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Summary (in English)

The focus of this thesis is the development of accurate and computationally efficient

waveform models for the description of the signal of non-precessing and precessing black-

hole binary systems detected by the LIGO-Virgo detectors. Waveform models play a key

role in the detection and parameter estimation of gravitational wave signals. The more

accurate these models are, the more signals can be detected, but even more importantly,

inaccuracies in the signal description will lead to systematic errors for the estimated

parameters of the source. The models presented in this thesis include the description of

several subdominant effects, which were not considered in the studies during the two first

observation runs O1 and O2 of the LIGO-Virgo interferometers, but break degeneracies

in the signal and generally improve the accuracy of parameter estimation. During the

gap between the O2 and O3 runs several research groups have incorporated the most

important subdominant harmonics into their models. However, we find that the models

presented in this thesis improve the accuracy of several of these models and outperform in

computational efficiency to all of them. The non-precessing model follows the standard

strategy of the phenomenological models of calibrating an analytical ansatz to numerical

relativity simulations. I produced a number of these simulations specifically for the

calibration of the model placing them strategically in regions of the parameter space

poorly populated. I also produced several waveforms in the extreme mass ratio (EMRI)

limit extending the calibration region of the model from mass ratio 1 to 1000. On the

other hand, the precessing model follows the standard technique of twisting-up a non-

precessing model but extended in this case to a model with subdominant harmonics. The

evaluation of the models is then accelerated by incorporating the interpolation technique

of “multibanding”, originally introduced by Vinciguerra et. al. I have extended this

technique, adapted it to the two frequency domain models presented in this thesis, and

formulated the technique in a way to make it applicable to any analytical frequency or

time domain model.
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Resumen (en español)

El objetivo de esta tesis es el desarrollo de modelos de forma de onda precisos y com-

putacionalmente eficientes para la descripción de la señal de sistemas binarios de agujero

negros sin precesión y con precesión detectados por los detectores LIGO-Virgo. Los mod-

elos de forma de onda juegan un papel clave en la detección y estimación de parámetros

de señales de ondas gravitacionales. Cuanto más precisos sean estos modelos, más señales

se pueden detectar, pero aún más importante, las inexactitudes en la descripción de la

señal conducirán a errores sistemáticos para los parámetros estimados de la fuente. Los

modelos presentados en esta tesis incluyen la descripción de varios efectos subdomiantes,

que no se consideraron en los estudios durante las dos primeras ejecuciones de observación

O1 y O2 de los interferómetros LIGO-Virgo, pero rompen las degeneraciones en la señal

y generalmente mejoran la precisión de la estimación de parámetros. Durante la brecha

entre las ejecuciones de O2 y O3, varios grupos de investigación han incorporado los

armónicos subdominantes más importantes en sus modelos, sin embargo, encontramos

que los modelos presentados en esta tesis mejoran la precisión de varios de estos mod-

elos y superan en eficiencia computacional a todos ellos. El modelo sin precesión sigue

la estrategia estándar de los modelos fenomenológicos de calibración de una respuesta

analítica a simulaciones de relatividad numérica. Produje varias de estas simulaciones

específicamente para la calibración del modelo colocándolas estratégicamente en regiones

del espacio de parámetros poco pobladas. También elaboré una serie de formas de onda

en el límite de la relación de masa extrema que extiende la región de calibración del

modelo desde la relación de masa 1 a 1000. Por otro lado, el modelo de precesión sigue

la técnica estándar de “twisting-up” de un modelo sin precesión, pero se extiende en este

caso a un modelo con armónicos subdominantes. La evaluación de los modelos es aceler-

ada incorporando la técnica de interpolación de “multibanding”, originalmente presentada

por Vinciguerra et. al. He ampliado esta técnica, la he adaptado a los dos modelos de

dominio de frecuencia presentados en esta tesis y he formulado la técnica de manera que

sea aplicable a cualquier modelo analítico de frecuencia o dominio de tiempo.
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Resum (en català)

L’objectiu d’aquesta tesi és el desenvolupament de models de forma d’ona precisos i com-

putacionalment eficaços per a la descripció del senyal de sistemes binaris de forat negre

no precessant i precessant detectats pels detectors LIGO-Virgo. Els models de forma

d’ona tenen un paper clau en la detecció i l’estimació de paràmetres de senyals d’ona

gravitacional. Com més precisos siguin aquests models, més senyals es poden detectar,

però encara més important, les inexactituds en la descripció del senyal conduiran a er-

rors sistemàtics per als paràmetres estimats de la font. Els models presentats en aquesta

tesi inclouen la descripció de diversos efectes subdominants, que no es van considerar

en els estudis durant els dos primers períodes d’observació O1 i O2 dels interferòmetres

LIGO-Virgo, però trenquen degeneracions en el senyal i milloren generalment la precisió

de l’estimació de paràmetres. Durant el període entre les execucions de O2 i O3, diversos

grups de recerca han incorporat als seus models els harmònics subdominants més impor-

tants, no obstant trobem que els models presentats en aquesta tesi milloren la precisió de

diversos d’aquests models i superen en eficiència computacional a tots ells. El model no

precessant segueix l’estratègia estàndard dels models fenomenològics de calibració d’un

ansatz analític a simulacions de relativitat numèrica. Vaig produir una sèrie d’aquestes

simulacions específicament per a la calibració del model situant-les estratègicament en

regions de l’espai de paràmetres mal poblats. També vaig produir diverses formes d’ona

en el límit de la proporció massiva extrema que va ampliar la regió de calibració del model

des de la relació de massa 1 a 1000. D’altra banda, el model precessant segueix la tèc-

nica estàndard de retorçar un model no precessant, però estès en aquest cas a un model

amb harmònics subdominants. L’avaluació dels models s’accelera després incorporant

la tècnica d’interpolació de "multibanding", originalment introduïda per Vinciguerra et.

al. He ampliat aquesta tècnica, l’he adaptat als dos models de domini de freqüència

presentats en aquesta tesi i he formulat la tècnica per tal de fer-la aplicable a qualsevol

model de domini de freqüència o analítica.
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Preface

Gravitational waves (GWs) were predicted by Albert Einstein in 1916 [1] as a solution

to the equations of his theory of general relativity (GR), presented in 1915 [2]. They

propagate as ripples in the fabric of space-time at the speed of light, and their interaction

with matter is so weak that Einstein expected they will never be detected. Indeed, it

required a hundred years of extraordinary technological and theoretical developments to

be able to finally detect them. There was already some indirect evidence for the existence

of GWs provided by the discovery of the Hulse-Taylor pulsar [3] which periastron ad-

vance was explained by the loss of energy in form of GWs. However, the first-ever direct

detection of GWs was announced on 11 February 2016 by the LIGO-Virgo collabora-

tion (LVC) which reported the detection of the event GW150914 [4], a stellar-mass black

hole merger, confirming the existence of black holes and that they form binary systems 1.

This discovery constituted an extraordinary achievement not just for the LIGO and Virgo

collaborations, but indeed for generations of scientists in the entire field of gravitational

physics. However, far from this being the end of the research field, it marked the birth

of a new kind of discipline, GW astronomy. This is a new way of observing the universe

and gathering information from it. During millennia, humans relied on electromagnetic

radiation to gather information about the universe, first using their naked eyes sensitive

to this radiation and later, since Galileo Galilei, using telescopes. Now there exists a new

channel that can provide information on events “invisible” to electromagnetic astronomy

but also provide complementary information for events where electromagnetic and grav-

itational radiation are emitted. Electromagnetic and gravitational waves together with

cosmic rays and neutrinos constitute a new multichannel kind of astronomy known as

multimessenger astronomy.

One very active field of research is waveform modelling which undertakes to model the

shape of the GWs as a function of the physical properties of the source according to the

predictions of GR. As we will explain in more detail in chapter 2, having a theoretical

prediction or template of how the morphology of the signal is key to extract physical
1Supermassive black holes mergers are also believed to occur during the merger of galaxies but no

direct observation has been confirmed so far.

XII
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information from the detector data. So far, all the detections reported by LIGO-Virgo

used simplified templates where only the dominant contribution of the signal was present.

In a similar way to the electromagnetic case, the gravitational radiation can also be

described as a multipole expansion where the dominant contribution, in this case, is the

quadrupole one instead of the dipole one. The angular part is described by the spin

weighted spherical harmonics (SWSH) of spin weight −2, denoted by Y−2 lm :

h(t,λλλ, ι, φ) = h+ − ih× =
∞∑
l=2

l∑
m=−l

hlm(t,λλλ) Y−2 lm (ι, φ). (1)

The dominant contribution, also known as quadrupolar emission, includes only the

(l, |m|) = (2, 2) modes. Here λλλ refers to the set of source parameters, in the case of

binary systems consists of the masses and spin vectors of the two objects, the distance

between the source and the observer, and in case there is a neutron star the equation

of state EOS, and parameters relative to neutron stars. Note that a similar multipole-

expansion, which starts with the dipole, is also a standard technique for electrodynamics.

Multipole expansions are also often combined with expansions in 1/r, where r is the dis-

tance to the source. Since here we are interested in the field at a very large distance

from the source only the leading term in 1/r is considered. Analogously to massless

scalar and electromagnetic fields, gravitational radiation decays with the inverse of the

distance, and in the asymptotic region, the distance just acts as a scaling factor for the

field. In the gravitational case, the total mass of the system appears also as a scale factor.

The intrinsic parameters of the source, those which define the structure and shape of the

waveform reduce then to the mass ratio q = m1/m2 and the spin vectors plus the tidal

parameters in case of neutron stars. The angles ι and φ are also extrinsic parameters

which locate the line of sight i.e. the position of the observer in the sky of the source.

This decomposition is very convenient because it separates the angular dependence from

the source parameters, in fact, it reminds us of the solution of the wave equation for a

relativistic scalar field

ψ(t, r, ι, φ) =
1

r

∞∑
l=0

l∑
m=−l

clmYlm(ι, φ). (2)

Notice that in Eq. (1) the sum starts at l = 2, this means that in GR there exists

neither monopole nor dipole gravitational radiation and this is why we start with the

quadrupolar radiation. In the electromagnetic case, we recall that there is no monopole

radiation due to the conservation of charge. In the gravitational case, the conservation

of the energy-momentum tensor translates into the conservation of mass, linear and

angular momentum. The first one is responsible to cancel the monopole while the other

two cancel the “electric” and “magnetic” dipoles respectively. A common framework for
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different types of spherical harmonics (for scalar, vector and tensor fields) is provided by

the SWSH [5], which can be defined in terms of the Wigner d functions:

−sY
`m(ι, φ) = (−1)s

√
2`+ 1

4π
d`ms(ι)e

imφ (3)

where

d`ms(ι) =
√

(`+m)!(`−m)!(`+ s)!(`− s)!

×
kf∑
k=ki

(−1)k
(
sin ι

2

)2k+s−m (
cos ι

2

)2`+m−s−2k

k!(`+m− k)!(`− s− k)!(s−m+ k)!
.

(4)

For the GWs, which correspond to symmetric trace-free tensors or spin-2 fields, the spin-

weight is chosen as s = −2. When one starts to talk about subdominant harmonics

Eq. (1) is the starting point, however, we will not present here such a derivation, but we

point to an excellent work of Kidder [6] that presents this result in a clear and concise

manner and refer to the relevant literature [7] for a more detailed discussion. A similar

treatment can be found in Sec. 3.1 of [8]. In Sec. 3.5 of [9] the multipole expansion is

also explained in detail although it does not explicitly relate it to the individual modes

functions hlm.

Equation (1) tells us that for modelling the GW signal we only have to model the

individual functions hlm. The main contribution of this thesis is to model some of

these hlm functions beyond the dominant (2,±2) modes both for non-precessing and

precessing binary black hole systems. The inclusion of these higher or subdominant

spherical harmonics provides a more accurate description of our templates of GW signals

and allows us for better detection rates and better recovery of the source parameters. The

subdominant modes are particularly important for edge-on systems i.e. with inclination

near to π/2, as well as systems with very high mass and high mass ratio. All these systems

will now be better understood thanks to the subdominant modes. Moreover, they help

to disentangle the degeneracy between inclination and distance present in quadrupolar

templates, enabling a more accurate recovery of the distance which is key for improving

the measurement of the Hubble constant through GWs. This new way of measuring

the Hubble constant could help to solve the current tensions existing between different

measurement methods. For all these reasons we decided to develop a new waveform

model that included subdominant modes and was at the same time accurate and fast to

evaluate.

This thesis is divided into two main parts. In Part I I give a brief introduction and

overview of the field. I start in Chapter 1 with a theoretical introduction of GWs,

explaining how they arise from GR. In Chapter 2 I discuss how these waves are detected
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on Earth and how physical information is extracted from the detector data through

comparisons with theoretical templates, and also present some of the existing families

of templates currently in use in GW data analysis. In Part II I present the original

results derived from this thesis, which have lead to three papers submitted to peer-

reviewed journals. Each paper is presented in a separate chapter, where I first summarize

the work and results and indicate my contributions to the paper. More specifically, in

Chapter 3 the non-precessing model with subdominant modes, IMRPhenomXHM, is

presented. Then in Chapter 4 the technique of multibanding to accelerate the evaluation

of waveform models by means of adapted grids is introduced, and in Chapter 5 the

IMRPhenomXPHM model is presented, which is an extension of the two previous

works to the more general systems of precessing black hole binaries. Finally, in Chapter

6 I summarize the main results, contributions and conclusions of this thesis as well as

comment on opportunities to extend this research.
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Chapter 1

Introduction to Gravitational Waves

With the development of general relativity (GR), Einstein’s theory passed to substitute

replaced Newton’s theory as the preferred theory of gravity. Although there exist several

alternative theories which modify GR, none of them has been experimentally confirmed

and only GR is considered as our modern theory of gravity. GR has allowed explaining

several experimental observations that Newton’s theory was not able to as the perihelion

advance of Mercury [1, 2], the light deflection in presence of massive objects [3, 4], and

recently the existence of gravitational waves (GWs) [5, 6]. In this chapter, we review

some of the basic principles of GR, with special emphasis on discussing the GWs in the

linearized theory, as well as the mechanism of different sources that produce them.

1.1 Introduction to GR

For almost two centuries and a half, since Isaac Newton announced his famous universal

law of gravitation, the whole community of scientists had agreed and accepted that this

description was indeed the correct theory of gravity. The traditional concept that gravity

was an attractive force between two massive objects and that they create a “gravitational

field” around them was so rooted in the minds of the scientists that practically nobody

questioned its validity. However, in 1915 Albert Einstein defied the accepted paradigm

and explained gravity not as a force between bodies but as the effect of the curvature of

the spacetime. Einstein came to this conclusion after realizing that Newton’s theory was

incompatible with his theory of special relativity [7], which stated that any interaction

can not propagate instantaneously, and after understanding the fundamental role of the

equivalence principle. This was the birth of a new theory, the theory of GR [8], which

combined gravity with Einstein’s special relativity published in 1905. The two basic

2
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postulates of special relativity are the principle of relativity and the invariance of the

speed of light:

1. The laws of physics take the same form in all inertial frames of reference.

2. The speed of light in vacuum is the same for all inertial observers and is independent

of the movement of the source.

The first postulate refers only to inertial frames, however, a freely falling observer in a

gravitational field is not an inertial observer but rather an accelerated one. In GR, freely

falling observers take the role of inertial observers by virtue of Einstein’s formulation of

the equivalence principle:

Freely falling observers in a gravitational field are locally equivalent to

inertial observers.

Such a freely falling observer will see free-falling objects, in a sufficiently near region

around him, moving at constant velocity (or being static if the initial velocity in this

frame was zero), since these objects are subject to the same gravitational field and suffer

the same acceleration. This is the same situation that an observer would face if he

was at rest or moving at constant velocity (inertial observer). In fact, he is not able

to distinguish the two situations, a freely falling observer is “locally” equivalent to an

observer in absence of gravitational field.

Special relativity also introduced the concept of flat spacetime, a four-dimensional man-

ifold which is the combination of the three-dimensional Euclidean space with time.

All the physical events are described as spacetime points in this flat manifold, named

as Minkowski spacetime. The distance between events can be measured through the

Minkowski flat metric ηµν

ds2 = ηµνdx
µdxν , ηµν = diag(−1, 1, 1, 1), (1.1)

where the repetition of indices denotes summation over those indices. In the following,

Greek letters will denote indices spanning form 0 to 3, while Latin letters will stand for

the spatial indices from 1 to 3. The symbol ds denotes the infinitesimal displacement

between points (events) in the manifold. Note that the metric must be symmetric since

swapping dxµ and dxν must return the same result.

The equivalence principle involves that there exists a change of coordinates capable to

eliminate the gravitational field in a small region that resembles the Minkowski spacetime.

Due to the complexity of the gravitational field, this change of coordinates is different

from point to point of the spacetime, which implies that this spacetime locally behaves as
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Minkowski but globally it does not. This brings up the concept of curved manifolds. The

metric, now called gµν , is not uniform anymore through the manifold but it varies from

point to point (gµν(x)) and it represents a general symmetric tensor with 10 independent

components. We will only consider manifolds where at any given point the flat tangent

space corresponds to a Minkowski spacetime with a metric signature as in Eq. (1.1), i.e. a

flat Lorentzian manifold.

The principle of relativity introduced before requires that the line element in the manifold

ds2 = gµνdx
µdxν must be the same for all the observers. The generalization of the

principle of relativity to accelerated observers leads to the concept of general covariance,

which postulates that the spacetime structure is determined only by the metric tensor and

tensors derived from it. The metric must remain invariant under any change of coordinate

system xα = fα(x′µ). Performing this transformation the coordinate displacement is

dxµ =
∂xµ

∂x′α
dx′α. (1.2)

Introducing this into the definition (1.1) of ds2 we have

ds2 = gµν
∂xµ

∂x′α
∂xν

∂x′β
dx′αdx′β, (1.3)

and we see that to keep ds2 invariant the metric gµν must transform as

g′αβ = gµν
∂xµ

∂x′α
∂xν

∂x′β
, (1.4)

so gµν transforms as a covariant tensor field under general coordinate transformations.

Let us consider now a vector field A defined in our 4 dimensional manifold. If the

manifold is flat, the vector basis in which we describeA is the same in the whole manifold,

and the derivative of A is given just by the derivative of its components. However, in

curved manifolds the vector basis changes from point to point both in magnitude and in

direction so the derivative applies both to the components and to the basis vectors:

∂µA = (∂µA
ν)eν +Aν(∂µeν). (1.5)

The derivative of the basis vectors is used as a definition for the components of the affine

connection Γλµν

∂µeν = Γλνµeλ. (1.6)

We will use the affine connection to introduce the concept of a new derivative which

takes into account the changes also in the basis vectors. This is known as the covariant
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derivative and when applied to a vector field it takes the form

∇µAν := ∂µA
ν + ΓνλµA

λ, (1.7)

so now we can express ∂µA as ∂µA = (∇µAν)eν . The covariant derivative is not exclusive

of vector fields but can be defined also for tensor fields. For example, applied to the

metric, which is a tensor of rank (2,0), we have

∇µgνρ = ∂µg
νρ + Γνµλg

λρ + Γρµλg
νλ. (1.8)

And for any generic tensor C of rank (m,n) the covariant derivative can be expressed

from the partial derivative and the affine connection as

∇ρCµ1...µm
ν1...νn = ∂ρC

µ1...µm
ν1...νn

+Γµ1

ρλC
λµ2...µm

ν1...νn + ...+ Γµmρλ C
µ1...µm−1λ

ν1...νn

−Γλρν1
Cµ1...µm

λν2...νn
− ...− Γλρνn−1

Cµ1...µm
ν1...νn−1

.

(1.9)

The covariant derivative allows us to define the concept of parallel transport of any

vector. In a simplified manner, the parallel transport of a vector consists of transporting

a vector from a point p in the manifold to a point q, but keeping all the information that

the vector had in p. In general, this parallelly transported vector in q will not coincide

with the vector in p since the manifold is curved and they belong to completely different

tangent flat spacetimes. In mathematical language, a vector V µ is parallel transported

along a curve xµ(τ) if
dxµ(τ)

dτ
∇µV ν = 0. (1.10)

Measuring how a vector changes under parallel transport along a closed curve provides a

measure of “how much” curvature there is inside the curve. To measure the curvature at

one point in the manifold we can define the curve given by an infinitesimal parallelogram

with sides dxµ and dxν . So we can compare the result of parallelly transporting a vector

first through dxµ and later dxν with transporting first through dxν and later through

dxµ. This is equivalent to compute the commutator of the covariant derivative [∇µ,∇ν ] =

∇µ∇ν −∇ν∇µ of a vector. Inserting the expression for the covariant derivative (1.7) we

have

[∇µ,∇ν ]V λ = R λ
µνρ V

ρ − Uρµν∇ρV λ, (1.11)

where

R λ
µνρ = ∂µΓλνρ − ∂νΓλµρ + ΓλµσΓσνρ − ΓλνσΓσµρ, (1.12)

Uρµν = Γρµν − Γρνµ. (1.13)
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U

Figure 1.1: The Riemann tensor R λ
µνρ measures the difference on a vector parallel

transported through an infinitesimal parallelogram and it is a measurement of the
curvature inside the parallelogram. The torsion tensor T ρ

µν

measures if the parallel transport of dxν along dxµ and the parallel transport of dxµ

along dxν produces a closed curve.

R λ
µνρ is known as the Riemann tensor and measures the curvature enclosed by the

parallelogram. Uρµν is the torsion tensor, the antisymmetric part of the connection and

measures whether quadrilaterals close under parallel transport (see Fig. 1.1). In GR there

is no observational evidence that the torsion tensor plays any role in nature so it is usually

set to zero. There exists an alternative theory named Einstein–Cartan–Sciama–Kibble

(ECSK) [9, 10] that includes torsion. Furthermore, in GR a unique connection is chosen,

which can be defined in terms of the metric, consistent with the principle of general

covariance. This connection is called the Levi-Civita connection and it satisfies two

conditions:

1. Symmetry: Γρµν = Γρνµ.

2. Compatibility with the metric: ∇µgνρ = 0.

The first condition cancels the torsion tensor and allows the scalar product of two vectors

to be invariant under parallel transport. The second allows one to lower and raise indexes

of a tensor inside a covariant derivative:

gµν∇ρSµν = ∇ρ(gµνSµν) = ∇ρSµµ . (1.14)

With these properties, the connection is completely determined by the metric and its

explicit dependence is specified by the Christoffel symbols

Γλµν =
1

2
gλσ (∂µgσν + ∂νgµλ − ∂λgµν) . (1.15)
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Consequently, the Riemann tensor also depends directly on the metric and it acquires

extra symmetries which convert the Ricci tensor in the only independent contraction of

the Riemann tensor:

Rµν = R λ
µλν = R λ

µλ ν = R λ
µνλ =

1

2
(∂ρ∂µgνρ + ∂ρ∂νgµρ − ∂ρ∂ρgµν − ∂µ∂νg) . (1.16)

The symbol g refers to the trace of gµν . The Ricci scalar is the contraction of the Ricci

tensor

R = gµνRµν = ∂µ∂νgµν − ∂µ∂µg. (1.17)

We now have all the elements to build the Einstein tensor Gµν

Gµν = Rµν −
1

2
gµνR. (1.18)

With the Levi-Civita connection it can be shown that the Riemann tensor satisfies

∇σRµνρλ +∇λRµνσρ +∇ρRµνλσ = 0, (1.19)

and by contracting the two pair of indices we come to the conservation law for the

Einstein tensor

∇µ
[
Rµν −

1

2
gµνR

]
= ∇µGµν = 0. (1.20)

The trajectories that free test particles follows in the manifold are called geodesics. This

curve satisfies that the tangent vector keeps parallel to itself under parallel transport

through the curve, and also it turns out to be an extremal-length curve between two

points. These two properties are satisfied thanks to the choice of the Levi-Civita con-

nection, a general connection will not satisfy these two properties at the same time and

there exists then a distinction between affine and metric geodesics respectively. Since the

geometry is curved, a freely moving observer will feel an acceleration which is interpreted

as the acceleration of “gravity”. If the spacetime is flat a freely moving object follows a

straight line with constant velocity, however, in a curve manifold straight lines become

curves and the objects’ velocity does not remain constant. In words of John Wheeler,

“spacetime geometry tells matter how to move”. The second part of his famous quote

states that moreover, “matter tells spacetime how to curve”. Indeed, it is well known

that matter is the source of gravity, and if gravity is the result of the curvature of the

spacetime matter must determine the geometry of the spacetime. In fact, not only mat-

ter must be a source of curvature but also energy, since they are equivalent according to

Einstein’s famous equation E = mc2. The source of gravity is then the content of mass

and energy which is described by the stress-energy tensor Tµν .
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The Einstein’s tensor and stress-energy tensor are related by a constant of proportional-

ity:

Gµν = κTµν , (1.21)

which establishes the intrinsic relation between geometry and matter. The constant of

proportionality κ is obtained by imposing the Newtonian limit so we get the famous

Einstein field equations,

Gµν =
8πG

c4
Tµν . (1.22)

1.2 Linearized Einstein field equations

In this section, we study how GWs emerge from Einstein’s GR theory. The approach

followed here is similar to Einstein’s original calculation and relies on the “weak field

approximation” which assumes that the background spacetime where the GWs propagate

is flat, i.e. it is described by the Minkowski metric ηµν . Since we will measure the GWs on

Earth, at a very large distance from the source, and with a weak local gravitational field,

this is a good enough approximation. An illustration of the weakness of the gravitational

field on Earth is provided by the extremely small slow-down of time between e.g. the

surface of the Earth and a satellite. There are of course many other scenarios where the

gravitational interaction overcomes the effect of other forces such as in our Sun or any

other star, where gravity can compensate the pressure force emerging from the nuclear

reactions that are being produced in the core. GWs arise naturally when the background

metric of the flat spacetime ηµν is influenced by small perturbations. The Einstein’s field

equations lead to a wave equation under this approximation. The full Einstein equations

are given by

Rµν −
1

2
gµνR =

8πG

c4
Tµν . (1.23)

We want to study how these equations transform under a perturbation of the flat metric:

gµν = ηµν + hµν , |hµν | � 1 (1.24)

and expand them only up to linear order in the perturbation hµν . This requires re-

computing the Christoffel symbols with the new perturbed metric, continue with the

Riemann tensor and finally with the Ricci tensor and Ricci scalar. These calculations

need the inverse metric in the contravariant form

gµν = ηµν − hµν , (1.25)
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which satisfies the inverse relation only in the linearized approximation since

(ηµν − hµν) (ηνσ − hνσ) = η σ
µ − hµσ + hµσ +O(h2) = δ σ

µ +O(h2). (1.26)

Inserting this metric (1.24) in the expressions for the Christoffel symbols (1.15) leads to

Γλµν =
1

2
ηλσ (∂µhσν + ∂νhµλ − ∂λhµν) . (1.27)

Introducing them in the general expression for the Riemann tensor (1.12) we obtain the

expression of the perturbed Riemann tensor

Rµνρλ =
1

2
(∂ν∂ρhµλ + ∂µ∂λhνρ − ∂µ∂ρhνλ − ∂ν∂λhµρ) . (1.28)

The Ricci tensor and scalar are computed by contraction of the Riemann and Ricci

tensors,

Rµν = ηρλRµρνλ =
1

2

(
∂λ∂νhµλ + ∂µ∂

ρhρν − ∂µ∂νhλλ − ∂λ∂λhµν
)
, (1.29)

R = ηµνRµν = ∂µ∂νhµν − ∂µ∂µhνν . (1.30)

Inserting (1.29) and (1.30) into (1.23), we obtain the linearized form of the Einstein field

equations

�h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16πG

c4
Tµν , (1.31)

where we have introduced the symbol of the flat space d’Alembertian, � = ηµν∂
µ∂ν =

∂µ∂
µ and also the following notation

h̄µν = hµν −
1

2
ηµνh, h = ηµνhµν = hµµ. (1.32)

Eq. (1.31) does not exhibit yet the form of a wave equation. The next step in this

direction is to fix the “gauge freedom”. In GR there exists the freedom of choosing the

reference system, such that the theory is covariant under any coordinate transformation

xµ → x′µ(x). (1.33)

For the sake of simplicity, we adopted coordinate systems where |hµν | � 1 so that we

do not have the same gauge freedom than GR but we keep a residual gauge symmetry

given by

xµ → x′µ = xµ + ξµ(x), (1.34)

where ξµ(x) is small. In order to confirm that this coordinate change is indeed a symme-

try of the linearized theory let us investigate how the metric (1.24) behaves under this
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change of coordinates

gµν(x)→ g′µν(x′) = ηµν + hµν − (∂µξν + ∂νξµ) +O(∂ξh) +O(∂ξ∂ξ) +O(∂ξ∂ξh). (1.35)

The flat space metric ηµν does not change since it does not depend on x and restricting

to linear order we can do the identification

hµν(x)→ h′µν(x′) = hµν(x)− (∂µξν + ∂νξµ). (1.36)

Requiring that |∂µξν | � 1 is about the same order of magnitude as |hµν |, the condition

that |h′µν | � 1 is still preserved and therefore the requirements of a linearized theory are

retained.

We can now use the gauge freedom for choosing ξµ to simplify the expression (1.31).

The most appropriate choice is known as the harmonic gauge (or the De Donder gauge

or also the Hilbert gauge) which is written as

∂ν h̄µν = 0. (1.37)

The above expression resembles the Lorentz gauge used in electromagnetism, ∂µAµ = 0.

We derive hereafter the expression for ξµ which satisfies this relation. Under the change

of (1.34) the quantity h̄µν transforms as

h̄µν → h̄′µν = h̄µν − (∂µξν − ∂νξµ − ηµν∂ρξρ), (1.38)

finding the derivative of the above expression we obtain that the quantity in expression

(1.37) transforms as

∂ν h̄µν → (∂ν h̄µν)′ = ∂ν h̄µν − ∂ν∂νξµ. (1.39)

So that the transformed quantity (∂ν h̄µν)′ also satisfies the gauge condition it is required

that

�ξµ = ∂νhµν . (1.40)

There always exist solutions for ξµ which satisfy this relation which are given in terms

of the Green’s function of the d’Alembertian operator:

ξµ(x) =

∫
d4y G(x− y)∂νhµν(y). (1.41)

Now that we have demonstrated that the harmonic gauge is a perfectly valid choice of

gauge we can insert it into (1.31) which cancels the last three terms of the left hand side
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and leads to the familiar form of the wave equation:

�h̄µν = −16πG

c4
Tµν . (1.42)

The symbol � refers to the d’Alembertian operator in flat space ((−1/c2)∂2
t , ∂

2
x, ∂

2
y , ∂

2
z )

and Eq. (1.42) corresponds to a wave equation which propagates at the speed of light

and that possesses Tµν as source term. Performing the partial derivative ∂µ of (1.42)

and recalling that the harmonic gauge is satisfied, we obtain the following constraint

∂µTµν = 0, (1.43)

which is the condition of conservation of the energy-momentum tensor in linearized

theory. In GR for a general curved metric the partial derivative is replaced by the

covariant derivative, consistent with the “recipe” of translating physical laws in Minkowski

spacetime to curved spacetimes by replacing the Minkowski metric with a general metric,

and partial by covariant derivatives.

1.3 The Transverse-Traceless (TT) gauge

Once GWs are emitted they travel through the universe during millions of years at

the speed of light until reaching the Earth and the detectors. At this point they are

far outside the source so we can consider the source term equal to zero and the wave

equation (in vacuum) simplifies to

�h̄µν = 0. (1.44)

In this situation, it turns out that there exists an extra gauge freedom which allows us

to clearly manifest the transversality of the wave and to make it traceless, i.e. h̄ = 0.

Consider a similar transformation to (1.34), xµ → xµ + εµ (we just replaced ξ by ε to

clarify that it is a different transformation) where the functions εµ now satisfy

�εµ = 0. (1.45)

We already know that there exist always a solution for the former equation. In addition,

this new transformation still satisfies the harmonic gauge (∂ν h̄µν)′ = 0. Remember from

(1.39) that

(∂ν h̄µν)′ = ∂ν h̄µν −�εµ, (1.46)

and from (1.38) we see that by choosing εµ we can impose certain conditions on h̄µν .

Since there are 4 functions εµ to choose we can impose 4 conditions which for convenience
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are

h̄ = 0, h0i = 0. (1.47)

The right hand expression implies that the temporal dependence of the wave appears

only in their spatial components. It can be shown that these conditions together with

the harmonic gauge translate into

h0µ = 0, hii = 0, ∂jhij = 0. (1.48)

The imposition of the Lorentz gauge and the TT gauge restricts the original 10 degrees

of freedom of our problem. Both gauge choices involve 4 conditions each one so only

2 degrees of freedom remain. These are identified by the plus and cross polarizations,

denoted by h+ and h×.

In the TT gauge, since h̄ = 0 we have that h̄µν = hµν and equation (1.44) admits plane

wave solutions of the form

hTTµν = Aµνe
ikρxρ , (1.49)

where kµ = (ω/c,k) and k is the wave-vector, which indicates the direction of prop-

agation. The third condition in (1.48) implies that the wave oscillates in the plane

perpendicular to the direction of propagation. By selecting the z-axis as the direction of

propagation we can write hµν in the TT gauge as

hTTµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


µν

=


0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0


µν

eiω(t−z/c), (1.50)

where we introduce the amplitudes A× and A+. A convenient way to transform to the

TT gauge any given plane wave hµν , which is already in the Lorentz gauge, is by means

of the Lambda tensor Λij,kl,

hTTij = Λij,klh
kl. (1.51)

The Lambda tensor is defined as

Λij,kl(n̂) = PikPjl −
1

2
PijPkl, with Pij(n̂) = δij − ninj , (1.52)

ni are the components of the unitary vector in the direction of the line of sight from the

source to the observer, which coincides with the direction of the wave vector, n̂ = k/|k|.
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1.4 Distortion of a ring of particles

Now that we have an explicit solution for the GWs travelling in vacuum we wonder how

matter reacts to an incoming wave of such nature. We will study in this section what

is the effect of a GW over a ring of free particles perpendicular to the incoming wave.

Assuming that the separation between two of these test masses is small compared to the

wavelength of the radiation, the equation of motion for the separation vector between

these two masses xµ is given by the geodesic deviation equation

d2xi

dt2
= −c2R0i0kx

k. (1.53)

Incorporating the expression for the Riemann tensor of (1.28) we have

d2xi

dt2
=

1

2
ḧijx

j , (1.54)

where the two dots denote second derivative respect to time. The solution to this equation

up to leading order in hij is expressed by

xi(t) = xi(0) +
1

2
hik(t)xk(0) (1.55)

or

x(t) = x0 +
1

2
(h+x0 + h×y0), y(t) = y0 +

1

2
(h×x0 − h+y0), z(t) = z0. (1.56)

To interpret more simply the motion described by the previous set of equations let us

consider a case where only the h+ mode is present. We find out that when h+ increases

the separation in the x−axis grows the separation in the y-axis must decrease, while

when h+ decreases the opposite behaviour occurs. So for an initial ring of particles, it

can be seen that the circle is distorted into an ellipse given by(
x

1 + h+

2

)2

+

(
y

1− h+

2

)2

= 1. (1.57)

The ellipse transforms between the shapes shown in Fig. 1.2. Equivalently for a case

where only the h× mode is present the ellipse is given by(
x+ y

1 + h×
2

)2

+

(
x− y

1− h×
2

)2

= 1. (1.58)

Notice that this ellipse is rotated by 45◦ with respect to the h+ one. So the vibration

mode of h× is the same as for h+ but rotated by 45◦. In fact, we can justify this
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by pointing out that under a general rotation of the angle ψ around the z-axis the

polarizations transform in the following way (see e.g. section 11.1.7 in [11])

h′+ = h+ cos 2ψ + h× sin 2ψ, h′× = −h+ sin 2ψ + h× cos 2ψ. (1.59)

From above it can be seen that when the rotation is ψ = 45◦ then h′+ = h× and h′× = h+,

so the polarizations are interchanged.

Figure 1.2: Distortion of a ring of free particles by the h+ and h× polarizations of a
GW coming perpendicular to the paper. Image credits: [11].

1.5 Quadrupole formula

In the previous section, we have shown the effects of a passing GW on a ring of parti-

cles with no assumptions on the eventual sources that generate them. In this section,

we will study how GWs are generated by matter sources by means of the quadrupole

approximation. The quadrupole formula is an approximation to the GW emission that

relies on two assumptions: the gravitational field produced by the source is weak, so the

background metric can be taken as flat and the typical velocities inside the source are

small compared to the speed of light. Under these assumptions the quadrupole formula

is given by [
hTTij (t,x)

]
quad
≡ 2G

rc4
ÏTTij (t− r/c), (1.60)

where r is the distance to the source and Iij is the quadrupole moment defined as

Iij(t) =
1

c2

∫
d3x′T 00

(
t− r

c
,x′
)
x′ix′j . (1.61)
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The expression for the quadrupole formula was derived first by Einstein in 1916 [5]

and corresponds to the first prediction of the existence of GWs (although they were

already proposed by Henri Poincaré in 1905). Given its importance and the enormous

and exciting results that came after that, we will dedicate a few paragraphs below to

summarize how this formula is derived.

We start from the basic result of linearized theory (1.42)

�h̄µν = −16πG

c4
Tµν , (1.62)

where Tµν is linear in hµν , and the Lorentz gauge ∂µh̄µν = 0 is already applied. The

solution to the above equation for a radiation problem, as it is for electromagnetism, is

given in terms of the retarded Green’s function,

h̄µν(t,x) =
4G

c4

∫
d3x′

1

|x− x′|Tµν
(
t− |x− x′|

c
,x′
)
. (1.63)

The vector x indicates the position of the observer measured from the center of mass of

the source, and x′ refers to a particular point inside the source (see Fig. 1.3). We are

Figure 1.3: Illustration of the vectors and distances used in this section. n is the
unitary vector in the line of sight, pointing in the direction from the center of mass of
the source to the observer (where we want to compute the solution). d is the typical

size of the source, it does not require that the source must be spherical.
Image credits: [12].

interested in the solution far away from the source where we can impose the TT gauge

and deem only the spatial components of hµν . Also we consider the approximation that

the distance to the source r is much larger than the typical size of the source d (r � d)

so

|x− x′| = r − x′ · n̂ +O

(
d2

r

)
. (1.64)

Inserting this into the TT gauge version of (1.63) we have

hTTij (t,x) =
4G

c4
Λij,kl

∫
d3x′

1

r − x′ · n̂T
kl

(
t− r

c
+

x′ · n̂
c

,x′
)
, (1.65)
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when r � d and so r � |x′ · n̂| we can factor out 1/r from the integral

hTTij (t,x) =
4G

r c4
Λij,kl

∫
d3x′ T kl

(
t− r

c
+

x′ · n̂
c

,x′
)
. (1.66)

Now we make use of the second assumption we mentioned at the beginning of this section,

which was that the typical velocities inside the source are low compared to the speed

of light. This allows us to make an expansion of Tij
(
t− r

c + x′·n̂
c ,x′

)
in powers of 1/c

whose first element is given by Tij
(
t− r

c

)
. Inserting this into expression (1.66) we get

hTTij (t,x) =
4G

r c4
Λij,kl

∫
d3x′ T kl

(
t− r

c
,x′
)
. (1.67)

Making use of the conservation of the energy-momentum tensor ∂µTµν = 0 and integrat-

ing the right-hand side by parts twice we obtain

hTTij (t,x) =
4G

r c4
Λij,kl∂0∂0

∫
d3x′

1

2
T 00

(
t− r

c
,x′
)
x′kx′l. (1.68)

Remembering the definition of the quadrupole moment in (1.61) we see that finally, we

have arrived at the expression for the quadrupole formula. In a low-velocity expansion

of T 00 the leading order is proportional to the energy density ρ and the square of the

speed of light, so expression (1.68) turns into

hTTij (t,x) =
2G

r c2
Λij,kl∂0∂0

∫
d3x′ ρ

(
t− r

c
,x′
)
x′kx′l. (1.69)

We can now obtain the h+,× polarizations in a frame whose z-axis points toward the

observer by performing the following projection

h+ =
1

2

(
eiXe

j
X − eiY e

j
Y

)
hij

h× =
1

2

(
eiXe

j
Y + eiY e

j
X

)
hij

(1.70)

The triad {eX, eY, eZ} defines the new frame whose z-axis coincides with the line of

sight and is commonly known as the wave frame.

1.6 Quadrupole emission from binary systems in circular

motion

We now focus on a special kind of source: binary systems where the source is composed

of two compact objects that orbit around each other. These are the most likely sources

of GWs to be detected by ground based detectors and are known as Compact Binary

Coalescence (CBC) signals. In fact, CBC signals are the only ones detected so far by



1 Introduction to Gravitational Waves 17

the [6, 13–18]. The compact objects can be black holes or neutron stars so we can have

binaries black holes (BBH), binaries neutron stars (BNS or a system with neutron star

and a black hole (NSBH). In order to describe the GW emission of these systems, we

will approximate the two compact objects by point-like particles so the energy density

is given by

ρ(t,x) =
∑
i=1,2

miδ(x− xi), (1.71)

where mi are the masses of each object and xi the positions of each one. We will choose

a frame with origin at the center of mass of the system and whose z-axis is parallel to the

orbital angular momentum so that the x-y plane is the orbital plane. For the moment

we will assume that objects describe a circular motion and that the orbit does not shrink

due to the emission of GWs. This is known as a circular “Newtonian” orbit. In this

situation, the positions of the two particles are provided by

x1 =
m2

M
R, x2 = −m1

M
R, R = x1 − x2, (1.72)

whereM = m1 +m2 and R is the radius of the orbit. Similarly, the velocities are written

as

v1 =
m2

M
v, v2 = −m1

M
v, v = v1 − v2. (1.73)

In a circular orbit these expressions are simplified to

R(t) = (R cos(ωst), R sin(ωst), 0), (1.74)

v(t) = (−Rωs sin(ωst), Rωs cos(ωst), 0), (1.75)

with ω2
s = GM/R3. Substituting the above relative position and velocity into the

quadrupole moment tensor of (1.61) we get that Iij = m1m2
M RiRj . Taking out the

second time derivative and inserting it into (1.60) we arrive at

hij =
4Gm1m2

rc4

(
vivj − GM

R3
RiRj

)
. (1.76)

Finally, for an observer located at a sky position given by the polar angles (ι, ϕ) with

respect to the source, the h+,× polarizations are obtained by performing the projection

of (1.70) with the set of vectors

eX = (cos ι cosϕ, cos ι sinϕ,− sin ι), (1.77)

eY = (− sinϕ, cosϕ, 0), (1.78)

eZ = (sin ι cosϕ, sin ι sinϕ, cos ι), (1.79)
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where we have made the choice of putting eX in the orbital plane. The final result is

therefore

h+(t) = −4Gm1m2ω
2
sR

2

rc4

(
1 + cos2 ι

2

)
cos (2ωs(t− r/c)− 2ϕ) ,

h×(t) = −4Gm1m2ω
2
sR

2

rc4
cos ι sin (2ωs(t− r/c)− 2ϕ) .

(1.80)

Note that in the quadrupole approximation, the GW emission frequency is twice the

orbital frequency of the source, ωgw = 2ωs. If in the above expressions we eliminate R

in favour of ωs, substitute tret = t− r/c and rearrange terms we obtain

h+(t) =
4

r

(
GMc

c2

)5/3 (ωgw
2c

)2/3
(

1 + cos2 ι

2

)
cos (ωgwtret − 2ϕ) ,

h×(t) =
4

r

(
GMc

c2

)5/3 (ωgw
2c

)2/3
cos ι cos (ωgwtret − 2ϕ) .

(1.81)

We have also introduced the chirp mass

Mc =
(m1m2)3/5

(m1 +m2)1/5
, (1.82)

which is the only intrinsic quantity the waves depend on at the zero-order approximation.

The power emitted in form of GWs per solid angle is computed as

dP

dΩ
=

r2c3

16πG
〈ḣ2

+ + ḣ2
+〉 (1.83)

where 〈〉 means averaged over several cycles such that 〈cos2(ωgwt)〉 = 〈sin2(ωgwt)〉 = 1/2.

Incorporating expressions (1.81) and integrating over the sphere the total power radiated

is

PGW =
32c5

5G

(
GMcωgw

2c3

)10/3

. (1.84)

Now we consider the more realistic case where the loss of energy emitted in form of GWs

indeed affects the orbit. Then the radius of the orbit and the frequency ωs are no longer

constant. As the orbit loses energy, the orbit shrinks, R decreases and consequently

ωs increases, however, this provokes that the emission of GWs is even higher, so there

is a runaway process until eventually the two objects merge and the emission stops.

To keep using the approximation of circular orbits we need to request that the radial

velocity Ṙ is much smaller than the tangential one Rωs. This, together with the adiabatic

approximation, which assumes that energy loss is negligible over one orbit, lead to ω̇s �
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ω2
s . With these approximations the energy of the orbit at any given time is

Eorbit = −Gm1m2

2R(t)
= −

(
G2M5

cω
2
gw(t)

32

)1/3

. (1.85)

Since the loss of energy in the orbit must correspond to the radiated energy in form of

GWs, the radiated power PGW of (1.84) is equal to −dEorbit/dt. By equating these two

quantities we get an equation for ωgw for any given time:

ω̇gw =
12

5
21/3

(
GMc

c3

)5/3

ω11/3
gw . (1.86)

This equation can be integrated from an arbitrary time t to the time of coalescence i.e.

the time tcoal when the two bodies merge. Introducing a new variable for the time to

coalescence, τ = tcoal − t, we have

ωgw(τ) =

(
5

128τ

)3/8(GMc

c3

)−5/8

. (1.87)

Note that the frequency diverges for τ = 0 since at the coalescence time the two bodies

merge and the orbital frequency is no longer defined. Now that we have the time depen-

dence of the frequency we could also obtain the time dependence of the radius of the orbit.

With these two quantities, and following the same procedure that we used for obtaining

the expressions (1.81) we could derive the expressions for the polarizations. However,

since we use the approximations of quasi-circular and adiabatic orbits (ω̇s � ω2
s) the

only required changes to (1.81) are replacing ωgw by ωgw(t) and substitute ωgwt by

Φ(t) =

∫ t

t0

ωgw(t′)dt′. (1.88)

The polarizations are then given by

h+(t) =
4

r

(
GMc

c2

)5/3(ωgw(tret)

2c

)2/3(1 + cos2 ι

2

)
cos (Φ(tret)− 2ϕ) ,

h×(t) =
4

r

(
GMc

c2

)5/3(ωgw(tret)

2c

)2/3

cos ι cos (Φ(tret)− 2ϕ) .

(1.89)

(1.90)

Notice that there exists the freedom to choose the origin of time, shifting the waveform

by a constant time does not introduce any change in the shape of the waveform so the

parameter t0 is an arbitrary choice. We could take the coalescence time as our reference

time and perform the integral of ωgw to get

Φ(τ) = −2

(
5GMc

c3

)−5/8

τ5/8 + Φ0 (1.91)
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Figure 1.4: h+, h× polarizations as predicted by the quadrupole formula for a binary
system of masses m1 = 30M�, m2 = 20M� at distance 1 Mpc from the observer and

inclination π/3.

with Φ0 the phase at the coalescence time. Finally, the polarizations of the quadrupole

emission of a binary system of point particles in terms of the coalescence time would be

h+(t) =
4

r

(
GMc

c2

)5/4( 5

cτret

)1/4(1 + cos2 ι

2

)
cos (Φ(τret)− 2ϕ) ,

h×(t) =
4

r

(
GMc

c2

)5/4( 5

cτret

)1/4

cos ι cos (Φ(τret)− 2ϕ) .

(1.92)

(1.93)

From the above formulas we see that when the binary approaches the time of coalescence,

both amplitude and frequency grow rapidly, this is known as the chirp of the GW. In

Fig. 1.4 we show a simple example waveform as predicted by the quadrupole formula

where we can see the characteristic chirp.

1.7 Quadrupole emission from rotating rigid bodies

An isolated rigid object can also emit GWs if it spins and if it is not spherically symmetric.

This is the case of isolated neutron stars. Two main scenarios may occur: the object

rotates around one of its principal axes (or symmetry axes) or it rotates around a generic

axis, what translates into a motion of precession. We saw in section 1.5 that the main

quantity that describes the GW emission is the quadrupole moment, given by

Iij =

∫
d3xρ(x)(r2δij − xixj). (1.94)
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This is a hermitian matrix and therefore it can always be diagonalized. The frame where

Iij is diagonal is formed by its principal axes x′i. This is a frame that rotates with the

body and it is also called as the “body frame”. The eigenvalues are given by

I1 =

∫
d3x′ρ(x′)(x′

2

2 + x′
2

3 ), (1.95)

I2 =

∫
d3x′ρ(x′)(x′

2

1 + x′
2

3 ), (1.96)

I3 =

∫
d3x′ρ(x′)(x′

2

1 + x′
2

2 ). (1.97)

In the case that the rigid object is an ellipsoid of semiaxes a, b, c the eigenvalues transform

to

I1 =
m

5
(b2 + c2), (1.98)

I2 =
m

5
(a2 + c2), (1.99)

I3 =
m

5
(a2 + b2). (1.100)

The angular momentum and energy of a rotating object with angular frequency ω is

given in terms of the quadrupole moment as

Ji = Iijωj , E =
1

2
Iijωiωj . (1.101)

Notice that in general the axis of rotation ω̂ and the direction of the total angular

momentum will not be the same unless the object is spherically symmetric or the ro-

tation happens around one of the principal axes. Let us consider now first the case

where the rotation occurs around one of the principal axes, let say around the x′3 axis.

Previously we computed the components of the quadrupole moment in the body frame

Iij = diag(I1, I2, I3) but for obtaining the GW emission we need the components Iij in
the “static” frame which are time-dependent. These two frames are related by a rotation

of angle ωt around the axis x3 = x′3. Therefore the quadrupole moment in these two

frames is related by

I = RT (ωt)I ′ R(ωt), (1.102)

where

R(ωt) =


cosωt sinωt 0

− sinωt cosωt 0

0 0 1

 . (1.103)
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The only non-vanishing components of the quadrupole moments, written in terms of the

eigenvalues (I1, I2 and I3), are then

I11 =
I1 + I2

2
+
I1 − I2

2
cos 2ωt, (1.104)

I12 =
I1 − I2

2
sin 2ωt, (1.105)

I22 =
I1 + I2

2
− I1 − I2

2
cos 2ωt, (1.106)

I33 = I3. (1.107)

Once we have the quadrupole moment components, the polarizations of the GWs emitted

are given by

h+ =
4Gω2

rc4
(I1 − I2)

1 + cos2 ι

2
cos 2ωt, (1.108)

h× =
4Gω2

rc4
(I1 − I2) cos2 ι sin 2ωt. (1.109)

The angular dependence of the GW emission of this system is the same as for the binary

case, and also the GW frequency is twice the orbital one. The ellipticity is typically

defined as ε ≡ I1−I2
I3 which together with the GW frequency fgw = 4πω allows us to

express the polarizations in terms of a constant amplitude h0 =
4Gω2I3f2

gw

rc4
ε,

h+ = h0
1 + cos2 ι

2
cos 2πfgwt, (1.110)

h× = h0 cos ι sin 2πfgwt. (1.111)

Notice that according to the expression of h0, faster rotating objects produce stronger

signals and therefore they are more likely to be detected. Computing the power emitted

by GWs and equating it to the energy loss by the system, as we did in 1.6, we get an

equation for the frequency dependence given by

ω̇ = −32G

5c5
ε2I3ω

5. (1.112)

Experimental measurements [19–24] of this decay rate indicate that dependence is not

with the fifth power of the orbital frequency but with a power between 2 or 3. This

suggests that the GW emission is not the main mechanism by which neutron stars lose

energy and there must be other mechanisms of electromagnetic nature that must domi-

nate.

