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Chapter 1

Introduction
The experimental realization of Bose Einstein Condensates (BEC) of rubidium and
sodium atoms at ultralow temperatures [6, 7] in 1995 represented a major breakthrough
in the research field of ultracold quantum gases. For the first time, the phenomenon
of Bose Einstein Condensation, which had been theoretically predicted by Albert
Einstein [8] following the ideas of Satyendra Nath Bose, almost 70 years ago, could be
observed in a laboratory. From a fundamental perspective, a BEC is a state of matter
produced when a bosonic system formed by many particles cools down to sufficiently
low temperatures. Under these conditions, and if inter atomic correlations are weak
enough, a large fraction of particles occupies the minimum energy state, which we
know as the Bose Einstein Condensate, or BEC. This is a phenomenon exclusive to
bosons. The realization of the first BEC opened the way for experiments involving
exotic interactions such as dipoles [9, 10] and synthetic Spin Orbit Coupling (SOC)
systems [1, 2]. While the initially realized BEC had very weak interactions, exploiting
Feshbach resonances allowed the modification of the scattering length in a broad range
of values [11]. Nowadays, due to the high degree of controllability and tunability of
the experimental set-ups, these systems have become a premier platform to study a
wide variety of quantum phenomena.

In particular, in this Thesis we focus on systems under the effect of Spin Orbit
Coupling (SOC), which denotes the interplay between a particle’s linear (or angular)
momentum and its spin. SOC has been a subject of interest in the recent years, both
theoretically and experimentally. It plays an important role in a wide variety of exotic
quantum phenomena, such as topological [12] and Mott [13–15] insulators, topological
superconductors [16], Majorana fermions [17] and spintronics [18]. Spin-Orbit Coupling
is a relativistic effect and emerges naturally in electronic systems. An electron moving
in a static electric field, such as the crystal field of a lattice, experiments a magnetic
field on its moving frame, which is proportional to its velocity. This magnetic field
then couples to the particle’s magnetic momentum, which is proportional to its spin,
and gives rise to SOC [1]. The SOC term is of relevance in heavy atomic and molecular
systems, specifically when computing bonding and spectral properties [19].
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While electronic systems are the natural platform where SOC arises, this kind
of interaction can be synthetically engineered in ultracold atom systems [1, 2, 20].
Unlike in electronic systems, where the properties of SOC are largely determined by
the specific material, ultracold atoms constitute a much more controllable and tunable
platform that enables a precise and detailed study of the properties of SOC [21]. In this
Thesis, we focus on the study of SOC in ultracold gases. The synthetic implementation
of SOC in a Bose-Einstein Condensate (BEC) was first achieved by Spielman’s group [1]
via the dressing of two atomic spin states with a pair of lasers in a neutral BEC. Under
these circumstances, the resulting SOC interaction features equal Rashba [22] and
Dresselhaus [23] strengths, and is known as Raman SOC or one-dimensional SOC, since
the momentum-spin coupling involves only one spatial component of the momentum
operator, σ̂zP̂x. It is important to remark that there are no conventional spin states
in synthetic SOCs, but rather atomic states that are labeled as pseudospins [24], for
which the SOC interaction is engineered. Because of this, it is possible to have bosonic
systems with pseudospin 1/2, something that does not happen spontaneously in nature.
In this sense, a pair of Raman lasers intersecting at 90o and detuned from resonance
creates a momentum dependent coupling between two hyperfine atomic states (the
pseudospins) by the simultaneous driving of a spin flip transition and transferring
of momentum. This is done for atoms with a Λ-type configuration of internal levels,
which contains a pair of ground hyperfine levels suitable to mimic the spin up and
down states. This results into the effective Hamiltonian

Ĥ = P̂ 2

2m + λℏ
m
P̂xσ̂z + λ2ℏ2

2m − Ω
2 σ̂x (1.1)

where m is the mass of the atom, λ is the SOC strength and the coupling strength, Ω, is
known as the Raman coupling. It must be remarked that the Hamiltonian in Eq. (1.1)
is obtained after applying a unitary transformation consisting on a position and time
dependent rotation to the Hamiltonian in the reference frame of the laboratory [1, 25].
In the specific case of the experiment of Ref. [1], 87Rb atoms in the continuum (not
in a lattice) where employed, while the hyperfine states chosen as pseudospins are
|+1⟩ = |F = 1, mF = 0⟩ and |−1⟩ = |F = 1, mF = −1⟩. A scheme of the employed
states is shown in Fig. 1.1. A bias magnetic field introduces a ℏωz Zeeman shift between
the |F = 1, mF = 0⟩ and |F = 1, mF = −1⟩ states, which in turn are detuned by an
amount δ from Raman resonance, an effect also caused by the same magnetic field.
The state |F = 1, mF = +1⟩ can be neglected due to the quadratic Zeeman shift ℏωq,
which is much larger than the difference in energy between the |F = 1, mF = 0⟩ and
|F = 1, mF = −1⟩ states. Following this same scheme, Raman SOC has also been
realized with 87Rb bosons in a lattice [26, 27], and also with other species: 6Li [28],
40K [29], 87Sr [30], 173Yb [31, 32], and 161Dy [33].
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Fig. 1.1 Level diagram of the 87Rb system for which synthetic Raman SOC is engineered
in Ref. [1]. The Zeeman shift ℏωz and the detuning from resonance δ are induced
by a bias magnetic field. The quadratic Zeeman shift ℏωq is such that the state
|F = 1, mF = +1⟩ can be discarded, leading to an effective two-level Hamiltonian.
Taken from Ref. [1].

The aforementioned experimental set-ups for SOC systems are typically realized
in the dilute regime, where the BECs used have a very large condensate fraction.
This implies that these systems show a low level of inter-atomic correlations and,
therefore, they can be accurately described both in quantitative and qualitative terms
by mean field theory. Within this formalism, the interaction between particles is
modeled as a contact potential (i.e. a zero range interaction) proportional to the
scattering length, which can be both measured and tuned in actual experiments.
Under these circumstances, the ground state of a BEC can be obtained by solving
the Gross-Pitaevskii equation (GPE). The GPE is the most used theoretical tool to
describe the current experiments with ultracold atoms in general, although it has
limited applicability. On one hand, the quantitative accuracy of the GPE decreases as
the gas parameter, defined as xg = na3, with n the density and a the s-wave scattering
length, increases. The gas parameter measures the degree of inter-atomic correlations
in a many-body system: the higher its value, the more important correlations are [34].
On the other hand, there are many examples of systems with attractive interactions for
which the GPE predicts a collapse that is not seen when correlations are introduced.
This is the case, for instance, for dipolar systems in three dimensions [9, 10], unstable
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Bose-Bose mixtures [35–38] and SOC systems [39], among others. In this context, it is
essential to go beyond the standard mean field description.

The limitations of mean field theories can be overcome in several ways. Out of all
the possibilities, we focus on two options: quantum Monte Carlo methods and Beyond
Mean Field calculations following the Bogoliubov formalism. These approaches are
complementary: while quantum Monte Carlo methods can account for inter-atomic
correlations at all orders, they are limited in terms of the number of particles that can
be simulated, since the computational cost of the calculations grows with this quantity.
On top of that, these methods are computationally more expensive than Beyond Mean
Field calculations. On the other hand, the Beyond Mean Field approaches account for
inter-atomic correlations only at the first order, which means that, for large enough
values of the gas parameter, they are still unable to quantitatively describe a quantum
many-body system. However, first order correlations are enough to describe most of
the experimental systems that involve the instabilities at the mean field level. When
SOC is present, the balance between both approaches slightly shifts: while in the
absence of SOC quantum Monte Carlo methods are strictly more accurate than Beyond
Mean Field calculations, when SOC is incorporated this is not necessarily true, mainly
because quantum Monte Carlo algorithms are subject to approximations that are
absent in the Bogoliubov formalism.

The application of Quantum Monte Carlo methods to simulate SOC systems is
not straight-forward, specially in the case of Diffusion Monte Carlo (DMC), a method
able to obtain exact ground state properties of a many-body quantum system. The
non-locality of the SOC Hamiltonians, induced by the presence of linear contributions
of the momentum operator, hinders the application of the standard DMC formulation.
Therefore, the derivation of new DMC algorithms, capable of sampling SOC potentials,
is required. On top of that, and in general, the ground state wave function of a SOC
Hamiltonian is a complex function, unlike the general case of Bose systems without SOC.
Since the DMC algorithm is unable to propagate simultaneously the modulus and the
phase of a wave function, one must resort to the fixed phase approximation [40]. Within
this approach, one fixes the phase of the wave function and evolves the modulus in
imaginary time, obtaining the best possible physical estimates given a phase constraint.
As a consequence, the quality of the estimations is directly related to the quality of
the phase employed, see for instance the case of the energy, for which only an upper
bound to the true ground state energy can be obtained.

Previous DMC calculations with SOC have been carried out in the study of electronic
structures [19, 41], quantum dots in semi-conductors [42], and repulsive Fermi gases [43].
A DMC method incorporating the SOC terms that arise in electronic systems has
already been developed [19]. In this method, the authors implement the spin-orbit
term of the propagator through the use of the T-moves technique [44]. They also use
a regularized, continuous representation of the spin degrees of freedom. Since SOC
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introduces a sign problem in the off-diagonal matrix elements of the propagator, the
authors of Ref. [19] define an effective Hamiltonian in such a way that the propagator
becomes positive-definite. It can be shown that the energy estimation obtained with
this effective Hamiltonian yields an upper bound to the fixed-phase energy [45]. In
this Thesis, we adapt the T-moves DMC algorithm of Ref. [19] to the usual, discrete
representation of the spin, giving rise to the Discrete Spin T-moves DMC (DTDMC),
and show how to treat the synthetic SOC present in ultracold quantum gases. We also
introduce a new DMC algorithm for treating the SOC terms of the propagator, where
the spin integrated wave function is propagated in imaginary time. In doing so, we
avoid almost completely the sign problem induced by SOC terms, meaning that no
effective Hamiltonian needs to be defined. We call this new method the Spin Integrated
DMC (SIDMC). This method, however, can not sample two-body, spin-dependent
potentials.

As mentioned previously, SOC interactions induce the emergence of a wide variety
of exotic phenomena. An important example concerning Raman SOC is the appearance
of a stripe phase, which presents a density modulation along a privileged direction.
Similar spatial periodicity can be found in other ultracold atom systems, like dipoles,
where the anisotropy of the two-body interaction leads to the formation of stripes
for high enough densities [46, 47]. However, in a Raman SOC system, the driving
mechanism for stripe formation is of single particle nature. This implies that stripes
can be present in systems with very low densities and gas parameters, thus making
them more experimentally accessible. The appearance of a stripe phase in Raman SOC
systems can be understood from the single particle picture (see Chapter 2) by looking
at the dispersion relation induced by SOC. While in non-SOC systems a quadratic
dependence of the energy with respect to the momentum is observed, Raman SOC
induces a double well structure (with two minima at opposed momenta) that enables
the possibility of stripes. However, at the single particle level, the superposition of
states with opposite momenta has the same energy as one of the states separately. This
degeneracy is broken by interactions, which favor either the single momentum state or
the stripe configuration, depending on the asymmetry of the different spin channels of
the interaction. At the mean field level, where interactions are modeled by a contact
potential proportional to the scattering length, stripes are favored if a+1,−1 < a+1,+1,
given that a+1,+1 = a−1,−1, for a given range of values of the Raman coupling. Here,
the +1, −1 indexes indicate the spin component while as,s′ is the spin-dependent
scattering length. Moreover, the greater the difference between a+1,−1 and a+1,+1,
the larger the Raman coupling window for the stripe phase and, as a consequence,
the higher the contrast stripes can achieve [25], meaning by contrast the difference
between the maxima and minima in the striped density pattern. In the experiment of
Ref. [1], the nature of inter- and intra-spin interactions is completely determined by the
atomic species employed, 87Rb, which features an almost spin-independent interaction
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(a+1,+1 ≃ a−1,−1 ≃ a+1,−1, with γ = (a+1,+1 −a+1,−1)/(a+1,+1 +a+1,−1) = 0.0012 [25]).
Because of this, the experimental observation of the stripes induced by Raman SOC
remained an open problem, even after SOC was first realized with ultracold atoms.
The stripe phase is superfluid [4, 48], and at the same time it breaks continuous
spatial symmetry, giving rise to supersolidity. Because of this, Raman SOC stripes are
commonly referred in the literature as supersolid stripes, or superstripes.

In 2017, a new scheme for the generation of synthetic Raman SOC was realized
by Ketterle’s group [2], which enabled the first ever experimental detection of the
stripe phase in a Raman SOC system. In contrast to the experiment of Ref. [1],
the two lowest eigenstates of an asymmetric double well were used as pseudospin
states, instead of employing two different hyperfine states of an atom. SOC was then
induced by a couple of Raman beams providing a momentum transfer and a spin
flip from one well to the other. This scheme provided two clear advantages in terms
of observing the stripe phase: first, since all atoms are in the same hyperfine state,
there is no sensitivity to external magnetic fields, and second, and most important,
the inter-spin interaction depends on the overlap between the eigenstates of each well,
and thus it can be tuned in experiments. This allowed the implementation of highly
asymmetric spin-dependent interactions with a+1,+1 ≫ a+1,−1, opening the detection
of stripes. In order to increase the signal to noise ratio, a superlattice composed of
several coherently coupled asymmetric double wells was employed, with SOC induced
in the quasi two-dimensional space orthogonal to the direction of the superlattice, for
each double well. This is illustrated in Fig. 1.2. Stripes were detected with Bragg
scattering using near-resonant yellow light.

More recently, in 2018, the realization of a SOC interaction involving angular
momentum was achieved [49]. Unlike Raman SOC, this interaction contains a term
of the form L̂zσ̂z. The implementation of this coupling is achieved by the use of a
co-propagating pair of beams which carry different angular momentum, to transfer the
relative winding phase to the atoms during a Raman transition [5]. In other words,
angular momentum is transferred to the atoms instead of linear momentum. In the
pioneer experiment of Ref. [49], SOC is synthetically implemented with 87Rb atoms
employing the |F = 1, mF = 0⟩ and |F = 1, mF = −1⟩ hyperfine states as pseudospin
states. We explore in Chapter 5 this kind of SOC, known as Spin Orbital Angular
Coupling (SOAC), both at the mean field level and by using of the Diffusion Monte
Carlo method.

In general, SOC is equivalent to a gauge potential coupling to the spin degrees of
freedom [50, 51]. Because of this, the implementation of SOC potentials can be achieved
by the generation of synthetic gauge potentials. The experiments mentioned above
correspond to one-dimensional SOC, which is equivalent to an Abelian gauge potential
with zero Berry’s curvature, which means it is topologically trivial. However, a higher
dimensional SOC is equivalent to a non-Abelian gauge potential with non-zero Berry’s
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Fig. 1.2 Illustration of the superlattice of double wells employed in the experiment of
Ref. [2] to engineer Raman SOC. Here d is the lattice constant of the superlattice, ∆
is the well offset and J is the inter-well tunneling. SOC is implemented in the quasi
two-dimensional system perpendicular to the direction of the superlattice. The stripe
density modulations induced by SOC are represented by the change in brightness of
the red and blue densities shown in the Figure. Taken from Ref. [2].

curvature, and thus gives rise to non-trivial topological effects. The experimental
realization of higher dimensional SOC interactions has not been achieved until recently.
Rashba SOCs has been realized with 87Rb atoms in an optical Raman lattice with
double Λ configuration [52, 50] after several theoretical proposals had been made to
implement 2D [53–56] and 3D [57, 58] Rashba SOC. In this scheme, two pairs of light
beams create a lattice and Raman potentials simultaneously, inducing hopping between
sites together with spin flips in two different directions. The relative phase between
the two Raman couplings can be tuned experimentally, and as a consequence, the
dimensionality of the induced SOC can be changed between 1D and 2D. Rashba SOC
was also achieved experimentally for a system of 40K fermions in the continuum, where
a tripod scheme consisting of three lasers couples three hyperfine states [59]. Despite
the one-dimensional Raman SOC being less rich from the topological point of view, the
lower difficulty of its experimental realization has led to the observation of interesting
physical phenomena such as the formation of supersolid stripes. Because of this, while
two and three-dimensional SOC interactions such as Rashba and Weyl SOC are used
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to test the Diffusion Monte Carlo methods developed in this Thesis, our study focuses
on Raman SOC only, with special attention on the supersolid stripe phase.

Among the previous theoretical works in the field of ultracold atoms with SOC,
we believe that the prediction of the phase diagram at the mean field level for a
system under Raman SOC [25, 60] is of major relevance. By performing a variational
optimization of an ansatz wave function, the authors are able to find three different
phases and determine the values of the Raman coupling, density and scattering length
at which each phase is energetically favorable. Three different phases arise in the
system: the plane wave, single minimum and the stripe phase. The plane wave and
single minimum phases correspond to a state of definite momentum (which is non-zero
for the plane wave phase and zero for the single minimum phase), while the stripe phase
is a superposition of states with opposite momenta. However, as any result obtained
in mean field, its validity is restricted to situations where inter-atomic correlations are
weak, i.e. the very dilute regime. Connected to this, one of the main parts of this
Thesis deals with the realization of this phase diagram by using the Diffusion Monte
Carlo methods developed for SOC potentials. In this way, Diffusion Monte Carlo is
able to extend the phase diagram to a regime where inter-atomic correlations are not
negligible. Results concerning this are presented in Chapter 3.

Beyond mean field calculations of several observables have also been performed for
Raman SOC systems in all three phases. The excitation spectrum of the plane wave
and single minimum phases [61], and that of the stripe phase [4], have already been
computed following the Bogoliubov-de Gennes formalism. Also, the static structure
factor and the superfluid fraction have been obtained [62, 63]. The Lee-Huang-Yang
(LHY) energy, which yields the first order correction in terms of density and scattering
length to the mean field energy, has been obtained in the plane wave and single
minimum phases [3]. However, no LHY correction has been derived for a system in
the stripe phase. We evaluate this term in Chapter 4. The motivation behind this
comes from the role played by quantum fluctuations in an attractive Bose-Bose mixture
without SOC that is unstable at the mean field level [35]. In this case, the physics of
the system are greatly modified by quantum fluctuations, as the LHY correction is
able to stabilize the system, which is shown to present a liquid-like behaviour. For a
finite number of particles, the system admits droplet-like ground state solutions. We
check whether the same effect is present on a system under Raman SOC in the stripe
phase, and if a droplet-like solution with density modulations exists as the ground
state. Such a state combines liquid behaviour, density modulations reminiscent of
solids, and superfluidity, which is a novel combination of properties in the field of
ultracold atoms. As previously mentioned, this scenario, where mean field physics
are drastically modified by beyond mean field effects, is present in other systems like
dipoles. Experimentally, it has been possible to observe how the beyond mean field
stabilization mechanisms lead to the formation of droplets both for unstable Bose-Bose
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mixtures [37, 38] and dipoles [9, 10]. While all the experiments published up to date
in the field of SOC systems involve repulsive interactions, and thus do not experience
a collapse, current state of the art experiments, which feature attractive inter-spin
interactions, are pursuing the observation of Raman SOC striped self-bound droplets.
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1.1 Objectives and outline

The goal of this Thesis is to compute properties of the ground state of a quantum
many-body system with Spin-Orbit Coupling interactions out of the ultra-dilute regime,
with special focus on Raman SOC. In order to achieve this, we follow two approaches.
On one hand, we develop and use two Diffusion Monte Carlo methods suitable to
study systems featuring SOC. On the other hand, we follow the Bogoliubov formalism
to perform calculations beyond the mean field level. The contents of this Thesis are
structured as follows:

• In Chapter 2, we briefly review the one-body Raman SOC problem, as it is very
illustrative to understand the many-body picture discussed in other Chapters.
We also review the derivation of the mean field Gross Pitaevskii equation for
SOC systems and the dressed spin picture for Raman SOC of Ref. [1].

