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Abstract
This thesis studies parametric optimization in cellular and cell-free net-
works, exploring data-based and expert-based paradigms. Power alloca-
tion and power control, which adjust the transmit power to meet differ-
ent fairness criteria such as max-min or max-product, are crucial tasks in
wireless communications that fall into the parametric optimization cate-
gory. The state-of-the-art approaches for power control and power alloca-
tion often demand huge computational costs and are not suitable for real-
time applications. To address this issue, we develop a general-purpose
unsupervised-learning approach for solving parametric optimizations; and
extend the well-known fractional power control algorithm.

In the data-based paradigm, we create an unsupervised learning frame-
work that defines a custom neural network (NN), incorporating expert
knowledge to the NN loss function to solve the power control and power
allocation problems. In this approach, a feedforward NN is trained by
repeatedly sampling the parameter space, but, rather than solving the as-
sociated optimization problem completely, a single step is taken along the
gradient of the objective function. The resulting method is applicable for
both convex and non-convex optimization problems. It offers two-to-three
orders of magnitude speedup in the power control and power allocation
problems compared to a convex solver—whenever appliable.

In the expert-driven paradigm, we investigate the extension of frac-
tional power control to cell-free networks. The resulting closed-form so-
lution can be evaluated for uplink and downlink effortlessly and reaches
an (almost) optimum solution in the uplink case.

In both paradigms, we place a particular focus on large scale gains—
the amount of attenuation experienced by the local-average received power.
The slow-varying nature of the large-scale gains relaxes the need for a
frequent update of the solutions in both the data-driven and expert-driven
paradigms, enabling real-time application for both methods.
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Resum

Aqueta tesis estudia l’optimització paramètrica a les xarxes cel.lulars i
xarxes cell-free, explotant els paradigmes basats en dades i basats en ex-
perts. L’assignació i control de la potencia, que ajusten la potencia de
transmissió per complir amb diferents criteris d’equitat com max-min o
max-product, son tasques crucials en les telecomunicacions inalambri-
ques pertanyents a la categoria d’optimització paramètrica. Les técniques
d’última generació per al control i assignació de la potencia solen exi-
gir enormes costos computacionals i no son adequats per aplicacions en
temps real. Per abordar aquesta qüestió, desenvolupem una tècnica de
propòsit general utilitzant aprenentatge no supervisat per resoldre optimit-
zacions paramètriques; i al mateix temps ampliem el reconegut algoritme
de control de potencia fraccionada.

En el paradigma basat en dades, creem un marc d’aprenentatge no su-
pervisat que defineix una xarxa neuronal (NN, sigles de Neural Network
en Anglès) especifica, incorporant coneixements experts a la funció de
cost de la NN per resoldre els problemes de control i assignació de potència.
Dins d’aquest enfocament, s’entrena una NN de tipus feedforward mit-
janccant el mostreig repetit en l’espaı̈ de paràmetres, però, en lloc de re-
soldre completament el problema d’optimització associat, es pren un sol
pas en la direcció del gradient de la funció objectiu. El mètode resultant
és aplicable tant als problemes d’optimització convexos com no conve-
xos. Això ofereix una acceleració de dos a tres ordres de magnitud en
els problemes de control i assignació de potencia en comparació amb un
algoritme de resolució convexa—sempre que sigui aplicable.

En el paradigma dirigit per experts, investiguem l’extensió del control
de potencia fraccionada a les xarxes sense celules. La solució tancada
resultant pot ser avaluada per a l’enllacc de pujada i el de baixada sense
esforcc i assoleix una sol·lució (gairebé) òptima en el cas de l’enllacc de
pujada.

En ambdós paradigmes, ens centrem especialment en els guanys a
gran escala—la quantitat d’atenuació que experimenta la potencia mitja
local rebuda. La naturalesa de variació lenta dels guanys a gran escala
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relaxa la necessitat d’una actualització freqüent de les solucions tant en el
paradigma basat en dades com en el basat en experts, permetent d’aquesta
manera l’ús dels dos mètodes en aplicacions en temps real.
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Resumen

Esta tesis estudia la optimización paramétrica en las redes celulares y re-
des cell-free, explorando los paradigmas basados en datos y en expertos.
La asignación y el control de la potencia, que ajustan la potencia de trans-
misión para cumplir con diferentes criterios de equidad como max-min
o max-product, son tareas cruciales en las comunicaciones inalámbricas
pertenecientes a la categorı́a de optimización paramétrica. Los enfoques
más modernos de control y asignación de la potencia suelen exigir enor-
mes costes computacionales y no son adecuados para aplicaciones en
tiempo real. Para abordar esta cuestión, desarrollamos un enfoque de
aprendizaje no supervisado de propósito general que resuelve las optimi-
zaciones paramétricas y a su vez ampliamos el reconocido algoritmo de
control de potencia fraccionada.

En el paradigma basado en datos, creamos un marco de aprendizaje
no supervisado que define una red neuronal (NN, por sus siglas en inglés)
especı́fica, incorporando conocimiento de expertos a la función de coste
de la NN para resolver los problemas de control y asignación de potencia.
Dentro de este enfoque, se entrena una NN de tipo feedforward mediante
el muestreo repetido del espacio de parámetros, pero, en lugar de resolver
completamente el problema de optimización asociado, se toma un solo
paso en la direccion del gradiente de la función objetivo. El método resul-
tante es aplicable tanto a los problemas de optimización convexos como
no convexos. Ofrece una aceleración de dos a tres órdenes de magnitud en
los problemas de control y asignación de potencia, en comparación con
un algoritmo de resolución convexo—siempre que sea aplicable.

Dentro del paradigma dirigido por expertos, investigamos la extensión
del control de potencia fraccionada a las redes cell-free. La solución de
forma cerrada resultante puede ser evaluada para el enlace uplink y el
downlink sin esfuerzo y alcanza una solución (casi) óptima en el caso del
enlace uplink.

En ambos paradigmas, nos centramos especialmente en las large-scale
gains—la cantidad de atenuación que experimenta la potencia media local
recibida. La naturaleza lenta y variable de las ganancias a gran escala re-
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laja la necesidad de una actualización frecuente de las soluciones tanto en
el paradigma basado en datos como en el basado en expertos, permitiendo
el uso de ambos métodos en aplicaciones en tiempo real.

xii



Contents

List of figures xix

List of tables xxi

CHAPTER 1 MOTIVATION AND OUTLINE 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline and contributions . . . . . . . . . . . . . . . . . 2

CHAPTER 2 INTRODUCTION 7
2.1 Unsupervised-learning approach: The core idea . . . . . 7
2.2 Unsupervised-learning approach: Application to cellular

and cell-free systems . . . . . . . . . . . . . . . . . . . 11
2.3 Extension of fractional power control to cell-free networks 18
2.4 Power maps . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 26
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

CHAPTER 3 UNSUPERVISED LEARNING FOR PARAMET-
RIC OPTIMIZATION 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Parametric Optimization . . . . . . . . . . . . . . . . . 33
3.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Neural Networks . . . . . . . . . . . . . . . . . 34
3.3.2 Unsupervised Learning for Parametric Optimization 35

3.4 Application to Constrained QP . . . . . . . . . . . . . . 37
3.4.1 Formulation . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Learning Stage . . . . . . . . . . . . . . . . . . 38
3.4.3 Performance . . . . . . . . . . . . . . . . . . . 40
3.4.4 Computational Cost . . . . . . . . . . . . . . . 40

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 40

xiii



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

CHAPTER 4 UNSUPERVISED LEARNING FOR CELLULAR
POWER CONTROL 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Cellular System Model . . . . . . . . . . . . . . . . . . 46

4.2.1 Channel Features . . . . . . . . . . . . . . . . . 47
4.2.2 Uplink . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Downlink . . . . . . . . . . . . . . . . . . . . . 49

4.3 Loss Functions . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 Soft Max-Min . . . . . . . . . . . . . . . . . . 49
4.3.2 Max-Product . . . . . . . . . . . . . . . . . . . 50

4.4 Centralized Power Control . . . . . . . . . . . . . . . . 51
4.4.1 Learning Stage . . . . . . . . . . . . . . . . . . 52
4.4.2 Performance Evaluation . . . . . . . . . . . . . 53
4.4.3 Computational Cost . . . . . . . . . . . . . . . 55

4.5 Distributed Power Control . . . . . . . . . . . . . . . . 58
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 59
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

CHAPTER 5 UNSUPERVISED LEARNING FOR C-RAN POWER
CONTROL AND POWER ALLOCATION 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 C-RAN Model . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Large-Scale Features . . . . . . . . . . . . . . . 67
5.2.2 Uplink . . . . . . . . . . . . . . . . . . . . . . 68
5.2.3 Downlink . . . . . . . . . . . . . . . . . . . . . 69

5.3 Loss Functions . . . . . . . . . . . . . . . . . . . . . . 70
5.3.1 Soft Max-Min . . . . . . . . . . . . . . . . . . 70
5.3.2 Max-Product . . . . . . . . . . . . . . . . . . . 71

5.4 Power Control and Power Allocation . . . . . . . . . . . 72
5.4.1 Learning Stage . . . . . . . . . . . . . . . . . . 73
5.4.2 Performance Evaluation . . . . . . . . . . . . . 74
5.4.3 Computational Cost . . . . . . . . . . . . . . . 78

xiv



5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 79
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

CHAPTER 6 UPLINK FRACTIONAL POWER CONTROL AND
DOWNLINK POWER ALLOCATION FOR CELL-FREE NET-
WORKS 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Network and channel models . . . . . . . . . . . . . . . 85
6.3 Uplink . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.1 Fractional Power Control . . . . . . . . . . . . . 86
6.3.2 Performance Evaluation . . . . . . . . . . . . . 87

6.4 Downlink . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.1 Fractional Power Allocation . . . . . . . . . . . 90
6.4.2 Performance Evaluation . . . . . . . . . . . . . 90

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 91

Appendices 92
6.A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

CHAPTER 7 DUAL-KERNEL ONLINE RECONSTRUCTION
OF POWER MAPS 99
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1.1 Motivation . . . . . . . . . . . . . . . . . . . . 100
7.1.2 State of the Art . . . . . . . . . . . . . . . . . . 101
7.1.3 Contribution . . . . . . . . . . . . . . . . . . . 101

7.2 Problem Formulation . . . . . . . . . . . . . . . . . . . 102
7.2.1 RKHS Map Formulation . . . . . . . . . . . . . 103

7.3 Adaptive Projected Subgradient Method . . . . . . . . . 105
7.4 Dual-Kernel Approach . . . . . . . . . . . . . . . . . . 107
7.5 Sparsification . . . . . . . . . . . . . . . . . . . . . . . 108
7.6 Numerical Evaluations . . . . . . . . . . . . . . . . . . 109

7.6.1 Campus Scenario . . . . . . . . . . . . . . . . . 109
7.6.2 Urban scenario . . . . . . . . . . . . . . . . . . 111

xv



7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 112
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

CHAPTER 8 CONCLUSION AND FUTURE WORK 117
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 119

xvi



List of Figures

2.1 Schematic of the unsupervised-learning approach for a
QP problem. . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Learning pipeline for the cellular setting . . . . . . . . . 14
2.3 Uplink soft max-min learning curve with αk = 1: soft

max-min loss and minimum SINR as a function of the
NN weight updates. . . . . . . . . . . . . . . . . . . . 15

2.4 CDF of E
[
sinrULk

]
for the soft max-min loss function (αk =

1): NN vs convex solver, alongside the baseline without
power control (pk = 1). In the inset, CDF of LMM for the
NN and the convex solver. . . . . . . . . . . . . . . . . 16

2.5 CDF of E
[
sinrULk

]
for soft max-min: NN vs convex solver

(αk = 1). Also shown is the baseline performance with-
out power control, and the hard max-min performance
(αk →∞). . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 CDF of E[sirk] for the uplink with N/K = 2.5, parame-
terized by ϑ = {0, 0.2, 0.4, 0.6, 0.8, 1}. Also shown is the
max-min solution. . . . . . . . . . . . . . . . . . . . . . 20

2.7 CDF of E[sirk] for the downlink with η = 3.8 andN/K =
2.5, parameterized by ϑ = {0, 0.4, 0.8} and γ ∈ {0.4, 0.8, 1.2, 1.6}.
Also shown are the max-min solution and the benchmark
from [12, Sec. III-D]. . . . . . . . . . . . . . . . . . . . 21

2.8 Pathloss variation as function of new measurements . . . 23

3.1 Learning pipeline. . . . . . . . . . . . . . . . . . . . . 39
3.2 CDF of minx∈X f(θ,x) for a QP with either D = 10 or

D = 30 dimensions. The distribution is induced by that
of θ = {R, b} with I = 5. . . . . . . . . . . . . . . . . 41

4.1 Learning pipeline. . . . . . . . . . . . . . . . . . . . . 51

xvii



4.2 Uplink soft max-min learning curve with αn = 1: loss
and minimum local-average SINR as a function of the NN
weight updates. . . . . . . . . . . . . . . . . . . . . . . 53

4.3 CDF of E
[
sinrULn

]
for the soft max-min loss function (αn =

1): NN vs convex solver, alongside the baseline without
power control (pn = 1). In the inset, CDF of LMM for the
NN and the convex solver. . . . . . . . . . . . . . . . . 54

4.4 CDF of E
[
sinrULn

]
for the max-product loss function (βn =

1): NN vs convex solver. . . . . . . . . . . . . . . . . . 55
4.5 CDF of E

[
sinrDL

n

]
for the soft max-min loss function (αn =

1): NN vs convex solver. Also shown is the baseline per-
formance without power control, i.e., with pn = 1. . . . 56

4.6 CDF of E
[
sinrDL

n

]
for the max-product loss function (βn =

1): NN vs convex solver. . . . . . . . . . . . . . . . . . 57
4.7 CDF of E

[
sinrULn

]
: NN for soft max-min (αn = 1) in solid

versus fractional power control (ϑ = 0.7) in dashed. . . . 59

5.1 Learning pipeline. . . . . . . . . . . . . . . . . . . . . . 74
5.2 Downlink max-product learning curve with βk = 1. . . . 75
5.3 CDF of E

[
sinrULk

]
for soft max-min: NN vs convex solver

(αk = 1). Also shown is the baseline performance with-
out power control, and the hard max-min performance
(αk →∞). . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 CDF of E
[
sinrULk

]
for max-product (βk = 1): NN vs con-

vex solver. . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 CDF of E

[
sinrDL

k

]
: NN (for soft max-min with αk = 1 and

for max-product with βk = 1) vs the baseline in (5.15).
Also shown, in circles, is the modified performance when
the powers are trimmed such that no constraint is violated. 78

5.6 CDF of
∑K−1

k=0 pn,k as produced by the NN for the soft
max-min loss function (αn = 1). . . . . . . . . . . . . . 79

6.1 CDF of E[sirk] for the uplink with η = 3.8 and N/K =
2.5, parameterized by ϑ = {0, 0.2, 0.4, 0.6, 0.8, 1}. Also
shown is the max-min solution. . . . . . . . . . . . . . . 87

xviii



6.2 Average and 3%-outage values of E[sirk] for the uplink as
a function of ϑ, with η = 3.8 and N/K = 2.5. . . . . . . 88

6.3 CDF of E[sirk] for the downlink with η = 3.8 andN/K =
2.5, parameterized by ϑ = {0, 0.4, 0.8} and γ ∈ {0.4, 0.8, 1.2, 1.6}.
Also shown are the max-min solution and the benchmark
from [4, Sec. III-D]. . . . . . . . . . . . . . . . . . . . . 91

7.1 Solution set for each measurement . . . . . . . . . . . . 104
7.2 Sequence of functions fn that converge to the intersection

of two convex sets S1 and S2 [17]. . . . . . . . . . . . . 107
7.3 NMSE (left-hand axis) and dictionary size (right-hand axis)

as function of τ , with and without the DC kernel, in the
campus scenario. . . . . . . . . . . . . . . . . . . . . . 110

7.4 NMSE as function of n, with and without the DC kernel,
in the campus scenario. The dictionary size is 500. . . . 111

7.5 NMSE (left-hand axis) and dictionary size (right-hand axis)
as function of τ , with and without the DC kernel, in the
urban scenario. . . . . . . . . . . . . . . . . . . . . . . 112

xix





List of Tables

3.1 NN settings for QP. . . . . . . . . . . . . . . . . . . . . 38

4.1 NN settings. . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 NN settings. . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1 APSM parameters . . . . . . . . . . . . . . . . . . . . . 109
7.2 NMSE and error standard deviation in the campus scenario.111
7.3 NMSE and error standard deviations in the urban scenario. 113

xxi





Chapter 1

Motivation and Outline

“ Everything should be made as simple as possible, but not
simpler. ”

Albert Einstein

1.1 Motivation

In 2015, a deep-learning-based technique reached human level accuracy
on image classification tasks. Inspired by this astonishing success, many
wireless engineers (including the author) jumped into the machine learn-
ing bandwagon, hoping to repeat the same success in wireless communi-
cations. Initially, we thought that every aspect of wireless networks could
be revolutionized using the data-driven paradigm. Soon after, we realized
that that might not be the case because wireless networks and their sub-
systems are well-optimized already using relatively simple algorithms.
Nonetheless, it became evident that data-driven approaches can signifi-
cantly improve current wireless networks when used alongside the tra-
ditional ones (model-based learning). For instance, in the deep learning
case, such approaches could:

• Improve the training time substantially, embedding the structure of
the problem in the training process, e.g., the loss function of the
neural network (NN).
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• Be interpretable, meaning that a domain expert can make sense of
the different components of the resulting solution.

