
“output” — 2021/1/31 — 21:38 — page i — #1

Relative Music Loudness Estimation
In TV Broadcast Audio Using Deep
Learning

An industrial perspective

Author: Blai Meléndez Catalán

TESI DOCTORAL UPF / year 2021

THESIS SUPERVISORS

Emilio Molina, Emilia Gómez
Department: DTIC, MTG, MIR Lab

“output” — 2021/1/31 — 21:38 — page ii — #2

“output” — 2021/1/31 — 21:38 — page iii — #3

Dedico aquesta tesi doctoral a la meva famı́lia i les altres persones que em

donen suport dia sı́ i dia també.

iii

“output” — 2021/1/31 — 21:38 — page iv — #4

“output” — 2021/1/31 — 21:38 — page v — #5

Acknowledgements

Many people have been involved at some point in the development of

this thesis, and I am grateful for all of their contributions, because, big or

small, they have been fundamental for the successful completion of this

PhD thesis. First and foremost, I would like to thank my two supervisors,

Emilio Molina and Emilia Gómez, for their great disposition and initia-

tive, and the knowledge and know-how that they have poured into me. I

also want to extend a special thanks to Xavier Serra for agreeing to a fate-

ful meeting that let me into the Sound and Music Computing master, and

that eventually allowed me to start working at BMAT as an intern. I am

also very grateful to Johannes Lyda for believing in me and giving me the

opportunity to carry out this industrial PhD and to stay at BMAT. During

these four years of doctoral work, I have received advice or I have colla-

borated for one reason or another with: Alex Ciurana, David Doukhan,

Yun Hao, Olga Slizovskaia, Pritish Chandna, Furkan Yesiler, Ana Maria

Estrada, Daniel G. Camhi, Carles Antón, Cristina Garrido, Sonia Espı́,

Lydia Garcia, Pilar Callau, and Andy Hughes. I would like to thank them

all for their help. Finally, a big thanks to my family and friends for their

unconditional support.

v

“output” — 2021/1/31 — 21:38 — page vi — #6

“output” — 2021/1/31 — 21:38 — page vii — #7

Abstract

Under the current copyright management business model, broadcasters

are taxed by the corresponding copyright management organization ac-

cording to the percentage of music they broadcast, and the collected money

is then distributed among the copyright holders of that music. In the spe-

cific case of TV broadcasts, whether a musical piece is played in the fore-

ground or the background is often a relevant factor that affects the amount

of money collected and distributed. In recent years, the music industry is

increasingly adopting technological solutions to automatize this process.

We have conducted this industrial PhD at BMAT, a company that has an

active role in providing these solutions: since 2015, this company has

been offering a service that currently monitors about 4300 radio stations

and TV channels to automatically detect the presence of music, and to

classify it as foreground or background music. We name this task relative

music loudness estimation. From an industrial point of view, this thesis

focuses on the improvement of the technology behind the service; and

from the academic point of view, it pursues the introduction and promo-

tion of the task in the research field of music information retrieval, and

provides computational approaches to it.

The industrial and academic contributions of this thesis result from

logical steps towards these goals. We first create BAT: a new open-source,

web-based tool for the efficient annotation of audio events and their par-

tial loudness in the presence of other simultaneous events. We use BAT

to annotate two datasets: one private and the other public. We use the pri-

vate dataset for training in the development of BMAT’s new relative music

loudness estimation algorithm called the Deep Music Detector. The Deep

Music Detector represents the first application of deep learning within

vii

“output” — 2021/1/31 — 21:38 — page viii — #8

BMAT, and provides a significant boost in performance with respect to its

predecessor. The public dataset, called OpenBMAT, is released in order

to foster transparent, comparable and reproducible research on the task of

relative music loudness estimation. We use OpenBMAT in our proposal

of a novel deep learning solution to this task based on an architecture that

combines regular convolutional neural networks, and temporal convolu-

tional networks. This architecture is able to extract robust features from

a time-frequency representation of an audio file, and then model them

as temporal sequences, producing state-of-the-art results with an efficient

usage of the network’s parameters. Finally, this thesis also offers a re-

view of the concepts, resources and literature about tasks related to the

detection of music.

viii

“output” — 2021/1/31 — 21:38 — page ix — #9

Resum

En l’actual model de negoci de la gestió de drets d’autor, les emissores

paguen una certa quantitat d’impostos a l’organització de drets d’autor

corresponent que depèn del percentatge de música que emeten. Els diners

recaptats d’aquesta manera es distribueixen entre els propietaris dels drets

d’aquesta música. En el cas especı́fic de les emissores de televisió, el fet

que la música s’emeti en primer o segon pla és sovint un factor rellevant

que afecta la quantitat de diners recaptada i distribuı̈da. Recentment, la

indústria musical està optant cada cop més per solucions tecnològiques

que automatitzen aquest procés. Hem realitzat aquest doctorat industrial a

BMAT, una empresa que proveeix aquest tipus de solucions. Des de 2015,

aquesta empresa ofereix un servei que actualment monitora al voltant de

4300 canals de ràdio i televisió per detectar automàticament la presència

de música i identificar si es troba en primer o segon pla. A aquesta tasca

l’anomenem estimació del volum relatiu de la música. Des del punt de

vista industrial aquesta tesi se centra en la millora de la tecnologia que

hi ha darrere d’aquest servei, mentre que des del punt de vista acadèmic

persegueix la introducció i promoció de la tasca en el camp de recerca del

music information retrieval, i hi aporta solucions tecnològiques.

Les contribucions industrials i acadèmiques d’aquesta tesi són el re-

sultat d’uns passos lògics, encaminats cap a la consecució aquests objec-

tius. El primer pas és la creació de BAT: una nova eina web i de codi obert

per a l’anotació d’esdeveniments acústics i del seu volum parcial. El se-

gon pas consisteix a utilitzar BAT per anotar dos datasets: un de privat i

un de públic. El dataset privat l’usem per a entrenament en el desenvo-

lupament del Deep Music Detector, el nou algorisme d’estimació del vo-

lum relatiu de la música de BMAT. El Deep Music Detector representa la

ix

“output” — 2021/1/31 — 21:38 — page x — #10

primera aplicació d’aprenentatge profund dins de BMAT, i aporta una mi-

llora substancial del servei respecte al seu predecessor. El dataset públic,

anomenat OpenBMAT, es publica per promoure una recerca transparent,

comparable i reproduı̈ble en la tasca d’estimació del volum relatiu de la

música. A més a més, nosaltres l’usem en la nostra proposta d’una nova

solució a aquesta tasca, que es basa en una arquitectura d’aprenentatge

profund que combina les xarxes neuronals convolucionals estàndard amb

les xarxes convolucionals temporals. Aquesta arquitectura permet extreu-

re descriptors robustos a partir d’una representació temporal-freqüencial

d’un fitxer d’àudio i modelar-los com a seqüència temporal. Els resultats

obtinguts superen l’estat de l’art amb un ús eficient dels paràmetres de la

xarxa. Finalment, aquesta tesi també ofereix una revisió dels conceptes,

dels recursos i de la literatura sobre tasques relacionades amb la detecció

de música.

x

“output” — 2021/1/31 — 21:38 — page xi — #11

Contents

List of figures xviii

List of tables xxii

1 INTRODUCTION 1
1.1 Motivation . 1

1.2 BMAT as a company 5

1.3 Goals and contributions 7

1.4 Structure of the thesis 11

2 SCIENTIFIC BACKGROUND 15
2.1 Relevant concepts . 16

2.1.1 Feedforward neural networks 16

2.1.2 Evaluation metrics 25

2.2 Available resources . 35

2.2.1 Datasets . 35

2.2.2 Audio annotation tools 41

2.3 Tasks and methods . 43

2.3.1 Music detection as a binary-class task 43

2.3.2 Music detection in multi-class tasks 53

xi

“output” — 2021/1/31 — 21:38 — page xii — #12

2.3.3 Analysis . 62

2.4 Conclusions . 65

3 DEVELOPMENT OF AN ANNOTATION TOOL 69

3.1 Design requirements 70

3.2 Development . 72

3.2.1 Technologies 72

3.2.2 Models and annotation process 74

3.2.3 Annotation interface 78

3.2.4 Integration into BMAT 80

3.3 Evaluation experiment 82

3.3.1 Evaluation methodology 82

3.3.2 Evaluation results 83

3.4 Conclusions . 83

4 COMPILATION AND ANNOTATION OF DATASETS 85

4.1 Private dataset . 86

4.1.1 Raw corpus . 86

4.1.2 Annotation methodology 87

4.1.3 Content distribution 88

4.2 Public dataset: OpenBMAT 89

4.2.1 Raw corpus . 90

4.2.2 Annotation methodology 91

4.2.3 Analysis of the annotations 96

4.2.4 Metadata and Storage 103

4.3 Conclusions . 104

xii

“output” — 2021/1/31 — 21:38 — page xiii — #13

5 COMPUTATIONAL APPROACHES 107
5.1 Stable approach: the Deep Music Detector 108

5.1.1 Architecture . 109

5.1.2 Training process 111

5.1.3 Production-ready product 113

5.1.4 Evaluation metrics 117

5.1.5 Public evaluations 118

5.2 Experimental approach: the TCN and CNN-TCN archi-

tectures . 126

5.2.1 Architectures 127

5.2.2 Input features 130

5.2.3 Smoothing . 130

5.2.4 Experimental setup 131

5.2.5 Results and discussion 137

5.3 Conclusions . 145

6 SUMMARY AND FUTURE PERSPECTIVES 147
6.1 Summary and impact of the contributions 148

6.2 List of publications . 152

6.2.1 Papers . 153

6.2.2 Research resources 153

6.2.3 MIREX collaboration 153

6.3 Future perspectives . 154

xiii

“output” — 2021/1/31 — 21:38 — page xiv — #14

“output” — 2021/1/31 — 21:38 — page xv — #15

List of Figures

1.1 Example of the division of an audio file in time intervals

of the classes of the relative music loudness estimation task. 4

2.1 Example of an MLP with the minimum number L = 1 of

hidden layers. 19

2.2 Example of a receptive field in a CNN. Neuron 3 only

receives information from a portion of the input s to pro-

duce a value of the output feature vector h(1)
3 22

2.3 Simplified representation of a TCN. The architecture in-

cludes two residual blocks with dilations d = [1, 2] and

non-causal filters of lengths z = [3, 3]. The receptive field

at the neurons of the second residual block is equal to 7

time-frames. 24

2.4 (Top) ground truth, (mid) output, and (bottom) segment-

based evaluation for an audio file annotated using a tax-

onomy with three classes. 27

2.5 (Top) ground truth, (mid) output, and (bottom) event-based

evaluation for an audio file annotated using a taxonomy

with three classes. 32

xv

“output” — 2021/1/31 — 21:38 — page xvi — #16

2.6 Two frequency activation functions: (a) one for an au-

dio excerpt that does not contain music and (b) the other

for an audio excerpt that contains music. Reprinted from

Seyerlehner, K., Pohle, T., Schedl, M., and Widmer, G.

(2007). Automatic music detection in television produc-

tions. In Proceedings of the 10th International Confer-

ence on Digital Audio Effects (DAFx-07). 46

2.7 Convolutional layers with (a) a fixed-size kernel and (b)

a Mel-scale kernel. Reprinted from Jang, B.-Y., Heo, W.-

H., Kim, J.-H., and Kwon, O.-W. (2019). Music detec-

tion from broadcast contents using convolutional neural

networks with a Mel-scale kernel. EURASIP Journal on

Audio, Speech, and Music Processing, 2019(1):11. . . . 50

2.8 CNN architecture proposed by Jang et al. (2019). Reprinted

from Jang, B.-Y., Heo, W.-H., Kim, J.-H., and Kwon, O.-

W. (2019). Music detection from broadcast contents us-

ing convolutional neural networks with a Mel-scale ker-

nel. EURASIP Journal on Audio, Speech, and Music Pro-

cessing, 2019(1):11. 51

2.9 CNN architecture proposed by Doukhan and Carrive (2017).

Reprinted from Doukhan, D. and Carrive, J. (2017). In-

vestigating the use of semi-supervised convolutional neu-

ral network models for speech/music classification and

segmentation. In The Ninth International Conferences on

Advances in Multimedia (MMEDIA). 59

3.1 Screenshot of audio-annotator’s front-end annotation in-

terface. 73

xvi

“output” — 2021/1/31 — 21:38 — page xvii — #17

3.2 Relationship between BAT’s database models. 75

3.3 (Top) Event identification phase: the annotator creates

two events over the waveform. (Bottom) Partial loudness

annotation phase: the annotator assigns a partial loudness

value to each event where they overlap. 77

3.4 BAT’s annotation interface. 79

4.1 Percentage of the total duration corresponding to every

existing combination of the classes of the annotation tax-

onomy. 88

4.2 Distribution of audio files by program type and country.

The program types are: children programs (C), documen-

taries (D), entertainment programs (E), music programs

(M), news broadcasts (N), series & films (S&F), sport

programs (S) and talk shows (T). 91

4.3 (Left) MD mapping: mapping from the annotation tax-

onomy to the music detection taxonomy. (Right) RMLE

mapping: mapping from the annotation taxonomy to the

relative music loudness estimation taxonomy. 93

4.4 Percentage of the content of OpenBMAT by class and

agreement level. 100

4.5 Percentage of audio files accumulated over a certain %FAaf

value using the relative music loudness estimation classes. 101

4.6 (Rows) Class annotated by two annotators. (Columns)

Class annotated by the third annotator. (Values) Percent-

age of the content with full (diagonal) or partial agree-

ment for each class divided by the classification of the

third annotator. 102

xvii

“output” — 2021/1/31 — 21:38 — page xviii — #18

5.1 Architecture of the Deep Music Detector. 109

5.2 Steps of the analysis of an audio file with the Deep Music

Detector. In blue, the steps executed by the python wrap-

per scripts; and in green, the steps executed by the C++

binary. 115

5.3 Audio file distribution by full agreement applying the RMLE

mapping and the accuracy achieved by DMDv1 when

evaluated against the ground truth resulting from merg-

ing the three individual annotations. 125

5.4 (Left) complete CNN-TCN architecture. (Right-top) struc-

ture of the convolutional block. (Right-bottom) structure

of the residual block. 128

5.5 Ground truth generation process for the training, valida-

tion and test sets of the OpenBMAT dataset. 135

5.6 Comparison between DMDv1 , DMDv2 and all the TCN

and CNN-TCN models in terms of Accb and RI without

smoothing. The horizontal lines at the bottom correspond

to DMDv1 and DMDv2 141

5.7 (top) Example of the log-magnitude Mel-spectrogram, which

we use as input features for both the TCN and CNN-TCN

architectures. (mid) Output of the CNN in the CNN-TCN

architecture for these features. (bottom-top) CNN -TCN best

classification for these features without smoothing. (bottom-

bottom) Ground truth of these features. 144

xviii

“output” — 2021/1/31 — 21:38 — page xix — #19

List of Tables

2.1 Distribution by ground truth and output class of the total

content of a 200 seconds mock dataset. Fg, Bg, and No

stand for the Foreground Music, Background Music, and

No Music classes. 29

2.2 Balance-independent distribution by ground truth and out-

put class of the total content of a 200 second mock dataset

with respect to its duration. Fg, Bg, and No stand for

the Foreground Music, Background Music, and No Music

classes. 30

2.3 Music content by file in the SMD dataset. 37

2.4 Comparison of the characteristics of the datasets for mu-

sic detection related tasks. 40

2.5 Results of the algorithm proposed by Zhu et al. (2006) for

a testing dataset based on TRECVID 2005. 44

2.6 Results of the algorithm proposed by Giannakopoulos et al.

(2008) for a testing dataset that consists of excerpts of

several movies. 48

2.7 Results of the algorithm proposed by Jang et al. (2019)

for six datasets. 53

xix

“output” — 2021/1/31 — 21:38 — page xx — #20

2.8 Results of the algorithm proposed by Lu et al. (2001) for

their testing dataset. 56

2.9 Balance-independent confusion matrix of the algorithm

proposed by Richard et al. (2007) for their testing dataset. 57

2.10 Results of the algorithm proposed by Schlüter and Sonnleit-

ner (2012) for their two testing datasets. 58

2.11 Results of the algorithm proposed by Doukhan and Car-

rive (2017) for the MIREX15 dataset divided by musical

genre. 60

2.12 Results of the algorithm proposed by Lemaire and Holzapfel

(2019) for their testing data. 61

2.13 Combinations of taxonomy and type of task used in each

of the approaches described in Section 2.3.2, and the in-

formation that they include about overlaps of music and

non-music sounds. 64

3.1 Results of the experiment to validate BAT’s partial loud-

ness annotation mechanism. 83

4.1 Percentage of the total content annotated as each of the

classes of the annotation taxonomy. 89

4.2 Percentage of the total content mapped to each of the

classes of the relative music loudness estimation taxon-

omy. 89

4.3 Percentage of audio annotated by each annotator as the

classes of the complete taxonomy, and the classes of the

relative music loudness estimation and music detection

tasks. 97

xx

“output” — 2021/1/31 — 21:38 — page xxi — #21

4.4 Percentage of audio files with class changes by annotator

for the complete taxonomy and both mappings. 98

4.5 Percentages of full, partial and pair-wise (PW) agreement

(Agr) for the whole dataset. These values have been com-

puted for the complete taxonomy and both mappings. . . 99

5.1 Architecture’s hyper-parameters of DMDv1 and DMDv2 .

The slashes separate the values for the different 2D-convolutional

blocks. 110

5.2 Results of all the algorithms that were submitted to the

task of music detection of MIREX 2018 and 2019. In

2018 there were two evaluation datasets for this task, while

in 2019 there was only one. 120

5.3 Results of the algorithms that we submitted to the task of

relative music loudness estimation of MIREX 2018 and

2019. In 2018 there were two evaluation datasets, but

only Dataset 1 has annotations suitable for this task. . . . 121

5.4 Performance of DMDv1 on the OpenBMAT dataset for

the tasks of relative music loudness estimation and mu-

sic detection. In this table, Fg stands both for Foreground

Music, in the case of the relative music loudness estima-

tion task, and Music, for the music detection task. 122

5.5 Balance-independent relative music loudness estimation

confusion matrix for the DMDv1 123

5.6 Balance-independent music detection confusion matrix for

the DMDv1 . 124

5.7 Statistics of DMDv1 clf , DMDv2 clf , TCN best and CNN -TCN best

with and without smoothing (S). 139

xxi

“output” — 2021/1/31 — 21:38 — page xxii — #22

5.8 Balance-independent confusion matrices for the DMDv1 clf

and DMDv2 clf algorithms with smoothing. 140

5.9 Balance-independent confusion matrices for the TCN best

and CNN -TCN best models with smoothing. 140

5.10 Comparison between TCN best and a CNN-TCN model

with the same hyper-parameters except for the dropout

rate (dr). We pick the best dropout rate for each model.

We do not apply any smoothing. 142

5.11 Mean and standard deviation (between parenthesis) of the

computation time in seconds per analyzed hour of audio

of each algorithm over 10 runs using one thread and a CPU.142

xxii

“output” — 2021/1/31 — 21:38 — page xxiii — #23

List of abbreviations

ADAM adaptive moment. 18

BiGRU bidirectional gate recurrent unit. 52

BiLSTM bidirectional long short-term memory. 52

BMAT BMAT Licensing S.L. 6

CFA continuous frequency activation. 45

CMO copyright management organization. 3

CNN convolutional neural network. 11

DAFx digital audio effects. 107

DBN deep belief network. 58

DCASE detection and classification of acoustic scenes and events. 104

FFNN feedforward neural network. 16

GMM gaussian mixture models. 48

xxiii

“output” — 2021/1/31 — 21:38 — page xxiv — #24

GRU gate recurrent unit. 52

HMM hidden markov model. 60

INA french national institute of audiovisual. 119

ISMIR international society for music information retrieval. 11

kNN k-nearest neighbors. 48

LSTM long short-term memory. 52

LU loudness unit. 4

LUFS loudness unit to full scale. 4

mcRBM mean-covariance restricted Boltzmann machines. 58

MFCC Mel-frequency cepstrum coefficients. 48

MIR music information retrieval. 1

MIREX music information retrieval evaluation exchange. 38

MLP multi-layer perceptron. 18

OpenBMAT open broadcast media audio from TVs. 10

ORF austrian national broadcasting corporation. 36

RBM restricted Boltzmann machines. 58

ReLU rectified linear units. 109

xxiv

“output” — 2021/1/31 — 21:38 — page xxv — #25

RNN recurrent neural network. 11, 51

SNR signal-to-noise ratio. 48

SVM support vector machine. 7

TCN temporal convolutional network. 11

TISMIR transactions of the international society for music information

retrieval. 85

xxv

“output” — 2021/1/31 — 21:38 — page xxvi — #26

“output” — 2021/1/31 — 21:38 — page 1 — #27

Chapter 1

INTRODUCTION

1.1 Motivation

This PhD thesis deals with the detection of music in broadcast media

audio and the estimation of its loudness in relation to simultaneous non-

music sounds. This exceeds the task of music detection, which has been

a topic of interest in the music information retrieval (MIR) field for more

than a decade, and acts as a stepping stone for a new line of research.

To motivate the need to start this new line of research, we first need to

describe how music is used in broadcast TV audio, and the applications

and limitations of the music detection task.

Music can play many roles in TV: it may be the main focus of attention

or just a means to create a certain atmosphere, it may be linked to a certain

content or to a program section, etc. In addition, it can appear either

isolated or mixed with non-music sounds. The variety of these non-music

sounds is large, and the range of the music loudness relative to them is

broad. To illustrate this variety of situations, we provide the following

1

“output” — 2021/1/31 — 21:38 — page 2 — #28

three examples:

• In music videos and live music performances, music is the most

important part of the content; however, while in music videos mu-

sic generally appears isolated, in live music performances it ap-

pears mixed with sounds from the audience such as cheering and

applause.

• In speech-predominant programs such as news broadcasts or talk

shows, music is typically used in the background, sometimes at a

very low volume, to create tension and to separate different sections

of the program.

• In movies, music is used to build a certain atmosphere and to recall

certain emotions, but it can do so both as foreground and back-

ground music, and in isolation or mixed with non-music sounds of

any type.

Music detection1 refers to the task of finding time intervals containing

music in an audio file, or what is the same, segmenting the audio file in

time intervals of two classes: Music and No Music. With No Music we re-

fer to the absence of music. The two main applications of music detection

algorithms are (1) the automatic indexing and retrieving of information

based on its audio content, and (2) the monitoring of music for copyright

management (Zhu et al., 2006; Seyerlehner et al., 2007; Izumitani et al.,

2008; Giannakopoulos et al., 2008). Additionally, the detection of music

1https://www.music-ir.org/mirex/wiki/2019:Music_
Detection

2

“output” — 2021/1/31 — 21:38 — page 3 — #29

can be applied as a preprocessing step to improve the performance of al-

gorithms designed for other purposes such as audio fingerprinting (Gfeller

et al., 2017).

The present work is framed in the context of the industrial copyright

management application. Under the current copyright management busi-

ness model, broadcasters are taxed based on the percentage of music they

broadcast. Typically, broadcasters report the broadcast music to a copy-

right management organization (CMO) and these reports are used to de-

fine their taxes, which will later be distributed among the copyright hold-

ers of this music.

The reason behind the need to estimate the music’s loudness in rela-

tion to simultaneous non-music sounds is that, in the case of TV broadcast

audio, CMOs consider whether the broadcast music is used in the fore-

ground or the background as one of several relevant factors for the distri-

bution of copyright royalties.2,3,4,5 Other relevant factors are, for instance,

the duration of the music or the audience measurement. In this scenario,

music detection algorithms fall short, and the need for the definition of

a new task that takes the relative loudness of music into consideration

becomes apparent. We name this task relative music loudness estimation.

Scharf (1978) defined loudness as ”the perceived or subjective inten-

sity of a sound”. It is also defined by the American National Standards

Institute as “that attribute of auditory sensation in terms of which sounds

2https://createurs-editeurs.sacem.fr/actuimg/fr/live/
v4/Createurs-Editeurs/docs_et_brochures/Repartition/sacem_
regles_repartition2017.pdf

3https://www.bmi.com/creators/royalty_print#id-533116
4https://www.ascap.com/help/music-business-101/

music-money-success-movies
5https://stockmusic.net/blog/the-ultimate-guide-to-cue-sheets/

3

“output” — 2021/1/31 — 21:38 — page 4 — #30

Figure 1.1: Example of the division of an audio file in time intervals of
the classes of the relative music loudness estimation task.

can be ordered on a scale extending from quiet to loud” (American Na-

tional Standards Institute, 1973). The unit to measure the loudness used in

media broadcasting is the loudness unit to full scale (LUFS), introduced

in EBU R1286. This measure is used to normalize broadcast audio at a

standard level of -23 LUFS. A unit of LUFS is called loudness unit (LU)

and is equal to 1 decibel.

Cartwright et al. (2018) used the concept of relative loudness to re-

fer to a real value representing the loudness of an event with respect to

other simultaneous events. We use a simplification of this concept that

only specifies if an event is in the foreground or the background with re-

spect to these simultaneous events. Moreover, we exclusively focus on

the relative loudness of music events: we define the relative music loud-

ness estimation task as a segmentation task that consists of dividing audio

into time intervals of Foreground Music, Background Music and No Mu-

sic. Throughout this thesis, we generally spell out all the words when

mentioning task names; however, in some figures and tables, and in par-

ticular sections, we use RMLE as an acronym for relative music loudness

6https://tech.ebu.ch/docs/r/r128.pdf

4

“output” — 2021/1/31 — 21:38 — page 5 — #31

estimation, and MD as an acronym for music detection.

Scharf (1964) and also Zwicker and Fastl (1999) defined the loud-

ness of a target sound in the presence of a simultaneous partially masking

sound as the partial loudness of the target sound. In this thesis, we in-

terpret that the partial loudness pl e of an event e in the presence of other

simultaneous events, is also an approximation of its contribution to the

total loudness LE of the set of simultaneous events E, where e ∈ E, as

shown in eq. 1.1.

LE ≈
∑
e∈E

pl e (1.1)

In this thesis, we only use this interpretation of the concept of par-

tial loudness as a guide for the annotators to generate manual annotations

that we can later map into the relative music loudness classes. In Sec-

tion 3.2.2, we describe how partial loudness is used during the annotation

process, and in Section 4.1.2, we show the heuristic rules that we use to

map the partial loudness annotations to a relative loudness ground truth.

In general, we consider that music is in the foreground only if it has the

highest partial loudness among all the simultaneous events; otherwise, we

consider that it is in the background.

1.2 BMAT as a company

Currently, there are still CMOs that manually check the reports from the

broadcasters using a sampling of the total broadcast time. This procedure

is typically inaccurate leading to mistakes that result in an unfair distri-

bution of royalties. As the music business community is becoming aware

5

“output” — 2021/1/31 — 21:38 — page 6 — #32

of the power of machine learning and its applications to MIR, the interest

in systems for the automatic analysis of broadcast material is increasing.

In the context of the industrial PhD program7, we carry out our doctoral

work at BMAT Licensing S.L (BMAT)8, a company that has been work-

ing on this automation since its foundation in 2005.

Using its audio fingerprinting technology, BMAT monitors music

across televisions, radios, venues and digital services globally, and re-

ports the metadata that describes who owns the rights to each identi-

fied track to any party involved in the value cycle: creators, producers,

publishers, CMOs, broadcasters, digital service providers, and clubs. Its

database contains more than 72 million audio fingerprints of commercial,

production and commissioned music via direct partnerships with more

than 120,000 content owners. BMAT continuously monitors around 5,000

radio stations and 1,500 television channels in 134 countries, and over

1,000 clubs on five continents. On top of that, it processes 100 million

sales from Youtube, Spotify, Apple Music, Amazon and 40 more digital

service providers every hour.

Relative music loudness estimation is another service that BMAT has

offered since 2015, continuously monitoring around 4300 radio stations

and TV channels. As a service, it is essential for it to have actual use

cases and potential customers. BMAT uses the relative music loudness

estimation service in four different situations:

• To calculate the amount of foreground and background music

played in each channel for tax-paying purposes. This is the most

common use case and it applies to CMOs and broadcasters. Broad-

7http://doctoratsindustrials.gencat.cat/
8https://www.bmat.com/

6

“output” — 2021/1/31 — 21:38 — page 7 — #33

casters are taxed by the CMOs according to this information, so

both of them are interested in it.

