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RESUM 

La cavitació de núvol és un fenomen no desitjat que té lloc en moltes màquines hidràuliques que 

danya les superfícies de les parets sòlides a causa de l’agressivitat erosiva induïda pel procés de 

col·lapse. Per tant, és necessari predir amb precisió l’ocurrència de la cavitació de núvol i 

quantificar-ne la intensitat d’erosió per millorar el disseny i ampliar el cicle de vida de les màquines 

i sistemes existents. L’aplicació de la simulació numèrica (CFD) ofereix l’oportunitat de predir la 

cavitació inestable. Per a això, és de suma importància investigar com seleccionar els models més 

adequats per obtenir els resultats més precisos d’una manera eficient i com relacionar el col·lapse 

de les estructures de vapor amb el seu poder erosiu. En l'estudi actual, es s’ha avaluat la influència 

dels diferents models de turbulència i s’ha millorat el rendiment dels models de cavitació. La relació 

entre el comportament inestable i el seu caràcter erosiu també s’ha considerat implementant un 

model d’erosió. 

Per a l'avaluació dels models de turbulència, s’han emprat tres models de turbulència Unsteady 

Reynolds Average Navier-Stokes (URANS) per simular la cavitació de núvol al voltant d'un perfil 

hidràulic NACA65012 en vuit condicions hidrodinàmiques diferents. Els resultats indiquen que el 

model Shear Stress Transport (SST) pot captar millor el comportament de la cavitat inestable que 

els models k-ε i RNG si la resolució de la malla propera a la paret és prou bona. 

Per millorar els models de cavitació, s’ha investigat primerament la influència de les constants 

empíriques del model de Zwart en la dinàmica de la cavitat. Els resultats mostren que el 

comportament de la cavitat és sensible a la seva variació i, per tant, es proposa un rang òptim que 

pot proporcionar una millor predicció de la fracció de volum de vapor i del pic de pressió instantània 

generat pel col·lapse de la cavitat principal del núvol. En segon lloc, s’han corregit els models 

originals de cavitació de Zwart i Singhal tenint en compte el terme de segon ordre de l’equació de 

Rayleigh-Plesset. L’efectivitat dels models originals i dels corregits s’ha comparat per a dos patrons 

de cavitació diferents. Els resultats per una cavitat fixa demostren que el model corregit prediu millor 

la distribució de la pressió a la regió de tancament de la cavitat i la longitud de la cavitat en 

comparació amb les observacions de l'experiment. Els resultats per la cavitació de núvol inestable 

també confirmen que la predicció de la freqüència de despreniment es pot millorar amb el model 

Zwart corregit. 

Per a la investigació del poder erosiu de la cavitació, es s’ha emprat un model d'erosió basat en el 

balanç energètic. S'ha comprovat que la distribució espacial i temporal de l'agressivitat de l'erosió 

és sensible a la selecció del model de cavitació i a la pressió motriu del col·lapse. En particular, l’ús 

de nivells mitjans de pressió combinats amb el model de cavitació de Sauer permeten obtenir 

resultats fiables. S’han observat dos mecanismes d’erosió, un que es produeix a la regió de 

tancament de la cavitat principal de la làmina caracteritzada per col·lapses de baixa intensitat però 
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amb alta freqüència, i l’altre induït pel col·lapse de la cavitat de núvol que presenta una alta intensitat 

d’erosió però amb baixa freqüència. Finalment, s’ha comprovat que la intensitat de l’erosió segueix 

una llei de potència amb la velocitat de flux principal amb exponents que oscil·len entre 3 i 5 segons 

el paràmetre d’estimació que s’utilitzi. 
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ABSTRACT 

Cloud cavitation is a unwanted phenomenon taking place in many hydraulic machines which 

damages the surfaces of the solid walls due to the erosive aggressiveness induced by the collapse 

process. Therefore, it is necessary to accurately predict the occurrence of cloud cavitation and 

quantify its erosion intensity to improve the design and to extend the life cycle of existing machines 

and systems. The application of numerical simulation (CFD) offers the opportunity to predict 

unsteady cavitation. For that, it is of paramount importance to investigate how to select the most 

appropriate models to obtain more accurate results in an efficient way and how to relate the 

collapsing vapor structures with their erosion power. In the current study, the influence of the 

different turbulence models was assessed and the performance of cavitation models was improved. 

The relationship between the unsteady behavior and its erosion character was also considered by 

implementing an erosion model. 

For the assessment of the turbulence models, three Unsteady Reynolds Average Navier-Stokes 

(URANS) turbulence models were employed to simulate the cloud cavitation around a NACA65012 

hydrofoil at eight different hydrodynamic conditions. The results indicate that the Shear Stress 

Transport (SST) model can better capture the unsteady cavity behavior than the k-ε and the RNG 

models if the near wall grid resolution is fine enough.  

For the improvement of the cavitation models, the influence of the empirical constants of the Zwart 

model on the cavity dynamics was firstly investigated. The results show that the cavity behavior is 

sensitive to their variation, and thereby an optimal range is proposed which can provide a better 

prediction of the vapor volume fraction and of the instantaneous pressure pulse generated by the 

main cloud cavity collapse. Secondly, the original Zwart and Singhal cavitation models were 

corrected by taking into account the second order term of the Rayleigh-Plesset equation. The 

performances of the original and corrected models were compared for two different cavitation 

patterns. The results for a steady attached cavity demonstrate that the corrected model predicts better 

the pressure distribution at the cavity closure region and the cavity length in comparison with the 

experiment observations. The results for unsteady cloud cavitation also confirm that the prediction 

of the shedding frequency can be improved with the corrected Zwart model. 

For the investigation of the cavitation erosion power, an erosion model based on the energy balance 

approach was employed. It has been found that the spatial and temporal distribution of the erosion 

aggressiveness is sensitive to the selection of the cavitation model and to the collapse driving 

pressure. In particular, the use of average pressure levels combined with the Sauer cavitation model 

permit to achieve reliable results. Then, two erosion mechanisms have been observed, one occurs at 

the closure region of the main sheet cavity characterized by low-intensity collapses but with high 

frequency, and the other is inducted by the collapse of the shed cloudy cavity which presents a high 
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erosion intensity but with low frequency. Finally, it has been found that the erosion power follows a 

power law with the main flow velocity with exponents ranging from 3 to 5 depending on the erosion 

estimate being used. 
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Chapter 1  Introduction 

1.1 Background of Cavitation and Erosion 

Cavitation is an unique phase changing phenomenon which is defined by the appearance of vapor 

phase due to a reduction in the local pressure to the saturation vapor pressure. Similarly, another 

well-known phenomenon is boiling that is defined as the transition of water into vapor by increasing 

the local temperature. Generally, the term cavitation is reserved for the condition in which the 

temperature of water is not changed because in the context of industrial and engineering hydraulic 

machines, the temperature change during the cavitation process can be ignorable and thus can be 

regarded as iso-thermal. However, in some cases like cryogenic-cavitating fluids, the thermal effects 

due to the latent heat transfer during the phase change process need to be considered. In addition, 

the cavitation can occur in any fluid, not just in water, like the blood in an artificial heart and all 

types of fluids transferred by pumps or valves. Because our interests are mainly studying the 

cavitation in hydraulic systems or components, the following section is particularly concerned with 

the cavitation in flowing fluids with a high Reynolds number. 

1.1.1 Cavitation 

Cavitation appears in hydraulic systems and components in various types of vapor structures 

depending on the properties of the fluid, the design of the geometry and the flow configuration. 

Generally, they can be classified into the following patterns: 

(1) Travelling bubbles 

As shown in Figure 1.1, this cavitation patterns takes a form of separated bubbles attached to the 

blade, which are developed in the low pressure region, flows downstream and finally implode when 

they are moving to the zone of higher pressure. The formation of his type of cavitation depends 

strongly on the water quality. In brief, this type of cavitation is sensitive to the liquid nuclei content 

and the pressure distribution [1]. 

  
Figure 1.1: Travelling Bubble Cavitation on the Suction Side of a Hydrofoil in a Hydrodynamic Tunnel. 

Reproduced from [2]. 
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(2) Vortex cavitation 

This kind of cavitation occurs in the core of the vortex because of the fact that rotational flow 

generates a concentration of strong vorticity that creates a region with much lower pressure than far 

away. Such vortex cavitation tends to start even for a higher cavitation number than in other types 

of cavitation. It can often be observed at different fluid machineries. For example, as shown in Figure 

1.2 at the tip of a propeller, a vortex forms due to the pressure difference between pressure side and 

suction side, the cavitation occurs in vortex core, which is an important source of the noise and 

vibration in the marine environment. And similarly another vortex cavitation is also observed in the 

downstream of the hub. In addition, the vortex cavitation commonly develops in hydraulic turbines, 

a typical example is the cavitation vortex-core flow below the runner cone in the center of the draft 

tube, which can provoke large pressure fluctuations. And other two examples are the inter-blade 

vortex cavitation and Von Karman vortex cavitation, more details can be found in reference [3]. 

 

Figure 1.2. Typical visualization of tip and hub vortex cavitation on a propeller. Reproduced from [4]. 

(3) Shear cavitation, Cloud cavitation, Supercavitation and Attached cavitation 

These different cavitation patterns can be visualized according to the cavitation number and the 

attack angle. Figure 1.3 maps the various types of cavitation observed on a NACA 16012 hydrofoil 

for a fixed Reynolds number at 1*106. In this case, the water was deaerated so that the travelling 

bubble cavitation is no longer activated. 

As shown in regions 1, 2 and 3, supercavitation appears for any attack angle when the cavitation 

number is small. In region 1, for small attack angles, the location of supercavity detachment is close 

to the rear part of the hydrofoil. When the angle of attack increases (region 2), the detachment point 

moves upstream and it is non uniform in span-wise direction. As the attack angle further increases, 

the detachment point comes to the leading edge and the whole hydrofoil is covered by the mixture 

of vapor and water. The evolution of detachment point is actually related to the nature of boundary 

layer which develops as a function of the attack angle. By the way, supercavitation can also be used 

for underwater vehicle drag reduction and noise suppression [5].  

When cavitation number increases and the attack angle is larger than 4 degrees, three different 

cavitation patterns appears. In region 3´, the partial cavitation occurs, which is famous by its 

unsteady behaviors, i.e. the sheet cavity periodically growths, sheds a cloud cavity and then it 
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collapses downstream. And for the higher attack angle (region 5), a shear layer between the main 

flow and the separated region forms with a high velocity gradient, which results in a higher 

concentration of vorticity. As a result, pressure in the shear flows drops to a low level so that 

cavitation appears. In addition, a narrow domain (region 4) exists as a transition area from region 3 

to region 5. The cavity behavior in this region is also unsteady but not periodical, and the two phase 

cavity is featured with a foamy structure and a small void fraction.  

In addition to the cavitation types shown in Figure 1.3, another commonly observed cavitation type 

is attached cavitation or sheet cavitation (see Figure 1.4). Such type of cavity is attached on the 

hydrofoil surface in a quasi-steady way. At their fore part, it is characterized with thin thickness, and 

with smooth and transparent interface, while at their rear part especially at the closure region, it 

presents a slight and weak pulsation because of the shedding of small vapor structures. 

 

Figure 1.3. Different cavitation patterns on a NACA 16012 hydrofoil. Reproduced from [1]. 
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Figure 1.4. Leading Edge Cavity on the Suction Side of a Foil. Reproduced from [2]. 

Among these different cavitation patterns, the unsteady cloud cavitation is the most aggressive one. 

This is because when it takes place in hydraulic machinery it induces strong unsteadiness due to its 

dynamic behavior consisting of the cavity growth, the shedding and the collapse which are the cause 

of undesired effects like pressure fluctuations, noise generation and head drop. In addition, it is also 

the most erosive one because it always attaches to the blade and is accompanied by the near-wall 

induced bubbles collapses which are responsible for the surface damage. As a result, it is more and 

more important to know how to accurately model and predict this unsteady cavity behavior and to 

understand the relationship between the cavity behavior and its erosive power. 