In future wireless networks, data-driven optimization should be at the
heart of the design procedure, unifying different blocks such as chan-
nel estimation, detection schemes, and decoding. An example of such
an approach is end-to-end learning, where communication is treated as a
learning problem using autoencoders.

This thesis has adopted the view of model-based learning for power
control and power allocation problems in cellular and cell-free wireless
networks—dense infrastructures of access points (APs) each potentially
communicating with all users. Specifically, we have embedded the signal-
to-interference-plus-noise ratio (SINR) in the loss function of the NN.
Such an NN, after undergoing the training stage, would output close-to-
optimum power coefficients.

Another avenue explored in this thesis is that of expert-driven ap-
proaches. Specifically, well-known fractional power control has been
extended to cell-free networks, which has led to a simple yet close-to-
optimum power allocation. Interestingly, in uplink power control, both
the unsupervised-learning approach and fractional power control have led
to similar solutions, indicating that whenever applicable, expert knowl-
edge should be embraced.

1.2 Outline and contributions
Parametric optimization in wireless networks, chiefly for power control
and power allocation, is the major focus of this thesis. Two paradigms,
namely data-driven and expert-driven, are explored. With both paradigms,
a great emphasis is placed on the large-scale gains (the amount of attenu-
ation experienced by the local-average received power) for the following
reasons:

• Large-scale gains vary slowly, leading to robust solutions without a
need for frequent updates.
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• Large-scale gains of close-by users are correlated, potentially en-
abling large-scale prediction for new coming users based on their
locations.

The extension of the latter aspect leads to the concept of a power map, a
map of local-average received power, which is explored in more detail in
Chapter 7.

We propose an unsupervised-learning approach as a data-driven solu-
tion. This turns out to be a great tool for solving parametric optimization
problems. The core idea of this approach is presented in Chapter 3, and
its application to power control and power allocation for cellular and cell-
free networks is discussed in Chapters 4 and 5, respectively.

In the expert-driven domain, the extension of the established fractional
power control algorithm to cell-free networks is analyzed in Chapter 6. It
reaches an almost optimum solution in the uplink, while providing satis-
factory results for the downlink.

The outcomes and contributions of this thesis have been published as
eight IEEE journal and conference, and a public GitHub repository. In
what follows, the publications are listed according to topics.

We initially proposed the unsupervised-learning approach for the power
control and power allocation problem in cell-free networks in:

• R. Nikbakht, and A. Lozano, “Unsupervised-learning power con-
trol for cell-free wireless systems,” in IEEE Int’l Symp. Personal,
Indoor and Mobile Radio Commun. (PIMRC’19), Istanbul, Turkey,
2019, pp. 1-5.

• R. Nikbakht, A. Jonsson and A. Lozano, “Unsupervised-Learning
Power Allocation for the Cell-Free Downlink,” IEEE Int’l Conf.
Commun. (ICC’19 Workshops), Dublin, Ireland, 2020, pp. 1-5.

Later, the extended version of the unsupervised-learning approach was
released as three invited letters, with the first one covering the core idea
and mathematical derivation (refer to Chapter 3):
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• R. Nikbakht, A. Jonsson, and A. Lozano, “Unsupervised learning
for parametric optimization,” to appear in IEEE Commun. Letters,
vol. 25, 2021.

The second one, focusing on cellular networks (refer to Chapter 4):

• R. Nikbakht, A. Jonsson, and A. Lozano, “Unsupervised learning
for cellular power control,” to appear in IEEE Commun. Letters,
vol. 25, 2021.

And, finally, the last one concentrating on the cell-free networks (refer to
Chapter 5):

• R. Nikbakht, A. Jonsson, and A. Lozano, “Unsupervised learning
for C-RAN power control and power allocation,” to appear in IEEE
Commun. Letters, vol. 25, 2021.

The expert-driven power allocation solutions for cell-free networks
are investigated in (refer to Chapter 6):

• R. Nikbakht and A. Lozano, “Uplink fractional power control for
cellfree wireless networks,” IEEE Int’l Conf. Commun. (ICC’19),
Shanghai, China, 2019, pp. 1-5.

• R. Nikbakht, R. Mosayebi, and A. Lozano, “Uplink fractional power
control and downlink power allocation for cell-free networks,” IEEE
Wireless Commun. Letters, vol. 9, no. 6, pp. 774-777, June 2020.

Then, the power maps are presented in (refer to Chapter 7):

• R. Nikbakht, A. Jonsson and A. Lozano, ”Dual-Kernel Online Re-
construction of Power Maps,” IEEE Global Telecommun. Conf.
(GLOBECOM’18), Abu Dhabi, UAE, 2018, pp. 1-5.

Lastly, the TensorFlow implementation of the unsupervised-learning
approach is publicly available at:

• github.com/RasoulNik/UnsupervisedNN.
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A short introduction to each approach, alongside the major contribu-
tions and results, are presented in Chapter 2. The conclusions and future
directions are discussed in Chapter 8.

Chapters 3-7 are the self-contained published articles, appearing in
the thesis without any modifications.
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Chapter 2

Introduction

“ ...All the wonders of our universe can in effect be captured
by simple rules, yet ... there can be no way to know all the
consequences of these rules, except in effect just to watch
and see how they unfold. ”

Stephen Wolfram

We first present the core idea of the unsupervised-learning approach and
how it serves to tackle parametric optimizations. We then proceed to
power control and power allocation in cellular and cell-free networks, a
perfect use case of parametric optimizations.

Fractional power control follows, as a prime example of expert-driven
approaches that perform satisfactorily.

Finally, we discuss power maps and present a simple yet effective
learning tool to reconstruct power maps in an online fashion.

2.1 Unsupervised-learning approach: The core
idea

An unsupervised-learning approach is a fast and computationally effi-
cient method for solving parametric optimizations. It can be applied to a
wide range of optimization problems with convex and non-convex objec-
tives. In wireless applications, it provides satisfactory results and reaches
near-optimum solutions.
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As its name implies, parametric optimization refers to a class of opti-
mizations with a fixed structure but different parameters. The aim is not to
solve a specific instance of a problem, but rather to present a solution for
a family of problems. In short, the solution of a parametric optimization
is a mapping from a parameter value to the optimum solution associated
with this specific parameter value.

For parametric optimization with a non-linear objective, several ap-
proximations have been developed, including outer approximations [13,
14], gradient descent [15], and piecewise quadratic fitting [16]. These al-
gorithms often try to solve a sequence of optimization problems in order
to find the desired mapping between parameters and optimum solutions.
For higher-dimensional problems, the number of such optimization prob-
lems increases rapidly, eventually becoming computationally intractable.
Therefore, they cannot be applied to high-dimensional problems.

Supervised learning has already been applied to parametric optimiza-
tions, where the parameter space is sampled and the optimization prob-
lems associated with each instance of the parameters are solved, globally
or locally, beforehand. Then, a feedforward NN is trained in order to
find the desired mapping between parameters and solutions [17,18]. This
approach has two main drawbacks:

• Computational: the training database demands extensive computa-
tions, even for a problem with reasonably small dimensions.

• Applicability: if the objective is non-convex, a dedicated solver
should be developed for each family of problems.

The unsupervised-learning approach is developed to tackle both is-
sues. In this approach, a feedforward NN is trained by repeatedly sam-
pling the parameter space, but, rather than solving the associated opti-
mization problem completely, a single step is taken along the gradient of
the objective function.

For a given parametric optimization, the steps of the proposed algo-
rithm can be summarized as:

• Consider the parameter values as inputs to the NN.
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• Define a custom loss function for the NN based on the objective
and the constraints of the optimization problem (negative of the La-
grange function). Such a loss function should be defined as

Loss = −Objective + β Constraints, (2.1)

If we think of the loss as the Lagrange function, β has an effect
similar to that of a Lagrange multiplier. In general, finding the opti-
mum β itself is an optimization problem (the dual problem). In our
work, a cross validation approach is used for finding the desired β
values.

• Start with the initial output of the NN (which is a random vector
and is a function of the initial weights of the NN) and update the
weights to minimize the loss function.

The resulting NN implicitly approximates the mapping between the pa-
rameters and optimum solutions.

This approach is called unsupervised because it does not need la-
beled data for training. For quadratic programming (QP), for instance the
schematic of the unsupervised-learning approach is shown in Fig. 2.1,
where θ is the optimization parameter and LQP is the loss function. For a
given parameter θ, the NN outputs x− and x+, each of them being a part
of the final solution x. The exp operation improves the dynamic range
of the NN output and its convergence speed. Finally, the Adam optimizer
updates the NN using the loss function LQP.

Advantages

An unsupervised NN offers the following advantages:

1. It can be applied to convex and non-convex optimization problems.

2. The training time is two-to-three orders of magnitude shorter than
in a supervised approach.

3. The test time is two orders of magnitude faster than with a convex
solver, for those scenarios where this is available [19].
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Figure 2.1: Schematic of the unsupervised-learning approach for a QP problem.

Implementation tips

If the provided problem has structure (most practical problems do), we
can apply the unsupervised-learning approach by specifying three major
parameters:

• Loss function: the function has to be differentiable, and any discon-
tinuity has to be relaxed.

• Constraints: for each optimization variable x, the effect of any con-
straint g(x) < 0 can be modelled as Relue(g(x)), with

Relue(x) =

{
x x > 0

0 otherwise
. (2.2)

• The preprocessing of the data is a crucial task. For example, one
can use a logarithmic scale in the input and output of the NN, if it
makes sense for a domain expert.
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2.2 Unsupervised-learning approach: Applica-
tion to cellular and cell-free systems

In this section, the unsupervised-learning approach is applied to the power
control and power allocation problems in cellular and cell-free network—
an infrastructure of APs with one or several central processing units, in
which each AP potentially communicates with all users. In each scenario,
we consider both the uplink and the downlink. The detailed derivations of
the signal-to-interference-plus-noise ratio (SINR) are available in Chap-
ters 4-5. Throughout this section, sinr and SINR refer to small-scale (in-
stantaneous) and large-scale SINR (the local average of sinr), respectively.
We consider a wireless network with N APs and K users. In the cellular
system, N = K whereas, in the cell-free system, N > K.

Optimization problems

In this section, we study the uplink power control for cellular settings. For
the link between user k and AP n, the local-average signal-to-noise-ratio
(SNR) is

SNRn,k =
Gn,kP

σ2
(2.3)

with Gn,k the large-scale gain, P the maximum transmit power, and σ2

the noise power.
We use two fairness criteria:

• Max-min: it focuses on the lower tail behavior, maximizing the
SINR of the worst-case user.

• Max-product: it enables a trade-off between the average SINR and
the lower tail behavior, maximizing the product of the SINRs for
different users.

Power control based on max-min and max-product criteria is expressed
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as

Max-min: max
t

t (2.4)

s.t SINRk(SNR,p) ≥ t k = 1, .., K

0 ≤ pk ≤ 1 k = 1, .., K

Max-product: max
p

∑

k

log (SINRk(SNR,p)) (2.5)

s.t 0 ≤ pk ≤ 1 k = 1, .., K

where p is the power control vector and SNR, defined as {SNRn,k}, is
the matrix of SNR for all the links in the network. This is an example of
parametric optimization, with SNR being the parameter. It is worth re-
peating that all approaches proposed in this thesis are developed based on
the large-scale gains, but the actual performance evaluations are carried
out using sinr.

As is shown in Chapter 4, the worst-case users drag down the max-
min solution, so we define a soft counterpart to it

Soft max-min: min
p

log
∑

k

exp

(
αk

SINRk(SNR,p

)
(2.6)

s.t 0 ≤ pk ≤ 1 k = 1, .., K

where the parameters {αk} determine how stringent the max-min crite-
rion is, converging to the max-min solution for growing {αk}.

Because of the exp function, users with lower SINR values have a
much greater impact on the objective, leading to an approximate max-min
behavior. However, for small values of {αk}, users with high SINRs also
contribute to the optimization problem, improving the upper tail behavior
of the SINR CDF while having a negligible impact on the lower tail.

Loss functions

In cellular settings, by following the steps in the unsupervised-learning
approach (refer Section 2.1) and using (2.6), we define the soft max-min
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loss function as

LMM =
1

K

[
K−1∑

k=0

exp

(
αk

(SINRk + 0.01)0.4

)

︸ ︷︷ ︸
Objective

+0.1
K−1∑

k=0

[pk − 1]+

︸ ︷︷ ︸
Constraints

]
(2.7)

where the parameter αk, similar to (2.6), determines how stringent the
max-min criterion is. The constraints are modeled as an extra term in the
loss function, with multiplier equal to 0.1. The exponent in the denom-
inator of the objective part equals 0.4, which prevents numerical errors
during the NN training, compressing the dynamic range of the loss func-
tion.

Again for the cellular setting, using (2.5), the max-product cost func-
tion can be derived as

LMP =
1

K

[
K−1∑

k=0

βk log

(
0.01 +

1

SINRk + 0.01

)

︸ ︷︷ ︸
Objective

+ 0.1
K−1∑

k=0

[pk − 1]+

︸ ︷︷ ︸
Constraints

]

(2.8)

where β is the regulating factor that prioritizes different users. The con-
straints are added to the loss function, again, by setting the multiplier
equal to 0.1. The offset shifting SINRk by 0.01 avoids the loss being
pulled down by users below −20 dB while a second offset added to

1
SINRk+0.01

lessens the pull of users above 20 dB.
With some small modifications, both loss functions can be applied to

cell-free settings (refer to Chapter 5).

Insights to the learning process

For cellular settings, the learning pipeline is shown in Fig. 2.2. As dis-
cussed in the implementation tips, proper pre and post data processing are
essential. In this case, to improve the dynamic range, we feed the data and
read the output, both in logarithmic scale.
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Figure 2.2: Learning pipeline for the cellular setting

Following this pipeline, the NN can learn the structure of the given
optimization problem and produce the desired output. Shown in Fig. 2.3
is an example of learning curve for the uplink of a cellular setting. In this
example, the soft max-min and minimum SINR are plotted side by side.
As we can seen, feeding the large-scale data and updating the NN weights,
the loss value drops rapidly and the minimum SINR increases. By feeding
more data, the NN converges to a stable solution and the fluctuations of
the loss function decrease. It is possible to derive a similar chart for cell-
free settings.

Performance evaluation in the cellular setting

Plotted in Fig. 2.4 is the comparison, for the soft max-min setting, be-
tween the unsupervised-learning approach and the convex solver. We see
how the NN closely approximates the convex solver. Also, in the inset, the
CDF of the optimum objective values is compared with the LMM. Again,
it is seen that the NN almost optimally minimizes the cost function.

14



Figure 2.3: Uplink soft max-min learning curve with αk = 1: soft max-min loss and
minimum SINR as a function of the NN weight updates.

Performance evaluation in the cell-free setting

The NN performance for the cell-free uplink, alongside its convex solver
counterpart, is presented in Fig. 2.5. We can make the following observa-
tions:

• In cell-free settings, the soft max-min outperforms the max-min
solution almost uniformly.

• The NN can reliably replace the convex solver.

• By increasing the {αk}, the soft max-min gets progressively closer
to max-min.
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Figure 2.4: CDF of E
[
sinrULk

]
for the soft max-min loss function (αk = 1): NN vs convex

solver, alongside the baseline without power control (pk = 1). In the inset, CDF of LMM

for the NN and the convex solver.

