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It would appear that we have reached the limits

of what it is possible to achieve with computer technology,

although one should be careful with such statements,

as they tend to sound pretty silly in 5 years.

John von Neumann





A B S T R A C T

Modern Data Centers are complex systems that need management. As distributed computing systems

grow, and workloads benefit from such computing environments, the management of such systems

increases in complexity. The complexity of resource usage and power consumption on cloud-based

applications makes the understanding of application behavior through expert examination difficult.

The difficulty increases when applications are seen as "black boxes", where only external monitoring

can be retrieved. Furthermore, given the different amount of scenarios and applications, automation

is required. To deal with such complexity, Machine Learning methods become crucial to facilitate

tasks that can be automatically learned from data.

This thesis demonstrates that learning algorithms allow relevant optimizations in Data Center

environments, where applications are externally monitored and careful resource management is

paramount to efficiently use computing resources. We propose to demonstrate this thesis in three

areas that orbit around resource management in server environments.

Firstly, this thesis proposes an unsupervised learning technique to learn high level representations

from workload traces. Such technique provides a fast methodology to characterize workloads as

sequences of abstract phases. The learned phase representation is validated on a variety of datasets

and used in an auto-scaling task where we show that it can be applied in a production environment,

achieving better performance than other state-of-the-art techniques.

Secondly, this thesis proposes a neural architecture, based on Sequence-to-Sequence models, that

provides the expected resource usage of applications sharing hardware resources. The proposed

technique provides resource managers the ability to predict resource usage over time as well as the

completion time of the running applications. The technique provides lower error predicting usage

when compared with other popular Machine Learning methods.

Thirdly, this thesis proposes a technique for auto-tuning Big Data workloads from the available

tunable parameters. The proposed technique gathers information from the logs of an application

generating a feature descriptor that captures relevant information from the application to be tuned.

Using this information we demonstrate that performance models can generalize up to a 34% better

when compared with other state-of-the-art solutions. Moreover, the search time to find a suitable

solution can be drastically reduced, with up to a 12x speedup and almost equal quality results as

modern solutions.

These results prove that modern learning algorithms, with the right feature information, provide

powerful techniques to manage resource allocation for applications running in cloud environments.
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1
I N T R O D U C T I O N

1.1 thesis context

Internet services during the past two decades have grown in a steady step. The appearance

of smartphones, Social Network platforms and other online communities has drastically

increased the amount of data stored from users. The low manufacturing costs of single

board computers have contributed to the expansion of the Internet of Things (IoT) which has

populated the world with devices that continuously generate telemetric and sensor data.

The rise in data generation has changed the processing needs required by companies

that want to extract knowledge or build products based on available data. Nowadays, big

Information Technology (IT) companies offer computing and storage services which provide

scalable hardware infrastructure capable to meet the current processing requirements of

custormers. Therefore, efficient management of hardware and software has become a

paramount concern to IT companies.

Service providers usually offer hardware resources subject to a Quality of Service (QoS)

metric that ensures users a fair (and minimum) quality from the rented hardware resources.

On the one hand, Cloud providers want to keep costs as low as possible, as long as the

QoS is maintained. On the other hand, users want the most performance from the payed

resources. As a consequence, the intelligent management of hardware and software becomes

a key component of Data Centers to balance the cost and the quality provided to customers.

In order to increase the efficiency of hardware and software, automatic management of

resources plays a key role in the control of many Cloud provider solutions. Nevertheless,

the problem of mapping workloads on top of the hardware resources, with the goal of

maximizing the performance of workloads as well as the utilization of resources, is a hard

problem. A common approach has been to design heuristics that adapt to different contexts,

providing solutions for a given workload mix and underlying infrastructure, but which

cannot be easily generalized. When the workload mix is completely heterogeneous, the

problem becomes even more challenging and needs to be automated.

1



2 introduction

The difficulties that engineers have to face in order to efficiently manage large-scale

distributed computing systems have created the field of Autonomic Computing. This field

now studies new methodologies to bring automation into the management of Data Centers.

Some of the areas of research include: detecting and solving system failures, automating the

deployment and scaling of services and applications on distributed systems and providing

automatic configurations to efficiently run distributed software. In order to build such

mechanisms, many of the solutions proposed in the area of Autonomic Computing use

Machine Learning (ML) and Soft Computing (SC) techniques.

Machine Learning provides a methodology to build algorithms that learn from data in

three types of scenarios. Supervised ML algorithms provide learnable functions that can

make predictions of a vector of target variables from input observations. Unsupervised ML

algorithms provide a mechanism to model the probability of a set of observations from a

system or a mechanism to find interesting groups in the data. Reinforcement ML algorithms

provide learnable mechanisms that reward agents depending on the actions they take in a

given environment. These families of algorithms allow the creation of useful tools that can be

automatically customised (and updated) to solve a particular task. In the Cloud environment,

ML algorithms allow many useful applications to manage distributed systems. For example,

automatic backup mechanisms of hard drives have been build using oracles that predict

which drives are likely to fail. Besides, more efficient scaling mechanisms are also possible

using ML models that can guess future resource demands, allowing the automatic hardware

reconfiguration needed to maintain the QoS agreements of online services.

Soft Computing is an area of research that focuses on providing algorithms to tackle

problems where imprecision, partial truth and uncertainty make classical exact solutions in-

feasible or impractical. This area of research studies, among many other topics, approximate

search algorithms with the capability to find good solutions fast in very large search spaces.

This type of search methods is crucial for several data centric problems such as workload

placement and hyper parameter tuning of distributed applications.

1.2 motivations and research challenges

Data Centers and Cloud providers provide computing resources to users that submit jobs

to a computing cluster. When a job is submitted a resource manager decides how long the

job waits in a queue until it is scheduled and executed. The time spent in the queue, or

wait time, depends on several factors including job priority, current load on the system,

and availability of requested resources. Once the program is executed it uses a specific

budget of assigned hardware resources which have to be either determined by the user or

the hardware provider. Managing this mapping from software to hardware is not an easy
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task since there are many factors that impact on the decision. Moreover, resource utilization

during the lifetime of the job represents the actual useful work that has been performed.

In a typical production environment, many different jobs are submitted. These jobs can

be characterized by features containing: number of processors requested, priority level,

estimated runtime, parallel or distributed execution and specific I/O requirements. The total

number of possible combinations of those features becomes easily unmanageable. In order

to provide an adequate service for such variety of software some system administrators

create different types of queues, each with a different priority level and available hardware

resources.

Job scheduling and container autoscaling are relevant but difficult tasks because they

might depend on a lot of variables. Both tasks are important because they are needed to

efficiently use the hardware resources. Morover, they are difficult because they involve many

topics, such as: job priority, expected execution time, resource access permission, resource

availability and minimum hardware resources to reach a particular QoS are variables that

can impact both scheduling and autoscaling decisions.

In this environment, workloads are usually seen as black boxes. Hardware providers

do not have access to the source code of the applications that are remotely executed.

Nevertheless, they have access to the metrics produced by the machines in their cluster.

Such metrics, ofter referred to as execution traces, contain valuable information that can be

stored and reused. Reusing historical executions to produce automatic decision mechanism

has been a priority in Autonomic Computing area. The high variety of workloads and the

temporal dimensionality of the data makes this a difficult task. This complexity brings us to

the first research challenge:

• Research Challenge 1: We want to extract behavioural patterns from workload traces

automatically. In particular, we would like to find simpler workload trace representa-

tions of running applications to faciliate automatic decision making.

When a cluster is under heavy load, the capability to provide a fair portion of the cluster

as resources to each user is important. This capability can be provided by using the fair-share

strategy, in which the scheduler collects historical data from previously executed jobs and

uses the historical data to dynamically adjust the priority of the jobs in the queue, as well as

any hardware resource sharing among workloads. Using historical data the scheduler can

dynamically make priority changes to ensure that resources are fairly distributed among

users. Nevertheless, to efficiently use the finite hardware resources available, resource

sharing is needed. When co-executions occur, resource managers need to decide which

applications can be executed sharing resources. In order to decide which applications can

be co-scheduled resource managers need to estimate the impact of the decision. Some

applications might interfere a lot (or even crash) while others can be executed seamlessly

sharing resources. This brings us to our second research challenge:
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• Research Challenge 2: We want to estimate the performance of applications sharing

resources in order to select workloads that do not penalise each other in excess.

The previous two research challenges emphasize tasks that are based on managing

software provided as a black box. This means that software is not tunable by the resource

manager. In some scenarios, applications can be adapted through tunable software properties.

Tunable properties allow software to be adjusted to different data sizes and hardware

architectures. Big Data software that requires the scheduling of parallel jobs executed

on top of frameworks such as Hadoop or Spark can be adapted through configuration

files. These frameworks run parallel jobs that are made up of multiple subtasks. Each

subtask is assigned to a unique compute node during execution. During execution nodes

constantly communicate among themselves. The manner in which the subtasks are assigned

to processors depends on the tunable properties of the software, the type of workload and

the size of the data. In order to deal with the great variety of workload types, Big Data

frameworks for parallel workloads, such as Hadoop or Spark, provide users hundreds of

tunable parameters to adapt the wide variety of applications that benefit from massively

parallel hardware resources. The huge number of possible parameter combinations makes

this a hard task.

• Research Challenge 3: We want an efficient way to auto tune Big Data workloads that

can improve the time-to-solution of current methodologies.

1.3 thesis statement

Many of the current solutions for data centric problems proposed by the Autonomic Com-

puting community are based on classical ML and SC techniques, which have some limitations.

Nevertheless, during the past five years there has been a resurgence of connectionist mod-

els, already studied by the ML community since the 80s, that have materialised into new

neural network models that provide previously unheard capabilities, creating the Deep

Learning (DL) community. Most of these new learning methods have been applied to solve

many computer vision and Natural Language Processing (NLP) tasks with impressive results.

Nevertheless, few revolutionary applications of such methods can be found in the data

centric community.

This thesis wants to demonstrate that it is possible to characterize application behaviour,

estimate workload colocation interference and efficiently asses the quality of software

dependable parameters of applications seen as black boxes using learning algorithms.
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To prove this statement we develop solutions using ML and DL algorithms that improve

state of the art solutions on the following problems: workload characterisation, workload

resource estimation under co-scheduling and automatic hyper-parameter selection for

distributed workloads.

The three problems studied in this thesis are paramount for the efficient use of hardware

and software resources in data centric environments. Workload characterisation is important

because it provides a building block to understand the hardware needs of an application

and the different phases that might occur during the job execution. Workload resource

estimation under co-scheduling environments is paramount to efficiently manage shared

hardware resources. Hyper-parameter selection is crucial for the efficient use of distributed

workloads based on technologies such as Spark, which offer great customisation capabilities

at the expense of managing many tunable parameters.

1.4 thesis contributions

The work presented in this thesis is based upon three contributions that revolve around

improving data centric management techniques. Each contribution targets a particular

research challenge. The three main contributions proposed in this thesis can be summarised

as follows:

C1: Create a novel methodology to learn a low dimensional descriptor used to characterize

workload behaviour over time.

C2: Propose a new technique to predict resource estimation over time in co-scheduling

scenarios using a neural network architecture based on sequence-to-sequence models.

C3: Provide a fast time-to-solution auto-tuning technique that improves current machine

learning methodologies through a low level characterisation of Big Data workloads

mined from logs of the application.

These three contributions, which can be considered partially independent of each other,

target a more general goal: provide resource managers new capabilities to improve current

Data Center decision making systems. The rest of this chapter provides an overview of each

of the previous contributions.

1.4.1 Workload phase characterization through machine learning

The first contribution of this thesis is a study that aims to build a learning algorithm that

can find different behaviour phases in workload traces. In Cloud environments applications

are often provided as black-boxes. Existing literature has studied the behavior of applications
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working on the assumption that different but recurrent behaviours, also known as phases,

occur during the course of the execution. This phases can be used to describe an application

(as a composition of phases) which can be used to schedule by means of decomposing

application into phases instead of looking at the complete runtime. Many state of the

art techniques propose invasive techniques that place phase markers in the applications

source code, but this methodology provides more work to programmers and it not suitable

for environments where applications are provided as black-boxes. To solve this issue we

developed a pipeline based on a Conditional Restricted Boltzmann Machine (CRBM) that

models slices of workload traces with the main goal to build a simpler representation

for the workload traces that captures certain learned resource usage patterns. This new

representation provides a lower dimensional descriptor of the workload trace that can be

used to extract job execution phases over time.

Results showed that the proposed solution can find meaningful phases in the workload

traces. Our methodology provides a mechanism to reduce the telemetry data from N

features of the input to a single class label per time step. A thorough analysis of the

application phases shows that different behaviours occur under different class labels, even

if the provided labels are not easy to interpret, they provide a mechanism to drastically

reduce the feature space which should help avoiding the curse of the dimensionality on

any machine learning model that is applied on the data that is generated by our solution.

The curse of the dimensionality states that, as the number of feature dimensions grow,

the amount of data needed to make machine learning models generalize accurately grows

exponentially. The goal of this contribution is to facilitate future scheduler policies and

learning methods that can be build on top of the provided features. This work is inspired in

previous attempts to use standard Restricted Boltzmann Machine (RBM) models to build

features that facilitate learning over them, instead of using the original input features

directly.

The work carried out in this contribution produced the following publication:

[63] David Buchaca Prats, Josep Lluís Berral, and David Carrera. Automatic Gen-

eration of Workload Profiles Using Unsupervised Learning Pipelines. In 2018 IEEE

Transactions on Network and Service Management (TSNM), pp. 142-155. doi: 10.1109/

TNSM.2017.2786047.

After validating the phase mechanism in the publication [63], we have used the presented

descriptor to build an auto-scaling mechanism for ML workloads. Our system uses a Multi

Layer Perceptron (MLP) that takes as input a time-window of past phase ids and learns to

predict the following phase values. We use this model to predict phase transitions from

containers running different types of workloads. The MLP allows us to foresee sudden

phase changes ahead of time, which allow us to build an auto-scaling policy, based on
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the predictions of the MLP, to resize the container dynamically according to the phase

predictions. This work has produced the following publication:

David Buchaca Prats, Josep Lluís Berral, Chen Wang, Alaa Youssef. Proactive Con-

tainer Auto-scaling for Cloud Native Machine Learning Services. In 2020 IEEE Cloud

1.4.2 Sequence-to-Sequence models for resource estimation over time under co-scheduling scenarios

The second contribution of this thesis studies the use of Recurrent Neural Network (RNN)

models to provide resource estimation over time when two applications are co-located. The

motivation for this work is to be able to generate information that is currently not being

provided to schedulers: how applications might interact over time.

Current ML techniques for resource estimation of co-located applications are based on

extracting features from two applications and predicting a single point estimate. Given two

applications a1,a2 and a model h, current state of the art works use machine learning models

that provide as output a single vector h(a1,a2) ∈ Rn. This vector captures information

about the n estimated resources and contains the expected resource estimation for the

application pair. Therefore, this type of modelling does not provide any information about

how resources are required through time, making the scheduler unaware of possible phase

change requirements during the execution of an application. To improve upon this setting

we approach this problem differently. Our goal is to build a system capable to predict t

vectors that estimate the resource usage demands over time. That is, we want a model

h such that it produces h(a1,a2) ∈ Rn ×Rt. We adapt a Sequence-to-Sequence model

with some peculiarities that arise in our use case. A relevant problem that arises when

predicting resources over time is finding how many vectors the Sequence-to-Sequence model

needs to generate. To do this a stopping criteria is needed. In order to build a stopping

criteria to decide the length of the output signal, we investigated different mechanisms and

proposed a continuous feature that provides better quality results than other State of the

Art approaches. With this work, resource managers can receive extra information that is

currently not generated which would provide more knowledge to better assign hardware

resources.

Results showed that the proposed method can predict resource usage over time, even

when the output trace is longer than the input traces because there is a high competition of

resources. In such cases, classical machine learning regression techniques are not appropriate

because the output length is not known a-priori. Therefore, standard regression techniques

that cannot generate a sequence of arbitrary length, cannot be easily applied in this scenario.

Our method is capable to generate an output trace of unbounded length that we need to

stop using a heuristic.
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The work carried out in this contribution has been published in:

[12] David Buchaca Prats, Joan Marcual, Josep LLuís Berral, and David Carrera.

Sequence-to-sequence models for workload interference prediction on batch processing

datacenters. In: 2020 Future Generation Computer Systems 13 , pp. 1-13. issn: 0167739X.

doi: 10.1016/ j.future.2020.03.058.

1.4.3 Fast time-to-solution big data workload auto-tuning with reusable machine learning models

The third contribution of this dissertation studies how to build an auto-tuning system

for Big Data Frameworks using reusable Machine Learning performance models. The

motivation for this work is improve current auto-tuning systems providing a mechanism for

reusing models across different workloads. Most state of the art solutions for tuning Big

Data workloads are build using model based search techniques. Such solutions are build

using perfomance models that receive as input a configuration of hyper-parameters and

predict as output a variable that the user wants to optimize (such as the execution time of

the application). Given a search algorithm and an oracle, a model based search method uses

the predictions of the oracle in order to asses the quality of the examples provided by the

search mechanism. One of the main difficulties with this type of systems is the fact that they

are workload specific. In order to be able to find a configuration for a workload a model

is trained specifically for that application and then it is used to perform the search. This

involves a lot of time that is "wasted" during learning.

In order to improve the previously mentioned issues some model based search solutions

include other information as input to the oracle. Information such as an application id or

the dataset size that the program needs to process have been shown to improve results. This

type of information allows oracles to be reused for multiple dataset sizes and for a variety of

applications. Nevertheless, once a new application is presented to the system, a new feature

has to be added and the model needs to be retrained for the new application. To avoid this

issues we propose to build a feature descriptor based on low level features found in the

logs of the application. The logs of the application contain information describing low level

metrics as well as a description of how the computation is distributed in tasks. Using all

this information we can build a vector that characterizes the workload and can be used as

an input to the oracle, to condition the predictions on the type of workload that we aim to

optimize. We test our methodology using Spark, which is one of the most popular Big Data

frameworks.

Results show that, the feature descriptor we create enhances the learning algorithms

during train and test predictions. Moreover, compared to other search based state of the
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art solutions, such as Bayesian Optimization (BO), our methodology provides faster time-to-

solution while using less resources with a similar quality in the final results.

The work carried out in this third contribution has produced the following accepted

publication (still not published):

David Buchaca Prats, Felipe Portella, Carlos Costa, Josep LLuís Berral. You Only Run

Once: Spark Auto-tuning from a single run. Submitted to: IEEE Transactions on Network

and Service Management (TSNM)

1.5 document outline

The remainder of this thesis is organized as follows:

Chapter 2 provides some Background in relevant areas and techniques relevant to this

thesis: Conditional Restricted Boltzmann Machines, Recurrent Neural Networks, Sequence-

to-Sequence and Bayesian Optimization.

Chapter 3 provides related work on the topics discussed in this dissertation: workload

modelling, workload interference and resource estimation of co-scheduled applications and

workload auto-tuning.

Chapter 4 provides a description and evaluation of the first contribution used to automati-

cally generate a profile from an application resource trace using the hidden activations of a

Conditional Restricted Boltzmann machine.

Chapter 5 provides a description and evaluation of the second contribution used to predict

the resource usage of two co-located applications over time, as well as the overal execution

time of the co-scheduled pair.

Chapter 6 provides a description and evaluation of the third contribution used to improve the

time-to-solution of Big Data auto-tunning systems. This contribution is validated leveraging

features mined from the SparkEventLog generated by Spark workloads.

Chapter 7 presents conclusions the overall results that link the relevance of the different

contributions in the context of management of Data Centers. To finish the document, a brief

discussion of possible future works is included.





2
B A C K G R O U N D

2.1 conditional restricted boltzmann machine

Restricted Boltzmann Machine

A RBM [28] is a generative artificial neural network that can learn a probability distribution

from a set of input examples. An RBM is an example of an Energy-Based model (EBM) with

a particular type of energy function and a specific formula for computing probabilities

using the energy. As their name suggest, EBM models use an energy function to model the

dependencies between variables in the model. This is done associating a scalar energy to

each configuration of the variables in the model.

The RBM uses a set of visible variables V to present information to the model and a set of

latent variables H to capture dependencies in the different input regions. Both V and H can

have any number of variables which we will denote with nv and nh respectively. Figure 2.1

shows two diagrams of an RBM.

RBM
h

v
W

H

V

Figure 2.1: RBM diagrams: all connections between variables drawn (left), block based diagram (right).

The RBM is characterized by an energy function E(v,h) which measures the agreement

between the visible and hidden vectors of a configuration pair (v,h). The energy function

can be adjusted to match different characteristics of the input data. Equations (2.1a) and

(2.1b) show the most common energy functions. In the case of binary input data most works

use (2.1a). Nevertheless, for real valued data (2.1b) is preferred. Note that both equations

are defined using the bias vector of the input variables bv ∈ Rnv , the bias vector of the

latent variables bh ∈ Rnh and the weight matrix W ∈ Rnh×nv . With these three quantities we

11
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define θRBM := {bv, bh,W } as the set of learnable parameters of the model. In the case of

real valued data σ is usually left as a vector of ones as explained in [77].

E(v,h) = −vTbv − hTbh − hTWv (2.1a)

E(v,h) = −1
2

∥∥∥∥v − bv

σ

∥∥∥∥2

− hTbh − hTW
v

σ
(2.1b)

Using the previous energy function the RBM defines the probability of a configuration

pair (v,h) with the following formula:

P(v,h) =
exp (−E(v,h))

∑(ṽ,h̃) exp(−E(ṽ, h̃))
=

exp (−E(v,h))
Z

(2.2)

where Z is a normalization constant. Note that marginalizing over the hidden units in

Equation (2.2) we get the probability of a visible configuration. That is:

P(v) = ∑
h

P(v,h) (2.3)

Training Restricted Boltzmann Machine

Learning using RBM models consist on finding a set of parameters {bv, bh,W } that provide

high probability to the training data. Let us assume we have a training set X containing M

examples. Learning consist on finding a good configuration of the model parameters that

maximizes the probability of the data. Maximizing the probability of the training data can be

represented as maximizing the likelihood of the M training examples, where the likelihood

is a function that computes the product of the probabilities of all the training examples. Note

that maximizing the likelihood is equivalent to minimizing the negative likelihood function.