1.1.2 Cavitation Erosion 

As a matter of fact, cavitation is generally a malevolent process because of the unwanted 

consequences in the flow field of hydraulic systems. For example, the deterioration of machine 

performance demonstrated by a dramatic drop of the turbine efficiency when the cavitation number 

is decreasing because the cavity develops and extends up to the throat of the flow passage in the 

impeller. The vibration and noise induced by the constant generation and collapse of vapor bubbles, 

which induces intense pressure fluctuations and the generation of noise and structure vibrations. For 

example, this can lead to an unsafe potential of a ship structure or a hydraulic installation. Besides 

it can also alter the stability of the machine operation [3,6].  

Apart from the undesired effects mentioned above, another negative effect is the surface damage 

caused by cavitation erosion, which is perhaps the most damaging nuisance since it may cause severe 

material damage leading to increased maintenance costs, and deterioration in performance together 

with aggravated vibration and noise. Figure 1.5 shows some typical types of erosion in Francis and 

Kaplan runners. It can be observed from the left picture of Figure 1.5(a) that a damaged area with a 

“frosted” shape appears on the blade suction side due to the leading edge cavitation, and the inter-

blade cavitation vortices provoke the erosion area on the runner hub (see Figure 1.5(a) right). And 

in Figure 1.5(b), for Kaplan turbine, the most critical erosion area can be found on the blades tips 

and the casing which is caused by the tip clearance cavitation. 



Chapter 1  Introduction                                                                                                                                                               

5 

 

  

                                      (a) 

 

                                      (b) 

Figure 1.5. The typical types of cavitation erosion in (a) Francis turbine and (b) Kaplan turbine. Reproduced 

from [6]. 

1.1.2.1 Cavitation Erosion Mechanisms 

The cavitation erosion is mainly caused by two mechanisms, the first is the emission of high pressure 

shock waves. Figure 1.6 shows the pressure field during a bubble collapse which is theoretically 

derived based on the Rayleigh-Plesset equation. It can be seen that there is a maximum pressure 

pulse once the bubble has been compressed more than 0.63 times its initial radius. With further 

bubble compression, the maximum pressure continues to increases continually. When R/R0=1/20 

where R and R0 are the bubble radius and the initial bubble radius, respectively, the maximum 

pressure can reach up to 1260 bars if the pressure difference between the surrounding pressure p∞ 

and the saturation pressure pv is one bar. And the amplitude of the pressure wave depends on the 

pressure difference and the radius of the bubble. In addition, if there is non-condensable gas inside 

the bubble, the non-condensable gas will work like a spring, leading to many rebounds and 

subsequent collapses which further result in successive emissions of pressure waves with attenuation. 
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Figure 1.6. The pressure field when bubble collapses. Reproduced from [1]. 

The second mechanism is the formation of micro-jet. Figure 1.7 shows the formation of the micro-

jet when the bubble collapses in the vicinity of a solid wall. When the bubble reaches its maximum 

radius, the pressure inside the bubble is much lower than the ambient pressure, leading to the 

collapse of the bubble. The fluid below the lower surface of the bubble is retarded due to the solid 

wall. This results in a low pressure and a high pressure on the lower and upper surfaces of the bubble, 

respectively. This pressure gradient causes a strong acceleration of the upper surface with a change 

in curvature. Therefore, a liquid jet forms and it is forced to hit the solid wall after penetrating the 

bottom surface of the bubble. Because the formation of the jet is caused by the asymmetry of the 

bubble evolution due to the existence of the boundary, the stand-off distance γ=H/R0 is a main 

parameter that affects the property of the micro-jet. And according to Arvind’s numerical and 

experimental study [7], an optimum standoff distance exists to that results in a maximum jet moment, 

and thus which has the maximum potential for erosion damage. 

In addition, after the micro-jet pierces the lower surface, the initial bubble becomes a vapor torus 

that moves towards the solid wall. And almost at the same time, this torus may split into tiny bubbles, 

and evolve to a collective violent collapse with the emission of another shock wave, which is also 

aggressive [8]. 

 

Figure 1.7. Series of photographs showing the development of the microjet in a bubble collapsing very close 

to a solid wall. Reproduced from [9]. 

A large number of experimental and numerical investigations have been carried out by different 

researchers to figure out which mechanisms mentioned above are more responsible for the cavitation 

erosion. However, all the studies reviewed so far did not reach any consensus. For example, Hammit 
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[10] pointed out that the cavitation erosion is due to micro-jets because the jet speed is able to reach 

the hundred m/s and generate impact pressures of the order of a hundred MPa. And Benjamin’s 

study [11] support this hypothesis by comparison of the shapes of the holes obtained by a liquid 

micro-jet. On the other side, Fujikawa and Akamatsu [12] provided some experimental evidence 

and indicated that the water jet did not produce any detectable effects. In fact, they stated that the 

pressure wave had a much higher intensity with an order of 104 atm. Fortes-Patella et al. [13] 

simulated the dynamic response and surface deformation of different materials exposed to pressure 

wave impacts by numerical simulation, and she found that the numerically predicted pit profile and 

volume were in good agreement with the experimentally generated pit samples. Thus, it was 

concluded that the pressure wave is the main factor contributing to the cavitation damage. In addition, 

another finding by Tomita and Shima [14] demonstrated that the damage mechanism depends on 

the distance of the bubble away from the material surface. 

1.1.2.2 Cavitation Erosion Characteristics 

The erosion loads have the following features regardless of the erosion mechanisms: 

(1) Short duration. Figure 1.8 shows the typical impulsive loads measured with a polyvinylidene 

fluoride (PVDF) pressure sensors [15]. It can be observed that the duration of the impact is only of 

the order of ten s. And another experiment [12] measured an even shorter duration of 2-3 s.   

 

Figure 1.8. Typical examples of cavitation erosion impulsive loads measured using PVDF pressure. 

Reproduced from [15]. 

(2) Very small impacted area. The area subjected to the impacted is very small related to the size 

of the micro-jet which is always approximately one tenth of the maximum bubble size [16], and 

according to the pitting test experiment on Duplex Stainless Steel 2205 [17], the characteristic 

diameter of the pits lies in the range of 35–57 μm under different flow velocities. 

(3) High amplitude. References [18, 19] have reported the amplitude of the impacts load is of the 

order of tens to hundreds of Newtons, and considering the small impacted area, the amplitude of the 
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pressure is able to reach the order of GPa. This high amplitude exceeds the yield stress of most 

engineering materials and explains the erosive potential of the cavitation.  

(4) Highly repeated and randomly distributed impulsive. The intensity of the erosion is highly 

dependent on various physical parameters (e.g., bubble shape and size, distance from the wall, 

surrounding pressure, and material properties), and these parameters change with time especially for 

the highly unsteady cavitation flow, leading to a series of impacts developing spatially and 

temporally. 

Therefore, it is very complex and difficult to measure the impact of a bubble collapse directly and 

accurately due to the above extreme features. The time scale is too short to enable a proper time 

response of the selected pressure gauge, the size of the area impacted is too small compared with 

the sensor surface which may lead to an underestimation of the pressure pulse, and the high 

amplitude of the impact can break the sensor if it is not resistant to the energy of the collapse. So in 

the experiment, the pitting test is often used as an indirect way to predict the impacts loads. With 

this method, the material itself is used as a sensor (limited to loads exceeding the material elastic 

limit) and each erosion pit is considered as the signature of an impact. The method consists of 

estimating the impact load which is at the origin of each pit from the geometric features of the pit 

and the properties of the material, which may be deduced from nano-indentation tests [15]. 

1.2 State of the art 

Due to cavitation erosion, various hydraulic components including turbine runners, bearings and 

pump impellers may need replacement after several weeks or require a regular repair. Therefore, 

from an industrial point of view concerning both design and maintenance, the evolution of the 

erosive power of cavitating flows and the prediction of the cavitation erosion remains a major 

concern to manufactures and operators. And the unsteady cloud cavitation, considered the most 

erosive cavitation form, is the main research objective for cavitation erosion prediction. As a result, 

the accuracy of erosion prediction depends both on the modelling of the unsteady cavitation behavior 

and the estimation of the erosive potential. 

1.2.1 Modelling unsteady cavitation 

Unsteady cavitation flow often takes place at a high-Reynolds number, and it is essentially turbulent 

and is always related to vortex movement. Therefore, turbulence and cavitation modelling are both 

very important aspects for the accuracy of unsteady cavitation prediction and its erosive power. 

1.2.1.1 Turbulence modelling 

As it is well known, a turbulent flow is characterized by an unsteady character with a large range of 

scales of eddies. The objective of modelling the turbulence is to reproduce these various scales in 
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the turbulent flow by means of difference strategies. Generally speaking, and according to how to 

treat the various scales, the turbulence models can be divided into three strategies which are 1) Direct 

Numerical Simulation (DNS), 2) Scale Resolved Simulation (SRS) and 3) Unsteady Reynolds 

Averaged Navier-Stokes Simulation (URANS). These three strategies provide different levels of 

turbulent flow description, and thus they vary in complexity, range of applicability as well as 

accuracy. In the subsequent sections, these three strategies are described. 

Direct Numerical Simulation means, as its name implies, numerically solving the Navier-Stokes 

equations directly with specifying appropriate boundary and initial conditions and without 

introducing any modelling. This method can describe perfectly the various scales of the motions in 

the turbulent flow, and its solution can also provide some interesting information that cannot be 

obtained readily by experimental measuring, like the vortex structure, the turbulent stress, and multi-

time, multi-point statistics. Every coin has two sides, the drawback of this method is its applicality—

it just can be used within a very narrow range. Because it aims to resolve the whole range of spatial 

and temporal scales of the turbulence, from the smallest dissipative scales (Kolmogorov 

microscales), up to the largest scale in the Energy-containing range, the computational cost is the 

main concern of its application. It is estimated that the computational cost required to perform a 

DNS grows rapidly as Re3 where Re is the turbulent Reynolds number [20]. Therefore, for most 

engineering problems the flow tends to have a much higher Reynolds number, which leads to the 

fact that DNS becomes prohibitive and it is just a research tool for low or moderate Reynolds number 

flows. Recently, some researchers [21, 22] have only applied this method to simulate a single bubble’s 

motion, and to predict cavitation in very small regions. 

Scale Resolved Model (SRS). In this approach, the mean velocity and large scale of motions in a 

turbulent flow are regarded as more important because the energy and anisotropy are mainly contained 

in the large eddies, and the information of the smallest sizes is not so important. So the objective of SRS 

model is to resolve directly the motion of the larger eddies and modelling the eddies that are smaller than 

the mesh size. 

The most known method one using this strategy is the Large Eddy Simulation (LES). The idea of LES 

is based on a filtering operation which firstly decomposes any quantity into filtered and sub-filtered 

components by a filter function. Typically, the filter function is characterized by a length scale, i.e. the 

mesh scale. In physical space, the eddies with sizes larger than mesh scale are treated as large eddies 

and are directly resolved, while the eddies smaller than mesh scale are modeled. This filtering 

operation on the Navier-Stokes (NS) equations yields a sub-grid stress tensor which includes the 

effect of the small scales. So, the subgrid turbulent viscosity is introduced to compute the sub-grid 

stresses so that the governing system of equation is closed. Different subgrid turbulent viscosity 

models have been developed, the most classical one being the form of the Smagorinsky in 1963 [23]. 