In a general situation, the rotation of the body does not happen around one of the

principal axes and the object describes an additional movement of precession. Now the

rotation that relates the inertial frame with the body frame is not just a 2D rotation as
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before but and Euler rotation with three angles. In the general case of triaxial bodies,

these three angles will be time-dependent and the body suffers a complicated precessional

movement around the axis of the total angular momentum. In the special case in which

the object is axisymmetric, only the second of the Euler angles is time-dependent, so the

frequency vector ω̂ precesses around the axis x′3 so it rotates in the plane (x′1, x′2). The

precessional movement of the body introduces a “new” frequency of GW emission which

translates in a modulation of the amplitude of the signal. Finally, we would like to recall

that all this description assumed that the body is rigid, but in reality, neutron stars are

much more sophisticated objects, and their interior is usually described by an unknown

EOS i.e. as a fluid body with an elastic crust.
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Chapter 2

Experiments and Data Analysis

The GWs detected by the LIGO-Virgo detectors were produced by the collision of black

holes or neutron stars which occurred even before the human species existed and have

been travelling through the universe since then. The detection of gravitational waves

constitutes the most accurate measurement of displacement carried out in the human

history, and it is equivalent to be able to detect a displacement thousand of times smaller

than the size of a proton. In this chapter we will discuss how these tiny vibrations of the

spacetime can be registered by a detector and how the data is analyzed in order to infer

the properties of the source which emitted them.

2.1 Gravitational Wave Detectors

We start the discussion from the experimental point of view. We will review the two

main approaches historically adopted to detect gravitational waves. First, we discuss

the resonant-mass detectors that despite not having detected any signal were the first

experiments ever proposed and built for this purpose. Then we will pass to the LIGO-

style interferometer detectors which performed the very first gravitational wave detection.

Finally, we will discuss the current projects to send the interferometers to the space which

will allow us to detect the abundance of signals that are suppressed by terrestrial noise

sources.

2.1.1 Resonant-mass detectors

The first attempt for direct detection of gravitational waves dates from the 1960s when

Joseph Weber introduced the concept and built the first resonant bar detector. The idea

consisted in that a gravitational wave passing through a massive bar, of few meters long

26
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and a few tons of weight, vibrates if the frequency of the wave is close to the resonant

frequency of the bar. These detectors operate in a quite narrow frequency band around

30 Hz, but they can reach higher frequencies 103 − 104 Hz where the interferometers

can not operate due to the shot noise of the photons. The resonant bars are typically

composed of an alloy of aluminium but can also be made of niobium, silicon or sapphire.

The typical variations in the length of the bar due to a passing GW are of the order

∆L/L ∼ 10−19 − 10−18, so it is extremely important to control the thermal noise of the

bar which is the most important source of the noise. To achieve that, the bars have to be

cryogenically cooled down to temperatures around 0.1-6 K. The temperature will depend

on the detector, for example, the ultra-cryogenic detector NAUTILUS using 3He-4He was

able to reach a temperature as low as 0.1 K [1]. The current resonant detectors can reach

sensitives in the amplitude of a GW of the order h ∼ 4 · 10−19. They have a theoretical

limit for h ∼ 10−21 [2, 3] given by the Heisenberg uncertainty principle which complicates

reaching better sensitivities. That is the reason why the main experimental focus moved

to the interferometers, with a much lower bound. There exist however some proposed

methods to circumvent the quantum limit utilizing quantum non-demolition techniques

[4, 2, 3].

2.1.2 Ground-based Interferometers

In section 1.4 we saw that the interaction of a gravitational wave with matter produces

the stretching of one direction and the squeezing of the orthogonal one. This behaviour

inspired scientists to use laser interferometry as a novel tool to detect gravitational

waves. The basic idea of this approach consists in the classic Michelson interferometer

(see Fig. 2.1), where a laser beam is split in two beams that travel in perpendicular

directions, then each one is reflected by a suspended mirror at the end of their paths

and they recombine and interfere in a photodetector. If the distance (or optical path)

travelled by the two beams is the same, their interference will be destructive since one of

the beams acquires an extra phase of π in the beam splitter. However, since the mirrors

are freely suspended, a passing gravitational wave can stretch one arm while squeezing

the other one, so the relative optical paths change and now the two beams interfere in a

constructive manner producing a readout power in the photodetector. One can express

this in a mathematical language considering the electric field of each beam at the time

when they recombine after travelling twice the length of their arms,

E1 = −1

2
E0e

−i2πfL+2ikLL1 , E2 =
1

2
E0e

−i2πfL+2ikLL2 (2.1)

where kl, fL are the wavenumber and frequency of the laser beam and the factors one half

come from the reflection and transmission factors in the beam splitter and the mirrors.
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Figure 2.1: Optical distribution of a Michelson interferometer. Image credits: modi-
fied version of [5].

The combined electric field reaching the photodetector is the sum E1 +E2 and the power

measured can be expressed as

|Ephotodetector|2 = E2
0 sin2 [kl(L2 − L1)] . (2.2)

This conceptual approach to detect gravitational waves was first introduced in 1963 by

Gertsenshtein and Pustovoit in [6], while the first small prototype was built by Robert

Forward in 1971 who after 150 hours of observation with his 8.5 m arms interferometer

reported “an absence of significant correlation between the interferometer and several

Weber bars detector” i.e. lack of evidence of GWs detection.

The construction of “initial LIGO” started in late 1994 and ended in 1997, it consisted

of two interferometers of 4km length, one in Hanford (Washington) and the second one

in Livingston (Louisiana). The LIGO detectors combined periods of operation with

subsequent upgrades until September 2015 when they detected the first gravitational

wave signal. As mentioned before, the LIGO interferometers are much more sophisticated

than the original Michelson ones. Let us now discuss some of the improvements needed.

First, in the Michelson interferometer the gravitational wave induces a change in the

length of the arms given by h = ∆L/L, the minimum variation ∆L that an interferometer

can measure is limited by the wavelength of the laser ∆L ∼ λlaser. So with a kilometre

based interferometer and with an infrared laser, we have that the metric perturbation

we can measure is of the order

h =
∆L

L
∼ λlaser

L
∼ 10−6m

103m
= 10−9. (2.3)
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The metric perturbation that we are targeting is however of the order h ∼ 10−21 so further

improvement is needed. The most evident upgrade would be to augment the length of

the arms of the detector. This can be achieved by building longer arms which at some

point becomes technically and financially prohibitive, however, the effective length that

the light travels can be increased without building longer arms by forcing the light to do

several traversals in the arms before letting it interfere in the photodetector. This can

be achieved with the installation of “Fabry-Perot cavities” halfway of each arm where the

light bounces several times before exiting the cavity such that the effective path travelled

is larger than the length of the arm Leff > L. This method can degrade the sensitivity of

the detector and the effective length Leff has an approximate limit given by the order of

magnitude of the wavelength of the gravitational wave we want to measure Leff ∼ λGW .

Our ground-based detectors are more sensitive to frequencies ∼ 300 Hz which correspond

to λGW ∼ 1000 km, therefore the strain we can measure is

h ∼ ∆L

Leff
∼ λlaser

λGW
∼ 10−6m

106m
∼ 10−12. (2.4)

Several orders of magnitude of improvement are still needed. Previously, we assumed

that the change of optical path which can be measured is of the order of λlaser but this can

be refined by considering that the variation in the amount of light that the photodetector

measures in a given period of time τ follows a Poisson process. For a large number of

photons ∆Nphotons ∼ N1/2
photons and the minimum optical path measurable is

∆L ∼
N

1/2
photons

Nphotons
λlaser. (2.5)

The period of time τ for which we can collect photons is of the order of the period of the

gravitational wave signal so the number of photons can be written as

Nphotons =
Plaser

Ephoton
τ =

Plaser

hc/λlaser
τ ∼ Plaser

hc/λlaser

1

fGW
. (2.6)

Inserting this in (2.4) and substituting for the typical values employed before and for

Plaser = 1W we obtain

h ∼ ∆L

Leff
∼ λlaser

N
1/2
photonsλGW

∼
(
λlaserhc

2

Plaserλ
3
GW

)1/2

= 10−20. (2.7)

There exist further upgrades that can be applied to improve the sensitivity such as the

technique of power recycling. This consists in taking the light that escapes in the direction

of the laser by transmission in the beam splitter when the two beams are recombined and

injected it again in the interferometer. A similar technique exists for the light leaving the

interferometer in the direction of the photodetector called in this case signal recycling.
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These techniques allow us to reach the desired theoretical sensitivity of h ∼ 10−21,

Figure 2.2: Left panel shows the noise curves for the Livingston observatory in the
low frequency regime while right panel displays the noise contribution of the Hanford
observatory for the high frequency regime. The sum of all the contributions provides

the sensitivity curve of the detector shown in Fig. 2.3. Image credits: [7].

however there are many different sources of noise that intervene in the performance of

the detector and degrade its sensitivity. These sources are usually classified as: shot

noise, radiation pressure, seismic and Newtonian noise and thermal noise. We briefly

discuss each of them hereafter.

• Shot noise: due to the quantum character of the light we can not detect continuous

variations in the power measured by the photodetector. There exists an amount

of power lost by the counting error governed by the Poisson distribution which

for high power lasers translates into a Gaussian process with standard deviation

∆Nphoton = N
1/2
photon. The larger the number of photons, the lower the relative

error (∆N/N) becomes. This is achieved by increasing the power of the laser and

by using the power and signal recycling methods discussed before.

• Radiation pressure: when the power of the laser increases, the pressure that the

light impinges on the mirrors becomes more important and can provoke minuscule

displacements in the mirrors. If the power of the laser were constant then it would

be simple to counter the effect by applying an equivalent force in the opposite

direction, however since the power follows a gaussian process the vibrations of

the mirror are stochastic and difficult to compensate. An approach to tackle the

competing effect of the shot noise and radiation pressure is through the squeezing

of the light [8] which has been recently incorporated to the LIGO detectors [9].

This technique creates pairs of photons that are quantum-mechanically entangled

and therefore their time of arrival at the detector is correlated, what reduces the

width of the time distribution and the uncertainty in the variation of the power of

the laser.
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• Seismic and Newtonian noise: the mirrors can not only be displaced by a

passing gravitational wave but also by any environmental activity like earthquakes,

local traffic, planes, even the ring of a telephone in the operations office of the

detectors. Another source of noise is when the gravitational field of the Earth

changes, for example due to turbulence in the atmosphere what can affect the

test masses of the interferometer. This is known as Newtonian noise or gravity

gradient noise and can not be eliminated. The dominant source of noise is however

the seismic one and it can be mitigated by hanging the mirrors from a set of

pendulums in cascade.

• Thermal noise: it is produced by the inherent motion of the atoms of any macro-

scopic object with a certain temperature. It affects both the mirrors and the

suspension system. To reduce these oscillations, materials with low mechanical

dissipation factors are employed.

There exist several more sources of noise with a contribution to different frequency ranges.

In Fig. 2.2 we show all the noise sources as a function of the frequency, the sum of all

them provides the so-called noise curve or power spectral density function Sn(f). This

curve is not constant over time since the noise sources are time-dependent, consequently,

it is of key importance to monitor the state of this curve to carry out the data analysis

studies as we will see in Sec. 2.2.2. An example noise curve (sensitivity curve) for the

LIGO detectors is shown in Fig. 2.3.

Figure 2.3: Strain sensitivity curves for Hanford (H1) and Livingston (L1) (red and
blue respectively) during the first observation run O1 when the first detection happened,
together with the curves of the initial detectors at the end of the final data collection
run S6 (green curve) and the design sensitivity of Advanced LIGO (grey curve). Image

credits: [7].

Additionally to the LIGO detectors, there exist others ground-based interferometers

which belong to the net of detectors hunting gravitational waves:
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• Virgo. It is built in Cascina, Italy. The detector arms are 3 km long, the sensitivity

is in general slightly lower than for LIGO although for some particular frequencies

it is higher. The incorporation of Virgo to the gravitational wave network is key

to improve the sky location of the source when there is no electromagnetic (EM)

counterpart since a third detector allows one to triangulate the position of the

source much more accurately (see discussion in Sec. 2.2.1). The first joint detection

with LIGO was GW170814 on 14 August 2017.

• KAGRA. Located in the Japanese region of Gifu, it is built underground in the

Kamioka mine. It has two arms of 3km length and uses cryogenic mirrors. Its

design sensitivity is similar to the LIGO one and its first observation run started

on 25 February 2020.

• GEO600. Located near Hannover, Germany. It consists in a Michelson inter-

ferometer with arms 600 m long where the beam performs two traversals so the

effective length is 1200 m. Its frequency range is much shorter than the Advanced

LIGO/Virgo (50-1500 Hz) and its sensitivity is orders of magnitude inferior, so

typically it has been used to develop and test the technology that is later installed

in LIGO. However, due to its better sensitivity at high frequencies, it has also

been involved in the search for high-frequency events, in particular galactic super-

novae, within the framework of the Astrowatch program, which has been running

between LIGO-Virgo observation runs to ensure that gravitational wave signals

from galactic supernovae events will not be missed.

• LIGO-India. It is a project to duplicate the Hanford detector in India. It was

approved ’in principle’ by the cabinet of the Indian Prime Minister just 6 days after

the first detection was announced on 11 February 2016. The project is designed to

be identical to the LIGO detector but operated by an Indian team. The estimates

to be operative are placed in 2024.

The initial and advanced stages of the LIGO-Virgo detectors constitute the first and

second generation of gravitational wave detectors respectively. Nevertheless, there exist

additional proposals and plans to build the “third-generation detectors” which will im-

prove substantially the designed sensitivity of the current second generation. The two

main projects planned for the next generation are:

• Einstein Telescope. This is a European project [10] that aims to build, instead of

a traditional L-shaped interferometer, a triangular shaped one with arms of 10 km

longitude, and located underground. The new shape allows a single detector to be

able of measuring the polarization of the gravitational wave, while for the L-shape

at least two detectors are needed. The lower cutoff frequency is targeted at 1 Hz.
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• Cosmic Explorer. It is a project of the United States [11] with a similar desig as

the LIGO detectors but with arms 10 times longer, 40 km each. This will increase

the amplitude of the signals that can be observed without increasing the noise,

however the lower cutoff will remain around the 10 Hz.

Figure 2.4: Sensitivity curves for third-generation ground-based interferometers. Im-
age credits: [12].

In Fig. 2.4 one can see the theoretical sensitivity curves of these two third-generation

detectors compared to the current Advanced LIGO one plus next upgrades of LIGO and

some hypothetical detectors of length 12 and 20 km.

2.1.3 Spaced-based Interferometers

The seismic and Newtonian noise form the main impediment for ground-based detectors

to reach frequencies below 10 Hz. However, an abundance of very interesting gravitational

wave sources lays below this cutoff frequency in the band of mHz, such as supermassive

black holes and extreme mass ratio (EMR) binaries (see Fig. 2.5). To access these sources

the detector must go to space where these noise sources are much more weakened. This

is the main goal of the Laser Interferometer Space Antenna (LISA) mission lead by

the European Space Agency (ESA). The project [13] aims to send three space crafts

into space, which would be separated 2.5 million kilometres from each one forming a

triangular shape and orbiting the sun (see Fig. 2.5). The test masses would be free-

falling inside each spacecraft and connected by a laser beam which travels from one

spacecraft to the other through space. The scientific and technological challenges of this

mission are extraordinary notorious, for that reason the ESA decided to launch first the

LISA Pathfinder mission which would test all the technology required for LISA and the

viability of such mission. After the great success of the LISA Pathfinder results [14] in

2017, the ESA gave clearance for the LISA mission to be launched for the 2030s.
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Figure 2.5: Left: Illustration of the orbit of LISA around the Sun following the Earth.
Right: sensitivity curve of LISA together with the Fourier domain amplitude of several
gravitational wave events expected to exist in that frequency regime. The blue line
represents the first detection of gravitational waves by LIGO GW150914, here we see

the early inspiral while LIGO detected the final merger. Image credits: [13].

2.2 Gravitational Wave Data Analysis

When a gravitational wave reaches the arms of the detector a time series of the relative

displacement of the arms is recorded. We saw in the previous section that there exist

several non-astrophysical sources that can also produce displacements of the mirrors

which act as noise for the GW measurement. If the signal is loud enough it will stand

out from the noise and be observable to the naked eye (after some filtering) as it happened

for the first event GW150914. However, the standard situation is that the signal is buried

in the noise. The main focus of the following sections is to discuss the techniques to dig

out the signal from the noise and to infer the source parameters from the detector data.

2.2.1 Detector response

The incoming gravitational wave hij(t) to the detector is a tensorial quantity, but the

response of the detector is rather a scalar quantity h(t), which in the case of interferom-

eters represents the relative difference between the lengths of the two arms as a function

of time. The response of the detector can be expressed then as

h(t) = Dijhij(t), (2.8)

where D is the detector tensor, a constant tensor which depends on the geometry of the

detector. Inverting the expressions in (1.70) we can express the tensorial components in
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Figure 2.6: Angular distribution of the antenna patterns for an interferometric de-
tector.

terms of the gravitational wave polarizations h+,× and the polarization tensors

e+
ij(n̂) =

(
eiXe

j
X − eiY e

j
Y

)
,

e×ij(n̂) =
(
eiXe

j
Y + eiY e

j
X

)
.

(2.9)

The vector n̂ = (θ, φ) represents the direction of the incoming wave measured from the

detector frame. Hence, the detector response in terms of the polarizations can be written

as

h(t) =
∑

A=+,×
DijeAij(n̂)hA(t). (2.10)

It is common to define the antenna patterns or detector pattern functions FA(n̂) =

DijeAij(n̂) and express the detector response as

h(t) = h+(t)F+(θ, φ) + h×(t)F×(θ, φ). (2.11)

In the case of interferometric detectors and under the assumption that the wavelength

is much larger than the detector size, the angular dependence of the antenna patterns is

given by

F+(θ, φ) =
1

2

(
1 + cos2 θ

)
cos 2φ, (2.12)

F×(θ, φ) = cos θ sin 2φ. (2.13)

Notice that in general, the gravitational wave detector is omnidirectional, i.e. it can

record signals coming from any direction. This is in clear contrast to the traditional EM

telescopes which need to point to a particular direction and is more similar to typical
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radio antennas. There are, however, according to equation (2.12), some blind spots for

the interferometric detector. For example, the directions φ = π/4, 3π/4, 5π/4, 7π/4) are

blind to the h+ polarization (F+ = 0) since the GW produces the same displacement in

the two arms. For the h× polarizations the directions correspond to φ = 0, π/2, π, 3π/2.

In Fig. 2.6 we represent the angular distribution of the two antenna patterns and all

these blind spots can be easily observed. In fact, with only one detector we are only

sensitive to measure one of the two polarizations. The detector only returns an output

h(t) however there are four unknown quantities in the problem: the two polarizations

h+,× and the sky location (θ, φ). With two detectors we need a coincident signal in both

of them so we would have as output the two strains from each detector h1(t), h2(t) and

the time delay of the signal from one detector to the other. This is not yet enough to

solve the problem of 4 unknown quantities. This is the reason why the sky location that

the LIGO detectors reported in the first observations were rather poor. With a third

detector we instead have 5 variables at our disposal, the three strains in each detector

and two independent time delays, therefore now the triangulation is much more accurate.

Consequently, the incorporation of Virgo to the detector network improved significantly

the sky location of the subsequent events. Fig. 2.7 displays the global antenna factor for

three different detector networks

F 2 =
∑

A=detects.

(FA+ )2 + (FA× )2. (2.14)

Blue regions in the figure represent the blind spots of the network. It can be observed

how Virgo dramatically improves the sky coverage. With six detectors the coverage

is practically uniform and there are no blind spots. A good measurement of the sky

location is key for the observation of events with a multi-messenger counterpart, because

it allows us to point, in particular EM telescopes, towards a small region of the sky and

thus increase the chances of discovering an EM counterpart, and possibly identifying the

host galaxy.

2.2.2 Matched filtering

Due to the extremely minuscule variations that gravitational waves produce in the arms

of the detector the instrument needs to be extraordinarily precise. This provokes that

not only gravitational waves are registered but also any environmental disturbance which

produces deviations in the mirrors of the interferometer. The output of the detector s(t)

will be therefore the sum of the noise of the detector n(t) together with the gravitational

wave signal h(t)

s(t) = n(t) + h(t). (2.15)
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Figure 2.7: Network antenna pattern distributions as a function of latitude (θ) and
longitude φ for three different detector networks: Hanford-Livingston (top), Hanford-
Livingston-Virgo (middle) and the incorporation to the previous network of KAGRA,

LIGO-India and a hypothetical detector in Australia. Image credits: [15].

It is evident that when the signal is louder than the noise |h(t)| > |n(t)| we are in a

position of claiming a gravitational wave detection. However, with the current sensitivity

of the detectors the situation is rather the opposite and |h(t)| � |n(t)|. The technique

of matched filtering allows us to dig inside the noise and extract the GW signal. The

basic quantity that assets if there exists a GW signal is the signal-to-noise ratio (SNR

or ρ), when this quantity is above a certain threshold we can assert GW detection. The

SNR is defined hereafter.

Firstly, let us define the Power Spectral Density (PSD) Sn(f) as

〈ñ∗(f)ñ(f ′)〉 = δ(f − f ′)1

2
Sn(f). (2.16)

This quantity describes the noise curve of the detector. Here 〈〉 represents ensemble

average; it is an average over possible states or “realizations” of the system. If we had

several instruments to make the same measurement the average would be over all these

instruments. Since for now, we are considering just one single GW detector, we dispose

of just one instrument, whose state changes in time due to environmental fluctuations.
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Then the ensemble average translates into a time average. The time average over a time

interval T is considered as one realization, and the next one is another time T ′ average

sufficiently separated from the previous realization.

We also introduce the inner product (known as Wiener scalar product) between two real

time series a(t), b(t) as

(a|b) ≡
∫ ∞
−∞

df
ã∗(f)b̃(f) + ã(f)b̃∗(f)

Sn(f)
= 2Re

∫ ∞
−∞

df
ã∗(f)b̃(f)

Sn(f)
= 4

∫ ∞
0

df
ã∗(f)b̃(f)

Sn(f)
.

(2.17)

In the last step we have utilized that for real time series ã(f) = ã∗(−f) and that Sn(f) =

Sn(−f). This inner product is normalized such that 〈(n|n)〉 = 1 and possesses the

property 〈(a|n)(n|b)〉 = (a|b). Given a model template h the SNR is defined as

SNR =
(h|s)√

〈(h|n)(n|h)〉
=

(h|s)√
(h|h)

. (2.18)

The higher the SNR the more probable is that a gravitational wave signal similar to h

is present in the data.

2.2.3 Frequentist vs Bayesian statistics

When physicists perform an experimental measurement of a particular physical param-

eter we always use statistical reasoning to indicate our belief that the measurement is

correct and how close it is to the true value. We use the concept of probability to refer

to this belief, and typically a confidence interval is provided with the measurement, i.e.

we believe that the true value of the physical parameter lays within this interval and

our degree of belief is given by the probability value. There are two main approaches

to describe the probability: the Frequentist and the Bayesian approaches [16–18] which

share some properties. Let us consider a set S with subsets A, B, ..., then the probability

P satisfies the Kolmogorov axioms [19]:

1. For every subset in S: P (A) ≥ 0

2. For disjoint subsets (A ∩B = 0): P (A ∪B) = P (A) + P (B)

3. P(S) = 1

We can also define the conditional probability, i.e. the probability of A given B as

P (A|B) =
P (A ∩B)

P (B)
. (2.19)
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The main difference between the two approaches is the interpretation of the subsets.

For a frequentist, the subsets are the outcomes of a particular experiment which can be

repeated under the same conditions. P (A) is the probability to obtain A when we perform

the experiment, more formally, when the experiment is repeated an infinite number of

times. P (A) is the frequency of occurrences of A in all these infinite repetitions. In this

framework, it is meaningful to talk about the probability of obtaining some data given

some hypothesis or theory P (data|hypothesis). However, it is not meaningful to talk

about the probability of a particular hypothesis, since it is not a repeatable experiment.

But in the Bayesian framework, since the subsets are not the result of a repeatable

experiment, it is meaningful to talk about the probability of the hypothesis or a theory.

This is related to the probability of the data through the Bayes’ theorem:

P (A|B) =
P (B|A)P (A)

P (B)
, (2.20)

where we have used A = hypothesis and B = data. The left-hand side term is called the

posterior probability and it represents our degree of belief that the hypothesis is true in

the presence of the current data. The term P (data|hypothesis) is the likelihood function

which is obtained by experimental measurements. This term modifies P (hypothesis)

which is the prior probability and describes our state of knowledge about the truth of

the hypothesis before having analyzed the data. This prior probability is given by the

assumptions we make about the observable we want to measure. For example, if we

want to measure the mass of a star we would set the probability of the hypothesis to

zero for negative masses because we already know, previously to any experiment, that

the mass has to be positive. We can incorporate into the prior any information that we

already know about the star, e.g. if we know that our star has a low temperature but

high luminosity, the Hetzspring-Russel diagram tells us that the star is a red supergiant,

so in this case we can give to our mass prior a higher probability for the masses of

supergiant stars. Finally, the term P (data) is a normalization constant, the probability

of obtaining the data without assuming any hypothesis. This terms is quite important

for applications like model selection and receives the name of evidence.

Another important result derived from the axioms of probability is the concept of

marginalization, expressed mathematically as,

P (A) =

∫
P (A,B)dB. (2.21)

Marginalization allows us to get rid of the nuisance parameters, i.e. parameters that

enter the analysis, but we are not interested in studying them. Let us consider the case

of a binary coalescence where we measure the mass of the primary black hole and we



2 Experiments and Data Analysis 40

have a hypothesis for the mass of the secondary black hole. The hypothesis over the sec-

ond black hole could be that its value lies in a particular mass interval. However when

we marginalize over the mass of the secondary black hole we are integrating over all its

possible values, we are not assuming any hypothesis about this parameter, the prior in-

formation is removed and there exists a larger uncertainty in the problem. Therefore, the

posterior for the primary black hole will be broader since we now have “less” information.

Then the posterior represents what is our best estimate for the mass of the first black

hole when we do not know anything about the second.

In many fields in astronomy, we can not repeat the experiment as many times as we want

and we do not have any control over the conditions for which it happens. The events are

those given by nature and they are rather infrequent compared to for example particle

accelerator experiments where the scientists have control over the experiment and can

repeat it as many times as they want. For that reason, in GWs data analysis, the natural

framework to work with is the Bayesian one.

2.2.4 Parameter estimation

Parameter estimation PE studies which are the properties of the source which produced

the gravitational wave signal recorded by the detectors by assigning a probability to each

of them. Each source parameter is assigned a posterior distribution whose maximum

value provides the best estimate for this parameter. The probability of a signal being

present in the data is given by P (H|s) where H is the hypothesis that a signal is present.

For a binary coalescence signal, the morphology of the waveform depends on multiple

parameters such as the masses of the objects, the distance to the source, its orientation,

etc. We encode all these parameters with the notation λλλ = {λ1, λ2, ...}. The hypothesis

is now parameterized by λλλ and its probability is P (Hλλλ|s). The source parameters λλλ that

are more likely to have produced the signal s, are those which maximize the probability

P (Hλλλ|s). The following set of equations needs to be solved

∂

∂λi
P (Hλλλ|s)

∣∣∣∣
λλλ=λλλmax

= 0. (2.22)

The hypothesisHλλλ represents that the output data from the detector s is the composition

of a particular noise realization and a GW signal with parameters λλλ,

s(t) = n(t) + h(t;λλλ). (2.23)

Under the assumption of Gaussian noise the distribution for the noise is

P (n) = Ne
− 1

2

∫∞
−∞ df

|ñ(f)|2
Sn(f)/2 , (2.24)
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where N is a normalization constant. Recalling the inner product defined in (2.17) we

have

P (n) = Ne−(n|n)/4. (2.25)

Assuming that there is a signal present in the output of the detector (i.e. that s =

n + h(λ)λ)λ))), the probability above is equivalent to the likelihood function Λ of having

measured s given a signal h(λλλ). The likelihood can be obtained by inserting n = s−h(λλλ)

into equation (2.25),

Λ(s|λ) = Ne
1
2

(h(λλλ)|s)− 1
4

(h(λλλ)|h(λλλ))− 1
4

(s|s). (2.26)

The term (s|s) can be reabsorbed in the normalization factor N since it is constant and

does not depend on the parameters λλλ. By introducing the prior distribution π(λλλ) we

obtain the posterior probability,

P (λλλ|s) = Nπ(λλλ)e
1
2

(h(λλλ)|s)− 1
4

(h(λλλ)|h(λλλ)). (2.27)

In the case when the prior probability is flat the maximization of the posterior probability

and the likelihood are the same. For this case, it can be shown that the set of values

that maximizes the likelihood λλλmax coincides with the set of parameters that gives the

highest signal-to-noise ratio in the matched filtering.

2.2.4.1 Samplers

In the preceding section, we saw that the problem of PE consists in calculating the

posterior distribution of the parameters λλλ. In the case of a binary coalescence system,

there are 15 parameters which are given by the masses of the two black holes, the two

spin vectors of each object (6 components), the distance from the observer to the source,

two angles that locate the position of the observer in the sky of the source (which enters

in the SWSH functions), two angles that locate the sky position of the source in the

detector frame (which enters in the antenna pattern functions), the reference time at

which the signal enters in the detector bandwidth and the polarization angle which

determines the axes with respect the h+,× polarizations are defined. Our best estimate

of the parameters of the source is given by the parameters that maximize the posterior

distribution. To carry out this study it is necessary a prediction of the GW signal for a

given set of parameters λλλ and this is represented by h(λλλ). The waveform approximants

provide this prediction, we discuss some of the most widely used approximants in Sec. 2.3.

The accuracy of the approximant and the kind of physics that describes have a great

impact on the parameters and the properties of the source that can be inferred.
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In PE we are interested in finding the posterior distribution of each parameter and its

maximum value. Naively one could try brute force and make a discrete grid in the pa-

rameter space, evaluate the posterior for each point and then search for the maximum.

However, due to large dimensionality of the problem (15 dimensions), this rapidly be-

comes prohibitive, e.g. just by sampling each parameter in 10 points we would lead with

1015 evaluations. The alternative solution is to use a stochastic sampler. The two most

common categories are the Markov Chain Monte-Carlo [20, 21] and nested sampling [22].

Both algorithms “sample” the parameter space, not in a uniform way as done previously,

but starting from some initial guesses and drawing a path which converges to the max-

imum value of the posterior distribution. In the next two sections, we describe some of

the peculiarities of each algorithm.

Markow Chain Monte-Carlo

Markow Chain Monte-Carlo (MCMC) algorithms [20, 21] start by distributing a set of

initial guesses randomly across parameter space, then each one carries out a random

walk through parameter space (known as a “chain”), distributing samples proportionally

to the desired posterior distribution. To generate the next random step of the chain we

require a proposal for the density function Q(λλλ′|λλλ) to generate the new sample λλλ′ which

depends only in the current sample λλλ. The new proposal is then accepted and added to

the chain with a probability p = min(1, α) where

α =
Q(λλλ|λλλ′)P (h(λ′λ′λ′|s))
Q(λλλ′|λλλ)P (h(λλλ|s) . (2.28)

The MCMC algorithm suffers from an initial period known as “burn-in” when the samples

added to the chain highly depend on the initial guesses where the algorithm starts from.

Once this period is overcome the algorithm passes to a steady phase and the samples can

start to be accumulated. The algorithm produces new samples and enlarges the length

of the chains until a convergence criterion is satisfied. A commonly employed criterion is

the Gelman-Rubin convergence diagnostic [23, 24], which analyzes the difference between

multiple Markov chains. The convergence is assessed comparing the estimated variance

between chains and within chains for each model parameter. Small differences between

these variances indicate convergence.

Nested sampling

The nested sampling algorithm [22] starts by populating the parameter space with a set

of “live points” according to the prior distribution. Then, at each iteration, the live point

with the lowest likelihood is removed from the list (it becomes a “dead point”) and it

is replaced with a new point that has got a higher likelihood than the removed one. A

visualization of this iterative procedure is shown in Fig. 2.8. This procedure is repeated
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until a stopping condition is satisfied. One of the conditions most commonly used in

gravitational waves PE is that the loop continues until LmaxXi/Zi > e0.1, where Lmax
is the maximum likelihood that has been obtained so far, Zi is the current estimate of

the total evidence and Xi is the prior mass or fraction of the prior volume inside the

current contour line. Opposite to the MCMC algorithm, the posterior samples do not

accumulate linearly in time nor is the algorithm straightforward parallelizable.

Figure 2.8: Representation of the nested sampling algorithm through 5 iterations for
a set of three live points. Image credits: [22].

2.3 Waveform approximants

In the previous section, we studied the crucial role that waveform templates play in order

to discover gravitational wave signals buried into the noise of the detector and how to

extract the physical information about the sources that produced such events. There

exist different approaches to produce these templates, they can be analytical, numerical

or combine both techniques. These approaches are known as waveform approximants.

Different approximants can describe different physics and are usually valid for a restricted

region of the parameter space or for a determined frequency range. For example, Post-

Newtonian (PN) theory was the first approach to describe the gravitational wave signal

and it is only valid for the inspiral regime where the two bodies are distant. During

the merger, the two bodies are much closer and the strong field interactions control the

dynamics so the full Einstein equations need to be solved. Nowadays this is only possible

by means of numerical techniques known as Numerical Relativity (NR) and powerful su-

percomputers. As we will see, these two approaches (PN theory and NR) are combined

by other families of approximants such as the Effective One Body (EOB) and Phenom to

produce accurate waveforms for the whole frequency regime: inspiral, merger and ring-

down (IMR). The field of waveform modelling is nowadays very active and continuously
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more advanced, more accurate and more efficient models come to light pushed forward by

the improvements on the sensitivities of the detectors and what facilitates the detection

of more challenging events and therefore more complicated physics. Now we will review

some of the most important families of waveform approximants.

2.3.1 Post-Newtonian theory

In section 1.6, we discussed the generation of gravitational waves by sources moving in

a flat spacetime, i.e. we assumed that the sources that produce this gravitational wave

emission do not contribute significantly to the curvature of spacetime in the near-field

region. We carried out an expansion in powers of v/c to compute the gravitational wave

emission and took the leading order given by the Einstein quadrupole formula. In this

section, we want to consider the more realistic case where the binary system contributes

to curve the spacetime and it is not flat anymore. Now we will not be able to describe the

dynamics of the system using Newtonian gravity rather we will need the PN formalism.

The two basic assumptions of the PN theory are, first, slowly moving sources, this is the

same requirement we had for the linearized theory and it means that v/c � 1, a result

for relativistic objects requires then very high orders in the (v/c) expansion. Second,

the sources must be weakly self-gravitating, i.e. the curvature they introduce in the

spacetime is not “too strong”. Therefore the PN formalism will be only valid when the

two objects are sufficiently separated from each other, this corresponds to the inspiral

part of the coalescence. However, near the merger, where the two objects are close, the

fields are much stronger and the PN formalism is not valid anymore. In order to describe

this regime, we will need to solve the full Einstein equations with the methods of NR. It is

out of the scope of this section to present a complete derivation of the PN formalism and

we will just indicate some basic results. There exist several approaches to perform the

PN expansion namely the Direct Integration of the Relaxed Einstein equations (DIRE)

[25–27], the multipolar expansion of the source potential of Blanchet and Damour [28],

the effective field theory formalism [29] and the Hamiltonian formulation [30]. The PN

formalism has allowed us to compute the GWs emission including several subdominant

harmonics up to 3.5 PN order for non-spinning binary systems and up to 2PN order for

spinning ones. This formalism permits as well to solve the dynamic equations of the

system. The equation of motion up to 3.5 PN order is given by

dvi

dt
= −Gm

r2

[
(1 +A)

xi

r
+ Bvi

]
+O

(
1

c8

)
, (2.29)
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where the coefficients A and B can be found in Eqs. 220a, 220b of [28]. For quasi-circular

orbits, the expression can be simplified to

dvi

dt
= −ω2

sx
i − ζvi, (2.30)

where

ω2
s =

GM

r3

{
1 + (−3 + η)γ +

(
6 +

41

4
η

)
γ2 (2.31)

+

[
−10 +

(
22 log(r/r′0)− 75707

840
+

41

64
π2

)
η +

19

2
η2 + η3

]
γ3

}
(2.32)

+O
(

1

c8

)
, (2.33)

ζ =
32

5

G3M3η

c5r4
+O

(
1

c7

)
, (2.34)

and

γ ≡ GM

rc2
, (2.35)

Eq. (2.31) represents an extension of Kepler’s law since it relates the orbital frequency

with the radius of the orbit. If we rewrite these expressions in terms of the PN expansion

parameter

x =

(
GMωs
c3

)2/3

, (2.36)

it can be shown that the energy of the orbit is then given by

Eorbit =− ηMc2x

2

{
1 +

(
−3

4
− 1

12
η

)
x+

(
−27

8
+

19

8
η − 1

24
η2

)
x2 (2.37)

+

[
−675

64
+

(
34445

576
− 205

96
π2

)
η − 155

96
η2 − 35

5184
η3

]
x3

}
(2.38)

+O
(

1

c8

)
. (2.39)

Similarly to the procedure followed in Sec. 1.6, we equate the energy loss of the orbit

to the power emitted in form of gravitational waves PGW which in this case is given

by Eq. 314 in [28]. This provides an equation from where one can attain the solution

of the orbital phase φ as a function of the PN expansion parameter x, see Eq. 318

in [28]. The expression for the orbital phase evolution can be plugged into the h+,×

polarizations obtaining the final result displayed in [28] through equations 320-323. All

the results so far correspond to a binary system without spins i.e. neither of the two

objects rotate around themselves. For a general case of spinning objects, the procedure

is essentially the same, but now the expressions for the energy of the orbit and the power
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emitted include terms related with the spins in addition to the already discussed non-

spinning terms. The new spinning terms appear at higher PN orders [31, 32] so they

are a subdominant effect. The final result depends on how the equation of the energy

and flux is expanded, different expansions can change significantly the behaviour of the

approximant for high frequencies. No expansion is always better behaved than the rest,

so each one will be more suitable for different parts of the parameter space. Some of these

variants are the TaylorT1, TaylorT2, TaylorT3, TaylorT4 or TaylorEt approximants.

A Fourier domain approximant can be obtained by performing the Stationary-Phase-

Approximation (SPA). This is an analytical approximation for the integral of the Fourier

transform and it assumes that the phase slowly changes with the frequency, which is true

only in the inspiral and it breaks down for high frequencies. The result is the TaylorF2

approximant which has been widely used in the calibration of phenomenological models

for the inspiral part (see Section 2.3.3 for more details). For a review of the technical

details of how each approximant is built see [33].

2.3.2 EOB models

A second approach to the description of gravitational wave emission in the two-body

problem is the effective-one-body (EOB) [34–38], which employs results from PN theory.

These results are not expressed in their original “Taylor expanded” form (i.e. as a poly-

nomial in v) but in a resummed manner as a non-polynomial function of v. This enables

to incorporate some non-perturbative aspects of the exact result. The basic pillars for

the EOB formalism comprise an expression for the conservative part of the dynamics of

the two black holes, a description for the radiation-reaction part and finally a description

of the gravitational wave generated by the system. The equations of the dynamics can

be solved numerically and its new resummed form allows one to transcend the inspiral

phase, and reach the plunge phase where PN is not valid. The ringdown part is attached

using results from perturbation theory, resulting in a complete inspiral-merger-ringdown

(IMR) waveform. The EOB approach is known to be more accurate than PN theory

but still, it dephases respect to the “exact” solution in the merger. By comparing with

the “exact” solutions given by NR one can perform a fit of the yet unknown higher PN

coefficients and use them to solve the dynamics equations. The EOB models calibrated

to NR are called “EOBNR” models and there exist an abundance of different versions

depending on which features of the waveform are described and which NR data set is

used for the calibration. The versions that are currently being more widely utilized are

SEOBNRv4 [39] which describes the dominant (2, 2) mode of non-precessing system,

SEOBNRv4HM [40] includes the higher modes. Equivalently, for precessing systems,

we have SEOBNRv4P and SEOBNRv4PHM. There exist also some work to include
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the effect of eccentric orbits in the EOB formalism [41]. Although EOB models are

more accurate than PN and much faster to compute than an NR simulation, they are

still computationally very expensive for carrying out PE studies, where millions of wave-

forms have to be evaluated. The Reduced Order Models (ROM) [42, 43] are typically the

accepted solution for this problem. They are simplified representations in the Fourier

domain of the more complex time-domain EOB model. Building these models can be

computationally very expensive and accumulate important amounts of data, but once

they are built they can be evaluated rapidly at the cost of only losing a small fraction of

accuracy.

2.3.3 Phenom models

The Phenom models are an alternative approach which solves some of the main draw-

backs of the EOB models, namely their complexity and their high computational cost.

The Phenom or phenomenological models [44–47] are analytical models built already in

the Fourier domain based on closed-form expressions which are functions of the param-

eters of the binary system under study. Their evaluation is therefore very rapid and

since they are already in the Fourier domain they do not have to be Fourier transformed

during the PE studies. The core idea of the Phenom models consists in employing a

phenomenological ansatz which is calibrated to NR simulations. Since the main contri-

bution of the present thesis is to develop two new Phenom models, let us explain in more

detail the basic procedure they are based on:

• First, we need a data set of NR simulations against which we will calibrate our

model. The NR simulations are typically short and do not contain the early inspiral

part of the waveform. In order to the model be valid for low frequencies we need

to calibrate to longer waveforms. To this end we build the hybrid waveforms, by

“glueing” the early inspiral described by an EOB waveform to the NR waveform.

These hybrids are transformed to the Fourier domain and constitute the data set

the model is calibrated to. The larger the number of hybrids in the dataset and

the more they span the parameter space, the more reliable and valid the model will

be.

• Once in the Fourier domain, we propose ansatzes for the amplitude and for the

phase of the waveform. These ansatzes are chosen as piecewise functions adapted

to the morphology of the waveform in each frequency region. For example, in

the inspiral, an ansatz based on PN theory is used, where higher-order and yet

unknown PN coefficients are calibrated to NR. We call the calibration of the ansatz
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to a hybrid waveform the direct fit, and we perform this fit for the whole dataset

of hybrid waveforms at our disposal.

• For each hybrid waveform, we obtain a set of fitted coefficients. Each of these coeffi-

cients is now fitted across parameter space as a function of the intrinsic parameters,

i.e. symmetric mass ratio and two spin components in the case of non-precessing

systems. For this 3-dimensional fit, we follow the hierarchical fitting procedure

developed in [48].

• To obtain the final waveform or “reconstruct” the model we follow the backward

direction. First, we evaluate the parameter space fitted coefficients for the case un-

der study, then plug these coefficients into the phenomenological ansatzes, which

depend on the frequency, and finally evaluate that ansatz for all the required fre-

quency points.

• Once we have evaluated the amplitude and phase in the desired frequency array

the waveform is computed by performing the operation h(f) = A(f)eiφ(f) for each

frequency point.

The main bottleneck in the evaluation of phenomenological models is in the evaluation

of trigonometric functions that appear in the ringdown part as well as the evaluation

of the complex exponential of the final waveform. Both of these issues are addressed in

chapter 4. Due to the good performance of the Phenom models, a number of them have

been developed recently. Each version incorporating different features and physics of the

waveform. In Table 2.1 we summarize some of the current models as well as compare to

the new-born PhenomX family models to which this thesis has contributed.

Physics Old Phenom PhenomX family
22-mode only PhenomD [49] PhenomXAS [50]
higher modes PhenomHM [51] PhenomXHM [52]

Precessing 22 mode PhenomPv2 [53] (Pv3)[54] PhenomXP [55]
Precessing and higher modes PhenomPv3HM [54] PhenomXPHM [55]

22-mode only PhenomD_NRTidal(v2) [56] -+ tidal corrections
Precessing 22 mode PhenomPv2_NRTidal(v2) [56] -+ tidal corrections

Neutron Star Black Hole PhenomNSBH [57] -

Table 2.1: Summary of current Phenom models.
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2.3.4 Numerical Relativity

Until the present day, the only way to solve the two-body problem in the strong field

regime of general relativity is by solving the Einstein equations numerically in a com-

puter. This is not an easy task even nowadays, solving these equations for the last few

orbits of the evolution can take weeks in the most modern supercomputers. The first at-

tempts to perform NR simulations started in the 1960s [58, 59], and in the 1970s head-on

collisions started to be studied [60–64]. However, the simulation of two orbiting objects

dodged all the daunting efforts until 2005-2006 when finally several independent groups

could simulate the last few orbits of a binary black hole system [65–67] (see Fig. 2.9). The

task was indeed extremely complicated since, before fixing the gauge, Einstein’s equa-

tions consist of 10 coupled non-linear second order differential equations, one for each

component of the metric gµν . Let us now outline how the problem was solved. First,

the covariant Einstein equations are reformulated as an initial value problem. This re-

quires to break four-dimensional covariance by distinguishing a time coordinate. The

most common way of doing this is to choose the three-dimensional hypersurfaces that

correspond to constant time as spatial surfaces. Such a hypersurface will then also be

chosen to define the initial data. Rewriting the Einstein equations in a form that is

adapted to a description of spacetime in terms of evolving three-dimensional spatial hy-

persurfaces is known as 3+1 formulation. The resulting equations are often referred to as

the “ADM” equations, where ADM stands for Arnowitt, Deser and Misner, who derived

such a formulation in the context of a Hamiltonian description of general relativity [68]

(see [69, 70] for earlier work on 3+1 decompositions). In NR the ADM equations are

typically used in their reformulation by York [71]. We start by splitting the metric into

a temporal and a spatial part,

ds2 = (−α2 + βiβ
i)(cdt)2 + 2βidtdx

i + γijdx
idxj . (2.40)

The quantities α and βi are known as the lapse function and shift vector which parame-

terize the choice of coordinate gauge. Nevertheless, for a numerical code, the choice of a

suitable gauge is key to prevent the code to find the singularities of the black holes and

provoke non-assigned numbers that finally lead to the crash of the code. With the de-

composition in (2.40) we foliate the spacetime with a set of 3-dimensional hypersurfaces

Σt which are parameterized by the coordinate t. The lapse function α establishes the

step size in proper time between the hypersurfaces. On the other hand, the shift vector

βi describes how the coordinates xi on a slice Σt relate to the coordinates in the next slice

Σt+dt. The dynamical variable here is the spatial metric γij which measures the distances

on a particular slide. Another very important variable is the so-called extrinsic curva-

ture Kµν which describes how the 3-dimensional slice is embedded in the 4-dimensional
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spacetime. It is defined in terms of the unit normal vector to the hypersurface nµ,

Kµν = −(δρµ + nρnµ)∇ρnν . (2.41)

The system of equations to solve consists of two evolution equations and two constraints.

There is an evolution equation for the spatial metric γij and another for the extrinsic

curvature Kij :

∂tγij = −2αKij + ∇̄iβj + ∇̄jβi, (2.42)

∂tKij = α
[
Rij +KKij − 2KikK

k
j

]
+ βk∂kKij +Kik∂jβ

k +Kkj∂iβ
k (2.43)

− 8φα(Sij −
1

2
γij(S − ρ)). (2.44)

The constraint equations are given by a constraint in the Hamiltonian and another in

the momentum:

R+K2 −KijK
ij = 16πρ, (2.45)

∇̄j(Kij − γijK) = 8φSi. (2.46)

Here we have introduced the matter source terms

ρ = nanbT
ab, Si = −γijnaTaj , Sij = γiaγjbT

ab, S = γijSij , (2.47)

and the symbol ∇̄i refers to the covariant derivative associated with γij .

This formulation of the ADM equations is not adequate for an unconstrained numerical

evolution of the initial data. The evolution equations are at best (depending on the

coordinate gauge) weakly hyperbolic and the initial value problem is ill-posed. This

will lead the evolution to violate the Hamiltonian and momentum constraints and will

typically end in the crash of the code. New formulations are required to transform the

problem into a well-posed one. Some of these successful formulations are the Baumgarte-

Shapiro-Shibata-Nakamura (BSSN) formulation [72, 73], the Z4 formulation [74–77], one

based on the generalization of harmonic coordinates [65] and a constrained formulation

[78, 79]. We will quickly review the BSSN formalism since it is the basis of the BAM

code [80] which has contributed to this thesis with several NR simulations.