Therefore, learning can achieved using a Stochastic Gradient Descent (SGD) algorithm on

the average negative log-likelihood of the data:

− 1
M

l(θ;X) := − 1
M

log

(
M

∏
m=1

P(x(m);θ)

)
= − 1

M

M

∑
m=1

log
(

P(x(m);θ)
)

(2.4)

The SGD algorithm starts with a random guess of all parameters which are iteratively

updated using ∂
∂θ log(P(x(m);θ)), making small updates for each parameter θ. It can be
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shown [29] that the expression of this derivative can be written as a subtraction of two

terms:

∂

∂θ

(
−P(x(m);θ)

)
= Eh

[
∂

∂θ
E(x(m),h)

]
−Ex,h

[
∂

∂θ
E(x,h)

]
(2.5)

The first term, usually referred to as the positive phase, can be computed efficiently. The

second term, usually referred to as the negative phase, is an expectation over the visible and

hidden units, which becomes intractable if the number of hidden or visible units is big. To

overcome the computational complexity of computing the negative phase [28] proposed the

Contrastive Divergence (CD-k) algorithm.

Contrastive Divergence

The CD-k algorithm [28] takes k steps of Gibbs Sampling to generate a sample x̃. This process

starts clamping a training example x and sampling hidden and visible units alternatively

k times. This process generates x[1], . . . ,x[k] vectors, and the last one is defined to be the

sample x̃ that is used as a "representative" for the negative phase. We call it "representative"

because it represents the expectation over all possible visible configurations. That is x̃ := x[k].

Persistent Contrastive Divergence

The Persistent Contrastive Divergence Algorithm (PCD-k) algorithm [80] consist on a small

modification of the CD-k algorithm. PCD-k takes k steps of Gibbs Sampling to generate x̃, as

CD-k does. Instead of starting the Gibbs Chain in a training example x, the process reuses

the last previously sampled visible vector x[k] to start the sampling process. The reuse of the

vector x[k] gave rise to the name "persistent" because the chain "persists" over SGD updates.

Note that this process generates a sequence of samples x̃[1], . . . , x̃[k], which start from a

visible clamped vector x̃. After every SGD update the persistent visible vector is updated.

That is x̃ := x̃[k].

2.1.1 Conditional Restricted Boltzmann Machine

A CRBM [77] is a RBM with Gaussian visible units and binary hidden units with some extra

connections used to model temporal dependencies. To model such dependencies, the CRBM

keeps track of the n previous visible vectors, which are kept in a sliding window Hisn. We

will call Hisn the history of the CRBM. The CRBM was designed to learn sequential patterns

such as human body motion [77] or pidgeon movement [93] over time.
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The parameters of the CRBM are θ = {W ,A,D, c, b}, where W ,A,D are matrices and c,

b are the vectors of biases for the visible and hidden units units, respectively. Let us assume

we have input vectors defined with nv features and we use nh hidden units in the CRBM .

Matrix W ∈ Rnh×nv models the connections between visible and hidden units, which is the

equivalent to the W matrix from a standard RBM . Note that A and D were not present in

an RBM . Matrix A ∈ Rnv×(nv·n) is the mapping from the history to the visible units. Matrix

D ∈ Rnh×(nv·n) is the mapping from the history to the hidden units.

Let us consider a multidimensional time-series v = (v1,v2,v3, . . . ) where vk ∈ Rnv . The

history for v at time t, denoted by Hisn
t , is defined as (vt−n, . . . ,vt−1) and contains the

previous n vectors from time t− 1 to t− n. Note that the definition of Hisn
t uses t to index

the n vectors inside the history. Given Hisn
t we can update Hisn

t+1 shifting the n vectors

from Hisn
t one unit to the left and adding a new vector in the last position. In other words,

at time t + 1, vector vt is pushed into the history while observation vt−n is popped out.

Therefore Hisn
t+1 is (vt−n−1, . . . ,vt). Notice again that such a mechanism needs the first n

observations of each time-series to have enough data to properly fill the history. Figure 2.2

shows a diagram of the CRBM.

WD

A... nv

n

vt

ht

vt�1vt�n

Figure 2.2: CRBM diagram with a history length of n time steps.

Given a vector v, we define the hidden activation h as the sigmoid of the incoming signal

from v and Hisn, weighted by W and D, respectively, and adding the bias of hidden units.

That is:

h(nh, 1) = σ
(
W(nh, nv) · v(nv, 1) +D(nh, nv·n) ·Hisn

(nv·n, 1) + b(nh, 1)

)
(2.6)

the subscripts in Eq. (2.6) indicate the dimensions of the different matrices and vectors.

For brevity, we will express this without subscripts as

h = σ (W · v +D ·Hisn + b)

Note that D defines a function from Rnv·n to Rnh and Hisn is expressed as a column

vector of length nv · n instead of a matrix of shape (nv, n).
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Training a CRBM is similar to training an RBM . We can use a SGD iterative algorithm to find

parameters that yield a low negative log-likelihood. A common method to find approximate

gradients of the loss with respect to the parameters is the CD-k algorithm. More details about

the fundamentals of CRBMs can be found in Taylor’s work [77].

2.2 learnable vector representations

Machine learning techniques that learn vector representations from raw data, sometimes

referred to as embeddings, have been successfully applied for a wide variety of tasks. Some

tasks include highly unrelated sources of data such as lattice-protein [83] or natural text [52].

Learning a vector representation is, in many cases, a preprocessing step to facilitate another

task. For example, the vector representation learned by Word2Vec [52] has been used to map

words to dense feature vectors to solve tasks such as Named Entity Recognition [38, 48].

We will briefly describe how Word2Vec works because it provides inspiration for learning

representations in a domain that shares the sequential nature of the multi-dimensional

time-series logs that we will use in Chapter 4.

Word2Vec uses a slight modification of a MLP with two hyper-parameters D ∈ N and

n ∈ N that can be tuned by the user. The first parameter D is the size of the vector

representation for the words, which corresponds to the number of neurons in the first

hidden layer. The second parameter n corresponds to the size of the sliding window used to

train the model. The objective of the learning task is to find a matrix W ∈ RD×V , where

V is the size of the vocabulary. In order to train the model, the text is mapped into a

tabular format using a sliding window over corpus that divides each sentence to a bunch of

sub-sentences of n words. The set of all the sub-sentences of size n is the training data for

Word2Vec. One approach to construct the train set consist on generating sub-sequences of n

consecutive words. Let us consider a sequence (w1, w2, w3, w4, w5) where each wi represents

a word. Let us assume n = 3. In this example, we could generate two training examples

(x(1), y(1)), (x(2), y(2)) constructed as follows:

(x(1), y(1)) = ((w1, w2, w3), w4)

(x(2), y(2)) = ((w2, w3, w4), w5)

In Word2Vec each word is mapped into an index, making the input of the model a fixed size

vector of V components. Let w2pV be a bijection that assigns each word in the vocabulary

to a unique integer in {1, . . . , V}. Given a word w ∈ V the one-hot representation of w

is defined as vw := (0, . . . , w2pV(w), . . . , 0) ∈ RV . This is the word representation used as

input to Word2Vec.

The learning process of Word2Vec consist on training the MLP to predict vwt given the

input words (vwt−n , . . . , vwt−1) across the training examples. After learning, the columns of
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W become the vector representations of the V words in the vocabulary. Since each column

in W is a vector of size D we say that this representation is an embedding φ : RV −→ RD

that maps V-dimensional vectors to D-dimensional vectors. This function is defined as

φ(vw) :=W [· , w2p(w)]. In order words, a word w that is assigned to position k (according

to w2p), is embedded to the k’th column of W .

Note that the previously defined process to generate training examples in Word2Vec

resembles the sliding window mechanism detailed in the previous Section 2.1.1. We could

interpret x(1) as His3
1. That is, the history of a CRBM placed at the first position of the training

example (w1, w2, w3, w4, w5) with length 3. In this example, w4 would correspond to the

visible vector of the CRBM. Nevertheless, there are important differences between these two

approaches: the words from which Word2Vec is learned are essentially categorical values

represented in a space of dimension V, whereas the CRBM is trained with real valued data.

2.3 recurrent neural networks

A RNN is a function that maps a sequence of input vectors into an output vector. Specifically,

the RNN takes a sequence x1:t, where each xj ∈ Rdin , and returns a single output vector

yt ∈ Rdout , depending on a set of parameters θ that need to be learned. Equation (2.7a)

denotes the output of the RNN at time t, while equation (2.7b) denotes the whole sequence

of outputs y1:n produced by applying (2.7a) at every time step and concatenating the output

results.

yt = RNN(x1:t;θ) (2.7a)

y1:n = RNN∗(x1:n;θ) (2.7b)

Output yt is used to predict relevant information about the problem at hand at time t. Since

we use the RNN to predict the expected resource demand of two concurrent applications at

time t, yt will be a vector containing the resources used by the two co-located applications.

In order to keep information from previously seen elements in sequences, RNNs have a

hidden state st that is updated at every time step. The hidden state influences the predictions

of the model over time. Although the hidden state is implicit in the equations (2.7a)

and (2.7b), we can make the state explicit by using the notation (yt, st) = RNN(xt, st−1;θ).

This indicates that the output yt has been computed through input xt and previous state

st−1. Figure 2.3 shows a diagram of an RNN.

Notice that while yt (the output at time t) is not affecting yt+1, the updated state st will

affect next state st+1. The initial state s0 is usually defined as a vector of zeros, unless some

other known contextual information can be provided for the model. The way in which

st is computed is what mostly differentiates models such as a standard RNN from other
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Figure 2.3: The computation of yt and st depends on st−1 and xt.

models such as a Gated Recurrent Unit (GRU) [17] or a Long Short-Term Memory (LSTM) [30].

Independently of how the hidden state is computed, RNNs are usually trained by an

optimization algorithm such as SGD which minimizes the difference between the predicted

outputs and the true outputs.

2.3.1 Gated Recurrent Units

GRU models are a type of RNN designed to avoid gradient vanishing problems [17]. The GRU

is one of the simplest RNNs employing a gating mechanism that enables the network to learn

which information needs to be kept over time and which can be forgotten. Equations (2.8a)

to (2.8d) define, at time t, the output state st, given the input data xt and the previous state

st−1. In the presented equations, σ is the sigmoid function. Note that both sigmoid and tanh

have a similar behaviour. The sigmoid function maps values from (−∞, ∞) to (0,1) and tanh

maps (−∞, ∞) to (-1,1).

zt = σ (W xzxt +W
szst−1 + b

z) (2.8a)

rt = σ (W xrxt +W
srst−1 + b

r) (2.8b)

s̃t = tanh (W xsxt +W
ss(rt � st−1) + b

s) (2.8c)

st = s̃t � zt + (1− zt)� st−1 (2.8d)

The output state st is controlled by two vectors: the update gate zt and the reset gate rt

defined in equations (2.8a) and (2.8b) respectively. Since both vectors come from applying a

sigmoid function, most of their components will be close to 0 or 1, controlling the information

passed by any element-wise multiplied vector. In extreme cases, when the gate components

are 0 or 1, the flow of information can be completely blocked or remain intact. For example,

if the reset gate rt is zero and the update zt is one, the previous hidden state st−1 does not

affect the next state st.
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Once the reset and update gates are computed, a proposed hidden state s̃t is created.

Equation (2.8c) defines the proposed hidden state s̃t at time t. Notice that s̃t depends on the

input vector and the information from the past hidden state st−1 that is allowed to pass by

the reset gate rt. Afterwards the true state st is computed as a combination of components

from the proposed state s̃t and the previous state st−1. Notice that in equation (2.8d) the

element-wise multiplications s̃t � zt and (1− zt)� st−1 can control which components of

the proposed state and the previous state are kept. The matrices W ∗∗ and vectors b∗ are the

weights adjusted during learning.

2.3.2 Sequence-to-sequence models

Most Neural Network (NN) architectures prior to [73] were designed for problems where the

goal is to map input vectors x to fixed size output vectors y. Sequence-to-sequence models

proposed an end-to-end trainable neural network architecture designed to tackle sequential

data. The architecture is based on two RNN models named encoder and decoder. The encoder

is designed to read the input sequence and produce a vector that is passed to the decoder.

Since the hidden state of the encoder is updated by reading all the information from the

input, it can be interpreted as a summary of the input sequence. The decoder reads the

encoded vector and produces a new sequence, but instead of initializing the hidden state of

the decoder with zeros, it is initialized to the last hidden state of the encoder RNN. These

types of models have been successfully applied to different tasks ranging from machine

translation, e.g [73][4], to image captioning [86], both of which share the sequential nature

(and challenges) of the monitored traces that we use in Chapter 5 of this dissertation.

2.3.3 Attention mechanism

The main drawback of the sequence-to-sequence approach explained in Section 2.3.2 is that the

whole input sequence is compressed into a single vector [4]. Since the amount of parameters

and the computational cost of running RNNs grows with the number of neurons in the

hidden state, it is not feasible to use hidden states sizes of the order of n · d, where n

is the number of elements in the sequence and d the number of features. Storing all the

information of a sequence into a single vector of fixed size is therefore a difficult task.

The work done by Bahdanau et al. [4] improves the architecture of the previously men-

tioned sequence-to-sequence model by furnishing the decoder with an attention mechanism.

At every step of the decoding process, this mechanism provides a vector containing informa-

tion about what might be relevant from the input sequence. Therefore, the decoding process

is not performed from a single vector as in [73], but from a vector generated at every time

step. This vector generated by the attention mechanism is called the context vector. In [4]
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authors showed that the performance of a sequentence-to-sequence model with attention

did not degrade for sequences of various lengths, whereas the same model without attention

gave far worse results for long sequences.

The decoding process for an RNN with attention works as follows: First, the encoder reads

the input sequence and generates the matrix E = RNN∗enc(x1:n;θ). Then, at time t, the

decoder RNNdec receives as input (in addition to any recurrent inputs) the concatenation of

two vectors: [ỹt−1; ct]. This concatenation provides extra information at the decoder at every

time step. The context vector presented in [4] is defined by equations (2.9a) to (2.9c).

µt[k] =vT tanh(WµE[·, k] + V µst−1 + b
µ) (2.9a)

αt =softmax(µt) (2.9b)

ct =Eαt (2.9c)

In (2.9c) the context vector is computed as a matrix vector product, which can be interpreted

as a weighted sum of the columns of E. The weights given to the columns of E are the

values of the attention vector αt. The vector αt from (2.9b) is called the attention vector

because it contains the weights used to "focus" (or attend) to different parts of E. This

vector is computed by normalizing (with a softmax function) the attention energy µt. The

attention energy is computed in (2.9a) by using a single MLP, with a single tanh layer. The

MLP predicts a single scalar which defines the k’th coordinate from µt. The MLP is applied at

every position k from 1 to n, where n is the number of columns of E, making µt,αt ∈ Rn×1.

Notice that the product of WµE[·, k] in (2.9a) does not depend on the time step t and

therefore it can be precomputed in advance.

One of the key properties of the presented attention mechanism is the ability to construct

a fixed-size vector ct of dimension d which does not depend on the length of the input

sequence. The vector µt has variable size because, for a given sequence of arbitrary length n,

vector µt is computed by applying (2.9a) for k ∈ {1, . . . , n}. Nevertheless, the product Eαt

is a vector of size d, where d is the number of rows in E because E ∈ Rd×n and therefore

ct = Eαt ∈ Rd×1. In many applications, E is generated using a bidirectional RNN which

simply concatenates the hidden states of two RNNs. One RNNf receives the input sequence

forwards (from x1 to xn) while the other RNNb receives the sequence backwards (from xn

to x1). The first publication that showed the advantage of the attention mechanism [4] uses

a matrix E that is created stacking RNN∗f (x1:n) on top of RNN∗b(xn:1).

2.4 bayesian optimization

BO [70] is an optimization technique based on constructing a Gaussian Process (GP) (the

infinite-dimensional analog of a multidimensional Gaussian) that is used to assess where

to sample points in the search space. Let us consider we want to optimize a function
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f : X −→ R where X is the set of hyper-parameters we want to search over. That is, we

want to find x∗ defined as follows:

x∗ := arg min
x∈X

f (x)

At a high level, BO creates an approximate function f̂ , called the surrogate of f , that

approximates f . This function is iteratively updated and it is created because f̂ is much

cheaper to evaluate than f 1. Once the surrogate is created, an acquisition function µ : X −→
R is used to generate new sample. This sample is used to update f̂ and the process is

repeated until an stopping condition is met. Note that this process depends on f̂ and µ

which we have not yet defined.

Now that we have a high level idea of the optimization process let us define it with detail.

The optimization algorithm starts generating a set of random examples Dn = {x1, . . . , xn}.
Then, f is used to evaluate the n points in Dn, generating f (Dn) = { f (x1), . . . , f (xn)}. The

point with lowest evaluation is set to be x∗, that is x∗ = arg minx∈Dn f (x). Once the points

are evaluated, the pair (Dn, f (Dn)) defines a supervised dataset that can be used to fit a

regression model that becomes f̂ . In the case of BO, the model that is fitted is a GP. We will

not go into the details of how a GP is fitted (for more details see [70] ) but it is sufficient to

state that it can be thought as a regression algorithm that can be used to make predictions.

Once the surrogate model f̂ is fitted for the first time, then µ(x) is used to generate

xn+1. There are many choices for µ. One of the most common choices for µ is the Expected

Improvement which is defined as:

µ(x) = max(0, f (x∗)− f (x))

The point xn+1 is selected to be the point with the highest µ(x). After generating xn+1,

the dataset Dn is updated as Dn+1 := Dn ∪ {xn+1} and f (Dn+1) = f (Dn) ∪ { f (xn+1)}.
Moreover, x∗ is also updated as x∗ = arg minx∈Dn+1 f (x). Since a new pair (xn+1, f (xn+1))

has been added to the dataset, the surrogate f̄ is updated to fit (xn+1, f (xn+1)). This process

is repeated until a termination criteria is found, storing as x∗ the point with highest f (x∗)

during the process.

1 Note that if f is fast to evaluate then the optimization process is meaningless and there is no need to create an

approximation.
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R E L AT E D W O R K

This chapter presents a summary of related work. It provides an overview on the three areas

in which this dissertation aims to bring contributions: workload phase characterization,

workload interference under co-scheduled scenarios and auto-tuning of Big Data workloads.

3.1 workload characterization and workload modelling

In order to feed the heuristics used to manage different aspects in modern Data Centers,

it is a common practice to use workload models [22, 49, 74]. This section presents many

methods attempting workload phase detection. In this dissertation we understand by phase

detection the ability to assign integer values to different parts of the execution of a program.

The goal is that the behaviour of applications under the same phase value (also referred

to as phase state) is similar in the parts of the execution that share the same phase value.

The general approach to found such phases is based on constructing a workload model.

A workload model is a mathematical model that finds the phases in the execution of an

application. In many cases, the workload model is also capable to predict future phase states

based on the current execution state of the running workload.

Many of the presented works employ source code analysis or marking. This involves

several drawbacks: such a process is tedious and specific to each source code; moreover,

most "cloud" scenarios do not have the source code of the running applications available,

since applications are submitted as black-boxes. One of the most crucial differences between

the work that we present on Chapter 4 and most of the related works found in this section

is that our methodology focuses on approaching the problem taking as input only resource

usage logs and sensors, which is a non-invasive approach that can be applied from the cloud

provider point of view.

Workload modelling has been widely explored in the literature to produce more efficient

resource management methods. Some existing works use simulations to generate models,

such as in [49], but these approaches are limited in their applicability in real-world scenarios

as they require complex simulations to generate workload patterns. Other works use a

21
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black-box approach based on the generation of workload profiles from previous executions,

as in [22], where the authors perform efficient workload collocation to save Data Center

energy consumption.

Works such as [67] allow user-provided phases that can be introduced by the programmer.

This work presents a tool for workload modelling and reproduction parallel applications in

which the user is responsible for building a task graph that is defined by a list of phases.

Phases model different behaviours (CPU, IO, LOOP, FORK, JOIN). The main objective of

this work is provide a tool for programmers to facilitate the understanding of parallel

applications.

The ability to make look-ahead predictions on expected phase changes over time is an

important control knob that can be leveraged for more accurate resource management as

shown in [62]. Phase detection has been extensively studied, using both supervised and

unsupervised techniques to find behavior changes in workloads.

The authors in [21] focus on applications phase detection and exploitation by means of

two approaches, top-down and bottom-up, also taking into account off-line and on-line

phase detection. In the top-down approach, execution is divided into candidate phases,

based on the high-level structure of the source code. The beginnings of long-running

subroutines and loops mark the potential boundaries between phases. Such an approach

requires compile-time instrumentation to insert marks at candidate phase boundaries. The

bottom-up approach starts with the behavior metrics observed during execution and looks

for recurring patterns and changes. The beginning of long-running subroutines and loops

marks the potential boundaries between phases. This can be done with unmodified program

binaries, yet is likely to be strengthened considerably by going back to the source code to

correlate observed phase transitions with certain groups of static instructions. However,

profile-driven strategies such as [21] require the insertion of markers into the code, which

implies being able to access the source code.

In [61], the authors present a method for learning to identify workload phases from

live traces using Support Vector Machine (SVM) to classify phases that have been manually

tagged from a Dataset of Storage traces. The ultimate goal of the paper is to trigger phase-

specific system tuning for disk IO time-series. The main drawback is that data must be

manually tagged, so in the scenario presented there the learning process would require

supervision from the application owner. The method is evaluated using accuracy across all

classes.