The Dynamic Smagorinsky-Lilly model [24, 25] and the Wall-adapted Local Eddy-viscosity model 
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(LES WALE) proposed by Nicoud and Ducros [26] are also widely used. Because LES modelling 

can be considered as a “poor” DNS and it has a superficial ability to reproduce the real flow 

information, there are many limitations for its application. Firstly, LES is based on resolving most 

of the turbulent energy k whereas modelling most of the dissipation ε. This requires that at least 80% 

of k should be resolved to get a sensible result. And according to Pope’s theory [20], approximately 

80% of the energy is mainly contained in the energy-containing range. This indicates that the mesh 

size must be smaller than the smallest eddy size in the energy-containing range, or in other words, 

the grid size must be located in the inertial subrange. This requirement may be easy to meet for high 

Reynolds number flow far away the boundaries but is very hard to achieve for high-Re flows near 

walls. Secondly, for modelling wall-bounded flow, the scale of the large eddies is linearly dependent 

on the wall distance, i.e., Lt= κy, where κ is a constant and y is the distance from the wall [27]. Hence, 

the largest eddies become very small when they are close to the wall. This demands a high resolution 

in all three space dimensions and in time. And as Re increases, the large eddy size outside the viscous 

sublayer becomes smaller and smaller. Therefore, this restricts the application of LES for the 

modelling of most engineering flows. Reference [28] mentioned that when modelling free shear 

flows with LES, the number of grid elements, N, increased with scales N~Re0.4, while when 

modelling wall-bounded flows, the computational cost requires scales in the range N~Re1.76, which 

is comparable to DNS. Therefore, it is very expensive to use LES for simulations of complex wall-

bounded engineering and environmental flows at high Reynolds numbers. Thirdly, there are some 

points which are important for the successful application of LES but they are always disregard. One 

affects the numerical discretization scheme especially for the convection term. It is recommended 

to use the central difference rather than the high resolution scheme because it is less dissipative. For 

the transient term, the transient scheme should select a 2nd Order Backward Euler scheme, and a 

very small time step should be set to meet the requirement of Courant numbers smaller than 1. 

Another one is the setup of the inlet boundary condition which can significantly affect the accuracy 

of LES particular for the cases of developing boundary layers or turbulent jets. All of these 

considerations sets a high threshold for the application of LES in industrial flows. This has motivated 

that a lot of researchers have developed hybrid SRS models. 

Regarding the hybrid SRS models, one main strategy is to couple LES with a RANS model. Hybrid 

models are based on the idea that the large eddies are resolved only away from walls and the wall 

boundary layers are covered by a RANS model. Examples of such global hybrid models are 

Detached Eddy Simulation – DES or Scale-Adaptive Simulation – SAS.  

DES is designed to treat the boundary layer with RANS and the free shear region in LES. DES 

model was firstly proposed by Spalart et.al. [29] based on the one-equation Spalart-Allmaras 

turbulence model [30]. And nowadays, DES theory can be applied to many turbulence models (e.g. 

k-ε, k-ω, SST) in different versions. Here, we mainly describe the SST-DES model because it has 
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been further developed and it is also recommended to be used by FLUENT and CFX. For the DES-

SST transport equation, the ω equation is the same as for the SST model, while in the k equation, 

the original dissipation term is changed multiplying by a limiter, FDES ( 𝐹𝐷𝐸𝑆 =

max(𝐿𝑡−𝐷𝐸𝑆 𝐶𝐷𝐸𝑆∆𝐷𝐸𝑆⁄ ) , 1), where Lt-DES , ΔDES are the characteristic turbulence length scale and 

the mesh length scale defined by DES, respectively, and Cdes is a coefficient of order 1. The value 

of FDES equals to 1 for the region where the mesh has a length scale larger than Lt-DES, and thus the k 

equation remains unchanged and a RANS model is applied. On the other hand, the value of FDES is 

larger than 1 when the mesh is refined below the limit Cdes ΔDES < Lt-DES making the dissipation term 

larger, which further decrease the turbulence kinetic energy and reduce the resulting eddy viscosity, 

and thus the model is switched to LES mode. 

For the SAS-SST model [31], the k equation is exactly the same as for the SST model, while for the 

ω equation an additional source term is added. The value of this source term depends on the ratio Lt-

SAS /LVK, where Lt-SAS is the characteristic turbulence length scale defined by SAS and LVK the Von 

Karman length scale. This von Karman length scale that includes the second velocity gradient U   

is used to detect the local unsteadiness which will create velocity gradients that decrease LVK, causing 

an increase in the Lt-SAS /LVK ratio and making QSAS term larger than zero. As a result, this source term 

increases the production of ω, and thus the turbulent viscosity is reduced because it is proportional 

to the k/ω ratio. Then the decreased turbulent viscosity allows the unsteadiness to remain. Such an 

approach ensures that local unsteadiness emerges. 

Unsteady Reynolds Averaged Navier-Stokes (URANS) models, unlike the models described 

above, is at the opposite side of the strategies for treating turbulence because it just models all scales 

of the turbulence motion. It is based on the Reynolds decomposition in which every instantaneous 

quantity is decomposed into its time-averaged part and its fluctuating part. After applying Reynolds 

decomposition on the instantaneous Navier-Stokes equations, an unsteady Reynolds Averaged 

Navier-Stokes equation is formulated with a Reynolds stress term which represents the effects of 

turbulence. To close the Reynolds stress term, there are two different modelling approaches. The 

first and the most popular one is the Eddy-Viscosity Model (EVM), which invokes the Boussinesq 

approximation that enforces a linear relationship between the Reynolds stress tensor and the mean 

strain-stress tensor with a so-called eddy viscosity serving as the isotropic proportionality factor. 

These includes zero, one and two equation models where zero, one or two additional modeled PDE’s 

are solved to provide estimates for the turbulent length and velocity scales to evaluate the eddy 

viscosity in a dimensionally consistent fashion. Typical examples of such models are the k-ε or the 

k-ω models in their different forms. Another one is the Reynolds Stress Model (RSM) in which an 

additional set of 6 modelled PDE’s are solved to determine the Reynolds stress tensor directly 

without introducing the isotropic eddy viscosity assumption. 
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As a summary, there is no perfect turbulence model suitable for simulation all varieties of flows at 

least for the current level of development. Table 1.1 summarizes the advantages and disadvantages 

or the turbulence model described in the previous paragraphs. 

Table 1.1 Summary of the advantages and disadvantages of the turbulence models. 

Model Advantages Disadvantages 

DNS 

Reproduce the whole range of 

scales of motions of the turbulent 

flow and obtain flow information 

that is hard to measure in the 

experiment.  

The computational cost grows 

rapidly as Re3, impractical for 

simulating the high Reynolds 

number flows.  

SRS 

LES 
Directly resolve over 80% of the 

turbulent kinetic energy, provides 

closest results to DNS. 

Very expensive for simulating 

wall bounded flow, Demanding 

numerical setting 

(discretization scheme, 

boundary condition)  

Hybrid SRS 
Potential for improved accuracy 

when the resolution of the largest 

eddies is high. 

Require higher mesh resolution 

and small time steps, long run 

times and large volumes of 

data. 

URANS 

EVM 

Robust, easy to converge, 

economical computational cost, 

most widely used for most 

engineering application.  

Fails to predict flows with 

sudden changes in mean strain 

rates, flows over curved 

surface and swirling flows.  

RSM 
Physically the better URANS 

model, avoid isotropic eddy 

viscosity assumption. 

Requires more CPU time and 

memory, hard to get well 

converged results. 

 

1.2.1.2 Cavitation modelling 

Cavitation flow is essentially a two phase flow with phase changing which involves the resulting 

mass and heat transfer between water and vapor phases. This type of flow is also characterized by a 

large difference of material properties between the phases. The density ratio of water to vapor is in 

the order of 104 and the sound speed in a cavitating flow ranges from less than 10 to more than 103 

m/s. In addition, the flow is involved in complex multiple length scale nature phenomena, ranging 

from micron-scale nuclei bubbles to meter-scale large gas/vapor cavities. Moreover, it involves very 

complicated inter-scale transformations between the micro and macro scales as bubbles grow or 

merge to form larger bubbles or even cavities, or as bubbles shrink or break up from a large cavity. 

All of them make modelling a cavitation flow numerically challenging. Nowadays, with the 

development of CFD and the introduction of different assumptions, different cavitation modelling 

strategies has been extensively developed, which can be classified into two different categories 

according on how to treat the vapor phase. These two categories are the Euler-Lagrange, and the 

Euler-Euler approaches. These methods are described as follows.  

1.2.1.2.1 Euler-Lagrange 

In this approach, the liquid or the vapor/liquid mixture is treated as a continuum fluid and computed 
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in the Eulerian frame, where the continuity equation, momentum equations and energy equation for 

the mixture are solved. And the nuclei and microbubbles are treated as a dispersed phase and they 

are tracked in a Lagrangian framework where the dynamic behavior of these bubbles, including the 

bubble expansion and bubble shrinking, is solved with the Rayleigh-Plesset equation. The bubble 

trajectories can be obtained by solving the Newtonian motion of bubbles driven by a surrounding 

flow field. The above Euler-Lagrange has been widely accepted and used, however, there are still 

some problems when using this method. 

Typically, a one-way coupling is used, i.e., the solution of the Eulerian field is imposed on the 

Lagrangian frame and the bubbles do not influence the liquid phase, and different forces are 

considered to act on bubbles such as drag, lift, pressure gradient force, shear force, etc. [32]. An 

overview of these forces acting on spherical bubbles and their influence on the bubble’s trajectory 

can be found in [32, 34]. This one-way strategy is suitable to investigate cavitation inception in 

vortex flow. However, for developed cavitating flows the interaction between the liquid and vapor 

parts should be taken into account in both ways. Unfortunately, there are few researches considering 

this two-way coupling. Giannadakis et al. [35] used a source term in the momentum equation of the 

continuous phase to consider the exchange of momentum between the phases, and Abdel-Maksoud 

et al. [33] developed a two-way coupling concept based on the definition of volume fractions.  

In addition, this approach involves different length scales from micro-scale dispersed bubbles to 

macro-scale vapor/liquid interfaces, the inter-scale transition and the relative scale of the bubble and 

grid cell. Furthermore, this method also needs to consider the bubble coalesce, the bubble breakup, 

and the bubble-bubble interactions etc. Hence, it is a big challenge on numerical scheme to 

accurately address the inter-scale transition because the sudden appearance of new/liquid interfaces 

imposes a strong disturbance in the solution domain, leading to the numerical instability and 

spurious pressure pulses and spurious vapor generation. To solve this problem, some investigation 

has been conducted. For example, Apte et al. [36] have implemented the collision of bubbles via a 

standard collision model, Ghahramani et al. [37] reformulated the coupling between the bubbles and 

the Eulerian governing equations to include the effects of bubbles on the Eulerian flow with higher 

accuracy. Hansch et al. [38] proposed a clustering-method, and suggested introducing extra 

“clustering” forces in the fluid cells when the vapor volume fraction is larger than a critical value. 

These forces then cause an aggregation of dispersed bubble volumes till the formation of air cavities, 

which in turn are to be resolved by Volume of Fraction (VOF). Hsiao et al. [39, 40] developed a 

meso-scale transition scheme to allow smooth transfer from dispersed small bubbles into large 

cavities by bridging a Level Set method for large size cavities and a Discrete Singularity Model for 

small bubbles.  

Another controversial issue is how to release the bubbles and how to determine the bubble size and 

bubble density. References [41, 42] proved that the choice of nuclei population is crucial for the 
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successful application of the Eulerian-Lagrangian method. But various release methods have been 

used by different researchers. Eskilsson [43] set a plane ahead of the hydrofoil and injected 100 

bubbles in a 20×5 matrix at every time step. Ochiai et al. [44] introduced the bubbles to the Eulerian 

field from five points ahead of the hydrofoil. Hsiao et al. [45] injected the cavitation nuclei from a 

plane upstream of the cavitation zones. However, in reference [40], Hsiao et al. proposed another 

novel approach by taking into account the nuclei from the foil surface, in which nuclei are released 

from the foil boundary cell when the pressure at the cell center drops below a threshold value, and 

they also suggested that some bubble releasing parameters can be a function of surface roughness, 

temperature and other physical-chemical parameters. In addition, for the vortex cavitation prediction, 

the bubble is always tangentially released from different radial distances away from the vortex axis 

[39, 41]. 

1.2.1.2.2 Euler-Euler  

In practice, a two-phase bubbly flow usually contains a very large number of dispersed bubbles 

which can be modeled using averaging techniques. Continuum-based approaches are typically used 

in cases where bubbles are much smaller than the characteristic lengths associated with the motion 

of the overall mixture. In this case, the precise location and properties of individual bubbles are not 

directly apparent at the global mixture flow scales. The bubbles are instead considered collectively 

via the equivalent continuum mixture [39]. Therefore, in this method, liquid and vapor are both 

considered a continuum phase. And according to reference [46], this approach can be subdivided 

into two classes, the first class corresponds to Euler multi-fluid models and the second class to Euler 

single fluid models. 

