similarity
	Measure DecisionFeature

Extraction
Test	Speaker
Modeling

Test	
utterance

Training	Phase

Testing	Phase Threshold

Database

Claimed	Target	
Model

All	Target	
Models

Figure 2.2: Block diagram of a speaker verification system

vectors (Dehak et al., 2011). In this way the target speakers are enrolled and stored

in the database. In testing phase speaker model is trained for the unknown speech

in a similar way as in the training phase. A similarity is measured between the test

and all the target models based on which the test model is assigned to the target

model with maximum similarity among all (Schwartz et al., 1982). If the test model

does not match with any of the target models and is declared as unknown, it can

be enrolled as a new target speaker (open set problem) or it can be discarded (close

set problem), depending upon the application.

Speaker Verification

On the other hand, speaker verification is a binary classification problem where a

test speaker claims an identity and the system should verify whether his claim is

true or false (Bimbot et al., 2004). In Figure 2.2 a speaker verification system is

shown. It has two main phases, i.e., training phase and testing phase. The training

phase, is identical as that of the speaker identification system, where all the target

speakers are enrolled in the system. Whereas, in the testing phase the unknown

speaker claims an identity which is verified by the system. The similarity measure

is computed between the test and the claimed target speaker only. A threshold

is provided in order to decide whether the claim is true or false. The threshold

selection depends on the sensitivity of the application. Speaker verification is further

categorized in text-dependent or text-independent scenarios. In the text-dependent

12 State of the Art in Speaker Recognition

speaker verification the test speaker is required to utter exactly the same text or

phrase. In the text-independent case the test speaker is free of uttering any specific

phrase or text. This freedom of speech makes it a more challenging task as compared

to text-dependent case, and is more common in real world applications.

Speaker Segmentation

Speaker segmentation is the task of detecting points in a multi-speaker audio which

are more likely to be the change points between different speakers. According to

(S. Chen & Gopalakrishnan, 1998) there are three basic approaches to perform

speaker segmentation, i.e., silence based segmentation, model based segmentation

and metric based segmentation. The silence based methods assume that there occurs

a silence between the utterances of two different speakers. These methods are usually

dependent on a threshold value of the short term energy but the results obtained are

poor (Kemp et al., 2000). There are two types in this method, i.e., energy based and

decoder based systems. The energy based systems rely on energy detector to detect

the silence frames (Kemp et al., 2000), whereas the decoder based systems rely

on a certain recognition system to find the speaker change points from the silence

detected locations (Kubala et al., 1997). Since there is no clear relationship between

the existence of silence in a recording and a speaker change, because this idea has

no direct dependency with the acoustic changes in the speech data. Therefore, these

types of approaches to speaker segmentation are not commonly applied in speaker

diarization systems.

The model based approach to speaker segmentation rely on training different

models for each acoustic class in a closed set, for instance, channel based classes

like telephone or broad-band, gender based classes like male or female, and other

classes like music, speech or silence. These models are trained using some training

database. In the testing phase, the audio signal is classified using the maximum

likelihood approaches (Gauvain et al., 1999). The detected boundaries between dif-

ferent models are considered to be the segmentation change points. These methods

are not very robust and cannot generalize for unseen data.

The metric based approach to speaker segmentation is the most commonly used

techniques (Ajmera & Wooters, 2003). In this approach it is not required to input

any prior knowledge about the number of speakers. A distance metric is used be-

tween every two adjacent speech segments to determine the possible speaker change

2.1 Speaker Recognition Tasks 13

points (Sinha et al., 2005). There are two hypothesis tested, i.e., H1, assuming the

two speech segments belong to the same speaker and described by a single model,

and H2, assuming the two speech segments belong to different speakers and de-

scribed by different models. The distance metric is then compared to a threshold

in order to go for one of the two hypothesis using Bayesian Information Criterion

(BIC), Generalized Likelihood Ratio (GLR) (Willsky & Jones, 1976) or Information

Change Rate (ICR) (Vijayasenan et al., 2007).

Speaker Clustering

Speaker Clustering is the task of grouping homogeneous segments that are likely to

belong to a single speaker. The two main approaches are online and offline speaker

clustering. In online clustering, the speech segments are grouped or split in con-

secutive iterations which continues until an optimal number of speakers is acquired.

Whereas, in offline clustering the entire speech file is available beforehand. There-

fore it achieves relatively better performance as compared to the online clustering

approach.

The most widely used approach to speaker clustering is the Agglomerative Hier-

archical Clustering (AHC). AHC is based on iteratively splitting or merging clusters

until an optimum number of clusters is reached. It introduces a hierarchy of clusters

showing the relations between the speech segments to be clustered. Then it merges

the speech segments based on a similarity or distance criteria. When the optimal

stage is reached, the system stops any more iterations and gives an output hypoth-

esis. AHC can be approached in two different ways, i.e., bottom-up and top-down.

Two parameters are need to be defined in both bottom-up and top-down cluster-

ing. The first parameter is a distance metric between speech segments to determine

the acoustic similarity/difference. The distance metric is used to make the decision

whether or not two segments must be merged (in bottom-up clustering) or split (in

top-down clustering). The second parameter is to define a certain stopping criterion

in order to determine when to stop the iterations, e.g, when the optimal number of

clusters (in this case speakers) is reached.

In bottom-up AHC the system starts with maximum number of clusters and

keeps merging them iteratively, according to some criteria for example the BIC

criteria. It is necessary to define the initial number of clusters in order to initiate

the algorithm. The bottom-up approach has been applied decades ago in pattern

14 State of the Art in Speaker Recognition

Figure 2.3: Agglomerative Hierarchical Clustering

classification problems in (R. O. Duda & Hart, 1973). In (R. Duda et al., 2001)

and (Siegler et al., 1997) it was considered for the first time for the task of speaker

clustering. On the other hand, the top-down AHC approach is the opposite to the

bottom-up approach. In top-down approach the system starts with small number

of clusters, usually just one cluster, and iteratively splits them into new clusters

until the optimal stage is reached. An example of bottom-up and top-down AHC

approaches is shown in Figure 2.3. The colored bar shoes optimal number of clusters

where the system stops.

Speaker Diarization

Speaker diarization refers to the process of automatically segmenting and cluster-

ing an audio recording into homogeneous speech regions. It answers the question

who spoke when without assuming any prior knowledge about the number or char-

acteristics of speakers (Tranter & Reynolds, 2006). There are three basic steps in

a typical speaker diarization system. In the first step the system it discriminates

speech frames from the silence ones which is called speech activity detection. In

the second step the speaker boundaries are detected in order to segment the audio.

In the third step it groups the speech segments into homogeneous clusters. The

speaker diarization task assumes no prior knowledge about the speakers’ identities

or how many speakers are participating in the audio. The whole process is carried

out in the following sub tasks.

2.1 Speaker Recognition Tasks 15

Frontend processing: It usually, includes speech enhancement and noise reduction,

speech activity detection and feature extraction. The noise part in an audio is sup-

pressed in order to enhance the output Signal to Noise ratio. This can be achieved

by using the Wiener’s filtering approach. After this, useful features, like the Mel-

Frequency Cepstral Coefficients (MFCC) are extracted from the waveform in order

to train appropriate models. Finally, an energy based speech activity detection is

usually performed to remove the silence frames.

Speaker segmentation: It segments the whole audio file into speech segments that

are only from one speaker. As discussed earlier, speaker change boundaries has to

be detected in order to perform segmentation. Finally, the segments generated here

are input to the speaker clustering system.

Speaker clustering: The segments generated are grouped together in order to make

acoustically homogeneous clusters. Ideally a single cluster is assigned to each speaker

that appears in the audio.

Speaker Tracking

Speaker tracking is applied in scenarios where a target speaker, also known as Person

Of Interest (POI), is tracked in a multi-speaker audio file. In order to answer the

question when the target speaker speaks? in the audio, is reffered to as speaker

tracking task (Luque, 2012). The main stages of a speaker tracking system are to

determine the speaker change points, perform a speaker segmentation, and then

identify the target speaker i.e., speaker identification. Usually, in order to detect

speaker changes, a fixed length window is slid over the audio and a distance metric

is computed between consecutive windows. This distance is set to a threshold to

decide whether there exists a speaker change. The speaker change detection can be

performed using a Generalized Likelihood Ratio (GLR) (Gish et al., 1991; Gish &

Schmidt, 1994), as in (Bonastre et al., 2000), or the Divergence Shape distance (Lu et

al., 2001; J. P. Campbell, 1997), as in (Lu & Zhang, 2002). After segmentation, the

segments are matched with the target speaker using some modelling strategy like the

conventional Gaussian Mixture Models (GMM). In this way a speaker identification

is performed in order to decide which segment belongs to the given target speaker

or to which target speaker, if there are multiple target speakers.

16 State of the Art in Speaker Recognition

Speaker Indexing

Speaker indexing is a term which is interchangeably used for speaker diarization

systems (Moattar & Homayounpour, 2012; Kwon & Narayanan, 2005; Sturim et al.,

2001). However, according to (Sturim et al., 2001), "speaker indexing is defined

as the application of speaker detection to the retrospective search of large speech

archives". A speaker indexing system follows similar steps as that of a speaker

diarization system, i.e., frontend processing (noise removal, feature extraction and

speech activity detection), speaker segmentation and speaker clustering (Moattar &

Homayounpour, 2012; Kwon & Narayanan, 2005).

2.2 Conventional Techniques

Conventionally, in speaker recognition, the acoustic features extracted from speech

are used to discriminate between different individuals. These features possess physi-

cal and behavioral characteristics like size of throat, shape of mouth, and fundamen-

tal frequency or pitch. In order to model the speakers, the conventional strategies

include mainly GMM (Reynolds & Rose, 1995), GMM mean Supervector (GSV)

and i-vector (Dehak et al., 2011). The current modeling strategies are mostly based

on a Deep Neural Network (DNN) based approaches which model the speakers in

a discriminative manner. In the following sections, we will summarize the state of

the art approaches used in different stages of a speaker recognition system, starting

from features extraction to model training and scoring.

2.2.1 Feature Extraction

Feature extraction is a primary pre-processing step in any speaker recognition sys-

tem. In this step, meaningful features are extracted from the raw speech data.

Usually, the features vectors contain the acoustic characteristics and speaker infor-

mation. In speaker recognition, the system focus only on the speaker information.

A standard feature commonly used in speaker recognition is a set of short-term

acoustic features which are obtained from the spectrum of speech. The spectrum of

a speech signal convey information about the physiology of vocal tract which can be

very helpful in speaker discrimination. Nowadays, the most commonly used features

in speech technologies is Mel-Frequency Cepstral Coefficients (MFCC) (Furui, 2004,

2.2 Conventional Techniques 17

1981). However, other features like Linear Predictive Coefficient (LPC), Linear

Frequency Cepstral Coefficient (LFCC), Perceptual Linear Predictive (PLP) coeffi-

cients and Frequency Filtering (FF) coefficients (Nadeu et al., 2001) are also widely

used. Moreover, to improve the performance, the first and second order derivatives

are often appended to these basic coefficients. These are called delta and double-

delta coefficients. It is recommended to perform features normalization, like Mean

Variance Normalization (MVN) (Hansen & Hasan, 2015), in order to compensate

possible environmental mismatch.

2.2.2 Supervectors and i-Vectors

The story of supervectors and i-vectors (Dehak et al., 2011) begins with Gaussian

Mixture Models (GMM). In the past GMM was considered to be the most common

state of the art approach for speaker modeling. A GMM is a parametric probability

density function represented as a weighted sum of multiple Gaussian component

densities.

P (x) =
k∑

i=1

wig(x/µi,Σi) (2.1)

where x is a N-Dimensional feature vector, wi is the weight of ith Gaussian compo-

nent and g(x/µi,Σi) is the ith Gaussian component density. µi and Σi are the mean

vector and covariance matrix of the ith Gaussian component respectively. The mix-

ture weights wi must satisfy the constraint:
∑k

i=1wi = 1. A GMM is represented

by the three parameters:

λ = {wi, µi,Σi}; i = 1 . . . k (2.2)

A speaker GMM is trained by using a few iterations of the Expectation Max-

imization (EM) algorithm (Dempster et al., 1977). In most cases, it is difficult to

train a GMM from scratch with a few data. therefore, a Maximum A Posteriori

(MAP) adapted GMM is trained using a global GMM model called Universal Back-

ground Model (UBM) (Reynolds et al., 2000). A UBM is trained using the EM

algorithm for a large amount of background data. Each speaker’s GMM is the re-

sult of adapting the UBM model, which represents a large population of speakers,

to better represent the characteristics of the specific speaker being modeled.

18 State of the Art in Speaker Recognition

Feature
Extraction

UBM
Training

TV	matrix
Training

Background
data

		Statistics
Computation

i-vector	
Extraction

Feature
ExtractionTest	data

UBM TV	
matrix

i-vector

Figure 2.4: Block diagram of i-vector extraction process

The mean vectors of all the components of a MAP adapted GMM are stacked

in a high dimensional vector which is called GMM mean supervector or supervec-

tor. Supervectors are compared using Support Vector Machine (SVM) classifier

(W. M. Campbell et al., 2006). A suervector is defined as:

s = (µ1, µ2, µ3, ..., µk)t (2.3)

where s is the desired supervector, µk represents the mean vector of the kth GMM

component and t represents transpose operation. One of the technique for session

variability compensation of supervectors is the Joint Factor Analysis (JFA) (Kenny,

2005; Kenny et al., 2008). According to JFA, a supervector of a speaker, can be

split into speaker dependent, speaker independent, channel dependent and residual

parts. Each of these components can be represented by a low-dimensional set of

factors. In SVM based techniques, these compensation techniques are carried out in

the high dimensional supervector space which requires a huge memory space for the

training. In (Dehak et al., 2011), it was proposed to first reduce the supervector into

a low dimensional space and then apply the session variability compensation in the

lower dimensional space. Thus, supervectors can further be transformed to lower

dimensional vectors called i-vector. I-vectors are actually a compact representation

of speech and have been the state of the art over the last few years. The supervector

is represented as:

s = m+ Tv (2.4)

where s is the source side supervector of a speaker, m is a speaker independent

2.2 Conventional Techniques 19

supervector obtained from UBM, T is a low rank Total Variability (TV) matrix and

v is the vector of latent variables. The mean vector of the posterior distribution of v

is conditioned on the first and second order Baum-Welch statistics. This is reffered

to as i-vector w and is computed as follows:

w =
(
I + T tΣ−1N (u)T

)−1
T tΣ−1F̃(u) (2.5)

where N (u) is the diagonal matrix that contains the zeroth order Baum-Welch

statistics, F̃(u) is a supervector of the centralized first order statistics, and Σ is

a diagonal covariance matrix. The T matrix is trained using the EM algorithm

provided the Baum-Welch statistics of the training data. The whole process of i-

vector extraction is shown in Figure 2.4. More in depth details are found in (Dehak

et al., 2011).

2.2.3 i-Vector Backends

Cosine Distance

Given the i-vectors of two speech utterances, the cosine distance (Dehak et al., 2010)

is computed in order to decide if the two i-vectors belong to the same speaker or

different speakers. The cosine distance score between i-vector wi and i-vector wj is

given by:

Score(wi, wj) =
wt
iwj

||wi| | × ||wj | |
= cos(θwi,wj) (2.6)

If the i-vectors of two utterances point in the same direction, the cosine distance

score takes the lowest value of up to -1, which means that the two i-vectors be-

long to the same speaker. If they point in opposite directions, the cosine distance

score takes the highest value of up to 1, which means that the two i-vectors belong

to different speakers. Cosine scoring gives a reasonable performance and it does

not require speaker labels for the background data. However, if the speaker labels

are available, then a session variability compensation technique like Within-Class

Covariance Normalization (WCCN), Linear Discriminant Analysis (LDA) or Prob-

abilistic Linear Discriminant Analysis (PLDA) (Prince & Elder, 2007; Kenny, 2010)

are usually applied before scoring. These techniques improve the performance of the

speaker verification system as compared to cosine scoring. However, in most cases,

it is difficult to access speaker labels for the background data, which is the biggest

drawback associated with these techniques.

20 State of the Art in Speaker Recognition

Within-Class Covariance Normalization

In order to compensate for intersession variability, WCCN uses the within-class

covariance matrix, denoted by Sw, to normalize the cosine kernel functions (Dehak et

al., 2011). WCCN was mainly used as a normalization technique in order to improve

the robustness of SVM based speaker recognition systems (Hatch et al., 2006; Hatch

& Stolcke, 2006). First, the within-class covariance matrix Sw is calculated as:

Sw =
1

S

S∑
s=1

1

ns

ns∑
i=1

(ws,i − ŵs)(ws,i − ŵs)
t (2.7)

where ws,i is the ith i-vector of speaker s, ns is the total number of i-vectors belonging

to speaker s, S is the total number of speakers in the background set of i-vectors, and

ŵs is the speaker-dependent mean i-vector, obtained on each speaker class. Then

the projection WCCN matrix is computed using the Cholesky factorization of S−1
w

such that:

S−1
w = AWCCNAt

WCCN (2.8)

ŵ = At
WCCNw (2.9)

where ŵ is the projection of i-vector w. After WCCN projection, the projected

vector ŵ conserves the direction and the dimension of the original feature space

(Hansen & Hasan, 2015).

Probabilistic Linear Discriminant Analysis

PLDA performs the scoring of two i-vectors along with their corresponding ses-

sion variability compensation. In PLDA, it is assumed that every i-vector can be

decomposed as follows:

w = m+ Φζ + ε (2.10)

where w is the decomposing i-vector, m is a global offset, the columns of Φ are

the eigenvoices, ζ is a latent vector having a standard normal prior, and ε is the

residual vector which is normally distributed with zero mean and full covariance

matrix denoted by Σ. The PLDA parameters are trained using a large amount of

2.2 Conventional Techniques 21

background data with speaker labels using the EM algorithm, as in described in

(Prince & Elder, 2007).

There are two hypotheses Hs and Hd, in order to score the two given i-vectors w1

and w2 that are involved in an experimental trial for a speaker verification task. Hs

indicates that the two i-vectors w1 and w2 belong to the same speaker, whereas Hd

indicates the other way around, i.e., the two i-vectors w1 and w2 belong to different

speakers. The speaker verification score can then be calculated as the log-likelihood

ratio of the two hypotheses Hs and Hd, as follows:

Score(w1, w2) = log
p(w1, w2|Hs)

p(w1|Hd)p(w2|Hd)
(2.11)

The global offset m is removed, by supposing that the i-vectors are generated

from a Gaussian distribution. Therefore, the log-likelihood ratio can be computed

in a closed-form solution which results in the following equation:

Score(w1, w2) = wt
1Qw1 + wt

2Qw2 + 2wt
1Pw2 (2.12)

where P and Q are the square matrices represented in terms of within-class and

between-class covariance matrices as follows:

P = Σ−1
b − (ΣbΣwΣ−1

b Σw)−1 (2.13)

Q = Σ−1
b Σw(ΣbΣwΣ−1

b) (2.14)

where the within-class covariance matrix is expressed as:

Σw = ΦΦt (2.15)

and the between-class covariance matrix is expressed as:

Σb = ΦΦt + Σ (2.16)

In order to accelerate the scoring process, typically, the above equations are

summarized to be computed in the PLDA lower dimensional space. More in depth

details are found in (Garcia-Romero & Espy-Wilson, 2011). It was shown in (Kuda-

shev et al., 2016), that the LDA within-class covariance matrix and between-class

covariance matrix can also be used in equations 2.13 and 2.14.

22 State of the Art in Speaker Recognition

2.2.4 Score Normalization and Calibration

Score normalization aims at augmenting the useful biometric information conveyed

in a score. It is applied in order to preserves Log-Likelihood Ratio (LLR) score

properties for a single system and for multiple systems when performing score level

fusion among them. It is believed that PLDA scores are usually well calibrated in

terms of LLRs. However, score normalization has shown to increase the performance

(Reynolds et al., 2000; Sturim & Reynolds, 2005; Cumani et al., 2011).

Some of the normalization techniques are cohort normalization (Roseberg et

al., 1992), test normalization or shortly T-norm, and zero normalization or shortly

Z-norm) (Zheng et al., 2006). Cohort normalization uses cohort speakers that are

close to the target speaker. The normalized Z-scores ŝ are computed using the mean

and standard deviation of the cohort scores’ (µ and σ) (Sturim & Reynolds, 2005;

Cumani et al., 2011):

ŝ =
s− µ
σ

(2.17)

Cohort scores describe a score distribution which depends on the reference and

the probe to be compared. In Equation 2.17 the µ and σ might only consider one

of the reference or probe, or both. It is referred to Z-norm when the µ and σ of

Equation 2.17 is considered of the reference samples only. On the other hand, it is

reffered to T-norm when µ and σ are considered of the probe samples. In (Navratil &

Ramaswamy, 2003), it was shown that Z-norm and T-norm Gaussianize the overall

score distributions. Z-norm and T-norm can be applied together on top of each

other which is reffered to as Z/T-norm (Sturim & Reynolds, 2005). They are also

applied in parallel, which is known as symmetric normalization or shortly S-norm

(Cumani et al., 2011). Equal weights are assigned to the Z-score and T-score. The

S-norm score is computed by (Cumani et al., 2011):

ŝ = 0.5(
s− µz
σz

) + 0.5(
s− µt
σt

) (2.18)

Where µz and σz, and µt and σt are the corresponding means and standard devi-

ations of Z-norm and T-norm, respectively. It has been shown that normalization

applied in a series combination of Z-norm and T-norm, i.e., Z/T-norm, was useful

for GMM-UBM systems (Sturim & Reynolds, 2005). However, for PLDA systems

the S-norm has shown success, as shown in (Cumani et al., 2011).