Some works, such as [57], make use of models that intrinsically model temporal depen-

dencies to model sequences. In this work a Hidden Markov Model (HMM) provides a phase

descriptor from the branch-instruction traces generated during the program executions. The

authors pre-process the branch-instruction traces by binning together discrete observations

from windows into a vector. The vector for a given window contains the number of times
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at each component that a particular symbol appeared. This process maps the windows

discrete observations into a single vector. The main drawback is that the original ordering

of symbols is lost at granularities smaller than the window size. Since this is unsupervised

learning, the data does not contain tags for phases, as the user specifies how many phases

are expected to be found as hidden states on the HMM. The evaluation is conducted by

measuring how much variance can be accounted for by the language and state probability

transition matrices, then computing the accuracy with respect to their "prior-model".

Finally, authors in [54] focus on on-line phase detection algorithms. Their work also uses

the source code to identify loops and repeated method invocations to build a baseline solu-

tion. It then compares the proposed phase modeling against the baseline solution. In order to

identify periods of repetition (and then phases), loops and method invocations are selected

from the source code and the entrance and exit of each repetition construct is recorded with

a unique identifier. Their unsupervised learning methodology uses the minimum phase

length as hyper-parameters, rather than determining the number of expected phases to be

found. They also require the source code for such analyses.

3.2 workload interference under co-scheduled scenarios

This section presents related work that is relevant for resource, runtime and interference

prediction. These topics share a similar goal to our work presented in Chapter 5 and are

closely related to each other. Moreover, they are still an active field of research with many

different applications.Two relevant applications are dynamic provisioning and job placement.

In dynamic provisioning scenarios the main goal is to predict whether there will be a change

in the workload trace that needs some hardware decision to take place (like provisioning

more nodes for a workload). In the case of job placement, resource predictions also play an

important role, since similar resource needs for different jobs resources may affect. Thus,

schedulers may aim for colocations of applications that do not degrade when trying to

maximize the use of available hardware.

Resource prediction related work

The main goal of oracles in workload provisioning scenarios is to guess accurately when

workloads will need more resources in the future. Works like [34, 39] use neural networks

that take as input resource usage in a given time window with the goal of predicting the

future resource requirements for the workloads. In [39] authors use differential evolution as

a means to train the models, whereas in [34] they use standard gradient based algorithms.

Recurrent neural networks have also been applied successfully in the context of workload

prediction behavior [56, 94]. In [94] RNNs are used to predict cloud resource requests
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of Google cloud CPU and RAM requests, results are compared against Autoregressive

Integrated Moving Average (ARIMA) forecasting, achieving lower error with the RNN. In

[56] an autoencoder is trained to learn a representation that is fed to a RNN that predicts

the number of requests (and the CPU time) of different workloads. These works use a RNN

for forecasting but they do not take into account the degradation of the applications under

co-scheduled scenarios or the challenges that appear when a full time-series is meant to be

predicted from more than a input trace signal.

Works like Sanz-Marco et al. [50] apply machine learning to forecast memory requirements

towards interference avoidance. They propose a mixture of expert approach to predict the

amount of memory needed by a Spark application, given the size of the input data. First

they create a dataset consisting of applications and Spark profiling features, captured from

hardware counters (CPI, number of interruptions, number of cache misses, etc). Then, after

using Principal Component Analysis (PCA) to reduce dimensionality, they use a mixture of

experts to learn a regression function that takes as input the dataset size of the application.

This function predicts the memory footprint of an application depending on the input

dataset. To build such a function, the application is first profiled with a small input 10%,

and it then passes through a K-Nearest Neighbor (KNN) in order to choose the most

representative expert. Finally, the application is run with different data sizes in order to tune

the function parameters to determine the best fit for this application. The main downside of

this work is that the application memory profile that is provided is a single point estimate

for a given input dataset. Therefore, applications that have distinct memory phases over

time, are represented as a single point that can provide a high over-provisioning of memory

for the full execution of the application.

Interference focus-related work

In [19] the authors present Paragon, an approach to predicting the interference between

two applications by modeling them using Singular Value Decomposition (SVD) and PQ-

reconstruction. In Paragon, the profiling across pairs is limited to the first minute due to time

constraints, without covering applications with different execution phases and behaviors

over time, although they acknowledge the problem by trying to mitigate it by labeling

nodes with unexpected changes in resource demands, then leave them running until jobs

are finished.

Heracles et al. [46] present an approach for interference mitigation in high priority appli-

cations through job isolation techniques. Among other tools, their solution uses cpugroups,

qDisc or the CAT technology [33] to properly ensure resource availability for specific jobs.

Such a solution tends to over- resource applications for solving the interference problem,
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thus becoming subject to machine under-utilization. Furthermore, the optimization method

poses an NP-hard solution, which makes it feasible for only a small number of jobs.

In a similar line, Mishra et al. [53] presented ESP, a predictive model for forecasting the

interference between two applications. ESP uses low level metrics as input for the model,

but instead of making predictions at sequence level they are held at a scalar level, both at the

input and the output, by means of aggregation metrics such as the average of the sequence.

Thus, given the average of two metrics, it predicts the average of the concurrent execution

in a two-step model as well; one for feature selection and the other for using a regression

model to retrieve the expected aggregated metric as output when both tasks are co-located.

Another interesting work dealing with protection against interference is Stay-Away by

[65]. The idea they propose starts by projecting the resource consumption of the applications

in a 2-dimensional space. They then predict how applications will move in that 2D space. If

applications are predicted to have collisions between applications in that space, they then

adopt a counteraction.

Run-time prediction-related work

In [1] authors show how performance models can be build efficiently sampling the space

of possible query mixes. This work uses specific features that capture the completion time

of a Query when running in a particular co-scheduled scenario. This is different than the

percentage completion features that we propose in our work, which are vectors that are

passed as input to the model with the goal of generating output percentage completion

vectors that depend on the input workloads.

In [88] a mixture of runtime prediction and interference is presented in two methods:

The first, aimed at calculating the cost of a Spark job run in isolation, is approximated by

modeling a function from the execution parameters (the number of data partitions, the

number of stages, the number of jobs per stage, etc.) to predict the total cost of the job.

The second, designed to predict the cost when two jobs run in concurrency by modeling

interference, is tackled by adapting the previous formulas. They run a small part of the

input data for each Spark stage combination to compute a ration of interference which is

used to create a performance model This work recognizes the different behavior across the

execution caused by the different phases of executions, but is limited to predefined Spark

phases that have to be provided by the user.

In [89] the authors present a Convolutional Neural Network (CNN) named PRIONN. The

model predicts run-time and IO (bytes read and total bytes written) of applications based

on the source code in the input script. This work maps job scripts code into image-like

representations. This is done using different methods. For example they use a one-hot

character transformation that converts each unique character to a unique 128 value vector.
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Then they concatenate all vectors into a 2D array that creates "an image". Then, CNN models

are trained from the image-like representation with the goal of predicting runtime and

resource usage.

3.3 workload auto-tuning of big data workloads

Auto-tuning Big Data workloads is a popular research field with a wide variety of solutions

that target all major Big Data technologies [3, 6, 10, 42, 44]. In particular, tuning Hadoop

and Spark workloads are an important concern in the Big Data community that has worked

on different approaches to improve current solutions. This section presents a summary of

related work, which can be split into two categories: model based solutions and model free

solutions. Model based solutions use a statistical model that is trained on examples of the

workload to be optimized. Then, the model is used to provide the expected results of the

workload on an evaluation metric that the system aims to optimize, avoiding the execution

of the application. Model free solutions group all the works that avoid training a model to

avoid running the workload.

Auto-tuning techniques that leverage Performance Models

Let us consider S the space of hyper-parameters to be optimized and s ∈ S a configuration of

such space. Let ds be the dataset size of the input application (in case there is any). Let appid

be an integer number that is used as an application identifier. Most works that optimize Big

Data configurations are based on performance models that take as input a subset of features

from {s, ds, appid}.
Works like [5] use s as input to train different learning algorithms for each application

that the systems aim to tune. In this work, special focus is given constructing the dataset

using a Latin Hypercube Sampling algorithm.

Works such as [92] or [55], use (s, ds) as input to the learning algorithm. The proposed

solution in [55] learns a model for each workload. Then it uses Recursive Random Search [91]

to find a good workload configuration. In [92] a Genetic Algorithm is used to perform the

search. The genetic search is based on the estimates of the execution time predicted by a

performance model. A geometric interpolation method mixed with a sampling strategy

to build a faster and accurate model by a small number of historical job executions was

introduced by [14]. Finally, a big training dataset created by exhaustive search and random

exploration was the focus of [87], resulting in a 1500 training points for every four workloads

explored with several common machine learning models. Note that the previous solutions

require a model for each workload to be optimized, which is one of the problems that we

focus to improve in our third contribution in Chapter 6.
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ALOJA-ML [9] uses (s, ds, appid) as input to the learning algorithms. This work uses a

single performance model that is shared across applications. The main downside is that

all of the application-related information is captured in a single categorical variable that is

provided to the model. Therefore, unseen applications do not provide any information about

the nature of the workload and retraining is required in order to search good parameters

for new workloads.

The work from [37] focus on an orthogonal approach for improving the efficiency of

model-based solutions for auto-tuning highly configurable software. This work focuses on

building a simulator for the process from which they want to learn. Therefore, this work

essentially builds a model that generates samples so as to avoid running workloads and,

thereby, reduces the overall cost of the auto-tuning system. In our setting, this work could be

applied to increase the generation of a dataset of (configuration, execution time) pairs. This

could be achieved using a simulation mechanism, instead of actually running applications.

In [40], a vector of statistics is extracted from the runtime of the application to be optimized.

This feature vector q is used to modify a BO procedure to guide the search process. This work

presents a Guided Bayesian Optimization process (GBO) that uses an slight modification

of the Expected Improvement function in the BO optimizer which receives as input the

monitored metrics q. Our work shares the core idea of providing specific knowledge about

the running application to improve the search process. The main difference is that, in [40],

the authors do not try to proxy application executions with metrics provided with an oracle.

To the best of our knowledge, [27] is the only publication in the area of auto-tuning

that proposes a system that generalizes to unseen workloads by making use of features

that capture low level features such as Task and Stage information from an application.

This work builds a single model that is trained by taking as input a descriptor from each

of the stages of a Spark application. After learning, once an application is selected to be

optimized, the model is queried for each of the stages in the application and for each of the

configurations that the system is expected to tune. Then the final predicted execution time

is the sum for the predicted times of the stages. Once all predictions have been made for

all the allowed configurations, the minimum sum is selected as the best one. Note that the

predictions are made for all the allowed configurations, making this approach impractical

for auto-tuning a big space of configurations, which is something that our third contribution

aims to do. In [27], only two parameters are tuned and the overall search space contains

only 12 possible combinations of the two parameters.

The idea of using information from logs, that we will cover in Chapter 6, is not completely

new in some related areas. For example, in database management system (DBMS), tools

like OtterTune [2] use Gaussian Process (GP) to recommend suitable parameters (or "knobs",

as more known in DBMS) for different workloads by extracting the internal state of the
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database to reflect the workload characteristics. This work uses statics collected from the

amount of data written or read as well as the time spent waiting for resources.

Model free based auto-tuning

In [81], expert knowledge is used to select a relevant set of hyper-parameters to be studied

for each workload. The performance of the different applications is evaluated under a

discretized set of values for the selected parameters. This approach requires experts to

determine which hyper-parameters have to be tuned, making the solution impractical for

a general-purpose system that aims to tune different types of applications with different

needs.

A straightforward approach to improve the previous solution relies on optimizing via

trial-and-error [60]. In this work, authors tune 12 parameters from the configuration space for

three applications using a simple but effective heuristic. For each application, a parameter

is selected and several values of the parameter are tested. If there is a large gain with

respect to the default configuration, the parameter is considered as significant to the overall

performance. With this approach, a graph is generated with the most important parameters

as nodes. Once an application is presented it is supposed to be run for all the nodes in the

graph and the parameters that maximize performance are selected as the best parameters.
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W O R K L O A D P H A S E C H A R A C T E R I Z AT I O N T H R O U G H M A C H I N E

L E A R N I N G

This chapter describes the first contribution of this thesis. This contribution aims to assign

cluster labels to each time step from a workload trace. The key observation that motivates

this work is that similar recurring resource patterns (or phases) happen in many workloads.

Such information could be used for a variety of decision making processes in a Data Center

environment since similar workloads might benefit from similar hardware resources.

Section 4.1 presents an overview of the problem. Section 4.2 presents our proposed

solution to find phases in workload traces. Section 4.3 presents the experiments that evaluate

the phase descriptor quality of our proposed pipeline. Section 4.4 shows how the phase

descriptors can be leveraged by other learning algorithms with the goal of auto-scaling

applications running in a containerized environment. Finally, Section 4.5 summarises the

conclusions of the chapter.

4.1 introduction

The complexity of modern Data Centers, which are built from a large number of specialized

technologies, poses a huge challenge: to develop technologies that allow for a holistic

management of both workloads and the infrastructure while observing differentiated

performance goals. As computational resource sharing becomes critical, environment set-up

and schedule must be tailored for each application. Unfortunately, applications are often

provided as black-boxes, and modeling must be done through sampling executions in

sandboxes [95][78].

Existing literature in the area has studied the behavior of applications by attempting to

understand common patterns across workloads, working on the assumption that different

but recurrent behaviors occur during the course of the execution, which are known as

phases [74][79][84] . Such phases display similar usage of computational resources over

time. Recognizing which phases compose an application, and identifying the resource

usages for each one, allows us to adapt the environment for a better performance as well as

29
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predict what applications can be co-located without interfering in their usage of resources.

In this way, applications can be scheduled by means of decomposing them into phases

instead of looking at their complete runtime.

Some related works propose invasive techniques that place phase markers in applications

source code [57][54]. Our objective is to produce a solution that can work on black-box

environments in which the application can only be monitored through resource consumption

patterns. In such scenarios workload activity is usually collected in the form of traces, which

are usually logs for CPU, memory, disk or network usage, among others. Therefore, workload

data can be naturally represented as a multi-dimensional time-series.

The contribution presented in this chapter aims to automatically find application behavior

phases, using resource consumption traces as input to our algorithm. Our method combines

CRBMs [77][76] and a clustering algorithm to distinguish changes on the resource consump-

tion patterns over time. The two models are used for two different goals. The CRBM is used

to model the time-series and generate a feature vector capturing the local behaviour of the

workload at every time step. Then a clustering algorithm, such as a HMM [64], assigns a label

to the vector, automatically detecting and tagging different resource consumption patterns.

Using this approach, workload traces can be mapped to a series of abstract phases that give

a high level description of the resource consumption characteristics.

contributions of the chapter

The main contributions presented in this chapter can be summarized as follows:

• A combination of CRBM with a clustering algorithm to encode sliding windows of

time-series as phase values. Our method provides a phase detection mechanism that

is robust in front of local burstiness in the time-series.

• An experimental evaluation of the phase detection method. We propose an auto-

scaling policy based detecting phase transitions. Our method provides better resource

allocation and a lower number of auto-scaling changes when compared with other

popular reactive methods currently used in the literature.

4.2 methodology

Defining phases for time-series is not a trivial task. Workload traces contain complex non-

linear relationships between the different components of CPU, RAM, Memory and Disk, so

defining phases of similar behavior over time becomes a very challenging task. In order to

facilitate this, we learn a representation that maps slices of those multidimensional sequences

into vectors. This section describes how this is done using a CRBM. Once the CRBM is trained
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we use an unsupervised technique such a HMM or a K-means to learn cluster labels on top

of the learned features provided by the CRBM, with the goal of finding meaningful phases.

Finally we compare the predicted phases with the meta-information we have obtained from

workload indicators to verify the results. In general, evaluating cluster labels is hard. For

this problem it is specially challenging because the data comes from a nonintuitive source

multidimensional workload traces.

In scenarios like the one proposed, where no true labels exist, or existing labels are either

approximate, inaccurate or too generalized, evaluating phase detection models is not trivial.

For example, Hadoop executions have labeled "stages" indicating the predominant type

of task being executed at each moment ("map", "reduce", "shuffle", ...). In this example,

throughout their execution Hadoop workloads present different behaviors along their

execution that change depending on the stage and on the application itself. In other words,

two different workloads will present different behaviors for the same stage, but two similar

ones will behave similarly.

Nevertheless, we can evaluate the quality of the phase prediction on workloads by

computing the accuracy between predicted phases against labels on meta-data execution.

Such metrics will not be indicative of the phases to be discovered, since this learning method

is unsupervised for discovering unlabeled behaviors. However, they will indicate how

plausible it is to use the produced phases to gauge the little information the application is

providing about their execution stage. We would like to recall that the goal of this work is

to learn phases in situations where labels may not be available. So, in this case the Hadoop

meta-data is used only for side-validation but never as a target feature for supervised

learning.

4.2.1 Learnable Vector representations

Let us consider a set of M sequences X . In our context each sequence x =
(
x1, . . . ,xl

)
∈ X

contains measurements from the execution of an application. The length of x, is equivalent

to the execution time (in seconds) of the workload. Each component xt is a vector in Rnv ,

where nv is the number of features (or measurements) used to describe the sequence at each

time step. Notice that sequences are not required to have the same length.

Instead of using directly the sequences from X , or manually defining features that

aggregate resource consumption over time, we propose to learn a vector representation for

our sequence components. A vector representation is a function φ : Rnv −→ Rnh that maps

the original measurements of x at time t, xt, to a vector of length nh. Given a sequence

x ∈ X we will map xt ∈ Rnv to φ
(
xt;θ

)
∈ Rnh . The parameters θ of the representation will

be learned from the data, with the goal of maximizing the probability of the sequences in

X . The nh value is a hyper-parameter of the representation.
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Since our data is composed of sequences we would like the mapping φ
(
xt;θ

)
to depend

on θ but also on the previous n components of the sequence. This means φ
(
xt;θ

)
=

φ
(
xt;xt−1,xt−2, . . . ,xt−n,θ

)
. Notice that for the first n values we cannot use this mapping

since there are not enough measurements for φ. One way to fix this problem would be

to set the first history values to zero. Another option is to simply not to use φ for the

first n time steps. In this Chapter we explore the use of a CRBM as a good candidate for

φ
(
xt;xt−1,xt−2, . . . ,xt−n,θ

)
.

4.2.2 Data Pipeline and Architecture

Let us assume we have trained a CRBM and therefore we have learned the parameters

{W ,D, b} of the model. We can compute the vector representation φ
(
xt;xt−1,xt−2, . . . ,xt−nhis ,θ

)
,

or simply φ(xt;θ), at every time step t using (4.1).

φ(xt;θ) = σ(W · xt +D ·Hisn
t + b) (4.1)

Then, we can discretize the result to get a binary code, using 0.5 as the cut point. Usually

most output codes do not loose many information since the outputs of a sigmoid tend to be

numbers close to 0 or 1. The binary code is used as input to an HMM. In this chapter we

investigate HMMs and K-means to generate a cluster label from the embeddings generated

by the CRBM. We will focus on the use of a HMM because it captures dependencies across

time and therefore is suitable for our sequential data [11, 71]. Nevertheless, we can use any

clustering method that maps the hidden states of the CRBM to cluster ids to generate the

phase values.

To define a HMM we need a number of hidden states must be specified. This is a parameter

that must be tuned by the user, similar to the k in K-means. Given a number of hidden states,

which correspond to the number of distinct phases that will be found, the parameters of

the HMM are found using the Baum-Welch algorithm [69]. Once the parameters are learned,

the most likely state sequence for a given observation sequence can be efficiently computed

using the Viterbi algorithm [24].

After having trained both the CRBM and the clustering method, the pipeline for a given

sequence xm of length lm is composed of the following steps:

• Step one: the representation (φ(xm
n ;θ), . . . , φ(xm

lm ;θ)) for the sequence xm is computed

using (4.1).

• Step two: the clustering algorithm is applied to the previous sequence to get the

sequence (yn, . . . , ylm).

This approach does not give phase assignment to the first n components of the sequence,

which we will consider as the "initial phase". In the case a user wants to use a HMM to
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generate the phase values, the Viterbi algorithm can be applied to get the most likely state

sequence (yn, . . . , ylm). Therefore, in the case of an HMM, the visible states of the model are

the (φ(xm
n ;θ), . . . , φ(xm

lm ;θ)) and the hidden states of the model generate (yn, . . . , ylm).

Figure 4.1 shows a diagram of the data pipeline. The input data and the history data are

fed to the CRBM (at every time step). Then the CRBM gives a code a method that outputs a

phase value.

Clustering	
Method

Output
[Phase]

Encoded	Inputs
[Time-aware

Low-Dimension]

High-Dimension	
Input	Data

Encoded	Input	
Clustering
[Phase	Id.]

CRBM

Data	
reconstruction	
for	validation

Input	
data

History	
Data

Monitored
Resources

Sliding	
Window

• k-means
• Hidden Markov Models

Figure 4.1: Data pipeline schema showing how the resource monitoring data passes through the

CRBM and the clustering method.

4.3 experiments : evaluating phase descriptor quality

This section presents an evaluation of the phase descriptors found in previously defined in

4.2.2. The evaluation is done using three datasets (Dataset A, Dataset B, Dataset C) which are

defined in the following subsection. The experiments in this section provide some insight

on the phase descriptors. Nevertheless, evaluating clustering methods is a hard task. Some

works even claim that, in the context of time-series, it is meaningless [45].

Datasets

The workloads used in the following experiments belong to the ALOJA Project, a repository

of Big Data executions focused on benchmarking different infrastructure as well as software

components. For each registered execution, the dataset contains the monitored usage of

CPU, memory, network and disks. Moreover, other execution details, such as markers for

Hadoop, Spark and Hive are present. The granularity of the dataset is around two records

per second during the execution.
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Table 4.1 shows a slice of 3 time steps from a workload extracted from the data. Data

is aggregated per second, averaging the data when numeric. Column "instant" is used

to identify the time in the series, but it is not used as an input for the machine learning

pipeline. The selected features for this approach are "pc.user", "kbmemused", "rxpck.s" and

"tps", corresponding to user process CPU usage (in % usage), Memory usage (in kilobytes),

Network usage (received packages per second), and Disk usage (transactions per second).

instant pc.user kbmemused rxpck.s tps

9 11.370 18, 730, 504 333 −1

10 3.110 18, 782, 464 276 −1

11 0.930 18, 791, 856 332 −1

Table 4.1: Example of data slice from the ALOJA dataset. For non-available values, −1 is used instead.