• In Chapter 3, we introduce the Monte Carlo methods of interest. We review
the basic Variational and Diffusion Monte Carlo formalisms, and present the
derivation and implementation of the Diffusion Monte Carlo algorithms adapted
for the study of SOC systems, including numerical tests for both methods. Finally,
we present the phase diagram for a Raman SOC system in three dimensions. We
extend the pre-existing mean field diagram [25] to a region of gas parameters
outside the regime of validity of the mean field approach and evaluate the effect of
quantum correlations. We also report physical quantities like the pair-distribution
function, the static structure factor, and the one-body density matrix.

The main results of this Chapter are featured in the following publications:
- J. Sánchez-Baena, J. Boronat, and F. Mazzanti, Diffusion Monte Carlo methods
for spin-orbit-coupled ultracold Bose gases, Phys. Rev. A 98, 053632 (2018).
- J. Sánchez-Baena, J. Boronat, and F. Mazzanti, Supersolid stripes enhanced by
correlations in a Raman spin-orbit-coupled system, Phys. Rev. A 101, 043602
(2020).

• In Chapter 4, we review the Bogoliubov formalism to perform beyond mean
field calculations in the absence of SOC and present the detailed extension of
the formalism for Raman SOC systems in the stripe, plane wave and single
minimum phases. We derive, for the first time, the Lee-Huang-Yang energy
correction for a Raman SOC in the stripe phase. We present and discuss the
technical details involved in the calculation. As an application, we evaluate
the role played by quantum fluctuations in a Raman SOC system in the stripe
phase that is unstable at the mean field level due to the presence of attractive
enough inter-spin interactions. We characterize the phase diagram of the system
stabilized by quantum fluctuations and study the presence of supersolid striped
droplets.
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The main results of this Chapter are featured in the following publications:
- J. Sánchez-Baena, J. Boronat, and F. Mazzanti, Supersolid striped droplets in a
Raman spin-orbit-coupled system, arXiv:2007.04196 (2020) (accepted in Physical
Review A as of October of 2020).

• In Chapter 5, we shift the focus to Spin Orbital Angular Coupling (SOAC). We
review the derivation of an effective one-dimensional Gross Pitaevskii equation,
useful to perform calculations at the mean field level. We also perform Diffusion
Monte Carlo calculations of the ground state energy of a many-body system
under a SOAC interaction in order to compare to mean field results.





Chapter 2

The Raman SOC one-body
problem and the Mean Field
regime
2.1 Introduction

We review in this Chapter several topics that are of relevance in the context of this
Thesis. Since the systems of interest involve Raman SOC (except in Chapter 5), it is
convenient to briefly review the physics of the one-body problem of a particle under
Raman SOC. This simple case already showcases properties that are very useful to
understand the many-body picture, such as the double degeneration in momentum
space of the energy dispersion, which is related to the appearance of the stripe phase
in the many-body case. As stated in Chapter 1, the mean field description of ultracold
atom systems is of great importance due to its ability to quantitatively and qualitatively
describe the majority of state-of-the-art experiments in the field. Motivated by this,
we review in this Chapter the derivation of the Gross-Pitaevskii equation for SOC
Hamiltonians, since the GPE represents a theoretical tool used recurrently throughout
this Thesis.

This Chapter is organized as follows: in Sec. 2.2, we review the one-body problem
for a particle under Raman SOC. In Sec. 2.3, we present a derivation of the Gross-
Pitaevskii equation for Hamiltonians including SOC interactions. Finally, in Sec. 2.4,
we review the dressed spin picture for a Raman SOC system at the mean field level,
since it is of importance when studying the excitations of a Raman SOC system.

2.2 The one-body Raman SOC problem

We present in this Section a brief review of the one-body problem for a single particle
under Raman SOC. We do so in order to illustrate the fundamental physics of this
interaction, since the majority of the results presented in this Thesis involve it. Fur-
thermore, useful expressions employed in Chapter 4 are also derived. The Hamiltonian
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we solve is:

Ĥ = P̂ 2

2m + ŴRaman (2.1)

ŴRaman = λℏ
m
P̂ xσ̂z + λ2ℏ2

2m − Ω
2 σ̂

x (2.2)

Notice that [Ĥ, ˆ⃗
P ] = 0, which means that we can build a basis of eigenstates of Ĥ

that are also eigenstates of the momentum operator. Thus, in momentum space, the
eigenvalue problem can be written as: p2

2m + λℏpx

m + λ2ℏ2

2m −Ω
2

−Ω
2

p2

2m − λℏpx

m + λ2ℏ2

2m

ϕ+

ϕ−

 = E

ϕ+

ϕ−

 (2.3)

where the + and − subindexes indicate the spin component. The eigenvalues of the
Hamiltonian can be computed by finding the zeros of the characteristic polynomial, i.e.
by imposing the matrix in Eq. (2.3) to have a determinant equal to zero. This yields

(
p2

2m + λℏpx
m

+ λ2ℏ2

2m − E

)(
p2

2m − λℏpx
m

+ λ2ℏ2

2m − E

)
−
(

Ω
2

)2

= 0(
p2

2m + λ2ℏ2

2m − E

)2

−
(
λℏpx
m

)2

=
(

Ω
2

)2

p2

2m + λ2ℏ2

2m − E = ±

√√√√(λℏpx
m

)2

+
(

Ω
2

)2

E∓(p⃗) = p2

2m + λ2ℏ2

2m ∓

√√√√(ℏλpx
m

)2

+
(

Ω
2

)2

(2.4)

As we can see, the energy dispersion has two branches, the lower branch being E−.
The eigenvector of the lower branch is(

p2

2m − λℏpx
m

+ λ2ℏ2

2m − E−

)
ϕ− − Ω

2 ϕ+ = 0

ϕ+ = ϕ−

 2
Ω

(
p2

2m − λℏpx
m

+ λ2ℏ2

2m − E−

)
ϕ+ = ϕ−

−2λℏpx
Ωm + 2

Ω

√√√√(ℏλpx
m

)2

+
(

Ω
2

)2


ϕ+ = ϕ−

2ℏλpx
Ωm

−1 + px
|px|

√√√√1 +
(

Ωm
2ℏλpx

)2

 (2.5)
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where ϕ+ and ϕ− indicate the components of the vector in Eq. (2.3). Analogously, the
eigenvector of the higher branch is given by

ϕ+ = ϕ−

2ℏλpx
Ωm

−1 − px
|px|

√√√√1 +
(

Ωm
2ℏλpx

)2

 (2.6)

Thus, in position space, the eigenfunctions associated to each branch are:

ψ∓(r⃗) = exp
(
ik⃗r⃗
)2ℏ2λkx

Ωm

−1 ± kx
|kx|

√√√√1 +
(

Ωm
2ℏ2λkx

)2
 |+1⟩ + |−1⟩

 (2.7)

with p⃗ = ℏk⃗. The eigenfunctions of the Hamiltonian correspond to plane waves because
the Hamiltonian commutes with the momentum operator. Therefore, it is possible
to obtain an eigenbasis composed by eigenstates that have definite momentum. The
ground state momentum can be obtained by minimizing the energy. It is given by:

k⊥,g.s. = 0 kx,g.s., =


0 if

(
Ωm

2λ2ℏ2

)
> 1

±λ
√

1 −
(

Ωm
2λ2ℏ2

)2
if
(

Ωm
2λ2ℏ2

)
< 1

(2.8)

where k⊥,g.s. =
√
k2
y,g.s. + k2

z,g.s.. Notice that the ground state shows a single minimum
for

(
Ωm

2λ2ℏ2

)
> 1, whereas for

(
Ωm

2λ2ℏ2

)
< 1 the ground state is degenerate in momentum

space, with two states with opposite x-momentum component having the same energy.
This degeneracy hints to the appearance of the stripe phase, which consists on a
superposition of states with opposite momenta. Notice that the appearance of a double
minima in the energy spectrum is the cause of a second order phase transition, where
a spontaneous symmetry breaking process takes place. This is illustrated in Fig. 2.1,
where we show the lower branch of the dispersion relation and the ground state values
of the momentum for different values of Ω.

The ground state energy is given by:

Eg.s. =


λ2ℏ2

2m − Ω
2 if

(
Ωm

2λ2ℏ2

)
> 1

− Ω2m
8ℏ2λ2 if

(
Ωm

2λ2ℏ2

)
< 1

(2.9)
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Fig. 2.1 Lowest energy branch for different values of the Raman coupling (left plot) and
ground state momentum vs Raman coupling (right plot). All quantities are expressed
in reduced units, with the characteristic length and energy scales given by a0 = 1

λ and
ϵ0 = ℏ2λ2

2m , respectively.

For Ωm
2λ2ℏ2 < 1, the ground state wave function can be written as:

ψ−(r⃗) = exp(ikxx)


−2ℏ2λkx

Ωm +

√√√√1 +
(

2ℏ2λkx
Ωm

)2
 |+1⟩ + |−1⟩


= exp(ikxx)

√√√√1 +
(

2ℏ2λkx
Ωm

)2


−

2ℏ2λkx
Ωm√

1 +
(

2ℏ2λkx
Ωm

)2
+ 1

 |+1⟩ + 1√
1 +

(
2ℏ2λkx

Ωm

)2
|−1⟩


(2.10)

We define:

sin θk =
2ℏ2λkx

Ωm√
1 +

(
2ℏ2λkx

Ωm

)2
(2.11)

cos θk = 1√
1 +

(
2ℏ2λkx

Ωm

)2
(2.12)

such that:

ψ−(r⃗) = exp(ikxx) 1
cos θk

{
[− sin θk + 1] |+1⟩ + cos θk |−1⟩

}
(2.13)

Next, we normalize the wave function to get:

ψ−(r⃗) = exp(ikxx)
{

1 − sin θk√
2(1 − sin θk)

|+1⟩ + cos θk√
2(1 − sin θk)

|−1⟩
}

,

= exp(ikxx)


√

1 − sin θk
2 |+1⟩ +

√
1 + sin θk

2 |−1⟩

 , (2.14)
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and defining:

sinχk =
√

1 − sin θk
2 (2.15)

cosχk =
√

1 + sin θk
2 (2.16)

we can write:

ψ−(r⃗) = exp(ikxx)
{
sinχk |+1⟩ + cosχk |−1⟩

}
(2.17)

Eqs. (2.11), (2.12), (2.15), (2.16), (2.17) are used in Chapter 4.

2.3 The Gross-Pitaevskii equation for a SOC Hamilto-
nian

We present here the derivation of the Gross-Pitaevskii equation (GPE) for Hamiltonians
with SOC interactions. We derive the formalism for Raman SOC (see Eq. (2.2)), but
an analogous procedure can be carried out for different SOC interactions, like Rashba
or Weyl. In the mean field approximation, we write the many-body wave function of
the system as:

Ψ(r⃗1, ..., r⃗N ) =
∑

s1, ...,sN

Ψ(r⃗1, s1, ..., r⃗N , sN ) |s1, ..., sN ⟩ =
∑

s1, ...,sN

 N∏
i=1

ψ(r⃗i, si) |si⟩


=

N∏
i=1

(
ψ+(r⃗i) |+1⟩ + ψ−(r⃗i) |−1⟩

)
(2.18)

where r⃗i and si = ±1 are the position and spin coordinates of the i-th particle and
ψ±(r⃗i) = ψ(r⃗i,±1) are single-particle wave functions. This form for the wave function
is a valid approximation of the exact many-body wave function as long as the system
remains in the dilute regime. The wave function is normalized if:∫

d⃗r
(∣∣ψ+(r⃗)

∣∣2 +
∣∣ψ−(r⃗)

∣∣2) = 1 . (2.19)

The interactions between particles are modeled by a two-body contact potential, i.e.

V̂ij =
∑
s1,s2

4πℏ2as1,s2

m
δ(r⃗i − r⃗j) |s1, s2⟩ ⟨s1, s2| , (2.20)
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with m the mass and as1,s2 the spin-dependent scattering lengths, with a+1,−1 = a−1,+1.
Under these conditions, we can compute the energy of the system, which is given by:

E(ψ,ψ†) = ⟨Ψ| Ĥ |Ψ⟩
⟨Ψ|Ψ⟩

= N

∫
d⃗r
(
ψ∗

+(r⃗) ⟨+1| + ψ∗
−(r⃗) ⟨−1|

)(
− ℏ2

2m∇2
)(

ψ+(r⃗) |+1⟩ + ψ−(r⃗) |−1⟩
)

+N

∫
d⃗r
(
ψ∗

+(r⃗) ⟨+1| + ψ∗
−(r⃗) ⟨−1|

)(
−iℏ

2λ

m
σ̂z

∂

∂x

)(
ψ+(r⃗) |+1⟩ + ψ−(r⃗) |−1⟩

)
+N

∫
d⃗r
(
ψ∗

+(r⃗) ⟨+1| + ψ∗
−(r⃗) ⟨−1|

)(
−Ω

2 σ̂x + ℏ2λ2

2m

)(
ψ+(r⃗) |+1⟩ + ψ−(r⃗) |−1⟩

)
+ N(N − 1)

2

∫
d⃗r1d⃗r2

 ∏
i=1,2

(
ψ∗

+(r⃗i) ⟨+1| + ψ∗
−(r⃗i) ⟨−1|

)
×

∑
s1,s2

4πℏ2as1,s2

m
δ(r⃗1 − r⃗2) |s1, s2⟩ ⟨s1, s2|

 ∏
i=1,2

(
ψ+(r⃗i) |+1⟩ + ψ−(r⃗i) |−1⟩

)
= N

∫
d⃗r

[
− ℏ2

2mψ∗
+∇2ψ+ − ℏ2

2mψ∗
−∇2ψ− − i

ℏ2λ

m
ψ∗

+
∂ψ+
∂x

+iℏ
2λ

m
ψ∗

−
∂ψ−
∂x

− Ω
2
(
ψ∗

−(r⃗)ψ+(r⃗) + ψ∗
+(r⃗)ψ−(r⃗)

)
+ℏ2λ2

2m
(
ψ∗

+(r⃗)ψ+(r⃗) + ψ∗
−(r⃗)ψ−(r⃗)

)]

+ N(N − 1)
2

∫
d⃗r
[
g+1,+1

∣∣ψ+(r⃗)
∣∣4 + g−1,−1

∣∣ψ−(r⃗)
∣∣4 + 2g+1,−1

∣∣ψ+(r⃗)
∣∣2∣∣ψ−(r⃗)

∣∣2] ,
(2.21)

with g±1,±1 = 4πℏ2

m a±1,±1 and a±1,±1 the spin-dependent scattering lengths.
In order to obtain the GPE, we minimize the functional in Eq. (2.21) with the

condition in Eq. (2.19). This is equivalent to minimizing the functional:

F (ψ,ψ†) = E(ψ,ψ†) − µ

(∫
d⃗r
(∣∣ψ+(r⃗)

∣∣2 +
∣∣ψ−(r⃗)

∣∣2)− 1
)

(2.22)

In order to do so, we evaluate F (ψ∗
+ + δψ∗

+, ψ
∗
− + δψ∗

−, ψ+, ψ−), which results into:

F (ψ∗
+ + δψ∗

+, ψ
∗
− + δψ∗

−, ψ+, ψ−) =
∫
d⃗rϵ(ψ,ψ†) +

∫
d⃗r

(
δϵ

δψ∗
+
δψ∗

+ + δϵ

δψ∗
−
δψ∗

−

)
+ O

(
(δψ∗

+)2, (δψ∗
−)2

)
(2.23)
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with ϵ(ψ,ψ†) the energy density. Substituting, we find

F (ψ∗
+ + δψ∗

+, ψ
∗
− + δψ∗

−, ψ+, ψ−) = F (ψ∗
+, ψ

∗
−, ψ+, ψ−)

+
∫
d⃗rδψ∗

+

N (
− ℏ2

2m∇2ψ+ − i
ℏ2λ

m

∂ψ+
∂x

− Ω
2 ψ−(r⃗) + ℏ2λ2

2m ψ+(r⃗)
)

+N(N − 1)
2

(
2g+1,+1

∣∣ψ+(r⃗)
∣∣2ψ+(r⃗) + 2g+1,−1

∣∣ψ−(r⃗)
∣∣2ψ+(r⃗)

)
− µψ+(r⃗)

]

+
∫
d⃗rδψ∗

−

N (
− ℏ2

2m∇2ψ− + i
ℏ2λ

m

∂ψ−
∂x

− Ω
2 ψ+(r⃗) + ℏ2λ2

2m ψ−(r⃗)
)

+N(N − 1)
2

(
2g−1,−1

∣∣ψ−(r⃗)
∣∣2ψ−(r⃗) + 2g+1,−1

∣∣ψ+(r⃗)
∣∣2ψ−(r⃗)

)
− µψ−(r⃗)

]
. (2.24)

In order to minimize F ∀ δψ∗
+, δψ∗

−, we must set δϵ
δψ∗

+
= 0 and δϵ

δψ∗
−

= 0. Therefore:

− ℏ2

2m∇2ψ+ − i
ℏ2λ

m

∂ψ+
∂x

− Ω
2 ψ−(r⃗) + ℏ2λ2

2m ψ+(r⃗)

+N
(
g+1,+1

∣∣ψ+(r⃗)
∣∣2ψ+(r⃗) + g+1,−1

∣∣ψ−(r⃗)
∣∣2ψ+(r⃗)

)
= µψ+(r⃗) (2.25)

− ℏ2

2m∇2ψ− + i
ℏ2λ

m

∂ψ−
∂x

− Ω
2 ψ+(r⃗) + ℏ2λ2

2m ψ−(r⃗)

+N
(
g−1,−1

∣∣ψ−(r⃗)
∣∣2ψ−(r⃗) + g+1,−1

∣∣ψ+(r⃗)
∣∣2ψ−(r⃗)

)
= µψ−(r⃗) (2.26)

where we have approximated N − 1 ≃ N in the thermodynamic limit. One can also
compute F (ψ∗

+, ψ
∗
−, ψ+ + δψ+, ψ− + δψ−) and impose the terms proportional to δψ+,

δψ− to be zero, which yields an equivalent set of equations. By numerically solving
Eqs. (2.25) and (2.26) one can obtain the condensate wave function of the system and,
from it, any desired observable at the mean field level. The time-dependent version of
the GPE can be obtained similarly following a variational approach: the minimization
of the functional

F (Ψ†,Ψ) =
∑
S⃗,S⃗′

∫
d⃗Rd⃗R

′
[
iℏΨ†∂Ψ

∂t
δ(R⃗− R⃗′)δ(S⃗ − S⃗′) − Ψ†(R⃗′, S⃗′)

〈
R⃗′, S⃗′

∣∣∣ Ĥ ∣∣∣R⃗, S⃗〉Ψ(R⃗, S⃗)
]

(2.27)

where Ĥ is the many-body Hamiltonian and Ψ(R⃗, S⃗) the many-body wave function,
with R⃗ = (r⃗1, ..., r⃗N ), S⃗ = (s1, ..., sN ). We define:

A =
∫
d⃗r
(∣∣ψ+(r⃗)

∣∣2 +
∣∣ψ−(r⃗)

∣∣2) , (2.28)
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such that the functional in Eq. (2.27( can be rewritten as:

F (Ψ†,Ψ) = AN−1N

∫
d⃗r iℏ

(
ψ∗

+
∂ψ+
∂t

+ ψ∗
−
∂ψ−
∂t

)

−NAN−1
∫
d⃗r

[
− ℏ2

2mψ∗
+∇2ψ+ − ℏ2

2mψ∗
−∇2ψ− − i

ℏ2λ

m
ψ∗

+
∂ψ+
∂x

+iℏ
2λ

m
ψ∗

−
∂ψ−
∂x

− Ω
2
(
ψ∗

−(r⃗)ψ+(r⃗) + ψ∗
+(r⃗)ψ−(r⃗)

)
+ℏ2λ2

2m
(
ψ∗

+(r⃗)ψ+(r⃗) + ψ∗
−(r⃗)ψ−(r⃗)

)]

− N(N − 1)
2 AN−2

∫
d⃗r
[
g+1,+1

∣∣ψ+(r⃗)
∣∣4 + g−1,−1

∣∣ψ−(r⃗)
∣∣4 + 2g+1,−1

∣∣ψ+(r⃗)
∣∣2∣∣ψ−(r⃗)

∣∣2] .