2.2 Conventional Techniques 23

Typically, the scores normalized using Z-norm, T-norm and/or Z/T-norm are not

LLRs. That is where the score calibration comes into play, in order to preserve LLR

properties (Brummer, 2010). Score calibration is also useful for cosine or other non-

LLR scoring techniques. Score calibration is done either through logistic regression

or through isotonic regression (Brümmer et al., 2014). Calibration through logistic

regression, also known as linear calibration, is based on a bias term w0 and a scaling

term w1. These terms are typically estimated to provide a robust calibrated score

ŝ for a score s. A linear combination of the bias and scaling weights w0 and w1,

and score s is optimized in order to obtain the best fit to the predictive values

which represents the class labels (Prince, 2012). In particular for binary decisions,

the predictive values are 1 and 0 representing two classes, A and B. The logistic

sigmoid function σ(x), activations and predictions are linked by the calibration

function a(s):

a(s) = w0 + w1s (2.19)

σ(a(s)) =
1

1 + exp−a(s)
(2.20)

After optimizing w0 and w1 in terms of maximum likelihood, the above equation is

expressed as the posterior probability (Prince, 2012):

Pr(A/s) = σ(a(s)) (2.21)

Thus, the LLR calibrated scores ŝ are approximated using the logit function, which

is the inverse of the sigmoid function σ(·):

ŝ ≈ logit(σ(a(s))) = a(s) = w0 + w1s (2.22)

In score calibration using isotonic regression the original comparison scores are

converted to LLRs. The Pool Adjacent Violators or shortly PAV-LLR method is a

special case of isotonic regression (Brummer, 2010; Brümmer & De Villiers, 2011;

Zadrozny & Elkan, 2002). For empirical scores, the PAV-calibrated LLR scores can

be estimated through linear interpolation. Score calibration does not effect the dis-

crimination performance but it sustains the LLR score properties. The PAV method

(Brummer, 2010) performs an optimal calibration for a given data. Linear calibra-

tion can only achieve good performance on a limited operating regions, whereas the

PAV method is capable of achieving good calibrating on a wide range of operating

regions, mainly because of its non-linearity (Brümmer et al., 2014).

24 State of the Art in Speaker Recognition

Speech Feature	Vectors

UBM

Speaker
GMM

Supervector

i-vector

Cosine/PLDA
Scoring

BNF

Speaker	Embeddings

End-to-End

Backend

Figure 2.5: Possible Deep Learning Approaches to Speaker Recognition.

2.3 Deep Learning Approaches

Deep Learning approaches have been applied in speaker recognition decades ago

(Oglesby & Mason, 1989, 1990; Phan et al., 2000; Pawar et al., 2005). One of the

problems, then, was the limitation in the training data and computational resources.

However, the recent advancements in computing hardware has inspired the commu-

nity to apply DL techniques with more complex and deep architecture (Nagrani et

al., 2017; Chung et al., 2018; Shon et al., 2018; Snyder et al., 2018; Nagrani et al.,

2019). DL approaches can improve the performance of a standard speaker verifi-

cation system in several ways. For example, at the frontend, DL can be applied

to learn the so called Bottle Neck Features (BNF) and to learn the stand-alone

speaker embeddings. At the backend, DL can be applied to train alternative scor-

ing backends for i-vectors. Moreover, it can also be applied to train an end-to-end

system.

Figure 2.5 shows a standard i-vector extraction process (Dehak et al., 2011).

First of all, the speech signal is represented by a set of meaningful features vectors,

for instance, the MFCC features in most cases. Then using a pre-trained UBM, a

MAP adapted GMM model is trained for these feature vectors. The mean vectors

of the GMM model are stacked to generate the higher dimensional supervector.

2.3 Deep Learning Approaches 25

Senone/Phoneme
Labels

Bottle	Neck
Features	Layer

Hidden	Layers

Input	Features

Figure 2.6: A typical architecture of BNF features extractor.

Finally, a Baum-Welch statistics computation is carried out and the supervector is

reduced to lower dimensional i-vector which is scored using cosine/PLDA scoring

techniques. In Figure 2.5, the curved arrows represent the possible tends of applying

DL approaches in the whole i-vector extraction process for speaker recognition.

2.3.1 Frontends

Bottle Neck Features

Various DL architectures have been proposed to learn the BNF using acoustic fea-

tures, typically used in Automatic Speech Recognition (ASR) systems. It has been

shown that a substantial improvement can be achieved when the BNF features are

used or to train a UBM adapted GMM in a standard i-vector extraction process

(Lei et al., 2014b; McLaren et al., 2015; Ghalehjegh & Rose, 2015; Lozano-Diez et

al., 2016; Lee et al., 2009; Liu et al., 2015; Jorrín et al., 2017; Jati & Georgiou, 2017;

Anna et al., 2017). Moreover, the BNF features, in some cases, have also shown

improvements if appended to the the standard acoustic features. Figure 2.6 shows

a typical architecture of the BNF feature extraction. Usually, the architecture con-

tains several hidden layers. The hidden layer before the last layer is narrowed to

few neurons and is typically called the Bottle Neck layer. The hidden unit values of

this layer, given the input feature vectors, is taken as the BNF features.

The input layer is fed with a concatenation of consecutive ASR feature vectors.

ASR feature vectors are usually the log filter bank energies with no delta and double

26 State of the Art in Speaker Recognition

Speaker
Labels

Possible	
Speaker	Embedings

Layers

Hidden	Layers

Input	Features

Figure 2.7: A typical architecture of speaker embeddings extractor.

delta coefficients appended. The output layer is usually activated with softmax

activation function. For the bottleneck layer usually linear activation is used, and

for the rest of the hidden layers Rectified Linear Units (ReLU), sigmoid or other

similar activations like tanh is applied.

Although the i-vectors extracted using the BNF features results in a higher

accuracy in general, there are a few disadvantages as well. Firstly, the Deep Neural

Network (DNN) training itself increases the computational cost of the whole process

of i-vector extraction. Secondly, the need of the phonetic labels for training the DNN

model is also a drawback of this approach.

Speaker Embeddings

A more popular use of DL in speaker recognition, nowadays, is to learn a compact

vector based representation of speaker, as an alternative to the stat of the art i-

vectors. This compact representation of speaker is often reffered to as speaker

embeddings. Typically, the inputs to the DNN are a concatenated sequence of

consecutive feature vectors and the outputs are speaker labels.

A typical DNN architecture used for the speaker embeddings extraction is shown

in Figure 2.7. The DNN is trained using the feature vectors of the training data,

knowing the speaker labels for each utterance. In the testing phase, the feature vec-

tors of a given test utterance are propagated through the network to get the speaker

2.3 Deep Learning Approaches 27

Speaker
Labels

Time	Delay
Neural	Network
(Frame	Level)

Input
Features

Feed	Forward
Neural	Network
(Utterance	Level)

Statistical
Pooling

X-vectors

Figure 2.8: A typical architecture of x-vector extractor.

embeddings from a certain hidden layer. The mean of the posterior probabilities

of the embeddings layer can be computed as speaker embeddings (Variani et al.,

2014a). In (Liu et al., 2015) a Principal Component Analysis (PCA) dimensionality

reduction is applied to these probabilities before extracting the speaker embeddings.

Different activation functions are applied to the different layers of the network (Isik

et al., 2015; Bhattacharya et al., 2017). Typically, a linear activation is applied to

the speaker embeddings layer.

Speaker embeddings extracted using a Time Delay Neural Network (TDNN),

known as the x-vectors (Snyder et al., 2018), is becoming the state of the art ap-

proach in speaker recognition these days. The first part of the TDNN, shown in

Figure 2.8, works in the frame level features which takes feature vectors stacked on

top of each other as the input. The output of this part is connected to a statistical

pooling layer. The second part deploys a feed forward network which propagates the

statistically pooled utterance level vectors through the network. The output of this

part is connected to the speaker class labels more details can be found in (Snyder

et al., 2018).

28 State of the Art in Speaker Recognition

X-vectors have shown to further improve the performance if data augmentation

is applied to the input training data. Data augmentation i.e., addition of noise and

reverberation, was shown to be effective in case of x-vectors while it is not very

effective in case of i-vectors (Snyder et al., 2018). However, the i-vector extraction

has the advantage of being unsupervised, provided that the backend is cosine scoring.

Nowadays, Convolutional Neural Network (CNN) have shown very promising

results when used in the speaker embeddings extractors (Nagrani et al., 2017; Chung

et al., 2018; Nagrani et al., 2019), based on (Simonyan & Zisserman, 2014; He et al.,

2016). In case of CNN based architectures, the spectrograms or Mel-spectrograms of

the speech utterances can be used as the input features to the network (India et al.,

2019). Moreover, attention based models are also widely used as an alternative of

averaging the probabilities at output of the embeddings layer (rahman Chowdhury

et al., 2018; Zhu et al., 2018). A recent proposal of using multi-head attention model

(India et al., 2019), which is based on (Simonyan & Zisserman, 2014), have shown

some improvement over the basic attention models for speaker verification.

Triplet loss, which was used for image recognition in (J. Wang et al., 2014; Schroff

et al., 2015), has also inspired the community to employ it in speaker embeddings

extraction architecture. A triplet loss is based on a combination of three speech

utterances, i.e., Anchor, Positive and Negative. The triplet loss function tries to

minimize the distance between Anchor and Positive, while at the same time max-

imizes the distance between Positive and Negative. In other words, a triplet loss

minimizes the intra-speaker variability while maximizing the inter-speaker variabil-

ity at the same time.

Experimental results have shown that speaker embeddings perform better spe-

cially in short utterances speaker recognition as compared to i-vectors (Bhattacharya

et al., 2017; Snyder et al., 2017). This implies that DL technology can better model

the characteristics of a speaker when only a short duration of speech is available.

This is very important in most of the real world problems where the identity of the

speaker has to be recognized in a short time.

In most of these works, the input features to the speaker embeddings extractor

network is usually the hand crafted features for examples MFCC, spectrograms

or Mel-spectrograms. However, there are some attempts to avoid the hand crafted

features and use the speech waveform directly (Jung et al., 2018; Ravanelli & Bengio,

2018). However, these approaches are still developing.

2.3 Deep Learning Approaches 29

The need of speaker labeled background data, for training the DNN, is a major

drawback of speaker embeddings architectures. There has been many proposals

to tackle this problem and avoid speaker labeled background data, but in most

cases the performance has been compromised compared to the supervised speaker

embeddings. Another drawback of the speaker embeddings is that they are not very

compatible with the traditional PLDA backend. This is because speaker embeddings

are usually extracted from hidden layer outputs where the posterior distributions

are perfectly Gaussian (Ghahabi & Hernando, 2017).

2.3.2 Backends

One possibility to use DL at the backend of speaker recognition system is to apply

it within the i-vector extraction algorithm (Dehak et al., 2011). There are several

DL based proposals in i-vector backends. For instance in (Senoussaoui et al., 2012;

Stafylakis et al., 2012c) different combinations of RBMs are applied for i-vector

classification. In (Stafylakis et al., 2012a; Isik et al., 2015), DL has been proposed

in order to improve the discriminative power of i-vectors. They transform i-vectors

into new vectors which are scored using cosine or PLDA backends. On the other

hand, in (Ghahabi & Hernando, 2014a,b, 2017) several unsupervised DL backends

were proposed for i-vectors. In these works, they trained a separate target model

for each target speaker using DBN adaptation. During the test, decision scores

were directly obtained from the network, without using cosine and PLDA scoring

backends.

In (Guzewich & Zahorian, 2017; Tan & Mak, 2017), DL approaches were applied

to compensate the effect of noise and reverberations in i-vectors. Moreover, in (Shon

et al., 2017) DL is applied for domain adaptation for i-vectors, and in (Bousquet &

Rouvier, 2017) for compensation of duration mismatch of speech between train and

test i-vectors. On the other hand, DL based alternatives to PLDA were proposed in

(Novoselov, Pekhovsky, Simonchik, & Shulipa, 2014; Stafylakis et al., 2012b; Villalba

et al., 2017), in order to perform session variability compensation along with scoring

of i-vectors.

As it was mentioned earlier, PLDA is the most efficient scoring techniques for

i-vectors. PLDA, at the cost of speaker-labeled background data, scores two given

i-vectors along with the session variability compensation. In order to compete with

PLDA, several DL based approaches were proposed. Of these approaches, many

30 State of the Art in Speaker Recognition

used speaker labeled background data for training, with no significant improvement

achieved as compared to PLDA, for example in (Stafylakis et al., 2012b; Villalba

et al., 2017). However, a combination of PLDA with RBM and autoencoder, has

shown some improvements over PLDA (Novoselov et al., 2015; Pekhovsky et al.,

2016).

2.3.3 End-to-end Systems

Most of the DL approaches discussed above, i.e., BNF features to extract i-vectors,

and speaker embeddings are subjected to a backend scoring technique like cosine or

PLDA in order to make a decision. On the contrary, an end-to-end system is trained

in such a way that it provides decision scores without a backend scoring technique.

End-to-end systems perform multiple tasks, like learning speaker embeddings and

scoring, at the same time as a unified task, trained jointly at once. Such end-to-end

systems are more challenging to train and optimize. That is why these systems are

still under investigation.

Working directly with the audio samples is a huge problem in terms of compu-

tational complexity. Therefore, most of the end-to-end systems, nowadays, are still

based on the handcrafted features like MFCC etc, as inputs, as shown in Figure

2.5. There have been several attempts to DL based end-to-end systems, for instance

in (Heigold et al., 2016; S.-X. Zhang et al., 2016; C. Zhang & Koishida, 2017; Dey

et al., 2018; Heo et al., 2017). Most of these works are limited to text-dependent

speaker verification.

In some cases, for example in (S.-X. Zhang et al., 2016; Heigold et al., 2016),

the training is performed in several steps. Firstly, the frontend speaker embeddings

part is trained, usually, using multi-class speaker labels. Then, the backend part is

added to the network and a joint fine tuning is performed using binary class labels.

A typical DL based end-to-end system has been shown in Figure 2.9. This

is based on a typical siamese network with two branches. The frontend part of

a siamese network usually consists of two branches, while the backend part is a

single feed forward neural network. The branch networks consist of input layer and

several hidden layers each. The input features of two utterances are fed into the two

branch networks each. The two branches share weights with each other, and thus are

identical, in most cases. The final layer of each branch is input to a concatenation

layer which proceeds into a single feed forward architecture as shown in Figure 2.9.

2.4 Evaluation Metrics 31

Binary	
Speaker	
Labels

Hidden	Layers

Input	Features
of	Known
Speaker

Input	Features
of	Unknown
Speaker

Share	Weights

Concatenate

Hidden	Layers

Figure 2.9: A typical siamese architecture of an end-to-end speaker verification

system.

The backend part consists of several hidden layers, in which the final layer has only

one or two neurons. If the final layer is activated by a sigmoid function, then it has

one neuron whereas if softmax activation is used, then it has two neurons. In order

to train the network, binary speaker labels are used to compute the cross-entropy

between the predicted and actual values. In the testing phase, feature vectors of a

trial pair are fed into the network and a decision score is obtained at the end.

2.4 Evaluation Metrics

In the testing phase of a speaker verification system, a trial pair is input to the

system for which the system gives a real number score. The score reflects the proba-

bility if the trial pair belong to the same speaker or different speakers. Based on this

score a final decision is taken using an empirical threshold. For every experimental

trial a true key is available which indicates if the trial is a client trial or impostor

trial. If the utterances in the trial pair are actually from the same speaker, it is

called a client trial, and if they are from different speakers, it is called an impostor

trial. Given the true labels for all the trial pairs, the False Acceptance Rate (FAR)

32 State of the Art in Speaker Recognition

-6 -4 -2 0 2 4 6

Scores

0

200

400

600

800

1000

1200

F
re

q
u

e
n

cy

Client Scores

Impostor Scores

Threshold

EER

Figure 2.10: False Acceptance Rate (FAR) and False Rejection Rate (FRR)

is computed as the percentage of impostor trials that are incorrectly accepted. Simi-

larly, False Rejection Rate (FRR) is computed as the percentage of client trials that

are incorrectly rejected. Figure 2.10 shows the histograms of the scores of client and

impostor trials. Usually, the client scores are higher than the impostor scores. A

certain part of each histogram is overlapped with the other one. A decision thresh-

old is subjected on the scores. Scores higher than threshold are accepted as client

scores. There comes a point where both the FAR and FRR intersect each other for

a specific value of threshold. This point is marked as the Equal Error Rate (EER).

EER is one of the state of the art metrics for measuring the performance of speaker

verification systems. The lower is the value of EER, the better is the system, and

vice versa.

Another commonly used metric, in speaker verification, is the minimum of the

Detection Cost Function (minDCF). DCF is a weighted sum of FAR and FRR in

terms of the threshold t, and is computed as follows:

DCF (t) = α1FAR(t) + α2FRR(t) (2.23)

where α1 and α2 are the scalar weights that depends on the sensitivity of the ap-

plication. minDCF is the minimum value of the DCF (t) function. Usually it is

recommended to give higher value to α2 as compared to α1 because we do not want

to incorrectly accept an impostor as a client. In other words, a high value of thresh-

2.4 Evaluation Metrics 33

 0.1 0.2 0.5 1 2 5 10 20 40 60

False Acceptance Rate (in %)

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

 60

F
a
ls

e
 R

e
je

ct
io

n
 R

a
te

 (
in

 %
)

DET Curve

EER

EER line

Figure 2.11: Detection Error Trade-off (DET) Curve

old is recommended in sensitive applications where it is dangerous to accept any

impostor as client. For instance, in biometric systems for banks, it is very risky to

put a low threshold and easily accept a trial as client trial.

FAR and FRR are inversely proportional to each other. Therefore, there is a

trade-off between these two metrics when the value of threshold is varied. FAR and

FRR are plotted in a Detection Error Trade-off (DET) curve against each other

which is the third commonly used metric in speaker verification. Figure 2.11 shows

an example of the DET curve. The red line is the EER line. The intersecting point

of EER line with the DET curve is the exact value where FAR is equal to FRR. The

system is considered to be better if the DET curve is close to the origin, and vice

versa.

The results of the speaker clustering system were evaluated in terms of Cluster

Impurity (CI). CI measures the quality of a cluster, to what extent a cluster contains

segments from different speakers. However, this metric has a trivial solution when

there is only one segment per cluster. To deal with this, Speaker Impurity (SI)

was measured at the same time. SI measures to what extent a speaker is distributed

among clusters. There is always a trade-off between these two metrics (van Leeuwen,

2010). CI and SI were plotted against each other in an Impurity Trade-off (IT) curve

and an Equal Impurity (EI) point was marked as a working point.

34 State of the Art in Speaker Recognition

We evaluated the results for speaker segmentation in terms of False Acceptance

Rate (FAR) and Miss Detection Rate (MDR), as discussed in (Kotti et al., 2008).

The overall speaker tracking system was evaluated in terms of False Alarm (FA)

and Missed Speaker Time (MST). In this case, FA is the percentage of duration (in

seconds) that is falsely accepted for a target speaker while MST is the percentage

of duration (in seconds) that is falsely rejected for a target speaker.

Chapter 3

RBM Vectors for Speaker

Clustering and Tracking

U nsupervised deep learning architectures like Restricted Boltzmann Machine

(RBM), Deep Belief Network (DBN) and Deep Autoencoders have the ability

of representational learning power. A first attempt to use RBM at the backend in

a speaker verification task was made in (Senoussaoui et al., 2012). Our research

group has put efforts into the front end of a speaker verification system, in order

to learn a compact and fixed dimensional speaker representation in the form of a

speaker vector by means of RBM adaptation (Ghahabi & Hernando, 2018; Safari

et al., 2016; Ghahabi & Hernando, 2015). They also make use of DBN adaptation

in the i-vector/PLDA (Probabilistic Linear Discriminant Analysis) framework as

a the backend for speaker verification (Ghahabi & Hernando, 2017). The vector

representation of speakers in (Safari et al., 2016), was referred to as RBM vector.

It has been shown that the RBM vectors can extract speaker specific information

that can be competitive to i-vector based approach for speaker verification task.

This has led us to apply this kind of vector representation of speakers to the tasks

of speaker clustering and speaker tracking, as shown in (Khan et al., 2018; Khan,

Safari, & Hernando, 2019).

In this chapter, we propose the use of RBM vectors (Safari et al., 2016) for the

tasks of speaker clustering and speaker tracking. The RBM vector is extracted in

several steps. First of all, a global or Universal RBM—referred to as URBM—is

trained with all the available background data. Then, an adapted RBM model is

trained for every test utterance. The visible to hidden weight matrices along with

36 RBM Vectors for Speaker Clustering and Tracking

the corresponding bias vectors of these adapted RBMs are concatenated to generate

RBM supervectors. The RBM supervectors are subjected to a Principal Component

Analysis (PCA) whitening and dimensionality reduction to extract the desired RBM

vectors.