It is true that other features can be added such as transmitted packages per second, or

system process CPU usage, as well as maximum and minimum values for each feature,

in addition to these. However, for this first proof of concept we decided to keep the input

simply by selecting the most representative measurements from the workloads. The use of

an extended feature version of this approach is intended for future work.

To simplify the feature naming, we will refer to the features as CPU, Memory, Net and

Disk. As the workload is distributed among machines and processors, the CPU % usage is a

sum over all used cores, and therefore can take values above 100.

Dataset A: Hadoop Workloads using BigBench

The first dataset, extracted from ALOJA Hadoop Time-Series Dataset v1, contains 182

series from Hadoop executions (up to 22 different features at this time), from the Intel

HiBench [32] benchmark suite. These workloads contain Map-Reduce algorithms for sorting

(Sort and Terasort), word counting (wordcount), machine learning (K-means and bayes), input-

output stress tests (dfsioe-read, dfsioe-write), etc. All the jobs have been running in on-

premise infrastructures, with similar Hadoop configurations. Data generation jobs, usually

accompanying workloads, have been excluded from the experiments.

Dataset B: Spark Workloads using TCPx-BB

The second dataset, extracted from ALOJA Spark Time-Series Dataset v1, comprises 900

executions of 30 different Spark applications contained in the TPCx-BB (BigBench [25])

benchmark. TPCx-BB contains 30 frequently performed analytical jobs in the context of

retailers with physical and online store presence. They represent different types of work-

loads (including Natural Language Processing, SQL queries, Mapreduce jobs and Machine
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Learning workloads), comprise different data types (Structured, Semi-Structured and Un-

structured data), provide a mix of long and short running jobs and can run at different data

scales (in our case, 1, 10 and 100GB). For each of the queries, we included 30 instances, com-

prising the different data scales mentioned before. All the jobs were run in the Microsoft’s

Azure cloud using Spark 2 as the engine. We used HDInsight PaaS to spawn the spark

clusters, running a 16-slave node cluster (plus several redundant head nodes). Data was

stored in the Azure Data Lake Store of Azure.

Dataset C: Human motion dataset

For sanity check purposes, in the final experiment presented in this section we leveraged the

well-established Motion dataset from Hsu [31], also used in Taylor’s CRBMs validation [76],

to validate our method against a well-known dataset.

Experiments

Here we introduce six experiments to validate the presented phase generation method.

The following experiments describe how the proposed methodology differentiates phases

throughout workload executions on different workload types. Notice that, for the following

figures found in this section, two kinds of plots are produced: detected phases and resources

usage. For the detected phase plots barplots are used, where each phase is differentiated by

color and height. The height is simply present to visually facilitate differentiating the phase

values over time. We will refer as phases the tags given by the K-means algorithm. We will

refer as regimes the tags given by the HMM.

• Experiments 1-4 use dataset A (Hadoop workloads).

• Experiment 5 uses dataset B (Spark workloads).

• Experiment 6 uses dataset C (human motion identification) as a sanity check of the proposed

method based on classical literature in the field.

Experiment settings

The CRBM model for experiments 1-5 has been trained using a randomly selected 66% of the

series. The model has been evaluating using the remaining 33% of the data.

The CRBM selected in the experiments has a history length of 50 samples and 100 hidden

units. Training has been performed using a SGD algorithm with learning rate set to 0.001

momentum of 0.4. We have used CD-k, with k = 1, to find the gradients needed to update the

parameters of the model. The learning rate was set manually testing different values with

different orders of magnitude: 0.1, 0.01, 0.001, 0.0001. Values higher than 0.001 produced

big spikes in the reconstruction error monitored during learning. We have found that the
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reconstruction error plateaus during the first 40 epochs and further training does not help.

Moreover, the reconstruction error achieved by the model using 100 hidden units is not

significantly improved by models with more hidden units (200, 300) and the same history

size, therefore we chose a model with 100 hidden units to perform the experiments shown

in this section.

Moreover, for the following experiments, several values of K (for the K-means) and

expected number of hidden states in the HMMs have been tested. The most distinctive value

found for this hyper-parameter is 5 clusters, since for lower values of K the algorithm

displayed randomly-joined phases, while for higher values it converged by returning empty

or underpopulated clusters. This led us to choose K = 5 as the fittest value for the current

kind of workloads. Notice that for other kinds, this hyper-parameter must be tuned.

We used Python 3 to implement the experiments shown in this chapter. The scikit-

learn library [59] was used to train a K-means and a HMM. We wrote a custom CRBM

implementation with the sciki-learn API to facilitate building the whole pipeline that

transforms input sequences to the output labels.

Table 4.2 shows the time needed to train (in minutes) until the loss plateaus. The train time

could be reduced by computing all matrix operations using GPUs, which our implementation

did not use because it was already fast enough for our purposes. The training times are

reasonable in a production environment and training could be performed in a batch process,

when new, very distinct workloads enter the system.

nh 3 10 50 100 200 300

minutes 11.3 13.0 23.3 36.3 99.9 136.7

Table 4.2: CRBM training time, nv is the number of hidden units. All models have the same delay, 50

time steps.

Note about the portability of the model across workloads

A model trained on a specific type of workload might not be suitable for use on another.

This could be because the data may be quite different in shape as well as in feature ranges.

For example, our experiments used CPU feature values in the range (0, 100 ∗ ncores), where

ncores is the number of cores. If all the training data contains workloads that use single core

of the machine, then all the phases will be take into account CPU values in that range.

Therefore, if a new trace appears taking values outside the trained range, the model may

give unexpected phase results. It is important to determine the range of the features of the

production/test data at which we aim to apply the method. It is recommended to train

the CRBM with a dataset containing a variety of applications that cover the different feature

ranges from the input metrics.
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Experiment 1: Unsupervised automatic Phase Detection

In order to understand the different behaviors found in the predicted clusters given by the K-

means and the HMMs, here we show some workloads with the associated tag sequences (the

discovered phases). Although we have generated the study for all the workloads available in

the data-set, we display here the most representative ones. The history period of the CRBM

is marked in Figures 4.2, 4.4, and 4.5 by a vertical red line in the workload trace that marks

the time n = 50.

Figure 4.2 (next page) shows a couple of workload traces with the predicted phases

R1, . . . , R5 given by the HMM. The right hand side images from sub-figure 4.2a and sub-

figure 4.2b contain the workload resource usage and the predicted phases in chronological

order. The left hand side images contain the same information of CPU, Memory and Net

traces, but grouped by the phase tag in order to see how each resource behaves in each

given phase.

The aim of grouping the time-series elements by phase is to display the general trend

of consumption for each resource, defining the phase. We have the supported hypothesis

that each discovered phase will be characterized by a trend in one or more resources

distinguishable from the other phases. The fact that usage in some resources does not need

to be constant is covered by the encoding done through the CRBM. The left hand side images

provided in sub-figure 4.2 are precisely created to visually aid distinction among different

behaviors in the time-series.
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Figure 4.2: Input trace behaviour for each phase value: R1, . . . , R5
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Figure 4.3 contains the histograms of the different traces across all data, grouped by

R1, . . . , R5.

Figure 4.3: Histograms of the normalized input features grouped by R1, . . . , R5.

Table 4.3 contains the mean and standard deviation of the different trace components

grouped by R1, . . . , R5.

Regime CPU.mean Mem.mean Net.mean Disk.mean CPU.std Mem.std Net.std Disk.std

R1 0.724 −0.379 0.519 −0.015 1.515 0.866 1.062 0.399

R2 −0.348 0.539 −0.222 0.032 0.766 0.554 0.526 0.303

R3 −0.186 −0.857 −0.710 −0.060 0.732 0.834 0.588 0.342

R4 0.341 0.585 0.946 0.047 0.698 0.726 0.753 0.270

R5 −0.527 0.045 −0.731 −0.020 0.677 0.757 0.349 0.320

Table 4.3: Mean and standard deviation of the normalized traces under the different regimes given by

the HMM.
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The following brief description is a simplified textual description of the behaviors found

in Table 4.3.

• R1 contains trace behavior with high CPU usage and high variance across all other

traces. This pattern may be observed on the left-hand side workload in Figure 4.4,

which shows the model detecting phase R1 around time step 1300, where there is a

peak of CPU usage. Table 4.3 shows that R1 has the highest mean CPU usage.

• R2 is similar to R1, but the Memory usage under R2 is higher and the CPU usage is

slower. Table 4.3 shows that R2 contains the second highest mean Memory usage.

• R3 detects regions with low Memory usage with low CPU usage. Table 4.3 shows that

R3 contains the lowest mean Memory usage and the second lowest Net usage.

• R4 contains high Memory, high Net usage. Table 4.3 shows R4 as containing the

highest mean Memory, Net and Disk usage.

• R5 contains similar behavior to R2 but with lower resource usage than R2.

Experiment 2: Phase detection from workload traces

It is important to notice that Hadoop stages do not determine the behavior of the CPU,

Memory and Net traces. Figure 4.4 shows two workloads with different Map, Reduce and

Shuffle stages, containing similar behaviors in the traces for different stages. The vertical

boxes in the figure show a slice of "R4" behavior with high Memory and above average

Net usage taking place in two different Hadoop stages (map for workload 1 on the left, and

reduce for workload 2 on the right).

The presented methodology is not intended to detect Hadoop stages as "phases", but

for the same kinds of workloads it detects the same phases for the same stages, while

for different workloads, for the same kind of behavior it detects the Hadoop stages that

behave similarly to one another. This allows us to characterize applications according to

sequences of phases during the execution. As the methodology presented herein never sees

the Hadoop stages, it relies on the provided resource traces, which makes it extensible to

any other application and framework.
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Figure 4.4: Two different workloads side by side. This example shows our phase descriptors do not

exactly match the Hadoop phases.

Experiment 3: Accuracy Analysis using Hadoop logs: mapping detecting phases to MapReduce

phases

The Map-Reduce data used contains several tags at each time-step. Tags have been used only

for evaluation purposes (not for training the algorithms). We have previously remarked that

Hadoop phases do not determine the resource consumption, as can be seen in Figure 4.4.

Nevertheless, we can make an approximate validation of our model by comparing the

predicted phases with the Hadoop phases. Moreover, we can compare the phases given by

the K-means and the HMM in the learned representation.

The most representative phases of this type of workloads are the map phase, the reduce

phase and the shuffle phase. We have codified the tags as integer values, which we will

refer to as the true tags. The codification of the true tags has been performed as follows. Let

us consider binary valued vectors (m, s, r) where each index taking value 1 represents that

the data is in a particular state. The use of this form (1, 0, 0) represents that the data is in a

map state, (0, 1, 0) in a shuffle state and (0, 0, 1) in a reduce state. Any other combination

represents data in a combination of states; for example, (1, 1, 0) would represent the data

being in a map and shuffle phase. Each possible binary vector has been assigned to an

integer, the equivalent number in binary form. For example, (0, 0, 1) = 1 and (1, 0, 1) = 5.
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Experiment 4: Finding a correspondence between true phases and predicted phases

To assess numerically the quality of our phases, we find for each value of K (number of

clusters) the correspondence that most closely matches the predicted phases and the true

phases. That is, we find a matching function f ∗ that maximizes the accuracy of the predicted

phases and the true phases across all our data. Let Y be the set of sequences containing the

correct phases. Let ly indicate the length of a sequence of phase tags y ∈ Y . Then, the best

matching between the predicted and the true phases is

f ∗ := arg max
f

∑
y∈Y

ly

∑
j=1

1(yj= f (ŷj)) (4.2)

where f is an injective function from the first K integers to the total number of true distinct

phases. Notice that f has to be injective, since we do not want to allow naive solutions

where two distinct predicted clusters are aligned to the same "true cluster". Results of the

best alignments for K ∈ {2, . . . , 7} can be found in Table 4.4.

K clusters K-means train HMM train K-means test HMM test

2 0.447 0.449 0.498 0.494

3 0.491 0.493 0.507 0.537

4 0.490 0.511 0.464 0.547

5 0.506 0.531 0.483 0.547

6 0.344 0.461 0.302 0.472

7 0.409 0.440 0.447 0.452

Table 4.4: Accuracy results of the best alignment between true and predicted phases.

Both K-means and HMM models achieve similar results, but the HMM obtains consistently

better accuracy in both training and test sets across all number of clusters, which shows that

according to this intrinsic evaluation it is a better model for this type of data. This result

is consistent with our prior knowledge about the model. The HMM hidden states take into

account the previous hidden states when generating a phase sequence. The K-means is not

aware of any time-dependencies when proposing phases, although the representation that

is fed to the K-means summarizes historical information.
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Experiment 5: Validity of model across workloads

Here we present the application of the method for phase detection results on more hetero-

geneous non-Hadoop set of workloads (Spark dataset), to demonstrate that the presented

approach can be applied of different kinds of jobs, such as Machine Learning, SQL-query

based, usual User Defined Functions for databases, and NLP workloads.

The goal of this experiment is to validate the methodology for different workloads. For

that purpose, we use dataset B (see Section 4.3). In this particular case, we used 10GB

data scale samples of the 30 TPCx-BB jobs. For the learning process we keep the same

hyper-parameters from the previous experiment.

Figure 4.5 shows the phases predicted for three of the new workloads: a NLP (TPCx-BB

query 19), an SQL-query based workload (TPCx-BB query 14) and a Machine Learning

workload (TPCx-BB query 20). As it can be seen, similar to previous experiments different

learned regimes capture characteristic patterns that are consistent along workload traces. This

set of experiments show that the pipeline can be used not only in Hadoop traces, but also in

other types of workloads. The results provide learned regimes that match the differenced

behaviors that we would expect when looking at the workload traces.
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Figure 4.5: Three different applications and the predicted phases.
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Experiment 6: Validating the method against a classical phase detection benchmark

To further validate the phase detection method, we have used it to predict phases in human

motion data from Hsu et al. [31], a well known dataset used to validate learning of multi-

dimensional time-series. This simple test illustrates that the proposed phase detection

mechanism finds sensible phases. Unlike in the previous experiments, where we do not have

a target to compare with, this experiment has a target value at each time step. Therefore,

we can validate if the model finds phases that match the underlying label in the input

sequences.

The data from [31] contains time-series with information concerning humans performing

different movements. The time-series values correspond to measurements of body parts; for

example, one of the dimensions of the data corresponds to the axis-angle rotation of the

pelvis joint. We have prepared a couple of tests involving different motion styles, to show

that the method is able to detect different behaviors from different kinds of time-series. Both

tests use the original data, which contains 108 features per time step.

The first experiment illustrates the importance of the learned representation given by the

CRBM. We have taken two sequences of length 2000 from the dataset, one containing walking

traces and the other jogging traces. We have concatenated the sequences to create a single

example of length 4000. Then we have trained 30 K-means models (with different random

initializations); 15 models use the original data and the other 15 use the processed data

by the CRBM. Figure 4.6 shows the results of the phases given by the 30 models. The top 6

outcomes correspond to the different results of the 15 K-means trained with the original data.

The bottom two outcomes correspond to the different results of the other 15 models. Notice

that while raw data (six top series) produces inconclusive results, passing data through the

CRBM allows K-means to discover a single stable pattern. The CRBM version produces two

patterns which are actually the same if we flip the labels. Moreover, these two solutions

match the walking and the jogging phases with some mixing around time step 3000.

For the second experiment, we have selected four traces of length 500 containing "walking"

at slow/normal speed and "jogging" at slow/normal speed. Then we have concatenated the

traces to create a single sequence of length 2000. We trained several times with different

random initializations 3 types of pipelines. The first pipeline is a simple K-means using the

original trace. The second pipeline is a CRBM followed by a K-means. The third pipeline is a

CRBM followed by an HMM.

The first sequence in Figure 4.7 shows one of the several possible solutions of the K-means.

As in the previous experiment, the results depend greatly on the random initialization. The

second sequence shows one of the two possible outputs given by the CRBM K-means pipeline

(the other is the same with the labels flipped). The third sequence shows one of the two

solutions given by the CRBM-HMM pipeline (and again the other is the same with the labels
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Figure 4.7: Phase prediction on human body data.

We can see that the CRBM-HMM pipeline is able to correctly differentiate the walking phase

from the jogging phase, with some error around position 1500, where the trace behavior

changes from jogging at middle speed to jogging at slow speed. This is a sensible error since

we concatenated the data from different examples of the original dataset. In the original

dataset, the actions start and finish in each timeseries. Therefore, the movements of a person

are recorded from the moment at which an action starts and until it ends. When a person

starts jogging it starts with velocity 0. Therefore, the first seconds in the "Jogging M" or

"Jogging S" traces track the action of a person that is starting to run but has not started the

"jogging action". This happens at the beginning and at the end of each sub-sequences, which

is precisely the points at twhich the predicted phase changes.
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4.4 experiments : evaluating phase descriptor in an auto-scaling task

In Section 4.3 we have shown that the proposed pipeline composed of a CRBM and a

clustering algorithm can learn interesting phase descriptors for different datasets. This

section presents an application of the proposed method evaluated on two tasks.

• Phase forecasting task: We train time-series forecasting methods to predict future

phase state values from an sliding window of historical phase values.

• Resource Auto-scaling task: We use a forecasting method to proactively scale up or

scale down resources in a container. The decision is taken when the forecast detects

a phase change in the workload trace that requires a resource change to adapt the

running environment to the future expected application requirements.

This section uses a private dataset from the IBM Watson platform. The dataset is comprised

of executions of "Deep Learning as a Service" (DLaaS). We use 5000 container traces for

training and 500 for testing.

Experiment hyper-parameters

The experiments performed in this section use a CRBM with a history of 3 time-steps.

Therefore, if the sampling period in the data is 15 seconds, the time window used to

discover phase is one minute (of 15 seconds + 45 seconds of history). Tuning the hyper-

parameters, we find the minimum loss with a learning rate lr = 0.0001, trained for 2000

epochs with 10 hidden units. Here we use a k-Means for assigning phase ids because it

proved to work as well as a HMM. The K in the k-Means was selected studying the Square

Sum Within clusters (SSW) [26]. We find that under 90% of the SSW is explained with k = 5,

with little gains for higher K values. Therefore, we use k = 5.

Experiment 1: Phase Forecasting

In order to choose a forecasting method, we have tested different models to predict the

next phase descriptors within a window of 1 minute, which corresponds to 4 time-steps.

These methods vary from naive policies to sophisticated neural network-based approaches,

including:

1. the most frequent observed phase (the mode) from the previous time window as

expected phase along with the next time window;

2. the last observed phase as an expected phase for the next time window;
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3. the predicted phases for the next time window using a one-hot encoded MLP, forecast-

ing the future window from the current window;

4. Long Short Term Memory (LSTM).

Predictions made on an example container using various models are shown in Figure 4.8.

This figure shows a slice of the resource usage coded as phase values, the slice shown

contains a phase change around position 4. We do see that both MLP and LSTM models

can predict the sudden phase change from "green" to "red" correctly when observing four

continuous "green" phase. The comparison among prediction methods is shown in Table 4.5

Figure 4.8: Phase prediction via different models.

with the average F1 score of the different models. As it gets harder to predict more steps

ahead of time, we show the F1-scores for each of the future four steps separately.

t=1 t=2 t=3 t=4

Last window mode estimator 0.654 0.614 0.579 0.554

Last observed phase estimator 0.730 0.689 0.648 0.613

One-hot-encoded MLP 0.926 0.876 0.827 0.786

LSTM 0.913 0.863 0.812 0.756

Table 4.5: Comparison of the prediction models.

Results show that MLP and LSTM models tend to perform better than the basic methods. It

is worth to notice that the performance of the "last phase estimator" is not bad. We observe

that phase changes rarely happen for some long-running containers, and the container stays

on a particular phase throughout its whole life span. For such containers, using the previous

phase as the next will not lead to many errors. In our ML workloads, MLP and LSTM give

better accuracies by learning typical phase changes. Since the quantitative results of LSTM

and MLP are similar, we use the MLP for our next experiment as it is simpler and faster.
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Experiment 2: Resource Auto-scaling

When applying our phase-detection and phase-forecasting in container auto-scaling, we

explore two different types of auto-scaling policies: reactive policies (used in [7, 68]) and

proactive policies (policies based in forecasting).

Reactive policies: such policies resize containers according to the information observed in

the past. We can further classify the reactive policies into two categories according to the way

to determine the container size. 1) The time window statistic approach resizes containers

according to the maximum or the top 95th percentile observed in the previous time window.

2) The phase approach identifies the current phase based on resource usage data in the

previous time window and uses the phase’s profile, namely the statistics of all resource

usage data identified as this phase (that may include data from multiple containers), to

resize the container.

Proactive policies: such policies allocate resources through forecasting resource usage, i.e.,

predicting the next several phases and using their profiles to resize the container proactively.

When a proactive policy decides how much to provision, it has taken into account the size

of the "next window" to be predicted, affecting the statistical profile to be chosen. Larger

prediction window leads to more proactive actions and more phase profiles to choose. Our

policy chooses the maximum of the candidate profiles for that future window, noticing here

that the forecasting window size becomes a hyper-parameter to study.

Regardless of the policy chosen, we denote the "maximum observed" or "Nth percentile"

by µ + {1 . . . 3} · σ, to prevent few outliers lifting the limit unnecessarily. Besides, when

applying phase profiles, we discard the "maximum observed" because it contains the

maximum deviation across all observed containers.

Finally, we need to decide how frequently to predict and resize the containers. Two

strategies are available: 1) we resize the containers periodically each N minutes, or 2) we

trigger the resizing only when necessary (when there is a need for more resources). In the

IBM Cloud services, metrics can be collected every 15 seconds as a "step" where a phase can

be detected (i.e., with d = 3, the CRBM + clustering can detect a phase with a time window

of 4 steps = 1 minute).