In the BSSN formalism, the spatial metric is decomposed in terms of a conformal variable

φ,

γij = e4φγ̄ij . (2.48)
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The extrinsic curvature is also decomposed in its trace and traceless part,

Kij = e4φÃij +
1

3
γijK. (2.49)

The Hamiltonian constraint now becomes

γ̄ij∇̄i∇̄jeφ −
eφ

8
R̄+

e5φ

8
ÃijÃ

ij − e5φ

12
K2 + 2πe5φρ, (2.50)

while the momentum constraint transforms to

0 = ∇̄j
(
e6φÃji

)
− 2

3
e6φ∇̄iK − 8πe6φSi. (2.51)

The evolution equation of the spatial metric γij splits into two equations,

∂tφ = −1
6αK + βi∂iφ+ 1

6∂iβ
i

∂tγ̄ij = −2αÃij + βk∂kγ̄ij + γ̄ik∂jβ
k + γ̄kj∂iβ

k − 2
3 γ̄ij∂kβ

k,
(2.52)

On the other hand, the evolution equation for the extrinsic curvature splits into

∂tK = −γij∇j∇iα+ α

(
ÃijÃ

ij +
1

3
K2

)
+ 4πα(ρ+ S) + βi∂iK (2.53)

∂tÃij = e−4φ
(
− (∇i∇jα)TF + α

(
RTFij − 8πSTFij

))
+ α

(
KÃij − 2ÃilÃ

l
j

)
(2.54)

+ βk∂kÃij + Ãik∂jβ
k + Ãkj∂iβ

k − 2

3
Ãij∂kβ

k. (2.55)

The superscript TF means trace-free so it refers to the tensor without the trace. Also, it

has been introduced an auxiliary conformal connection used in the covariant derivatives

∇̄ defined by

Γ̄i := γ̄jkΓ̄ijk = −∂j γ̄ij , (2.56)

where Γ̃ijk are the Christoffel symbols for the conformal metric γ̄ij . These objects satisfy

their own evolution equations

∂tΓ̄
i =− 2Ãij∂jα+ 2α

(
Γ̄ijkÃ

kj − 2

3
γ̄ij∂jK − 8πγ̄ijSj + 6Ãij∂jφ

)
(2.57)

+ βj∂jΓ̄
i − Γ̄j∂jβ

i +
2

3
Γ̄i∂jβ

j +
1

3
γ̄li∂l∂jβ

j + γ̄lj∂j∂lβ
i. (2.58)

To complete the system of evolution equations we need to define the evolution equations

for the gauge variables. This is also a gauge choice and depends on the specific spacetime

to be evolved. For example, in BAM, the lapse and shift are evolved through the 1+log

lapse condition[82], which is a special case of the Bona-Massó family of gauge conditions
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Figure 2.9: Comparison of the three first NR simulations obtained by three indepen-
dent research groups: Pretorious [65], Goddar Space Flight Center (GSFC) [66] and

University of Texas [67]. Image credits: [81].

[83], and the gamma-freezing [84] shift conditions

∂0α = −2αK , ∂0β
i =

3

4
Bi , ∂0B

i = ∂0Γ̃i − η̄Bi, (2.59)

where ∂0 = ∂t − βi∂i, Bi is an auxiliary vector which improves the constraints at the

initial location of the punctures, and η̄ is the gamma-freezing damping parameter which

controls the growth of the horizons [85].

2.3.5 The need for subdominant harmonics approximants

We discuss now how the subdominant harmonics affect the anatomy of the waveform,

which is their impact on the detection and PE studies of gravitational waves events and

why they need to be included in the templates.

There are three main parameters that enhance the importance of the subdominant har-

monics: the inclination of the orbit (i.e. the angle between the angular momentum of

the binary and the line of sight), the mass ratio and the total mass of the system. We

will discuss hereafter each one separately. For simplicity, we will focus the discussion on

waveforms of non-precessing binaries. In this situation there exists an equatorial sym-

metry which relates the gravitational wave signal in the range of inclination ι = (0, π/2)

with the range ι = (π/2, π) given by

h(t, ι) = h∗(t, π − ι). (2.60)
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This can be used to establish a relation between the positive and the negative (l,m)

modes

hlm(t) = (−1)lh∗l−m(t). (2.61)

The effect of the inclusion of the subdominant harmonics as a function of the inclination

is shown in Fig. 2.10. We see in this figure how the anatomy of the waveform with

subdominant harmonics changes respect to the quadrupolar one when the inclination

tends to π/2. For the (2,±2)-only case, the peaks and nodes of the waveforms are all

aligned while for the case with subdominant harmonics there is a dephasing between

peaks and nodes due to the different relative phases between modes. Let us justify

why this misalignment is more pronounced when inclination tends to π/2. In Eq. (1)
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Figure 2.10: Effect of the inclination in a waveform with only the dominant part
(left) and with subdominant harmonics (right). The inclination is varied from 0 to π/2,

due to the equatorial symmetry the second quadrant (π/2, π) is equivalent.

we already saw that the individual hlm do not have any angular dependence, which is

captured by the spin-2 weighted spherical harmonics. In Fig. 2.11 we show the angular

distribution of these spherical harmonics for the strongest modes. The reference system

of these plots corresponds to the source frame of the binary system so they represent the

emission of each mode a function of the location of the observer in the sky of the source.

Note that all the plots show an equatorial symmetry, in fact, the half above the equator

corresponds to the spherical harmonic with m > 0 while the half below corresponds

to the m < 0. The modes with m = ±2 are the only ones which do not vanish for

inclination 0(π) (face-on/off systems). None of them vanishes for inclination π/2 (edge-

on systems) although the contribution of the Y2±2 mode is minimal here and lower than

for other modes. Consequently, even when the individual mode hlm is weaker than the

dominant h22 (|hlm| < |h22|) the spherical harmonic amplifies the relative relevance of

the subdominant mode in the total signal. In Fig. 2.12 we represent the amplitude of the

spherical harmonics as a function of the inclination and see how indeed the amplitude of

the SWSH of subdominant harmonics becomes more relevant than the one for the (2, 2)

mode when the inclination tends to π/2.



2 Experiments and Data Analysis 54

Figure 2.11: Angular dependence of the amplitude of the spin-2 weighted spherical
harmonics. This gives an idea of the power emitted in each direction by every individual

mode.
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Figure 2.12: Dependence of the amplitude of the spin-2 weighted spherical harmonics
with the inclination. The negative modes would show the same dependence but mirror

reflected respect π/2 (due to the equatorial symmetry).
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We pass now to justify why the higher modes are more important for systems with

higher total mass. We already mentioned in the Preface that the mass of the system is

just a scale factor which does not modify the morphology of the waveform, i.e. there

is no enhancement of the emission of subdominant modes for high masses, then what

does it mean that the higher modes are more relevant for high masses? The reason

is that our gravitational wave detectors have a particular frequency band where they

are more sensitive and for high masses, the part of the waveform that appears in this

frequency band is the ringdown, where several subdominant modes can be stronger than

the dominant (2,±2) modes. In Fig. 2.13 we represent the Fourier domain amplitude

of several modes together with the noise curves for two different masses. When using

geometrical units (G = c = 1) the shift in frequencies happens for the noise curve instead

of for the waveforms, which are shifted when using units of Hz for the frequencies. We

see how several modes reach higher frequencies than the (2,±2) and therefore become

to be the dominant modes. The reason why different modes reach different frequencies

is that they rotate at different rates. During the inspiral, the phase of each mode scales

approximately with m the orbital phase, φlm ≈ mφorb, according to this the (4,±4)

mode will be the fastest rotating and therefore reach higher frequencies than the rest.

Then we have the (3,±3) and later the (2,±2) and (3,±2) which approximately reach

a similar frequency since they have the same m and finally the (2,±1) are the slowest

ones and reach lower frequencies. The plot shows how for high masses the region where

the (3,±3) and (4,±4) become dominant appears above the noise curve, therefore their

contribution becomes more important.

{2, 2}

{2, 1}

{3, 3}

{3, 2}

{4, 4}

0.01 0.02 0.05 0.10 0.20

10
-8

10
-6

10
-4

0.01

1

100

Figure 2.13: Frequency domain amplitude of several individual h̃lm modes and
noise/sensitivity curves for two different total masses of the system.

Finally, we have the effect of the mass ratio. Looking at the leading order PN contribution

of each mode we see that the relative strength of the subdominant harmonics with respect

to the (2,±2) modes increases with the mass ratio. One way to explain this is that

the asymmetry of the system enhances the emission of subdominant harmonics. In
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Figure 2.14: Regions of the parameter space where subdominant harmonics templates
are important for detection (left) and PE (right). Image credits: [86].

Fig. 2.11 we saw that the emission of the (2,±2) modes have a quadrupolar shape, but

an asymmetric system with mass ratio larger than one would be difficult to produce such

symmetric emission and therefore subdominant harmonics should also be emitted. The

opposite is also true, the more symmetric the system is, the smaller the contribution

of higher harmonics is, in particular the odd modes (odd m) cancel for systems of two

identical black holes. This happens because the odd modes introduce a minus sign when

the system is rotated an angle π but if the two black holes are identical this is equivalent

to not having rotated the system, so a number equal to its negative must be zero. For

systems with equal mass black holes but different spins the odd modes are not zero but

several leading orders of the PN expansion cancel and only the higher spinning PN orders

contribute so the odd modes are in these cases very weak.

Now we wonder if the subdominant harmonics really need to be taken into account

when analyzing the data from the detectors, do we need templates able to describe the

subdominant contribution or is it enough to use quadrupolar ones? There are several

studies that quantify how the neglection of subdominant harmonics in our templates

affects the detection rates and the PE biases [86, 87]. A summary of the region of

parameter space where there exists an important loss of detection rate and biases for PE

is found in Fig. 2.14.

Of special relevance for PE is the degeneracy between the distance and inclination that

the subdominant harmonics break. In a quadrupolar-only template, the inclination and

distance are degenerated because they appear as a multiplicative factor of the oscillatory

part of the waveform. However, in a waveform with subdominant harmonics, the incli-

nation appears in a different functional form in every term of the expansion in spherical

harmonics, this separation permits the PE algorithm to be able to infer each parameter
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much more accurately. Fig. 2.15 displays an example of how this degeneracy is bro-

ken with the use of subdominant harmonics approximants, the example is taken from a

recently published event by the LVC a high mass ratio [88].

Figure 2.15: Posterior distribution for the luminosity distance DL and inclination
θJN (angle between total angular momentum and line of sight) of GW190412. Image

credits: discovery paper of GW190412 [88].

During the observation runs O1 and O2 of the LIGO-Virgo detectors, only events with

mass ratio close to one were found so the subdominant harmonics did not play an im-

portant role and only quadrupolar templates were needed for the analysis [89]. However,

with the upgrade in the detectors and the improvement in sensitivity, the spacetime

volume with detectable sources will be significantly increased and many more events are

expected to be observed, some of them will lay in the regions where subdominant har-

monics are important. This has turned out to be already true during the first weeks of the

O3 observation run when the GW190412 event [88] was detected. It consisted of a binary

black hole system with the most asymmetric masses detected so far: ∼ 30M� and ∼ 8M�

respectively. The study of this event finds strong evidence for GW emission beyond the

quadrupolar leading order. There exist always the question of how many subdominant

harmonics must be included in order to have an accurate template. This is highly depen-

dent on the accuracy requirements of the analysis under study, for GW190412 the most

important subdominant modes are found to be the (3,±3) modes, which are those with

the highest SNR. Although the mass ratio of this system is significantly different from

all previous detections, the study shows that “it is consistent with the population model

of stellar binary black holes inferred from the first two observing runs”. The analysis of

this kind of new events is really complex as it is evidenced by the delay of approximately

one year between the detection and publication of such an event. One of the reasons for

this delay is that the waveform models employed for the analysis were not computation-

ally efficient and the PE runs could last up to several weeks. Providing computationally
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efficient waveform models which include the subdominant effects can decrease this time

to several days, therefore these models are of special importance and haste. The two

new waveform models together with the acceleration technique presented in part II of

this thesis constitute the first release of waveform models for general black hole binaries

of the PhenomX waveform family. Their computational efficiency and their flexibility to

test different waveform settings permit to perform complex and robust PE analyses in

a very brief time scale. Therefore they appear as a very efficient solution to solve the

current challenges in the analysis of present and future gravitational wave events.

2.3.6 Introducing the PhenomX family

The PhenomX family models constitute a new series of waveform models which involves

an upgrade of the previous phenom models in order to satisfy the demand of accuracy and

computational efficiency required for the upcoming observations runs of the Advanced

LIGO-Virgo detectors. The previous phenom models IMRPhenomD and IMRPhe-

nomPv2 have been widely used by the collaboration for the analysis of the events during

the O1 and O2 observations runs. The model IMRPhenomHM [51] was the first ap-

proximant including higher modes by performing an approximate mapping of the (2, 2)

waveform given by IMRPhenomD. IMRPhenomPv3HM extends IMRPhenomHM

by including precession effects.

In this section, we discuss the cornerstone of the PhenomX family, based on the IM-

RPhenomXAS model [50] which describes the (2, 2) mode of non-precessing systems

and implies the upgrade of the IMRPhenomD model. In Part II we discuss in detail

the extension of IMRPhenomXAS to subdominant harmonics and precession which

provides a natural upgrade of the IMRPhenomHM, IMRPhenomPv2, and IMRPhe-

nomPv3HM models.

IMRPhenomXAS follows a similar calibration strategy to IMRPhenomD, it is fully

calibrated in amplitude and phase to NR simulations. The main difference with IMR-

PhenomD is the extensive NR dataset employed for the calibration, IMRPhenomD was

calibrated against 19 NR waveforms while IMRPhenomXAS employs 460 simulations

(see Fig. 2.16 for the parameter space distribution), and incorporates EMR waveforms up

to mass ratio 1000. A second major improvement is the accurate treatment of unequal

spin effects for the hierarchical parameter space fits. The implementation of the model in

LALSuite [90] follows a modular philosophy, allowing for swift updates of the parameter

space fits and switches between PN approximants among other features.

The updated calibration entails a significant improvement in the accuracy of the model.

The match M is a quantity that measures how similar two waveforms are and it is
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Figure 2.16: The mass ratio and spins for the NR waveforms used in the calibration of
IMRPhenomXAS. SXS simulations are shown in blue ([91]) and orange ([92]), BAM

simulations in green and Einstein Toolkit simulations in pink. Image credits [50].

defined through the inner product of (2.17) although the integral’s limits are now over a

finite frequency range (fmin, fmax). The match is usually optimized over time and phase

shifts between the two waveforms since these quantities do not affect the physics of the

waveform

M = max
t0,φ0

(h1|h2)√
(h1|h1)

√
(h2|h2)

(2.62)

The mismatch is defined as 1 −M, the lower the mismatch, the more similar the two

waveforms are. Mismatches of IMRPhenomXAS and IMRPhenomD against the hy-

brid waveforms used for the calibration are shown in Fig. 2.17. We see a dramatic

decrease in the mismatch by 1 to 2 orders of magnitude across the parameter space.

This figure presents mismatches against NRHybSur3dq8 [93], the NR hybrid surrogate

valid up to a mass ratio q = 8 and spins χ1,2 = ±0.8. The matches are computed at ran-

dom points in the parameter space, including points that are not used in the calibration

to construct IMRPhenomXAS. Here we see that IMRPhenomXAS offers a significant

improvement in accuracy in comparison to IMRPhenomD or SEOBNRv4.

The improvement in accuracy is also transferred to PE studies. Fig. 2.18 presents sev-

eral 1D posterior distributions of an injection with NRHybSur3dq8. IMRPhenomXAS

demonstrates excellent recovery of the injected parameters with significantly smaller bi-

ases and tighter posteriors than those exhibited by IMRPhenomD.

In the subsequent part of this thesis, we use IMRPhenomXAS as a cornerstone to build

waveform models that include subdominant harmonics and precession effects. First, we

present IMRPhenomXHM which follows the strategy of calibrating the model to NR

simulations and solves the inaccuracies of IMRPhenomHM due to the usage of the ap-

proximate mapping, which breaks at high frequency, and allows for a description of the
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Figure 2.17: Left panel: Mismatches for IMRPhenomXAS (blue) and IMRPhe-
nomD (grey) against all SXS NR hybrids. We use the Advanced LIGO design sensi-
tivity PSD and a lower frequency cutoff of 20Hz. Right panel: Mismatches for IMR-
PhenomXAS (green), IMRPhenomD (red) and SEOBNRv4 (blue) against NRHyb-

Sur3dq8. Image credits: [50].
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Figure 2.18: 1D posterior distributions for the chirp mass Mc, mass ratio q and
effective spin χeff as recovered by IMRPhenomXAS and IMRPhenomD against an
injected NRHybSur3dq8 waveform. The dashed line denotes the injected values. Image

credits: [50].

mode-mixing present in the (3,±2) modes. IMRPhenomXHM follows the same modu-

lar philosophy of IMRPhenomXAS and besides permits to recover IMRPhenomXAS

when only the (2,±2) modes are activated. A derivation of how the multimode polariza-

tions are computed in terms of the individual modes in the Fourier domain for IMRPhe-

nomXHM is presented in appendix A. Second, we apply the technique of multibanding

to IMRPhenomXHM, which introduces a significant improvement in the computational

efficiency of the model, outperforming to the rest of the homologous models. Finally, we

incorporate the effect of precession to IMRPhenomXAS and IMRPhenomXHM ob-

taining the precessing models IMRPhenomXP and IMRPhenomXPHM respectively.
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The former is again attained as a subset of the version with higher modes IMRPhe-

nomXPHM when only the (2,±2) modes, in this case in the co-precessing frame, are

activated. An extension of the multibanding technique is incorporated into IMRPhe-

nomXPHM, which demonstrates a significant improvement in performance respect to

IMRPhenomPv3HM and the highest computationally efficiency of all the existing pre-

cessing models. All these characteristics provide the PhenomX family with the potential

to become one of the main-stay models used in the analysis of every gravitational wave

event for binary black holes, observed by the current LIGO and Virgo detectors, and any

future GW detector to be built.
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Chapter 3

Modelling subdominant harmonics

from non-precessing black-hole

binaries: IMRPhenomXHM

This chapter presents the article:

• IMRPhenomXHM: A multi-mode frequency-domain model for the gravitational wave

signal from non-precessing black-hole binaries. Cecilio García-Quirós, Marta Colleoni,

Sascha Husa, Héctor Estellés, Geraint Pratten, Antoni Ramos-Buades, Maite Mateu-

Lucena, Rafel Jaume. arXiv:2001.10914 [gr-qc] (2020),

which has been also submitted for peer review to Physical Review D.

Abstract

We present the IMRPhenomXHM frequency domain phenomenological waveform model

for the inspiral, merger and ringdown of quasi-circular non-precessing black hole binaries.

The model extends the IMRPhenomXAS waveform model [1], which describes the domi-

nant quadrupole modes ` = |m| = 2, to the harmonics (`, |m|) = (2, 1), (3, 3), (3, 2), (4, 4),

and includes mode mixing effects for the (3, 2) spherical harmonic. IMRPhenomXHM

is calibrated against hybrid waveforms, which match an inspiral phase described by the

EOB model and PN amplitudes for the subdominant harmonics to NR waveforms and

numerical solutions to the perturbative Teukolsky equation for large mass ratios up to

1000. A computationally efficient implementation of the model is available as part of the

LSC Algorithm Library Suite [2].

73



3 Modelling subdominant harmonics from non-precessing black-hole
binaries: IMRPhenomXHM 74

3.1 Introduction

Frequency domain phenomenological waveform models for compact binary coalescence,

such as [3–6] have become a standard tool for gravitational wave data analysis [7, 8].

These models describe the amplitude and phase of spherical harmonic modes in terms of

piecewise closed-form expressions. The low computational cost to evaluate these models

makes them particularly valuable for applications in Bayesian inference [9, 10], which

typically requires millions of waveform evaluations to accurately determine the posterior

distribution of the source properties measured in observations, such as the mass, arrival

time, or sky location.

Until recently the modelling of the gravitational wave signal from such systems, and

consequently gravitational wave data analysis, have focused on the dominant ` = |m| = 2

harmonics. For high masses or high mass ratios this leads however to a significant loss of

detection rate [11–13], systematic bias in the source parameters (see e.g. [14, 11, 15–18]),

and implies a degeneracy between distance and inclination of the binary system. As

the sensitivity of gravitational wave detectors increases, accurate and computationally

efficient waveform models that include subdominant harmonics are required in order to

not limit the scientific scope of gravitational wave astronomy.

Recently both time domain and frequency domain IMR models have been extended

to sub-dominant spherical harmonics, i.e. modes other than the (2,±2) modes: In the

time domain this has been done in the context of the EOB approach [19], however,

EOB models are computationally expensive and usually a ROM model is constructed

to accelerate evaluation [20, 21] (see however [22] for an analytical method to accelerate

the inspiral). Furthermore, the NRHybSur3dq8 surrogate model [23] has been directly

built from hybrid waveforms, but is restricted to mass ratios up to eight. For a precessing

surrogate model, calibrated to NR waveforms, see [24]. Fast frequency domain models

have previously been developed for the non-spinning sub-space [25, 26], and for spinning

black holes through an approximate map from the (2, 2) harmonic to general harmonics as

described in [6], which presented the IMRPhenomHM model, which is publicly available

as part of the LIGO Algorithm Library Suite (LALSuite) [2]. This approximate map is

based on the approximate scaling behaviour of the subdominant harmonics with respect

to the (2, 2) mode, the IMRPhenomHM model is thus only calibrated to numerical

data for the (2, 2) mode. This information from numerical waveforms enters through the

IMRPhenomD model, which is calibrated to NR waveforms up to mass ratio q = 18.

Here we present the first frequency domain model for the inspiral, merger and ringdown

of spinning black hole binaries, which calibrates subdominant harmonics to a set of nu-

merical waveforms for spinning black holes, instead of using an approximate map as
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IMRPhenomHM. For the (2,±2) modes the model is identical to IMRPhenomXAS

[1], which presents a thorough update of the IMRPhenomD model, extends it to ex-

treme mass ratios, drops the approximation of reducing the two spin parameters of the

black holes to effective spin parameters, and replaces ad-hoc fitting procedures by the

hierarchical method presented in [27].

Our modelling approach largely follows our work on IMRPhenomXAS, with some adap-

tions to the phenomenology of subdominant modes, as first summarized in Sec. 3.2. As

for IMRPhenomXAS we construct closed-form expressions for the amplitude and phase

of each spherical harmonic mode in three frequency regimes, which correspond to the

inspiral, ringdown, and an intermediate regime. In the inspiral and ringdown the model

can be based on the perturbative frameworks of PN theory [28] and black hole pertur-

bation theory [29]. The intermediate regime, which models the highly dynamical and

strong field transition between the physics of the inspiral and ringdown still eludes a per-

turbative treatment. An essential goal of frequency domain phenomenological waveform

models is computational efficiency. To this end, an accompanying paper [30] presents

techniques to further accelerate the model evaluation following [31].

We model the complete observable signal, from the inspiral phase to the merger and

ringdown to the remnant Kerr black hole, but we restrict our work to the quasi-circular

(i.e. non-eccentric) and non-precessing part of the parameter space of astrophysical black

hole binaries in general relativity, which is 3D and given by mass ratio q = m1/m2 ≥ 1

and the dimensionless spin components χi of the two black holes which are orthogonal

to the preserved orbital plane,

χi =
~Si · ~L
m2
i |~L|

, (3.1)

where ~S1,2 are the spins (intrinsic angular momenta) of the two individual black holes, ~L

is the orbital angular momentum, andm1,2 are the masses of the two black holes. We also

define the total mass M = m1 +m2, and the symmetric mass ratio η = m1m2/M
2. An

approximate map from the non-precessing to the precessing parameter space [32, 4, 33]

can then be used to extend the model to include the leading precession effects.

The paper is organized as follows. In Sec. 3.2 we collect some preliminaries: our conven-

tions, notes on waveform phenomenology which motivate our modelling approach, and a

brief description of our plan of fitting numerical data. In Sec. 3.3 we briefly describe our

input data set of hybrid waveforms, and the underlying NR and perturbative Teukolsky

waveforms. The construction of our model is discussed in Secs. 3.4-3.6 for the inspiral,

intermediate region, and ringdown respectively. The accuracy of the model is evaluated

in Sec. 3.7, and we conclude with a summary and discussion in Sec. 3.8. Appendix 3.A

discusses the conversion from spheroidal to spherical-harmonic modes. In appendix 3.B
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we describe our method to test tetrad conventions in multi-mode waveforms. Some tech-

nical details of our LALSuite [2] implementation are presented in appendix 3.C. Details

regarding the rescaling of the inspiral phase are presented in appendix 3.D, and appendix

3.E summarizes PN results on the Fourier domain amplitude.

3.2 Preliminaries

3.2.1 Conventions

Our waveform conventions are consistent with those chosen for the IMRPhenomXAS

model in [1] and our catalogue of multi-mode hybrid waveforms [34], which we introduce

in Sec. 3.3. We use a standard spherical coordinate system (r, θ, φ) and spherical har-

monics Y −2
`m of spin-weight −2 (see e.g. [35]). The black holes orbit in the plane θ = π/2.

Due to the absence of spin-precession the spacetime geometry exhibits equatorial sym-

metry, i.e. the northern hemisphere θ < π/2 is isometric to the southern hemisphere

θ > π/2, and in consequence the same holds for the gravitational-wave signal.

The gravitational-wave strain h depends on an inertial time coordinate t, the angles θ, φ

in the sky of the source, and the source parameters (η, χ1, χ2). We can write the strain in

terms of the polarizations as h = h+(t, θ, ϕ)−i h× (t, θ, ϕ), or decompose it into spherical

harmonic modes h`m as

h(t, θ, ϕ) =

4,∑̀
`=2,m=−`

h`m (t) −2Y`m(θ, ϕ). (3.2)

The split into polarizations (i.e. into the real and imaginary parts of the time domain

complex gravitational wave strain) is ambiguous due to the freedom to perform tetrad

rotations, which corresponds to the freedom to choose an arbitrary overall phase factor.

As discussed in detail in [36, 34] and in appendix 3.B, only two inequivalent choices are

consistent with equatorial symmetry, and for simplicity we adopt the convention that for

large separations (i.e. at low frequency) the time domain phases satisfy

Φ`m ≈
m

2
Φ22. (3.3)

This differs from the convention of Blanchet et al. [37] by overall factors of (−1)(−ι)m

in front of the h`m modes. In appendix 3.B we discuss how to test a given waveform

model for the tetrad convention that is used.
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The equatorial symmetry of non-precessing binaries implies

h`m(t) = (−1)`h∗`−m(t), (3.4)

it is thus sufficient to model just one spherical harmonic for each value of |m|.

We adopt the conventions of the LIGO Algorithms Library [2] for the Fourier transform,

h̃(f) =

∫ ∞
−∞

h(t) e−i 2πft dt. (3.5)

With these conventions the time domain relations between modes (3.4) that express

equatorial symmetry can be converted to the Fourier domain, where they read

h̃`m(f) = (−1)`h̃∗`−m(−f). (3.6)

The definitions above then also imply that h̃`m(f) (with m > 0) is concentrated in

the negative frequency domain and h̃`−m(f) in the positive frequency domain. For the

inspiral, this can be checked against the stationary phase approximation (SPA), see e.g.

[38].

As we construct our model in the frequency domain, it is convenient to model h̃`−m, which

is non-zero for positive frequencies. The mode h̃`m, defined for negative frequencies, can

then be computed from (3.6). We model the Fourier amplitudes A`m(f > 0), which

are non-negative functions for positive frequencies, and zero otherwise, and the Fourier

domain phases Φ`m(f > 0), defined by

h̃`−m(f) = A`m(f) e−iΦ`m(f). (3.7)

The contribution to the gravitational wave polarizations of both positive and negative

modes and for positive frequencies is then given by

h̃+(f) =
1

2

(
Y`−m + (−1)`Y ∗`m

)
h̃`−m(f), (3.8)

h̃×(f) =
i

2

(
Y`−m − (−1)`Y ∗`m

)
h̃`−m(f). (3.9)

If we are only interested in the contribution of just one mode for positive frequencies

then the polarizations read as:

h̃`,m+ (f) =
1

2
(−1)`Y ∗`mh̃`−m(f), (3.10)

h̃`,m× (f) = − i
2

(−1)`Y ∗`mh̃`−m(f), (3.11)
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h̃l,−m+ (f) =
1

2
Y`−mh̃`−m(f), (3.12)

h̃l,−m× (f) =
i

2
Y`−mh̃`−m(f). (3.13)

For the ` = 2,±2 modes these equations correspond to our IMRPhenomXAS model [1].

In appendix 3.C we discuss conventions which are specific to our LALSuite implementa-

tion, in particular how to specify a global rotation, and the time of coalescence.

3.2.2 Perturbative waveform phenomenology: inspiral and ringdown

The phenomenology of the oscillating subdominant modes |m| > 0 is largely similar to

the dominant modes ` = |m| = 2, which has been discussed in detail in [39, 1] - with

some important exceptions that lead to both simplifications and complications when

modelling these modes, as opposed to modelling ` = |m| = 2.

The main simplification is that at low frequencies PN theory, combined with the station-

ary phase approximation, predicts an approximate relation between the phases Φ`m of

different harmonics, which with our choice of tetrad takes the simple form of eq. (3.3).

This approximation is not exact, and becomes less accurate for higher frequencies. We

have studied this in detail in [36, 34], and in [34] we find that for comparable mass bina-

ries we can neglect the error of the approximation (3.3) before a binary system reaches its

minimal energy circular orbit (MECO) as defined in [40]. As in our IMRPhenomXAS

model, we will use the MECO to guide the choice of transition frequency between the

inspiral and intermediate frequency regions. In the mass ratio range where we have NR

data (q ≤ 18) it is thus not necessary to model the inspiral phase, but we can use the

scaling relation (3.3), as has been done in [6].

For the time domain amplitude, approximate scaling relations have been discussed in

[41, 42], and in the frequency domain they have been used in the IMRPhenomHM

model [6]. Unlike for the phase, however, even in the inspiral the errors are too large for

our purposes, and we will need to model the amplitude for each spherical harmonic in a

similar way as for IMRPhenomXAS, including in the inspiral.

Rotations in the orbital plane by an angle ϕ transform the spherical harmonic modes as

h`m → h`me
imϕ. (3.14)

Interchange of the two black holes thus corresponds to a rotation by ϕ = π, and modes

with odd m vanish for equal black hole systems. A problem can arise in regions of the

parameter space where the amplitude is close to zero, even in the inspiral, as discussed
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in [19, 34]: For black holes with very similar masses, the amplitude can be very small,

with the sign depending on the mass ratio, spins, and the frequency – which can lead

to sign changes with frequency. In such cases the amplitude does become oscillatory,

and the approximate relation (3.3) can not be expected to be satisfied. This happens in

particular for the (2,±1) modes. We do not currently model the amplitude oscillations,

and thus for a certain region of parameter space our model does not properly capture the

correct waveform phenomenology. This region does depend on the frequency, but roughly

corresponds to very similar masses and anti-aligned spins, for a particular example for

the (2,±1) modes see Fig. 3.1. However, as phenomenon happens precisely when the

amplitude of the (2,±1) modes is very small, this is not expected to be a significant

effect for the current generation of detectors.
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Figure 3.1: Relative amplitude of the (2, 1) mode respect to the (2, 2) mode as a
function of the spins. The top row shows the amplitude ratio for a frequency of Mf =
0.001 while the bottom one shows it for Mf = 0.02. Left-side panels refer to a q = 1.2
binary and right-side ones to a q = 1.35 one. There exists a region (blue diagonal)
where the amplitude of the (2, 1) mode tends to zero. This diagonal moves toward the
bottom-right corner of the plot as one increases the mass ratio and typically disappears

for q & 2.

During the inspiral and merger, gravitational wave emission is dominated by the direct

emission due to the binary dynamics. As the final black hole relaxes toward a stationary

Kerr black hole, the gravitational wave emission is eventually dominated by a superpo-

sition of quasinormal modes before the late time polynomial tail falloff sets in (for an

overview see e.g. [43, 29]). As is common in waveform modelling targeting applications
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in GW data analysis, we neglect the late-time power-law tail falloff, and focus our de-

scription of the ringdown on the quasinormal mode (QNM) emission, where the strain

can be written as a sum of exponentially damped oscillations,

h(t, θ, ϕ) ≈
∑
`mn

a`mne
i(ω`mnt)+φ`mn Y−2 `m (θ, φ), (3.15)

where the complex frequencies ω`mn are functions of the black hole spin and mass and

their real and imaginary parts define the ringdown and damping frequencies as

f `mring = Re(ω`m), f `mdamp = |Im(ω`m)|. (3.16)

The functions Y−2 `m (θ, φ) are the spheroidal harmonics of spin weight −2 [44, 45]. The

amplitude parameters a`mn and phase offsets φ`mn will in general have to be fitted to

NR data.

It has long been known that representing the spheroidal harmonic ringdown modes can

result in mode mixing for modes with approximately the same real part of the ringdown

frequency ω`mn [46]. This happens in particular for modes with the same value of m,

where then values with larger ` are much weaker, and do not show the usual exponential

amplitude drop, but a more complicated phenomenology. In our case this happens for

the (3, 2) mode. In this work we will model mixing only between two modes, specifically

the (3, 2) with the (2, 2), as these are the two most strongly coupled modes (the coupling

of the (3, 2) mode to other m = 2 modes is in fact suppressed). While for the modes that

do not show mixing it is sufficient to model their spherical harmonics, for the (3, 2) we

will model the spheroidal harmonic, and then transform to the spherical harmonic basis,

as discussed in Sec. 3.6. For a recent non-spinning model of mode-mixing see [26].

A key challenge of accurately modeling multi-mode waveforms is to preserve the relative

time and phase difference between the individual modes, say as measured at the peaks of

the modes. In the frequency domain time shifts are encoded in a phase term that is linear

in frequency: the Fourier transformation of a time shifted function hτ = h(t− τ) will be

given by h̃τ = h̃e−i2πfτ . In GW data analysis the quality of a model is typically evaluated

in terms of how well two waveforms match, up to time shifts and global rotations, e.g. in

terms of match integrals. Adding a linear term in the phase leaves such match integrals

invariant. In order to improve the conditioning of the model calibration it has thus been

common for phenomenological frequency domain models to subtract the linear part in

frequency before calibrating the model to improve the conditioning of numerical fits,

and then add back a linear in frequency term at the end, which approximately aligns

the waveforms in time, e.g. by approximately aligning the amplitude peak at a certain

time. This strategy has also been followed in our construction of the IMRPhenomXAS
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model, i.e. for the ` = |m| = 2 modes, whereas for the other modes we directly model a

given alignment in time.

More specifically, our strategy of aligning the different spherical harmonic modes in time

and phase has been the following: our hybrid waveforms are aligned in time and phase

such that the peak of the ` = |m| = 2 modes of ψ4 in the time domain is located at

t = 0, and the corresponding phase Φ22(ψ4, t = 0) = 0, which corresponds to a time

∆t = 500M before the end of the waveform. For modes with odd m this leaves an

ambiguity of a phase shift by multiples of π. We do not use the odd-m modes of the

numerical waveforms to resolve this ambiguity in order not to depend on the poor quality

of many odd-m data sets, and simply require a smooth transition of the inspiral phase

into the merger-ringdown. This ambiguity in the phase will be harmless, as the relative

phases among the modes can be unambiguously fixed using PN prescriptions, as we will

explain in Subsec. 3.4.2 below. Our subdominant modes are calibrated to agree with this

alignment of our hybrid waveforms. The ` = |m| = 2 mode is aligned a posteriori to the

same alignment, similar to what has been done in previous phenomenological frequency

domain models. A difference here is that this a posteriori time alignment is achieved via

an additional parameter space fit.

3.2.3 Strategy for fitting our model to numerical data

As discussed above, following IMRPhenomXAS our model is constructed in terms of

closed-form expressions for the frequency domain amplitude and phase of spherical or

spheroidal harmonic modes, which are each split into three frequency regimes. We will

refer to a model for the amplitude or phase for one of the frequency regimes as a partial

model. We thus need to construct a total of six partial models for each mode. For the

inspiral phase, we can use the scaling relation (3.3) for comparable masses, and only need

to model the extreme mass ratio case. For each of the six partial models the ansatz will

be formulated in terms of some coefficients, which for example in the inspiral will be the

pseudo-PN coefficients that correspond to yet unknown higher PN orders.

We thus employ two levels of fits to our input numerical data: First, for each waveform

in our hybrid data set we perform fits of the six partial models for each mode to the

data. This yields a set of coefficients for each mode, quantity (amplitude or phase), and

frequency interval. We call this first level the direct fit of the model to our data. Second,

we fit each coefficient across the 3D parameter space of mass ratio and component spins.

We call this second level the parameter space fit. In the direct fit we usually collect

redundant information: such as the model coefficients, values and derivatives at certain

frequencies, and other quantities. This redundancy provides for some freedom when
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reconstructing the model waveform after the parameter space fits. We make extensive

use of this freedom when tuning our model, while the final model uses a particular

reconstruction, which is what will be described below.

Fitting the coefficients of a particular partial model across the parameter space may not

turn out to be a well-conditioned procedure, e.g. for the inspiral the pseudo PN coef-

ficients have alternating signs, the PN series converges slowly, and different sets of PN

coefficients can yield very similar functions. We will thus sometimes transform the set of

coefficients we need to model to an alternative representation, in particular collocation

points, following [39, 3, 1]. In this approach, one constructs fits for the values of the

amplitude and phase at specific frequency nodes. The coefficients of the phenomenolog-

ical ansätze are then obtained by solving linear systems that take such values as input.

This method has been adopted to avoid fitting directly the phenomenological coefficients,

which would result in a worse conditioned problem. We thus fit the values or derivatives

at certain frequencies, and use the freedom in reconstructing the final phase or amplitude

in tuning the model as mentioned above.

In order to perform the 3D parameter space fits in symmetric mass ratio η and the two

black-hole spins χ1,2 we use the hierarchical fitting procedure described in [27], which we

have also used for the underlying IMRPhenomXAS model. The goal of this procedure is

to avoid both underfitting and overfitting our data set. In order to simplify the problem

we split the 3D problem into a hierarchy of lower dimensional fits to some particular

subsets of all data points. For each lower dimensional problem it is significantly easier

to choose an ansatz that avoids underfitting and overfitting, and finally we combine the

lower-dimensional fits into the full 3D fit and check the global quality of the fit. In order

to check fit quality we compute residuals and compute the RMS error, and we employ

different information criteria to penalize models with more parameters as discussed in

[27] as an approximation to a full Bayesian analysis.

As a first step of our hierarchical procedure we perform a 1-dimensional fit for non-

spinning subspace, choosing the symmetric mass ratio η as the independent variable. We

can then identify two further natural one-dimensional problems: First, for the extreme

mass ratio case we can neglect the spin of the smaller black hole, and consider the

mass ratio as a scaling parameter, and we thus consider a one-dimensional problem in

terms of the spin of the larger hole. Second, at fixed mass ratio we can fix a relation

between the spins. For quantities such as the final spin and mass, or the coefficients of

the IMRPhenomXAS model for the (2, 2) mode, it has been natural to consider equal

black holes, e.g. equal mass and equal spin for this one-dimensional problem.
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It is then useful to express the results for the one-dimensional spin fits in terms of a

suitably chosen effective spin, such as

χeff =
m1χ1 +m2χ2

m1 +m2
, (3.17)

which is typically measured in PE (see e.g. [8]), and which has also been the choice in the

early phenomenological waveform models IMRPhenomB [47] and IMRPhenomC [48].

A judicious choice of effective spin parameter can minimize the errors when approximat-

ing functions of the 3D parameter space by functions of η and effective spin, and can

be sufficient for many applications, since spin-differences are a sub-dominant effect. For

IMRPhenomD [39, 3] two effective spin parameters have been used: For the inspiral

calibration to hybrid waveforms (3.17) has been augmented by extra terms motivated by

PN theory [49]

χPN = χeff −
38η

113
(χ1 + χ2) (3.18)

The final spin and mass, and thus the ringdown frequency have been fit to numerical

data in terms of the rescaled total angular momentum of the two black holes

Ŝ =
m2

1χ1 +m2
2χ2

m2
1 +m2

2

. (3.19)

We model the dominant spin-contributions to the amplitude as functions of χPN during

the inspiral and as functions of Ŝ during the merger-ringdown. For the phase inspiral we

use the scaling relation (3.3) for comparable masses, such that a phase inspiral calibration

is only necessary for large mass ratios, which we treat in the same way as other phase

coefficients, where we again use Ŝ. We will denote a generic effective spin parameter

by χ in general equations involving the effective spin, implying that this refers either to

χPN or Ŝ as appropriate.

We thus perform three one-dimensional fits, one for the non-spinning sub-space (depend-

ing on η), one for equal black holes (depending on χ), and one for extreme mass ratios

(again depending on χ). Then a 2D ansatz depending on η and χ is built such that it

reduces to the 1D fits for those particular cases. The 2D fit is then performed for all

data points and from it we get the best-fit function of η and χ minimizing the sum of

squared residuals.

In order to extend the hierarchical method to the full 3D parameter space, a second spin

parameter needs to be chosen, which incorporates spin difference effects. For small spin

difference effects, we can simply choose

∆χ = χ1 − χ2 (3.20)
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without worrying about a particular mass-weighting of the spins, since differences in

mass-weighting could be absorbed into higher order terms. The spin difference effects

are then modelled with a function f∆χ(η) as a term

f∆χ(η)∆χ, (3.21)

and the modelling of small spin difference effects is reduced to the 1-dimensional problem

of fitting a function of η. Note that this is reminiscent of the structure of PN expansions

(see for instance [50]), where spin-difference effects are usually described in terms of the

anti-symmetric spin combination χa = (χ1 − χ2)/2. For larger spin difference effects,

we will however need higher order terms, and in [27] a term quadratic in ∆χ and a

term proportional to χ∆χ were included, and again these terms can be modelled as

one-dimensional problems in terms of functions of η.

Extensions to this procedure are needed to model the behaviour of sub-dominant modes,

in particular for the (3, 2) mode and for odd m modes. For the (3, 2), we need to model

mode mixing in the ringdown, as discussed briefly above, and in detail in Sec. 3.6. While

this requires a transformation from spheroidal to spherical harmonics, it does not directly

affect our strategy for carrying out the direct fits and the parameter space fits. For odd

m modes, changes are required due to the change of sign in the amplitude when rotating

by an angle of π, see eq. (3.14), corresponding to interchanging the two black holes. For

even m modes, rotations by π correspond to the identity, and as for IMRPhenomXAS

it is natural to work with non-negative gravitational-waveform amplitudes. For odd m

modes however, restricting the amplitude to positive values will make it a non-smooth

function in the two-dimensional spin parameter space, where the amplitude A`m(f), as

defined through Eq. (3.7), corresponds to the absolute value of a function that can change

sign.

This can be best understood by plotting the values of the amplitude at a collocation point

as a function of the two black holes’ spins, for a given mass ratio (see Fig. 3.2). It can be

seen that the two-dimensional data in the spin parameter space exhibit a crease along a

line which corresponds to a vanishing amplitude. For equal masses, this line appears for

equal spin systems, as shown in the top panel. In order to work with smooth surfaces,

we allow the amplitude to take negative values when fitting our numerical data. Such

sign flips occur at the level of the full gravitational-wave strain and we choose to fold

them into the amplitude for mere convenience, to simplify the fitting procedure. Since

we require our reconstructed amplitudes to be non-negative functions, we then take the

absolute value of the fits, whenever we allow such sign flips (see Eq. (3.7) and discussion

therein). Notice that, for sufficiently large mass ratios, the spin dependence of the sign
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of the phase can be neglected, we thus choose which part of the crease we flip in sign to

be consistent with the behaviour for higher mass ratios data.

Figure 3.2: Example of how the amplitude data set is modified for the parameter
space fit. The data shown correspond to the first intermediate collocation point of the
(3, 3) mode. One of the leaves of the original q = 1 data (top plot) is flipped in sign so
we get a flat surface that is easier to fit (intermediate plot). The leaf to be flipped is
chosen such that the final behaviour is consistent with the data for other mass ratios,
e.g. mass ratio 2 (bottom plot). After the fit we take the absolute value of the final fit

to return back positive amplitude.

When modelling the amplitude of odd m modes we can not use equal masses as one of

our one-dimensional fitting problems, since the amplitude vanishes there, and instead we

use a different mass ratio, typically q = 3. Applying appropriate boundary conditions

for equal black hole systems is then essentially straightforward – we simply demand that

the amplitude vanishes. Setting appropriate boundary values for odd mode phases for

equal black hole is however a complicated problem, since the phase will in general not

vanish as one takes the limit toward the boundary. The numerical data typically become

very noisy and inaccurate for modes with very small amplitude, and thus one can not in

general expect to model odd m modes for close-to-equal black holes with small relative

errors. When building a parameter space ansatz for odd mode amplitudes we are adding
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a minus sign when exchanging the spins, the non-spinning and effective-spin parts of the

ansatz must be manifestly set to zero because they pick up a minus sign when exchanging

the black holes, while at the same time they are invariant by symmetry. We implement

this by adding a multiplicating factor
√

1− 4η that cancels these parts for equal mass

systems. The even modes behave in the opposite way: since when exchanging the two

spins they remain the same, it is the spin-difference part which has to vanish because it

would introduce a minus sign.

3.3 Calibration data set

Our input data set coincides with the data we have used for the IMRPhenomXAS model

[1], and comprises a total of 504 waveforms: 466 for comparable masses (with 1 ≤ q ≤ 18)

and 38 for extreme mass-ratios (with q = {200, 1000}). These waveforms are “hybrids”,

constructed by appropriately gluing a computationally inexpensive inspiral waveform to a

computationally expensive waveform, which covers the late inspiral, merger and ringdown

(IMR). For comparable masses, the ` = |m| inspiral is taken from the SEOBNRv4 model

[51], and the subdominant modes are constructed from the phase of the ` = |m| mode

and PN amplitudes as described in [34] along with other details of our hybridization

procedure. The IMR part of the waveform is taken from NR simulations summarized

below.

For extreme mass ratios the IMR part is taken from numerical solutions of the perturba-

tive Teukolsky equation, and the inspiral part is taken from a consistent EOB description,

as discussed below in Sec. 3.3.2.

Due to the poor quality of many of the NR waveforms, and the fact that our extreme mass

ratio waveforms are only approximate perturbative solutions, we do not use all of the

waveforms of our input data set for the calibration of all the quantities we need to model

across the parameter space. Already for IMRPhenomXAS (see [1]) we had to carefully

select outliers, which lacked sufficient quality for model calibration. Higher-modes wave-

forms are typically even noisier and more prone to exhibit pathological features than

the dominant quadrupolar ones. This can result in a large number of outliers in the

parameter space fits, which can introduce unphysical oscillations in the fit surfaces. To

attenuate this problem, we developed a system of annotations that stores relevant infor-

mation about the quality of all the waveforms in the calibration set. A careful analysis

of data quality is needed, separately for each quantity that we fit, such as the value of

the amplitude (phase) at a given collocation point for each particular mode. We will

not document these procedures in detail, instead, we will discuss outliers in Sec. 3.7,

where we evaluate the quality of our model by comparing to the original hybrid data.
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We will see that this comparison has less stringent quality criteria: pathologies which

prohibit the use of a some waveform accurate fit for a particular coefficient may in the

end not significantly contribute to the waveform mismatch. We will thus only discuss

those waveforms which we excluded from the model evaluation, because of doubts in

their quality.

3.3.1 Numerical relativity waveforms

The NR simulations used in this work were produced using three different codes to solve

the Einstein equations: for the amplitude calibration we used 186 waveforms [52] from

the public SXS collaboration catalog, as of 2018 [53] obtained with the Spectral Einstein

Code (SpEC) [54], 95 waveforms [39, 27] obtained with the BAM code [55, 56], and

16 waveforms from simulations we have performed with the Einstein Toolkit (ET) [57]

code. After the release of the latest SXS collaboration catalog [58], we extended the

data set to include 355 SpEC simulations, and updated the parameter space fits for the

phase accordingly. We chose not to update the amplitude fits, as their recalibration was

expected to have a smaller effect on the overall quality of the model waveforms. The

parameters of our waveform catalogue are visualized in Fig. 3.3. Note that to the same

set of (η, χ1, χ2) can correspond multiple NR waveforms: this allows to compare at the

same point in parameter space different resolutions and/or numerical codes and it is

therefore important for data-quality considerations. A detailed list of the waveforms we

have used can be found in our paper on the hybrid data set [34].

Figure 3.3: The mass ratios and Kerr parameters are shown for the comparable
mass cases in our waveform catalogue, indicating the NR codes used to carry out the

simulations.
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3.3.2 Extrapolation to the test-mass limit

Due to the computational cost of high mass-ratio simulations, our catalogue of NR wave-

forms extends only up to q = 18, which would leave the test-particle limit of our model

poorly constrained. Here, following [59], we chose to pin down the large-q boundary of

the parameter space using EMR waveforms. We produced two sets of such waveforms,

one with q = 200 and the other with q = 103. The spin on the primary spans the interval

[−0.9, 0.9] in uniform steps of 0.1, while the secondary is assumed to be non-spinning.

The waveforms in the calibration set were generated by hybridizing a longer inspiral EOB

waveform with a shorter numerical waveform computed using the code of Ref. [60]. The

code solves the 2+1 Teukolsky equations for perturbations that can be freely specified by

the user. In our case the gravitational perturbation was sourced by a particle governed

by an EOB dynamics, with radiation-reaction effects included up to 6PN order for all

the multipoles modelled in this work [61]. The EOB and Teukolsky waveforms, being

both extracted at future null infinity, can be consistently hybridized, following the same

hybridization routine used for comparable-mass cases.

3.4 Inspiral model

In the inspiral region we work under the assumption that the SPA approximation (see

e.g. [38] and our discussion in the context of IMRPhenomXAS [1]) is valid. The fre-

quency domain strain of each mode will therefore take the form

h̃`m(f) = A`m

√
2π

mφ̈
ei(2πftc−φ`m−π/4+ψ0) := ASPA

`m eiΨ`m , (3.22)

where tc is a time shift parameter, φ̈ is the second derivative respect to time of the

orbital phase (expressed as a function of the frequency), ψ0 is an overall phase factor

that depends on the choice of tetrad conventions and

ASPA
`m : = A`m

√
2π

mφ̈
, (3.23)

Ψ`m : = 2πftc − φ`m − π/4 + ψ0. (3.24)

Notice that, in our tetrad-convention, ψ0 = π (see Eq. (3.3) and discussion therein).

Furthermore, we will assume that we can work within the PN framework, and that

we can model currently unknown higher-order terms in the PN expansions with NR-

calibrated coefficients. Let us stress that in IMRPhenomXHM the phase and amplitude
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are treated in different ways: while the latter is fully calibrated to NR, the former is built

with a reduced amount of calibration, as we will explain below.

Following the approach taken in IMRPhenomXAS, we set the end of the inspiral region

around the frequency of the MECO. For the amplitude, the default end-frequency of the

inspiral is taken to be:

f `mIns =
m

2

(
f22

MECO ε
`m
Ins(η, χeff ) + |f22

ISCO − f22
MECO| δ`mIns(η, χeff )

)
, (3.25)

where f22
ISCO and f22

MECO are the gravitational-wave frequency of the 22-mode evaluated

at the ISCO (innermost stable circular orbit) and MECO respectively. The mode-specific

expressions for the functions δ`mIns and ε`mIns are given in Tab. 3.1. In the large-mass-ratio

regime, the transition frequency of Eq. (3.25) is replaced by that of a local maximum in

the amplitude of ψ4, as we explain in Subsec. 3.5.1.2 below.