For the speaker clustering task, we extract RBM vectors using the proposed

method. All the utterances that are to be clustered are represented by RBM vec-

tors. Then we cluster these RBM vectors by applying a bottom-up Agglomerative

Hierarchical Clustering (AHC) approach using cosine and PLDA scores. For the

speaker tracking task, we implement a two step strategy. The first step is based

on speaker change detection by using divergence shape distance as in (Lu & Zhang,

2002). The audio is segmented according to these speaker change points. In the

second step, the segments generated are matched with all the target speakers, in

order to specify which segment belongs to which target speaker. The target speak-

ers are enrolled in the system in prior. We represent all the segments and target

speakers by RBM vectors. Then, the RBM vectors of all the segments are scored

against the RBM vectors of all the target speakers using cosine and PLDA scor-

ing. We have found that the RBM vector representation of speakers is successful in

both these tasks. The experimental results show that the RBM vector outperforms

the conventional i-vectors based systems using both the cosine and PLDA scoring

methods.

The rest of the chapter is organized as follows: Section 3.1 explains the detailed

procedure of the proposed vector representation of speakers by using URBM, RBM

adaptation and PCA dimensionality reduction. Section 3.2 contains a brief descrip-

tion of the speaker clustering system. Section 3.3 contains a detailed description of

the two steps of our speaker tracking system. Section 3.4 describes the experimen-

tal setup, the database used. The results obtained both for speaker clustering and

speaker tracking tasks are discussed in Section 3.5. Finally, in Section 3.6, some

conclusions are drawn as the findings of this work.

3.1 RBM Vector Representation

In this work, we applied the compact vector based representation of speakers using

RBM adaptation, which was reffered to as RBM vectors in (Safari et al., 2016), for

speaker tracking and speaker clustering tasks. Figure 3.1 shows a detailed block

3.1 RBM Vector Representation 37

RBM	Vector
Extraction

PCA	
Whitening

RBM
Adaptation

Feature
Extraction

MVN

Given
Utterances

RBM
Vector

Feature
Extraction

MVN

URBM	
Training

URBM

Background
Utterances

Figure 3.1: Block diagram showing different stages of the RBM vector extraction.

diagram of the proposed RBM vector extraction process. First of all, a global

model, which is referred to as URBM, is trained with a large amount of background

data. The idea of such a global model is inspired from Universal DBN training and

adaptation in (Ghahabi & Hernando, 2014a, 2017), where a DBN model is adapted

from the UDBN for every target and test speaker. Similarly, in this work the URBM

is adapted to the data of every test speaker and thus an RBM is trained for every

test speaker. The visible to hidden weight matrices of these adapted models are used

to generate the desired vector representation for the corresponding speaker. In the

final step a PCA whitening and dimensionality reduction is applied. These vector

representations of speakers are further used in the tasks of speaker clustering and

speaker tracking using cosine and PLDA scoring techniques. The whole process of

the vector representation of speakers is divided into three main steps, namely URBM

training, RBM adaptation and RBM vector extraction using PCA whitening with

dimensionality reduction. In the following sections these steps are explained in

detail.

38 RBM Vectors for Speaker Clustering and Tracking

Figure 3.2: Comparison of the weight matrices of URBM and randomly selected

adapted RBMs.

3.1.1 Universal RBM Training

To extract the desired RBM vector, the first step is to train a global or universal

model with a large amount of available background speakers’ utterances. This global

model is referred to as URBM. Figure 3.2 shows a visualization of the connection

weights of the URBM (at the top of the figure) and two randomly selected adapted

RBMs (at the bottom). The URBM is supposed to convey speaker-independent in-

formation from the background data. The URBM is trained as a single RBM model

with the feature vectors extracted from all the background speakers’ utterances.

The features are usually real valued vectors, e.g., the Mel-Frequency Cepstral Coef-

3.1 RBM Vector Representation 39

ficients (MFCC) in our case. Thus, for the real valued input feature vectors we have

used Gaussian real-valued units for the visible layer of the RBM (Hinton, 2012).

The training was performed using the Contrastive Divergence-1 (CD-1) algorithm

(Hinton & Salakhutdinov, 2006; Hinton et al., 2006) assuming that the inputs have

zero mean and unit variance. Thus, the feature vectors are Mean Variance Normal-

ized (MVN) before the RBM training. Finally, the universal model is trained with

a large number of training samples generated from the feature vectors of the back-

ground speakers’ utterances. This universal model is supposed to learn both speaker

and session variabilities from the large amount of background speakers (Safari et al.,

2016).

3.1.2 Adaptation and RBM Vector Extraction

After the URBM training, we perform speaker adaptation for every test speaker.

The adapted RBM model is trained only with the data of the corresponding speaker,

in order to capture speaker-specific information. In this step, the RBM model of the

test speaker is initialized with the parameters (weights and biases) of the URBM.

In other words, the adaptation step drives the URBM model in a speaker-specific

direction. This kind of adaptation technique is successfully applied in (Ghahabi &

Hernando, 2017; Safari et al., 2015; Ghahabi & Hernando, 2014a,b). The adaptation

is also carried out by the CD-1 algorithm. As we have only one weight matrix in

RBM, all the information learned by the adapted RBM is preserved in it’s weight

matrix and it is supposed to convey speaker-specific information of the corresponding

speaker. Figure 3.2 shows the visualization of the connection weights of the URBM

(at the top of the figure) and of two randomly selected speakers (Speaker 1 and

Speaker 2, at the bottom of the figure). From the figure, it is clear that during the

adaptation the URBM weights are driven in speaker-specific direction.

An RBM model is assigned to each test speaker after the adaptation step. The

visible to hidden weight matrices along with their corresponding bias vectors of the

adapted RBMs are concatenated in order to generate a higher dimensional speaker

vector. These are referred to as RBM supervectors. After this, a PCA whitening

with dimensionality reduction is applied to the RBM supervectors in order to gener-

ate the lower dimensional RBM vectors. The PCA whitening transforms the original

data to the principal component space which de-correlates the data components.

The PCA is trained with the RBM supervectors extracted from the background

40 RBM Vectors for Speaker Clustering and Tracking

10 20 30 40

2

4

6

8

10

10 20 30 40

2

4

6

8

10

(a) Speaker 1

10 20 30 40

2

4

6

8

10

10 20 30 40

2

4

6

8

10

(b) Speaker 2

Figure 3.3: Examples of 400-dimensional RBM vectors. The figure shows two pairs

of RBM vectors from the test audios. Each pair belong to the same speaker. We

rearrange the RBM vectors in the form 10× 40 for the convenience of visualization.

The ordering of the RBM vector is the same for all.

speakers’ utterances and is applied to the RBM supervectors of the test speakers.

All the RBM supervectors are mean-normalized before subjecting to PCA whitening

and dimensionality reduction. The extracted RBM vectors are supposed to convey

enough speaker-specific information, which can discriminate different speakers. Fig-

ure 3.3 shows a visualization of a pair of RBM vectors (top and bottom) extracted

from different utterances of two different speakers randomly selected from the test

audios. From the Figure, it is clear that the two RBM vectors extracted for Speaker

1 look similar but are different from those extracted for Speaker 2. Similarly, the

two RBM vectors extracted for Speaker 2 look similar but are different from those

extracted for Speaker 1.

3.2 Speaker Clustering 41

In (Safari et al., 2016), it has been shown that the RBM vector extracted in this

way is successful in learning speaker-specific information in a speaker verification

task. In this chapter, we make an effort to make use of the RBM vector in the tasks

of speaker clustering and speaker tracking.

3.2 Speaker Clustering

Speaker clustering refers to the task of grouping speech segments in order to have

segments from the same speaker in the same group. Ideally each group or cluster

must contain speech segments that belong to the same speaker. On the other hand,

utterances from the same speakers must not be distributed among multiple clusters.

Several approaches to speaker clustering tasks exist, for example, cost optimization,

sequential and AHC (Sayoud & Ouamour, 2010; Siegler et al., 1997; Ghaemmaghami

et al., 2016; Tranter & Reynolds, 2006). Some approaches rely on commonly used

statistical speaker modeling like GMM, while others use features extracted using

DNN. For example, in (Jorrín et al., 2017), BNF extracted from different DNNs are

used for speaker clustering using an AHC approach.

In order to evaluate the effect of RBM vectors in a speaker clustering task, we

considered the conventional bottom-up AHC clustering system with the options of

single and average linkages. We did not consider the model retraining approach be-

cause it is costly in terms of computations as compared to the linkage approaches to

clustering (Ghaemmaghami et al., 2016). The system starts with an initial number

of clusters equal to the total number of speech segments. Iteratively, the segments

that are more likely to be from the same speaker are clustered together until a stop-

ping criterion has reached. The stopping criterion can be thresholding the score in

order to decide to merge clusters or it can be a desired (known) number of clusters

achieved. Our clustering algorithm is based on computing a similarity matrixM(X)

between all the speakers’ segments where X is the set of segments to be clustered.

Hence, the RBM vectors of all the segments are extracted, the matrix M(X) is

computed by scoring all the RBM vectors against all. Thus, for N RBM vectors,

the matrix M(X) has dimensions N × N . In every iteration, the segments with

maximum similarity scores are clustered together and the matrix M(X) is updated.

The corresponding rows and columns of the clustered segments are removed from

M(X) and a new row and column are added. The new row and column contain

42 RBM Vectors for Speaker Clustering and Tracking

the distance scores between the new and old clusters. The new scores are computed

according to the linkage algorithm used. For example, segments Sa and Sb are clus-

tered in Sab. Then the scores between new cluster (Sab) and old segment (Sn) are

computed as follows:

(a) Average Linkage:

s(Sab, Sn) =
1

2
{s(Sa, Sn) + s(Sb, Sn)} (3.1)

(b) Single Linkage:

s(Sab, Sn) = max{s(Sa, Sn), s(Sb, Sn)} (3.2)

where s(Sab, Sn) is the score between new cluster Sab and old segment Sn while

s(Sa, Sn) is the score between old segments Sa and Sn.

In this way, the process is iterated until a stopping criterion is met. There are

two methods to control the iterations: (1) to fix a threshold and (2) to add an

additional information to the system about the desired (known) number of clusters.

The system stops when this number is reached. In this work, we did not let the

system know any desired number of clusters and we have used the thresholding

method. We have tuned a threshold in order to see the performance of the system

at different possible working points. The system performance is measured with

respect to a ground truth cluster label.

3.3 Speaker Tracking

In certain applications, a person of interest (target) is tracked in an audio file,

by using his voice characteristics. To identify when the target speaker speaks in

the audio, is a speaker tracking task (Luque, 2012). The main stages in speaker

tracking are to determine the positions in the audio where the speaker changes occur,

that is, speaker segmentation, and to then identify the speaker, that is, speaker

identification. Based on these two stages, there can be a joint or a separate approach

to a speaker tracking task. In the past, several approaches to speaker tracking

were proposed based on different segmentation and speaker modeling strategies. In

order to detect speaker changes, a fixed length window is slid over the audio and a

distance metric is computed between consecutive windows. This distance is set to a

threshold to decide whether there exists a speaker change. In (Bonastre et al., 2000),

3.3 Speaker Tracking 43

Audio Speech	Activity
Detection

Segmentation

Feature
Extraction

Initial
Segmentation	

Speaker	Change
Detection

Final
Segmentation	

RBM	Vector
Extraction

Length
Normalization

PLDA
Training

PLDA
Scoring

Test	Segment	
or	

Target	Speaker

RBM	Vector

Cosine	
Scoring

Decision
Making

Time	
Stamps

Final
Hypothesis

Identification

PLDA

Figure 3.4: Architecture of Our Two Step Speaker Tracking System using RBM

vectors.

speaker change detection is performed using a Generalized Likelihood Ratio (GLR)

(Gish et al., 1991; Gish & Schmidt, 1994). In (Lu & Zhang, 2002) the Divergence

Shape distance, described in (Lu et al., 2001; J. P. Campbell, 1997), is computed

for speaker change detection. After this, the audio is segmented using the speaker

change detection. The conventional GMMs are trained to represent the speakers

and a speaker identification is performed in order to decide which segment belongs

to which speaker among the set of given target speakers.

In this thesis, we implemented a two stage speaker tracking system, that is,

speaker segmentation and speaker identification as in (Khan, 2016). Figure 3.4

shows the basic steps of speaker segmentation, RBM vector extraction and identifi-

cation. First of all, the audio is segmented according to the speaker change points.

The speaker change points are detected using the sliding window and searching for

speaker change approach. A fixed length window is slid over the audio with a very

small shift and speaker change is detected using some distance metric. We have

used the Divergence Shape distance as a distance metric in this work. The distance

is thresholded in order to decide if the neighboring windows are spoken by the same

speaker or whether there exists a speaker change. As a result of these speaker change

points, the audio is segmented. In the next stage, a speaker identification of the

target speakers against the segments is performed in order to know ‘to which target

speaker the corresponding segment belongs?’ All the target speakers and segments

are transformed into a vector based representation by means of RBMs, i.e., RBM

44 RBM Vectors for Speaker Clustering and Tracking

vectors. These RBM vectors are scored using cosine and PLDA scoring methods.

In the following sections, the two stages of our speaker tracking system are discussed

in detail.

Segmentation

As shown in Figure 3.4, first an energy-based Speech Activity Detection (SAD) is

performed on the audio. Then, the speech parts are segmented into small segments of

d seconds with an overlap of (d−∆) seconds, where ∆ is the shift. This is referred

to as initial segmentation in the segmentation part of Figure 3.4. The segments

generated in this step are reffered to as small segments. The shift ∆ defines the

resolution of speaker change detection. Then, Mel-Frequency Cepstral Coefficients

(MFCC) features are extracted for every small segment. In order to detect speaker

change points, the Divergence Shape distance is computed between every adjacent

small segments and is thresholded. We compute the Divergence Shape distance as in

(Lu & Zhang, 2002; J. P. Campbell, 1997), using the following simplified expression:

D =
1

2
tr[(Ci − Cj)(C

−1
j − C

−1
i)] (3.3)

where tr is the trace function that sums the diagonal elements of a matrix, Ci is

the covariance of the features from small segment Si and Cj is the covariance of the

features from small segment Sj . A speaker change point is marked if the distance

at that point is greater than the distances at the two neighboring points (one before

and one after) and a threshold at that point. For example, a speaker change point

at small segment Si occurs if:

D(i, i+ 1) > D(i, i+ 2) (3.4)

and

D(i, i+ 1) > D(i− 1, i) (3.5)

and

D(i, i+ 1) > Thresholdi (3.6)

where D(i, i+ 1), D(i, i+ 2) and D(i− 1, i) are the Divergence Shape distances of

small segment Si to Si+1, Si to Si+2 and Si−1 to Si, respectively. Thresholdi is an

adaptive threshold which is computed for every small segment and is defined in (Lu

& Zhang, 2002) as:

3.3 Speaker Tracking 45

Thresholdi =
α

N

N∑
n=0

D(i− n− 1, i− n) (3.7)

where α is a scaling factor and needs to be tuned experimentally. We have evaluated

the segmentation with different values of α which we will discuss in Section 3.4.

In Equation (3.7), N is the number of previous distances used for predicting the

threshold. Once we detect the speaker change points by using this method, we

segment the audio on these points. The segments generated will be used in the next

step, that is, speaker identification. It is worth noting that we did not perform any

refining algorithm for the speaker change points. Rather, we fixed the value of α so

as to minimize the Miss Detection error in order not to miss a speaker change. This

is because a False Alarm error can possibly be corrected in the speaker identification

stage but a Miss Detection error cannot be corrected.

Identification

The second stage of our speaker tracking system performs a conventional speaker

identification test on the segments and target speakers as shown in Figure 3.4. The

goal is to answer to which target speaker, the segments belong? We propose the use

of RBM vector representation for both the target speakers and segments generated

in the segmentation stage. The MFCC features are extracted both for target speak-

ers and segments. Then, RBM vectors are extracted and all the segments are tested

against target speakers using cosine and PLDA scoring. Assume that STm,Sn repre-

sents the cosine/PLDA score for testing the target speaker Tm against the segment

Sn. For a segment under test, first we select a potential candidate among all the

target speakers. The target speaker with the maximum score is a potential candi-

date for the segment. Then, if the maximum score is greater than a threshold, the

identity of that target speaker is assigned to that segment. Generally, the identity

of the target Tm is assigned to the segment Sn according to:

IdSn = arg max
m

(STm,Sn) if max(STm,Sn) > λ (3.8)

where λ is a threshold to decide whether the segment under test does not belong to

any of the target speakers. If the score is less than λ, the segment is not assigned

to any of the target speakers. This is reflected as a Missed Speaker Time (MST)

error for the target speaker which the segment actually belongs to. There are no

46 RBM Vectors for Speaker Clustering and Tracking

speakers that should be rejected by the system because we consider all the speakers

as possible target speakers.

3.4 Experimental Setup and Database

The experiments are performed on the AGORA database, which contains audio

recordings of 34 TV shows from Catalan broadcast TV3 (Schulz & Fonollosa, 2009)

(in total 68 audios of approximately 38 minutes each). These audios contain seg-

ments from 871 adult Catalan and 157 adult Spanish speakers. For all the experi-

ments in this work, we selected 38 audio files for testing and 30 audios are used as

background data. The background data were used to train the Universal Background

Model (UBM) and Total Variability (TV) matrix for the baseline i-vector system.

For the proposed system, the background data were used to train the URBM and

PCA.

We manually extracted 2631 speaker segments from the test audios, according to

ground truth rich transcription. These segments were used in the speaker clustering

experiments. In the testing audios, 414 different speakers appear which were used as

target speakers for the tracking experiments. For an audio file, all the speakers are

considered as possible target speakers. A priori knowledge is required to enroll the

target speakers in the system. Thus, the target speakers are enrolled using i-vectors

and RBM vector approaches for the baseline and proposed systems, respectively.

The target speakers are enrolled with 30 s of utterances. These enrollment utterances

of target speakers are manually selected from the corresponding audio file (in which

they appear) according to the ground truth rich transcription. It is worth noting

that each target speaker appears in at least one of the test segments.

For all the experiments, 20 dimensional MFCC features were extracted, for both

the baseline and proposed systems, using a Hamming window of 25 ms with 10

ms shift. A 512 component UBM was trained to extract i-vectors for the baseline

system and the PLDA was trained with the background i-vectors. A more recent

and competitive features could have been used, for example the BNF. These features

(either in the baseline or in the proposed approach) would require a huge amount of

labeled background data (for example phonetic labels). On the other hand, MFCC

features do not require labeled data for training our models. This is the strength

of our proposed RBM vectors, which were trained in a completely unsupervised

3.5 Results 47

manner. The UBM training, TV matrix and i-vector extraction were carried out

using Alize, a free open source toolkit (Larcher et al., 2013).

For the proposed system, more than 3000 speaker segments were extracted from

the background audios according to the ground truth rich transcription. For each

segment, the features of 4 neighboring frames were concatenated in order to generate

80-dimensional feature inputs to the RBMs. With a shift of one frame, we generated

almost 10 million samples for the URBM training. All the RBMs used in this paper

consisted of 80 visible and 400 hidden units. The URBM was trained for 200 epochs

with a learning rate of 0.0005, weight decay of 0.0002 and a batch size of 100. All

the adapted RBM models for the segments and target speakers were trained with

200 epochs with a learning rate of 0.005, weight decay of 0.000002 and a batch size

of 64.

The PCA was trained with the background RBM supervectors and was applied

to the background RBM supervectors and test RBM supervectors, as discussed

in Section 3.1.2. Finally, fixed dimensional RBM vectors were extracted for the

test speakers that were used in the speaker tracking and clustering experiments.

Different dimensions for the RBM vectors were evaluated in the experiments which

is discussed in Section 3.5.

3.5 Results

3.5.1 Speaker Clustering

Different lengths for RBM vectors, as well as for i-vectors, were evaluated using

cosine scoring and the average linkage clustering algorithm. The results are shown

in the second column of Table 3.1. From the Table, it can be observed that if the

dimension is increased, the performance is improved, both in case of i-vectors and

RBM vectors, in terms of EI. However, in the case of i-vectors, the best choice is

800 dimension. In case of RBM vectors, the 2000 dimensional RBM vectors perform

better than the others. In this case, a relative improvement of 11% is achieved

compared to 800 dimensional i-vectors. A further increase in the length of RBM

vectors beyond 2000 degrades the performance in terms of EI.

The third column of Table 3.1 compares the performance of the RBM vector

with the baseline i-vectors in the case of the single linkage algorithm for clustering

48 RBM Vectors for Speaker Clustering and Tracking

Table 3.1: Comparison of speaker clustering results for the proposed RBM vectors

with i-vectors, in terms of EI in %. The dimensions of vectors are given in paren-

thesis. Each column shows EI in % for different scoring and linkage combinations.

Approach Cosine (Average) Cosine (Single) PLDA (Single)

i-vector(400) 49.19 46.26 36.16

i-vector(800) 46.66 42.19 35.91

i-vector(2000) 46.79 42.83 35.89

RBM vector(400) 51.36 39.66 37.36

RBM vector(800) 47.20 40.02 32.36

RBM vector(2000) 41.53 37.14 31.68

using cosine scoring. From the table it is seen that single linkage was a better

choice for our experiments. In this case, a minimum EI of 37.14% is obtained

with 2000 dimensional RBM vectors which has a relative improvement of 12% over

800 dimensional i-vectors.

Finally, we evaluated the proposed system using PLDA scoring as well. The

PLDA was trained using background RBM vectors for 15 iterations. The number

of eigenvoices were set to 250, 450 and 500 for RBM vectors of dimensions 400, 800

and 2000, respectively. All the RBM vectors were subjected to length normalization

prior to PLDA training. As per the previous results, we performed this experiment

with the single linkage algorithm only. The results were compared with i-vectors in

the fourth column of Table 3.1. It was observed that 800 and 2000 dimensional RBM

vectors have a better EI compared to the respective similar dimensional i-vectors.