• To detect music played in any of the monitored channels that BMAT

does still not have in its audio fingerprinting database. BMAT ana-

lyzes the parts of the audio where music is detected but not identi-

fied and, if a song is found, it is ingested into a particular pool for

this kind of content. This is an internal use case that helps improv-

ing BMAT’s audio fingerprinting service.

• To mark parts of the audio that have a low probability of containing

music, so that they do not have to be analyzed by the audio finger-

printing technology. This is another internal use case that helps to

increase the efficiency of BMAT’s audio fingerprinting service.

• To analyze the catalog of other companies to assess the percentage

of non-music content such as audio-books, podcasts, sound effects,

etc. For this use case, the algorithm does not divide a track into time

intervals of different class, but assigns a single label to it: either

Music or No Music. This is done through an extra layer that feeds

on the relative music loudness information to produce a label.

1.3 Goals and contributions

In 2016, prior to the start of this doctoral work, BMAT’s relative music

loudness estimation algorithm relied on a support vector machine (SVM)

algorithm (Cortes and Vapnik, 1995) and a set of features extracted using

the Essentia library (Bogdanov et al., 2013). The relevance of this service

was a great motivation for BMAT to promote the necessary research and

7

“output” — 2021/1/31 — 21:38 — page 8 — #34

development to improve the technology behind it. The main goals of this

thesis are:

Goal 1: The development of state-of-the-art computational ap-

proaches to the task of relative music loudness estimation.

From BMAT’s point of view, this must result in a new production-

ready algorithm. From the academic point of view, this thesis also

pursues:

Goal 2: The introduction and promotion of the relative music

loudness estimation task in the research field of MIR.

An industrial PhD requires industry and academia to work together

through a collaboration agreement that must be of benefit to the two parts.

This means that achieving these goals should translate into useful contri-

butions to both BMAT and the research community. This thesis produces

the following contributions while advancing towards the attainment of its

goals:

• Introduction of the relative music loudness estimation task as
a new MIR task. Given the importance of differentiating be-

tween foreground and background music in the negotiations be-

tween CMOs and TV broadcasters, we propose the task of rela-

tive music loudness estimation as a new task in the research field of

MIR. We expect this to promote technological advances that BMAT

can leverage in the future.

8

“output” — 2021/1/31 — 21:38 — page 9 — #35

• Review of the literature and the available resources related to
the detection of music. The task of relative music loudness esti-

mation is a new task that we define in this thesis; thus, there is no

previous research about it. However, its similarity to the task of

music detection allows us to take advantage of much of the litera-

ture and the available resources related or involving this task for our

own purposes. This thesis offers a thorough review of this literature

and these resources in Chapter 2.

• Development of an audio-events annotation tool with a focus on
the annotation of an event’s partial loudness. We present BAT:

an open-source, web-based, annotation tool that is specific for the

annotation of audio events. We design BAT to allow for the efficient

annotation of an event’s partial loudness in the presence of other

simultaneous events. Furthermore, it is easy to use and to deploy

in servers, and it is sufficiently versatile as to meet the annotation

needs of other researchers in the MIR community. We provide a

thorough description of BAT in Chapter 3.

• Creation and annotation of a private dataset for the task of
relative music loudness estimation. We sample BMAT’s private

database to compile a dataset comprising approximately 44 hours of

audio from TV channels and radio stations from all over the world

distributed in 1322 two-minutes files. It includes the manual anno-

tations of a single annotator that used a taxonomy of four classes:

Music, Speech, Sound effects and Audience. The annotations also

include information about the partial loudness of these types of au-

dio events when they overlap. We provide an extended description

9

“output” — 2021/1/31 — 21:38 — page 10 — #36

of this dataset in Section 4.1.

• Creation and annotation of a public dataset for the tasks of rel-
ative music loudness estimation and music detection. We sam-

ple BMAT’s private database again to create open broadcast me-

dia audio from TVs (OpenBMAT), a public dataset containing 27

hours of audio divided in 1647 one-minute audio files that come

from well-known TV channel in France, Germany, Spain and the

United Kingdom. These audio files belong to one of eight program

types: children programs, documentaries, entertainment programs,

music programs, news broadcasts, series and films, sport programs,

and talk shows. OpenBMAT includes manual annotations about the

presence of music and its relative loudness with respect to simulta-

neous non-music sounds. We describe this dataset in Section 4.2.

• Development of BMAT’s new relative music loudness estima-
tion algorithm. Using the private dataset introduced above, we

train the Deep Music Detector.9 This is the relative music loudness

estimation algorithm that BMAT is currently using in production,

and it gives significantly better performance than its SVM prede-

cessor. It also represents BMAT’s first attempt at using deep learn-

ing.10 We explain the details of this in Section 5.1.

• Development of state-of-the-art deep learning computational
approaches for the estimation of music’s relative loudness. We

propose two deep learning architectures for this task: the isolated

9https://www.bmat.com/blog/2019/02/21/music-detection/
10https://www.bmat.com/blog/2018/03/22/

keep-learning-deep-learning/

10

“output” — 2021/1/31 — 21:38 — page 11 — #37

temporal convolutional network (TCN), and a TCN in combination

with a convolutional neural network (CNN) front-end. The sec-

ond architecture represents a novel type of network, which we call

CNN-TCN, inspired by the usage of a CNN in concatenation with a

recurrent neural network (RNN) to improve the performance of the

RNN (Lemaire and Holzapfel, 2019; de Benito-Gorron et al., 2019).

We detail these architectures in Section 5.2. Note that, in this the-

sis, we use CNN to refer to the specific case of a two-dimensional

CNN. Otherwise, we write 1D-CNN.

• Organization of the MIREX competition as captain of the tasks
of relative music loudness estimation, music detection, and
speech detection. MIREX11 is an international annual evaluation

campaign for MIR algorithms, coupled to the international society

for music information retrieval (ISMIR)12 conference. In 2018 and

2019, we organized the evaluation of these tasks providing evalua-

tion datasets, running the submitted algorithms, and reporting their

results. In addition, we also participated as authors with the Deep

Music Detector obtaining outstanding results. We provide greater

detail in Section 5.1.5.1.

1.4 Structure of the thesis

So far, we have described the industrial context in which this thesis takes

place, as well as the motivation behind it. We have also stated its goals,

11\footnote{\url{https://www.music-ir.org/mirex/wiki/
MIREX_HOME}}

12https://www.ismir.net/

11

“output” — 2021/1/31 — 21:38 — page 12 — #38

and the contributions to BMAT and academia, that lead us to the attain-

ment of these goals. In Chapter 2, we present several technical concepts

and digital resources that are relevant for the thesis, and also a literature

review, where we provide details about the evolution of the research on

tasks that involve the detection of music. Finally, we present the con-

clusions that we extracted from all the information gathered in this chap-

ter. These conclusions define the path forward that we have followed to

achieve the goals of this thesis. The path forward includes three steps:

the creation of an audio-events annotation tool, the annotation of datasets

that are suitable to the task of relative music loudness estimation, and the

development of computational approaches for this task. We devote the

following three chapters to describing the work that we have carried out

and the contributions that we have made in following this path.

Chapter 3 is about the development of BAT, the audio-events annota-

tion tool. This tool allows for an efficient annotation of an event’s partial

loudness in the presence of other simultaneous audio events. This makes

it suitable to produce annotations for the relative music loudness estima-

tion task. We first set out the reasons behind the decision to create our

own tool and then specify the design requirements. After this, we provide

a detailed explanation of the development of the tool, and finally, we con-

duct an experiment to verify that the partial loudness annotation system

is reliable.

Chapter 4 presents a description of the audio content, the annotation

process, and the resulting annotations of the two datasets that we anno-

tate for the relative music loudness estimation and the music detection

tasks using BAT. The audio included in these datasets is extracted from

BMAT’s private database. One of these datasets remains private and be-

12

“output” — 2021/1/31 — 21:38 — page 13 — #39

comes the training dataset for the Deep Music Detector. We release the

other dataset, called OpenBMAT, as a public dataset with the intention of

promoting open research in the field of MIR.

In Chapter 5, we describe the computational approaches to the task of

relative music loudness estimation that we have produced throughout this

thesis. The first approach, developed using the private dataset, is the Deep

Music Detector. We provide an overview of this algorithm and explain

the details of its integration into BMAT. The second approach, trained

and evaluated using OpenBMAT, is an experimental approach based on

advanced deep learning architectures such as TCNs, and also their com-

bination with a CNN front-end, which results in the novel CNN-TCN

architecture.

Finally, in Chapter 6, we summarize all the contributions of the thesis

and confirm that we have accomplished its goals. We also provide a list of

the publicly available outcomes of our doctoral work. Finally, we devote

the last section of the chapter to an overview of the future perspective of

our research.

13

“output” — 2021/1/31 — 21:38 — page 14 — #40

“output” — 2021/1/31 — 21:38 — page 15 — #41

Chapter 2

SCIENTIFIC BACKGROUND

As explained in Section 1.1, this doctoral work proposes a new task con-

sisting of the estimation of music’s loudness relative to simultaneous non-

music sounds. As a new line of research, there are no published ap-

proaches specifically addressing this; however, the foundations of this

new research topic can be found in various related tasks. These are the

tasks that include the detection of music either as a binary-class task, or

in combination with the detection of speech, and occasionally also other

types of non-music sounds, in multi-class segmentation or detection tasks.

Throughout this document, we call these tasks music detection related

tasks. Clearly, relative music loudness estimation is closely related to the

detection of music; basically, it includes music detection. The fundamen-

tal difference between the two is that relative music loudness estimation

also takes into consideration the presence of any kind of non-music sound,

which results in the emergence of the Foreground Music and Background

Music classes.

This chapter has several purposes: in Section 2.1, we introduce a se-

15

“output” — 2021/1/31 — 21:38 — page 16 — #42

ries of concepts that are relevant to the thesis. These concepts include,

first, a formal description of the deep learning architectures that we use

in our approaches to the task of relative music loudness estimation (see

Chapter 5); and second, the explanation and the mathematical expressions

of the evaluation metrics that are typically used in the music detection

related tasks. In Section 2.2, we describe and analyze both the public

and private datasets that are available for these tasks, and we provide an

overview of the audio annotation tools that can be used to annotate them.

Still focusing on the music detection related tasks, in Section 2.3, we

carry out a literature review, providing a detailed description of previous

approaches. Throughout these sections, we make observations and extract

conclusions about the key points that this thesis addresses. We summarize

them in Section 2.4.

2.1 Relevant concepts

In this section, we first formally define the deep learning architectural

background that we later use, in Chapter 5, to create our own approach

to relative music loudness estimation. Then, we introduce an intuitive

description and the mathematical expressions of the most common evalu-

ation metrics in music detection related tasks.

2.1.1 Feedforward neural networks

A feedforward neural network (FFNN) is a type of machine learning

model based on the interconnection of a series of nodes called neurons

that are sorted in a layer-wise manner. Each neuron is able to receive an

input stimulus and transform it to produce and output. In a FFNN, this

16

“output” — 2021/1/31 — 21:38 — page 17 — #43

flow of information is only allowed to move forward, starting at the input

layer and finishing at the output layer. The goal of the model is to ap-

proximate a function f ∗ through the interaction of these neurons, where

f ∗ transforms an input x into the desired output y as shown in eq. 2.1.

y = f ∗(x) (2.1)

The output ŷ of the approximated function f depends on the input x

and the internal network parameters θ, as shown in eq. 2.2.

ŷ = f(x, θ) (2.2)

The difference between y and ŷ for an input x can be translated into

a scalar loss by means of a loss function floss, as shown in eq. 2.3.

loss = floss(y, ŷ) = floss(y, f(x, θ)) (2.3)

When training a network, the objective is to minimize loss. Given

that the input x and its desired output y are known variables that are

extracted from a dataset, the only way to minimize loss is to find the op-

timal network parameters θ. There are many methods to optimize these

parameters, but most of them rely on the computation of the gradient

(∇θfloss(θ)) of floss with respect to the current network parameters θ us-

ing the backpropagation algorithm (Rumelhart et al., 1986). The opposite

of this gradient indicates the direction in which a change in θ minimizes

loss the most. The simplest of these methods, shown in eq. 2.4, is called

gradient descent, or steepest descent.

θ ←− θ − lr ∗ ∇θfloss(θ) (2.4)

17

“output” — 2021/1/31 — 21:38 — page 18 — #44

This method updates θ for each pair (x,y) in a dataset by subtracting

a scaled version of ∇θfloss(θ) from θ. The scaling factor lr is called the

learning rate, and it sets the pace at which θ is changed. Other well-known

methods are the stochastic gradient descent (Robbins and Monro, 1951;

Kiefer et al., 1952) and the adaptive moment (ADAM) (Kingma and Ba,

2014).

The type of neural interconnections, the transformations that neurons

apply, and the way they are sorted define the type of FFNN that we obtain.

In this section, we describe three general types of FFNN: the multi-layer

perceptron (MLP), the CNN, and the TCN.

2.1.1.1 Multi-layer perceptron

The most basic neural network is the multi-layer perceptron. We show an

example of this type of network in Fig. 2.1. It consists of at least an input

layer, a hidden layer, and an output layer. All layers contain a set of nodes

called neurons except for the input layer, which contains the input values

instead. Every non-input layer is fully-connected to the previous one, i.e.,

each one of its neurons is connected to all the neurons of the previous

layer, or to all the values of the input in the case of the first hidden layer.

Eq. 2.5 formally describes the output h(1) ∈ Ri of the first hidden

layer of neurons given an input x, where i is the number of neurons of

this layer. Eq. 2.6 shows the generalization of the previous equation for

the output h(l) ∈ Rm of the lth hidden layer, which contains m neurons.

This output depends on the output h(l−1) ∈ Rn of the previous hidden

layer, which is formed by n neurons.

h(1) = σ(1)(W(1)x+ b(1)) (2.5)

18

“output” — 2021/1/31 — 21:38 — page 19 — #45

Figure 2.1: Example of an MLP with the minimum number L = 1 of
hidden layers.

h(l) = σ(l)(W(l)h(l−1) + b(l)) (2.6)

W(l) ∈ Rm×n is a matrix of weights, represented in Fig. 2.1 by the

arrows between two layers, b ∈ Rm is a vector of biases, and σ denotes

a usually non-linear function called activation function. Eq. 2.7 shows

the specific case of the output layer of an MLP with L− 1 hidden layers,

where ŷ is the prediction of the MLP.

19

“output” — 2021/1/31 — 21:38 — page 20 — #46

ŷ = σ(L)(W(L)h(L−1) + b(L)) (2.7)

2.1.1.2 Convolutional neural networks

Convolutional neural networks are a specific and more advanced type of

neural networks where at least one layer uses the convolution of its in-

put with a set of filters, instead of the matrix multiplication of input and

weights of the MLP. The output of a 1D-convolution of an input x with a

filter k of length m is

(x ∗ k)[i] =
∑
m

x[m]k[i−m] (2.8)

and in the case of a 2D-convolution of an input X with a filter K of

size m× n

(X ∗K)[i, j] =
∑
m

∑
n

X[m,n]K[i−m, j − n] (2.9)

If we assume that filters have a shorter length (1D) or smaller size

(2D) than the input, the output of the ith neuron in the lth convolu-

tional layer will no longer be a scalar but a feature vector h
(l)
i , in the

case of 1D-convolutional layers, or a feature map H
(l)
i , in the case of

2D-convolutional layers. The output for the 1D-convolutional case is for-

mally described in eq. 2.10.

h
(l)
i = σ((

J−1∑
j=0

W
(l)
i,j ∗ h

(l−1)
j) + b(l)) (2.10)

W
(l)
i,j ∈ Rn includes the weights of the 1D-filter of length n that con-

20

“output” — 2021/1/31 — 21:38 — page 21 — #47

nects the jth neuron out of the J neurons in the previous layer with the

ith neuron out of the I neurons in the current layer. b(l) ∈ Rn is the bias

vector. Eq. 2.11 extends eq. 2.10 to two dimensions.

H
(l)
i = σ((

J−1∑
j=0

W
(l)
i,j ∗H

(l−1)
j) +B(l)) (2.11)

W
(l)
i,j ∈ Rm×n includes the weights of the 2D-filter of size m× n that

connects the jth neuron out of the J neurons in the previous layer with

the ith neuron out of the I neurons in the current layer. B(l) ∈ Rm×n

is the bias matrix. Regardless of the dimensions of the input and the

filters, these equations show that each neuron in a convolutional layer l

contains J filters, and that the jth filter convolves with the output of the

corresponding jth neuron of the previous layer.

It is very typical for convolutional layers to be followed by a pooling

layer that helps to make the network invariant to small shifts of the input

(Goodfellow et al., 2016). Max-pooling (Zhou and Chellappa, 1988) is

the most common type of pooling and consists of replacing the output

value of a layer at a certain location with the maximum of the nearby

output values including itself.

A neuron in a CNN needs all the information in the network’s input

to entirely produce its output feature vector or map. However, this neuron

does not use the whole network’s input to produce each value of its output

feature vector or map, but only a portion of it, as shown in Fig. 2.2. This

portion is called the receptive field of that neuron. The receptive field of

the neurons in the first convolutional layer is equal to the length or size of

its filters, but the receptive field increases for the neurons of subsequent

layers as the contributions from neurons of previous layers accumulate.

21

“output” — 2021/1/31 — 21:38 — page 22 — #48

Figure 2.2: Example of a receptive field in a CNN. Neuron 3 only receives
information from a portion of the input s to produce a value of the output
feature vector h(1)

3 .

2.1.1.3 Temporal convolutional networks

Temporal Convolutional Networks are 1D-CNNs formed by 1D-

convolutional layers that are able to read 2D-inputs as long as one of

the axis represents time. This is done by interpreting a 2D-input as a

set of 1D-temporal sequences, and applying the filters of the first 1D-

convolutional layer to them. In this way, TCNs process sequential data

and model temporal evolution.

Typically, these 1D-convolutional layers are arranged in blocks that

stack upon each other. These blocks may include more than one 1D-

convolutional layer, and they usually contain residual connections (He

et al., 2016; Lemaire and Holzapfel, 2019; Bai et al., 2018). We call a

22

“output” — 2021/1/31 — 21:38 — page 23 — #49

block with residual connections a residual block. A residual block, as de-

fined by He et al. (2016), applies a certain function φ to the output H(r−1)

of the previous block that depends on the weights W(r) and biases b(r)

of the L layers contained in the current residual block r. The output of

this function is then added back to the input and passed to an activation

function to obtain the output H(r) of the current residual block. In this

way, the layers inside the residual block learn modifications to the input

instead of a complete transformation. This has proven to ease their opti-

mization (He et al., 2016). Eq. 2.12 presents the formal definition of a

residual block.

H(r) = σ(φ(H(r−1),W(r),b(r)) +H(r−1)) (2.12)

Relating this expression with the notation of the previous sections, we

have

W(r) = {W(l)} ∀ l ∈ {0 ... L− 1}

b(r) = {b(l)} ∀ l ∈ {0 ... L− 1}

H(r) = {h(r)
i } ∀ i ∈ {0 ... I − 1}

(2.13)

where h
(r)
i is the ith feature vector out of the I feature vectors at the

output of block r. If we consider the first residual block and a 2D-input

X, then the last expression becomes

H(r) = σ(φ(X,W(r),b(r)) +X) (2.14)

It is also common for the 1D-convolutional layers in subsequent resid-

ual blocks to have a higher dilation rate (Lea et al., 2017; Bai et al., 2018).

23

“output” — 2021/1/31 — 21:38 — page 24 — #50

Figure 2.3: Simplified representation of a TCN. The architecture includes
two residual blocks with dilations d = [1, 2] and non-causal filters of
lengths z = [3, 3]. The receptive field at the neurons of the second residual
block is equal to 7 time-frames.

With a dilation rate d, the filters in a 1D-convolutional layer are expanded

by adding d − 1 zeros between its weights. This greatly increases the

receptive field of the network at its output, and avoids some redundancy

as a smaller part of the information that flows through the network is

simultaneously used by different neurons. The receptive field can con-

sider only past and present information or also include future data de-

pending on whether the 1D-convolutional filters are causal or non-causal

(Lemaire and Holzapfel, 2019), respectively. Eq. 2.15 shows how to

24

“output” — 2021/1/31 — 21:38 — page 25 — #51

compute the receptive field RF for a TCN with R residual blocks, given

a vector d ∈ RR with the dilations of each block r, and a vector z ∈ RR

containing the length of the filters at each block r.

RF = 1 +
R−1∑
r=0

d[r](z[r]− 1) (2.15)

Fig. 2.3 presents a simplified representation of a TCN model. X(n, t)

is a 2D-input with one of its axis representing time, and xt is the vector

of X at time-frame t. The network includes two residual blocks with

d = [1, 2] and non-causal filters of length z = [3, 3]. Following Eq. 2.15,

we obtain a receptive field at the neurons of the second residual block of

7 time-frames.

2.1.2 Evaluation metrics

In segmentation and detection tasks, both the annotations of an evaluation

dataset and the output of the algorithm under evaluation consist of a set

of time intervals, to which we assign a class. These time intervals may

or may not overlap with each other depending on the task: segmentation

tasks do not allow for overlaps, while detection tasks do. All evalua-

tion metrics are extracted from the comparison of the time intervals in

the annotations of the evaluation dataset with those output by the algo-

rithm under evaluation. From now on, we refer to the annotations of the

evaluation dataset as ground truth, and the output of the algorithm under

evaluation for this dataset as output.

Every evaluation metric belongs to one of two evaluation methods:

the segment-based method and the event-based method. As defined by

Mesaros et al. (2016), the segment-based method uses an arbitrarily short

25

“output” — 2021/1/31 — 21:38 — page 26 — #52

segment of time as its minimum unit of evaluation, while the event-based

method understands audio events as its minimum unit of evaluation re-

gardless of their duration. A segment may contain more than one ground

truth and output classes if a class change happens to fall between its start

and end times, or if two or more time intervals overlap with it, in the case

of detection tasks. On the other hand, an event must solely have a single

class assigned to it.

2.1.2.1 Segment-based metrics

The value of segment-based metrics is computed from four intermediate

statistics that arise from the comparison, for each segment, of its ground

truth and output classes. These intermediate statistics have a different

value for each class c in a taxonomy C containing L classes. The inter-

mediate statistics are defined as follows:

• True Positives for class c (TP c): number of segments containing

ground truth and output class c.

• False Positives for class c (FP c): number of segments containing

output class c, but not ground truth class c.

• False Negatives for class c (FN c): number of segments containing

ground truth class c, but not output class c.

• True Negative for class c (TN c): number of segments containing

neither ground truth class c nor output class c.

In Fig. 2.4, we show a comparison between ground truth and output

classes using a segment-based evaluation method. A segment is the time

26

“output” — 2021/1/31 — 21:38 — page 27 — #53

Figure 2.4: (Top) ground truth, (mid) output, and (bottom) segment-based
evaluation for an audio file annotated using a taxonomy with three classes.

interval between dashed lines. In the evaluation row, every segment is

either green or red, depending on the combination of its ground truth and

output classes: green segments are a True Positive of the ground truth

class, while red segments are a False Negative of the ground truth class

and a False Positive of the output class. In addition, all segments count as

a True Negative of the unrepresented classes.

Eq. 2.16 to eq. 2.18 show three very common segment-based metrics:

the precision (Pc), recall (Rc), and F-measure (Fc) of each class c ∈ C.

Pc is defined as the percentage of correctly classified segments of class

c with respect to the total amount of segments classified as class c, and

Rc is defined as the percentage of segments of class c that are correctly

classified. Fc is the harmonic mean of Pc andRc. We compute these three

metrics in the same way for segmentation and detection tasks.

Pc =
TP c

TP c + FP c

(2.16)

27

“output” — 2021/1/31 — 21:38 — page 28 — #54

Rc =
TP c

TP c + FN c

(2.17)

Fc =
2PcRc

Pc +Rc

(2.18)

Accuracy (Acc) is also a very common segment-based metric that

measures the percentage of correct segments with respect to the total

amount of segments. Some authors opt to use the error rate (ER) instead,

which is the percentage of incorrect segments with respect to the total

amount of segments. Eq. 2.19 and eq. 2.20 show the formal definition of

these metrics:

Acc =
TP + TN

TP + TN + FP + FN
(2.19)

ER =
FP + FN

TP + TN + FP + FN
= 1− Acc (2.20)

where

TP =
∑
c∈C

TP c , FP =
∑
c∈C

FP c

FN =
∑
c∈C

FN c , TN =
∑
c∈C

TN c

(2.21)

Note that if a class c is very sparse in the evaluation dataset and an

algorithm never detects it, TN c becomes much larger than TP c, and con-

tributes to a high Acc value that fails to represent the actual performance

of that algorithm. Strong class imbalances also affect the Pc value of a

class c with little representation in the ground truth. This happens be-

28

“output” — 2021/1/31 — 21:38 — page 29 — #55

Confusion matrix
Ground Classified as

truth Fg Bg No
Fg 20.0 10.0 0.0
Bg 6.0 60.0 4.0
No 0.0 10.0 90.0

Table 2.1: Distribution by ground truth and output class of the total con-
tent of a 200 seconds mock dataset. Fg, Bg, and No stand for the Fore-
ground Music, Background Music, and No Music classes.

cause the value of TP c is limited by the amount of content of class c,

while FP c can take much larger values, as it depends on the amount of

content of other more represented classes.

Authors such as Lu et al. (2001) and Richard et al. (2007) use what

is called a confusion matrix, which cannot be described as a metric, but

is nevertheless a rather useful evaluation tool that helps to differentiate

between types of error and detect possible biases of an algorithm towards

the classification of a certain class. If L is the number of classes in a

taxonomy C, a confusion matrix must have size L × L to store the dis-

tribution of the segments according to their ground truth class (rows) and

output class (columns). In Table 2.1 we show the 3× 3 confusion matrix

of a mock dataset with relative music loudness estimation annotations.

Weighting each row by the total number of seconds of the correspond-

ing class yields the balanced confusion matrix CMb, which we depict in

Table 2.2. Eq. 2.22, shows how to extract the balanced accuracy (Accb)

from CMb. Eq. 2.23 and eq. 2.24 do the same for the balanced preci-

sion (P b
c) and recall (Rb

c) of each class c ∈ C, respectively. These metrics

describe the hypothetical performance of the algorithm if the evaluation

dataset were balanced. In other words, it equalizes the impact on metrics

29

“output” — 2021/1/31 — 21:38 — page 30 — #56

Balance-independent confusion matrix
Ground Classified as

truth Fg Bg No
Fg 66.7% 33.3% 0%
Bg 8.6% 85.7% 5.7%
No 0% 10% 90%

Table 2.2: Balance-independent distribution by ground truth and output
class of the total content of a 200 second mock dataset with respect to its
duration. Fg, Bg, and No stand for the Foreground Music, Background
Music, and No Music classes.

of all classes, preventing algorithms that are biased towards the most com-

mon classes from obtaining the best results. Authors such as Doukhan and

Carrive (2017) use this kind of metrics, and we also do in chapters 4 and

5.

Accb =
trace(CMb)

L
(2.22)

P b
c =

CMb
c,c∑

i∈C CMb
i,c

(2.23)

Rb
c = CMb

c,c (2.24)

Note that if a taxonomy cannot provide a class for the entirety of the

audio in the dataset, it is possible to include a class such as Other to

represent the non-annotated audio in the confusion matrix. Notice also

that to use confusion matrices for detection tasks with a number of classes

L > 1 in the taxonomy C, it is necessary to define a 2 × 2 confusion

matrix for each class c ∈ C, using the presence of c and the absence of c

30

“output” — 2021/1/31 — 21:38 — page 31 — #57

as classes. For instance, to use confusion matrices during the evaluation

of a music and speech detection algorithm, it is necessary to create two

2 × 2 confusion matrices with classes Music and No Music, and Speech

and No Speech.

2.1.2.2 Event-based metrics

Similarly to the segment-based metrics, computing the value of some

event-based metrics requires the previous calculation of intermediate

statistics: TP c, FP c and FN c for each class c ∈ C. In the event-based

evaluation method, TN c are not as relevant, because only the presence

of ground truth and output events is interesting, not their absence. The

definitions of these intermediate statistics are slightly different:

• True Positives for class c (TP c): the number of output events of

class c that have a corresponding ground truth event of the same

class.

• False Positives for class c (FP c): the number of output events of

class c that do not have a corresponding ground truth event of the

same class.

• False Negatives for class c (FN c): the number of ground truth

events of class c that do not have a corresponding output event of

the same class.