(2.29)

Following the minimization procedure described above, we find:

− ℏ2

2m∇2ψ+ − i
ℏ2λ

m

∂ψ+
∂x

− Ω
2 ψ−(r⃗) + ℏ2λ2

2m ψ+(r⃗)

+N

g+1,+1

∣∣ψ+(r⃗)
∣∣2

A
ψ+(r⃗) + g+1,−1

∣∣ψ−(r⃗)
∣∣2

A
ψ+(r⃗)

 = iℏ
∂ψ+
∂t

(2.30)

− ℏ2

2m∇2ψ− + i
ℏ2λ

m

∂ψ−
∂x

− Ω
2 ψ+(r⃗) + ℏ2λ2

2m ψ−(r⃗)

+N

g−1,−1

∣∣ψ−(r⃗)
∣∣2

A
ψ−(r⃗) + g+1,−1

∣∣ψ+(r⃗)
∣∣2

A
ψ−(r⃗)

 = iℏ
∂ψ−
∂t

, (2.31)

which corresponds to Eqs. (2.25) (2.26) replacing µψ±(r⃗) by iℏ∂ψ±
∂t and setting the

norm of the wave function to A = 1. In order to obtain the ground state of a system
at the mean field level, one can solve these equations using imaginary time evolution
setting τ = it/ℏ. Starting from the initial wave function, imaginary time evolution
leads to the mean field representation of the ground state of the system. For the
particular case of an homogeneous system with Raman SOC, the mean field wave
function only depends on x [25]. Therefore, in practice, the GPE to be solved is
one-dimensional.

2.4 The dressed spin picture for a Raman SOC system
at the mean field level

We now review the dressed spin picture introduced in Ref. [1], since it offers some
useful physical insight on the existence of stripes in the mean field phase diagram
of the Raman SOC system mentioned in Chapter 3. This picture is also relevant to
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understand the results presented in Chapter 4 regarding the excitation spectrum of
the system.

The interaction part of the Hamiltonian for a system under Raman SOC with
spin-dependent interactions at the mean field level can be written as:

Ĥint. =
∫
d⃗r

1
2
[
g+1,+1ρ

2
+1 + g−1,−1ρ

2
+1 + 2g+1,−1ρ+1ρ−1

]
(2.32)

where ρ+1 = |ψ+1|2, ρ−1 = |ψ−1|2. We define the dressed spin states as the spin
components of the lowest energy eigenstates of the one-body problem in Sec. 2.2.
These are: ∣∣∣+1′

〉
=
[
cosχk |+1⟩ + sinχk |−1⟩

]
(2.33)∣∣∣−1′

〉
=
[
sinχk |+1⟩ + cosχk |−1⟩

]
(2.34)

with k0 = λ

√
1 −

(
Ωm

2λ2ℏ2

)2
the ground state momentum of the one-body system (see

Sec. 2.2). In this Section, we want to rewrite the interaction of Eq. 2.32 in terms of
the dressed spin states. We do so because the phases that arise in the mean field
phase diagram of a Raman SOC system, which are the stripe, plane wave, and single
minimum phases, are closely related to the dressed spin states [1, 25]. The mean field
stripe phase wave function can be approximated by [25]:

ψstripe(r⃗) ≃ exp (−ik0x)
∣∣∣+1′

〉
+ exp (ik0x)

∣∣∣−1′
〉

(2.35)

whereas the mean field plane wave wave function can be approximated by:

ψpw(r⃗) ≃ exp (−ik0x)
∣∣∣+1′

〉
(2.36)

or
ψpw(r⃗) ≃ exp (ik0x)

∣∣∣−1′
〉

(2.37)

since both plane wave states yield the same energy. We have approximated the mean
field momentum of each phase by the one-body ground state momentum. Therefore, the
stripe phase corresponds to a miscible mixture of the +1′ and −1′ dressed spin states,
whereas the plane wave phase corresponds to only one of them. Thus, the stripe-plane
wave phase transition can be understood as a miscible-to-immiscible (or vice-versa)
process between the dressed states [1]. By writing the interaction Hamiltonian in the
dressed spin basis we can characterize the miscibility between these states.
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Any wave function can be written as:

ψ(r⃗) = ψ+1′(r⃗)
∣∣∣+1′

〉
+ ψ−1′(r⃗)

∣∣∣−1′
〉

= ψ+1′(r⃗)
[
cosχk |+1⟩ + sinχk |−1⟩

]
+ ψ−1′(r⃗)

[
sinχk |+1⟩ + cosχk |−1⟩

]
,

(2.38)

and thus, the two separate components of ψ can be written as:

ψ+1(r⃗) = cosχkψ+1′(r⃗) + sinχkψ−1′(r⃗) (2.39)

ψ−1(r⃗) = sinχkψ+1′(r⃗) + cosχkψ−1′(r⃗) (2.40)

Here we focus in the stripe phase wave function. In order to express the term in
Eq. (2.32) in terms of the dressed state amplitudes, we transform the density terms.

ρ+1 = cos2 χkρ+1′ + sin2 χkρ−1′ + sinχk cosχk
(
ψ∗

+1′ψ−1′ + ψ∗
−1′ψ+1′

)
(2.41)

ρ−1 = sin2 χkρ+1′ + cos2 χkρ−1′ + sinχk cosχk
(
ψ∗

+1′ψ−1′ + ψ∗
−1′ψ+1′

)
(2.42)

ρ2
+1 =

(
cos2 χkρ+1′ + sin2 χkρ−1′

)2
+ sin2 χk cos2 χk

(
ψ∗

+1′ψ−1′ + ψ∗
−1′ψ+1′

)2

+ 2
(
cos2 χkρ+1′ + sin2 χkρ−1′

)
sinχk cosχk

(
ψ∗

+1′ψ−1′ + ψ∗
−1′ψ+1′

)
(2.43)

ρ2
−1 =

(
sin2 χkρ+1′ + cos2 χkρ−1′

)2
+ sin2 χk cos2 χk

(
ψ∗

+1′ψ−1′ + ψ∗
−1′ψ+1′

)2

+ 2
(
sin2 χkρ+1′ + cos2 χkρ−1′

)
sinχk cosχk

(
ψ∗

+1′ψ−1′ + ψ∗
−1′ψ+1′

)
(2.44)

ρ+1ρ−1 =
(
cos2 χkρ+1′ + sin2 χkρ−1′

) (
sin2 χkρ+1′ + cos2 χkρ−1′

)
+ sinχk cosχk

(
ψ∗

+1′ψ−1′ + ψ∗
−1′ψ+1′

)
(ρ+1′ + ρ−1′)

+ sin2 χk cos2 χk
(
ψ∗

+1′ψ−1′ + ψ∗
−1′ψ+1′

)2
(2.45)

Notice that when substituting Eqs. (2.41)- (2.45) into Eq. (2.32) the terms proportional
to ψ∗

+1′ψ−1′ and ψ∗
−1′ψ+1′ will vanish upon integration, since they are proportional to

exp(2ik0x) and exp(−2ik0x). Therefore, performing the aforementioned substitution,
Eq. (2.32) becomes:

Ĥint. =
∫
d⃗r

1
2

{
g+1,+1

[
cos4 χkρ

2
+1′ + sin4 χkρ

2
−1′ + 4 sin2 χk cos2 χkρ+1′ρ−1′

]
+g−1,−1

[
sin4 χkρ

2
+1′ + cos4 χkρ

2
−1′ + 4 sin2 χk cos2 χkρ+1′ρ−1′

]
+2g+1,−1

[
sin2 χk cos2 χk

(
ρ2

+1′ + ρ2
−1′

)
+ ρ+1′ρ−1′

(
sin4 χk + cos4 χk

)
+2 sin2 χk cos2 χkρ+1′ρ−1′

]}
. (2.46)
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Expressing Eq. (2.46) in terms of powers of sin2 χk only, we get:

Ĥint. =
∫
d⃗r

1
2

{
g+1,+1

[
ρ2

+1′ − 2 sin2 χkρ
2
+1′ + sin4 χkρ

2
+1′

+ sin4 χkρ
2
−1′ + 4 sin2 χkρ+1′ρ−1′ − 4 sin4 χkρ+1′ρ−1′

]
+g−1,−1

[
ρ2

−1′ − 2 sin2 χkρ
2
−1′ + sin4 χkρ

2
+1′

+ sin4 χkρ
2
−1′ + 4 sin2 χkρ+1′ρ−1′ − 4 sin4 χkρ+1′ρ−1′

]
+2g+1,−1

[
sin2 χk

(
ρ2

+1′ + ρ2
−1′

)
− sin4 χk

(
ρ2

+1′ + ρ2
−1′

)
+ ρ+1′ρ−1′

]}
(2.47)

=
∫
d⃗r

1
2
[
g+1′,+1′ρ2

+1′ + g−1′,−1′ρ2
+1′ + 2g+1′,−1′ρ+1′ρ−1′

]
. (2.48)

The effective interactions in the dressed spin basis are:

g+1′,+1′ = g+1,+1 + sin2 χk
[
2
(
g+1,−1 − g+1,+1

)]
+ sin4 χk

[(
g+1,+1 + g−1,−1 − 2g+1,−1

)]
(2.49)

g−1′,−1′ = g−1,−1 + sin2 χk
[
2
(
g+1,−1 − g−1,−1

)]
+ sin4 χk

[(
g+1,+1 + g−1,−1 − 2g+1,−1

)]
(2.50)

g+1′,−1′ = g+1,−1 + sin2 χk
[
2
(
g+1,+1 + g−1,−1

)]
− sin4 χk

[
2
(
g+1,+1 + g−1,−1

)]
(2.51)

Using Eqs. (2.15), (2.11), the term sin2 χk can be expressed as:

sin2 χk = 1
2

1 −
2ℏ2λkx

Ωm√
1 +

(
2ℏ2λkx

Ωm

)2

 = 1
2

1 − 1√
1 +

(
Ωm

2ℏ2λkx

)2

 , (2.52)

while substituting kx by the ground state momentum of the one-body system we
obtain:

sin2 χk = 1
2

1 −

√√√√√1 −

 Ω2(
4ϵ0)2


 (2.53)

with ϵ0 = ℏ2λ2

2m . For Ω2

(4ϵ0) 2 ≪ 1, we can write:

sin2 χk ≃ 1
2

1 −

1 − 1
2

 Ω2(
4ϵ0)2



 =

(
Ω

8ϵ0

)2

, (2.54)
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and thus, up to O
((

Ω
8ϵ0

)2
)

, the effective interactions in the dressed spin basis are
given by:

g+1′,+1′ = g+1,+1 +
(

Ω
8ϵ0

)2 [
2
(
g+1,−1 − g+1,+1

)]
(2.55)

g−1′,−1′ = g−1,−1 +
(

Ω
8ϵ0

)2 [
2
(
g+1,−1 − g−1,−1

)]
(2.56)

g+1′,−1′ = g+1,−1 + 1
2

(
Ω

8ϵ0

)2 [
4
(
g+1,+1 + g−1,−1

)]
(2.57)

For the experiment of Ref. [1], where 87Rb atoms are employed, g+1,+1 ≃ g−1,−1 ≃
g+1,−1, so that the relative difference ∆g =

∣∣g+1,+1 − g+1,−1
∣∣/g+1,+1 is considered to

be a small parameter. Under these conditions:

g+1′,+1′ = g+1,+1 + O

∆g
(

Ω
8ϵ0

)2
 (2.58)

g−1′,−1′ = g−1,−1 + O

∆g
(

Ω
8ϵ0

)2
 (2.59)

g+1′,−1′ = g+1,−1 + 4g+1,+1

(
Ω

8ϵ0

)2

+ O

∆g
(

Ω
8ϵ0

)2
 (2.60)

Eq. (2.60) recovers the effective dressed spin inter-species interaction given in Ref. [1].
Even though in 87Rb experiments g+1,−1 ≃ g+1,+1, a stripe ground state exists for the
system because g+1,−1 < g+1,+1 [1, 25]. As mentioned previously, the stripe state can
be understood as a miscible mixture of the two dressed spin states. Since the effective
inter-species interaction in the dressed spin basis depends on the Raman coupling, Ω,
there is only a given range of Ω values where the dressed spins are miscible, and thus,
where the stripe phase can exist as the ground state. In general, the spin components
of a system that features spin-dependent interactions are miscible at the mean field
level if [1]

a+1,−1 <
√
a+1,+1a−1,−1 (2.61)

Therefore, the dressed spin components are miscible if

g+1′,−1′ <
√
g+1′,+1′g−1′,−1′ = √

g+1,+1g−1,−1 (2.62)
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The limiting value of Ω regarding the miscibility of the system is:

g+1′,−1′ = g+1,−1 + 4g+1,+1

(
Ω

8ϵ0

)2

<
√
g+1,+1g−1,−1

Ω < ϵ0

√√√√16
(√

g+1,+1g−1,−1 − g+1,−1
)

g+1,+1
(2.63)

This threshold value of Ω regarding the miscibility of the system is only valid for low
enough values of ng±1,±1, since in the expansion of the stripe wave function in terms
of the dressed states (given in Eq. (2.35)) we neglect inter-atomic interactions.





Chapter 3

Quantum Monte Carlo methods
for Spin-Orbit interactions
3.1 Introduction

Even though mean field theories represent a powerful tool when describing ultracold
atom systems, they lack the ability to account for inter-atomic correlations at all
orders. Therefore, when the gas parameter of a given system, defined as xg = na3,
with n the density and a the scattering length, surpasses a given threshold, mean field
theories start to fail qualitatively and quantitatively in the description of many-body
systems. In this regime, other approaches to calculate observables must be followed.
In particular, quantum Monte Carlo methods represent a reliable option in these
cases. Unlike mean field theories, Monte Carlo methods are able to account for inter-
atomic correlations at all orders, and can therefore provide an accurate description
of a many-body system at larger gas parameters. However, the computational cost
of these methods is much higher, and such cost is directly related to the number
of particles of the system. Because of this, Monte Carlo methods are only able to
simulate rather small systems compared to the typical experimental scales regarding
the number of particles. Nevertheless, they still constitute one of the premier options
for the description of correlated many-body systems. In this Chapter, we present
two types of Diffusion Monte Carlo methods suitable for the study of SOC systems:
the Discrete Spin T-moves DMC (DTDMC), which corresponds to an adaptation to
discrete spins of the method presented in Ref. [19], and the Spin-Integrated DMC
(SIDMC), which is a completely original method developed during this Thesis that
bypasses the effective Hamiltonian definition of the DTDMC by propagating the spin
integrated wave function of the system in imaginary time. We also review the basic
Variational and Diffusion Monte Carlo algorithms suited to study systems without
SOC. Finally, as an application of the derived DMC methods, we present the phase
diagram of a Raman SOC system and its comparison with the mean field case, together
with some observables of the system obtained at the Monte Carlo level.
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This Chapter is organized as follows: in Sec. 3.2 we introduce the relevant SOC
Hamiltonians for this Chapter, together with the reduced units of choice. In Sec. 3.3,
we present the basics of the Variational Monte Carlo method and briefly discuss its
implementation for SOC Hamiltonians. In Sec. 3.4, we introduce the standard Diffusion
Monte Carlo method, suited for the study of many-body non-SOC systems. Finally, in
Sec. 3.5, we present the derivation of both the DTDMC and the SIDMC, discuss their
implementation, show the results for some test cases and present the results for the
phase diagram of a Raman SOC system.