The downlink case is even more interesting because the power allocation
cannot reliably1 be cast in a convex form. The NN performs satisfactorily
in this scenario as well, as discussed in Chapter 5.

Computational advantage

We use a convex solver as a benchmark for the test time, which is the
time spent outputting a solution for a single instance of the optimization
problem. In the cell-free setting, for N = 30 and K = 12, the unsuper-

1It is a quasi-convex problem and can be tackled by solving a sequence of convex
optimization problems.
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Figure 2.5: CDF of E
[
sinrULk

]
for soft max-min: NN vs convex solver (αk = 1). Also

shown is the baseline performance without power control, and the hard max-min perfor-
mance (αk →∞).

vised-learning approach is over two (uplink) and three (downlink) orders
of magnitude faster than the convex solver in terms of test time.

Also, in terms of training, the unsupervised-learning approach is com-
pared with the supervised one, which treats parametric optimization as a
supervised learning problem by computing a database of desirable solu-
tions for a large set of parameters. Such a database is not required in the
unsupervised-learning approach, resulting in orders of magnitude advan-
tage in terms of training.
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2.3 Extension of fractional power control to cell-
free networks

Different fairness criteria, e.g., max-min or max-product, are enabled by
power control. To unlock the benefits of power control, a large body of
literature has focused on deriving optimum or sub-optimum power allo-
cation polices, but often these approaches are computationally expensive
and therefore not applicable in practical scenarios.

Fractional power control is one of the most successful policies that
has been applied in wireless communications thus far. It features a single
parameter and only depends on the large-scale gains. In this work, we
extend this approach to cell-free networks and analyse its performance.
Our derived solutions have three main features:

• They only depend on large-scale gains, ensuring the scalability.

• They allow for a trade-off between equalizing the performance among
users (similar to max-min) and the average system performance
(similar to max-product).

• They have an analytical form and can easily be computed in real-
time.

Fractional power control

Fractional power control originally was derived to minimize, in log scale,
the variance of the large-scale signal-to-interference ratio (SIR)—an ap-
proximation of the instantaneous SIR based on the large-scale gains. Ini-
tially, in [6], large-scale SIRs were computed for two users and, for user
k, the power allocation coefficient was computed as pk ∝ 1/

√
Gk, where

Gk is the large-scale gain between user k and its serving base station. This
was subsequently generalized in [7, 8] to

pk ∝
1

Gϑ
k

(2.9)
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where ϑ ∈ [0, 1] regulates the extent to which the range of dB-scale re-
ceived powers is compressed. The proportionality factor is set on the basis
of the power constraints.

Uplink

Assume a cell-free network with k users and N APs where matched filter
detection and conjugate beamforming are used in uplink and downlink,
respectively. For the uplink case, our work [9–11] formulated the frac-
tional power control coefficient as

pk ∝
1

(∑N−1
n=0 Gn,k

)ϑ , (2.10)

where Gn,k is the large-scale gain between user k and AP n and ϑ ∈ [0, 1]
is the power control parameter. The derived power control depends on
all the large-scale channel gains that involve a given user, reflecting the
effective connection between such user and the network.

For an interference-limited scenario, the detailed derivation of the
large-scale SIR is discussed in [10, 11]. Similar to the previous section,
the proposed power allocation scheme is derived based on the large-scale
SIR, while the performance evaluation is carried out using E[sirk] (the
instantaneous signal-to-interference ratio averaged over the small-scale
fading).

The effectiveness of (2.10) is illustrated in Fig. 2.6. We make the
following observations:

• The parameter ϑ effectively compresses and expands the distribu-
tion of E[sirk] (in log scale), enabling a trade-off between lower tail
behaviour and average value.

• The max-min is too strict and dragged down by worst-case users.

19



-10 -5 0 5 10 15 20 25
(dB)

0

0.2

0.4

0.6

0.8

1
C

D
F

E
[
sirk

]

Increasing 

Max-min

Fractional

Figure 2.6: CDF of E[sirk] for the uplink with N/K = 2.5, parameterized by ϑ =
{0, 0.2, 0.4, 0.6, 0.8, 1}. Also shown is the max-min solution.

Downlink

Inspired by the uplink performance, we proposed the following policy for
downlink power allocation [10]:

pn,k ∝
Gn,k

(∑N−1
m=0Gm,k

)ϑ(∑K−1
`=0

Gn,`

(
∑N−1

m=0Gm,`)
ϑ

)γ , (2.11)

where, as in the uplink, ϑ ∈ [0, 1] while γ is an additional parameter best
set in the range [0.4, 1.6].

This policy has two major components:

• Gn,k

(
∑N−1

m=0Gm,k)
ϑ , which is the dual form of the uplink power allocation.

20



-5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

C
D

F

Fractional

Increasing 
[4]

E
[
sirk

]
(dB)

Increasing 

Max-min

Fractional

Figure 2.7: CDF of E[sirk] for the downlink with η = 3.8 and N/K = 2.5, parame-
terized by ϑ = {0, 0.4, 0.8} and γ ∈ {0.4, 0.8, 1.2, 1.6}. Also shown are the max-min
solution and the benchmark from [12, Sec. III-D].

• A normalization factor

1(∑K−1
`=0

Gn,`

(
∑N−1

m=0Gm,`)
ϑ

) , (2.12)

that makes sure all APs have the same maximum transmit power.
Later, by introducing the parameter γ, we relax this condition.

Shown in Fig. 2.7 is the performance evaluation of the proposed
method (more details are provided in [10]). Because of the two parame-
ters, the performance is more versatile. Similar to the uplink, a trade-off is
observed between fairness and lower tail behaviour. However, the lower
tail falls short of the max-min solution.

21



2.4 Power maps

A power map determines the level of local-average received power at ev-
ery point of a 2-D environment. Unlike parametric modelling, such as the
COST-231 Hata [1] or the Stanford University interim model [2], which
are suitable for a class of environments, power maps focus on site-specific
behaviors.

Historically, ray tracing, recreating an environment in a computer sim-
ulator and applying wireless wave propagation mechanisms, has been
used for modelling site-specific behaviors. Ray tracing demands a very
detailed recreation for both the geometry and the wireless properties of
the constituent materials. Therefore, it is mostly restricted to indoor sites.

Measurement-driven reconstruction of the wireless environment or
power map is a viable option for outdoor environments. In typical cel-
lular networks, a large number of users are constantly reporting their
pathloss or local-average received power. By exploiting such a database,
we can recreate the propagation environment from the perspective of any
AP. Power maps are of great benefit for (proactive) resource allocation,
network planning, and interference mitigation.

Online and batch methods are two approaches for reconstructing power
maps. In the batch method, all the measurements need to be available
beforehand, which has the drawback of not being able to adapt to en-
vironment changes. Online power map reconstruction (see Chapter 7)
processes measurements one at a time. After having received a certain
number of measurements, it can build a 2-D map of the local-average re-
ceived power from the viewpoint of the given AP. Because of the dynamic
nature of the online method, the effect of environment changes, e.g, con-
struction sites or traffic, could also be incorporated to the online power
maps.

Dual-kernel method

In Fig. 2.8, pathloss values (the decay in power level in log scale from the
given AP to the different users or a user in different locations) are shown
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for a specific site. It can be seen that pathloss has a varying part oscillating
around a DC component, which itself varies as new measurements are
being collected. Also, the pathloss is bounded from below and above. In
this specific site, the pathloss measurements fall between 65 and 115 dB.

Figure 2.8: Pathloss variation as function of new measurements

Dual-kernel is the main contribution of our proposed method for on-
line power map reconstruction. A kernel is a function that measures the
similarities between two points in 2-D space. For instance, a well-defined
kernel could suggest how similar is the level of received power at two
points of space separated by distance D. In our dual-kernel approach, we
have the DC and varying kernel, defined as:

• Varying kernel: it models the varying part of pathloss (variations
around the DC value) a Gaussian kernel e−

‖x1−x2‖
D is adopted. In

our case, x1 and x2 are user locations and the kernel parameterD is
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the correlation distance. If two users are closer than D on the 2-D
plane, they will have similar pathloss values.

• DC kernel: it captures the DC component of the signal. We have
used another Gaussian kernel with much larger kernel parameter
D. It ensures that the location-independent DC component of the
pathloss (a signal similar to Fig. 2.8) can be captured by the DC
kernel.

In summary, the dual kernel approach provides just enough complexity to
capture the underlying phenomena. Its simple structure avoids the over-
fitting problem—choosing a very complex model to explain a simple be-
haviour. As a result, the dual kernel approach outperforms both the multi-
kernel and the single-kernel approaches, offering the right amount of the
complexity.

Kernel-based regression

The power map reconstruction is an online regression problem—the goal
is to predict the value of the pathlosss for a given location in 2-D space
based on the available samples of locations and pathloss values. In any
regression task, a group of functions or hypotheses are assumed. In such
a model, the objective of learning is to choose a subset of these functions
that can both explain the current data (learning set) and unseen data (test
set) with the least minimum mean square error (MMSE).

A kernel function defines these hypotheses. For instance, for a given
point xn on the 2-D plane, the Gaussian kernel defines a function as
f(x) = e−

‖xn−x‖
D . Therefore, for a given data set of locations and pathloss

values, the regression hypothesis could be defined as

F =

{∑

n

αn e
− ‖xn−x‖

D

}
, an ∈ R (2.13)

where the index n refers to the data points. Any function in the regression
hypothesis F is a linear combination of bases, each of them associated
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with a measurement. The set of measurements that are used to build F is
called the dictionary, with each measurement being a dictionary element.

After defining the kernel, and consequently the regression hypothesis,
the power map reconstruction boils down to finding the optimum

f ?(x) =
∑

n

α?n e
− ‖xn−x‖

D , (2.14)

or specifying the effect of each dictionary element α?n. In Chapter 7, we
deep dive into this problem using a technique called adaptive projected
subgradient method (APSM) [3].

Sparsification

Sparsification is a technique for controlling the size of the dictionary,
which grows over time. Since the measurements arrive in an online fash-
ion, incorporating all the measurements could result in a large dictionary.
Also, some outdated measurements may not be a good basis for power
map reconstruction because of the changes in the environment. To re-
solve this issue, the following steps are implemented:

• The function complexity or norm, defined as ‖α‖2 with α being
equal to {αn}, is set to a number like 100 or 200. The function
norm roughly determines the number of effective elements or mea-
surements in the dictionary.

• The redundant or less informative measurements are removed from
the dictionary if their effect on the function norm (the function we
use for power map reconstruction) is negligible.

By applying these steps in an online fashion (after a new measurement is
collected), an online power map could be reconstructed that not only has a
limited number of dictionary elements (lower computational burden) but
also tracks the changes in the environments.
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Advantage

The proposed approach provides an online regression tool for power map
reconstruction. Having sufficient but not limited complexity, the dual ker-
nel structure leads to a superior performance in the following areas:

• The convergence speed improves dramatically. It can build an ac-
curate picture of the power map by processing 500 samples.

• The prediction variance improves significantly, since the DC kernel
reliably captures a large portion of the pathloss.

• A simple sparsification technique ensures both a small dictionary
size (less computation) and an online behavior that can track the
environment changes.

2.5 Summary

In this chapter, without diving into the mathematical details, we have dis-
cussed the main contributions of the thesis. Also, some important results
have been included.
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Chapter 3

Unsupervised Learning for
Parametric Optimization
Rasoul Nikbakht, Student Member, IEEE, Anders Jonsson, Angel Lozano,
Fellow, IEEE

Abstract— This letter proposes the unsupervised training of a feed-
forward neural network to solve parametric optimization problems
involving large numbers of parameters. Such unsupervised training,
which consists in repeatedly sampling parameter values and perform-
ing stochastic gradient descent, foregoes the taxing precomputation
of labeled training data that supervised learning necessitates. As an
example of application, we put this technique to use on a rather gen-
eral constrained quadratic program. Follow-up letters subsequently
apply it to more specialized wireless communication problems, some
of them nonconvex in nature. In all cases, the performance of the pro-
posed procedure is very satisfactory and, in terms of computational
cost, its scalability with the problem dimensionality is superior to that
of convex solvers.
Index Terms— Machine learning, neural networks, unsupervised learn-
ing, parametric optimization, convex optimization, quadratic pro-
gram
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3.1 Introduction
In parametric optimization [1–4], the aim is not to solve a specific opti-
mization problem, but rather to represent the solution to an entire family
of problems. This family of problems is governed by parameters, such
that each combination of parameter values corresponds to a particular op-
timization problem. The desired output of parametric optimization is a
mapping from parameter values to the optimum solution of the specific
associated problem.

When the objective function is nonlinear in the input, the setting be-
comes that of parametric nonlinear programming [5]. For this setting, a
number of approximation algorithms exist, including outer approxima-
tions [5, 6], gradient descent [7], or piecewise quadratic fitting [8]. Such
state-of-the-art algorithms have in common that they completely (or ap-
proximately) solve a sequence of optimization problems in order to es-
timate the desired mapping between parameters and solutions. When
the parameter dimensionality increases, these algorithms need to solve a
very large number of such optimizations in order to estimate an accurate
solution, eventually becoming computationally intractable. As a result,
existing algorithms scale poorly to parametric optimizations with many
parameters.

This letter propounds to leverage the expressive power of neural net-
works (NNs) to solve large-dimensional parametric optimizations. Be-
cause of their nonlinear nature, NNs are ideal candidates for nonlinear
optimizations. Indeed, NNs have been applied already to solve paramet-
ric optimizations in a supervised fashion, by sampling parameter values
and solving the associated optimization problems [9,10]. Again, for large
parameter dimensionalities this becomes unfeasible because of the sheer
size of the parameter space.

As an alternative, what is proposed in this letter is to train a feed-
forward NN by repeatedly sampling parameter values, but, rather than
completely solving the associated optimization problem for each, taking
a single step along the gradient of the objective function. Despite not

ICREA Academia program.
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providing the NN with the solution for each parameter value, descending
along the gradient allows the NN to generalize information for different
such values.

To test the proposed idea, we apply it to quadratic programming (QP),
a simple but very common—and convex—class of optimizations. In two
follow-up letters, we turn to more involved problems motivated by wire-
less communications and not always exhibiting convex objectives. Pre-
cisely, power control for cellular networks is considered in [11] whereas
power control for centralized radio-access networks is the object of [12].

3.2 Parametric Optimization
Letting θ ∈ Θ ⊆ RQ be a Q-dimensional parameter vector and x ∈
X ⊆ RD a D-dimensional optimization vector, consider the optimization
problem

min
x∈X

f(θ,x). (3.1)

In parametric optimization, the goal is to estimate a minimizer func-
tion x? : Θ → X or a value function g : Θ → R, both of which map
parameter vectors to a solution of the corresponding optimization prob-
lem. For a specific θ, the minimizer and value functions are

x?(θ) = arg min
x∈X

f(θ,x) (3.2)

g(θ) = min
x∈X

f(θ,x). (3.3)

Note that, if we have access tox?(θ), the value function is trivially g(θ) =
f
(
θ,x?(θ)

)
. However, in general it is not as easy to induce a minimizer

function from a value function.
Previous work in parametric optimization typically imposes restric-

tions on the sets Θ and X (convexity) as well as on the objective function
f (differentiability and, again, convexity). Under these restrictions, and in
particular if both X and f are convex, any local minimizer is also a global
minimizer and hence x? is well defined. One contribution of our approach
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is that it makes minimal assumptions about the optimization problem: the
only strict requirement is that f be differentiable in x. We also do take
the feasible set X to be convex, which suffices to ensure that x? is well
defined, but we do not restrict f to being convex. Of course, for noncon-
vex f , what gradient descent can do is to find a local minimizer, with no
guarantee that it is also the global minimizer x?.

As advanced in the introduction, several algorithms do exist already
that efficiently approximate x?(θ) or g(θ). However, these come at the
expense of having to solve a sequence of optimization problems whose
number increases exponentially with the parameter dimensionality, Q.