Mesaros et al. (2016) proposed two conditions to determine whether

or not an output event has a corresponding ground truth event and vice-

versa: the time interval between the onsets and/or offsets of two corre-

sponding events must not exceed a certain tolerance window, and the du-

31

“output” — 2021/1/31 — 21:38 — page 32 — #58

Figure 2.5: (Top) ground truth, (mid) output, and (bottom) event-based
evaluation for an audio file annotated using a taxonomy with three classes.

ration of the output event must be inside certain percentages of the dura-

tion of the ground truth event. We call these conditions correspondence

conditions.

In Fig. 2.5, we show a comparison between ground truth and output

classes using an event-based evaluation method. An event is the time

interval demarcated by each of the colored blocks in the ground truth

and classification rows. Note that there are two evaluation rows: one for

the ground truth events, and the other one for the output events. Green

events represent a True Positive in both rows, while red events represent

a False Negative in the ground truth evaluation row and a False Positive

in the output evaluation row. In this example, we only impose a tolerance

window for the onset of the events as the correspondence condition.

Precision (Pc), recall (Rc) and F-measure (Fc) are calculated using

equations eq. 2.16 to 2.18 as their segment-based counterparts. The def-

initions of these event-based metrics are also the same, but using events

32

“output” — 2021/1/31 — 21:38 — page 33 — #59

instead of segments.

In their work, Butko and Nadeu (2011) defined a new event-based

metric called error rate (ER), which is different from the segment-based

error rate metric defined above. This ER is defined as the average of the

error rate of each class c ∈ C (ERc). ERc represents the ratio between

the errors for the class c, and the total duration of the audio annotated as

class c. Eq. 2.25 and eq. 2.26 formally describe this metric:

ERc =
FP c + FN c

TP c + FN c

(2.25)

ER =
1

L

∑
c∈C

ERc (2.26)

Gimeno et al. (2018) propose another event-based metric called seg-

mentation error rate (SER). To calculate this, the evaluation dataset

is divided into N contiguous time intervals, and for each time interval

n ∈ {0 ... N − 1} a scalar value En is computed, as shown in eq. 2.27,

where Tn represents the duration of time interval n.

En = Tn[max(TPn + FN n,TPn + FPn)− TPn] (2.27)

Where

TPn =
∑
c∈C

TP c , for time interval n (2.28)

FPn =
∑
c∈C

FP c , for time interval n (2.29)

33

“output” — 2021/1/31 — 21:38 — page 34 — #60

FN n =
∑
c∈C

FN c , for time interval n (2.30)

Then, adding the value of En for theN intervals and dividing it by the

added duration of the N time intervals the value of SER is obtained.

SER =

∑
n∈N En∑
n∈N Tn

(2.31)

While segment-based metrics are very well established and their us-

age is broadly extended, there is no clear standard for event-based metrics,

and only a few authors use them. Those who do, either use the traditional

precision, recall and F-measure metrics and propose their own correspon-

dence conditions between output and ground truth events, or directly de-

fine their own metrics as we have seen above.

A fundamental difference between segment-based and event-based

metrics is that, in general terms, segment-based metrics focus solely on

whether each segment has been correctly classified or not. On the other

hand, current event-based metrics measure not one but two characteristics

of an algorithm’s output at the same time: the position of these events in

time, and their class. In this way, the errors of one characteristic affect the

other, creating ambiguity in the meaning of the metrics. In Fig. 2.5, we

show how the presence of the smallest output event, in the middle of the

second row, breaks a longer event in two parts. Only the first part is con-

sidered to be correct according to the correspondence conditions, despite

the second part mostly containing the correct class.

34

“output” — 2021/1/31 — 21:38 — page 35 — #61

2.2 Available resources

In the first part of this section, we detail the public and private avail-

able datasets for music detection related tasks. We also point out their

shortcomings, and extract conclusions about the content and annotation

requirements that future datasets should comply with. In the second part

of the section, we offer an overview of the audio annotation tools that can

be used to annotate this kind of datasets.

2.2.1 Datasets

Datasets are fundamental for the development of research in any task.

They are needed to evaluate and compare the performance of the algo-

rithms that we design to solves these tasks, and to keep track of their evo-

lution over time. Moreover, in the case of machine learning algorithms,

datasets are also used for training. In this section, we first describe the

existing datasets that have previously been used for tasks that involve the

detection of music, and then we present their shortcomings as music de-

tection datasets.

2.2.1.1 Description

Scheirer and Slaney (1997) published the Scheirer-Slaney music/speech

corpus1 (SSMSC), the first public dataset that includes annotations about

the presence of music. The taxonomy, however, is designed for the task

of discriminating music and speech and includes four classes: Music,

Speech, Simultaneous Music and Speech and Other. The dataset contains

1https://labrosa.ee.columbia.edu/sounds/musp/scheislan.
html

35

“output” — 2021/1/31 — 21:38 — page 36 — #62

245 manually annotated 15-seconds audio files digitally sampled from an

FM tuner from the San Francisco Bay area. Every audio file belongs ex-

clusively to one class, and they are separated in a training set of 184 files

and a testing set of 61 files. The training set is divided into 60 files of

Music, 60 files of Simultaneous Music and Speech, 60 files of Speech and

four files of Other. The testing set is divided into 20 files of Music with

vocals, 21 files of Music without vocals and 20 files of Speech.

ESTER2 (Gravier et al., 2004; Galliano et al., 2005) is a dataset con-

taining audio from French radio streams that was created to promote the

development of speech transcription algorithms. Despite this, it also con-

tains annotations with a taxonomy consisting of three classes: Speech,

Speech over Music and Music. The original purpose of the dataset is very

apparent in the imbalance of these three classes: from the total 100 hours

of audio that form the dataset, 86% is annotated as Speech, 13% as Speech

over Music and less than 1% as Music. This dataset is private and can be

purchased for research and commercial purposes.

Seyerlehner et al. (2007) presented the first and only public dataset

specific to music detection3 (SMD) until now, i.e., with a taxonomy in-

cluding only the classes Music and No Music. It has a total duration of

nine hours unevenly distributed over 13 manually annotated audio files

of duration between 6 and 90 minutes. The audio was extracted from

TV programs of the austrian national broadcasting corporation (ORF).

As shown in Table 2.3, the music content of each file ranges from 1.5%

to 80%, which results in 42% of the dataset containing music.

2https://catalogue.elra.info/en-us/repository/browse/
ELRA-S0338/

3http://www.seyerlehner.info/download/music_detection_
dataset_dafx_07.zip

36

“output” — 2021/1/31 — 21:38 — page 37 — #63

File name Program type Music
(%)

Music
(min)

Der Volksanwalt law show 1.48 35
Starmania music show 50.18 89

Sturm der Liebe soap opera 70.52 49
Alpen Donau Adria documentary 57.08 30

Barbara Karlich Show talk show 7.51 57
Da wo es noch Treue gibt soap opera 62.9 89

Frisch gekocht cooking show 10.01 24
Gut beraten Österreich talk show 8.76 18

Heilige Orte documentary 54.34 44
Heimat fremde Heimat documentary 29.72 30

Hohes Haus parliament show 17.5 30
Julia soap opera 80.36 43
ZIB news show 4.91 7
total - 41.99 545

Table 2.3: Music content by file in the SMD dataset.

Butko and Nadeu (2011) produced the dataset that was used for the

evaluation campaign Albayzı́n-2010 (Albayzı́n-2010). The task under

evaluation was the segmentation of audio in five classes: Music, Speech,

Speech over Music, Speech over Noise and Other. The dataset includes 24

audio files of approximately four hours of duration each, which amounts

to a total duration of approximately 87 hours, extracted from a Catalan

news TV channel. The proportion of each class in the ground truth is:

37% of Speech, 5% of Music, 15% of Speech over Music, 40% of Speech

over Noise and 3% of Other.

Tzanetakis generated a public dataset for the task of music and speech

discrimination named GTZAN music/speech collection (GTZAN).4 It
4opihi.cs.uvic.ca/sound/music_speech.tar.gz

37

“output” — 2021/1/31 — 21:38 — page 38 — #64

consists of 128 manually annotated 30-seconds audio files. These audio

files are divided equally between the classes Music and Speech. Some of

the present music genres are classical music, folk music, jazz, pop, rock

and electronic music. With regards to the speech part, most of the con-

tent is in English, but other languages such as German, Chinese, Greek or

Serbian appear too.

MUSAN5 (Snyder et al., 2015) is a public dataset that contains: 60

hours of speech coming from Librivox6 and archived US government

files, which are unevenly distributed between 12 different languages; 42

hours of varied music styles such as baroque, classical, romantic, coun-

try, hip-hop, jazz, etc.; and six hours of technical and non-technical noises

including, for instance, sounds of nature and the city. Every file belongs

exclusively to one of the following classes: Music, Speech and Noise. The

dataset includes annotations of the musical genre in the case of the music

files and annotations of the speaker language and sex in the case of the

speech files.

The MuSpeak Team7 at City University London annotated a dataset

(MIREX15) that was proposed as training data for the music information

retrieval evaluation exchange (MIREX) tasks of music/speech classifica-

tion and detection of 2015.8 The dataset consists of seven audio files with

durations between 28 and 65 minutes containing concerts and musical

radio programs featuring four musical genres: classical music, country

music, ethnic music, and Irish music. The dataset is annotated using the

classes Music and Speech. The annotations contain 75.7% of isolated Mu-
5http://www.openslr.org/resources/17/musan.tar.gz
6librivox.org
7http://mirg.city.ac.uk/muspeak
8http://mirg.city.ac.uk/datasets/muspeak/

muspeak-mirex2015-detection-examples.zip

38

“output” — 2021/1/31 — 21:38 — page 39 — #65

sic, 22.1% of isolated Speech, and 2.2% of overlapped Music and Speech.

2.2.1.2 Analysis

We perceive many shortcomings in the datasets described in the previous

section. We consider that datasets suitable for music detection related

tasks in the context of broadcast audio must fulfill three fundamental re-

quirements: (1) a significant amount of audio files must contain class

changes so that the precision of an algorithm in detecting them can be

measured; (2) the dataset must contain both isolated music and music

mixed with other type of sounds; and (3) these non-music sounds must in-

clude but not be limited to speech. On top of that, it is highly desirable for

broadcast audio datasets to contain a rich variety of scenarios, including

different program types and languages, so that they are as representative

of reality as possible. Needless to say, the more audio contained in the

dataset the better.

Of all the aforementioned datasets, only the SMD dataset fulfills these

three requirements. Unfortunately, it only contains nine hours of audio,

and the audio comes from a single broadcaster, which severely limits how

representative it is of the diversity of broadcast audio. In the SSMSC,

ESTER, and Albayzı́n-2010 datasets, isolated and mixed music are anno-

tated differently, however, the mixed music is limited to background mu-

sic with speech as the non-music part. Moreover, in the case of SSMSC,

the audio files are very short and belong entirely to a single class. The

GTZAN and MUSAN datasets do not contain mixed music and include

only audio files of a single class. We show a comparison between the

characteristics of these datasets in Table 2.4.

39

“output” — 2021/1/31 — 21:38 — page 40 — #66

D
at

as
et

D
ur

at
io

n
N

um
be

r
of

fil
es

C
la

ss
ch

an
ge

s
M

ix
ed

m
us

ic
R

el
at

iv
e

lo
ud

ne
ss

an
no

ta
tio

ns
SS

M
SC

1
ho

ur
24

5
N

o
W

ith
sp

ee
ch

Sp
ee

ch
ov

er
m

us
ic

SM
D

9
ho

ur
s

13
Y

es
Y

es
N

o
G

T
Z

A
N

1
ho

ur
12

8
N

o
N

o
N

o
M

U
SA

N
10

8
ho

ur
s

20
16

N
o

N
o

N
o

A
lb

ay
zı́

n-
20

10
87

ho
ur

s
24

Y
es

W
ith

sp
ee

ch
Sp

ee
ch

ov
er

m
us

ic
E

ST
E

R
10

0
ho

ur
s

14
4

Y
es

W
ith

sp
ee

ch
Sp

ee
ch

ov
er

m
us

ic
M

IR
E

X
15

5
ho

ur
s

7
Y

es
W

ith
sp

ee
ch

Sp
ee

ch
ov

er
m

us
ic

Ta
bl

e
2.

4:
C

om
pa

ri
so

n
of

th
e

ch
ar

ac
te

ri
st

ic
s

of
th

e
da

ta
se

ts
fo

rm
us

ic
de

te
ct

io
n

re
la

te
d

ta
sk

s.

40

“output” — 2021/1/31 — 21:38 — page 41 — #67

We conclude that there is a need for new public datasets for music de-

tection related tasks that are designed to solve the aforementioned short-

comings: these datasets must be varied in terms of broadcast scenarios,

their audio files must include class changes, they must contain both iso-

lated and mixed music, and the mixed music must be combined with all

kinds of non-music sounds. If we want to make these datasets suitable to

the task of relative music loudness estimation, we also need information

about the loudness of music relative to these non-music sounds. Note that

music detection algorithms can also make use of this relative loudness in-

formation, especially for error analysis. This conclusion has led us to the

creation of the OpenBMAT dataset, which we present in Section 4.2.

2.2.2 Audio annotation tools

To generate datasets, we need both data and a way to annotate it. When

working with audio, this is typically done using audio annotation tools.

In this section, we provide an overview of the annotation tools that can be

used to generate annotations about the presence of music.

Sjölander and Beskow (2000) built one of the first tools for the anno-

tation of audio named WaveSurfer9. WaveSurfer was originally created

to produce annotations related to speech, but was deliberately designed

to be flexible and extensible to other tasks. And indeed, it was used after

that, for instance, by Herrera et al. (2005) to develop MUCOSA, an envi-

ronment for the annotation and generation of music metadata at different

abstraction levels that incorporated a collaborative annotation subsystem.

Praat10 (Boersma, 2001) was also originally meant for the annotation of

9http://www.speech.kth.se/wavesurfer/
10http://www.fon.hum.uva.nl/praat/

41

“output” — 2021/1/31 — 21:38 — page 42 — #68

speech, but has been used to annotate musical content as well.

With a wider range of applications in mind, Cannam et al. (2006) de-

signed Sonic Visualizer, which is well-known for its varied analysis and

feature extraction functionalities, which are added to the tool using Vamp

plug-ins. The same year, Wittenburg et al. (2006) built ELAN, a full-

featured and complex tool that allows the annotation of both audio and

video. Krijnders and Andringa (2009) created SoundScape, a tool that

introduces the use of machine learning algorithms to reduce the annota-

tion time. Specifically, it incorporates an algorithm that suggests possible

annotations and presents them to the annotators for acceptance. Any ac-

cepted or corrected annotation is used to further improve the classifier.

This tool also allows the annotation of specific time-frequency regions of

the spectrogram.

Cartwright et al. (2017) designed audio-annotator,11 which is an open-

source JavaScript web front-end interface for the annotation of audio

events that uses and extends wavesurfer.js12. Wavesurfer.js allows for the

playback of audio, the visualization of its waveform, and the selection of

time intervals on top of it. The extended version includes features such as

labeled time intervals, or the possibility to switch the audio visualization

between its waveform and its spectrogram.

Despite the variety of available audio annotation tools, none of them

meet the requirements that we later specify in Section 3.1. This leads

us to the creation of our own tool. Nevertheless, audio-annotator includes

several features that we consider useful for the annotation of audio events.

In Section 3.2, we explain how we incorporate them into our own tool.

11https://github.com/CrowdCurio/audio-annotator
12https://wavesurfer-js.org/

42

“output” — 2021/1/31 — 21:38 — page 43 — #69

2.3 Tasks and methods

This section contains the literature review about music detection related

tasks. We divide it into two parts: first, we describe the algorithms that

deal with the task of music detection as a binary-class task; and then, we

review the algorithms that combine the detection of music with the de-

tection of speech, and occasionally also other specific types of non-music

sounds. In each section, we divide algorithms into two groups: those that

rely on feature engineering, and those that learn features automatically

from a representation of the audio using deep learning.

2.3.1 Music detection as a binary-class task

Music detection consists of the detection of time intervals that contain

music in an audio file, or, in other words, the segmentation of an audio

file in time intervals of the Music and No Music classes. In this task, fore-

ground and background music are not considered two different classes;

nevertheless, many authors differentiate between foreground and back-

ground music in their works: Seyerlehner et al. (2007) mentioned these

two concepts while stating that background music is harder to detect. Sev-

eral other authors, including Zhu et al. (2006), Izumitani et al. (2008), and

Giannakopoulos et al. (2008), agree that music detection is often applied

to scenarios characterized by a strong presence of background music, such

as TV broadcast audio, effectively differentiating them from scenarios

where most of the time music has the main role.

43

“output” — 2021/1/31 — 21:38 — page 44 — #70

Category Pmusic Rmusic

News 94% 96.5%
Commercial 99% 91%

Drama 98.5% 98%
Total 96% 95.5%

Table 2.5: Results of the algorithm proposed by Zhu et al. (2006) for a
testing dataset based on TRECVID 2005.

2.3.1.1 Feature engineering approaches

To the best of our knowledge, Zhu et al. (2006) proposed the first method

that is specific to music detection. The method is based on the analy-

sis of the temporal evolution of the audio’s spectrum in order to detect

the presence of a tuning frequency and recognize its temporal continuity.

According to the authors, the presence of music concentrates the energy

of the spectrum in very specific frequencies, which promotes the appear-

ance of a clear tuning frequency, while other sounds produce a more even

distribution. In this way, a constant tuning frequency indicates the pres-

ence of music, and the degree of energy concentration helps to distinguish

between isolated music and music mixed with other sounds.

Table 2.5 shows the segment-based precision and recall values ob-

tained by the algorithm using four hours of audio from the Chinese TV

channel CCTV as testing dataset. The audio was extracted from the

TRECVID 2005 dataset and contains mainly news and drama programs,

as well as commercials. The authors manually produced annotations

about the presence of music for this content as the TRECVID 2005 dataset

does not include them. Unfortunately, they did not specify the exact au-

dios they used nor did they provide access to the annotations. In the con-

clusions, the paper points out that this method is not valid for percussion

44

“output” — 2021/1/31 — 21:38 — page 45 — #71

music as percussion instruments do not have a clear pitch.

One year later, Seyerlehner et al. (2007) designed a feature called con-

tinuous frequency activation (CFA) following the idea that the presence of

music creates certain recognizable patterns in the spectrogram. The CFA

is computed from the frequency activation function, which is a function

that represents the time each frequency is active during a particular time

interval. The calculation of the CFA consists of the addition of the five

highest height-to-width ratios of all the peaks of this function.

Figure 2.6 shows two examples of a frequency activation function. At

the top part of the figure, the authors show, from left to right, the spec-

trogram and the frequency activation function of an audio that does not

contain music. At the bottom, we see the same plots but for an audio con-

taining music. In summary, the CFA detects strong activations of isolated

frequencies that are sustained in time. The authors claimed that this is

usually a phenomenon generated by the presence of music, and thus, the

CFA is a feature suitable for the task of music detection. Using this fea-

ture and a simple threshold, the authors reached 89.9% accuracy for the

SMD.

Even though the previous authors implicitly took advantage of tempo-

ral context information through the study of the evolution in time of the

spectrum’s energy, Giannakopoulos et al. (2008) were the first authors to

explicitly mention that there is a certain dependency among successive

time-frames of broadcast audio that can be exploited to enhance the per-

formance of algorithms for the task of music detection. To do that, their

method summarizes the evolution of a set of four features across short-

term windows into a mid-term value. Two of these features are chroma-

based, i.e., they are related to the chromagram, and the other two features

45

“output” — 2021/1/31 — 21:38 — page 46 — #72

Figure 2.6: Two frequency activation functions: (a) one for an audio ex-
cerpt that does not contain music and (b) the other for an audio excerpt
that contains music. Reprinted from Seyerlehner, K., Pohle, T., Schedl,
M., and Widmer, G. (2007). Automatic music detection in television pro-
ductions. In Proceedings of the 10th International Conference on Digital
Audio Effects (DAFx-07).

46

“output” — 2021/1/31 — 21:38 — page 47 — #73

are related to the energy entropy and the presence of a recognizable pitch.

The chromagram, as originally defined by Bartsch and Wakefield (2005),

is a time-frequency representation of audio that shows the distribution of

the spectrum’s energy among each of the 12 pitch classes of the twelve-

tone equal-tempered scale at each time-frame. The first chroma-based

feature is designed to exhibit higher values when there are clearly domi-

nant pitch classes, which, according to the authors, is an indicator of the

presence of music. The second chroma-based feature measures the varia-

tion of each pitch class over time. The authors claimed that when music

is present there is always at least one pitch class that is very stable, while

in the case of speech all elements show high variability.

The algorithm uses the training set to generate two histograms for

each feature: one for the Music class, and a second one for the No Music

class. During testing, the algorithm extracts these features for a particular

time-frame and, after comparing them with the corresponding histograms,

it outputs the most probable class for that time-frame. The audio in both

training and testing datasets comes from several movies and it was cross-

annotated by three annotators. The authors considered that all annota-

tors must agree on the presence of music for a Music time interval to

appear in the final ground truth. In our opinion, this can easily lead to the

omission of time intervals of background music with very low volume,

artificially improving the algorithm’s performance. We suppose that the

authors could not provide access to the data due to copyright reasons.

In Table 2.6 presents the performance of the algorithm using both the

segment- and event-based evaluation methods. Note that the authors used

a rather lax correspondence condition: an output event needs only to over-

lap with a ground truth event of the same class to be considered correct.

47

“output” — 2021/1/31 — 21:38 — page 48 — #74

Evaluation method Pmusic Rmusic Fmusic

Segment-based 89% 83% 86%
Event-based 91% 90% 90.5%

Table 2.6: Results of the algorithm proposed by Giannakopoulos et al.
(2008) for a testing dataset that consists of excerpts of several movies.

In their work, Izumitani et al. (2008) explicitly stated that background

music is both a strong challenge for music detection algorithms, and a

common type of content in broadcast audio. Focusing on its detection,

they proposed a comparison between different sets of features to find

out which set is the most appropriate. They trained k-nearest neighbors

(kNN) and gaussian mixture models (GMM) algorithms using four sets of

features. The first set includes what the authors called the spectral powers

from a linear-scaled spectrogram. To compute these, the spectrogram is

first divided into a series of frequency bands, and then the average of the

values that fall inside each band is computed. The second set consists of

the Mel-scaled version of the first set. The third and fourth sets include,

respectively, the Mel-frequency cepstrum coefficients (MFCC), and seven

engineered features that include the zero-crossing rate, the 4 Hz modula-

tion energy, which is higher for audio containing speech (Houtgast and

Steeneken, 1973), the percentage of low-energy frames, and four low-

level spectral features.

The authors used a synthetic testing dataset containing mixes of mu-

sic and speech at different signal-to-noise ratio (SNR) with the music as

the signal and the speech as the noise. The music was extracted from

the RWC Music Database,13 and the speech from the Corpus of Sponta-

13https://staff.aist.go.jp/m.goto/RWC-MDB/

48

“output” — 2021/1/31 — 21:38 — page 49 — #75

neous Japanese.14 Both datasets can be obtained free of charge through

an access request or a registration; however, the authors do not provide

information about the specific files that they mixed. The authors reported

an error rate of 8% for the best combination of algorithm and feature set,

and an SNR of -10 dB. This percentage increases to over 20% for an SNR

value of -20 dB even though at this SNR level music is still easy to hear.

We want to highlight that this is the only work presenting a music de-

tection algorithm that provides information about its performance for the

specific case of background music.

2.3.1.2 Deep learning approaches

Gfeller et al. (2017) described an audio fingerprinting application for mo-

bile devices that uses music detection to reduce the amount of audio to

analyze. This is an example of the application of music detection as a

preprocessing step to improve the performance of an algorithm designed

for another task. The authors presented a CNN including six consecutive

2D-convolutional layers with max-pooling and two dense layers. They

trained this network using log-magnitude Mel-scale features extracted

from a subset of AudioSet (Gemmeke et al., 2017), and they evaluated

it against 450 hours of audio of unknown origin divided into about 12

thousand time intervals of durations between 16 and 40 seconds contain-

ing music with a loudness ranging from imperceivable by humans to very

loud. They achieved a music segment-based recall of 75.5% when accept-

ing a false positive every 20 minutes in average on non-silent audio.

Jang et al. (2019) proposed a new type of 2D-convolutional filter for

music detection called melCL filter. As shown in Figure 2.7, it mimics

14https://pj.ninjal.ac.jp/corpus_center/csj/en/

49

“output” — 2021/1/31 — 21:38 — page 50 — #76

Figure 2.7: Convolutional layers with (a) a fixed-size kernel and (b) a
Mel-scale kernel. Reprinted from Jang, B.-Y., Heo, W.-H., Kim, J.-H.,
and Kwon, O.-W. (2019). Music detection from broadcast contents using
convolutional neural networks with a Mel-scale kernel. EURASIP Journal
on Audio, Speech, and Music Processing, 2019(1):11.

the filters used in a Mel filter bank with the advantage of having trainable

weights. The authors presented a network that concatenates one Mel-scale

2D-convolution layer, which is a 2D-convolutional layer that uses melCL

filters, three regular 2D-convolutional layers with max-pooling, and two

dense layers. We show this network in Fig. 2.8. It takes the log-magnitude

power spectrogram as input, and outputs the probability of Music and No

Music at a frame level through an output layer with two neurons and a

50

“output” — 2021/1/31 — 21:38 — page 51 — #77

Figure 2.8: CNN architecture proposed by Jang et al. (2019). Reprinted
from Jang, B.-Y., Heo, W.-H., Kim, J.-H., and Kwon, O.-W. (2019). Mu-
sic detection from broadcast contents using convolutional neural networks
with a Mel-scale kernel. EURASIP Journal on Audio, Speech, and Music
Processing, 2019(1):11.

softmax activation function. The softmax function produces a probability

distribution σsoftmax(v) ∈ RL over the L classes of a taxonomy, from a

vector v ∈ RL, as we show in Eq. 2.32.

σsoftmax(v) =
ev∑L
l=1 e

vl

(2.32)

The paper compares the proposed model with two published algo-

rithms (Doukhan and Carrive, 2017; Tsipas et al., 2017), and with other

CNNs, as well as with two types of RNN (Rumelhart et al., 1986). RNNs

are a type of network characterized by their ability to model temporal

context, which is a desirable characteristic when working with tempo-

rally correlated signals such as music. Broadly speaking, this is achieved

by feeding the input to the network in successive time steps. At each time

step, every neuron incorporates its past outputs into its current input. As

51

“output” — 2021/1/31 — 21:38 — page 52 — #78

shown in eq. 2.33, now the output of layer l at the current time step h
(l)
t is

the result of a function φ that depends on the output of the previous layer

at the current time step h
(l−1)
t , the output of the current layer in the last

time step h
(l)
t−1, and the weights and biases of the current layer W(l) and

b(l). σ represents the activation function.

h
(l)
t = σ(φ(h

(l−1)
t ,h

(l)
t−1,W

(l),b(l))) (2.33)

The authors specifically used bidirectional long short-term memory

(BiLSTM) networks and bidirectional gate recurrent unit (BiGRU) net-

works. long short-term memory (LSTM) (Hochreiter and Schmidhuber,

1997; Gers et al., 1999) and gate recurrent unit (GRU) (Cho et al., 2014)

networks are types of RNN containing gated memory cells that are able to

learn and retain information in long dependencies without suffering from

the vanishing/exploding gradient issue that affects simpler RNNs (Ben-

gio et al., 1994). The bidirectional variant of these networks allows the

training sequence to be read forward and backward including both past

and future information into the network decisions.

The training dataset was synthetically created by mixing music,

speech and noise. To do this, the authors used 25 hours of library mu-

sic, 25 hours of speech from the MUSAN dataset, and almost three hours

of noise from the ESC-50 database (Piczak, 2015). For testing, they

used several datasets: eight hours of broadcast audio in British English

(British), and 12 hours of broadcast audio in Spanish (Spanish), both

including different types of program; as well as three hours of Korean

drama, which was used as the validation set during training (Korean dev),

and 1.5 hours of reality shows also in Korean (Korean). In the paper,

they highlighted the presence of background music and sound effects in

52

“output” — 2021/1/31 — 21:38 — page 53 — #79

Dataset Pmusic Rmusic Fmusic Rmu nosp

Korean dev 95.9% 96% 95.9% 96.8%
Korean 93% 96.4% 94.7% 97.5%
British 85.3% 87.8% 86.5% 92.2%
Spanish 84.7% 93.4% 88.9% 96.8%

MIREX15 99.4% 91.6% 95.3% 92.5%
SMD 88.3% 87% 87.6% 87%

Table 2.7: Results of the algorithm proposed by Jang et al. (2019) for six
datasets.

these datasets. They also included the MIREX15 and SMD datasets as

evaluation datasets. With regards to the MIREX15 dataset, the authors

emphasized that it barely contained any background music.