3.2 Spin-Orbit Coupled Hamiltonians

In this Chapter, we study ultracold gases of N bosons of mass m with pseudo-spin 1/2
under the effect of synthetic spin-orbit coupling. The generic form of the Hamiltonian
is

Ĥ =
N∑
k=1

[
P̂ 2
k

2m + V̂ 1b
k + Ŵ SOC

k

]
+ V̂ 2b , (3.1)

with V̂ 1b
k and V̂ 2b momentum independent, local, one- and two-body interactions,

respectively, while V̂ 2b can depend on the spin configuration. In much the same way,
Ŵ SOC
k stands for a one-body, momentum- and spin-dependent potential. The ones

considered in this Chapter are the Rashba, Weyl and Raman, given by

ŴRs
k = λRsℏ

2
[
P̂ yk σ̂

x
k − P̂ xk σ̂

y
k

]
(3.2)

ŴRm
k = λRmℏ

m
P̂ xk σ̂

z
k + λ2

Rmℏ2

2m − Ω
2 σ̂

x
k (3.3)

ŴWe
k = λWeℏ

m

[
P̂ xk σ̂

x
k + P̂ yk σ̂

y
k + P̂ zk σ̂

z
k

]
+ λ2

Weℏ2

2m , (3.4)

with P̂αk the α-component of the momentum operator of particle k, σ̂x,y,zk the Pauli
matrices associated to the k-th particle, Ω the Rabi frequency, and λα (α = { Rs, We,
Rm}) the strength of the corresponding SOC interaction. The general form of the
two-body potential is:

V̂ 2b =
∑
k<l

∑
sk,sl

V 2b
sk,sl

(rkl)|sk, sl⟩⟨sk, sl|

 , (3.5)

where sk, sl assign values ±1 to the z-component of the spin of particles k and l, while
V 2b
sk,sl

(rkl) is a central, short-ranged potential that can be different for the different
channels corresponding to sk and sl. For instance, in the numerical examples of Sec.
3.5.3 we use a soft-core spin-dependent potential for simplicity, defined by:

Vsk,sl
(r) = V0(sk, sl) θ

(
R0(sk, sl) − r

)
) . (3.6)
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If the two-body interaction is taken to be spin-independent, V0(sk, sl) = V0 and
R0(sk, sl) = R0. In much the same way, the one-body potential used in some of the
calculations of Sec. 3.5.3 is a harmonic trapping interaction

V̂ 1b = 1
2mω

2(X̂2 + Ŷ 2 + Ẑ2) . (3.7)

3.2.1 Reduced units for the different kinds of SOC interactions

Due to the different spin dependence, we define different length and energy scales in
each case. For the Rashba interaction, we use

aRs = 1
λRsm

, eRs = ℏ2

2ma2
Rs

= ℏ2λ2
Rsm

2 , (3.8)

while for the Raman interaction, we employ

aRm = ηRm
λRm

, eRm = ℏ2

2ma2
Rm

= ℏ2λ2
Rm

2mη2
Rm

. (3.9)

with ηRm a dimensionless scaling factor that we vary depending on the density. This
only modifies the length scale of choice for reduced units. Finally, for the Weyl
Hamiltonian we use

aWe = ηWe
2λWe

, eWe = ℏ2

2ma2
We

= 2ℏ2λ2
We

mη2
We

. (3.10)

In terms of these, the interactions read

ŴRashba
k =

[
P̂ yk σ̂

x
k − P̂ xk σ̂

y
k

]
(3.11)

ŴRaman
k = 2ηRmP̂

x
k σ̂

z
k + η2

Rm − Ω
2 σ̂

x
k (3.12)

ŴWeyl
k = ηWe

[
P̂ xk σ̂

x
k + P̂ yk σ̂

y
k + P̂ zk σ̂

z
k

]
+ η2

We
4 (3.13)

where all quantities written in dimensionless form. The same applies to the soft-core
potential and harmonic trap of Eqs. (3.6) and (3.7).

3.3 The Variational Monte Carlo method

We present in this Section a brief overview of the Variational Monte Carlo (VMC)
method and address how to include Spin-Orbit interactions. The VMC method allows
to estimate properties of an N -particle quantum system described by the many-body
wave function ψT (R⃗). Typically, ψT (R⃗) is usually referred as the trial wave function,
and is an approximation to the actual ground state wave function, ψ0(R⃗). The
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estimators of the properties of the system can be written as

O = ⟨ψT | Ô |ψT ⟩
⟨ψT |ψT ⟩

=

∫
d⃗R

[∫
d⃗R

′ 〈
R⃗′
∣∣∣ Ô ∣∣∣R⃗〉 ψT (R⃗′)

ψT (R⃗)

] ∣∣∣ψT (R⃗)
∣∣∣2

⟨ψT |ψT ⟩
=
∫
d⃗R OL(R⃗)

∣∣∣ψT (R⃗)
∣∣∣2

⟨ψT |ψT ⟩
(3.14)

where:

OL(R⃗) =
∫
d⃗R

′ 〈
R⃗′
∣∣∣ Ô ∣∣∣R⃗〉 ψT (R⃗′)

ψT (R⃗)
(3.15)

If the Ô operator is local (i.e.
〈
R⃗′
∣∣∣ Ô ∣∣∣R⃗〉 = O(R⃗)δ(R⃗′ − R⃗)), this expression reduces

to:

OL(R⃗) = O(R⃗) . (3.16)

Within the VMC framework, one first generates a set of coordinates R⃗i = (r⃗i,1 ... r⃗i,N )
that statistically represent

∣∣∣ψT (R⃗)
∣∣∣2. This can be done by means of the Metropolis

algorithm [64, 65]. From the Central Limit Theorem [64], we know that Eq. (3.14) can
be evaluated by employing the unbiased estimator of the mean, i.e.

O = 1
Nw

Nw∑
i=1

OL(R⃗i) , (3.17)

where Nw is the number of sets of coordinates. This procedure is performed multiple
times, referred as iterations, so that a set of estimations is obtained, i.e. {Oj}, where
j = 1, 2, ..., Nit, with Nit the total number of iterations. The final result for the
observable ⟨Ô⟩ is given by the average over iterations, i.e.

⟨Ô⟩ = 1
Nit

Nit∑
i=1

Oj (3.18)

The estimation of ⟨Ô⟩ has a variance associated, which can be computed as:

σ2
O = 1

Nb − 1

Nb∑
j=1

⟨Ô2⟩j − ⟨Ô⟩2
j (3.19)

Here, ⟨Ô2⟩j and ⟨Ô⟩j correspond to averages over a given number of iterations, conform-
ing a block, while Nb denotes the number of blocks. This block averaging procedure is
carried out in order to reduce correlations between samples, since the sampling from
the Metropolis algorithm is correlated. In this way, Eq. (3.19) corresponds to the
variance.
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The trial wave function is usually written in terms of a set of variational parameters
{α}, so that ψT (R⃗, α⃗), that are tuned so that the energy obtained with VMC is
minimized. The best approximation to the unknown ground state wave function is
then taken as ψT (R⃗, α⃗min), with α⃗min the set of variational parameters that minimizes
the energy. This variational estimation of the energy corresponds to an upper bound
to the ground state energy. The optimized trial wave function can then be used as an
input to the Diffusion Monte Carlo method described in the Sec. 3.4.

The implementation of SOC Hamiltonians requires spin sampling together with
position sampling. Therefore, the set of coordinates obtained with the Metropolis
algorithm now includes spins, i.e. X⃗i = (r⃗i,1, si,1 ... r⃗i,N , si,N ). We denote by S⃗ a
vector containing the spins of the N particles. Also, the wave function employed as a
trial factor is generally complex. Given the Hamiltonian of Eq. (3.1), the energy is
estimated as:

E = ⟨ψT | Ĥ |ψT ⟩
⟨ψT |ψT ⟩

=

∑
S⃗

∫
d⃗R

′∣∣∣ψT (R⃗′, S⃗′)
∣∣∣2 [∑S⃗

∫
d⃗R

〈
R⃗′, S⃗′

∣∣∣ Ĥ ∣∣∣R⃗, S⃗〉 ψT (R⃗,S⃗)
ψT (R⃗′,S⃗′)

]
⟨ψT |ψT ⟩

=
∑
S⃗′
∫
d⃗R

′
EL(R⃗′, S⃗′)

∣∣∣ψT (R⃗′, S⃗′)
∣∣∣2

⟨ψT |ψT ⟩
(3.20)

Since the energy is a real quantity, one generally works with the real part of EL(R⃗, S⃗),
which is commonly referred as the local energy, since the imaginary part vanishes upon
integration. Thus, with ψT (R⃗, S⃗) = ρT (R⃗, S⃗) exp

(
iΦT (R⃗, S⃗)

)
, one computes EL(R⃗, S⃗)

as:

EL(R⃗, S⃗) =
N∑
k=1

− ℏ2

2m
∇2
kρT (R⃗, S⃗)
ρT (R⃗, S⃗)

+
∣∣∣∇⃗kΦT (R⃗, S⃗)

∣∣∣2 + V 1b
k (r⃗k)

+
∑
S⃗′

∫
d⃗R

′ 〈
R⃗′, S⃗′

∣∣∣ ŵRe,k
∣∣∣R⃗, S⃗〉 ρT (R⃗′, S⃗′)

ρT (R⃗, S⃗)

+ V 2b(R⃗, S⃗) , (3.21)

where

⟨R⃗′, S⃗′| ŵRe,k |R⃗, S⃗⟩ = Re

⟨R⃗′, S⃗′| Ŵ SOC
k |R⃗, S⃗⟩ eiΦT (R⃗,S⃗,τ)

eiΦT (R⃗′,S⃗′,τ)

 . (3.22)

For the SOC Hamiltonians of the previous Section, the integral appearing in Eq. (3.15),
which arises from the non-local character of the SOC potential, can be computed
analytically.
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3.4 The standard Diffusion Monte Carlo method

We introduce in this Section the basics of the standard Diffusion Monte Carlo (DMC)
method. This algorithm enables the computation of observables of the ground state of a
quantum many-body system. The main principle behind the method is the propagation
in imaginary time of a wave function. Given a quantum state |ψ0⟩ and an N -particle
Hamiltonian Ĥ, the application of the imaginary time evolution operator exp

(
−τĤ

)
yields:

∣∣ψ(τ)
〉

= exp
(
−Ĥτ

)
|ψ0⟩ =

∑
E,α

exp
(
−Ĥτ

) ∣∣ϕE,α〉 〈ϕE,α∣∣ψ0
〉

=
∑
E,α

exp (−Eτ)
∣∣ϕE,α〉 〈ϕE,α∣∣ψ0

〉
(3.23)

with τ = it/ℏ the imaginary time and
∣∣ϕE,α〉 the eigenvectors of eigenvalue E and

quantum number α of Ĥ. By performing the limit τ → ∞ and normalizing the evolved
state, we get:

lim
τ→∞

∣∣ψ(τ)
〉√〈

ψ(τ)
∣∣ψ(τ)

〉 = lim
τ→∞

∑
E,α exp

(
−Eτ/ℏ

) ∣∣ϕE,α〉 〈ϕE,α∣∣ψ0
〉√〈

ψ(τ)
∣∣ψ(τ)

〉 ∝
∣∣ϕE0,α

〉
(3.24)

where ϕE0,α is the ground state of the system. Therefore, as long as
〈
ϕE,α

∣∣ψ0
〉

̸= 0,
imaginary time evolution leads to the ground state of Ĥ. DMC implements the
imaginary time evolution stochastically: first, the initial wave function is sampled by
the use of the Metropolis algorithm [64, 65], typically in position space, which results
into a set of N -particle coordinates, R⃗i = (r⃗i,1 ... r⃗i,N ). Each set of coordinates is
commonly known as a walker, with i being the walker index. Then, a given set of
transformations is applied to these points iteratively such that, after a sufficiently high
number of iterations, the coordinates represent statistically the true ground state wave
function of the system. We denote by ∆τ the imaginary time-step. The evolved wave
function can be written as

ψ(R⃗′, τ + ∆τ) =
∫
d⃗R ⟨R⃗′| exp

[
−∆τĤ

]
|R⃗⟩ψ(R⃗, τ) , (3.25)

Given a set of walkers statistically representing ψ(R⃗, τ), the transformations to be
applied in order to get a representation of ψ(R⃗′, τ + ∆τ) are obtained by interpreting
⟨R⃗′| exp

[
−∆τĤ

]
|R⃗⟩ as a probability distribution. Up to O(∆τ), this matrix element
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is given by [64]:

⟨R⃗′| exp
[
−∆τĤ

]
|R⃗⟩ = exp

[
− m

2ℏ2∆τ
(
R⃗′ − R⃗

)2
]

exp

∆τ

−V (R⃗′) + V (R⃗)
2




+ O
(
∆τ2

)
. (3.26)

Here, V (R⃗) is a many-body interaction potential consisting on a sum of two-body
interactions. The expansion of the propagator of Eq. (3.26) can be obtained as follows.
First, the imaginary time evolution operator is spit as

exp
{

−τĤ
}

=
Nτ∏
k=1

exp
{

−∆τĤ
}

+ O
(
∆τ2

)
(3.27)

with τ = Nτ∆τ . Next, we split the contributions from the kinetic and potential terms
as

exp
{

−τĤ
}

=
Nτ∏
k=1

exp
{

−∆τ V̂ /2
}

exp
{

−∆τ T̂
}

exp
{

−∆τ V̂ /2
}

+ O
(
∆τ2

)
(3.28)

where T̂ is the kinetic energy operator and V̂ is the potential. In the position
representation,

⟨R⃗′| exp
[
−∆τĤ

]
|R⃗⟩ = ⟨R⃗′| exp

[
−∆τ T̂

]
|R⃗⟩ exp

∆τ

−V (R⃗′) + V (R⃗)
2




+ O
(
∆τ2

)
. (3.29)

It can be shown that [64]

⟨R⃗′| exp
[
−∆τ T̂

]
|R⃗⟩ = exp

[
− m

2ℏ2∆τ
(
R⃗′ − R⃗

)2
]
. (3.30)

In DMC, one evolves the product ψT (R⃗)ψ(R⃗, τ) in imaginary time, with ψT (R⃗) a trial
wave function, instead of just ψ(R⃗, τ). This is done in order to reduce the variance of
the measured observables. The imaginary-time evolution equation thus becomes:

ψT (R⃗′)ψ(R⃗′, τ + ∆τ) =
∫
d⃗R

ψT (R⃗′)
ψT (R⃗)

⟨R⃗′| exp
[
−∆τĤ

]
|R⃗⟩ψT (R⃗)ψ(R⃗, τ) , (3.31)

It can be shown that the transformations to be applied to the set of walkers, obtained
by interpreting the object ψT (R⃗′)

ψT (R⃗)
⟨R⃗′| exp

[
−∆τĤ

]
|R⃗⟩ as a probability distribution,

consist of a Gauss-Drift-Branching (GDB) process [64]. The Gauss-Drift step performs
a shift of the coordinates of the walker, R⃗i → R⃗′

i, given by the sum of two factors: a
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multidimensional Gaussian random variable drawn from the probability distribution:

P (χ⃗) = N exp
[
− mχ2

2ℏ2∆τ

]
(3.32)

with N the normalization factor, plus a factor determined by the trial wave function.
The resulting shift in coordinates is given by:

R⃗′ = R⃗+ ℏ2∆τ
m

∇⃗ψT
ψT

+ χ⃗ (3.33)

Finally, the Branching step arises from the fact that the object ψT (R⃗′)
ψT (R⃗)

⟨R⃗′| exp
[
−∆τĤ

]
|R⃗⟩

can not be normalized. It consists on replicating and eliminating walkers, with their
multiplicities given by [64]:

B = Int.

exp

∆τ

Es − EL(R⃗′) + EL(R⃗)
2


+ ξ

 (3.34)

with ξ an instance of a uniformly distributed random variable between 0 and 1. Here,
EL(R⃗) is the local energy, defined as EL(R⃗) = ĤψT (R⃗)

ψT (R⃗)
. The quantity Es is an energy

shift that is constantly updated during imaginary time evolution with the estimated
value of the energy. In this way, during the simulation, walkers with local energy lower
than Es produce higher branching factors, while those with local energy higher than
Es are more likely removed.

Observables within the DMC framework are then computed as:

O = ⟨ψT | Ô
∣∣ψ(τ)

〉〈
ψT
∣∣ψ(τ)

〉 =
∫
d⃗R ÔψT

ψT
ψT (R⃗)ψ(R⃗, τ)〈

ψT
∣∣ψ(τ)

〉 =
∫
d⃗ROL(R⃗)ψT (R⃗)ψ(R⃗, τ)〈

ψT
∣∣ψ(τ)

〉 (3.35)

and approximating the integral using the unbiased estimator of the mean, as in the
previous Section. Since the walkers represent statistically

〈
ψT
∣∣ψ(τ)

〉
, the observable O

can be estimated at a given iteration as:

O = 1
Nw

Nw∑
i=1

OL(R⃗i) (3.36)

withNw the number of walkers. Notice that, since limτ→∞ ψT (R⃗)ψ(R⃗, τ) = ψT (R⃗)ψ0(R⃗),
with ψ0(R⃗) the ground state wave function of Ĥ, the estimation of the energy (and
any quantity commuting with Ĥ) is exact, i.e.

E = ⟨ψT | Ĥ |ψ0⟩
⟨ψT |ψ0⟩

= E0 (3.37)
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with E0 the ground state energy. The estimators obtained with DMC depend on
the time step ∆τ . For the description presented in this work, this dependence is
linear, so one should set several DMC runs for different values of the time step and
perform a linear extrapolation to ∆τ → 0. Another important remark is that the
DMC estimates have statistical variance, i.e. even when the steady state has been
reached, DMC estimations oscillate around the mean for different iterations. As in the
previous Section, this variance can be estimated as:

σ2
O = 1

Nb − 1

Nb∑
i=1

⟨Ô2⟩i − ⟨Ô⟩2
i (3.38)

⟨Ô⟩i = 1
N it
b Nw

N it
b∑

i=1

Nw∑
j=1

OL(R⃗(i)
j ) (3.39)

⟨Ô2⟩i = 1
N it
b Nw

N it
b∑

i=1

Nw∑
j=1

O2
L(R⃗(i)

j ) . (3.40)

Here Nb denotes the number of blocks, N it
b the number of iterations per block and R⃗(i)

j

indicates the position coordinates of the j-th walker at the i-th iteration.

3.5 Diffusion Monte Carlo methods for Spin-Orbit inter-
actions

As mentioned in Chapter 1, the standard Diffusion Monte Carlo method reviewed
in Sec. 3.4 can not deal with SOC interactions. This is mainly due to the non-local
character of SOC potentials, which feature linear momentum terms that are non-local
in the position representation. This non-locality induces the emergence of new terms in
the propagator that must be obtained and included in the imaginary time propagation
process of the DMC algorithm. Another difficulty associated to the presence of SOC is
the emergence of an imaginary part in the ground state wave function. Since DMC
algorithms are unable to simultaneously propagate in imaginary time the modulus
and the phase of a wave function, one must resort to the fixed phase approximation
(FPA) [40]. Within this approach, the phase of the wave function is held constant,
while the modulus is propagated in imaginary time. As a consequence, one can only
obtain the best possible estimates of physical quantities according to a given phase
constraint. We have developed two DMC methods able to deal with SOC terms in
the Hamiltonian: the Discrete Spin T-moves DMC, an adaptation to discrete spins of
the method developed in Ref. [19] and the Spin Integrated DMC. While the DTDMC
approach resorts into the definition of an effective Hamiltonian to bypass a sign
problem in the matrix elements of the propagator, the SIDMC method is able to avoid
the definition of such effective Hamiltonian by propagating the spin-integrated wave
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function of the system. Avoiding the use of the effective Hamiltonian improves the
quality of the estimates.