3.3 Proposed Approach

3.3.1 Neural Networks

NNs are universal function approximators that combine simple nonlinear
units to form complex networks with substantial expressive power. The
universal approximation theorem states that feed-forward NNs with a sin-
gle hidden layer can approximate continuous functions to arbitrary pre-
cision [13–15]. Formally, a feed-forward NN represents a vector-valued
function h(a,w) with D output dimensions, where a is an input vector
and w is a vector of weights. NNs are typically trained using gradient
descent on a given loss function L(y), where y = h(a,w) is the NN’s
output. Since

L(y) = L(h(a,w)) (3.4)
= (L ◦ h)(a,w), (3.5)

the chain rule allows us to write

∇wL(y) = J(a,w)>∇yL
(
h(a,w)

)
, (3.6)
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where J(a,w) is the Jacobian matrix

J(a,w) =



∇wh0(a,w)>

...
∇whD−1(a,w)>


 . (3.7)

The Jacobian is not explicitly computed; rather, backpropagation is used
to disseminate the gradient through the NN in order to update its weights [16].
For example, a regression task can be formulated by means of a square
loss L(y) = ‖y − t‖2, where t is the target output associated with input
a. The goal is to minimize the loss such that the difference between y
and t becomes as small as possible for each input a.

3.3.2 Unsupervised Learning for Parametric Optimiza-
tion

Let us consider an NN that represents a minimizer function x? : Θ →
X . Upon an input θ ∈ Θ, the network outputs a D-dimensional vec-
tor x = h(θ,w). In supervised learning [10], NN training requires a
learning stage in which parameter vectors θ0, . . . ,θS−1 are sampled and
each of the associated convex optimization problems is solved to obtain
respective target outputs x?0, . . . ,x

?
S−1. The NN is then trained by means

of regression as described above, with the loss being a function of the
difference between the predicted and the target output.

The NN is trained by means of stochastic gradient descent applied
directly on the objective function, f . To do so, we define the loss function

L(x) = f(θ,x), (3.8)

whose gradient equals

∇wL(x) = J(a,w)>∇xf
(
θ,h(θ,w)

)
, (3.9)

which requires f to be differentiable in x. As anticipated, this is the one
premise that cannot be lifted.
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If the constraints are simple enough, they can be hardwired into the
structure of the NN itself, say by selecting nonlinear units for the output
layer that can only produce values within a certain range [17]. With a
view to broader generality, though, we prefer to transform the constrained
optimization problem

min
x∈X

L(x) (3.10)

into the unconstrained optimization problem

min
x
L(x) + β>C(x), (3.11)

where C(x) is the vector of constraints that define the feasible set X and
β is a vector of Lagrangian (or KKT) multipliers. Hence, the gradient
also involves a problem-dependent term that corresponds to C(x). Since
the loss function is a combination of the objective function and of the cost
that is associated with the constraints, training the NN by gradient descent
has the effect of minimizing f(θ,x) over the feasible set X , which is
precisely the aim of parametric optimization. To circumvent having to
identify the optimum β analytically, which would require solving the dual
optimization problem, we adopt the common strategy of cross-validation:
apply the same multiplier β to every constraint, and select its value after
trialing β ∈ {0.01, 0.1, 1, 10, 100}.

The crux of the proposed approach is that, rather than completely solv-
ing the optimization problem associated with each specific θ, we take a
single step along the gradient before sampling a new parameter vector.
We do not know the correct output for a given input, but we can compute
the loss given the current prediction of x and update such prediction in
order to minimize the corresponding loss. Even though the NN is not pro-
vided with the solution for each parameter vector, descending along the
gradient allows the NN to quickly generalize across parameter vectors.

Altogether, our proposition can be summarized as follows:

• Treat the optimization parameters as inputs to the NN.

• Create a custom loss function based on the parametric optimization
problem.
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• Evaluate the NN and update the weights by means of any gradient-
based optimizer.

3.4 Application to Constrained QP
Before proceeding, in follow-up letters [11] and [12], to more specific
parametric optimizations motivated by wireless communications, let us
herein entertain a simpler yet much more general one.

3.4.1 Formulation
A constrained QP is a convex instance of the parametric optimization in
(3.1) with

f(θ,x) = x>Rx+ b>x, (3.12)

whereR is a positive-semidefinite matrix and b is a vector, together con-
stituting the parameter θ = {R, b}. The feasible set for every entry of x
is the interval [0, 1], ensuring that X is a D-dimensional convex set.

To demonstrate the functionality of the proposed approach as broadly
as possible, we do not posit any structure for R and b. Rather, R is
generated as

R =
I−1∑

i=0

rir
>
i (3.13)

with the entries of ri, as well as those of b, drawn uniformly within
[−1, 1]. To solve this parametric optimization using the introduced frame-
work, the loss function is defined as

LQP = x>Rx+ b>x︸ ︷︷ ︸
Objective

+ 100
D−1∑

k=0

(
[−xk]+ + [xk − 1]+

)

︸ ︷︷ ︸
Constraints

, (3.14)

where [z]+ = max(0, z) and the multiplier of 100 applied to the constraint
portion is the result of cross-validation. By increasing it, the (very small)
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Table 3.1: NN settings for QP.

Input
layer

Hidden
layer

Output
layer

Neurons 900 500
D = 10 + 10
or 30 + 30

Activation function RLU RLU Linear

Regularization L2 norm
λ = .001

L2 norm
λ = .001

L2 norm
λ = .001

probability that the constraints are violated and that the solution thus falls
outside the feasible set could be reduced further, at the expense of the ob-
jective value. This issue is tackled in [12] within the context of a wireless
communications problem.

3.4.2 Learning Stage

The learning pipeline employed to train the NN is depicted in Fig. 3.1
and the NN’s parameters are summarized in Table 5.1. A single hidden
layer is featured, as additional ones have not been found to improve the
performance—yet the training does become longer. With D dimensions,
there are D×D dimensional interactions and thus the number of neurons
in the input layer should be at least D2 while the number of neurons in
the hidden layer should be between D and D2.

After centering and scaling, θ is fed to a feature-extracting input layer
equipped with rectified linear unit (RLU) activation functions. A hidden
layer then processes the data also via RLUs, and an output layer with
linear activation functions generates values x. To improve the dynamic
range as well as the sensitivity to small values, these outputs are taken to
be in log scale, yet this restricts them to being positive. This limitation
is circumvented by allowing the NN to output two distinct vectors, x+

and x−, both in log scale, which are linearized into positive and negative
values, respectively, and then summed. With that, the NN can produce
any real vector x while preserving the advantages of an internal log rep-
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Figure 3.1: Learning pipeline.

resentation. From θ and from the output x, the loss LQP is quantified and
an Adam optimizer—a standard algorithm that updates NN weighs itera-
tively [18]—is applied to minimize it. To avoid oscillations around local
optima during the weight adjustment, the learning rate, i.e., the amplitude
of the gradient steps, is reduced gradually from 0.001 down to 0.0001.
And, to prevent overfitting, L2-norm regularization is used in conjunction
with the Adam optimizer. Precisely, a portion λ = 0.001 of the L2 norm
of the weights is added to the loss.

In order to streamline the learning, rather than a single large database,
we generate multiple small databases. Specifically,M = 500 databases of
12800 parameter realizations are generated and, over each such database,
100 updates of the NN weights take place; every update involves a ran-
domly selected batch of 128 realizations. Altogether, 12800M realiza-
tions are produced for learning purposes, and the NN weights are updated
100M times.
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3.4.3 Performance
Once the learning stage has concluded, the inference of solutions can take
place. To evaluate the performance, an ensemble of realizations of the
parameter θ is produced; each realization is fed to the NN, which out-
puts the corresponding inference of the QP solution. Depicted in Fig.
3.2 is the cumulative distribution function (CDF) of the objective value,
minx∈X f(θ,x), for a constrained QP with either D = 10 or D = 30
dimensions and with I = 5 in (3.13). The match between the solutions
produced by the NN and by a convex solver [19] is very satisfying for
D = 30, when the number of neurons in the input layer is tight at its min-
imum value of D2, while the match is absolute for D = 10, when excess
neurons are available therein.

3.4.4 Computational Cost
Relative to a convex solver, the computational cost of the unsupervised-
learning approach scales better with the dimensionality of the QP. Like-
wise, its training scales better than it would if the learning were super-
vised, as that would require solving the QP for each individual training
parameter.

For the QP herein invoked to illustrate the performance, however, the
computational savings and the improvement in scalability are modest. It
is for more intricate problems such as the ones tackled in [11,12] that the
advantage becomes prominent, hence its assessment is deferred to these
sequels.

3.5 Conclusion
An unsupervised NN-based procedure to tackle parametric optimizations
over convex sets has been presented and put to use in the classic problem
of constrained QP. The results match those produced by convex solvers
with extreme accuracy. In the follow-up letters [11] and [12], more in-
volved problems motivated by wireless communications are tackled and
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major advantages in computational scalability are revealed relative to con-
vex solvers. For some of these problems, furthermore, the feasible set is
convex but the objective function is not.

We believe that the restriction of the feasible set being convex could
be lifted, at least in those cases in which the existence of a local minimizer
can be established [20], and this is an interesting avenue for subsequent
research. Also suggestive of further work is that, while computationally
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Figure 3.2: CDF of minx∈X f(θ,x) for a QP with either D = 10 or D = 30 dimen-
sions. The distribution is induced by that of θ = {R, b} with I = 5.

more scalable than convex solvers (when applicable) and appearing to
perform well even with nonconvex objectives, the presented approach still
suffers from weaknesses:

• The NN is fully connected, hence the number of neuronal intercon-
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nects grows rapidly with the dimensionality of the parameter and
optimization vectors, and so does the number of training samples.

• Retraining needs to take place whenever those dimensions change.

The first issue can be mitigated by exploiting the structure of each
problem, say the existence of entries within θ that are zero (or small
enough to be negligible); this is often the case in the problems confronted
in [11, 12]. Then, a non-fully-connected NN could be employed, at the
expense of generality.

As of the second issue, one idea would be to dimension the problem
for its largest possible size and then train with some of the dimensions
randomly zeroed out [21]. Alternatively, a modular NN could be consid-
ered, and interesting ideas in this direction are propounded in [22, 23],
also in the context of wireless communications. Modular NN designs that
could be applied to generic parametric optimization would be a welcome
proposition.
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Chapter 4
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Cellular Power Control
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Abstract— This paper applies a feedforward neural network trained
in an unsupervised fashion to the problem of optimizing the transmit
powers in cellular wireless systems. Both uplink and downlink are
considered, with either centralized or distributed power control. Var-
ious objectives are entertained, all of them such that the problem can
be cast in convex form. The performance of the proposed procedure
is very satisfactory and, in terms of computational cost, the scalability
with the system dimensionality is markedly superior to that of con-
vex solvers. Moreover, the optimization relies on directly measurable
channel gains, with no need for user location information.
Index Terms— Machine learning, neural networks, unsupervised learn-
ing, power control, cellular systems
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4.1 Introduction

A preceding letter proposed leveraging the expressive power of neural
networks (NNs) to solve large-dimensional parametric optimizations [1].
In this follow-up letter, we apply this approach to the all-important prob-
lem of power control in cellular systems. In both uplink and downlink,
power control is instrumental to prevent huge performance disparities
among users. By defining suitable loss functions, it is possible to optimize
the transmit powers so as to balance the user signal-to-interference-plus-
noise ratios (SINRs) as desired. The more balanced the SINRs, the more
fairness—customarily at the expense of a reduced average performance.

The use of NNs for cellular power control has been explored un-
der supervised, semi-supervised, or outright unsupervised learning, with
promising performance [2–6]. The unsupervised framework avoids the
taxing precomputation of labeled training data for every conceivable en-
vironment and speeds up the retraining whenever there are changes in the
system.

A relevant attribute of the supervised power control in [2] is that
the input parameters are the user locations, from which a mapping is
established to the transmit powers. Since location information could—
especially indoors—be unreliable or outright unavailable, our designated
parameters are the channel gains, which can be measured directly and
reliably. However, in contrast with [4–6], we desire for the power con-
trol to respond only to the large-scale behavior of the channel gains, i.e,
to their local-average values, and not to the small-scale fluctuations that
occur on scales of milliseconds (in time) and hundreds of kilohertz (in
frequency). This ensures relatively stable transmit powers, leaving the
small-scale swings to be dealt with by link adaptation [7].

4.2 Cellular System Model

In its basic abstraction, a cellular system consists of N cells, each served
by an AP. On a given time-frequency signaling resource, a single user is
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active within each cell. Both APs and users are equipped with an omnidi-
rectional antenna.

The formulation in the sequel applies regardless of how the APs are
positioned and, to be on the same footing as the cell-free systems consid-
ered in [8], we draw those positions uniformly at random. The Voronoi
region of each AP then spawns a cell, and one user is dropped uniformly
at random therein. Every user communicates with its same-cell AP while
interfering with the rest of APs.

4.2.1 Channel Features

Signals are subject to distance-dependent power decay with exponent η =
3.8, and this decay gives rise to a large-scale channel gain Gn,k between
the kth user and the nth AP. Correspondingly, that link’s signal-to-noise
ratio is

SNRn,k =
Gn,kP

σ2
(4.1)

with P the maximum transmit power and σ2 the noise power.
Recent results have shown that shadowing renders cellular systems

approximately Poisson-like from the vantage of any user [9], a behavior
that sharpens as the shadowing intensifies, but that is precise already for
shadowing strenghths of interest [10]. Relying on these findings, APs
and users are positioned uniformly at random, with shadowing implicitly
embedded in that randomness.

For the sake of a cleaner notation, P/σ2 is taken as equal for uplink
and downlink, but asymmetries could be had by simply discriminating the
respective SNR variables. We set P/σ2 such that SNRn,k = 20 dB at a
distance d, where d would be the inter-AP spacing if the network were
arranged as a hexagonal grid. Under reasonable values for P and σ2, this
is compatible with a dense microcellular deployment [11].

In addition to Gn,k, the channel that connects the kth user with the
nth AP includes a small-scale fading coefficient hn,k ∼ NC(0, 1), in-
dependent across users and APs. Each fading coefficient is presumed
known by the respective receiver, an amply justified premise in cellular
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systems [12, ch. 4].

4.2.2 Uplink

In the uplink, the nth AP is only interested in the signal from the nth
user, the one in its cell, while the rest of users constitute interference. The
observation at such nth AP is

yn =
√
Gn,nhn,n

√
pnPsn +

∑

k 6=n

√
Gn,khn,k

√
pkPsk + vn, (4.2)

where sn is the unit-power symbol emitted by user n whereas pn ∈ [0, 1]
is its power control coefficient and vn ∼ NC(0, σ2) is the noise. The
SINR for the nth user is then

sinrULn =
pnGn,n |hn,n|2∑

k 6=n pkGn,k |hn,k|2 + σ2/P
(4.3)

=
pn SNRn,n |hn,n|2∑

k 6=n pk SNRn,k |hn,k|2 + 1
(4.4)

and its expectation over the small-scale fading yields the operationally
meaningful local-average SINR [7], namely

E
[
sinrULn

]
= E

[
pn SNRn,n |hn,n|2∑

k 6=n pk SNRn,k |hn,k|2 + 1

]
. (4.5)

In order to formulate loss functions that, as desired, drive the NN
based only on large-scale quantities, it is convenient to have an SINR
expression that depends on those quantities without the cumbersome outer
expectation over the small-scale fading. To that end, replacing |hn,n|2 and
|hn,k|2 by their expected value (unity), we obtain the very accurate proxy

SINRUL

n =
pn SNRn,n∑

k 6=n pk SNRn,k + 1
. (4.6)
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4.2.3 Downlink

In the downlink, the local-average SINR at user n is the dual of (4.5),
precisely

E
[
sinrDL

n

]
= E

[
pn SNRn,n |hn,n|2∑

k 6=n pk SNRk,n |hk,n|2 + 1

]
(4.7)

and its large-scale proxy is

SINRDL

n =
pn SNRn,n∑

k 6=n pk SNRk,n + 1
. (4.8)

4.3 Loss Functions
Armed with suitable proxies for the local-average SINRs, loss functions
of interest can now be formulated. First, we consider a max-min loss,
attractive when the sole focus is fairness, and we suitably soften the func-
tion to allow relaxing that focus individually for each user. Then, we
consider a max-product loss, enticing when the objective is to favor the
average performance without a complete sacrifice in fairness.

4.3.1 Soft Max-Min

The soft max-min function is

LMM =
1

N

[
N−1∑

n=0

exp

(
αn

(SINRn + 0.01)0.4

)

︸ ︷︷ ︸
Objective

+ 0.1
N−1∑

n=0

[pn − 1]+

︸ ︷︷ ︸
Constraints

]
(4.9)
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where {αn} are regulating factors and [z]+ = max(0, z). The cross-
validation process described in [1] yields a multiplier of 0.1 for the con-
straints, relative to the objective. Readers interested in the probability that
some constraint is violated are referred to [8], where such probability and
its impact on the ultimate performance is quantified for the more involved
constraints that arise in centralized radio-access networks.