In this case, the RBM vectors of dimension 2000 have a minimum EI of 31.68%

which results in a relative improvement of 11% over the 800 dimensional i-vectors.

However, in the case of 400 dimensions, the i-vectors outperform RBM vectors.

The Impurity Trade-off (IT) curves for the baseline, as well as the proposed

system, are shown in Figure 3.5. The figure shows the evaluation of different dimen-

sions of i-vectors and RBM vectors in the average linkage clustering using cosine

scoring. It can be seen that RBM vectors of length 2000 gives a better performance

than 800 dimensional i-vectors at all working points. On the other hand, RBM

vectors of dimensions 400, 800, 2400 and 3000 perform worse than i-vectors. It is

3.5 Results 49

20 30 40 50 60 70

Cluster Impurity (%)

20

30

40

50

60

70

S
p
e
a
ke

r
Im

p
u
ri
ty

 (
%

)

i-vector (400): EI=49.19%

i-vector (800): EI=46.66%

i-vector (2000): EI=46.79%

RBM vector (400): EI=51.36%

RBM vector (800): EI=47.2%

RBM vector (2000): EI=41.53%

RBM vector (2400): EI=52.48%

RBM vector (3000): EI=50.51%

Figure 3.5: IT curves for the proposed RBM vectors with i-vectors using cosine

scoring and average linkage algorithms for clustering.

observed that 400 and 800 dimensional RBM vectors could not capture enough in-

formation about the speaker while 2400 and 3000 dimensional RBM vectors include

unnecessary information which degrades the performance.

In Figure 3.6 we show a comparison of 2000 dimensional RBM vectors with 800

dimensional i-vectors using both cosine and PLDA scoring with the single linkage

algorithm for clustering. The choices of dimensions are based on the previous ex-

periments as 2000 dimensional RBM vectors and 800 dimensional i-vectors give the

best results with cosine scoring and average linkage. From Figure 3.6, it can be seen

that the RBM vectors perform better at all working points as compared to i-vectors

using their respective cosine and PLDA scoring. However, at low Speaker Impu-

rity regions, the RBM vector with cosine scoring outperforms the baseline i-vector

with PLDA scoring. Overall, the 2000 dimensional RBM vector has a consistent

improved performance compared to i-vectors.

3.5.2 Speaker Tracking

For speaker change detection and segmentation, 20 MFCC features were extracted

for all the small segments using a Hamming window of 25 ms with 10 ms shift.

50 RBM Vectors for Speaker Clustering and Tracking

20 30 40 50 60 70

Cluster Impurity (%)

20

30

40

50

60

70

S
p
e
a
ke

r
Im

p
u
ri
ty

 (
%

)

i-vector (800) Cosine: EI=42.19%

i-vector (800) PLDA: EI=35.91%

RBM vector (2000) Cosine: EI=37.14%

RBM vector (2000) PLDA: EI=31.68%

Figure 3.6: IT curves for the proposed RBM vectors with i-vectors using different

scoring and linkage algorithms for clustering.

We performed segmentation using different sizes of small segments, that is, the d

parameter discussed in Section 3.3 was equal to 2, 2.5 and 3 s. The value of ∆ was set

to 0.25 s. The speech parts smaller than d were not considered in these experiments

and were simply discarded. Figure 3.7 shows the graph of FAR against MDR for

different values of d and α. The results were computed, accepting a tolerance (collar)

of ±0.25 s in the position of detected speaker change points. We experimented with

different values of d in order to see the behaviour at different working points, that

is, d = 2, 2.5 and 3 s. Then, we experimented with different values of α and the

results are plotted in Figure 3.7. From the Figure it is clear that the best choice for

d is a 3 s window.

Our actual working point is marked as a black circle which is obtained for α = 2

(in Equation (3.7)). We performed the final segmentation at this point which has

less MDR as compared to FAR. At this point, a FAR of 10% and MDR of 7.8% are

achieved. There is a trade-off between the two metrics (FAR and MDR). One can

decrease one of the metrics at the cost of increasing the other.

The segments generated in the speaker segmentation were then tested against

the target speakers for the tracking task. Table 3.2 shows the results of speaker

3.5 Results 51

10 15 20 25 30 35 40

FAR (%)

10

15

20

25

30

35

40

M
D

R
 (

%
)

Window size: 2.0 s

Window size: 2.5 s

Window size: 3.0 s

Figure 3.7: Speaker segmentation results in terms of FAR and MDR in %. Results

are obtained using different Window sizes (d) and a constant shift i.e., ∆ = 0.25 s.

A collar of ±0.25 s is accepted around a speaker change point.

Table 3.2: Comparison of speaker tracking results for the proposed RBM vectors

with 800 dimensional i-vectors, in terms of EER in %. The lengths of RBM vectors

and i-vectors are given in parenthesis. Column 2 and 3 represents EER in % for

cosine and PLDA Scoring respectively.

Approach EER % (Cosine) EER % (PLDA)

i-vector (800) 3.74 2.97

RBM vector (600) 4.33 3.57

RBM vector (800) 4.03 3.47

RBM vector (2000) 3.30 2.74

tracking for different lengths of RBM vector in terms of Equal Error Rate (EER).

In this case EER was the coinciding point between FA and MST. The second column

of Table 3.2 shows the comparison of RBM vector with the baseline i-vectors using

cosine scoring. We fixed the length of i-vectors to 800 as a conclusion of the speaker

clustering experiments. It is observed that, as the length of the RBM vector is

increased, the performance is improved. The best EER of 3.30% was obtained using

52 RBM Vectors for Speaker Clustering and Tracking

2000 dimensional RBM vector, which gained a relative improvement of 11.76% as

compared to the baseline 800 dimensional i-vectors. Increasing the dimensions of

the RBM vectors does not affect the computational costs of training the models.

The dimensions of RBM vectors are only controlled by the number of components

while applying PCA to the RBM supervectors, as discussed in Section 3.1.2

The third column of Table 3.2 shows the comparison of the RBM vector with

the baseline i-vectors using the PLDA scoring method. For the RBM vector/PLDA

framework, the PLDA is trained using the background RBM vectors for 15 iter-

ations. The number of eigenvoices are set to 350, 450 and 500 for RBM vectors

of lengths 600, 800 and 2000 respectively. All the RBM vectors are subjected to

length normalization prior to PLDA training. From the table, it is clear that the

2000 dimensional RBM vector/PLDA system outperforms the 800 dimensional i-

vector/PLDA system by a relative improvement of 7.74%. In the case of PLDA

post processing, increasing the dimensions of the RBM vectors will increase the

computational costs of PLDA training. This is because the PLDA model is trained

on higher dimensional background RBM vectors.

Figure 3.8 shows the comparison of Detection Error Trade-off (DET) curves for

the baseline as well as the proposed system. These graphs are obtained by tuning

the λ parameter in Equation (3.8). In Figure 3.8a we have evaluated different

lengths of RBM vectors by comparing with i-vectors using cosine scoring. It can be

observed that RBM vector of lengths 800 and 2000 give a better performance than

the baseline i-vectors at low MST points only. An RBM vector of length 600 can

be comparable with baseline i-vectors in this region. On the other hand, at low FA

points the baseline i-vectors outperform RBM vectors of either length. However, at

very few working points in low FA region, the RBM vector of length 2400 can be

comparable with the baseline i-vectors.

In Figure 3.8b we have shown a comparison of 2000 dimensional RBM vector

(which gives the best results with the cosine scoring method) with baseline i-vectors

using both cosine and PLDA scoring. From the figure, a similar kind of behavior

is observed for RBM vectors using PLDA scoring as well. It can be seen that

the 2000 dimensional RBM vector outperforms the baseline i-vectors in low MST

regions using both cosine and PLDA scoring. However, in the low FA regions, the

i-vector/PLDA framework still performs better which was also the case using the

cosine scoring method.

3.5 Results 53

2 5

FA (%)

1

2

5

10

20

M
S

T
 (

%
)

i-vector (800)

RBM vector (400)

RBM vector (600)

RBM vector (800)

RBM vector (2000)

RBM vector (2400)

RBM vector (3000)

(a) Length selection using cosine scoring

2 5

FA (%)

1

2

5

10

20

M
S

T
 (

%
)

i-vector (800) Cosine

i-vector (800) PLDA

RBM vector (2000) Cosine

RBM vector (2000) PLDA

(b) Best length using cosine/PLDA scoring

Figure 3.8: Comparison of DET curves for the proposed RBM vectors with 800 di-

mensional i-vectors. Different lengths of RBM vectors are evaluated using cosine and

PLDA scoring. The lengths of RBM vectors and i-vectors are given in parenthesis.

54 RBM Vectors for Speaker Clustering and Tracking

3.6 Conclusion

RBM vectors were first proposed for speaker verification task in (Safari et al., 2016).

In this chapter, we have proposed the use of RBM vectors for the tasks of speaker

tracking and speaker clustering in TV broadcast shows. RBM is applied for learn-

ing a fixed dimensional vector representation of a speaker which is referred to as

RBM vector. The visible to hidden weight matrices along with the bias vectors of

the URBM-adapted models are concatenated to generate RBM supervectors. The

RBM supervectors are further subjected to a PCA whitening with dimensionality

reduction to extract the desired RBM vectors. These RBM vectors are used in the

tasks of speaker clustering and speaker tracking.

For speaker clustering experiments, two linkage algorithms for an AHC approach

were explored with RBM vectors scored using cosine and PLDA. Using cosine scor-

ing, the performance of the proposed system was better for both the linkage algo-

rithms as compared to i-vector based clustering. Overall, the single linkage algorithm

with 2000 dimensional RBM vectors was the best choice for our experiments, using

both cosine and PLDA scoring. For speaker tracking experiments, we performed

speaker segmentation followed by a speaker identification. The RBM vectors were

applied in the speaker identification stage. In general, the proposed system was more

effective in low MST regions. The experimental results have shown that, in terms of

EER, the proposed system outperformed the baseline i-vectors system using both

cosine and PLDA scoring methods. We conclude that the RBM vectors can be suc-

cessfully used as a speaker representation in speaker clustering and speaker tracking

tasks.

Chapter 4

DNN speaker embeddings by

means of autoencoder pre-training

O ver the last years, the compact representation of speech utterances known as

i-vector (Dehak et al., 2011) has been the state of the art approach in speaker

recognition. Cosine scoring and Probabilistic Linear Discriminant Analysis (PLDA)

(Prince & Elder, 2007; Kenny, 2010) backends are the two commonly used scoring

techniques to decide if two i-vectors belong to the same speaker. Cosine scoring is

a straight forward technique while the PLDA parameters are always trained using

speaker-labeled background data. A PLDA backend for i-vectors leads to a superior

performance as compared to cosine scoring technique. But in practice, it is difficult

to access large amount of labeled background data for training. Therefore, in i-

vector based speaker verification, the lack of speaker-labeled background data results

in a huge performance gap between the unsupervised (cosine) and the supervised

(PLDA) scoring techniques.

In this chapter, we propose to reduce the demand of labeled background data

for i-vector based speaker verification. We propose to transform i-vectors into a new

speaker vector representation, in order to increase their discriminative power. The

goal is to reduce the performance gap between cosine and PLDA scoring techniques

while limiting the use of speaker labels. The rest of the chapter is organized as

follows. In section 4.1 the proposed autoencoder initialized DNN architecture is

explained. In Section 4.2 the experimental setup and details of the database used

are described. In 4.3 the experiments and results are discussed. Finally, in 4.4 some

conclusions are drawn.

56 DNN speaker embeddings by means of autoencoder pre-training

DNN
Training

Background
Speaker
Labels

Speaker
Embeddings

Autoencoder
Training AE

Background
ivectors DNN

Test
ivectors

Embeddings
Extraction

Cosine
Scoring

Decision
Scores

Figure 4.1: Block diagram of the proposed speaker embeddings extraction from

i-vectors using autoencoder pre-training.

4.1 Autoencoder Pre-Training for DNN

We propose a new framework using autoencoder pre-training, to produce an alter-

native vector based representation of speakers (Khan & Hernando, 2019). Figure

4.1 shows the block diagram of our proposed system. In order to limit the need

of large amount of labeled data, we train the autoencoder using a large amount of

unlabeled data. Then, we train a DNN classifier using a relatively small amount

of labeled data. We propose to initialize the DNN training with the weight ma-

trices and bias vectors of the pre-trained autoencoder and a fine tuning is carried

out using small labeled data. In this way, we train a hybrid autoencoder-DNN

classifier. After the training, we extract speaker embeddings from i-vectors as the

output form the second last layer of the supervised network. The goal is to improve

the performance using fewer background speaker labels and take advantage of large

amount of unlabeled data. We evaluated our system using the speaker verification

trials of VoxCeleb-1 (Nagrani et al., 2017) database. The experimental results have

shown that the proposed approach has improved the baseline system in two as-

pects. Firstly, the proposed speaker embeddings, with cosine scoring technique, has

gained a relative improvement of 21%, in terms of Equal Error Rate (EER), over

the baseline i-vector/PLDA system. Secondly, we have observed that the proposed

hybrid autoencoder-DNN training converges faster as compared to the one without

autoencoder pre-training.

4.1 Autoencoder Pre-Training for DNN 57

input

output

i-vector

i-vector

Figure 4.2: Autoencoder pre-training for the DNN.

Unsupervised Training

Figure 4.2 shows the architecture of the proposed autoencoder. The conventional

architecture of an autoencoder consists of an encoder and a decoder as shown in the

figure. The encoder is a function that encodes the input i-vector w into a shorter

dimensional space, and the decoder is a function that decodes it back in order to

reconstruct w. The conventional training is carried out by minimizing the Mean

Square Error (MSE) between the input w and the reconstructed ŵ. Thus the loss

function is :

Loss = MSE(ŵ, w) (4.1)

Where ŵ = decoder(encoder(w)), and w is the input i-vector. We perform unsuper-

vised autoencoder training, in order to make use of the large amount of unlabeled

background i-vectors. The training is carried out in a conventional way i.e., mini-

mizing the MSE loss between input and reconstructed i-vectors using the Stochastic

Gradient Descent (SGD) optimizer. The autoencoder is supposed to learn speaker

independent information from the background i-vectors as it has the ability to learn

compact representation.

58 DNN speaker embeddings by means of autoencoder pre-training

output
speaker
labels

input
i-vector

Speaker
Embeddings

400

300

200

300

400

Autoencoder

Figure 4.3: DNN training as a classifier.

Fine Tuning and Testing

Once the autoencoder is trained, we train a DNN classifier in a supervised way, in

order to learn information about speaker classes. Figure 4.3 shows the architecture

of the supervised DNN. The encoder part and decoder part are symmetric as of the

autoencoder. The DNN has a similar structure except the fully connected and the

output layers. We add a fully connected layer and a classification layer after the

last layer of the autoencoder. The number of neurons in the fully connected layer is

600 while that of the classification layer is equal to the number of speaker classes.

The fully connected layer of 600 neurons is used to extract speaker embeddings

and is therefore named as speaker embedding layer in Figure 4.3. We feed speaker

labels at the output of the classification layer and train the network in a supervised

manner. Since it is a multi-class classification problem, we minimize categorical

4.1 Autoencoder Pre-Training for DNN 59

cross-entropy loss function. This network is referred to as hybrid autoencoder-DNN

classifier and is trained using relatively smaller labeled i-vectors. We initialize the

hybrid autoencoder-DNN with the weight matrices and bias vectors of the pre-

trained autoencoder. This type of initialization has been applied for adapting the

unsupervised model to learn speaker specific information in (Ghahabi & Hernando,

2014a; Safari et al., 2016). The autoencoder pre-training helps in the supervised

learning, and the network converges relatively faster than without pre-training. This

can result in a reduction in training time for a certain accuracy as compared to the

conventional training.

There are two different scenarios in order to use the pre-trained autoencoder

for the DNN initialization. One possibility is to add the fully connected layer and

classification layer directly after the encoder part. The encoder part compresses the

data into a shorter dimensional space which preserves enough information to recon-

struct an approximation of the original data. However, this was not recommended

in our experiments because in the hybrid autoencoder-DNN training the network

learns additional information from the speaker labels at the output. The shorter

dimensional space of the encoder part is not enough to learn efficient information

from the higher dimensional classification layer.

Another scenario is to use the full autoencoder by adding the fully connected

layer and classification layer at the end of the autoencoder. We prefer to expand the

input data to its original dimensional space and then train the hybrid autoencoder-

DNN classifier. In this way, firstly, we remove the unnecessary information from the

data by encoding it into shorter dimensional space. Secondly, we expand the data

back to its original dimensional space in order to ease the learning of additional

information from the speaker labels. It is shown in the experiments that using

only the encoder part could not show better performance as compared to the full

autoencoder case.

Finally, after the supervised fine tuning, we extract the desired speaker embed-

dings from the output of the fully connected (embeddings) layer as shown in Figure

4.3. The test i-vectors, that are involved in the experimental trials, are propagated

through the hybrid network in order to extract speaker embeddings from i-vectors.

These speaker embeddings have shown to preserve speaker specific information and

are more discriminative than the original i-vectors. Using these embeddings, we

perform the trials of the experiments using cosine scoring technique.

60 DNN speaker embeddings by means of autoencoder pre-training

4.2 Experimental Setup and Database

The experiments were performed on VoxCeleb-1 and VoxCeleb-2 databases (Nagrani

et al., 2017; Chung et al., 2018) which contains 153,516 and 1,128,246 number of

utterances, respectively. Both these databases are further partitioned into devel-

opment and test sets. In this work, we have used the whole VoxCeleb-2 database

(development and test) as unlabeled background data to train the autoencoder. The

supervised training was carried out using the development partition of VoxCeleb-1

(the smaller database). VoxCeleb-1 is partitioned into 148,642 development and

4,874 test utterances, that belong to 1211 and 40 speakers, respectively. Thus, the

classification layer in our hybrid autoencoder-DNN consists of 1211 number of neu-

rons. From the test set of VoxCeleb-1, 37,720 experimental trials were scored. Half

of them are client while the other half are impostor trials.

The development set of VoxCeleb-1 was used to train the Universal Background

Model (UBM), the Total Variability (TV) matrix and the PLDA for the baseline i-

vector/PLDA system. 20 dimensional Mel-Frequency Cepstral Coefficients (MFCC)

features, appended by delta coefficients, were extracted for all the utterances. A 1024

components UBM is trained to extract 400 dimensional i-vectors. The PLDA for

baseline was trained for 20 iterations and the number of eigenvoices was empirically

set to 200. The UBM & TV matrix training and i-vector extraction process were

carried out using Alize toolkit (Larcher et al., 2013).

The autoencoder used in this work consist of 3 hidden layers. The encoder and

decoder parts are symmetrical. The hidden layer 1 and 3 have 300 neurons each,

while hidden layer 2 consists of 200 neurons as shown in Figure 4.3. The input and

output layers consist of 400 neurons each. In the DNN, the dimension of speaker

embeddings layer was fixed to 600 while the classification layer consists of 1211

neurons. The autoencoder pre-training was carried out for 400 epochs. All the

layers of the autoencoder used Rectified Linear Units (ReLU) activation function

except the last layer which used linear activation. The learning rate was set to 0.03

with a decay of 0.0002 and the batch size was set to 100. The supervised DNN

training was carried out for 200 epochs using Adagrad optimizer with an initial

learning rate of 0.03 and a batch size of 100. Sigmoid activations were used for all

the layers. Both the autoencoder and DNN were trained using Keras deep learning

library (Chollet, 2015).

4.3 Results 61

1 30 60 90 120 150

Number of Epochs

2

4

6

8
V

a
li
d
a
ti
o
n
 L

o
s
s

conventional (random initialized) dnn training

only encoder initialized dnn training

full autoencoder initialized dnn training

Figure 4.4: Comparison of the training convergence, in terms of validation loss

against number of epochs, between the conventional and the proposed training of

the DNN classifier.

4.3 Results

In the experiments it was observed that the autoencoder pre-training has learned

speaker independent information from the large amount of unlabeled i-vectors. This

information was utilized by the DNN classifier as it was initialized with the weights

and biases of the autoencoder. This resulted in a significant improvement in the

convergence of the DNN training. Figure 4.4 shows the comparison of the DNN

training i.e., conventional DNN and both the cases of autoencoder pre-trained DNN.

In this paper, conventional DNN refers to randomly initialized DNN. The plots were

obtained using the validation loss only. It can be seen that if the DNN was trained

using only the encoder, we have a slight improvement over randomly initialized DNN

training. However the full autoencoder initialization is the best choice which helps

in fast convergence of the training. For epochs greater than 10, the absolute value

of the validation loss is reasonably lower as compared to the randomly initialized

training. Furthermore, using the our proposed approach a validation loss achieved

after only 40 epochs is achieved by the baseline after 100 epochs.

62 DNN speaker embeddings by means of autoencoder pre-training

Table 4.1: Performance comparison, in terms of EER (%), between the baseline and

the proposed speaker embeddings.

Approach Scoring EER(%)

i-vector Cosine 17.61

i-vector PLDA 9.54

only-encoder-dnn Cosine 12.73

conventional-dnn Cosine 8.58

full-autoencoder-dnn Cosine 7.51

 1 2 5 10 20 40

False Alarm probability (in %)

 1

 2

 5

 10

 20

 40

M
is

s
p

ro
b

a
b

ili
ty

 (
in

 %
)

[1] i-vector-cosine: EER=17.61

[2] i-vector-plda: EER=9.54

[3] only-encoder-dnn: EER=12.79

[4] conventional-dnn: EER=8.58

[5] full-autoencoder-dnn: EER=7.51

Figure 4.5: DET plots of the baseline and the proposed speaker embeddings, using

only encoder and full autoencoder initialization for the DNN.