In this Section, we present the formalism of the two DMC methods able to sample
SOC Hamiltonians previously mentioned: the SIDMC (see Sec. 3.5.1) and the DTDMC
(see Sec. 3.5.2). We first derivate the propagator for Hamiltonians featuring SOC
interactions and then proceed to discuss its numerical implementation.

3.5.1 The Spin-integrated DMC (SIDMC) method

In this Section, we derive the SIDMC method. As mentioned previously, the spin-
integrated wave function of the system is propagated in imaginary time, as this avoids
the need to define an effective Hamiltonian to bypass the sign problem of the propagator.
As a consequence, the quality of the estimates is improved with respect to the DTDMC
approach, although the SIDMC method needs the imposition of constraints on the
two-body interaction and the trial wave function (both of which can not be spin-
dependent). Within the SIDMC formalism, SOC terms are accounted by an extra
branching process performed after a standard Gauss-Drift-Branching process. We show
that the computation of this secondary branching factor is numerically efficient. In
order to derive the SIDMC method, we start by deriving the propagator in the FPA,
and writing the imaginary time evolution equation for the spin-integrated probability
density. In the following, we assume that the two-body interaction is spin-independent.
We also present a scheme of the SIDMC algorithm and address some relevant technical
details.

3.5.1.1 Formalism

We first derive a suitable form of the propagator required to simulate spin-orbit
problems, under the assumption that the two-body interaction V̂ 2b is spin-independent.
The imaginary time evolution of state

∣∣Ψ(τ)
〉

is given by

∣∣Ψ(τ + ∆τ)
〉

= exp
[
−∆τĤ

] ∣∣Ψ(τ)
〉
. (3.41)

Projecting on ⟨R⃗′, S⃗′| and introducing an identity, Eq. (3.41) can be written as:

ψ(R⃗′, S⃗′, τ + ∆τ) =
∑
S⃗

∫
d⃗R ⟨R⃗′, S⃗′| exp

[
−∆τĤ

]
|R⃗, S⃗⟩ψ(R⃗, S⃗, τ) , (3.42)
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where R⃗ and S⃗ stand for the position and spin coordinates of the N particles, and
ψ(R⃗, S⃗, τ) = ⟨R⃗, S⃗|Ψ(τ)⟩. For the sake of clarity, we also define

Ĥ0 =
N∑
k=1

P 2
k

2m + V̂ 1b
k +

N∑
l<k

V̂ 2b
k,l

 (3.43)

Ŵ =
N∑
k=1

Ŵ SOC
k . (3.44)

where V̂ 2b
k,l is spin-independent. Up to O(∆τ), Eq. (3.42) can be written as:

ψ(R⃗′, S⃗′, τ + ∆τ) =
∑
S⃗

∫
d⃗R

∫
⃗dR′′ ⟨R⃗′, S⃗′| exp

[
−∆τŴ

]
|R⃗′′, S⃗⟩ (3.45)

× ⟨R⃗′′| exp
[
−∆τĤ0

]
|R⃗⟩ψ(R⃗, S⃗, τ) + O

(
∆τ2

)
,

where Ĥ0 stands for all terms of Ĥ in the propagator that are spin-independent.
In this way, the propagator reads:

G(R⃗, S⃗ → R⃗′, S⃗′) =
∫

⃗dR′′ ⟨R⃗′, S⃗′| exp
[
−∆τŴ

]
|R⃗′′, S⃗⟩ ⟨R⃗′′| exp

[
−∆τĤ0

]
|R⃗⟩ .

(3.46)

As mentioned previously, the ground state wave function of a SOC Hamiltonian is, in
general, imaginary. Since DMC is unable to simultaneously propagate the modulus and
the phase of the wave function, we resort to the fixed-phase approximation [19], [40]
where all quantities involved are real.

Knowing the general expression of the propagator written above, we can deduce its
equivalent form within the fixed-phase approximation. This can be done by comparing
the imaginary-time Schrödinger equation for the wave function and for its modulus,
which is the main quantity of interest in the FPA. For the full wave function, one has

−∂ψ(R⃗, S⃗)
∂τ

=

 N∑
k=1

− ℏ2

2m∇2
k + V 1b

k (r⃗k) +
N∑
l<k

V̂ 2b
k,l (rkl)


ψ(R⃗, S⃗, τ)

+
∑
S⃗′

∫
d⃗R

′
⟨R⃗, S⃗| Ŵ |R⃗′, S⃗′⟩ψ(R⃗′, S⃗′, τ) , (3.47)

while for the modulus ρ(R⃗, S⃗) of ψ(R⃗, S⃗) the equation reads

−∂ρ(R⃗, S⃗)
∂τ

=

 N∑
k=1

− ℏ2

2m∇2
k + ℏ2

2m |∇⃗kΦ(R⃗, S⃗, τ)| 2 + V 1b
k (r⃗k) +

N∑
l<k

V̂ 2b
k,l (r⃗k, r⃗l)


 ρ(R⃗, S⃗, τ)

+
∑
S⃗′

∫
d⃗R

′
⟨R⃗, S⃗| ŵRe |R⃗′, S⃗′⟩ ρ(R⃗′, S⃗′, τ) , (3.48)
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where
ψ(R⃗, S⃗, τ) = ρ(R⃗, S⃗, τ) exp

[
iΦ(R⃗, S⃗, τ)

]
(3.49)

and

⟨R⃗, S⃗| ŵRe |R⃗′, S⃗′⟩ = Re

⟨R⃗, S⃗| Ŵ |R⃗′, S⃗′⟩ e
iΦ(R⃗′,S⃗′,τ)

eiΦ(R⃗,S⃗,τ)

 . (3.50)

In the FPA, Φ(R⃗, S⃗, τ) is kept constant and:

V̂Φ =
N∑
k=1

|∇kΦ(R⃗, S⃗)|2 (3.51)

becomes a local interaction in positions and spins. Eqs. (3.47) and (3.48) have a
similar structure, and thus comparing terms in each, we can get the FPA form of the
propagator in Eq. (3.46):

GFP(R⃗, S⃗ → R⃗′, S⃗′) = ⟨R⃗′, S⃗′| exp
[
−∆τĤFP

]
|R⃗, S⃗⟩

=
∫

⃗dR′′ ⟨R⃗′, S⃗′| exp
[
−∆τ

(
ŵRe + V̂Φ

)]
|R⃗′′, S⃗⟩

× ⟨R⃗′′| exp
[
−∆τĤ0

]
|R⃗⟩ + O

(
∆τ2

)
, (3.52)

with
ĤFP = Ĥ0 + ŵRe + V̂Φ (3.53)

the fixed-phase Hamiltonian. In this approximation one has to impose a certain form
for the phase. In this work, we model it as a sum of one-body terms

Φ(R⃗, S⃗) =
N∑
k=1

ϕk(r⃗k, sk) . (3.54)

Due to the form of the spin-orbit potential, we can evaluate the integral in Eq. (3.52).
For the Raman SOC of Eq. (3.3), the matrix element of the spin-dependent part of
the potential is

⟨R⃗′, S⃗′ŵRe + V̂Φ |R⃗′′, S⃗⟩ =
N∑
k=1

 N∏
l ̸=k

δr⃗′
l
,r⃗′′

l
δs′

l
,sl

[λℏ
m
δy′

k
,y′′

k
δz′

k
,z′′

k

dδx′
k
,x′′

k

dx′
k

⟨s′
k| σ̂zk |sk⟩ sin(∆ϕk)

+ λ2

2mδr⃗′
k
,r⃗′′

k
δs′

k
,sk

+ |∇⃗kϕk|
2
δr⃗′

k
,r⃗′′

k
δs′

k
,sk

−Ω
2 ⟨s′

k| σ̂xk |sk⟩ cos(∆ϕk)δr⃗′
k
,r⃗′′

k

]
, (3.55)

where
∆ϕk = ϕk(r⃗′′

k , sk) − ϕk(r⃗′
k, s

′
k) . (3.56)
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Since the spinless part of the propagator is given in Eq. (3.26), the integral in Eq. (3.52)
yields

GFP(R⃗, S⃗ → R⃗′, S⃗′) = ⟨R⃗′| exp
[
−∆τĤ0

]
|R⃗⟩

×

δS⃗′,S⃗ − ∆τ
N∑
k=1

 N∏
l ̸=k

δs′
l
,sl

 [λℏ
m

⟨s′
k| σ̂zk |sk⟩ cos(∆ϕk)

×∂ϕk
∂x′′

k

+ λ2

2mδs′
k
,sk

− Ω
2 ⟨s′

k| σ̂xk |sk⟩ cos(∆ϕk)

+|∇⃗kϕk|
2
δs′

k
,sk

] ∣∣∣∣∣
R⃗′′=R⃗′

 . (3.57)

For the Rashba and Weyl SOC interactions, a similar procedure has to be carried
out. However, one has to expand the element ⟨R⃗′, S⃗′| exp

[
−∆τ

(
ŵRe + V̂Φ

)]
|R⃗′′, S⃗⟩

in Eq. (3.52) up to order ∆τ2. This is because the terms originated from the matrix
element of ŵRe are proportional to ξk = r′

k − rk, and thus, the elements arising from
ŵ2

Re generate contributions of order ξ2
k and ξkξl. Since ξk represents the displacement

of particle k due to the standard DMC Gauss-Drift-Branching (GDB) process, this
quantity is of O

(√
∆τ
)
. However, in our simulations, we have not found a significant

impact on the results when these terms are ignored.
Following with the derivation of the propagator in Eq. (3.57), we define a new

operator Ô as

⟨S⃗′| Ô(R⃗′) |S⃗⟩ = GFP(R⃗, S⃗ → R⃗′, S⃗′)
⟨R⃗′| exp

[
−∆τĤ0

]
|R⃗⟩

. (3.58)

such that, up to O(∆τ), Eq. (3.57) can be rewritten as:

GFP(R⃗, S⃗ → R⃗′, S⃗′) ≃ ⟨R⃗′| exp
[
−∆τĤ0

]
|R⃗⟩

N∏
k=1

δs′
k
,sk

− ∆τ
[
λℏ
m

⟨s′
k| σ̂zk |sk⟩ cos(∆ϕk)

×∂ϕk
∂x′′

k

+ λ2

2mδs′
k
,sk

− Ω
2 ⟨s′

k| σ̂xk |sk⟩ cos(∆ϕk) + |∇⃗kϕk|
2
δs′

k
,sk

] ∣∣∣∣∣∣
r⃗′′

k
=r⃗′

k


= ⟨R⃗′| exp

[
−∆τĤ0

]
|R⃗⟩

N∏
k=1

⟨s′
k| Ôk(r⃗′

k) |sk⟩ (3.59)

where we have used the approximation (1 − ∆t∑xi) ≈
∏(1 − ∆txi) which is exact to

order ∆t. In this way, the matrix element of the new operator Ô becomes the product
of matrix elements of single-particle operators Ôk, as shown in the expression above.

Note that, for the Rashba and Weyl SOC potentials, the matrix elements ⟨s′
k| Ôk |sk⟩

depend both on r⃗′
k and r⃗k. For the sake of simplicity, in the following we omit the rk

and r′
k labels. The imaginary time evolution equation for the modulus of the wave
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function, within the FPA and to order ∆t, is then given by

ρ(R⃗′, S⃗′, τ + ∆τ) =
∑
S⃗

∫
d⃗R


 N∏
k=1

⟨s′
k| Ôk |sk⟩

 ⟨R⃗′| exp
[
−∆τĤ0

]
|R⃗⟩ ρ(R⃗, S⃗, τ)

 .

(3.60)

However, in DMC simulations the object that is being propagated is f(R⃗, S⃗, τ) =
ρ(R⃗, S⃗, τ)ρT (R⃗, S⃗), with ρT (R⃗, S⃗) the modulus of a given importance sampling trial
function. From Eq. (3.60) one readily sees that

f(R⃗′, S⃗′, τ + ∆τ) =
∑
S⃗

∫
d⃗R


N∏
k=1

⟨s′
k| Ôk |sk⟩ ⟨R⃗′| exp

[
−∆τĤ0

]
|R⃗⟩ ρT (R⃗′, S⃗′)

ρT (R⃗, S⃗)
f(R⃗, S⃗, τ)


(3.61)

In order to use this expression in the actual simulations, we need the propagator to be
positive-definite. However, due to the spin-orbit coupling, the matrix elements of the
propagator do not fulfill this condition. Despite this, if we propagate the spin-integrated
form of the modulus of the importance sampling function of Eq. (3.61), this problem
is greatly reduced. Therefore, we propagate the quantity

F (R⃗, τ) =
∑
S⃗

f(R⃗, S⃗, τ) . (3.62)

In order to progress, we also impose the modulus of the trial wave function to be
spin-independent i.e. ρT (R⃗, S⃗) = ρT (R⃗). After j time steps, one gets

F (R⃗(j), j∆τ) =
∑

S⃗(j),...,S⃗(0)

∫
d⃗R

(j−1)
· · · d⃗R

(0)

 j∏
n=1

 N∏
k=1

⟨s(n)
k | Ôk |s(n−1)

k ⟩




×

 j∏
n=1

⟨R⃗(n)| exp
[
−∆τĤ0

]
|R⃗(n−1)⟩ ρT (R⃗(n))

ρT (R⃗(n−1))
F (R⃗(0), 0)

 , (3.63)

where R⃗(n) stand for the position coordinates of the walker, and s
(n)
k for the spin of

particle k in that walker, both at iteration n. We can understand this expression in a
simple way. The last piece correspond to a standard GDB DMC process [64] for the
spinless part of the Hamiltonian. On the other hand, the first part, incorporating the
spin-dependent terms, can be implemented through a secondary branching process.
This one must fulfill that, after j iterations, the weight carried by a given walker should
be

w(j) =
∑

S⃗(j),...,S⃗(0)

j∏
n=1

 N∏
k=1

⟨s(n)
k | Ôk |s(n−1)

k ⟩

 , (3.64)
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corresponding to the first term in Eq. (3.63). This is fulfilled by performing the
secondary branching at iteration j using the weight

B(j) = w(j)
w(j − 1) (3.65)

with the initial condition w(0) = 1. The weights w(j) are easily computed and read

w(j) =
N∏
k=1

(
c+
k (j) + c−

k (j)
)

=
N∏
k=1

wk(j) , (3.66)

in terms of the spin weight factors

c+
k (j)
c−
k (j)

 =

 j∏
n=1

 ⟨↑| Ôk |↑⟩ ⟨↑| Ôk |↓⟩
⟨↓| Ôk |↑⟩ ⟨↓| Ôk |↓⟩



1

1


=

 ⟨↑| Ôk |↑⟩ ⟨↑| Ôk |↓⟩
⟨↓| Ôk |↑⟩ ⟨↓| Ôk |↓⟩

c+
k (j − 1)
c−
k (j − 1)

 , (3.67)

where |↑⟩ and |↓⟩ stand for |s = 1⟩ and |s = −1⟩, respectively. In this way, in the
proposed method each walker carries the evolution of both c+ and c− for every particle,
instead of explicit spin variables. Notice that these factors constitute the fundamental
quantities that define the secondary branching of Eq. (3.65). In this way, these factors
account for the change in norm of the propagator.

We turn to the estimation of the energy within the SIDMC formalism. The DMC
energy estimator in the FPA at iteration j is given by:

EDMC(j) =
∑
S⃗,S⃗′

∫
d⃗R

(j) ⃗dR′ ⟨R⃗′, S⃗′| ĤFP |R⃗(j), S⃗⟩ ρT (R⃗′)
ρT (R⃗(j))

f(R⃗(j), S⃗, j∆τ) , (3.68)

with ĤFP defined in Eq. (3.53). The local energy is

EL =
∑
S⃗′

∫
⃗dR′ ⟨R⃗′, S⃗′| ĤFP |R⃗(j), S⃗⟩ ρT (R⃗′)

ρT (R⃗(j))
, (3.69)

which depends on both R⃗(j) and S⃗, so that EL = EL(R⃗(j), S⃗). We can split it in two
parts

EL(R⃗(j), S⃗) = EL,0(R⃗(j)) + EL,S(R⃗(j), S⃗) , (3.70)

corresponding the the spin-independent and spin-dependent contributions, respectively.
The spin-independent part can be expressed in the form

EL,0(R⃗(j)) =
∫

⃗dR′ ⟨R⃗′| Ĥ0 |R⃗(j)⟩ ρT (R⃗′)
ρT (R⃗(j))

, (3.71)
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while

EL,S =
∑
S⃗′

∫
⃗dR′ ⟨R⃗′, S⃗′| ŵRe + V̂Φ |R⃗(j), S⃗⟩ ρT (R⃗′)

ρT (R⃗(j))

=
N∑
l=1

ϵL,S,l(R⃗(j), sl) , (3.72)

with ϵL,S,l the one-body contribution to the spin-dependent local energy corresponding
to particle l (recall that ŵRe + V̂Φ is a one-body operator). With all these definitions,
Eq. (3.68) becomes

EDMC(j) = EDMC,0(j) + EDMC,S(j) . (3.73)

The term EDMC,0(j) contains all the spin-independent contributions, and can be written
as

EDMC,0(j) =
∫
d⃗R

(j)
EL,0(R⃗(j))

∑
S⃗

f(R⃗(j), S⃗, j∆τ)

=
∫
d⃗R

(j)
EL,0(R⃗(j))F (R⃗(j), j∆τ) (3.74)

with F (R⃗, τ) defined in Eq. (3.62). This part of the energy is evaluated as usual in
DMC, so that

EDMC,0(j) = 1
Nw

Nw∑
iw=1

E
(iw)
L,0 (R⃗(j)) , (3.75)

where Nw is the total number of walkers in the simulation, and iw specifies the walker
index. In much the same way

EDMC,S(j) =
N∑
l=1

∑
sl=±1

∫
d⃗R

(j)
ϵL,S,l(R⃗(j), sl)

× F̃ (R⃗(j), sl, j∆τ) (3.76)

with

F̃ (R⃗(j), sl, j∆τ) =
∑
S⃗N−l

f(R⃗(j), S⃗, j∆τ)

∣∣∣∣∣∣∣
sk=±1

(3.77)

where ∑S⃗N−1
sums over all particles but the k-th one. Therefore, one has to be

able to sample F̃ (R⃗(j), sl, j∆τ) in order to evaluate EDMC,S(j). This can be done by
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estimating EDMC,S(j) as

EDMC,S(j) = 1
Nw

( Nw∑
iw=1

N∑
l=1

c+
l,iw

(j)
c+
l,iw

(j) + c−
l,iw

(j)
ϵ
(iw)
L,S,l(R⃗

(j),+1)

+
c−
l,iw

(j)
c+
l,iw

(j) + c−
l,iw

(j)
ϵ
(iw)
L,S,l(R⃗

(j),−1)
)

= 1
Nw

Nw∑
iw=1

ε
(iw)
L,S (R⃗(j)) , (3.78)

This expression ensures that each local energy contribution ϵ(iw)
L,S,l(R⃗(j),±1) is averaged

with an effective weight given by

η±
l (j) = c±

l (j)
c+
l (j) + c−

l (j)
w(j) , (3.79)

which is the weight associated to the sampling of F̃ (R⃗(j), sl = ±1, j∆τ).