As {αn} grow large, LMM becomes dominated by the lowest SINR
and the optimization hardens to a maximization of such smallest SINR,
i.e., to a max-min policy. Conversely, for decreasing {αn}, this max-min
behavior softens as SINRs other than the lowest become progressively
relevant.

The small offset 0.01 added to SINRn avoids having the loss being
dragged down by users below −20 dB and prevents numerical problems
in the NN learning stage. In turn, the exponent 0.4 compresses the dy-
namic range, improving the high-SNR performance and making the learn-
ing more stable.

4.3.2 Max-Product
Our second loss function relates to the product of the SINRs, whose maxi-
mum is a desirable operating point in wireless systems [12, sec. 7.5]. The
maximization of ΠN−1

n=0 SINRn, or equivalently of its logarithm, amounts
to the minimization of

LMP =
1

N

[
N−1∑

n=0

βn log

(
0.01 +

1

SINRn + 0.01

)

︸ ︷︷ ︸
Objective

+ 0.1
N−1∑

n=0

[pn − 1]+

︸ ︷︷ ︸
Constraints

]
(4.10)

where the multiplier applied to the constraints is again 0.1.
When the regulating factors {βn} are equal, the combination {SINRn}

that minimizes LMP exhibits satisfactory properties in terms of the trade-
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Figure 4.1: Learning pipeline.

off between average performance and fairness [12, sec. 7.5]. And, by
tinkering with {βn}, specific users could be afforded higher performance
priorities.

Again, the offset shifting SINRn by 0.01 avoids it being pulled down
by users below −20 dB while a second offset added to 1

SINRn+0.01
lessens

the pull of users above 20 dB.

4.4 Centralized Power Control

Connecting back with the parametric optimization description in [1], the
input parameter θ consists of {SNRn,k} while the optimization vector x
packs the N power coefficients {pn}, each constrained to the convex in-
terval [0, 1]. The loss function is given by either LMM or LMP. And, as the
transmit power in each cell is adjusted on the basis of the SNRs for all the
users in the system, the power control is centralized.
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Table 4.1: NN settings.

Input
layer

Hidden
layer

Output
layer

Neurons 1200 200 N = 30

Activation function RLU RLU Linear

Regularization L2 norm
λ = .001

L2 norm
λ = .001

L2 norm
λ = .001

4.4.1 Learning Stage

The learning pipeline is illustrated in Fig. 4.1 while the parameters of the
NN are summarized in Table 5.1. For preprocessing purposes, {SNRn,k}
are first converted to {log SNRn,k} and subsequently rendered zero-mean
and unit variance. The processing then starts through an input layer
equipped with rectified linear unit (RLU) activation functions. After fea-
ture extraction by this input layer, a hidden layer processes the data also
via RLUs, and an output layer with linear activation functions generates
power coefficients in log scale; this guarantees positive outputs and averts
numerical problems. From the SNRs and the corresponding NN outputs,
the loss function of choice is quantified and an Adam optimizer is ap-
plied to minimize it. To avoid oscillations around local optima during
the weight adjustment, the learning rate is reduced gradually from 0.001
down to 0.0001. And, to prevent overfitting, L2-norm regularization is
employed in conjunction with the Adam optimizer: a portion λ = 0.001
of the L2 norm of the weights is added to the loss.

To streamline the learning, rather than a single large database, 1000
databases of 10000 system realizations are generated and, over each, 10
updates of the NN weights take place; each update relies on a randomly
selected batch of 1000 realizations. The initialization is also random.

As an example, the uplink learning curve for the soft max-min loss
function with αn = 1 is provided in Fig. 4.2.
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Figure 4.2: Uplink soft max-min learning curve with αn = 1: loss and minimum local-
average SINR as a function of the NN weight updates.

4.4.2 Performance Evaluation

For both of the introduced loss functions, the cellular power control prob-
lem admits convex formulations in both uplink and downlink. Thus,
performance benchmarks can be produced with an off-the-shelf convex
solver [13].

We consider a system with N = 30 cells, and equip the NN’s input
layer with 1200 neurons, somewhat above the minimum of N2. The per-
formance is evaluated by means of the cumulative distribution function
(CDF) of local-average SINRs over the ensemble of possible user and AP
positions. The NN and the convex solver are driven by the proxies in (4.6)
and (4.8), for uplink and downlink respectively, while the performance
with the obtained powers is assessed by means of the actual local-average
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SINRs in (4.5) and (4.7).
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Figure 4.3: CDF of E
[
sinrULn

]
for the soft max-min loss function (αn = 1): NN vs

convex solver, alongside the baseline without power control (pn = 1). In the inset, CDF
of LMM for the NN and the convex solver.

Presented in Fig. 4.3 is the uplink performance for the soft max-min
loss function with αn = 1. The NN yields transmit powers that, relative
to the convex solver, favor high-SNR users slightly over their low-SNR
brethren. In terms of the loss function, the NN is uniformly shy of the
convex solver, but the agreement is extremely satisfying. The figure also
depicts the baseline performance in the absence of power control, which
confirms the importance of optimizing the transmit powers to avoid enor-
mous disparities among users. For the max-product loss function, Fig.
4.4 reveals an even better match between the NN and the convex solver.
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The CDFs of local-average SINRs again cross over while, in terms of the
loss function, the NN is uniformly shy of the convex solver.

In the downlink (see Figs. 4.5 and 4.6), the importance of power con-
trol is somewhat toned down because the intercell interference distribu-
tion is more benign [14]. Indeed, a contrast of Figs. 4.5 and 4.6 evidences
that a non-power-controlled transmission approximates fairly closely the
max-product solution.

4.4.3 Computational Cost
As a measure of the computational cost, we invoke the running time on
a common computational platform. And, to err on the side of caution, a
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CPU-based platform befitting the convex solver is chosen.
Each NN inference is in essence a matrix multiplication, over two

orders of magnitude faster than a convex solver for our 30-cell system.
For a growing number of cells, this advantage is likely to increase further.

In terms of learning, which needs to take place upon changes in the
system or the environment, it is interesting to contrast the learning time
of our unsupervised NN with that of a supervised NN of the same di-
mensions. While the training effort per parameter sample is essentially
the same in both cases, a supervised NN would require producing those
samples by solving the corresponding optimization problems in the first
place, again resulting in the over-two-order-of-magnitude advantage for
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the example at hand. This primacy could be tempered slightly by the pos-
sibility of reusing training samples on the part of the supervised scheme,
allowing it to cope with a fraction of the data, but in a worst-case scenario
the unsupervised approach would retain a net advantage of over one order
of magnitude—which would then rise with the number of cells. (Allow-
ing the NN to train on a more apt GPU-based platform, this superiority
would increase by yet another order of magnitude.)
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4.5 Distributed Power Control
While centralizing the power control is advantageous from a performance
standpoint, allowing it to operate distributedly—each cell on its own—
is preferable from an implementation perspective. We can shift towards
distributedness by restricting the input parameter θ to contain, rather than
{SNRn,k}, only {SNRn,n}. The transmit powers are then optimized based
solely on same-cell SNRs, and owing to the reduced parameter space, the
training is considerably more expeditious.

For distributed power control, an additional benchmark exists, namely
the so-called fractional power control policy [15]. This is in fact the main-
stream approach to power control in current cellular networks, with the
remarkably simple form

pn ∝
1

SNRϑn,n
, (4.11)

where ϑ determines the extent to which fairness is promoted [16]; typical
values in 4G and 5G systems are ϑ ≈ 0.5–0.7, with lower values favoring
the average performance while higher values foster fairness and cell-edge
robustness. The proportionality factor in (4.11) should be such that pn ∈
[0, 1].

Presented in Fig. 4.7 is the comparison between the NN-based ap-
proach (with soft max-min and αn = 1) and fractional power control
(with ϑ = 0.7). It can be surmised that:

• Distributed power control is only modestly worse than centralized
power control (cf. Figs. 4.3 and 4.7).

• Fractional power control is indeed extremely effective, its perfor-
mance almost identical to that of the NN—despite the fact that the
NN has access to the same-cell SNRs for the entire system while
fractional power control truly operates on a cell-by-cell basis.

This latter point invites a dual remark. On the one hand, the NN is
useful to certify the effectiveness of fractional power control and to cali-
brate the equivalence of the parameter ϑ in terms of any well-defined loss
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function. On the other hand, a solution far simpler and equally perform-
ing to the NN is seen to exist—less general, but emanating from the core
structure of the problem at hand. Precisely, fractional power control was
derived analytically as the strategy that minimizes the variance of the SIR
(in dB) in a two-cell setup [15].

-10 -5 0 5 10 15 20 25
            (dB)

0

0.2

0.4

0.6

0.8

1

C
D

F

NN
Fractional

Power
Control

E
[
sinrULn

]

Figure 4.7: CDF of E
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]
: NN for soft max-min (αn = 1) in solid versus fractional

power control (ϑ = 0.7) in dashed.

4.6 Summary
The unsupervised-learning approach to parametric optimization described
in [1] is very effective for cellular power control, adding to the body of
works that leverage NNs to tackle wireless communication problems [2–
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5, 17–21].
With a view to having suitable benchmarks, only objectives leading

to convex formulations have been considered. Other objectives can be
defined that do not admit convex forms, in particular the maximization
of weighed sum of the spectral efficiencies. Although benchmarks may
then be lacking, these objectives can be tackled all the same with our
approach, and instances of nonconvex objectives are given in [8] for cen-
tralized radio-access networks.

The distributed uplink setting dispenses a reminder of the fact that,
whenever sound models are available that describe the structure of the
problem, solutions that are simpler and even illuminating may sometimes
be derived directly from those models. Learning-based approaches should
complement and expand, rather than replace, such model-based deriva-
tions.

The Python code developed to produce the results in this letter is
openly available [22].
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Chapter 5

Unsupervised Learning for
C-RAN Power Control and
Power Allocation
Rasoul Nikbakht, Student Member, IEEE, Anders Jonsson, Angel Lozano,
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Abstract— This paper applies a feedforward neural network trained
in an unsupervised fashion to the problem of optimizing the transmit
powers in centralized radio access networks operating on a cell-free
basis. Both uplink and downlink are considered. Various objectives
are entertained, some leading to convex formulations and some that
do not. In all cases, the performance of the proposed procedure is
very satisfactory and, in terms of computational cost, the scalability
is manifestly superior to that of convex solvers. Moreover, the opti-
mization relies on directly measurable channel gains, with no need
for user location information.
Index Terms— Neural networks, unsupervised learning, cell-free net-
works, ultradense networks, power control, power allocation, C-RAN
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5.1 Introduction
A preceding letter proposed leveraging the expressive power of neural
networks (NNs) to solve large-dimensional parametric optimizations in
an unsupervised fashion [3]. Then, in a follow-up letter, this approach
was applied to power control for cellular systems [4]. In this final letter, it
is further applied to the intertwined problems of power control and power
allocation for centralized, possibly cloud-based, radio access networks
(C-RAN). The more intricate optimizations that arise in this richer setting
offer an excellent opportunity to further test the efficacy of the technique.
In particular:

• In a C-RAN, the transmit power optimization is necessarily cen-
tralized and decidedly many-parametric; it runs into dimensionality
issues faster than in cellular setups.

• The loss functions introduced in [4] continue to be applicable, but,
in contrast with the cellular case, here they do not always admit
convex forms. When they do not, the performance of our learning-
based approach becomes itself a yardstick against which other so-
lutions can be gauged.

C-RANs inherently operate on a cell-free basis: on each time-frequency
resource unit, every access point (AP) communicates, rather than only
with the user in its cell, with every user in the system [5]. This inher-
its ideas from network MIMO and takes to its natural limit the notion of
cell cooperation [6]. C-RANs offer multiple advantages over their cel-
lular counterparts, including large-scale diversity, interference handling,
flexibility, and elasticity, and it is reasonable to anticipate that, at least for
ultradense deployments, C-RANs might become the norm [7, 8].

As in [4], we desire for the power control to respond only to the large-
scale behavior of the channel gains, and not to the small-scale fluctuations
that occur on scales of milliseconds (in time) and hundreds of kilohertz
(in frequency). This guarantees relatively stable transmit powers, leaving
the small-scale swings to the province of link adaptation [9].

Communications [2].
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5.2 C-RAN Model

On a time-frequency resource, a basic C-RAN consists of N APs and K
users, all equipped with omnidirectional antennas. The positions of APs
and users are uniformly random. Every AP can communicate with every
user and, to render matched-filter beamforming effective, N is substan-
tially larger than K.

5.2.1 Large-Scale Features

Signals are subject to distance-dependent power decay with exponent η =
3.8, for a large-scale channel gain Gn,k between the kth user and the nth
AP. Correspondingly, that link’s signal-to-noise ratio is

SNRn,k =
Gn,kP

σ2
(5.1)

with P the maximum transmit power and σ2 the noise power.
Both APs and users are positioned uniformly at random, with shad-

owing implicitly embedded in that randomness [10].
For the sake of a cleaner notation, P/σ2 is taken as equal for uplink

and downlink, but asymmetries could be had by simply discriminating the
respective SNR variables. We set P/σ2 such that SNRn,k = 20 dB at a
distance d, where d would be the inter-AP spacing if the network were
arranged as a hexagonal grid. Under reasonable values for P and σ2, this
is compatible with a dense C-RAN.

In addition to Gn,k, the channel that connects the kth user with the
nth AP includes a small-scale fading coefficient hn,k ∼ NC(0, 1), inde-
pendent across users and APs. These fading coefficients are presumed
known, with comments on the impact of channel estimation provided in
Section 5.5.
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5.2.2 Uplink
In the uplink, the nth AP observes

yn =
K−1∑

k=0

√
Gn,khn,k

√
pkPsk + vn, (5.2)

where sk is the unit-power symbol emitted by user k whereas pk ∈ [0, 1]
is its power control coefficient and vn ∼ NC(0, σ2) is the noise. With the
observations of the N APs centrally combined so as to effect matched-
filter beamforming for each user, the SINR of user k equals [5]

sinrULk =
pk

(∑N−1
n=0 SNRn,k |hn,k|2

)2

denk
(5.3)

with

denk =
∑

` 6=k

p`

∣∣∣∣∣
N−1∑

n=0

√
SNRn,kSNRn,` h

∗
n,k hn,`

∣∣∣∣∣

2

+
N−1∑

n=0

SNRn,k |hn,k|2. (5.4)

A subsequent expectation over the small-scale fading yields the opera-
tionally meaningful local-average SINR [9], i.e.,

E
[
sinrULk

]
= E



pk

(∑N−1
n=0 SNRn,k |hn,k|2

)2

denk


 . (5.5)

To formulate loss functions that, as intended, drive the NN based only
on large-scale quantities, we replace |hn,k|2 and |hn,`|2 by their expected
value (unity), and h∗n,khn,` for ` 6= k also by their expected value (zero),
obtaining the proxy

SINRUL

k =
pk

(∑N−1
n=0 SNRn,k

)2

∑
` 6=k p`

∑N−1
n=0 SNRn,kSNRn,` +

∑N−1
n=0 SNRn,k

. (5.6)
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Other approximations to (5.5) could also be legitimate proxies to drive
the NN.

5.2.3 Downlink
Turning now to the downlink, with conjugate beamforming the nth AP
transmits

∑K−1
k=0

√
pn,kP hn,ksk, where sk is the unit-power symbol in-

tended for user k while pn,k is the share of power that the nth AP devotes
to such user, subject to

∑K−1
k=0 pn,k ∈ [0, 1] in order for the AP’s total

power not to exceed P . User k observes

yk =
N−1∑

n=0

√
Gn,k pn,kP h

∗
n,khn,ksk (5.7)

+
N−1∑

n=0

√
Gn,k P h

∗
n,k

∑

6̀=k

√
pn,` hn,`s` + vk, (5.8)

from which its local-average SINR can be seen to be

E
[
sinrDL

k

]
= E




(∑N−1
n=0

√
SNRn,k pn,k |hn,k|2

)2

∑
6̀=k

∣∣∣
∑N−1

n=0

√
SNRn,k pn,` h∗n,khn,`

∣∣∣
2

+1


. (5.9)

Again replacing |hn,k|2 and h∗n,khn,` for ` 6= k by their expected values
(respectively one and zero), we obtain the proxy

SINRDL

k =

(∑N−1
n=0

√
SNRn,k pn,k

)2

1 +
∑N−1

n=0 SNRn,k
∑

`6=k pn,`
. (5.10)

In contrast with the C-RAN uplink, and with the cellular uplink and
downlink, the optimization of the transmit powers in the C-RAN down-
link actually subsumes two intertwined problems:

• Power control, which amounts to adjusting the total transmit power
at every AP, i.e.,

∑K−1
k=0 pn,k ∀n.
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• Power allocation, which entails dividing the power of each AP among
the users, i.e., setting pn,k for every k, subject to the total power es-
tablished for the nth AP.