Euler Multi-Fluid  

For this approach, liquid and vapor phases are both treated mathematically as a continuum. The fluid 

phases are simulated separately using multiple sets of balance equations. Each set describes the 

motion of the corresponding fluid, which has its own pressure, velocity, and temperature. In addition 

to the balance equations, a transport equation for the volume fraction evolution of one of the fluids 

is also solved to track the different fluids. And the interaction between water and vapor phases is 

calculated with interfacial transfer terms for heat, mass and momentum exchange. This approach is 

usually called the multi-fluid seven-equation model, or the parent model. The most complete seven-

equation model is proposed by Baer et Nunziato [47], which considers the non-equilibrium effects 

between phases (unequilibrium of pressure, velocity and temperature). For example, this seven 

equation model has been used for supercavitation and expansion tube problems by Saurel [48, 49]. 

However, this method is considered to be expensive because it deals with the solution of a large 

system of equations, that is, 12 equations for a two-dimensional (2D) two-phase case and 14 

equations for a three-dimensional (3D) case if the fluid is considered to be compressible. Afterwards, 

this seven equation model was reduced to a six equation version based on either having two pressures 
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with a single velocity and two temperatures or a single pressure, two velocities, and two 

temperatures [50, 51]. Kapila et al. [52] further reduced it to five equations by assuming the 

equilibrium of pressures and velocities between the phases, which thus consists of two continuity 

equations, one momentum equation, one energy equation and one volume fraction transport equation. 

This five equation model involves two temperatures which makes it possible to take into account 

the effects of thermodynamic imbalances between phases, as indicated in the model of Saurel [46] 

for cavitation simulation in diesel injectors. 

Euler Single Fluid method 

For this approach, the multiphase flow is considered to be one single fluid and two categories belong 

to this approach which are the Single-Phase Interface Tracking model and the Homogeneous 

Mixture model. 

For the Single-Phase Interface Tracking Model, in this model, only the liquid phase is considered 

and the cavity region is assumed to correspond to the constant pressure region where the magnitude 

of the pressure is equal to the vapor saturation pressure. Therefore, this model is computationally 

achieved by seeking a liquid-vapor interface which can be tracked based on the above assumption. 

The deformation algorithm of the liquid-vapor interface is based on the idea of adapting the cavity 

shape in an iterative way until the vapor pressure is reached in the cavity boundary. The deformation 

procedure is performed according to the pressure distribution on the blade obtained from the liquid 

flow computation of the previous iteration [53]. The detailed description of this method can be found 

in Chen and Heister [54] and Deshpande et al. [55]. Although this method is proved to be capable 

of simulating steady sheet cavitation, it may not be adequate for predicting the unsteady cavitation 

[56]. 

For Homogeneous Mixture Model, in this model, the two phases are assumed to be in thermal and 

mechanical equilibrium, what it means that they share the same temperature T and the same pressure 

p. Thus, these two phases are considered to be a single mixture, and the properties of the mixture 

are defined as the summation of the separate equations of the phase quantities. As a result, the 

governing equations of the compressible mixture are the continuity, momentum and energy 

equations. To close the governing system, it is necessary to link the pressure to the thermodynamic 

variables. Nowadays, two strategies can be used to compute the density field which are based on 

either an equation of state (EOS) or on a volume fraction transport equation. 

The former approach, EOS, assumes that the mass transfer between liquid and vapor phases occurs 

instantaneously. And the difficulty of this approach is the specification of a reasonable equation of 

state that should covers three possible states: pure liquid, pure vapor and two-phase mixture. 

Typically, the influence of thermal effects is not taken into account because for cold water or more 

generally for a non-thermosensitive fluid the dynamic and thermal phenomena are decoupled, so the 

energy equation is not necessarily included. But note that it is necessary to include the equation of 
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energy for thermosensitive fluid [57]. Typically, the Tait law and perfect gas law were used to take 

into account the compressibility of pure liquid and pure vapor [58]. For the mixture state law which 

control the phase change, literature [57] summarized several types of relations, among which there 

is the Sinusoidal [59] and the Schmidt’s [60] barotropic laws. In addition, the viscosity for the pure 

liquid is determined by an exponential law, that for the pure vapor follows the Sutherland law, and 

that for the mixture is defined as the arithmetic mean of liquid and vapor viscosities [58]. 

However, this model cannot take into account the mass transfer within the cavitation, and it cannot 

capture the baroclinic vorticity production term that occurs in the vorticity transport equation which 

is equal to zero in a barotropic state law because the density and pressure gradients are parallels [61], 

In addition, Mani et al. [62] also demonstrated that this strategy is very sensitive to the turbulence 

closure model.  

The second approach is to solve an additional volume fraction transport equation (TEM) with an 

appropriate source term accounting for the mass transfer rate between the water and vapor phases. 

The source terms defined by different formulations are so called cavitation models. This method has 

the apparent advantages that, for example, the transport equation has the convective character, which 

allows modelling the impact of inertial forces on the cavities [56], and this method take the mass 

transfer rate between phases into consideration. Furthermore, in contrast to the EOS, this model can 

capture the baroclinic vorticity production because the gradient of density and pressure are not 

necessarily parallel. All these merits attracted a lot of researchers who developed different cavitation 

models based on the TEM. An overview of these models can be found in [63], and some of them 

have been set as the default option in popular CFD softwares. For instance, the Zwart model [64] 

and the Kunz model [65] are the native cavitation models in CFX® and OPENFOAM®, respectively. 

Meanwhile, Fluent® has adopted the Singhal [66] and Sauer [67] cavitation models. However, the 

main drawback of these TEMs is that almost all cavitation models introduce empirical constants to 

regulate the mass transfer rate, and these constant are not universal and need to be tuned according 

to the case being simulated.  

In summary, the Table 1.2 summarizes the main advantages and disadvantages of the cavitation 

models. 

Table 1.2 Summary of the advantages and disadvantages of the cavitation models. 

Model Advantages Disadvantages 

Euler-Lagrange 
Best theoretical background, capable 

to capture the bubble dynamics 

Coupling between Eulerian and 

Lagrangian fields, numerical 

complexity for inter-scale 

transition, sensitivity to bubble 

release on the result. 

Euler Multi-Fluid 
Capable of considering the 

thermodynamic or kinetic non-

equilibrium effects. 

Challenging and expensive for 

numerical computation, suitable 

for inviscid flows and simple 

geometries.  

Euler Interface The cavitating flow region is Hard to deal with the unsteady 
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Single 

Fluid  

Tracking 

Model 
assumed to be at a constant pressure 

equal to the saturation pressure 

and detached cavitation. 

Homogeneous 

Mixture with 

EOS 

Density and pressure are coupled by 

an EOS or an arbitrary barotropic 

equation. 

Fails to capture vorticity 

production in the closure region; 

sensitive to the turbulent closure 

model. 

Homogeneous 

Mixture with 

TEM 

Considers the mass transfer between 

phases, capable of capturing the 

vorticity production, easy to couple 

with turbulence models 

Lack of reliable empirical 

constants for different flows. 

 

1.2.2 Modelling cavitation erosion 

The evaluation of the erosive power of cavitating flows and the prediction of the material damage 

remains a major concern to manufacturers and operators. In this sense, several methodologies have 

been developed to predict cavitation erosion using Computational Fluid Dynamics (CFD) and 

Structural Mechanics [68]. And according to already existing literatures, the method used to predict 

cavitation erosion by CFD can be divided into two classes: fluid-structure interaction (FSI) and 

computational cavitating fluid dynamics (CCFD). 

1.2.2.1 Fluid-Structure Interaction 

The FSI method can be subdivided into two categories which are the two way FSI and the one way 

FSI, respectively. The former one models the cavity collapse in the fluid domain and computes the 

material response in the solid domain. The latter one only applies the impact load, which is obtained 

by the pitting tests, to the solid domain and calculates the material response. There are some 

applications of the two categories developed by several researchers. 

Regarding the two way FSI, Hsiao et al. [69] developed an in-house code which links an 

incompressible boundary element method solver and a compressible finite difference flow solver to 

capture non-spherical bubble dynamics efficiently and accurately. The flow code solves the fluid 

dynamics while intimately coupling the solution with a finite element structure code to enable 

simulation of the FSI. During bubble collapse, high impulsive pressures generate from the impact 

of the bubble re-entrant jet and from the collapse of the remaining bubble ring. A pit forms on the 

material surface when the impulsive pressure is large enough to make high equivalent stresses 

exceeding the material yield stress. These codes seem to provide a good solution between the flow 

field and material surface based on FSI. On the other hand, Paquette [70] developed a strategy that 

coupled the fluid and the solid solver by MPI (Message Pass Interface). For the fluid part, the 

compressible Arbitrary Lagrangian Eulerian (ALE) fluid solver was used to determine the pressure 

exerted by the fluid. For the solid part, the code CAST3M® was employed to model the 

displacement and velocity of the solid. 
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The one way FSI aims to model the response of the material to repeated impact loads. As a result, 

this method has two issues to solve, the first one is to determine the characteristics of the impact 

load, including its amplitude, duration, and diameter. The second is to simulate the behavior of the 

material with increasing number of impact loads, which includes the determination of the stress-

strain relationship at a high strain rate, a reasonable model for fatigue taking the hardening 

mechanism into account, and an appropriate failure model for damage [71]. Roy et al. [72] assumed 

that the impact loads have a pressure distribution with a Gaussian shape and applied this load shape 

with different peak pressures and various peak sizes. They found that the load with a Gaussian 

pressure distribution is reasonable because the computed mean pit shape is close to the experimental 

pit shape, and that the pressure and the pit parameters have a one-to-one correspondence. Finally, 

they proposed an inversely analytical equation by which the impact load can be predicted with a 

given pit parameter, however this equation is material dependent. Thereafter, they analyzed the 

influence of strain rate sensitivity of the material on the erosion by investigating the effect of impact 

duration on the pit formation [73]. As a results, they indicated that the erosion resistance is higher 

for the material with a higher strain rate sensitivity and that a detectable pit may not form if the 

impact duration is quite short compared to the characteristic time of the material defined on the basis 

of its natural frequency, i.e. in the order of less than a nanosecond, even though the impact peak 

pressure is much higher than the yield strength of that material. In addition, Fivel et al. [71] modeled 

the material behavior under repetitive impact loads by proposing the kinematic hardening to account 

for the progressive increase in the plastic strain and by introducing a scalar damage variable, D, 

which is equal to 0 when material is intact and equal to 1 when the fracture occurs. Based on this 

variable, the evolution of the material fatigue, damage initiation and failure was simulated. However, 

they acknowledged that the method was too simple and needed further research to be confirmed. 

Similarly, the damage variable, D, was also used by Patella et al. [74] to predict the mass loss period. 

However, unlike the damage variable defined by Fivel M et al. [71], in which D is related to the 

cumulated plastic strain and two critical plastic strain are set corresponding to the damage initiation 

(D =0) and failure (D =1), Patella et al. [74] correlated D with three parameters related to material 

fatigue behavior, to energy transfer relationship between pressure wave and material, and to 

dimensionless passage time of the pressure wave responsible for the material damage, respectively. 

And finally different stages of the evolution of the material erosion were well predicted and the time 

duration of the incubation period and the steady-state erosion rate were determined from numerical 

simulations. 

The two-way FSI simulation shows a great potential for modeling the cavitation erosion because it 

is more realistic since it considers the material’s response. With this method, the whole damaging 

process including the generation of the pressure loading resulting from the micro-jet or the bubble 

collapse (or even the collapse of the remaining bubble ring), the propagation of the pressure wave, 
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and the time evolution of the stress distribution inside the material are considered in the simulation., 

The parameters influencing the intensity of the pressure loading such as the bubble volume, the 

standoff distance and even the bubble number can also be controlled to analyze the mechanism 

behind the cavitation erosion. As for the one-way simulation, the behavior of material to cavitation 

erosion can be simulated as long as the material property can be well defined, and the different stages 

of the material exposed to repetitive impact loads including plastic deformation, the hardening 

process, the damage initiation, and the final failure can be reproduced. However, this method has its 

limitations and disadvantages. 