3.5.1.2 The SIDMC algorithm

In this section, we present a scheme of the Spin-integrated DMC algorithm. In the
SIDMC method, a walker is represented by the set of quantities

v⃗ =
(
r⃗1, . . . , r⃗N , c

+
1 , c

−
1 , . . . , c

+
N , c

−
N

)
. (3.80)

Particle positions are initialized as usual in Monte Carlo simulations, while the spin
weight factors c±

k must be initialized to one

c±
k = 1 ∀ k . (3.81)

The first step in each iteration of the algorithm is to perform a standard GDB
process using the spinless part of the Hamiltonian Ĥ0 and ρT (R⃗). Next, one has to
update the c±

k coefficients according to the expressionc+
k (j + 1)
c−
k (j + 1)

 = O
(j+1)
k

c+
k (j)
c−
k (j)

 , (3.82)

which yields the new coefficients at iteration j + 1 from the previous ones at iteration
j. In this expression, Ok is the 2 × 2 matrix of Eq. (3.67). Once with these coefficients,
one can obtain w(j + 1) according to

w(j + 1) =

 N∏
k=1

(
c+
k (j + 1) + c−

k (j + 1)
) , (3.83)
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and from here, the secondary branching factor,

B(j + 1) = w(j + 1)
w(j) . (3.84)

This weight is different for each walker, so in fact B = Biw with iw the walker index.
The branching process with total replication factor Btot(j+1) = Bspinless(j+1)B(j+1)
is in this way split in two parts, which are performed one after the other, for convenience.

In practice, it may happen that, along the simulation, the absolute value of the
c±
k (j) coefficients keeps increasing unboundedly. However, the ratio of w’s in this

equation is always finite. On the other hand, it is better to use a mixed-branching
strategy when dealing with the B(j + 1) terms, where walkers acquire a weight that
is being updated at each block of iterations. The accumulated weight Biw at the end
of the block is equal to the product of the weights at each iteration, for each walker.
Once the block is finished, these weights are used to replicate the list of walkers.

In DMC simulations, the weight of the walkers is divided by a constant (equal
to eET ∆τ with ET the threshold energy and ∆τ the time step) when performing the
replication process [64]. One has to perform an equivalent renormalization with the
secondary branching, while in this case the normalization constant can be computed
in two forms. One way is to take the average over the final number of walkers of the
accumulated B of the previous block. Another way is to use the B coefficients of the
current block, accumulated over the previous iterations and averaged over the number
of walkers. The best strategy is determined by the SOC model at hand, with the first
choice being more suitable for the Raman interaction, and the latter performing better
with the Weyl and Rashba models.

The energy at iteration i inside a block is estimated as:

E
(i)
DMC =

∑Nw
iw=1E

(i)
iw

Biw∑Nw
iw=1 Biw

(3.85)

E
(i)
iw

= E
(iw)
L,0 (R⃗(i)

iw
) + ε

(iw)
L,S (R⃗(i)

iw
) . (3.86)

with E
(iw)
L,0 (R⃗(i)

iw
) and ε

(iw)
L,S (R⃗(i)

iw
) given by

E
(iw)
L,0 (R⃗(i)

iw
) =

∫
⃗dR′ ⟨R⃗′| Ĥ0 |R⃗(i)

iw
⟩ ρT (R⃗′)
ρT (R⃗(i)

iw
)
, (3.87)

ε
(iw)
L,S (R⃗(i)

iw
) =

N∑
l=1

c+
l,iw

(i)
c+
l,iw

(i) + c−
l,iw

(i)
ϵ
(iw)
L,S,l(R⃗

(i)
iw
,+1) +

c−
l,iw

(i)
c+
l,iw

(i) + c−
l,iw

(i)
ϵ
(iw)
L,S,l(R⃗

(i)
iw
,−1)

(3.88)
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ϵ
(iw)
L,S,l(R⃗

(i)
iw
, sil,iw) =

∑
S⃗′

∫
⃗dR′ ⟨R⃗′, S⃗′| ŵRe,l + V̂Φ,l |R⃗

(i)
iw
, S⃗

(i)
iw

⟩ ρT (R⃗′)
ρT (R⃗(i)

iw
)

(3.89)

Here ŵRe,l and V̂Φ,l are the contributions from particle l to the potentials ŵRe and V̂Φ,
defined in Eqs. (3.50) and (3.51) respectively. In Eq. (3.85), the sums run over the
complete set of Nw walkers, obtained after the standard GDB process associated to
the spinless part of the Hamiltonian. In this way, the expression implicitly includes
the weighting of the standard branching. Eq. (3.85) represents the generalization of
Eqs. (3.75) and (3.78) for the mixed-branching case.

An important remark concerning the secondary branching is that B(j + 1) in
Eq. (3.84) is not positive definite. However, the fraction of walkers which generate a
change in sign is found to be tiny in actual simulations, and thus walkers that produce
this effect can be safely discarded. To quantify that, we monitor the quantity

χ = Ne

⟨Nw⟩N it
b

, (3.90)

with Ne and N it
b the number of eliminated walkers and the number of iterations per

block, and ⟨Nw⟩ the average number of walkers of the block. Our numerical results
show that χ depends slightly on the value of the parameters chosen for the simulation,
but it is always of the order of 10−3 or smaller.

3.5.2 Discrete spin T-moves DMC (DTDMC)

In this section we adapt the continuous spin T-moves method of Ref. [19] to a system
of discrete spins under the SOC interactions analyzed in this work. In this method, the
spin and position dependent wave function is propagated in imaginary time, with the
matrix elements of the propagator giving the probability amplitudes of the imaginary
time transitions. Due to SOC propagators being non-local, and generally non-positive
definite, the definition of an effective Hamiltonian is necessary within the DTDMC
formalism, so that the propagator to be implemented has non-local, positive matrix
elements that can be interpreted as probabilities. Analogously to the standard DMC
and SIDMC cases, a trial wave function is introduced to reduce the variance of the
estimates. In the following, we assume the two-body interaction is spin-dependent,
with (possibly) different contributions in each channel. In this method the walkers
carry explicit spin variables together with the particle positions.

3.5.2.1 Basics of the DTDMC method

We start by presenting the derivation of the DTDMC algorithm [19] adapted to the
discrete spin case. We first split the propagator in Eq. (3.52), rearranging terms as
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follows

GFP(R⃗, S⃗ → R⃗′, S⃗′) =
∫

⃗dR′′ ⟨R⃗′, S⃗′| exp [−∆τŵRe] |R⃗′′, S⃗⟩

× ⟨R⃗′′, S⃗| exp
[
−∆τĤ1

]
|R⃗, S⃗⟩ + O

(
∆τ2

)
, (3.91)

where

Ĥ1 =
N∑
k=1

[
P 2
k

2m + V̂ 1b
k + |∇⃗kΦT (R⃗, S⃗)| 2

]
+ V̂ 2b . (3.92)

We can introduce the importance sampling function inside this expression and write

ρT (R⃗′, S⃗′)
ρT (R⃗, S⃗)

GFP(R⃗, S⃗ → R⃗′, S⃗′) =
∫

⃗dR′′ ρT (R⃗′, S⃗′)
ρT (R⃗′′, S⃗)

⟨R⃗′, S⃗′| exp
[
∆τŵRe

]
|R⃗′′, S⃗⟩

× ρT (R⃗′′, S⃗)
ρT (R⃗, S⃗)

⟨R⃗′′, S⃗| exp
[
∆τĤ1

]
|R⃗, S⃗⟩ + O

(
∆τ2

)
(3.93)

To order O(∆τ), the first term inside the integral becomes

ρT (R⃗′, S⃗′)
ρT (R⃗′′, S⃗)

⟨R⃗′, S⃗′| exp
[

− ∆τŵRe

]
|R⃗′′, S⃗⟩ (3.94)

≃ δ(R⃗′ − R⃗′′)δ(S⃗′ − S⃗) − ∆τ ⟨R⃗′, S⃗′| ŵRe |R⃗′′, S⃗⟩ ρT (R⃗′, S⃗′)
ρT (R⃗′′, S⃗)

However, for any kind of spin-orbit coupling the matrix element ⟨R⃗′, S⃗′| ŵRe |R⃗′′, S⃗⟩
is not always negative, and thus Eq. (3.94) can not be interpreted as a probability
distribution. In order to bypass this limitation and in the spirit of Refs. [19, 44, 45],
we define an effective Hamiltonian that replaces the original one, and that leads to a
variational upper bound to the fixed phase energy of the original Hamiltonian. We
thus write

ĤFP
eff = Ĥ1 + ŵeff

Re,A + ŵeff
Re,B , (3.95)

where the sum ŵeff
Re,A + ŵeff

Re,B is an approximation to the original ŵRe of Eq. (3.50).
This approximation is built such that the local energy of ĤFP

eff and ĤFP are equal
when they act on the modulus of the trial wave function. The matrix elements of these
terms are given by

⟨R⃗, S⃗| ŵeff
Re,A |R⃗, S⃗⟩ = 0 (3.96)

⟨R⃗′, S⃗′| ŵeff
Re,A |R⃗, S⃗⟩ =

 ⟨R⃗′, S⃗′| ŵRe |R⃗, S⃗⟩ if T < 0

0 if T > 0
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with the transition coefficients

T = ⟨R⃗′, S⃗′| ŵRe |R⃗, S⃗⟩ ρT (R⃗′, S⃗′)
ρT (R⃗, S⃗)

, (3.97)

while

⟨R⃗, S⃗| ŵeff
Re,B |R⃗, S⃗⟩ =

∑
s⃗

∫
d⃗X ⟨R⃗, S⃗| ŵRe |X⃗, s⃗⟩ ρT (X⃗, s⃗)

ρT (R⃗, S⃗)

⟨R⃗′, S⃗′| ŵeff
Re,B |R⃗, S⃗⟩ = 0 (3.98)

where in the last expression, the summation and the integration are restricted to those
values such that T > 0. Using these definitions we avoid non-local matrix elements in
the propagator producing negative transition probabilities at O(∆τ). Notice also that
the effective Hamiltonian depends on the modulus of the trial wave function, which
means that the energy obtained also depends on its choice. The fixed-phase propagator
for the effective Hamiltonian, with importance sampling, is thus:

ρT (R⃗′, S⃗′)
ρT (R⃗, S⃗)

Geff
FP(R⃗, S⃗ → R⃗′, S⃗′) =

∫
⃗dR′′ ρT (R⃗′, S⃗′)

ρT (R⃗′′, S⃗)
⟨R⃗′, S⃗′| exp

[
− ∆τŵeff

Re,A

]
|R⃗′′, S⃗⟩

× ρT (R⃗′′, S⃗)
ρT (R⃗, S⃗)

⟨R⃗′′, S⃗| exp
[

− ∆τ(Ĥ1 + ŵeff
Re,B)

]
|R⃗, S⃗⟩ + O

(
∆τ2

)
. (3.99)

This propagator is positive-definite, and thus we can interpret it as a probability
distribution and sample from it. This can be implemented performing initially a
Gauss-Drift-Branching process of the exp

[
−∆τ(Ĥ1 + ŵeff

Re,B)
]

part, with a branching
factor that, according to Ref. [44], reads

B(R⃗, R⃗′′, S⃗) = exp
[
−∆τ

2
[
EL(R⃗, S⃗) + EL(R⃗′′, S⃗)

]]
, (3.100)

with
EL(R⃗, S⃗) =

∑
S⃗′

∫
⃗dR′ ⟨R⃗′, S⃗′| ĤFP

eff |R⃗, S⃗⟩ ρT (R⃗′, S⃗′)
ρT (R⃗, S⃗)

, (3.101)

to obtain the displacement R⃗ → R⃗′′. In a second step, one performs a transition to a
new position and spin coordinates, (R⃗′′, S⃗) → (R⃗′, S⃗′), given by the probability

p(R⃗′′, S⃗ → R⃗′S⃗′) = P (R⃗′′, S⃗ → R⃗′S⃗′)∑
S⃗′
∫ ⃗dR′P (R⃗′′, S⃗ → R⃗′S⃗′)

, (3.102)
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where

P (R⃗′′, S⃗ → R⃗′S⃗′) = δ(R⃗′ − R⃗′′)δ(S⃗′ − S⃗) − ∆τ ⟨R⃗′, S⃗′| ŵeff
Re,A |R⃗′′, S⃗⟩ ρT (R⃗′, S⃗′)

ρT (R⃗′′, S⃗)
.

(3.103)

Despite the sum in Eq. (3.102) involves the 2N spin configurations, which sounds
prohibitive for large N , it must be kept in mind that only one-body operators are
involved so that the expression is greatly simplified. The two-body spin-dependent
interaction is treated like any other local operator in DMC, and its contribution to the
local energy is

VL,2b(R⃗, S⃗) =
∑
S⃗′

∫
⃗dR′ ⟨R⃗′, S⃗′| V̂2b |R⃗, S⃗⟩ ρT (R⃗′, S⃗′)

ρT (R⃗, S⃗)

=
∑
k<l

V 2b
sk,sl

(rkl) , (3.104)

where use has been made of the fact that the operator is local, meaning that it is
proportional to δ(S⃗′ − S⃗)δ(R⃗− R⃗′). The two-body, spin-dependent potential is defined
in Eqs. (3.5) and (3.6).

Finally, in order to estimate the energy, one computes:

E =

∑
S⃗

∫
d⃗R

[∑
S⃗′
∫
d⃗R

′ ρT (R⃗′,S⃗′)
〈
R⃗′,S⃗′

∣∣ĤFP
eff

∣∣R⃗,S⃗〉
ρT (R⃗,S⃗)

]
ρT (R⃗, S⃗)ρ(R⃗, S⃗)∑

S⃗

∫
d⃗R ρT (R⃗, S⃗)ρ(R⃗, S⃗)

=
∑
S⃗

∫
d⃗R EL(R⃗, S⃗)ρT (R⃗, S⃗)ρ(R⃗, S⃗)∑
S⃗

∫
d⃗R ρT (R⃗, S⃗)ρ(R⃗, S⃗)

(3.105)

using the unbiased estimator of the mean, analogously to the previous Section. It
must be remarked that the additional integral involved in the computation of the
local energy due to the non-local character of the SOC potential can be computed
analytically. As mentioned previously, this quantity corresponds to an upper bound to
the fixed phase energy [19]

3.5.2.2 Application to synthetic SOC in ultracold gases

In this section we show how to apply the previous method to the SOC interactions of
interest in the field of ultracold gases. We focus on the Weyl SOC, since it features the
most general type of non-locality: momentum terms, which are non-local in position
space, coupled to non-local spin terms. Nevertheless, the procedure we detail is
analogous for the Rashba and Raman potentials. We start evaluating the matrix
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elements of ŵRe, which are given by

⟨R⃗′, S⃗′| ŵRe |R⃗, S⃗⟩ = λℏ
m

N∑
k=1

∏
l ̸=k

δ(r⃗′
l − r⃗l)δ(s′

l − sl)


×

δ(y′
k − yk)δ(z′

k − zk)
d

dx′
k

δ(x′
k − xk)

× ⟨s′
k| σ̂x,k |sk⟩ sin

[
− ϕk(x′

k, yk, zk, s
′
k) + ϕk(r⃗k, sk)

]
+ δ(x′

k − xk)δ(z′
k − zk)

d

dy′
k

δ(y′
k − yk)

× ⟨s′
k| − iσ̂y,k |sk⟩ cos

[
− ϕk(xk, y′

k, zk, s
′
k) + ϕk(r⃗k, sk)

]
+ δ(x′

k − xk)δ(y′
k − yk)

d

dz′
k

δ(z′
k − zk) (3.106)

× ⟨s′
k| σ̂z,k |sk⟩ sin

[
− ϕk(xk, yk, z′

k, s
′
k) + ϕk(r⃗k, sk)

]
with ϕk the single-particle phase of Eq. (3.54). In this expression we have omitted the
last term of Eq. (3.4) as it is a constant contribution that represents a shift of the
total energy only. In order to construct the effective Hamiltonian, we must evaluate
the matrix elements of ŵRe to check their sign. However, given two set of coordinates
r⃗k, r⃗′

k, terms of the form d
dx′

k

(
δ(x′

k − xk)
)

are in general difficult to handle. In order
to preserve the upper bound property of the effective Hamiltonian, we adopt the crude
prescription

d
dξ′
k

(
δ(ξ′

k − ξk)
)

∼ 1
2ϵ
[
δ(ξ′

k + ϵ− ξk) − δ(ξ′
k − ϵ− ξk)

]
(3.107)

with ϵ a small parameter. To order ϵ, this is equivalent to replacing the momentum
operator with

p̂ ∼ ℏ
2iϵ

exp
(
i
p̂

ℏ
ϵ

)
− exp

(
−i p̂

ℏ
ϵ

) . (3.108)

Notice that, in this form, the resulting operator is still hermitian, and for ϵ → 0,
the energy is preserved. With this substitution, ŵRe is replaced by a new operator
ŵRe,ϵ, whose matrix elements are the same as in Eq. (3.106) with the derivatives of the
deltas replaced as in Eq. (3.107). We can then construct the potential ŵeff

Re,ϵ,A using
Eqs. (3.96).

Notice that, by introducing the prescription in Eq. (3.107), the SOC part of the
propagator is accurate up to order O

(
N∆τ

2ϵ

)
. This implies that the value of ϵ must be



50 | Quantum Monte Carlo methods for Spin-Orbit interactions

chosen so that

1 ≫

∣∣∣∣∣∣∣∆τ
∑
S⃗′

∫
⃗dR′ ⟨R⃗′, S⃗′| ŵeff

Re,ϵ,A |R⃗′′, S⃗⟩ ρT (R⃗′, S⃗′)
ρT (R⃗′′, S⃗)

∣∣∣∣∣∣∣
1 ≫

∣∣∣∣∣∣∣∆τ
∑
S⃗′

∫
⃗dR′ ⟨R⃗′, S⃗′| ŵeff

Re,ϵ,B |R⃗′′, S⃗⟩ ρT (R⃗′, S⃗′)
ρT (R⃗′′, S⃗)

∣∣∣∣∣∣∣
=
∣∣∣∆τ ⟨R⃗′′, S⃗| ŵeff

Re,ϵ,B |R⃗′′, S⃗⟩
∣∣∣ , (3.109)

with

⟨R⃗, S⃗| ŵeff
Re,ϵ,B |R⃗, S⃗⟩ =

∑
s⃗

∫
d⃗X ⟨R⃗, S⃗| ŵRe,ϵ |X⃗, s⃗⟩ ρT (X⃗, s⃗)

ρT (R⃗, S⃗)

⟨R⃗′, S⃗′| ŵeff
Re,ϵ,B |R⃗, S⃗⟩ = 0 , (3.110)

where, in the last expression, the summation and the integration are restricted to
values satisfying the condition T > 0, given in Eq. (3.97). We have seen in actual
simulations that these condition can be somewhat relaxed. In any case, the precise
value of ϵ chosen for the simulations should not affect the energy contribution from
the SOC part of the Hamiltonian, i.e.