This enhanced problem richness is reflected by the existence of NK
downlink power coefficients (as opposed to K or N ) and by the aggre-
gate (rather than individual) nature of the constraint at each AP.

5.3 Loss Functions

Owing to the different form of the constraints in uplink and downlink, the
formulation of the loss functions must be individualized for either case.

5.3.1 Soft Max-Min

For the uplink, our first loss function adopts the form

LUL

MM =
1

K

[
K−1∑

k=0

exp

(
αk

(SINRUL

k + 0.01)0.4

)

︸ ︷︷ ︸
Objective

+
K−1∑

k=0

[pk − 1]+

︸ ︷︷ ︸
Constraints

]
(5.11)

where {αk} are regulating factors and [z]+ = max(0, z). As {αk} grow
large, the loss becomes dominated by the smallest SINR and a hard max-
min policy emerges. Conversely, for decreasing {αk}, this max-min be-
havior softens as SINRs other than the smallest one enter the optimization.

The offset 0.01 added to SINRk prevents the loss from being dragged
down by users below−20 dB and avoids numerical problems in the learn-
ing stage. The exponent 0.4 compresses the dynamic range, improving the
high-SNR behavior and making the learning more stable.1

1A variation of (5.11) that excludes this compression is considered in [1].
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For the downlink,

LDL

MM =
1

K

[
K−1∑

k=0

exp

(
αk

(SINRDL

k + 0.01)0.4

)

︸ ︷︷ ︸
Objective

+
N−1∑

n=0

[K−1∑

k=0

pn,k − 1

]+

︸ ︷︷ ︸
Constraints

]
. (5.12)

In both uplink and downlink, the multiplier applied to the constraints,
obtained from cross-validation, is unity. The ensuing probability that the
solution falls outside the feasible set, and the impact thereof, are quanti-
fied in Section 5.4.

5.3.2 Max-Product

The maximization of ΠK−1
k=0 SINRk, or equivalently of its logarithm, amounts

to the minimization of

LUL

MP =
1

K

[
K−1∑

k=0

βk loge

(
0.01 +

1

SINRUL

k + 0.01

)

︸ ︷︷ ︸
Objective

+ 0.1
K−1∑

k=0

[pk − 1]+

︸ ︷︷ ︸
Constraints

]
(5.13)
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in the uplink, and of

LDL

MP =
1

K

[
K−1∑

k=0

βk loge

(
0.01 +

1

SINRDL

k + 0.01

)

︸ ︷︷ ︸
Objective

+ 0.1
N−1∑

n=0

[K−1∑

k=0

pn,k − 1

]+

︸ ︷︷ ︸
Constraints

]
(5.14)

in the downlink. Here, the constraint multiplier is 0.1. When the fac-
tors {βk} are equal, the combination {SINRk} minimizing the above loss
function offers a satisfying tradeoff between average performance and
fairness. And, by regulating {βk}, specific users could be afforded higher
priorities.

Again, the offset shifting SINRk by 0.01 avoids it being pulled down
by users below −20 dB while a second offset added to 1

SINRk+0.01
lessens

the pull of users above 20 dB.

5.4 Power Control and Power Allocation

Connecting back with the description in [3], for the uplink the input pa-
rameter θ contains the ingredients that appear in (5.6), namely

∑N−1
n=0 SNRn,k

∀k and
∑N−1

n=0 SNRn,kSNRn,` ∀k, `, while the optimization vector x is
made of the power coefficients {pk}.2 For the downlink, in turn, θ =
{SNRn,k} and x = {pn,k}. The loss function is given by LMM or LMP, as
appropriate.

2The uplink learning could be expedited by restricting the input parameter to∑N−1
n=0 SNRn,k ∀k, i.e., the ingredients in the numerator of (5.6), disregarding those

in the denominator. This alternative, explored in [1], yields an only slightly diminished
performance. Relevant to this alternative, as an additional baseline, is the fractional
power control for C-RANs, which relies on the same inputs [11].
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Table 5.1: NN settings.

Input
layer

Hidden
layer

Output
layer

Neurons (Uplink) 200 50 K = 12

Neurons (Downlink) 1000 1000 NK = 360

Activation function RLU RLU Linear

Regularization L2 norm
λ = .001

L2 norm
λ = .001

L2 norm
λ = .001

5.4.1 Learning Stage

The learning pipelines for both uplink and downlink are combined into
Fig. 5.1 while the NN parameters are summarized in Table 5.1. The in-
put parameters are first converted to log scale and subsequently rendered
zero-mean and unit variance. The processing then properly starts with
feature extraction by an input layer equipped with rectified linear unit
(RLU) activation functions. Afterwards, a hidden layer processes the data
also via RLUs, and an output layer with linear activation functions gener-
ates power coefficients in log scale; this guarantees positive outputs and
averts numerical problems. From the SNRs and the corresponding NN
outputs, the loss function of choice is quantified and an Adam optimizer
is applied to minimize it. To prevent oscillations around local optima,
the learning rate is reduced gradually from 0.001 down to 0.0001. And, to
avoid overfitting, L2-norm regularization is employed in conjunction with
the Adam optimizer: a portion λ = 0.001 of the L2 norm of the weights
is added to the loss.

To streamline the learning, rather than a single large database, 50 (for
the uplink) and 500 (for the downlink) databases of 12800 system realiza-
tions are generated and, over each, 200 updates of the NN weights take
place; each update relies on a randomly selected batch of 128 realizations.
The initialization is also random.

While the uplink learning curve is similar to its cellular counterpart [4]
and not shown for the sake of brevity, the downlink learning curve is
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Figure 5.1: Learning pipeline.

different (see Fig. 5.2). Besides settling more slowly due to the larger
number of power coefficients, it exhibits two stages that are not distin-
guishable in the uplink and that can be roughly mapped to the constraints
and to the objective, the constituent parts of the loss function.

5.4.2 Performance Evaluation
For the C-RAN uplink, the power control problem can be cast in convex
form under both of the considered loss functions. Therefore, performance
benchmarks can be produced with an off-the-shelf convex solver.

For the C-RAN downlink, conversely, the feasible sets are convex but
the loss functions LMM and LMP cannot be cast as convex in {pn,k}. This
is, in essence, because any increase in a user’s transmit power simulta-
neously increases the interference to other users and detracts from their
transmit powers. No convex-solver benchmarks are thus available in gen-
eral. Only in the hard max-min limit (LMM with αk → ∞) does the
downlink power optimization become quasi-convex in {pn,k} and can be
solved through a tedious bisection search whose steps entail a sequence
of convex feasibility optimizations [5].

We consider N = 30 APs and K = 12 users. The performance is
evaluated via the cumulative distribution function (CDF) of local-average
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Figure 5.2: Downlink max-product learning curve with βk = 1.

SINRs over the ensemble of user and AP positions. The NN and the
convex-solver benchmarks (when available) are driven by the proxies in
(5.6) and (5.10), while the performance with the obtained powers are as-
serted by means of the actual local-average SINRs in (5.5) and (6.9).

The uplink performance for the soft max-min loss function, shown in
Fig. 5.3, prompts the following remarks:

• Power control is instrumental to avoid major disparities among users.

• For given {αn} (unity in this case), the agreement with the convex
solver is excellent. The NN slightly favors high-SNR users, falling
shy of the convex benchmark in terms of the soft max-min behavior.

• Hardening the loss function is ill-advised, as that uniformly wors-
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for soft max-min: NN vs convex solver (αk = 1). Also

shown is the baseline performance without power control, and the hard max-min perfor-
mance (αk →∞).

ens the performance; in the limit, the entire system is conditioned
by its worst situated user.

For the max-product loss function, Fig. 5.4 again reveals an excellent
match between the NN and the convex solver.

In the downlink, where convex solvers do not in general provide opti-
mality guarantees, we invoke as baseline

pn,k =
SNRn,k∑K−1
k=0 SNRn,k

n = 0, . . . , N − 1 (5.15)

whereby every APs transmits its complete power and the share that the nth
AP allocates to user k is proportional to the strength of the correspond-
ing link. This baseline, rather standard as a complement to matched-filter
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beamforming, is exhibited in Fig. 5.5 alongside the NN-based perfor-
mance under both soft max-min and max-product loss functions. In both
cases, the NN outperforms markedly the baseline, with more emphasis on
fairness—a steeper CDF—in the soft max-min case and less emphasis in
the max-product case.

With very small probability, the objective part of the loss function
could push the solution to violate one or several constraints. As shown
by Fig. 5.6, the probability that the transmit power of an AP exceeds its
maximum value is below 2% in the soft max-min case with αk = 1, and
the impact of trimming down these power spillovers is minute (see Fig.
5.5).
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5.4.3 Computational Cost

As in [3] and [4], we invoke, as a measure of the computational cost, the
running time on a CPU-based platform.

Each NN inference is in essence a matrix multiplication, over two (in
the uplink) and three (in the downlink) orders of magnitude faster than a
convex solver for our 30-AP system.

As far as the learning, which needs to take place upon changes in
the C-RAN or the environment, it is of interest to compare the learning
time of our unsupervised NN with that of a supervised NN of the same
dimensions [12–15]. While the training effort per parameter sample is
essentially the same, a supervised NN requires producing those samples
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by solving the corresponding optimizations in the first place, again re-
sulting in the two-to-three-order-of-magnitude advantage for the example
at hand. (Allowing the NN to train on a more apt GPU-based platform,
the superiority of unsupervised training increases by yet another order of
magnitude.) And, for nonconvex objectives, it is challenging to generate
those training samples in the first place.

5.5 Summary

The unsupervised learning approach to parametric optimization described
in [3] has been shown to be very effective for the problems of power con-

79



trol and power allocation in cell-free C-RANs—even with the NN trained
with a proxy to the actual objective, the local-average SINR.

For the uplink, where the considered objectives lead to convex for-
mulations, the NN performance matches that of convex solvers while in-
curring orders of magnitude less computational cost. For the downlink,
where those objectives cannot be tackled with certainty by convex solvers,
the NN itself becomes a source of benchmark results. On that note, it
would be of interest to tackle other nonconvex loss functions, for instance
those related to energy efficiency with minimum performance guarantees
at the users [16, 17].

The NN-based power optimizations continue to be effective if the as-
sumption of known fading coefficients is overcome, and the fading coef-
ficients are explicitly estimated on the basis of pilot transmission. Some
results under that proviso are presented in [1, 2] for uplink and downlink,
respectively.

The Python code developed to produce the results in this letter is
openly available [18].
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Chapter 6

Uplink Fractional Power Control
and Downlink Power Allocation
for Cell-Free Networks
Rasoul Nikbakht, Student Member, IEEE, Reza Mosayebi, Angel Lozano,
Fellow, IEEE

Abstract— This paper proposes respective policies for uplink power
control and downlink power allocation in cell-free wireless networks.
Both policies rely only on large-scale quantities and are expressed in
closed form, being therefore scalable. The uplink policy, which gen-
eralizes the fractional power control employed extensively in cellular
networks, features a single parameter; by adjusting this parameter,
the SIR distribution experienced by the users can be compressed or
expanded, trading average performance for fairness. The downlink
policy dualizes the uplink solution, featuring two parameters that
again allow effecting a tradeoff between average performance and
fairness.
Index Terms— Cell-free networks, ultradense networks, power con-
trol, power allocation, beamforming
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6.1 Introduction
Cell-free networks consist of a dense infrastructure of access points (APs),
each potentially communicating with every user (see [1–6] and references
therein). This paradigm inherits ideas from network MIMO [7] and cloud
radio access [8], with the possibility of having substantially more anten-
nas than users per time-frequency resource unit so as to render matched-
filter beamforming effective.

One of the challenges posed by cell-free networks is to devise policies
for uplink power control and downlink power allocation. Given the ma-
jor differences in pathloss and shadowing among links, such policies are
essential to avoid huge performance disparities. This is illustrated in [1],
where max-min policies are seen to equalize the performance across users
relative to fixed-power situations. However, max-min policies entail cen-
tralized iterative procedures whose steps, in turn, involve a sequence of
convex optimizations; the implementation of these procedures does not
scale to large networks [9]. Moreover, max-min solutions suffer from ex-
cessive rigidness in that they are dragged down by worst-case users [10].

Alternative schemes based on heuristics are propounded in [4, 9] and,
while these do scale, their performance is decidedly inferior. In this con-
text, we seek new policies that comply with the following desiderata.

• Retaining the virtue, exhibited by the max-min solutions in [1], of
depending only on large-scale quantities.

• Being directly computable from such large-scale quantities so as to
ensure scalability.

• Allowing for a tradeoff between equalizing the performance across
users (i.e., ensuring fairness) and maximizing the average perfor-
mance.

For cellular networks, an uplink power control policy that satisfies
the foregoing desiderata was devised in the form of fractional power con-
trol, variants of which have been adopted by standards such as LTE and
NR. Inspired by this highly successful approach, we seek a fractional
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power control formulation for the cell-free uplink and, subsequently, a
dual power allocation solution for the corresponding downlink.

6.2 Network and channel models
The networks under consideration feature N single-antenna APs and K
single-antenna users. Every AP can communicate with every user on each
time-frequency resource unit.

Under the premise that the AP locations are agnostic to the radio
propagation, shadowing makes those locations appear Poisson-distributed
from the vantage of any user [11]. Although asymptotic in the shadowing
strength, this phenomenon is well manifested for shadowing intensities
of interest [11, 12]. Capitalizing on this result, we draw the AP positions
uniformly, avoiding the need for explicit modeling of the shadowing as
it is then already implicitly captured by the geometry. Likewise, the user
positions are drawn uniformly.

The signals are subject to pathloss with exponent η, which yields a
large-scale channel gain Gn,k between the kth user and the nth AP. Be-
sides Gn,k, the channel between the kth user and the nth AP features a
small-scale fading coefficient hn,k ∼ NC(0, 1), independent across users
and APs.

Interference-limited conditions are considered, with noise negligible
relative to the interference. Pilot contamination is also disregarded, as it
can be kept at bay with procedures such as the ones described in [1, Sec.
IV] or in [13,14]. It follows that, based on uplink pilot transmissions from
the users, the nth AP can perfectly estimate hn,0, . . . , hn,K−1.

6.3 Uplink
Upon payload data transmission from the users, the nth AP observes

yn =
K−1∑

k=0

√
Gn,khn,k

√
pksk, (6.1)
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where sk is the unit-power symbol transmitted by user k while pk ∈ [0, 1]
is its power control coefficient. With matched filtering, the signal of user
k is recovered from

N−1∑

n=0

√
Gn,kh

∗
n,k yn =

N−1∑

n=0

Gn,k
√
pk |hn,k|2 sk (6.2)

+
N−1∑

n=0

√
Gn,k h

∗
n,k

∑

`6=k

√
Gn,`
√
p` hn,` s`

such that the signal-to-interference ratio (SIR) of user k, expected over
the known {hn,k}, equals [1, 10]

E[sirk] = E




pk

(∑N−1
n=0 Gn,k |hn,k|2

)2

∑
6̀=k p`

∣∣∣
∑N−1

n=0

√
Gn,kGn,` h∗n,khn,`

∣∣∣
2


 . (6.3)

6.3.1 Fractional Power Control
The origins of fractional power control can be traced back to [15]. The
objective of that initial derivation was to minimize the variance of the
large-scale SIR distribution (in dB) experienced by two interfering cellu-
lar users, and the solution turned out to be pk ∝ 1/

√
Gk where Gk was

the large-scale gain to the serving cell and with the proportionality such
that pk ∈ [0, 1]. This was subsequently generalized to pk ∝ 1/Gϑ

k where
ϑ ∈ [0, 1] regulates the extent to which the range of received powers are
compressed [16]. The values typically featured in LTE and NR are in
the range ϑ ≈ 0.5–0.7, with lower values favoring the average SIR while
higher values promote fairness and cell-edge performance.