Here we apply an auto-scaling policy that 1) at each time step predicts phases in the

next time window (1 minute), 2) retrieves the required CPU and Memory resources from

all predicted phase profiles, and 3) determines the maximum resource demand from all

predicted phase profiles (taking the percentile rule into account as mentioned above). If

the predicted resource demands indicate an increase over a given tolerance (namely 10% of

the current demand), the container is scaled up with the predicted resources. And when

the predicted resources indicate a decrease of demand below the current limit, we scale
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the container down with larger tolerance to avoid some slight usage fluctuations causing

frequent scaling up and down.

Evaluation of Auto-scaling policies

In the previous section, we show that we can predict the phases for the next time window

using the MLP model, and in this section, we show how a proactive auto-scaling approach

can improve the overall resource efficiency over the traditional reactive policies. Besides, we

are also concerned about whether the killed containers due to an Out-of-Memory (OOM)

error can be reduced by foreseeing future phases.

In Figure 4.9, we show an example of a DLaaS container. Here we can see that the reactive

approaches provide a fitter lower bound of the true resources, but they produce a lot of

resizing operations, and they sometimes under-provision the memory, which in practice

would lead to an Out-Of-Memory error to kill the container. Our proactive approach shows

to be more conservative on resource provisioning, causing no OOM and CPU throttling, and

with minimal resizing actions along with the execution.
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Figure 4.9: Example of DLaaS execution, with the provisioned CPU and Memory for each policy.

Overall System Performance

Finally, we evaluate the overall system performance under different policies. Here we

measure the total slack for the different policies (amount of resource over-provisioning),

the number of container kills due to the OOM errors, and the number of resizing actions

produced by each policy.

Table 4.6 shows the results of auto-scaling performance for each policy in comparison.

We observe that the average number of auto-scaling changes for the reactive-max strategy
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is very high, with 33 changes, whereas the proactive and reactive-statistics policies have a

much lower number (around 3-4 changes) per container. It indicates that container resource

usage tends to fluctuate over shifting time windows, so reactive policy scales up and down a

lot over time.. In our case, both predictive and reactive make minimal changes as the usage

fluctuations are probably identified as a particular phase. The principal advantage of the

proactive policy is to foresee potential phase transitions, avoiding container kills due to OOM

errors. Overall, our phase prediction based proactive auto-scaling policy reduces the amount

of CPU over-provisioning from 10 · 108CPU × hour to 6 · 108CPU × hour. Besides, we find

that our proactive policy results in much fewer container kills (20) due to OOM errors, while

both reactive policies result in hundreds of container kills, 357 (reactive- statistics) and 402

(reactive-max) OOM errors, respectively. Therefore, our prediction based proactive policy

appears to be much safer than reactive approaches with fewer resizing operations. Besides,

we find that the proactive policy results in much fewer container kills (20) due to OOM errors,

while both reactive policies result in over 300 container kills.

Predictive Reactive-max Reactive-stats

Auto-scaling changes 3.74 33.28 3.40

OOM containers 20 402 357

CPU Over-provision 6.37e+08 10.20e+08 101.79e+08

Mem Over-provision 5.03e+07 3.74e+07 2.28e+08

Table 4.6: Average number of auto-scaling changes, number of OOM containers for each policy, and

over-provisioning in CPU_hour and KBytes_hour

4.5 conclusions

In this work, we present a method for modeling and discovering phases in time-series in

an unsupervised way, by using Conditional Restricted Boltzmann Machines to encode nv

dimensional feature input vectors into nh dimensional vectors, taking the time dimension

into account, and feeding them to HMMs. We understand as "phases" periods of time

displaying similar behaviors.

Workload profiling and resource consumption phase detection are very relevant problems

in the areas such as High Performance Computing (HPC) and Cloud Computing. For this

reason, we validated the approach on a couple of datasets containing traces from application

executions on Data Centers: One dataset containing executions traces of Apache Hadoop jobs

and the other dataset containing Spark jobs. Such a scenario implies multi-dimensional time-

series data, without either clear labels or clear expert methods for automatically identifying
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phases. The proposed approach does not require feature engineering, so it can be easily

automated, thereby helping decision systems when applications become more complex.

Moreover, we find no reason to consider that this method can not also be used for other

similar scenarios with time-series.

To verify the validity of the phases, we have presented some sequential performance data

to the model, such as workload traces from the ALOJA dataset as a case of use towards

data-center management and application characterization. The model is able to generate

phases that, upon careful examination on the workload traces, separate different behaviours

found in the telemetry traces. Further, as a known case towards a sanity check, the Motion

dataset used for evaluating time-series. The proposed approach is able to identify distinct

behaviors in both cases. In the principal case for the workload traces, we are able to verify

that the proposed phases capture different properties from the workloads, consistently

characterizing executions by resource consumption for different kinds of application. In the

case of the Motion data we are able to show that the pipeline would differentiate walking

from jogging traces.

From the experimental results, we have find that CRBMs plus clustering algorithms are

able to discover phases on different workload executions, each one corresponding to a

specific resource usage pattern. Given that one of the used datasets corresponded to Hadoop

executions, we are able to compare the discovered phases with the different Hadoop stages,

with the observation that different Hadoop workloads have different behaviors on same

phases. This enable us to identify characteristic patterns not only for complete executions,

but also for parts of an execution. This method also allows us to generate automatically a

fingerprint for applications which can be used to identify them.

We test the phase detection pipeline in an auto-scaling problem using workload data

from IBM DLaSS containers. The experiments show that machine learning models trained

on top of the phase descriptors can foresee phase transitions. We can use this information

to proactively resize containers to accommodate the sudden changes in resource demands.

By modeling phase transitions using an MLP model, we prove that such sudden behavior

changes can be predicted via phases and can be leveraged in a proactive auto-scaling

policy. Evaluations show that our proactive auto-scaling policy can significantly improve the

resource efficiency in a safer (from 65% of potential OOM scenarios to 4%) while maintaining

the same amount of auto-scaling changes than the best of the reactive policies.





5
S E Q U E N C E - T O - S E Q U E N C E M O D E L S F O R R E S O U R C E E S T I M AT I O N

O V E R T I M E U N D E R C O - S C H E D U L I N G .

This chapter describes the second contribution of this thesis which aims to estimate the

resource behaviour of two applications sharing hardware resources. Modern cloud en-

vironments can share hardware resources in order to improve their operation efficiency.

Nevertheless, co-locating applications can drastically degrade the performance of the run-

ning workloads or, in some cases, it can yield to failed executions. In order to estimate how

applications might behave under different co-scheduling pairs of applications we train a

machine learning model that takes as input the trace of two input applications and outputs

the expected trace of resources when two applications share the computational environment.

Section 5.1 presents an overview of the problem. Section 5.2 presents our proposed

solution to model the output trace of two co-located applications from the input traces of

the applications executed in isolation. Section 5.3 presents an evaluation of our work. Finally,

Section 5.4 presents the conclusions of the chapter.

5.1 introduction

Resource under-utilization is one of the major problems in data center management, since

the average utilization is estimated to be below 50% [66][13] due to over-conservative

scheduling policies, to ensure good QoS levels. However, most applications do not use

resources continuously, even when there is full quota on CPU, memory and I/O to avoid

degrading the QoS or violating Service Level Agreements (SLA). Flexible policies allow

resource sharing among applications, while at the same time risking concurrent applications

to top their requirements. Sharing resources between applications in data centers is crucial

to achieve efficient utilization of those resources, reducing power consumption, allowing

proper scaling out for currently running applications or accepting new applications into the

system.

The principal problem when co-locating resource-sharing applications is to ensure that

competition will not ruin their QoS, even when a certain tolerable degradation is expected. Co-

53
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located applications do not need to behave as "the sum of their behaviors", since interference

creates a new characteristic footprint for each set of concurrent applications.

The statistical analysis of monitored metrics is fundamental when automating this work-

load placement. Since resources are finite, smart resource sharing is encouraged by admin-

istrators in order to increase resource availability while maintaining energy efficiency [8].

Different approaches exist for predicting resource demand and interference (slow-down

produced by resource competition) on co-located applications.

Most applications exhibit differentiated resource demands over time resulting in resource

consumption phases [61, 75, 85]. Our method aims to predict the resource demand over

time, introducing the temporal dimension to the resource demand prediction problem.

Nevertheless, most methods reduce the interference prediction problem to a regression

problem. Therefore, they produce a single value global prediction estimate, instead of a

sequence of predictions over time.

Most classic machine learning approaches for this problem, such as [20] or [53], do not

consider the temporal dimension of executions, and therefore do not predict resource usage

over time. This means that schedulers are obliged to optimize fixed blocks of expected

resource usage. In this scenario, schedulers can take suboptimal decisions to block possible

colocations of applications that only complete for a fraction of their execution.

In this work we present ResourceNet, a workload-to-workload forecasting methodology

to predict the effects of application co-location interference, using sequence-to-sequence

models based on Recurrent Neural Networks (RNNs). RNNs are powerful models with the

capability of dealing with time series. Of equal importance, RNNs are able to deal with

inputs and outputs of arbitrary lengths. The method presented herein predicts the footprint

for resource demands of co-located applications, given that the traces of these applications

run in isolation. Furthermore, we show how this model can be used to predict accurately

the run-time of applications sharing resources.

Our model employs two GRU models [16] as building blocks; one GRU processes the

trace signal of the incoming applications and passes the processed information to the other

GRU, which outputs the expected resources of the co-located applications over time. The

model predicts the whole resource demand trace throughout execution, thereby providing

schedulers with a sufficiently accurate estimation for placing applications together and

thus minimizing interference. Training the model using a diverse set of benchmarking

applications enables it to attempt predictions to unseen co-located applications. The recurrent

nature of the model allows it to process input sequences or different (and arbitrary) lengths.

Moreover, it is able to generate output sequences of arbitrary length, thereby making our

solution adaptable enough to address the problem in question.

We validate the proposed methodology by computing the error of the predicted resources

(of co-joined application traces) with respect to the real resources. We use benchmarks from
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Big Data applications (from both Apache Hadoop and Apache Spark) as workload data. We

have selected Hadoop and Spark benchmarking workloads because of their popularity in

HPC applications, where scheduling and environment configuration have a high impact on

the application performance. Experiments measure the prediction of the low-level resource

usage (i.e. CPU, memory and I/O) of pairs of co-located workloads over time. The different

benchmarks we use belong to the Intel HiBench [32], the IBM SparkBench [43] and the

Databricks Spark-perf benchmarks [72]. The method is trained and evaluated on low-level

monitoring metrics which are reasonably available on any HPC setting. Our method is

compared against different simpler machine learning alternatives in order to assess the

possible drawbacks of using standard models.

For our experiments, we created a dataset with execution traces from the previously

mentioned benchmark suites. The dataset consists of triplets (a, b,a ∧ b) where a and b

contain the traces of the isolated executions from two applications, and a ∧ b represents

an execution of the co-located pair. To build a reasonable dataset, we generated scenarios

in which both applications did not start at the same time. In particular, we created co-

scheduling situations in which the start time for one of the applications was shifted by a

factor of 25%, 50% and 75% of the length of the longest application being co-scheduled.

contributions of the chapter

The main contributions of our work presented in this chapter can be summarized as follows:

• A novel use of Recurrent Neural Networks that estimates the monitored metrics of

two co-scheduled applications a∧ b from the information of a and b gathered running

the applications in isolation.

• A novel feature, percentage completion time, for estimating the completion time of co-

scheduled applications. This feature improves predictions made by using the standard

stopping criteria based on the end of sequence feature.

• A comprehensive evaluation of the method against other relevant machine learning

approaches. We show the advantages of our method, which are especially noticeable in

two cases: when co-located executions have different lengths, and when co-scheduling

heavily impacts the execution time of the applications due to high interference.

The proposed method can be used to characterize applications according to their compati-

bility with other workloads. Furthermore, it enables resource managers to plan resource

allocation and load balancing better in advance.
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5.2 methodology

ResourceNet is a fully learnable system based on a sequence-to-sequence architecture with an

attention mechanism. The model takes as input pairs of sequences containing measurements

of applications run on isolation. The input sequences are aggregated and fed to a decoder

which produces the expected measurements of running both co-located applications sharing

resources. Since the model is based on a sequence-to-sequence architecture it can naturally

work with sequences of different lengths, which makes it suitable for the scenario presented

here, in which measurements belong to the workload traces.

The reader can note that the model assumes that both applications are already executed

in isolation, while this is certainly a limitation, it is not unexpected on a Cloud scenario

to have a Sandboxing service, that executes applications in isolation. Having executions

of applications prior to predicting application interference is a common hypothesis in this

area [53]. In some cases, even partial co-executions of the applications are performed [19] in

order to assess interference.

Figure 5.1 shows the diagram for the model, indicating the inputs and outputs, and the

four building blogs composing the data pipeline. The entire shaded box represents the

whole model at a high level. The first component,
[
a
b

]
, performs the joining operation where

input sequences a and b are stacked to form a single matrix of measurements; this process

is explained in detail in Subsection 5.2.1. The second component, RNNenc, encodes the

input sequences with a GRU and produces as output a matrix E. The third component, E,

represents the stored encoded input sequences. The fourth component, A is the attention

mechanism, which receives the hidden state from the decoder and generates a context

vector that is fed to RNNdec. The last component of the diagram is the decoder. The decoder

is a GRU that generates as output the expected resource demands of the co-scheduled

applications. We denote those resource predictions by a∧ b.

ct

st−1

A

Figure 5.1: Input-output diagram of the proposed model

The learning process is performed by minimizing the Mean Squared Error (MSE) loss

function, which computes the error between the predicted outputs and the true trace values

at every time step. We update the parameters of the model using a minibatch gradient

descent procedure. Section 5.3.2 provides a detailed description of the hyper-parameters of

the model and the training procedure.
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5.2.1 Stacking measurements of the input sequences

The input sequences of the model are stacked in order to generate a single matrix of

measurements. Given two vectors v = (v1, . . . , vp)> and w = (w1, . . . , wq)> we will denote

by
[
v
w

]
or [v;w] the vector (v1, . . . , vp, w1, . . . , wq)>.

Given two arbitrary sequences a and b of length l(a) and l(b) respectively we denote

by
[
a
b

]
or [a; b] a sequence of length N = max(l(a), l(b)) containing the measurements of

both sequences at every time step. By convention we write the longest sequence first. Since

sequences may differ in length we append the shortest sequence with zeros to match the

length of the longest sequence. If we denote by 0d a vector containing d zeros where d is the

number of elements in bk we have:[a
b

]
:=

([
a1

b1

]
, . . . ,

[
al(b)

bl(b)

]
,
[
al(b)+1

0d

]
, . . . ,

[
al(a)

0d

])

Example: Let us consider a = (a1,a2,a3,a4) and b = (b1, b2) containing measurements on

R2. That is ai, bj ∈ R2 for any valid i, j. Then the generated matrix for two applications that

start at the same time is
[
a
b

]
:=
([

a1
b1

]
,
[
a2
b2

]
,
[
a2
02

]
,
[
a4
02

])
.

The notation [a, b] is reasonable for describing the situation in which the model is fed with

traces of programs that start execution at the same time. Nevertheless, we may want to

predict scenarios where applications do not start at the same time. In order to provide the

network with such information, we pad a sequence with zeros before it starts. If we wish to

tell ResourceNet that application b starts k time-steps after a, we add k vectors containing

zeros at the beginning of b. In order to make ResourceNet capable of making predictions in

that environment, where applications are not required to start at the same time, our training

data will contain co-scheduled applications starting with different time delays.

5.2.2 Encoding input traces, Decoding co-scheduled trace

The encoding process reads the traces from the isolated runs and generates the matrix

E = RNN∗enc(x1:n;θ), using the equations of the GRU from Subsection 2.3.1. To this end, we

use a GRU as our encoder. The notation RNN∗enc(x1:n;θ) represents the concatenation of the

n hidden states of the recurrent net when processing the input sequence x1:n.

The decoding process takes the produced E as input and generates the output sequence

one vector at a time. This output vector has as many components as it does features we

wish to predict (in our case, 9), plus some features used to decide when applications finish.

A detailed description of the features can be found in Section 5.3. The decoder RNNdec

receives as input at time t the vector xt := [ỹt−1; ct] which is the concatenation of ỹt−1
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and ct (in addition to any recurrent inputs). Vector ỹt−1 is the output predicted by the

decoder at the previous time step. Vector ct is the "context vector" generated by the attention

mechanism of the decoder. Given a hidden state st and a input xt the predicted resources of

the colocated applications at time t is ỹt = RNNdec(xt, st;θ).

Predicting completion time

We have experimented with two mechanisms for predicting the completion time of the

co-scheduled jobs. The standard End of Sequence (EoS) feature approach [73] and our own

Percentage Completion (PC) feature approach.

End of Sequence feature

The first strategy, based on an EoS feature, is the standard approach used to decide when an

RNN should stop producing more vectors. The idea of using feature to encode the stopping

time can be found in [73]. This feature vector takes value 0 at every time step except the

last one, where it takes value 1. This vector simply tells the decoder when both applications

finish. If our decoder can predict EOS with reasonable precision then we can build stopping

criteria based on those values to predict the completion time of the co-scheduled applications.

Nevertheless, in our experiments, this was not a successful strategy to stop the decoding

process. We can provide a reasonable argument on the poor behaviour of this strategy. If the

decoder produces always a 0 for the EoS feature, it will guess correctly the outcome of that

feature for all the elements in the sequence, with the exception of the last one. Therefore,

there is little incentive during training to change this behaviour, since the penalisation for

correctly predicting a 1 in the last time step is quite small, compared with the benefit of

predicting the correct value at all the other time steps. This insight lead us to present the

Percentage Completion Features, that penalize a decoder that produces always a zero in the

feature used to stop the decoding process.

Note that the presented EoS approach for our problem is not equivalent to the analogous

problem in other domains such as Neural Machine Translation (NMT). In NMT, the decoder

emits conditional probability over the vocabulary at every time step which can be used to

select the word with the highest probability. In that scenario, there is a token EOS that is

just a special word that stops the decoding process, which means that if the decoder emits

the EOS symbol the decoding process is stopped. In our setting the EoS is a new feature that

takes a real value at every time step.
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Percentage Completion Features

The second strategy consists of a novel approach based on two additional features (one per

job) which we denote with PC features. PC features keep track of the percentage completion of

the workloads, providing ResourceNet with extra information relevant to the job estimation

runtime.

We denote by PCa and PCb the percentage completion features for input sequences

a and b, respectively. Both features contain at time t how much of the workload has

been completed until t, expressed as a percentage. For a given sequence s of length N,

we define PCs =
( 1

N · 100, 2
N · 100, . . . , N

N · 100
)
. Notice that, by construction, PC features

contain monotonically increasing values that must finish with value 100. Nevertheless the

rate of increment at every time step will depend on the overall number of time steps of the

sequence.

Example: Let us consider a = (a1,a2, . . . ,a100) and b = (b1, b2, . . . , b300). Then PCa =

(1, 2, . . . , 100) and PCb = (0.333, 0.666, 1.0, . . . , 100) are two vectors of length 100 and 300

respectively.

5.3 experiments

Workload data

In order to capture the trace of each execution we have profiled them by using the basic

Linux performance analysis tools: vmstat, iostat, ifstat and perf. These tools gather system

performance metrics of running processes in a non-invasive way. Additionally, these tools

have a lower performance impact in the system, causing negligible overhead to the execu-

tions. From these tools we have gathered a total of 141 features with time granularity of one

second.

For our study we have selected 9 key features, shown in Table 5.1, that are especially

relevant for interference prediction and resource estimation [63][20][50].

The dataset used in the experiments contains traces generated by a variety of micro-

benchmarks (workloads). The workloads used have been extracted from different suites:

HiBench [32], Spark-perf [72] and SparkBench [43]. These suites contain different Big Data

workloads, and have also been used in similar studies [82][35][51][15]. The benchmarks

include machine learning, data mining and big data benchmarks. Some examples of work-

loads are executions of PageRank, K-means, Naive Bayes, Logistic Regression, etc. The traces are

executed using a server with two Intel Xeon E5-2630 processors and 128 GB of RAM, up to

400 isolated and co-located executions.
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Feature Description

CPU Percentage of total CPU used

RAM Amount of Bytes of main memory used

IOR Blocks received from a block device (blocks/s)

IOW Blocks send to a block device (blocks/s)

CPI Cycles per instruction

LLCM Last level cache misses

FLCM First level cache misses

PF Page faults

TLBM Translation lookaside buffer misses

Table 5.1: Workload metrics recorded at each time step.

5.3.1 Dataset description

The dataset has been created using workloads from HiBench [32], Spark-perf [72] and Spark-

Bench [43]. The dataset is composed of workloads triplets. Each triplet contains a combination

of three execution traces. The first two traces correspond to isolated executions of the two

applications. The third trace contains the execution of the co-located application from the

first two traces. Therefore, the data has the form D =
{
(w[i],w[j],w[i] ∧w[j]) | i, j ∈ I

}
where I is a set of indices of the workloads.

In real world scenarios, co-located applications do not necesarilly start at the same

time. In order to increase the co-location cases in our collected dataset, we prepared

different scenarios where co-located applications a and b start with different delays. For

the benchmarking executions, one of the concurrent applications is delayed to start after

its co-located peer application. The phase differences used in the dataset generation are 0

(synchronized), 0.25, 0.5 and 0.75. A phase difference of 1.0 is not taken into consideration

since it would mean applications running completely in isolation, one after the other. Notice

that bigger differences usually give rise to less interference, since applications have fewer

runtime sharing resources.

We have executed 500 random pairs of applications from the three previously mentioned

benchmarks with randomly generated shifts. The executions are used to create a train set

containing two thirds of the pairs and a test set containing the remanding executions.
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ResourceNet is validated through a test set of executions which are used to evaluate the

prediction capabilities in different job co-location scenarios. We use the Mean Absolute

Percentage Error (MAPE) to assess the quality of the predictions at every time step of

the execution trace. We have selected MAPE because it is an easily interpretable and well

stablished metric to evaluate regression models that has already been used in relevant

related work [41, 56]. In order to evaluate our work we have designed two experiments:

• In Experiment 1 (subsection 5.3.3) we evaluate the quality of the predictions when

both applications are running with the different models presented. We present a table

with the error metrics computed in a test set.