∑
S⃗′

∫
⃗dR′ ⟨R⃗′, S⃗′| ŵeff

Re,ϵ,A + ŵeff
Re,ϵ,B |R⃗, S⃗⟩ ρT (R⃗′, S⃗′)

ρT (R⃗, S⃗)
≃

∑
S⃗′

∫
⃗dR′ ⟨R⃗′, S⃗′| ŵRe |R⃗, S⃗⟩ ρT (R⃗′, S⃗′)

ρT (R⃗, S⃗)
. (3.111)

3.5.2.3 The DTDMC algorithm

In this Section we present a scheme of the DTDMC algorithm to better understand
how to implement it in practice. A walker at the j-th iteration is denoted as

v⃗(j) =
(
r⃗

(j)
1 , s

(j)
1 , . . . , r⃗

(j)
N , s

(j)
N

)
, (3.112)

with sk = ±1 the z-component of the spin of particle k and subindexes and superindexes
standing for particles and iterations, respectively. The initial values of the position
and spin coordinates are generally obtained sampling the trial wave function using the
Metropolis algorithm.

The first step to be implemented at each iteration is a Gauss-Drift-Branching
process with the branching factor given in Eq. (3.100), which produces a spatial
translation R⃗(j) → R⃗

(j)
A . After that, one has to sample the part of the propagator

which depends on the effective potential ŵRe,ϵ,A. In this second step, a transition
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(R⃗(j)
A , S⃗(j)) → (R⃗(j+1), S⃗(j+1)) is performed with probability given by

p(R⃗, S⃗ → R⃗′S⃗′) = P (R⃗, S⃗ → R⃗′S⃗′)∑
S⃗′
∫ ⃗dR′P (R⃗, S⃗ → R⃗′S⃗′)

(3.113)

P (R⃗, S⃗ → R⃗′S⃗′) = δ(R⃗′ − R⃗)δ(S⃗′ − S⃗)

− ∆τ ⟨R⃗′, S⃗′| ŵeff
Re,ϵ,A |R⃗, S⃗⟩ ρT (R⃗′, S⃗′)

ρT (R⃗, S⃗)
(3.114)

where one can identify R⃗ = R⃗
(j)
A , S⃗ = S⃗(j), R⃗′ = R⃗(j+1) and S⃗′ = S⃗(j+1). As an

example, we explicitly report how this evolution is carried out for the Weyl SOC case.
The transition probability is:

P (R⃗, S⃗ → R⃗′, S⃗′) = δ(R⃗′ − R⃗)δ(S⃗′ − S⃗)

− ∆τ


N∑
k=1

∏
l ̸=k

δ(r⃗′
l − r⃗l)δ(s′

l − sl)


×λℏ
m

[
δ(y′

k − yk)δ(z′
k − zk)

1
2ϵδ(x

′
k + ϵ− xk)

× ⟨s′
k| σ̂x,k |sk⟩ sin

[
−ϕk(x′

k, yk, zk, s
′
k) + ϕk(r⃗k, sk)

]
−δ(x′

k − xk)δ(z′
k − zk)

1
2ϵδ(y

′
k − ϵ− yk)

× ⟨s′
k| − iσ̂y,k |sk⟩ cos

[
−ϕk(xk, y′

k, zk, s
′
k) + ϕk(r⃗k, sk)

]
+δ(x′

k − xk)δ(y′
k − yk)

1
2ϵ
(
δ(z′

k + ϵ− zk) − δ(z′
k − ϵ− zk)

)
× ⟨s′

k| σ̂z,k |sk⟩ sin
[
−ϕk(xk, yk, z′

k, s
′
k) + ϕk(r⃗k, sk)

]]}

× ρT (R⃗′, S⃗′)
ρT (R⃗, S⃗)

(3.115)

Notice that the terms appearing in P (R⃗, S⃗ → R⃗′, S⃗′) are different for each walker and
each iteration. In general, one has to keep here only those terms of Eq. (3.106) (after
the substitution of Eqs. (3.107) and (3.108)) that are strictly negative. This total
transition probability is the sum of different transition probabilities P (m)

t,k , so it can be
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written as

P (R⃗, S⃗ → R⃗′, S⃗′) = P
(0)
t,k (R⃗, S⃗ → R⃗S⃗)δ(R⃗′ − R⃗)δ(S⃗′ − S⃗)

+
N∑
k=1

∏
l ̸=k

δ(r⃗′
l − r⃗l)δ(s′

l − sl)

{δ(y′
k − yk)δ(z′

k − zk)

×δ(x′
k + ϵ− xk)P (1)

t,k (xk, sk → xk − ϵ,−sk)

+δ(x′
k − xk)δ(z′

k − zk)δ(y′
k − ϵ− yk)P (2)

t,k (yk, sk → yk + ϵ,−sk)

+δ(x′
k − xk)δ(y′

k − yk)
(
δ(z′

k + ϵ− zk)P (3)
t,k (zk, sk → zk − ϵ, sk)

+δ(z′
k − ϵ− zk)P (4)

t,k (zk, sk → zk + ϵ, sk)
)}

(3.116)

The probabilities P (m)
t,k depend on the coordinates of all particles, but, for the sake

of simplicity, we only explicit the dependence on the coordinates that change under
each transition. Notice that in this example there are 4N + 1 possible transitions. We
define the cumulative distribution vector as

vc(ic) =
∑ic
i=1 v2(i)∑4N+1
i=1 v2(i)

, ic = 1, ..., 4N + 1 vc(0) = 0 (3.117)

with

v2 = (1, P (1)
t,1 , P

(2)
t,1 , P

(3)
t,1 , P

(4)
t,1 , ..., P

(1)
t,N , P

(2)
t,N , P

(3)
t,N , P

(4)
t,N ) . (3.118)

Notice that vc(ic) ∈ (0, 1] ∀ ic. Sampling this discrete probability distribution function
can be done following the standard procedure: we generate a random number ξ ∈ [0, 1]
and select the component of vc(itrans) that verifies

vc(itrans − 1) < ξ

vc(itrans) > ξ . (3.119)

Finally, one performs the transition associated to the quantity v2(itrans) = vc(itrans) −
vc(itrans − 1), i.e., if v2(itrans) = P

(2)
t,k , the spin of particle k flips and its coordinates

are modified according to x′
k = xk, y′

k = yk + ϵ, z′
k = zk, while the rest of the system is

left unchanged.

3.5.3 Numerical results

We report in this Section results for the energy of different systems with SOC using
both the SIDMC and the DTDMC methods. In Sec. 3.5.3.1 we evaluate the energy of
a few one-body and two-body problems, while in Sec. 3.5.3.2 we report results for the
energy of some many-body systems, both in the mean field regime and out of it. As a
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sanity check for the two SOC DMC algorithms for SOC systems, we compare the DMC
energies with those obtained from the imaginary-time evolution of the Schrödinger
equation (one and two-body cases) and the Gross-Pitaevskii equation (many-body
in the dilute regime). We also comment on the technical issues mentioned in Secs.
3.5.1.2 and 3.5.2.3, mainly the removal of walkers in SIDMC and the influence of
the parameter ϵ in the DTDMC method, as well as the dependence of the energy
estimation on the time step. In all cases, the parameters of the Hamiltonian and the
trial wave function are reported in reduced units (see Sec. 3.2.1).

3.5.3.1 One and two-body problems

We first show DMC results for the energy corresponding to four different physical
systems involving one- and two-body problems: a three-dimensional (3D) one-body
system with Weyl SOC, a 3D one-body system with Raman SOC, and two interacting
two-dimensional (2D) two-body systems with Rashba SOC, one containing spin-
independent two-body interactions, and another with spin-dependent ones. All systems
are harmonically confined. We summarize our results in Table 3.1, which includes
the DMC energies obtained with both algorithms together with the imaginary time
evolution (ITE) estimates, both for the fixed-phase Hamiltonian (Eq. (3.53)) and the
fixed-phase, effective Hamiltonian of the DTDMC approach. All SIDMC energies are
obtained by performing several simulations, changing the parameter ∆τ , and then
extrapolating the energy to the limit ∆τ → 0. This is necessary because the propagator
employed in DMC calculations is not exact at all orders of ∆τ , but only up to O(∆τ).
As a consequence, there is a dependence of the estimates on the time step employed in
the simulations. Therefore, to get rid of such dependence, an extrapolation to zero
time step is performed. In the Weyl and Rashba cases with DTDMC, it is necessary to
perform extrapolations not only in the time step but also in ϵ, since the propagator is
only exact in the limit ∆τ → 0, ϵ → 0. Thus, one must carry out several calculations
changing ∆τ and ϵ and then extrapolate to the limits ∆τ → 0, ϵ → 0, and ∆τ

ϵ → 0.
We discuss below how to perform the triple limit involving ∆τ , ϵ, and ∆τ

ϵ . This setup
is not necessary in the Raman calculations since the SOC part of the propagator scales
as O(N∆τ) if ϵ is sufficiently small. This is because Raman SOC couples momentum
with an operator local in spin space, σ̂z, when expressing the Hamiltonian in the basis
of eigenstates of σ̂z. On the other hand, Rashba and Weyl SOC include couplings
involving σ̂x and σ̂y (in the case of Rashba SOC) and all σ̂x, σ̂y and σ̂z (in the case of
Weyl SOC).

The trial wave function for each Hamiltonian is important because it fixes the
phase and, in all cases, reduces the variance via importance sampling. For the Raman
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SOC problem with DTDMC, the trial wave function that we have used is

ΨT (r⃗, s) = ρT (r⃗, s) exp
[
iϕT (r⃗, s)

]
(3.120)

ρT (r⃗, s = +1) =
[
C2

1 sin2 µ+ C2
2 cos2 µ

+2 sinµ cosµC1C2 cos(2kx)
]1/2 exp

[
−ω

2
(
x2 + y2 + z2

)]
(3.121)

ρT (r⃗, s = −1) =
[
C2

2 sin2 µ+ C2
1 cos2 µ

+2 sinµ cosµC1C2 cos(2kx)
]1/2 exp

[
−ω

2
(
x2 + y2 + z2

)]
(3.122)

ϕT (r⃗, s = +1) = atan
[

(C1 sinµ− C2 cosµ) sin(kx)
(C1 sinµ+ C2 cosµ) cos(kx)

]
(3.123)

ϕT (r⃗, s = −1) = atan
[

(C1 cosµ− C2 sinµ) sin(kx)
(C1 cosµ+ C2 sinµ) cos(kx)

]
(3.124)

with µ = 1
2 acos

(
k

ηRm

)
, k the reduced momentum and ω the harmonic oscillator

strength. In these expressions, {k,C1, C2} are taken as variational parameters. The
SOC term of the trial wave function has the same form as the one used in Ref. [25],
which consists on a superposition of two plane waves of opposed momenta. This SOC
term represents an excellent approximation to the mean field ground state of the
system. A Gaussian factor is incorporated to account for the presence of an harmonic
trap. Since the modulus of the trial wave function must be independent of the spin in
the SIDMC method, we have used

ρT (r⃗) =
[
C2

1 + C2
2 + 2BcC1C2 cos(2kx)

]1/2
exp

[
−ω

2
(
x2 + y2 + z2

)]
(3.125)

with Bc another variational parameter.
Concerning the Weyl model, the adopted trial wave function for DTDMC is

ρT (r⃗, s = +1) = exp
[
−ω

2
(
x2 + y2 + z2

)]
(3.126)

ρT (r⃗, s = −1) = (1 + cos θk)
sin θk

exp
[
−ω

2
(
x2 + y2 + z2

)]
(3.127)

ϕT (r⃗, s = +1) = k⃗r⃗ (3.128)

ϕT (r⃗, s = −1) = k⃗r⃗ + π + ϕk (3.129)

where θk and ϕk are the polar and azimuthal angles of the momentum vector k⃗,
respectively. This corresponds to a product of the ground state of the one-body Weyl
SOC Hamiltonian times the harmonic oscillator ground state wave function. The
adopted modulus of the trial wave function for the SIDMC case is

ρT (r⃗) = exp
[
−ω

2
(
x2 + y2 + z2

)]
(3.130)
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Finally, the trial wave function used in the DTDMC two-body Rashba simulations is

ΨT (R⃗, S⃗) =

 2∏
j=1

ρT,1b(r⃗j , sj)

 ρT,2b(r⃗1, r⃗2) exp

i 2∑
j=1

ϕT (r⃗j , sj)

 (3.131)

ρT,1b(r⃗, s = +1) = exp
[
−ω

2
(
x2 + y2

)]
(3.132)

ρT,1b(r⃗, s = −1) = exp
[
−ω

2
(
x2 + y2

)]
(3.133)

ϕT (r⃗, s = +1) = k⃗r⃗ − ϕk − π

2 (3.134)

ϕT (r⃗, s = −1) = k⃗r⃗ (3.135)

with ϕk the angle of the momentum vector in polar coordinates. Again, the one-body
terms in the trial wave function correspond to a product of the ground state of the
one-body Rashba SOC Hamiltonian times the harmonic oscillator ground state wave
function. In this expression, ρT,2b(r⃗1, r⃗2) is the exact solution of the two-body problem
at low momentum (k2b ∼ 10−2) (without SOC) corresponding to the soft-sphere
potential of Eq. (3.6), with parameters

V 0 = V0(1, 1) + V0(1,−1) + V0(−1, 1) + V0(−1,−1)
4 (3.136)

R0 = R0(1, 1) +R0(1,−1) +R0(−1, 1) +R0(−1,−1)
4 . (3.137)

This choice makes the two-body trial wave function spin-independent for simplicity.
We use the same function for the SIDMC simulations.

In DTDMC simulations, the time step is ∆τ ∼ O
(
10−3

)
, while it is ∆τ ∼ O

(
10−2

)
in the SIDMC ones. The average number of walkers is kept stable along the simulations,
and it is fixed to a value between 2000 and 3000, depending on the case. The parameter
ϵ of DTDMC is fixed to ϵ = 100∆τ in the Raman calculation, and to ϵ = 200∆τ in the
Rashba and Weyl cases. In the Weyl SIDMC calculations, the secondary branching
weights w(j) are accumulated in blocks of N it

b = 10 iterations. The ratio of discarded
walkers is found to be χ < 0.001. In the Rashba cases, we have N it

b = 50 and χ < 0.002.
Finally, for the Raman problem we have N it

b = 10 and χ = 0 (see Sec. 3.5.1.2).
The parameters used in the Raman simulations are ηRm = 1, ω = 0.4, Ω = 0.5,

k = 0.7, C1 = 0.6, C2 = 0.8, and Bc = 0.5. For the Weyl simulations we considered
ηWe = 1, ω = 0.4, k = 0.5, θk = π

4 , and ϕk = 0.3. Finally, the parameters for the
two-body Rashba simulations in the two-body spin-independent case are V0 = 1.5,
R0 = 3.5, k = 0.5, ϕk = 0.1, and ω = 0.4. The two-body spin-dependent Rashba case
shares the same values, except for V0(+1,+1) = V0(−1,−1) = 2.5 and V0(+1,−1) =
V0(−1,+1) = 1.5.

We show in Fig. 3.1 the energy as a function of the imaginary-time step for the
two-body Rashba calculations. We can clearly see the linear dependence of the energy
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SIDMC ITE FPA DTDMC DTDMC fixed ϵ ITE FPA eff. H
Raman 1.368 ± 0.001 1.3667 ± 0.0005 1.368 ± 0.001 1.3679 ± 0.0005
Weyl 1.095 ± 0.002 1.0780 ± 0.0005 1.197 ± 0.002 1.190 ± 0.002 1.1887 ± 0.0005
Rashba 2-b NS 1.064 ± 0.002 1.058 ± 0.003 1.148 ± 0.003 1.132 ± 0.002 1.133 ± 0.003
Rashba 2-b S 1.279 ± 0.002 1.262 ± 0.002 1.258 ± 0.003

Table 3.1 Estimation of the energy (in reduced units, see Sec. 3.2.1) for the few-body
systems described in Sec. 3.5.3.1. Results for the Raman and Weyl cases correspond
to the total energy while results for the Rashba case correspond to the energy per
particle. "2b-S" stands for spin-dependent two-body interaction while "2b-NS" stands
for spin-independent two-body interaction.

 1.058

 1.061

 1.064

 1.067

 1.07

 0  0.005  0.01  0.015  0.02

E
/N

∆τ

Fig. 3.1 Dependence of the DMC energy per particle on the imaginary-time step
using the SIDMC method for a two-body system with Rashba SOC and harmonic
confinement. The line corresponds to the linear extrapolation of the DMC energies.
Quantities are dimensionless, with the energy and length scales defined in Eq. (3.8).

on the time step, as it corresponds to a linear approximation to the exact propagator. In
the DTDMC method, and as stated previously, three limits have to be simultaneously
satisfied in order to obtain the energy: ∆τ → 0, ϵ → 0, and ∆τ

ϵ → 0. The extrapolation
according to these limits can be performed in several ways. Here, we discuss two of
them. Method 1 consists in performing Nsets sets of Nsim simulations setting ∆τ → 0,
ϵ → 0, with ∆τ

ϵ ≪ 1 fixed. After this, one ends up with Nsets estimations of the energy,
each one associated to a given ∆τ

ϵ value. In general, if the value of ∆τ
ϵ is small enough,

there is no need to perform an extrapolation ∆τ
ϵ → 0 and one can just retain the

estimation associated to the lowest ∆τ
ϵ value. In Method 2 one also performs Nsets sets

of Nsim simulations with ∆τ → 0, ∆τ
ϵ → 0, and fixed ϵ. After this, one ends up with

Nsets estimations of the energy, each one associated to a small but finite ϵ. Then, one
extrapolates these results to ϵ → 0.
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Fig. 3.2 Estimation of the DTDMC energy using Method 1 (see the main text) for
a harmonically trapped one-body system with Weyl SOC. Also shown are the linear
extrapolations of the DMC energies to ∆τ → 0. Quantities are dimensionless, with
the energy and length scales defined in Eq. (3.10).