Derived in Appendix 6.A, our proposed generalization of the above to
cell-free networks is

pk ∝
1

(∑N−1
n=0 Gn,k

)ϑ , (6.4)
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which now depends on all the large-scale channel gains that involve a
given user, reflecting the effective connection between such user and the
network.
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Figure 6.1: CDF of E[sirk] for the uplink with η = 3.8 and N/K = 2.5, parameterized
by ϑ = {0, 0.2, 0.4, 0.6, 0.8, 1}. Also shown is the max-min solution.

6.3.2 Performance Evaluation
To exemplify the performance, we consider a wrapped-around universe
with N = 200 APs, K = 80 users, and a pathloss exponent of η = 3.8.
The number of network snapshots is such that, with 95% confidence, the
CDFs do not deviate from their true value by more than 0.3%.

Shown in Fig. 6.1 is the CDF of E[sirk], parameterized by ϑ. Sweep-
ing this parameter from ϑ = 0 (fixed transmit powers) to ϑ = 1 (complete
large-scale channel inversion), we observe a progressive compression of
the CDF. The tradeoff that ϑ enables between the average and the 3%-
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Figure 6.2: Average and 3%-outage values of E[sirk] for the uplink as a function of ϑ,
with η = 3.8 and N/K = 2.5.

outage (as a proxy for fairness) can be appreciated in Fig. 6.2. Moving
from ϑ = 0 to ϑ = 1, the 3%-outage point increases steadily at the
expense of the average. Fig. 6.1 also contrasts (6.4) with the max-min
solution: the {pk} that maximize the lowest SIR as per (6.14) are ob-
tained through geometric programming and plugged into (6.3). Fractional
power control is more elastic than the max-min solution, which seems to
be dragged down by worst-case users, paying a price for its uncompro-
mising equalization of all SIRs.

6.4 Downlink

With conjugate beamforming, the precoder applied by the nth AP to trans-
mit to user k is hn,k, based on which the nth AP generates the transmit
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signal

xn =
K−1∑

k=0

√
pn,k hn,ksk (6.5)

where sk is the unit-power symbol meant for user k while pn,k ∈ [0, 1] is
the share of power that the nth AP devotes to such user, with

∑K−1
k=0 pn,k ≤

1. User k then observes

yk =
N−1∑

n=0

√
Gn,k h

∗
n,k xn (6.6)

=
N−1∑

n=0

√
Gn,k pn,k |hn,k|2 sk

︸ ︷︷ ︸
Signal: Sk

+
N−1∑

n=0

√
Gn,k h

∗
n,k

∑

6̀=k

√
pn,` hn,`s`

︸ ︷︷ ︸
Interference: Ik

. (6.7)

The performance achievable on the basis of yk hinges on the knowl-
edge at user k of the effective channel

ck =
N−1∑

n=0

√
Gn,kpn,k |hn,k|2 (6.8)

that relates sk with yk. In cellular massive MIMO, it is effectual to rely
solely on the mean of ck since, because of hardening, the actual value
never departs significantly from such mean [17, Ch. 10]. In single-
antenna cell-free networks, however, the hardening is only partial [3,
5]. The effective channels fluctuate markedly, which gives rise to self-
interference if the kth receiver is only privy to E[ck].

Self-interference can be avoided by inserting precoded pilots within
the downlink transmissions, enabling the explicit estimation by the users
of their effective channels [2]. Recalling Sk and Ik as defined in (6.7), the
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kth user can then operate at

sirk =
E
[
|Sk|2 |ck

]

E
[
|Ik|2 |ck

] (6.9)

=

(∑N−1
n=0

√
Gn,k pn,k |hn,k|2

)2

∑N−1
n=0 Gn,k E

[
|hn,k|2 |ck

]∑
` 6=k pn,`

. (6.10)

Since ck is a function of h0,k, . . . , hN−1,k, the realization of ck condi-
tions an individual hn,k only very weakly, hence E

[
|hn,k|2 |ck

]
≈ E

[
|hn,k|2

]
=

1. It follows that the expectation of sirk over the small-scale fading, and
consequently over ck, satisfies

E[sirk] ≈
E
[(∑N−1

n=0

√
Gn,kpn,k |hn,k|2

)2]

∑N−1
n=0 Gn,k

∑
` 6=k pn,`

. (6.11)

6.4.1 Fractional Power Allocation
Capitalizing on the fractional power control derived for the uplink, we
seek a downlink counterpart that can play a similar role. The policy we
propose, derived in Appendix 6.B, is

pn,k ∝
Gn,k

(∑N−1
m=0Gm,k

)ϑ(∑K−1
`=0

Gn,`

(
∑N−1

m=0Gm,`)
ϑ

)γ , (6.12)

where, as in the uplink, ϑ ∈ [0, 1] while γ is an additional parameter best
set in the range [0.4, 1.6].

6.4.2 Performance Evaluation
Besides the max-min solution, in the downlink we consider as an addi-
tional benchmark the heuristic policy suggested in [4, Sec. III-D]. Fig.
6.3 shows the CDF of E[sirk], parameterized by ϑ and γ. Equipped with
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these parameters, (6.12) is seen to be highly versatile: not only can it
match the performance of [4, Sec. III-D], but its upper tail can surpass
it (when configured for average performance) or its lower tail can amply
outperform it (when configured for fairness). In this case, though, the
lower tail falls short of the max-min solution.
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Figure 6.3: CDF of E[sirk] for the downlink with η = 3.8 and N/K = 2.5, parame-
terized by ϑ = {0, 0.4, 0.8} and γ ∈ {0.4, 0.8, 1.2, 1.6}. Also shown are the max-min
solution and the benchmark from [4, Sec. III-D].

6.5 Summary
The proposed fractional power control and power allocation policies, em-
bodied by (6.4) and (6.12), are closed-form functions of the large-scale
channel gains and allow regulating the tradeoff between average perfor-
mance and fairness. The regulation is exerted through one (uplink) or two
(downlink) parameters, hence it does not enable favoring individual users
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or maximizing specific metrics (e.g., a weighted sum). If such is the goal,
learning-based solutions offer an attractive compromise between perfor-
mance and scalability [18].

Appendices

6.A
Inspired by [15], we seek to minimize the variance of the large-scale SIR
distribution (in dB), hence the starting point needs to be an expression for
such SIR. In a cellular network, this equals the large-scale signal power
divided by the large-scale other-cell interference power, namely [17]

SIRk =
pkGk∑
`6=k p`G`

, (6.13)

which can be recovered from (6.3) by letting N = 1 and replacing |hk|2
and |h`|2 by their unit expected value. A counterpart to (6.13) for cell-
free networks can be obtained by similarly replacing |hn,k|2 and |hn,`|2
by unity, and by zeroing out cross-terms containing h∗n,khm,` for n 6= m.
This gives

SIRk =
pk

(∑N−1
n=0 Gn,k

)2

∑
6̀=k p`

∑N−1
n=0 Gn,kGn,`

. (6.14)

Specializing (6.14) to K = 2 and focusing, without loss of generality,
on user 0,

SIR0 =
p0

(∑N−1
n=0 Gn,0

)2

p1
∑N−1

n=0 Gn,0Gn,1

, (6.15)

from which, introducing the notation z|dB = 10 log10 z, we can further
write

SIR0|dB = p0|dB + 2GS|dB − p1|dB −GI|dB, (6.16)
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where GS =
∑N−1

n=0 Gn,0 and GI =
∑N−1

n=0 Gn,0Gn,1.
We are interested in distributed power control policies where p0 de-

pends on {Gn,0}N−1n=0 , but not on {Gn,1}N−1n=0 , hence the following can be
reasonably assumed to hold:

• p0 and p1 are independent, as they are controlled on the basis of
distinct channel gains.

• p0 is not independent of GS, nor of GI.

• p1 is not independent of GI, but it is independent of GS.

With that, the variance of (6.16) can be developed into

var[SIR0|dB]=var
[
p0|dB + 2GS|dB

]
+ var

[
p1|dB +GI|dB

]

− 2 cov[p0|dB + 2GS|dB, p1|dB +GI|dB]

=var[p0|dB] + 4 var[GS|dB] + 4 cov[p0|dB, GS|dB]

+ var[p1|dB] + var[GI|dB] + 2 cov[p1|dB, GI|dB]

− 2 cov[p0|dB, GI|dB]− 4 cov[GS|dB, GI|dB],

which, by virtue of the fact that var[p0|dB] = var[p1|dB] and cov
[
p0|dB, GI] =

cov
[
p1|dB, GI], simplifies into

var[SIR0|dB] = 2 var[p0|dB] + 4 cov[p0|dB, GS|dB]

+ 4 var[GS|dB] + var[GI|dB]− 4 cov[GS|dB, GI|dB]. (6.17)

Regrouping some terms, the above can be rewritten as

var[SIR0|dB] = 2 var[p0|dB +GS|dB] + 2 var[GS|dB]

+ var[GI|dB]− 4 cov[GS|dB, GI|dB], (6.18)

where the last three terms do not depend on p0|dB, hence they are imma-
terial to the minimization with respect to it. The quantity to minimize
is var[p0|dB + GS|dB], and the power control policy that minimizes it is
p0|dB = −GS|dB, i.e.,

p0 =
1∑N−1

n=0 Gn,0

. (6.19)
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With a view to K > 2 users and to regulating the forcefulness of the
policy, we generalize (6.19) into (6.4) by incorporating ϑ. Finally, all
powers should be scaled to fit within [0, 1].

6.B
Observe that, in the uplink, (6.4) depends only on the numerator of the
SIR expression from which it derives. This is consistent with the nature
of beamforming, whose sole purpose is to maximize the signal power
from the intended user, with no regard for the interference. Moreover,
with the exponent set to its highest value of ϑ = 1, the power control in
(6.4) sets the received signal power from user k to

∑N−1
n=0 Gn,k.

From the numerator of the downlink SIR expression in (6.10), with
|hn,k|2 replaced once more by its unit expected value, the same behavior
can be induced if p0,k, . . . , pN−1,k ensure that

N−1∑

n=0

√
Gn,k pn,k =

√√√√
N−1∑

n=0

Gn,k, (6.20)

which has infinitely many solutions. As the left-hand side of (6.20) is
concave on p0,k, . . . , pN−1,k, we can identify the one solution minimizing∑N−1

n=0 pn,k by building the Lagrangian

L =
N−1∑

n=0

pn,k + λ



N−1∑

n=0

√
Gn,kpn,k −

√√√√
N−1∑

n=0

Gn,k


 . (6.21)

Setting ∂L/∂pn,k = 0, what emerges is pn,k = αGn,k with α upholding
(6.20). This gives pn,k = Gn,k/

∑N−1
m=0Gm,k, which, proceeding as in the

uplink, we broaden to

pn,k =
Gn,k(∑N−1

m=0Gm,k

)ϑ . (6.22)
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The expression in (6.22), which can be regarded as the downlink dual
of (6.4), can be further generalized to account for the additional issue
that appears in the downlink, namely that the total power per AP is con-
strained. In order to equalize the per-AP total powers, we can multiply
pn,k by αn with

αn =
1

∑K−1
`=0

Gn,`

(
∑N−1

m=0Gm,`)
ϑ

(6.23)

ensuring equal total power per AP. Finally, introducing a new parameter
γ, we can relax the per-AP power equalization into a partial equalization
as per (6.12).
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Chapter 7
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Reconstruction of Power Maps
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Abstract— We present a measurement-driven algorithm to map the
large-scale channel losses observed between a cellular base station
and any point in its coverage area. The algorithm is on-line, meaning
that it operates on continuously arriving measurements. Its distin-
guishing features are the use of two kernel functions, suitably chosen
for the problem at hand, and a simple technique to sparsify the dic-
tionary of measurements retained in memory. Evaluations in cam-
pus and urban settings indicate that the proposed algorithm reduces,
roughly in half, the prediction error of existing single-kernel and mul-
tikernel algorithms.
Index Terms— Received signal strength indicator, Regression analy-
sis, Adaptive learning, Machine learning, Hilbert space, Supervised
learning, Location awareness
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7.1 Introduction

7.1.1 Motivation

In stochastic channel modeling, the large-scale power loss is formulated
as a combination of distance-dependent loss (or pathloss) and shadowing.
The former accounts for the average value at each distance and the latter
incorporates the uncertainty around this value. This approach has had a
great deal of importance in the analysis and design of wireless networks,
with popular pathloss models such as the Okumura-Hata [1], the COST-
231 Hata [2] or the Stanford University interim model [3]. Indeed, the
stochastic approach is rather effective at producing descriptions that are
representative of classes of environments of interest for the purpose of
design and even performance assessment. At the same time, stochastic
modeling may perform quite poorly when it comes to reproducing site-
specific behaviors [4].

Site-specific modeling has historically been tackled by means of ray-
tracing techniques, which reproduce the propagation mechanisms in a
computer recreation of the site [5]. Since this recreation must be highly
accurate, not only in terms of the geometry but also of the constituent
materials and their electromagnetic properties, ray tracing is mostly re-
stricted to indoor sites. For outdoor environments, measurement-driven
reconstructions are an enticing alternative, particularly given the massive
number of permanently connected devices from which a network can ob-
tain signal measurements nowadays [6–10]. We refer to a 2D reconstruc-
tion of the large-scale loss from the vantage of a base station as a map.
(The local-average received power and the local-average SNR are scaled
versions of the large-scale loss, hence their maps in dB are equivalent up
to a constant.) Advantageously, measurement-driven maps are not only
site-specific, but they automatically track environmental changes, e.g.,
due to the motion of people and vehicles. With that, measurement-driven
maps are not only useful for network planning, but further for tasks such
as resource allocation or interference management.

The algorithms to construct maps can be classified into two broad
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categories.

• Batch. These schemes need the measurements to be available be-
fore the processing starts, so they have a considerable computa-
tional cost and they cannot adapt until a new batch is processed
[8, 11–13].

• Online. These schemes process measurements as they arrive, con-
tinuously adapting [9].

7.1.2 State of the Art
The measurement-driven approaches proposed for map reconstruction in-
clude Gaussian process regression [8] and online adaptive learning [9].
The former is a batch method based on a stochastic channel model com-
bining pathloss and log-normal shadowing, whereby the large-scale loss
in dB follows a multivariate Gaussian distribution with covariance deter-
mined by the shadowing’s spatial correlation [14]. The latter, in turn, is an
online method that does not make assumptions on the underlying channel
and requires only a portion of the measurements, considerably reducing
the complexity. Both methods do need accurate knowledge of the user
locations.

7.1.3 Contribution
In a wireless network, the large-scale loss is confined to a dynamic range.

• It is bounded from below depending on the placement, elevation,
and other aspects of the base station, as well as the frequency. For
instance, the free-space pathloss at 2 GHz already equals 38.5 dB
at 1 m, increasing to 60 dB at 12 m.

• It is also bounded from above because, once the signal falls well
below the noise floor, the coverage is lost. While again this de-
pends on the bandwidth, as well as the transmit power and other
parameters, the in-coverage loss is typically below 160 dB [15].
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Altogether, and because of sheer geometry, most users exhibit large-
scale losses that fall on an interval of tens of dB. The center of this in-
terval, which we refer to as the DC component, varies little across base
stations and is fairly stable over time. If we subtract it out, what remains is
a markedly more confined quantity, referred to as the varying component.

On the basis of the foregoing observation, we posit that a better esti-
mator can be obtained if two distinct kernel functions—a measure of sim-
ilarity on which we dwell later—are considered for the DC and varying
components, respectively, and this is the idea that we explore in this paper.
Complementing this dual-kernel approach with a relatively simple spar-
sification technique, whereby only relevant measurements are retained,
we come up with an online regression tool that improves upon existing
single-kernel and multikernel approaches in terms of convergence speed
and accuracy.

7.2 Problem Formulation
Let us parcel the region containing the network into small pixels accord-
ing to a predefined resolution, such that locations are discrete rather than
continuous. Because of the noise floor, each base station covers a cer-
tain area and a threshold is defined to specify it. A pixel is deemed to be
within the coverage area of a base station if the corresponding large-scale
loss is below the threshold.