After extracting the desired speaker embeddings from i-vectors using the pro-

posed approach, we score the experimental trials using cosine scoring technique.

However the baseline i-vectors were scored using PLDA as well. Table 4.1 compares

the performance of our proposed speaker embeddings with the conventional DNN

speaker embeddings and i-vectors. Using only the encoder part to train the DNN, is

not the preferred choice for our experiments. The full autoencoder initialization has

an advantage of learning efficient information from the speaker labels as compared

4.4 Conclusion 63

to the the only encoder case. From the table it is clear that our proposed speaker

embeddings has outperformed both the other systems. The relative improvement

between the proposed speaker embeddings and i-vector/PLDA is 21.28%, in terms of

EER. If we compare the proposed speaker embeddings with the conventional DNN

speaker embeddings, the relative improvement is 12.47%.

Figure 4.5 shows the Detection Error Trade-off (DET) curves of our proposed

approach and the other two approaches. We can see that the conventional DNN

speaker embeddings perform worse than i-vector/PLDA, at low False Acceptance

Rate (FAR) regions. However, the DET plot for the proposed speaker embeddings

shows better performance at all working regions.

Finally, in Figure 4.6, we have shown the t-Distributed Stochastic Neighbor

Embedding (t-SNE) plots for three different vector representation of speakers i.e.,

i-vectors, conventional DNN speaker embeddings and the proposed speaker em-

beddings. t-SNE is a dimensionality reduction technique to graphically visualize

(Maaten & Hinton, 2008) higher dimensional vectors. In order to see the discrim-

inative power of our proposed speaker embeddings, we have compared the t-SNE

plots with the other two approaches. The plots were obtained using the test parti-

tion of the VoxCeleb-1 database. The dimensions of all the vectors was reduced to

2 for plotting the t-SNE. It is clear from the figure that our proposed speaker em-

beddings has the highest discrimination power as compared to the other two. The

clusters generated are mostly pure and distinct. However, for the conventional DNN

speaker embeddings, some of the clusters are overlapping with the others. For the

baseline system, raw i-vectors were used to obtain the plots. The clusters formed

for i-vectors are not very clear as compared to the former two DNN based speaker

embeddings.

4.4 Conclusion

The requirements of large amount of labeled background data has put a constraint

on deep learning approaches to speaker recognition. In practical scenarios large

amount of labeled background data is not easily available. Thus we make use of

unlabeled data to minimize the impact of lack of labeled data. In this chapter we

proposed autoencoder pre-training for DNN training (Khan & Hernando, 2019). An

autoencoder was pre-trained on a large amount of unlabeled background data which

64 DNN speaker embeddings by means of autoencoder pre-training

(a) Raw i-vectors

(b) Conventional DNN speaker embeddings

(c) Proposed speaker embeddings

Figure 4.6: Comparison of the t-SNE Plots, between raw i-vectors, conventional and

proposed speaker embeddings. All the vectors were reduced to 2 dimensional space.

4.4 Conclusion 65

learns speaker independent information. Then a DNN classifier was trained using

a relatively small labeled data, initialized with the parameters of the pre-trained

autoencoder. The objective was to fill the performance gap between the cosine and

the PLDA scoring techniques when limited labeled background data is available.

The evaluation was performed on the speaker verification trials of VoxCeleb-

1 database. The results have shown that by using autoencoder pre-training for

DNN, we gain a relative improvement of 21% in terms of EER, over the baseline

i-vectors/PLDA system. Furthermore, we have observed that the DNN training con-

verged faster, compared to the conventional (randomly initialized) dnn case (Khan

& Hernando, 2019).

Chapter 5

Unsupervised training of

autoencoder speaker embeddings

using k-nearest neighbors

D eep Learning (DL) approaches are applicable to learn a compact represen-

tation of speech utterance, which is commonly referred to as speaker em-

bedding, such as in (Variani et al., 2014b; Rouvier et al., 2015; Snyder et al., 2018;

Bhattacharya et al., 2017; Okabe et al., 2018; Novoselov et al., 2018). Speaker em-

beddings are the most effective speaker vector representation which is commonly

used these days. They are usually extracted from an intermediate layer of a Deep

Neural Network (DNN) which is trained as a classifier. Therefore, these DL ap-

proaches are typically constrained to speaker labeled background data. In the pre-

vious chapter we proposed DNN speaker embeddings which were extracted using

a supervised DNN training. The DNN was initialized using the parameters of a

pre-trained autoencoder. Although, the autoencoder pre-training was carried out

in an unsupervised manner, the DNN training still required speaker labels for the

background i-vectors.

In this chapter, we put an effort to completely avoid the use of labeled back-

ground data for i-vector based speaker verification. Unlike the conventional PLDA

backend for i-vectors, and DNN based classifiers, autoencoder training is an un-

supervised process which does not require labeled data. We propose to train an

autoencoder in a new framework, in order to compensate session variability among

68
Unsupervised training of autoencoder speaker embeddings using

k-nearest neighbors

1

2

3

n

1k

2k

nk

Cosine(,)

For every
select top k
ivectors

11 12 1k

3k

1

2

3

n

1 2

Cosine(,)n 1

i

training i-vector (w) neighbor i-vector (v)

Figure 5.1: Visualization of selection of neighbor i-vectors.

i-vectors when no labeled background data is available. We propose to take advan-

tage of nearest neighbor i-vectors in order to train the network. For all the training

data we select neighbor i-vectors which are used to train the autoencoder. After

training, we transform i-vectors into a new speaker vector representation, in order

to increase their discriminative power. The goal is to reduce the performance gap

between cosine and PLDA scoring techniques without using speaker labels. The rest

of the chapter is organized as follows. In section 5.1 the proposed unsupervised selec-

tion of nearest neighbor i-vectors is explained. In Section 5.2 and 5.3 we explain the

two proposed nearest neighbor autoencoders and the corresponding i-vector trans-

formation. In Section 5.4 the experimental setup and details of the database used

are described. In 5.5 the experiments and results are discussed. Finally, in 5.6 some

conclusions are drawn.

5.1 Selection of Nearest Neighbor i-Vectors

All the training i-vectors are scored among each other using cosine scoring technique.

For every i-vector, we select a set of similar i-vectors as neighbors. A straightforward

approach to select the neighbor i-vectors is to apply a threshold to the cosine scores.

The i-vectors with scores higher than the threshold are selected as neighbor i-

vectors. Another approach is to select a constant k number of neighbor i-vectors for

every training i-vector. The values of threshold and k are determined experimentally

and will be discussed in section 5.5.

5.2 Nearest Neighbor Autoencoder 69

Algorithm 5.1: Proposed neighbor i-vectors selection algorithm for a con-

stant k, regardless of the scores.
Input : Training i-vectors wi, 1 ≤ i ≤ n

Output: Neighbor i-vectors vij , 1 ≤ i ≤ n & 1 ≤ j ≤ k

1 for each training i-vector wi do

2 for each training i-vector wt, 1 ≤ t ≤ n do

3 if i 6= t then

4 Compute scorei,t = cosine(wi, wt)

5 end

6 end

7 From scorei,t, select k highest scores as Sk.

8 end

Figure 5.1 shows a visualization of the selection process of the neighbor i-vectors

for a constant k number of neighbors. Suppose wi is a training i-vector, where

i = (1, . . . , n) and n is the total number of training i-vectors. First, we score all

the training i-vectors among each other using cosine scoring technique. Then, we

select the top k i-vectors with highest scores as neighbor i-vectors for every wi.

The selected neighbor i-vectors are denoted by vij , where vij is the jth neighbor of

ith training i-vector. Algorithm 5.1 summarizes how the selection of the neighbor

i-vectors is carried out for a constant k number of neighbors, regardless of scores.

5.2 Nearest Neighbor Autoencoder

In the first proposal, we train an autoencoder to reconstruct neighbor i-vectors,

rather than to reconstruct the same training i-vectors. In this way, the autoencoder

is capable of compensating session variability among i-vectors without using speaker

labels, in an implicit way. After training, we extract speaker vectors for the testing

i-vectors, which are referred to as autoencoder vectors or shortly ae-vectors. For

the experimental trials, we score the ae-vectors using cosine scoring. The ae-vectors

have shown high discriminative power compared to i-vectors. The experimental

results show that while training the autoencoder in the proposed manner, a rela-

tive improvement of 42% is gained, over the baseline system using cosine scoring

technique, which reduced the performance gap between cosine and PLDA, by 92%.

70
Unsupervised training of autoencoder speaker embeddings using

k-nearest neighbors

Select
Neighbors

MSE(^,)

Cosine
Scoring

Training
ivectors

Feed Back
Error

 ^

Autoencoder

Figure 5.2: Block diagram of the proposed training of the autoencoder. The loss is

computed between input i-vector and it’s nearest neighbor.

Figure 5.2 shows the block diagram of the training phase of our proposed system

(Khan, India, & Hernando, 2019). For an input i-vector w a similar i-vector v is set

at the output and the training is carried out in this manner. The similar i-vectors

are selected in an unsupervised manner according to the cosine scores to the training

i-vector. After training, we extract speaker vectors for the testing i-vectors, which

are used in the experiments as shown in Figure 5.3. The main steps involved in

extracting ae-vectors are explained as follows.

Training

The conventional architecture of an autoencoder consists of an encoder and a

decoder as shown in the enclosed block of Figure 5.2. The encoder is a func-

tion that encodes the input i-vector w into a shorter dimensional space, and the

decoder is a function that decodes it back in order to reconstruct w. The conven-

tional training is carried out by minimizing the MSE loss between the original input

i-vector w and the reconstructed wˆ. Thus the loss function is MSE(wˆ, w), where

wˆ = decoder(encoder(w)).

In this work, we propose to train the autoencoder by minimizing the loss func-

tion MSE(wˆ, v), as shown in Figure 5.2, where v is a similar i-vector to w and

5.3 Average Pooled Nearest Neighbor Autoencoder 71

Testing
ivectors

aevectors

Cosine
Scoring

Decision
Scores

Autoencoder

Figure 5.3: Block diagram of the proposed Autoencoder vector extraction for the

test i-vectors.

wˆ = decoder(encoder(w)). We propose an automatic selection of similar i-vectors.

Multiple similar i-vectors can be considered for every training i-vector w. We will

compare the results of our proposed training with that of a conventional training

i.e., reconstructing the same training i-vectors.

Autoencoder Vector Extraction

Once the autoencoder is trained with the selected neighbor i-vectors, we transform

the testing i-vectors into a new speaker vector representation, using the autoencoder

as shown in Figure 5.3. We extract the desired speaker vectors at the output of the

autoencoder. These are referred to as autoencoder vectors or shortly ae-vectors

(Khan, India, & Hernando, 2019). In the experiments, ae-vectors have shown to

increase the discriminative quality of i-vectors without using speaker labels. Using

the proposed ae-vectors, we perform the trials of the experiments with cosine scoring

technique.

5.3 Average Pooled Nearest Neighbor Autoencoder

Figure 5.4 shows the block diagram of the training and testing phases of our proposed

system (Khan et al., 2020). For every input i-vector w a set of nearest neighbor i-

72
Unsupervised training of autoencoder speaker embeddings using

k-nearest neighbors

Select
Neighbors DNN LossTraining	

i-vectors

Cosine
Scoring

Decision	
Scores

		^

Select
Neighbors

Test	/	Reference	
i-vector

Training

Testing

Test
vector

Reference	vector

i=1				k

i=1				k

Figure 5.4: Block diagram of the proposed system. Solid arrows corresponds to the

training phase, while dotted arrows corresponds to the proposed vector extraction

and testing phase.

vectors vk is input to the DNN. During the training we minimize the loss between

reconstructed v̂ and actual training i-vector w. The nearest neighbor i-vectors are

selected in a similar manner as discussed in Section 5.1. In this work, we propose to

set a threshold after selecting the constant k number of neighbors. Algorithm 5.2

summarizes how the selection of the neighbor i-vectors is carried out for a constant k

number of neighbors constrained to a threshold. After we select the top k neighbors,

their corresponding scores are constrained to a threshold. After training, we extract

speaker vectors for the testing i-vectors, which are used in the experiments as shown

in Figure 5.4. The main steps involved in the proposed system are explained as

follows.

Training

Once we select the k nearest neighbors for every training i-vector, we train the DNN

using these nearest neighbors. Figure 5.5 shows the architecture of our proposed

DNN. The first layer performs an average pooling over the input samples which is

followed by several Fully Connected (FC) layers. The input layer is fed by the set of

neighbor i-vectors denoted by vk. We train the DNN by minimizing the loss function

L(v̂, w), as shown in Figure 5.4, where L(·) can be Cosine Distance (CD) or MSE,

w is the training i-vector and v̂ = f(vk), where f(·) is the non-linearity deployed

by the DNN. During the training, the loss L(·) is back-propagated to the network

5.3 Average Pooled Nearest Neighbor Autoencoder 73

Algorithm 5.2: Proposed neighbor i-vectors selection algorithm for a con-

stant k, constrained by a threshold.
Input : Training i-vectors wi, 1 ≤ i ≤ n

Output: Neighbor i-vectors vij , 1 ≤ i ≤ n & 1 ≤ j ≤ k

1 for each training i-vector wi do

2 for each training i-vector wt, 1 ≤ t ≤ n do

3 if i 6= t then

4 Compute scorei,t = cosine(wi, wt)

5 end

6 end

7 From scorei,t, select k highest scores as Sk.

8 if Sk ≥ threshold then

9 vi,j = wt

10 end

11 end

1

2

3

k

Pooling
Layer FC	1 FC	2 FC	3 FC	4

Output

Figure 5.5: Proposed DNN architecture.

in every iteration. In this way, the DNN is able to learn from the nearest neighbor

i-vectors and avoids using actual speaker labels.

Speaker Vector Extraction

After the DNN is trained with the selected k nearest neighbor i-vectors, we transform

the test i-vectors into a new speaker vector representation, using the DNN as shown

in Figure 5.4. For every test i-vector, we select nearest neighbors from the training

74
Unsupervised training of autoencoder speaker embeddings using

k-nearest neighbors

set in a similar manner as discussed in Section 5.1. The DNN is fed with these

nearest neighbors and the desired speaker vectors are extracted at the output of the

DNN. Using these speaker vectors, we perform the trials of the experiments with

cosine scoring technique.

The proposed vectors are extracted using nearest neighbor i-vectors i.e., vk. The

role of vk is very important in the whole process because the proposed vectors are

highly dependent on vk. Furthermore, in order to extract the proposed vectors

for the test set, it is necessary to store the training i-vectors which may not be

convenient in some cases. Therefore, our proposed vectors avoid speaker labels for

the background data but at the cost of keeping the background data even in the

testing part (Khan et al., 2020).

5.4 Experimental Setup and Database

The experiments were performed on VoxCeleb-1 database (Nagrani et al., 2017;

Chung et al., 2018). It contains 148,642 development and 4,874 test utterances which

belong to 1,211 and 40 speakers, respectively. For i-vector baseline, the development

set was used to train the UBM, the TV matrix and the PLDA parameters. MFCC

features of 20 dimensions along with delta coefficients and a 1024 component UBM

were used to extract 400 dimensional i-vectors. The PLDA was trained for 20

iterations with 200 eigenvoices. The whole i-vector extraction process was carried

out using Alize toolkit (Larcher et al., 2013). The performance was evaluated using

the EER(%) and the minimum of the Detection Cost Function (minDCF) calculated

using CM = CFA = 1, and PT = 0.01, as in (Nagrani et al., 2017). From the test

partition of the database 37,720 experimental trials were scored. Half of them are

client trials while the other half are impostor trials.

The Nearest Neighbor Autoencoder, explained in 5.2, was a fully connected feed

forward network which consists of 3 hidden layers. The encoder and decoder parts

are symmetrical as shown in Figure 5.2. The hidden layer 1 and 3 have 300 neurons

each, while hidden layer 2 consists of 200 neurons. The input and output layers

consist of 400 neurons each. The training was carried out with 100 epochs using

SGD optimizer in Keras deep learning library (Chollet, 2015). All the layers of the

autoencoder used ReLU activation except the last layer which used linear activation.

The learning rate was set to 0.01 with a decay of 0.0002 and the batch size was 100.

5.5 Results 75

The Average Pooled Nearest Neighbor Autoencoder, explained in 5.3, was trained

with the development set using Keras deep learning library. With k number of near-

est neighbors there are a total of (N × k) training samples, where N is the number

of i-vectors in the development set. The architecture of the network consists of a

pooling layer followed by 4 FC layers as shown in Figure 5.5. The first layer de-

ploys an average pooling while the FC layers performs a ReLU activation except

FC4 which uses linear activation. The structure of the pooling layer varies with the

number k while that of the FC layers is fixed with 400 neurons each. The DNN was

trained for a maximum of 500 epochs using SGD optimizer. The learning rate and

batch size were set to 0.01 and 100, respectively.

5.5 Results

5.5.1 Nearest Neighbor Autoencoder

We have compared our proposed ae-vectors with baseline i-vectors and ae-vectors

extracted using a conventionally trained autoencoder i.e., same output as input.

In Tables 5.1 & 5.2, and in Figures 5.6 & 5.7, approach [2] corresponds to ae-

vectors extracted using a conventionally trained autoencoder. Table 5.1 compares

the performance of our proposed ae-vectors with the baseline i-vectors by setting a

threshold to select number of neighbor i-vectors. All the vectors are scored using

cosine scoring technique. Different values of threshold were evaluated in order

to tune the system for obtaining best results. From the table it is clear that our

proposed ae-vectors has outperformed the baseline system. As we decrease the value

of threshold, the performance of the system improves. The best EER of 11.19% was

obtained for a threshold equal to 0.1 which gains a relative improvement of 36%

over the baseline i-vectors. This leads to fill the performance gap between cosine

and PLDA scoring techniques by 80%.

The best value for the minDCF was obtained for a threshold equal to 0.4. A

score level fusion of i-vectors and the ae-vectors with threshold equal to 0.1, has

further improved the performance, both in terms of EER and minDCF. An EER of

10.17% was obtained for the fusion strategy. The optimum weights for the fusion

were obtained empirically, and were set to 0.55 and 0.45 for i-vectors and ae-vectors,

respectively.

76
Unsupervised training of autoencoder speaker embeddings using

k-nearest neighbors

Table 5.1: EER and minDCF for the proposed ae-vectors and i-vectors evaluated

for different values of threshold using cosine scoring.

Approach threshold EER(%) minDCF

[1] i-vector - 17.61 0.8390

[2] ae-vector - 16.84 0.8569

[3] ae-vector 0.4 14.92 0.8376

[4] ae-vector 0.3 12.91 0.8594

[5] ae-vector 0.2 11.65 0.8420

[6] ae-vector 0.1 11.19 0.8527

Fusion of [1] & [6] - 10.17 0.7568

 1 2 5 10 20 40

False Alarm probability (in %)

 1

 2

 5

 10

 20

 40

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

[1] iv : EER=17.61

[2] ae : EER=16.84

[3] th=0.4 : EER=14.92

[4] th=0.3 : EER=12.91

[5] th=0.2 : EER=11.65

[6] th=0.1 : EER=11.19

[1] & [6] : EER=10.17

Figure 5.6: DET curves for the proposed ae-vectors and i-vectors evaluated for

different values of threshold using cosine scoring.

Figure 5.6 shows a comparison of the DET curves for the baseline and the pro-

posed system. Different plots are shown for different ae-vectors obtained with dif-

ferent values of the threshold parameter. It can be observed that all the ae-vectors,

show better performance in all working regions, compared to i-vectors.

5.5 Results 77

Table 5.2: EER and minDCF for the proposed ae-vectors and i-vectors for different

values of k using cosine scoring.

Approach k EER(%) minDCF

[1] i-vector - 17.61 0.8390

[2] ae-vector - 16.84 0.8569

[3] ae-vector 1 15.32 0.9218

[4] ae-vector 2 12.36 0.8382

[5] ae-vector 5 10.62 0.8053

[6] ae-vector 15 10.20 0.8066

Fusion of [1] & [6] - 9.82 0.7625

In Table 5.2, we have shown a performance comparison of our proposed ae-

vectors with the baseline i-vectors using a constant k for the selection of neighbor

i-vectors. We have experimented with different values of k in order to tune the

system for obtaining best results. From the table it is clear that a fix value of

k has shown improvement compared to the threshold approach as well as to the

baseline. Starting with k equal to 1, an EER of 15.32% was obtained. Thus, by

considering only one nearest neighbor for every i-vector, a relative improvement of

13% is gained, compared to the baseline system. As we increase the value of k, the

performance of the system improves. The best EER of 10.20% was obtained for k

equal to 15 which gains a relative improvement of 42% over the baseline i-vectors.

This has filled the performance gap between cosine and PLDA scoring techniques

by 92%. The best result in terms of minDCF, was obtained with k equal to 5. This

approach allows a balanced training which improved the performance of the system.

A further increase in the value of k may include very far neighbors, which degraded

the performance. A score level fusion of i-vectors and ae-vectors with k equal to

15, has further improved the performance, both in terms of EER and minDCF.