While the fully NR-calibrated amplitude requires careful tuning of the above transition

frequencies, we find that for the phase we can simply set f `mIns = m
2 f

22
MECO.

The start frequencies of our hybrid waveforms [34] are set up such thatMf ≥ 0.001453m/2

for comparable masses, and Mf ≥ 0.001872m/2 for extreme-mass-ratio waveforms (de-

pending on the spherical harmonic index m). We start the amplitude calibration at a

higher minimum frequency of fmin = 0.002 m/2 to avoid contamination from Fourier

transform artefacts. Note that a higher cutoff frequency was chosen for IMRPhe-

nomXAS due to the higher accuracy requirements in that case. For the phase, only

a small and simple (linear) correction term (3.31) is calibrated, and the same minimum

frequency cutoff is applied in this case.

Table 3.1: Explicit expressions for the coefficients δ`mIns and ε`mIns entering the inspi-
ral cutting frequencies of the amplitude reconstruction, according to the notation of
Eq. (3.25). f `mring is the fundamental quasi-normal mode frequency of the (`,m) mode.

Amplitude

(`m) δ`mIns ε`mIns

21
(
3/4− 0.235 χeff − 5/6 χ2

eff

)
1

33 (3/4− 0.235 χeff − 5/6 χeff) 1

32 (3/4− 0.235 |χeff |)
f32
ring

f32
ring

f32
ring

f22
ring

44 (3/4− 0.235 χeff) 1
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3.4.1 Amplitude

In the inspiral region, the amplitude ansatz of IMRPhenomXHM augments a PN expan-

sion with terms up to 3PN oder with three NR-calibrated coefficients, which correspond

to higher-order PN terms. A 3PN-order expansion for the Fourier domain amplitudes is

computed in [50]. However, some of these expressions exhibit significant discrepancies

with our numerical data and with analogous expressions we derived independently. The

authors of [50] acknowledged a mistake in their derivation and agreed with our results.

We gather the correct 3PN-order Fourier domain amplitudes in appendix 3.E and advise

the reader to use the expressions reported there.

At low frequency, the leading order PN behavior of the Fourier amplitude of the (2, 2)

mode is

A0
22 := π

√
2η

3
(πf)−7/6 , (3.26)

while the higher modes present milder divergences. Such a divergent behaviour is ex-

pected to negatively impact the conditioning of our amplitude fits. Therefore, we do not

model the SPA amplitudes directly, but similarly to IMRPhenomXAS we rather work

with the quantities

H`m :=
|ASPA

`m |
A0

22

, (3.27)

which are non-negative by construction and non-divergent in the limit f → 0.

3.4.1.1 Default reconstruction

Currently the highest known PN-term in the expansion of the H`m is proportional to

f2. In order to model currently unknown higher-order effects, we introduce up to three

pseudo-PN terms {α, β, γ} that depend only on the intrinsic parameters of the source,

i.e. mass ratio and spins. The ansatz employed for the inspiral amplitude is given by

H`m(f) =
|APN`m (f)|
A0

22(f)
+ α

(
f

f Ins
`m

) 7
3

+ β

(
f

f Ins
`m

) 8
3

+ γ

(
f

f Ins
`m

) 9
3

. (3.28)

Following [3], we do not perform parameter space fits of {α, β, γ}. Instead, we compute

parameter space fits of the hybrids’ amplitudes evaluated at three equispaced frequencies[
0.5 f Ins

`m , 0.75 f Ins
`m , f

Ins
`m

]
, which we refer to as “collocation points”.

We require that the reconstructed inspiral amplitude go through the three collocation

points given by the parameter space fits. This yields a system of three equations that can
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be solved to obtain the values for {α, β, γ}. We observe however, that in some regions

of parameter space this leads to oscillatory behaviour of the reconstructed amplitude for

the (2, 1) and (3, 2) modes, and a lower order polynomial, calibrated to a smaller number

of collocation points, gives more robust results. This problem arises in regions of the

parameter space where the model is poorly constrained due to the lack of NR simulations,

such as in cases with very high positive spins (where in addition the correct functional

form is rather simple and a higher order polynomial is not required), and where the

amplitude of the waveform is very small (see e.g. Fig. 3.1). For this reason we apply a

series of vetoes that remove collocation points and allow for a smooth reconstruction, as

discussed next.

3.4.1.2 Vetoes and non-default reconstruction

The removal of a collocation point implies the modification of the ansatz used in the

reconstruction. For each collocation point removed, we set to zero one of the coefficients

of the pseudo-PN terms, starting from the highest order one. The removal of the three

collocation points would lead us to an ansatz without any pseudo-PN term.

For the (2, 1) mode, when q < 8 we remove the collocation points which gives a Fourier

domain amplitude |h̃21| below 0.2 (in geometric units), which is a typical value for the

ringdown for comparable masses. Furthermore, we check whether the amplitude values

at the three collocation points form a monotonic sequence, otherwise we remove the

middle point to avoid oscillatory behaviour.

For the (3, 2) mode we drop the middle collocation point if it is not consistent with

monotonic behaviour. In addition, for this mode we have isolated two particular regions

of the parameter space where we drop collocation points from our reconstruction due to

the poor quality of the reconstruction. The first one is given by q > 2.5, χ1 < −0.9,

χ2 < −0.9, where we do not use any of the collocation points and just reconstruct with

the PN ansatz. The second is given by q > 2.5, χ1 < −0.6, χ2 > 0 where we just remove

the highest frequency collocation point. For the 33 mode we remove the last collocation

point in the region q ∈ (1, 1.2), χ1 < −0.1, χ2 > 0.

In the future we will revisit this problem when recalibrating the amplitude against the

recently released new SXS catalogue of NR simulations [58], which we expect to mitigate

some of the issues we observe.



3 Modelling subdominant harmonics from non-precessing black-hole
binaries: IMRPhenomXHM 92

3.4.2 Phase

For the inspiral phase, we start from the consideration that, with good accuracy, the NR

data satisfy the relation [36],

φ`m(f) ≈ m

2
φ22

(
2

m
f

)
. (3.29)

As discussed above, our amplitude fits return a real quantity, but one must be mindful

that the PN expansions of the ASPA
`m are, in general, complex (see, for instance, [28, 50]).

For each mode, we re-expand to linear order in the frequency the quantities

ΛPN`m = arctan
(
=(APN`m )/<(APN`m )

)
. (3.30)

We evaluated the quantity ∆φIns
`m := φ`m(f) − m

2 φ22(2/mf) for all the hybrids in our

catalogue and found that

∆φIns
`m ≈ ΛPN`m (3.31)

In Fig. 3.4 we show the behaviour of this approximation for an example case of compa-

rable mass ratio, as compared to the result obtained from the hybrids.

The accuracy of the above approximation tends to degrade for high-mass ratios, high-

spins configurations and the PN relative phases are recovered only at sufficiently low

frequencies, as illustrated in Fig. 3.5. Therefore, we compute parameter space fits to

capture the leading order behaviour of each ∆φIns
`m, and use them to build our final

inspiral ansatz in the extreme-mass ratio regime.

Based on the above discussion, we express the inspiral phase of each multipole as

φ`m(f) =
m

2
φX22(2/mf) + Λ`m(f) + dφIns

`mf + φIns
`m, (3.32)

where φX22 is the quadrupole phase reconstructed with IMRPhenomXAS, whose coeffi-

cients need to be rescaled as detailed in appendix 3.D, and

Λ`m =


ΛPN`m if q < 100

Λfit`m if q ≥ 100

(3.33)

The constant dφIns
`m in Eq. (3.32) is determined by continuity with the intermediate-region

ansatz.
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Figure 3.4: We compare the quantities ΛPN`m defined in Eq. (3.30) (red dashed lines),
with the ∆φIns

`m computed from a Fourier transformed hybrid waveform with parameters
(η, χ1, χ2) = {0.1094, 0.4, 0} (black solid lines). Each plot is truncated around the end

of the inspiral region corresponding to the selected mode.

Once a smooth phase derivative, defined with respect to the Fourier variable f , has been

reconstructed, the remaining constant, φIns
`m, is fixed by requiring that, at low frequencies,

one has

lim
f→0

(
Ψ`m −

m

2
Ψ22

)
=

3

4
π
(

1− m

2

)
, (3.34)

which follows from Eq. (3.24) and from our choice of tetrad convention (see also (3.3).

3.5 Intermediate model

The intermediate region connects the inspiral regime to the ringdown. It is the only re-

gion where IMRPhenomXHM is fully calibrated, both in amplitude and phase. While

for the amplitude this is the last region to be attached to the rest of the reconstruc-

tion, for the phase this is the central piece of the model, to which inspiral and ringdown

phase derivatives will be smoothly attached. Physically, this implies that, in IMRPhe-

nomXHM, the relative time-shifts among different modes are entirely calibrated around

merger. We have found that a good practical way of testing whether time shifts are
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Figure 3.5: We compare the quantities ΛPN`m defined in Eq. (3.30) (red dashed lines),
with the ∆φIns

`m computed from a hybrid Fourier domain waveform with parameters
(η, χ1, χ2) = {0.001, 0.7, 0.} (black solid lines). Red dashed lines denote our parameter
space fits (corresponding to the Λfit

`m of Eq. (3.33)), while dotted green lines the corre-
sponding analytical PN approximations. Each plot is truncated around the end of the

inspiral region corresponding to the selected mode.

consistent between modes is to compute the recoil of the merger remnant, which is also

of astrophysical interest, and which we discuss in Sec. 3.7.3.

The intermediate region covers the range of frequencies

f ∈
[
f `mIns , f

`m
RD

]
, (3.35)

where the inspiral cutting frequencies f `mIns are those of Eq. (3.25) and the ringdown

cutting frequencies are defined as:

f `mRD = δ`mRDf
`m
ring + ε`mRD. (3.36)

In the above equation, f `mring is the fundamental quasi-normal mode (QNM) frequency

of the (`,m) mode and the default coefficients δ`mRD, ε
`m
RD are given in Tab. 3.2. We have

computed fits for the real and imaginary parts of the QNMs as a function of the final

dimensionless spin, based on publicly available data [62], see also [63]. Notice that, in

the (3, 2) reconstruction, high-mass, high-spin cases require an adjustment of the default
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cutting frequencies, as we explain in Subsecs. 3.5.1 and 3.5.2 below.

The rationale behind our choice of cutting frequencies is simple: in general, the QNM

frequencies f `mring mark the onset of the ringdown region and it is therefore natural to

terminate our intermediate region slightly before those. This does not apply to the (3, 2)

mode, where, due to mode-mixing, new features appear in the waveforms already around

f ≈ f22
ring < f32

ring.

In the following subsections, we will describe in more detail our choice of ansätze and

collocation points, based on the specific features of our numerical waveforms in the

intermediate region.

Table 3.2: Choices for the coefficients δ`mRD and ε`mRD entering the default ringdown
cutting frequencies in Eq. (3.36). f `mdamp is the quasi-normal mode damping frequency

of the (`,m) mode.

Amplitude Phase

(`m) δ`mRD ε`mRD δ`mRD ε`mRD

21 0.75 0 1 -f21
damp

33 0.95 0 1 -f33
damp

32 0 f22
ring 0 f22

ring − 0.5f22
damp

44 0.9 0 1 −f44
damp

3.5.1 Amplitude

3.5.1.1 Default reconstruction

In the intermediate frequency regime we model the amplitude with the inverse of a

fifth-order polynomial as

AInter
`m

A0
=

1

δ0 + δ1f + δ2f2 + δ3f3 + δ4f4 + δ5f5
, (3.37)

where A0 = π
√

2η
3 . This function has six free parameters, which are determined by im-

posing the value of the amplitude at two collocation points, together with four boundary

conditions (two on the amplitude itself, and two on its first derivative), so that the final

IMR amplitude is a C1 function. We use two collocation points at the equally spaced

frequencies f `mInt1
= f `mIns + (f `mRD − f `mIns )/3 and f `mInt2

= f `mIns + 2/3(f `mRD − f `mIns ).



3 Modelling subdominant harmonics from non-precessing black-hole
binaries: IMRPhenomXHM 96

Table 3.3: Conditions imposed to determine the parameters of the fifth-order poly-
nomial used in the default intermediate amplitude reconstruction, see Eq. (3.37).

Collocation Points Value Derivative

f1 = f `mIns v1 = AInter
`m (f1)/A0 d1 = (AInter

`m /A0)′(f1)

f2 = f `mIns + (f `mRD − f `mIns )/3 v2 = AInter
`m (f2)/A0

f3 = f `mIns + 2(f `mRD − f `mIns )/3 v3 = AInter
`m (f3)/A0

f4 = f `mRD v4 = AInter
`m (f4)/A0 d2 = (AInter

`m /A0)′(f4)

3.5.1.2 Extreme-mass-ratio reconstruction

For the EMR regime we refine the model to adapt to the steep amplitude drop at the

end of the inspiral part, which is associated with the sharp transition from inspiral

to plunge for extreme mass ratios. As one would expect, this drop is deeper for very

negative spins. We find that the ansatz of Eq. (3.37) is not suited to this regime and we

introduce a pre-intermediate region that ranges from the inspiral cutting frequency up

to the frequency of the first collocation point. We add an extra collocation point at the

frequency f `mInt0
= f `mIns + (f `mInt1

− f `mIns )/3, where we calibrate the value of the amplitude

and its derivative. We then use the inverse of a fourth order polynomial to model the

amplitude in this new region. The five free coefficients of the polynomial are specified

by imposing the conditions listed in Tab. 3.4.

Table 3.4: Conditions imposed to determine the parameters of the fourth-order poly-
nomial used in the pre-intermediate region of the EMR amplitude reconstruction.

Collocation Points Value Derivative

f1 = f `mIns v1 = AInter
`m (f1)/A0 d1 = (AInter

`m /A0)′(f1)

f2 = f `mIns + (f `mInt1
− f `mIns )/3 v2 = AInter

`m (f2)/A0 d2 = (AInter
`m /A0)′(f2)

f3 = f `mInt1
v3 = AInter

`m (f3)/A0

We then apply the default reconstruction procedure in the region f ∈
[
f `mInt0

, f `mRD

]
, im-

posing the conditions listed in Tab. 3.3, with the replacement f `mIns → f `mInt0
.

The two calibration regions are shown in Fig. 3.6, where have shaded the pre-intermediate

region in red and the intermediate one in blue. We find it convenient to terminate

the inspiral region just before the amplitude drop. Therefore, we replace the cutting

frequency of Eq. (3.25) with that of a local maximum in the amplitude of ψ4, which

always precedes the drop (see Fig. 3.6). We carried out a fit over the EMR parameter

space of the frequency at which this maximum occurs and used it to replace the default

inspiral cutting frequency when q > 70.
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Figure 3.6: (2, 1) Fourier domain amplitude of an EMR waveform. The strain ampli-
tude shows a deep drop after the inspiral. This feature is preceded by a local maximum
in the amplitude of ψ4. The red-shaded area corresponds to the pre-intermediate re-
gion mentioned in the text, where the amplitude is reconstructed using a fourth-order
polynomial. The blue-shaded area corresponds to the intermediate region, where the

default reconstruction procedure applies.

3.5.1.3 Vetoes and non-default reconstruction

While for comparable masses the ansatz of Eq. (3.37) is well suited to model the inter-

mediate amplitude, in other regions of the parameter space modelling errors can result

in a zero-crossing of the fifth order polynomial. We resolve this problem using a strategy

akin to that of Subsec. 3.4.1.2 above, i.e. by removing collocation points and switching to

a lower order polynomial, the minimum order being one. The regions of the parameter

space affected are typically those where the amplitude is very small, or the high-spin

regime. We have also isolated some regions where, due to the poor quality of the re-

construction, we drop both intermediate collocation points. This system of vetoes is

summarized in Tab. 3.6.

We describe now in more detail the adjustments made to the default reconstruction

procedure mode-by-mode. A summary of the rules applied can be found in Tab. 3.5.

For the (2, 1) mode, we remove the intermediate collocation points at which the strain

Fourier domain amplitude |h̃21| is below 0.2. This happens when the (2, 1) amplitude

is very small and in consequence the current accuracy of the parameter space fits is not

sufficient. The advantage is that for those cases the (2, 1) mode does not contribute

significantly to the total waveform and we can afford to simplify the reconstruction. It

can be seen from Fig. 3.1 that the ratio between the (2, 1) and (2, 2) amplitude is in

some cases well below 1%. If the amplitude at the ringdown cutting frequency is below a

threshold of 0.01, we remove the two intermediate collocation points. If the intermediate

collocation points have passed these preliminary tests, we check whether they form a
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monotonic sequence, and if not we remove f `mInt2
. Finally, we apply the parameter space

vetoes indicated in Tab. 3.6.

For the (3, 2) mode, we require that the amplitude at the ringdown cutting frequency is

above the same threshold applied to the (2, 1) mode. If this condition is not satisfied, we

remove the two intermediate collocation points. If it is, we check whether the collocation

points form a monotonic sequence. If not, we drop f `mInt2
. Finally, we apply our set of

parameter space vetoes.

The (3, 3) and (4, 4) modes are typically less problematic. However, we find that in the

high-spin, high-mass-ratio region (q > 7, χ1 > 0.95) the inspiral is very long and there is

a sharp transition to the ringdown, without a specific merger signature. For that reason

we remove the two intermediate collocation points and connect inspiral and ringdown

with a third-order polynomial. Once again, we apply the vetoes of Tab. 3.6.

After applying all the mode-specific vetoes, we check whether the denominator of our

polynomial ansatz ever crosses zero in the frequency range of the intermediate region. If

so, we lower the order of the polynomial by iteratively relaxing the boundary conditions

until we obtain a well-defined ansatz.

Table 3.5: Summary of the sanity checks used in the intermediate amplitude recon-
struction. The vetoes are sorted in order of application. The coefficient aλ will be

presented in Eq. (3.42).

Veto description Applied to modes Region where applied Collocation point removed

Amplitude at f `mInt1,2
< 0.2 21 q < 8 f `mInt1,2

Amplitude at f `mRD < 0.01 21 Always f `mInt1
& f `mInt2

32 f `mInt1
, f `mInt2

& derivatives at boundaries

Monotonicity (if f `mInt1
and f `mInt2

21, 32 Always f `mInt2

have passed the previous checks)

aλ badly behaved 33, 44 q > 7, χ1 > 0.95 f `mInt1
& f `mInt2

parameter space vetoes 21, 33, 32, 44 see Tab. 3.6 f `mInt1
& f `mInt2

Check that the denominator of the resulting ansatz does not cross zero, if so remove derivatives at boundaries

3.5.2 Phase

In the intermediate region our most general ansatz for the phase-derivative of each mode

reads:

dφInt
`m

df
= a`mλ

f `mdamp

(f `mdamp)2 + (f − f `mring)2
+

4∑
k=0

a`mk
fk

. (3.38)

For the modes that do not show significant mode-mixing, namely (2, 1), (3, 3), (4, 4), we

set a`m3 = 0 and retain all the remaining coefficients. This was done for consistency
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Table 3.6: parameter space regions where the two intermediate collocation points at
fInt1 and fInt2 are removed. "Still alive" means if the collocation point has not been

removed yet by the previous vetoes.

(`m) Region Veto applied if
21 η < 0.23 & χ1 > 0.7 & χ2 < −0.5 Always

q > 40 & χ1 > 0.9 f `mInt1,2
still alive

33 q > 40 & χ1 > 0.9 f `mInt1,2
still alive

32 q > 2.5 & χ1 < −0.6 & χ2 > 0 Always
χ1 < −0.9 & χ2 < −0.9 Always
q > 40 & χ1 > 0.9 f `mInt1,2

still alive
44 q > 40 & χ1 > 0.9 f `mInt1,2

still alive

with the IMRPhenomXAS model (see Subsec. VII B. of [1]). For these modes, we do

not impose any boundary condition, which leaves us with a total of five free coefficients,

which we determine by solving the linear system

dφInt
`m

df
(f i`m) = F i`m, i ∈ [1, 5] . (3.39)

In the above equation, f i`m are the frequencies of the intermediate-region collocation

points, and F i`m are the values of the phase-derivative evaluated at each f i`m, as recon-

structed through our parameter space fits.

In the reconstruction of the (3, 2) mode, we allow a32
3 to be non-zero: this extra degree of

freedom allows to have better control on the effects caused by mode-mixing (see Fig. 3.7).

In this case only, we impose two boundary conditions coming from the ringdown-region,

where the (3, 2) phase is also fully calibrated 1. We determine the six free coefficients of

Eq. (3.38) by solving the system

dφInt
3 2

df
(f i32) = F i32, i ∈ [1, 4] ,

dφInt
3 2

df
(f32
RD) =

dφRD
3 2

df
(f32
RD),

d2φInt
3 2

df
(f32
RD) =

d2φRD
3 2

df
(f32
RD). (3.40)

The explicit expressions for the frequencies of our intermediate-region collocation points

are given in Tab. 3.7. These values result from taking a mixture of equidistant and
1Notice that, when mode-mixing is absent, the ringdown is built through an appropriate rescaling

of the quadrupole’s phase and does not contain any information about the physical relative time-shifts
among the modes.



3 Modelling subdominant harmonics from non-precessing black-hole
binaries: IMRPhenomXHM 100

ϕ '32,NR

ϕ '32,PhenXHM

ϕ '22,PhenXHM

0.00 0.05 0.10 0.15 0.20
3000

3200

3400

3600

3800

4000

Figure 3.7: The plot shows the phase derivatives of the (3, 2) mode of a Fourier
domain hybrid waveform with parameters (q, χ1, χ2) = {3,−0.3, 0.}, compared with
the reconstructed (2, 2) and (3, 2) modes. The (3, 2) phase derivative does not show the

usual fall-off in the ringdown region, due to mode-mixing with the (2, 2).

Gauss-Chebyshev nodes in the interval
[
β(η)f `mIns , f

`m
End

]
, where

f `mEnd =


f `mring if (`,m) 6= (3, 2)

f22
ring − 0.5f22

damp if (`,m) = (3, 2)

and β(η) is a monotonically decreasing function of η that shifts forward the frequency

of the first collocation points for small η, thus reducing the steepness of the parameter

space fit surfaces in this limit, chosen here as β(η) := (1.+ 0.001(0.25/η − 1)).

Table 3.7: Frequencies of the collocation points used in the reconstruction of the
intermediate phase derivative.

Collocation point frequencies

f1
`m β(η)f `mIns

f2
`m

1
4

((√
3 + 2

)
β(η)f `mIns −

(√
3− 2

)
f `mEnd

)
f3
`m

1
4(f `mEnd + 3β(η)f `mIns )

f4
`m

1
2(f `mEnd + β(η)f `mIns )

f5
`m

1
4(3f `mEnd + β(η)f `mIns )

f6
`m

1
8(7f `mEnd + β(η)f `mIns )

We find it convenient to model one more collocation point than what is strictly needed,

in order to add some flexibility to the calibration. Our standard choice of collocation



3 Modelling subdominant harmonics from non-precessing black-hole
binaries: IMRPhenomXHM 101

points can result in a badly-behaved reconstruction in regions of the parameter space

where we have fewer calibration waveforms, such as the high spin and/or low-η regime.

In such cases, we drop one of the collocation points close to inspiral, where the phase

derivative has a steeper slope and is harder to model accurately, and replace it with a

point in the flatter near-ringdown region, as we illustrate in Fig. 3.8.
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C4 C5
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E2

E3

E4
E5

Equidistant

Chebyshev
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Figure 3.8: We compare two different sets of collocation points in the intermediate
region of the (3, 3) phase-derivative. Gauss-Chebyshev nodes are marked in red, while
equidistant nodes are marked in blue. We compute parameter space fits of the phase-
derivative evaluated at the points [C1,C2,E2,E3,E4,E5]. The default set of collocation
points is [C1,C2,E2,E3,E5]; in regions with fewer calibration waveforms, we switch to
the subset [C1,C2,E3,E4,E5], which contains more points close to the ringdown. Here,
the phase-derivative becomes flatter and our parameter space fits are more robust.

3.6 Ringdown model

The ringdown region covers the frequency range

Mf ∈
[
f `mRD, 0.3

]
, (3.41)

where f `mRD was defined in Eq. (3.36).

In IMRPhenomXHM, the modes (2, 1), (3, 3), (4, 4) have a fully calibrated amplitude,

while their phase is built by appropriately rescaling the quadrupole’s phase, along the

lines of IMRPhenomHM.

When mode-mixing visibly affects the ringdown waveform (i.e. in the (3, 2) mode recon-

struction), the model is instead fully calibrated to NR. In this case, the key observation

is that the signal is much simpler when expressed in terms of spin-weighted spheroidal

harmonics, as we illustrate in Figs. 3.9 and 3.10. This can be traced back to the fact that

the Teukolsky equation is fully separable only in a basis of spheroidal harmonics, and

not in a spherical-harmonic one [64].
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Figure 3.9: The phase derivative of the (3, 2) mode can exhibit sharp features when
plotted in the original spherical-harmonic basis (black solid line). However, the same
signal written in terms of spheroidal harmonics is much simpler (blue solid line) and
amenable to be fitted with the same ansatz used in IMRPhenomXAS and IMRPhe-
nomD. Red and green lines mark the direct fit to the data and the final reconstruction.

Under the simplifying assumption that the (3, 2) mode interacts only with the (2, 2)-

mode, the spherical-harmonic strains can be projected onto a spheroidal-harmonic basis

by means of a simple linear transformation, which we describe in App. 3.A. We re-

construct amplitude and phase of the signal in a spheroidal-harmonic basis and then

transform the full waveform back into the original basis. After doing so, the ringdown

reconstruction can be smoothly connected to the inspiral-merger waveform.

In the following subsections, we provide further details about the ansätze used in this

region.

3.6.1 Amplitude

The ansatz we adopt is similar to the one used in IMRPhenomXAS:

A`mRD
A22

0

=
1

f
1
12

|aλ| f `mdamp σ(
f − f `mring

)2
+
(
f `mdamp σ

)2 e
−(f−f`mring) λ

f`m
damp

σ
, (3.42)

except for the factor f−1/12 used here for historical reasons and for the replacement of the

(2, 2) ringdown and damping frequencies with those of the corresponding (`,m) mode.

This ansatz is used for all the modes calibrated in the model. Notice, however, that for

the (3, 2) mode the ansatz is fitted to the data expressed in a spheroidal-harmonic basis,

see Fig. 3.10.



3 Modelling subdominant harmonics from non-precessing black-hole
binaries: IMRPhenomXHM 103

Spherical Data

Spheroidal Data

Spherical Ins Fit

Spheroidal RD Fit

0.005 0.010 0.050 0.100

10-4

0.001

0.010

0.100

1

10

fIns fMRD

Spherical data

Spherical Inspiral Fit

Spheroidal fit rotated to spherical

Intermediate reconstruction

0.005 0.010 0.050 0.100
10-5

10-4

0.001

0.010

0.100

1

10

Figure 3.10: Top: The amplitude of the (3,2) mode expressed in a spherical (red)
and spheroidal (green) basis for a {q, χ1, χ2} = {3, 0, 0} case. The latter can be easily
fitted using the ansatz (3.42) (orange curve). The inspiral portion of the amplitude is
fitted in a spherical-harmonic basis (blue dashed line), therefore the ringdown waveform
must be transformed back to the original basis before being smoothly attached to the
rest of the model. Bottom: NR data and final reconstruction in spherical-harmonics
for the same case plotted in the top panel. The black line is the transformation to a
spherical-harmonic basis of the orange curve in the top plot (which is computed instead
in a spheroidal-harmonic basis) . The green line is a smooth connection between the
inspiral and ringdown fits (blue and black lines respectively) that goes through the two

collocation points in the intermediate region.

We first fit the free coefficients {aλ, λ, σ} to NR data in a “primary” direct fit and then

perform a parameter space fit of each coefficient for every mode. We find that the

coefficient σ shows a very small dynamic range for the modes (3, 3), (3, 2) and (4, 4), and

we thus take it as a constant. We then perform a “secondary” direct fit where we redo

the direct fits using the constant values for σ shown in Tab. 3.8. Finally we repeat the

parameter space fits for aλ and λ.

The final reconstruction of the amplitude through inspiral, merger and ringdown for the

modes without mixing can be seen in Fig. 3.11.
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Table 3.8: Mode-specific values for the parameter σ appearing in Eq. (3.42). In the
final model σ is taken to be fixed across parameter space except for the 21 mode. Here
we show these fixed values, which correspond to an average across the parameter space

of the values obtained through direct fits where σ is not specified a priori.

Mode σ value

33 1.3

32 1.33

44 1.33

21 NR data

33 NR data

44 NR data

Model
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Figure 3.11: Comparison between the NR data and the final model for the amplitude
of three modes for a system with {q, χ1, χ2} = {3, 0, 0}.

3.6.2 Phase

3.6.2.1 Modes without mode-mixing

To model the (2, 1), (3, 3), (4, 4) modes, for which mode-mixing is negligible, we rescale

a simplified reconstruction of the quadrupole’s ringdown phase, much in the spirit of

IMRPhenomHM.

Our ansatz for the phase-derivatives in this case reads:

dφRD
`m

df
= α`m2

(f `mring)
2

f2
+ α`mλ

f `mdamp

(f `mdamp)2 + (f − f `mring)2
+ dφ`mRD, (3.43)

which, integrated, gives:

φRD
`m = −α`m2

(f `mring)
2

f
+ α`mλ tan−1

(
f − f `mring
f `mdamp

)
+ dφ`mRDf + φ`mRD, (3.44)
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We first compute parameter space fits of the quantities α22
λ and α22

2 and rescale them to

obtain their higher-modes counterparts. We set

α`mλ = α22
λ ,

α`m2 = w`m
f22

damp

f `mdamp

α22
2 , (3.45)

where w`m are some constants, which only depend on `,m and not on the intrinsic pa-

rameters of the binary. We verified that the above equalities hold, albeit approximately,

for the parameters of the direct fits to each mode’s phase derivative.

The shifts dφ`mRD and φ`mRD are fixed by requiring a smooth connection to the intermediate-

region reconstruction.

3.6.2.2 Modes with mode-mixing

As we outlined at the beginning of this section, the morphology of the (3, 2) mode

ringdown signal is significantly affected by mode-mixing. In this case, we first build a

reconstruction of the phase derivative in a spheroidal-harmonics base, using the ansatz

below

dφ32,S

df
=
α32

2

f2
+
α32

4

f4
+ α32

λ

f32
damp

(f32
damp)2 + (f − f32

ring)
2

+ dφ32
RD. (3.46)

Integrating the above equation, one obtains

φ32,S = −α
32
2

f
− α32

4

3f3
+ α32

λ tan−1

(
f − f32

ring

f32
damp

)
+ dφ32

RDf + φ32
RD, (3.47)

where the subscript S is a reminder that we are now working in a spheroidal-harmonic

basis. The four free coefficients of Eq. (3.46) are determined by solving the linear system

dφRD
32,S

df
(f i32) = Gi32, i ∈ [1, 4] , (3.48)

where Gi32 are some parameter space fits of the value of the phase derivative, evaluated

at four collocation points f iRD, i ∈ [1, 4], given in Tab. 3.9.

One must ensure that φ32,S has the correct relative time and phase shift with respect

to the (2, 2) mode that is being used, or else the transformation back to the original

spherical-harmonic basis will produce an incorrect result. Therefore, we compute two
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Table 3.9: Frequencies of the collocation points used in the reconstruction of the (3, 2)
mode phase derivative.

Collocation points for φ′32,S

f1
32 f22

ring

f2
32 f32

ring − 3/2f32
damp

f3
32 f32

ring − 1/2f32
damp

f4
32 f32

ring + 1/2f32
damp

extra fits

∆T32,S = φ
′
32,S(f0)− φ′22(f0) (3.49)

∆φ32,S = φ32,S(f1)− φ22(f1), (3.50)

at some suitable reference frequencies f0, f1 in the ringdown region, and use them to

correctly align our spheroidal-harmonic reconstruction to the quadrupole’s phase given

by IMRPhenomXAS.

In Fig. 3.12 we plot the (3, 2) mode of a hybrid waveform built from the SXS simulation

SXS:BBH:0271 and show the corresponding time-domain reconstructions resulting from

IMRPhenomXHM and IMRPhenomHM. The plot shows that our model can better

capture the effects of mode-mixing on the ringdown waveform.

-400 -300 -200 -100 0 100

-0.010

-0.005

0.000

0.005

0.010

0.015

Figure 3.12: The plot shows the last few cycles of a hybrid (3, 2) mode waveform built
hybridizing the SXS simulation SXS:BBH:0271 with SEOBNRv4 (black solid line), to-
gether with the corresponding IMRPhenomXHM and IMRPhenomHM reconstruc-
tions (red and green dashed lines respectively). The (22) modes of all waveforms have

been previously time-shifted so that their amplitudes peak at t = 0.
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3.7 Quality control

3.7.1 Single Mode Matches

To quantify the agreement between two single-mode waveforms (reals in time domain)

we use the standard definition of the inner product (see e.g. [65]),

〈h1, h2〉 = 4Re

∫ fmax

fmin

h̃1(f) h̃∗2(f)

Sn(f)
, (3.51)

where Sn(f) is the one-sided power spectral-density of the detector. The match is defined

as this inner product divided by the norm of the two waveforms and maximised over

relative time and phase shifts between both of them,

M(h1, h2) = max
t0,φ0

〈h1, h2〉√
〈h1, h1〉

√
〈h2, h2〉

. (3.52)

Accordingly, we define the mismatch between two waveforms as

MM(h1, h2) = 1−M(h1, h2). (3.53)

For our match calculations we use the Advanced-LIGO design sensitivity Zero-Detuned-

High-Power PSD [66, 67] with a lower cutoff frequency for the integrations of 20 Hz.

In Fig. 3.13 we first show single-mode mismatches against a validation set consisting

of 387 of our hybrid waveforms built from the latest SXS collaboration catalog, where

we have discarded 152 hybrids, which show up as outliers in our calibration procedure

for at least one of the modes, which we suspect to be due to quality problems with

the waveforms. The list of SXS waveforms we have used is provided as supplementary

material. The matches were computed for masses between 20M� and 300M�, with a

spacing of 10M� between subsequent bins.

We also show mismatches among IMRPhenomXHM, the previous IMRPhenomHM

model and the independent NRHybSur3dq8 surrogate model. Total masses are log-

uniformly distributed in the range [3M�, 150M�] (with individual masses not smaller

than 1M�). In Fig. 3.14 we show the mismatches for the calibration region of NRHyb-

Sur3dq8, for mass ratios below 9.09 and dimensionless spin magnitudes up to 0.8, and

up to 0.5 in the neutron star sector of total masses up to 3M�. We carry out three sets of

comparisons, in red we have the mismatches between IMRPhenomXHM and IMRPhe-

nomHM, in blue IMRPhenomHM versus NRHybSur3dq8 and finally in green IM-

RPhenomXHM versus NRHybSur3dq8. The results show that IMRPhenomXHM
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Figure 3.13: Mode-by-mode mismatches between IMRPhenomXHM and a valida-
tion set of hybrids built using the latest release of the SXS collaboration catalog. Each
plot shows the minimum (red), average (blue) and maximum (green) mismatch over a

range of total masses between 20 and 300 solar masses.

is in a much better agreement with the surrogate model that the previous version IM-

RPhenomHM, the improvement is particularly remarkable for the (3, 2) mode due to

the modelling of the mode-mixing. In Fig. 3.15 we show matches for cases outside of the

spin region defined before to assess the effects of extrapolation beyond the calibration

region.

3.7.2 Multi-Mode Matches

When having a multi-mode waveform, not only it is important to model accurately each

individual mode but also the relative phases and time shifts between them. To test
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Figure 3.14: Mismatches between different models for all the modes modelled by
IMRPhenomXHM with the aLIGOZeroDetHighPower PSD (see the main text for
further details). The parameter range is restricted to avoid extrapolation as detailed

in the main text.

this we compute the mismatch for the h+ and h× polarizations between our hybrids

and the model for three inclination values: 0, π/3 and π/2 (rad). The polarizations for

the hybrids and the model are built with the same inclination, however the azimuthal

angle entering the spherical harmonics can be different. We denote by φS and φT the

azimuthal angle of the hybrids (source) and model (template) respectively. φS takes the

values of an equally spaced grid of five points between 0 and 2π. Then for each value

of φS we numerically optimize the value of φT that gives the best mismatch. For each

configuration of inclination and φS the mismatch is computed for an array of 8 total

masses from 20M� to 300M� logarithmically spaced and then we take the minimum,

median and maximum values over all these configurations. Similarly to the single-mode
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Figure 3.15: Mismatches between different models for all the modes modelled by
IMRPhenomXHM with the aLIGOZeroDetHighPower PSD (see the main text for
further details). The parameter range is chosen to test the extrapolation region of

parameter space detailed in the main text.

matches we used the Advanced-LIGO design sensitivity Zero-Detuned-High-Power noise

curve and a lower cutoff of 20 Hz. The results are shown in Fig. 3.16. It can be observed

that the mismatches degrade for higher inclinations due to the weaker contribution of

the dominant (2, 2) mode which is the best modelled mode, although events that are seen

close to edge-on are much less likely to be detected due to the reduced signal-to-noise-

ratio. For edge-on systems we only show results for the h+ polarization, since the h×
vanishes. Alternative ways of quantifying multi-mode mismatches have been used in the

literature, see e.g. [68] or [69], with different advantages and drawbacks. The quantities

we show here are chosen for simplicity.
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Figure 3.16: Mismatches for the h+(left) and h×(right) polarizations between hybrids
and IMRPhenomXHM for three different inclinations. For edge-on systems we only
show results for the h+ polarization since h× vanishes. The minimum, maximum and
median legends are taken over the range of total masses and azimuthal angle φS for the
hybrids. The mismatch is numerically optimized over the azimuthal angle φT of the

model (see main text for the details).

3.7.3 Recoil

Asymmetric black-hole binaries will radiate gravitational waves anisotropically. This will

result in a net emission of linear momentum, at a rate (in geometric units)

dP k

dt
=

r2

16π

∫
dΩ
(
ḣ2

+ + ḣ2
×

)
nk, (3.54)

where nk is the radial unit-vector pointing away from the source, leading the final remnant

to recoil in the opposite direction. The precise value of the final recoil velocity will depend
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on the interactions among different GW multipoles. This quantity is extremely sensitive

to the relative time and phase shifts among different modes and thus provides an excellent

and physically meaningful test-bed for our model.

We computed the final recoil velocity predicted by IMRPhenomXHM for different bi-

nary configurations and compared the results with those obtained directly from our

hybrid waveforms. As new numerical simulations became available, several works pre-

sented increasingly improved NR-based fits for the final recoil velocity (see for instance

[70–73] and the latter reference for further works and comparisons). Below we compare

our results to the fit of Ref. [71], for two test configurations: a black-hole binary where

both bodies are non-spinning (Fig. 3.17), and one where both are spinning with Kerr

parameters χ1 = χ2 = 0.5 (Fig. 3.18). For comparison, we also show the recoil velocities

obtained with IMRPhenomHM.
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Figure 3.17: In this plot we show the absolute value of the final recoil velocity for
a non-spinning black-hole binary, as computed with IMRPhenomXHM (in red) IM-
RPhenomHM (green), and with the fit of Ref. [71] (black). In blue we show the
recoil velocity for all the non-spinning configurations in our calibration dataset. We
can see that, when a good number of NR waveform is available, our calibrated model

can reproduce with great accuracy the final velocity of the remnant.

3.7.4 Time-domain behaviour

We have checked that the model has a reasonable behaviour in regions of the parameter

space where no simulations are available (e.g. 18 ≤ q ≤ 200) and for extreme spins. We

show here example-waveforms to test both these regimes. Figs. 3.19 and 3.20 show single-

mode waveforms for binaries with parameters (q, χ1, χ2) = (4, 1, 1) and (q, χ1, χ2) =

(100, 0.7, 0.7), respectively. We can see that in both cases the model returns well-behaved

waveforms.
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Figure 3.18: In this plot we show the absolute value of the final recoil velocity |vf |
for an equally-spinning black-hole binary with adimensional spins χ1 = χ2 = 0.5, as
computed with IMRPhenomXHM (in red) IMRPhenomHM (green), and with the
fit of Ref. [71] (black, note that here we also shade in gray the fit’s error margins,
using the error estimates provided by the authors in Tab. IV of the aforementioned
reference). In blue we show the recoil velocity for all the corresponding configurations
in our calibration dataset. Note that, despite the loss of accuracy due to having fewer
waveforms than in the non-spinning case, our model returns a value of |vf | much closer

to NR than the uncalibrated version.

3.7.5 Parameter estimation: GW170729

In our companion paper to present IMRPhenomXAS for the (2, 2) mode we re-analyzed

the data for the first gravitational wave event, GW150914, as an example for an appli-

cation to PE. Here we present a re-analysis of GW170729, where the effect of models

with subdominant higher harmonics has been discussed in the literature [16], and we

will demonstrate broad agreement between IMRPhenomXHM, IMRPhenomHM and

SEOBNRv4HM for this event. Again we use coherent Bayesian inference methods to

determine the posterior distribution p(~θ|~d) to derive expected values and error estimates

for the parameters of the binary. Following [16], we use the public data for this event

from the Gravitational Wave Open Science Center (GWOSC) [74–76] calibrated by a

cubic spline and the PSDs used in [8]. We analyze four seconds of the strain data set

with a lower cutoff frequency of 20Hz. For our analysis we use the LALInference [9]

implementation of the nested sampling algorithm. We perform the runs using 2048 ’live

points’ for five different seeds, then merge into a single posterior result. We choose the

same priors used in [16], taking into account that IMRPhenomXHM is a non-precessing

model and we have to use aligned spin priors.

In Fig. 3.21 we compare our results with the higher mode models (IMRPhenomHM

and SEOBNRv4HM) and the (2,2) mode model results (IMRPhenomD) published in

[16]. We find that the posteriors derived from IMRPhenomXHM are consistent with
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Figure 3.19: Single-mode waveforms for a binary with q = 4, with maximally spin-
ning black holes. The model appears to extrapolate well beyond its calibration region

(|χ1,2| ≤ 0.99).

the two other models that include higher harmonics, which can be distinguished from

the results obtained for models that only include the (2,2) mode.

3.7.6 NR injection study

As a further test of the improvements brought by IMRPhenomXHM, we have performed

PE of a synthetic signal generated using the public SXS waveform SXS:BBH:0110. This

corresponds to a binary with strongly asymmetric masses (q = 5), and adimensional

spin magnitudes χ1 = 0.500, χ2 = 0. at a reference frequency of 20 Hz. We injected

the signal into a Hanford-Ligo-Virgo detector network in zero-noise and used Advanced-

LIGO design sensitivity PSDs. The mock signal had chirp massM = 18.96M� and total

mass 62M� in detector frame, right ascension ra = 1.4 rad, declination dec = −0.6 rad

and geocentric time tc = 1126259600.0 s. The source was placed at a luminosity distance

dL = 600 Mpc at an inclination ι = π/3. The network SNR of this configuration

was 17.9. For this analysis we used the gravitational-wave inference library pBilby
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Figure 3.20: Single-mode waveforms for a binary with q = 100, χ1 = χ2 = 0.7. There
are no NR simulations in our calibration dataset with q > 18, and the extrapolation
to high mass-ratios is done by placing Teukolsky waveforms at the large-q boundary of
the parameter space, as explained in Subsec. 3.3.2. Here we can see that the model

achieves a smooth transition between NR and point-particle physics.

[10, 77] with dynamic nested sampling [78] and 2048 live points. We present our results

in Fig. 3.22 and 3.23. IMRPhenomXHM delivers a better recovery of the mass ratio

(centre panel of Fig. 3.22) and, although the measurement of χeff is very consistent with

IMRPhenomHM, the spin of the primary appears to be more tightly constrained by

the upgraded model.

3.7.7 Computational cost

We will now compare the computational cost of the evaluation of different models avail-

able in LALSimulation compared to the IMRPhenomX family. Since the different models

include a different number of modes we also show the evaluation time per mode. Us-

ing the GenerateSimulation executable within LALSimulation we compute the average

evaluation time over 100 repetitions for a non-spinning case (q, χ1, χ2) = (1.5, 0, 0) for

a frequency range of 10 to 2048 Hz. We vary the total mass of the system from 3 to
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Figure 3.21: Comparison between IMRPhenomXHM, IMRPhenomHM, SEOB-
NRv4HM and IMRPhenomD (results for the latter three models are taken from [16])
for the event GW170729 as discussed in Sec. 3.7.5. We show posterior distributions
of mass ratio, total mass, effective aligned spin and luminosity distance. The dashed

vertical lines mark the 90% confidence limits.

Figure 3.22: 1D posterior distributions for some of the mass and spin parameters char-
acterizing the mock signal generated using the public SXS simulation SXS:BBH:0110.
Results obtained with IMRPhenomXHM and IMRPhenomHM are plotted in or-
ange and blue respectively. A vertical black line marks the injected value. Dashed lines

indicate 90% credible intervals.
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Figure 3.23: Joint posterior distributions for the individual spins χ1, χ2. Dashed
lines indicate 90% credible intervals. Solid black lines mark the injected values for each
parameter (note that the secondary has zero spin, and therefore the line in this case

coincides with the x-axis).

300 solar masses and the frequency spacing df is automatically chosen by the function

SimInspiralFD to take into account the length of the waveform in the time domain for

the given parameters. All the timing calculations were carried out in the LIGO cluster

CIT to allow comparison with the benchmarks we have shown in [30] to compare different

accuracy thresholds of multibanding which is a technique that accelerate the evaluation

of the model by evaluating it in a coarser non-uniform frequency grid and using inter-

polation to get the waveform in the final fine uniform grid, reducing considerably the

computational cost.

In Fig. 3.24 the dashed lines represent models for only the (2, 2) mode (IMRPhenomD,

SEOBNRv4_ROM and IMRPhenomXAS). We see that the three models show very

similar performance for low masses, while for higher masses the IMRPhenom models are

faster. Models that include higher modes are shown with solid lines: NRHybSur3dq8

(11 modes), IMRPhenomHM (6 modes) and IMRPhenomXHM (5 modes), the lat-

ter is shown with and without the acceleration technique of multibanding [30]. Since

NRHybSur3dq8 is a time domain model, for many applications the actual evaluation

time would also include the time for the Fourier transformation to the frequency domain,

which can also lead to requirements for a lower start frequency and windowing to avoid

artefacts from the Fourier transforms, which again would increase evaluation time. We

also see that the new model IMRPhenomXHM without multibanding is already sig-

nificantly faster than the previous IMRPhenomHM model. Comparing the new model

to the surrogate, IMRPhenomXHM without multibanding is significantly faster when

considering all the modes, but the evaluation cost per mode is only lower for high masses.
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However, using the multibanding technique [30] with the threshold value of 10−3, which

is the default setting when calling the model in LALSuite (IMRPhenomXHM_MB3

in the plot), IMRPhenomXHM is significantly faster also for the evaluation time per

mode. The threshold value can be adjusted to control the speed and accuracy of the

algorithm as explained in appendix 3.C and in [30], where we have shown that for an

example injection of a relatively high signal-to-noise ratio 28, even at a threshold of 10−1,

which evaluates significantly faster than the conservative default setting, differences in

posteriors are hardly visible.

IMRPhenomD
SEOBNRv4_ROM
IMRPhenomXAS
NRHybSur3dq8

IMRPhenomHM
IMRPhenomXHM
IMRPhenomXHM_MB3
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Figure 3.24: Evaluation time of different waveform models in LALSimulation. Top
panel: we show the total contribution of the evaluation of the quadrupolar/multimode
waveform. Bottom panel: evaluation time per mode, the models include different num-

bers of modes, so we average over this number for a fair comparison.

3.8 Conclusions

Phenomenological waveform models in the frequency domain have become a standard

tool for gravitational wave PE [8] due to their computational efficiency, accuracy [79], and

simplicity. The current generation of such models has been built on the IMRPhenomD
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model for the (2,2) mode of the gravitational wave signal of non-precessing and non-

eccentric coalescing black holes, which has been extended to precession by the IMRPhe-

nomP [4, 80] and IMRPhenomPv3 [33] models, to sub-dominant harmonics by the IM-

RPhenomHM model, and to tidal deformations by the IMRPhenomPv2_NRTidal

model [81, 82].

The present paper is the second in a series to provide a thorough update of the family

of phenomenological frequency domain models: In a parallel paper [1] we have presented

IMRPhenomXAS, which extends IMRPhenomD to a genuine double spin model, in-

cludes a calibration to extreme mass ratios, and improves the general accuracy of the

model. In the present work we extend IMRPhenomXAS to subdominant modes. Con-

trary to IMRPhenomHM, the IMRPhenomXHM model we present here is calibrated

to numerical hybrid waveforms, and we have tested in Sec. 3.7 that the new model is

indeed significantly more accurate than IMRPhenomHM.

Calibration of the model to comparable mass numerical data has proceeded in two steps:

we have started with a data set based on NR simulations we have performed with the

BAM and Einstein Toolkit codes, and the data set corresponding to the 2013 edition

of the SXS waveform catalog [52] (including updates up to 2018). The quality and

number of waveforms available at the time has determined the number of modes we

model in this paper, i.e. the (2, 1), (3, 2), (3, 3) and (4, 4) spherical harmonics. During

the implementation of the model in LALSuite [2], the 2019 edition of the SXS waveform

catalog [58] became available, and we have subsequently upgraded the calibration of

IMRPhenomXAS and of the subdominant mode phases to the 2019 SXS catalog. We

have not updated the amplitude calibrations, which are more involved but contribute

less to the accuracy of the model. Instead, we plan to update the amplitude model in

future work, where we will include further harmonics, in particular the (4, 3) and (5, 5)

modes, which we can now calibrate to numerical date thanks to the increased number of

waveforms and improved waveform quality of the latest SXS catalog.

The computational performance and a method to accelerate the waveform evaluation by

means of evaluation on appropriately chosen unequally spaced grids and interpolation is

presented in a companion paper [30].

While IMRPhenomXHM resolves various shortcomings of IMRPhenomHM, further

improvements are called for by the continuous improvement of gravitational wave de-

tectors: We will need to address the complex phenomenology of the (2,1) harmonic for

close to equal masses, add further modes as indicated above, and include non-oscillatory

m = 0 modes.
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IMRPhenomXHM can be extended to precession following [4, 80, 33]. Regarding mode

mixing in the context of precession one will however take into account that mixing

then occurs between precessing modes [83], while current phenomenological precession

extensions handle mode-mixing at the level of the co-precessing modes.
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Appendices

3.A Conversion from spheroidal to spherical-harmonic modes

Spin-weighted spheroidal harmonics can be written as a linear combination of spherical

ones:

sS(a, θ, φ)ml =
∞∑
l′=2

αl l′m(a) s Y (θ, φ)ml′ . (3.55)

In the sum above, each spherical harmonic is weighted by a mixing coefficient αl l′m
measuring its overlap with the corresponding spherical harmonic:

αl l′m =

∫
dΩ sS(a, θ, φ)ml s Y

∗(θ, φ)ml′ . (3.56)

Note that the mixing coefficients are functions of the final spin only. Although in theory

the (3, 2) couples to all the modes with m = 2, in practice we find that the strongest

source of mode-mixing comes from the mixing with the (2, 2). Therefore, we choose to

neglect the coupling to modes with l > 3.