• In Experiment 2 (subsection 5.3.4) we evaluate the accuracy of the model presented

when predicting the runtime of co-scheduled applications. We present experiments

with different methods to assess the job runtime of the co-scheduled applications.

5.3.2 Experiment settings

The experiments performed in this section use an encoder and a decoder with 512 hidden

units trained during 1000 epochs with a learning rate of 0.001. We have used standard

SGD algorithm to train the model. This architecture was selected after evaluating different

models with the same number of hidden units in the encoder and decoder. We evaluated

architectures with 128, 256, 512 and 1024 hidden units. The best results were obtained with

512 hidden units. We implemented the model using PyTorch [58], a Python library that

already provides the building blocks for our model such as the GRU layers for the encode

and the decoder. The other models used in this chapter are from scikit-learn [59].

Evaluation methodology

To evaluate the advantages of the proposed method we compare it with other sensible

alternatives. Firstly, we use a naïve baseline model to estimate resources. The baseline model

predicts the resource usage at time t as the sum of the resources of the isolated applications

at time t. This means that the output at time t for a given input [a; b] is ỹt = at + bt.

Notice that [a; b] is a matrix of features that already contains padded zeros to encode any

temporal phase difference of sequences (should they exist). Therefore, if b starts k time

steps after a then this baseline should predict correctly the features values of the co-located

applications for the first k time-steps (since there is a single application running and there

is no competition for resources). Nevertheless, when two applications are co-executed the

resource behaviour is not easily predicted as a sum of the resources in isolation.
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We also compare our approach with a Linear Regression (LR) and a MLP. The two

regression models present a natural improvement over the baseline approach, because

learning is involved in order to adjust the predicted co-execution resources, instead of using

a simple addition. Both methods predict the resources usage at time t as a function of the

input features at and bt. The baseline, the LR and the MLP take an input vector containing

measurements from the isolated sequences at time t and estimate the features of the the

co-located sequence at time t. This approach involves three critical problems:

• The temporal nature of the data suggests that values at time t might be correlated

with nearby values. This is not taken into consideration.

• If the input has length n and the output has length n + k there will be k time-steps

where the models cannot make predictions, because the model has no input data from

which to make predictions.

• A model predicting co-execution resources needs to predict the overall runtime of the

co-execution, otherwise the expected resources might be "expected forever".

The first problem can be somewhat mitigated by using a sliding window mechanism

over the input data. Nevertheless, including a sliding window mechanism increases the

complexity of the solution and adds a new hyper-parameter to be tuned (the length of the

sliding window).

The second problem is even harder to assess. A sensible approach could be to pad the

execution with zeros in the k time steps where there is no data. However, this solution

invents time-steps with no resource usage and does not address the issue that, in reality,

co-scheduled executions resource consumption "stretches in time" when co-scheduled jobs

share resources. Models therefore require some sort of memory from past values in order to

understand the effect left produced by the co-location over time.

The third problem cannot be solved by sliding window models because, by construction,

such models receive as input a window of resources and produce an output vector of

resources. Therefore, such techniques are only aware of a sliding window of resources. Since

these techniques do not keep track of the number of generated time-step resources during

prediction they do not provide an expected finish time of the predicted trace. Therefore,

they are not suitable in an scenario where it is critical to assess how low applications might

run together, in order to make scheduling decisions.

Sequence-to-sequence models with an attention mechanism naturally deal with these

three issues because the hidden state of the RNN cells allow the model to "keep track" of

previous resources and we can use a feature to train the model to predict the expected

termination time of the co-scheduled applications.
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5.3.3 Experiment 1: Resource usage predictions

In this experiment we evaluate the accuracy of the predictions made by the different models

on co-scheduled jobs. Table 5.2 contains the MAPE errors of the predictions on the test set.

The best results are obtained by ResourceNet, followed by the MLP. Notice that for some

metrics, such as CPU and IOR, the error produced by the proposed model is reduced

more than half when compared to the other models. Moreover, the model presents a lower

standard deviation in most cases.

baseline linear regression multilayer perceptron ResourceNet

MAPE std MAPE std MAPE std MAPE std

CPU 14.9 19.6 16.5 12.7 14.2 12.7 6.4 10.4

CPI 24.4 14.9 7.6 6.0 7.5 5.9 4.1 5.9

IOR 13.7 15.6 11.7 8.5 10.7 8.2 3.8 4.5

IOW 3.5 8.0 1.7 1.8 1.8 1.9 1.4 1.6

RAM 57.7 37.6 13.8 12.3 12.5 12.0 7.0 9.1

TLBM 6.5 05.3 3.9 3.3 3.9 3.3 1.7 3.1

PF 3.7 6.9 4.5 4.8 4.6 4.9 2.7 4.4

LLCM 8.8 12.2 6.4 7.9 6.4 7.6 4.4 7.9

FLCM 8.1 08.2 5.3 5.3 4.9 4.8 3.1 4.7

Table 5.2: Mean Absolute Percentage Error for each metric and model, evaluated in the test set

Let us visually assess the behaviour of some of the evaluated models in some examples

from the test set. We have selected and plotted the resource usage and the predictions of

three examples. Figures 5.2, 5.3 and 5.4 show three different pairs of co-located applications

with different properties. Each figure is composed of three columns. The first two columns

show the resources usage trace in the isolated runs. The third column shows the trace of the

co-located applications with the predictions made by the MLP and the sequence to sequence

model. The shaded region shown in the third column displays the period at which both

applications run at the same time. This is the period used to compute the error metrics

(when both applications are running at the same time). Moreover, vertical discontinuous

lines mark the time step at which the input [a; b] finishes. In the interest of clarity, the

figures do not contain the predictions of the other models in order to avoid excessively

cluttered images.

When applications have low resource demands, and especially when they compete for

resources only during small periods of time, the expected demands are easy to predict.

Figure 5.2 shows a pair of low-demand applications competing for resources during only

a small period of time. In this example the second application starts roughly at time step
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20 while the first one finishes around time step 25. This is a simple case where all models

can capture the increase in the metrics (specially CPU usage) during the brief period in

which both applications run at the same time. Notice that the vertical discontinuous line

is around time step 48. This means that the applications took around the same time when

they were run in isolation than when they are run co-scheduled. In contrast, in cases where

more demanding applications are co-located, the expected resource usage of the co-located

applications over time is not straightforward to predict. One of the main difficulties in this

type of scenarios is the slowdown of both applications while competing for resources, which

usually implies a big difference in execution time with respect to the applications being run

in isolation. This can be seen in Figs. 5.3 and 5.4. In Fig. 5.3 the input jobs take around 40

time steps to execute in isolation, but require more than 80 under the presented co-schedule.

The same effect, even more pronounced, can be seen in Figure 5.4. The degradation of

quality for long sequence prediction is a known issue found in [73].

Figure 5.2: Example with two co-located applications that share resources only during a fraction of

the execution.
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In the cases presented, ResourceNet is capable of capturing the trend of the resources

correctly; not only in the shadowed region but throughout the entire sequence. For example,

the CPU usage in Fig. 5.3 starts at around 75% of usage, then decreases at around 50 and

ends again at around 75% of CPU. In this figure, one may clearly observe the undesired

drawback of the element-wise models previously explained. Around time step 38, we can

see the predictions of the MLP getting stuck at a particular value. This is easy to observe for

IOR, RAM and CPU usage, where predictions are far from the true values. Such behavior is

caused due to the lack of input features in the isolated traces, so the model has to rely on

making predictions out of zero-padded feature values because either a or b or both have

finished. Notice how the MLP makes high error predictions for CPU and IOR when the

input traces finish (marked by the vertical red line). Nevertheless the resource usage trend

is predicted semi-accurately while both applications run. The sequence-to-sequence model

is capable of generating and output sequence longer than the input sequence in a "natural"

way, without any need to pad the original features.

Figure 5.3: Example where one application demands almost all memory available.
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Figure 5.4 shows two jobs which require a high amount of RAM. The first requires

low CPU and high IOR, while the second is just the opposite. We can see that once the

first job has finished the IOR demand in the co-located trace goes to zero and our model

can successfully detect this trend. Even though models capture the trends of all features

reasonably well, none of them are able to predict the burstiness of some features, especially

LLCM and FLCM. Note that the execution time of the concurrent applications is roughly

five times more the amount they need while running in isolation. This poses a challenge

since the Sequence-to-Sequence model needs a decision criteria to stop producing the output

trace. The image simply shows the trace until the point where the true sequence ends. The

experiments in the following section precisely study different approaches to provide an

stopping criteria to the model.

Figure 5.4: Example where both applications use all available memory at some point during the

execution.
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5.3.4 Experiment 2: Estimating co-scheduled execution time

Stopping criteria of the co-scheduled trace

We have experimented with different criteria to predict the runtime of co-scheduled ap-

plications. Our methods are based on PC and EoS features which are detailed in Section

5.2.2. Using these features, we can test different criteria to predict the completion time of a

co-scheduled pair of jobs.

Since we do not know in advance how long co-scheduled applications can take to finish,

we have decided to treat the length of the generated trace as a hyperparameter to be adjusted.

The different criteria tested are as follows:

• first max EOS: applications are predicted to finish when the first local maximum is

found in EOS.

• first max PC sum: applications are predicted to finishwhen the first local maximum is

found in the sum of PCa and PCb.

• argmax EOS: applications are predicted to finish at the argmax of the sum of EOS.

• argmax PC sum: applications are predicted to finish at the argmax of the sum of PCa

and PCb.

For each of the criteria, Table 5.3 reports the MAPE error and the standard deviation

depending on the length of the generated trace. The first column length contains at position

kx the expected error when the co-scheduled trace is generated up to k times x time-steps,

where x is the longest of the input traces when executed in an isolated environment. Results

show that if the length of the generated trace is too short (for example 1x), then errors are

large because the stopping criteria is fired before the co-scheduled applications might finish.

Errors decrease as k increases up to a point where the errors start to increase. The best

results are achieved at k = 4. Our experiments show much lower errors for the criteria based

on PC features than for criteria based on the EoS feature.

The errors made by our criteria behave differently in accordance with the length of

time we predict applications will need to finish with respect to the runs made in isolation.

In Figure 5.5 one may observe the distribution of errors made by our criteria, grouped

according to where we predict the execution will end. The plot shows how the farther away

the co-located applications are predicted to finish the larger the expected error. The box

plot shows results for the criterion argmax PC sum. We can see how applications that are

expected to run between 1x and 2x have low errors, while applications that are expected to

finish between 3x and 4x have higher errors and more variance. This increase on error and
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variance can be supported by the behaviour of the predicted PCa and PCb features found

in Fig 5.6. In the figure we can observe how the dotted lines that predict the end of the

applications predict very accurately the end of the execution on the first column but do not

work as well on the third column. This behaviour of loosing quality for longer sequences is

consistent with other works such as [73].

Notice the capability of knowing when application finish can be used as a rule for deciding

when applications should not be co-scheduled. A simple rule for avoiding co-scheduling

applications could be to forbid scenarios in which the model runtime prediction falls within

3x or 4x.
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Figure 5.5: This figure shows the distribution of the MAPE grouped into 4 categories.

first max EOS first max PC sum argmax EOS argmax PC sum

trace length MAPE std MAPE std MAPE std MAPE std

1x 96.6 5.1 98.3 8.1 77.5 21.3 59.0 17.7

2x 96.6 5.1 77.7 39.1 49.1 35.9 25.1 20.4

3x 96.6 5.1 46.2 45.2 18.8 24.7 14.3 15.6

4x 96.6 5.1 29.4 37.8 30.8 35.9 12.7 18.2

5x 96.6 5.1 29.4 37.8 31.5 45.6 28.2 39.0

6x 96.6 5.1 29.4 37.8 43.8 64.5 30.0 44.1

7x 96.6 5.1 28.1 37.0 48.8 75.1 106.9 96.9

8x 96.6 5.1 28.1 37.0 63.6 97.2 107.6 98.6

Table 5.3: MAPE errors made using the different stopping criteria.
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Looking at EoS and PC feature predictions

Figure 5.6 shows the EoS and PC features behaviour for three different co-scheduled workload

pairs. Every column in the figure corresponds to a different colocation of two workloads.

The continuous lines show the true values of the different features and the dotted traces

show the predictions made by the sequence to sequence model. Vertical lines show the

length of the longest workload executed in isolation. Plots in this figure show predictions

generated up to five times the length of the longest input sequence. The CPU resource usage

of the co-scheduled pair has been added into the plot to contextualize the other features.

Notice that the longer a pair takes to execute, the less a signal is shown by the EoS feature.

Nevertheless, PC features maintain a relatively good quality even for co-scheduled pairs

with high resource competition.

Our results suggest that criteria build to predict the length of a co-scheduled trace using

EoS should not be based on the actual value of the EoS feature, but rather on a function

taking into account the maximum value achieved during the prediction process. Notice that,

in the first case, the predicted EoS arrives roughly at 0.75. However, the second case barely

takes value 0.25 and the third case the EoS scarcely barely goes above zero. This behavior

increases the difficulty of predicting runtime even more with this feature.

A reasonable explanation for the behavior of EoS is that our model is trained by minimizing

the mean squared error between predictions and true traces. It is logical to argue that the

optimization procedure induces the network to focus more on predicting PC features better

than EoS, since the EoS feature takes value 1 at only 1 time step while PC features increase

at every time step. The overall contribution to the error of always predicting 0 in EoS is

therefore much lower than always predicting 0 in PCa or PCb.

Figure 5.6: Behaviour of EoS and PC features for the workloads seen in Figures [5.2] [5.3] and [5.4].
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5.4 conclusions

This chapter introduces the use of recurrent neural networks for interference and resource

prediction tasks of co-scheduled applications. We adapt a sequence-to-sequence model to

work with two input sequences instead of one, thereby providing a padding containing the

start time of one application with respect to the other. Our method predicts resource usage

of the monitored metrics over time and is adaptable enough to be trained with workloads

of arbitrary input and output lengths. Moreover, since training is done for a regression task

instead of a classification task, the standard stopping criteria used in similar architectures

does not provide good results. Therefore, we introduce the percentage completion features

which significantly improves completion time prediction of co-scheduled applications.

Our experiments show that the model is able to predict the resource usage of co-located

applications sharing resources over time, even when application performance degrades dras-

tically due to a high demand of similar resources at the same time. Moreover, as a baseline,

we compare our model with standard machine learning algorithms. The experiments show

that our model makes more accurate predictions and is able to deal with the sequential

nature of the data, thus making it suitable for the presented scenario where input/output

pairs might have different lengths.



6
FA S T T I M E - T O - S O L U T I O N B I G D ATA W O R K L O A D AU T O - T U N I N G

W I T H R E U S A B L E P E R F O R M A N C E M O D E L S

This chapter describes the third contribution of this dissertation which aims to provide a

fast time-to-solution method to auto-tune Big Data workloads. Big Data Framekworks, such

as Hadoop or Spark provide a high level language for building distributed applications that

can run across multiple machines. These frameworks expose many tunable parameters to

programmers. Nevertheless, tuning jobs is not a trivial task and requires in depth knowledge

of the application to be executed and the impact of the parameters on the workload to be

optimized. To facilitate this task many practitioners use auto-tunning systems that free them

from the burden of having to manually adjust many parameters. State-of-the-art auto-tuning

systems tune configurations by iteratively running jobs with different configurations, and

smartly choosing the samples to quick find good candidates. Many optimizers enhance the

time-to-solution using black-box optimization processes that do not take any information

from the workloads.

The work presented in this chapter finds configurations that provide a good performance

from one or two runs of the workload. To achieve this, we mine the log file generated

by the Big Data framework once an application is executed. Since the log file contains a

large amount of information from the application, we can build a model that is trained on

low-level features that summarize relevant information from the application. We encode

all the gathered information from the log into a feature vector that is provided to machine

learning models. This process provides the learning algorithms an application specific

feature vector with information of the workload to be optimized. This allows our system to

predict sensible configurations for unseen jobs, given that it has been trained with reasonable

coverage of applications. Experiments show that the presented system correctly produces

good configurations achieving up to 80% speed-up with respect to the default configuration,

and up to 12x speed-up in search time when compared to a standard Bayesian Optimization.

We evaluate our system with standard benchmark applications for Big Data frameworks,

using Spark, which is one of the most popular frameworks for distributed computing. This

log file contains a large amount of information from the executed application. We use this

71
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information to enhance a performance model with low-level features from the workload to

be optimized. These features include Spark Actions, Transformations, and Task metrics. This

process allows us to obtain application-specific workload information. With this information

our system can predict sensible Spark configurations for unseen jobs, given that it has been

trained with reasonable coverage of Spark applications.

Section 6.1 presents an overview of the problem and a summary of the contributions.

Section 6.2 presents our proposed solution to build feature vectors from the log file and

a search mechanism based on performance models which have been trained using as

input those feature vectors. Section 6.3 shows experiments that evaluate our work. Finally,

Section 6.4 presents the conclusions of the chapter.

6.1 introduction

Big data processing frameworks, such as Apache Spark, are being increasingly utilized in a

wide range of industries. To support the diverse range of applications, such frameworks

allow users to tune parameters that might significantly affect the performance of the

workload. There are many parameters to be tuned in all Big Data frameworks. Spark, for

example, has more than 100 parameters that can be configured, which makes the selection a

difficult task.

There are different strategies for overcoming the problem of selecting good parameters

for a specific job. Several methods have been proposed for auto-tuning hyper-parameters of

configurable software, many of which are based on machine learning models. Such models

can be used to provide estimated performance metrics of the application under a particular

configuration of the hyper-parameters. The best parameters found during the search are

then provided to the user.

Current state-of-the-art work based on model search techniques (model-based systems)

have the drawback that retraining is required in order to generalize to unseen workloads [9].

This is a consequence of current models only receiving information from the configuration

space that they need to optimize. Even works that provide an application identifier or the

dataset size as an input to the learning algorithm need retraining for new applications. This

limitation has led the community to explore how to improve current performance models

and how to build solutions that do not need machine learning models (non-model-based

systems). Some systems [23] without performance models have been built based on an

efficient search mechanism of the configuration space. This approach can achieve a relatively

fast time-to-solution, while maintaining good quality in the results.

The claim that some model-based systems are slower than non-model-based systems

is reasonable. Auto-tuning systems that do not use a performance model do not need to

spend time training an oracle when a new workload needs to be optimized. Therefore, it is
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possible that such systems can find a solution with fewer job executions than the number

of runs required to train the oracle in a model-based system. The objective of our work is

to improve the current model-based approaches in such a way that very few samples are

needed to find a good configuration. In the most extreme case, we would like to perform

model-based optimization with a single run. Nevertheless, to achieve this goal we need a

way to transfer previous knowledge about past examples to optimize new workloads.

Recent work from the area of configurable software [37] explores the idea of using

transfer learning to facilitate the task of extracting measurements from a system in order

to build a dataset. In our scenario, the data consist of many application executions, and

we can assume that cloud providers already possess a large number of execution logs

from those applications. Therefore, we focus our method on improving the time-to-solution

of finding good configurations for applications, instead of focusing on decreasing the

number of executions that have to be performed before good performance models are

created. Nevertheless, we adapt our methodology with the goal of using transferable

knowledge across workloads, providing a information to the oracles that is transferable

across applications.

Model-based systems have to deal with three problems: sampling the search space to build

a dataset, learning a model that can predict performance metrics accurately on new data,

and searching in the configuration space to find a suitable configuration for a new workload.

Our work focuses on improving the last two components in the context of workload auto-

tuning. We want to build better features to achieve higher quality models that can more

accurately predict performance metrics for new applications. Moreover, we want to speed

up the time-to-solution of the whole process for a new application that the learning model

has not seen in the training data.

To address the above challenges, we present a system that builds upon a model-based

search technique modifying a standard Bayesian Optimization [70] process. Our system is

enhanced with a mechanism that transfers knowledge from the execution logs to provide

more information to the Machine Learning model. The key part of the proposed approach is

that, in order to make the model generalize to unseen applications, we create a rich feature

descriptor from the internal log file of events generated once an application is executed. This

descriptor contains a summary of the tasks performed by the workload, providing the oracle

with low-level details about an application, without the need for extra instrumenting of the

computational environment. Using this information, the model can learn the relationships

between the parameters to be optimized and the application descriptor. This allows our

model to generalize better to new unseen workloads without retraining. Moreover, our

method does not need input from the user with respect to the type of application executed.

In addition, since the feature descriptor is built from the log file, our methodology respects
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code privacy because it does not need to access the source code of the application to be

optimized.

Using the proposed feature descriptor, we can simulate a Bayesian Optimization process

guided by an oracle that makes predictions conditioned on the application to be optimized.

In this way, we can avoid costly runs of the application, which allows our methodology to

achieve a faster time-to-solution with respect to a standard Bayesian Optimization process,

while achieving almost the same quality.

We evaluated our approach using Spark. Our dataset contains a wide range of popular

workloads from two popular Spark benchmarks suites: Hi-Bench [32] (from Intel) and

Spark-perf (from DataBricks). Our experiments show that the proposed feature descriptor

enhances the quality of the machine learning models with respect to other features used in

the literature. Moreover, the cost of finding a good configuration is considerably reduced

because our methodology can perform a reliable search in the configuration space adapted

to the type of application to be optimized.

contributions of the chapter

The main contributions presented in this chapter can be summarized as follows:

• We propose a novel feature descriptor created from the log file of an application to

provide extra knowledge to the performance models used for auto-tuning. We show

that this extra information improves the quality of the predictions of machine learning

models for unseen workloads by up to 34% with respect to the same models trained

on standard feature representations.

• We develop a practical strategy that can auto-tune configurations for new, never seen,

workloads. Our solution can achieve up to 80% speedup on the execution with respect

to the default configuration. We show that our method can achieve up to 12x speedup

compared to a standard Bayesian Optimization process, with almost equal results.
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6.2 methodology

Problem formulation and motivation

Let S be the Configuration search space containing the parameters tunable parameters to be

optimized. Let s ∈ S be a particular configuration of hyper-parameters in the search space.