An EER of 9.82% was obtained for the fusion, which is very close to the results

for i-vector/PLDA using actual speaker labels. The optimum weights for the fusion

were tuned experimentally and were set to 0.49 and 0.51 for i-vectors and ae-vectors,

respectively.

78
Unsupervised training of autoencoder speaker embeddings using

k-nearest neighbors

 1 2 5 10 20 40

False Alarm probability (in %)

 1

 2

 5

 10

 20

 40
M

is
s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

[1] iv : EER=17.61

[2] ae : EER=16.84

[3] k=1 : EER=15.32

[4] k=2 : EER=12.36

[5] k=5 : EER=10.62

[6] k=15 : EER=10.20

[1] & [6] : EER=9.82

Figure 5.7: DET curves with different values of k using cosine scoring.

The DET curves for the baseline and the proposed system, using the second

method, are shown in Figure 5.7. Different plots are shown for different ae-vectors

obtained with different values of k. It can be observed that all the ae-vectors, have

shown better performance than the i-vectors in all working regions.

If we perform a score level fusion between i-vector/PLDA and the ae-vectors with

k equal to 15, which gives the best results, an EER of 9.0% is obtained. This gains a

relative improvement of almost 6% over i-vector/PLDA. The EER comparison and

DET curves for the fusion are shown in Table 5.3 and Figure 5.8, respectively. The

fusion has improved the system in terms of minDCF as well. The optimum weights

for the fusion were set to 0.04 and 0.96 for i-vectors and ae-vectors, respectively.

Table 5.3: Fusion of i-vector/PLDA and the proposed ae-vectors with k equal to 15.

Approach Scoring EER(%) minDCF

[1] i-vector PLDA 9.54 0.7768

[2] ae-vector (k = 15) Cosine 10.20 0.8066

Fusion of [1] & [2] - 9.00 0.7338

5.5 Results 79

 1 2 5 10 20 40

False Alarm probability (in %)

 1

 2

 5

 10

 20

 40

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

[1] iv-plda : EER=9.54

[2] k=15-cosine : EER=10.20

[1] & [2] : EER=9.00

Figure 5.8: DET curves for the fusion of i-vector/PLDA and the proposed ae-vectors

with k equal to 15.

5.5.2 Average Pooled Nearest Neighbor Autoencoder

Table 5.4 shows the results obtained for our proposed vectors obtained using the

average pooled nearest neighbor autoencoder. This experiment was performed in

order to choose the optimal value of k without setting the threshold on it. We

have shown the EER for both CD and MSE losses as discussed in Section 11. From

Table 5.4 we can observe that, an increase in the value of k results in a better

performance in terms of EER. This relation is seen up-to a certain value of k. The

best EER of 4.45% was obtained for k equal to 100 in the case of MSE loss, which

gained a relative improvement of 25% and 53% over the baselines x-vector/PLDA

and i-vector/PLDA, respectively. However, for k higher than 100 the EER started

increasing. The EER is worse in the case of CD loss for k higher than 100. In

overall, we can observe that the proposed vectors obtained using MSE loss performs

better compared to CD loss for all values of k.

Figure 5.9 shows a comparison of the DET curves for the baseline i-vectors and

our proposed vectors. Different DET plots are shown for different vectors obtained

with different values of k. The proposed vectors were extracted using DNN trained

80
Unsupervised training of autoencoder speaker embeddings using

k-nearest neighbors

Table 5.4: EER(%) for the proposed vectors using both CD and MSE losses with

different values of k. Using i-vectors, the EER(%) is equal to 17.61 and 9.54 for

cosine and PLDA, respectively (Khan, India, & Hernando, 2019).

k EER using CD EER using MSE

10 8.81 8.70

20 6.60 6.56

30 5.68 5.64

50 4.97 4.98

100 4.84 4.45

150 6.53 4.48

with MSE loss as discussed in Section 11. From the DET curves, it can be observed

that all the proposed vectors show better performance in the middle regions (i.e.,

the EER), compared to the baseline i-vectors. However, in the regions where False

Acceptance Rate (FAR) and False Rejection Rate (FRR) are very high, the i-vectors

tend to show better performance than our proposed speaker vectors.

 1 2 5 10 20 40

False Acceptance Rate (in %)

 1

 2

 5

 10

 20

 40

F
a

ls
e

 R
e

je
c
ti
o

n
 R

a
te

 (
in

 %
)

[1] iv-PLDA : EER=9.54

[2] k = 10 : EER=8.71

[3] k = 20 : EER=6.56

[4] k = 30 : EER=5.64

[5] k = 50 : EER=4.98

[6] k = 100 : EER=4.45

[7] k = 150 : EER=4.48

Figure 5.9: DET curves using MSE loss with different values of k.

5.6 Conclusion 81

Table 5.5: EER(%) with & without a threshold of 0.0 applied on high values of k.

k
No threshold

applied

threshold

applied

Relative

Improvement

100 4.45 4.45 0.00

150 4.48 4.40 1.78

200 5.03 4.45 11.53

After choosing an optimal value of k, we have applied a threshold on k as

discussed in Section 5.1. In Table 5.5, we have shown the effect of the threshold

applied to the cosine scores of k nearest neighbors. The value of threshold was

empirically set to 0.0. As per our first experiment the optimal value of k is equal to

100, which is not effected by the threshold, as shown in Table 5.5. When we increase

the value of k, the impact of the threshold becomes more effective. This is because

a high value of k includes a high number of nearest neighbors which may not be

optimal for all the i-vectors in the whole database. Thus the threshold eliminates

some neighbors with cosine scores lower than the threshold. This resulted in some

improvement compared to the case where no threshold was applied. The relative

improvement in terms of EER(%) is 11.53% for the case of k equal to 200.

In overall, this approach has obtained 25% and 53% relative improvement over

the supervised baselines respectively. The main advantage of our approach is that

it avoids speaker-labeled background data. On the other hand, the necessity of

the background data in the testing part can be considered as the cost of this im-

provement. Due to the usage of nearest neighbors for the testing i-vectors we have

obtained excellent results.

5.6 Conclusion

In this chapter we proposed the use of autoencoder for i-vector based speaker ver-

ification, without using speaker labels for the background data. An autoencoder

was trained in a new framework in order to increase the discriminative power of

i-vectors. The training takes advantage of the nearest neighbor i-vectors for all the

database. The nearest neighbor i-vectors were selected in an unsupervised manner.

82
Unsupervised training of autoencoder speaker embeddings using

k-nearest neighbors

During testing, the test i-vectors were transformed into new speaker vectors that

were more discriminative as compared to the original i-vectors. The objective was

to fill the performance gap between the cosine and the PLDA scoring techniques

when no labeled background data is available.

The evaluation was performed on the speaker verification trials of VoxCeleb-1

database. The experimental results have shown that our proposed ae-vectors gain a

relative improvement of 42% in terms of EER over the unsupervised baseline system

(Khan, India, & Hernando, 2019). While the second nearest neighbor approach have

shown that our proposed speaker vectors gain a reasonable improvement in terms

of EER over the supervised baseline systems (Khan et al., 2020). This approach

avoids speaker-labeled background data at the cost of using the background data

even in the testing part.

Chapter 6

Unsupervised training of siamese

networks for speaker verification

I n the previous chapters, we have explained several autoencoder based unsuper-

vised approaches for post-processing of i-vectors, which has shown to improve

the performance of speaker verification system (Khan, India, & Hernando, 2019;

Khan & Hernando, 2019; Khan et al., 2020). Since, these approaches were aimed

to increase the discriminative power of i-vectors. They are applicable as a back-

end in the utterance level features i.e., in i-vector space only. In this chapter we

avoid the i-vector extraction part, in testing phase, by training the networks using

the frame level features, i.e., spectrograms. The goal is: (1) to obtain end-to-end

speaker verification scores, and (2) to extract speaker embeddings, from spectro-

grams without using speaker labels. We propose two siamese networks (Bromley

et al., 1994), i.e., double-branch and triple-branch, which consist of two and three

branches, respectively. Each branch is composed of a Convolutional Neural Network

(CNN) encoder, inspired by the VGG architecture (Simonyan & Zisserman, 2014),

which was recently adapted for speaker verification in (Nagrani et al., 2017; Chung

et al., 2018; India et al., 2019). Typically, siamese networks are trained by feeding

the training samples in pairs, e.g., [anchor, client] and [anchor, impostor]. Since the

goal is to avoid speaker labels, we propose to generate the pairs of training samples

in an unsupervised manner (Khan & Hernando, 2020a). The client samples are se-

lected within one database according to the highest similarity with the anchor. The

impostor samples are selected in the same way but from another database, provided

that the two databases does not contain utterances from same speakers.

84 Unsupervised training of siamese networks for speaker verification

We propose the use of double-branch siamese network as a binary classifier by

minimizing binary cross entropy loss. The selected client and impostor samples,

paired one by one with the anchor samples, are fed into the network, and their

respective binary labels of 1/0 are provided at the output in order to compute the

loss. After training, we obtain decision scores for the speaker verification trials from

the output of the network. Thus, our double-branch siamese deploys an end-to-end

speaker verification system. On the other hand, the proposed triple-branch network

is trained by minimizing triplet loss (J. Wang et al., 2014; Schroff et al., 2015).

The selected client and impostor samples, paired both at the same time with the

anchor samples, are fed into the network in pairs of three. Each branch encodes

the input sample into a vector based representation which is used to compute the

triplet loss. In the testing phase, we extract speaker embeddings for the test data

using a branch of the network. These embeddings are scored for the experimental

trials using cosine scoring. The evaluation was performed on VoxCeleb-1 database

(Nagrani et al., 2017). The results show that using our proposed systems, despite of

being unsupervised, the result get closer to a similar but fully supervised baseline.

Moreover, fusion of the two proposed systems can further improve the performance.

The rest of the chapter is organized as follows. Section 6.1 explains the proposed

method for the selection process of clients and impostor samples. Section 6.2 depicts

the proposed architectures of our double-branch and triple-branch siamese networks.

Section 6.3 describes the experimental setup and the database. The results obtained

are discussed in Section 6.4. Finally in section 6.5, some conclusions are drawn as

the findings of this work.

6.1 Clients and Impostor Selection

The selection process of client and impostor samples is carried out in the i-vector

space using two databases, i.e., A and B. Suppose SpkA and SpkB denote the

speakers appearing in database A and B, respectively. We assume that the speakers

in database A do not appear in database B, i.e., SpkA ∩ SpkB = φ. Algorithm 6.1

summarizes how the selection of the clients and impostor i-vectors is carried out in

an unsupervised manner. First of all we extract i-vectors for all the utterances in

both the databases A and B. Then, all the i-vectors in A are scored among each

other using cosine scoring technique. For every i-vector in A we select a fix k number

6.1 Clients and Impostor Selection 85

Algorithm 6.1: Proposed algorithm for selection of clients and impostor

i-vectors
Input : Training i-vectors ai ∈ A & bi ∈ B, 1 ≤ i ≤ n

Output: Client and impostor i-vectors Cij and Iij , 1 ≤ i ≤ n & 1 ≤ j ≤ k

1 for each training i-vector ai do

2 for each training i-vector at, 1 ≤ t ≤ n do

3 Compute ClientScoresi,t = cosine(ai, at)

4 end

5 From ClientScoresi,t, select k highest ones.

6 if ClientScoresi,t ≥ threshold then

7 Ci,j = at

8 end

9 for each training i-vector bt, 1 ≤ t ≤ n do

10 Compute ImpostorScoresi,t = cosine(ai, bt)

11 end

12 From ImpostorScoresi,t, select k highest ones.

13 if ImpostorScoresi,t ≥ threshold then

14 Ii,j = bt

15 end

16 end

of similar i-vectors as potential client i-vectors. After this we apply a threshold to

the cosine scores of these k selected potential clients. The potential clients with

scores higher than the threshold are selected as the final client i-vectors.

In order to select the impostor i-vectors, we score all the i-vectors in A with those

in B, using cosine scoring. For every i-vectors in A, we select k number of i-vectors

from B that are closest according to the cosine scores. Since, the speakers in A

does not appear in B, these k selected i-vectors are the potential impostors. After

this, we apply a threshold to their corresponding cosine scores in order to select the

hardest impostors among them. In this way, every i-vector in A has been assigned

k client and k impostor i-vectors. Suppose we have n number of i-vectors in each

of the databases A and B. Then, we have a total of (2n × k) samples for training

our networks. The value of k is determined experimentally and will be discussed in

section 6.4. For the double-branch siamese network we make training pairs of two,

86 Unsupervised training of siamese networks for speaker verification

i.e., [anchor, client] and [anchor, impostor], for which the binary labels are 1 and 0

respectively. Whereas for the triple-branch siamese network we make pairs of three

samples, i.e., [anchor, client, impostor], in order to compute the triplet loss according

to Equation 6.1. It is worth noting the client and impostor selection is carried out in

i-vector space while the actual inputs to the networks are Mel-spectrogram features

of the utterances.

6.2 Proposed Siamese Architectures

Training a Deep Neural Network (DNN), either in end-to-end fashion or to extract

speaker embeddings, usually requires speaker labels for the background data, which

is difficult to access in reality. In order to do so, when no labels are available

for the background data, we propose the use of two siamese networks which are

fully unsupervised unlike the conventional DNN classifiers. Typically, a siamese

network is trained using pairwise training samples, i.e., anchor, client and impostor.

Since we do not use speaker labels, we propose to generate the training pairs in an

unsupervised manner. These training pairs are fed at the input of the network. We

propose two different networks, i.e., a double-branch siamese network using binary

cross-entropy loss, and a triple-branch siamese network using triplet loss.

After training, we obtain decision scores for the experimental trials at the output

of the double-branch network. Whereas the triple-branch network is used to extract

speaker embeddings for the test data. These speaker embeddings are scored using

cosine scoring in order to perform the experimental trials.

6.2.1 Double-Branch for End-to-End Speaker Verification

Figure 6.1 shows the block diagram of our proposed double-branch siamese network.

There are two identical branches, i.e., the CNN encoder. Mel-spectrogrm features

of a training pair of an anchor along with a client or an impostor sample is fed

as input to the network. The two branches share weights and biases with each

other. After the CNN encoder, the outputs of the two branches are concatenated

which is followed by five Fully Connected (FC) layers. The last layer is connected

to the binary class labels, i.e., 1/0, indicating if the anchor sample is paired by

a client/impostor sample, respectively. During training, binary cross-entropy loss

is minimized to update the network weights. Once the network is trained with

6.2 Proposed Siamese Architectures 87

CNN	Blocks

Concatenation	Layer	(800)

Input	Spectrogram	
(Anchor)

Input	Spectrogram	
(Clients/Impostor)

Fully	Connected	(400)

Fully	Connected	(1024)

Fully	Connected	(400)

Fully	Connected	(400)

Fully	Connected	(1)

Binary	Cross-Entropy	Loss

CNN	Blocks

Fully	Connected	(1024)

Fully	Connected	(400)

Decision	Scores	
(Testing	Phase)

Figure 6.1: Block diagram of our double-branch siamese network. In testing phase

decision scores for speaker verification are obtained form last FC layer.

the selected client and impostor samples in unsupervised manner, we perform the

evaluation in an end-to-end fashion. A pair of reference and test utterances, which

is involved in an experimental trial, is fed into the network. The decision scores are

obtained directly from the output of the last fully connected layer of the network.

In this way, our double-branch siamese network deploys an unsupervised end-to-end

speaker verification system which does not require any scoring backend.

88 Unsupervised training of siamese networks for speaker verification

CNN	Blocks

L2-Norm

Input	Spectrogram	
(Anchor)

Input	Spectrogram	
(Clients)

Fully	Connected	(1024)

Fully	Connected	(400)

CNN	Blocks

Fully	Connected	(1024)

Fully	Connected	(400)

Input	Spectrogram	
(Impostor)

CNN	Blocks

Fully	Connected	(1024)

Fully	Connected	(400)

L2-NormL2-Norm

Triplet	Loss Speaker
Embeddings

(Testing	Phase)

Figure 6.2: Block diagram of our triple-branch siamese network. Speaker embed-

dings are extracted from the last FC layer of any CNN encoder branch.

6.2.2 Triple-Branch for Speaker Embeddings

A block diagram of our proposed triple-branch siamese network is shown in Figure

6.2. As indicated by the name, there are three branches, each of which is the

CNN encoder followed by l2-normalization layer. Each branch is fed by the Mel-

spectrogrm features of a training pair of an anchor along with a client and an

impostor sample. The CNN encoder encodes the Mel-spectrogram inputs into a

vector based representation i.e., speaker embeddings. After the l2-normalization

layer, triplet loss (J. Wang et al., 2014) is computed between the embeddings of

anchor, client and impostor samples. It is worth noting that all the three branches

share weights with each other, like in the double-branch network. The triplet loss

is computed as follows:

6.2 Proposed Siamese Architectures 89

Ltriplet = max(d(a, c)− d(a, i) +m, 0) (6.1)

where d(.) is the distance between two samples, and a, c and i denote the anchor,

client and impostor samples, respectively. m is the margin value which defines how

far away the dissimilarities should be. Once the network is trained, we extract

speaker embeddings using any CNN encoder branch of the network. These speaker

embeddings are scored using cosine scoring technique for the experimental trials.

6.2.3 CNN Encoder

The CNN encoder block is inspired by the VGG architecture (Simonyan & Zisser-

man, 2014), which was recently adapted for speaker verification task in (Nagrani et

al., 2017; Chung et al., 2018; India et al., 2019). It consists of three main blocks,

where each block contains two convolutional and one maxpooling layer. The three

blocks are followed by a self attention pooling (SAP) layer (Cai et al., 2018), and

two FC layers of 1024 and 400 neurons, respectively. The CNN encoder encodes the

Table 6.1: Architecture of the VGG based CNN Encoder. In and Out Dim. refers

to the input and output feature maps of the layer. Feat Size is the dimension of

every output feature map.

Layer Size In dim Out dim Stride Feat size

conv1-1 3x3 1 128 1x1 80xN

conv1-2 3x3 128 128 1x1 80xN

mpool-1 2x2 - - 2x2 40xN/2

conv2-1 3x3 128 256 1x1 40xN/2

conv2-2 3x3 256 256 1x1 40xN/2

mpool-2 2x2 - - 2x2 20xN/4

conv3-1 3x3 256 512 1x1 20xN/4

conv3-2 3x3 512 512 1x1 20xN/4

mpool-3 2x2 - - 2x2 10xN/8

SAP - N/8 1 - 512x10

fc-1 - 1 1 - 1024

fc-2 - 1 1 - 400

90 Unsupervised training of siamese networks for speaker verification

input Mel-spectrograms of shape (80×N) into 400 dimensional vectors, i.e., speaker

embeddings, where N is the number of frames. More details of the CNN encoder

architecture are given in Table 6.1.

6.3 Experimental Setup and Database

The training was performed on the development partition of VoxCeleb-2 database

(Chung et al., 2018) which contains 5994 speakers having 1,092,009 utterances in

total. The evaluation was performed on the test partition of VoxCeleb-1 (Nagrani

et al., 2017), which contains 40 speakers having 4,874 utterances in total. The

development partition of VoxCeleb-2 was used to train the two siamese networks. For

the i-vector extraction process, the same partition was used to train the Universal

Background Model (UBM) and the Total Variability (TV) matrix. MFCC features of

20 dimensions, appended by delta coefficients, were extracted for all the utterances,

and a 1024 component UBM was trained to extract i-vectors of length 400. From

the test partition of VoxCeleb-1, 37,720 speaker verification trials were scored. Half

of them are client trials while the other half are impostor trials. The performance

was evaluated using the Equal Error Rate (EER).

For the clients and impostor selection we split the development partition of

VoxCeleb-2 into two equal parts, in order to generate databases A and B as dis-

cussed in Section 6.1. Mel-spectrograms of 80 dimensions were computed, of which

a randomly selected window of length N was input to the networks. The CNN

encoder, depicted in Table 6.1, was identical for both the networks. The value of

N , in Table 6.1, was set to 350 frames. The margin value m while computing the

triplet loss defined in Equation 6.1 was set to 0.8. The value of threshold in the

selection of client and impostor samples was set to 0.2 and 0.0, respectively. All the

CNN and fully connected layers were activated using ReLU function, whereas the

last layer of the double-branch network used sigmoid activation. The training was

carried out using Adam optimizer with the initial learning rate and batch size of

0.0001 and 35, respectively. The training continued for a maximum of 500 epochs

using an early stopping criteria with a patience equal to five epochs.

The baseline system was trained using the whole development partition of VoxCeleb-

2. The architecture of the baseline is composed of a CNN encoder followed by a

classification layer at the end. In order to have a fair comparison, we used exactly

6.4 Results 91

Table 6.2: EER in % for the proposed double- and triple-branch siamese networks,

compared with the supervised baseline. Different results are shown for different

values of k.

Approach k EER(%)

[1] Baseline (Softmax) - 6.81

[2] Baseline (AMSoftmax) - 5.71

[3] Double-branch 2 7.81

[4] Double-branch 5 7.73

[5] Double-branch 10 6.90

[6] Triple-branch 10 6.95

Fusion of [5] & [6] 10 6.07

the same architecture for the CNN encoder as that of the siamese networks shown

in Table 6.1. The only difference is the last layer which has 5994 neurons (number of

speakers) activated by softmax and AMsoftmax (F. Wang et al., 2018) functions. We

minimized the categorical cross-entropy loss using Adam optimizer with the same

parameters as of the siamese networks. In the testing phase, we extract speaker

embeddings from the CNN encoder of this network.