Under this assumption the coefficients of the strain in the two bases of harmonics are

related via the following simple linear transformation:(
h22

h32

)
=

(
α222 α232

α322 α332

)(
hS22

hS32

)
. (3.57)

The mixing coefficients have been computed in [46] for black holes spinning up to χf =

0.9999. To improve accuracy for extreme spins, we perform a quadratic-in-spin fit of all

the data-points with χf ∈ [0.999, 0.9999] and use it to obtain the values of the mixing

coefficients extrapolated at |χf | = 1.
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3.B Testing tetrad conventions

The relative phase-alignment of the different modes is established trough Eq. (3.34),

which implies a specific choice of tetrad convention. One can check that, when call-

ing the model in time-domain, IMRPhenomXHM returns modes that follow the same

convention adopted for the LVCNR catalog [84]. One has that

mod (2Φ`m −mΦ22, 2π) =

π m odd

0 m even

holds for both the LVCNR catalog and the IMRPhenomXHM higher-multipoles.
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Figure 3.B.1: The quantity mod (2Φ`m − mΦ22, 2π) can be used to discriminate
between different tetrad conventions. Here we show that the time-domain conversion of
IMRPhenomXHM follows the same tetrad choice implemented in the LVCNR catalog.

3.C Notes on the implementation of the IMRPhenomXHM

model in the LIGO Algorithms Library

The IMRPhenomXHM model is implemented in the C language as part of the LALSimIMR

package of inspiral-merger-ringdown waveform models, which is part of the LALSimulation

collection of code for gravitational waveform and noise generation within LALSuite [2].
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Online Doxygen documentation is available at https://lscsoft.docs.ligo.org/lalsuite,

with top level information for the LALSimIMR package provided through the LALSimIMR.h

header file. Externally callable functions of the IMRPhenomXHM model follow the

XLAL coding standard of LALSuite.

Following our implementation of the IMRPhenomXAS model, our IMRPhenomXHM

implementation is highly modularised, such that the inspiral, intermediate and ringdown

parts can be updated independently, they are also tracked with independent version

numbers, and are implemented in different files of the source code. Note that the XLAL

standard implies that all the source code files are included via the C preprocessor into

the main driver file, LALSimIMRPhenomXHM.c.

The model can be called both in the native Fourier domain, and in the time domain,

where an inverse fast Fourier transformation is applied by the LALSuite code. The SWIG

[85] software development tool is used to automatically create Python interfaces to all

XLAL functions of our code, which can be used alternatively to the C interfaces.

Special attention is due for the time and phase alignment of our LALSuite implemen-

tation. As mentioned in Sec. 3.2.2, our hybrid waveforms are aligned in time such that

the Newman-Penrose scalar for the ` = |m| = 2 modes peaks 500M before the end of

the waveform. In the LALSuite implementation, we first apply a global time-shift of

500M to our reconstructed waveforms, and then a parametric fit that accounts for the

time-difference between the peak-time of ψ4 and that of strain. An inverse Fourier trans-

formation of the Fourier domain waveform, as produced by LALSuite, will then return

a strain peaking around the end of the waveform.

When calling the model in the time domain through LALSimulation’s ChooseTDWaveform

interface, the time coordinate is chosen such that t = 0 for the peak of the sum of the

square of the polarizations:

A(t) = h2
+(t) + h2

×(t), (3.58)

A(t = 0) = Apeak. (3.59)

These polarizations include all the modes used to generate the model and also depend on

the line of sight from the detector to the source through the inclination and azimuthal

angle. This choice is consistent with the choice made for the IMRPhenomHM model.

In LALSimulation the model is called through the function ChooseFDWaveform, whose

input parameters f_ref and phiRef are used to define the phase of the (2, 2) mode at

some particular reference frequency. The rest of the modes are built with the correct

relative phases with respect to the (2, 2) mode. The argument phiRef is defined as the



3 Modelling subdominant harmonics from non-precessing black-hole
binaries: IMRPhenomXHM 125

orbital phase at the frequency f_ref. See our discussion in the context of IMRPhe-

nomXAS [1] for further details. We relate this with the frequency domain (2, 2) phase

by means of the SPA (see also our discussion in [1]).

Ψ2−2(f_ref) = 2phiRef− 2π f_ref tf_ref +
π

4
. (3.60)

Note that when talking about positive frequencies we have to refer to the negative mode,

although we usually skip the minus sign for economy of the language.

Since our model is built in the Fourier domain we can not compute the quantity tf_ref
without a Fourier transformation to the time domain plus a numerical root finding,

and we currently set it to tf_ref = 0. Furthermore, the expression (3.60) would not

be valid if f_ref is situated in the merger-ringdown part of the waveform, because the

SPA approximation is only reliable for the inspiral. This means that when comparing a

time-domain model with our model with the exact same parameters we can only expect

them to agree up to rotations, and would thus have to optimize over phiRef to achieve

agreement.

In LALSimulation the azimuthal angle that enters in the spin-weighted spherical har-

monics is defined as β = π
2 − phiRef, this means that changing the parameter phiRef is

equivalent to rotating the system: For example, by increasing the phiRef by a quantity

δφ, we would rotate the system an angle −δφ. When the (2, 2) mode only is considered,

phiRef acts just as a global phase factor for the waveform (ei 2phiRef) and the match is

not affected since it maximizes over phase and time shifts. However, when higher modes

are included this is not satisfied anymore since the term ei mphiRef is different for every

mode and can not be factored out. Note that in our LALSuite code, this rotation is

applied to every individual mode, such that individual modes and the mode sum are

consistent with respect to rotations.

The user is free to specify the spherical harmonic modes that should be used to construct

the waveform. The default behaviour is to use all the modes available: ((2± 2), (2± 1),

(3 ± 3), (3 ± 2), (4 ± 4)), below we describe how the modes can be chosen through the

different interfaces available for LALSuite waveforms.

Furthermore, the model implemented in LALSuite supports acceleration of waveform

evaluation by interpolation of an unequispaced frequency grid broadly following the

multibandin of [31]. Our version of the algorithm is described in [30] to do the evaluation

faster and can also use a custom list of modes specified by the user. The multibanding

algorithm is parameterized by a threshold, which describes the permitted local interpo-

lation error for the phase in radians, lower values thus correspond to higher accuracy.

The default value is set to a value of 10−3.
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Extensive debugging information can be enabled at compile time with the C preprocessor

flag -D PHENOMXHMDEBUG.

Python Interface. To call the model with the default behaviour we use the function

SimInspiralChooseFDWaveform from lalsimulation with the argument lalparams be-

ing an empty LALSuite dictionary lalparams=lal.CreateDict(). The threshold of the

multibanding and the mode array can be changed by adding their values to the LALSuite

dictionary in the following way:

lalsimulation.SimInspiralWaveformParamsInsertPhenomXHMThresholdMband(lalparams, threshold)

ModeArray = lalsimulation.SimInspiralCreateModeArray()

for mode in [[2,2],[2,-2],[2,1],[2,-1]]:

lalsimulation.SimInspiralModeArrayActivateMode(ModeArray, mode[0], mode[1])

lalsimulation.SimInspiralWaveformParamsInsertModeArray(lalparams, ModeArray).

If threshold=0 then multibanding is switched off. By calling ChooseFDWaveform with

this LALSuite dictionary we would get the hp and hc polarizations from the contribution

of the (2, 2), (2,−2), (2, 1), and (2,−1) modes without using multibanding.

GenerateSimulation Interface. This is an executable in LALSimulation called through

command line. The parameters to evaluate the model are passed by options like –m1,

–spin1z, etc. The multibanding threshold and the mode array are specified as follows

./GenerateSimulation --approximant IMRPhenomXHM

...waveform params...

--phenomXHMMband 0.

--modesList "2,2, 2,-2, 2,1, 2,-1".

LALInference and Bilby. We also included the options in the two standard codes to

perform Bayesian inference in gravitational wave data analysis: LALInference[86] and

Bilby [10]. LALInference uses the same syntax than GenerateSimulation when called

through the command line. You can also add these options to the config file and the

example we have employed so far can be called as:

[engine]

...

approx = IMRPhenomXHMpseudoFourPN

modesList = "2,2, 2,-2, 2,1, 2,-1"
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phenomXHMMband = 0

...

Note that in the current version of LALInference the string pseudoFourPN has to be

added to the name of the approximant. For Bilby these options are specified in the

waveform_argument dictionary defined in the configuration file. The equivalent example

would be called as:

waveform_arguments =

dict(waveform_approximant="IMRPhenomXHM",

reference_frequency=50.,

minimum_frequency=20.,

mode_array=[[2,2],[2,-2],[2,1],[2,-1]],

phenomXHMMband=0.).

The released version of Bilby does not support the multibanding option yet, how-

ever a private branch that support this option can be downloaded with git clone

-b imrphenomx https://git.ligo.org/cecilio.garcia-quiros/bilby.git. Equiv-

alently we provide a branch for the PyCBC software [87] which can be obtained with the

command git clone -b imrphenomx https://github.com/Ceciliogq/pycbc.git.

3.D Inspiral phase: higher-mode extension of IMRPhe-

nomXAS

The inspiral orbital phase calibrated in IMRPhenomXAS can be written as a pseudo-

PN expansion:

φ22(f) = N (Mf)−5/3
9∑
i=0

(Mf)i/3
(
ci22 + di22 log f

)
, (3.61)

where N is a certain normalization constant. In the reconstruction of the higher-mode

inspiral phase we need m
2 φ22( 2

mf) (see Eq. (3.29) ). To avoid recomputing the (2, 2)-phase

on a new frequency array for each mode, we wish to rewrite this quantity as

m

2
φ22

(
2

m
f

)
= N (Mf)−5/3

9∑
i=0

(Mf)i/3
(
cim + dim log f

)
, (3.62)

where all the rescaling factors have been reabsorbed in frequency-independent coeffi-

cients. It is straightforward to verify that the coefficients of the two expansions above

https://git.ligo.org/cecilio.garcia-quiros/bilby.git
https://github.com/Ceciliogq/pycbc.git
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are related as follows:

cim =
(m

2

)(8−i)/3 (
ci22 − di22 log

m

2

)
,

dim =
(m

2

)(8−i)/3
di22. (3.63)

3.E Fourier Domain Post-Newtonian amplitudes

When comparing the Fourier domain expressions for the spherical harmonic mode am-

plitudes given in equations (11-12) of [50] we found significant discrepancies with our

numerical data. We have thus recomputed the mode amplitudes as outlined below, and

include the explicit expressions we have used (which deviate from [50] at 2PN order),

and which resolve the observed discrepancies with the numerical data, at the end of this

appendix.

The time domain PN spherical harmonic modes are typically written in the form

h`m = A`me
−imφ, A`m(x) = 2 η x

√
16π

5
ĥ`m. (3.64)

Expressions for the ĥ`m can be found in [28], [88] and [89], including non-spinning terms

up to 3PN order, and spinning terms up to 2PN order. The quantities ĥ`m, and with

them the time domain amplitudes A`m are complex functions. According to the SPA,

the modes in the frequency domain can then be approximated as

h̃`m(f) ≈ A`m(x)

√
2π

mφ̈(x)
eiΨ`m(f), (3.65)

and we define ASPA
`m (f) = A`m(x)

√
2π

mφ̈(x)
(compare also with the expressions in [48]).

The orbital phase φ is related to the freqency and the PN expansion parameter x by

φ̈ = ω̇ = (3/2)
√
xẋ. The frequency f , which acts as the independent variable in the

Fourier domain is related to x by x =
(

2π f
m

)2/3
. We then obtain

ASPA
`m (f) = A`m(x)

√
2π

m(3/2)
√
xẋ
. (3.66)
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We now need to compute ẋ. Using the TaylorT4 expression [90] we finally obtain:

ẋ =
−m1m2

32744250(m1 +m2)2

[
x5
(
−419126400m2

1 − 838252800m1m2 − 419126400m2
2

)
+x6

(
1152597600m3

1m2 + 1247400m2
1

(
1848m2

2 + 743
)
+

2494800m1m2

(
462m2

2 + 743
)

+ 926818200m2
2

)
+x7

(
− 1373803200m4

1m
2
2 − 2747606400m3

1m
3
2

+ 207900m3
1m2

(
10206χ2

1 − 19908χ1χ2 + 10206χ2
2 − 13661

)
− 23100m2

1

(
59472m4

2 + 91854χ2
1 + 34103

− 18m2
2

(
10206χ2

1 − 19908χ1χ2 + 10206χ2
2 − 13661

))
+ 23100m1m2

(
9m2

2

(
10206χ2

1 − 19908χ1χ2 + 10206χ2
2 − 13661

)
− 2
(
45927χ2

1 + 45927χ2
2 + 34103

))
− 23100m2

2

(
91854χ2

2 + 34103
))

+x13/2
(
6566313600m4

1χ1 + 13132627200m3
1m2χ1 − 2619540000m3

1χ1

− 34927200m2
1(48π −m2(188m2(χ1 + χ2) + 75χ2))

− 34927200m1m2(96π −m2(376m2χ2 + 75χ1))

− 34927200m2
2((75− 188m2)m2χ2 + 48π)

)
+x15/2

(
− 34962127200m5

1m2χ1 − 69924254400m4
1m

2
2χ1 + 14721814800m4

1m2χ1

+ 17059026600m4
1χ1 − 34962127200m3

1m
3
2(χ1 + χ2)− 14721814800m3

1m
2
2χ2

+ 5821200m3
1m2(5861χ1 + 1701π)− 4036586400m3

1χ1

+ 207900m2
1

(
3π
(
31752m2

2 + 4159
)

+ 2m2

(
− 168168m3

2χ2 − 35406m2
2χ1

+ 41027m2(χ1 + χ2) + 9708χ2

))
+ 415800m1m2

(
− 84084m4

2χ2 + 35406m3
2χ2

+ 82054m2
2χ2 + 3π

(
7938m2

2 + 4159
)

+ 9708m2χ1

)
+ 207900m2

2(2m2(41027m2 − 9708)χ2 + 12477π)
)

+x17/2
(
84184254000m6

1m
2
2χ1 + 170726094000m5

1m
3
2χ1 + 2357586000m5

1m
3
2χ2

− 35665037100m5
1m

2
2χ1 − 198816225300m5

1m2χ1 + 88899426000m4
1m

4
2(χ1 + χ2)

+ 35665037100m4
1m

3
2χ2 − 138600m4

1m
2
2(3399633χ1 + 530712χ2 + 182990π)

+ 33313480200m4
1m2χ1 + 87143248500m4

1χ1 + 9702000m3
1m

5
2(243χ1 + 17597χ2)

+ 35665037100m3
1m

4
2χ1 − 69300m3

1m
3
2(4991769(χ1 + χ2) + 731960π)

− 33313480200m3
1m

2
2χ2 + 1925m3

1m2(97151928χ1 + 6613488χ2 − 12912300π)

− 14891068500m3
1χ1 − 11550m2

1

(
15π

(
146392m4

2 + 286940m2
2 − 2649

)
+ 2m2

(
− 3644340m5

2χ2 + 1543941m4
2χ2 + 54m3

2(58968χ1 + 377737χ2)

+ 1442142m2
2χ1 − 4874683m2(χ1 + χ2)− 644635χ2

))
− 23100m1m2

(
m2

(
m2

(
8606763m2

2 − 1442142m2 − 8095994
)
χ2

+ (−551124m2 − 644635)χ1

)
+ 15π

(
71735m2

2 − 2649
))
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2(2m2(754487m2 − 128927)χ2 + 7947π)

]
.
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We can now compute the complex non-polynomial Fourier domain PN amplitudes A`m,

that we re-expand up to 3PN order, as we have done for the ` = |m| = 2 modes

in IMRPhenomXAS. We list the resulting complex Fourier domain PN amplitudes

following this method. We write them as a function of v =
√
x =

(
2π f
m

)1/3
and factor

out a common term to simplify the comparison with [50] (note that there ν = η, Vm = v

and mΨSPA + π/4 = Ψ`m), finally obtaining

ASPA
`m (f) = π

√
2η

3
v−7/2Ĥ`m (3.67)

The Post-Newtonian expressions that we use to calibrate the inspiral part of the am-

plitude are given by the expanded expressions below, as used in Eq. (3.66), except for

the (2, 1) mode. We observed that for some cases with q < 40 the re-expansion of the

(2, 1) mode breaks down before reaching the cutting frequency of the inspiral. For those

cases the (2, 1) amplitude is very small (see Section 3.2.2) and the spinning contribu-

tion of higher PN terms is more important due to the different competing effects which

can lead to cancellations in the waveform which are not captured by our 3PN accurate

qusi-circular expressions. For the (2, 1) mode we therefore do not re-expand in a power

series but keep the form of expression (3.66) when q < 40. The expression (3.66) is not

used for q > 40 because it shows a divergence that appears before the inspiral cutting

frequency for high spins.

Ĥ22 =1 +

(
451η

168
− 323

224

)
v2 + v3

(
27δχza

8
− 11ηχzs

6
+

27χzs
8

)
+

+ v4

(
−49δχzaχ

z
s

16
+

105271η2

24192
+ 6η(χza)

2 +
η (χzs)

2

8
− 1975055η

338688
− 49(χza)

2

32
− 49 (χzs)

2

32

−27312085

8128512

)
+ v6

(
107291δηχaχs

2688
− 875047δχaχs

32256
+

31πδχa
12

+
34473079η3

6386688
+

491η2χa
2

84
− 51329η2χ2

s

4032

− 3248849057η2

178827264
+

129367ηχ2
a

2304
+

8517ηχs
2

224
− 7πηχs

3
− 205π2η

48
+

545384828789η

5007163392

− 875047

64512

(
χ2
a + χ2

s

)
+

31πχs
12

+
428iπ

105
− 177520268561

8583708672

)

(3.68)
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Ĥ21 =
1

3
i
√
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(3.69)

Ĥ33 =−3

4
i
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(3.70)
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Chapter 4

Accelerating waveform model

evaluation with adapted grids:

Multibanding

This chapter presents the article:

• Accelerating the evaluation of inspiral-merger-ringdown waveforms with adapted

grids. Cecilio García-Quirós, Sascha Husa, Maite Mateu-Lucena, Angela Borchers.

arXiv:2001.10897 [gr-qc] (2020),

which has been submitted for peer review to Classical Quantum Gravity.

Abstract

This paper presents an algorithm to accelerate the evaluation of inspiral-merger-ringdown

waveform models for gravitational wave data analysis. While the idea can also be applied

in the time domain, here we focus on the frequency domain, which is most typically used

to reduce computational cost in gravitational wave data analysis. Our work extends

the idea of multibanding [1], which has been developed to accelerate frequency domain

waveforms, to include the merger and ringdown and spherical harmonics beyond the

dominant quadrupole spherical harmonic. The original method of [1] is based on a

heuristic algorithm based on the inspiral to redefine the equi-spaced frequency grid used

for data analysis where a coarser grid is sufficient for accurate evaluation of a waveform

model. Here we use a different criterion, based on the local interpolation error, which is

more flexible and can easily be adapted to general waveforms, if their phenomenology is

142



4 Accelerating waveform model evaluation with adapted grids:
Multibanding 143

understood. We discuss our implementation in the LIGO Algorithms Library [2] for the

IMRPhenomXHM [3] frequency domain model, and report the acceleration in different

parts of the parameter space of compact binary systems.

4.1 Introduction

The field of gravitational wave astronomy has been born through discoveries of coales-

cences of compact binary systems consisting of black holes and neutron stars [4–6]. For

such systems, very successful programs are being carried out to model the gravitational

waveforms expected according to general relativity (and possibly alternative theories)

across the astrophysically plausible parameter space of observable binary systems (see

e.g. [7–14]). These models are based on synthesising perturbative results, e.g. from PN

theory [15], black hole perturbation theory [16] and more recently the self-force approach

[17], with numerical solutions of the Einstein equations, with an important role played

by the EOB approach [18, 19] to extend perturbative to non-perturbative descriptions.

Gravitational wave data analysis as applied to compact binary coalescence is typically

split into two steps: searches and Bayesian PE. Searches can be performed independently

from a waveform model [20], or use a fixed set of template waveforms and matched

filter techniques [21, 22]. Bayesian PE [23, 24] is based on a likelihood function that

compares the detector data with template waveforms. Several million template waveform

evaluations may be required, and the computational cost of waveform evaluation makes

Bayesian inference computationally expensive. In this paper we discuss the problem

of accelerating the evaluation of the waveforms, intended in particular to reduce the

computational cost of Bayesian PE.

A particularly computationally efficient approach to the construction of waveform models

has been the phenomenological waveform approach (see e.g. [9–13]), where the waveform

for each spherical harmonic is split into a small number (typically 2-4) regions based

on physical intuition, and are written as closed-form expressions. In order to model

simple non-oscillatory functions, it is further customary to split the waveform h`m(x,Ξ)

for spherical harmonic (`,m) into a real amplitude A`,m(x,Ξ) and a phase φ`,m(x,Ξ).

Here h would typically be the gravitational wave strain or its Fourier transform, and x

the time or frequency, respectively. The quantity Ξ is a shorthand for all the intrinsic

parameters of the waveform, such as masses and spins. We then compute the waveform

of each spherical harmonic as

h`m = A`me
i φ`m . (4.1)
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The evaluation of matched filters (e.g. due to optimization over time of arrival) typi-

cally requires the evaluation of fast Fourier transforms, which require equispaced grids.

Typically, a computationally much cheaper interpolant could be constructed by only

evaluating the model amplitude and phase on a much coarser grid without significant

loss of accuracy, if the coarse grid points are chosen judiciously. Our goal is the same

as that of [1]: to accelerate the evaluation of A`m and φ`m, but also the calculation of

the complex exponential ei φ`m , through an appropriate choice of coarse grid points and

interpolation algorithm. For simplicity we will also us use the term “multibanding” to

refer to this type of algorithm, and we also use the same two core ideas:

• We split the complete frequency or time range where we want to evaluate our model

waveform into n sub-regions, where each region has a constant grid spacing ∆xn,

chosen such that linear interpolation is sufficiently accurate for a given criterion

of waveform accuracy. The final waveform can then be evaluated by simple linear

interpolation to the fine grid with constant grid-spacing dx, which is determined

by the requirements of gravitational wave data analysis. This step accelerates the

evaluation of the amplitude and phase.

• For the phase, the computationally expensive evaluation of the complex exponential

in Eq. (4.1) for each point of the fine grid is required. For coarse grids that are

sufficiently dense for linear interpolation, a standard algorithm can be used to

replace evaluation of the complex exponential at each point of the fine grid by

evaluation only at the coarse grid points, and implementing linear interpolation as

an iterative scheme.

The key difference between our work and [1] is that we change the criterion to compute

the grid spacings ∆xn in the n coarse grids to use the standard estimate of the local

interpolation error derived according to Taylor’s theorem of basic calculus instead of a

heuristic algorithm based on the relation between the duration of a data segment and the

frequency spacing in the Fourier domain. Below we will analyze the required frequency

spacing for the inspiral, merger and ringdown. We will first carry out the analysis

separately for the amplitude and phase of different modes, and then define coarse grids

that are appropriate for both phase and amplitude for each mode. For an overview of

how the interpolation is incorporated in the context of the ROMs see [25].

This paper is organized as follows: In Sec. 4.2 we discuss the details of this algorithm,

and how it is applied to quasi-circular non-precessing frequency domain waveforms for

the inspiral, merger and ringdown. In Sec. 4.3 we present our results for computational

efficiency and accuracy, and we conclude with a summary and comments on possible

future work in Sec. 4.4.
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4.2 Algorithms

4.2.1 Interpolation error

A real-valued differentiable function g(x) can be approximated at a point x0 by a linear

approximation in the following sense: There exists a function h(x) such that

g(x) = g(x0) + g′(x0)(x− x0) + h(x)(x− x0), lim
x→x0

h(x) = 0. (4.2)

The error R(x) of the approximation is

R(x) = h(x)(x− x0). (4.3)

According to standard refinements of Taylor’s theorem of basic calculus, the error term

R(x) can be estimated using the second derivative g′′(x) of the function g we want to

approximate by the statement that there exists a ξ, x0 ≤ ξ ≤ x, such that

R(x) =
g′′(ξ)

2
(x− x0)2 . (4.4)

If we apply this result to our problem of interpolating to a fine grid from a coarse grid

with grid spacing ∆xn, then

R(x) ≤ max
x0≤ξ≤x

g′′(ξ)

2
∆xn

2. (4.5)

Consequently we can choose our coarse grid spacing ∆xn to satisfy a given error threshold

R as

∆xn =

√
2R

maxx0≤ξ≤x g
′′(ξ)

. (4.6)

Our application of interpolation will initially be guided by the requirements of phase

accuracy, and we will then discuss in which sense these criteria also lead to a sufficiently

small amplitude error. Below we will develop the details of constructing a hierarchy of

grids as appropriate for linear interpolation of both the frequency domain phase and

amplitude for different spherical or spheroidal harmonic modes, and describe how to

efficiently evaluate complex exponentials of the phase on such a grid hierarchy.

The hierarchy of grids is determined by the behaviour of the second derivative of the

phase as a function of the frequency according to Eq. (4.6). We distinguish between three

main regions: inspiral, merger and ringdown. As shown in Fig. 4.1 the behaviour of the

phase derivative is sharper and changes very drastically, then more points will be needed
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in this region. However the merger and ringdown parts are “flatter” and less points will

be necessary to describe these parts.
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Figure 4.1: The phase derivative is shown for the ` = |m| = 3 spherical harmonic
mode for two different configurations with high spins. The phase derivative changes
rapidly in the inspiral region, and thus many grid points are required for accurate
interpolation, the ringdown part is however comparatively flat, thus only few points are
needed to describe it. The merger bin is characterized by the shape of the Lorentzian

and determines the resolution required in this region.

4.2.1.1 Inspiral in the frequency domain

In order to derive an appropriate frequency grid spacing ∆f (f is the dimensionless

frequency in geometric units G = c = 1) for the Fourier domain phase during inspiral,

we will approximate the phase by the leading TaylorF2 phase expression [26],

Φ`m = c0 + c1f +
m

2

3

128η

(
2πf

m

)−5/3

, (4.7)

where η is the symmetric mass ratio, which in terms of the component masses m1,2 of

the binary reads η = m1m2/(m1 +m2)2, and c0, c1 are constants of integration that do

not affect the second derivative, which reads

Φ′′`m =
m

2

5

48η

(
2π

m

)−5/3

f−11/3. (4.8)

The phase and phase derivatives becomes singular as the frequency f approaches zero,

and the magnitude of the second derivative increases toward decreasing frequency. We

can therefore estimate the maximal second phase derivative as the second derivative of

the phase at the start of each frequency interval for which we want to use interpolation,

assumed at frequency f , and obtain

∆f(f) =

√
2R

Φ′′(f)
=

√
2R

cf,insp
f11/6, (4.9)
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cf,insp =
m

2

5

48η

(
2π

m

)−5/3

. (4.10)

In Sec. 4.2.3 we will use Eq. (4.9) to split the calculation of the phase into frequency

bins, where in each bin the grid spacing ∆f is kept constant, but it increases from bin

to bin with increasing start frequency of the bin.

We now turn to the inspiral amplitude. For the modes we consider in this work we

obtain the following leading order terms, see e.g. [3], where we use the definitions v =

(2πf/m)1/3 and δ =
√

1− 4η:

A`m = π
√

2η/3 v−7/2a`m, (4.11)

a22 = 1 +O(v2), (4.12)

a21 = vδ

√
2

3
+O(v2), (4.13)

a33 = vδ
3

4

√
5

7
+O(v3), (4.14)

a32 = v2 1

3

√
5

7
(1− 3η) +O(v3), (4.15)

a44 = v2 4

9

√
10

7
(1− 3η) +O(v4). (4.16)

For the amplitude it is natural to define a threshold for the relative error of the inter-

polation, which we denote by r. The frequency dependent coarse grid resolution ∆f(f)

which results from specifying a relative error threshold r is then independent of η and

depends linearly on the frequency,

∆f`m(f) =

√
2rAlm
A′′lm

= c`m f
√
r, (4.17)

where

c22 = 6

√
2

91
, (4.18)

c21 = c33 = 6

√
2

55
, (4.19)

c44 = c32 = 2

√
2

3
. (4.20)

We can then write the ratio of coarse grid spacing required for the phase to stay below

a phase error of R radians to the coarse grid spacing required for the amplitude to
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guarantee a relative amplitude error below r as

∆fphase
∆famp

= α`m (fπ)5/6√η
√
R

r
, (4.21)

where

α22 = 2

√
91

55
, α21 = 21/3

√
11

3
, (4.22)

α33 =
27/3

311/6

√
11, α32 =

6√
5
, α44 =

3

21/3
√

5
. (4.23)

Choosing e.g. r = R the expression (4.21) is always smaller than unity up to the MECO

frequency [27], the step size restriction for the phase is thus more restrictive than the one

for the amplitude. For simplicity we will use the phase criteria to build just one coarse

frequency array and use this for both the phase and amplitude. We discuss the merger

and ringdown in the next section.

4.2.1.2 Merger and ringdown in the frequency domain

The merger-ringdown phase exhibits a morphology that is rather different from the in-

spiral. A detailed phenomenological description for the ` = |m| = 2 is provided by the

IMRPhenomD [12] and IMRPhenomXAS [28] waveform models, and for subdominant

modes by IMRPhenomXHM [3]. This allows us to identify the crucial features of the

merger-ringdown regime, and to adapt the estimate (4.6) for the step size as we have

done for the inspiral.

The first ingredient will be to identify the end of the inspiral. In [29, 28, 3] we confirm that

the minimum energy circular orbit (MECO) [27] provides a good approximation for the

transition between inspiral and merger for comparable masses. In the merger-ringdown

part the Fourier domain phase derivative is given by a superposition of a Lorentzian

function and a background term [28, 3]. The Lorentzian dominates the phase derivative

and is given by (see eq. (6.3) in [3]):

Φ′(f) =
a

(f − f0)2 + b2
(4.24)

and the second derivative by

Φ′′(f) = − 2a(f − f0)

((f − f0)2 + b2)2
, (4.25)
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where we have introduced the shorthands a = aλf
lm
damp, b = f lmdamp, and f0 = f lmring. Thus

αλ is a term that determines the overall amplitude of the Lorentzian, f0 is the frequency

at which the dip of the Lorentzian happens and b is a measure of the "width" of the dip.

Inserting the expression for the Lorentzian into Eq. (4.6) we obtain

∆f(f) =

√
2R

Φ′′(f)
=

√
R

a|f − f0|
(

(f − f0)2 + b2
)
, (4.26)

which replaces Eq. (4.9) for computing the spacing of the coarse frequency grid in the

merger and ringdown.

The spacing computed according to (4.6) depends on the absolute value of the second

derivative, and we note that the second derivative of the Lorentzian phase function, Φ′′,

has two local maxima for f0 ± b/
√

3, with identical absolute value∣∣∣∣Φ′′(f0 ±
b√
3

)∣∣∣∣ =
3
√

3a

8b3
. (4.27)

While for the inspiral the number of frequency bins depends on the start frequency, as

we will discuss in more detail below in Sec. 4.2.3, for the merger and ringdown we choose

two bins which we call the merger and ringdown bins. The merger bin is defined by

the frequency interval (fInsp, fLorentzian), and captures the frequency regime where high

resolution is required to capture the shape of the Lorentzian. The frequency fInsp marks

the end of the inspiral region of the IMRPhenomXAS model for the ` = |m| = 2 mode

and the IMRPhenomXHM model for the other harmonics, and is chosen approximately

at the MECO frequency (see [28] and [3] for details). The frequency fLorentzian is defined

as f lmring + 2f lmdamp and is chosen to approximate the lowest frequency where the second

phase derivative of the Lorentzian can be neglected, and the first phase derivative is

approximately constant. The ringdown bin starts at this frequency, and is the highest

frequency bin in our procedure. It is characterized by low resolution requirements for the

phase due to neglecting Φ′′ and ends at the end frequency of the waveform, the frequency

range of this last bin is thus (fLorentzian, fmax).

We compute the grid spacing of both bins by evaluating the maximum value of |Φ′′| in
these two intervals according to Eqs. (4.9, 4.27) and inserting it into Eq. (4.6). For the

merger bin this is the maximum of the inspiral value and the value for the Lorentzian,

and thus

∆fphasemerger = min

(√
2R

cf,insp
f

11
6
insp,

4f lmdamp

33/4

√
R

|αλ|

)
, (4.28)
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For the ringdown bin the second phase derivative |Φ′′| decreases monotonically to zero,

we thus take the value at the start of the region fLorentzian, which yields

∆fphaseRD = 5 f lmdamp

√
R

2|αλ|
. (4.29)

Again we turn to the amplitude now. We approximate the amplitude falloff in the

ringdown bin as

h ≈ e−Λf , (4.30)

with Λ = λ/(f lmdampσ), where these coefficients correspond to those used in the ringdown

ansatz for the IMRPhenomXHM model (see [3] for more details):

A`mRD ∝
1(

f − f `mring
)2

+
(
f `mdamp σ

)2 e
−(f−f`mring) λ

f`m
damp

σ
. (4.31)

The grid spacing required to guarantee a relative error smaller than r is then given by

∆fampRD (r) =

√
2 r

Λ
, (4.32)

which is independent of the frequency f . For r = R this condition is typically more

restrictive than the condition (4.29) derived from the phase, the dependence across pa-

rameter space is however complicated. We therefore always compute the two frequency

spacings, and then use the more restrictive one. We believe that this choice is quite

conservative and that the choice could be relaxed in the future, since our ringdown bin

only starts at frequencies where the amplitude is already quite small. Note that the

start frequency of our ringdown region is either significantly higher than the ringdown

frequency, or, for very high spins, the exponential falloff is significantly steeper than for

moderate spins. In consequence we could use always the phase criterion (4.28) to set the

grid spacing in the ringdown region without worrying too much about loss of accuracy. If

greater amplitude accuracy for the ringdown would be required, it would be also possible

to switch from linear interpolation to the fine grid to third order spline interpolation for

the amplitude.

In the merger bin, the functional dependence of the mode amplitudes is more complex

(see [3]). In this case we compute numerically the grid spacing ∆f for the amplitude as

∆fampmerger =

√
2 r |hlm(f)|
|hlm(f)|′′ .
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We evaluate this quantity for the merger bin across our parameter space with the choice

r = R and compare with the grid spacing derived for the phase given by Eq. (4.28). We

find that the ratio ∆fphasemerger/∆f
amp
merger is typically lower than one so the criteria for the

phase is more restrictive than the one for the amplitude. We find that for some cases

with comparable masses and high positive spins the ratio is between a value of one and

two, but for simplicity we will always choose the criterion for the phase and interpret

this choice such that the actual relative amplitude and phase errors will be bounded by

the thresholds within a factor of four. We leave refinements of the simple strategy to set

r = R to future work. Below we will study the mismatch between the original model and

different levels of error threshold to arrive at a more practical evaluation of error than

to check for local deviations between model and approximation, and in Sec. 4.3.3 we will

perform a PE exercise and find that all choices of the value of R = (0.1, 0.01, 0.001) lead

to indistinguishable results for the case considered.

4.2.2 Efficient evaluation of complex exponentials

The evaluation of the complex exponential function when constructing the strain from

amplitude and phase as in Eq. (4.1) is one of the most time consuming operations in

the C-code of the LALSuite [2] implementation of our model. The number of required

evaluations of the complex exponential (or, equivalently, of trigonometric functions), can

however be reduced drastically by implementing the method described in [1] (adapted

from [30]). Instead of interpolating the phase on the uniform fine grid and computing

the complex exponential, we compute the complex exponential in the non-uniform coarse

grid and then rewrite the interpolation of this quantity in terms of an iterative algorithm.

Let Φj be the phase at one coarse frequency point fj and let Φ̂k, fk be the estimated

phase and the frequency at one point of the final uniform frequency grid, the spacing of

the uniform grid is therefore df = fk+1 − fk. Then we use the recursive property

eiΦ̂k+1 = eiΦ̂ke
i df

Φj+1−Φj
fj+1−fj . (4.33)

This property is used to compute the complex exponential in the fine frequency grid

points that lay between two coarse frequency points j and j + 1. The first of the fine

points is given by eiΦ̂0 = eiΦj .

4.2.3 Complete multibanding algorithm in the frequency domain

We will now describe our final algorithm for accelerated waveform evaluation, which is

based on our previous results. Our final results will be the strain, evaluated on a uniform
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frequency grid, with a resolution df that is adapted to the requirements of some given

data analysis application. The motivation for uniform grid spacing stems for the typical

context of matched filtering, where an inverse Fourier transform is used to optimize a

match over the time shift between a signal and a template. We will refer to this uniform

frequency grid as the fine grid. In order to accelerate the waveform evaluation we will

however only evaluate our model waveform on a coarser non-uniform grid, and then use

the iterative evaluation described above in Sec. 4.2.2 to evaluate the complex exponential

of the phase.

By default we will use linear interpolation for the amplitude, with optional cubic spline

interpolation. Both interpolation algorithms are currently using the open source GSL

library [31], we do however expect a further speedup by replacing the GSL implementation

by adding a standalone implementation of the required interpolations to our code.

We will now first discuss how to construct the non-uniform coarse frequency grid, and

then the details of how to evaluate the waveform on the fine grid, first for spherical

harmonics without mode mixing, and then for modes with mode mixing, which for the

current IMRPhenomXHM models concerns only the ` = 3, |m| = 2 mode.

4.2.3.1 Building the coarse frequency grid

We assume that we are given an input frequency range (fmin, fmax) where we need to

evaluate the spherical harmonic modes of the waveform. We wish to construct a non-

uniform frequency grid, such that for every two successive frequency points the grid

spacing ∆f(f) between them is sufficiently small to guarantee that the local phase error

resulting from using linear interpolation between the coarse frequency points is smaller

than a given threshold value R. We can then use Eqs. (4.9, 4.26) to compute ∆f as a

function of the threshold R, the frequency f , the intrinsic parameters (q, χ1, χ2), and the

spherical harmonic mode (`,m) under consideration. The coarse grid will also depend

on the desired grid spacing df for the final uniform grid, since we build the coarse

frequency grid such that the coarse points also belong to the fine grid. This simplifies

the interpolation procedure for the complex exponential.

Lower values for the threshold R result in smaller errors, but higher computational cost.

In Sec. 4.3 we will compare different threshold settings and evaluate the computational

cost and compare the actual errors with the chosen threshold R.

As mentioned above in Sec. 4.2.1 we split the frequency range into three regions corre-

sponding to the inspiral, merger and ringdown. For the practical implementation, instead

of using the continuously varying ∆f(f) of expressions (4.9, 4.26), we work with a series
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of frequency bins where ∆f is fixed in each bin. The merger and ringdown parts have

a much smaller dynamic range for φ′(f) than the inspiral part (the phase “flattens out”

from inspiral toward merger), and we just use one frequency bin for each region. Their

spacings ∆fmerger and ∆fRD are given by Eqs. (4.28) and (4.29-4.32) respectively.

However, the inspiral part has a large dynamic range, and ∆f given by (4.9) changes

with a power law of f11/6 so it also changes fast. The spacing that would accurately

describe the whole inspiral part would be ∆f(fmin), however if we used this spacing for

the whole region, we would be using many more points than what are really needed since

∆f increases so much for frequencies above fmin. Therefore we use a varying number of

frequency bins N , and we build each of them with a spacing ∆fi twice larger than the

previous bin. For the first bin we set ∆f0 = ∆f(fmin), thus

∆f0 =

√
2R

cinsp
f

11/6
min (4.34)

∆fi = 2i ∆f0, i = 1, 2, ..., N. (4.35)

In practice we require that between two coarse points there is an integer number of fine

frequency points, in consequence we modify ∆f0 such that

∆f ′0 = int
[

∆f0

df

]
df. (4.36)

Now that we have computed the spacing of each frequency bin, we need to compute the

final frequency of each bin fi,end, which is the frequency that doubles the spacing ∆f of

the current bin, i.e. we have to solve the equation ∆f(fi,end) = 2∆fi. Inserting this into

Eq. (4.9) we obtain

f
11
6
i,end = 2 f

11
6
i,start, (4.37)

fi,end

fi,start
= 2

6
11 . (4.38)

We require that in a frequency bin there must be an integer number of coarse frequency

points, and so we modify the end frequencies of each bin to

f ′i,end = int
[
fi,end − fi,start

∆fi

]
∆fi. (4.39)

With the above frequency factor we can estimate the number N of bins that will be used

in the inspiral. Since the inspiral regions ends at finsp, N has to satisfy the relation

finsp

fmin
=
(

2
6
11

)N
, (4.40)
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and therefore we obtain

N = log
2

11
6

(
finsp

fmin

)
. (4.41)

Since N is however the number of constant frequency bins for the inspiral, it has to be

an integer, and we modify finsp such that

N = log
2

11
6

(
f ′insp

fmin

)
= int

[
log

2
11
6

(
finsp

fmin

)]
. (4.42)

For the merger and ringdown regions, we proceed analogously to the inspiral region,

and ensure that an integer number of fine grid points aligns with the coarse grid. Since

this algorithm depends on the input values for fmin, fmax and df , we perform several

sanity checks to ensure that there is not any overlapping between regions. For example,

if finsp > fLorentzian we skip the merger bin or if fLorentzian > fmax we skip the ringdown

bin.

In Fig. 4.2 we compare the final non-uniform coarse grid with the uniform grid. In the

top panel we can see how the frequency spacing ∆f increases for subsequent bins that

constitute the inspiral part. In the case shown the merger bin has a slightly lower ∆f

than the last inspiral bin in order to resolve the Lorentzian feature of the phase derivative.

For other cases where the Lorentzian is less pronounced the limiting factor will be the

derivative at the end of the inspiral and then the merger will have exactly twice the

spacing of the last inspiral bin. The ringdown bin is the one with a coarser ∆f since

there the phase derivative is practically flat. In the bottom panel we show the number

of frequency points for the inspiral, merger and ringdown parts. The uniform grid has

most of its frequency points in the merger-ringdown part, which leads to an excessive

computational cost in these regions, where far fewer points are required to capute the

flatter behaviour of the phase derivative (see Fig. 4.1). For the non-uniform grid most

of the points are located in the inspiral part, where high resolution is needed to describe

the phase derivative.

Now that we have described the non-uniform coarse frequency grid, the next step is to

evaluate the model in this grid and carry out the interpolation to the fine grid. In this

next step however, different procedures need to set up follow for the modes with and

without mixing, as we discuss below.

4.2.3.2 Evaluate the modes on the fine grid, with and without mode-mixing

For the modes without mixing (at the moment all modes except ` = 3, |m| = 2), the

waveform modes are evaluated on the fine grid as follows:
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Figure 4.2: Comparison between uniform fine frequency grid and non-uniform coarse
grid for the 33 mode for a high spin case. Left panel: The frequency spacing is shown
for each frequency bin as a function of frequency. In the merger bin ∆f is smaller
than the last one of the inspiral due to the need of resolving the dip of the Lorentzian.
Right panel: The number of frequency points is shown for each frequency region. In
a uniform grid most of the points lie in the merger and ringdown part where they are

not so necessary, however this is corrected in the non-uniform grid.

1. First the amplitude and phase are evaluated separately for the coarse frequency

grid, which yields two 1D arrays, one for the amplitude and one for the phase.

2. The complex exponential eiφ is computed on the coarse grid.

3. The fine uniform frequency grid is constructed with spacing df .

4. The complex exponential is interpolated to the final uniform frequency grid follow-

ing the procedure described in Sec. 4.2.2.

5. The amplitude is interpolated to the fine grid by using linear (optionaly third)

order interpolation (using the GSL library).

6. The complex waveform h̃lm is constructed by multiplying the arrays for the ampli-

tude and the complex exponential on the fine grid.

For the modes with mixing (in our present implementation of IMRPhenomXHM this is

only the ` = 3, |m| = 2 mode) our procedure is slightly different from the modes without

mixing. To handle mode-mixing, in the ringdown region the model is built in terms of

spheroidal harmonics instead of spherical harmonics, to simplify the waveform and avoid

sharp features in the phase derivative and in the amplitude, as discussed in detail in [3].

After building the model waveform in terms of spheroidal harmonics, it is then rotated

back to spherical harmonics and connected with the inspiral part, which is directly

modelled in terms of spherical harmonics. Performing our interpolation in terms of the

spherical harmonics as for the other modes would require significantly higher resolution

and increase computational cost. We thus use the same strategy as we have employed

to construct the original model, and apply our multibanding algorithm separately to the
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inspiral region expressed in spherical harmonics, and to the ringdown part expressed in

spheroidal harmonics, and then transform the latter to spherical harmonics once the fine

grid values have been computed. Our detailed procedure is as follows:

1. We split the coarse frequency array into the spherical part, where we will per-

form the model evaluation and multibanding in terms of the spherical harmonics,

and the spheroidal part, where we transform from the spheroidal to the spherical

representation in the ringdown region.

The start frequencies of the ringdown region for the phase and amplitude, fphase
RD , famp

RD ,

are given in eq. (5.2) in [3]. Note that fphase
RD < famp

RD . For our multibanding al-

gorithm we split between the “spherical” and “spheroidal” coarse grids, where the

spherical and spheroidal amplitude and phase are computed. There is some over-

lap between the frequency ranges of both in the interval (fphase
RD , famp

RD ), since the

spherical array goes up to famp
RD , but the spheroidal one starts at fphase

RD , see step

(8) below.

2. Evaluate the spherical amplitude and phase in the spherical coarse array and eval-

uate the spheroidal amplitude and phase in the spheroidal coarse array, we get

therefore four one-dimensional arrays.

3. Compute the complex exponential for the two coarse arrays of phases.

4. Build the uniform frequency grid with spacing df and split into spherical and

spheroidal parts as above.

5. Interpolate the two arrays of complex exponential in their respective regions using

the iterative procedure described in 4.2.2.

6. Interpolate the two arrays of amplitude in their respective regions using linear

(optionally third) order splin interpolation using the GSL library [31].

7. We have thus obtained four arrays: spherical amplitude and complex exponen-

tial evaluated in the spherical fine grid, and spheroidal amplitude and complex

exponential in the spheroidal fine grid.

8. Finally we combine amplitude and phase with different procedures in three fre-

quency ranges:

• fmin ≤ f < fphase
RD : We directly multiply spherical harmonic amplitude and

complex exponential.

• fphase
RD ≤ f < famp

RD : We rotate to spherical the spheroidal complex exponen-

tial term (which requires the spheroidal amplitude), and then multiply the

resulting spherical complex exponential with the spherical amplitude.
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• famp
RD < f ≤ fmax: We first multiply the spheroidal amplitude and complex

exponential and then transform to the spherical basis.

4.3 Results

4.3.1 Computational performance

In first place we test the gain in speed due to multibanding and compare the results for

different threshold values and for different spacings of the fine frequency grid. Note that

the frequency spacing df of the grid in the Fourier domain is related to the duration T

of the time segment that is analyzed by

df =
1

T
, (4.43)

and thus longer signals require a smaller grid spacing. To illustrate this dependency, in

Fig. 4.1 we show the approximate duration of a binary black hole coalescence signal as

a function of mass and mass ratio. To leading PN order the duration in dimensionless

units is given by

T/M =
5

256η (πMf0)8/3
, (4.44)

where f0 is the frequency where the dominant spherical harmonic mode, |` = |m| = 2

enters the frequency band of the detector. Lower start frequencies thus imply much

longer signals. In Fig. 4.1 we show results for two values of the lower frequency cutoff

of the detector, f0 = 10 Hz, 20 Hz, the latter is what is typical for current compact

binary PE, see e.g. [32, 33]. The coalescence time is approximated with the TaylorT2

approximant at second PN order spins aligned with the orbital angular momentum, and

extreme Kerr values, adding a time of 500M in geometric units to account for merger and

ringdown, in order to obtain an approximate upper limit on the duration. The figures

focus on short signals, where time duration of 4 seconds is appropriate, and show the

range of signals and templates in mass and mass ratio that fit into this time window.

We will now discuss an example case of a non-spinning system of black holes with total

mass of 50 solar masses and mass ratio m1/m2 = 1.5, and evaluate the computational

cost as a function of frequency spacing df . In Fig. 4.2 we show the evaluation time of one

waveform versus the spacing of the final uniform frequency grid. The frequency range

spans from 10 to 4096 Hz and we fix the mass of the system to 50 M�. The dashed lines

represent the waveforms generated without multibanding while the solid lines correspond

to the multibanding version with different values of the threshold: 10−1, 10−2, 10−3 and

10−4. First, we focus on the no-multibanding results, in principle we would expect
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Figure 4.1: The approximate merger time observed by a detector with lower frequency
cutoff at 20 Hz (left panel) and 10 Hz (right panel) is shown as a function of the total
mass and the mass ratio of the system. The blue horizontal surface marks a duration
of three seconds, which would allow for one second of buffer time between the signal
duration and the length of the data segment. For a start frequency of 10 Hz only very

high mass signals fit the time window.

that the higher-modes model is 5 times slower than the (2, 2)-mode-only model because

IMRPhenomXHM has 5 modes instead of just one. However it is a bit more expensive

due to some particularities that are only present in the higher modes code, like the checks

for the amplitude veto and mainly the extra steps needed to describe the mode-mixing

of the (3, 2) mode.
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Figure 4.2: Evaluation time of the LALSuite code for waveforms with and without
multibanding (solid and dashed lines respectively) for a total mass of 50 M�. PhXAS
denotes the quadrupole model, and the different “PhXHM_MB" items in the legend
correspond to different values of the threshold R: 10−1, 10−2, 10−3 and 10−4. The
evaluation time is averaged over 100 repetitions. The results are shown as a function of
the spacing of the fine uniform frequency grid df . They were obtained with the LIGO

cluster CIT.

Focusing now on the results with multibanding, notice that when df is coarser the multi-

banding tends to equalize the no-multibanding. This is expected since for coarser df we

have less frequency points and then the coarse and fine grid tends to be similar and there
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is no gain by using the interpolation. Also it happens that the input df may be larger

than the ∆f of the coarse grid given by the multibanding criteria, in these cases we just

evaluate in the frequency points of the fine grid and there is no gain in speed. In current

LIGO-Virgo PE the highest df that is used is 0.25 Hz, since df is the inverse of the time

duration of the signal as in Eq. (4.43), and in practice the smallest duration considered,

e.g. for high mass events with very short duration, is four seconds. Note however that

as low frequency noise is reduced in detectors, and the lower cutoff frequency for data

analysis can be lowered, waveforms get longer and frequency spacings are reduced.