For the present application, the simple elastic-plastic model is only considered for the solid response 

when conducting the two-way simulation, therefore the following advanced stages of erosion are 

not well simulated. Moreover, this method nowadays can only model the material response under 

the collapse of a single bubble or a bubble cloud which is too simple compared to the erosive cavities 

taking place in real hydraulic machines, adding the fact that the whole modelling code needs to be 

developed in-house and no commercial versions are available in the market.  

Regarding the disadvantages of the one-way simulation, firstly, the impact loads that are inversely 

derived from the pitting tests tend to be underestimated because only a part of the energy is absorbed 

by the material. And the erosion is characterized by a much higher strain rate while the simulated 

pit shape is obtained under quasi-steady loading conditions. Secondly, the material properties are 

difficult to be determined. When material is subjected to repeated impact loads with different 

amplitudes and different durations, the material behavior is unpredictable because it involves elastic-

plastic deformation, the inertial effect and the kinematic hardening process. Thirdly, modelling the 

material behavior requires a fine mesh at least in the loading area but, according to the references 

[15, 69], the characteristic mean size of the impacts is close of 50 μm, which means that mesh size 

should be less than the 1 μm at least. Therefore, the computational cost for the 3D simulation is huge 

in the case of the simulation of hydrofoil cavitation and even more high for a hydraulic machine. 

1.2.2.2 Computational Cavitating Fluid Dynamics 

Due to the limitations of the FSI method and the demand to predict the most likely eroded area in 

hydraulic machinery and systems, this second method does not consider the solid response in the 

computation. The CCFD only simulates the cavitation flow by different modelling strategies and 

then estimates the erosive intensity in the whole computation domain using different postprocessing 

methodologies. The CCFD approach can subdivided into three categories. 

The first category consists of using the Eulerian-Lagrangian method to model the cavitating flow, 

in which the macroscopic flow field is treated using Eulerian mechanics and the individual 

microscopic bubbles are treated using Lagrangian mechanics. Ochiai et al. [75] obtained the 

macroscopic flow field by solving continuity, momentum, and energy equations of a compressible 
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two-phase medium. For the microscopic bubbles simulation, they considered that the bubbles follow 

the equation of bubble motion driven by the pressure gradient, the drag and the virtual mass force, 

and that the equation of bubble oscillation could be used to evaluate the evolution of bubble radius. 

The cavitation erosion characteristics is then predicted by the impact pressure on the wall surface 

owing to the propagating pressure wave induced by the bubble collapse. Similarly, Wang and Zhu 

[76] applied the LES to obtain the unsteady ambient pressure and the velocity profiles around the 

bubbles, and employed the Rayleigh–Plesset equation to determine the bubble radius. The cavitation 

erosion was predicted with the evolution of several representative bubbles in the averaged unsteady 

cavitation flow. Although this method has the best theoretical background as it includes the collapse 

rebound, a major problem lies in the choice of bubbles’ injection points that play a major role in the 

predicted erosion intensity, regardless of the fact that the macroscopic flow is identical and 

uninfluenced of the bubble dynamics [44]. In addition, as we described above, this method is 

expensive and challenging for its computation application.  

The second category consists of using a compressible solver to predict the erosion intensity of the 

cavitating flow. This method, which was developed by Schmidt et al. [77, 78], treats the two phase 

flow as homogeneous, compressible and inviscid, and resolves the collapse-induced pressure waves 

to determine the spectrum of collapse events in the fluid domain. Blume and Skoda [79] has used 

this method to assess the erosive flow around a circular leading edge hydrofoil and the found a good 

agreement with the experiment. However, they indicated that this approach requires a very fine 

computational mesh in order to capture all the cavitation scales of events and a very small time step 

is needed because it requires capturing shock waves near an object surface which have the same 

speed of propagation as the high sound speed in the water. Consequently, the practical 

implementation of this method is very limited, as a simulation of full scale realistic objects, for 

instance such as a marine propeller, would take too much time. 

The last approach, which is the most widely applied one, only resolves the macroscopic cavitating 

flow field and obtains the cavitation aggressiveness by using different functions based on different 

flow properties. The principal difference between this approach and the second approach is that there 

are no critical requirements to cell size and time step, so the calculation time becomes more 

reasonable. As a result, this approach has been widely used and developed by different researchers 

because it has the potential to be promoted to predict the erosion aggressiveness and erosion 

distribution in hydraulic machines and systems. Some erosion models found in the literature are the 

following ones. Fortes-Patella et al., [80, 81] suggested an energy balance approach where the 

potential energy of the macroscopic cavitation structures was regarded as the main factor that 

generates erosion. Thus, the potential energy of a cavitation cloud is supposed to be converted into 

acoustic energy in the form of pressure waves. These pressure waves travel through the fluid and 

are able to damage the solid wall. Nohmi et al., [82] developed four erosion indices which were 
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based on pressure and volume fraction time derivatives as well as on absolute pressure differences. 

Li et al., [83] stated a numerical erosion model where the rapid increase of the local static pressure 

needed to exceed a certain threshold level for erosion to occur. Koukouvinis et al., [84] defined a 

Cavitation Aggressiveness Index based on the total derivative of pressure on the surface with values 

from zero that indicates the level of the hydrodynamic cavitation aggressiveness. Lloyd’s Register 

Technical Investigation Department [85] applied DES to simulate the cavitating flow and obtained 

good predictions of the eroded regions based on its own functions, but few details about them can 

be found in the open literature. Unlike the above mentioned erosion models in which the pressure 

wave is considered to be responsible for the cavitation erosion, some researchers assumed that the 

high-speed microjet was the main mechanism provoking the cavitation erosion. Dular et al. [86] 

proposed an erosion model where the velocity of the microjet needed to exceed a certain threshold 

to be erosive for a given material. Following this work, Peters et al. [87] calculated the erosion 

potential of a cavitating flow based the accumulation of the dimensionless intensity coefficient, 

defined by the ratio of the jet velocity to a threshold velocity value, on every element face along the 

total calculation time. The advantage of these approaches is that there are no critical requirements 

regarding the cell size and the time step and consequently the calculation time becomes more 

reasonable than for instance the methods included in the third approach. Nevertheless, they need to 

be further validated with experiments because they involve the use of some empirical coefficients. 

1.2.3 Critical review of the modelling strategies  

In the previous two sections, the approaches for modelling unsteady cavitation and cavitation erosion 

have been summarized. It is obvious that there is no perfect model that can be used in all fields, and 

that each model has their own advantages and disadvantages. However, considering that our main 

field of interest is to model the unsteady cavity behavior and its associated erosion power in 

hydraulic machinery, it is necessary to find out and tailor the most suitable models and set-ups. 

For modelling turbulence, as indicated in Table 1.1, there is no doubt that DNS and LES have the 

capability to provide the most realistic flow information. However, the huge computational cost and 

the high requirements for the numerical scheme prevent their application, especially for modelling 

flow in hydraulic machines which size might reach the order of meters and high Re flows are 

dominated by the relatively thin boundary layers. For example, an estimate of the computer 

requirements for the simulation of a single turbine blade with end-walls indicated that the LES 

models requires computer resources ten thousand times higher than the URANS models [27]. In 

addition, the Hybrid SRS model has the potential to provide better flow information with relatively 

low computation cost, but there is still a high demand for the spatial and temporal resolution which 

is also much higher than for the URANS models. For example, the mesh scale needs to be smaller 

than the characteristic length scale in the region far away the boundary layer, and the time step needs 
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to be small enough to meet the requirement that the Courant number is less than one, which is almost 

impossible for modelling flow in high rotating speed machinery. In addition to that, when the 

simulation of the entire machine is required for the design of turbomachinery (or at least a significant 

number of its components), this also increases the size of the meshes and the calculation 

requirements. As a conclusion, nowadays the use of SRS models to simulate industrial problems 

appears to be unrealistic and therefore, the URANS models are a more suitable and economical 

approach which make them more dominant for engineering applications. Besides, the EVM model 

is more popular than RSM model according to the survey of ASME [88] due to the fact that RSM 

model is hard to converge when solving the six additional equations. Moreover, the proposal of 

Reboud’s correction [89], which reduces the turbulent viscosity in the mixture of water and vapor 

by taking into account the compressibility effects, makes the URANS models capable of capturing 

the unsteady cavity behaviors, leading to that the EVM models can provide agreeable numerical 

results with the experiment data. However, with the development of CFD there are different forms 

of EVM available, but conclusive results are missing regarding the influence of different EVM 

models on the cavitation simulation. 

Regarding the cavitation models, the Euler-Lagrange approach has the best theoretical background 

because it can not only predict the macro-scale cavity behavior, but it also provides the information 

relative to the growth and collapse of single bubble and the bubble-bubble interactions. Thus, this 

method is very challenging and it is still at a stage of developing its numerical algorithms. Therefore, 

the use of this approach is impractical especially in the context of engineering applications. 

Regarding the Euler-Euler approach for the multi-fluid approach, it has the ability to consider the 

non-equilibrium effects between phases, but it is still a real challenge for numerical simulation due 

to the complicated characteristics of the equation system and the troublesome due to the non-

conservative terms. In conclusion, it remains mainly suited only for inviscid and simple geometries. 

In contrast, the single-fluid method (homogeneous method) has received more attention up to now 

and it has been developed maturely because of its lower computational cost and easier numerical 

calculation, but not all models belonging to this method are widely used. For example, the Single-

Phase Interface Tracking Model is not able to predict the unsteady cavity behavior, and the EOS 

model do not consider the mass transfer between two phases and cannot capture the baroclinic 

vorticity production term. Comparatively speaking, the Transport Equation model is very attractive 

because it can not only predict the mass transfer when cavitation occurs, but also it is easier to couple 

with the turbulence models. Therefore, the TEM has been the most widely used model up to now 

and it will also be employed for our thesis work. However, almost all the TEMs have the problem 

that they need to introduce empirical constants to regulate the mass transfer rate. Thus, these 

constants are need to be tuned according to the case being simulated. In addition, different cavitation 

models require different source terms, which makes that the cavitation models perform differently. 
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As a result, in our work, the influence of the empirical constants and the effectiveness of several 

cavitation models will be evaluated in detail. 

Regarding the erosion models, the FSI is a good approach to conduct theoretical investigations 

because it takes into account the material response, and even considers the effect of material on the 

bubble collapse if two way FSI is conducted. But in practice the actual erosion mechanism of 

unsteady large scale cavitation forms is much more complicated than the loading from single bubbles 

or the effects of repetitive loads with a constant amplitude. Therefore, this method can only provide 

some preliminary results and it cannot be easily generalized to respond to industrial applications due 

to its huge computational cost and its complexity. In addition, when using the CCFD method to 

investigate the cavitation erosion, the application of the Euler-Lagrange and the compressible 

methods are also quite limited. Firstly, the numerical application of the Euler-Lagrange is very 

difficult even just for modelling cavitation. Secondly, these two methods have a huge computation 

cost because the Euler-Lagrange requires the mesh scale to be less than the scale of the minimum 

bubble and the compressible method requires a very small time step to capture the shock waves 

when the bubbles collapse. This makes these two methods impractical in the engineering and 

industrial contexts. Hence, in our work, we have mainly an approach which implements the erosion 

model by means of a post processing procedure on the obtained set of results. However, all the 

erosion models proposed by different researchers have their weak points. For example, the model 

proposed by Nohmi et al. [82] does not provide a physical background for the formula proposed and 

it also lacks the definition of some additional exponents depending on the characteristics of a 

particular solid material. Li’s [83] and Koukouvinis’s [84] models are not directly related to the 

vapor volume fraction and the potential energy in vapor structures. Dular’s [86] and Peters’s [87] 

models consider the hammer pressure caused by the microjet to be the main responsible for the 

material damage, however, it is an issue how to determine the pressure driving the bubble collapse 

and the resulting jet. Furthermore, these two models are not easy to implement in commercial CFD 

codes. Comparatively speaking, the model proposed by Fortes-Patella et al. [80, 81] is proved to be 

better than other models [90] and has been widely used because it has been validated by various 

researchers and it provides a good agreement with the experiments [90–93]. In spite of that, the 

reliability of this model depends directly on the determination of two energy transfer ratios, and 

some uncertainties still need to be investigated and discussed to improve its performance and 

applicability. In summary, we have selected the Fortes-Patella’s model to predict and study the 

erosive cavitation induced by cloud cavitation because our main interest has been to develop and 

validate an erosion model that can be used for an engineering and industrial applications 
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1.3 Objectives 

General objective: 

The cloud cavitation is one of the most aggressive cavitation forms which induces vibrations and 

noise, and provokes the damage of the material surfaces. Hence, it is necessary to predict the 

unsteady cloudy cavitation and its associated erosion aggressiveness. In this thesis, we aim to 

evaluate and improve the performance of existing numerical approaches for modelling cavitation so 

that they can reproduce the unsteady cavity behavior with more accuracy. Moreover, we try to apply 

and validate an erosion model to predict from the simulated cavitation structures its erosion 

aggressiveness.  