6.4 Results

We have compared our proposed unsupervised systems with the supervised baseline

in terms of Equal Error Rate (EER). Table 6.2 shows the EER in % for different

values of k. The fist three rows of Table 6.2 depict results for the selection of

the value of k using our double-branch siamese network. For all the experimental

trials we obtain speaker verification scores directly from the output of the double-

branch network. From the Table we can see that as we increase the value of k, the

performance of the system improves. The best EER of 6.90% was achieved using k

equal to 10. We have tried further higher values of k but no substantial improvement

was seen, despite increasing the computational cost.

92 Unsupervised training of siamese networks for speaker verification

 1 2 5 10 20

False Acceptance Rate (in %)

 1

 2

 5

 10

 20

F
a

ls
e

 R
e

je
c
ti
o

n
 R

a
te

 (
in

 %
)

[1] Baseline (Softmax) : EER=6.81

[2] Baseline (AMSoftmax):EER=5.71

[3] Double-branch, k=2 : EER=7.81

[4] Double-branch, k=5 : EER=7.73

[5] Double-branch,k=10: EER=6.90

[6] Triple-branch, k=10 : EER=6.95

Fusion of [5] & [6] : EER=6.07

Figure 6.3: DET curves for the proposed double- and triple-branch siamese network,

compared with the supervised baseline. Different plots are shown for different values

of k.

Setting the value of k equal to 10, we have trained out triple-branch siamese

network using triplet loss, as discussed in Section 6.2.2. Using our triple-branch

network, first we extract speaker embeddings for all the test data which requires a

scoring backend. Therefore, we score the obtained speaker embeddings using cosine

scoring technique. From the Table we can see that the triple-branch siamese network

has achieved an EER of 6.95% which is almost similar to that of the double-branch

network. The EER of 6.90% and 6.95%, obtained by the two systems respectively,

are very close to that of the supervised Softmax baseline.

Moreover, if we perform a score level fusion of our two proposed systems, i.e,

double- and triple-branch networks, we obtain an EER of 6.07%. This has outper-

formed the softmax baseline by a relative improvement of 10.86%. However, the

fusion strategy could not overcome the second baseline with AMSoftmax activation.

Figure 6.3 shows a comparison of the Detection Error Trade-off (DET) curves

for the supervised baselines and our proposed systems. Different plots are shown

for scores obtained with different values of the k using the double-branch siamese

network. As discussed earlier, we observed that k equal to 10 is the best choice for

6.4 Results 93

Table 6.3: Comparison of the different proposed approaches. Evaluation was per-

formed on VoxCeleb-1 test set.

Chapter Approach
Input features

During Testing
EER(%)

4 Supervised i-vectors of test data 7.51

5 (1) Unsupervised i-vectors of test data 10.20

5 (2) Unsupervised
i-vectors of test &

background data
4.40

6 Unsupervised Mel-Spectrograms of test data 6.07

our experiments. After this we plotted the DET curve for triple-branch for k equal

to 10 only. It can be observed that both the proposed systems show comparable

performance with the softmax baseline in the EER region. Furthermore, in the low

FRR regions the DET plot of the proposed systems become closer to the AMSoft-

max baseline. However, this relation seems to be reversed in the low FAR regions.

Similarly, the DET curve for the fusion of the two proposed systems is even closer

to the AMSoftmax baseline in low FRR regions.

A brief comparison of the different proposed approaches is shown in Table 6.3.

In Chapter 4 we proposed an autoencoder as a pre-training for DNN training. The

autoencoder pre-training was carried out in an unsupervised manner, whereas the

DNN training was carried out in a supervised manner. Using this approach, we gain

a relative improvement of 21% in terms of EER, over the baseline i-vectors/PLDA

system. On the other hand, in Chapter 5 we proposed two completely unsupervised

approaches in which relative improvement of 42% and 53% were obtained, respec-

tively. These approaches have the advantage of being unsupervised which was the

main goal of this thesis. However, their main disadvantage is that they are only

applicable in the utterance level features i.e., i-vectors, because they were aimed

at improving the discriminative power of i-vectors. Thus it is necessary to extract

i-vectors for the all the background and test data beforehand. Moreover, in the sec-

ond approach of Chapter 5, it is necessary to have the background i-vectors in the

testing phase, as discussed in Section 5.3. In order to avoid the i-vector extraction

in the testing phase, in Chapter 6 we proposed to work directly in the frame level

features. We used two unsupervised siamese networks, (1) an end-to-end system,

94 Unsupervised training of siamese networks for speaker verification

and (2) speaker embeddings extractor, which used Mel-Spectrograms as input fea-

tures. The experimental results have shown that both the proposed networks have

obtained comparable performance to a similar but fully supervised baseline, despite

of being unsupervised and avoiding i-vector extraction in the testing phase.

The different proposed approaches have their pros and cons over each other.

From Table 6.3 it is clear that in terms of EER the best result was obtained with

the second approach of Chapter 5. However, it has the disadvantage of relying on

the background i-vectors in the testing part, which may not be convenient in most

scenarios. If we avoid this factor, we have to compromise on the results which is

shown in the first approach of Chapter 5. Compared to this, the result was im-

proved by the approach in Chapter 4 but its DNN training was carried out using

speaker labels. Moreover, all these three approaches are only applicable in the i-

vector space, which means one need to extract i-vectors of the dataset beforehand.

On the contrary, the approach in Chapter 6 is free from the above mentioned con-

straints and still performs pretty reasonable in terms of EER, as shown in (Khan &

Hernando, 2020a,b). Firstly, it is a fully unsupervised approach. Secondly, it uses

Mel-Spectrogram features in the testing phase and therefore avoids i-vectors. And

finally, it does not rely on the background i-vectors in the testing phase.

6.5 Conclusion

In this work, we proposed two different siamese networks for speaker verification

without using speaker labels. The first network has two branches and was trained as

a binary classifier, whereas the second network has three branches and was trained

to learn speaker embeddings, where each branch was a CNN encoder. Since the

goal was to avoid speaker labels, the pairs of training samples were generated in

an unsupervised manner. The client samples were selected within one database

according to the highest cosine scores with the anchor, in i-vector space. Whereas,

the impostor samples were selected in the same way but from another database.

After training, we obtain decision scores using the double-branch network, whereas

from the triple-branch network we extract speaker embeddings for the test data. The

evaluation was performed on VoxCeleb-1 database. The experiments have shown

that using our proposed systems, despite of being unsupervised, the result was closer

to the fully supervised baselines.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis three major contributions are presented. In the first contribution, a

Restricted Boltzmann Machine (RBM) based vector representation of speech was

proposed for the tasks of speaker clustering and speaker tracking in TV broadcast

shows. This representation was first proposed in (Safari et al., 2016), and was

reffered to as RBM vector. First of all a global model was trained using all the

available background data, which was reffered to as Universal Restricted Boltzmann

Machine (URBM). Then, for the test utterances, a single RBM was trained which

was adapted from the URBM. The weight matrices along with the bias vectors of

these adapted RBM models were concatenated to generate RBM supervectors. The

RBM supervectors were further subjected to a PCA whitening with dimensionality

reduction to extract the desired RBM vectors. These RBM vectors were used in the

tasks of speaker clustering and speaker tracking. Speaker clustering was explored

using two linkage algorithms for an Agglomerative Hierarchical Clustering (AHC)

approach. The experiments, performed on AGORA database, have shown that

the proposed RBM vectors have outperformed the baseline i-vectors, resulting in a

relative improvement of 12% in terms of Equal Impurity (EI). In the case of speaker

tracking RBM vectors were used only in the speaker identification part, where the

relative improvement in terms of Equal Error Rate (EER) was 11% and 7% using

cosine and Probabilistic Linear Discriminant Analysis (PLDA) scoring, respectively.

In the second contribution, we have addressed to the problem of the lack of

labeled background data in i-vector based speaker verification. In practice large

96 Conclusions and Future Work

amount of labeled background data is not easily available, which has a big impact

on the performance of i-vectors scored with cosine technique. We make use of Deep

Learning (DL) techniques to tackle this problem. For this purpose we proposed

the use of autoencoder for speaker verification in three different ways. In the first

proposal we used an autoencoder as a pre-training for Deep Neural Network (DNN)

training. This unsupervised training was carried out using a large amount of unla-

beled background data. Then a DNN classifier was trained using a relatively small

labeled data, initialized with the parameters of the pre-trained autoencoder. Al-

though, the autoencoder pre-training was carried out in unsupervised manner, the

DNN training was still a supervised approach. Therefore, in the other two proposals

we used a completely unsupervised approach. For this purpose, only the unsuper-

vised autoencoder was used in order to increase the discriminative power of i-vectors.

This time the training was based on reconstruction of the nearest neighbor i-vectors,

instead of the same input i-vectors. The main objective was to fill the performance

gap between cosine and PLDA scoring techniques when no labeled background data

is available.

The evaluation was performed on the speaker verification trials of VoxCeleb-1

database. The results have shown that in the first proposal, we gain a relative

improvement of 21% in terms of EER, over the baseline i-vectors/PLDA system.

Furthermore, it was observed that the DNN training was faster, compared to the

conventional (randomly initialized) DNN case. In the second proposed approach a

relative improvement of 42% was gained, in terms of EER over the unsupervised

baseline i-vector system. Whereas in the third approach, using the background data

in the testing part, a relative improvement of 53% was gained over the supervised

baseline systems.

Since the previous contribution was aimed to increase the discriminative power

of i-vectors, it is only applicable as a backend for i-vectors i.e., in the i-vector space.

Therefore, in the third contribution we have worked directly in the frame level fea-

tures, i.e., spectrograms, using Convolutional Neural Network (CNN). We proposed

two siamese networks with two and three branched, respectively. The double-branch

siamese network was trained as an end-to-end classifier for speaker verification,

whereas the triple-branch siamese was aimed to extract unsupervised speaker em-

beddings trained using triplet loss. The idea was to utilize impostor samples along

with the neighbor samples. The selection of training pairs of client and impostor

7.2 Future Research Lines 97

samples was carried out in an unsupervised manner. The siamese architectures

were inspired by the VGG Convolutional Neural Network (CNN) encoder. The ex-

perimental results have shown that both the proposed networks, despite of being

unsupervised, has shown comparable performance to a similar but fully supervised

baseline. Moreover, their score level fusion have shown to further improve the per-

formance.

7.2 Future Research Lines

In this thesis, the major objective was to apply DL approaches in speaker recognition

tasks avoiding/limiting the use of both phonetic and speaker labels. Labeled training

data is expensive and not easily available in practice. On the other hand, the

availability of large labeled training data can open numerous research lines in this

area. Therefore, the future research lines can be unsupervised and supervised DL

approaches. Various supervised approaches has already been published due to the

availability of very large labeled databases for speaker recognition e.g: the recent

VoxCeleb database (Nagrani et al., 2017; Chung et al., 2018).

A possible research line can be the usage of variational autoencoder and adver-

sarial autoencoder in a similar manner as in Chapter 5. Instead of using a simple

vanilla autoencoder, it will be interesting to see the performance of variational and

adversarial autoencoders in this task. Furthermore, the selection of neighbor sam-

ples could be done in a more sophisticated way unlike discussed in Section 5.1.

Instead of just relying on cosine scoring, in order to improve the quality of the

neighbor selection one can apply other constraints on the scores. On the contrary,

if the actual speaker labels are available for the background data, then the neighbor

selection can be fully supervised according to the labels, which could substantially

improve the system performance.

Moreover, the usage of training data in the testing part, as shown in Section

11, could be avoided by some mechanism. For instance, it could be tested how the

system responds if the same testing sample is replicated several times, instead of

using the neighbor samples from the training data. Another possibility is to use a

very small training set for selecting the neighbor samples for the testing part. In

this way, it will be more feasible to deal with a small portion instead of the whole

training set.

98 Conclusions and Future Work

Another possibility of future research can be seen in our end-to-end systems.

Since, our proposed end-to-end system is based on Mel-spectrograms as the input

features for the network. Hence, it is a good idea to use speech waveform directly

without the computation of the Mel-spectrograms or any other hand crafted features.

Publications

Journal Articles

Khan, U., ., Safari, P., & Hernando, J. (2019). Restricted boltzmann machine

vectors for speaker clustering and tracking tasks in tv broadcast shows. Applied

Sciences, 9 (13), 2761.

Conference Papers

Khan, U., ., Safari, P., & Hernando, J. (2018). Restricted Boltzmann Machine

Vectors for Speaker Clustering. In Proc. iberspeech (pp. 10–14).

Khan, U., ., & Hernando, J. (2019). Dnn speaker embeddings using autoencoder

pre-training. In 2019 27th european signal processing conference (eusipco) (pp.

1–5).

Khan, U., ., India, M., & Hernando, J. (2019). Auto-encoding nearest neighbor

i-vectors for speaker verification. Proc. Interspeech 2019 , 4060–4064.

Khan, U., ., India, M., & Hernando, J. (2020). i-vector transformation using

k-nearest neighbors for speaker verification. In Ieee international conference on

acoustics, speech, and signal processing (icassp) (pp. 7574–7578).

Khan, U., ., & Hernando, J. (2020). Unsupervised training of siamese networks

for speaker verification. Proc. Interspeech 2020 , 3002–3006.

Bibliography

Ajmera, J., & Wooters, C. (2003). A robust speaker clustering algorithm. In 2003

ieee workshop on automatic speech recognition and understanding (ieee cat. no.

03ex721) (pp. 411–416).

Anna, S., Lukáš, B., & Jan, C. (2017). Alternative approaches to neural network

based speaker verification. In Proc. interspeech 2017 (pp. 1572–1575).

Bhattacharya, G., Alam, J., & Kenny, P. (2017). Deep speaker embeddings for

short-duration speaker verification. Proc. Interspeech 2017 , 1517–1521.

Bimbot, F., Bonastre, J.-F., Fredouille, C., Gravier, G., Magrin-Chagnolleau, I.,

Meignier, S., . . . Reynolds, D. A. (2004). A tutorial on text-independent speaker

verification. EURASIP Journal on Advances in Signal Processing , 2004 (4),

101962.

Bonastre, J. F., Delacourt, P., Fredouille, C., Merlin, T., & Wellekens, C. (2000).

A speaker tracking system based on speaker turn detection for nist evaluation. In

Ieee international conference on acoustics, speech, and signal processing (icassp)

(Vol. 2, pp. II1177–II1180).

Bousquet, P.-M., & Rouvier, M. (2017). Duration mismatch compensation using

four-covariance model and deep neural network for speaker verification..

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., & Shah, R. (1994). Signature

verification using a" siamese" time delay neural network. In Advances in neural

information processing systems (pp. 737–744).

Brummer, N. (2010). Measuring, refining and calibrating speaker and language infor-

mation extracted from speech (Unpublished doctoral dissertation). Stellenbosch:

University of Stellenbosch.

102 Bibliography

Brümmer, N., & De Villiers, E. (2011). The bosaris toolkit user guide: The-

ory, algorithms and code for binary classifier score processing. Documentation of

BOSARIS toolkit , 24.

Brümmer, N., Swart, A., & van Leeuwen, D. (2014). A comparison of linear and

non-linear calibrations for speaker recognition. In Proceedings of odyssey speaker

and language recognition workshop (pp. 14–18).

Cai, W., Chen, J., & Li, M. (2018). Exploring the encoding layer and loss function

in end-to-end speaker and language recognition system. In Proc. odyssey 2018 the

speaker and language recognition workshop (pp. 74–81).

Campbell, J. P. (1997). Speaker recognition: A tutorial. Proceedings of the IEEE ,

85 (9), 1437–1462.

Campbell, W. M., Sturim, D. E., & Reynolds, D. A. (2006). Support vector machines

using gmm supervectors for speaker verification. IEEE signal processing letters,

13 (5), 308–311.

Chen, K., & Salman, A. (2011, 11). Learning speaker-specific characteristics with a

deep neural architecture. IEEE Transactions on Neural Networks, 22 (11), 1744–

1756.

Chen, S., & Gopalakrishnan, P. (1998). Speaker, environment and channel change

detection and clustering via the bayesian information criterion. In Proc. darpa

broadcast news transcription and understanding workshop (Vol. 8, pp. 127–132).

Chollet, F. (2015). Keras. https://keras.io. Retrieved from https://keras.io

Chung, J. S., Nagrani, A., & Zisserman, A. (2018). Voxceleb2: Deep speaker

recognition. In Interspeech.

Cumani, S., Batzu, P. D., Colibro, D., Vair, C., Laface, P., & Vasilakakis, V. (2011).

Comparison of speaker recognition approaches for real applications. In Twelfth

annual conference of the international speech communication association.

Dahl, G. E., Yu, D., Deng, L., & Acero, A. (2011). Context-dependent pre-trained

deep neural networks for large-vocabulary speech recognition. IEEE Transactions

on audio, speech, and language processing , 20 (1), 30–42.

https://keras.io

Bibliography 103

Dehak, N., Dehak, R., Glass, J. R., Reynolds, D. A., & Kenny, P. (2010). Cosine

similarity scoring without score normalization techniques. In Odyssey (p. 15).

Dehak, N., Kenny, P. J., Dehak, R., Dumouchel, P., & Ouellet, P. (2011). Front-end

factor analysis for speaker verification. IEEE Transactions on Audio, Speech, and

Language Processing , 19 (4), 788–798.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the em algorithm. Journal of the royal statistical society.

Series B (methodological), 1–38.

Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations

and Trends in Signal Processing , 7 (3–4), 197–387.

Dey, S., Madikeri, S. R., & Motlicek, P. (2018). End-to-end text-dependent speaker

verification using novel distance measures. In Interspeech (pp. 3598–3602).

Duda, R., Hart, P., Stork, D., & Ionescu, A. (2001). Pattern classification, chapter

nonparametric techniques. Wiley-Interscience.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis (Vol. 3).

Wiley New York.

Furui, S. (1981). Cepstral analysis technique for automatic speaker verification.

IEEE Transactions on Acoustics, Speech, and Signal Processing , 29 (2), 254–272.

Furui, S. (2004). Fifty years of progress in speech and speaker recognition. The

Journal of the Acoustical Society of America, 116 (4), 2497–2498.

Garcia-Romero, D., & Espy-Wilson, C. Y. (2011). Analysis of i-vector length

normalization in speaker recognition systems. In Twelfth annual conference of the

international speech communication association.

Gauvain, J.-L., Lamel, L., Adda, G., & Jardino, M. (1999). The limsi 1998 hub-4e

transcription system. In Proc. darpa broadcast news workshop (pp. 99–104).

Ghaemmaghami, H., Dean, D., Sridharan, S., & van Leeuwen, D. A. (2016, 11). A

study of speaker clustering for speaker attribution in large telephone conversation

datasets. Computer Speech & Language, 40 , 23–45.

104 Bibliography

Ghahabi, O., & Hernando, J. (2014a). Deep belief networks for i-vector based

speaker recognition. In Ieee international conference on acoustics, speech, and

signal processing (icassp) (pp. 1700–1704).

Ghahabi, O., & Hernando, J. (2014b). I-vector modeling with deep belief networks

for multi-session speaker recognition. network , 20 , 13.

Ghahabi, O., & Hernando, J. (2015). Restricted boltzmann machine supervectors

for speaker recognition. In Ieee international conference on acoustics, speech, and

signal processing (icassp) (pp. 4804–4808).

Ghahabi, O., & Hernando, J. (2017, 4). Deep learning backend for single and

multisession i-vector speaker recognition. IEEE/ACM Transactions on Audio,

Speech, and Language Processing , 25 (4), 807–817.

Ghahabi, O., & Hernando, J. (2018, 1). Restricted boltzmann machines for vector

representation of speech in speaker recognition. Computer Speech & Language,

47 , 16–29.

Ghalehjegh, S. H., & Rose, R. C. (2015). Deep bottleneck features for i-vector based

text-independent speaker verification. In 2015 ieee workshop on automatic speech

recognition and understanding (asru) (pp. 555–560).

Gish, H., & Schmidt, M. (1994). Text-independent speaker identification. IEEE

signal processing magazine, 11 (4), 18–32.

Gish, H., Siu, M. H., & Rohlicek, R. (1991). Segregation of speakers for speech

recognition and speaker identification. In Ieee international conference on acous-

tics, speech, and signal processing (icassp) (pp. 873–876).

Guzewich, P., & Zahorian, S. A. (2017). Improving speaker verification for re-

verberant conditions with deep neural network dereverberation processing. In

Interspeech (pp. 171–175).

Hansen, J. H., & Hasan, T. (2015). Speaker recognition by machines and humans:

A tutorial review. IEEE Signal processing magazine, 32 (6), 74–99.

Hatch, A. O., Kajarekar, S., & Stolcke, A. (2006). Within-class covariance normal-

ization for svm-based speaker recognition. In Ninth international conference on

spoken language processing.

Bibliography 105

Hatch, A. O., & Stolcke, A. (2006). Generalized linear kernels for one-versus-

all classification: application to speaker recognition. In 2006 ieee international

conference on acoustics speech and signal processing proceedings (Vol. 5, pp. V–

V).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the ieee conference on computer vision and pattern

recognition (pp. 770–778).

Heigold, G., Moreno, I., Bengio, S., & Shazeer, N. (2016). End-to-end text-

dependent speaker verification. In 2016 ieee international conference on acoustics,

speech and signal processing (icassp) (pp. 5115–5119).

Heo, H.-s., Jung, J.-w., Yang, I.-h., Yoon, S.-h., & Yu, H.-j. (2017). Joint training of

expanded end-to-end dnn for text-dependent speaker verification. In Interspeech

(pp. 1532–1536).