On the contrary, when df is very small we have a lot of points in the fine grid, then the

interpolation is much more efficient and the multibanding has the highest gain in speed.

The different values of the threshold behave as expected: larger values of the threshold

are less accurate, but allow faster evaluation. For small df we observe however that the

evaluation speed is almost independent of the threshold value. This is due to the fact that

for small df the evaluation of the model at the coarse grid points is computationally much

cheaper than the subsequent interpolation to the fine grid points. Future optimization

of our code will be required to address this issue and intend to reduce the computational

cost of the interpolation to the fine grid.

We now show the dependence of the evaluation time on the total mass of the sys-

tem. In this case the spacing of the fine grid df is computed by the LALSuite func-

tion XLALSimInspiralFD which adapts the df accordingly to an internal estimation of

the time duration of the signal which depend on the lower cutoff fmin, chosen here as

fmin = 10Hz, and the mass of the system. This is similar in spirit to the estimate of

the merger time that we have used in Fig. 4.1. In Fig. 4.3 we see qualitatively the same

results than when simply scaling df as in Fig. 4.2. The multibanding is more efficient

for lower masses where the duration of the signal is lower and therefore a smaller df is

used.

4.3.2 Accuracy

In this section we discuss the accuracy of the multibanding algorithm as well as compare

different choices of the threshold and motivate the choice of the default value for the

model. In section 4.2.1 we explained that the non-uniform coarse grid is built such that

the error in the phase (of a single mode) is below a threshold R. To check this we compute

the waveform with and without multibanding for 150000 random configurations in the

parameter range Mtot ∈ [1, 500]M�, q ∈ [1, 1000], χ1,2 ∈ [−1, 1], and df ∈ [0.01, 0.25]Hz.

For the multibanding we compare again four different threshold values. In Fig. 4.4, we

first show the maximum absolute error for the whole uniform frequency array for all
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Figure 4.3: Evaluation time versus total mass of the system, choosing a fine grid
spacing df that corresponds approximately to the inverse merger time at this mass
ratio, as is common on data analysis applications (we denote this behaviour by writing
df = 0). The evaluation time is averaged over 100 repetitions. Result were obtained

with the LIGO cluster CIT.

the modes except ` = 3,m = 2, where mode mixing needs to be taken into account for

interpreting results as discussed below. We see that for most cases the maximum error

is indeed below the threshold. However there can be special configurations where a few

frequency points may give an error above the threshold. These few cases correspond

typically to configurations where the approximations employed by the algorithm are less

accurate, e.g. using the TaylorF2 phase to approximate the phase in the inspiral to

compute ∆f for extreme spins or for cases with high mass, where the inspiral starts at

high frequencies where the TaylorF2 is again less accurate. In Fig. 4.5 we show the mean

error, averaged over the frequency array, always remains below the thresholds. We will

also compute mismatches between the original and the interpolated below, and find that

we indeed achieve acceptably low values of the mismatch, see Fig. 4.8.

Now we consider the 32 mode, where mode mixing with the 22 mode is present. In

Fig. 4.6 we show the results for the same test as shown in Fig. 4.4 for the other modes.

The interpretation of the results is however different now, since the ringdown of the

32 mode, where mode mixing is present, is modelled and interpolated in terms of the

spheroidal harmonics, see [3], where the waveform phenomenology is much simpler than

in terms of spherical harmonics.

In Fig. 4.7 we show some typical behaviour for mode mixing in the ringdown: Here the

complex waveform comes very close to or crosses zero, visible as a sharp feature in the

logarithm of the amplitude. Near the zero-crossing splitting the waveform into a spherical

harmonic amplitude and phase creates artefacts when computing phase differences or

relative amplitude errors between two waveforms, even if they are very close. Comparing

our theoretical thresholds with the phase only makes sense in the spheroidal basis, but
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Figure 4.4: Maximum absolute error for the phase of the (l,m) mode between the
multibanding and no-multibanding waveforms for four values of the threshold R. The
threshold R can be interpreted as an approximate upper limit for the maximum absolute

error introduced in the phase.
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Figure 4.5: Absolute error for the phase averaged over the frequency array for the
(l,m) modes between the multibanding and no-multibanding waveforms for four values
of the threshold R. The threshold R can be interpreted as an approximate upper limit

for the absolute error introduced in the phase.
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not in the spherical one. We omit a comparison of the phase errors in the ringdown as

computed in the spheroidal picture in order to avoid excess baggage in our LALSuite

implementation. We thus arrive at the following interpretation of Fig. 4.6: while phase

errors are typically small and below the threshold, a significant number of outliers arise

due to the phenomenon shown in Fig. 4.7, they are however not due to problems of the

multibanding algorithm, but due to keeping our test simple and uniformly comparing in

the spherical harmonic picture for all modes and across the whole frequency range.
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Figure 4.6: Maximum absolute error (left) and averaged over the frequency array
(right) for the phase of the (3, 2) mode between the multibanding and no-multibanding

waveforms for four values of the threshold R.
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Figure 4.7: Example case that produces a maximum phase error above the threshold
for the 32 mode. The parameters for this case are m1 = 35.7M�, m2 = 16.6M�,
χ1 = 0.33, χ2 = −0.54. Lefth panel: Absolute phase error between the no-multibanding
and multibanding waveform with R = 0.1 versus the frequency. Right panel: amplitude
of the (3, 2) mode for the no-multibanding and multibanding. Notice the correspondence

of the maximum phase error with the deep in the amplitude of the (3, 2) mode.

To truly understand the accuracy of the algorithm we have to compute the mismatch

between the two waveforms. In the following we evaluate the multimode waveform and

compute the mismatch for the h+ polarization. We carry out an extensive study across

the whole parameter space also to test the robustness of the algorithm and evaluate

one million of random configurations in the parameter space. The results are shown

in Fig. 4.8. As expected the threshold 10−4 has the lowest mismatches since it is the

most accurate and the threshold 0.1 has the worst mismatches because it is the less



4 Accelerating waveform model evaluation with adapted grids:
Multibanding 163

accurate. The reader may be wondering why there are a significant number of cases with

mismatch 10−16 since we would expect that the number of cases decreases with the higher

accuracy. The explanation is that in this bin the randomly chosen df is coarser than the

∆f that the multibanding criteria provides, and in this case we replace ∆f with df and

in consequence there is no difference between the multibanding and no-multibanding and

we reach matching precision.

Fig. 4.8 is also very useful to decide which threshold we want to use as default value in

the LALSuite code. We consider that R = 10−3 performs well in accuracy and given

that is faster than the 10−4 we set this as the default value.
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Figure 4.8: Mismatches between the no-multibanding and multibanding waveforms
for one million random configurations across parameter space. We show the results for
four different values of threshold. The configurations are choosen randomly with q ∈
[1, 1000], χ1,2 ∈ [−1, 1], Mt ∈ [1, 500]M�, df ∈ [0.01, 0.3] Hz, ι ∈ [0, π], fmin = 10Hz,

fmax = 1024Hz. The mismatch is computed for the h+ polarization.

4.3.3 Parameter estimation

In order to illustrate our algorithm in a PE application, we compare the performance of

the original model and different choices for the threshold parameter R.

We select a publicly available NR data set from the SXS waveform catalogue [34],

SXS:BBH:0264, which corresponds to a binary black hole merger at mass ratio 3, with

individual spins of −0.6 anti-aligned with the orbital momentum. Then we inject this

NR simulation into zero noise as a way to get a non-precessing and non-eccentric strain of

4 seconds of duration, with 100 M� total mass, near edge on with π/3 rad of inclination.

We use a relatively close source at 430 Mpc, which implies a signal-to-noise ratio of 28.

Recovery of the signal uses the advanced LIGO zero detuning high power noise curve

[35]. We choose the parameters in order to challenge our approximations in the regime

where higher modes are particularly relevant, not in order to demonstrate significant
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computational gains, which by Fig. 4.1 when the lower cutoff frequency of the detector

sensitivity would be lower than the 20 Hz we have chosen here to compute the likelihood

function in our Bayesian inference algorithm (see e.g. [23, 24] for details of Bayesian

inference for compact binary coalescence signals). Note that the start frequency of the

NR waveform we choose here is approximately 9 Hz at M = 100M�.

For our analysis we use a sampling method called “Nested Sampling” [36], in particular the

CPNest sampler [37] as implemented in the Python-based Bayesian inference framework

Bilby [24]. For each waveform model used, we carry out runs with five different seeds

and 2048 “live points” in the language of nested sampling, and we merge the results from

the five seeds to a single posterior result.

We define prior distributions as follows: The mass ratio is assumed to be uniform between

0.125 and 1, and the chirp mass prior is assumed uniform between 15 and 60 M�. The

luminosity distance is uniform in volume with a maximal allowed distance at 1500 MPc.

Finally, the magnitudes of the dimensionless black hole spins are uniform with an upper

limit at 0.99.

Our main results concern the comparison of the IMRPhenomXHM model, evaluated

with different values of the threshold parameter, R = (10−1, 10−2, 10−3) as well as with-

out multibanding, which corresponds to R = 0. The IMRPhenomXHM model includes

the spherical harmonic modes (l, |m|) = ((2, 2), (2, 1), (3, 2), (3, 3), (4, 4)). Differences

between the recovered value of parameters and the injected parameters may arise due

to the approximations in our multibanding algorithm, errors in the IMRPhenomXHM

model, errors in the NR waveform, and the absence of modes in the model, which are

present in the NR data set (which contains all modes up to l = 8). We also compare

with the IMRPhenomXAS model, which corresponds to IMRPhenomXHM with only

the (l, |m|) = (2, 2) modes and no multibanding. The latter serves as a comparison in

terms of the errors in recovering the injection parameters.

Our results are presented in Fig. 4.9. In the case of the higher modes model, the in-

jected values are recovered by the most probable regions of the posterior distributions.

However, for the dominant mode model, a significant bias in the recovered parameters

can be observed. This confirms the importance of the higher mode contributions for

the case we have chosen. All the results for IMRPhenomXHM are consistent within

the statistical errors implied by our finite sampling. As expected, in the case presented

here the sampling time only decreases weakly when increasing the threshold value. We

attribute the observed parameter bias for IMRPhenomXHM to the incomplete set of

modes described by the model, as well as modelling errors. Future work will investigate

the effect of dropping modes in the model in more detail.
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Figure 4.9: Posterior distributions of component masses, effective aligned spin and
inclination respectively using waveforms with multibanding (PhXHM_MB) for different
values of threshold (10−1, 10−2, 10−3) and without it (PhXHM and PhXAS). The

dashed vertical lines mark the 90% confidence limits.

4.4 Conclusions

We have presented a simple way to accelerate the evaluation of frequency domain wave-

forms by first evaluating on a coarse grid, and then interpolating to a fine grid with an

iterative scheme to evaluate complex exponential functions (or equivalently trigonomet-

ric functions). This works builds upon the method presented in [1], but represents the

heuristic criterion used there to determine the spacing of the coarse grid by the standard

estimate for first order interpolation error, and then extends the criterion for the coarse

frequency spacing to the merger and ringdown. Several extensions of our algorithm are

possible: First, similar techniques can also be developed for the time domain. The simple

estimates to determine the appropriate coarse grid spacing given a threshold parameter

could be improved, e.g. by adding low order spin terms. The amplitude could be treated

in a similarly careful way as the phase. Second, we have already applied a simple version

of multibanding acceleration to the Euler angle descriptions used in the modelling of

precessing waveforms [38]. Further work is required to refine this technique to properly

account for the precessing phenomenology at merger and ringdown, and other details

due to precession dynamics, such as oscillations in different quantities. A better under-

standing of how to best apply multibanding acceleration to precession is also expected
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to inform how to treat eccentric waveforms.

Acceleration is more significant for smaller spacings of the fine grid, as is appropriate for

smaller masses, and for detectors with broader sensitivity in frequency, e.g. future de-

tectors such as the upgrades of the current generation of the advanced detector network,

the Einstein Telescope [39] or LISA [40]. For total masses around three solar masses,

as is appropriate for binary neutron star masses, the current speed of the multi-mode

IMRPhenomXHM roughly equals the speed of IMRPhenomXAS for the ` = |m|
modes. Detailed profiling of the code reveals this rough equality as a coincidence, and

performance is limited by a small number of bottlenecks, e.g. evaluating the spline inter-

polation for the amplitude, for which we use the GSL library [31]. Future optimization

work will focus on these bottlenecks. Another possible avenue for further speedup would

be an implementation on GPUs or similar highly parallel hardware.

The availability of a threshold parameter that regulates accuracy and speed also allows

future applications to tune codes for PE, where the threshold parameter could be set

depending on the information associated with the detection in a search (such as the

signals rough parameter estimate from the search and its signal-to-noise ratio), or the

threshold could be changed dynamically, and could be relaxed in the burn-in-phase of a

PE simulation, or in the early stages of a nested sampling run. The coupling of strate-

gies to accelerate the evaluation of individual waveforms evaluation and Bayesian PE

simulations as a whole may also have implications on the development of future wave-

form models, which could introduce further parameters to tune accuracy and evaluation

speed.
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Chapter 5

Modelling precessing binary black

holes for the subdominant

harmonics: IMRPhenomXPHM

This chapter presents the article:

• Let’s twist again: computationally efficient models for the dominant and sub-dominant

harmonic modes of precessing binary black holes. Geraint Pratten, Cecilio García-

Quirós, Marta Colleoni, Antoni Ramos-Buades, Héctor Estellés, Maite Mateu-

Lucena, Rafel Jaume, Maria Haney, David Keitel, Jonathan E. Thompson, Sascha

Husa. arXiv:2004.06503 [gr-qc] (2020),

which has been submitted for peer review to Physical Review D.

Abstract

We present IMRPhenomXPHM, a phenomenological frequency-domain model for the

gravitational-wave signal emitted by quasi-circular precessing binary black holes, which

incorporates multipoles beyond the dominant quadrupole in the precessing frame. The

model is a precessing extension of IMRPhenomXHM, based on approximate maps

between aligned-spin waveform modes in the co-precessing frame and precessing wave-

form modes in the inertial frame, which is commonly referred to as “twisting up” the

non-precessing waveforms. IMRPhenomXPHM includes IMRPhenomXP as a special

case, the restriction to the dominant quadrupole contribution in the co-precessing frame.

We implement two alternative mappings, one based on a single-spin PN approximation,
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as used in IMRPhenomPv2 [1], and one based on the double-spin MSA approach of

[2]. We include a detailed discussion of conventions used in the description of precessing

binaries and of all choices made in constructing the model. The computational cost of

IMRPhenomXPHM is further reduced by extending the interpolation technique of [3]

to the Euler angles. The accuracy, speed, robustness and modularity of the IMRPhe-

nomX family will make these models productive tools for gravitational wave astronomy

in the current era of greatly increased number and diversity of detected events.

5.1 Introduction

We have recently presented IMRPhenomXAS [4], a phenomenological model for the

` = |m| = 2 dominant quadrupole spherical harmonic modes of the gravitational wave

signal emitted by coalescing black holes in quasi-circular orbits, and with spin vectors

orthogonal to the orbital plane. This model improves over the IMRPhenomD model

[5, 6] that is routinely used in gravitational wave data analysis. The improvements include

modifications of the phenomenological ansatz, a systematic approach to modelling the

dependence of phenomenological parameters on the three-dimensional parameter space

of non-precessing quasi-circular binaries of black holes [7, 8], extending the set of NR

waveforms our model is calibrated to from 19 to 461, incorporating additional numerical

perturbative waveforms for mass ratios up to 1000 into the calibration data set, and

calibrating to a more accurate description of the inspiral [9].

Building on IMRPhenomXAS, we have also presented IMRPhenomXHM [10], which

extends the model to the leading subdominant harmonics, in particular the (`, |m|) =

(2, 2), (2, 1), (3, 3), (3, 2), (4, 4) modes, and includes mode mixing effects in the ` = 3, |m| =
2 harmonics as described in [10]. This extension is aimed to supersede the IMRPhe-

nomHM model [11], where the subdominant harmonics are not calibrated to NR wave-

forms, and instead an approximate map from the (2, 2) to the sub-dominant harmonics

is employed.

These models are formulated in the frequency domain, which is typically employed in

matched filter calculations, in order to reduce the computational cost of gravitational

wave data analysis. In order to accelerate the evaluation of the waveform model, which

is particularly important for computationally expensive applications such as Bayesian

inference [12, 13], we have further developed the multibanding interpolation method of

[14] as described in [3].

Phenomenological waveform models for non-precessing systems have been extended to

precessing systems [1, 15, 16] by a construction that is based on an approximate map
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between precessing and non-precessing systems, and is commonly referred to as “twisting

up” [17, 18, 1]. The aim of the present paper is to revisit the twisting-up procedure,

first by documenting it in detail and deriving the equations that define the model in the

frequency domain, and then to extend IMRPhenomXAS and IMRPhenomXHM to

precession, resulting in the IMRPhenomXP and IMRPhenomXPHM models, which

are publicly available as implemented in the LALSuite [19] library for gravitational wave

data analysis.

Approximate maps between the gravitational wave signals of precessing and non-precessing

systems can be constructed based on the fact that the orbital timescale is much smaller

than the precession timescale, and correspondingly the amount of gravitational waves

emitted due to the precessing motion is relatively small and contributes little to the

phasing of the gravitational wave signal when observed in a non-inertial co-precessing

frame. Rather, the dominant effect of precession is an amplitude and phase modulation

that can be approximated in terms of a time-dependent rotation of a non-precessing

system [17, 18].

We will describe this rotation in terms of three time-dependent Euler angles, and our

non-precessing gravitational wave signal will be described by the IMRPhenomXHM

model (or IMRPhenomXAS for the dominant quadrupole modes). The waveform for

precessing binaries can thus be approximated by interpreting a non-precessing waveform

as an approximation to the precessing waveform observed in a non-inertial frame that

tracks the precession of the orbital plane [17]. This map is greatly simplified by the

approximate decoupling between the spin components parallel and perpendicular to the

orbital angular momentum L [18]. See however [20] for an instability for approximately

opposite spins that can result in breaking this assumption in a small part of the parameter

space.

In addition to the time-dependent rotation, the approximate map also requires a second

element, which is to modify the final spin of the merger remnant, which is in general

different from the non-precessing case, essentially due to the vector addition of the indi-

vidual spins and angular momentum. The final mass of the remnant is much less affected

by precession, since the scalar quantity of radiated energy is not significantly affected by

the precessing motion due to its slower time scale compared to the orbital motion.

An important shortcoming of this construction as presented here is that it does not

include the asymmetries in the (`, |m|) = (2, 2) modes that are responsible for large

recoils, see e.g. [21]. For brevity we will refer to the approximations that are used in the

“twisting up” procedure as the “twisting approximation”. For a recent detailed discussion

of the effect of these approximations, with special consideration of the effect on sub-

dominant harmonics, see [22].
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Our model currently uses two alternative descriptions for the Euler angles that charac-

terize the approximate map: the one used previously in [1, 23] assumes that the spin of

the smaller black hole vanishes, while the one developed in [2] and previously used in

[15, 16] describes double-spin systems. The code we have developed as part of LALSuite

[19] is modular, and allows to independently update different components, such as the

calibrations of particular regions (inspiral, merger, or ringdown) for particular spherical

harmonics, or the precession Euler angles, and supports calling particular versions of

these components.

In a previous study of waveform systematics [24] it was found that while models such as

IMRPhenomD and IMRPhenomPv2 were sufficiently accurate for the first detection

of gravitational waves [25], further improvements in accuracy were called for. The IM-

RPhenomX family of waveform models addresses this, and the present work completes

the IMRPhenomX family of waveform models to serve as a tool for gravitational wave

data analysis that models quasi-circular systems, and to serve as a basis for extensions:

e.g. to address eccentricity and model fully generic mergers of black holes in general

relativity, to address remaining shortcomings in describing quasi-circular systems, and

as a basis for tests of general relativity.

The paper is organized as follows: We first discuss our notation and conventions in

Sec. 5.2 and the basic concepts of the modelling of precessing binaries in Sec. 5.3. We

then present the construction of the model in Sec. 5.4 and our tests of quality and

computational efficiency in Sec. 5.5. This also includes Bayesian inference results with

the new model on real gravitational wave data. We conclude the paper in Sec. 5.6.

Several appendices provide further technical details: In appendix 5.A we list the Wigner-

d matrices we use to express rotations. In appendix 5.B we summarize conventions

regarding non-precessing waveforms. In appendix 5.C we discuss frame transformations

and the effect in the gravitational wave polarizations. In appendix 5.D we discuss how

our choice of polarization relates to other choices in the literature. In appendix 5.E

we spell out the derivation of the frequency domain gravitational waveform. Appendix

5.F contains details of the LALSuite implementation. In appendix 5.G.1 we write out

the explicit PN expressions for the next-to-next-to-leading order (NNLO) Euler-angle

descriptions that we use here. Finally in appendix 5.G.2 we write out the coefficients of

the PN approximation we use for the orbital angular momentum.

We define the mass ratio q = m1/m2 ≥ 1, total mass M = m1 + m2, and symmetric

mass ratio η = m1m2/M
2. We use geometric units G = c = 1 unless explicitly stated

(in particular when using seconds, Hz or solar masses as units).
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5.2 Notation and Conventions

For non-precessing systems we have recently provided a detailed discussion of our con-

ventions in [4, 10]. Our work here is consistent with these conventions, but we drop

the restriction to spins orthogonal to the orbital plane. As the twisting construction is

based on mapping non-precessing waveforms to precessing ones, the properties of non-

precessing waveforms, in particular the consequences of equatorial symmetry with respect

to the orbital plane, are still relevant for the map, and we summarize these conventions

in appendix 5.B.

As our primary coordinate system we use a standard inertial spherical coordinate system

(t, r, θ, ϕ), where t is the inertial time coordinate of distant observers, r is the luminosity

distance to the source, and θ and ϕ are polar angles in the sky of the source. Associated

with this spherical coordinate system will be a Cartesian coordinate system with axes

(x̂J , ŷJ , ẑJ). We will take the ẑJ axis to be the direction of the total angular momentum

J, and we will refer to this inertial coordinate system as the J-frame. In most binaries,

the orbital and spin angular momenta will precess around the J [26, 27]. Here we will

take the direction of J to be fixed, i.e. Ĵ(t) ' Ĵt→−∞. This is a limitation of the

model and excludes special cases, such as transitional precession, where there is no fixed

precession axis and the direction of J will evolve.

Our final result will be the calculation of the observed gravitational wave polarizations

in a frame where the z-axis corresponds to the direction N̂ of the line of sight toward

the observer, which we will refer to as the N -frame. The observer of the gravitational

wave signal will be located at the sky position θ = θJN and ϕ = φJN in the J-frame.

We will use a third coordinate system to describe precession in terms of a rotating orbital

plane, which is orthogonal to the Newtownian orbital angular momentum LN = µn×v,

where µ is the Newtonian reduced mass, n the vector from the position of the secondary

black hole to the primary, and v the relative velocity. In the presence of spin precession,

the direction of the actual orbital angular momentum L will in general differ from the

direction of LN due to the presence of spin components in the orbital plane, orthogonal

to LN, see e.g. the discussions in [17] related to Eq. (4.6) of that paper. These corrections

enter L at the first PN order and modulate the rotation of the orbital axis. In our present

implementation of the twisting-up approximation, we will neglect the influence of this

effect on the final waveform, as has been done in previous implementations [1, 23, 15, 16].

We will refer to a coordinate system where the z-axis is chosen as L or LN as the L-frame,

and will discuss different choices for approximating L in Sec. 5.4.3.

When setting up initial data for NR simulations, it is common to choose spin components

for the initial data set in the L-frame, where approximations for L may or may not be
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applied. We will refer to the inertial coordinate frame, which corresponds to the L-frame

at some initial reference time as the L0-frame.

Our setup in this paper is constructed to be consistent with [28], which discusses conven-

tions for relating the N -frame (referred to as the wave frame) and the L0-frame (referred

to as the source frame), which have been adopted by the LALSuite [19] framework for

gravitational wave data analysis, where we have implemented our model as open source

code. Appendix 5.C discusses how we use the remaining freedom to fix the J , N , and L

(or equivalently L0) frames, which corresponds to fixing the freedom of rotating around

the z-axes of each frame, and to the three Euler angles that rotate a given coordinate

frame into another.

We will perform the “twisting up” construction of the gravitational-wave signal in terms

of its decomposition into spin-weighted spherical harmonics in the J-frame, [29]

hJ = hJ+ − ihJ× =
∑
`≥2

∑̀
m=−`

hJ`m −2Y`m(θ, ϕ), (5.1)

where

−2Y`m(θ, ϕ) = Y`m (θ)eimϕ (5.2)

are the spin-weighted spherical harmonics of spin-weight −2 [30], defined as in [31].

We adopt the LALSuite conventions for the Fourier transform of a signal h(t) and its

inverse

h̃(f) = FT [h] (f) =

∫
h(t) e−2πiftdt, (5.3)

h(t) = IFT
[
h̃
]

(t) =

∫
h̃(f) e2πiftdf. (5.4)

With this definition of the Fourier transform we can convert Eq. (5.1) that defines the

two gravitational wave polarizations in terms of the real and imaginary part of the time

domain gravitational wave strain to expressions in the frequency domain,

h̃+(f) = FT[ Re(h(t)) ] =
1

2

[
h̃(f) + h̃∗(−f)

]
, (5.5)

h̃×(f) = −FT[ Im(h(t)) ] =
i

2

[
h̃(f)− h̃∗(−f)

]
. (5.6)
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5.3 Modelling Precessing Binaries

5.3.1 The twisting construction in terms of Euler angles

One of the key breakthroughs in the modelling of precessing binaries was the insight

that such models can be simplified by formulating them in a non-inertial frame that

tracks the approximate motion of the orbital plane, and that the resulting waveform

approximately resembles some corresponding aligned-spin waveform [17]. In particular,

one finds that a mode hierarchy consistent with non-precessing binaries is restored, al-

lowing to define an approximate mapping between the seven-dimensional space of generic

precessing binaries and the three-dimensional space of non-precessing binaries [18]. This

identification immediately implies that the inverse procedure can be used to approximate

the waveform modes of a precessing binary in the inertial frame [18, 1], namely to apply

a time-dependent rotation to the aligned-spin waveform modes.

In the conventions adopted in this paper, we define (α, β, γ) as the Euler angles that

describe an active rotation from the inertial J-frame to the precessing L-frame in the

(z, y, z) convention. The angles α and β are spherical angles that approximately track

the direction of the Newtonian angular momentum. The third angle can be gauge-fixed

by enforcing the minimal rotation condition [32], demanding the absence of rotation in

the precessing frame about the orbital angular momentum1

γ̇ = −α̇ cosβ. (5.7)

In the conventions adopted here, α will typically increase during the inspiral, while γ

will typically decrease. The gravitational-wave modes between these two frames can be

related via the transformation of a Weyl scalar under a rotation R ∈ SO(3) [30, 17]

hJ`m =
∑̀
m′=−`

D`∗mm′ (α, β, γ)hL`m′ , (5.8)

hL`m′ =
∑̀
m=−`

D`mm′ (α, β, γ)hJ`m, (5.9)

where D`mm′ are the Wigner D-matrices2

D`mm′(α, β, γ) = eimαeim
′γd`mm′(β), (5.10)

1Note that ε = −γ is sometimes used in the literature, e.g. [23].
2Note that the convention for the Wigner d-matrices adopted here implies [33, 34]

D`mm′(α, β, γ) = D`,ABFO
m′m (α, β, γ).
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and d`mm′ are the real-valued Wigner-dmatrices and are polynomial functions in cos(β/2)

and sin(β/2), as detailed in appendix 5.A. Note that Eq. (5.9) follows from inverting

Eq. (5.8). We provide a Mathematica [35] notebook as supplementary material, which

allows to conveniently check key conventions, such as those related to the Wigner-d

matrices.

Schematically, we construct precessing waveform models using the following “twisting”

algorithm:

• Model waveform modes in the precessing non-inertial L-frame, in our case these

models are IMRPhenomXAS and IMRPhenomXHM.

• Perform an active rotation from the precessing L-frame to the inertial J-frame

using a given model for the precession dynamics, as encoded in (α, β, γ). The

inertial frame is defined such that zJ = J, where J is approximately constant, and

a full discussion of the relation between different frames and the conventions chosen

to represent precessing motion is given in appendix 5.C. In order to achieve closed-

form expressions in the Fourier domain, the SPA approximation is used, with the

result stated in the next section (5.3.2), and a full derivation deferred to appendix

5.E.

• Project gravitational-wave polarizations into the N -frame as discussed in appendix

5.C.

5.3.2 Gravitational-Wave Polarizations in the Frequency Domain

The frequency-domain expressions for the gravitational-wave polarizations in the inertial

J-frame h̃J+,×(f) in terms of spherical harmonic modes h̃L`m(f) in the co-precessing L-

frame are derived in appendix 5.E, starting from Eq. (5.8), and performing Fourier

transformations with the stationary phase transformation (SPA) [36–38]. The result

for the gravitational-wave polarizations in terms of modes in the precessing L-frame

reads

h̃J+(f > 0) =
1

2

∑
`≥2

l∑
m′>0

h̃L`−m′(f)eim
′γ
∑̀
m=−`

[
A`m−m′ + (−1)`A` ∗mm′

]
, (5.11)

h̃J×(f > 0) =
i

2

∑
`≥2

∑̀
m′>0

h̃L`−m′(f)ei m
′γ
∑̀
m=−`

[
A`m−m′ − (−1)`A` ∗mm′

]
, (5.12)

where we have introduced mode-by-mode transfer functions

A`mm′ = e−i m αd`mm′(β) −2Y`m. (5.13)
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The modes in the precessing L-frame can be approximated with non-precessing waveform

modes [17, 18, 1]. Here we use IMRPhenomXHM [4, 10], which contains the (`, |m|) =

(2, 2), (2, 1), (3, 3), (3, 2), (4, 4) modes. Note that, as discussed in [22], our treatment of

mode-mixing in the non-precessing case does not strictly carry over to precession, as one

would need to consider mode mixing in the inertial frame, and not in the co-precessing

frame corresponding to the aligned-spin waveform. An analysis of the shortcomings of

our treatment of mode-mixing and further improvements of the model will be the subject

of future work.

5.4 Constructing the Model

A core ingredient in modelling precessing binaries is a description for the precession

dynamics in terms of the three Euler angles {α, β, γ} describing the active transfor-

mation from the precessing to the inertial frame. For IMRPhenomXPHM, we have

implemented two different prescriptions for the precession angles. The first model, de-

scribed below in Sec. 5.4.1, is based on the NNLO single-spin PN expressions used in

IMRPhenomPv2 [1, 23]. The second model, described in Sec. 5.4.2, is based on the

2PN expressions from [2], derived using a multiple scale analysis (MSA). Such modu-

larity will help us to gauge systematics in modelling precession and its implications for

gravitational-wave data analysis.

5.4.1 Post-Newtonian NNLO Euler Angles

The single-spin description of the Euler angles is based on a PN re-expansion setting

S2 = 0, and restricting to spin-orbit interactions [23]. This framework was implemented

in IMRPhenomPv2 [1, 23] and has been actively used in the analysis of gravitational-

wave data [39].

In the PN framework, we first solve for the evolution equations of the moving triad

{n,λ, `} at a given PN order in the conservative dynamics before re-introducing radiation-

reaction effects. The angular momentum J , neglecting radiation reaction effects, is ap-

proximately conserved and can be used to define a fixed direction z. Completed with

two constant unit vectors x and y, this forms an orthonormal triad. We can define a

separation vector n between the two black holes such that r = rn with r = r1 − r2.

The unit normal to the instantaneous orbital plane, `, is defined by ` = n× v/|n× v|,
where v = v1 − v2 is the relative velocity. Finally, the orthonormal triad is completed
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by λ = `× n. The evolution of the triad is given by [40, 41]

dn

dt
= ωλ, (5.14a)

dλ

dt
= −ωn+ ω̄`, (5.14b)

d`

dt
= −ω̄λ, (5.14c)

where ω̄ is the precession angular frequency. Introducing an orthonormal basis such that

the z-axis points along J , as we do in appendix 5.C, we can introduce the Euler angles

{α, β, γ} to track the position of L with respect to this fixed basis. The evolution of the

Euler angles follows from Eqs. (5.14):

dα

dt
= − ω̄

sinβ

Jn√
J2
n + J2

λ

, (5.15a)

dβ

dt
= ω̄

Jλ√
J2
n + J2

λ

, (5.15b)

dγ

dt
= −α̇ cosβ. (5.15c)

The only assumption made in deriving these equations is that the direction of the total

angular momentum is approximately constant and that we may neglect radiation reaction

effects [40].

In the regime of simple precession, in which the total angular momentum is not small

compared to the orbital and spin angular momenta, the opening angle β of the precession

cone is approximately constant and is constrained by the minimal rotation condition

[32], as in Eq. (5.7). Under the approximation that the direction of the total angular

momentum, Ĵ , is constant throughout the evolution, the angle β can be determined

using the closure relation J = L+ S1, yielding

cosβ = ` · J|J | =
J`√

J2
` + J2

n + J2
λ

. (5.16)

With a PN re-expansion of the right hand side and decomposing the spin into contribu-

tions parallel and perpendicular to the orbital angular momentum, S = S‖ + S⊥, the

expression for β reduces to [23]

cosβ =
L+ S‖√

(L+ S‖)2 + S2
⊥

= ±(1 + s2)−1/2, (5.17)
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where s = S⊥/(L + S‖) and the overall sign is dependent on the sign of L + S‖. This

approximation was used in IMRPhenomPv2, coupled with a 2PN non-spinning ap-

proximation of the orbital angular momentum L [27]. In [42] we discuss the use of a

numerical fit to the orbital angular momentum in a non-precessing merger, and here we

use different alternative PN approximations as discussed in Sec. 5.4.3.

The dynamics for α̇ are determined using the results obtained in [40] together with the

NNLO spin-orbit contributions derived in [41]:

dα

dt
= − ω̄

sinβ

Jn√
J2
n + J2

λ

, (5.18)

where ω̄ is defined by Eq. (5.14). The right-hand side of Eq. (5.18) is PN re-expanded

and orbit-averaged in order to re-express the spin components S1,λ and S1,n in terms of

an effective spin parameter χp [43]. Radiation reaction effects can be incorporated by

using the evolution of the frequency, ω̇/ω2, to re-express Eq. (5.18) as

dα

dω
=

1

ω̇

dα

dt
. (5.19)

In IMRPhenomPv2, corrections up to 3.5PN in both the orbital and spin-orbit sectors

were used for the evolution of ω. Equation (5.19) is re-expanded as a PN series in

ω and is integrated term-by-term to yield a closed-form expression for α(ω), up to an

overall constant of integration. A similar strategy is employed for deriving γ(ω) using

the relation in Eq. (5.7). The constants of integration arising when solving Eqs. (5.14)

are fixed by the orientation of the spins at a given reference frequency fref as discussed

in appendix 5.C.

The effective spin precession parameter χp [43] provides a mapping from the four in-

plane spin degrees of freedom to a single parameter that captures the dominant effect of

precession. As discussed in [43], the magnitudes of the in-plane spins Si,⊥ will oscillate

about a mean value, with the relative angle between the spin vectors changing contin-

uously. Averaging over many precession cycles, the average magnitude of the spins can

be written as [43]

Sp =
1

2
(A1S1,⊥ +A2S2,⊥ + |A1S1,⊥ −A2S2,⊥|) , (5.20)

= max (A1S1,⊥, A2S2,⊥) , (5.21)

where A1 = 2+3/(2q). For most binaries, the spin of the larger black hole will dominate

and Sp reduces to A1S1,⊥. As the in-plane spin of the smaller black hole will become
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increasingly negligible at higher mass ratios, the dimensionless effective precession pa-

rameter is defined by assigning the precession spin to the larger black hole [43]

χp =
Sp

A1m2
1

. (5.22)

In IMRPhenomPv2, a choice was made to calculate the PN Euler angles by placing

all of the spin on the larger black hole, i.e. χ2 = 0. IMRPhenomXPHM inherits this

choice in this first prescription for the Euler angles.

5.4.2 MSA Euler Angles

The second formulation of the precession angles that we implement is based on the

application of multiple scale analysis (MSA) [44] to the PN equations of motion [45–

47, 20, 48, 2]. This approach employs a perturbative expansion in terms of the ratios

of distinct characteristic scales in the system. For precessing binaries, a natural hier-

archy of timescales can be identified with the orbital time scale being shorter than the

precessing time scale, which is again shorter than the radiation reaction timescale. In

[2], the time-domain PN precession equations are solved by incorporating radiation re-

action effects through the multiple scale analysis. The resulting time domain waveforms

are then transformed to the frequency domain using shifted uniform asymptotics [49],

helping to overcome a number of limitations and failures in the more conventional SPA

approach.By decomposing the waveform into Bessel functions, the resulting Fourier in-

tegral can be evaluated term-by-term using SPA and resummed using the exponential

shift theorem. The concomitant frequency domain inspiral waveforms contain spin-orbit

and spin-spin effects at leading order in the conservative dynamics and up to 3.5PN

order in the dissipative dynamics, neglecting spin-spin terms. The MSA formulation of

the PN Euler angles enables double-spin effects, as recently first incorporated into the

phenomenological framework in [15, 16]. The SPA treatment used here corresponds to

the leading order, local-in-frequency correction and is equivalent to the zeroth order of

the SUA [49, 33].

The precession angles are given in terms of a PN series plus an additional MSA correction.

The full solution for α in the MSA approach is [2]3

α = α−1 + α0 +O(ε), (5.23)

3Note that [2] adopts the notation φz → α, ζ → −γ and cos θL → cosβ.
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where

α−1 =
5∑

n=0

〈Ωα〉(n) α(n) + α0
−1 (5.24)

is the leading order MSA correction given in Eq. (66) of [2] and α0 is the first-order

correction to the MSA given by Eq. (67) of [2]. A similar approach is taken for γ,

with the leading order MSA correction given by Eq. (F5) of [2] and the first-order MSA

correction given in Eq. (F19) of appendix F of [2].

Again, the Euler angles are fixed by the orientation of the spins at a given reference

frequency fref as discussed in appendix 5.C. Similarly to the PN re-expanded results

used in IMRPhenomPv2, the identification of Ĵ as an approximately conserved quantity

leads to the preferred coordinate frame in which ẑ = Ĵ with the angle β defining the

precession cone, as in Eq. (8) of [2]:

cosβ = Ĵ · L̂ =
J2 + L2 − S2

2JL
. (5.25)

Together with the expressions for α and γ, this defines the complete set of equations

describing the Euler angles in the MSA framework.

The MSA expressions are series expansions in terms of the orbital velocity or, equiva-

lently, the GW frequency f−4/3+n/3, where n ∈ [1, 6] denotes the order of the series. As

discussed in [2, 15], γ is fully PN re-expanded whereas α involves both PN re-expanded

and un-expanded terms. This choice was motivated by solutions to the exact precession-

averaged equations 〈α̇〉pr leading to α−1 being ill-behaved in the equal mass ratio limit

and divergences when the total spin angular momentum is (anti)aligned with the orbital

angular momentum [2]. A more detailed discussion can be found in Sec IV D 1 and ap-

pendix E of [2]. The order to which we retain terms in the MSA series can be controlled

and, as in [15], we drop the highest-order terms in the expansion. The impact of the

expansion order on the Euler angles is highlighted in Fig. 5.1 where the NNLO angles

from Sec. 5.4.1 are shown for comparison.

The subset of equal-mass binaries present a number of qualitative features that distin-

guish them from the generic unequal mass ratio cases. In particular, by setting q = 1 in

the MSA framework we find that the expressions lead to singular behaviour in various

aspects of the model [47, 20, 2]. Of particular note is the singular behaviour of the

precession-averaged spin couplings [2], which are used in the construction of the final

spin estimate detailed in Sec. 5.4.4. These terms must be regularized in the equal-mass

limit to avoid singular behaviour.
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As discussed above, the MSA system of equations is known to result in numerical in-

stabilities when S and L are nearly mis-aligned. Such instabilities result in a failure at

the waveform generation level. In order to help alleviate these situations, we have opted

to use the NNLO angles described in Sec. 5.4.1 as a fallback in the default LALSuite

implementation, though the end-user can still demand a terminal error for these cases.
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Figure 5.1: The Euler angles α and γ obtained by solving the MSA system of [2] and
the NNLO PN equations for a binary of mass M = 20M�, q = 10, χ1 = (0.4, 0, 0.4)
and χ2 = (0.3, 0,−0.3), with a starting frequency of 10Hz. The vertical dashed lines
correspond to the MECO [50], ISCO and ringdown frequency in increasing order. The
multiple shaded lines denote the Euler angles evaluated using different orders for the

MSA correction used in the MSA system and the NNLO angles.

5.4.3 Post-Newtonian Orbital Angular Momentum

In order to calculate the orbital angular momentum, we use an aligned-spin 4PN approx-

imation [51–56]

L =
η√
x

[
L0 + L1x+ L2x

2 + L3x
3 + L4x

4+ (5.26)
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Figure 5.2: Comparison of the NNLO Euler angle cosβ against the MSA versions for
the same binary as shown in Fig. 5.1. We show the impact of different PN orders for

the orbital angular momentum L on the determination of the opening angle.

+ LSO
1.5x

3/2 + LSO
2.5x

5/2 + LSO
3.5x

7/2

]
,

where La are the orbital coefficients at a-PN order, LSO are the spin-orbit contributions

and we neglect spin-spin terms. The coefficients are given in appendix 5.G.2. This is

in contrast to IMRPhenomPv2, which used a non-spinning 2PN approximation to the

orbital angular momentum

L2PN =
η√
x

[
1 +

(
3

2
+

η

6

)
x+

(
27

8
− 19η

8
+

η2

24

)
x2

]
. (5.27)

Our implementation in the LALSuite code also supports dropping various terms in the

4PN expression of Eq. (5.26), including reducing the approximation to Eq. (5.27). In

addition, we have also implemented the option to incorporate spin effects at leading PN

order at all orders in spin [57–59], as given in appendix 5.G.2. Note that, consistent with

our approximation of the co-precessing dynamics and waveform with the corresponding

aligned-spin quantities we neglect contributions to the angular momentum of the spin

components in the orbital plane. Modelling of the orbital angular momentum is most

relevant for calculating the opening angle β. The impact of different orders for LPN

is shown in Fig. 5.2, where we observe significant differences between the non-spinning

2PN approximation used in [23] and higher-order PN approximants that incorporate

aligned-spin contributions.
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5.4.4 Modelling the Final State

In our twisting construction, approximating a precessing waveform with a non-precessing

one implies that the radiated energy and the radiated angular momentum orthogonal to

the orbital plane are identical to the non-precessing values. Indeed, comparisons of the

final mass from precessing NR simulations with fits for the final mass resulting from

non-precessing mergers, see e.g. [60, 61], show only a weak dependence of the final mass

on precession.

We do however need to take into account the dependence of the final spin on precession,

which is essentially due to the vector addition of the individual spins and angular mo-

mentum, as will be discussed below. A surrogate model for the final spin of precessing

mergers for a limited range in mass ratio and spins has been produced recently [61].

Here, however, we will proceed differently in order not to compromise the simplicity and

domain of validity of our model and employ a simple estimate for the final spin magni-

tude based on accurate fits for the final spin of non-precessing mergers, simple geometric

arguments, and our assumptions related to those underlying the twisting approximation.

In order to incorporate precession into the final spin prediction, we can argue as follows

(compare also to [62]): we first write the total angular momentum J as the sum of

individual spins Si and orbital angular momentum L:

J = S1 + S2 + L.

We can now apply this equation to compute the final angular momentum Sfin of the

remnant black hole, interpreting the quantities (S1,S2,L) as the values at merger, where

the further emission of angular momentum effectively shuts off. We split the spin vectors

of the individual black holes into their orthogonal components parallel (or anti-parallel)

and orthogonal to the unit vector in the direction of the orbital angular momentum L̂,

and introduce the quantities (for i = 1, 2):

Si,|| = Si · L̂, S|| = S1,|| + S2,||, (5.28)

Si,⊥ = Si − Si,||L̂, S⊥ = S1,⊥ + S2,⊥. (5.29)

We can now compute the final angular momentum as the vector-sum of 2 orthogonal

components, and then the magnitudes of the final spin Sfin and final Kerr parameter afin

are given as

|Sfin| ≡M2
fin|afin| =

√
S⊥

2 + (S|| + Lfin)2. (5.30)
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Here, Mfin is the final mass, and Lfin is defined in terms of the final mass and spin as

S|| + Lfin = M2
fina
||
fin, (5.31)

where a||fin is the final Kerr parameter in the corresponding non-precessing configuration.

We compute afin and Mfin as functions of the symmetric mass ratio and the spin pro-

jections in the direction of L, using the same fit to NR data [7] that was used in the

non-precessing IMRPhenomXAS and IMRPhenomXHM models. Note that the fit

for afin is in fact constructed as a fit for Lfin, and afin is then computed using Eq. (5.31).

In the twisting approximation we assume that in a co-moving frame the waveform is

well approximated by a twisted-up non-precessing waveform. In addition, one usually

assumes for simplicity that the total spin magnitudes, as well as the magnitudes of the

projections of S1 + S2 onto L (S||) and orthogonal to it (S⊥) are preserved as well.

The spin components S⊥ and S|| that enter the final spin estimate in Eq. (5.30) can

now be computed in different ways. The simplest choice is to use the non-precessing

value for S||, and the appropriately averaged value of S⊥, which enters our inspiral

descriptions. For the NNLO angle description summarised in Sec. 5.4.1, which is an

effective single spin description, the quantity χp (5.20-5.22) acts as an average in-plane

spin, and can be used to estimate S⊥ at merger. This is the choice that has been

made for the IMRPhenomP [1] and IMRPhenomPv2 [23] models, and it will be the

default choice we have implemented when using one of the NNLO angle descriptions. For

the double spin MSA description outlined in Sec. 5.4.2, one can rely on the precession-

averaged spin couplings of Eqs. (A9-A11) in [2]. This can be best seen by rewriting

Eq. (5.30) more explicitly as

S2
fin = S2

1 + S2
2 + 2S1 · S2 + L2

fin +

+ 2Lfin

(
S1 · L̂ + S2 · L̂

)
. (5.32)

Averaging over one precession cycle, the above equation can be rewritten as:

〈S2
fin〉pr = S2

av + L2
fin + 2Lfin(〈S1 · L̂〉pr + 〈S2 · L̂〉pr) . (5.33)

This will serve as our default choice when using the MSA formulation to compute the

Euler angles.

Assuming that the spin components at merger are equal to the average quantities during

the inspiral has the advantage of providing unambiguous values. However, this neglects

the two facts that the averaged quantities do not predict the value of the spin components

at any particular time, and that they do not accurately describe the spin dynamics shortly
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before and at merger. We therefore also discuss alternative descriptions, which contain

additional freedom to approximately account for the unmodeled information about the

spin components at merger.

We will first discuss the simpler single-spin case, assuming that only the larger black hole,

labelled with index i = 1, carries spin, and the spin of the smaller black hole vanishes.

We first rewrite Eq. (5.30) in the form

|Sfin| =
√
S2

1 + L2
fin + 2S1,||Lfin . (5.34)

We assume that the total spin S1 does not change during the coalescence process, and

that Lfin is given by the non-precessing value as in Eq. (5.31), where for S|| we take its

initial value, i.e. the value we have used during the inspiral. In previous work [1, 23] this

initial value of S|| has also been used in the final spin estimate of Eq. (5.34), consistent

with the approximation that S⊥ and S|| are approximately preserved during the inspiral.

Due to the strong spin interaction close to merger, this approximation may however not

be accurate, and alternatively we may only assume that the spin magnitude is preserved

and treat the value of S1,|| as unknown. We can then determine the value of S1,|| that best

fits a given precessing waveform subject to the condition 0 ≤ |S1,||| ≤ S. We currently

do not provide this option in our LALSuite code, in order to avoid book-keeping of extra

parameters that are not typically used in PE.

Instead we provide a toy model solution for the single-spin case, where χp is replaced

by χ1x, i.e. the x-component of the spin of the larger black hole. This particular choice

of toy model has been implemented to facilitate comparisons with an earlier version of

the IMRPhenomPv3HM model [16].4 The rotational freedom in the in-plane spin then

allows to vary the in-plane spin component that enters the final spin estimate between

zero and the magnitude of the in-plane spin.

Note that in [1, 23] a free parameter λ was introduced as

|afin| =
√(

S2
⊥

λ

M2
fin

)2

+ a
||
fin

2
, (5.35)

and was set to the ad-hoc value λ = M2
fin, consistent with [62], in order to reduce the

residuals of the final spin estimate when comparing with NR data sets.

We now consider the double-spin case, where we also have to take into account the time-

dependent angle between the in-plane components of the spins. We can write Eq. (5.30)
4This earlier version of IMRPhenomPv3HM with χ1x passed to the final spin function was intro-

duced in version 2f1596262c3af9832dfe2a52944472cb3be81e0a of the https://git.ligo.org/lscsoft/
lalsuite/ repository and changed to χp in b60bec3aef3be3c346fd349ddd738e55a2af4b6d.

https://git.ligo.org/lscsoft/lalsuite/
https://git.ligo.org/lscsoft/lalsuite/
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in a form similar to Eq. (5.34) as

S2
fin = (S1,⊥ + S2,⊥)2 + (S1,|| + S2,|| + Lfin)2 (5.36a)

= S2
1 + S2

2 + L2
fin + 2S1,⊥S2,⊥ cosφ12 (5.36b)

+ 2S1,||S2,|| + 2Lfin(S1,|| + S2,||). (5.36c)

One could now choose the unmodeled parameters in this equation and fit them to the best

values in a given data set: e.g. one could leave the parallel components free analogous

to Eq. (5.34), or simply neglect the tilt of the spins at merger and use cosφ12 as a free

parameter. We reserve these options for future work, as they would require to perform

Bayesian PE with a different parameterization than usual within LALSuite. Instead, we

provide the option to model S⊥ as

S2
⊥ = (S1,⊥ + S2,⊥)2, (5.37)

which provides the freedom for cancellations between the two spin components.

In our LALSuite code we currently provide four options to set the magnitude of the final

spin, see also appendix 5.F. We either proceed in analogy with Eq. (5.35) and set

|afin| =
√(

χ̄2
p

m2
1

(m1 +m2)2

)2

+ a
||
fin

2
, (5.38)

where χ̄p can be chosen as one of three alternatives,

χ̄p = χp, (5.39)

χ̄p = χ1x, (5.40)

χ̄p =
S⊥(m1 +m2)2

m2
1

, (5.41)

or by setting

|afin| =

√〈
S2

fin

〉
pr

M2
, (5.42)

where S⊥ in Eq. (5.41) is defined as in Eq. (5.37) and for Eq. (5.42) we have used

Eq. (5.33). Here Eq. (5.39) corresponds to the choice of IMRPhenomP [1] and IM-

RPhenomPv2 [23] and is the default choice when using the NNLO description of the

Euler angles, Eq. (5.40) has been implemented to compare with a previous version of IM-

RPhenomPv3HM, and Eq. (5.42) is the default choice when using the MSA description

of the Euler angles.

In Sec. 5.5 we will provide results for different final spin choices. A detailed investigation

of the differences between final spin estimates is beyond the scope of the present paper



5 Modelling precessing binary black holes for the subdominant harmonics:
IMRPhenomXPHM 191

and will be investigated in future work, along with further improvements.

Due to the change of the directions of Si and L from precession, the estimates we have

discussed only concern the final spin magnitude and not its direction. If we restrict

to simple precession, including the case that the waveform starts after a flip of the

direction of J in a case of transitional precession, we can assume that the direction of J

is approximately preserved and agrees with the final spin direction.

5.5 Model Performance and Validation

In this section, we perform various tests of our model, ranging from comparisons against

NR to real-world PE applications.

5.5.1 Comparison of Euler angles with Numerical Relativity

Both descriptions for the precession angles implemented in our model, and described in

Sec. 5.4.1 and Sec. 5.4.2, are based on PN analytical approximations to the solution of

the angular momenta evolution equations and therefore are expected to lose accuracy

when the assumptions of the PN formalism start to fail as the frequency becomes too

high. A full systematic understanding of the limitations of both descriptions is out of the

scope of this work, but to illustrate the differences between both descriptions, in Fig. 5.1

we compare them with two precessing simulations from the SXS catalog [63, 64]: a single-

spin simulation [SXS:BBH:0094 with mass ratio q = 1.5 and initial dimensionless spin

vectors χ1 = (0.5, 0, 0) and χ2 = (0, 0, 0)] and a double-spin simulation [SXS:BBH:0053

with q = 3, χ1 = (0.5, 0, 0) and χ2 = (−0.5, 0, 0)].

Here the Euler angles of the NR simulations are computed with the “quadrupole align-

ment” procedure, see [17, 32] and [22] for a recent discussion in the context of waveform

modelling. For the NNLO description outlined in Sec. 5.4.1, the in-plane spin is de-

scribed by the single constant quantity χp defined in Eq. (5.22). In contrast, the MSA

description (summarized in Sec. 5.4.2) contains information about both individual spins

and is able to predict the evolution of the norm of the total spin S = S1 + S2, which

allows it to capture the time/frequency dependent oscillations of the Euler angles on the

precession timescale caused by the evolution of the norm of the total spin.

For the single-spin simulation shown in the left panel of Fig. 5.1, both descriptions

present a very similar behaviour for the opening angle β and for the inspiral cycles in

the precessing angle α, though the MSA description seems to remain closer to NR as the

end of the inspiral is approached. For the double-spin case in the right panel of Fig. 5.1,
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Figure 5.1: Comparison of Euler angles with Numerical Relativity. Left:
SXS:BBH:0094 (q = 1.5, χ1 = (0.5, 0, 0), χ2 = (0, 0, 0)). Right: SXS:BBH:0053 (q = 3,
χ1 = (0.5, 0, 0), χ2 = (−0.5, 0, 0)). Solid blue: Quadrupole-aligned Euler angles ex-
tracted from NR simulation. Dashed orange: NNLO implementation (version 102).

Dashed green: MSA implementation (version 223).

one can see that the behaviour of the precessing angle α during the inspiral is better

reproduced by the MSA description and the MSA opening angle β can also reproduce the

oscillatory structure observed in the NR simulation. The oscillations due to double-spin

effects dephase however relative to NR as the end of the inspiral is approached, which can

even lead to a worse description of the late inspiral than the one provided by the NNLO

single-spin description, as seen in the example for the precessing angle α. Strategies to

improve the behaviour of the PN precessing angles descriptions in the high-frequency

regime will be addressed in future work.

5.5.2 Time Domain Waveforms

To best appreciate the differences between precessing waveforms constructed using NNLO

and MSA Euler angle prescriptions, we have generated time-domain waveforms with IM-

RPhenomXPHM for both versions of the "twisting-up" angles, and compared with the

precessing surrogate model NRSur7dq4 [65]. In Fig. 5.2 we plot the cross polarization

for a double-spin configuration with high in-plane spins, varying the mass ratio. For

increasing q, the MSA description tends to stay closer to NRSur7dq4. The differences

between the two descriptions become particularly strong for high mass-ratio systems, as

shown in Fig. 5.3, with the MSA description appearing to be more stable in this regime.

This is particularly evident in the lower panels, where we show a q = 12 and a q = 16

configuration. Notice that the non-smoothness of the NNLO angles in some regions of

the parameter space led us to impose a more stringent threshold on the multibanding of

the Euler angles for this precession version (see Sec.5.5.4 for a detailed discussion).
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Figure 5.2: We compare the relative performance of NNLO and MSA angles against
NRSur7dq4, by plotting the plus polarization returned by the different models for a
double-spin configuration with high in-plane spins. Each panel refers to the same spin
configuration, but we allow the mass ratio to vary from 1 to 4, which is the upper limit
of the calibration region of NRSur7dq4. Overall NNLO angles perform well, although
we do observe some disagreement with respect to NRSur7dq4 as we increase the mass

ratio (lower panels).
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Figure 5.3: We compare the behaviour of the two twisting-up methods implemented
in IMRPhenomXPHM for the same spin configuration chosen in Fig. 5.2, varying the
mass ratio between 4 and 16. For q = 4 we observe good agreement between the two
angle descriptions, especially during the inspiral. However, as the mass ratio increases
the agreement degrades and NNLO angles tend to produce non-smooth features in the

waveform.
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5.5.3 Match Calculations for Precessing Waveforms

In order to check the agreement between our waveform model and other descriptions

we follow standard practice and compute matches between waveforms across a portion

of the parameter space. In Sec. 5.5.3.1 we present matches between our model and

NR waveforms, and in Sec. 5.5.3.2 we compare with other waveform models. As in our

previous work [4, 10] we use the standard definition of the inner product (see e.g. [37]),

〈h1, h2〉 = 4<
∫ fmax

fmin

h̃1(f) h̃∗2(f)

Sn(f)
, (5.43)

where Sn(f) is the one-sided power spectral-density of the detector noise. The match is

defined as this inner product divided by the norm of the two waveforms and maximized

over relative time and phase shifts between both of them,

M(h1, h2) = max
t0,φ0

〈h1, h2〉√
〈h1, h1〉

√
〈h2, h2〉

. (5.44)

It is advantageous to visualize deviations between waveforms in terms of the mismatch

rather than the match, where the mismatch is defined as

MM(h1, h2) = 1−M(h1, h2). (5.45)

We use the Advanced-LIGO [66] design sensitivity Zero-Detuned-High-Power PSD [67]

with a lower cutoff frequency for the integrations of 20 Hz and an upper cutoff at 2048

Hz. We analytically optimize over the template polarization angle, following [68], and

numerically optimize over reference phase and rigid rotations of the in-plane spins at the

reference frequency. We do this rather than optimizing over the reference frequency as

suggested in [16], as this allows to set unambiguous bounds for the parameters involved

in the optimization. In order to perform the numerical optimization we use the dual

annealing algorithm as implemented in the SciPy Python package [69].

5.5.3.1 Matches Against SXS Numerical Relativity Simulations

We have computed mismatches for IMRPhenomXPHM against 99 precessing SXS

waveforms [63, 64], picking for each binary configuration the highest resolution avail-

able in the lvcnr catalogue [28]. As a lower cutoff for the match integration, we took

the minimum between 20 Hz and the starting frequency of each NR waveform. We re-

peated the calculation for three representative inclinations between the orbital angular

momentum and the line of sight (0, π/3, π/2) and total masses ranging from 64 M� to

250M�. As low matches tend to be correlated with low signal-to-noise ratio (SNR) and,
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therefore, with a lower probability for the signal to be observed, we compute here the

SNR-weighted matchMw [70]

Mw =

(∑
iM3

i 〈hi,NR, hi,NR〉3/2∑
i 〈hi,NR, hi,NR〉3/2

)1/3

, (5.46)

where the subscript i refers to different choices of polarization and reference phase of the

source i.e. in our case of the NR waveform. The results are shown in Fig. 5.4. The large

majority of the cases considered here resulted in mismatches between 10−3 and 10−2,

with a consistent number of cases below 10−3 for face-on sources.

We observed, however, three cases for which matches are below 95% for at least one value

of the inclination (SXS:0057, SXS:0058, SXS:0062) and one case where this happens

for all the inclinations (SXS:0165). These all correspond to high mass-ratio, strongly

precessing binaries: SXS:0057, SXS:0058, SXS:0062 are q = 5 simulations with χp ≥
0.4 and SXS:0165 is a q = 6 simulation with χp = 0.78. For this type of systems, the

complex interaction between different waveform multipoles can result in a non-trivial

dependence of the SNR on the orientation of the source, with face-on configurations not

being necessarily favoured (see, for instance, [71] for a related discussion). We observe

this in SXS:0057, SXS:0062, SXS:0165, for which the highest values of SNR do not

necessarily concentrate around zero inclination. This explains why for these simulations

the match increases, rather than decreases, with the inclination of the source.

5.5.3.2 Matches Against other Models

We now turn to computing the mismatch with other waveform models. In contrast to the

comparison with NR waveforms shown in Sec. 5.5.3.1, where SNR-weighted mismatches

are presented, we show “raw” mismatches between models, without weighting them. We

compute matches in the calibration regime of the NRSur7dq4 model, 1 ≤ m1/m2 ≤ 4

and dimensionless spin magnitudes up to 0.8.

We compare against a number of other waveform models, which are routinely used for

gravitational wave data analysis:

• Previous models from the phenomenological waveform family including IMRPhe-

nomD [5, 6], IMRPhenomHM [11], IMRPhenomPv3HM [16] and IMRPhe-

nomPv3 [15], and the spin-aligned basis waveforms of the new IMRPhenomX

family: IMRPhenomXAS [4] and IMRPhenomXHM [10].
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Figure 5.4: In the plots above, we show the SNR-weighted mismatch 1 − Mw of
IMRPhenomXPHM against 99 SXS precessing waveforms of the lvcnr catalog, in
order of ascending inclination. A dashed and a dotted line mark the 5% and 10%

mismatch thresholds respectively.

• A NR surrogate model NRSur7dq4 [65] that interpolates between NR waveforms,

calibrated for precessing simulations up to mass ratios of q = 4 and spin magnitudes

up to 0.8.

• A similar non-precessing surrogate model NRHybSur3dq8 [72], calibrated to

aligned-spin hybrid waveforms up to mass ratios of q = 8 and spin magnitudes

up to 0.8.

• A non-precessing, higher-modes model SEOBNRv4HM_ROM [73] which is a

reduced order model of SEOBNRv4HM [9, 74], an EOB model calibrated to NR

waveforms.

We choose NRSur7dq4 as the reference model for high mass precessing waveforms,

where higher mode contributions are significant, since this is still the only precessing

model calibrated to precessing NR waveforms. Due to the limited length of the NR

waveforms used to calibrate the model (4000 total mass units), we restrict to large

masses above 90 solar masses and compute the mismatch for a fixed list of masses,

(90, 126, 177, 249, 350)M�. Note that for large masses, the impact of higher mode effects

and precession effects in the strong field regime on the waveform is more pronounced.
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In Fig. 5.5 we show mismatches both with the precessing NRSur7dq4 [65] and the

non-precessing NRHybSur3dq8 [72]. The comparisons with the latter allow to put the

mismatches we see for precessing higher-modes models into the context of mismatches

in the non-precessing case, where waveform models are significantly more mature.
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Figure 5.5: In the left panel we compare the non-precessing models IMRPhenomD,
IMRPhenomXAS, IMRPhenomHM, IMRPhenomXHM, SEOBNRv4HM_ROM
and the precessing IMRPhenomXPHM and NRSur7dq4 models with the non-
precessing NRHybSur3dq8 model as discussed in the main text. In the right panel
we compare two versions of our IMRPhenomXPHM model (NNLO-based version
102 with final spin version 0 and MSA-based version 223 with final spin version 3,
see Table 5.F.1), and IMRPhenomPv3HM with NRSur7dq4, as discussed in the
main text. For comparison we show also the mismatch between NRHybSur3dq8 and
SEOBNRv4HM_ROM as displayed in the upper panel. The number of samples for

each comparison is indicated in the legend.

In the upper panel of Fig. 5.5 we also show the comparison of models that only con-

tain the ` = |m| = 2 modes with NRHybSur3dq8. One can see that while IMRPhe-

nomXAS is significantly more accurate than IMRPhenomD as discussed in [4], this only

yields a small advantage when comparing raw mismatches with a higher-modes model.

A model that does include higher modes, even when those are not calibrated to NR,

such as IMRPhenomHM, gains significant accuracy. The relative gain from calibrating

higher modes is however comparable. The difference between the IMRPhenomXHM

and SEOBNRv4HM_ROM [73] models is small, in particular considering that they do

not describe the same set of sub-dominant harmonics, with IMRPhenomXHM having

a larger fraction of very accurate waveforms. We have also included a variant of our pre-

cessing IMRPhenomXPHM model (variant 102 based on NNLO angles and final spin

version 0, see Table 5.F.1). One can see that results are consistent with the manifestly

non-precessing model IMRPhenomXHM (up to sampling errors), which provides an

end-to-end test of consistent behaviour of our new model in the aligned-spin limit. A

number of more stringent tests of the appropriate aligned-spin limit have been carried

out as part of the LALSuite code review. Finally, NRSur7dq4 is most consistent with

NRHybSur3dq8, but the advantage is not very pronounced, and is likely to be signif-

icantly reduced by adding further harmonics to IMRPhenomXPHM, in particular the
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` = |m| = 5 modes already present in SEOBNRv4HM_ROM and the ` = 4, |m| = 3

modes present in IMRPhenomHM.

In the lower panel of Fig. 5.5 we finally show mismatches against the precessing NR-

Sur7dq4 model. One can see that the distributions of mismatches are roughly similar

to the non-precessing case, but with a tail of high mismatches, which is similar to IM-

RPhenomPv3HM. The tail of small mismatches is similar to that when comparing

the two non-precessing models SEOBNRv4HM_ROM and NRHybSur3dq8, while in

the bulk IMRPhenomXPHM clearly outperforms IMRPhenomPv3HM, which is not

calibrated to numerical data for subdominant harmonics.

5.5.4 Multibanding and Euler Angles

In [3] we have discussed our implementation of an algorithm to accelerate waveform

evaluation by first evaluating the waveform on a coarse unequispaced grid, before lin-

ear interpolation to an equispaced fine grid, following [14]. The grid spacing on the

coarse grid is chosen to satisfy a given error threshold for linear interpolation (a dif-

ferent criterion to set the grid spacing has previously been used in [14]). An iterative

expression can then be used to accelerate the evaluation of computationally expensive

trigonometric expressions, such as those required to compute the strain from the phase

(and amplitude).

In [3] we derived simple estimates to set the grid spacing in terms of the phase errors

and relative amplitude errors as a function of the grid spacing, and we have implemented

a conservative default threshold of 10−3 radians of local phase error and of relative

amplitude error 10−3.

Here we apply the same idea to the Euler angles. For the inspiral, in [3] we have derived

the required grid spacing for accurate linear interpolation from the leading singular term

of the TaylorF2 phase expression for the gravitational wave phase of spherical harmonic

mode h`m, which reads [75],

Φ`m =
m

2

3

128η

(
2πf

m

)−5/3

, (5.47)

where η is the symmetric mass ratio and constants of integration that do not affect the

second derivative, and thus the error estimate, have been dropped. The leading term for

the NNLO angles α and ε is the same

α =

(
− 5δ

64m1
− 35

192

)
(πf)−1 + higher order terms, (5.48)
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see appendix 5.G.1. Similar to the evaluation of the inspiral gravitational wave phase,

we need to evaluate expressions of the type

eimα(2πf/m), (5.49)

for spherical harmonic modes h`m, see appendix 5.E, and we thus have to apply multi-

banding interpolation to the arguments of the complex exponentials of the type in

Eq. (5.49). The ratio of the maximal allowed step sizes for achieving the same inter-

polation error for the gravitational wave phase and Euler angles is thus given by the

(inverse) ratio of second derivatives with respect to the frequency f , which evaluates to

dfΦ

dfα
=

∣∣∣∣mα′′(2πf/m)

Φ′′`m

∣∣∣∣ =
(πf)2/3

(
13
√

1− 4η + 7
)
η√

1− 4η + 1
, (5.50)

which is smaller than unity during the inspiral (f ≤ 0.1) and vanishes both in the low-

frequency and extreme-mass-ratio limits. The third Euler angle β is a regular function

during the inspiral, and thus does not require high resolution for accurate interpolation.
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Figure 5.6: Histograms of a mismatch calculation for h+ between versions of IM-
RPhenomXPHM without using multibanding for the Euler angles, and with four
different levels of multibanding threshold: 10−1, 10−2, 10−3, 10−4. The top panel show
the results for the MSA prescription (version 223) and the bottom panel shows the re-
sult for NNLO angles (version 102). 106 waveforms were generated across a parameter
space as described in the main text. The threshold 10−3 (MB3 in the plot) has been

chosen as the default value in the LALSuite implementation.

During the merger and ringdown the angles have a simpler functional form than the

gravitational wave phase, which is characterized by a Lorentzian. The exponential falloff

of the mode amplitudes in the ringdown phase also requires significant resolution. The

Euler angles in turn carry significant systematic errors, e.g. due to applying the SPA

approximation for the whole waveform. Note that the MSA prescription for the angles

causes oscillations in the angle β, however the angle prescriptions still broadly agree with

the NNLO description.

Future work will attempt to calibrate the angle descriptions to NR and better understand

the phenomenology during the merger and ringdown, which in turn will require improved
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estimates for the required grid spacing in order to not loose accuracy due to multibanding.

At the current level of accuracy produced from the precession angle models, it does not

seem necessary to attempt more precise prescriptions to apply multibanding to the Euler

angles. For simplicity we thus use the same coarse grid for each spherical harmonic mode

that we have utilized in [3]. To quantitatively assess the impact that multibanding of

the Euler angles has on the precessing waveforms, we compute matches between the

original waveform, generated without angle multibanding, and waveforms produced with

the identical parameters except with multibanding, varying the multibanding threshold

between 0.1 and 0.0001.

The results of this comparison are shown in Fig. 5.6 for waveforms twisted up using the

MSA angles (top panel) and the NNLO angles (bottom panel). They are generated over

a broad parameter space range with 1 ≤ m1,2 ≤ 500 and dimensionless spin magnitudes

up to unity, corresponding to the extreme Kerr limit. The frequencies span from 10 to

1024 Hz and the grid spacing df ranges from 0.01 to 0.3 Hz. In typical Bayesian inference

applications, the value of df is not chosen randomly but adjusted to the segment length

of the data to be analyzed, which is itself adjusted to the time a signal is observable

in the sensitive band of the detector. Here we have chosen to use a random df which

could lead to downsampled waveforms and hence worse matches, however the random

df allows us to stress-test the robustness of the multibanding algorithm and check that

any kind of uniform frequency grid is supported.

The results in Fig. 5.6 show that indeed the lower the threshold the better is the match

(at the expense of loosing speed). There is a tail of very low mismatches which is much

more pronounced for version 102 than for 223; this tail corresponds to cases where the

multibanding was switched off automatically by the code and hence the match is close

to machine precision. The multibanding is automatically switched off in the following

cases:

• For total massMtot higher than 500M�. This cutoff is already present in the non-

precessing model IMRPhenomXHM and is motivated by the short length of the

waveform in the frequency band of the detector for these massive systems, which

renders multibanding less efficient but also unnecessary.

• When using MSA angles: for q > 50 and Mtot > 100 M�. This corner of the

parameter space corresponds to cases where the MSA angles do not have a mild

behaviour and lead to ‘noisy’ waveforms. Applying multibanding to these cases

would amplify errors, and is thus switched off.

• When using NNLO angles: for q > 8. It is well known that the NNLO angles

can behave badly for high mass ratios and can even be pathological, see e.g. our
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discussion in Sec. 5.5.2. Once again the multibanding would not properly work for

theses case and is switched off.

The veto for the multibanding in the NNLO angles is much broader than for MSA,

leading to the more pronounced tail of lower mismatches.

We also perform a PE study with different multibanding thresholds, to test the effect

on recovered posterior distributions. We perform the same NR injections as described

in Sec. 5.5.6.3 with version 223 for the MSA angles and compare the results between

thresholds of 0, 10−1, 10−2, 10−3, 10−4. As seen in Fig. 5.7 the results are highly consis-

tent. Considering these results together with the benchmarking results shown in Fig. 5.8

and discussed in the next section, we however make a conservative choice for the default

multibanding threshold for the Euler angles and set the value to 10−3. This can be

changed as described in appendix 5.F.

Figure 5.7: Injection recovery results for SXS:BBH:0143 for IMRPhenomX-
PHM without multibanding in the Euler angles and with four different thresholds
(10−1, 10−2, 10−3, 10−4) for multibanding in the angles. No appreciable differences
arise in the posteriors, meaning that a more relaxed threshold than the default of 10−3

could be used in PE studies, reducing even more the computational cost of the runs.

5.5.5 Benchmarking

In Fig. 5.8 we show benchmarking results for one precessing case in a frequency range

from 10 to 2048 Hz comparing the previous precessing Phenom models with different



5 Modelling precessing binary black holes for the subdominant harmonics:
IMRPhenomXPHM 202

IMRPhenomPv2
IMRPhenomPv3
IMRPhenomPv3HM
IMRPhenomXP (102)
IMRPhenomXP (223)
IMRPhenomXPHM_MB0 (223)
IMRPhenomXPHM_MB3 (223)
NRSur7dq2

5 10 50 100
0.001

0.010

0.100

1

10

IMRPhenomPv2

IMRPhenomPv3

IMRPhenomPv3HM

IMRPhnenomXP (102)
IMRPhnenomXP (223)
IMRPhnenomXPHM_MB0 (223)
IMRPhenomXPHM_MB3 (223)

0.001 0.010 0.100 1

0.001

0.010

0.100

1

10

Figure 5.8: Mean evaluation time for different precessing models as a function of the
total mass (left panel) and as a function of the spacing of the frequency grid (right
panel). The NRSur7dq4 model can not be evaluated for such low frequencies as the
Phenom models; hence it only appears in the left panel for high masses, but not in the

right panel, where we are using a total mass of 50M�.

Mmin[M�] ∆T IMRPhenomXP IMRPhenomPv2 IMRPhenomPv3 SEOBNRv4P IMRPhenomXPHM IMRPhenomPv3HM SEOBNRv4PHM NRSurd7q4

20
4 s 8.6 5.7 29.1 2691.4 31.8 160.3 4259.9 -

8 s 16.8 11.2 56.4 2976.6 52.8 311.7 4540.9 -

60
4 s 5.8 4.1 29.4 1492.1 21.4 161.7 3016.2 60.5

8 s 11.4 8.0 56.6 1483.9 36.3 312.8 2951.5 59.9

Table 5.1: Mean likelihood evaluation time in milliseconds for several precessing
models for equal masses. The numbers represent averages over a mass range of
[Mmin, 100]M� withMmin = 20, 60M� and random spin orientations and magnitudes.

The first column indicates the data analysis segment length in seconds.
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settings of IMRPhenomXP and IMRPhenomXPHM. The timing is carried out with

the executable GenerateSimulation (included in LALSuite/LALSimulation), averaging

over 100 repetitions. In the top panel we show the dependeny on total mass. The

frequency grid spacing df is computed automatically by the SimInspiralFD interface to

take into account the length of the waveform in the time domain for the given parameters.

In the bottom panel instead we show the dependency on the frequency grid spacings a

function of the total mass, where the frequency spacing is computed as df = 1/T , where

T is a simple estimate of the duration of the signal, see the discussion of Fig. 5 in

[3]. In the labels for IMRPhenomXP and IMRPhenomXPHM, the numbers between

brackets refer to the version of Euler angles: 102 uses the NNLO description, while

223 uses the MSA description (for a complete list of options see Table 5.F.1). For

IMRPhenomXPHM we also show the result without applying multibanding in the

Euler angles (MB0) and when using multibanding with threshold 10−3 (MB3).

For both plots the conclusion is the same, IMRPhenomXPHM without multibanding in

the Euler angles is already faster than its counterpart IMRPhenomPv3HM, and when

multibanding is included it is even faster than the “(2, 2)-mode only” version IMRPhe-

nomPv3. The threshold of the multibanding used here is the default 10−3, however the

user can modify this parameter at will. Higher values of the threshold will accelerate

the evaluation further at the price of decreased accuracy, which may be found acceptable

based on the signal-to-noise ratio of a given event that is analyzed.

We have also estimated the efficiency of our models IMRPhenomXP and IMRPhe-

nomXPHM compared to other precessing models by computing their mean likelihood

evaluation time in the LALInference Bayesian PE code [12]. To perform this test,

we have chosen an equal-mass configuration, 100 different total masses in the range

[Mmin, 100]M� withMmin = 20, except for the precessing surrogate model NRSur7dq4,

where we have set a higher minimum total mass of Mmin = 60M�, due to its limitations

in start frequency. Dimensionless spin magnitudes are distributed randomly between

[0, 0.99] with a random isotropic distribution of spin vectors, and a reference frequency

of 20 Hz. Two different segment lengths of ∆T = 4 s, 8 s are studied as they are typ-

ical for the currently detected BBH GW signals [39]. As for our match calculations

in Secs. 5.5.3.1 and 5.5.3.2 and NR injection studies in Sec. 5.5.6 the Advanced-LIGO

design sensitivity Zero-Detuned-High-Power PSD [67] is used here for likelihood evalua-

tions. For each total mass we perform 100 likelihood evaluations with randomly chosen

spin configurations. The average of these 104 likelihood evaluations for each model is

shown in Table 5.1.

The results confirm that the IMRPhenomXPHM model is the most efficient precessing

waveform model with higher harmonics: ∼ 5.4 times faster than IMRPhenomPv3HM
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[16] for ∆T = 4 s and ∼ 495 times faster than SEOBNRv4PHM for ∆T = 4 s. SEOB-

NRv4PHM [76] is a precessing extension to the SEOBNRv4HM model [74] and is

predicated on the numerical integration of computationally expensive ordinary differen-

tial equations, making the waveform slow to evaluate. Though we note that there has

been significant work on improving waveform generation costs of EOB models, such as

the post-adiabatic scheme introduced in [77] or reduced order models [78]. Regarding

precessing models including only the (2,±2) mode in the co-precessing frame, IMR-

PhenomXP is slightly slower than IMRPhenomPv2 as a trade-off of the inclusion of

the double-spin effects in the Euler angles, although it is much faster than the other

phenomenological and SEOB models: ∼ 3.4 times faster than IMRPhenomPv3 for

∆T = 4 s and ∼ 312 times faster than SEOBNRv4P for ∆T = 4 s. While an increase

of the segment length increases the mean evaluation time for all models, the relative

differences in evaluation costs at ∆T = 8 s are still similar to those at 4 s. The numbers

reported in Table 5.1 illustrate the huge impact in efficiency that our new precessing mod-

els may have on data analysis studies like PE, where millions of likelihood evaluations

are performed per run.

Finally, we note that computational cost of Bayesian inference can be significantly re-

duced through the use of reduced order quadratures (ROQ) [79–81]. This framework

has been applied to a number of waveform models, including IMRPhenomPv2 [82].

We note that our model is amenable to such an approach following the methodology

detailed in [82].

5.5.6 Parameter estimation

We use coherent Bayesian inference methods to determine the posterior distribution

p(θ|d) for the parameters θ that characterize a binary, given some data d. From Bayes’

theorem, we have

p(θ|d) =
L(d|θ)π(θ)

Z , (5.51)

where L(d|θ) is the Gaussian noise likelihood [83, 84, 12], π(θ) the prior distribution for

θ and Z the evidence

Z =

∫
dθL(d|θ)π(θ). (5.52)

For the analysis here, we use both the nested sampling [85] algorithm implemented

in LALInference [12] and the nested sampling algorithm Dynesty [86] implemented in
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Bilby [13] and Parallel Bilby [87]. We use the public strain data from the GWOSC

[88–91]. Following [39], we marginalize over the frequency-dependent spline calibration

envelopes that characterize the uncertainty in the detector amplitude and strain [92–94].

5.5.6.1 GW150914

As a prototypical example of the application of IMRPhenomXPHM to GW data anal-

ysis we re-analyze GW150914, the first direct observation of GWs from the merger of

two black holes [25]. For GW150914 we use the nested sampling algorithm implemented

in LALInference [12]. Our PE uses 2048 live points and coherently analyzes 8s of data.

We use priors as detailed in appendix C of [39] and use the PSDs [91] and detector

calibration envelopes [90] as available on GWOSC [88].

Using the inherent modularity of IMRPhenomXPHM, we can try to gauge the impact of

systematics arising from the modelling of spin-precession effects by performing coherent

Bayesian PE using the different prescriptions for the Euler angles discussed in Sec. 5.4.

The final spin descriptions used here are the ones based on averaged in-plane spin for

the NNLO and MSA Euler angle formulations, i.e. final spin version 0 for model version

102 (NNLO) and final spin version 3 for model version 223 (MSA), see appendix 5.F for

details.

As can be seen in Figures 5.9 and 5.10, constraints on parameters such as the effective

aligned-spin parameter χeff and mass ratio q are consistent between the different wave-

form models whereas the effective precessing spin χp is not meaningfully constrained.

This is in agreement with studies detailing the impact of waveform systematics on the

analysis of GW150914 [24], which conclude that systematic errors and biases are small

compared to statistical errors.

5.5.6.2 GW170729

We now turn our attention to the analysis of GW170729, the BBH GW signal with the

highest mass detected during the O1 and O2 LIGO-Virgo observing runs [39]. Both

the high mass and the significant posterior support for a mass ratio different from unity

makes it a good candidate to test the impact of higher-order modes on the estimation of

its parameters.

This fact has motivated several studies of this event in the literature with non-precessing

higher-order modes models [95, 96] like the phenomenological IMRPhenomHM [11],

the EOB SEOBNRv4HM [74], and the NR surrogate NRHybSur3dq8 [72]. We also

reanalyzed this event with the upgraded version of the phenomenological non-precessing
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Figure 5.9: Bayesian inference results for GW150914: one-dimensional posterior prob-
ability distributions for the effective precessing spin parameter χp and the mass ratio
q. (Here q is the inverse of our definition in Sec. 5.1, following the LALInference con-
vention.) We show results for IMRPhenomXPHM with and without higher modes,
using NNLO and MSA angles respectively, as discussed in Sec. 5.4. For comparison, we
also show results for IMRPhenomPv3 and IMRPhenomPv3HM. The labels of the

different versions of IMRPhenomXPHM are explained in appendix 5.F.
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modes, using NNLO and MSA angles respectively, as discussed in Sec. 5.4. For com-
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Figure 5.11: Bayesian inference results for GW170729: Posterior probability distri-
butions for the effective spin parameters χeff and χp, the component masses m1 and
m2, distance DL and the angle θJN between angular momentum and line of sight. The
90 % credible intervals are represented by vertical (contour) lines in the 1D (2D) plots.

models IMRPhenomXHM in [3] and found consistency with the results in [95]. Fur-

thermore, there have been investigations of this event with precessing waveform models,

in [39] with IMRPhenomPv2 and in [15, 16] with IMRPhenomPv3 and IMRPhe-

nomPv3HM.

Here we report on the analysis of GW170729 with our new precessing IMRPhenomX-

PHM model, which upgrades IMRPhenomPv3HM. For our analysis we use 4 s of the

publicly available strain data from the GWOSC [88, 89] with a lower cutoff frequency

of 20 Hz. This data is calibrated by a cubic spline and we use the same PSDs utilized

in [39]. We analyze the strain with the Python-based Bayesian inference framework

Parallel Bilby [87], which uses a parallel version of the nested sampling code Dynesty

[86]. We carry out the PE runs using 4096 live points, choose the maximum number of
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MCMC steps to take as 104, and require 10 auto-correlation times (ACT) before accept-

ing a point. We merge results from four different seeds in order to get a single posterior

distribution. The simulations are performed for the default options of the LALSuite

implementation of IMRPhenomXPHM (the precessing version 223, final spin version 3

and convention 1, see appendix 5.F). The priors are the same as used in [95] but adapted

to precessing models.

NR Simulation Version m1/M� m2/M� Mc/M� q DL/Mpc χeff χp θJN (rad)

SXS:BBH:0143

v102 FS0 65.78+2.24
−2.40 34.27+1.54

−1.54 40.89+0.67
−0.69 0.52+0.04

−0.04 504+87
−91 0.26+0.04

−0.04 0.24+0.06
−0.06 1.04+0.10

−0.10

v102 FS1 65.86+2.21
−2.36 34.18+1.53

−1.52 40.86+0.67
−0.68 0.52+0.04

−0.04 515+92
−92 0.26+0.05

−0.04 0.25+0.06
−0.08 1.03+0.12

−0.11

v102 FS2 65.71+2.24
−2.43 34.30+1.57

−1.59 40.90+0.69
−0.69 0.52+0.04

−0.04 506+89
−92 0.26+0.04

−0.04 0.24+0.06
−0.07 1.04+0.11

−0.11

v223 FS2 65.46+2.22
−2.39 34.34+1.59

−1.59 40.85+0.70
−0.70 0.52+0.03

−0.04 516+93
−97 0.26+0.04

−0.04 0.24+0.09
−0.10 1.01+0.12

−0.11

v223 FS3 65.39+2.21
−2.39 34.37+1.55

−1.58 40.85+0.67
−0.69 0.53+0.04

−0.04 513+92
−98 0.26+0.04

−0.04 0.24+0.09
−0.09 1.01+0.12

−0.11

Injected 65.77 34.26 40.88 0.52 430 0.26 0.21 1.12

SXS:BBH:0165

v102 FS0 85.85+2.31
−2.86 14.26+0.56

−0.47 28.35+0.29
−0.27 0.17+0.02

−0.01 433+23
−26 −0.44+0.02

−0.03 0.78+0.05
−0.04 0.35+0.03

−0.03

v102 FS1 85.88+2.81
−3.83 14.27+0.69

−0.54 28.36+0.33
−0.28 0.17+0.02

−0.01 444+34
−40 −0.43+0.04

−0.03 0.78+0.06
−0.05 0.35+0.03

−0.04

v102 FS2 85.54+2.23
−2.87 14.30+0.56

−0.47 28.35+0.29
−0.27 0.17+0.01

−0.01 433+24
−26 −0.44+0.02

−0.03 0.78+0.05
−0.04 0.35+0.03

−0.03

v223 FS2 84.79+2.96
−3.23 14.42+0.61

−0.61 28.39+0.37
−0.34 0.17+0.01

−0.01 442+29
−32 −0.44+0.04

−0.04 0.77+0.03
−0.04 0.36+0.08

−0.09

v223 FS3 84.72+2.94
−3.22 14.44+0.62

−0.59 28.40+0.37
−0.34 0.17+0.01

−0.01 442+29
−32 −0.44+0.04

−0.04 0.77+0.03
−0.04 0.36+0.08

−0.09

Injected 85.73 14.28 28.36 0.17 430 −0.44 0.78 0.35

Table 5.2: Black hole binary recovered parameters for two injected NR waveforms
from Figs. 5.12 and 5.13. The first column shows the identifier of the injected NR
waveform, then we specify the version of the IMRPhenomXPHM model, the component
masses (m1, m2), chirp mass Mc, mass ratio q(= m2/m1), luminosity distance DL,
effective spin parameter χeff, effective precessing spin parameter χp , and the angle
between the total angular momentum and the line of sight, θJN. For each NR waveform

the injected values are also displayed.

We have analyzed this event with the non-precessing IMRPhenomXAS and IMRPhe-

nomXHM models in [10], where we have also compared with results available in the

literature and obtained with other non-precessing models. Our results based on the

MSA versions of IMRPhenomXP and IMRPhenomXPHM are shown in Fig. 5.11,

and compared with the IMRPhenomPv2 model that is routinely used for PE, but lacks

higher modes. We show posteriors for the effective spin parameters χeff and χp, the

component masses, distance DL and the angle θJN between total angular momentum

and line of sight.

The results show agreement between the new IMRPhenomXP model and the old IM-

RPhenomPv2 model, although small differences in the shape of the posterior distribu-

tions are due to the inclusion of double-spin effects in IMRPhenomXP. The inclusion

of higher-order modes produces a shift in the posterior distributions of some quantities

like the primary component mass. These changes in some parameters due to the inclu-

sion of precessing higher-order modes are consistent with those observed in [16] for this

particular event.
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5.5.6.3 Numerical relativity injections

We test for possible PE bias with our model by applying Bayesian inference to recover

zero-noise injections of two public binary black hole NR simulations from the first SXS

waveform catalogue [64]. We choose SXS:BBH:0143 corresponding to a mass ratio 2

simulation with positive χeff and small χp, and SXS:BBH:0165, a mass ratio 6 simulation

with negative χeff and high χp. We set a total mass for both injected waveforms of

100 M� and a luminosity distance of 430 Mpc, which results in signal-to-noise ratios of

52 and 26 for SXS:BBH:0143 and SXS:BBH:0165, respectively. We analyze a 4 s segment

of data with a lower cutoff frequency of 20Hz. The parameters of the injected waveforms

are listed in Table 5.2, together with the recovery results as discussed below.

Figure 5.12: Injection recovery results for SXS:BBH:0143. Top row: posterior proba-
bility distributions for the total mass in the detector frame and the chirp mass. Middle
row: posterior probability distributions for the luminosity distance and the angle θJN
between the total angular momentum and line of sight. Bottom row: posterior proba-
bility distributions for χp and χeff. The dashed vertical lines represent 90 % credible
intervals, while the thick black lines represent the injected value. The notation for the

different versions of IMRPhenomXPHM is described in appendix 5.F.
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Figure 5.13: Injection recovery results for SXS:BBH:0165. All panels are the same as
in Fig. 5.12.

As for our analysis of GW170729 above, we use the Parallel Bilby code [87] with the

Dynesty [86] nested sampler. We perform these runs using 2048 live points, 5 ACTs and

marginalization over time and distance.

We set the prior distributions for the source parameters as follows: For the first injection

of SXS:BBH:0143, we restrict to mass ratios up to q = 8, and the chirp mass prior is

assumed uniform between 30 and 55 M�. The component masses are constrained to be

between 10 and 80 M�. The luminosity distance is uniform in volume with maximal

distance at 2000 Mpc. For the SXS:BBH:0165 injection, we allow mass ratios up to q =

1000 and set a chirp mass prior uniform between 20 and 40 M�. The component masses

are constrained to be between 50 and 100M� and between 1 and 30M� respectively. The

luminosity distance prior is again chosen as uniform in volume with a maximal allowed

distance at 2000 Mpc. For both injection recoveries dimensionless spin magnitudes are

allowed up to the extreme Kerr limit.



5 Modelling precessing binary black holes for the subdominant harmonics:
IMRPhenomXPHM 211

In Figs. 5.12 and 5.13 we show 1D probability distributions for the main parameters for

the injected SXS:BBH:0143 and SXS:BBH:0165 waveforms using different versions of the

IMRPhenomXPHM model as the model waveform. The mean values of the recovered

parameters for the different versions of the IMRPhenomXPHM model for both injected

NR waveforms are reported in Table 5.2. In both figures one observes that the model is

able to successfully recover all the source parameters.

Particularly in Fig 5.12, corresponding to the injection of SXS:BBH:0143, we observe

that the differences between the several versions of the models are very small except for

χp and the angle θJN between the total angular momentum and the line of sight. This

is expected as the injected waveform has small mass ratio and χp values and, hence,

precession effects are not so relevant, although one can already appreciate that the χp
and θJN parameters are sensitive to the different modelling strategies.

For a higher mass ratio and χp case like SXS:BBH:0165, the posterior distributions be-

tween different versions of IMRPhenomXPHM show increased differences for more

parameters, as shown in Fig. 5.13. Still, all versions are able to recover the injected

values within the estimated statistical error bars. Variants of option 223 with different

final spin modifications (see appendix 5.F for a description of the notation) provide very

similar posteriors with slight differences in the mass parameters. This indicates that

the double-spin effects in the Euler angles provide a good recovery of the parameters,

and that here the different final spin prescriptions correspond to a subdominant effect.

However, we find that for version 102 the different final spin modifications do have a

larger impact on the shape of the posterior distributions in this case. A systematic study

of the effects of final spin prescription goes beyond the scope of this work, and will be

pursued in the future, along with further improvements of the model.

We also note that SXS:BBH:0165 corresponds to the NR waveform that is responsible for

the highest mismatch in Fig. 5.4. The results obtained in Fig. 5.13 show that even for a

case with a high mismatch our models can accurately recover the injected source param-

eters. This observation illustrates that results for mismatches only give an indication of

waveform quality, but do not provide a reliable prediction of performance for PE. As a

result, we observe that our models have the freedom to adapt for the missing informa-

tion at merger, due to the non-calibration to precessing NR simulations, to accurately

reproduce the injected parameters for a challenging precessing configuration.
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5.6 Conclusions

With this paper we conclude the construction of a first version of the IMRPhenomX

waveform family for coalescences of non-eccentric binary black holes. We have shown

that including subdominant harmonics and precession in a waveform model does not have

to come at the expense of evaluation speed. This opens up the possibility to routinely

perform PE for the larger numbers of events observed as gravitational wave detector

sensitivity increases without neglecting subdominant harmonics and precession.

Our model and its LALSuite implementation have been designed with flexibility and

modularity as key design elements, not only in order to incorporate future improvements,

but also to allow a wide range of computational experiments – as a first application we

have shown PE studies that compare different prescriptions for the final spin.

A number of further improvements are foreseen: first, the increasing number and quality

of NR waveforms will allow to calibrate further non-precessing subdominant harmonics

to NR, e.g. the (5, 5) and (4, 3) modes, and to further increase the quality of the model

for non-precessing waveforms.

Regarding precession, several challenges need to be addressed (see also [22]): First, it will

be desirable to develop a computationally inexpensive numerical fit for the final spin of

precessing coalescences. Another natural extension will be to develop a phenomenological

ansatz for the Euler angle description, and calibrate it to NR. Other challenges are

the development and calibration of a phenomenological description for the complete

precessing waveform for the merger and ringdown, where the SPA approximation is

invalid, and which should also include the asymmetries responsible for large recoils [21].

Finally, we note that precession is currently measured in PE in terms of the parameter

χp, which is motivated by the NNLO inspiral description, and it is likely to be fruitful

to also consider other parameters in the future.

Some of these challenges will be difficult to address in the frequency domain, and we

foresee synergies between the development of time domain and frequency domain ap-

proaches. As a first step we have constructed IMRPhenomTP, a time domain version

of the ideas underlying the IMRPhenomXP model, which is aimed to serve as a tool

to better understand and remedy current shortcomings of our construction, and is pre-

sented in [42]. We expect our code to be sufficiently flexible to serve as a basis for a

future implementation of the IMRPhenomTP model.

Planned extensions regard the incorporation of eccentricity, and of matter effects along

the lines of [97–99]. We note that the accelaration technique of multibanding is particu-

larly important for lower-mass systems like binary neutron star and black hole–neutron
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star systems. Finally we note that our code implementation leaves much room for in-

creasing computational efficiency, e.g. by utilizing GPUs.
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Appendices

5.A Wigner-d Matrices

The real-valued Wigner-d matrices are defined by [30, 100]

d`mm′(β) =

kmax∑
k=kmin

(−1)k
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with kmin = max (0,m−m′) and kmax = min(`+m, `−m′), where analogous expressions
for d`m−m′ can be constructed using the symmetry of the Wigner d-matrices

d`−m−m′ = (−1)(m−m′)d`mm′ , (5.55)

d`mm′(β) = (−1)m+m′ d`m′m(β), (5.56)

d`mm′(β) = d`m′m(−β). (5.57)

Here we provide explicit expressions for the Wigner d`mm′(β) matrices for all modes

involved in the underlaying non-precessing model. We also include the 43 mode since it

is used by the option that twists IMRPhenomHM.
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13(β) = 3

√
7 sin2

(
β

2

)
cos 6

(
β

2

)
− 5
√

7 sin4

(
β

2

)
cos4

(
β

2

)
,

d4
03(β) = 2

√
35 sin3

(
β

2

)
cos 5

(
β

2

)
− 2
√

35 sin5

(
β

2

)
cos3

(
β

2

)
,

d4
−13(β) = 5

√
7 sin4

(
β

2

)
cos 4

(
β

2

)
− 3
√

7 sin6

(
β

2

)
cos2

(
β

2

)
,

d4
−23(β) = 3

√
14 sin5

(
β

2

)
cos 3

(
β

2

)
−
√

14 sin7

(
β

2

)
cos

(
β

2

)
,

d4
−33(β) = 7 sin6

(
β

2

)
cos2

(
β

2

)
− sin8

(
β

2

)
,

d4
−43(β) = 2

√
2 sin7

(
β

2

)
cos

(
β

2

)
.
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5.B Conventions for non-Precessing Modes

In the precessing L-frame we can decompose the gravitational wave strain into spherical

harmonic modes h`m as

hL =

4,∑̀
`=2,m=−`

hL`m (t) −2Y
L
`m, (5.58)

where the −2Y
L
`m are spherical harmonics in the precessing L-frame defined in Sec. 5.C. In

our twisting approximation we identify the modes hL`m in the non-inertial precessing frame

with the spherical harmonic modes described by the non-precessing IMRPhenomXAS

and IMRPhenomXHM models, which are however modified by changing the complex

ringdown frequencies in the waveform to be consistent with the estimate for the precessing

final spin, which we have described in Sec. 5.4.4.

The time domain modes can be written in terms of positive amplitudes a`m(t) and phases

φ`m(t) such that

hL`m(t) = a`m(t)e−iφ`m(t), (5.59)

where we assume that the phase of the aligned-spin modes is a monotonically increasing

function of t

φ̇`m(t) > 0. (5.60)

As discussed in detail in [10] there are only two inequivalent choices of tetrad convention

that are consistent with equatorial symmetry, and for simplicity we adopt the convention

that for low frequencies the time domain phases satisfy

Φ`m ≈
m

2
Φ22. (5.61)

This differs from the convention of Blanchet et al. [101] by overall factors of (−1)(−ι)m

in front of the hL`m modes.

The equatorial symmetry of non-precessing binaries implies

hL`m(t) = (−1)`h∗L`−m(t). (5.62)

With our conventions for the Fourier transform (5.3), the time domain relations between

modes (5.62) that express equatorial symmetry can be converted to the Fourier domain,

where they read

h̃L`m(f) = (−1)`h̃∗
L
`−m(−f). (5.63)
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The definitions above then also imply that h̃L`m(f) (with m > 0) is concentrated in the

negative frequency domain and h̃L`−m(f) in the positive frequency domain.

The Fourier amplitudes A`m(f > 0) are then non-negative functions for positive frequen-

cies, and zero otherwise, and the Fourier domain phases Φ`m(f > 0), defined by

h̃L`−m(f) = A`m(f) e−iΦ`m(f). (5.64)

5.C Frames Transformations and Polarization Basis

We construct our waveform model in terms of a transformation from spherical harmonics

hL`m in the precessing L-frame to spherical harmonics hJ`m in the inertial J-frame. The

input to our model consists of intrinsic parameters that specify the masses and spin

vectors of the binary system, and extrinsic parameters which describe the location of

the source and its spatial orientation relative to the frame of the observer, which we

have chosen to refer to as the N -frame, where N̂ is the direction from the source to the

observer.

We need to guarantee that our model returns an unambiguous waveform for given values

of the intrinsic and extrinsic parameters, in particular we carefully need to specify in

which coordinate system we specify the spin vectors, and how to specify the spatial

orientation of the source as needed to define all extrinsic parameters. To this end, in

this section we will discuss the relation between the different coordinate frames we are

using, and identify a complete set of input parameters.

We will work with three inertial frames, which we have introduced in Sec. 5.2: the L0-

frame, the J-frame and N -frame or wave frame. These three frames will have their z-axis

aligned with L0, J and N̂ respectively, and they do not evolve in time. The L0-frame will

also be referred to as the source frame, since in accordance with the LALSuite software

infrastructure the IMRPhenomXP and IMRPhenomXPHM models parameterize the

two spin vectors of the black holes by Cartesian components in this frame.

In addition to the three inertial frames we will consider the non-inertial L-frame that

tracks the precession of the orbital plane, and coincides with the L0-frame at a chosen

reference frequency fref . Choosing a different value for fref while fixing the initial spin

components, which we have chosen to specify with respect to the L0-frame, will thus in

general corresponds to a different waveform.
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We will denote the triads of our frames by {x̂L0 , ŷL0 , ẑL0}, {x̂L, ŷL, ẑL}, {x̂J, ŷJ, ẑJ}
and {x̂N̂, ŷN̂, ẑN̂} and choose the z-axes as

ẑL0 = L̂0, ẑL = L̂, ẑJ = Ĵ, ẑN̂ = N̂. (5.65)

Note that the x̂L0 − ŷL0 plane correspond to initial orbital plane.

For clarity, in what follows we will provide explicit expressions for the vectors L̂0, N̂,J in

the L0 and J-frames. We will write the components of a generic vector u in a particular

frame as

u=̇


ux,frame

uy,frame

uz,frame


frame

, (5.66)

e.g. the vector J will have the following components in the L0 frame

J=̇


Jx,L0

Jy,L0

Jz,L0


L0

. (5.67)

So far we have characterized our three inertial coordinate frames by the choice of z-axis,

and we have defined the precessing L-frame as the time evolution of the L0-frame. We

now need to complete our definitions of the three inertial frames by fixing the freedom

of rotations around the axes, which precisely corresponds to the freedom of specifying

three Euler angles to fix a spatial rotation. In the L0 frame, which we have chosen as

the frame where we parametrize our input spin components, we choose the line of sight

N̂ to have spherical angles
(
ι, π2 − φref

)
, which is chosen to adopt to the conventions of

[17], where this choice corresponds to Eq. (31c) and setting the angle Φ in this equation

to Φ = φref . We call ι the inclination of the system, and interpret φref as fixing the

freedom of rotations in the orbital plane. We treat ι and φref as input parameters that

the user specifies when calling the waveform model.

In the L0 frame the components of N̂ are thus

N̂ =̇


sin ι cos

(
π
2 − φref

)
sin ι sin

(
π
2 − φref

)
cos ι


L0

, (5.68)
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while the vector J reads

J =̇


m2

1χ1x +m2
2χ2x

m2
1χ1y +m2

2χ2y

L0 +m2
1χ1z +m2

2χ2z


L0

. (5.69)

From the above equation it follows that the spherical angles (θJL0 , φJL0) of J in this

frame are given by:

θJL0 = arccos
Jz,L0

|J| = arccos
L0 +m2

1χ1z +m2
2χ2z

|J| , (5.70)

φJL0 = arctan
Jy,L0

Jx,L0

= arctan
m2

1χ1y +m2
2χ2y

m2
1χ1x +m2

2χ2x
. (5.71)

We will now turn to describing the J-frame. We will fix the orientation of the axes in

this frame by requiring that the line of sight N̂ lies in the x̂J − J plane and has positive

projection on the x̂J-axis. If we denote by θJN the angle between N̂ and the ẑJ axis,

this choice implies

N̂ =̇


sin θJN

0

cos θJN


J

. (5.72)

With the above definition of θJN , and using Eqs. (5.68, 5.69) one has

θJN = arccos

(
J · N̂
|J|

)
(5.73)

=
Jx,L0 sin ι sinφref + Jy,L0 sin ι cosφref + Jz,L0 cos ι√

J2
x,L0

+ J2
y,L0

+ J2
z,L0

. (5.74)

Consequently, in the twisting-up formula (5.1), the spherical harmonics −2Y`m(θ, φ) will

have arguments (θ, φ) = (θJN, 0). Having specified our convention regarding the J-

frame, we can determine unambiguously the Euler angles relating it to the L0-frame.

We can identify two of these angles with θJL0 and φJL0 , as two successive rotations

Ry(−θJL0) ·Rz(−φJL0) will align Ĵ with the ẑL0 axis, we call this intermediate frame as

J ′-frame. In order to bring N̂ in the x̂J − ẑJ plane, we need to apply a further rotation

around the ẑL0-axis by an angle −κ, so that Eq. (5.72) is satisfied. To this end, we first

compute 
N̂x,J ′

N̂y,J ′

N̂z,J ′


J ′

= Ry(−θJL0) ·Rz(−φJL0) ·


N̂x,L0

N̂y,L0

N̂z,L0


L0

, (5.75)
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and then take

κ = arctan
N̂y,J ′

N̂x,J ′
. (5.76)

The three Euler angles relating the L0 and J frames are therefore κ, θJL0 , φJL0 . The

components of any vector u in the two frames are related via:
ux,J

uy,J

uz,J


J

= Rz(−κ) ·Ry(−θJL0) ·Rz(−φJL0) ·


ux,L0

uy,L0

uz,L0


L0

. (5.77)

Equivalently, a generic vector in the J-frame can be rotated to the L0-frame by applying

the inverse transformation
ux,L0

uy,L0

uz,L0


L0

= Rz(φJL0) ·Ry(θJL0) ·Rz(κ) ·


ux,J

uy,J

uz,J


J

. (5.78)

Notice that, in the J-frame, the initial angular momentum has components:

L̂0=̇


sinβ0 cosα0

sinβ0 sinα0

cosβ0


J

. (5.79)

We can compute the initial value of the Euler angles (α, β, γ) introduced in Sec. 5.3, by

identifying the product of rotations in Eq. (5.77) with Rz(α0) ·Ry(β0) ·Rz(γ0), whence

it follows that

α0 = π − κ, (5.80a)

β0 = θJL0 , (5.80b)

γ0 = −ε0 = π − φJL0 (5.80c)

It can be checked that, with the choice of offsets above, the initial angular momentum

in the J-frame is indeed rotated to the ẑL0-axis by the transformation of Eq. (5.78).

The NNLO and MSA angle prescriptions provide expressions described in Secs. 5.4.1 and

5.4.2 for the Euler angles as functions of frequency. In order to initialize the angles to

prescribed values α0, β0, ε0 according to Eqs. (5.80) at a given reference frequency fref ,

we have to add an offset to the functional dependence of the NNLO/MSA angles in the

following way

α(f) = αNNLO/MSA(f)− αoffset (5.81a)
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ε(f) = εNNLO/MSA(f)− εoffset (5.81b)

Here the offsets are constant values that correspond to frequency-independent rotations

of the system into the desired state at the reference frequency, and a typical example

would be to choose the α offset as −(α(fref )− α0). Our code offers different options to

compute these offsets, which we discuss in appendix 5.F and list in Table 5.F.2.

Finally we fix the remaining freedom in the N -frame. We have previously aligned the ẑN̂

axis with N̂, so we just have to fix a rotation around N̂. Following the LALSuite con-

vention [102, 28] we choose the x̂N̂-axis such that the vector L0 lies in the x̂N̂− ẑN̂ plane

with positive projection over x̂N̂, and ŷN̂ so that it completes the triad. Equivalently:

L̂0 · x̂N̂ = sin ι, ŷN̂ =
N̂× x̂N̂

|N̂× x̂N̂|
. (5.82)

In the N -frame the components of L̂0 are then given by

L̂0 =̇ (sin ι, 0, cos ι)N . (5.83)

The x̂N̂, ŷN̂ axes we have just introduced do not coincide with the spherical basis vectors

orthogonal to N̂ that determine the arguments of the weighted spherical harmonics in

our J-frame. Therefore, we have to compute the angle ζ that rotates one basis into the

other. We will call the original polarization axes x̂′
N̂

and ŷ′
N̂
. Note that, geometrically,

these vectors can be defined as

x̂′
N̂

=
ŷ′

N̂
× N̂

|ŷ′
N̂
× N̂|

, ŷ′
N̂

=
J× N̂

|J× N̂|
, (5.84)

and are therefore equivalent to the choice made in [27], as we explain in App. 5.D below.

Under a rotation by an angle ζ, the polarization basis-vectors transform as:

x̂′
N̂

= cos(ζ)x̂N̂ − sin(ζ)ŷN̂ (5.85a)

ŷ′
N̂

= sin(ζ)x̂N̂ + cos(ζ)ŷN̂. (5.85b)

Since ζ can vary from 0 to 2π, we will use the C function atan2 to track the correct

quadrant and set

ζ = atan2
(
x̂N̂ · ŷ′N̂, x̂N̂ · x̂′N̂

)
. (5.86)
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In the code implementation the scalar products above are computed in the J-frame,

where the vectors x̂′
N̂

and ŷ′
N̂

have components

x̂′
N̂

=̇


cos θJN

0

− sin θJN


J

, ŷ′
N̂

=̇


0

0

1


J

. (5.87)

The components of x̂N̂ in the J-frame can be computed by applying the transformation

(5.77) to x̂N̂ expressed in the L0-frame, giving

x̂N̂=̇


− cos ι sinφref

− cos ι cosφref

sin ι


L0

. (5.88)

5.D Choices of polarization vectors P and Q

In the literature it is common to introduce a polarization basis (P̂ i, Q̂i) such that the

strain tensor is constructed in the usual way as [34, 28]

h+ =
1

2

(
P̂ iP̂ j − Q̂iQ̂j

)
hij , (5.89)

h× =
1

2

(
P̂ iQ̂j + Q̂iP̂ j

)
hij . (5.90)

Different choices of polarization basis can be achieved through a rotation around the ẑN̂-

axis, i.e. the line of sight. In the convention followed by Arun et al. [34], the polarization

basis is given by

P̂ABFO =
N̂× J

|N̂× J|
, Q̂ABFO =

N̂× P̂ABFO

|N̂× P̂ABFO|
, (5.91)

whereas the basis chosen by Kidder [27] is

P̂Kidder =
Q̂Kidder × N̂

|Q̂Kidder × N̂|
, Q̂Kidder =

J× N̂

|J× N̂|
. (5.92)

Note that, from the above definitions, it follows that

P̂ABFO = −Q̂Kidder, Q̂ABFO = P̂Kidder, (5.93)

and, using Eqs. (5.85), one can equivalently say that the two polarization bases are

related by a rotation of ζ = π/2. This translates into an overall sign difference in the

gravitational-wave polarizations h+ and h×, since these transform under a rotation by ζ
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around the line of sight according to

h′+ = cos(2ζ) h+ − sin(2ζ) h×, (5.94)

h′× = sin(2ζ) h+ + cos(2ζ) h×. (5.95)

5.E Derivation of the frequency domain waveform

The waveform modes in the inertial J-frame and the precessing L-frame can be related

via a time-domain transformation

hJ`m(t) = e−i mα(t)
∑̀
m′=−`

ei m
′ε(t)d`mm′(β(t))hL`m′(t) (5.96)

Performing a Fourier transform, and making use of the SPA, as done in [23], we obtain

h̃J`m(f) =
∑̀
m′=−`

ei m
′ε( 2πf

m′ )e−i mα( 2πf
m′ )d`mm′

(
β

(
2πf

m′

))
h̃L`m′(f). (5.97)

We now follow the standard paradigm and approximate the precessing frame modes

with some equivalent non-precessing modes [17, 18, 1]. In our conventions, the positive

m-modes are defined with support only for negative frequencies while the negative m-

modes are defined with support for positive frequencies, i.e. h̃J`m′>0(f > 0) = 0 and

h̃J`m′<0(f < 0) = 0. We can therefore re-write the above expression as

h̃J`m(f > 0) =
∑̀
m′>0

e−i m
′ε( 2πf

m′ )e−i mα( 2πf
m′ )d`m−m′

(
β

(
2πf

m′

))
h̃L`−m′(f) (5.98)

h̃J`m(f < 0) =
∑̀
m′>0

ei m
′ε(−2πf

m′ )e−i mα(−2πf
m′ )d`mm′

(
β

(−2πf

m′

))
(−1)lh̃L∗`−m′(−f) (5.99)

We now wish to construct expressions for the gravitational-wave polarizations h+ and

h×. First we start with the gravitational-wave strain

hJ(t) = hJ+(t)− i hJ×(t) =
∑
`≥2

m=∑̀
m=−`

hJ`m(t)−2Y`m. (5.100)

The individual polarizations can therefore be written as

hJ+(t) =
1

2

∑
`≥2

m=∑̀
m=−`

(
hJ`m(t)−2Y`m + hJ∗`m(t)−2Y

∗
`m

)
, (5.101)



5 Modelling precessing binary black holes for the subdominant harmonics:
IMRPhenomXPHM 225

hJ×(t) =
i

2

∑
`≥2

m=∑̀
m=−`

(
hJ`m(t)−2Y`m − hJ∗`m(t)−2Y

∗
`m

)
, (5.102)

which, after performing a Fourier transformation, can be written as frequency-domain

functions

h̃J+(f) =
1

2

∑
`≥2

m=∑̀
m=−`

(
h̃J`m(f)−2Y`m + h̃J∗`m(−f)−2Y

∗
`m

)
, (5.103)

h̃J×(f) =
i

2

∑
`≥2

m=∑̀
m=−`

(
h̃J`m(f)−2Y`m − h̃J∗`m(−f)−2Y

∗
`m

)
. (5.104)

Now we insert Eq. (5.97) into the above expressions to expand the polarizations in terms

of the non-precessing modes hL`m(f)

h̃J+(f) =
1

2

∑
`≥2

m=∑̀
m=−`

( ∑̀
m′=−`

ei m
′εe−i mαd`mm′ (β) h̃L`m′(f)−2Y`m

+
∑̀
m′=−`

e−i m
′εei mαd`mm′ (β) h̃L∗`m′(−f)−2Y

∗
`m

)
,

(5.105)

h̃J×(f) =
i

2

∑
`≥2

m=∑̀
m=−`

( ∑̀
m′=−`

ei m
′εe−i mαd`mm′ (β) h̃L`m′(f)−2Y`m

−
∑̀
m′=−`

e−i m
′εei mαd`mm′ (β) h̃L∗`m′(−f)−2Y

∗
`m

)
.

(5.106)

We can now use the equatorial symmetry of the non-precessing modes to relate the

positive m and negative m modes via h̃L`m(f) = (−1)`h̃L∗`−m(−f). Inserting this into the

above equations, we find

h̃J+(f) =
1

2

∑
`≥2

∑̀
m=−`

( ∑̀
m′=−`

ei m
′εe−i mαd`mm′ (β) h̃L`m′(f)−2Y`m

+
∑̀
m′=−`

e−i m
′εei mαd`mm′ (β) (−1)`h̃L`−m′(f)−2Y

∗
`m

)
,

(5.107)

h̃J×(f) =
i

2

∑
`≥2

∑̀
m=−`

( ∑̀
m′=−`

ei m
′εe−i mαd`mm′ (β) h̃L`m′(f)−2Y`m

−
∑̀
m′=−`

e−i m
′εei mαd`mm′ (β) (−1)`h̃L`−m′(f)−2Y

∗
`m

)
.

(5.108)

Since the polarizations h̃J+,×(f) are Fourier transforms of real functions hJ+,×(t), they

satisfy the property h̃J+,×(f) = h̃J,∗+,×(−f). This means that we can work with just one
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of the frequency regimes, i.e. positive or negative. We opt to work with the positive

frequencies, following the standard convention in LALSuite. Restricting the expressions

to positive frequencies, and remembering that only the negative non-precessing modes

are non-zero, we find that Eqs. (5.107, 5.108) reduce to

h̃J+(f > 0) =
1

2

∑
`≥2

∑̀
m=−`

( ∑̀
m′>0

e−i m
′εe−i mαd`m−m′ (β) h̃L`−m′(f)−2Y`m

+
∑̀
m′>0

e−i m
′εei mαd`mm′ (β) (−1)`h̃L`−m′(f)−2Y

∗
`m

)
,

(5.109)

h̃J×(f > 0) =
i

2

∑
`≥2

∑̀
m=−`

( ∑̀
m′>0

e−i m
′εe−i mαd`m−m′ (β) h̃L`−m′(f)−2Y`m

−
∑̀
m′>0

e−i m
′εei mαd`mm′ (β) (−1)`h̃L`−m′(f)−2Y

∗
`m

)
.

(5.110)

Rearranging terms and swapping the sums in m and m′ we get

h̃J+(f > 0) =
1

2

∑
`≥2

∑̀
m′>0

e−i m
′εh̃L`−m′(f)

m=∑̀
m=−`

(
e−i mαd`m−m′ (β) −2Y`m

+ ei mαd`mm′ (β) (−1)`−2Y
∗
`m

)
,

(5.111)

h̃J×(f > 0) =
i

2

∑
`≥2

∑̀
m′>0

e−i m
′εh̃L`−m′(f)

m=∑̀
m=−`

(
e−i mαd`m−m′ (β) −2Y`m

− ei mαd`mm′ (β) (−1)` −2Y
∗
`m

)
.

(5.112)

We define now the transfer function A`mm′(f) = e−imαd`mm′(β)−2Y`m and rewrite the

above expressions in a more compact form,

h̃J+(f > 0) =
1

2

∑
`≥2

∑̀
m′>0

e−i m
′εh̃L`−m′(f)

m=∑̀
m=−`

(
A`m−m′ + (−1)` A`∗mm′

)
, (5.113)

h̃J×(f > 0) =
i

2

∑
`≥2

∑̀
m′>0

e−i m
′εh̃L`−m′(f)

m=∑̀
m=−`

(
A`m−m′ − (−1)` A`∗mm′

)
, (5.114)

which are equivalent to the expressions in Eqs. (5.11, 5.12). Note that the Euler angles

are evaluated at the SPA frequencies 2πf/m′.

5.F LALSuite Implementation

TheIMRPhenomXP and IMRPhenomXPHM models are implemented as part of the

LALSimIMR package of inspiral-merger-ringdown waveform models as extensions of the
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non-precessing models IMRPhenomXAS [4] and IMRPhenomXHM [10]. The code is

implemented in the C language, and LALSimIMR is part of the LALSimulation collection of

code for gravitational waveform and noise generation within LALSuite [19]. Online Doxy-

gen documentation is available at https://lscsoft.docs.ligo.org/lalsuite, with top

level information for the LALSimIMR package provided through the LALSimIMR.h header

file. Externally callable functions follow the XLAL coding standard of LALSuite.

Notes about the implementation of the IMRPhenomXHM model, and on calling the

code through different interfaces, in particular through Python, GenerateSimulation,

LALInference [12] and Bilby [13] can be found in appendix C of [10]. Here we extend this

documentation to the specific properties of IMRPhenomXP and IMRPhenomXPHM.

The LALSuite code provides the option to call the model in the time domain, where an

inverse fast Fourier transformation is applied, in addition to the native Fourier domain.

The SWIG [103, 104] software development tool is used to automatically create Python

interfaces to all XLAL functions [105] of our code, which can be used alternatively to the

C interfaces.

In LALSimulation the model is called through the function ChooseFDWaveform, whose

input parameters f_ref and phiRef are used to define the phase of the 22 mode at some

particular reference frequency.

The user is free to specify the spherical harmonic modes in the co-precessing L-frame,

hL`m, that should be used to construct the waveform. The default behaviour is to use all

the modes available: ((2±2), (2±1), (3±3), (3±2), (4±4)), but subsets can be selected

with the ModeArray option available in LALSimulation. The negative modes are always

included in the twisting-up procedure, even if not specified in the mode array, thus the

list ((2, 2), (2, 1), (3, 3), (3, 2), (4, 4)) would return the same result as the default setting.

Specifying only negative modes is however not supported, e.g. when only specifying the

array ((2, 2), (2,−1)) only the ((2, 2), (2− 2)) modes would be twisted up.

Furthermore, the model implemented in LALSuite supports acceleration of waveform

evaluation by interpolation of an unequispaced frequency grid broadly following the

“multibanding” approach of [14]. Our version of the algorithm is described in [3] to

do the evaluation faster and can also use a custom list of modes specified by the user.

The multibanding algorithm is parameterized by a threshold, which describes the per-

mitted local interpolation error for the phase in radians. Lower values thus correspond to

higher accuracy. The default multibanding threshold for computing the non-precessing

modes is set to a value of 10−3 and, as for IMRPhenomXHM, is modified through

the ThresholdMband option. For multibanding in the Euler angles, the default thresh-

old is 10−3 for the MSA versions and 10−4 for all NNLO versions; this can be changed
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through the PrecThresholdMband option. The multibanding is only supported in the

IMRPhenomXPHM model not so in IMRPhenomXP.

PrecVersion Explanation

101 NNLO PN Euler angles and a 2PN non-spinning approximation to L

102 NNLO PN Euler angles and a 3PN spinning approximation to L

103 NNLO PN Euler angles and a 4PN spinning approximation to L

104 NNLO PN Euler angles and a 4PN spinning approximation to L augmented with

leading PN order at all order in spin terms.

220 MSA Euler angles and a 3PN spinning approximation to L.

Fall back to NNLO angles with 3PN approximation to L if MSA system fails to initialize.

221 MSA Euler angles and a 3PN spinning approximation to L.

Throw error message if MSA system fails to initialize.

222 MSA Euler angles close to Pv3HM implemenation.

Throw error message if MSA system fails to initialize.

223 MSA Euler angles closer to Pv3HM implemenation.

(default) Fall back to NNLO with 3PN approximation to L if MSA system fails to initialize.

224 As version 220 but using the φz,0 and ζz,0 prescription from 223.

Table 5.F.1: Options in the LALSuite implementation to change between different
descriptions of the Euler angles.

Convention αoffset εoffset phiRef argument passed

to non-precessing modes

0 αNNLO/MSA(fref)− αXP
0 εNNLO/MSA(fref) φJL0

1 (default) αNNLO/MSA(fref)− αPv2
0 εNNLO/MSA(fref)− εXP

0 0

5 −αPv2
0 0 phiRef

6 αNNLO/MSA(fref)− αXP
0 εNNLO/MSA(fref)− εXP

0 phiRef

7 −αXP
0 0 phiRef

Table 5.F.2: The superscript XP means that the initial angle was computed as de-
scribed in Eqs. (5.80) and the superscript Pv2 following the conventions detailed in

[1, 23].

The IMRPhenomXP and IMRPhenomXPHM models add further precession-specific

options to those already documented in appendix C of [10]. The default values of these

options are set up in the file LALSimInspiralWaveformParams.c. Available choices for

the Euler angles are listed in Table 5.F.1 and set by a parameter PrecVersion. The

principal choice is between the NNLO and MSA angle descriptions discussed in sections

5.4.1 and 5.4.2. In addition for the NNLO angles different PN orders for the angular

momentum can be chosen, as discussed in Sec. 5.4.3. Different implementation choices

are also available for the MSA angles.



5 Modelling precessing binary black holes for the subdominant harmonics:
IMRPhenomXPHM 229

FinalSpinMod Explanation

0 Final spin formula based on χp. Default value for NNLO angles.

1 Final spin formula based on χ1x.

Not recommended, introduced to compare to IMRPhenomPv3 before bug fix.

2 Final spin formula based on the norm for the total in-plane spin vector

3 Final spin formula based on precession-averaged couplings from MSA analysis.

Default value for MSA angles.

Table 5.F.3: Options for changing the final spin prescription in the LALSuite imple-
mentation of IMRPhenomXP and IMRPhenomXPHM.

Option Values Default Explanation

TwistPhenomHM 0, 1 0 (False) Twist-up IMRPhenomHM instead of IMRPhenomXHM.

With Convention = 5 this produces a faster implementation of IMRPhenomPv3HM.

PrecModes 0, 1 0 (False) When calling the individual modes functions return

the modified non-precessing modes before the twist-up.

UseModes 0, 1 0 (False) When computing the polarizations first call all the

individual modes in the J-frame and sum them all.

PrecThresholdMband Float 10−3 Threshold value for the multibanding algorithm applied to

the Euler angles. If 0 then multibanding for angles is switched off.

MBandPrecVersion 0 0 Control the version for the coarse grid used for the

multibanding of Euler angles. Currently there is only one implementation and the

grid is the same than for the non-precessing model.

Table 5.F.4: Extra options in the LALSuite implementation of IMRPhenomXPHM.

Option LALInference Bilby PyCBC GenerateSimulation

ModesList modeList mode_array mode_array modesList

PrecVersion phenomXPrecVersion phenomXPrecVersion phenomXPrecVersion phenomXPrecVersion

FinalSpinMod phenomXPFinalSpinMod phenomXPFinalSpinMod - -

PrecThresholdMband phenomXPHMMband phenomXPHMMband phenomXPHMMband phenomXPHMMband

UseModes - - - phenomXPHMUseModes

Table 5.F.5: Labels used to pass IMRPhenomXPHM options to different external
codes.

The NNLO and MSA angle prescriptions provide expressions for frequency-dependent

Euler angles. In order to initialize the angles to prescribed values α0, β0, ε0 at a given

reference frequency fref according to Eqs. (5.80), appropriate offsets need to be added as

in Eqs. (5.81). Our code offers different options to compute these offsets, which we list

in Table 5.F.2. These conventions are changed with the option Convention, which also

controls how the argument phiRef enters in the model. The default choice is set to option

1. Note that option 7 does not set offsets for a given reference frequency. This option is

implemented for its correspondence to the implementation of the IMRPhenomPv3HM

[16] model, which sets the offset of α equal to −α0 and the offset of ε equal to 0; the
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argument phiRef is passed when calling the non-precessing model.

Several variants are available to compute the final spin, which are selected with the option

FinalSpinMod. By default, the final spin is computed by using orbit-averaged quantities

for the in-plane spin components: When choosing NNLO angles, the default spin version

is set to 0, corresponding to Eq. (5.39), while for MSA angles, the default spin version is

set to 3, corresponding to Eq. (5.42). In addition, two non-averaged options are provided,

which allow for cancellations between spin components as discussed in Sec. 5.4.4: setting

the spin version to 1 corresponds to Eq. (5.40), while version 2 selects Eq. (5.41).

Finally, in Table 5.F.4 we summarize further options available. We make some of these

options also callable from other codes that may use the model like LALInference, Bilby,

PyCBC or GenerateSimulation. In Table 5.F.5 we summarize the options that can be

called through the different codes and the label that is used to specify their value. Since

the released versions of some of these codes do not support these features yet, we provide

dedicated branches for that:

• Bilby: https://git.ligo.org/cecilio.garcia-quiros/bilby/-/tree/imrphenomx

• Bilby_pipe: https://git.ligo.org/maite.mateu-lucena/bilby_pipe

• PyCBC: https://github.com/Ceciliogq/pycbc/tree/imrphenomx/pycbc

Extensive debugging information can be enabled at compile time with the C preprocessor

flag -D PHENOMXHMDEBUG.

5.G Post-Newtonian Results

We consider a compact binary with masses m1,2 and spin angular momenta S1,2. The

PN results presented in this section can be expressed in terms of the following variables:

δ =
√

1− 4η, (5.115)

m1 =
1 + δ

2
, m2 =

1− δ
2

, (5.116)

χi =
Si
m2

1

, (5.117)

χ` = m1χ1` +m2χ2`, (5.118)

S` = m2
1χ1` +m2

2χ2`, (5.119)

Σ` = χ2`m2 − χ1`m1. (5.120)

https://git.ligo.org/cecilio.garcia-quiros/bilby/-/tree/imrphenomx
https://git.ligo.org/maite.mateu-lucena/bilby_pipe
https://github.com/Ceciliogq/pycbc/tree/imrphenomx/pycbc
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5.G.1 NNLO PN Euler Angles

For completeness we write out the explicit expressions for the Euler angles α and ε,

computed to NNLO accuracy for single spin systems as used in the single spin version

of our model, see 5.4.1. Both α and ε have the same functional form as functions of the

frequency f ,

αNNLO (ω) =

1∑
i=−3

αi (πfM)i/3 + αlog log(πfM), (5.121)

εNNLO (ω) =
1∑

i=−3

εi (πfM)i/3 + αlog log(πfM). (5.122)

The coefficients α0 and ε0 are determined by Eqs. (5.80). The coefficients for α are listed

below as functions of the intrinsic parameters (η, χl, χp).

α−3 = − 5δ

64m1
− 35

192
(5.123a)

α−2 = −5m1χ` (3δ + 7m1)

128η
(5.123b)

α−1 = −5(824η + 1103)

3072
− 15δ2η

256m2
1

−
15δm3

1χ
2
p

128η2
− 5δ(980η + 911)

7168m1
−

35m4
1χ

2
p

128η2
(5.123c)

α1 =
5(36η(85568η + 23817) + 8024297)

9289728
+

5m2
1

(
3δ2χ2

p + 75δ2χ2
` − 112πχ`

)
256η

−
15δm7

1

(
χ4
p − 4χ2

pχ
2
`

)
512η4

+
5δm3

1

(
(812η − 97)χ2

p + 20328ηχ2
`

)
14336η2

− 15πδm1χ`
16η

−
35m8

1

(
χ4
p − 4χ2

pχ
2
`

)
512η4

+
m4

1

(
25(92η + 19)χ2

p + 52640ηχ2
l

)
6144η2

+
15δ3η2

1024m3
1

+
5δ2η(784η + 323)

28672m2
1

+
5δ(504η(7630η − 159) + 5579177)

21676032m1
(5.123d)

αlog = − 5

48

(
7π − 3δ2χ`

)
−

5δm5
1χ

2
pχ`

128η3
+

5δ(7168η + 407)m1χ`
21504η

−
35m6

1χ
2
pχ`

384η3

+
5(4072η + 599)m2

1χ`
9216η

− 5πδ

16m1
. (5.123e)

ε−3 = α−3 (5.123f)

ε−2 = α−2 (5.123g)

ε−1 = −5(824η + 1103)

3072
− 15δ2η

256m2
1

− 5δ(980η + 911)

7168m1
(5.123h)

ε1 =
5(36η(85568η + 23817) + 8024297)

9289728
+

5m2
1χ`

(
75δ2χl − 112π

)
256η

+
1815δm3

1χ
2
`

256η

− 15πδm1χ`
16η

+
1645m4

1χ
2
l

192η
+

15δ3η2

1024m3
1

+
5δ2η(784η + 323)

28672m2
1

+
5δ(504η(7630η − 159) + 5579177)

21676032m1
(5.123i)
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εlog = − 5

48

(
7π − 3δ2χ`

)
+

5δ(7168η + 407)m1χ`
21504η

+
5(4072η + 599)m2

1χ`
9216η

− 5πδ

16m1
.

(5.123j)

5.G.2 Orbital Angular Momentum

The orbital angular momentum is estimated using an aligned-spin approximation with

orbital terms up to 4PN and spin-orbit terms up to 3.5PN.We neglect spin-spin couplings.

L0 = 1, (5.124a)

L1 =
η

6
+

3

2
, (5.124b)

L2 =
η2

24
− 19η

8
+

27

8
, (5.124c)

L3 =
7η3

1296
+

31η2

24
+

(
41π2

24
− 6889

144

)
η +

135

16
, (5.124d)

L4 = − 55η4

31104
− 215η3

1728
+

(
356035

3456
− 2255π2

576

)
η2

+ η

(
−64

3
log(16x)− 6455π2

1536
− 128γ

3
+

98869

5760

)
+

2835

128
,

(5.124e)

LSO
1.5 = −35

6
S` −

5

2

δm

m
Σ`, (5.124f)

LSO
2.5 =

(
−77

8
+

427

72
η

)
S` +

δm

m

(
−21

8
+

35

12
η

)
Σ`, (5.124g)

LSO
3.5 =

(
−405

16
+

1101

16
η − 29

16
η2

)
S` +

δm

m

(
−81

6
+

117

4
η − 15

16
η2

)
Σ`, (5.124h)

LLO−S∞

2 =

(
1

2
+
δ

2
− η
)
χ2

1 + 2ηχ1`χ2` +

(
1

2
− δ

2
− η
)
χ2

2`, (5.124i)

LLO−S∞

3.5 = χ3
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3δη

4
− 3η2
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4
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+ χ2

1` χ2`

(
3δη
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4
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2
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(
−3δη

4
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(5.124j)
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Chapter 6

Conclusions

In this thesis, I have presented two new phenomenological models that describe the

gravitational wave emission both for non-precessing and precessing black-hole binaries

including the effect of several subdominant harmonics. I also presented the technique

of multibanding for accelerating the evaluation of waveform models with adapted grids.

While this is a general technique that can be applied to any Fourier domain model and

extended to the time domain, we applied it to the two models presented here: IMRPhe-

nomXHM and IMRPhenomXPHM. As part of the thesis, we implemented the two

models together with the multibanding technique in the LSC Algorithm Library Suite

(LALSuite) and after an exhaustive review of the code implementation and performance

by members of the LSC the two models were approved and made available to the whole

collaboration to be used in future official studies. With the recent improvements in

the sensitivity of LIGO detectors the events where higher harmonics modes and preces-

sion are relevant are more likely to happen, therefore is crucial to incorporate waveform

models that accurately describe these effects. With the addition of this new physics,

the PE studies become also more complex and need more detailed analysis. Conse-

quently, dispose of computationally efficient waveform models is crucial to carry out this

task. The two new models presented in this thesis significantly outperform both in accu-

racy and computational efficiency the previous analogous models IMRPhenomHM and

IMRPhenomPv3HM. They are also the most efficient models when compared to the

analogous models of the other waveform families: EOB and Surrogate models. For these

reasons, we expect that the models presented in this thesis will play a very important

role in the PE studies of the upcoming gravitational wave events. In the following, I sum-

marize in more detail the main results and contributions of the three studies presented

in this thesis.
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IMRPhenomXHM

This is a new phenomenological waveform model for the gravitational wave signal origi-

nating from non-precessing binary black-hole systems. Several higher spherical harmonics

beyond the dominant mode are included: (l,m) = (2,±2), (2,±1), (3,±3), (3,±2), (4,±4).

The previous model IMRPhenomHM was based on a PN scaling of the amplitude and

phase of the dominant (2, 2) mode given by IMRPhenomD what approximately repro-

duces the amplitude and phases of the higher modes. Nevertheless, IMRPhenomXHM

is calibrated with the higher modes data from NR simulations including waveforms in

the EMR limit. This improves the accuracy of the model in several scenarios. In the

first place, the amplitude and phase of every individual mode are more accurately mod-

elled, but also the relative phases between modes are now more accurate and they do

not suffer from the dephasing introduced by the PN expressions during the merger. This

allows us for a much better estimate of the final black hole recoil quantity. In addition,

IMRPhenomXHM does not neglect the contribution of the odd modes in the equal

mass limit. Finally, we include the description of the sharp features of the mode-mixing

that appears for the (3, 2) mode by modelling the ringdown part of the waveform in the

spheroidal basics and performing a rotation back to the spherical. This technique can

be straightforwardly extended to other modes with mixing like the (4, 3) which will be

incorporated in future updates of the model.

The calibration of the model to NR simulations is performed separately for the ampli-

tude and for the phase. I carried out the calibration for the amplitude while Marta

Colleoni did the corresponding for the phase. The amplitude is fully calibrated to NR in

the three frequency regions: inspiral, intermediate and ringdown; while the phase only

needs calibration in the intermediate one. In the inspiral, the phase employs the same

PN scaling than IMRPhenomHM but using the improved model IMRPhenomXAS

instead of IMRPhenomD and for the ringdown, it uses a suitable scaling heuristically

determined. For the calibration of both amplitude and phase we used NR simulations

from the publicly available SXS catalogue [1] as well as some private ones performed

with the BAM [2–4] and ET [5] codes. We refined our pipeline to process the data from

the different NR codes and we produced them in a standard HDF5 format [6]. This is

used then to build the hybrid waveforms by plugging to the NR waveform an inspiral

part described by EOB.

Focusing on the calibration of the amplitude, we first obtained the PN ansatz for the

inspiral part of the higher modes. We put together the different PN orders present in the

literature, correctly accounting for the different conventions in the several peer-reviewed

articles and transformed them into the Fourier domain employing the SPA. Compar-

ing these results with those in the literature [7] we realized that there was a mistake
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in the aforementioned article which was afterwards avowed by the authors. The IMR-

PhenomHM model used to employ the wrong expressions from [7], as a member of the

review team I flagged this issue and the error was corrected improving the performance

of the model.

Next step consisted in obtaining the adequate cutting frequencies that allow us for a

correct division of the frequency range across parameter space both for comparable and

for EMR cases. Once the direct fits were done, the calibration of the coefficients over

parameter space required intense human work. We had to adapt the hierarchical fitting

procedure presented in [8] to incorporate the new features and new symmetries introduced

by the higher modes. During this stage, inaccurate NR waveforms can be easily spotted

as outliers since they show off from the smooth surfaces depicted by the “well behaved”

data. Once the parameter space fits were finished we checked that the reconstructed

model reproduces the input NR data that we used for the calibration. Then we passed

to study the behaviour of the model outside the calibration region, i.e. for cases for

which we lack NR data to compare with. We observed then that for cases where the

amplitude of the higher modes was close to zero the accuracy of the fits was not enough

to produce well-behaved collocation points. For that reason, we carried out an intense

study across parameter space and developed a series of vetoes that removed ill-behaved

collocation points and adapted the reconstruction of the model accordingly. This issue

will be revisited in the future and we expect that the inclusion of more NR waveforms,

mainly from the recent release of the new SXS catalogue [9], can help to properly solve

this issue. Finally, we carried out a modular implementation of the model in LALSuite

which allows one to easily incorporate these and other new updates to the model.

Multibanding

We presented a modified version of the multibanding technique introduced in [10] applied

to accelerate the evaluation of waveform models for data analysis applications. While

the technique can also be applied in the time domain, we focused on the Fourier domain

and particularly to the IMRPhenomXHM model. In the time domain, the inspiral part

is slowly varying since the two black holes are far apart while in the merger they are so

close that the frequency is much higher and the waveform much more oscillating. In the

Fourier domain, the behaviour is exactly the opposite, the inspiral is very oscillating and

the merger-ringdown slowly varying. This motivated the use of a coarser non-uniform

frequency grid, where the model is evaluated, then this set of points is interpolated into

the final uniform grid. Since the interpolation is a much cheaper operation than the eval-

uation of the model this supposes a great speed up in the calculation of the waveform.

We modified the criteria of [10] to choose the coarser grid and extend it to the merger-

ringdown and for higher harmonics beyond the dominant one. Since the mode-mixing
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of the (3, 2) mode happened precisely in the merger-ringdown where the multibanding

provides less points, we applied the algorithm of multibanding to the merger-ringdown

waveform in the basis of spheroidal harmonics where the mixing is not present, and

then applied a rotation back to spherical to obtain the final waveform. The accuracy

and speed of the multibanding are controlled with a threshold value that represents the

error in the interpolation. The lower this value the more restrictive the algorithm be-

comes. This translates into a higher accuracy at the cost of lower speed up. We asserted

the robustness and accuracy of the algorithm by performing an exploration of one mil-

lion points across parameter space and comparing waveforms without multibanding to

waveforms with four different thresholds of multibanding. We also carried out PE stud-

ies which returned consistent results between thresholds. Benchmarks studies against

other waveform models showed that even with a conservative choice of the multibanding

threshold both the IMRPhenomXHM and IMRPhenomXPHM models are the fastest

models currently available. We left for future work the extension to the time domain

that will be applied to the recently developed IMRPhenomTP model [11], and a more

precise application of the algorithm for the Euler angles We presented a modified version

of the multibanding technique introduced in [10] applied to accelerate the evaluation of

waveform models for data analysis applications. While the technique can also be applied

in the time domain, we focused to the Fourier domain and particularly to the IMRPhe-

nomXHM model. In time domain the inspiral part is slowly varying since the two black

holes are far apart while in the merger they are so close that the frequency is much higher

and the waveform far more oscillating. In the Fourier domain the behaviour is exactly the

opposite, the inspiral is very oscillating and the merger-ringdown slowly varying. This

motivated the use of a coarser non-uniform frequency grid, where the model is evaluated,

then this set of points is interpolated into the final uniform grid. Since the interpola-

tion is a much cheaper operation than the evaluation of the model this supposes a great

speed up in the calculation of the waveform. We modified the criteria of [10] to choose

the coarser grid and extend it to the merger-ringdown and for higher harmonics beyond

the dominant one. Since the mode-mixing of the (3, 2) mode happened precisely in the

merger-ringdown where the multibanding provides less points, we applied the algorithm

of multibanding to the merger-ringdown waveform in the basis of spheroidal harmonics

where the mixing is not present, and then applied a rotation back to spherical to ob-

tain the final waveform. The accuracy and speed of the multibanding is controlled with

a threshold value that represents the error in the interpolation. The lower this value

the more restrictive the algorithm becomes. This translates into a higher accuracy at

the cost of lower speed up. We asserted the robustness and accuracy of the algorithm

by performing an exploration of one million of points across parameter space and com-

paring waveforms without multibanding to waveforms with four different thresholds of

multibanding. We also carried out PE studies which returned consistent results between
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thresholds. Benchmarks studies against other waveform models showed that even with a

conservative choice of the multibanding threshold both the IMRPhenomXHM and IM-

RPhenomXPHM models are the fastest models currently available. We left for future

work the extension to the time domain that will be applied to the recently developed

IMRPhenomTP model [11], and a more precise application of the algorithm for the

Euler angles that takes into account the double spin effects of precessing systems.

IMRPhenomXPHM

Finally, we presented the extension of the IMRPhenomXHM model to include preces-

sion effects. Apart from some modifications to treat the higher modes, we followed the

standard procedure of the twisting-up by which non-precessing modes described in the

co-precessing frame are transformed into precessing modes in the inertial frame. The

transformation consists in a Euler rotation between the two frames. The time evolution

of the Euler angles can be obtained by two prescriptions: the PN next-to-next-to-leading

order (NNLO) and the Multi-Scale-Analysis (MSA). Following the modular philosophy of

the IMRPhenomX models both prescriptions were implemented, together with different

options to choose the description of the final spin. Special care was put in obtaining all

the precessing conventions correctly, in particular the transformations between frames.

We derived all the conventions from end to end for a frequency domain model and prop-

erly documented them. The multibanding is already present when computing the non-

precessing modes given by IMRPhenomXHM, but we also incorporated this technique

for the evaluation of the Euler angles using, in a first approach, the same coarse grid we

used for the non-precessing modes. Similarly to what we did for IMRPhenomXHM, we

tested the multibanding of the Euler angles across the parameter space for four different

thresholds, we performed PE studies that showed consistent results between thresholds

and carried out benchmark tests which demonstrated that IMRPhenomXPHM is by

far the fastest precessing model available. Regarding the accuracy, IMRPhenomXPHM

clearly outperforms the previous analogous model IMRPhenomPv3HM. Its speed, its

accuracy and its flexibility make IMRPhenomXPHM a great laboratory for testing

physics in the current and future PE studies.

Outlook and future research

The work presented in this thesis constitutes the first release of a new family of com-

putationally efficient waveform models including subdominant effects. These models are

thought not to be static but to be easily updated as new data and techniques become

available. In this regard, the most immediate improvement of the model is the recali-

bration to new and more accurate NR simulations. The reduction of the numerical noise



BIBLIOGRAPHY 249

of the simulations will allow us to include more subdominant harmonics like the (4, 3)

and (5, 5) and also to improve the performance of the model for those regions where the

subdominant harmonics are diminished. A more detailed study of the EMR waveforms

produced by solving the Teukolsky equations will indeed improve the understanding of

the waveform phenomenology in this region and will help to fill the gap between the NR

region q ∼ 18 and the EMR region q ∼ 1000.

From the analytical point of view, further developments in PN theory, in particular the

inclusion of spin effects in the subdominant harmonics up to 3.5 PN order, would highly

benefit our inspiral ansatz and would help to reach a smooth transition between the

comparable and EMR regimes.

A near-future extension of the model, for which work has already been started, is to

include the effects of tidal deformations [12] to describe binary neutron star systems.

This would take into account only the dominant quadrupole part but plans to include

subdominant harmonics are being considered too.

For other extensions of the precessing model, we consider developing an ansatz for the

Euler angles in the Fourier domain such that its description does not rely on the SPA

transformation which is invalid in the merger-ringdown. As discussed in [13] our treat-

ment of mode-mixing in the non-precessing case can not strictly be extended to precession

since the mode-mixing happens in the inertial frame instead of in the co-precessing frame,

further improvements of the model will tackle this subject. Also, it would be desirable to

have a numerical fit for the final spin of precessing systems instead of using an approxi-

mate formula as it is currently done. Some of these challenges will be easier to address in

the time domain, and I thus foresee synergies with the IMRPhenomTP model. Finally,

the computational efficiency of the model can be further optimized by rewriting the code

to be parallelizable, for example using the CUDA platform [14] and running on GPUs.
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Abbreviations

ACT Auto-Correlation Times

ADM Arnowitt Deser Misner

BAM Bifunctional Adaptive Mesh

BBH Binary Black Hole

BNS Binary Neutron Star

BSSN Baumgharte Shapiro Shibata Nakamura

CBC Compact Binary Coalescence

ECSK Einstein Cartan Sciama Kibble

EM ElectroMagnetic

EMRI Extreme Mass Ratio

EOB Effective One Body

EOS Equation Of State

ESA European Space Agency

ET Einstein Toolkit

GPU Graphics Processing Unit

GR General Relativity

GSL GNU Scientific Library

GW Gravitational Waves
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GWOSC Gravitational Wave Open Science Center

HDF5 Hierarchical Data Format version 5

IMR Inspiral Merger Ringdown

ISCO Innermost Stable Circular Orbit

KAGRA KAmioka GRAvitational wave detector

LIGO Laser Interferometer Gravitational Wave Observatory

LISA Laser Interferometer Space Antenna

LSC LIGO Scientific Collaboration

LVC LIGO-Virgo Collaboration

MCMC Markow Chain MonteCarlo

MECO Minimal Energy Circular Orbit

MSA Multi-Scale Analysis

NNLO Next-to-Next-to-Leading Order

NR Numerical Relativity

NSBH Neutron Star Black Hole

O1 First Observing run of the LIGO gravitational wave detectors

O2 Second Observing run of the LIGO gravitational wave detectors

O3 Third Observing run of the LIGO gravitational wave detectors

PE Parameter Estimation

PN Post Newtonian

PSD Power Spectral Density

QNM Quasi Normal Mode

RMS Root Mean Square

ROM Reduced Order Models

ROQ Reduced Order Quadrature

SNR Signal to Noise Ratio



BIBLIOGRAPHY 254

SPA Stationary Phase Approximation

SpEC Spectral Einstein Code

SWSH Spin-2 Weighted Spherical Harmonics

TT Transverse Traceless



Appendix A

Fourier domain polarizations in

terms of individual modes

In this section I derive the expression of the Fourier domain polarizations h̃+,×(f) in

terms of the individual modes h̃lm(f) for the non-precessing case. These expressions are

truly important for building the multimode waveform model, but can barely be found in

the literature. The results are included in the publication presented in chapter 3 and here

I show the explicit derivation of such expressions. We start from the basic multimode

decomposition in time domain

h(t) = h+(t)− i h×(t) =
∑
`≥2

∑̀
m=−`

h`m(t)−2Y`m. (A.1)

The h+,×(t) polarizations are related to the real and imaginary part of the strain

h+(t) = Re(h) =
1

2
(h(t) + h∗(t)) , (A.2)

h×(t) = −Im(h) =
i

2
(h(t)− h∗(t)) (A.3)

In terms of the individual modes the above expressions are written as

h+(t) =
1

2

∑
`≥2

∑̀
m=−`

(h`m(t)−2Y`m + h∗`m(t)−2Y
∗
`m) , (A.4)

h×(t) =
i

2

∑
`≥2

∑̀
m=−`

(h`m(t)−2Y`m − h∗`m(t)−2Y
∗
`m) , (A.5)
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The Fourier transform of a real function satisfies that the positive and negative frequency

regimes are related by a complex conjugation. Since h+,×(t) are real functions we have

h̃+(f) = h̃∗+(−f), h̃×(f) = h̃∗×(−f). (A.6)

For this reason we will focus hereafter on the expressions for the polarizations just for

the positive frequency regime. Performing the Fourier transform of A.4, A.5 we obtain

h̃+(f > 0) =
1

2

∑
`≥2

∑̀
m=−`

(
h̃`m(f)−2Y`m + h̃∗`m(−f)−2Y

∗
`m

)
, (A.7)

h̃×(f > 0) =
i

2

∑
`≥2

∑̀
m=−`

(
h̃`m(f)−2Y`m − h̃∗`m(−f)−2Y

∗
`m

)
. (A.8)

Hereafter we drop from the derivation the special case m = 0 which is not an oscillatory

mode and present some additional complications that are out of the scope in this section.

For non-precessing systems the positive and negative modes are related in the time

domain by Eq. 2.61, induced by the equatorial symmetry. In the Fourier domain this

relation translates into

h̃lm(f) = (−1)l h̃∗l−m(−f). (A.9)

We adopt the conventions of LALSuite for the rotation of the modes such that positive

modes (m > 0) rotate clockwise and negative modes (m < 0) counterclockwise and the

convention for the Fourier transform

h̃(f) =

∫ ∞
−∞

h(t) e−i 2πft dt, (A.10)

The definitions above imply that h̃lm>0(f) is concentrated in the negative frequency

regime and h̃lm<0(f) in the positive frequency regime:

h̃lm>0(f > 0) = 0, h̃lm<0(f < 0) = 0. (A.11)

With the above considerations, expressions A.7, A.8 lead to

h̃+(f > 0) =
1

2

∑
`≥2

∑̀
m>0

(
���

�:0
h̃`m(f) −2Y`m + h̃∗`m(−f)−2Y

∗
`m (A.12)

+h̃`−m(f)−2Y`−m +���
���:0

h̃∗`−m(−f) −2Y
∗
`−m

)
, (A.13)

h̃×(f > 0) =
i

2

∑
`≥2

∑̀
m>0

(
��

��:0
h̃`m(f) −2Y`m − h̃∗`m(−f)−2Y

∗
`m (A.14)
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+h̃`−m(f)−2Y`−m −����
��:0

h̃∗`−m(−f) −2Y
∗
`−m

)
. (A.15)

We now use A.9 to obtain the result in terms of the individual modes which have support

for positive frequencies (negative m):

h̃+(f > 0) =
1

2

∑
`≥2

∑̀
m>0

(
(−1)lh̃`−m(f)−2Y

∗
`m + h̃`−m(f)−2Y`−m

)
, (A.16)

h̃×(f > 0) =
i

2

∑
`≥2

∑̀
m>0

(
−(−1)lh̃`−m(f)−2Y

∗
`m + h̃`−m(f)−2Y`−m

)
, (A.17)

and rearranging terms we arrive at the result

h̃+(f > 0) =
1

2

∑
`≥2

∑̀
m>0

(
−2Y`−m + (−1)l −2Y

∗
`m

)
h̃`−m(f), (A.18)

h̃×(f > 0) =
i

2

∑
`≥2

∑̀
m>0

(
−2Y`−m − (−1)l −2Y

∗
`m

)
h̃`−m(f). (A.19)

From the above expressions we can straightforwardly extract which is the contribution to

the polarizations of just a pair of positive and negative modes (l,±m) (assuming m>0):

h̃l±m+ (f > 0) =
1

2

(
−2Y`−m + (−1)l −2Y

∗
`m

)
h̃`−m(f), (A.20)

h̃l±m× (f > 0) =
i

2

(
−2Y`−m − (−1)l −2Y

∗
`m

)
h̃`−m(f). (A.21)

One can also obtain the contribution of just a single (l,m) mode, in which case a distinc-

tion between positive and negative m would be needed in order to simplify the result.

The expression for a general (l,m) mode is

h̃l,m+ (f > 0) =
1

2

(
h̃`m(f)−2Y`m + h̃∗`m(−f)−2Y

∗
`m

)
, (A.22)

h̃l,m× (f > 0) =
i

2

(
h̃`m(f)−2Y`m − h̃∗`m(−f)−2Y

∗
`m

)
. (A.23)

For m > 0 we recall that modes are zero for positive frequencies, and we use the relation

A.9 to write the result in terms of individual modes at positive frequencies:

h̃l,m>0
+ (f > 0) =

1

2

(
��

��:0
h̃`m(f) −2Y`m + h̃∗`m(−f)−2Y

∗
`m

)
=

1

2
(−1)l h̃`−m(f)−2Y

∗
`m,

(A.24)

h̃l,m>0
× (f > 0) =

i

2

(
���

�:0
h̃`m(f) −2Y`m − h̃∗`m(−f)−2Y

∗
`m

)
= − i

2
(−1)l h̃`−m(f)−2Y

∗
`m.

(A.25)
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For m < 0 the modes are zero for negative frequencies and we obtain

h̃l,m<0
+ (f > 0) =

1

2

(
h̃`m(f)−2Y`m +���

��:0
h̃∗`m(−f) −2Y

∗
`m

)
=

1

2
h̃`m(f)−2Y`m, (A.26)

h̃l,m<0
× (f > 0) =

i

2

(
h̃`m(f)−2Y`m −����

�:0
h̃∗`m(−f) −2Y

∗
`m

)
=
i

2
h̃`m(f)−2Y`m. (A.27)
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