In Figs. 3.2 and 3.3, we show the estimations obtained using Method 1 and Method
2, respectively, for the one-body system with Weyl SOC in a harmonic trap. As we
can see, the dependence of the extrapolated energies on ∆τ

ϵ is much weaker than their
dependence on ϵ. Therefore, Method 1 is preferred and is the one that we have used
to provide the DTDMC energy. We can also see from the figures that the dependence
of the energy with respect to ∆τ , when ϵ or ∆τ

ϵ are fixed, is linear in both cases. This
is because the non-SOC terms of the propagator are exact up to O(∆τ) while the
SOC terms are exact up to O

(
∆τ
ϵ

)
. For all the chosen values of ϵ, the conditions in

Eq. (3.109) are satisfied, with the r.h.s being ∼ 10−2. Also, the condition in Eq. (3.111)
is satisfied since the difference between the r.h.s. and the l.h.s. is at most a 3% of the
SOC local energy contribution.

From Table 3.1, we can see that both DMC methods provide energies that agree
with the result of the imaginary-time evolution within a 2% error. We can also
see that SIDMC provides lower energies than DTDMC. This is due to the fixed-
phase nature of the energies obtained with SIDMC, which does not require to use an
effective Hamiltonian, as does DTDMC. We can see that this effect is enhanced in
the harmonically trapped systems with Rashba and Weyl SOCs. For the cases with
two-body spin-dependent interactions, only T-moves results are reported, since SIDMC
can not deal with these potentials. It must be noticed that, while in the T-moves
calculations one performs the triple extrapolation ∆τ → 0, ϵ → 0, and ∆τ

ϵ → 0,
calculations with ITE are performed at fixed ϵ (ϵ = 0.1 and ϵ = 0.3 in the Weyl
and Rashba cases, respectively). This is due to the computational cost associated to
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Fig. 3.3 Estimation of the DTDMC energy using Method 2 (see the main text) for a
one-body system with Weyl SOC on a harmonic trap. The lines are used to extrapolate
the DMC energies. The quantities shown are dimensionless.

decreasing ϵ when discretizing the Schrödinger equation in the position representation,
since ϵ is taken as the point-to-point distance of the mesh. In order to check that
both DTDMC and ITE give compatible estimates, we also provide in Table 3.1 DMC
energies corresponding to fixed ϵ. This is not necessary in the Raman case since
the Raman Hamiltonian is independent of ϵ if this parameter is sufficiently small, as
mentioned previously. Notice also that the errors corresponding to the ITE results in
the two-body 2D Rashba cases are larger than the ones in the 3D one-body Raman and
Weyl cases. This is due to the higher number of dimensions that must be discretized
in the latter case.
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SIDMC GPE FPA DTDMC DTDMC fixed ϵ GPE FPA eff. H
Rm. 2-b NS -0.0496 ± 0.0002 -0.04964 ± 0.00005 -0.0496 ± 0.0004 -0.04962 ± 0.00005
Rm. 2-b S 0.00946 ± 0.00004 0.009370 ± 0.000005
Wy. 2-b NS 0.1125 ± 0.0003 0.11217 ± 0.00005 0.1444 ± 0.0002 0.1423 ± 0.0002 0.14239 ± 0.00005
Wy. 2-b NS 2 0.1122 ± 0.00015 0.1123 ± 0.00015 0.11225 ± 0.000005
Wy. 2-b S 0.0602 ± 0.0001 0.0602 ± 0.0001 0.06029 ± 0.00005

Table 3.2 Results of the energy per particle (in reduced units, see Sec. 3.2.1) for the
many-body systems in the dilute regime, as described in Sec. 3.5.3.3. "2-b S" stands
for spin-dependent two-body interaction while "2-b NS" stands for spin-independent
two-body interaction, while "Rm." (Raman) and "Wy." (Weyl) indicate the type of
SOC.

3.5.3.2 Many-body calculations

We now report the DMC energies corresponding to the many-body Raman and Weyl
SOC Hamiltonians. We first focus on the dilute regime with a finite number of
particles imposing periodic boundary conditions (PBC). We compare the DMC energy
estimations with the energies obtained from the imaginary time propagation solution of
the Gross-Pitaevskii equation (GPE), both for the fixed-phase Hamiltonian (Eq. (3.53))
and the fixed-phase, effective Hamiltonian of the DTDMC approach. In the case of
the Rashba SOC, we do not know the scattering length of the complete interaction,
and thus a direct comparison to the GPE results is not possible. Finally, we compare
the energy estimations of both DMC methods out of the ultra dilute regime.

3.5.3.3 Dilute regime

Table 3.2 reports the DMC energy per particle, together with the corresponding
Gross-Pitaevskii energy per particle, for four different physical systems: Raman and
Weyl SOCs, both with spin-independent and spin-dependent two-body interactions.
Moreover, we include the DTDMC energy per particle using two different trial wave
functions in the two-body spin-independent Weyl case, in order to showcase the
variational dependence of this method on the modulus of the trial wave function.

For the GPE calculations involving Raman and Weyl SOCs, we use the free-space
scattering length, i.e., the scattering length obtained for the Hamiltonian removing
the SOC terms [66].

In all cases, the trial wave function is of the form

ΨT (R⃗, S⃗) =

 N∏
j=1

ρT,1b(r⃗j , sj)




N∏
i,j=1
i<j

ρT,2b(r⃗i, r⃗j)

 exp

i N∑
j=1

ϕT (r⃗j , sj)

 , (3.138)
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with

ρT,2b(rij) =


ρT,2b(rij)+ρT,2b(L−rij)

2ρT,2b(L/2) if rij < L/2

1 if rij > L/2
(3.139)

and rij =
∣∣r⃗j − r⃗j

∣∣. The function ρT,2b(rij) is the modulus of a spin-independent
two-body trial wave function analogous to the one presented in Sec. 3.5.3.1 (here
k2b ∼ 10−6). The modulus of the one-body terms for the DTDMC "Raman 2-b NS"
and "Raman 2-b S" cases of Table 3.2 are given in Eqs. (3.121) and (3.122). For the
SIDMC "Raman 2-b NS" case we use the expression in Eq. (3.125). Both DTDMC
and SIDMC "Weyl 2-b NS" cases are done with the terms in Eq. (3.130), while in
the DTDMC "Weyl 2-b NS 2" and "Weyl 2-b S" cases we use the one-body forms of
Eqs. (3.126) and (3.127). In all cases no harmonic trap has been used, therefore we
drop the harmonic oscillator ground state wave function from all the aforementioned
expressions (as an example, the "Weyl 2-b NS" cases are performed setting ρT (r⃗) = 1).
The trial phases for each case are analogous to the ones in Eqs. (3.123), (3.124), (3.128),
and (3.129).

The average number of walkers is set to Nw = 1, 000, and the time step is ∆τ ∼
O
(
10−3

)
. The parameter ϵ in the DTDMC is fixed to ϵ = 100∆τ . All the values of

ϵ employed in order to perform the extrapolations previously discussed satisfy the
condition of Eq. (3.111), with a discrepancy between the r.h.s. and the l.h.s. of at
most ∼ 1%. Also, the r.h.s of both expressions in Eq. (3.109) equals 0.08 at most,
which implies that the maximum error in the approximation to the propagator is
emax ∼ e0.08 − (1 + 0.08) ≃ 0.0033. In the Weyl SIDMC calculations, the length of
a simulation block is set to N it

b = 10. The ratio of discarded walkers is found to be
χ < 0.0002. For the Raman SIDMC calculations, we set N it

b = 10 and find χ = 0 (see
Sec. 3.5.1.2).

The Raman simulations are carried out with N = 40 particles, ηRm = 0.4, Lx =
Ly = Lz = 16.899 (box length) and k = kx = 2π

Lx
. In the two-body spin-independent

case we have V0 = 75, R0 = 0.25, Ω = 0.4, C1 = 0, C2 = 1 and Bc = 0.5, while in the
two-body spin-dependent case we have V0(+1,+1) = V0(−1,−1) = 75, V0(+1,−1) =
V0(−1,+1) = 50, R0 = 0.25, Ω = 0.1, C1 = 0.6, C2 = 0.8. The gas parameter for these
systems is na3 ≃ 10−6. Here, n is the density and a corresponds to the scattering
length of the interaction in the spin-independent cases, and the maximum scattering
length in the spin-dependent ones.

In the Weyl simulations, and for the two-body spin-independent case, we use
N = 45 particles, ηWe = 0.25, Lx = Ly = Lz = 20, k⃗ = (kx, 0, kz) with ki = 2π

Li
,

V0 = 75, R0 = 0.3, with a gas parameter of na3 = 1.7 × 10−5. In the two-body
spin-dependent case we use N = 35, ηWe = 0.25, Lx = Ly = Lz = 18, k = kx = 2π

Lx
,
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SIDMC DTDMC
Raman PBC 2-b no spin 3.673 ± 0.002 3.681 ± 0.002
Raman PBC 2-b spin trial 1 5.356 ± 0.003
Raman PBC 2-b spin trial 2 5.358 ± 0.002
Weyl PBC 2-b no spin 3.773 ± 0.003 3.798 ± 0.003
Weyl PBC 2-b no spin trial 2 4.050 ± 0.005
Weyl PBC 2-b spin 5.633 ± 0.005
Weyl HO 2-b no spin 2.236 ± 0.001 2.302 ± 0.002

Table 3.3 Energies per particle (in reduced units, see Sec. 3.2.1) for the many-body
systems out of the dilute regime, as described in Sec. 3.5.3.4.

V0(+1,+1) = V0(−1,−1) = 75, V0(+1,−1) = V0(−1,+1) = 50, R0 = 0.3, with a gas
parameter of na3 ∼ 10−5.

We can see from Table 3.2 that the DMC energies agree with the GPE calculations
up to a ∼ 1%. As in the previous Section, only DTDMC results are reported for the
spin-dependent two-body cases, since the SIDMC method can not handle two-body
spin-dependent interactions. We can also see from the two-body spin-independent cases
that DTDMC is able to recover almost completely the fixed-phase energy, although
we know it always provides an upper bound. On the other hand, SIDMC recovers
the complete fixed-phase energy. The DTDMC Weyl two-body spin-independent
calculations illustrate the variational property with respect to the modulus of the trial
wave function of this method. Notice that two different modulus ("Weyl 2-b NS" and
"Weyl 2-b NS 2" cases) provide two different energy estimations.

3.5.3.4 Beyond the dilute regime

In this Section we compare the performance of the two DMC algorithms discussed
when applied to several homogeneous many-body systems beyond the dilute regime.
We analyze a few systems under Raman and Weyl SOC interactions using periodic
boundary conditions and a two-body spin-independent interaction. We show again
an example of the variation of the DTDMC energy when the modulus of the trial
wave function is changed. We also provide DTDMC energy estimations of systems
under Raman and Weyl SOCs with a spin-dependent two-body interaction. Finally, we
compare both DMC estimations in a many-body harmonically confined system with
Weyl SOC. Results are presented in Table 3.3.

The general form of the trial wave function is given in Eq. (3.138). The DTDMC
calculations corresponding to the cases "Raman PBC 2-b no spin", "Raman PBC 2-b
spin trial 1" and "Raman PBC 2-b spin trial 2" have been evaluated using the one-body
terms of Eqs. (3.121) and (3.122), while for the SIDMC "Raman PBC 2-b no spin"
calculation, Eq. (3.125) has been employed. For DTDMC corresponding to the cases
"Weyl PBC 2-b no spin", "Weyl PBC 2-b spin" and "Weyl HO 2-b no spin" use has
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been made of the expressions in Eqs. (3.126) and (3.127). Finally, for the DTDMC
"Weyl PBC 2-b no spin trial 2" case, we use

ρT (r⃗, s = +1) = γ (3.140)

ρT (r⃗, s = −1) =
√

1 − γ2 (1 + cos θk)
sin θk

(3.141)

γ = 0.6 (3.142)

This form is used to illustrate the variational property of the T-moves method with
respect to the modulus of the trial wave function. The SIDMC "Weyl PBC 2-b no
spin" and "Weyl HO 2-b no spin" calculations use the expressions in Eq. (3.130). As
in the previous Section, the harmonic oscillator wave function is dropped from the
aforementioned equations when PBC are considered. Again, the trial phases for each
case are given in Eqs. (3.123), (3.124), (3.128), and (3.129).

In the two-body spin-independent calculations, the two-body trial terms in all
PBC cases are the same as in Sec. 3.5.3.3. Concerning the two-body spin-dependent
calculations, we report the energy in the Weyl case using a spin-independent two-
body correlation factor analogous to the one in Sec. 3.5.3.3. In the Raman case,
though, we compare the energy estimated using a spin-independent two-body factor
with the estimation from a spin-dependent one, again with the same form as in Sec.
3.5.3.3. Finally, in the "Weyl HO 2-body no spin" case we set ρT,2b(rij) = ρT,2b(rij) in
Eq. (3.139) because we do not impose PBC.

The average number of walkers is set to Nw = 1000, the time step ∆τ ∈ (10−4, 10−3),
and the DTDMC ϵ parameter is fixed such that ϵ

∆τ ∈ (100, 400) for Weyl SOC . All the
used values of ϵ satisfy the condition in Eq. (3.111), with a discrepancy between the
r.h.s. and the l.h.s. of at most 3%. Also, the r.h.s of both expressions in Eq. (3.109)
equals 0.3 at most, which implies that the maximum error in the approximation to the
propagator is emax ∼ e0.3 − (1 + 0.3) ≃ 0.05. The length of a simulation block in the
Weyl PBC SIDMC calculations is set to N it

b = 10. The ratio of discarded walkers is
found to be χ < 0.006. The harmonically trapped Weyl simulations share the same
parameters except for the ratio χ, which turns out to be χ < 0.001. For the Raman
calculations one has N it

b = 10 and finds χ = 0 (see Sec. 3.5.1.2).
In the Raman case we use N = 50 particles, ηRm = 1.5, Ω = 0.4, Lx = Ly = Lz =

4.5, V0 = 1, R0 = 1.5, k = 2π
Lx

, and C1 = 0.6, C2 = 0.8. In the SIDMC simulations we
also have Bc = 0.5. The two-body spin-dependent case shares the same parameters with
V0(+1,+1) = V0(−1,−1) = 2, V0(+1,−1) = V0(−1,+1) = 1. The gas parameter for
the up-down channels is na3

+1,−1 ∼ 10−2 while for the up-up and down-down channels
we set na3

+1,+1 ∼ 0.1. In the PBC two-body spin-independent Weyl case we simulate
N = 25 particles with ηWe = 3.590, Lx = Ly = Lz = 3.5, V0 = 1, R0 = 1.5, and
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k⃗ = (kx, 0, 0) kx = 2π
Lx

, V0(+1,+1) = V0(−1,−1) = 2, V0(+1,−1) = V0(−1,+1) = 1,
with R0 = 1.5. The gas parameter for each channel is of the same order of magnitude
that the one in the Raman case. Finally, in the harmonically trapped Weyl simulations
we use N = 30 particles, ηWe = 1, ω = 0.4, V0 = 1, R0 = 1.5, k = 0.5, θk = 1.31, and
ϕk = 0.3.
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Fig. 3.4 Dependence of the DMC energy per particle on the imaginary time-step for
SIDMC for a many-body system with Weyl SOC and a harmonic trap. The line
corresponds to the linear extrapolation of the DMC energies. The shown quantities
are dimensionless.
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Fig. 3.5 Estimation of the DTDMC energy per particle using Method 2 (see Sec. 3.5.3.1)
for a many-body system with Weyl SOC and a harmonic trap. The line corresponds
to the linear extrapolation of the DMC energies. All quantities are dimensionless.
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Fig. 3.6 Estimation of the DTDMC energy per particle using Method 1 (see Sec. 3.5.3.1)
for a many-body system with Weyl SOC and a harmonic trap. The lines correspond to
the linear extrapolation of the DMC energies. The shown quantities are dimensionless.

In Fig. 3.4, we show the energy dependence on the imaginary time-step correspond-
ing to the SIDMC simulations of trapped Weyl gases. We see from the Figure the
linear dependence of the energy with respect to ∆τ . In Figs. 3.6 and 3.5, we show
DTDMC results for the two methods mentioned in Sec. 3.5.3.1 to estimate the triple
limit ∆τ → 0, ϵ → 0, and ∆τ

ϵ → 0. The observed behavior is consistent with the
previous results obtained in the one-body case.

In Table 3.3, we report the DMC energies per particle for the analyzed cases.
From these results, we can see that DTDMC is able to almost exactly recover the
fixed-phase energy of the bulk gases. In the trapped Weyl gas, the difference with
respect to the fixed-phase energy obtained with SIDMC is larger. We can also see
how the improvement of the modulus of the trial wave function in the two-body
spin-independent PBC Weyl simulation produces better energies as a consequence of
the variational nature of the DTDMC method. Finally, our results show that using
a spin-dependent two-body trial correlation factor does not lead to any significant
improvement in the two-body spin-dependent PBC Raman cases performed.

3.6 The Phase Diagram of a Raman Spin-Orbit Coupled
system

As mentioned in Chapter 1, the phase diagram of an interacting system of atoms under
Raman SOC has been reported previously [25, 60]. However, the diagram is obtained
within the mean field regime, valid only for very low gas parameter values ≲ 10−4. In
order to extend these results to a more strongly interacting regime, and to deal with
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the non-local character of the SOC interaction, we use the DTDMC method introduced
previously to study the system from a microscopic point of view.

We study a three-dimensional system of N bosons of mass m under periodic
boundary conditions described by the Hamiltonian in Eq. (3.1), with Ŵ SOC

k = ŴRm
k (see

Eq. (3.3)) and V 2b
si,sj

(see Eq. (3.5)) a short-range, two-body, spin-dependent interaction.
We use two model interactions: a soft-sphere (SS) potential of strength V0(si, sj) and
range R0(si, sj), and a Lennard-Jones (LJ) force V 2b

si,sj
(rij) =

(
σ12(si,sj)

rij

)12
−
(
σ6(si,sj)

rij

)6
.

Here, rij is the distance between the i-th and j-th particles and si, sj = ±1 are their
spins. The trial wave function used for importance sampling in the DTDMC method,
that also fixes the phase, is chosen as a product of one-body and two-body (Jastrow)
terms. It is given by Eqs. (3.121) (3.122) (3.123) /3.124) with C1 = C2 = 1/

√
2 and

k ∈ [0, k0] optimized variationally, although the harmonic confinement is dropped since
we are studying an homogeneous system. This corresponds to the expression reported
in Ref. [25], with the sign of the spin-down component changed due to the different sign
of the Ω term in the Hamiltonian, and the up and down components exchanged due to
the different sign of the P̂ xσ̂z term. The Jastrow factor depends on the interaction V̂ij .
For the SS potentials, we adopt the zero-energy solution of the averaged interaction
along the different spin channels (see Eqs. (3.136), (3.137)). This prescription provides
a lower variational energy than a spin-dependent two-body Jastrow factor in the case
considered in this work. In the case of the LJ interaction, we use a McMillan factor of
the form f(r) = e−(b/r)5 . The constant b is fixed so that the highest order divergence
of the LJ potential is suppressed at the two-body level (cusp condition). