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Abstract

In neuropsychiatry, the development of brain imaging and dedicated

data analysis for personalized medicine promises to predict both the

evolution of diseases and responses of treatments. The ability to es-

timate the time course of the disease is the first step to understand

the response to potential treatments, which implies the development

of methods able to capture subject-specific features in addition to

the discrimination between pathological conditions. However, meth-

ods that effectively characterize the neuronal activity at the whole-

brain level are still lacking, and many efforts are currently made in

the fields of clinical research and neuroscience to fill this gap. The

above is particularly problematic to interpret functional Magnetic

Resonance Imaging (fMRI) data, which are indirectly coupled with

neuronal activity because of hemodynamics, yielding much slower

signals than neuronal activity. We propose a multiscale method that

combines a computational whole-brain model with machine learning

to solve this issue. In our approach, the model relates the neuronal ac-

tivity and the fMRI signals in a mechanistic fashion, allowing for ac-

cess to neuronal activity down to millisecond precision. Specifically,

we use a novel methodology that allows the extraction of space-time
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motifs at different timescales through binned time windows. Then,

we use machine learning to study which range of timescales in the

modeled neuronal activity is most informative to separate the brain’s

dynamics during rest, distinguishing subjects, tasks, and neuropsy-

chiatric conditions. To do so, we apply a classifier to the spatiotem-

poral activity patterns, spanning timescales from milliseconds to sec-

onds. Our results show associations between conditions and brain ac-

tivity patterns that are as specific between conditions as a fingerprint-

ing. Our findings determined that the timescale that extracts the most

particular features during rest and task is at around 200ms and slower

for separating neuropsychiatric disorders ( 400ms); both timescales

are much faster than that of fMRI signals. Our multiscale computa-

tional approach is a further step to study the multiple timescales of

brain dynamics and predict the dynamical interactions between brain

regions. Overall, this method raises outlooks to detect biomarkers

and predict responses of treatments.

Keywords: whole-brain modeling; space-time motifs; machine

learning; biomarkers; personalized medicine.
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Resumen

En neuropsiquiatría, la aplicación de la medicina personalizada pro-

mete (entre otros beneficios) predecir tanto la respuesta a tratamien-

tos, como el curso de las enfermedades, lo anterior basándose en ca-

racterísticas específicas de los pacientes. Sin embargo, en neurocien-

cia prevalece la necesidad de desarrollar métodos que capturen de

manera efectiva la actividad cerebral en un domino mamplio. Para

lograrlo, proponemos un método multiescala que incorporen el mo-

delado computacional y aprendizaje automático. En nuestro enfoque,

estudiamos a partir de datos de imagen de resonancia magnética (fM-

RI por sus siglas en inglés), el rango de escalas de tiempo que extrae

con precisión la información más específica para separar la dinámica

cerebral en reposo, tareas y condiciones neuropsiquiátricas. Los da-

tos fueron analizados aplicando un modelado computación de todo el

cerebro, el cual incorpora actividad sináptica cerebral en milisegun-

dos. Además, utilizamos una metodología que extrae patrones espa-

ciotemporales a diferentes escalas de tiempo por medio de binning. A

continuación, aplicamos un clasificador a estos patrones de actividad

espaciotemporales, a diferentes escalas de tiempo, nuestros resulta-

dos muestran asociaciones entre condiciones y patrones de actividad
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cerebral que son tan específicos entre condiciones como una huella

dactilar. Nuestros resultados determinan que la escala de tiempo que

extraen las características mas particulares, tanto durante reposo co-

mo en tarea es alrededor de 200ms, y más lento para separar con-

diciones neuropsiquiátricas ( 400ms), escalas que no son accesibles

utilizando fMRI. Nuestro enfoque computacional multiescala puede

ayudar a estudiar la dinámica cerebral en varias escalas temporales

y así como a predecir las interacciones de la dinámica cerebral. En

general, este método despierta expectativas para el entendimiento las

características espaciotemporales de la dinámica cerebral y de tras-

tornos neuropsiquiátricos, dicho conocimiento potencialmente podría

ser aprovechado para detectar biomarcadores y aplicar intervenciones

terapéuticas dirigidas.

Palabras claves: modelado computacional del cerebro completo; pa-

trones espaciotemporales; aprendizaje automático; biomarcadores;

medicina personalizada.
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Chapter 1

Introduction

1.1 Overview

The present manuscript introduces a novel multiscale computational

framework for studying human brain dynamics; this work’s main

contribution is a timescale characterization of the whole-brain. Such

characterization is based on machine learning algorithms.

This work contributes to an emerging research field at the inter-

section of machine learning and timescale characterization of brain

dynamics. It follows a constructive approach to get more insights

into intrinsic brain dynamics, human cognition, and possible disrup-

tions in neuropsychiatric conditions. Chapter 1 introduces person-

alized medicine fundamentals, benchmark methodologies for study-

ing brain dynamics, and new approaches that analyze such dynamics

at many timescales, particularly when integrated into a whole-brain
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model. The following Chapter 2 details the multiscale methodology

that we implement. The subsequent Chapters 3- 5 present three stud-

ies: firstly, a timescale characterization study of intrinsic brain dy-

namics, on which we aim to extract the most characteristic timescale

for separating different subjects; next, we analyze the most specific

timescale of cognitive-based brain dynamics; and last, we character-

ize across timescales different neuropsychiatric conditions. All these

chapters rely on the decoding of subjects, tasks, or conditions to iden-

tify the most informative timescale. The last Chapter 6 sums up their

contributions and puts them into context with the literature.

1.2 Characterizing function and structure

of the human brain

Personalized medicine in neuropsychiatry, promises (among other

benefits) the use of biomarkers to predict the pathogenesis of dis-

eases as well as responses to treatments as well as, based on subject-

specific features (Matthews et al., 2014; Hamburg and Collins, 2010;

Polivka et al., 2016). The above mentioned implies the develop-

ment of methods able to capture subject-specific features in addition

to the discrimination between pathological conditions. Personalized

medicine challenges neuroscience in finding methods for character-

izing the neuronal activity at the whole-brain level (Brammer, 2009).

However, to detect patterns in neuropsychiatric disorders, such as

schizophrenia and bipolar disorder, it is fundamental first to have a

better understanding of control subjects’ dynamics; neural activity
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has shown an intrinsic organization in both space and time that is far

from being fully understood (Deco et al., 2011). Toward the concept

of personalized care for neuropsychiatric disorders, remains the need

for developing multiscale methods that effectively capture the neural

dynamics of whole-brain (Markram, 2013).

Typically, imaging tools for the whole-brain are suited to data that

reflect the behavior of a population of neurons, such as the elec-

troencephalogram (EEG), magnetoencephalogram (MEG), and fMRI

(Haines, 2012). However, these tools have both advantages and lim-

itations; For example, MEG is a very costly tool because it is not

widespread in clinics and is more used for research (Squire et al.,

2013). In contrast, EEG is a widely used technique because it is

comparatively cheap, but its spatial resolution is relatively low to

uncover detailed brain networks involved in neuropathologies. On

the other hand, both clinical and research applications commonly use

MRI scanners to explore brain anatomy lesions; it is essentially due

to its refined spatial resolution (Bandettini, 2009; Glover, 2011).

Traditional methodologies for studying brain connectivity

The information processing that underlies brain functions, such as

learning and cognitive processes, emerges from the interaction of

neuronal populations at both local and global scales (Bressler and

Kelso, 2001; V. K. Jirsa, 2004; Bressler, 2002). For studying global

brain mechanisms, it is needed to map whole-brain structure and

function; in this line, we can use neuroimaging methodologies for

estimating different topological and functional measures. Typically,
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the mapping of neuroanatomical connections (figure1.1A) that can be

expressed in terms of structural connectivity (SC) matrix, is possible

by combining techniques such as MRI or diffusion tensor imaging

(DTI) (Johansen-Berg and Rushworth, 2009; Hagmann et al., 2010).

On the other hand, the tracking of brain function (see fig 1.1B) can

be assessed using, for example, fMRI or echo-planar imaging (EPI);

the functional connectivity (FC) comes from statistical correlations

of brain activity between regions (V. K. Jirsa, 2004; Greicius et al.,

2003).

For a better understanding of the fundamentals in brain dynamics and

how this basis underlays complex brain functions, it is necessary the

integration of experimental techniques at different levels, to incorpo-

rate as a whole: single neurons, neurophysiology, neuroanatomy and

neuroimaging. In cognitive neuroscience, it is essential to capture

the neural dynamics that are involved in the elaboration of cognitive

processes.

Neuroimaging methods allow the study of brain activity across sev-

eral temporal scales and with varying degrees of spatio-temporal res-

olution and invasiveness to the participant (figure1.2) (Lenartowicz

and Poldrack, 2010). By applying these methods the association of

neuronal activity with brain areas has been studied, both while per-

forming a specific task as well as during resting-state (in the absence

of a stimulus or task, hereafter called rs-MRI) (Fox and Raichle,

2007; Greicius et al., 2003). Studies of rs-MRI demonstrated that

even at rest, there are common trends of neuronal activity across dif-

ferent subjects (Damoiseaux et al., 2006; Pannunzi et al., 2017). A

recent study, which simultaneously used fMRI, positron emission to-
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mography (PET) and EEG, found that such intrinsic dynamics are as

specific as a fingerprint and that, based on resting-state activity alone,

it is possible to discriminate among different participants (Shah et

al., 2017). This ability to decode subject-specific information from

measured brain activity is a strong indication that we can identify

trait-dependent features of spontaneous brain activity. The identifi-

cation of individual traits promises great expectations for defining

neural disorders more precisely, as well as for identifying predictive

biomarkers (Polivka et al., 2016; Dickerson et al., 2011) and for the

application of personalized medical interventions (V. K. Jirsa et al.,

2017).

To overcome the experimental difficulties of measuring brain signals

with a single technique, a computational whole-brain model can be

used to simulate both neural activity and its performance in the in-

accessible spatiotemporal range (Deco and Kringelbach, 2014; Deco

et al., 2008).
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Figure 1.1: Overview of methods for mapping structure and brain ac-
tivity. (A) As represented schematically, for estimating the structural con-
nectivity (SC) matrix that represents anatomical connections, we combine
topological measuring such as; structural MRI, DTI and tractography. We
use the topological measures together with a parcellation template, here the
automatic anatomical labeling (AAL). (B) Regarding the functional connec-
tivity (FC) matrix, we measure brain activity using methods such as fMRI
and EPI, for example, by analyzing resting-state data (rs-MRI) with the
AAL parcellation scheme and correlating the time courses between regions.
(C) On the other hand, Whole-brain computational models reproduce brain
function using empirical data (SC and FC respectively), the optimal work-
ing point for the model is at which modelled FC and empirical FC match.
This scheme is adapted from Deco, Hartevelt, et al., 2017

.
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Figure 1.2: Resolution of various functional neuroimaging methods.
In this graph, each colored area represents an estimation of the spatial (y-
axis) and temporal resolution (x-axis) of a neuroimaging methodology. The
heat map denotes the invasiveness of the method, where the lowest value is
blue (non-invasive) and the highest value dark red (invasive). Notice that
the fMRI is a non-invasive technique that reaches a broad spatial domain;
nevertheless, its temporal resolution is limited to seconds ( 1-3 seconds).
Abbreviations: ECoG, electrocorticography; EEG, electroencephalogra-
phy; MEG, magnetoencephalography; nIRS, functional near-infrared spec-
troscopy; fMRI, functional magnetic resonance imaging; SPECT, single-
photon emission computed tomography; PET, positron emission tomogra-
phy; Adapted from Idrobo, 2017
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1.3 Modelling brain dynamics

Computational modeling has raised great expectations for under-

standing both healthy brain dynamics and its possible disruptions in

neuropsychiatric disorders (Deco and Kringelbach, 2014; Fan and

Markram, 2019; Wass, 2011). As figure 1C displays, whole-brain

models link empirical SC and FC to reproduce, as the output of the

model (modelled FC), some of the dynamics and complexity of the

brain.

How can computational models help us to understand the fundamen-

tal mechanisms of neural processes? More importantly, how can

neuroscientist relate these neural processes to neuroscience data? In

the following, we review a variety of computational frameworks that

have been used for measuring brain dynamics via neuroimaging.

Starting from single neurons, neurons are the computing elements of

brain dynamics, reason why it becomes necessary starting computa-

tional modeling from at the single neuron level. Cortical neurons are

cells that can produce impulses or spikes called action potentials with

high timing and precision, such an accurate organization may have an

important role for encoding, transmitting and integrating signals in

the nervous system (Mainen and Sejnowski, 1995). It is possible to

characterize action potentials in terms of their timing and frequency

(i.e., temporal and rate coding respectively). The computation of ac-

tivity in populations of neurons can be described reducing the large

population of spiking neurons, to a function that describes the dis-

tribution of neural states at a given time. Such function can be fur-

ther reduced to a single variable that describes the average firing rate.
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The modeling of such mechanisms is relevant in neuroscience for de-

scribing processes that are not directly observable, such as the case of

mean-field models of neuronal dynamics. Mean-field models capture

important aspects of neuronal function such as both inhibitory and

excitatory interactions to reflect the average behavior of a population

of neurons.

1.3.1 Mean-field model

The mean-field approximation is a standard method used in statistical

physics: it considers many individual components and describes their

average behavior. This principle has been used to develop mathemat-

ical models that reproduce the mean activity in neural populations.

Mean-field models aim to find the right mathematical description that

captures the effect of individual (local) properties at the population

level. As figure 1.3 shows, these models consider essential compo-

nents of brain dynamics such as neuronal functions and their interac-

tions (e.g., intracellular, receptors) which are essential for reflecting,

for example, the temporal relationship between neural elements.

The application of mean-field approximations into whole-brain mod-

els, combined with neuroimaging might might contribute to reach

resolutions that are not accessible using a single neuroimaging tech-

nique (Fan and Markram, 2019). In previous work, Deco and col-

leagues proposed the novel “Brain Songs framework” to extract

spacetime motifs (Deco et al., 2019); these motifs are sets of brain

regions (also called brain assemblies) that are able to synchronize

their activity in both space and time. The framework aims at identi-
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Figure 1.3: Representation of a Mean-field model for describing brain
dynamics. The mean-field approximation mathematically describes the ef-
fect of individual (local) properties at the population level. These models
consider essential components of brain dynamics such as neuronal functions
and their interactions (e.g., intracellular, receptors). This figure represents
a dynamic mean-field model that considers both excitatory (mediated by
NMDA) and inhibitory synaptic currents (mediated by GABA-A). In this
representation, the inhibitory pools connect with the excitatory pools (only
locally), while long-range connections link the excitatory pools. Adapted
from Deco et al., 2019

fying groups of brain regions with co-activation patterns and tracking

this activity at many timescales by applying a computational model.

1.4 Brain assemblies as a measure of space-

time motifs

The concept of brain assemblies comes from the translation of neural

assemblies from spiking neurons, to the interactions between differ-

ent brain regions at the whole-brain level. Neuronal assemblies also

called cell-assemblies (see Neuronal assemblies) are sets of neurons

that interact with other groups of neurons; correlations of temporal

patterns of spikes give this interaction. The hypothesis of neural orga-
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nization in cell assemblies has been studied in hippocampal neurons

(reinagel2002) as well as their possible organization in time (Harris

et al., 2003) (figure 1.4 includes cell assembly activity in the hip-

pocampus from Harris et al., 2003).

Neuronal assemblies
The psychologist, Donald Hebb explored the possible synchro-

nized cooperation of neurons, as a base for the processing of

information; establishing that the neurons may be organized in

groups, or cell assemblies (Hebb, 1949).

Hebb purposed specific cell assembly properties that could ex-

plain the neuronal code and his high efficiency:

- Overlapping: The same neuron may be part of different assem-

blies, which implies that the same neuron may be used in differ-

ent processes at the same time (Sakurai, 1999). Moreover, this

property suggests that there may be more cell assemblies than

single cells in the brain (Sakurai, 1999).

- Dynamic connections: These connections allow functional in-

teractions between assemblies, giving rise to changes when the

information processed changes (Sakurai, 1999).

In the line of studying brain assemblies, empirical studies showed that

in normal conditions, neural assemblies are dynamically arranged in

space and time. Conversely, an imbalance between neuronal assem-

blies may lead to pathological states; such as schizophrenia, a mental

disorder that has been related to a disbalance between large-scale in-

tegration of spatiotemporal patterns (reference).
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For translating cell assemblies at whole-brain dynamics, we base

our work on Deco’s approach that conceptualizes the organization

of brain activity from the hierarchy an entropy of cortical assemblies

(Deco et al., 2019) (see 1.5); considering brain dynamics as a com-

plex hierarchy of brain regions that are organized in assemblies and

interact with other assemblies or sets of regions, in both space and

time.
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Figure 1.4: Organization of cell assemblies in the hippocampus from
Harris et al., 2003. In the investigation of Harris (with rats) (Harris et
al., 2003), he demostrates how the pyramidal cells are organized in cell as-
semblies. In this figure he shows a) the location of electrodes that record
simultaneously hippocampal cells (25 cells during 1s). b) the ordering of
neurons according to their physical position represented in colour-code and
vertical lines indicate troughs of theta waves (bottom trace). And c) the re-
ordered spike raster to highlight synchrony (circled) between anatomically
distributed populations. Such organization is called ’cell assemblies’. Fig-
ure from Harris et al., 2003
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1.5 Machine learning for decoding cogni-

tive conditions, identifying functional

networks and extracting biomarkers

In neuroscience, the potential of combining whole-brain modeling

with machine learning tools for understanding healthy brain dynam-

ics as well as neuropsychiatric syndromes is probably one of the most

important perspectives (Glaser et al., 2019; Lemm et al., 2011). Ma-

chine learning focuses on the generation of algorithms that can learn

from existing data and, based on the learned patterns, make predic-

tions about new data (Varoquaux and Thirion, 2014). An example

in the field of neuroscience could be to predict a categorical output,

such as a specific neurological disease (Glaser et al., 2019). By imple-

menting machine learning, we could get some leads for biomarkers,

as well as personalized diagnoses and prognoses.

1.5.1 Cognitive applications

Cognitive neuroscientists are still a long way from understanding how

the brain works (Vacariu and Vacariu, 2013). If researchers can de-

sign simple algorithms to identify patterns of brain activity while per-

forming a specific task, it would provide a baseline for testing more

complex cognitive theories (Carlson et al., 2018). We can imple-

ment simple machine learning tools such as classification to give us

preliminary explanations about the neural underpinnings of complex

cognitive functions such as reasoning or learning (Holzinger, 2014;
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Janssen et al., 2018).

1.5.2 Personalized Medicine

Personalizing treatments based on individual-brain features, also

called stratified medicine, has long been fundamental to neurology

(Matthews et al., 2014; Ozomaro et al., 2013). For practicing strat-

ified based neuroscience, it is crucial to develop methods that char-

acterize the richness of brain dynamics at many levels of its organi-

zation (Markram, 2013). By combining multiple brain imaging tech-

niques, for example simultaneous recording of fMRI and EEG, it is

possible to reach a more extensive spatiotemporal domain than us-

ing a single method as none of the existing neuroimaging techniques

can capture brain activity on both a broad spatial and temporal scale

simultaneously (UllspergerM.&Debener2010; Mulert et al., 2008).

However, it is still not well understood which spatiotemporal scales

are most relevant during spontaneous brain activity, and multimodal

approaches are costly and prone to artefacts (Steyrl et al., 2015).

1.5.3 Predictive neuroscience leading to potential

Biomarkers

Biomarkers are biological signatures that can be used as an indicator

of normal processes, pathological processes, or responses to phar-

macological treatments (Strimbu and Tavel, 2010; Filiou and Turck,

2011). By applying machine learning tools, it has been possible to
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bridge theoretical neuroscience with clinical applications by refining

the ways we make predictions (WooC.&Wager2017) and identified

useful biomarkers in neuroimaging data of neuropsychiatric patients

(Akzhigitov et al., 2018; Janssen et al., 2018).

1.6 Promises of integrating whole-brain

modeling and machine learning

In this work, we present a multiscale approach that integrates com-

putational modelling for accessing neuronal dynamics, with the map-

ping of dynamic patterns of brain activity as well as machine learn-

ing. This approach aims to uncover the most distinctive spatiotempo-

ral domain of brain dynamics from a classification perspective, from

which we examine the classification performance to separate three

different classes; individuals, cognitive tasks and neuropsychiatric

disorders. First, we apply a computational whole-brain model, that

recovers neural signals at the millisecond timescale from both the un-

derlying structural connectivity and functional brain dynamics mea-

sured using fMRI. This was followed by the application of the “Brain

assemblies” method, which extracts co-activation patterns of brain

regions across temporal scales, from milliseconds to seconds (Deco

et al., 2019). Subsequently, we implement a multinomial logistic re-

gression (MLR) classifier to predict the target class (e.g., subjects,

cognitive tasks and neuropsychiatric conditions) based on brain activ-

ity. We examine the classifier accuracy based on the space-time mo-

tifs in comparison with benchmark methods such as functional con-
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nectivity (FC; which calculates whole-brain activity based on static

spatial correlations). The classifier is applied across timescales to

identify the most informative spatiotemporal domain for separating

between conditions.
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Chapter 2

Methodology

Our analysis pipeline is displayed in Fig 2.1. We fit a modified dy-

namic mean field (DMF) model (Deco et al., 2014) to blood oxygena-

tion level dependent (BOLD) signals from fMRI data. This model is

then used to generate the neuronal dynamics at a shorter timescale,

which is subsequently estimated using the brain assemblies frame-

work (Deco et al., 2019). In the present manuscript, the co-activation

patterns of brain assemblies are then fed into a classifier, that is based

on multinomial logistic regression and k-nearest-neighbor, to dis-

criminate three different classes; subjects, tasks and neuropsychiatric

disorders.
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Figure 2.1: Illustration of the general methodology used in this study
briefly described three steps. The methodology of this study can be sum-
marized as follows; the implementation of (A) Whole-brain modelling of
BOLD signals, to recover the intrinsic neurodynamical time-series (in mil-
liseconds). Followed by the (B) Binning of the modelled output, where
time windows are created from milliseconds to seconds, in order to extract
the spacetime motifs(bin) at many timescales. Lastly, the implementation
across binned timeframes of the (C) classifier to the space-time motifs(bin),
for capturing the particularity of each condition (different individuals, tasks
and neuropsychiatric disorders) across time.
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2.1 Acquisition and preprocessing of neu-

roimaging data (empirical data)

The present study aims to uncover the temporal scale (or range

of temporal scales), which reflects the most distinctive signature

of whole-brain spatiotemporal dynamics. We restrict our study to

whole-brain measures that estimate the correlated activity between

brain regions or subsets of brain regions (i.e. FC and space-time mo-

tifs, respectively). Explicitly we explored the whole-brain dynamical

distinctiveness in three different views; firstly, we explore the whole-

brain signature in a context to distinguish among different subjects,

secondly, we investigate this signature to differentiate separated cog-

nitive conditions (i.e. resting, working memory), and finally to dis-

criminate various neuropsychiatric disorders (such as schizophrenia

and bipolar disorder). To examine such perspectives, we analyzed

three datasets; the first dataset incorporates several sessions from

subjects resting during each session (resting-state data (Zuo et al.,

2014)). Second, a dataset that includes sessions where subjects per-

formed different cognitive tasks (task-related dataset (Senden et al.,

2017)). The third dataset comprises rs-fMRI of healthy participants

as well as participants with neuropsychiatric diagnoses (neuropsychi-

atric conditions dataset (Poldrack et al., 2016)); a brief summary of

the description of these datasets is in table 2.1. In the following, we

describe the technical information of such datasets.

21



Table 2.1: Summary of the description of the datasets analyzed in this
study. We explored the whole-brain dynamical distinctiveness of three dif-
ferent classes: subjects, cognitive tasks and neuropsychiatric conditions. To
examine such perspectives, we analyzed the three datasets that are listed in
this table.

Dataset Condition (s) Subjects Notes
Resting-state
(Zuo et al., 2014)

rs-fMRI 30
Healthy controls,
10 sessions

Tasks-related
(Senden et al.,
2017)

rs-fMRI,
visual n-back task
(Kirchner, 1958)
executive flanker task
(Eriksen and Eriksen,
1974),
mental rotation (Shep-
ard and Metzler, 1971)
and
odd-man-out task
(Flowers and Robert-
son, 1985).

14
Healthy controls,
one session of
each task

Neuropsychiatric
conditions
(Poldrack et al.,
2016)

rs-fMRI 265

Healthy controls
(130 subjects),
participants with;
schizophrenia
(50 subjects),
ADHD (43 sub-
jects) and bipolar
disorder (49
subjects).
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2.1.1 Resting-state data

The dataset analyzed in this study was obtained from the publicly

available compilation of the Consortium for Reliability and Repro-

ducibility (CoRR) (Zuo et al., 2014). This CoRR dataset comprises

ten resting-state fMRI scans, each with a duration of 10 minutes, from

thirty healthy subjects. Each subject accomplished the recording ses-

sions within a month, attending fMRI scans every three days (always

around a similar time of day).

fMRI data acquisition

Scanning sessions were carried out at Hangzhou Normal University

using a GE MR750 3T scanner (GE Medical Systems, Waukesha,

WI). During scans, participants were presented with a screen display-

ing a central fixation point. Additionally, they were instructed to relax

without falling asleep, to maintain their eyes open and not to think of

anything in particular. To minimize head motion of each participant,

foam cushions and straps were used to fix the head comfortably.

Functional resting-state data were obtained using a T2-weighted

BOLD-sensitive gradient-echo echo-planar imaging [EPI] with rep-

etition time [TR]=2000ms; echo time [TE]=30ms; flip angle

[FA]=90°; field of View [FoV]=220x220mm2; matrix 64x64; voxel

size=3.4x3.4x3.4mm3; 43 slices. For coregistration, anatomical

scans were obtained with a sagittal T1-weighted, Fast Spoiled Gra-

dient Echo (FSPGR) sequence scan with the following protocol:

TR=8.1ms; TE=3.1ms; TI=450ms; FA= 8°; FoV =256x256; voxel
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size =1x1x1mm3; 176 sagittal slices.

Structural connectivity

For determining anatomical connections, we used a generic matrix

that denotes the structural relationships between any pair of brain ar-

eas and , and that follows the AAL parcellation with regions of inter-

est (ROIs) -50-. To estimate a neuro-anatomical connectivity matrix

we use, for each participant, white matter tractography between pairs

of cortical areas. Further, we average the matrices over subjects and

apply a threshold for the existence of connections. We additionally

consider interhemispheric connections by adding all possible connec-

tions between ROIs that mirror both hemispheres. Such associations

have demonstrated relevance in whole-cortex modelling of BOLD ac-

tivity (Messé et al., 2014) and are not captured using only tractogra-

phy (Hagmann et al., 2008).

Preprocessing

Imaging preprocessing of functional data was carried out with

SPM12 (Wellcome Trust Centre for Neuroimaging, London, UK)

and DPARSF/DPABI (Yan et al., 2016). The pipeline comprised

slice-timing correction, realignment for motion correction and co-

registration of the T1 anatomical image to the mean functional image.

Moreover, preprocessing included detrending, regression of 6 move-

ment parameters, five principal component analysis (PCA), white

matter and cerebrospinal fluid (CSF) with the application of compo-
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nent based method (CompCor) (Behzadi et al., 2007) for the reduc-

tion of noise in BOLD data, as well as spatial normalization to MNI

coordinates. Furthermore, scrubbing with Power 0.5 and linear inter-

polation were performed. The parcellation of this dataset consists of

116 ROIs after pooling voxels into ROIs based on automated anatom-

ical labelling (AAL) (tzourio2002). Finally, ROI time courses were

band-pass filtered in the range between 0.01 and 0.08 Hz.

2.1.2 Task-related dataset (one rest condition and

four cognitive tasks)

This dataset analyzed is composed of ten sessions of resting-state (de-

scribed in more detail by Senden et al. Senden et al., 2017), which

includes data from fourteen healthy subjects in five behavioral con-

ditions. These conditions consist of a resting-state session (without

any task and with eyes closed) and four different tasks which were se-

lected to reflect a specific cognitive function such as; working mem-

ory (visual n-back task (Kirchner, 1958)), executive function inhi-

bition (Eriksen flanker task (Eriksen and Eriksen, 1974)), mental ro-

tation (Shepard and Metzler, 1971) and semantic reasoning (verbal

odd-man-out task (Flowers and Robertson, 1985)). Each task lasted

roughly seven minutes while resting-state lasted eight minutes, and

all conditions consisted of 192 volumes of 2 seconds.

25



fMRI data acquisition

All imaging data were acquired at Maastricht Brain Imaging Centre

(Maastricht University) on a Siemens 3T scanner (Tim Trio upgraded

to Prisma Fit). Anatomical images were collected with a rapid ac-

quisition gradient-echo T1-weighted MPRAGE image (192 sagittal

slices; TR=2250ms; TE=2.21ms; FA=9°; FoV=256×256 mm2; 1 mm

isotropic resolution). Followed by the acquisition of functional im-

ages, that was performed using an EPI sequence that comprised 38

transversal slices with TR=2000ms, TE=30ms, and FA =77° (voxel

size=3×3×3.5 mm³); no slice gap; GRAPPA=3.

Preprocessing

Anatomical data preprocessing was carried out automatically using

FreeSurfer (Reuter et al., 2012)(http://surfer.nmr.mgh.harvard.edu/)

and the probabilistic atlas parcellation described by the Desikan Kil-

lany (DK) cortical atlas (Desikan et al., 2006). Regarding functional

images, its preprocessing was performed in two sections, firstly using

BrainVoyager QX (v2.6; Brain Innovation, Maastricht, the Nether-

lands) for slice scan time correction, 3D-motion correction, a high-

pass cutoff filtering of 0.01 Hz and registration of both functional and

anatomical images respectively. Previous steps followed by clean-

ing the signals in MATLAB (version 8.10.0. Natick, Massachusetts:

The MathWorks Inc., 2013) using wavelet de-spiking (Patel and Bull-

more, 2016) and regressing out a global noise signal as determined by

the first principal component of signals observed in the ventricles. Fi-

nally, the average BOLD signal for each of 68 cortical regions defined
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by the DK atlas (Desikan et al., 2006) was computed.

2.1.3 Neuropsychiatric conditions dataset

In this chapter, we apply our multiscale framework to study a set

of neuropsychiatric conditions. We analyze 265 participants (ages

between 21-50 years) from the UCLA Consortium for Neuropsychi-

atric Phenomics (CNP) dataset (Poldrack et al., 2016). From the CNP

dataset, we analyze a subset that comprises resting-state fMRI data

(which scans lasted 304s), each with structural T1-w; of both healthy

(130 subjects) and patient groups. The clinic population include neu-

ropsychiatric syndromes such as; schizophrenia (50 subjects), partic-

ipants with adult Attention Deficit Hyperactivity Disorder (ADHD)

(43 subjects) and bipolar disorder (49 subjects).

fMRI data acquisition

Data were acquired at the Ahmanson-Lovelace Brain Mapping Cen-

ter in a 3T Siemens Trio scanner (Siemens version syngo MR B15).

fMRI data were collected with a T2*-w EPI sequence with the

following parameters: slice thickness = 4mm, 34 slices, TR=2s,

TE=30ms, flip angle=90°, matrix=64 × 64, FOV=192mm. MPRAGE

and a T1-w high-resolution anatomical scan were collected; TR=1.9s,

TE=2.26ms, slice thickness = 1mm, 176 slices, matrix=256 × 256,

FOV=250mm. DWI data were acquired with: TR/TE=9000/93ms,

slice thickness = 2mm, 64 directions, flip angle=90°, matrix=96 ×

96, axial slices, b=1000s/mm2.
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Preprocessing

The preprocessing of the neuropsychiatric conditions dataset 45 was

performed using the preprocessing pipeline for fMRIpipelines called

fMRIPrep (Esteban et al., 2019). Our approach of such preprocessing

comprises two sections: the first is carried out with (a) fMRIprep

v1.1.1 (Esteban et al., 2019), a Nipype-based tool (Gorgolewski et

al., 2011); and next, the (b) denoising using the iterative correction

method called Diffuse Cluster Estimation and Regression (DiCER).

fMRIprep workflow Each T1-weighted (T1w) volume was cor-

rected for intensity non-uniformity through N4BiasFieldCorrection

v2.1.0 (Tustison et al., 2010) and skull-stripped using antsBrainEx-

traction.sh v2.1.0 (with the NKI template). Brain surfaces were

reconstructed using recon-all from FreeSurfer v6.0.1 (Dale et al.,

1999). A brain mask was estimated with FreeSurfer, which was re-

fined using an atlas based brain mask, similar to that within Klein

et al., 2017. Spatial normalization to the ICBM 152 Nonlinear

Asymmetrical template version 2009c (Fonov et al., 2009) was per-

formed through nonlinear registration with the ants- Registration tool

of ANTs v2.1.0 (Avants et al., 2008), using brain-extracted versions

of both T1w volume and template. Brain-tissue segmentation of cere-

brospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was

performed on the brain-extracted T1w using fast (Zhang et al., 2001)

(FSL v5.0.9).

Functional data were slice-time corrected using 3dTshift from AFNI

v16.2.07 (Cox, R.W. and Hyde, 1997) and realigned to a mean ref-
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erence image using mcflirt (Jenkinson et al., 2002). ‘Fieldmap-less’

distortion correction was performed by co-registering the functional

image to the intensity-inverted T1w image (Huntenburg, 2014; Wang

et al., 2017) constrained with an EPI distortion atlas (Treiber et al.,

2016) and implemented with antsRegistration (ANTs). While this ap-

proach requires rigorous, systematic validation, we have found that it

visually improves coregistration between anatomical and functional

images. This was followed by co-registration to the corresponding

T1w using boundary-based registration (Greve and Fischl, 2009) with

nine degrees of freedom (bbregister within FreeSurfer v6.0.1). The

motion-correcting transformations, field-distortion-correcting warp,

BOLD-to-T1w transformation, and T1w-to-template (MNI) warp

were concatenated and applied in a single step using antsApply

Trans- forms (ANTs v2.1.0) (Lanczos, 1964). Framewise displace-

ment was calculated for each functional run using the implementa-

tion of Nipype (Power et al., 2014). ICA-based Automatic Removal

Of Motion Artifacts (AROMA) was used to generate noise regres-

sors for use in the non-aggressive variant of the method (Pruim et al.,

2015).

Post-fMRIprep processing (denoising) After the preprocessing us-

ing fMRIprep (Esteban et al., 2019), we use DiCER (Aquino et al.,

2020) for removing diverse kinds of widespread signal deflection,

and inter-subject variability in global correlation structure. DiCER

algorithm identifies the most characteristic signals that are directly

related to large clusters of coherent voxels (Aquino et al., 2020), fol-

lowing we describe the methods of this denoising scheme in terms of

the outputs from fMRIprep v1.1.1 58 (details at https://github.com/
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BMHLab/DiCER).

As the next step of the fmriprep pipeline, the fMRI data were ana-

lyzed within the MNI 152 Asymmetric 2009c space, fMRI data and

remaining anatomical images were resampled to the native BOLD

imaging dimensions. The automatically labeled noise and BOLD

ICA components from ICA-AROMA (described in the previous

section "2.1.3fMRIprep workflow”) were used to perform a non-

aggressive variant of ICA-AROMA on the unsmoothed outputs of

this pipeline. Regressors were calculated on the spatially smoothed

variant as described in the preprocessing pipeline (6 mm FHWM ker-

nel) and then applied to the unsmoothed preprocessed file.

In what follows, for minimizing partial-volume effects, the analysis

was restricted to voxels contained within the GM voxels probability

masks (with a threshold at >50% probability). Finally, to avoid con-

tamination by voxels with low signal plagued by susceptibility and

partial-volume effects, the voxels with signal intensities below 70%

of the mean fMRI signal intensity were excluded.

2.2 Estimation of empirical FC

We measured the static correlations of the fMRI BOLD time series,

of all conditions, through the FC measure. Such FC measures were

calculated by the Pearson correlation coefficients between all pairs of

brain regions, from ongoing fluctuations in empirical fMRI BOLD

time series. As result of the previous calculations, and according to

the parcellation scheme of each dataset, we generate FC symmetric
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matrices with dimensions; 116×116 (116 regions ROIs -50-) for each

scan of the resting-state data (Zuo et al., 2014); 68×68 (68 ROIs from

DK cortical atlas; Desikan et al., 2006) regarding each session of

the task-related dataset (Senden et al., 2017); And 82×82 concerning

each rs-fMRI session of the neuropsychiatric conditions.

2.3 Whole-brain computational modelling

2.3.1 Dynamic Mean-field Model

Mean-field models have been widely used for modeling neural re-

sponses (Deco and Rolls, 2005), fMRI activation patterns and effects

of pharmacological agents (Wilson et al., 2006). Here, we modelled

brain dynamics at a timescale of milliseconds, based on the struc-

tural connectivity of brain regions; by applying a reduced version of

a whole-brain mean-field model (DMF) (Deco et al., 2014) (Figure

2.1.A) that incorporates neuronal noise (Wong and Wang, 2006). The

DMF approach establishes that the dynamic of brain regions is given

by interconnected excitatory-inhibitory sub-networks (E–I networks).

This model considers NMDA receptors and GABA-A receptors as

mediators of excitatory and inhibitory synaptic currents, respectively.

Sub-networks interact both within a brain region as well as between

areas; at the local level, excitatory currents link with inhibitory pools,

whereas excitatory pools of different areas are associated by long-

range connections determined by the structural connectivity matrix

Cij .
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In this version of the DMF model, we used rate-constants at the mil-

lisecond scale, together with real neurophysiological values from the

Wong and Wang (Wong and Wang, 2006) derivation, who based their

model on the original spiking neural network of Brunel and Wang

(Brunel and Wang, 2001). More concretely, we can describe the

model with the following differential equations:

I
(E)
i = WEI0 + w + JNMDAS

(E)
i +GJNMDA

∑
j

CijS
(E)
j − JiS(I)

i

(2.1)
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Where I(E,I)i are input currents to the excitatory (E) or inhibitory

(I) population in the isolated brain region (i), both currents are set

by the overall effective external input I0 = 0.382 (nA) along with

the suitable values of W(E,I), and excitatory synaptic coupling J(E,I),

for obtaining a low level of spontaneous activity in the area. We

used Feedback inhibition control (FIC) (Deco et al., 2014) to model

a more realistic evoked activity of the network, by adjusting as table

2.2 shows, the values of W(E,I) and J(E,I) respectively. With such

settings, we clamp the mean firing rate of the excitatory pool to 3Hz

in a local network G = 0. Furthermore, S(E,I)
i represents the average

synaptic gating, while w = 1.4 is the local excitatory recurrence.

In Eq. 2.3 and 2.4, r(E,I)i indicates the population firing rate of either

excitatory (E) or inhibitory pools. r(E,I)i is defined by the neuronal

input-output functions H(E,I), that convert the incoming input cur-

rents I(E,I)i into firing rates. We estimated H(E, I) using the pyrami-

dal cells values from Wong and Wang, 2006 , see table 2.2. Regarding

Eqs. 2.5 and 2.6 γ = 0.641
1000

, where the divisor indicates rate-constants

in the millisecond range, as well as τE = 100 (ms) and τI = 10

(ms). Moreover, vi is uncorrelated standard Gaussian noise with an

amplitude of σ = 0.01 (nA).

The inter-area connection weights between excitatory pools are given

by the neuroanatomical matrix C. This matrix is scaled by the only

free parameter of the model, the global coupling factorG, that equally

scales all excitatory synapses. We adjusted the G parameter to move

the modelled system to its optimal working point, which is the max-

imum fitting between simulated and the empirical functional dynam-

ics. This adjustment fits the grand averaged static FC and the spa-
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tiotemporal fluctuations in terms of their metastability (see metasta-

bility). We consequently assume that all regions present equal dy-

namics and that the conductivities of the coupling of each connecting

fibre tract is also equivalent.

Metastability

In this work, we refer to metastability as a measure of the states’

variability of phase configurations (as a function of time); it

refers to how the synchronization between the different nodes

fluctuates across time (Deco and Kringelbach, 2016). Thus, in

our analysis, metastability is measured as the standard deviation

of the Kuramoto order parameter across time (see section 2.3.4).

Table 2.2: Parameters of DMF. Parameter values for the neuronal response
from Wong and Wang (Wong and Wang, 2006), and fixed values from the
reduced version of such model Deco et al., 2014

NMDA excitatory (E) gating GABA inhibitory (I) gating
WE = 1 WI = 0.7
JE = 0.15(nA) JI = 1(nA)
aE = 310(V nC) aI = 615(V nC)
bE = 125(Hz) bI = 177(Hz)
dE = 0.16(s) dI = 0.087(s)

2.3.2 Transforming neuronal activity into BOLD sig-

nal

We applied the hemodynamic Balloon–Windkessel (Friston et al.,

2003; Stephan et al., 2007) model to the simulated excitatory synap-

tic activity S(E)to obtain simulated fMRI blood oxygenation level-

dependent (BOLD) signals. The Balloon–Windkessel model calcu-

lates the BOLD-signal in a brain area based on its neural activity, by
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the summation of both excitatory and inhibitory populations (in this

study, spiking activity is on the order of milliseconds). For the i-th

region, zi rises the vasodilatory signal si. The inflow fi increases

proportionally to the si signal, and these increments cause changes in

both blood volume vi and deoxyhemoglobin content qi respectively.

Biophysical variables and corresponding equations are the following:

dsi
dt

= 0.5r
(E)
i + 3− ksn − γ(fn − 1) (2.7)

dfi
dt

= si (2.8)

τdvi
dt

= fi − vα−1
i (2.9)

τdqi
dt

=
fi(1− ρ)f

−
i 1

ρ−q1vα−1
1

v1

(2.10)

where the factor of resting oxygen extraction is indicated by ρ, and

based on the modification presented by Deco and colleagues (Deco

et al., 2019). In Eq. 2.7 the firing rate zi for different conditions is

within the experimental range. Bi is the BOLD signal of area i, which

is a static nonlinear function of the volume of such region vi, and de-

oxyhemoglobin is a volume-weighted sum of extra- and intravascular

signals that can be represented as:
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Bi = V0[(k1(1− q1) + k2(1−
qi
v1
) + k3(1− v1))] (2.11)

Biophysical parameters of Eq 2.11 were taken from Stephan et al.,

2007. Empirical as well as simulated BOLD signals were both band

pass filtered between 0.1Hz and 0.01Hz, a range where resting- state

activity is has been shown to be most functionally relevant (Biswal

et al., 1995; Glerean et al., 2012; Achard et al., 2006).

2.3.3 Synchrony of BOLD signal oscillations

As a measure of the global level of synchronization, we used the Ku-

ramoto synchronization index. In particular, by measuring the mean

of the Kuramoto order parameter across time. First, we extracted the

phases of the fMRI time series of each of the brain regions. Subse-

quently, we used the Hilbert transform (HT) on the filtered BOLD

signals to extract the narrowband signal at time t, α(t), as a rotating

vector with an instantaneous phase ϕ(t), and an instantaneous ampli-

tude A(t). The phase and the amplitude are given by the argument

and the modulus, respectively, of the complex signal z(t), given by

z(t) = a(t) + j. HT [a(t)], where j is the imaginary unit. Finally, to

calculate the global level of phase synchrony, we use the Kuramoto

order parameter R(t), that is expressed by:

R(t) =
|
∑n

k = 1eiϕk(t)|
n

(2.12)

In Eq 2.12, n is the number of brain regions in the model. In this
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work and according to the data n = brainregions. R represents the

phase coherence of the system at time t and ranges between 1 (perfect

synchrony) and 0 (complete asynchrony).

2.3.4 The Kuramoto order parameter

The Kuramoto order parameter, that as shown in previous work, is

excellent for constraining the dynamical working point of fitting be-

tween whole-brain models and empirical data (Deco, Kringelbach, et

al., 2017). By calculating the difference between the synchronization

index (mean of Kuramoto parameter) and the empirical FC, is possi-

ble to find the optimal working point of the parameterG of the model,

which is the point of maximal fitting of both simulated and empirical

functional dynamics.

2.3.5 Fitting empirical and modeled data

We used the Kuramoto order parameter, that as shown in previous

work, is excellent for constraining the dynamical working point of fit-

ting between whole-brain models and empirical data85. We calculate

the difference between the synchronization index (mean of Kuramoto

parameter) and the empirical FC, to find the optimal working point of

the parameter G of the model, which is the point of maximal fitting

of both simulated and empirical functional dynamics.

At this point, the simulated neural activation matrix brain regions ×

time points (output of DMF model) denotes the brain region i (rows)

37



at a given time t at millisecond resolution (columns).

2.4 Access to different timescales through

binning

2.4.1 Construction of event matrix at binned

timescales

Binning simulated neural activity

To capture the contrast of brain dynamics across several timescales,

we applied the framework by Deco and colleagues Deco et al., 2019,

which translates a methodology to detect neuronal assemblies from

spike data (Lopes-dos-Santos et al., 2011; Lopes-dos-Santos et al.,

2013), into a whole-brain perspective and extracts subsets of brain

regions with significant co-activation patterns. Adopting this ap-

proach, we binned the simulated neural activity (with dimensions

brainregions × t) at different timescales, where the bin width de-

fines the timescale of the neuronal activity. In detail, we explored the

temporal domain, from milliseconds to seconds, using bin sizes from

10 to 4000ms (increasing each window 10ms).

Over timescales between 10-4000ms we averaged the simulated time

series within each time bin and then created binary 0,1 sequences.

Such binarization was accomplished based on Tagliazucchi’s (Tagli-

azucchi et al., 2012) method and the intrinsic ignition approach (Deco
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and Kringelbach, 2017), by z scoring the averaged time series, where

Zn(tbin) is the z-scored and averaged simulated activity of the brain

region i in a time bin tbin, and fixing the standard deviation as the

threshold to define the events. Thus, having an event σn(tbin)=1

if Zn(tbin) > θ and σn(tbin) = 0 (no event) otherwise. As a re-

sult of this binarization, we generate the event matrices in each time

bin (eventbin matrices), such that rows represent brain regions and

columns the binned time.

2.5 Identification of spatiotemporal Motifs

in binned timescales

2.5.1 Determination of the number of spacetime mo-

tifs at different timescales

Next, to extract brain assemblies over timescales (space −
timemotifsbin), we estimated the number of significant eigenval-

ues of eventbin arrangements. The latter is obtained by apply-

ing Marčenko–Pastur distribution (Marchenko and Pastur, 1967), as

shown in previous works (Wong and Wang, 2006; Lopes-dos-Santos

et al., 2013; Deco et al., 2019). In detail, the number of spacetime

motifs is given by the number of singular values (from event matri-

ces) that are above Marčenko–Pastur distribution, which establishes

that the eigenvalues of a normal random matrix M (with statistically

independent rows) are given by the probability function:
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p(λ) =
q

2πρ2

√
λmax − λ)(λ− λmin

λ
(2.13)

Whit q = Ncolumns/Nrows ≥ 1, where Ncolumns and Nrows are the

number of columns and rows of the matrix M . ρ2 denotes the vari-

ance of the elements in M , while λmax, λmin are maximum and min-

imum bounds respectively, that are calculated by:

λmaxmin = ρ2(1±
√

1/q)2 (2.14)

After this calculation, we homogenized the number of spacetime mo-

tifs within each bin size by averaging the number of patterns (rounded

toward the next integer).

2.5.2 Extraction of brain assemblies

Finally, to extract the spatiotemporal patterns of co-activation, we

conducted an ICA analysis, separately for each timescale. Specifi-

cally, we applied the Fast ICA algorithm (Peyrache et al., 2010) (in

this work by using the FastICA toolbox for MATLAB http://research.

ics.aalto.fi/ica/fastica/) to the eventbin arrangements, where each sig-

nificant component denotes a brain assembly, and the number of com-

ponents is the average that we calculated in the previous section.
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2.6 Classification

2.6.1 Reordering of the spatiotemporal structures

In this work, we applied a machine learning classifier (based on lo-

gistic regression) to find the timescale that captures the most specific

signature of spatiotemporal brain dynamics for discriminating dif-

ferent conditions (subjects, tasks, neuropsychiatric conditions). To

implement the classification, we first created more comparable ar-

rays from the spatiotemporal structures (brain assembliesbin) ma-

trices). Since these spatiotemporal structures are co-activated pat-

terns obtained through independent component analysis, the ordering

of the patterns (i.e., columns of the brain assembliesbin arrange-

ments) does not modify the components. Therefore, we rearranged

the ordering of these patterns (horizontal axis of brain assembliesbin

based on the ordering of the first session (as a reference of order);

specifically, we computed the Pearson correlation coefficient (PCC)

to calculate the similarity between the reference patterns and the pat-

terns of all subjects and sessions (Figure 2.2A gives an example of

this reordering). Finally, we rearranged the patterns (x-axis of the

brain assembliesbin matrices) of all sessions in each timescale (10-

4000ms), as determined by the ordering producing the highest corre-

lation with the reference.
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Figure 2.2: Illustration of the steps to perform the classification across
timescales. To calculate across timescales, the classification within-
subjects, firstly, we create more comparable arrays from the spacetime pat-
terns, by (A) Reordering of the spatiotemporal structures, based on the or-
der of the first session, we rearrange the patterns (columns of space-time
motifs(bin) matrices) within-subjects. Next, (B) Feature vectorization by
transforming into vectors the spatiotemporal structures and the lower trian-
gle of the FC, respectively.

2.6.2 Feature vectorization

From the features extracted across subjects, i.e the empirical FC and

space-time motifs(bin) measures, we structured the feature vectors as

follows. Regarding the symmetrically weighted FC matrices, we

obtained the feature vectors from the lower triangular part of each

matrix (Figure 2.2B). On the other side, the space-time motifs(bin)

matrices (brain regions × number of co-activation patterns) were di-

rectly vectorized after the reordering explained in the previous sec-

tion (see sect. 2.6.1‘Reordering of the spatiotemporal structures’).

After such vectorization, the resulting FC vectors comprise p=6670

features for the parcellation with n=116 ROIs 50 (resting-state data

(Zuo et al., 2014)); p=2278 features for n=68 ROIs (Desikan et al.,

2006) (tasks-related dataset (Senden et al., 2017)); and p=3321 re-
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garding n=82 ROIs (data of neuropsychiatric conditions (Poldrack

et al., 2016)). However, the number of spatiotemporal features dif-

fers across timescales since the number of spacetime motifs may

differ across timescales. Consequently, the number of space-time

motifs(bin) features also differs as a function of the number of co-

activation patterns for a given time bin, e.g. p = 1160 using both

the 116 brain regions and with the number of patterns equal to ten.

Notice that we use the average number of space-time motifs(bin) (of

all sessions and subjects) at a given timescale, see details in text for

2.5.1"Determination of the number of spacetime motifs".

2.6.3 K-nearest neighbors and Multinomial logistic

regression algorithms

We apply the k-nearest neighbors algorithm to discriminate between

individuals of the rs-fMRI data. This method implements similarity-

based learning depending on the K nearest training examples (neigh-

bors) of each query point (Varoquaux and Thirion, 2014).

On the other hand, we use a classification algorithm that is based

on multinomial logistic regression to separate both tasks and neu-

ropsychiatric conditions. Multinomial logistic regression is a lin-

ear model that trains using a subset of the data to predict the target

classes, which, in this work, are tasks and neuropsychiatric disorders.

Multinomial logistic regression classifier is a canonical tool for high-

dimensional classification, the regressors of this model are adjusted

in order to predict the probabilities of the sample, to be classified to

each target category (i.e., tasks, conditions). Such probability relies
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on the following function:

Pr(vl ∈ S) = φ(
∑
i

wsi v
l
i) (2.15)

Where vl are the vectorized features (i.e., vectorized brain assem-

blies), i represents the index of each element for condition l to be in

the target class s. φ is the sigmoid function (ranging from 0-1). The

training of the classifier is performed by a regression to find the clas-

sification weigh wsi therefore that Pr(vl ∈ S) distinguishes the class

s against the last class sl.

We split the data into training and testing datasets to avoid over-

fitting. More specifically, we use one task/neuropsychiatric condi-

tion for learning the parameters of a predictive model, while the re-

maining sessions are used to evaluating the model (that is shown in

fig. 2.3). We use a K-fold cross-validation scheme that repeatedly

divides the data into k non-overlapping subsets, where k=number of

subjects. For more reliable estimation of model performance, we ran-

domly repeat the cross-validation 100 times and calculate the mean.

To estimate the model assessment, we calculate the average from the

accuracy scores of all repetitions. As the input of the classifier, we

use either dynamic space-time motifs at different timescales or static

FC as input, which arrays have the shape [samples × features].

Recursive feature elimination (RFE)

We applied the RFE template based on previous studies to extract

effective whole-brain connectivity on the basis of related cognitive
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Figure 2.3: Cross-validation method. The data was divided into train and
test sets (repeating 100 times). (A)) In terms of subject identification, we an-
alyzed the resting-state dataset (Zuo et al., 2014), we train the classifier with
one subject and test it using the rest of the sample (nine participants). (B) On
the other hand, regarding tasks (Senden et al., 2017) and neuropsychiatric
condition identification (Poldrack et al., 2016), we implement nested cross-
validation, whit a train set of one session and a test set with the remaining
sessions of the sample.
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functional connectivity features (Stulz et al., 2018). From this pre-

vious study, in terms of cognitive distinctiveness, we implemented

on the five conditions dataset, two cross-validation loops (see figure

2.3B), also known as nested cross-validation, to optimize the penalty

parameter. Following the nested cross-validation, the cross-validation

was formed by an outer loop of 14-folds, trained with thirteen of the

fourteen subjects from the sample. Next, from the mentioned train-

ing set, the inner loop was trained with twelve of the thirteen subjects.

Both loops of the nested cross-validation were tested with the remain-

der of one left-out subject.

All of the above is implemented in Python v3.7 using NumPy and

SciPy libraries for numerical and mathematical analysis (http://www.

scipy.org), respectively. For machine-learning we use the Scikit-learn

library Pedregosa et al., 2011 (http://scikit-learn.org).

2.6.4 Similarity matrices between sessions and its

contrast across timescales

After classifying participants using the dynamic patterns of brain ac-

tivity as input, we explore the individuality of these features at each

timescale. We use the PCC as a measure of similarity between ses-

sions of all participants to examine the heterogeneity of different ses-

sions. For such calculation, we create similarity matrices whose en-

tries denote the PCC between the first session and the second session

of the spatiotemporal features of each participant. Next, in order to

measure how far was the second candidate with the most similar pat-

terns, we compare them within each timescale by estimating the dif-
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ference between the highest PCC value and the second-highest PCC.

Further, this difference was measured per row (y-axis of similarity

matrix) and averaged.
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Chapter 3

Study 1: Individual signature

of intrinsic brain dynamics

The present study aims to explore across timescales the distinctive-

ness of brain dynamics in different healthy and pathological brain

states. For this purpose, we analyze datasets of three experimental

studies within the same multiscale methodological framework (see

2.Methodology for details). These studies are; a) resting-state study,

b) task-related study and c) neuropsychiatric study. Details of each of

these studies are described in the section 2.1“Acquisition and prepro-

cessing of neuroimaging data (empirical data)” section, for in-depth

technical details review provided references.

In the following we describe the findings of our analyses, starting

from the resting-state study. The resting brain state constitutes a

reference baseline of brain dynamics, the multiscale study of co-

activation patterns of spontaneous activity during rest state could pro-
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vide a priori hypotheses about the most relevant timescale, or range

of timescales, for extracting a signature of brain dynamics.

3.1 Introduction

In neuropsychiatry, the application of stratified medicine promises

(among other benefits) to predict both responses of treatments and

course of diseases, based on subject-specific features including

biomarkers (Matthews et al., 2014, Hamburg and Collins, 2010,

Polivka et al., 2016). Subject-based medicine challenges neuro-

science in finding methods that capture the most specific brain fea-

tures (Brammer, 2009). However, to detect patterns in neurological

disruptions, it is fundamental first to have a better understanding of

healthy brain dynamics; neural activity has shown an intrinsic orga-

nization in both space and time, that is far from being fully under-

stood (Deco et al., 2011). Toward the concept of a personalized care

for neurological diseases remains the need for developing multiscale

methods that effectively captures individualized brain activity in a

broad domain (Markram, 2013).

Studies of functional magnetic resonance imaging (fMRI) have

demonstrated that even at rest, there are common trends of neu-

ronal activity across different subjects (Damoiseaux et al., 2006,

Pannunzi et al., 2017). A recent work which simultaneously used

fMRI, positron emission tomography (PET) and electroencephalog-

raphy (EEG), found that such intrinsic dynamics are as specific as

a fingerprint that, based on resting-state activity alone, discrimi-
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nate among different participants (Shah et al., 2017). This ability

to decode subject-specific information from measured brain activity

is a strong indication that we can identify trait-dependent features

of spontaneous brain activity. The identification of individual traits

promises great expectations for defining neural disorders more pre-

cisely, as well as for identifying predictive biomarkers (Polivka et al.,

2016, Dickerson et al., 2011) and for the application of customized

medical interventions (V. K. Jirsa et al., 2017).

For facing future approaches in stratification based neuroscience,

it is crucial to develop methods that characterize the richness of

brain dynamics at many levels of its organization (Markram, 2013).

By combining multiple brain imaging techniques, for example si-

multaneous recording of fMRI and EEG, it is possible to reach a

more extensive spatiotemporal domain than using a single method

as none of the existing neuroimaging techniques can capture brain

activity on both a broad spatial and temporal scale simultaneously

(UllspergerM.&Debener2010, Mulert et al., 2008). However, it is

still not well understood at which spatiotemporal scale spontaneous

brain activity operates, and multimodal approaches are costly and

prone to artefacts (Steyrl et al., 2015).

To overcome the experimental difficulties of measuring brain sig-

nals with a single technique, a computational whole-brain model

can be used to simulate both neural activity and its performance in

the inaccessible spatiotemporal range. In previous work, Deco and

colleagues proposed the novel “Brain Songs framework” to extract

spacetime motifs (Deco et al., 2019); these motifs are spatiotempo-

ral and dynamical structures across the brain. The framework aims
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at identifying groups of brain regions with co-activation patterns and

tracking this activity at many timescales by applying a computational

model.

In this study, we use machine learning to uncover the most distinctive

spatiotemporal domain of brain dynamics from a subject classifica-

tion perspective. Figure 3.1 displays the analysis pipeline, for details

see chapter 2. First, we apply a computational whole-brain model,

that recovers neural signals at the millisecond timescale from both

the underlying structural connectivity and functional brain dynamics

measured using fMRI. Followed by the implementation of the “Brain

assemblies” method across temporal scales, which extracts the co-

activation patterns of brain regions from milliseconds to seconds. Af-

ter that, we implement a multinomial logistic regression (MLR) clas-

sifier to separate different subjects. In our approach, we characterize

individuals’ brain dynamics in terms of spatiotemporal structures in

comparison with benchmark methods such as functional connectiv-

ity (FC; which calculates whole-brain activity based on static spatial

correlations). The classifier is applied across timescales to identify

the most informative spatiotemporal domain for separating different

participants.
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3.2 Results- Searching for the timescale

that captures the most distinctive fea-

tures of intrinsic brain dynamics

We were interested in finding which timescale captures the most

distinctive features that underly the human brain’s spatiotemporal

repertoire. To answer this question, we applied whole-brain com-

putational modelling to recover neurodynamical activity underlying

multi-session rs-fMRI data (Zuo et al., 2014) (see description in table

3.1) in association with the brain assemblies framework to extract the

spatiotemporal structures in a temporal range from milliseconds to

seconds and a machine learning approach implementing a k-nearest

neighbors classifier.

Table 3.1: Summary of resting-state dataset (Zuo et al., 2014). In this
chapter, we explore at many timescales, the distinctiveness of intrinsic brain
dynamics. To examine such a perspective, we analyzed the multi-session
rs-fMRI (Zuo et al., 2014); this table contains a short description of such
data (see 2.1.1 section of Methods for details)

Dataset Subjects Sessions
Duration of each
session

Resting-state
(Zuo et al.,
2014)

30 10 (rest) 10 minutes
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3.2.1 Spacetime motifs of different participants

across time (10-4000ms)

We calculate the number of spacetime motifs in a range from 10-

4000ms, increasing 10ms each time window (binning size). Figure

3.2 shows both the average number of spacetime motifs and its round-

ing to the next integer in each timescale. In terms of the rounding, the

number of features that we use for the classification, we observe that

its distribution increases proportionally at increasing time resolution

(from 10-100ms) and reaches the maximum in the window of 100-

260ms. On the other hand, such distribution decreases inversely to

the increasing of time windows size starting from 260ms.

3.2.2 Subject identification

To explore the evolution between milliseconds and seconds of the

distinctiveness of whole-brain spacetime motifs, we implemented a

classifier based on multinomial logistic regression. More specifically,

we calculated the accuracy of both, spatiotemporal structures and

FC. Regarding the performance of space-time, this is measured in a

binned temporal range from 10-40000ms with increments of 10ms in

each timeframe. As shown in figure 3.3, the median accuracy (white

dots) to discriminate spatiotemporal assemblies of individual human

brains is above 95% across all time scales. While FC, a measure of

static correlations from the empirical temporal series, is around 67%.
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Figure 3.2: Average of spatiotemporal structures across time The mean
number of spacetime motifs were calculated at each timescale by averaging
the number of eigenvalues above Marčenko–Pastur distribution (Marchenko
and Pastur, 1967, Deco et al., 2019) (see chapter 2-Methods). In this graph,
we show in blue the mean number of spacetime motifs (y-axis) in a range
from 10-4000ms (x-axis). The black dashed line plots the average rounded
to the next integer. Grey shading highlights the time window where the
maximum number of the spatiotemporal structures was extracted.

.

3.2.3 Contrast of similarity across timescales

The similarity matrices were defined using the PCC between sessions

of each participant, in which each element contains the correlation of

spatiotemporal features of all participants. In figure 3.4, we display

two matrices, both with the relationships between the first and sec-

ond session of all participants; these matrices confirm that the fea-

tures that belong to the same participants (values within the diago-
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Figure 3.3: Subject classification performance. Classification accuracy
comparing the performance of both measures; the dynamic space-time mo-
tifs, from 10-4000ms, and the static FC measure. In binned sizes from
10-500ms (higher resolution than the reached using traditional fMRI), the
dynamic structures achieve maximal classification accuracy. In contrast,
in larger windows (>500ms), such performance decreases but maintains its
median above 95% of accuracy. Regarding FC, the median accuracy of the
classification is 67%.

nal) are the ones with higher PCC values (warm colors). The val-

ues close to 1 on the diagonal confirm the classification performance

of the previous section, which demonstrated how the spatiotempo-

ral features accurately discriminate between different participants at

different timescales.

Next, for exploring the individuality of the features for each

timescale, we measure from the PCC measure, how far away is the

second most correlated individual; by calculating, per row, the differ-
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ence between the highest and second-highest PCC. We average this

difference at each timescale, from 10-4000ms (figure 3.4), and ob-

tain a maximum value of this difference at 190ms and a minimum at

3420ms. For larger differences in similarity, the matrix more clearly

contains strong correlations on the diagonal (values 1) and low cor-

relations (close to zero) in the off-diagonal part of the matrix. Fig-

ure 7 shows the similarity matrices at the minimum and maximum

of the differences (at 190ms and 3420ms, respectively), where both

arrangements display that the spacetime patterns discriminates differ-

ent individuals. Additionally, similarity matrices demonstrate that in

a lower temporal resolution, the spatiotemporal features more chal-

lenging differentiate participants, as we observe more values close to

one (strong relationship) disperse in the matrix.
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Figure 3.4: Subject similarity, contrast across timescales. Averaged
difference between similarity matrices from 10ms-4000ms. The difference
reaches its maximum value at 190ms and decreases over time with a mini-
mum at 3420ms. This figure displays the similarity matrices at both bound-
aries, to observe its contrast; every element contains the PCC between the
first and second session of each participant, thus on the diagonal are the
values that belong to the same individual. The color scale of the matrices
indicates the correlation coefficient between pair of subjects (1 = total cor-
relation and 0 = no correlation), and both matrices evidence perfect subject
identification (the warmer values always within the diagonal). However,
comparing both arrangements, the matrix at 190ms indicates that features
of different individuals (out of diagonal) have a less statistical relationship,
showing more values closer to 0 correlation (cold elements in the matrix).

3.3 Discussion

We investigate which is the most relevant time scale for extracting

subject-specific brain signature, by the linkage of neuroimaging data

with a multiscale computational method. We introduce a multiscale

approach that applies whole-brain computational modelling to fMRI

data; in which we simulate at milliseconds the synaptic connections
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between neurons, based on the structural connectivity of brain re-

gions. Next, we extract individual spatiotemporal patterns of brain

activity within the range of 10-4000ms, and finally implement a ma-

chine learning classifier to the dynamic patterns, at each timescale.

The above enables a better understanding of fundamental brain dy-

namics and leads to the discovery of personalized medical interven-

tions.

Our results demonstrate that the spatiotemporal structures are so

unique among individuals that they can identify, with near-perfect

accuracy, a participant from a group. We also show that the individ-

uality of the brain motifs is more delimited at around 200ms, where

the structures are much more distinct per-subject. Additionally, simi-

larity among subjects decreases proportionally to the increase of tem-

poral resolution.

The findings of this work are consistent with the previous work of

Deco and colleagues that by applying the space-time motifs frame-

work to fMRI data demonstrated that both measures entropy and hi-

erarchy respectively, reach an optimum level at a timescale of ap-

proximately 200ms 15. Other studies, that without the application of

computational modelling but instead used EEG, found relevant mi-

crostates similarly within the same temporal range (200ms) (Koenig

et al., 2005; Lehmann et al., 1998). In terms of the research on in-

trinsic brain dynamics, our results are in line with previous findings

that showed the broadcasting of conscious processing at the range of

200–250ms (Del Cul et al., 2007; van Vugt et al., 2018; Dehaene and

Changeux, 2011) and provide more insights about at which timescale

the human brain encodes spontaneous processes.
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In this work, we use fMRI for mapping whole-brain structure and

function. However, fMRI has several limitations for studying brain

dynamics such as; the indirect nature of this technique (BOLD sig-

nals) and its relatively low spatiotemporal resolution, which is on the

scale of seconds (Logothetis, 2008). For studying the most specific

spatiotemporal domain of brain dynamics, we propose our multiscale

approach. We overcome fMRI limitations, by applying whole-brain

modelling that based on anatomical connections recovers neuronal

dynamics at milliseconds (Deco et al., 2014). This model combined

with the extraction of spatiotemporal motifs that through binned tem-

poral windows, tracks dynamic patterns of brain activity at may

timescales (Deco et al., 2019). Our approach is different from exist-

ing measures, first because of its flexibility to study the human brain

at different timescales. Additionally, due to the dynamic nature of

the space-time features, our method tracks spatiotemporal patterns of

brain activity that compared with benchmark measures are based on

static measures.

Whole-brain computational modeling has played an important role

for understanding intrinsic brain dynamics (Cabral et al., 2014), and

neuropsychiatric disorders (Deco and Kringelbach, 2014). On the

other hand, computational models combined with the extraction of

spatiotemporal features could thus play a significant role not only for

a better understanding of intrinsic brain dynamics 15, but also opens

up to get a personalized care of neurological disruptions (Falcon,

Jirsa, et al., 2016). Besides, subject-based perspective may improve

some treatments by predicting the outcome, but also more generally

in the discovery of biomarkers. In general terms, the application of
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brain modeling for an individualized medicine have demonstrated a

high relevance for clinical interventions of epileptic patients 11 and

stroke recovery (Falcon, Riley, et al., 2016).

In summary, computational methods, such as whole-brain modelling

(Deco and Kringelbach, 2014; Deco et al., 2008) and machine learn-

ing (Vu et al., 2018), complement traditional neuroimaging tech-

niques to study brain dynamics at different timescales. However,

future work is needed to study brain dynamics while performing cog-

nitive processes and possible disruptions of such dynamics in clinical

population. Overall, we believe our work opens future benefits to

base medical practices on the individual characteristics of patients

(Vogenberg et al., 2010), as well as for predicting the course of neu-

ropsychiatric disorders (Ozomaro et al., 2013).
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Chapter 4

Study 2: Spatiotemporal

domain of task-based cognition

4.1 Introduction

Contemporary views of whole-brain dynamics propose that human

brain functions emerge from embedded dynamics of integrated neu-

ral elements that operate as a whole (Deco and Kringelbach, 2017;

Huys et al., 2014; Perdikis et al., 2011). The characterization at many

timescales of neural functions introduced novel computational theo-

ries of healthy information processing in behavior (Perdikis et al.,

2011) as in cognition (Woodman et al., 2011). In this line, recent

timescale characterization studies established that pathological con-

ditions, like epilepsy, are associated with disturbances in the brain

dynamics (V. K. Jirsa et al., 2014). The above could be reflected,

for example, in neuropsychiatric patients’ core symptoms, such as

63



in visual hallucinations and thought disorder common symptoms in

schizophrenia (Spencer et al., 2004).

Recent multimodal brain imaging research has established that

whole-brain dynamics contain signatures of specific cognitive states

Michels et al., 2010. Furthermore, a study that simultaneously used

magnetic resonance imaging (MR), positron emission tomography

and electroencephalography, found that it is possible to identify sub-

jects based on their resting-state activity alone alone (Shah et al.,

2017). This ability to decode any condition- or subject-specific in-

formation from measured brain activity is a strong indication that we

can identify both trait and state-dependent features of neural process-

ing.

By combining multiple brain imaging techniques, it possible to reach

a more extensive spatiotemporal domain than using a single method,

due to none of the existing neuroimaging techniques can capture

brain activity on both a broad spatial and temporal scale simultane-

ously. However, it is still not well understood at which spatiotempo-

ral scale the brain operates when performing a task, and multimodal

approaches are costly and prone to artefacts (Steyrl et al., 2015).

To overcome the experimental difficulties of measuring brain signals

with a single technique, a computational whole-brain model can be

used to supplement signals in the inaccessible spatiotemporal range.

In previous work, Deco and colleagues proposed a novel framework

to extract whole-brain features named “space-time motifs” (Deco et

al., 2019); these motifs are spatiotemporal and dynamical structures

across the brain. The proposed framework aims at identifying groups
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of brain regions with co-activation patterns and tracking this activity

at many timescales by applying a computational model.

In this study, we use machine learning (as shown in fig4.1) to uncover

the most distinctive spatiotemporal domain of brain dynamics from

a classification perspective. First, we apply a computational whole-

brain model, that recovers neural signals from fMRI data at the mil-

lisecond timescale (Deco et al., 2014), and the “Brain assemblies”

method across temporal scales (Deco et al., 2019), which extracts the

co-activation patterns of brain regions from milliseconds to seconds.

After that, we implement aclassifier based on multinomial logistic re-

gression (MLR) to separate different conditions. In our approach, we

classify the dynamic spatiotemporal structures in comparison with

benchmark methods such as functional connectivity (FC) (which cal-

culates whole-brain activity based on static spatial correlations) and

evaluate which is the most distinctive spatiotemporal domain to clas-

sify cognitive conditions.
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4.2 Results- Spatiotemporal domain that

captures the most characteristic fea-

tures of brain cognition

As a second study, we apply our multiscale method for classify-

ing different tasks. We are particularly interested in examining

which range of timescales extracts the most particular features of hu-

man cognition. We apply whole-brain modelling to the task-related

dataset Senden et al., 2017 (see a summary in table 4.1 or 2.1.2 sec-

tion for details) to recover neurodynamical activity, and the brain

songs framework to extract the spatiotemporal structures from mil-

liseconds to seconds. Moreover, we use the multinomial logistic re-

gression and k-nearest-neighbor classifiers to separate between con-

ditions across timescales.

4.2.1 Space-time motifs of cognitive tasks across time

(10-4000ms)

In this section, we calculate the spatiotemporal activity patterns of

different cognitive tasks motifs, from 10-4000ms and a binning size

of 10ms (figure 4.2). We observe in figure 9 the average number of

the dynamical structures as well as its rounding (to the nearest larger

integer). As in the previous chapter, we use the rounding as a guide

for extracting this number of co-activation patterns (see methods).

Notice that the number of activity patterns increases proportionally

from 10-90ms, reaches its maximum at the range of 90-260ms, and
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Table 4.1: Summary of task-related dataset from Senden et al., 2017. As
a second study of this manuscript, we analyze at the range of 10-4000ms,
what is the most the particular timescale for separating cognitive tasks. To
that end, we analyze the task-related dataset Senden et al., 2017, which
short description is in this table (see 2.1.2 section of Methods for specific
information)

Dataset Subjects
Sessions (each par-
ticipant)

Duration

Task-related
Senden
et al., 2017

14 1 resting-state 8 minutes

1 n-back taskKirch-
ner, 1958

∼ 7 minutes

1 mental rotation
taskShepard and
Metzler, 1971

∼ 7 minutes

1 mental flanker
taskEriksen and
Eriksen, 1974

∼ 7 minutes

1 odd-man-
outFlowers and
Robertson, 1985

∼ 7 minutes
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starts to decrease at coarser resolutions (from 260ms).

Figure 4.2: Average of spatiotemporal structures across time. Here
we display, from 10-4000ms, the average number of space-time motifs of
the task-related dataset. We estimate this number counting the eigenvalues
above Marčenko–Pastur distribution (Lopes-dos-Santos et al., 2013; Deco et
al., 2019) (see section 2.5.1). This graphic plot the mean number of space-
time motifs (y-axis) at each time window (x-axis), for all sessions corre-
sponding to different conditions (orange color). Black dashed line traces
the rounding to the next integer. Regarding the grey shading, it highlights
the range of timescales with the maximum number of the spatiotemporal
structures.

4.2.2 Spatiotemporal distinctiveness cognitive func-

tion related

For studying the distinctiveness of cognitive tasks and its evolution

from milliseconds and seconds, we implemented the classification
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from 10-40000ms. We calculated the accuracy of both space-time

motifs (from 10-40000ms) and FC. As shown in figure 4.3, the me-

dian accuracy (white dots) of classification performance using empir-

ical FC is 80%. On the other hand, the performance of classifying the

space-time patterns, that is measured in binned windows with incre-

ments of 10ms, accurately discriminate between tasks in higher reso-

lutions (<70ms) and become noisy when increasing the timescale.

Figure 4.3: Classification performance of brain assemblies from 10-
4000ms in comparison with FC. From 10-700ms, a higher temporal do-
main than the reached using traditional fMRI, the classification using the
spatiotemporal patterns achieve 100% of accuracy. In contrast, in larger
windows (>700ms), such performance decreases but maintains its median
at least 80% of accuracy. Regarding FC, the median accuracy of the classi-
fication is 80%.
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4.2.3 Spatiotemporal similarity contrast cognitive

function related

In addition to the classification, we evaluate the distinctiveness of dif-

ferent tasks across timescales. To achieve this, we calculate per row

of the similarity arrangements, the difference between the highest and

second-highest PCC (see methods). In figure 4.4, we plot the average

of this difference from 10-4000ms; its maximum value is at 150ms

and its minimum at 3000ms, respectively. We display similarity ma-

trices at previously mentioned limits; the PCC values separate differ-

ent tasks (PCC values 1 whiting the diagonal) at 150ms, while at

3000ms there are more intermediate values disperse in the matrix. It

is important to remark that the particularity of the conditions starts to

decrease after reaching 190ms (maximum limit) and becomes noisier

at lower resolutions (approximately at windows higher than 500ms).
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Figure 4.4: Similarity between participants of cognitive tasks, con-
trast across timescales. Heat map indicates PCC values between pairs of
subjects (1 = total correlation and 0 = no correlation). The solid line (in
blue) denotes the mean difference between similarity matrices from 10ms-
4000ms. Such difference reaches its maximum value at 150ms and de-
creases over time with a minimum at 3000ms. We display similarity ma-
trices at both maximum and minimum bounds of the averaged difference;
Notice that both matrices accurately separate different conditions (higher
values in the diagonal), however, the similarity within tasks is higher at
150ms than at 3000ms.
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4.3 Discussion

In this study, we investigated a central question in cognitive science,

namely if there is a more relevant range of timescales for processing

cognitive tasks, which is the most characteristic range. For example,

which is the most characteristic range of timescales, for the organiza-

tion in time in broadcasting information available across the whole-

brain, this considering information as the encoding of cognitive tasks.

As the general workflow 4.1 shows (for details, see chapter 2), we

apply the brain assemblies’ approach from Deco et al., 2019 from a

classification perspective across timescales. We first A) fit a whole-

brain dynamic mean-field (DMF) model (Deco et al., 2014) with

pools of excitatory and inhibitory neurons as well as synaptic dynam-

ics to BOLD fMRI data and generate time-series on the timescale

of milliseconds. Secondly, we bin this data on different time win-

dows in a range from milliseconds to seconds (10ms-4000ms), and

for each of these windows, we extract the brain assemblies to charac-

terize the dynamical repertoire of the whole-brain. C) And finally, we

apply a classifier, across timescales, to the brain assemblies and FC

measures to separate from fMRI dynamics different cognitive tasks;

We specifically analyze fMRI data of healthy controls that include

both rs-fMRI as well as tasks such as; mental rotation (Shepard and

Metzler, 1971), odd-man-out (Flowers and Robertson, 1985), flanker

(Eriksen and Eriksen, 1974) and n-back (Kirchner, 1958) tasks. See a

summary of the task-related dataset (Senden et al., 2017) in the table

4.1 and a detailed description in section 2.1.2).

Our findings suggest that the spatiotemporal motifs characterize, with
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almost perfect accuracy, whole-brain dynamics of processing cogni-

tive tasks. In detail, we apply our classification approach based on

a multinomial logistic regression to the traditional FC and the novel

brain assemblies’ measures, classifying the spatiotemporal structures

from 10-4000ms. The classification performance demonstrates that

in a range ∼10-700ms (at milliseconds) the spatiotemporal nature of

the brain assemblies perfectly discriminate different cognitive states

whereas the median accuracy of the static FC is 80% (4.3). More-

over, from the co-activation patterns, we contrast the similarity be-

tween subjects across timescales; which demonstrates that 150ms is

the most characteristic timescale to differentiate between conditions

(4.4). It is important to remark, that the millisecond’s scale is not

accessible using only fMRI, in this study, we access to milliseconds

applying the DMF model that incorporates neuronal dynamics (Deco

et al., 2014; Deco et al., 2019) together with binned time windows to

access a broader domain from milliseconds to seconds (see methods

in section 2.4.1).

As we show in our study, the relevant timescale for characterizing

both resting and tasks is not in the order of seconds but rather faster

closer to 200ms which is consistent with previous findings on MEG

and fMRI data (Deco et al., 2019). Our findings are in concordance

with the previous work of Deco and colleagues that by applying the

space-time motifs framework to fMRI data demonstrated that both,

measures of entropy as well as a hierarchy, reach an optimum level

at a timescale of approximately 200ms (Deco et al., 2019). Other

studies, that without the application of computational modeling but

instead used EEG, found relevant microstates similarly within the
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same temporal range (∼200ms) (Koenig et al., 2005; Lehmann et

al., 1998). More recent studies found a functional signature of brain

networks using task-related fMRI datasets (jung2018).

Concerning our outcome for separating cognitive tasks, it indicates

that precisely at 150ms is the most characteristic timescale, in this

context, a previous study showed that infant facial features evoke ac-

tivity in the orbitofrontal cortex within 130ms (M. L. Kringelbach et

al., 2008). The above could be related to fast processes across tempo-

ral hierarchies related to human cognition (M. L. Kringelbach et al.,

2015).

The consistency in the range of timescales (∼200ms) across both rest-

ing and tasks experimental conditions suggests that it might be an in-

trinsic property of brain dynamics. Nevertheless, the exact relation-

ship between the temporal organization and brain processing remains

unclear.

In summary, computational methods, such as whole-brain modelling

(Deco and Kringelbach, 2014; Deco et al., 2008) and machine learn-

ing (Vu et al., 2018), complement traditional neuroimaging tech-

niques to study brain dynamics at different timescales. However, fu-

ture research is needed for investigating this temporal organization

with a multiscale approach that effectively characterizes neural dy-

namics of the information processing in both behavior and cognition

as well as their possible disruptions such as in the case of neuropsy-

chiatric disorders.
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Chapter 5

Study 3: Timescale

characterization study of

neuropsychiatric disorders

We dedicate this chapter for studying the intrinsic dynamics of hu-

man brain, in both healthy individuals and participants with neu-

ropsychiatric syndromes. We specifically study disorders such as

schizophrenia, bipolar disorder, and attention deficit/hyperactivity

disorder ADHD. In this study, we apply our multiscale approach

spanning timescales from milliseconds to seconds in order to iden-

tify the timescale that better discriminates neuropsychiatric condi-

tions (see in fig.5.1, a summary of the pipeline).
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5.1 Introduction

Brain dynamics has shown a high neural organization for processing

complex functions, also known as cognitive coordination. This co-

ordination of neural elements is apparently organized in a dynamic

and broad domain that comprises both space and time. One of the

hypotheses for explaining such an organization establishes that it is

given by a set of neural processes that control the timing of spiking

among cells (W. A. Phillips and Silverstein, 2003; J. Phillips et al.,

2012).

The development of new experimental methodologies for studying

the whole brain such as computational modeling, has contributed to

establishing more hypotheses of the organization of healthy brain dy-

namics, how it works even during rest (Deco, Kringelbach, et al.,

2017; Deco et al., 2013), and at processing complex functions (Deco

et al., 2019). This knowledge of healthy mechanisms may work as

a base for studying possible disruption in neuropsychiatric disorders’

dynamics.

Current approaches for studying neuropsychiatric disorders empha-

size the possible relationship between neuronal disorganization and

neuropsychiatric conditions. For instance, this neuronal discoordi-

nation has been identified in schizophrenia (Krajcovic et al., 2019;

Spencer et al., 2004). The neural coordination hypothesis based

on functional groups of neurons called cell assemblies (Hebb, 1949

(see Neuronal assemblies) could be affected in such a way that dis-

turbs neuron activity timing. A recent work that studied psychosis

demonstrated such disbalance reflected in a cognitive disorganization
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(Olypher et al., 2006).

We aim to study how brain dynamics are affected in neurocognitive

domains by applying computational whole-brain modeling and brain

assemblies theory. We use machine learning (pipeline shown in fig

5.1, see Chapter 2 for details) to uncover the most distinctive spa-

tiotemporal domain of brain dynamics from a classification perspec-

tive (of both healthy and patient groups). First, we apply a compu-

tational whole-brain model that recovers neural signals from fMRI

data at the millisecond timescale (Deco et al., 2014) and the “Brain

assemblies” method across temporal scales (Deco et al., 2019), which

extracts the co-activation patterns of brain regions from milliseconds

to seconds. After that, a multinomial logistic regression (MLR) clas-

sifier to separate different conditions. In our approach, we classify the

dynamic spatiotemporal structures compared with benchmark meth-

ods such as functional connectivity (FC) (which calculates whole-

brain activity based on static spatial correlations) and evaluate which

is the most distinctive spatiotemporal domain to classify cognitive

conditions.
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5.2 Results- Tracking the most important

timescale to differentiate brain disor-

ders

5.2.1 Spatiotemporal patterns of brain activity of

neuropsychiatric conditions (10-4000ms)

This section is dedicated to the application of our multiscale approach

to classify, from patterns of brain activity, different cognitive con-

ditions. We first extract the average number of space-time motifs

from 10-4000ms. As shown in figure 5.2, the space-time motifs in-

crease their number in low resolutions (milliseconds scale) and reach

its maximum at the range of 80-310ms. From 310ms, the average

number of the spatiotemporal structures decreases proportionally to

the timescale increment.

5.2.2 Spatiotemporal distinctiveness of neuropsychi-

atric disorders

We evaluate the distinctiveness, across timescales, rs-fMRI of both

healthy and neuropsychiatric states. To achieve this, we calculate

the difference between the highest and second-highest PCC (details

in the methods section) of between-subjects similarity matrices. In

figure 5.3, we show the average of this difference from 10-4000ms;

with its maximum at 420ms and its minimum at 2540ms, respectively.
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Table 5.1: Summary of neuropsychiatric conditions dataset (Poldrack
et al., 2016). We dedicate this chapter for studying across timescales (10-
4000ms) the brain dynamics signature of different cognitive disorders. We
explicitly study the neuropsychiatric fMRI datasetPoldrack et al., 2016; this
dataset contains data from both healthy controls and from different neu-
ropsychiatric conditions such as schizophrenia, ADHD and bipolar disorder.
This table contains a brief description of such dataset, for more details see
the 2.1.3section of Methods.

Dataset
One session
(each participant)

Subjects
(256)

Conditions

Neuropsychiatric
condition Pol-
drack et al.,
2016

rs-fMRI (304s) 130 Healthy controls

50 Schizophrenia
43 ADHD
49 Bipolar disorder

The distinctiveness of the conditions starts to decrease after reaching

420ms (maximum limit of mean difference) and becomes noisier at

lower resolutions (approximately at timescales higher than 500ms).

We observe that the PCC values separate neuropsychiatric disorders

at 420ms (maximum mean difference). In comparison, at 2540ms

(minimum limit of mean difference) there are lower correlations val-

ues in the diagonal, but also high PCC values between different con-

ditions; such in the case of correlations between healthy controls and

ADHD.
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Figure 5.2: Average of spatiotemporal structures across time The av-
erage number of co-activation patterns (from 10-4000ms, x-axis) of the
dataset that comprises neuropsychiatric illness (in green); black dashed line
represents the rounded averaged. This number reaches its maximal in the
range of 80-310ms (grey shading of the graph), and after reaching this max-
imum, the number of space-time motifs decreases at lower temporal resolu-
tions.
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Figure 5.3: The similarity between participants, and contrast across
timescales of healthy and neuropsychiatric conditions Mean difference
between similarity matrices from 10ms-4000ms in blue. The difference
reaches its maximum at 420ms and decreases over time with a minimum
at 2540ms. We display similarity matrices at both maximum and mini-
mum bounds of the averaged difference; Heat map indicates PCC values
between pair of participants (1 = total correlation and 0 = no correlation).
Axes of similarity matrices indicate the label of each condition (Abbrevi-
ations: CONT, healthy participants; SCH, schizophrenia; BIP, bipolar dis-
order; ADHD, Attention Deficit Hyperactivity Disorder). At 420ms, the
similarity matrix accurately differentiates all conditions.

84



5.3 Discussion

This study focuses on extracting informative spatio-temporal features

from fMRI dynamics of healthy individuals and individuals with neu-

ropsychiatric disorders from Poldrack et al., 2016. Our approach in-

corporates a model-based characterization of time scales, aiming to

find the most informative timescale for separating from brain dynam-

ics neuropsychiatric conditions.

As the general methodology that figure 5.1 describes (for details,

see methods in chapter 2), we apply the brain assemblies’ approach

(Deco et al., 2019) from a classification perspective across timescales.