Hinton, G. E. (2012). A practical guide to training restricted boltzmann machines.

In Neural networks: Tricks of the trade (pp. 599–619). Springer.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006, 6). A fast learning algorithm for

deep belief nets. Neural computation, 18 (7), 1527–1554.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data

with neural networks. science, 313 (5786), 504–507.

India, M., Safari, P., & Hernando, J. (2019). Self Multi-Head Attention for

Speaker Recognition. In Proc. interspeech 2019 (pp. 4305–4309). Retrieved

from http://dx.doi.org/10.21437/Interspeech.2019-2616 doi: 10.21437/

Interspeech.2019-2616

Isik, Y. Z., Erdogan, H., & Sarikaya, R. (2015). S-vector: A discriminative repre-

sentation derived from i-vector for speaker verification. In 23rd european signal

processing conference (eusipco) (pp. 2097–2101).

Jati, A., & Georgiou, P. (2017). Speaker2vec: Unsupervised learning and adaptation

of a speaker manifold using deep neural networks with an evaluation on speaker

segmentation. Proc. Interspeech 2017 , 3567–3571.

http://dx.doi.org/10.21437/Interspeech.2019-2616

106 Bibliography

Jorrín, J., García, P., & Buera, L. (2017). Dnn bottleneck features for speaker

clustering. Proc. Interspeech 2017 , 1024–1028.

Jung, J.-W., Heo, H.-S., Yang, I.-H., Shim, H.-J., & Yu, H.-J. (2018). Avoiding

speaker overfitting in end-to-end dnns using raw waveform for text-independent

speaker verification. extraction, 8 (12), 23–24.

Kemp, T., Schmidt, M., Westphal, M., &Waibel, A. (2000). Strategies for automatic

segmentation of audio data. In 2000 ieee international conference on acoustics,

speech, and signal processing. proceedings (cat. no. 00ch37100) (Vol. 3, pp. 1423–

1426).

Kenny, P. (2005). Joint factor analysis of speaker and session variability: Theory

and algorithms. CRIM, Montreal,(Report) CRIM-06/08-13 , 14 , 28–29.

Kenny, P. (2010). Bayesian speaker verification with heavy-tailed priors. In Odyssey

(Vol. 14).

Kenny, P., Gupta, V., Stafylakis, T., Ouellet, P., & Alam, J. (2014). Deep neural

networks for extracting baum-welch statistics for speaker recognition. In Proc.

odyssey (pp. 293–298).

Kenny, P., Ouellet, P., Dehak, N., Gupta, V., & Dumouchel, P. (2008). A study

of interspeaker variability in speaker verification. IEEE Transactions on Audio,

Speech, and Language Processing , 16 (5), 980–988.

Khan, U. (2016). Speaker tracking system using speaker boundary detection (Un-

published master’s thesis). Universitat Politècnica de Catalunya.

Khan, U., & Hernando, J. (2019). Dnn speaker embeddings using autoencoder

pre-training. In 2019 27th european signal processing conference (eusipco) (pp.

1–5).

Khan, U., & Hernando, J. (2020a). Unsupervised training of siamese networks for

speaker verification. Proc. Interspeech 2020 , 3002–3006.

Khan, U., & Hernando, J. (2020b). The upc speaker verification system submit-

ted to voxceleb speaker recognition challenge 2020 (voxsrc-20). arXiv preprint

arXiv:2010.10937 .

Bibliography 107

Khan, U., India, M., & Hernando, J. (2019). Auto-encoding nearest neighbor i-

vectors for speaker verification. Proc. Interspeech 2019 , 4060–4064.

Khan, U., India, M., & Hernando, J. (2020). I-vector transformation using k-

nearest neighbors for speaker verification. In Icassp 2020 - 2020 ieee international

conference on acoustics, speech and signal processing (icassp) (p. 7574-7578). doi:

10.1109/ICASSP40776.2020.9053504

Khan, U., Safari, P., & Hernando, J. (2018). Restricted Boltzmann Machine Vectors

for Speaker Clustering. In Proc. iberspeech (pp. 10–14).

Khan, U., Safari, P., & Hernando, J. (2019). Restricted boltzmann machine vectors

for speaker clustering and tracking tasks in tv broadcast shows. Applied Sciences,

9 (13), 2761.

Khoury, E., El Shafey, L., Ferras, M., & Marcel, S. (2014). Hierarchical speaker

clustering methods for the nist i-vector challenge. In Odyssey: The speaker and

language recognition workshop (pp. 254–259).

Kotti, M., Moschou, V., & Kotropoulos, C. (2008). Speaker segmentation and

clustering. Signal processing , 88 (5), 1091–1124.

Kubala, F., Jin, H., Matsoukas, S., Nguyen, L., Schwartz, R., & Makhoul, J. (1997).

The 1996 bbn byblos hub-4 transcription system. In Proceedings of the 1997 darpa

speech recognition workshop (pp. 90–93).

Kudashev, O., Novoselov, S., Pekhovsky, T., Simonchik, K., & Lavrentyeva, G.

(2016). Usage of dnn in speaker recognition: advantages and problems. In Inter-

national symposium on neural networks (pp. 82–91).

Kwon, S., & Narayanan, S. (2005). Unsupervised speaker indexing using generic

models. IEEE transactions on speech and audio processing , 13 (5), 1004–1013.

Larcher, A., Bonastre, J. F., Fauve, B. G. B., Lee, K. A., Lévy, C., Li, H., . . .

Parfait, J. Y. (2013). Alize 3.0-open source toolkit for state-of-the-art speaker

recognition. In Interspeech (pp. 2768–2772).

Lee, H., Pham, P., Largman, Y., & Ng, A. Y. (2009). Unsupervised feature learning

for audio classification using convolutional deep belief networks. In Advances in

neural information processing systems (pp. 1096–1104).

108 Bibliography

Lei, Y., Scheffer, N., Ferrer, L., & McLaren, M. (2014a). A novel scheme for speaker

recognition using a phonetically-aware deep neural network. In Ieee international

conference on acoustics, speech, and signal processing (icassp) (pp. 1695–1699).

Lei, Y., Scheffer, N., Ferrer, L., & McLaren, M. (2014b). A novel scheme for

speaker recognition using a phonetically-aware deep neural network. In 2014 ieee

international conference on acoustics, speech and signal processing (icassp) (pp.

1695–1699).

Liu, Y., Qian, Y., Chen, N., Fu, T., Zhang, Y., & Yu, K. (2015, 10). Deep feature

for text-dependent speaker verification. Speech Communication, 73 , 1–13.

Lozano-Diez, A., Silnova, A., Matejka, P., Glembek, O., Plchot, O., Pesan, J., . . .

Gonzalez-Rodriguez, J. (2016). Analysis and optimization of bottleneck features

for speaker recognition. In Odyssey (pp. 352–357).

Lu, L., Jiang, H., & Zhang, H. (2001). A robust audio classification and segmentation

method. In Proceedings of the ninth acm international conference on multimedia

(pp. 203–211).

Lu, L., & Zhang, H. J. (2002). Speaker change detection and tracking in real-

time news broadcasting analysis. In Proceedings of the tenth acm international

conference on multimedia (pp. 602–610).

Luque, J. (2012). Speaker diarization and tracking in multiple-sensor environments

(Unpublished doctoral dissertation). Department of Signal Theory and Commu-

nications, Universitat Politècnica de Catalunya, Spain.

Maaten, L. V. d., & Hinton, G. (2008). Visualizing data using t-sne. Journal of

machine learning research, 9 (Nov), 2579–2605.

McLaren, M., Lei, Y., & Ferrer, L. (2015). Advances in deep neural network ap-

proaches to speaker recognition. In 2015 ieee international conference on acous-

tics, speech and signal processing (icassp) (pp. 4814–4818).

Moattar, M. H., & Homayounpour, M. M. (2012). A review on speaker diarization

systems and approaches. Speech Communication, 54 (10), 1065–1103.

Bibliography 109

Mohamed, A.-r., Yu, D., & Deng, L. (2010). Investigation of full-sequence training

of deep belief networks for speech recognition. In Eleventh annual conference of

the international speech communication association.

Nadeu, C., Macho, D., & Hernando, J. (2001). Time and frequency filtering of

filter-bank energies for robust hmm speech recognition. Speech Communication,

34 (1-2), 93–114.

Nagrani, A., Chung, J. S., Xie, W., & Zisserman, A. (2019). Voxceleb: Large-scale

speaker verification in the wild. Computer Science and Language.

Nagrani, A., Chung, J. S., & Zisserman, A. (2017). Voxceleb: a large-scale speaker

identification dataset. In Interspeech.

Navratil, J., & Ramaswamy, G. N. (2003). The awe and mystery of t-norm. In

Eighth european conference on speech communication and technology.

Novoselov, S., Pekhovsky, T., Kudashev, O., Mendelev, V. S., & Prudnikov, A.

(2015). Non-linear plda for i-vector speaker verification. In Sixteenth annual

conference of the international speech communication association.

Novoselov, S., Pekhovsky, T., & Simonchik, K. (2014). Stc speaker recognition

system for the nist i-vector challenge. In Odyssey: The speaker and language

recognition workshop (pp. 231–240).

Novoselov, S., Pekhovsky, T., Simonchik, K., & Shulipa, A. (2014). Rbm-plda

subsystem for the nist i-vector challenge. In Fifteenth annual conference of the

international speech communication association.

Novoselov, S., Shulipa, A., Kremnev, I., Kozlov, A., & Shchemelinin, V. (2018).

On deep speaker embeddings for text-independent speaker recognition. In Proc.

odyssey 2018 the speaker and language recognition workshop (pp. 378–385).

Oglesby, J., & Mason, J. (1989). Speaker recognition with a neural classifier. In

1989 first iee international conference on artificial neural networks,(conf. publ.

no. 313) (pp. 306–309).

Oglesby, J., & Mason, J. (1990). Optimisation of neural models for speaker iden-

tification. In International conference on acoustics, speech, and signal processing

(pp. 261–264).

110 Bibliography

Okabe, K., Koshinaka, T., & Shinoda, K. (2018). Attentive statistics pooling for

deep speaker embedding. Proc. Interspeech 2018 , 2252–2256.

Pawar, R., Kajave, P., & Mali, S. (2005). Speaker identification using neural

networks. In Iec (prague) (pp. 429–433).

Pekhovsky, T., Novoselov, S., Sholohov, A., & Kudashev, O. (2016). On autoen-

coders in the i-vector space for speaker recognition. In Odyssey (pp. 217–224).

Phan, F., Micheli-Tzanakou, E., & Sideman, S. (2000). Speaker identification

using neural networks and wavelets. IEEE Engineering in Medicine and Biology

Magazine, 19 (1), 92–101.

Prince, S. J. (2012). Computer vision: models, learning, and inference. Cambridge

University Press.

Prince, S. J., & Elder, J. H. (2007). Probabilistic linear discriminant analysis for

inferences about identity. In 2007 ieee 11th international conference on computer

vision (pp. 1–8).

rahman Chowdhury, F. R., Wang, Q., Moreno, I. L., & Wan, L. (2018). Attention-

based models for text-dependent speaker verification. In 2018 ieee international

conference on acoustics, speech and signal processing (icassp) (pp. 5359–5363).

Ravanelli, M., & Bengio, Y. (2018). Speaker recognition from raw waveform with

sincnet. In 2018 ieee spoken language technology workshop (slt) (pp. 1021–1028).

Reynolds, D. A., Quatieri, T. F., & Dunn, R. B. (2000). Speaker verification using

adapted gaussian mixture models. Digital signal processing , 10 (1-3), 19–41.

Reynolds, D. A., & Rose, R. C. (1995). Robust text-independent speaker identifi-

cation using gaussian mixture speaker models. IEEE transactions on speech and

audio processing , 3 (1), 72–83.

Richardson, F., Reynolds, D., & Dehak, N. (2015, 10). Deep neural network ap-

proaches to speaker and language recognition. IEEE Signal Processing Letters,

22 (10), 1671–1675.

Roseberg, E., Delong, J., Lee, C., Juang, B., & Soong, F. (1992). The use of cohort

normalized scores for speaker recognition. Proceedings of the InternationalCon-

Bibliography 111

ference on SpokenLanguage Processing. Banff, A lberta: U niversity ofA lberta,

599–602.

Rouvier, M., Bousquet, P.-M., & Favre, B. (2015). Speaker diarization through

speaker embeddings. In 2015 23rd european signal processing conference (eusipco)

(pp. 2082–2086).

Safari, P., Ghahabi, O., & Hernando, J. (2015). Feature classification by means of

deep belief networks for speaker recognition. In 23rd european signal processing

conference (eusipco) (pp. 2117–2121).

Safari, P., Ghahabi, O., & Hernando, J. (2016). From features to speaker vectors by

means of restricted boltzmann machine adaptation. In Odyssey 2016-the speaker

and language recognition workshop (pp. 366–371).

Sayoud, H., & Ouamour, S. (2010, 10). Speaker clustering of stereo audio docu-

ments based on sequential gathering process. Journal of Information Hiding and

Multimedia Signal Processing , 4 , 344–360.

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for

face recognition and clustering. In Proceedings of the ieee conference on computer

vision and pattern recognition (pp. 815–823).

Schulz, H., & Fonollosa, J. A. R. (2009). A catalan broadcast conversational speech

database. In Joint sig-il/microsoft workshop on speech and language technologies

for iberian languages (pp. 27–30).

Schwartz, R., Roucos, S., & Berouti, M. (1982). The application of probability

density estimation to text-independent speaker identification. In Icassp’82. ieee

international conference on acoustics, speech, and signal processing (Vol. 7, pp.

1649–1652).

Senior, A., Sak, H., & Shafran, I. (2015). Context dependent phone models for lstm

rnn acoustic modelling. In 2015 ieee international conference on acoustics, speech

and signal processing (icassp) (pp. 4585–4589).

Senoussaoui, M., Dehak, N., Kenny, P., Dehak, R., & Dumouchel, P. (2012). First

attempt of boltzmann machines for speaker verification. In Odyssey 2012-the

speaker and language recognition workshop.

112 Bibliography

Shon, S., Mun, S., Kim, W., & Ko, H. (2017). Autoencoder based domain adaptation

for speaker recognition under insufficient channel information. arXiv preprint

arXiv:1708.01227 .

Shon, S., Tang, H., & Glass, J. (2018). Frame-level speaker embeddings for text-

independent speaker recognition and analysis of end-to-end model. In 2018 ieee

spoken language technology workshop (slt) (pp. 1007–1013).

Siegler, M. A., Jain, U., Raj, B., & Stern, R. M. (1997). Automatic segmenta-

tion, classification and clustering of broadcast news audio. In Proc. darpa speech

recognition workshop (pp. 97–99).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556 .

Sinha, R., Tranter, S. E., Gales, M. J., & Woodland, P. C. (2005). The cambridge

university march 2005 speaker diarisation system. In Ninth european conference

on speech communication and technology.

Snyder, D., Garcia-Romero, D., Povey, D., & Khudanpur, S. (2017). Deep neural

network embeddings for text-independent speaker verification. Proc. Interspeech

2017 , 999–1003.

Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., & Khudanpur, S. (2018). X-

vectors: Robust dnn embeddings for speaker recognition. In Ieee international

conference on acoustics, speech, and signal processing (icassp) (pp. 5329–5333).

Stafylakis, T., Kenny, P., Senoussaoui, M., & Dumouchel, P. (2012a). Plda using

gaussian restricted boltzmann machines with application to speaker verification.

In Thirteenth annual conference of the international speech communication asso-

ciation.

Stafylakis, T., Kenny, P., Senoussaoui, M., & Dumouchel, P. (2012b). Plda using

gaussian restricted boltzmann machines with application to speaker verification.

In Thirteenth annual conference of the international speech communication asso-

ciation.

Bibliography 113

Stafylakis, T., Kenny, P., Senoussaoui, M., & Dumouchel, P. (2012c). Preliminary

investigation of boltzmann machine classifiers for speaker recognition. In Odyssey

2012-the speaker and language recognition workshop.

Sturim, D. E., & Reynolds, D. A. (2005). Speaker adaptive cohort selection for

tnorm in text-independent speaker verification. In Proceedings.(icassp’05). ieee

international conference on acoustics, speech, and signal processing, 2005. (Vol. 1,

pp. I–741).

Sturim, D. E., Reynolds, D. A., Singer, E., & Campbell, J. P. (2001). Speaker

indexing in large audio databases using anchor models. In 2001 ieee interna-

tional conference on acoustics, speech, and signal processing. proceedings (cat. no.

01ch37221) (Vol. 1, pp. 429–432).

Tan, Z., & Mak, M.-W. (2017). i-vector dnn scoring and calibration for noise robust

speaker verification. In Interspeech (pp. 1562–1566).

Tranter, S. E., & Reynolds, D. A. (2006, 9). An overview of automatic speaker di-

arization systems. IEEE Transactions on audio, speech, and language processing ,

14 (5), 1557–1565.

van Leeuwen, D. A. (2010, 6). Speaker linking in large data sets. Proceedings of the

Speaker and Language Recognition Odyssey , 202–208.

Variani, E., Lei, X., McDermott, E., Moreno, I. L., & Gonzalez-Dominguez, J.

(2014a). Deep neural networks for small footprint text-dependent speaker verifi-

cation. In Ieee international conference on acoustics, speech, and signal processing

(icassp) (pp. 4052–4056).

Variani, E., Lei, X., McDermott, E., Moreno, I. L., & Gonzalez-Dominguez, J.

(2014b). Deep neural networks for small footprint text-dependent speaker verifi-

cation. In Ieee international conference on acoustics, speech, and signal processing

(icassp) (pp. 4052–4056).

Vasilakakis, V., Cumani, S., Laface, P., & Torino, P. (2013). Speaker recognition by

means of deep belief networks. Proc. Biometric Technologies in Forensic Science,

52–57.

114 Bibliography

Vijayasenan, D., Valente, F., & Bourlard, H. (2007). Agglomerative information

bottleneck for speaker diarization of meetings data. In 2007 ieee workshop on

automatic speech recognition & understanding (asru) (pp. 250–255).

Villalba, J., Brümmer, N., & Dehak, N. (2017). Tied variational autoencoder

backends for i-vector speaker recognition. In Interspeech (pp. 1004–1008).

Wang, F., Cheng, J., Liu, W., & Liu, H. (2018). Additive margin softmax for face

verification. IEEE Signal Processing Letters, 25 (7), 926–930.

Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., . . . Wu, Y.

(2014). Learning fine-grained image similarity with deep ranking. In Proceedings

of the ieee conference on computer vision and pattern recognition (pp. 1386–1393).

Willsky, A., & Jones, H. (1976). A generalized likelihood ratio approach to the detec-

tion and estimation of jumps in linear systems. IEEE Transactions on Automatic

control , 21 (1), 108–112.

Yamada, T., Wang, L., & Kai, A. (2013). Improvement of distant-talking speaker

identification using bottleneck features of dnn. In Interspeech (pp. 3661–3664).

Zadrozny, B., & Elkan, C. (2002). Transforming classifier scores into accurate multi-

class probability estimates. In Proceedings of the eighth acm sigkdd international

conference on knowledge discovery and data mining (pp. 694–699).

Zhang, C., & Koishida, K. (2017). End-to-end text-independent speaker verification

with triplet loss on short utterances. In Interspeech (pp. 1487–1491).

Zhang, S.-X., Chen, Z., Zhao, Y., Li, J., & Gong, Y. (2016). End-to-end attention

based text-dependent speaker verification. In 2016 ieee spoken language technology

workshop (slt) (pp. 171–178).

Zheng, R., Zhang, S., & Xu, B. (2006). A comparative study of feature and score

normalization for speaker verification. In International conference on biometrics

(pp. 531–538).

Zhu, Y., Ko, T., Snyder, D., Mak, B., & Povey, D. (2018). Self-attentive speaker

embeddings for text-independent speaker verification. In Interspeech (pp. 3573–

3577).

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Outline

	State of the Art in Speaker Recognition
	Speaker Recognition Tasks
	Conventional Techniques
	Feature Extraction
	Supervectors and i-Vectors
	i-Vector Backends
	Score Normalization and Calibration

	Deep Learning Approaches
	Frontends
	Backends
	End-to-end Systems

	Evaluation Metrics

	RBM Vectors for Speaker Clustering and Tracking
	RBM Vector Representation
	Universal RBM Training
	Adaptation and RBM Vector Extraction

	Speaker Clustering
	Speaker Tracking
	Experimental Setup and Database
	Results
	Speaker Clustering
	Speaker Tracking

	Conclusion

	DNN speaker embeddings by means of autoencoder pre-training
	Autoencoder Pre-Training for DNN
	Experimental Setup and Database
	Results
	Conclusion

	Unsupervised training of autoencoder speaker embeddings using k-nearest neighbors
	Selection of Nearest Neighbor i-Vectors
	Nearest Neighbor Autoencoder
	Average Pooled Nearest Neighbor Autoencoder
	Experimental Setup and Database
	Results
	Nearest Neighbor Autoencoder
	Average Pooled Nearest Neighbor Autoencoder

	Conclusion

	Unsupervised training of siamese networks for speaker verification
	Clients and Impostor Selection
	Proposed Siamese Architectures
	Double-Branch for End-to-End Speaker Verification
	Triple-Branch for Speaker Embeddings
	CNN Encoder

	Experimental Setup and Database
	Results
	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Research Lines

	Publications
	Bibliography