The authors annotated all the audio for testing using Praat and a taxon-

omy containing the classes Music and Speech. They included the Speech

class to also report the recall of the Music class in the absence of speech

(Rmu nosp). The proposed model obtains the best results for all testing

datasets except for MIREX15, for which both Tsipas et al. (2017) and

Doukhan and Carrive (2017) achieved slightly better segment-based Mu-

sic F-measure. Table 2.7 shows the results of the proposed algorithm

for all the testing datasets. We observe that Rmu nosp > Rmusic for all

datasets except for the SMD dataset where both metrics have the same

value. This shows that it is harder to detect music when it is mixed with

speech, and possibly other non-music sounds as well.

2.3.2 Music detection in multi-class tasks

Besides the binary-class approach to music detection, the literature also

addresses the detection of music combined with the detection of speech,

53

“output” — 2021/1/31 — 21:38 — page 54 — #80

and sometimes other types of sounds such as noise or environmental

sounds, or even silence. In the early stages of the research in this field, the

main task was music and speech segmentation, which consists of divid-

ing an audio recording into non-overlapping time intervals of these two

classes. As mentioned in Section 2.1.2, segmentation tasks do not allow

for time intervals of different classes to overlap. It can easily be seen,

therefore, that this task is barely applicable to the context of broadcast au-

dio, as it assumes that music and speech cannot overlap, which is radically

false in this context. This task would later evolve in two different ways

to solve this issue: the first way stuck to the segmentation approach while

introducing a new class to represent overlaps between music and speech,

and the second way redefined the task from a segmentation approach to a

detection approach, which does allow for overlaps between time intervals

of different class. In this section, we do not include algorithms that are

restricted to the assignment of a single class to an entire audio file. We

consider this to be an oversimplification of the tasks that this thesis is con-

cerned with, and a task that is of limited use in the context of broadcast

audio monitoring for copyright management applications. On top of that,

it can be approached as a summary of the results of the segmentation and

detection tasks.

2.3.2.1 Feature engineering approaches

Saunders (1996) became the first author to publish a paper describing a

music and speech segmentation algorithm. This algorithm is based on a

multivariate-Gaussian classifier that relies on the zero-crossing rate and

features related to the energy contour of the audio waveform. To test his

algorithm, the author used radio audio about which he did not give further

54

“output” — 2021/1/31 — 21:38 — page 55 — #81

information. He claimed to achieve 98% accuracy using this data.

Scheirer and Slaney (1997) extended the pool of features up to eight

including the energy modulation at 4 Hz, and low-level features such as

the spectral flux or the spectral centroid, among others. They trained

four different classifiers with these features, the best of which is a spatial

partitioning scheme based on k-d trees that obtains an average segment-

based error rate of 5.7%. The authors used the training and testing splits

of the SSMSC dataset.

Taking the possibility of overlap between music and speech into con-

sideration, Scheirer and Slaney (1997) briefly explained, in the conclu-

sions, that they also used these features and a simple three-way classifier

to discriminate between Speech, Music, and Simultaneous Speech and

Music. Adding this third class increases the average error rate to 35%.

This last result reveals the complexity of distinguishing between these

three classes even when the non-music part includes only speech and not

other types of non-music sounds.

Lu et al. (2001) proposed two new classes to build a taxonomy that

allows the annotation of the entire audio recording: Environment Sound

and Silence. Basically, any sound that is neither music nor speech can be

annotated as Environment Sound. However, they still failed to consider

overlaps between classes. The entire classification system combines a

kNN algorithm with a silence detector and a classifier based on a set of

heuristic rules. First, the kNN discriminates between speech and non-

speech content using information about the spectral flux, the temporal

evolution of the zero-crossing rate, and the energy and envelope of the

signal. Then, a silence detector relies again on the zero-crossing rate and

the energy of the signal to mark the silent parts of the non-speech content.

55

“output” — 2021/1/31 — 21:38 — page 56 — #82

Acc Rmusic Rspeech Renv sounds

96.5% 93% 97.5% 84.4%

Table 2.8: Results of the algorithm proposed by Lu et al. (2001) for their
testing dataset.

Finally, the remaining content is divided into Music or Environment Sound

by a set of heuristic rules based on the periodicity of several frequency

bands, the spectral flux and the presence of noise. The audio in the testing

dataset comes from the MPEG-7 dataset, and some news and movie clips

as well as some audio clips from the Internet. Table 2.8 presents the

performance reported by the authors.

Panagiotakis and Tziritas (2005) also relied on a set of music and

speech segmentation rules that make use of the zero-crossing rate, the root

mean square energy of the audio and combinations of both. These rules

together with a silence detector allowed the authors to achieve segment-

based recalls for the Music and Speech classes of 92% and 97%, respec-

tively, in a testing dataset composed of audio files from the internet and

recordings from various archival CDs. The authors do not provide access

to this data.

Richard et al. (2007) finally set out, from the beginning, a segmenta-

tion task that uses a taxonomy including three mutually exclusive classes:

Music, Speech, and Mixed. The authors used feature selection strategies

to filter an initial set of 500 features including temporal, spectral, cepstral,

and perceptual features. The algorithm they presented works as follows:

first, an SVM trained with the selected features outputs a class for each

time-frame; then, time-frames are grouped in time intervals by an algo-

rithm based on novelty detection, and the most represented class inside

a time interval becomes its class. The authors carry out an event-based

56

“output” — 2021/1/31 — 21:38 — page 57 — #83

Balance-independent confusion matrix
Ground Classified As
Truth Music Mixed Speech
Music 47.7% 36.1% 16.1%
Mixed 4.8% 70.2% 25.0%
Speech 0.1% 2.3% 97.6%

Table 2.9: Balance-independent confusion matrix of the algorithm pro-
posed by Richard et al. (2007) for their testing dataset.

evaluation using a tolerance window of 0.25 seconds as their correspon-

dence condition. The dataset chosen for training and testing is the ESTER

dataset. This dataset has a strong lack of music, this is why the authors

chose to complement it with 40 minutes of music from the RWC dataset.

They report an overall F-measure of 96.5%, while the F-measure by

class is 98.9% for the Speech class and 79.3% for the Music class. The

difference in the impact on the overall F-measure of the two classes shows

that this dataset is highly unbalanced towards the Speech class. This sit-

uation makes the overall F-measure a deceptive metric that can lead to

the wrong conclusions regarding the performance of the algorithm. The

authors presented the balanced confusion matrix that we show in Table

2.9. Despite the high overall F-measure, this confusion matrix reveals

that their algorithm exhibits a strong bias towards the detection of Speech,

with 16.1% of the Music content and 25% of the Mixed content classified

as Speech, and that it has difficulties in differentiating between Music and

Mixed, with 36.1% of the Music content classified as Mixed.

2.3.2.2 Deep learning approaches

Schlüter and Sonnleitner (2012) were the first authors to approach the

57

“output” — 2021/1/31 — 21:38 — page 58 — #84

Dataset Acc Pmusic Rmusic Fmusic

Swiss 97.3% 98.8% 98% 98.4%
Austrian 95.6% 97.3% 97.4% 97.3%

Table 2.10: Results of the algorithm proposed by Schlüter and Sonnleitner
(2012) for their two testing datasets.

task of music and speech detection instead of its segmentation counter-

part. The authors designed a first layer for their network that learns to

extract features from the log-magnitude Mel-spectrogram in an unsuper-

vised way. This type of layer is based on restricted Boltzmann machines

(RBM) (Rumelhart and McClelland, 1987; Hinton, 2002), and it is called

mean-covariance restricted Boltzmann machines (mcRBM).

To check the value of these features, the authors trained an MLP with

them, as well as directly with the log-magnitude Mel-spectrogram, and

also with the MFCCs. The comparison between the resulting models

shows that the mcRBM features are the best option when used for speech

detection. For the music detection task, though, they produce no sig-

nificant performance difference with respect to the log-magnitude Mel-

spectrogram. To complete the network, they attached a deep belief net-

work (DBN), which is a stack of RBM layers, to the mcRBM layer, and

added an output layer containing a single neuron with the sigmoid acti-

vation function (Han and Moraga, 1995). Eq. 2.34 shows the mathemati-

cal expression of the sigmoid activation function σsigmoid given and input

scalar x ∈ R.

The authors trained one instance of this network for music detection,

and the other for speech detection. They compared the music detection

network against the approaches of Seyerlehner et al. (2007) and Liu et al.

(2007) with a segment-based evaluation method. Their network outper-

58

“output” — 2021/1/31 — 21:38 — page 59 — #85

Figure 2.9: CNN architecture proposed by Doukhan and Carrive (2017).
Reprinted from Doukhan, D. and Carrive, J. (2017). Investigating the use
of semi-supervised convolutional neural network models for speech/mu-
sic classification and segmentation. In The Ninth International Confer-
ences on Advances in Multimedia (MMEDIA).

formed the other algorithms with the results shown in Table 2.10. They

used two evaluation datasets: one containing 30 hours of audio from six

Swiss radio web streams (Swiss), and the other with 12 hours of four

Austrian web radio streams (Austrian). 15 hours of the Swiss dataset

were used for training and 6 for validation, leaving 9 hours for testing.

σsigmoid(x) =
1

1 + e−x
(2.34)

Doukhan and Carrive (2017) trained several CNN architectures for

the task of music and speech segmentation with different combinations of

the number of 2D-convolutional and dense layers, filter shapes, pooling

strategies, and regularization methods. As shown in Fig. 2.9, the CNN

performing the best includes two 2D-convolutional layers, each followed

by a max-pooling layer, and two dense layers with high dropout rates.

The input features comprise 40 MFCCs of 50 consecutive time-frames,

which is equivalent to 500 ms. The output layer has two neurons and a

softmax activation function that yields the probability of each class.

59

“output” — 2021/1/31 — 21:38 — page 60 — #86

Musical genre Rmusic Rspeech

Classical 100% 100%
Country 88.55% 96.82%
Ethnic 79.26% 99.18%
Irish 96.5% 99.38%

Table 2.11: Results of the algorithm proposed by Doukhan and Carrive
(2017) for the MIREX15 dataset divided by musical genre.

The authors trained the first 2D-convolutional layer apart from the rest

of the network using an unsupervised strategy (Coates and Ng, 2012), to

associate this layer’s filters to visually relevant features such as vertical,

horizontal and diagonal patterns. The weights of these filters remain con-

stant during the training of the rest of the network. The training data

consists of the combination of three public datasets: the GTZAN, the

SSMSC, and the MUSAN datasets. The authors evaluated their best CNN

model using the MIREX15 dataset. We show the results of this evaluation

separated by musical genre in Table 2.11.

Gimeno et al. (2018) proposed the first approach to the task of mu-

sic and speech segmentation that uses RNNs. They presented a model

consisting of two stacked BiLSTM layers and an independent linear per-

ceptron that transforms the output of the last BiLSTM layer into a frame-

level classification. This classification is then smoothed using a hidden

markov model (HMM) algorithm. The features that the authors chose for

the network are a combination of the log-magnitude Mel-spectrogram,

and chroma features. They train their RNN with the training split of the

Albayzı́n-2010 dataset, and evaluate their network using two event-based

metrics: the segmentation error rate (SER) and the error rate (ER), which

we described in Section 2.1.2.2. The authors obtain a SER of 12.5% and

60

“output” — 2021/1/31 — 21:38 — page 61 — #87

Evaluation method Pmusic Rmusic Fmusic

Segment-based 96.9% 97.3% 97.1%
Event-based (on) 77.8% 78.7% 78.2%

Event-based (on-off) 58.7% 59.3% 59%

Table 2.12: Results of the algorithm proposed by Lemaire and Holzapfel
(2019) for their testing data.

an ER of 20% for the testing split of the Albaycı́n-2010 dataset. These

results surpass those of the best algorithms evaluated so far using this

dataset.

Lemaire and Holzapfel (2019) proposed, for the first time, to use

TCNs for the task of music and speech detection. They published a com-

parison between a TCN with non-causal filters (ncTCN), and three other

architectures: a concatenation of a CNN, a LSTM network, and an MLP

(CLDNN); a BiLSTM network (BiLSTM); and a TCN with causal filters

(TCN). They trained several models of each architecture in a grid search

over a set of hyper-parameters. All architectures use the log-magnitude

Mel-spectrogram as input features.

The data used for training and testing comprises several public and

private datasets. The public datasets include the MUSAN, GTZAN,

SSMSC, MIREX15, and ESC-50 datasets. All these data together

amounts to a total duration of approximately 221 hours. The authors com-

pared the best model of each architecture through the computation of the

area under the ROC curve, and the ncTCN obtained an area value slightly

above the rest. Table 2.12 shows the results for music detection of the

ncTCN using both a segment-based and a event-based evaluation method,

respectively. The authors used a post-processing strategy to improve the

results of the network by smoothing its output based on a minimum du-

61

“output” — 2021/1/31 — 21:38 — page 62 — #88

ration of the time intervals of each class, and the minimum duration of

the breaks between time intervals of the same class. For the event-based

evaluation, the correspondence condition is a tolerance window of 500

ms, which they apply to only the onsets (on), and both onsets and offsets

(on-off).

2.3.3 Analysis

We observe that broadcast media is the main focus in terms of context of

most of the previously reviewed papers. We also observe a general con-

sensus among authors that background music is one of the most common

and challenging types of content in broadcast audio: music constantly

appears overlapped with speech and/or other non-music sounds, which

makes it harder to detect. Despite all of this, only a few authors eval-

uate their algorithms specifically for this type of content (Scheirer and

Slaney, 1997; Richard et al., 2007; Izumitani et al., 2008; Gimeno et al.,

2018). Those who do, do not obtain outstanding results even though they

only consider the particular case of speech over music, disregarding the

possibility of music overlapping with any other type of non-music sound.

A serious issue that we notice across the reviewed literature is that

not many algorithms are evaluated using public data. Many authors use

private audio to generate or complement their testing datasets, or do not

describe the origin of the audio with enough precision as to be able to

reproduce these datasets. Without access to the contents of the testing

datasets we cannot validate the results obtained by an algorithm, we can-

not assess the true value of these results, as we have no information on

how challenging the datasets are, and we cannot compare these results

with other algorithms and track the evolution of the tasks. In the case

62

“output” — 2021/1/31 — 21:38 — page 63 — #89

of the tasks reviewed in this thesis, the outcome of this situation is the

sensation that every author has solved them on their own. However, this

is far from the truth as it becomes apparent when evaluating with chal-

lenging datasets such as in MIREX 201815, or in papers such as that of

Jang et al. (2019). Of course, having a good set of public datasets helps

to promote their usage for evaluation and, as explained in Section 2.2.1.1,

we perceive that this is not the case.

Another observation concerns some of the combinations taxonomy-

task that appear in the reviewed literature. Many authors (Saunders, 1996;

Lu et al., 2001; Panagiotakis and Tziritas, 2005; Doukhan and Carrive,

2017) design their algorithms for the task of music and speech segmenta-

tion, without taking into account the possibility that these type of sounds

may overlap. In the case of Doukhan and Carrive (2017), we believe that

this happens because they defined an ad hoc taxonomy for the evaluation

dataset that they used, which does not contain overlaps between music

and speech. We can not confirm that the same applies to the other au-

thors because their evaluation data is private. A similar situation occurs

in the work of Gimeno et al. (2018), where they use Albayzı́n-2010 as

their evaluation dataset. Their taxonomy includes the Speech over Mu-

sic class, and also the Speech over Noise class; however, it does not

include, for instance, the Music over Noise class, which is a common

combination of sounds in broadcast audio. This happens because the Al-

bayzı́n-2010 dataset does not contain this type of combination. Table 2.13

shows all the combinations of taxonomies and types of task used in the

approaches reviewed in Section 2.3.2. It also presents the information

15https://www.music-ir.org/mirex/wiki/2018:Music_and_or_
Speech_Detection_Results

63

“output” — 2021/1/31 — 21:38 — page 64 — #90

A
ut

ho
rs

/T
as

k
Ta

xo
no

m
y

Ta
sk

ty
pe

M
us

ic
ov

er
la

p
an

no
ta

tio
ns

w
ith

M
D

ta
sk

M
us

ic
D

et
ec

tio
n

G
en

er
ic

no
n-

(a
nd

N
o

M
us

ic
)

(S
eg

m
en

ta
tio

n)
m

us
ic

so
un

ds
Sa

un
de

rs
(1

99
6)

M
us

ic
an

d
Sp

ee
ch

Se
gm

en
ta

tio
n

N
ot

hi
ng

Sc
he

ir
er

an
d

Sl
an

ey
(1

99
7)

M
us

ic
,S

pe
ec

h
(a

nd
Se

gm
en

ta
tio

n
Sp

ee
ch

Sp
ee

ch
ov

er
M

us
ic

)

L
u

et
al

.(
20

01
)

M
us

ic
,S

pe
ec

h,
Se

gm
en

ta
tio

n
N

ot
hi

ng
E

nv
ir

on
m

en
tS

ou
nd

,
an

d
Si

le
nc

e

Pa
na

gi
ot

ak
is

an
d

T
zi

ri
ta

s
(2

00
5)

M
us

ic
,S

pe
ec

h,
Se

gm
en

ta
tio

n
N

ot
hi

ng
an

d
Si

le
nc

e

R
ic

ha
rd

et
al

.(
20

07
)

M
us

ic
,S

pe
ec

h,
Se

gm
en

ta
tio

n
Sp

ee
ch

an
d

M
ix

ed
Sc

hl
üt

er
an

d
So

nn
le

itn
er

(2
01

2)
M

us
ic

an
d

Sp
ee

ch
D

et
ec

tio
n

Sp
ee

ch
D

ou
kh

an
an

d
C

ar
riv

e
(2

01
7)

M
us

ic
an

d
Sp

ee
ch

Se
gm

en
ta

tio
n

N
ot

hi
ng

G
im

en
o

et
al

.(
20

18
)

M
us

ic
,S

pe
ec

h,

Se
gm

en
ta

tio
n

Sp
ee

ch
Sp

ee
ch

ov
er

M
us

ic
,

Sp
ee

ch
ov

er
N

oi
se

,
an

d
O

th
er

L
em

ai
re

an
d

H
ol

za
pf

el
(2

01
9)

M
us

ic
an

d
Sp

ee
ch

D
et

ec
tio

n
Sp

ee
ch

R
M

L
E

ta
sk

Fo
re

gr
ou

nd
M

us
ic

,
Se

gm
en

ta
tio

n
G

en
er

ic
B

ac
kg

ro
un

d
M

us
ic

,
no

n-
m

us
ic

an
d

N
o

M
us

ic
so

un
ds

Ta
bl

e
2.

13
:

C
om

bi
na

tio
ns

of
ta

xo
no

m
y

an
d

ty
pe

of
ta

sk
us

ed
in

ea
ch

of
th

e
ap

pr
oa

ch
es

de
sc

ri
be

d
in

Se
ct

io
n

2.
3.

2,
an

d
th

e
in

fo
rm

at
io

n
th

at
th

ey
in

cl
ud

e
ab

ou
to

ve
rl

ap
s

of
m

us
ic

an
d

no
n-

m
us

ic
so

un
ds

.

64

“output” — 2021/1/31 — 21:38 — page 65 — #91

that these approaches provide about the overlaps between music and non-

music sounds.

Finally, we want to underline the gradual appearance of deep learn-

ing in the reviewed literature that started with the work of Schlüter and

Sonnleitner (2012). According to their work and that of authors such as

Doukhan and Carrive (2017) and Gimeno et al. (2018), deep learning has

overcome feature engineering approaches and also other machine learn-

ing techniques. Jang et al. (2019) compared different network architec-

tures, showing that RNNs such as LSTM and GRU networks, and their

bidirectional counterparts, generally offer worse results, in comparison to

CNNs, despite their capacity to model temporal context, which should

be a valuable characteristic when dealing with temporally correlated sig-

nals such as music. Lemaire and Holzapfel (2019) proposed the usage of

TCNs, which is a type of CNN that can also model temporal context, does

not suffer from vanishing/exploding gradients as some RNNs do (Bengio

et al., 1994), and have proven to produce better results than RNNs (Bai

et al., 2018). Finally, Lemaire and Holzapfel (2019) and other authors

such as de Benito-Gorron et al. (2019) showed that concatenating a CNN

with an RNN can boost the performance of the RNN and offer state-of-

the-art results.

2.4 Conclusions

In this chapter, we have provided a formal definition of the deep learning

architectures that we use in our approaches to the task of relative music

loudness estimation, and the evaluation metrics that are typically used

in music detection related tasks. We have also described and analyzed

65

“output” — 2021/1/31 — 21:38 — page 66 — #92

both the public and private datasets that are available for these tasks, and

we have provided an overview of the audio annotation tools that can be

used to generate annotations about the presence of music. After this, we

have conducted a literature review about previous algorithms for music

detection related tasks.

Throughout the sections, we have observed the need for new data an-

notated for music detection related tasks that can fix the shortcomings

of current datasets. A new dataset should comprise as many different

broadcast scenarios as possible containing music that is both isolated and

mixed with non-music sounds. These non-music sounds should include

but not be limited to speech. Furthermore, a significant number of the

audio files in the datasets should contain more than one class. Note that

many authors define their taxonomy based on the content of their evalu-

ation dataset; thus, poor datasets in terms of combinations of music and

non-music sounds can lead to taxonomy-task combinations that repre-

sent a rather small part of the diversity of broadcast audio. We have also

highlighted that incorporating information about the relative loudness of

music in a dataset’s annotations can be very useful during error analy-

sis, as it allows to differentiate between the performance of an algorithm

for foreground and background music. This information is obviously es-

sential if the dataset is to be used for the task of relative music loudness

estimation. These conclusions have led to the creation of the OpenBMAT

dataset, which we detail in Section 4.2.

With regards to the reviewed algorithms, we consider that deep learn-

ing is the path to follow to keep improving BMAT’s relative music loud-

ness estimation technology. As an extremely successful architecture in

this and many other fields, CNNs are the best option. In Chapter 5,

66

“output” — 2021/1/31 — 21:38 — page 67 — #93

we describe the deep learning architectures that we develop throughout

this thesis for the relative music loudness estimation task. We make use

CNNS, TCNs, which is a CNN with the additional capacity of model-

ing sequential data, and experiment with the combination of CNNs and

TCNs, proving that it produces a boost in performance as the combination

of CNNs and RNNs do.

67

“output” — 2021/1/31 — 21:38 — page 68 — #94

“output” — 2021/1/31 — 21:38 — page 69 — #95

Chapter 3

DEVELOPMENT OF AN
ANNOTATION TOOL

In this chapter, we present BMAT’s Annotation Tool (BAT), an open-

source, web-based tool for the manual annotation of audio events that

focuses on the annotation of the partial loudness of these events when

two or more of them appear simultaneously. BAT is the topic of our first

publication (Meléndez-Catalán et al., 2017), which we presented at the

3rd Web Audio Conference, held at the Centre for Digital Music of the

Queen Mary University of London.

Prior to the creation of BAT, BMAT used a web-based annotation tool

prototype that was not designed to annotate events, but rather to assign

one or more labels to entire ten-seconds audio excerpts. This tool in-

cluded a single annotation taxonomy that could comprehend an arbitrary

number of classes. We used four of them: Music, Speech, Background

Music and Sound Effects. It had several strengths: it was easy to use,

the annotation process was fast, and it was web-based. As a web-based

69

“output” — 2021/1/31 — 21:38 — page 70 — #96

tool it ran in a server where annotators could use it remotely without hav-

ing to download, install or configure anything. This is very useful when

working with crowd-sourcing or freelance platforms. Finally, any new

annotation or modification was automatically ingested into a centralized

database and ready to be used for evaluation without the need for any

external ground truth files. However, this annotation method did not al-

low for the correct annotation of excerpts including class changes, which

greatly limited the content that we could use for training. This was the

main motivation behind the decision to create BAT.

The contents of this chapter are structured as follows: in Section 3.1,

we list the design requirements of this new annotation tool. Then, in Sec-

tion 3.2, we provide all the details about BAT and its development: we

explain how we meet the design requirements, we offer an overview of

the development process, we detail the structure of BAT’s database and

the annotation process, we describe the different parts of the annotation

interface as well as useful functionalities and shortcuts that facilitate an-

notation, and we show how BAT has changed since its initial integration

into BMAT. After this, in Section 3.3, we present an experiment to check

how reliable the partial loudness annotation system that BAT incorporates

is. We close the chapter with the conclusions in Section 3.4.

3.1 Design requirements

Our new annotation tool should solve the shortcomings of the previous

one, as well as preserve its advantages and provide new useful functional-

ities. We define the following requirements for the development of BAT:

70

“output” — 2021/1/31 — 21:38 — page 71 — #97

1. Its annotation mechanism should allow for the precise annotation,

over an audio’s waveform, of the start and end times of audio

events. This solves the annotation precision issue of the previous

tool.

2. It should permit the annotation of overlapping audio events and

their partial loudness in the overlapping time interval. This makes

the tool suitable for the relative music loudness estimation task, and

also appropriate for both segmentation and detection tasks.

3. It should allow for the definition of multiple, independent tax-

onomies, so that it can be used for any segmentation or detection

task.

4. It should enable the cross-annotation of audio. Cross-annotating is

a way to validate the reliability of the annotations.

5. It should be open-source. This tool represents one of our contri-

butions to the research community, and thus, we want to make it

available to everyone.

6. It should be easy to use and have a clear annotation environment

with no superfluous functionalities.

7. It should be web-based and easy to deploy in servers. As men-

tioned above, this facilitates its usage in crowd-sourcing and free-

lance platforms avoiding any downloads, and any installation and

configuration processes.

8. It should include a database that provides an amenable way to store

and manage annotations.

71

“output” — 2021/1/31 — 21:38 — page 72 — #98

In Section 2.2.2, we provided an overview of several tools that have

been used for the annotation of audio in the last two decades. Out of all

of these, only audio-annotator (Cartwright et al., 2017) is web-based (req.

7). This tool fulfils several more of our requirements: it is open-source

(req. 5), it allows for the annotation of audio events through the selection

of time intervals over the waveform of an audio file (req. 1), and it has

simple and attractive aesthetics (req. 6). However, audio-annotator is

not a complete tool, but rather a web front-end interface that needs to be

attached to a back-end that can store and manage the annotations. In the

following section, we provide details about how we incorporate parts of

audio-annotator into BAT, and the technologies behind the development

of its back-end.

3.2 Development

In this section, we first specify the technologies that we use to create

BAT’s front- and back-end. We then detail the structure of the database

while explaining the annotation process and, after this, we describe the

different parts of the annotation interface. Finally, we list the modifica-

tions that BAT has undergone in its integration into BMAT.

3.2.1 Technologies

The specific parts of audio-annotator that we use in the front-end of BAT

are its extended version of wavesurfer.js and some aesthetic details of

their design such as the taxonomy presentation. We show a screenshot of

this tool in Fig. 3.1. The original version of wavesurfer.js allows for the

playback of audio, the visualization of its waveform, and the selection of

72

“output” — 2021/1/31 — 21:38 — page 73 — #99

Figure 3.1: Screenshot of audio-annotator’s front-end annotation inter-
face.

time intervals over it in web browsers using JavaScript, HTML5 and the

Web Audio API1. The extended version incorporates class labels to the

time intervals, and the possibility to switch between the visualization of

the audio’s waveform and its spectrogram. To create BAT’s front-end we

assemble these parts with our own HTML5 templates and we add several

other functionalities that enable the annotation of the partial loudness of

overlapping audio events (req. 2), and facilitate the annotation process.

We implement BAT’s back-end using Django,2 a Python framework

for the development of web applications. In the back-end, we define a set

of object models that structure a PostgreSQL3 database (req. 8) where all

the information related to the annotation process is stored. We also de-

fine a set of functions that improve the ways a user can interact with this

database. Django offers the possibility of accessing and modifying the

contents of the database through the admin web-page, and also externally

1https://developer.mozilla.org/en-US/docs/Web/API/Web_
Audio_API

2https://www.djangoproject.com/
3https://www.postgresql.org

73

“output” — 2021/1/31 — 21:38 — page 74 — #100

using the Ipython shell4 or Jupyter notebooks5. The Django web appli-

cation and the database run in separate Docker containers that we link

together using Docker Compose. Using docker facilitates the deployment

of BAT in servers (req. 7).

BAT accepts audio in WAV format and works, at least, with Mozilla

Firefox, Google Chrome and Opera. It can be found at its github reposi-

tory6 with a GNU AGPL v3.0 license. The repository contains the source

code, documentation about the installation and the annotation processes,

and the necessary docker files.

3.2.2 Models and annotation process

In Django we design models that define the structure of the database.

We, then, populate this database through the creation of objects of these

models. Fig. 3.2 shows the relationship between the models in BAT’s

database. In this section, we present these models as we detail the anno-

tation process.

The first step to start annotating audio with BAT is to create a project

(Project model). Projects are the framework that links a taxonomy, i.e.,

a set of classes (Class model), to the set of audio files to be annotated

using this taxonomy (Wav model). We can assign an unlimited number of

classes to a project, which ensures taxonomic flexibility (req. 3).

The audio files uploaded to a project are automatically split into seg-

ments of a fixed length (Segment model). This length must be specified

before uploading the audio files. We have decided to work with fixed

4ipython.org
5https://jupyter.org
6https://github.com/BlaiMelendezCatalan/BAT

74

“output” — 2021/1/31 — 21:38 — page 75 — #101

Figure 3.2: Relationship between BAT’s database models.

length segments instead of the full audio files because this allows for an

annotation with constant time resolution and avoids actions such as zoom-

ing and scrolling, which introduce a cost in time and increase the com-

plexity of the annotation process. Additionally, this setup favors the usage

of crowd-sourcing strategies by allowing the distribution of the workload

among several annotators. Nevertheless, it is also possible to generate

only one segment per audio file for tasks such as global key estimation,

genre recognition, etc. Note that these segments have nothing to do with

the segments that appear in Section 2.1.2.1 when describing the segment-

based evaluation method.

75

“output” — 2021/1/31 — 21:38 — page 76 — #102

In BAT, each user (User model) has one of two roles based on the

tasks they perform throughout the annotation process: the administrator

and the annotator. The administrator is the user that creates projects, de-

fines taxonomies, uploads the audio data and chooses the length of the

segments. It can also visualize all the existing annotations, but not mod-

ify or generate them. The other type of user, the annotator, has access

only to its own annotations, but can modify them or generate new ones as

long as there are still non-annotated segments. To annotate the content of

an audio file for some tasks, the annotator might have to incorporate a cer-

tain amount of subjectivity. In these cases, the tool is prepared to manage

the annotations of more than one user, i.e, to allow for cross-annotation

(req. 4). Having multiple annotations is a way to validate the reliability

of the annotations and to detect the parts that produce more disagreement

between annotators.

When a user selects a segment to annotate it, BAT creates an annota-

tion (Annotation model), which is uniquely linked to both the segment and

the user. BAT divides the annotation process into two sequential phases:

the event identification phase and the partial loudness annotation phase.

In the event identification phase, the annotator should select the time in-

tervals of the waveform containing the audio events that are relevant to

the current task, for instance, a person speaking, a certain chord, a note of

a soloing saxophone, etc. Each selection creates an event (Event model).

When we create the project, we decide if we allow events to overlap in

time. We would enable it for detection tasks such as instrument detection,

and disable it for segmentation tasks such as chord recognition. The an-

notator must assign a class from the linked taxonomy to every event and

optionally add a tag (Tag model) to them. Tags allow to further describe

76

“output” — 2021/1/31 — 21:38 — page 77 — #103

Figure 3.3: (Top) Event identification phase: the annotator creates two
events over the waveform. (Bottom) Partial loudness annotation phase:
the annotator assigns a partial loudness value to each event where they
overlap.

the selected audio event. There is no restriction in the number of tags that

the annotator can use.

If some of the events created in the event identification phase over-

lap in time, it is mandatory to go through the partial loudness annotation

phase. In this second phase, non-overlapping events directly become re-

gions (Region model). Otherwise, when two or more events overlap, BAT

creates a region for each time interval with different classes as shown in

Fig. 3.3. If a region contains more than one class, the annotator needs to

assign a partial loudness value to each of these classes (Partial Loudness

77

“output” — 2021/1/31 — 21:38 — page 78 — #104

model). This value has five possible levels represented by integers in a

range from 1 to 5. The class or classes with the highest partial loudness

in the region must always receive a partial loudness value of 5. The con-

tribution to the total loudness of the highest partial loudness is taken as

reference to assign partial loudness values to the other classes. A relative

annotation method prevents inconsistencies due to the volume at which

the annotator listens to the audio. If a region has only one class, it auto-

matically receives a partial loudness value of 5.

BAT offers the possibility of switching from one annotation phase to

the other; however, all partial loudness information is lost if the annota-

tor goes back to the event identification phase, as events might be modi-

fied, and thus, produce different regions in the partial loudness annotation

phase. During the event identification phase, the annotator cannot finish

the annotation or access the partial loudness annotation phase if there are

events with no assigned class. Similarly, in the partial loudness annota-

tion phase, it is not possible to finish the annotation if there are unassigned

loudness values. The tool will display a warning with the corresponding

explanation every time the annotator incurs in one of these violations.

3.2.3 Annotation interface

To start annotating, the annotator needs only to select the name of a

project and BAT will automatically deliver all the corresponding segments

sequentially using a simple and clear interface that displays only the most

essential elements in a balanced and colorful way. We show this interface

in Fig. 3.4. The interface is organized in rows of elements: the first row

(1) contains two buttons that expand a text box with either annotation tips

or a list of the annotation shortcuts. In the next row (2), at the left side

78

“output” — 2021/1/31 — 21:38 — page 79 — #105

Fi
gu

re
3.

4:
B

A
T

’s
an

no
ta

tio
n

in
te

rf
ac

e.

79

“output” — 2021/1/31 — 21:38 — page 80 — #106

we find the button to switch the audio visualization from waveform to

spectrogram and vice versa, and at the right side, the button to transition

between the two phases of the annotation process, and the buttons to fin-

ish the current annotation. After this, (3) we have the audio visualization

with a button to play and pause its playback. The annotator can create

events over the waveform by just clicking and dragging. The last row (4)

shows all the classes in the taxonomy and highlights the class/es of the

selected region or event. It also shows the tags assigned to it.

BAT also integrates several functionalities and keyboard shortcuts that

facilitates the annotation. Using the keyboard, the annotators can set the

class of the regions, play and pause the audio, and expand the limits of

a region to the boundaries of either another region or the entire segment.

The functionalities include: the prevention of overlaps if the project does

not allow them, the unification of the limits of two events, if they are very

close to each other in order to avoid the creation of small overlaps or gaps

between them, and the deletion of small events when created accidentally

by dragging the mouse after a click.

3.2.4 Integration into BMAT

BAT has undergone several modifications since its introduction inside

BMAT’s ecosystem either to add new features to it, to fix bugs, or to

refactor its code. Some of the most important changes are:

• The incorporation of its database models as the annotation applica-

tion of a larger Django framework that also includes applications

for evaluation and training data generation.

• The introduction of two new database models: the WavsCollection

80

“output” — 2021/1/31 — 21:38 — page 81 — #107

models, which binds audio files together in a supraproject manner,

and the ClassInstance models, which links projects and classes, fix-

ing an error of the original design that forced the administrator user

to create the same class for every project where it was used.

• The elimination of the duplicity of the Event and Region models:

currently, events are deleted and replaced by regions when advanc-

ing from the event identification phase to the partial loudness anno-

tation phase, and reenacted if the annotator needs to go back to the

event identification phase. Previously, events were only replaced

but not removed.

• The possibility for an administrator user to modify the annotations

of other users.

• The creation of functions to export annotations to a ground truth

CSV file, or to compute the agreement between annotators over a

set of segments.

• The incorporation of new annotation modes where segments are

presented in random order or where only one annotator is allowed

to annotate a particular segment. Both modes are useful for crowd-

source annotation.

• The possibility to upload and play the video and audio parts of an

MP4 audio-visual file. In some tasks, the visualization of the source

of a sound can be very informative.

81

“output” — 2021/1/31 — 21:38 — page 82 — #108

3.3 Evaluation experiment

The most distinguishing feature of BAT with respect to other tools is that

it offers a mechanism to annotate the partial loudness of an audio event in

the presence of other simultaneous events. In this experiment, we assess

the inter-annotator agreement in the annotation of partial loudness. We

consider that a high inter-annotator agreement indicates that the system

can reliably provide the requested information. For the rest of this the-

sis, we will just use the term agreement when referring to inter-annotator

agreement.

3.3.1 Evaluation methodology

We deliver several annotated regions including more than one class to

the annotators and ask them to introduce their partial loudness values.

In this way, we can specifically evaluate the agreement in the annotation

of partial loudness avoiding errors coming from the event identification

phase.

To carry out the experiment we gather four annotators. Before starting

the experiment, we describe the annotation process, as well as the avail-

able controls, and allow them to annotate a few examples until they feel

confident using BAT. The dataset used for the evaluation contains eight

recordings with a duration of one minute. Each of these recordings be-

long to one of the following eight types of broadcast media programs:

children programs, documentaries, entertainment programs, music pro-

grams, news broadcasts, series and films, sport programs, and talk shows.

We load them to the database with a segment length of 30 seconds pro-

ducing a total of 16 segments.

82

“output” — 2021/1/31 — 21:38 — page 83 — #109

Coinciding Ocurrences Accumulated Averaged
annotators percentage agreement
4 (100%) 34 (49.28%) 49.28%

83.33%
3 (75%) 24 (34.78%) 84.06%
2 (50%) 11 (15.94%) 100%
0 (0%) 0 (0%) 100%

Table 3.1: Results of the experiment to validate BAT’s partial loudness
annotation mechanism.

3.3.2 Evaluation results

As shown int Table 3.1, the values assigned by all the annotators are iden-

tical for 49.28% of the regions. This percentage rises to 84.06% if we

consider the regions where three of the annotators coincide and to 100%

for the case of two annotators. This means that there is no region that

has been annotated differently by all annotators. We compute the average

agreement as the average of the percentage of occurrences weighted by

the percentage of coinciding annotators. We reach an average agreement

of 83.33%.

3.4 Conclusions

In this chapter, we have described BAT: an open-source, web-based, tool

for the annotation of audio events that can also provide information about

their partial loudness in a reliable way. BAT allows the definition of dif-

ferent taxonomies to adapt to multiple tasks and offers the possibility to

cross-annotate audio data. It is also easy to deploy in servers thanks to

the usage of Docker. BAT has proven to be functional and very useful to

BMAT, providing annotations for hundreds of hours of audio. It is also

83

“output” — 2021/1/31 — 21:38 — page 84 — #110

in constant evolution to improve the annotation process. In the context of

this thesis, we use it to annotate two datasets that are essential in the de-

velopment of our computational approaches to the task of relative music

loudness estimation. We describe these datasets in the next chapter.

Beyond the scope of this thesis, we have recently annotated a new

dataset using BAT that includes only stereo audio. This dataset could lead

to important future advances in the relative music loudness estimation

technology. We used this dataset as the evaluation dataset for the mu-

sic detection and the relative music loudness estimation tasks of MIREX

2019. Using data annotated with BAT, we have also trained algorithms for

other tasks such as the detection of audience noise, or an estimator of how

audible music is in an audio recording. Furthermore, we have used BAT

in several one-time projects related to the study of the amount of music

played on national and international radio stations and TV channels.

84

“output” — 2021/1/31 — 21:38 — page 85 — #111

Chapter 4

COMPILATION AND
ANNOTATION OF DATASETS

In Section 2.2.1.2, we have highlighted the need for new annotated quality

datasets that are specific to tasks related to the detection of music. In this

chapter, we describe the creation of two such datasets: one private and

the other public. The private dataset constitutes a contribution to BMAT,

while the public dataset, which we have called OpenBMAT, represents a

contribution to the research community, and led to the publication of our

second paper (Meléndez-Catalán et al., 2019), in the transactions of the

international society for music information retrieval (TISMIR) journal.1

The creation of these two datasets is an essential step towards the

realization of the goals of this thesis described in Section 1.3. We build

the private dataset to train the Deep Music Detector: the algorithm for the

task of relative music loudness estimation that BMAT is currently using

1https://transactions.ismir.net/articles/10.5334/
tismir.29/

85

“output” — 2021/1/31 — 21:38 — page 86 — #112

in production. With the public dataset, we pursue the introduction of

this task in the research field of MIR, and the promotion of transparent,

comparable and reproducible research. In this respect, we use it to train

and evaluate novel computational approaches to the task of relative music

loudness estimation, which we describe in Chapter 5.

This chapter is structured as follows: Section 4.1 and Section 4.2) are

devoted to the description of the private dataset and OpenBMAT, respec-

tively. In these sections, we present the audio content of the datasets, and

the process to annotate it, as well as its distribution by class. In the case

of OpenBMAT, given that it has been cross-annotated by three annotators,

we are also able to validate the reliability of its annotations. Finally, in

Section 4.3 we provide the conclusions of the chapter.

4.1 Private dataset

This section includes a description of the audio content of the private

dataset, as well as the annotation methodology used to annotate it, and

the distribution of its content by class.

4.1.1 Raw corpus

This dataset contains approximately 44 hours of audio divided in 1322

two-minute audio files. We consider that having many short audio files

allows the dataset to include a greater variety of contexts. Nevertheless,

these audio files are long enough to include class changes, and to provide

a significant amount of information about the temporal evolution of the

audio. Each of them comes from a different recording that we randomly

86

“output” — 2021/1/31 — 21:38 — page 87 — #113

sample from BMAT’s private database. These recordings contain audio

broadcast by TV channels and radio stations from all over the world.

4.1.2 Annotation methodology

For the annotation of the private dataset, we inherited the annotation tax-

onomy that we used with the previous annotation tool. This taxonomy

includes the classes Music, Speech, Sound Effects, and Audience. The

annotation using BAT allows audio events of these classes to overlap. If

that happens, we need to assign partial loudness values to the overlapping

audio events. This annotation is carried out by a single annotator, at an

annotation speed of approximately 5.5 hours to annotate an hour of audio.

In order to use this dataset for the task of relative music loudness

estimation, we have to map every possible combination of audio events

and their partial loudness into the classes Foreground Music, Background

Music, and No Music. The mapping consists of the following three con-

ditions, where m, s, sfx, and a represent the partial loudness value of the

audio events of class Music, Speech, Sound Effects, and Audience, respec-

tively.

1 if (m == 5 and

2 (0 <= s <= 3 or 0 <= sfx <= 4 or 0 <= a <= 4)):

3 # Map to Foreground music

4 elif m >= 1 and (s >= 4 or sfx == 5 or a == 5):

5 # Map to Background music

6 elif m == 0 and (s == 5 or a == 5 or sfx == 5):

7 # Map to No music

87

“output” — 2021/1/31 — 21:38 — page 88 — #114

Figure 4.1: Percentage of the total duration corresponding to every exist-
ing combination of the classes of the annotation taxonomy.

To obtain a ground truth that is suitable for the task of relative music

loudness estimation, we apply these conditions to every region (an object

of the Region model described in Section 3.2.2) in the annotations. Note

that any class that is not present in the region is assigned a partial loudness

value of 0.

4.1.3 Content distribution

Table 4.1 shows the percentage of the total content annotated as each

of the classes of the annotation taxonomy. The sum of the percentages

surpasses 100% because classes overlap. Over two thirds of the dataset

contain the class Music, more than half of it contains the class Speech,

and around 22% of it contains other non-music sounds of which approxi-

88

“output” — 2021/1/31 — 21:38 — page 89 — #115

Classes Music Speech Sound Effects Audience
Content 68.35% 54.72% 15.55% 6.77%

Table 4.1: Percentage of the total content annotated as each of the classes
of the annotation taxonomy.

Foreground Music Background Music No Music
Content 37.16% 31.19% 31.65%

Table 4.2: Percentage of the total content mapped to each of the classes
of the relative music loudness estimation taxonomy.

mately 7 percentage points are audience noises. The percentage of audio

files that include class changes is 85%. Fig. 4.1 shows the percentage of

the total content that corresponds to every existing combination of classes.

After applying the mapping conditions, we obtain a fairly balanced dis-

tribution of content with 37% of Foreground Music, 31% of Background

Music, and 32% of No Music, as shown in Table 4.2. The percentage of

audio files that include class changes using these three classes is 72%.

4.2 Public dataset: OpenBMAT

Public annotated data is essential for the development of the field of MIR

as it promotes transparency in research and provides a solid evaluation

framework with which we can fairly compare algorithms and keep track

of the evolution of tasks. On top of that, OpenBMAT solves the shortcom-

ings of the datasets described in Section 2.2.1.2. OpenBMAT is publicly

available under request for non-profit purposes at Zenodo2.

2https://zenodo.org/record/3381249

89

“output” — 2021/1/31 — 21:38 — page 90 — #116

4.2.1 Raw corpus

OpenBMAT contains 27.4 hours of audio divided in 1647 one-minute

audio files. Each of these audio files comes from a different recording

that we have sampled from BMAT’s private database. As mentioned for

the private dataset, we consider that having many short audio files allows

the dataset to include a richer variety of contexts. In this case, we reduce

the duration of the audio files from two minutes to one minute. In this

way, we obtain a larger number of contexts, while the audio files are still

long enough to include class changes, and to provide enough information

about the temporal evolution of the audio.

We have forced the sampled audio files to cover a set of varied pro-

gram types to ensure that the dataset is representative of several different

broadcast contexts. The selected program types are: children programs,

documentaries, entertainment programs, music programs, news broad-

casts, series and films, sport programs, and talk shows. Including such

a variety of program types guarantees the presence of music that is both

isolated and mixed with different types of non-music sounds.

Unfortunately, in BMAT’s database only the recordings from certain

countries include information about the program type. This has con-

strained the dataset to audio broadcast by TV channels in France, Ger-

many, Spain and the United Kingdom. We set a limit of 60 audio files for

each country and program type, but for several combinations there were

not enough audio files to reach that value. Fig. 4.2 shows the distribution

of audio files by program type for each country. All the audio files in the

dataset are 16-bit monophonic WAV files at a sampling rate of 22050 Hz

and have been extracted from audio broadcast during 2017.

90

“output” — 2021/1/31 — 21:38 — page 91 — #117

C D E M N S&F S T
Program type

0

10

20

30

40

50

60

70

Nu
m
be
r o

f a
ud

io
 fi
le
s

France Germany Spain United Kingdom

Figure 4.2: Distribution of audio files by program type and country. The
program types are: children programs (C), documentaries (D), entertain-
ment programs (E), music programs (M), news broadcasts (N), series &
films (S&F), sport programs (S) and talk shows (T).

4.2.2 Annotation methodology

OpenBMAT has been manually cross-annotated by three different anno-

tators: two males and one female of ages comprised between 20 and

40 years, and experience working with sound and/or music. Cross-

annotating allows us to assess the reliability of the annotations that are

produced through the study of the inter-annotator agreement (see Section

4.2.3.2). The reliability of the annotations is our main priority for the

annotation of OpenBMAT. In order to increase this, we modify some as-

91

“output” — 2021/1/31 — 21:38 — page 92 — #118

pects of the annotation methodology with respect to the annotation of the

private dataset.

The methodology that we use to annotate the private dataset makes it

possible to distinguish between different types of foreground and back-

ground music depending on the kind of non-music that appears mixed

with the music. Even though this information can be useful, especially

for error analysis, we consider that it might lead to an increase of the dis-

agreement between annotators, and thus, to a decrease in the reliability of

the annotations. On top of this, we believe that the annotation time can

be reduced by using a taxonomy that does not allow overlaps. A taxon-

omy with non-overlapping classes is also more in line with the nature of

segmentation tasks such as the relative music loudness estimation task,

requiring much simpler mapping conditions.

4.2.2.1 Taxonomy description

As a dataset for the tasks of relative music loudness estimation and music

detection, the annotation taxonomy used in OpenBMAT needs to be com-

patible with the classes of these two tasks. The taxonomy of the relative

music loudness estimation task contains three classes: Foreground Music,

Background Music and No Music; and the taxonomy of the music detec-

tion task, if we understand it as a segmentation task, includes the classes

Music and No Music. In including the classes of the relative music loud-

ness estimation task in the annotation taxonomy, we are, of course, also

incorporating those of the music detection task.

We consider, however, that a more fine-grained taxonomy can provide

extra information without adding too much complexity to the annotation

process: we separate the isolated music from the rest of foreground music

92

“output” — 2021/1/31 — 21:38 — page 93 — #119

Figure 4.3: (Left) MD mapping: mapping from the annotation taxonomy
to the music detection taxonomy. (Right) RMLE mapping: mapping from
the annotation taxonomy to the relative music loudness estimation taxon-
omy.

creating the Music class, and we subdivide the background music in three

classes according to the relative loudness of the music: Similar, Back-

ground Music, and Low Background Music. The No Music class remains

as it is. In Fig. 4.3, we show the classes of the annotation taxonomy

and the mappings corresponding to the relative music loudness estima-

tion task (RMLE mapping) and the music detection task (MD mapping).

The definition of the classes is the following:

• Music: isolated music.

93

“output” — 2021/1/31 — 21:38 — page 94 — #120

• Foreground Music: mainly music with low-volume non-music in

the background.

• Similar: music and non-music mixed at similar volumes.

• Background Music: mainly non-music with music in the back-

ground.

• Low Background Music: mainly non-music with music in the

background at such a low volume that it is hard to hear.

• No Music: isolated non-music.

Notice three characteristics of the resulting annotation taxonomy:

first, all of its classes are mutually exclusive, which is mandatory for seg-

mentation tasks; second, with these classes we can annotate the whole du-

ration of any audio; and third, we can separate them into isolated classes

and mixed classes. Music and No Music are isolated classes because a

region (an object of the Region model described in Section 3.2.2) of these

classes can contain either music or non-music sounds but not a combina-

tion of both. The rest of the classes are mixed classes because regions

annotated as such must contain both music and non-music sounds. We

use this distinction in future sections.

4.2.2.2 Annotation process

The annotation mechanism consists of creating non-overlapping time in-

tervals over the waveform of an audio file and assigning a class to each of

them. The annotation mechanism might be simple, but we are asking the

annotators to describe the relative loudness of music, which has a contin-

uous nature and can have fast variations, using a discreet set of classes.

94

“output” — 2021/1/31 — 21:38 — page 95 — #121

This process involves a notable level of subjectivity, and can lead to sig-

nificantly different annotations. This is why we provide the annotators

with a set of annotation steps:

1. Annotate all No Music time intervals that are longer than 1 second.

2. Group non-annotated, non-music sounds that are separated by less

than 1 second and have similar loudness in comparison with the

simultaneous music into the same time interval.

3. Iteratively annotate the resulting groups that are longer than 1 sec-

ond as one of the mixed classes. If a group is shorter than 1 second:

(a) and it is separated by less than 1 second form another group,

merge them. The time interval takes the class that is majority.

(b) and it is surrounded by No Music, annotate it as the appropri-

ate class.

(c) and it is surrounded by non-annotated audio, leave the group

with no annotation.

4. Annotate any part of the audio that is not yet annotated as Music.

Before starting the annotation of the dataset, all three annotators

have been trained to use BAT and have understood the annotation steps.

Throughout the whole process they have been allowed to ask questions

and we have regularly provided feedback. On average, they spent approx-

imately 130 hours annotating the dataset. This means that the annotation

speed was around 4.75 hours per hour of audio annotated, which is 14%

faster than with the annotation methodology used for the private dataset.

95

“output” — 2021/1/31 — 21:38 — page 96 — #122

4.2.3 Analysis of the annotations

In this section, we first provide statistics about the content of the annota-

tions; and we then validate the annotation methodology through the cal-

culation and analysis of the agreement between annotators.

4.2.3.1 Content distribution

After the cross-annotation process, we obtain three different annotations

of the same content. Table 4.3 shows the content distribution as annotated

by each annotator for the complete taxonomy and both mappings. We

observe the strongest variance in percentage of content for the Similar

and Background Music classes. We highlight the presence of around 4 to

5% of Low Background Music, which we consider to be one of the most

challenging types of content.

Once we apply the RMLE mapping the percentages become very sim-

ilar for all annotators. The part of the dataset annotated as Foreground

Music is approximately 15%, while the part annotated as Background Mu-

sic represents about 35% of its total duration. With the MD mapping, we

find that approximately 50% of the dataset has no music and the other

50% has music either isolated or mixed with non-music sounds. Further-

more, if we divide the dataset in terms of isolated and mixed classes as

explained in Section 4.2.2.1, the average proportion is around 59% and

41%, respectively. The dataset comes divided into 10 predefined splits

that preserve the same content distribution. Finally, Table 4.4 shows the

percentage of audio files that include class changes by annotator for the

complete taxonomy and both mappings. The average is 68.3% for the

complete taxonomy, 65.5% for the RMLE mapping, and 51.2% for the

MD mapping.

96

“output” — 2021/1/31 — 21:38 — page 97 — #123

A
ll

cl
as

se
s

A
nn

ot
at

or
M

us
ic

(%
)

Fg
.M

us
ic

(%
)

Si
m

ila
r

(%
)

B
g.

M
us

ic
(%

)
L

ow
B

g.
M

us
ic

(%
)

N
o

M
us

ic
(%

)

A
nn

ot
at

or
1

11
.1

4
5.

46
5.

4
24

.2
2

4.
84

48
.9

4
A

nn
ot

at
or

2
7.

82
4.

88
13

.5
19

.6
4

4.
14

50
.0

2
A

nn
ot

at
or

3
9.

57
5.

43
14

.2
16

.3
6

4.
1

50
.3

4
R

el
at

iv
e

m
us

ic
lo

ud
ne

ss
es

tim
at

io
n

cl
as

se
s

A
nn

ot
at

or
Fg

.M
us

ic
(%

)
B

g.
M

us
ic

(%
)

N
o

M
us

ic
(%

)
A

nn
ot

at
or

1
16

.6
34

.4
5

48
.9

4
A

nn
ot

at
or

2
12

.7
37

.2
8

50
.0

2
A

nn
ot

at
or

3
15

34
.6

6
50

.3
4

M
us

ic
de

te
ct

io
n

cl
as

se
s

A
nn

ot
at

or
M

us
ic

(%
)

N
o

M
us

ic
(%

)
A

nn
ot

at
or

1
51

.0
5

48
.9

4
A

nn
ot

at
or

2
49

.9
8

50
.0

2
A

nn
ot

at
or

3
49

.6
6

50
.3

4

Ta
bl

e
4.

3:
Pe

rc
en

ta
ge

of
au

di
o

an
no

ta
te

d
by

ea
ch

an
no

ta
to

ra
s

th
e

cl
as

se
s

of
th

e
co

m
pl

et
e

ta
xo

no
m

y,
an

d
th

e
cl

as
se

s
of

th
e

re
la

tiv
e

m
us

ic
lo

ud
ne

ss
es

tim
at

io
n

an
d

m
us

ic
de

te
ct

io
n

ta
sk

s.

97

“output” — 2021/1/31 — 21:38 — page 98 — #124

Annotator All classes RMLE classes MD classes
Annotator 1 67.09% 65.76% 50.09%
Annotator 2 70.19% 66.55% 53.19%
Annotator 3 67.64% 64.24% 50.33%

Table 4.4: Percentage of audio files with class changes by annotator for
the complete taxonomy and both mappings.

4.2.3.2 Inter-annotator agreement

As explained in Section 4.2.2, we cross-annotate the dataset to allow for

the assessment of the reliability of the produced annotations. We consider

that obtaining reliable annotations validates the definition of the taxon-

omy and the annotation process ensuring the usability of the dataset. The

information that we use for this assessment is the percentage of agreement

between the three annotators in the annotated classes.

We define two different levels of agreement: full agreement, which

happens when all three annotators have annotated the same class; and

partial agreement, which happens when at least two annotators have an-

notated the same class. We compute the percentage of full agreement

%FAaf and partial agreement %PAaf in an audio file as the time during

which the agreement level is reached (tFA and tPA, respectively) divided

by the duration of the audio file Taf as shown in eq. 4.1 and eq. 4.2.

To obtain the percentage of full agreement %FA and partial agreement

%PA for the whole dataset, we compute the mean for all N audio files as

shown in eq. 4.3 and eq. 4.4. These values can be computed considering

all the classes in the taxonomy, but also for the relative music loudness

estimation and the music detection classes.