Given a base station, consider the relationship

yn = f(xn) + εn (7.1)

where yn ∈ R is the average power measured from a transmitter located
at xn ∈ R2, f : R2 → R is an unknown function, n indexes the measure-
ment, and εn represents the measurement noise. Our objective is to learn
an estimate f̂ of the unknown function f from a stream of measurements
{(xn, yn)}n∈N so as to be able to predict the large-scale loss at any pixel
inside the coverage area of that base. This can be formulated as an online
regression problem.
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In online regression, the number of variables grows steadily over time
and algorithms usually retain only the most relevant terms in the sequence
{(xn, yn)}n∈N, conforming a dictionary. Each online regression algo-
rithm defines a hypothesis set H which restricts the form of the learned
estimate f̂ . To avoid overfitting, it is common to regularize such that
function estimates with smaller norm—minimizing the norm favors sim-
pler solutions more likely to generalize—are preferred.

We focus on kernel-based regressions in which hypotheses within H
are nonlinear transformations onto a reproducible kernel Hilbert space
(RKHS). A kernel function, as anticipated, measures the similarity of
measurements, i.e., given two locations, how similar their losses are. The
choice of a kernel allows an expert to express prior knowledge about the
domain structure, which can significantly speed up the learning.

7.2.1 RKHS Map Formulation
A kernel κ : R2 × R2 → R on pairs of inputs implicitly defines a RKHS
H with inner product

〈φ(x1), φ(x2)〉 = κ(x1,x2) (7.2)

and norm
‖φ(x1)‖ =

√
κ(x1,x1) (7.3)

and, forH to be well-defined, κ has to be positive definite.
The representer theorem [16] states that, for several regularization

methods, the optimal function estimate f ? lies in the finite-dimensional
span of the training measurements mapped to the Hilbert space, i.e.,

f ? =
∑

n

αn κ(xn, ·). (7.4)

The RKHS H exhibits the so-called reproducing property whereby the
evaluation of f ? at a location x is

f ?(x) = 〈f ?, φ(x)〉
=
∑

n

αn κ(xn,x). (7.5)
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Figure 7.1: Set Sn of functions that can approximate yn with a maximum error of εn
[17].

The online regression problem consists in estimating the coefficients {αn}n∈N
that constitute f ?.

Example 1. Consider the radial basis function kernel

κ(x1,x2) = e−
‖x1−x2‖

D . (7.6)

The optimal function estimate has the form

f ?(x) = 〈f ?, φ(x)〉 (7.7)

=
∑

n

αn e
− ‖xn−x‖

D . (7.8)

The coefficients αn can be obtained in batch or online fashions. Batch
methods include the Support Vector Machine (SVM) regression. Online
methods include the Adaptive Projected Subgradient Method (APSM),
which is based on the projection onto convex sets [17]; this method mod-
els the measurements and prior knowledge as convex sets and tries to find
the intersection thereof. We adopt APSM and incorporate to it a relatively
simple but effective sparsification scheme.
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7.3 Adaptive Projected Subgradient Method

Intuitively, APSM maintains a function estimate f̂n that is updated each
time a new measurement (xn, yn) arrives. The new function estimate f̂n+1

is obtained by projecting f̂n onto a set that bounds the prediction error for
each measurement by a predefined constant εn. It is possible that the
bound εn is not satisfied for a limited number of measurements; in this
case, APSM generates a sequence of function estimates that converges
to a point arbitrarily close to the intersection of the remaining measure-
ments [17]. This is important since finding a function that explains all
measurements may be unfeasible.

For a location xn, the set of functions that can predict yn with a max-
imum error of εn, i.e,

Sn =

{
f ∈ H : |〈f, κ(xn, ·)〉 − yn| ≤ εn

}
(7.9)

forms a hyperslab, depicted in Fig 7.1. The intersection

S =
⋂

n∈N

Sn (7.10)

represents a set of functions that can explain the training measurements.
The APSM algorithm uses the last q measurements to produce a sequence
of functions

{f̂n}n∈N ⊂ H (7.11)

where f̂n is an estimation of f ? that asymptotically converges to an un-
specified point in the solution set S.

Let PSn(f) indicate the projection over the hyperslab Sn of a function
f ∈ H, given by

PSn(f) = f + βf κ(xn, ·) (7.12)
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where

βf =





yn − 〈f, κ(xn, ·)〉 − εn
κ(xn,xn)

〈f, κ(xn, ·)〉 − yn < −εn
0 |〈f, κ(xn, ·)〉 − yn| < εn
yn − 〈f, κ(xn, ·)〉+ εn

κ(xn,xn)
〈f, κ(xn, ·)〉 − yn > εn.

Denoting by

In = {n− q + 1, n− q + 2, ..., n} (7.13)

the last q measurements at time n, the sequence {f̂n} is generated as [17]

f̂n+1 = f̂n + µn

(∑

i∈In

wi,n PSi
(f̂n)− f̂n

)
(7.14)

where µn ∈ (0, 2Mn) is the step size, Mn is a scalar given by

Mn =





∑
i∈In wi,n ‖PSi

(f̂n)− f̂n‖2

‖∑i∈In wi,n PSi
(f̂n)− f̂n‖2

f̂n 6∈
⋂
i∈In Si

1 otherwise

and wi,n are weights satisfying

∑

i

wi,n = 1. (7.15)

A schematic interpretation of (7.14) is presented in Fig 7.2. At step n,
f̂n is projected onto the q most recent sets and the weighted sum of these
projections is computed. The update direction is obtained by subtracting
from the projection the previous f̂n and the step size is µn. The parameter
q regulates a tradeoff between performance and complexity: a larger q
accelerates the convergence at the expense of higher computational cost.
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Figure 7.2: Sequence of functions fn that converge to the intersection of two convex sets
S1 and S2 [17].

7.4 Dual-Kernel Approach
Hilbert spaces associated with a single kernel function can give rise to
relatively complex regression functions. Even more complex regression
functions can be obtained by allowing for multiple kernels, be it one ker-
nel function with different parameters or actually distinct kernels. Mul-
tikernel learning thus increases the flexibility of the regression, although
at the expense of enhanced susceptibility to overfitting, i.e., of model-
ing at the training locations perfectly while failing to accurately predict
elsewhere. Also, the complexity increases in proportion to the number of
kernel functions.

To reap the benefits of having multiple kernels while avoiding these
complications, the number and type of kernels should be chosen carefully
on the basis of the structure of the problem. In our case, as explained in
the introduction, the nature of the problem invites having two kernels.

• A DC-component kernel, slowly changing over distance as pertains
to a quantity that is fixed over the coverage area and rather stable
over time.

• A varying-component kernel, faster changing.
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For the varying component, a sensible choice is the correlation func-
tion of the shadowing as reported in [8,14], namely exp(−‖x1 − x2‖/Dvar)
whereDvar is the shadowing correlation distance. In turn, for the DC com-
ponent, any slowly changing (possibly even constant) function can serve,
and in particular exp(−‖x1 − x2‖/DDC) with DDC � Dvar.

Altogether then, we apply the dual-kernel function

κ(x1,x2) = exp

(
−‖x1 − x2‖

DDC

)
+ exp

(
−‖x1 − x2‖

DVar

)
(7.16)

which, advantageously, consists of two terms with different parameters,
but the same Laplacian form. (Certain alternatives to the Laplacian func-
tion, say Gaussian, also perform satisfactorily; as long as it can capture
the behavior of shadowing, the precise shape of the constituent function
is not critical.)

7.5 Sparsification

The act of determining which measurements conform the dictionary is
called sparsification. To sparsify, one can project f̂n onto a ball of a cer-
tain norm and keep only those dictionary elements with a relatively large
contribution to ‖f̂n‖, thereby effecting a regularization. The projection
onto the ball [0, δ] can be obtained as [17]

f̂n+1 = PB[0,δ]

(
f̂n + µn

(∑

i∈In

wi,n PSi
(f̂n)− f̂n

))
(7.17)

where

PB[0,δ](f) =

{
f ‖f‖ ≤ δ

f/‖f‖ ‖f‖ > δ.
(7.18)

(This projection can also be regarded as a forgetting factor, whereby older
history is progressively removed from memory, fostering adaptivity.) Af-
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Table 7.1: APSM parameters

DDC DVar q µ δ εn

Campus ∞ 50 1 0.5 90 .1
Urban ∞ 450 1 0.5 130 .1

ter the projection, the indices of those dictionary elements with consider-
able contribution can be identified as the set

Jn =

{
j | (αn,j)

2

∑
`∈Ln (αn,`)

2 > τ

}
(7.19)

where τ is a threshold, Ln is the set of indexes of the dictionary elements
at step n and {αn,`}`∈Ln are the corresponding coefficients for the pro-
jected locations in the Hilbert space. One can think of (7.19) as removing
those elements in (7.4) that have a negligible effect on the regression. The
threshold τ regulates the tradeoff between complexity and accuracy: by
increasing τ , the dictionary becomes sparser and complexity diminishes,
but the accuracy drops, and vice versa.

7.6 Numerical Evaluations
In this section, the dual-kernel algorithm is evaluated for campus and ur-
ban scenarios. As in [9], to facilitate later comparisons, 70% of the avail-
able measurements are randomly chosen for training with the rest left
for testing; the normalized squared error is averaged over 1000 random
splits between training and test to produce the normalized mean-squared
error (NMSE). The dictionary is updated every time a measurement is
processed. For the APSM settings, refer to Table 7.1.

7.6.1 Campus Scenario
For this scenario, we apply the database cu/cu wart [18] that provides
1277 measurements of the local-average received power in an 802.11 net-
work with high-resolution pixels (3 m).
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Figure 7.3: NMSE (left-hand axis) and dictionary size (right-hand axis) as function of
τ , with and without the DC kernel, in the campus scenario.

To begin with, let us gauge the effect of adding the DC kernel. Fig.
7.3 presents the NMSE and the dictionary size, as function of the sparsi-
fication threshold τ , with and without the DC kernel. The addition of this
kernel reduces the NMSE for a given dictionary size or, equivalently, it
reduces the dictionary size for a given NMSE.

Fig. 7.4 illustrates the convergence of the NMSE with the dictionary
size set to 500 and therefore, applying Fig. 7.3, with τ = 1.3 · 10−4

for dual kernel and τ = 4 · 10−5 for single kernel. The addition of the
DC kernel improves the performance markedly, reaching at n = 250 the
NMSE that requires n = 890 without the DC kernel. In turn, the final
NMSE shrinks by a factor of 1.7.

Finally, Table 7.2 compares the dual-kernel algorithm with some al-
ternatives: the single-kernel algorithm, a multikernel version [9], and a
batch SVM baseline. The dual-kernel approach outperforms both online
alternatives in terms of NMSE, approaching the batch SVM accuracy.
The reduction in NMSE does not come at the expense of an increased
variability thereabout; rather, the standard deviation of the squared error
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Figure 7.4: NMSE as function of n, with and without the DC kernel, in the campus
scenario. The dictionary size is 500.

Table 7.2: NMSE and error standard deviation in the campus scenario.

Batch
SVM

Online Dual
Kernel

Online Single
Kernel [9]

Online
Multikernel [9]

NMSE ×103 1.7 2.7 4.4 6

std ×103 2.5 3.9 11.2 —

also abates relative to the single-kernel algorithm. (For the multikernel
solution, the variance is not available.)

7.6.2 Urban scenario

The second scenario corresponds to ray-tracing data for the central part
of Berlin [19]. Data for 193 BSs with a 50-m pixel resolution over an
area of 12× 12 km is reported in this database. The APSM settings are as
per Table 7.1. To make the results comparable with those in the campus
scenario, the same number of data points is used, namely 1277, which are
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Figure 7.5: NMSE (left-hand axis) and dictionary size (right-hand axis) as function of
τ , with and without the DC kernel, in the urban scenario.

randomly selected at each of 1000 passes over which the error is averaged.
We set the coverage threshold to 140 dB, a reasonable value for urban
settings.

The effect of adding the DC kernel is shown in Fig. 7.5, where a
significant benefit is again observed. Then, in Table 7.3, we compare the
dual-kernel approach with its single-kernel brethren and with the batch
SVM baseline. The reduction in both NMSE and standard deviation is
even more pronounced here than in the campus environment, even if the
absolute standard deviations are larger on account of the more challenging
nature of an urban setting.

7.7 Summary

A clean separation of the DC component from the rest of the large-scale
losses, via two suitable kernel functions, benefits the online reconstruc-
tion of large-scale loss maps. The accuracy increases with respect to the
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Table 7.3: NMSE and error standard deviations in the urban scenario.

Batch
SVM

Online
Dual Kernel

Online
Single Kernel

NMSE ×103 0.4 1.1 2.8
std ×103 3.5 5 20

single-kernel version, but also with respect to a multikernel solution. This
confirms that the number of kernels should be chosen carefully to match
the structure of the problem, and adding unnecessarily many kernels may
end up being detrimental. With two kernels, the performance approaches
the baseline represented by more complex batch schemes, where, rather
than a limited-size dictionary, all measurements must be stored.

To reinforce the above insight it is worth mentioning that, in Section
7.6, the dual-kernel approach has been run with the parameter q (which,
recall, indicates the number of recent measurement over which APSM
projects at every step) set to q = 1, and yet this has sufficed to outperform
the single-kernel result, which has been run with q = 20. This confirms
the effectiveness of the DC kernel at tracking the map’s average, some-
thing that without a DC kernel requires a larger value of q and therefore
higher complexity.
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Chapter 8

Conclusion and Future Work

“ When something is important enough, you do it even if the
odds are not in your favor. ”

Elon Musk

8.1 Conclusion
Parametric optimization appears in most aspects of wireless communi-
cation, where an optimization problem with a fixed structure is being
solved repeatedly for different parameter values. As a prime example,
we discussed power control and power allocation in cellular and cell-free
settings. The advantage and properties of the proposed unsupervised-
learning approach are summarized as follows:

1. It works best for problems with structure. The degrees of freedom
are much less than the number of optimization variables; therefore,
the proposed unsupervised-learning approach effectively samples
the parameter space and generalizes the solution across the param-
eter space.

2. Different fairness criteria can be tackled. In this thesis, we applied
max-min and max-product criteria, with the latter being easily ex-
tendable to the sum-rate case. Having a discontinuous structure,
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the max-min criterion was the hardest to tackle, which was accom-
plished by defining a soft max-min loss function—a continuous ap-
proximation to the max-min criteria that converges to max-min in
the limit.

3. The unsupervised-learning approach works for both convex and
non-convex problems. The solution accuracy, however, depends
on how efficient the gradient descent is in solving a single instance
of the problem. The unsupervised NN reaches the accuracy of the
convex solver whenever applicable.

4. We can incorporated expert knowledge into the structure of the pro-
posed unsupervised-learning approach. Often, a feedforward NN is
treated as a black box that can approximate a function. This func-
tion can be modified by changing either the database or the loss
function of the NN. The unsupervised-learning approach uses the
later, introducing a custom loss function. As a result, the expert can
modify the behavior of the unsupervised NN by fine-tuning the loss
function. The expressive power of the NN, combined with expert
knowledge, outperforms the domain expert both in terms of perfor-
mance and the time spent deriving the solution.

The extension of the fractional power control to cell-free networks
was another area of focus in this thesis. The developed solution:

1. Is simple and can be computed analytically.

2. Performs satisfactory and almost optimally (in the uplink case).

Finally, we developed maps of received power in a 2-D plane. Such
maps could be useful in resource allocation, interference management,
and proactive resource allocation. The developed dual-kernel method has
the following properties:

1. It is an online method that can track environmental changes.
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2. Kernel-based: expert knowledge can be implemented by choosing a
proper kernel function—the measure of similarity in pathloss value
for two close-by users.

3. Superior performance: the dual-kernel method, having the right
amount of complexity, achieves fast convergence and low variance
in pathloss prediction.

8.2 Future Work
It would be of interest to extend the unsupervised-learning approach to
new domains such as zero-forcing beamforming or new objectives such
as sum-rate. As long as the problem at hand is a parametric optimization
and it has structure, we can apply the unsupervised-learning approach.

Improving the unsupervised-learning approach by incorporating con-
volutional layers is another interesting future direction. For a parametric
optimization without any structure, the feedforward NN is an inevitable
component of the unsupervised-learning approach, assigning at least one
neuron for each parameter in the input layer. If the parameter space is
highly structured and arrangeable in a meaningful way, convolutional
layers can be further used. Such an approach is applicable to higher-
dimensional problems, reducing the complexity of the NN drastically.
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