Let e : S −→ R be the evaluation metric we aim to minimize, for example the execution

time of a workload. The problem of finding a good Spark configuration has been framed by

some studies [37] as finding s∗ defined as follows:

s∗ = arg min
s∈S

e(s) (6.1)

The formulation of the problem in equation (6.1) states that the optimization to be

performed only depends on s ∈ S . Some works, such as [92], define the problem with the

following e function: e : S × X −→ R, where X is a space of features that might capture

relevant information about the problem. We will use an evaluation metric of this form.

Given a vector of features x ∈ X the optimization problem becomes:

s∗ = arg min
s∈S

e(s; x) (6.2)

Note that in equation (6.2) s ∈ S can change but x ∈ X is fixed. In some works, X is a

single variable containing the dataset size [55, 92]. This implies that the only information

expected to affect the performance of an application is the dataset size. Since applications

can be very different, this becomes an oversimplification of the problem, particularly in

environments that use heterogeneous workloads. To improve this feature vector, other

works add an identifier of the application [9], providing more contextual information to

the optimization problem. Nevertheless, it is difficult to reuse and extrapolate from this

contextual information, since it is an identifier that is usually encoded as a categorical

variable.

Popular methodologies for the problem

A standard, general-purpose procedure for finding good configurations for workloads

consists of using a sequential optimization procedure that learns over time which areas

of the search space are likely to contain good solutions. A popular algorithm that follows

this logic is Bayesian Optimization [70], which uses a Gaussian process to decide which of

the regions of the search space are likely to contain a probable gain in performance. This

methodology has been tested for searching workload configurations [37] with great success.
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First, a time budget T and a search space S are provided to the optimization procedure. Then,

finding a configuration corresponds to updating the black box optimizer with the execution

time y = e(s), as shown in Fig. 6.1. This process generates vectors from the search space S ,

while storing the best configuration found so far. Once the time T expires, the optimization

process finishes and the best configuration is returned. The main drawback of this approach

is that a job execution is required for each update of the optimizer. Nevertheless, Bayesian

Optimization techniques [36] have been used successfully to tune software. Since executions

might take a long time, this technique might not be practical in some scenarios. To improve

upon this solution, some works such as [23] focus on identifying a subspace of S relevant to

the problem. They then focus on optimizing the subset of relevant parameters, considerably

reducing the number of samples needed, and achieve good results.

y
!
T

Optimizer Job 
Executions

Figure 6.1: Classical optimization pipeline followed by a Bayesian Optimization process.

In order to avoid running an application many times to find a good configuration, many

works use a machine learning model trained to predict the evaluation metric from past

executions [5, 55]. This model, sometimes called the performance model, aims to replace

many of the job execution calls with the predictions provided by the model. The diagram in

Figure 6.2 represents the overall pipeline for the optimization process. Note that this process

has 2 different phases, which depend on whether an application is known or not. Let A

be the set of applications that the system has observed. If the identifier of the app, appid,

is in A, then the optimization procedure is fast and the oracle can be used to make the

predictions ŷ that are provided to the search algorithm. Then the best prediction according

to the model is retrieved and executed. If the application is not in A, the system enter into a

sandboxing phase, where many samples have to be generated and executed, and the oracle

needs to be retrained. This is necessary because the only information that the tuning system

has is the application identifier.

The question as to which optimization pipeline is better is still open. Works like [23]

suggest that by smartly selecting a subset of the configuration space, good results can be

achieved without any need of a performance model.
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Figure 6.2: Classical optimization pipeline with a performance model (Oracle).

Overview of our proposed solution

The drawback of the optimization pipelines in Figures 6.1 and 6.2 is that the whole pro-

cess needs to execute the workload multipe times. In practise, the solutions that use a

performance model need advance knowledge of the application in order to make sensible

predictions. If an application is not known, several job executions are required to update the

oracle. Recent work [9] has studied methods to reduce the number of samples required to

update the oracle to around 100 executions, which is still a high number of executions that

we would like to decrease. Since the selection of the parameters depends on the quality of

the model, improving the model predictions might boost any model-based search results.

In our solution, the oracle is a machine learning regressor that predicts the application

execution time based on a feature vector that characterizes its behavior.

In order to mitigate the main drawbacks of the previous methodologies, our work focuses

on improving two paramount pieces of model-based auto-tuning systems. First, in order to

improve the generalization of the machine learning models, we built a feature descriptor

that characterizes applications without any specific input from the user of the application.

This vector is generated by extracting information from the log file of the application, which

is synthesized in a feature vector x. This part of the optimization pipeline can be seen in the

upper part of the diagram in Figure 6.3.

Note that the job is only executed once to extract the workload characteristics. Then,

the workload characterization x is created and passed to the orable which is used in the

optimization process. It should be noted that, before the oracle is queried, the job is executed

(with the default configuration) and x is extracted. This vector is then used to condition

the output predictions of the oracle. In subsection 6.2.1, we describe in detail how x is

constructed. It is relevant to emphasize that this feature vector contains information from the
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Figure 6.3: Proposed search pipeline for auto-tunning Big Data workloads.

application that can potentially be transferred to new applications because new workloads

might be implemented using a similar type of execution graph, which will yield a similar x.

The optimization process then follows a simple Bayesian Optimization procedure where,

instead of running the application, we query the oracle, providing information about the

application with the feature vector x.

6.2.1 Feature descriptors from the log file

A log file is a text file containing information about the application that is executed, we are

interested in gathering information from this source. The literature contains many types of

descriptors to summarize raw text. One of the most popular approaches to summarize a raw

string consist on creating a term frequency vector. This vector contains at each coordinate

the number of times a particular word in the raw string is found. Note that, in order to

extract "words", a pre-process needs to be performed to partition the raw input string into

"words". This process is called tokenization.

Once all raw strings are tokenized, a vocabulary can be created containing the set of all

possible words (or tokens). This vocabulary can be used to create a bijection that maps each

possible token to a different natural number. Once this mapping is constructed then any

raw string from a log file can be mapped into a term frequency vector that summarizes the

log file. In the event that a new token is not in the vocabulary, this feature representation

simply ignores the token.

Feature descriptor for Spark workloads

In this work we will use Spark for all our experiments, therefore, the vocabulary that we

will use is the set of unique tokens that are found in the Spark logs of our dataset. Since the
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log files from Spark, called SparkEventLogs, are structured as a list of key-value pairs in the

form "key": "value" we will build a slight modification with respect to the standard term

frequency vectors to gather information about the workloads. Each element in the list of

dictionaries starts with the Event key that we used to decide whether the row needs to be

parsed or skipped. Therefore, the tokenization process in this type of raw string is already

done for us. A reasonable vocabulary is the set of keys found in the input string.

In order to build our feature vector we parse three different types of key-value pairs. We

take the SparkEventLog elements with key equal to "Event", since they contain the most

relevant information about the workload. Such "Event" keys contain as values strings of

the form SparkListener + p + e where p ∈ {Application, Stage, Task} and e ∈ {Start, End}.
As the names suggest, Event strings are initiated with the suffix Start and finished with

End, marking the beginning and end of the Event, respectively. The most interesting features

are retrieved from Stage and Task events because they provide us information about the

execution graph of the application. We only use Application keys for verifying if a job starts

and finishes without errors.

The resulting descriptor contains a total of 75 features. From those features, 11 are

retrieved from Stage events and 64 are retrieved from Task events. We denote by e f (eventlog

features) this feature vector of 75 components containing Task and Stage features. A detailed

description of the features is presented below.

Stage Features

Stage events provide information about the Spark actions and transformations used in

the Stage. This type of event provides high-level information about the workload because

it shows core Spark function calls made during the execution of the workload. Some

examples of Stage events include the well-known "map", "reduce" and "reduce by key"

operations typically used to leverage distributed computing systems. This information tells

us the percentage of time an execution spends on each of the actions and transformations

found in the workload. The descriptor contains the following actions and transformations

from the following list: ["collect", "count", "countByKey", "first", "flatMap", "map", "reduce",

"reduceByKey", "runJob", "takeSample","treeAggregate"].

Note that a workload might only use a subset of the features presented.

Task Features

Task events provide information about the different Tasks found in a Stage. Tasks provide

us with low-level metrics such as the number of bytes read and written to disk, the time

spent during garbage collection and the CPU time. We aggregate the information across
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all tasks into a vector of aggregated statistics. This information tells us whether, overall,

the execution was read or write-intensive, CPU intensive, etc. Table 6.1 lists all the features

gathered from Task events.

Task features

0 Input Metrics: Bytes Read

1 Executor Deserialize Time

2 Executor Deserialize CPU Time

3 Executor Run Time

4 Executor CPU Time

5 Result Size

6 JVM GC Time

7 Result Serialization Time

8 Memory Bytes Spilled

9 Disk Bytes Spilled

10 Shuffle Read Metrics: Remote Blocks Fetched

11 Shuffle Read Metrics: Local Blocks Fetched

12 Shuffle Read Metrics: Fetch Wait Time

13 Shuffle Read Metrics: Remote Bytes Read

14 Shuffle Read Metrics: Remote Bytes Read To Disk

15 Shuffle Read Metrics: Local Bytes Read

16 Shuffle Read Metrics: Total Records Read

Table 6.1: Task features.

Since there can be an arbitrary number of Tasks in an SparkEventLog, we generate four

feature vectors containing the mean, minimum, maximum and standard deviation across all

the features in Table 6.1. The final descriptor summarizes the behavior over multiple tasks

and is created by concatenating the previous four feature vectors. This process creates a

64 = 16 · 4 dimensional feature vector. Finally, we add a feature "dataset size" that contains

the total data size read from disk. This feature is extracted by summing the values in "Input

Metrics: Bytes Read" across tasks.

SparkEventLog example

The example given in this subsection shows different parts of the SparkEventLog created

when executing a job. Our goal is to show how the source text of the file corresponds with the

previously defined Stage and Task features. To make the explanation clearer, some parts of

the SparkEventLog have been omitted. The snippets of text shown below correspond to the

SparkEventLog generated executing an Fp-growth algorithm. This is a popular data-mining

application that generates association rules.
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• ApplicationStart and ApplicationEnd mark the start and end of the application. In this

example, we can see that the AppID is local-1561554220820. This string is precisely the

name given to the SparkEventLog generated when running this application. If an

application does not crash, it will have a SparkListenerApplicationEnd event at the end

of the list.
{ " Event " : " S p a r k L i s t e n e r A p p l i c a t i o n S t a r t " ,
"App Name" : " 0 5 _ fpgrowth_ i temset _mining . py " ,
"App ID " : " l o c a l −1561554220820" ," Timestamp " : 1 5 6 1 5 5 4 3 1 2 3 3 1 , " User " : " dbuchaca " }

• StageSubmitted and StageCompleted denote the start and end of a Spark Stage, respec-

tively. In the example below, we can see the field Stage Name, which takes the value

count, one of the features from Table ??. The word count is a Spark keyword that

describes the type of action or transformation being performed in the stage (in this

case, Stage 0).
{ " Event " : " SparkListenerStageSubmitted
" Stage Info " : { " Stage ID " : 0 , " Stage Attempt ID " : 0 ,
" Stage Name " : " count a t FPGrowth . s c a l a : 2 1 7 " , " Number of Tasks " : 2 ,
"RDD Info " : [ { "RDD ID " : 4 , "Name " : " MapPartitionsRDD " ,
Scope " : " { \ " id \ " : \ " 2 \ " , \ "name\ " : \ "map \ " } " , , . . . } ]

• TaskStart and TaskEnd denote the start and end of the task, respectively. In the snippet

provided, we can see several metrics that tell us the read and write statistics, garbage

collection metrics, etc. The information found here can be used to fill in the features in

Table 6.1.
[ " Event " : " SparkListenerTaskEnd " , " Stage ID " : 0 , " Stage Attempt ID " : 0 ,
" Task Type " : " ResultTask " , " Task End Reason " : { " Reason " : " Success " } , . . .
" Task Metr ics " : { " Executor D e s e r i a l i z e Time " : 3 3 ,
" Executor D e s e r i a l i z e CPU Time " : 1 9 1 5 7 4 8 9 ,
" Executor Run Time " : 6 4 7 , " Executor CPU Time " : 1 4 7 4 6 6 1 8 0 , " Resul t S ize " : 1 5 6 9 ,
"JVM GC Time " : 0 , " Resul t S e r i a l i z a t i o n Time " : 1 , " Memory Bytes S p i l l e d " : 0 ,
" Disk Bytes S p i l l e d " : 0 , " S h u f f l e Read Metr ics " : { " Remote Blocks Fetched " : 0 ,
" Local Blocks Fetched " : 0 , " Fetch Wait Time " : 0 , " Remote Bytes Read " : 0 ,
" Remote Bytes Read To Disk " : 0 , " Local Bytes Read " : 0 , " Tota l Records Read " : 0 } ,
" S h u f f l e Write Metr ics " : { " S h u f f l e Bytes Written " : 0 , " S h u f f l e Write Time " : 0 ,
" S h u f f l e Records Written " : 0 } , " Input Metr ics " : { " Bytes Read " : 1 2 5 8 7 5 ,
" Records Read " : 3 0 4 } , " Output Metr ics " : { " Bytes Written " : 0 , " Records Written " : 0 } ,
" Updated Blocks " : [ ] } } ]

6.2.2 Simulated Bayesian Optimization

Using an optimization procedure that requires executing jobs to evaluate configurations can

be a slow and expensive process. In order to avoid executing a program many times with

different configurations, our work proposes performing search. Instead of performing the

optimization process in the true configuration space of hyper-parameter configurations, we

perform the process in an alternative space that is modelled by an oracle that is provided

with the characterization of the workload x. Therefore, the optimization we propose uses

estimated workload times instead of running the workload. The inputs to the Simulated

Bayesian Optimization (SBO) procedure detailed in Algorithm 1 are:
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• h: Machine learning model already trained with access to a method h.predict that can

be used to predict the execution time from an input vector (s, x). Here s is a vector

containing a particular configuration of hyper-parameter values and x is a vector of

features that characterizes the workload.

• Opt: Class of optimization procedure used to instantiate a Bayesian Optimization

opt with the Expected Improvement as acquisition function. Here, opt has access

the two methods. The method opt.generate() creates a configuration s. The method

opt.update(s, ŷ) updates the internal Bayesian Optimization process for the configura-

tion s with value ŷ.

• job: This is the workload that SBO needs to optimize. Note that we assume we have

access to a function run(job; s) that runs the workload and returns the execution time

and the log file of the workload.

• R: Maximum number of runs allowed to our method.

• S : Search space definition. We used it to provide boundaries for s ∈ S .

• s0: Default configuration of the hyper-parameters.

• T: Maximum Time allowed for the optimization process. Note that even if the total

number of runs does not reach the maximum R, the optimization process can be

stopped if it reaches a maximum time T.

• φ: Function that generates a feature descriptor for the current log file of the application,

executed with the default configuration of hyper-parameters. In our experiments we

use the descriptor described in Section 6.2.1.

Algorithm 1 is a simplified version of the SBO procedure which keeps only the best config-

uration in memory. Once the algorithm finishes, it returns the estimated best configuration

s∗. To ensure that s∗ is a good choice, we need to run the workload with the provided

configuration. Therefore, a reasonable way to implement this algorithm involves storing

the best K values found during the optimization process. Then the process would return

s∗1 , . . . , s∗K, which should be run to find which is the best configuration. We refer to this

process as SBO-K. If a single configuration is returned and executed, we would say that it

followed an SBO-1 optimization procedure. In the event that SBO-K returns a solution that

is worse than the default configuration, the application should be flagged and the model

h should be updated with training samples of that application. In that case the default

configuration should be returned.
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Algorithm 1
1: procedure SBO(h, Opt, job, R, S , s0, T, φ)

2: t← 0

3: opt← Opt(S) . Optimizer is created

4: y0, LogFile← run(job; s0)

5: y∗ ← y0

6: s∗ ← s0

7: x ← φ(LogFile)

8: opt.update(s0, yo) . Optimizer is updated with s0

9: for r ∈ 1 . . . R do

10: s← opt.generate()

11: z← (s, x)

12: ŷ← h.predict(z)

13: opt.update(s, ŷ) . Optimizer is updated with s

14: if y < y∗ then

15: y∗ ← y

16: s∗ ← s

17: end if

18: t← t + get_time()

19: if t >= T then

20: break

21: end if

22: end for

23: return s∗

24: end procedure

The previous explanation describes SBO in general terms. The following Section 6.3

includes a detailed description of our selection process for the different inputs involved

in the SBO algorithm, as well as the applications used to evaluate our methodology. In

particular, the election of regressor h (as well as the tuning of the model) is described in

Section 6.3.1. The search space S, the Default configuration s0 and the maximum number of

executions allowed R can be found in Section 6.3.2. We did not specify a maximum time

budget T.

6.3 experiments

We evaluated the effectiveness of our proposed solution by comparing the results with

popular state-of-the-art approaches. In particular, we aimed to answer the following research

questions:

(i) Feature descriptor Quality: Do the proposed features help to improve predictions

based on machine learning models? Does an oracle trained with the SparkEventLog

features predict sensible configurations for unseen Spark workloads?
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(ii) Time-to-solution speedup: Does the overall methodology provide a good configura-

tion when compared with a solution found with a well-known optimization process,

such as a Bayesian Optimizer? Does the process provide a good configuration in less

time?

The answer to (i) was obtained by comparing our results with other feature representations

found in similar works [5, 9, 47, 55]. For (ii), we needed to measure the quality of the results

and the time-to-solution of our approach with respect to a Bayesian Optimization process.

Dataset Description

To evaluate our system we decided to use a set of workloads that cover different popular

uses of Spark. The set of workloads we used is based on two benchmarks. First, we included

workloads found in HiBench [32], a popular benchmark for Spark, which includes micro

benchmarks, as well as workloads from machine learning, data mining, natural language

processing and web-search. Second, we also included benchmarks from Spark-perf [72], a

benchmark created by DataBricks, the company founded by the original creators of Spark.

Table 6.2 shows the different workloads used.

Id Workload name Application type

01 n-gram NLP

02 Logistic Regression Machine Learning

03 Support Vector Machine Machine Learning

04 Pi computation Scientific Computing

05 Fp-growth Data Mining

06 Word Count NLP

07 K-Means Data Mining

08 PCA Data Mining

09 GaussianMixture Machine Learning

10 Pagerank Graph Processing

11 Random forest Machine Learning

12 Databricks K-Means Data Mining

13 Databricks Naive Bayes Machine Learning

14 Databricks Pearson Correlation Statistics

15 Euler computation Scientific Computing

Table 6.2: Applications used for the experiments.

We used the previous benchmarks to build a dataset containing executions of Spark jobs.

To build our dataset, we generated 100 combinations of parameters for each workload, as
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other works [23] have done. We used a BO process to generate the samples for our dataset.

The main reason for using a BO process instead of a random search is to minimize bad

quality examples and the number of failed runs. We did try a random process to build a

dataset, but it generated many configurations that, once run, returned memory errors (or

were slower than the default configuration). Since the execution time of an application with

a particular configuration can have some variance, we ran the jobs five times and stored the

mean over the repetitions. This value was used as input to the Bayesian Optimizer during

the dataset creation.

Computational Environment

To conduct all the experiments described in this section we used a 4 node cluster, with Spark

version 2.4.1 configured in cluster mode with one node as master and three as slave nodes.

Each node had two 10-core Intel R©Xeon E5-2630 v4 CPU @ 2.20GHz, which sums up a total

of 40 threads per node, as the hyper-threading was active. Each node also had 128 GB of

RAM and they were interconnected by a 10Gbps Ethernet network.

In order to make a fair (and easy to understand) comparison the executions for Time-

to-solution speedup are evaluated in containers executed with exclusivity of resources. In

other words, a single Spark application is being executed for each Spark configuration tested.

It is out of the scope of our work, but an interesting area of research, to generalize the

oracle for environments with co-executions as well as heterogeneous hardware. We used

scikit-learn [59] to build the different performance models presented in this section.

A note on the distances between feature descriptors

The SBO algorithm proposed uses a feature vector x that is built after an application is run

using the Default Spark configuration. A natural question that may arise is how well the

information summarized in the feature vector using these settings describes similar feature

vectors generated with other Spark configurations for the same application. Note that the

descriptor is not invariant with respect to the Spark configuration provided since several of

the metrics that are gathered (such as the aggregated executor CPU usage across tasks) are

influenced by configuration decisions (such as the number of executor cores).

In Section 6.3.1, we show that the descriptors boost the performance of the learning

algorithms. Nevertheless, another reasonable approach to assess the quality of a descriptor is

to verify that the vector for a particular job is closer to vectors from the same Spark workload

than to vectors from very different workloads. Let us denote by x(0,wj) the descriptor for

workload wj generated using the default Spark configuration, which we will call the default
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feature vector for application wj. Let us denote by x(k,wi) the feature vector (for application

wi) generated using the k-th Spark configuration sampled to create the training data.

Let us denote by M a matrix containing at position Mi,j the mean of the euclidean

distances between x(0,wj) and the vectors x(1,wi), . . . ,x(100,wi). That is,

Mi,j =
1

100

100

∑
k=1

∥∥∥x(0,wj) − x(k,wi)
∥∥∥

2
(6.3)

This matrix contains at column j the average distance between the default feature vector

of application wj and all the feature descriptors of application wi for i ∈ {1, . . . , 15}.
We observed that the matrix has a diagonal containing most of the lowest values in each

column. This shows that the default descriptor for application wj is generally closer to the

vectors for the same application x(k,wj) than to other vectors from different applications

x(k,wi). A manual inspection of M reveals some interesting results:

• Some applications are similar in their workloads types and and feature descriptors.

For example, the smallest value in column 2 is M2,2 = 2. This means that the default

feature vector from application 2 is at an average distance of 2 from all the vectors

of the same application. Moreover, the second lowest value in column 2 corresponds

to M3,2 = 2.1. This is reasonable, since applications 2 and 3 correspond to a Logistic

Regression and a Support Vector Machine respectively; both of these workloads share

a very similar iterative training algorithm.