Specific objectives: 

1. Study the sensitivity of the numerical parameters and find the most adequate set-up 

configurations that permit to guarantee numerical accuracy while economizing the 

computational costs. 

2. Find out the most adequate eddy-viscosity models and the required numerical settings for the 

simulation of unsteady cavitation around a hydrofoil by comparing their performance. 

3. Improve the accuracy of the cavitation models by considering the second order term in the 

Rayleigh–Plesset equation and validating the improved model by simulating different cavitation 

patterns. 

4. Investigate the influence of the empirical coefficients of the cavitation model selected on the 

cavitation behavior, and finding out their optimal range of values. 

5. Implement an erosion model to investigate the relation between cavitation structures and their 

erosion power. 

6. Investigate the factors influencing the erosion intensity and erosion distribution, including the 

definition of driving pressure and the cavitation model selected.  

7. Analyze the main mechanisms of cavitation erosion under unsteady cavitation condition by 

comparing the numerical results with the experimental observations. 

8. Evaluate the influence of the free stream velocity on erosion intensity and build a function of 

erosion power and inflow velocity. 

1.4  Methodology 

The methodology for present thesis is devised as follows:  

The first steps are intended to select the best numerical models according to the available 

experimental data. For that, the influence of the numerical settings on the numerical results will be 

validated and the appropriate numerical configurations to balance the numerical accuracy and the 
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computation cost will be determined (including 2D or 3D simulations, boundary conditions 

definition, grid resolution and typology, time step, number of iterations and y+). 

Secondly, different eddy-viscosity models to conduct unsteady cavitation simulation will be applied, 

and the influence that they have on the numerical results based on the existing experimental data 

will be assessed. The model that can best reproduce the cavity dynamic behavior will be find out. 

Then, the performance of the cavitation models will be improved by investigating the influence of 

empirical coefficients on the unsteady cavity evolution and by tuning the empirical coefficients 

using an optimizing method. In addition, the cavitation models will be corrected by considering the 

effect of the second-order term in the Rayleigh–Plesset equation, and the cavitation simulation 

results predicted by original and corrected cavitation models will be compared and validated. 

Finally, the cavitation erosion will be investigated by implementing an erosion model with a post 

processing procedure, analyzing the influence of the driving pressure and the selected cavitation 

models on the erosion intensity distributions. As a result, the better choice for the accurate prediction 

of erosion will be determined. In addition, the influence of inflow velocities on the erosion power 

will be evaluated and the corresponding laws will be found out. 

1.5 Organization of this thesis 

This thesis is organized in the following chapters:  

This first chapter introduces the general background of cavitation and cavitation erosion, the state of art 

regarding to the modelling of turbulent cavitating flows and cavitation erosion, the objectives of the thesis 

and the methodology used. 

In Chapter 2, the numerical method used for the present thesis, including the turbulence model, the 

cavitation model, and the erosion model are illustrated in detail.  

In Chapter 3, the numerical method, including the setting of numerical parameters, and the selection of 

the turbulence models are assessed by comparison with the experiment results. Furthermore, the 

influence of the empirical coefficients on the cavity behavior is investigated and an optimization method 

is used to find out the better coefficient range for reproducing the unsteady cavity behavior. 

In Chapter 4, the performance of two cavitation models (Zwart and Singhal) are improved by considering 

the second order term in the Rayleigh–Plesset equation. Then, the improved model is assessed by 

modelling different cavitation patterns including the steady attached cavity and unsteady cloudy cavity.  

In Chapter 5, the erosion mechanism of unsteady cavity is investigated by applying the erosion models. 

The factors influencing the erosion intensity and the energy transfer ratio are studied in detail. And finally, 

the relationship between flow velocity and erosive power is calculated. 
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In Chapter 6, the conclusions and a prospect of future research are finally summarized. 

Chapter 2  Numerical Approach 

In this chapter, the numerical approaches are described. Firstly, the mathematical derivations of the 

turbulence models are given, secondly, the cavitation modelling methods are presented. Then, an 

erosion model is introduced and described. 

2.1 Turbulence modelling 

Considering that our main field of interest is to achieve the modelling of cavitation erosion in 

hydraulic machinery and that DNS and SRS methods have a high computational cost, URANS 

models are considered to be more suitable for the present investigation. The following sections will 

provide the detailed mathematical derivations of some widely used URANS models which will be 

evaluated in the next chapter. 

The Navier-Stokes equations are: 
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where u and p are the flow velocity and pressure, t and ρ is the time and density, μ is the dynamic 

viscosity.  

In Reynolds decomposition, every instantaneous quantity 𝜑 is decomposed into its time-averaged 

part and its fluctuating part, which means:  
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where the time average of a variable is defined by: 
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Then, the resulting RANS equations are:  
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Equations (2-5) and (2-6) have the same general form as the instantaneous Navier-Stokes equations, 

with the velocities and other solution variables now representing time-averaged values, and new 

additional terms, ' '

i ju u , that represent the effects of turbulence, which are known as Reynolds 

stress terms.  

Therefore, for a general statistically three-dimensional flow, four independent equations govern the 

mean velocity field; namely three components of the Reynolds equations (Equation (2-6)) and one 

mean continuity equation (Equation. (2-5)). However, these four equations contain more than four 

unknown quantities. In addition to 𝑢𝑖̅ and 𝑝̅, the Reynolds stress is still unknown. In order to close 

this system of equations, there are two approaches: the first one is based on eddy-viscosity 

hypothesis which relates the Reynolds stresses to the mean flow, known as eddy-viscosity model; 

the second is based on solving the transport equation for all components of the Reynolds stress tensor, 

known as Reynolds stress model. Hereafter, we mainly discuss the derivation and application of 

some popular eddy-viscosity models because the term RANS in hybrid RANS-LES typically 

represents the eddy-viscosity model and has nothing to do with Reynold stress model. Also, 

Reynolds stress model is not widely used in our interested field, for its derivation and explanation 

please refer to reference [20]. 

Eddy-viscosity models were developed on the basis of the Boussinesq hypothesis in 1877 [94], who 

proposed that the Reynolds stress is proportional to the mean rate of strain, which refers to: 
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where t is the so-called turbulent viscosity；
' ' / 2i jk u u  denotes the turbulent kinetic energy. 

So with Equation 2-7, the Reynolds equation can be rewritten as； 
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(2-8) 

This is the final version of the Reynolds equation based on the turbulent-viscosity hypothesis. 

Consequently, there is only one unknown variable, t to be resolved. If t can be specified, then 

the mean flow equations can be solved.  

Hereafter, we introduce some widely applied specification of t i.e., eddy-turbulent model. 
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2.1.1 Standard k-model 

The standard k-model is one of the most widely used models for industrial applications and it has 

been implemented in many different CFD codes because it offers a good accuracy and robustness.  

This model was proposed by Launder and Spalding [95] in 1972, in which the eddy viscosity was 

related to the turbulence kinetic energy k and turbulence dissipation rate ε (which is the rate that 

turbulent kinetic energy is converted into the thermal energy by the action of the viscosity, and is 

defined by 

' '

i i

j j

u u

x x
 

 


 
) via the equation below:  
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The values k and ε of can be directly obtained by solving their respective transport equations:   

     t
i k

i j k j

k
k ku P

t x x x


   



     
      

      

 (2-10) 

      1 2
t

i k

i j j

u C P C
t x x x k

 



  
   



     
      

      

 (2-11) 

where C1, C2k,  , Care model constants and they have the following default values: C1ε=1.44，

C2ε=1.92,k =1.0, ε =1.3, Cμ=0.09. Sometimes, the value of these constants can be changed for a 

particular flow. For example, when modelling the turbulence close to a wall, some damping function 

are added, also known as low k-model which damp the constants C1ε, C2ε, Cμ by times a function 

f1, f2 and fμ respectively. With these functions, the dissipation of ε near the wall is reduced and so 

more dissipation of k is expected, which in turn avoids that the eddies scale in the sub-viscos layer 

is too large and also the turbulent viscosity is over predicted. 

Additionally, in these equations, Pk represents the generation of turbulence kinetic energy due to 

the viscous force, which is modeled using [96]: 
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Based on Equations 2-9, 2-10 and 2-11, the eddy viscosity t is obtained and then Equation 2-8 is 

closed. Generally, the standard k-model is mainly used for fully turbulent flows because the 

assumption in its derivation is that the flow is fully turbulent and that the eddies in all turbulence 

scales are isotropic whereby the normal stresses are equal, i.e. ' ' ' ' ' '

1 1 2 2 3 3= =u u u u u u Therefore, there 

are some particular flows not suitable for using this model, like rotating flows, boundary layer 
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separations and flows with sudden change in the mean strain rate for instance. 

2.1.2 RNG k-model 

RNG k-ε model [97] was derived using renormalization group (RNG) analysis of the Navier-Stokes 

equations. It has a similar form to the standard k-model. For example, the eddy viscosity is also 

calculated via Equation 2-9, and the transport equations for the turbulence kinetic energy and the 

turbulence dissipation rate are the same as those for the standard k-model. The major difference 

lies in the variation of the model constants e.g., the constant equals 0.0845 in the RNG model, and 

the constant in the transport equation of dissipation is replaced by a new constant, and the Equation 

2-9 becomes:  
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where C1RNG, C2RNGkRNG,  are model constants and they have the following default values: 

C1εRNG =1.42-fη，C2εRNG =1.68,kRNG =1.0, εRNG =0.7179

And 
3
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2.1.3 The Wilcox k-ω Model  

Wilcox [98] proposed a new approach to calculate the turbulent viscosity, which relates μt to 

turbulence kinetic energy, k, and the specific dissipation rate, ω, via the relation:  

 /t k    (2-14) 

And the values of the k and ω are obtained from the following differential transport equations: 
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 (2-16) 

where Pk represents the generation of turbulence kinetic energy and is calculated as in the standard 

k-model, and the model constants are given by: 𝛽′=0.09，α1=5/9,k1 =2, ω1 =2, β1=0.075. 

The advantage of this model is that it considers the effect of the Low-Reynolds number in the near 

wall region. However, one of its disadvantages is the sensitivity to the freestream conditions, i.e., 

the value of ω specified in inlet boundary will significantly affect the solution. In order to solve this 
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undesirable problem, considering the respective merits of standard k-model (e.g. insensitive to the 

freestream condition) and of the k-ω model (e.g. the robust and accurate prediction in the near-wall 

region), Menter [99] proposed a new formulation of k-ω model, which incorporates the advantages 

of the standard k-and k-ω model. 

2.1.4 SST k-ω Model 

Because the specific dissipation rate, ω, can also be thought as the ratio of to k, (k) the 

transport equation for standard k-ε model (Equations 2-10 and 2-11) can also be rewritten as a 

transformed k-ε model: 
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(2-18) 

where the model constants are: α2 = 0.44,k2 =1, ω2 =1/0.856, β2=0.0828. 