98

“output” — 2021/1/31 — 21:38 — page 99 — #125

Agreement
level

All classes
Agr (%)

RMLE classes
Agr (%)

MD
classes

Agr (%)
%FA 68.18% 89.1% 94.78%
%PA 96.75% 99.79% 100%

%PW (annot. 1 & 2) 77.46% 91.7% 96.22%
%PW (annot. 2 & 3) 76.97% 92.78% 96.78%
%PW (annot. 1 & 3) 78.66% 93.52% 96.55%

Table 4.5: Percentages of full, partial and pair-wise (PW) agreement
(Agr) for the whole dataset. These values have been computed for the
complete taxonomy and both mappings.

%FAaf =
tFA
Taf

(4.1)

%PAaf =
tPA
Taf

(4.2)

%FA =
1

N

N∑
n=1

%FAaf (n) (4.3)

%PA =
1

N

N∑
n=1

%PAaf (n) (4.4)

Table 4.5 shows the %FA and %PA when considering all classes as

well as when applying both mappings. It also presents these agreement

percentage values for each pair of annotators, i.e., the percentage of pair-

wise agreement %PW . We observe that when considering all classes,

there is already a %PA of 96.75%. This percentage increases to 99.79%

when applying the RMLE mapping. We also observe that the %FA con-

99

“output” — 2021/1/31 — 21:38 — page 100 — #126

Music Fg. Music Similar Bg. Music Low Bg.
Music

No Music

Classes

0%

10%

20%

30%

40%

50%
Pe
rc
en
ta
ge
 o
f c
on
te
nt

Only partial agreement Full agreement

Figure 4.4: Percentage of the content of OpenBMAT by class and agree-
ment level.

sidering all classes is 68.18%. Fig. 4.4 reveals that most of this agree-

ment comes from isolated classes –especially the No Music class– as in

all mixed classes there is a higher percentage of partial agreement than

full agreement. The %FA increases to 89.1% when applying the RMLE

mapping, and to 94.78% when applying the MD mapping. Fig. 4.5 pro-

vides insight on the distribution of full agreement among audio files. It

shows the percentage of audio files with a %FAaf over a certain value

when using the RMLE mapping. We observe, for instance, that over 35%

of the audio files have a %FAaf higher than 99% and that almost 90% of

the audio files have a %FAaf higher 70%.

Fig. 4.6 presents the percentage of the content with full (diagonal) or

partial agreement for each class divided by the classification of the third

100

“output” — 2021/1/31 — 21:38 — page 101 — #127

0% 20% 40% 60% 80% 100%
%FAaf for the RMLE mapping

0%

20%

40%

60%

80%

100%

Nu
m

be
r o

f a
ud

io
 fi

le
s

Figure 4.5: Percentage of audio files accumulated over a certain %FAaf

value using the relative music loudness estimation classes.

annotator. From this figure we extract the two main sources of partial

agreement when considering all the classes in the taxonomy. The most

common source is for one of the annotators to select an adjacent class in

terms of loudness. This affects all classes to a different extent except for

the No Music class. The second source of partial agreement appears when

one of the annotators is unable to detect the music due to its low volume

and annotates No Music instead of Low Background Music.

When no annotator coincides in the annotation of a time interval, we

consider that there is disagreement. Considering all classes in the taxon-

101

“output” — 2021/1/31 — 21:38 — page 102 — #128

Music Fg. Music Similar Bg. Music Low
Bg. Music

No Music

Third annotator classification

Music

Fg. Music

Similar

Bg. Music

Low
Bg. Music

No Music

2
ag

re
ei

ng
 a

nn
ot

at
or

s c
la

ss
ifi

ca
tio

n

73.39 21.80 3.26 0.86 0.08 0.60

23.54 29.24 41.27 4.26 0.19 1.51

1.79 16.18 23.31 54.06 2.19 2.46

0.50 0.91 43.10 45.19 8.22 2.08

0.15 0.26 9.97 33.18 36.38 20.06

0.30 0.25 0.61 1.18 3.00 94.65

20%

40%

60%

80%

Figure 4.6: (Rows) Class annotated by two annotators. (Columns) Class
annotated by the third annotator. (Values) Percentage of the content with
full (diagonal) or partial agreement for each class divided by the classifi-
cation of the third annotator.

omy, there are two main sources of disagreement: the first one takes place

when annotators disagree between No Music and any of the other classes

due to a different interpretation of what music is. Examples of this can be

background tones, musical sound effects such as a church bell or a ring-

ing phone or even experimental music or music of uncommon styles. The

second source of disagreement appears due to a different interpretation of

what components of the audio belong to the music. This happens, for in-

102

“output” — 2021/1/31 — 21:38 — page 103 — #129

stance, when the audience claps following the beats of the music or when

there are soft noises overlapping with the music that some annotators may

find irrelevant. This can lead to strong differences in the annotation and

represents a significant percentage of the parts of the dataset with dis-

agreement.

4.2.4 Metadata and Storage

Metadata is all the information related to the audio files in OpenBMAT.

There are two sources of metadata per audio file: the annotations and the

agreement. The annotations include the three original annotations as well

as their MD and RMLE mappings. In total, there are nine annotations per

audio file. The agreement metadata contains the %FAaf and the %PAaf of

each audio file for the original annotations and both mappings, and the set

of time intervals with either full or partial agreement. These time intervals

give potential users the possibility to train or test their algorithms using,

for instance, only the subset with full agreement. All this metadata is

provided in JSON format. The metadata also includes the annotations in

two additional formats: (1) as exported from BAT (one CSV file for each

annotator) and (2) as separate TSV files for each audio file, annotator and

taxonomy.

Apart from the metadata and the audio, OpenBMAT also contains:

• 10 predefined splits to allow for K-fold cross-validation. We have

randomly assigned each audio file to a subset and the resulting sub-

sets preserve the original proportion of the relative music loudness

estimation and music detection classes.

• A python module with utilities such as (1) the generation of the an-

103

“output” — 2021/1/31 — 21:38 — page 104 — #130

notations in JSON and TSV formats from BAT annotations, (2) the

generation of the full and partial agreement audio subsets and (3)

the possibility of loading the annotations using the open evaluation

library used in the detection and classification of acoustic scenes

and events (DCASE) challenge.3 The DCASE challenge is an in-

ternational competition similar to MIREX, but exclusive to scene

and event analysis methods.

• A README file including a general description of the dataset and

all the details about its structure and contents.

4.3 Conclusions

In this chapter, we have described two datasets containing audio extracted

from BMAT’s private database that we have annotated using BAT. The

first dataset is private and contains approximately 44 hours of audio di-

vided in 1322 two-minutes audio files obtained from radio stations and

TV channels from all over the world. The dataset has been annotated by a

single annotator and the annotation includes information about the pres-

ence of music, speech, sound effects and audience noises, along with their

partial loudness in case of overlap. More than two thirds of the dataset

contains music, approximately half of it contains speech, and around 22%

of the dataset contains other non-music sounds including 7 percentage

points of audience noises. Out of all the audio files in the dataset, 85%

contain class changes.

The other dataset is OpenBMAT, a public dataset containing around

27 hours of audio with annotations about the presence of music and its
3https://github.com/DCASE-REPO/dcase_util

104

“output” — 2021/1/31 — 21:38 — page 105 — #131

relative loudness with respect to simultaneous non-music sounds. The

dataset includes 1647 one-minute audio files, which have been cross-

annotated obtaining high partial and full agreement levels for the relative

music loudness estimation and the music detection tasks. According to

these annotations, more than 50% of the audio files include class changes

for the task of music detection, and around 66% include class changes for

the task of relative music loudness estimation. We highlight that 35% of

OpenBMAT’s content is background music at different volumes and that

it includes a large variety of non-music sounds resulting from the diversity

of broadcast contexts that we have incorporated in the dataset. With these

characteristics, we cover all the shortcomings that we mentioned in Sec-

tion 2.2.1.2, while providing public data, which enables future evaluations

to be more transparent, reproducible and comparable. The dataset has al-

ready been downloaded 60 unique times4 from Zenodo5, and used by Jia

et al. (2020), Gimeno et al. (2020) and ourselves (Meléndez-Catalán et al.,

2020).

4last check on November 27th, 2020
5https://zenodo.org/record/3381249

105

“output” — 2021/1/31 — 21:38 — page 106 — #132

“output” — 2021/1/31 — 21:38 — page 107 — #133

Chapter 5

COMPUTATIONAL
APPROACHES

In this chapter, we describe two approaches to the task of relative music

loudness estimation that we have produced in this doctoral work. The first

is the Deep Music Detector: the stable and production-ready technology

that BMAT has been using since 2018 to provide the relative music loud-

ness estimation service to its customers. The second approach is more

experimental: it is based on the usage of TCNs, and a novel deep learning

architecture that combines a TCN with a CNN front-end. We call this net-

work CNN-TCN, and it is inspired by the usage, in the literature reviewed

in Section 2.3.2, of CNNs in concatenation with RNNs. With the CNN-

TCN, we leverage the capacity of the TCN to model temporal sequences,

while boosting its performance with the CNN front-end. This second ap-

proach offers highly promising results that we have documented in our

third paper (Meléndez-Catalán et al., 2020), which we presented at the

2020 digital audio effects (DAFx) conference. We have yet to incorporate

107

“output” — 2021/1/31 — 21:38 — page 108 — #134

this second approach into BMAT, but expect to do so in the near future.

These two computational approaches are the final contributions of

this thesis. With the Deep Music Detector, we achieve BMAT’s goal of

improving the relative music loudness estimation service. Furthermore,

as mentioned in Section 1.3, the Deep Music Detector is the first im-

plementation of deep learning inside BMAT. With the experimental ap-

proach, we establish the state-of-the-art of the task, and given that we

use OpenBMAT to evaluate this approach, we are also providing a bench-

mark against which future algorithms can be compared in a transparent

and reproducible way.

To start the chapter, we devote Section 5.1 to the description of the

Deep Music Detector. In this section, we also provide an overview of how

this algorithm is used and integrated into BMAT, and discuss its results in

two public evaluations. In Section 5.2, we thoroughly describe the TCN

and CNN-TCN models, the experiments that we conduct to evaluate their

performance, and the results of this evaluation. Finally, in Section 5.3, we

provide the conclusions of the chapter.

5.1 Stable approach: the Deep Music Detector

The Deep Music Detector continuously monitors more than 4300 radio

stations and TV channels, segmenting the broadcast audio into time inter-

vals of the Foreground Music, Background Music, and No Music classes.

In this section, we present its architecture and the process to train it, we

discuss several implementation details related to the requirements of the

production platform, we provide details about our evaluation methodol-

ogy, and we show the results of two public evaluations of the algorithm.

108

“output” — 2021/1/31 — 21:38 — page 109 — #135

Figure 5.1: Architecture of the Deep Music Detector.

5.1.1 Architecture

In Fig. 5.1, we show the layers that compose the architecture of the

Deep Music Detector. It consists of a CNN with three 2D-convolutional

blocks followed by two dense layers and the output layer. Each of the 2D-

convolutional blocks is composed of a 2D-convolutional layer with Ncnn

rectified linear units (ReLU) and filter size C × C, and a max-pooling

layer. ReLUs are neurons that use a rectifier activation function σrelu,

which only lets through the non-negative values as shown in eq. 5.1 for

an input x ∈ R. The stride and dilation rate of the filters of the 2D-

convolutional layers is 1 in both axis. The stride of the max-pooling layers

is equal to its pooling size P × P .

σrelu(x) = max(0, x) (5.1)

The output layer is a two-neuron dense layer with a softmax activation

function. In our case, this function outputs a vector ŷ ∈ R2 containing

two positive real values that we interpret as the estimated partial loudness

109

“output” — 2021/1/31 — 21:38 — page 110 — #136

Version Ncnn C P Ndense params
DMDv1 64/32/16 10/5/3 5/3/2 128 97,650
DMDv2 32/64/128 3/3/7 3/5/2 128 453,634

Table 5.1: Architecture’s hyper-parameters of DMDv1 and DMDv2 . The
slashes separate the values for the different 2D-convolutional blocks.

of the music and non-music content at the input, normalized to sum 1.

The normalization makes the output independent of the absolute loudness

of the analyzed audio. The algorithm adapts the normalized partial loud-

ness values to a classification through the usage of two thresholds, which

mark the boundaries between the three classes. By modifying the value

of these thresholds we can increase or decrease the precision and recall of

each class and adapt the algorithm to any use case and customer. During

prediction, once we obtain the classification output, we merge contiguous

outputs of the same class creating time intervals of that class. We then

smooth short time intervals by modifying their class based on their class

and duration, and the class and duration of the contiguous time intervals.

We have developed two versions of the Deep Music Detector:

DMDv1 and DMDv2 . Both of them share the same generic architec-

ture, but differ in the number of neurons and the size of the filters of the

2D-convolutional layers, and the pooling size of the max-pooling layers.

Table 5.1 presents the hyper-parameters of the two versions and their total

number of parameters. The hyper-parameters that we set for DMDv1 are

inspired in the work of Doukhan and Carrive (2017). Through a process

of trial an error, we later obtained the set of hyper-parameters of DMDv2 .

110

“output” — 2021/1/31 — 21:38 — page 111 — #137

5.1.2 Training process

In this section, we first describe how we generate the input features of

the Deep Music Detector’s CNN from an audio signal, as well as how we

process the annotations of the training dataset to assign a ground truth to

these input features. We then detail the hyper-parameters that we use to

train this network.

5.1.2.1 Input features and ground truth

The dataset that we use to develop the Deep Music Detector is the pri-

vate dataset described in Section 4.1. To generate the input features of the

Deep Music Detector’s CNN, we first transcode the audio in the dataset

to 8000 samples per second with 16 bits per sample. From this audio, we

compute the power spectrogram with a Hanning window of length of 512

samples (64 ms) and a hop size of 128 samples (16 ms). We then apply

a Mel filter bank with Nmels = 128 filters to obtain the Mel-spectrogram,

and change its magnitude scale to a logarithmic scale producing the log-

magnitude Mel-spectrogram. We cut the log-magnitude Mel-spectrogram

in blocks of 128 time-frames, which is equivalent to 2.032 seconds, mak-

ing the input to the network a square matrix with a 128x128 shape. As

explained in the previous section, the output of the Deep Music Detector’s

CNN is independent of the absolute loudness of the audio under analysis;

thus, to prevent the network from learning cues related to it, we apply

min-max normalization to each input, ensuring that their values always

range from 0 to 1.

In order to train the CNN, each of the network inputs in the training

and validation sets need a ground truth y ∈ R2. However, the annotations

in the dataset consist of regions (an object of the Region model described

111

“output” — 2021/1/31 — 21:38 — page 112 — #138

in Section 3.2.2) containing a combination of the four classes of the anno-

tation taxonomy: Music, Speech, Sound Effects, and Audience, and their

partial loudness values. Eq. 5.2 shows how to obtain the normalized par-

tial loudness of the Music class plmusic given the partial loudness value

pl c of each class c in the annotation taxonomy C. As explained in Section

3.2.2, pl c is an integer in the range of 1 to 5, except for the classes that

are not present in the region, which are assigned a partial loudness value

of 0. We calculate plmusic for every region in the annotations, and obtain

their ground truth vector yr following eq. 5.3.

plmusic =
plmusic∑
c∈C pl c

(5.2)

yr = [plmusic, 1− plmusic] (5.3)

Note that the time interval covered by a network input can overlap

with several regions. As shown in eq. 5.4, we calculate the ground truth

y of an input as the average of the ground truth yr of theR regions it over-

laps with, weighted by the proportion of time tr that each region occupies

inside the network input.

y =
R−1∑
r=0

tryr (5.4)

The ground truth assignation process changes in the case of the test

set. For this set, the ground truth is not computed for each network input,

but for the regions in the annotations of each audio file included in the

112

“output” — 2021/1/31 — 21:38 — page 113 — #139

set. In addition to this, note that we need to assess the performance of

the complete Deep Music Detector, which includes its CNN and the two

thresholds that it uses for classification. This means that we need to map

the classes contained in every region, and their partial loudness values,

to the classes of the relative music loudness estimation task, and not to

the vector yr ∈ R2. We do so using the mapping conditions presented in

Section 4.1.2.

5.1.2.2 Training hyper-parameters

The training set comprises the network inputs corresponding to 80% of

the audio files in the dataset, while the validation and test sets evenly share

the inputs corresponding to the remaining 20%. We train the Deep Music

Detector’s CNN with the training set for 100 epochs using the ADAM

optimizer with learning rate lr = 0.001, and the mean square error loss

function. We keep the models that produce the lowest loss for the val-

idation set. We shuffle the training data every epoch and present it to

the networks in batches of 128 network inputs. We use keras 2.2.4 and

tensorflow-gpu 1.12.

5.1.3 Production-ready product

A company’s resource limitations play a crucial role when developing

an algorithm. The production environment establishes the limits of the

resources that an algorithm can consume when deployed into production.

It does not matter how good an algorithm is if you cannot run it on your

production platform.

113

“output” — 2021/1/31 — 21:38 — page 114 — #140

5.1.3.1 Production requirements

Characteristics of the production servers such as the operating system,

RAM memory, disk space, the number of available threads, etc. need to be

taken into account when developing the algorithm. In the case of BMAT,

the process of relative music loudness estimation runs in a distributed way

over several small servers that are shared with other processes such as the

extraction of audio fingerprints or the detection of commercial blocks.

Each process must use a single thread, so that, when run in parallel, the

number of threads can easily be controlled. They should also avoid RAM

peaks that are costly and may harm other processes.

These servers also limit the number and size of the dependencies used:

libraries such as Keras,1 which are very useful to design and train deep

learning architectures, might be too heavy and include too many depen-

dencies to be installed in the production platform. It is also necessary

to take into account the volume of audio to be analyzed continuously to

determine how fast an algorithm must be as well as the number of time

intervals it outputs so that the amount of data input to the database is

manageable.

5.1.3.2 Code and performance

The Deep Music Detector is implemented using TensorFlow’s C API2 to

make it as computationally fast as possible. Fig. 5.2 shows the steps that

the Deep Music Detector takes to analyze an audio recording. Basically,

the code in C++ receives the paths to the audio and the model in proto-

1https://keras.io/
2https://github.com/tensorflow/tensorflow/blob/master/

tensorflow/c/c_api.h

114

“output” — 2021/1/31 — 21:38 — page 115 — #141

Figure 5.2: Steps of the analysis of an audio file with the Deep Music
Detector. In blue, the steps executed by the python wrapper scripts; and
in green, the steps executed by the C++ binary.

115

“output” — 2021/1/31 — 21:38 — page 116 — #142

buffer format, and once the model is loaded, it starts to read the audio

block by block. For each block read, it computes the input features and

feeds them to the model to get a prediction. The process ends when there

is no more audio to read. The algorithm analyzes an hour of audio in ap-

proximately 20 seconds using a single thread running on a CPU, and with

a RAM memory peak of approximately 54 MB.

We rarely call the C++ code directly as it is wrapped by several python

scripts that internally do that as well as setting some parameters, such

as the classification thresholds or the activation of the smoothing func-

tions, and retrieving the predictions to turn them into time intervals of the

Foreground music, Background music or No music classes. These python

scripts are called in a very simple way:

1 from python_dmd import DeepMusicDetector

2 dmd = DeepMusicDetector()

3 intervals = dmd.get(audio_path='./path/to/wav')

Notice that in this code snippet we are not providing the path to the

model. The Deep Music Detector can be installed into a debian operating

system as a debian package, which includes the model, the python wrap-

per and some necessary libraries. The installed python wrapper uses the

path to the installed model by default. The repository of the Deep Mu-

sic Detector also includes a Dockerfile that builds an image of the latest

debian LTS release with the Deep Music Detector installed in it.

116

“output” — 2021/1/31 — 21:38 — page 117 — #143

5.1.4 Evaluation metrics

As mentioned in Section 1.2, BMAT’s relative music loudness estimation

service has several use cases and types of client. Each customer has their

own requirements and each use case has its own particularities, and both

can affect how the algorithm must be adapted and evaluated. Specifically,

these two variables define what metric is to be maximized by means of

tuning algorithm parameters. Often accuracy is not the most important

metric, even though it is always crucial to maintain high accuracy levels.

The metrics that we consider for maximization are the balanced accu-

racy, and the balanced precision and recall of the No Music class. There

are three out of the four use cases listed in Section 1.2 that require the

maximization of metrics other than the accuracy. This includes the most

common use case of BMAT’s relative music loudness estimation service,

which is the calculation of the amount of foreground and background

music played in a broadcast channel. As we mentioned in Section 1.1,

broadcasters are taxed by the CMOs according to this information; thus,

CMOs require the algorithm to reduce as much as possible the number of

non-music sounds classified as either Foreground Music or Background

Music. Otherwise, broadcasters might claim that they have been charged

unfairly. This means that the algorithm needs to maximize the recall of

the No Music class. The second use case is to mark parts of the audio that

have low probability of containing music to reduce the amount of audio

analyzed by BMAT’s audio fingerprinting technology. Here we need to

maximize the precision of the No Music class, so that we are preventing

the least amount of music from being identified. The last use case is the

analysis of the catalog of others companies in search of non-music con-

tent such as audio-books, podcasts, sound effects, etc. In this situation,

117

“output” — 2021/1/31 — 21:38 — page 118 — #144

we might be interested in maximizing either the precision or the recall of

the No Music class depending on the goal of the analysis.

5.1.5 Public evaluations

In this section, we first show the results obtained by the Deep Music De-

tector at the MIREX competitions of 2018 and 2019 for the tasks of music

detection and relative music loudness estimation, and compare them with

the results of the algorithms of the other participants. We then describe

the evaluation of the Deep Music Detector using the OpenBMAT dataset,

the results of which we presented in our second publication (Meléndez-

Catalán et al., 2019). These results comprise the value of several evalua-

tion metrics, as well as an explanation of the source of the different types

of error that the Deep Music Detector makes. We further use this evalu-

ation to demonstrate the potential of having agreement information when

assessing an algorithm’s performance.

5.1.5.1 MIREX evaluation

We submitted the two versions of the Deep Music Detector described in

Section 5.1.1 to the music detection and relative music loudness estima-

tion tasks of the MIREX competition. We call these two versions DMDv1

and DMDv2 . DMDv2 preserves the same architecture, input features,

and smoothing strategy of the former version, but has approximately 4.6

times more parameters due to the increased number and size of the filters

in the 2D-convolutional layers.

In the MIREX competition of 2018, two datasets were used for eval-

uation: Dataset 1 is a previous version of OpenBMAT that was annotated

118

“output” — 2021/1/31 — 21:38 — page 119 — #145

with the annotation methodology use for the private dataset, which we de-

scribed in Section 4.1.2; and Dataset 2 is a dataset containing ten hours of

audio from French TV channels and radio stations, provided by the french

national institute of audiovisual (INA). It includes archives collected from

1950 up to now.3 In 2019, there was only one evaluation dataset, which

we mentioned in Section 3.4. It contains approximately 50 hours of audio

in stereo from TV channels in France, Germany, United States, and Spain,

and it was cross-annotated by three annotators using the same annotation

methodology as in the OpenBMAT dataset. We only refer to it in this sec-

tion as it has not been used for any other purpose in relation to this thesis.

We call it Dataset 3.

As shown in Table 5.2, in 2018, we submitted DMDv1 and it obtained

the first place in the music detection task for both evaluation datasets out

of five participants. Moreover, it was the first algorithm to participate

in the relative music loudness estimation task. In 2019, it placed third

in both tasks, after DMDv2 . The first place was claimed by a CNN-TCN

prototype that we produced during the elaboration of our third publication

(Meléndez-Catalán et al., 2020), which we describe in Section 5.2. In

Table 5.3, we show the results of DMDv1 , DMDv2 , and the CNN-TCN

prototype for the same MIREX events, but for the task of relative music

loudness estimation. For the authors that submitted more than one version

of the same algorithm, these tables only include the results of the version

that performed the best for each dataset.

3https://www.music-ir.org/mirex/wiki/2018:Music_and/or_
Speech_Detection#Datasets

119

“output” — 2021/1/31 — 21:38 — page 120 — #146

M
us

ic
de

te
ct

io
n

at
M

IR
E

X
20

18
A

lg
or

ith
m

D
at

as
et

A
cc

P
m
u
si
c

R
m
u
si
c

F
m
u
si
c

D
ou

kh
an

et
al

.(
20

18
)

D
at

as
et

1
68

.6
%

90
.5

%
38

.7
3%

54
.2

4%
D

at
as

et
2

92
.5

7%
97

.5
1%

89
.5

%
93

.3
4%

Ja
ng

et
al

.(
20

18
)

D
at

as
et

1
80

.0
5%

98
.2

4%
59

.5
5%

74
.1

5%
D

at
as

et
2

94
.1

5%
96

.6
5%

93
.1

5%
94

.8
7%

C
ho

ie
ta

l.
(2

01
8)

D
at

as
et

1
62

.5
1%

69
.1

5%
39

.4
3%

50
.2

2%
D

at
as

et
2

79
.9

6%
83

.6
%

81
.3

7%
82

.4
7%

M
ar

ol
t(

20
15

)
D

at
as

et
1

68
.0

7%
85

.7
%

40
.2

6%
54

.7
8%

D
at

as
et

2
91

.5
%

97
.6

5%
87

.4
7%

92
.2

8%

D
M
D
v1

D
at

as
et

1
90

.4
9%

91
.3

1%
88

.6
5%

90
.9

6%
D

at
as

et
2

94
.9

%
93

.9
9%

98
.6

5%
95

.7
4%

M
us

ic
de

te
ct

io
n

at
M

IR
E

X
20

19
A

lg
or

ith
m

D
at

as
et

A
cc

P
m
u
si
c

R
m
u
si
c

F
m
u
si
c

D
M
D
v1

-
87

.1
3%

90
.5

6%
85

.1
3%

87
.7

6%
D
M
D
v2

-
89

.2
8%

91
.8

6%
88

.0
3%

89
.9

%
C
N
N
-T

C
N

-
91

.7
8%

90
.2

6%
95

.1
1%

92
.6

2%

Ta
bl

e
5.

2:
R

es
ul

ts
of

al
lt

he
al

go
ri

th
m

s
th

at
w

er
e

su
bm

itt
ed

to
th

e
ta

sk
of

m
us

ic
de

te
ct

io
n

of
M

IR
E

X
20

18
an

d
20

19
.

In
20

18
th

er
e

w
er

e
tw

o
ev

al
ua

tio
n

da
ta

se
ts

fo
r

th
is

ta
sk

,w
hi

le
in

20
19

th
er

e
w

as
on

ly
on

e.

120

“output” — 2021/1/31 — 21:38 — page 121 — #147

R
el

at
iv

e
m

us
ic

lo
ud

ne
ss

es
tim

at
io

n
at

M
IR

E
X

20
18

A
lg

or
ith

m
A
cc

P
F
g

R
F
g

P
B
g

R
B
g

P
N
o

R
N
o

D
M
D
v1

86
.1

5%
80

.2
5%

77
.4

%
82

.1
1%

82
.1

%
90

.2
6%

91
.0

3%
R

el
at

iv
e

m
us

ic
lo

ud
ne

ss
es

tim
at

io
n

at
M

IR
E

X
20

19
A

lg
or

ith
m

A
cc

P
F
g

R
F
g

P
B
g

R
B
g

P
N
o

R
N
o

D
M
D
v1

81
.5

2%
78

.7
4%

73
.9

2%
79

.4
1%

76
.4

7%
83

.9
8%

88
.3

4%
D
M
D
v2

84
.1

4%
87

.4
1%

70
.5

5%
80

.3
5%

81
.5

4%
86

.4
8%

90
.7

9%
C
N
N
-T

C
N

87
.4

9%
83

.7
5%

82
.9

1%
82

.3
8%

88
.9

6%
93

.8
7%

87
.7

3%

Ta
bl

e
5.

3:
R

es
ul

ts
of

th
e

al
go

ri
th

m
st

ha
tw

e
su

bm
itt

ed
to

th
e

ta
sk

of
re

la
tiv

e
m

us
ic

lo
ud

ne
ss

es
tim

at
io

n
of

M
IR

E
X

20
18

an
d

20
19

.I
n

20
18

th
er

e
w

er
e

tw
o

ev
al

ua
tio

n
da

ta
se

ts
,b

ut
on

ly
D

at
as

et
1

ha
s

an
no

ta
tio

ns
su

ita
bl

e
fo

rt
hi

s
ta

sk
.

121

“output” — 2021/1/31 — 21:38 — page 122 — #148

Map Accb

(%)
Pb

Fg

(%)
Rb

Fg

(%)
Pb

Bg

(%)
Rb

Bg

(%)
Pb

No

(%)
Rb

No

(%)

MD 89.15 87.61 91.2 - - 90.83 87.1
RMLE 82.11 85.1 82.25 76.69 76.99 84.59 87.1

Table 5.4: Performance of DMDv1 on the OpenBMAT dataset for the
tasks of relative music loudness estimation and music detection. In this
table, Fg stands both for Foreground Music, in the case of the relative
music loudness estimation task, and Music, for the music detection task.

5.1.5.2 Evaluation using OpenBMAT

We carried out this evaluation for our second publication (Meléndez-

Catalán et al., 2019). The evaluated algorithm is DMDv1 , and the testing

dataset is the entire OpenBMAT dataset. The results of this evaluation

establish a baseline for future relative music loudness estimation and mu-

sic detection algorithms. Furthermore, we use them for error analysis,

as well as to demonstrate the usefulness of having access to information

about the annotators agreement in a dataset.

Table 5.4 presents the evaluation results. To compute the values in

this table, we have run DMDv1 over the entire dataset using the ground

truth resulting from merging the three individual annotations. We apply

the same merging strategy, described at the end of Section 5.1.2.1, that we

use for the test set of the private dataset. We only discard the time intervals

with no agreement, which only represents 0.21% of the total duration of

the dataset in the case of the relative music loudness estimation task. In

the case of music detection, there cannot be disagreement. We observe a

balanced accuracy lower than 90% for both evaluations, which indicates

that there is still room for improvement for future algorithms. Note that

122

“output” — 2021/1/31 — 21:38 — page 123 — #149

Ground DMDv1DMDv1DMDv1 classified as
truth Fg Bg No

Fg 82.25% 11.56% 6.19%
Bg 13.34% 76.99% 9.67%
No 1.06% 11.84% 87.1%

Table 5.5: Balance-independent relative music loudness estimation con-
fusion matrix for the DMDv1 .

the evaluation statistics for the music detection task are significantly better

than for the relative music loudness estimation task. This happens because

the division of the Music class into the Foreground Music and Background

Music classes introduces new errors. Using the 3× 3 balanced confusion

matrix shown in Table 5.5, we can distinguish between different types of

errors:

• Errors between Foreground Music and Background Music: this type

of error is often related to a certain grey zone between the two

classes. As we have seen in Fig. 4.6, this is also where annotators

have the least agreement, and thus, it can be a challenging content

to classify.

• Foreground Music classified as No Music: these errors are typically

related to certain music genres. The algorithm tends to make this

kind of errors when analyzing music with a prominent voice part,

such as a cappella singing, opera, or hip-hop, or music with a lot of

percussion.

• Background Music classified as No Music: these errors are mainly

related to the music’s volume. They happen due to the incapacity

123

“output” — 2021/1/31 — 21:38 — page 124 — #150

Ground DMDv1DMDv1DMDv1 classified as
truth Music No Music
Music 91.2% 8.8%

No Music 12.9% 87.1%

Table 5.6: Balance-independent music detection confusion matrix for the
DMDv1 .

of the algorithm to detect music with a very low loudness in com-

parison to simultaneous non-music sounds.

• No Music classified as Background Music: these errors are com-

monly related to a certain ambiguity between what is music and

what is not. This type of error includes, mainly, non-music sounds

with certain musical features, such as a recognizable pitch or

rhythm. For example, sounds like a church bell, a ringing phone

or background noises with one or more prominent frequencies.

• No Music classified as Foreground Music: the source of this type of

errors is mainly the imprecision of the algorithm or the annotation

in the positioning of boundaries between time intervals of these two

classes.

Table 5.6 shows the result of mapping the 3 × 3 confusion matrix to

the classes of the music detection task. The former errors between Fore-

ground Music and Background Music disappear, which leads to a high

balanced Music recall.

The concept of agreement between annotators is closely related to the

existence or not of an actual ground truth. If all annotators coincide in

the annotation of a time interval, this time interval probably has a clear

ground truth according to the given taxonomy. If the content of the time

124

“output” — 2021/1/31 — 21:38 — page 125 — #151

Accuracy

0.0
0.2

0.4
0.6

0.8
1.0

Agre
em

en
t

0.0
0.2

0.4
0.6

0.8
1.0

Nu
m

be
r o

f a
ud

io
 fi

le
s

0
50
100
150
200
250
300
350

Figure 5.3: Audio file distribution by full agreement applying the RMLE
mapping and the accuracy achieved by DMDv1 when evaluated against
the ground truth resulting from merging the three individual annotations.

interval is too ambiguous for three humans to agree, then it might be that

an actual ground truth does not exist, and thus, this time interval might

not be suitable to train an algorithm or evaluate its performance. It is

in the hands of potential users of OpenBMAT to decide if they want to

train or test their algorithms using only the content with full agreement

or, alternatively, include time intervals with partial or no agreement. Note

that these ambiguous time intervals might generate a glass-ceiling effect

for the algorithm’s accuracy when used for testing.

Fig. 5.3 shows the distribution of OpenBMAT’s audio files by their

125

“output” — 2021/1/31 — 21:38 — page 126 — #152

%FAaf , in the horizontal axis, and the accuracy that DMDv1 obtained

for that audio file using the ground truth resulting from merging the three

individual annotations, in the vertical axis. Both agreement and accu-

racy values are computed using the relative music loudness estimation

classes. By adding the agreement axis, we can distinguish between errors

in audio files with a clear ground truth, and errors in audio files with an

ambiguous ground truth. Potential users of this dataset will probably find

it more beneficial to focus on the first type of errors in order to improve

their algorithms. Using the intervals in the agreement metadata (see Sec-

tion 4.2.4), the users can know if the errors correspond to a time interval

with full, partial or no agreement. Therefore, having agreement infor-

mation can help us better judge the severity of an algorithm’s error, and

have a better insight during its evaluation. Note that in Fig. 5.3 there are

more audio files with low accuracy and high agreement than audio files

with low accuracy and low agreement. This seems contradictory, but we

need to take into account that audio files with low agreement are scarce

in OpenBMAT.

5.2 Experimental approach: the TCN and
CNN-TCN architectures

With the Deep Music Detector, we already met BMAT’s goal of develop-

ing a better relative music loudness estimation algorithm. However, de-

spite its remarkable performance, the Deep Music Detector is admittedly

a fairly simple and shallow CNN with no particular feature that makes it

especially suitable for the task of relative music loudness estimation. In

our last publication (Meléndez-Catalán et al., 2020), we study the use-

126

“output” — 2021/1/31 — 21:38 — page 127 — #153

fulness of TCNs for this task. As we have already explained, TCNs are

a type of CNN with the ability to model temporal sequences, which we

consider a fundamental characteristic when analyzing temporally corre-

lated signals such as music. Moreover, inspired by the usage of CNNs to

boost the performance of RNNs, we attach a CNN front-end to the TCN

producing a novel type of network that we call CNN-TCN and that of-

fers very promising results. We presented this study at the 2020 DAFx

conference.

In this section, we first detail the networks that we propose for the task

of relative music loudness estimation: the TCN and the CNN-TCN. We

include the particularities of their architecture, an explanation of the input

features and the ground truth that they use, and the strategy we apply to

smooth their classification output. After this, we describe the experiment

that we carried out to evaluate their performance, and present the results

of this evaluation.

5.2.1 Architectures

The TCN model is formed by a stack of six residual blocks. In the right-

bottom part of Fig. 5.4, we show the structure of the residual blocks that

we use in this paper. Our residual blocks contain two 1D-convolutional

layers as proposed by Bai et al. (2018). All 1D-convolutional layers have

Ntcn neurons with non-causal filters (Lemaire and Holzapfel, 2019) of

length L and a 1D-spatial dropout rate dr. However, only the first 1D-

convolutional layer uses a rectifier activation function: we have removed

the activation function of the second 1D-convolutional layer so that the

modifications learned by the residual block (see Section 2.1.1.3) may in-

clude negative values as originally designed by He et al. (2016). The

127

“output” — 2021/1/31 — 21:38 — page 128 — #154

Figure 5.4: (Left) complete CNN-TCN architecture. (Right-top) structure
of the convolutional block. (Right-bottom) structure of the residual block.

1D-convolutional layers of each subsequent residual block have a higher

dilation rate d starting at 1 and increasing by a factor of 2 for each block.

As we explained in Section 2.1.1.3, the first 1D-convolutional layer of the

TCN reads the log-magnitude Mel-spectrogram as Nmels scalar temporal

sequences by interpreting the frequency axis as channels.

In the left part of Fig. 5.4, we show the CNN-TCN model, which is

a combination of a CNN front-end and the TCN described above. The

CNN front-end consists of a stack of seven blocks that comprise a 2D-

convolutional layer with Ncnn ReLUs containing 3 × 3 filters and 2D-

128

“output” — 2021/1/31 — 21:38 — page 129 — #155

spatial dropout rate dr, and a max-pooling layer. We apply the max-

pooling only to the frequency axis reducing its dimensionality by a factor

of 2 for each block until it is equal to 1. This time, the TCN reads the

output of the CNN as Ncnn scalar temporal sequences and models their

evolution.

Concatenating a CNN and a TCN does not necessarily produce a

model with more parameters than the TCN model alone. Eq. 5.5 shows

how the number of parameters (P) in a 1D-convolutional layer of the

TCN depends on the number of input channels Nch, the number of filters

Ntcn, their length L, and the length B of the bias vector. Adding the CNN

front-end transforms the number of channels that we input to the TCN

from Nch = Nmels to Nch = Ncnn. If we reduce the number of channels

by using a low Ncnn value, we can significantly decrease the number of

parameters of the first 1D-convolutional layer of the TCN compensating

the number of parameters added by the CNN itself.

P = NchNtcnL+B (5.5)

The output layer for both the TCN and CNN-TCN architectures has

three neurons, each of which corresponds to one of the classes of the rela-

tive music loudness estimation task. Using a softmax activation function,

the networks outputs a vector ŷ ∈ R3 for each time-frame, containing the

estimated probability of each class. This means that they offer predictions

at a frame-level regardless of the input size in the temporal dimension. We

assign the class with the highest probability to each time-frame. We refer

to a set of contiguous time-frames of the same class as a time interval of

that class. The time interval starts at the beginning of the first time-frame

and ends at the end of the last time-frame, in chronological order.

129

“output” — 2021/1/31 — 21:38 — page 130 — #156

5.2.2 Input features

To generate the input features of the TCN and CNN-TCN architectures,

we use audio transcoded to 8000 samples per second with 16 bits per

sample. From the audio data, we compute the power spectrogram with

a Hanning window with a length 512 samples (64 ms) and a hop size of

128 samples (16 ms). We then apply a Mel filter bank with Nmels = 128

filters to obtain the Mel-spectrogram, and change its magnitude scale to a

logarithmic scale producing the log-magnitude Mel-spectrogram. We cut

the log-magnitude Mel-spectrogram in blocks of 625 time-frames, which

is equivalent to 10 seconds, making the input to the network a matrix with

a 128x625 shape. The classes of the relative music loudness estimation

task are independent of the absolute loudness of the audio under analysis;

thus, to prevent our TCN and CNN-TCN models from learning cues re-

lated to it, we apply min-max normalization to each input, ensuring that

their values always range from 0 to 1. In Section 5.2.4.3, we explain the

process to generate the ground truth of these network inputs.

5.2.3 Smoothing

Classifying at a frame-level allows an algorithm to be very precise in de-

tecting a change of class; however, it also makes it prone to produce short

erroneous time intervals that make the classification noisy. To solve this

issue, we apply a smoothing strategy to the output of our models: we

use a sliding window that assigns the most represented class across all

time-frames covered by the window to its central time-frame.

130

“output” — 2021/1/31 — 21:38 — page 131 — #157

5.2.4 Experimental setup

In this experiment, we carry out two grid searches over a total of four

hyper-parameters using the OpenBMAT dataset to find the configura-

tion that produces the best possible TCN (TCN best) and CNN-TCN

(CNN -TCN best) models. We compare these models with an adaptation

of the two Deep Music Detector versions (DMDv1 and DMDv2) that

we introduced in Section 5.1.5.1. In what follows, we group them as

DMD-based algorithms. This experiment also includes the training of the

DMD-based algorithms. We impose two restrictions when searching for

TCN best and CNN -TCN best:

• TCN best must have a lower number of parameters than the DMD-

based algorithms.

• CNN -TCN best must have a lower number of parameters than

TCN best.

With these restrictions we make sure that any improvement comes

from a more appropriate architecture and not just from an increase in the

networks learning capacity. In the rest of this section, we describe the

DMD-based algorithms, we detail the training process, we explain how

we use the OpenBMAT dataset for training and testing, and we present

the evaluation metrics that we use in the experiment.

5.2.4.1 Baselines: DMD-based algorithms

As mentioned before, the Deep Music Detector is a regression algorithm;

unfortunately, the annotations in OpenBMAT are designed for classifica-

tion and not for regression. For this reason, in this experiment, we need

131

“output” — 2021/1/31 — 21:38 — page 132 — #158

to adapt DMDv1 and DMDv2 for classification. To do so, we only need

to replace the two-neuron output layer with a three-neuron output layer.

In this way, we can train these algorithms to output the probability of

each of the three classes of the relative music loudness estimation task.

We call the adapted algorithms DMDv1 clf and DMDv2 clf . In all other

respects, the DMD-based algorithms are identical to their corresponding

Deep Music Detector versions. We even apply the same rules to smooth

their predictions: we modify the class of a particular time interval based

on its class and duration, and the class and duration of the contiguous time

intervals.

Despite DMDv2 clf having approximately 4.6 times more parameters

than DMDv1 clf , the difference in accuracy between them in the MIREX

2019 competition was approximately of 2 percentage points for the task

of music detection and 3 percentage points for the task of relative music

loudness estimation. We find it difficult to judge what architecture is more

appropriate for these two tasks, which is why we include both of them in

the experiment. After the adaptation, DMDv1 clf and DMDv2 clf have a

total of 97,779 and 453,763 parameters, respectively.

We train the DMD-based algorithms for 100 epochs using the ADAM

optimizer with learning rate lr = 0.001, and the categorical cross-entropy

loss function. We weight the loss function to compensate for the imbal-

ance in terms of the number network inputs per class of the training and

validation sets. We keep the models that produce the lowest loss for the

validation set. We shuffle the training data every epoch and present it to

the networks in batches of 128 network inputs. We use keras 2.2.4 and

tensorflow-gpu 1.12. We apply a range of 2D-spatial dropout rates to the

2D-convolutional layers to avoid overfitting.

132

“output” — 2021/1/31 — 21:38 — page 133 — #159

5.2.4.2 TCN and CNN-TCN models

The first models that we train are the TCN models. We do so through

a grid search over the hyper-parameters described in Section 5.2.1: the

number of filters Ntcn, the filter length L, and the dropout rate dr of the

1D-convolutional layers. L allows us to modify the receptive field of the

TCN without affecting the model’s architecture. With Ntcn and dr we ex-

periment with the learning capacity of the network and its regularization,

respectively. We train 40 models using the following set of values for

each hyper-parameter:

• Ntcn ∈ [16, 32]

• L ∈ [3, 5, 7, 9, 11]

• dr ∈ [0.0, 0.05, 0.1, 0.15]

We then combine these TCN models with two CNNs to generate 80

CNN-TCN models. The 2D-convolutional layers of these CNNs have

Ncnn 3× 3 filters where:

• Ncnn ∈ [16, 32]

We choose sets of hyper-parameter values that produce a majority

of networks with a number of parameters lower than the number of pa-

rameters of DMDv1 clf . Given that these networks require regularization

through the usage of dropout layers, we considered that they have suffi-

cient capacity to absorb the training dataset.

We train the TCN and CNN-TCN models for 100 epochs using the

ADAM optimizer with learning rate lr = 0.001, and the categorical cross-

entropy loss function. We weight the loss function to compensate for the

133

“output” — 2021/1/31 — 21:38 — page 134 — #160

imbalance in terms of the number of time-frames per class of the training

and validation sets. We keep the models that produce the lowest loss for

the validation set. We shuffle the training data every epoch and present it

to the networks in batches of 128 network inputs. We use keras 2.2.4 and

tensorflow-gpu 1.12.

5.2.4.3 Dataset

We use OpenBMAT, the public dataset described in Section 4.2, as the

training and evaluation dataset for this experiment. Using a public dataset

is necessary for the experiment to be transparent and reproducible, and

for its results to be comparable. In Section 4.2.3.1, we mentioned that

OpenBMAT comes with ten predefined splits containing approximately

15% Foreground Music, 35% Background Music and 50% No Music each.

During training, we use nine of them: the first eight for the training set

and the ninth for the validation set. The tenth split constitutes the testing

set. From each split we only use the audio excerpts that have at least

partial agreement, i.e., the parts where at least two annotators agree. This

supposes 99.79% of the content for the relative music loudness estimation

classes.

In Section 5.2.1, we explained that the TCN and the CNN-TCN ar-

chitectures output a vector ŷ ∈ R3 for each time-frame, containing the

estimated probabilities of each of the relative music loudness estimation

classes. Thus, in order to train these networks, we need to transform the

annotations of OpenBMAT corresponding to the training and validation

sets to a set of frame-level one-hot ground truth vectors with length 3. Fig.

5.5 illustrates this transformation. We first apply the RMLE mapping and

merge the annotations of the three annotators keeping the class that pro-

134

“output” — 2021/1/31 — 21:38 — page 135 — #161

Figure 5.5: Ground truth generation process for the training, validation
and test sets of the OpenBMAT dataset.

135

“output” — 2021/1/31 — 21:38 — page 136 — #162

duces partial or full agreement at each point in time. Then, we assign to

each time-frame the class that is majority inside the time interval covered

by the time-frame. In the case of the DMD-based algorithms, the process

is the same, but we assign a single class to the entire network input, and

the assigned class is the one that is majority inside the time interval cov-

ered by the entire network input. In order to produces a higher number

of network inputs, we introduce an overlap between contiguous inputs of

50%. This results in 12,892 inputs for training and 1,616 inputs for vali-

dation in the case of the TCN and CNN-TCN models, and 74,585 inputs

for training and 9,286 inputs for validation in the case of the DMD-based

algorithms.

For the test set, the process in Fig. 5.5 stops at the penultimate step:

the ground truth is computed for the regions (objects of the Region model

described in Section 3.2.2) in the annotations of each audio file included

in the test set, and not for the network inputs. This means that the resulting

ground truth is the same for the DMD-based algorithms, and the TCN and

CNN-TCN models, which is mandatory to be able to compare them.

5.2.4.4 Metrics

To evaluate a model, we rely on the following metrics: the balanced accu-

racy (Accb), and the balanced precision (P b
c) and recall (Rb

c) of each of the

classes of the relative music loudness estimation task. We also add a new

event-based metric that we call ratio of intervals (RI) and define as the

ratio between the number of predicted time intervals Ipr, and the average

number of ground truth time intervals for all annotators Igt acrossN audio

files. We formally define RI in Eq. 5.6. This metric is limited to the eval-

uation of the number of output events: it provides relevant information

136

“output” — 2021/1/31 — 21:38 — page 137 — #163

about how noisy a model is regardless of how correct its predictions are,

which is another characteristic of its performance that complements the

insights that we can extract from the value of the segment-based metrics.

The optimal value of RI is 1.

RI =

∑N
n=0 Iprn∑N
n=0 Igtn

(5.6)

5.2.5 Results and discussion

As shown in Table 5.7, both CNN -TCN best and TCN best models out-

perform the DMD-based algorithms in terms of Accb despite using fewer

parameters. TCN best uses the following hyper-parameters:

• Ntcn = 32

• L = 5

• dr = 0.15

The receptive field of this model is 253 time-frames, which is equiv-

alent to approximately 4 seconds. After the smoothing, TCN best obtains

a Accb value 4.6 percentage points higher than DMDv1 clf using 12.4%

fewer parameters and 3.2 percentage points higher than DMDv2 clf us-

ing 81% fewer parameters. CNN -TCN best uses the following hyper-

parameters:

• Ncnn = 32

• Ntcn = 16

• L = 7

137

“output” — 2021/1/31 — 21:38 — page 138 — #164

• dr = 0.15

The receptive field of this model is 379 time-frames, which is equiv-

alent to approximately 6.1 seconds. There is an improvement in Accb,

after the smoothing, of 8.4 percentage points with respect to DMDv1 clf

using 17% fewer parameters and of 7 percentage points with respect to

DMDv2 clf using 82% fewer parameters. The improvement with respect

to TCN best is of 3.8 percentage points while using 5.5% less parameters.

Obtaining better results with fewer parameters implies that the architec-

ture makes a more efficient usage of its parameters, and thus, is more

appropriate for the task. Note that TCN best and CNN -TCN best consider,

respectively, twice and thrice more temporal context to classify than the

DMD-based algorithms.

As shown in Table 5.8 and Table 5.9, CNN -TCN best provides a sig-

nificant improvement with respect to DMDv1 clf and DMDv2 clf in the de-

tection of background music, which is one of the most challenging types

of content due to the low volume of the music (Meléndez-Catalán et al.,

2019). CNN -TCN best correctly classifies 34.9% of the background mu-

sic that DMDv2 clf cannot detect and misclassifies as No Music. This

percentage rises to 39.2% in the case of DMDv1 clf . However, the statis-

tics for the Background Music class show that there is still room for im-

provement for the relative music loudness estimation and music detection

tasks.

In the left part of Fig. 5.6, we observe that all CNN-TCN mod-

els achieve better Accb than any TCN model. This figure includes all

TCN and CNN-TCN models. Table 5.10 shows a comparison between

TCN best and a CNN-TCN model that shares the same hyper-parameters.

Note that the CNN-TCN model has fewer parameters, but still outper-

138

“output” — 2021/1/31 — 21:38 — page 139 — #165

M
od

el
A
cc

b
P

b F
g

R
b F
g

P
b B
g

R
b B
g

P
b N
o

R
b N
o

R
I

pa
ra

m
s

D
M
D
v1

cl
f

81
.3

6%
86

.9
8%

84
.2

2%
73

.1
2%

75
.9

%
84

.4
9%

83
.9

7%
1.

76
97

,7
79

D
M
D
v1

cl
f

(S
)

81
.7

%
88

.3
5%

79
.5

7%
71

.9
8%

79
.7

9%
86

.5
4%

85
.7

4%
0.

83
97

,7
79

D
M
D
v2

cl
f

82
.5

7%
85

.7
9%

86
.8

8%
75

.4
2%

75
.4

7%
86

.5
1%

85
.3

4%
1.

62
45

3,
76

3
D
M
D
v2

cl
f

(S
)

83
.0

4%
86

.5
6%

83
.9

2%
74

.8
3%

77
.8

6%
88

.2
1%

87
.3

3%
0.

81
45

3,
76

3
T
C
N
be
st

85
.7

6%
90

.0
8%

89
.2

1%
79

.5
2%

80
.3

9%
87

.7
9%

87
.6

9%
39

.2
7

85
,6

35
T
C
N
be
st

(S
)

86
.2

7%
90

.6
8%

89
.1

4%
79

.8
5%

81
.6

3%
88

.5
2%

88
.0

5%
1.

54
85

,6
35

C
N
N
-T

C
N
be
st

90
.0

5%
91

.4
3%

93
.3

8%
86

.1
8%

84
.5

8%
92

.4
3%

92
.1

8%
11

.4
1

80
,9

63
C
N
N
-T

C
N
be
st

(S
)

90
.0

6%
91

.8
1%

92
.7

9%
85

.7
3%

85
.2

%
92

.6
1%

92
.1

9%
1.

14
80

,9
63

Ta
bl

e
5.

7:
St

at
is

tic
s

of
D
M
D
v1

cl
f
,D

M
D
v2

cl
f
,T

C
N
be
st

an
d
C
N
N
-T

C
N
be
st

w
ith

an
d

w
ith

ou
ts

m
oo

th
-

in
g

(S
).

139

“output” — 2021/1/31 — 21:38 — page 140 — #166

Ground DMDv1 clfDMDv1 clfDMDv1 clf Classified As DMDv2 clfDMDv2 clfDMDv2 clf Classified As
Truth Fg Bg No Fg Bg No

Fg 79.54% 18.65% 1.77% 83.92% 15.22% 0.86%
Bg 8.64% 79.79% 11.56% 11.33% 77.86% 10.8%
No 1.85% 12.41% 85.74% 1.7% 10.97% 87.33%

Table 5.8: Balance-independent confusion matrices for the DMDv1 clf
and DMDv2 clf algorithms with smoothing.

Ground TCN bestTCN bestTCN best Classified As CNN -TCN bestCNN -TCN bestCNN -TCN best Classified As
Truth Fg Bg No Fg Bg No

Fg 89.14% 10.16% 0.7% 92.79% 6.89% 0.32%
Bg 7.66% 81.63% 10.72% 7.76% 85.2% 7.03%
No 1.51% 10.44% 88.05% 0.51% 7.29% 92.19%

Table 5.9: Balance-independent confusion matrices for the TCN best and
CNN -TCN best models with smoothing.

forms TCN best in terms of Accb. This further proves that using a CNN

front-end improves performance.

The Ratio of Intervals in Table 5.7 shows that both TCN best and

CNN -TCN best predict a number of time intervals that is much higher

than the number of time intervals in the ground truth. In this particu-

lar aspect, DMDv1 clf and DMDv2 clf are superior to our models, which

are prone to generate noise in the form of short erroneous time intervals,

especially near class changes. The bottom part of Fig. 5.7 shows an ex-

ample of this noise around second 8. To remove this noise, we apply the

smoothing strategy described in Section 5.2.3. Using the validation set,

we evaluate the impact on RI and Accb of six window sizes ranging from

0.5 to 3 seconds with steps of 0.5 seconds. We find an optimal window

size of 2 seconds for both models. This window size produces a strong

140

“output” — 2021/1/31 — 21:38 — page 141 — #167

Figure 5.6: Comparison between DMDv1 , DMDv2 and all the TCN and
CNN-TCN models in terms of Accb and RI without smoothing. The
horizontal lines at the bottom correspond to DMDv1 and DMDv2 .

decrease in RI and a light improvement of Accb. Smaller window sizes

do not decrease RI enough neither increase Accb significantly. Larger

window sizes start decreasing Accb as they can remove correct time in-

tervals of 1 second or larger. As shown in Table 5.7, after the smoothing,

TCN best and CNN -TCN best predict 54% and 14% more time intervals

with respect to the time intervals in the ground truth, respectively. Note, in

the right part of Fig. 5.6, that all CNN-TCN models produce significantly

less noise than any TCN model. This indicates that the CNN front-end

also helps in reducing this phenomenon.

141

“output” — 2021/1/31 — 21:38 — page 142 — #168

Arch Accb Ncnn Ntcn L params
TCN best 85.76% - 32 5 85,635

CNN -TCN 89.15% 16 32 5 78,211

Table 5.10: Comparison between TCN best and a CNN-TCN model with
the same hyper-parameters except for the dropout rate (dr). We pick the
best dropout rate for each model. We do not apply any smoothing.

Algorithm Computation time (s/h)
DMDv1 clf 41.99 (0.16)
DMDv2 clf 19.65 (0.56)
TCN best 8.43 (0.46)

CNN -TCN best 70.1 (3.52)

Table 5.11: Mean and standard deviation (between parenthesis) of the
computation time in seconds per analyzed hour of audio of each algorithm
over 10 runs using one thread and a CPU.

Another relevant characteristic of an algorithm, especially in the in-

dustrial context, is the computation time. In Table 5.11, we show the com-

putation time of each model. We observe that the TCN best is the fastest

architecture with less than 9 seconds per hour of audio analyzed, while

the CNN -TCN best is the slowest one with approximately 70 seconds per

hour of audio analyzed.

Analyzing the duration of the CNN -TCN best errors when we apply no

smoothing shows that almost 90% of the misclassified time intervals have

a duration that is less than or equal to 0.2 seconds. These errors amount

to approximately 16% of the misclassified time and come mainly from a

noisy classification and precision errors in class changes during the anno-

tation or the classification. Listening to the errors with durations that are

equal to or greater than 3 seconds, which represent approximately 50%

142

“output” — 2021/1/31 — 21:38 — page 143 — #169

of the misclassified time, we discover several patterns. CNN -TCN best

misclassifies:

• Loud and mixed non-music sound effects as in action films (No

Music) as Background Music.

• Speech mixed with background non-music noises with an identifi-

able pitch such as engine sounds (No Music) as Background Music

• Low volume background music (Background Music) classified as

No Music. Especially percussion music, live music and tones.

• Loud live music mixed with applauses, cheering and other audience

sounds (Foreground Music) as Background Music.

We have analyzed the features extracted by the CNN front-end. The

top and mid parts of Fig. 5.7 show how the CNN front-end works as

a feature extractor transforming and reducing the dimensionality of the

input log-magnitude Mel-sectrogram. In the example, we observe four

consistent patterns in the generated features corresponding to four sound

combinations: (4) isolated music, (1) isolated speech, (3) mixed mu-

sic and speech, (2) silence. The bottom part of Fig. 5.7 presents the

CNN -TCN best classification and the ground truth for the input at the top

of the figure. We observe an annotation precision error around second 3,

which is shorter than 0.2 seconds and an example of noisy classification

in the Foreground Music time interval between seconds 8 and 9.

143

“output” — 2021/1/31 — 21:38 — page 144 — #170

0
2

4
6

8
10

12
05010
0

Nmels

(1
)

(2
)

(3
)

(4
)

0
2

4
6

8
10

12
020

Ncnn

0
2

4
6

8
10

12
Se

co
nd

s

clf
.

g.
t.

No Bg Fg

Fi
gu

re
5.

7:
(t

op
)

E
xa

m
pl

e
of

th
e

lo
g-

m
ag

ni
tu

de
M

el
-s

pe
ct

ro
gr

am
,w

hi
ch

w
e

us
e

as
in

pu
tf

ea
tu

re
s

fo
r

bo
th

th
e

T
C

N
an

d
C

N
N

-T
C

N
ar

ch
ite

ct
ur

es
.

(m
id

)
O

ut
pu

t
of

th
e

C
N

N
in

th
e

C
N

N
-T

C
N

ar
ch

ite
ct

ur
e

fo
r

th
es

e
fe

at
ur

es
.

(b
ot

to
m

-t
op

)
C
N
N
-T

C
N
be
st

cl
as

si
fic

at
io

n
fo

r
th

es
e

fe
at

ur
es

w
ith

ou
t

sm
oo

th
in

g.
(b

ot
to

m
-b

ot
to

m
)G

ro
un

d
tr

ut
h

of
th

es
e

fe
at

ur
es

.

144

“output” — 2021/1/31 — 21:38 — page 145 — #171

5.3 Conclusions

In this chapter, we have presented two approaches to the task of relative

music loudness estimation. The first approach is the Deep Music De-

tector: the stable and production-ready technology that BMAT has been

using since 2018 for its relative music loudness estimation service. Its

optimized implementation allows it to process one hour of audio in ap-

proximately 20 seconds. We have provided an overview of its architec-

ture, input features, and training dataset, as well as a description of how

we have integrated it into BMAT and the steps involved in its analysis of

audio recordings. In addition, we have also reported on its performance in

the MIREX competition, where it obtained outstanding results, and in the

evaluation that we carried out for our second published paper (Meléndez-

Catalán et al., 2019).

The second approach includes two architectures for the task of relative

music loudness estimation: the TCN, and the CNN-TCN. The CNN-TCN

is a novel architecture that consists of the combination of a TCN with a

CNN front-end. Using the OpenBMAT dataset for training and testing,

we have compared these architectures against the DMD-based algorithms:

DMDv1 clf and DMDv2 clf . We have named TCN best the TCN model

that performs the best while using fewer parameters than DMDv1 clf and

DMDv2 clf , and we have named CNN -TCN best the CNN-TCN model

that performs the best while using fewer parameters than TCN best. Pro-

ducing better results with fewer parameters means that our architectures

make a more efficient usage of its parameters, and thus, are more appro-

priate for the task.

The results of the evaluation after the smoothing show that, in terms

of Accb, TCN best outperforms both DMDv1 clf and DMDv2 clf , and

145

“output” — 2021/1/31 — 21:38 — page 146 — #172

CNN -TCN best outperforms TCN best. Additionally, our models pro-

vide a better classification of background music. We observe that both

TCN best and CNN -TCN best use a larger temporal context for classifica-

tion than the DMD-based algorithms. The ratio of intervals reveals that

adding a CNN front-end helps smoothing the classification in compari-

son to the isolated TCN. A CNN front-end can also reduce the number of

parameters of the network with respect to an isolated TCN with the same

hyper-parameters while improving its performance. Finally, we observe

that the CNN front-end effectively works as a feature extractor that re-

duces the dimensionality of the input features and transforms them into

consistent patterns that identify different combination of music and non-

music sounds.

146

“output” — 2021/1/31 — 21:38 — page 147 — #173

Chapter 6

SUMMARY AND FUTURE
PERSPECTIVES

In Section 1.3, we set two goals: the development of state-of-the-art com-

putational approaches to the task of relative music loudness estimation,

and the introduction and promotion of the relative music loudness esti-

mation task in the research field of MIR. In that same section, we also

provided a summary of the contributions of this thesis. In Section 6.1, we

extend the explanation of these contributions confirming that we have ac-

complished the goals. After this, in Section 6.2 we list the outcomes of the

thesis that are publicly available, and finally, in Section 6.3, we provide

several ideas for future research on the task of relative music loudness

estimation.

147

“output” — 2021/1/31 — 21:38 — page 148 — #174

6.1 Summary and impact of the contributions

In this section, we provide an extended description of the contributions

of our doctoral work, which were already introduced in Section 1.3, in-

cluding also an explanation of their impact on BMAT and academia. We

consider that with these contributions we achieve the goals that we estab-

lished for this thesis.

Introduction of the relative music loudness estimation task as
a new MIR task. Under the current copyright management business

model, the taxes that TV broadcasters pay to the corresponding copy-

right management organization depends on the percentage of music they

broadcast and the proportion of this music that is played in the foreground

and in the background. Currently, BMAT’s relative music loudness esti-

mation service continuously monitors around 4300 radio stations and TV

channels to automatically detect the presence of music, and to classify it

as foreground or background music. We considered that the industrial rel-

evance of the task is sufficient reason to introduce it into the MIR research

field. We have done so in this thesis through the publication of a dataset,

the development of state-of-the-art computational approaches, and our

participation in the MIREX competition. This has already fostered tech-

nological advances that can potentially benefit BMAT in the future such

as the work by Jia et al. (2020), where the authors use OpenBMAT and

the results of the MIREX competition.

Review of the literature and the available resources related to the
detection of music. Even though there is no previous research about

the task of relative music loudness estimation, given its similarity to the

task of music detection, we can take advantage of much of the literature

involving the detection of music, and the available resources related to

148

“output” — 2021/1/31 — 21:38 — page 149 — #175

this task. With regards to the literature, we have provided a thorough

review of the published approaches for the task of music detection and the

tasks that combine the detection of music with the detection of non-music

sounds such as speech and environmental sounds. As far as the available

resources are concerned, we have described the public and private datasets

for these tasks, and the annotation tools that can be used to annotate them.

We have listed several shortcomings of the current available datasets that

should be fixed for future datasets.

Development of an audio-events annotation tool with a focus on
the annotation of their partial loudness. We have created BAT: an open-

source, web-based tool for the annotation of audio events that provides a

reliable way to annotate the partial loudness of these events when two

or more of them overlap. It also enables the definition of different tax-

onomies to adapt to multiple tasks, and the possibility of cross-annotating

audio data. Moreover, it is easy to deploy in servers thanks to the usage

of Docker. BAT has proven to be functional and useful to BMAT, having

provided hundreds of hours of annotations including the cross-annotation

of OpenBMAT, and the annotation of the training datasets of the Deep

Music Detector as well as other algorithms designed for a variety of tasks.

In addition, it has been used in several one-off projects related to the study

of the amount of music played on national and international radio stations

and TV channels.

Creation and annotation of a private dataset for the task of rel-
ative music loudness estimation. This dataset was extracted from

BMAT’s private database and comprises approximately 44 hours of audio

from TV channels and radio stations from all over the world distributed

in 1322 two-minute audio files containing highly diverse broadcast sce-

149

“output” — 2021/1/31 — 21:38 — page 150 — #176

narios. These audio files have been annotated by a single annotator using

a taxonomy of four classes: Music, Speech, Sound effects and Audience.

The annotations also include information about the partial loudness of

these types of audio events where they overlap. In the dataset, 35% of

the music appears isolated and 33% mixed with non-music sounds. The

percentage of audio files that include class changes is 85%. We used this

dataset to train the Deep Music Detector.

Creation and annotation of a public dataset for the tasks of rela-
tive music loudness estimation and music detection. Similarly to the

private dataset, we sampled BMAT’s private databse a second time to

generate OpenBMAT: a public dataset containing around 27 hours of au-

dio with annotations about the presence of music and its relative loud-

ness with respect to simultaneous non-music sounds. The dataset is di-

vided into 1647 one-minute audio files from well-known TV channels in

France, Germany, Spain and the United Kingdom, and belonging to one

of eight program types: children programs, documentaries, entertainment

programs, music programs, news broadcasts, series and films, sport pro-

grams, and talk shows. These audio files have been cross-annotated ob-

taining high partial and full agreement levels for the relative music loud-

ness estimation and the music detection tasks. According to these annota-

tions, more than 50% of the audio files include class changes for the task

of music detection, and around 66% include class changes for the task

of relative music loudness estimation. 35% of OpenBMAT’s content is

background music at different volumes and mixed with a large variety of

non-music sounds resulting from the diversity of broadcast contexts that

we have incorporated in the dataset. With these characteristics we cover

all the dataset shortcomings that we mentioned in Section 2.2.1.2, and

150

“output” — 2021/1/31 — 21:38 — page 151 — #177

provide much needed public data, enabling future evaluations to be more

transparent, reproducible and comparable. The dataset has already been

downloaded 60 unique times1 from Zenodo2, and used by Jia et al. (2020),

Gimeno et al. (2020) and ourselves (Meléndez-Catalán et al., 2020) in

published papers.

Development of BMAT’s new relative music loudness estimation
algorithm. The main industrial achievement of this our doctoral work

is to have provided BMAT with a new relative music loudness estima-

tion algorithm. Using the private dataset described above, we trained the

Deep Music Detector. This is the algorithm that is currently being used

in production at BMAT, and which provides significantly better perfor-

mance than its SVM predecessor. It also represents BMAT’s first attempt

at using deep learning. The core parts of the Deep Music Detector are

implemented in C++ and make use of TensorFlow’s C API, which results

in a extremely fast computation time of 20 seconds per hour of audio us-

ing a single thread running on a CPU, and with a RAM memory peak of

approximately 54 MB. This allows the Deep Music Detector to continu-

ously monitor more than 4300 radio stations and TV channels. The Deep

Music Detector has also been used by Jia et al. (2020) as a baseline for

their relative music loudness estimation algorithm.

Development of state-of-the-art deep learning computational ap-
proaches for the estimation of music’s relative loudness. We have

proposed the usage of TCNs for the task of relative music loudness es-

timation. We use them in isolation but also in combination with a CNN

front-end, which results in a novel deep learning architecture that we have

1last check on November 27th, 2020
2https://zenodo.org/record/3381249

151

“output” — 2021/1/31 — 21:38 — page 152 — #178

named CNN-TCN, and that is inspired by the usage of CNNs in con-

catenation with RNNs to improve the performance of the RNNs. This

new type of network uses fewer parameters than the isolated TCN, while

boosting its performance, providing a smoother classification, and func-

tioning as a feature extractor that produces consistent patterns identifying

different combinations of music and non-music sounds. This novel archi-

tecture also exceeds the performance of the Deep Music Detector versions

presented to the MIREX competition.

Organization of the MIREX competition as captain of the tasks
of relative music loudness estimation, music detection, and speech
detection. In 2018 and 2019, we organized the evaluation of these tasks

providing evaluation datasets, running the submitted algorithms, and re-

porting their results. We also participated as authors in the tasks of relative

music loudness estimation and music detection with two versions of the

Deep Music Detector algorithm: DMDv1 and DMDv2 . DMDv1 won

the competition in 2018 outperforming the algorithms of four other par-

ticipants for the task of music detection. It was also the first algorithm

to participate in the relative music loudness estimation task. In 2019,

DMDv1 placed third in both tasks, after DMDv2 . The first place was

claimed by a CNN-TCN prototype that we produced during the elabora-

tion of our third publication (Meléndez-Catalán et al., 2020).

6.2 List of publications

In this section, we list every outcome of our doctoral work that is publicly

available. This includes the published papers, the developed resources for

research, and the outcomes of our collaboration in MIREX competitions.

152

“output” — 2021/1/31 — 21:38 — page 153 — #179

6.2.1 Papers

• First accepted paper: Meléndez-Catalán, B., Molina, E., and

Gómez, E. (2017). BAT: an open-source, web-based audio-events

annotation tool. In 3rd Web Audio Conference.

• Second accepted paper: Meléndez-Catalán, B., Molina, E., and

Gómez, E. (2019b). Open broadcast media audio from tv: A dataset

of tv broadcast audio with relative music loudness annotations.

Transactions of the International Society for Music Information Re-

trieval, 2(1):43–51.

• Third accepted paper: Meléndez-Catalán, B., Molina, E., and

Gómez, E. (2020). Relative music loudness estimation using tem-

poral convolutional networks and a cnn feature extraction front-end.

In Proceedings of the 23rd International Conference on Digital Au-

dio Effects (DAFx-20), volume 5, pages 273–280.

6.2.2 Research resources

• BMAT’s Annotation Tool (BAT): https://github.com/

BlaiMelendezCatalan/BAT

• Open Broadcast Media Audio from TVs (OpenBMAT):
https://zenodo.org/record/3381249

6.2.3 MIREX collaboration

• MIREX 2018 submission: Meléndez-Catalán, B., Molina, E., and

Gómez, E. (2018) Music and/or speech detection submission. Mu-

153

“output” — 2021/1/31 — 21:38 — page 154 — #180

sic Information Retrieval Evaluation eX-change (MIREX).

• MIREX 2018 evaluation results: https://www.music-ir.
org/mirex/wiki/2018:Music_and_or_Speech_

Detection_Results

• MIREX 2019 submission: Meléndez-Catalán, B., Molina, E., and

Gómez, E. (2019a) Music detection submission. Music Information

Retrieval Evaluation eX-change (MIREX).

• MIREX 2019 evaluation results: https://www.music-ir.
org/mirex/wiki/2019:Music_Detection_Results

6.3 Future perspectives

This PhD thesis comes to an end, but at BMAT we will carry on with

our research on the task of relative music loudness estimation. There

are multiple ways in which we can still improve our technology; in this

section, we describe four of them:

• Introducing the CNN-TCN architecture: the first idea is to ap-

ply the results of our third publication and replace the CNN that

currently constitutes the Deep Music Detector with a CNN-TCN

architecture. Everything seems to indicate that this change can lead

to an improvement of performance, but we need to make sure that

the computation time of this new architecture will not represent a

setback to put it into production.

• Using audio in stereo: at BMAT, we have started using recordings

in stereo to improve our fingerprinting technology. We consider

154

“output” — 2021/1/31 — 21:38 — page 155 — #181

that the Deep Music Detector can also benefit from the extra infor-

mation that stereo audio files provide. As mentioned in Section 3.4,

we already have an annotated dataset containing stereo audio. One

idea could be to increase the number of channels of the Deep Music

Detector’s CNN from one to two in a similar way as is done for the

RGB channels when working with images.

• Implementing a multi-model Deep Music Detector: some of our

departments have spotted certain errors of the Deep Music Detector

that are specific to channels with a certain type of content. We are

already experimenting with a multi-model version of the algorithm.

This version will contain several models derived from the original

one, but fine-tuned to a particular type of content.

• Using synthetic data: all the datasets that we have used in our doc-

toral work contain real data. Using real data, we can be sure that

the networks that we train are learning to model information that is

representative of a part of the real broadcast audio. However, the

annotations that we can generate for real data are affected by the

subjectivity of the annotators and the shortcomings of the annota-

tion method. The alternative to real data is synthetic data. Synthetic

data would allow us to accurately generate different types of ground

truth, which would broaden the range of network architectures that

can be used for the task of relative music loudness estimation.

155

“output” — 2021/1/31 — 21:38 — page 156 — #182

“output” — 2021/1/31 — 21:38 — page 157 — #183

Bibliography

American National Standards Institute (1973). American national psy-

choacoustical terminology s3. 20.

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of

generic convolutional and recurrent networks for sequence modeling.

arXiv preprint arXiv:1803.01271.

Bartsch, M. A. and Wakefield, G. H. (2005). Audio thumbnailing of pop-

ular music using chroma-based representations. IEEE Transactions on

multimedia, 7(1):96–104.

Bengio, Y., Simard, P., Frasconi, P., et al. (1994). Learning long-term

dependencies with gradient descent is difficult. IEEE Transactions on

Neural Networks, 5(2):157–166.

Boersma, P. (2001). PRAAT, a system for doing phonetics by computer.

Glot International, 5(9/10):341–345.

Bogdanov, D., Wack, N., Gómez Gutiérrez, E., Gulati, S., Boyer, H.,

Mayor, O., Roma Trepat, G., Salamon, J., Zapata González, J. R.,

Serra, X., et al. (2013). Essentia: An audio analysis library for music

157

“output” — 2021/1/31 — 21:38 — page 158 — #184

information retrieval. In Proceedings of the International Conference

on Music Information Retrieval (ISMIR), pages 493–498.

Butko, T. and Nadeu, C. (2011). Audio segmentation of broadcast

news in the albayzin-2010 evaluation: overview, results, and discus-

sion. EURASIP Journal on Audio, Speech, and Music Processing,

2011(1):1–10.

Cannam, C., Landone, C., Sandler, M., and Bello, J. P. (2006). The Sonic

Visualizer: A Visualization Platform for Semantic Descriptors from. In

Proceedings of the 7th International Conference on Music Information

Retrieval (ISMIR-06), pages 324–327.

Cartwright, M., Salamon, J., Seals, A., Nov, O., and Bello, J. P. (2018).

Investigating the effect of sound-event loudness on crowdsourced audio

annotations. In Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 341–345.

Cartwright, M., Seals, A., Salamon, J., Williams, A., Mikloska, S., Mac-

Connell, D., Law, E., Bello, J. P., and Nov, O. (2017). Seeing sound:

Investigating the effects of visualizations and complexity on crowd-

sourced audio annotations. volume 1, pages 1–21. ACM New York,

NY, USA.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., and Bengio, Y. (2014). Learning phrase representations

using rnn encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078.

Choi, M., Lee, J., and Nam, J. (2018). Hybrid features for music and

158

“output” — 2021/1/31 — 21:38 — page 159 — #185

speech detection. Music Information Retrieval Evaluation eXchange

(MIREX).

Coates, A. and Ng, A. Y. (2012). Learning feature representations with

k-means. In Neural networks: Tricks of the trade, pages 561–580.

Springer.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine

learning, 20(3):273–297.

de Benito-Gorron, D., Lozano-Diez, A., Toledano, D. T., and Gonzalez-

Rodriguez, J. (2019). Exploring convolutional, recurrent, and hybrid

deep neural networks for speech and music detection in a large audio

dataset. EURASIP Journal on Audio, Speech, and Music Processing,

2019(1):9.

Doukhan, D. and Carrive, J. (2017). Investigating the use of semi-

supervised convolutional neural network models for speech/music clas-

sification and segmentation. In The Ninth International Conferences on

Advances in Multimedia (MMEDIA).

Doukhan, D., Lechapt, E., Evrard, M., and Carrive, J. (2018). Ina’s mirex

2018 music and speech detection system. Music Information Retrieval

Evaluation eXchange (MIREX).

Galliano, S., Geoffrois, E., Mostefa, D., Choukri, K., Bonastre, J.-F., and

Gravier, G. (2005). The ester phase ii evaluation campaign for the rich

transcription of french broadcast news. In Ninth European Conference

on Speech Communication and Technology.

159

“output” — 2021/1/31 — 21:38 — page 160 — #186

Gemmeke, J. F., Ellis, D. P., Freedman, D., Jansen, A., Lawrence, W.,

Moore, R. C., Plakal, M., and Ritter, M. (2017). Audio set: An ontol-

ogy and human-labeled dataset for audio events. In 2017 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 776–780. IEEE.

Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to forget:

Continual prediction with lstm.

Gfeller, B., Guo, R., Kilgour, K., Kumar, S., Lyon, J., Odell, J., Ritter, M.,

Roblek, D., Sharifi, M., Velimirović, M., et al. (2017). Now playing:

Continuous low-power music recognition. In NIPS 2017 Workshop:

Machine Learning on the Phone (NIPS).

Giannakopoulos, T., Pikrakis, A., and Theodoridis, S. (2008). Music

tracking in audio streams from movies. In Proceedings of the IEEE

10th Workshop on Multimedia Signal Processing (MMSP), pages 950–

955.

Gimeno, P., Mingote, V., Ortega, A., Miguel, A., and Lleida, E. (2020).

Partial auc optimisation using recurrent neural networks for music de-

tection with limited training data. Proc. Interspeech 2020, pages 3067–

3071.

Gimeno, P., Viñals, I., Ortega, A., Miguel, A., and Lleida, E. (2018). A

recurrent neural network approach to audio segmentation for broadcast

domain data. In IberSPEECH, pages 87–91.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep

learning, volume 1. MIT press Cambridge.

160

“output” — 2021/1/31 — 21:38 — page 161 — #187

Gravier, G., Bonastre, J.-F., Geoffrois, E., Galliano, S., McTait, K., and

Choukri, K. (2004). The ester evaluation campaign for the rich tran-

scription of french broadcast news. In LREC.

Han, J. and Moraga, C. (1995). The influence of the sigmoid function

parameters on the speed of backpropagation learning. In International

Workshop on Artificial Neural Networks, pages 195–201. Springer.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for

image recognition. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 770–778.

Herrera, P., Massaguer, J., Cano, P., Gouyon, F., Koppenberger, M.,

Wack, N., and Fabra, U. P. (2005). Mucosa: a music content semantic

annotator. In Proceedings of the 6th International Conference on Music

Information Retrieval (ISMIR-05).

Hinton, G. E. (2002). Training products of experts by minimizing con-

trastive divergence. Neural computation, 14(8):1771–1800.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory.

Neural computation, 9(8):1735–1780.

Houtgast, T. and Steeneken, H. J. M. (1973). The modulation transfer

function in room acoustics as a predictor of speech intelligibility. Acta

Acustica United with Acustica, 28(1):66–73.

Izumitani, T., Mukai, R., and Kashino, K. (2008). A background mu-

sic detection method based on robust feature extraction. In IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 13–16.

161

“output” — 2021/1/31 — 21:38 — page 162 — #188

Jang, B.-Y., Heo, W.-H., Kim, J., and Kwon, O.-W. (2018). Music and/or

speech detection methods for mirex 2018.

Jang, B.-Y., Heo, W.-H., Kim, J.-H., and Kwon, O.-W. (2019). Music

detection from broadcast contents using convolutional neural networks

with a mel-scale kernel. EURASIP Journal on Audio, Speech, and Mu-

sic Processing, 2019(1):11.

Jia, B., Lv, J., Peng, X., Chen, Y., and Yang, S. (2020). Hierarchical

regulated iterative network for joint task of music detection and mu-

sic relative loudness estimation. IEEE/ACM Transactions on Audio,

Speech, and Language Processing.

Kiefer, J., Wolfowitz, J., et al. (1952). Stochastic estimation of the maxi-

mum of a regression function. The Annals of Mathematical Statistics,

23(3):462–466.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980.

Krijnders, D. and Andringa, T. (2009). Soundscape annotation and envi-

ronmental source recognition experiments in Assen (NL). Inter Noise.

Lea, C., Flynn, M. D., Vidal, R., Reiter, A., and Hager, G. D. (2017).

Temporal convolutional networks for action segmentation and detec-

tion. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 156–165.

Lemaire, Q. and Holzapfel, A. (2019). Temporal convolutional networks

for speech and music detection in radio broadcast. In Proceedings of

162

“output” — 2021/1/31 — 21:38 — page 163 — #189

the International Conference on Music Information Retrieval (ISMIR),

pages 229–236.

Liu, C., Xie, L., Meng, H., et al. (2007). Classification of music and

speech in mandarin news broadcasts. In Proc. of the 9th Nat. Conf. on

Man-Machine Speech Communication (NCMMSC), Huangshan, An-

hui, China.

Lu, L., Jiang, H., and Zhang, H. (2001). A robust audio classification and

segmentation method. In Proceedings of the ninth ACM international

conference on Multimedia, pages 203–211.

Marolt, M. (2015). Music/speech classification and detection submis-

sion for mirex 2018. Music Information Retrieval Evaluation eXchange

(MIREX).

Meléndez-Catalán, B., Molina, E., and Gómez, E. (2017). BAT: an open-

source, web-based audio events annotation tool. In 3rd Web Audio Con-

ference.

Meléndez-Catalán, B., Molina, E., and Gómez, E. (2019). Open broad-

cast media audio from tv: A dataset of tv broadcast audio with relative

music loudness annotations. Transactions of the International Society

for Music Information Retrieval, 2(1):43–51.

Meléndez-Catalán, B., Molina, E., and Gómez, E. (2020). Relative music

loudness estimation using temporal convolutional networks and a cnn

feature extraction front-end. In Proceedings of the 23rd International

Conference on Digital Audio Effects (DAFx-20), volume 5, pages 273–

280.

163

“output” — 2021/1/31 — 21:38 — page 164 — #190

Mesaros, A., Heittola, T., and Virtanen, T. (2016). Metrics for polyphonic

sound event detection. Applied Sciences, 6(6):162.

Panagiotakis, C. and Tziritas, G. (2005). A speech/music discriminator

based on RMS and zero-crossings. In IEEE Transactions on Multime-

dia, volume 7, pages 155–166.

Piczak, K. J. (2015). Esc: Dataset for environmental sound classification.

In Proceedings of the 23rd ACM international conference on Multime-

dia, pages 1015–1018.

Richard, G., Ramona, M., and Essid, S. (2007). Combined supervised and

unsupervised approaches for automatic segmentation of radiophonic

audio streams. In IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), volume 2, pages 461–464.

Robbins, H. and Monro, S. (1951). A stochastic approximation method.

The annals of mathematical statistics, pages 400–407.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. nature, 323(6088):533–

536.

Rumelhart, D. E. and McClelland, J. L. (1987). Information Processing in

Dynamical Systems: Foundations of Harmony Theory, pages 194–281.

Saunders, J. (1996). Real-time discrimination of broadcast speech/music.

In IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), volume 2, pages 993–996.

Scharf, B. (1964). Partial masking. Acta Acustica united with Acustica,

14(1):16–23.

164

“output” — 2021/1/31 — 21:38 — page 165 — #191

Scharf, B. (1978). Loudness. Handbook of perception, 4:187–242.

Scheirer, E. and Slaney, M. (1997). Construction and evaluation of a ro-

bust multifeature speech/music discriminator. In IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP),

volume 2, pages 1331–1334.

Schlüter, J. and Sonnleitner, R. (2012). Unsupervised feature learning for

speech and music detection in radio broadcasts. In Proceedings of the

15th International Conference on Digital Audio Effects (DAFx-12).

Seyerlehner, K., Pohle, T., Schedl, M., and Widmer, G. (2007). Automatic

music detection in television productions. In Proceedings of the 10th

International Conference on Digital Audio Effects (DAFx-07).

Sjölander, K. and Beskow, J. (2000). Wavesurfer - an open source speech

tool. In INTERSPEECH, volume 4, pages 464–467.

Snyder, D., Chen, G., and Povey, D. (2015). MUSAN: A Music, Speech,

and Noise Corpus. arXiv:1510.08484v1.

Tsipas, N., Vrysis, L., Dimoulas, C., and Papanikolaou, G. (2017).

Efficient audio-driven multimedia indexing through similarity-based

speech/music discrimination. Multimedia Tools and Applications,

76(24):25603–25621.

Wittenburg, P., Brugman, H., Russel, A., Klassmann, A., and Sloetjes, H.

(2006). ELAN: A professional framework for multimodality research.

In Proceedings of the Fifth International Conference on Language Re-

sources and Evaluation (LREC), pages 1556–1559.

165

“output” — 2021/1/31 — 21:38 — page 166 — #192

Zhou, Y.-T. and Chellappa, R. (1988). Computation of optical flow using

a neural network. In ICNN, pages 71–78.

Zhu, Y., Sun, Q., and Rahardja, S. (2006). Detecting musical sounds in

broadcast audio based on pitch tuning analysis. In IEEE International

Conference on Multimedia and Expo, pages 13–16.

Zwicker, E. and Fastl, H. (1999). Psychoacoustics–facts and models.

166