• Some applications are disimilar in their workloads types and feature descriptors. For

example, the smallest value in column 6 is M6,6 = 5.7. This means that the default

feature vector from application 6 is at an average distance of 5.7 from all the vectors of

the same application. Moreover, the second lowest value in column 6 corresponds to

M14,6 = 9.7. In this case, this suggests that applications 6 and 14 are not very similar.

This is reasonable, because applications 6 and 14 are a Word Count and a Pearson

Correlation test, respectively.

6.3.1 Feature descriptor quality evaluation

Feature descriptor Quality is critical for our system. If the oracle is not able to provide

sensible predictions for new, unseen workloads, then the selection process based on the

values given by the oracle will be flawed. Moreover, our work requires that the features

extracted from the SparkEventLog generalize to new workloads, otherwise the models

cannot be used for the SBO process.

The goal of this experiment was to assess the quality of the features described in Section

6.2.1 with respect to standard feature representations of workloads found in many state-
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of-the-art works [5, 9, 47, 55]. The most common feature representations of the workloads

combine three sources of information: the Spark configuration (sc), the dataset size (ds) and

an identifier for the application (appid). Works like [55] use (sc, ds), whereas [5, 47] use (sc)

as input and [9] uses (sc, ds, appid). Our work uses (sc, ds, e f ) as the feature vector, where

(ds, e f ) corresponds to the "SparkEventLog features” described in Section 6.2.1.

Data Processing: In order to input the data to the machine learning models, we per-

formed some preprocessing on the raw data. The types of variables involved in the Spark

Configuration are shown in Table 6.3.

Spark Configuration Parameters Search Space Space Encoding Default Configuration

spark.task.cpus [1, 2] Integer 1

spark.executor.cores [1, 40] Integer 40

spark.executor.memory [4, 40] Integer 20g

spark.memory.fraction [0.4, 0.5, 0.6, 0.7, 0.8] Ordinal 0.6

spark.memory.storageFraction [0.3, 0.4, 0.5, 0.6, 0.7, 0.8] Ordinal 0.5

spark.default.parallelism [20, 400] Integer 40

spark.shuffle.compress [true, false] Categorical true

spark.shuffle.spill.compress [true, false] Categorical true

spark.broadcast.compress [true, false] Categorical true

spark.rdd.compress [true, false] Categorical false

spark.io.compression.codec [lz4, lzf, snappy] Categorical lz4

spark.reducer.maxSizeInFlight [24m, 48m, 96m] Categorical 48m

spark.shuffle.file.buffer [32k, 64k] Categorical 32k

spark.serializer [JavaSerializer, KryoSerializer] Categorical JavaSerializer

Table 6.3: Search Space of the different parameters we tuned with the default values. The units in

the Default Configuration correspond to the notation used by Spark. For example, 20g

corresponds to 20 GB.

The heterogeneity of the variable types required some preprocessing in order to build

the sc vector. In particular, categorical variables were converted using a one-hot encoding

transformation. The remaining variables were then treated with either Rescaling or Stan-

dardization. Rescaling was performed on the [0,1] range and Standardization transformed

the variables so that the values have zero-mean and unit-variance.

The models may perform differently depending on whether Rescaling or Standardization

is applied. We implemented a pipeline mechanism to automatically decide during cross-

validation which preprocessing was best for each model, so as to adapt the decision to each

of the learners. The data transformation was introduced as one of the steps during model

selection, as if it were a hyper-parameter of the model.
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Experiment settings

Model Evaluation: We created 15 test sets by splitting the data 15 different ways. The final

test set metrics provided in this section show the average of the results for a model with

a fixed set of hyper-parameters over the 15 test sets. The 15 splits were created using the

application identifier in order to evaluate models on samples of a workload that did not

appear during training. This methodology of generating partitions is usually referred to as

Leave One Group Out Cross-Validation (LOGO-CV). Using this methodology we ensure that

models are evaluated on samples of a workload that had never been seen during training

(here the “group” consists on all the examples that contain the same workload identifier).

We chose LOGO-CV, instead of standard Cross-validation, because it more closely resembles

the scenario we want our model to generalize. In a production environment, we would like

a system that can provide good predictions for workloads that have never appeared in the

past. In general, we do not want to assume that the training and validation splits contain

examples of all possible workloads, because in a production environment this scenario is

unlikely.

After deciding which algorithm and hyper-parameters are the best ones, the error values

computed using LOGO-CV reveal how well (on average) a model should perform on a new

workload never been seen during training.

Model selection: We trained 8 machine learning models using 5 different sets of features.

In order to select the models robustly, we performed LOGO-CV on each of the 15 splits of our

data. The average errors across all of the validation partitions of the different splits were

used to select the best oracle candidate.

We tested the following combinations of features: (sc), (sc, appid), (sc, ds), (sc, ds, appid)

and (sc, ds, e f ) as input to the learning algorithms. The last combination of features corre-

sponds to our proposed solution. In order to make a fair comparison between the different

features found in the literature, we performed all the experiments with the same space of

hyper-parameters for the machine learning models. The search space is given in Table 6.4.

An exhaustive exploration of all the combinations of hyper-parameters was performed.

Training each of the models from Table 6.4, including hyper-parameter optimization, takes

less than one minute in a single node of our computation environment. Therefore, the

overhead of training a model in our system is negligible.
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Model Hyper-parameter search space

Elastic Net alpha = [1e-10, 1e-9, ..., 10.0]

GBM learning_rate = [0.001, 0.01, 0.1, 0.5] ,max_depth =[3, 10, 20, None]

KNN n_neighbors= [1,2,3,4,5,6], p=[1,2]

Lasso alpha = [1e-10, ..., 1.0, 10.0]

MLP hidden_layer_sizes = [ [200], [300],[500], [200, 200], [300, 300], [500, 500]],activation = [“tanh",“relu"],

learning_rate = [0.0001, 0.001, 0.01]

Random Forest max_depth = [10, 20, None], max_features: [“auto", “sqrt"], n_estimators: [10, 20, 50, 100, 200]

Ridge alpha = [1e-10, 1e-9, ..., 10.0]

SVR C = [1e-10, 1e-9, ..., 10.0], kernel = ["linear", "poly", "rbf"]

Table 6.4: Hyper-parameter search space.

Results

The results of the experiments of the different models are given in Table 6.5, which contains

the training and validation MSE for the best parameters found for each model. The table is

organized in five column groups, one for each set of features tested. Each row in the table

shows the results for a particular model containing the best hyper-parameters found during

training. This table presents a comparison of the proposed features (sc, ds, e f ) with different

sets of features found in the state-of-the-art work. The results in the table show that the best

results in the validation were achieved with the descriptor (sc, ds, e f ). It can also be seen

that with input features (sc, ds, e f ), the Random Forest Regressor achieved the best results

in the validation data. Therefore, we chose the Random Forest (with the features (sc, ds, e f ))

as our oracle for the experiments in Section 6.3.2. The selected Random Forest was trained

with the hyper-parameters that minimize the error during hyper-parameter exploration.

After the best hyper-parameters for each model had been found, we evaluated each model

across the test sets. Table 6.6 provides the test set results for the models selected from

Table 6.5 for each of the different feature groups. Note that (sc, appid) has no Reference

because we could not find any work using that feature vector as input to the learning

algorithms. Nevertheless, we have included it for completeness because it is a sensible

approach that improves the results over sc.
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Features (sc) (sc, appid) (sc, ds) (sc, ds, appid) (sc, ds, e f )

train valid train valid train valid train valid train valid

model

Elastic Net 161.2 198.4 69.4 204.5 153.0 193.7 67.4 199.5 50.3 167.9

GBR 85.6 178.6 14.3 164.2 50.9 195.3 12.4 165.1 2.8 173.7

KNN 117.7 224.5 47.3 224.5 106.5 211.1 44.1 211.1 8.7 227.6

Lasso 161.0 196.2 63.4 205.2 152.4 192.7 61.1 214.9 29.2 157.2

MLP 194.4 211.5 190.3 211.2 194.6 210.5 194.4 210.7 17.2 371.6

Random Forest 17.2 183.5 5.7 178.8 12.2 175.5 4.6 179.0 0.8 132.6

Ridge 159.2 202.6 61.2 212.3 150.5 202.8 57.9 236.2 20.7 272.0

SVR 167.5 209.6 73.5 213.0 158.0 207.8 73.1 219.8 31.1 258.5

Table 6.5: Training and validation MSE errors for different models.

Features Test MSE
Improvement

over sc
Reference

(sc) 167.9 0.0% [5, 47]

(sc, appid) 162.0 3.5% -

(sc, ds) 155.6 7.3% [55, 92]

(sc, ds, appid) 158.4 5.6% [9]

(sc, ds, e f ) 110.7 34.1% ours

Table 6.6: Test errors and improvement over the basic sc feature set.

6.3.2 Time-to-solution speedup evaluation

To validate the time-to-solution speedup, we need to measure two metrics. First, the quality

(runtime) of the solution provided by SBO in comparison with the best configuration found

by BO. Second, the time required by SBO to provide a configuration with respect to the time

needed by BO.

Default Settings: To assess the quality of a SparkConfiguration found by BO or SBO,

we compared the execution time of the provided configurations with the execution time

achieved by the default configuration. This quantity is the speedup with respect to the

default configuration form Spark. The default configuration we used is given in Table 6.3.

Note that this configuration is the same used by Spark by default, except for the number of
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executor cores and the amount of executor memory. We set the number of executor cores

to 40 (the total number of cores per node in our cluster) and the executor memory to 20

Gigabytes ("20GB"). The memory was increased to avoid job failures for the workloads with

the default Spark configuration. This is important because in the event of an everlasting

runtime for a job, the speedup with respect to the default configuration could be theoretically

infinite, providing unrealistic speedups with respect to a bad default baseline. Changing

the memory settings is a common decision also found in other works such as [55]. In our

case, eight of the fifteen jobs failed using the default Spark configuration, which uses 1GB

of executor memory. To prevent this issue arising, we tested the default configuration with

the executor memory set to 1GB, 2GB, . . . , 50GB and stopped at the first value able to run

all workloads without any memory crash, which was 20GB.

Experiments: The objective of the experiments was to measure the quality of the solutions

found by SBO with respect to the best solution found with BO. Here we will denote by BO-K

a Bayesian Optimization process that executes an application K times. In order to make a

useful comparison, all the results were evaluated on workloads that neither BO nor SBO had

accessed before starting the optimization procedure. In the case of BO, we set the budget

to 20 iterations because it is the minimum amount of iterations needed to reach a speedup

over the default configuration across the workloads we used. As other works, such as [23],

use 35 or 100 iterations as maximum budget, we decided to perform BO-100 as a reasonable

upper bound on the quality of the results. In the case of SBO, we allowed a budget of 100

queries to the oracle (which takes less than two seconds). Then only one or two evaluations

of the workload were executed (which we refer to as SBO-1 and SBO-2, respectively), because

the goal of our methodology is to quickly find solutions with a reasonable quality.

Speedup over default configuration results: The improvement of SBO with respect to the

default configuration is shown in Figure 6.4, which contains the runtime of the default

configuration and the runtime of the configuration found with SBO-1 and SBO-2. The figure

also shows a box plot of the distribution of runtimes found during the Bayesian Optimization

process performed to create the dataset. The box plots how the distribution of the execution

times found by a BO process with a budget of 100 runs per application. We can see that

SBO-2 improved on the default configuration in all cases, except for workload 11, where

there is no speedup. It is interesting to notice that workloads 1, 10 and 14 need SBO-2, since

SBO-1 does not improve the quality of the results. Nevertheless, such cases are precisely

the examples where the box plot shows small variance in the runtime. In those cases, even

BO-100 was not able to achieve a significant speedup with respect to the default Spark

configuration. The box plot shows that workloads 10 and 14 have most runtimes clustered

around a single point. This suggests that those cases are very hard to optimize since a BO

with 100 executions of the application was not able to improve the results.
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Figure 6.4: Best solutions found by SBO-1 and SBO-2.

The results of the speedups found by BO-20, BO-100, SBO-1 and SBO-2 with respect to the

default configuration runs are shown in Figure 6.5. Note that BO achieved higher quality

solutions than SBO-1 in almost all cases, except for 12. Nevertheless, the difference between

BO and SBO-2 is minimal. It should also be noted that SBO-1 always achieves better results

than random search, even if we perform 10 random searches. Nevertheless, the random

search can achieve surprisingly good results, which is consistent with the experimental

results observed in other literature [23].
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Figure 6.5: Speedup with respect to the default configuration per application (the higher the better).

An empty bar reflects no improvement over the default configuration.

Time-to-solution: Table 6.7 gives the time-to-solution speedups of our proposed method

with respect to the BO process with 20 iterations (BO-20). The results shown in the table

include the time spent running the Spark configurations, as well as the time needed to parse

the SparkEventLog and the time required by the oracle to make predictions. Moreover, the

table includes the total search time for the different algorithms tested. Our methodology

allows us to find a good solution in 5 minutes (on average) using SBO-2. A naive solution,

such as random search, takes almost half an hour to run, while achieving worse results than

SBO-2, as can be seen in Figure 6.5. BO-20 can achieve, in some cases, better configurations
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than SBO-2, but with a higher average cost of 53 minutes. Figure 6.6 shows the total search

time for the different methods across applications.
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Figure 6.6: Total search time, in minutes, to find a configuration for each method (the lower the

better). The plot was cropped at 120 min to improve readability.

In Table 6.7 we can see that the SBO-1 optimization process is 25 times faster than the BO-20

process. At first glance, it might be surprising that the SBO-1 is 25 times faster than BO-20,

which performs only 20 iterations. The explanation for this behavior is the runs performed

by BO which may include bad configurations that are executed during the optimization

procedure, which have to be sampled in order to explore the search space and provide

a good exploration-exploitation tradeoff. In the case of SBO-1, we only executed the best

configuration predicted by the oracle and none of them was bad. This allows the average

speedup of SBO-2 to be up to 12x faster than BO-20.

Speedup over BO-20 Search Time (min)

BO-20 1.0x 53.6

BO-100 0.2x 243.2

Random-10 1.9x 28.6

SBO-1 25.1x 2.6

SBO-2 12.4x 5.0

Table 6.7: Time-to-solution for the different methods. The first column shows the improvement with

respect to 20 runs of Bayesian Optimization. The second column the overall search time in

minutes.
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6.4 conclusions

This chapter introduced a non invasive technique to create a feature descriptors from the

log file of an application. The key idea of this work is that the created feature descriptor

contains relevant information from the workload to be optimized. To verify this, we show

that the descriptor significantly benefits the quality of machine learning models trained

with the presented feature vector. In particular, our experiments show that models improve

by up to 34% the prediction quality when trained and evaluated with our feature vecture

with respect to other state-of-the-art features.

Moreover, we introduced a simple, easy to implement, modification of a Bayesian Opti-

mization (BO) process that we called "Simulated Bayesian Optimization" (SBO). Using this

algorithm, in conjunction with the performance models built on top of the proposed Spark

feature descriptor, we implemented an optimization pipeline that can be used for auto-

tuning Spark workloads. Our experiments show that SBO can speed up the optimization

process considerably with respect to the standard BO approach, up to a 12x speedup with

results of almost equal quality.



7
C O N C L U S I O N A N D F U T U R E W O R K

7.1 summary of the results

In this thesis, we presented three contributions covering workload characterization, esti-

mation of workload colocation behaviour and application performance estimation under

tunable parameters. Most current state of the art techniques that tackle the three previous

problems are based on application dependent knowledge that is introduced into the solution.

The goal of this thesis was to show that learning algorithms could be applied to the previous

three problems providing solutions based on input metrics extracted from applications

observed as a black boxes.

This final chapter reviews all the relevant results achieved in this dissertation, and

discusses future work that is inlined with the core idea of interfacing with applications

provided as black boxes.

workload phase characterization through machine learning

The first contribution of this thesis presents a mechanism for mapping slices of workload

trace to phase ids that can be used as feature vectors for a variety of tasks. Our solution was

based on metrics such as CPU and Memory usage and did not have any knowledge about

the monitored application.

First, we studied the behaviour of the cluster ids found in the workload data, where

we could see interesting resource patterns that described sensible workload phases. Then,

we showed that we could use phase descriptors as input to learning algorithms trained

to predict future phase behaviour. Using this approach we showed that we could create a

policy for auto-scaling workloads that provided better results than other reactive policies

found in the literature.

95
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sequence-to-sequence models for resource estimation over time under

co-scheduling scenarios

The second contribution of this thesis presents a sequence-to-sequence model that translates

traces of applications executed in isolation to the expected trace of applications co-located

sharing resources. Our work introduces a simple "Percentage Completion" feature that

consistently improves the standard stopping criteria used to decide when to stop generating

the output trace.

The model was tested using a dataset created combining three benchmark suits containing

a wide variety of applications. The experiments showed that the presented model provides

lower error with respect to classical Machine Learning regressors. Moreover, we showed

that our solution is capable of predicting the execution time of co-scheduled applications

with reasonable quality.

Despite the promising results, we could not find any other work that predicted execution

traces over time, making the work original but "hard to compare with". Moreover, our work

is meant to be used in environments where the hardware resources are fixed. Note that with

a small modification we could apply the model in environments with different servers, if

we provide information about the underlying hardware, such as the CPU cores and CPU

frequency. This was out of the scope of our work and probably would only be reasonable

for a big company that already possesses a diverse collection of nodes.

fast time-to-solution big data workload auto-tuning with reusable ma-

chine learning models

The third contribution of this thesis is an algorithm that allows fast time-to-solution results

for tuning Spark workloads using a simple search mechanism based on a Bayesian Opti-

mization method. The algorithm is based on a feature vector that can be created inspecting

a Spark application as a black box, since it uses a file of event logs that is accessible from

the outside of the application.

Our experiments showed a faster time-to-solution when compared with other optimization

techniques found in the literature. The main reason of our success was the fact that we

did not include a categorical variable into the learning algorithm containing a label for

each application with the goal of creating a solution that was not application dependant.

Nevertheless, to achieve this, we had to extract information about the underlying application

behaviour in one way or another. To do this, we parsed the SparkEventLog. Our goal was to

extract relevant features about the application and then use this information to provide the

learning algorithm more features that other methods in the literature did not use.
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Despite the good results, our solution was based on creating a feature vector that was

developed for Spark. The proposed solution is general enough to be used in other settings,

but the preprocessing step to create the feature vector was created to extract information

relevant for Spark workloads (such as the Spark Actions and Transformations). Therefore,

to apply a similar solution for a different platform, assuming are provided with a file

containing the logs of the application, a specific preprocessing step should be adapted.

7.2 future work

The work presented in this dissertation faced some limitations of modern Machine Learning

methods which current developments in the area of Deep Learning try to solve. One of such

limitations is the amount of feature engineering needed to solve a task, which is intended

do decrease or disappear with newer techniques.

The first contribution showed how a CRBM can be used to find phases in a workload

trace and we used the presented phase descriptor to solve a container auto-scaling problem.

Current container technologies, such as Docker, do not allow monitoring GPU metrics,

which are very relevant in the HPC environment. Therefore, future work could investigate

how phase descriptor jointly maps GPU and CPU usage with the goal to improve container

auto-scaling with workloads that are executed on instances with GPU hardware acceleration.

On a different front, one of our experiments showed that the activations of the CRBM

gave rise to a vector that clearly untangled the latent activities performed in the time-series

(jogging vs walking). This suggests that the presented mechanism could be used to extract

features for time-series, not only for detecting phases, but for generating features used for

time-series classification. In particular it would be interesting to compare those features

with features such as Shapelets [90], that are very powerful but very expensive to compute.

The second and third contributions in this work are based on first running a program and

then extracting information from the execution of the program. In our second contribution

we need to run two applications to extract the workload traces which are then feed to a

Sequence-to-Sequence model. The neural network architecture was developed to tackle

scenarios where two applications are co-located. Further study is needed to generalize this

type of network to handle several input applications that are expected to be run together.

Moreover, a time aware resource scheduler could be implemented to show that the proposed

approach, which allows resource prediction over time, provides relevant knowledge to

improve current software scheduling software. We would like to emphasise that workload

scheduling is a huge area of research, and this investigation was out of the scope of our

work.
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In our third contribution a program needs to be run in order to extract a descriptor that

characterises relevant aspects of the runtime execution. A natural question arises: could

we extract information without even running the application? An application is simply a

list of instructions to be executed, which are written in a certain programming language.

Therefore, assuming we are allowed to read the source code of an application (which in

some cases it might not be available for privacy reasons), we could probably extract valuable

information from the raw source code of the application. We think this could be a very

interesting research line to pursue.

In our third contribution we generated feature descriptors from the log file of Spark

applications to provide the learning algorithms some information about the workload.

This descriptor provided relevant information such as the actions and transformations that

an application used during the execution. Nevertheless, our approach was "blind" to the

code running inside those high level routines. Despite our methodology is general the

descriptor in the experiments was designed for Spark. There are other approaches to gather

information from log data, or even the source code of the application. Works such as [18]

optimize OpenCL kernels with performance models that are based on the source code of

the program. This setting is easier than the Big Data optimization problem because OpenCL

kernels typically have from 10 to 50 lines of code. Nevertheless, this is a promising direction

for future research because it provides a methodology that requires no feature engineering.

The overall idea of this works is to use a RNN that reads the source code of the application

(word by word) and outputs the execution time of the code. This methodology does not

require, ideally, any hand coded parser. Here, we emphasize "ideally" because even though

the work from [18] reads the source code of the application, hand crafted text processing

functions were used to clean the raw source code of the OpenCL kernels. This is done to

remove unwanted text from the code to facilitate the RNN its objective. Therefore, it could be

argued that the programmer effort of feature engineering was replaced by the programmer

effort of creating code that cleaned and standardised the source code of the applications.

Whatever future Data Centers become, it is clear that Machine Learning techniques will

play an important role for the efficient management of hardware resources.
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