Now if the transformed k-ε model is compared with the standard k-ω model (Equations 2-15 and 2-

16), it can be observed that all the terms are the same with an exception that the model constants 

differ and that an additional term appears on the right hand side of Equation 18. With this small 

difference, a transformation of the k-ε model to a k-ω formulation can be achieved by introducing a 

blending function F1. Now the equations of the k-ω model are multiplied by function F1, the 

transformed k-ε equations by a function (1- F1) and the corresponding k and ω equations are added, 

which gives: 
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(2-20) 

where the model coefficients σk3, σw3, α3 and β3 are linear combinations of the corresponding 

coefficients of the k-ω and the modified k-ε turbulence models via: Φ3 = F1Φ1 +(1- F1)Φ2. 

The blending function defined by Equation 2-21 depends on the wall distance and it is equal to 1 

near the surface and decreases to 0 outside the boundary layer:  

  4

1 1tanh argF   (2-21) 

with: 
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where y is the distance to the nearest wall, and: 
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Hence, this model (Equations 2-19 and 2-20) combines the advantages of the k-ω and the k-ε model, 

but it still fails to properly predict the onset and amount of flow separation from smooth surfaces. 

This is because it does not account for the transport of the turbulent shear stress, and over predicts 

the eddy-viscosity. Consequently, a limiter to the eddy-viscosity was introduced to capture the 

proper transport behavior. Then the eddy-viscosity based on SST model is calculated by:   
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where a1 = 0.31, F2 is a blending function which restricts the limiter to the wall boundary layer, S 

is an invariant measure of the strain rate， 
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2.2 Cavitation modelling  

In our simulation, homogeneous mixture models will be used in which the two phases are assumed 

to be in thermal and mechanical equilibrium: they share the same temperature T and the same 

pressure p, and thus these two phases are considered to be a single mixture with mixed properties. 

For that, the averaged Navier-Stokes equations for the mixture are solved. Note that in the present 

work, the thermal effects have been neglected due to the fact that the high specific heat capacity of 

water only leads to small temperature changes and that the variations of the vapor saturation pressure 

can be considered negligible. Therefore, the energy equation is not solved. 

The governing equations of the mixture are the continuity and momentum equations expressed as 

follows: 
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 (2-28) 

where ρm and m are the mixture density and viscosity, which are defined as the summation of the 

separate equations of the phase quantities: 
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where the subscripts m, l and v denote the mixture, liquid and vapor respectively, and  is the vapor 

volume fraction defined by: 
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And the vapor volume fraction can be obtained by an additional transport equation, the so-called 

transport equation model (TEM) in the first chapter: 
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where the term m accounts for the mass transfer rate between the water and vapor phases, which is 

defined by each cavitation model. Table 2.1 lists the mathematical equations describing each of these 

cavitation models where RB in the Zwart model is the vapor bubble radius with a constant value of 

10-6 m. Meanwhile, in the Sauer model, it is a variable value that is function of the local vapor 

volume fraction. αnuc is the nucleation site volume fraction with a default value of 0.0005. Then, t∞ 

= C/Uinf is the mean time scale and Cprod and Cdest are the empirical coefficients for vaporization and 

condensation, respectively, which were taken as 50 and 0.01 for the Zwart model, 0.01 and 0.01 for 

Singhal model, and 100 and 100 for the Kunz model. 

Table 2.1 Mathematical expressions of the cavitation models. 

Model 𝑚̇ (P<Pv) 𝑚̇ (P>Pv) 
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In the next chapter, the performance of these models on predicting different cavitation patterns or 

on erosion will be evaluated.  

2.3 Erosion modelling 

In our present work, the erosion model proposed by Fortes Patella et al. [80, 81] has been used to 

investigate the erosion character of unsteady cavitation. In this model, the pressure wave generated 

by the bubble collapse is considered as the main mechanism of erosion and this erosion model is 

based on the concept of the energy cascade. As shown in Figure 2.1, a pressure wave is emitted 

during the collapse of the vapor structure and then it reaches the solid wall and interacts with the 

material, leading to the damage generation. And during this process, two efficiencies involved in the 

energy conversion are introduced which need to be assessed. 

 

Figure 2.1. Physical cavitation erosion scenario based on the energy balance approach. Reproduced from [80]. 

In this cavitation erosion scenario, the potential energy and power of the cavitating flow is evaluated. 

The initial potential energy of vapor structures can be calculated with:  

 ( )pot v d v vE pV p p V     (2-33) 

where Vv is the volume of the vapor structure and pd is the driving pressure which forces its collapse, 

and pv is the saturation pressure. Then, an instantaneous potential power, Ppot, can be defined with 

Lagrangian time derivatives as expressed with:  

 ( ) + ( )
pot v d v

pot d v vap d v

DE DV DP DV
P p p V p p

Dt Dt Dt Dt
      (2-34) 

where the pressure derivative has been neglected because it was found to be negligible compared to 

the vapor volume derivative [100]. 
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Then, the flow aggressiveness potential power, Ppot
mat, is linked to the instantaneous potential power, 

Ppot and the energy transfer efficiency η** via the relation: 

 
**mat

pot potP P  (2-35) 

where the energy transfer efficiency η** is a function of the hydrodynamic characteristics of the 

main flow (e.g., the free stream velocity and the cavitation number) and the distance between the 

collapse center and the material surface. Therefore, the flow potential power is highly related to flow 

configuration like the cavitation flow behavior, the geometry of the hydrofoil, the angle of attack 

etc.  

Next, the pressure wave power emitted when the vapor structure collapses, Pwaves
mat, is defined by: 

 
*mat mat

waves potP P  (2-36) 

where η* is the efficiency which quantifies the effective energy transfer between the potential power 

of the vapor volume and the actually erosive power, and it depends mainly on the initial gas pressure 

and the surrounding pressure as well as the air content in the flow. 

In the final stage, the estimated pressure wave hits the material surface and leads to a volume damage 

rate, Vd, that can be measured by a 3D laser profilometer and related to the pressure wave power by: 
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where ΔS is the analyzed sample surface, and β is a mechanical transfer function depending strongly 

on the characteristics of the material. 
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Chapter 3 Assessment of URANS models and empirical 

coefficients 

The numerical simulation of unsteady cavitation flows is of prime importance to assess the design 

and operation of hydraulic machinery due to their undesired effects such as noise and erosion. Since 

the predicted results are very sensitive to the selected models and the associated parameters, three 

Reynolds Average Navier-Stokes (RANS) turbulence models and the Zwart cavitation model have 

been selected to assess their performance for the simulation of cloud cavitation on 2D hydrofoils. 

The experimental cavitation tests from a NACA65012 hydrofoil at different hydrodynamic 

conditions have been used as a reference to tune the modelling parameters and the experimental tests 

from a NACA0015 have finally been used to validate them. The effects of near wall grid refinement, 

time step, iterations and mesh elements have also been investigated. The results indicate that the 

Shear Stress Transport (SST) model is sensitive to near wall grid resolution which should be fine 

enough. Moreover, the cavitation morphology and dynamic behavior at different hydrodynamic 

conditions are sensitive to the selection of the empirical vaporization, Fv, and condensation, Fc, 

coefficients required by the Zwart model. Therefore, a multiple linear regression approach with the 

single objective of predicting the shedding frequency has been carried out that permits to find out 

the range of coefficient values giving the most accurate results. In addition, it has been observed that 

they provide a better prediction of the vapor volume fraction and of the instantaneous pressure pulse 

generated by the main cloud cavity collapse. 

The complete content of this chapter can be found in the paper entitled “Assessment of RANS 

turbulence models and Zwart cavitation model empirical coefficients for the simulation of unsteady 

cloud cavitation” and published in 2019 in the open access journal “Engineering Applications of 

Computational Fluid Mechanics” with an Impact Factor of 5.8 (first quartile 1) [101] which can be 

found in Annex A of this thesis report. 
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Chapter 4 Improvement of cavitation models 

In this chapter, the Zwart and Singhal cavitation models were modified and improved by taking into 

account the second order term of the Rayleigh–Plesset (RP) equation. Firstly, the complete 

mathematical derivation of the corrected condensation mass transfer rate equation has been given 

and the significance of the second order term has been addressed. Secondly, the modified models 

have been validated with two experimental cases corresponding to a couple of steady cavitation 

flows around a hydrofoil and around a submerged cylindrical body with a hemi-spherical head, 

respectively. Lastly, the experimental unsteady cavitation test for a NACA0009 hydrofoil has been 

used as a reference to further validate the improvement of the current correction. 

 

The content in this chapter reproduces the paper entitled “Improvement of cavitation mass transfer 

modeling by including Rayleigh–Plesset equation second order term” and published in 2020 in the 

non-open access journal “European Journal of Mechanics/B Fluids” with an impact Factor of 2.131 

(second quartile Q2) [102] which can be found in the following link: 

https://www.sciencedirect.com/science/article/abs/pii/S0997754619304443. 

4.1 Cavitation model correction 

In this section, the significance of the second order term of the RP equation is discussed and the 

detailed mathematical derivation from the RP equation to the definition of the source terms of the 

cavitation models are given. The well-known bubble dynamics RP equation is given as Equation (4-

1) where, in most of the cases, three terms including the second order term, the viscous forces term 

and the surface tension term are all neglected because they are considered to be secondary. More 

specifically, the time derivative of the bubble radius is only thought to be related to the pressure 

change term. However, in our work we have decided to evaluate the effects of keeping the second 

order term. For that, the new corrected relationships between the time derivative of the bubble radius 

and the pressure change have been developed and this new formula is given as Equation (4-2). Based 

on Equation (4-2), the corrected bubble growth and collapse rates have been obtained as Equations 

(4-3) and (4-4), respectively. By comparing with the original bubble growth and collapse rates (see 

Equations (4-5) and (4-6)), it is found that the effect of the second order term is negligible for the 

bubble growth, but that the bubble collapse rate is underestimated. 

Therefore, the new corrected condensation mass transfer expressions between the bubble 

growth/collapse rate and the corresponding evaporation/condensation sources terms of the Zwart 

and Singhal cavitation models have been obtained as equations (4-7) and (4-8). As a result, an 

improved cavitation models for Singhal are formulated as Equation (4-9), and for Zwart as Equation 
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(4-10). Meanwhile, their respective original versions are presented as Equations (4-11) and (4-12).  
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4.2 Test cases and mesh convergence study 

The corrected cavitation models have been evaluated by modelling three cavitation experiments with 

two different cavitation patterns. Two test cases for attached cavitating flow were selected, one 

corresponds to a cavitating flow around a NACA0009 2D hydrofoil for various free stream velocities, 

and another one is around a submerged hemi-sphere cylindrical body. In particular, for each of these 

two cases, the simulation has been done under two different cavitation numbers with a fixed 

Reynolds number. In addition, the corrected models have also validated by conducting unsteady 

sheet/cloud cavitation simulation around another NACA0009 hydrofoil. For these three test cases, 

the computational domains were built based on the respective tunnel dimensions and they are 

schematically plotted in Figure. 4.1 in which the corresponding boundary settings are also presented. 

The operation conditions for each test case are summarized in Table 4.1.  

 

(a) NACA0009 2D computational domain 

 

(b) Hemi-spherical body computational domain 

(4-12)
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(c) NACA0009 3D computational domain 

Figure 4.1: Computational domains with named boundaries. Reproduced from [102]. 

Table 4.1: Flow conditions of the simulated cases. Reproduced from [102]. 

Test cases Hemispherical body NACA0009 (steady) NACA0009 (unsteady) 

Uinf 10 m/s 20 m/s 20 m/s 

Re 2.5105 2106 2106 

σ 0.5, 0.3 0.9, 0.8 1.2 

 

Before the validation, a mesh convergence study has been conducted by applying the Grid 

Convergence Index method (GCI). For each case, three meshes with different mesh densities were 

created. The GCI value has been determined by monitoring the lift and drag coefficients for the 

NACA0009 hydrofoil and the value of pressure and velocity at the cutting point between the 

hemispherical fore-body and a cylindrical aft-body for the hemi-spherical body. And the mesh 

number, the monitor values and the resulted GCI values for each case are summarized in Table 4.2. 

And Figure 4.2 shows the details of the mesh being selected. 