We first A) fit a whole-brain dynamic mean-field (DMF) model that

incorporates pools of excitatory and inhibitory neurons and synap-

tic dynamics to BOLD fMRI data and generate time-series on the

timescale of milliseconds (Deco et al., 2014). Secondly, we bin this

data on different time windows in a range from 10ms-4000ms, and for

each of these windows, we extract the brain assemblies to character-

ize the dynamical repertoire of the whole-brain. C) Finally, we apply

a classifier based on multinomial logistic regression, in the temporal

domain from milliseconds to seconds (10ms-4000ms), to the brain

assemblies and FC measures to separate from fMRI dynamics dif-

ferent neuropsychiatric conditions. We specifically analyze rs-fMRI

data of both healthy and patient groups. Patients’ data incorporates

schizophrenia, bipolar disorder, and attention-deficit/hyperactivity

disorder. See a summary of the neuropsychiatric conditions’ dataset

(Poldrack et al., 2016) in table 5.1 and more details in section 2.1.3.

Our findings suggest that the space-time motifs characterize, with
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almost perfect accuracy, whole-brain dynamics of neuropsychiatric

conditions (see section 5.2.2). In detail, we apply our classifica-

tion approach based on a multinomial logistic regression (MLR) to

the traditional FC and the novel brain assemblies’ measures as fig-

ure 5.1.C shows. We explicitly classify, from 10-4000ms, using the

spatiotemporal structures and FC as input. The classification perfor-

mance demonstrates that the dynamics nature of the brain assemblies

perfectly discriminates different cognitive states. Moreover, from

the co-activation patterns, we contrast the similarity between sub-

jects across timescales; which demonstrates that ∼420ms is the most

characteristic timescale to differentiate between conditions. It is im-

portant to remark, that the millisecond’s scale is not accessible us-

ing only fMRI, in this study, we access to milliseconds applying the

DMF model that incorporates neuronal dynamics (Deco et al., 2014)

together with binned time windows to access a broader domain from

milliseconds to seconds (see section 2.4.1).

Our findings suggests a temporal disruption of intrinsic intrinsic brain

dynamics. Our timescale characterization for separating neuropsy-

chiatric disorders shows an optimal distinctiveness at ∼400ms, a

longer timescale than the range found in previous work that anal-

ized healthy rs-fMRI Deco et al., 2019. Our results indicates that

neuropsychiatric conditions may have bases on spatiotemporal al-

terations of brain dynamics. Previous studies of mental disorders

(Fonov et al., 2009) supported such hypothesis and demonstrated

disturbances in spatial- temporal mechanism (Dawson, 2004 such

as schizophrenia (Northoff et al., 2020) and autism spectrum disor-

ders (Wass, 2011), (Watanabe et al., 2019). Indeed the severity of
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some symptoms of autism has been associated with a longer intrin-

sic timescale of particular brain areas (Watanabe et al., 2019). In

this line, the recently introduced concept of ‘Spatiotemporal Psy-

chopathology’ also suggests the relevance of taking into consider-

ation possible disruptions of both the spatial and temporal domain

in psychiatric disorders (Northoff, 2016; Northoff, 2018; Northoff,

2018). Future studies are needed to examine this possible disbalance

in space and time of neuropsychiatric brain dynamics. Such a hy-

pothesis might be further studied by extracting patterns of interacting

neuronal assemblies (Fingelkurts and Fingelkurts, 2019; Deco et al.,

2019).

Brain dynamics shows a complex organization at many spatio-

temporal scales (Deco et al., 2011; Perdikis et al., 2011), a proper

characterization of temporal scales could provide some guidance for

experimental steps. Whole-brain computational modeling has played

an important role for understanding intrinsic brain dynamics (Cabral

et al., 2014), and neuropsychiatric disorders (Deco and Kringelbach,

2014). On the other hand, computational models combined with the

extraction of spatiotemporal features could thus play a significant

role not only for a better understanding of intrinsic brain dynamics

(Deco et al., 2019) , but also opens up to get a personalized care of

neuropsychiatric disruptions (Falcon, Jirsa, et al., 2016). Besides,

subject-based perspective may improve some treatments by predict-

ing the outcome, but also more generally in the discovery of biomark-

ers. In general terms, the application of brain modeling for an indi-

vidualized medicine have demonstrated a high relevance for clinical

interventions of epileptic patients (V. K. Jirsa et al., 2017) and stroke
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recovery (Falcon, Riley, et al., 2016).

In summary, computational methods, such as whole-brain modelling

(Deco and Kringelbach, 2014; Deco et al., 2008) and machine learn-

ing (Vu et al., 2018), complement traditional neuroimaging tech-

niques to study brain dynamics at different timescales. However,

future work is needed to study brain dynamics while performing cog-

nitive processes and possible disruptions of such dynamics in clinical

population. Overall, we believe our work opens future benefits to

base medical practices on the individual characteristics of patients

(Vogenberg et al., 2010), as well as for predicting the course of neu-

ropsychiatric disorders (Ozomaro et al., 2013).
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Chapter 6

General discussion

In this work, we applied a multiscale method for extracting the most

informative time scale of human brain dynamics from three differ-

ent decoding schemes: to separate different participants, cognitive

tasks, and neuropsychiatric conditions; we describe such perspec-

tives as separated studies, according to the analysis of fMRI data,

i.e., resting-state data (Zuo et al., 2014), task-based dataset (Senden

et al., 2017), and neuropsychiatric conditions (Poldrack et al., 2016),

respectively. We summarize our multiscale methodological approach

in three main steps; first, we fit a whole-brain model of BOLD sig-

nals to recover the intrinsic neurodynamical time-series (in millisec-

onds). Secondly, we apply the modeled output’s binning, where time

windows are created from milliseconds to seconds to extract the spa-

tiotemporal motifs(bin) at many timescales. Lastly, the implementa-

tion across binned timeframes of the classifier to the spacetime mo-

tifs(bin) captures each condition’s particularity (different individuals,

tasks, and neuropsychiatric disorders) across time.
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6.1 Relevance of multiscale approaches in

experimental neuroscience

Recent theories of brain information processing point out the im-

portance of characterizing brain dynamics at multiple timescales

(Perdikis et al., 2011), these analysis have become increasingly im-

portant for studying baseline dynamics (Morcom and Fletcher, 2007),

cognitive processes (M. L. Kringelbach et al., 2015) and brain disor-

ders (Lytton et al., 2017; V. K. Jirsa et al., 2014; Fingelkurts and

Fingelkurts, 2019).

We introduce a multiscale approach that applies whole-brain compu-

tational modelling to fMRI data; in which we simulate the synaptic

interactions between neurons at the milliseconds timescale, based on

the structural connectivity of brain regions. Next, we extract spa-

tiotemporal patterns of brain activity across the range of 10-4000ms

and apply a machine learning classifier to the dynamic patterns, for

each timescale. We focus on three different classes: subjects, cogni-

tive tasks and neuropsychiatric disorders. For each of these classes,

we aim to identify the most relevant time scale for extracting the brain

signature. The above enables a better understanding of fundamental

brain dynamics and leads to the discovery of personalized medical

interventions.

Our results demonstrate that the spatiotemporal structures are so

unique among individuals that they can help to identify, with near-

perfect accuracy, a condition from a set. Additionally, similarity

among patterns of activity decreases proportionally to the increase

90



of temporal resolution. More importantly, the distinctiveness of these

space-time motifs is maximized at timescales that are not reached by

using only fMRI.

Regarding both resting-state and tasks, the most characteristic

timescale is around 200ms, where the brain assemblies are much

more distinct. Our findings regarding intrinsic brain dynamics are

consistent with the previous work of Deco and colleagues that by ap-

plying the space-time motifs framework to fMRI data demonstrated

that both, measures of entropy as well as hierarchy, reach an op-

timum level at a timescale of approximately 200ms (Deco et al.,

2019). Other studies, that without the application of computational

modelling but instead used EEG, found relevant microstates simi-

larly within the same temporal range (200ms) (Koenig et al., 2005;

Lehmann et al., 1998). In terms of the research on intrinsic brain

dynamics, our results are in line with previous findings that showed

the broadcasting of conscious processing at the range of 200–250ms

(Del Cul et al., 2007; van Vugt et al., 2018; Dehaene and Changeux,

2011), and provide more insights about at which timescale the human

brain encodes spontaneous processes.

Concerning our outcome for separating cognitive tasks, it indicates

that precisely at 150ms is the most characteristic timescale, in this

context, a previous study showed that infant facial features evoke ac-

tivity in the orbitofrontal cortex within 130ms (M. L. Kringelbach et

al., 2008). The above could be related to fast processes across tempo-

ral hierarchies related to human cognition (M. L. Kringelbach et al.,

2015).
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In contrast with our analyzes of healthy participants, the timescale

for discriminating neuropsychiatric conditions suggests a disruption

of intrinsic dynamics. Neuropsychiatric disorders showed an opti-

mal distinctiveness at a longer timescale ( 400ms). This result indi-

cates that neuropsychiatric conditions may have bases on spatiotem-

poral alterations of brain dynamics. Previous studies of mental dis-

orders (Fonov et al., 2009) supported such hypothesis and demon-

strated disturbances in spatial- temporal mechanism (Dawson, 2004

such as schizophrenia (Northoff et al., 2020) and autism spectrum

disorders (Wass, 2011), (Watanabe et al., 2019). Indeed the sever-

ity of some symptoms of autism has been associated with a longer

intrinsic timescale of particular brain areas (Watanabe et al., 2019).

In this line, the recently introduced concept of ‘Spatiotemporal Psy-

chopathology’ also suggests the relevance of taking into consider-

ation possible disruptions of both the spatial and temporal domain

in psychiatric disorders (Northoff, 2016; Northoff, 2018; Northoff,

2018). Future studies are needed to examine this possible disbalance

in space and time of neuropsychiatric brain dynamics. Such a hy-

pothesis might be further studied by extracting patterns of interacting

neuronal assemblies (Fingelkurts and Fingelkurts, 2019; Deco et al.,

2019).
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6.2 Potentials and pitfalls of the different

models

In this work, we use fMRI for mapping whole-brain structure and

function. However, fMRI has several limitations for studying brain

dynamics such as; the indirect nature of this technique (BOLD sig-

nals) and its relatively low temporal resolution, which is on the scale

of seconds (Logothetis, 2008). For studying the most specific spa-

tiotemporal domain of brain dynamics, we propose our multiscale

approach. We overcome fMRI limitations, by applying whole-brain

modelling that based on anatomical connections recovers neuronal

dynamics at milliseconds (Deco et al., 2014). This model combined

with the extraction of spatiotemporal motifs that through binned tem-

poral windows, tracks dynamic patterns of brain activity at may

timescales (Deco et al., 2019). Our approach is different from exist-

ing measures, first because of its flexibility to study the human brain

at different timescales. Additionally, due to the dynamic nature of

the space-time features, our method tracks spatiotemporal patterns of

brain activity that compared with benchmark measures are based on

static measures.

6.3 Concluding remarks

Brain dynamics shows a complex organization at many spatio-

temporal scales (Deco et al., 2011; Perdikis et al., 2011), a proper

characterization of temporal scales could provide some guidance for
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experimental steps. Whole-brain computational modeling has played

an important role for understanding intrinsic brain dynamics (Cabral

et al., 2014), and neuropsychiatric disorders (Deco and Kringelbach,

2014). On the other hand, computational models combined with the

extraction of spatiotemporal features could thus play a significant

role not only for a better understanding of intrinsic brain dynamics

(Deco et al., 2019) , but also opens up to get a personalized care of

neuropsychiatric disruptions (Falcon, Jirsa, et al., 2016). Besides,

subject-based perspective may improve some treatments by predict-

ing the outcome, but also more generally in the discovery of biomark-

ers. In general terms, the application of brain modeling for an indi-

vidualized medicine have demonstrated a high relevance for clinical

interventions of epileptic patients (V. K. Jirsa et al., 2017) and stroke

recovery (Falcon, Riley, et al., 2016).

In summary, computational methods, such as whole-brain modelling

(Deco and Kringelbach, 2014; Deco et al., 2008) and machine learn-

ing (Vu et al., 2018), complement traditional neuroimaging tech-

niques to study brain dynamics at different timescales. However,

future work is needed to study brain dynamics while performing cog-

nitive processes and possible disruptions of such dynamics in clinical

population. Overall, we believe our work opens future benefits to

base medical practices on the individual characteristics of patients

(Vogenberg et al., 2010), as well as for predicting the course of neu-

ropsychiatric disorders (Ozomaro et al., 2013).
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