Table 4.2. Features of the grids and numerical uncertainty evaluation based on the GCI indexes. Reproduced 

from [102]. 

NACA0009 (steady) Elements Cl GCI Cd GCI 

Coarse 27,961 0.3469 GCIfine=0.04% 

GCImedium=0.11% 

 

0.0147 GCIfine=0.45% 

GCImedium=1.3% 

 

Medium 55,746 0.3464 0.0144 

Fine 110,169 0.3462 0.0143 

Hemi-spherical body Elements 
Pressure 

[Pa] 
GCI 

Velocity 

[m/s] 
GCI 

Coarse 33,579 74798 GCIfine=0.17% 

GCImedium=0.09% 

 

11.82 GCIfine=0.05% 

GCImedium=0.36% 

 

Medium 68,775 74843 12.03 

Fine 137,448 74923 12.06 

NACA0009 (unsteady) Elements Cl GCI Cd GCI 

Coarse 2,737,026 0.6097 GCIfine=0.001% 

GCImedium=0.04% 

 

0.0143 GCIfine=0.8% 

GCImedium=3.7% 

 

Medium 5,487,038 0.6208 0.0130 

Fine 11,253,879 0.6206 0.0127 
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              (a)NACA0009(steady)                           (b) Hemi-spherical body 

   

  (c) Global mesh of NACA0009 (unsteady)     (d) Local mesh of NACA0009 (unsteady) 

Figure 4.2: Details of the mesh. Reproduced from [102]. 

4.3 Cavitation model Validation  

For attached cavitation, the experimental pressure coefficient, Cp, has been used to validate the 

numerical model, and the vapor volume fractions obtained with the original and the corrected Zwart 

and Singhal models have been compared for these two test cases. For case of NACA0009 hydrofoil 

at cavitation number σ=0.9, Figure 4.3 shows the experimental and the numerical Cp on the 

hydrofoil surface obtained with both the original and the corrected models. The corresponding vapor 

volume fraction distribution and the condensation rate distribution on the fluid domain are shown in 

Figures 4.4 and 4.5, respectively. These results indicate that the corrected cavitation models improve 

the accuracy of the pressure distribution at the closure region of the cavity and provides a relatively 

shorter cavity, as well as predicts a higher condensation rate. Moreover, when the cavitation number 

decreases to 0.8, analogues results have been obtained as presented in Figures 4.6 and 4.7. Therefore, 

the corrected models perform better than the original models because they predict a more agreeable 

results with the experiment. In addition, the performance of the original and corrected cavitation 

models is further evaluated for the hemi-spherical body. Figures 4.8 and 4.9 show the results at 

σ=0.5, and Figures 4.10 and 4.11 at σ=0.3. Similarly, it is confirmed again that the corrected models 

can predict a more accurate Cp distribution and a stronger adverse pressure gradient at the cavity 

closure region.  
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                    (a) Zwart                                            (b) Singhal 

Figure 4.3: Comparison between computed and measured Cp over NACA0009, σ=0.9. Reproduced from 

[102]. 

 

  

  

                 (a) Zwart                                                  (b) Singhal  

Figure 4.4: Vapor volume fraction distribution obtained by the original (top) and the corrected (bottom) 

cavitation model at σ = 0.9. Reproduced from [102]. 

 

 (a) Zwart                                               (b) Singhal 

Figure 4.5: Condensation rate distribution obtained by the original (top) and the modified (bottom) 

cavitation model at σ = 0.9. Reproduced from [102]. 
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(a) Zwart                                                (b) Singhal 

Figure 4.6: Comparison between the computed and the measured Cp values on the NACA0009 at σ = 0.8. 

Reproduced from [102]. 

 

(a) Zwart                                      (b) Singhal 

Figure 4.7: Vapor volume fraction distribution obtained by the original (top) and the corrected (bottom) 

cavitation model at σ = 0.8. Reproduced from [102]. 

 

(a) Zwart                                                 (b) Singhal 

Figure 4.8: Comparison between the computed and the measured Cp values over the hemi-spherical body at 

σ = 0.5. Reproduced from [102]. 
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(a) Zwart                                  (b) Singhal 

Figure 4.9: Vapor volume fraction distribution obtained by the original (top) and the corrected (bottom) 

cavitation model at σ = 0.5. Reproduced from [102]. 

 

  (a) Zwart                                           (b) Singhal 

Figure 4.10: Comparison between the computed and the measured Cp values on the hemi-spherical body at σ 

= 0.3. Reproduced from [102]. 

 

(a) Zwart                                               (b) Singhal 

Figure 4.11: Vapor volume fraction distribution obtained by original (top) and modified (bottom) cavitation 

model, σ = 0.3. Reproduced from [102]. 
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For test case of unsteady cavitation pattern, the shedding frequency and the cavity morphology 

predicted by the original and by the corrected model have been compared with the experimental 

results. Figure 4.12 compares the cloud cavitation evolutions during one shedding period, and Table 

4.3 lists the predicted shedding frequency and the corresponding deviations. Generally speaking, 

these two corrected model improve the prediction to different extents especially for the Zwart model. 

In conclusion, the corrected Zwart model predicts a closer shedding frequency to the experiment, 

showing a significant improvement with a reduction of the deviation from 18.1% to 12.9%, and it 

also shows a clear reduction of the maximum cavity length and can better provide the morphology 

and evolution of the cavitation detachment. 

 

 

   

Figure 4.12: Comparison of experimental and numerical cloud cavitation evolutions during one shedding 

period using the original and the modified cavitation models. The simulation results show an isosurface of α 

= 0.1. Reproduced from [102]. 

Table 4.3. Numerical and experimental shedding frequencies, deviations and improvements of modified 

models. Reproduced from [102]. 

Cavitation Model fnum [Hz] fexp [Hz] Deviation [%] Improvement [%] 

Original Zwart 98.3 120 18.1 
5.2 

Modified Zwart 104.5 120 12.9 

Original Singhal 101.7 120 15.3 
0.9 

Modified Singhal 102.7 120 14.4 

 

t1 

 

t2 

 

t3 

 

t4 

 

(a) Experiment    (b) Original Zwart  (c) Modified Zwart   (d) Original Singhal (e) Modified Singhal 
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Chapter 5 Numerical prediction of Cavitation Erosion  

A numerical investigation of the erosion aggressiveness of leading edge unsteady cloud cavitation 

based on the energy balance approach has been carried out to ascertain the main damaging 

mechanisms and the influence of the free stream flow velocity. A systematic approach has permitted 

the determination of the influence of several parameters on the spatial and temporal distribution of 

the erosion results comprising the selection of the cavitation model and the collapse driving pressure. 

In particular, the Zwart, Sauer and Kunz cavitation models have been compared as well as the use 

of instantaneous versus average pressure values. The numerical results have been compared against 

a series of experimental results obtained from pitting tests on copper and stainless steel specimens. 

Several cavitation erosion indicators have been defined and their accuracy to predict the 

experimental observations has been assessed and confirmed when using a material-dependent 

damaging threshold level. In summary, the use of the average pressure levels during a sufficient 

number of simulated shedding cycles combined with the Sauer cavitation model are the 

recommended parameters to achieve reliable results that reproduce the main erosion mechanisms 

found in cloud cavitation. Moreover, the proposed erosion indicators follow a power law as a 

function of the free stream flow velocity with exponents ranging from 3 to 5 depending on their 

definition. 

The complete content of this chapter can be found in the paper entitled “Numerical Simulation of 

Cavitation Erosion Aggressiveness Induced by Unsteady Cloud Cavitation” and published in 2020 

in the open access journal “Applied Sciences” with an Impact Factor of 2.47 (second quartile 2) 

[103] which can be found in the Annex B of this thesis report. 
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Chapter 6 Conclusions and outlook 

6.1 Conclusions 

The present investigation aimed to accurately capture numerically the unsteady cavitation dynamic 

behavior with an economical computational cost by putting an emphasis on the cavity shedding 

frequency and its associated erosion intensity. Summing up all the investigations conducted in this 

thesis, the following conclusions have been obtained: 

 Regarding the best turbulence model and configuration set-ups, three widely used eddy-

viscosity models have been employed to simulate unsteady cavitation under different 

operating conditions, and the results show that the numerical results are more sensitive to 

near wall mesh resolution than to time step, number of iterations and number of mesh 

elements. For the SST model, an average y+ equal to 2 must be used, meanwhile for the k-ε 

and RNG models a coarser grid resolution is sufficient. And generally speaking, the SST 

model can predict more accurate results than the standard k- and the RNG models when 

the Reboud’s correction is used. 

 Regarding the improvement of the cavitation models, the influence of the empirical 

constants on the cavity dynamics has been analyzed first. It has been found that increasing 

the vaporization coefficient Fv can predict larger amounts of vapor inside the cavities with 

thinner interfaces between vapor and water phases, and that increasing the condensation 

coefficient Fc can capture the instantaneous collapse of the shed cloud and the induced 

pressure pulse on the hydrofoil surface. The optimal range of empirical coefficients is from 

300 to 500 for Fv, and from 0.08 to 0.1 for Fc, based on a response surface optimization 

method. Secondly, two cavitation models (Zwart and Singhal) were corrected by 

considering the second order term in the Rayleigh-Plesset equation, and the performance of 

corrected model was evaluated by comparing with the original version. For modelling the 

attached cavitation around a NACA0009 hydrofoil and a hemispherical body, the corrected 

models predict better the pressure gradients at the closure region of the attached cavity. 

Moreover, the predicted cavity length is reduced which is closer to the experimental 

observations. For simulating unsteady cavitation around a NACA0009 hydrofoil, the 

corrected model improves the experimentally observed shedding frequency as well as the 

morphology and evolution of the cavitation detachment, especially for corrected Zwart 

models. All of these demonstrated that the original models underestimate the mass transfer 

rate in the vapor condensation region and, therefore, the corrected models improve the 

performance of the simulation.  

 Regarding the prediction of cavitation erosion of unsteady cloud cavitation on a 2D 
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hydrofoil, an erosion model based on an energy balance approach has been implemented 

and the influence of the driving pressure and of the cavitation model on the erosion intensity 

and erosion distribution has been assessed. It has been found that the selection of the driving 

pressure to estimate the power of the cavity collapse has a significant effect on the prediction 

of the erosion power and the use of the average pressure gives more similar results to the 

experiment than the use of the instantaneous pressure. The selection of the cavitation models 

influences significantly the power loaded on the hydrofoil surface both in terms of 

magnitude and spatial distribution along the chord. For the cases considered in the present 

study, the Sauer model performs better than the Kunz and Zwart ones. In addition, two main 

erosion mechanisms have been established. One is induced by the high frequency of low-

intensity collapses taking place at the closure region of the main sheet cavity attached to the 

hydrofoil surface. The other one is induced by the low frequency and high intensity collapses 

of the shed cloud cavities. Finally, the dependency of erosion intensity on free stream 

velocity has been found out by taking into account the collapse efficiency and the shedding 

frequency and different power laws have been obtained. More specifically, the effective 

power load law grows with an exponent of 4, and the erosion aggressiveness per unit time 

grows with an exponent of 5. 

 

6.2 Outlook 

There are some further investigations needed to do in the near future as a continuation of the present 

work. 

 Since the current investigations are only valid for cavitating hydrofoils in high speed water 

tunnels, the next step would be to simulate more complex cavitation phenomena in actual 

hydraulic machines such as turbines and pumps, and to compare the erosion simulation 

results with the available experiment results. 

 Consider the use and validation of the second generation of the URANS model [104], which 

is not highly dependent on the mesh resolution but can provide more detailed and realistic 

flow information. For that, try to use such model to simulate a cavitation flow with similar 

precision than the DES or LES and confirm its lower computational cost.  

 Although the erosion method employed in the present study can well predict the erosion 

distribution, it provides a quantification of the erosive power which is independent of the 

material properties. Hence, in the next step, this is necessary to find a way to build the 

relationship between the cavitation aggressiveness and the actual material erosion. For 

example, this could be addressed by using the compressible approach to predict the pressure 

loaded on the hydrofoil surface and relate it to actual damage.  
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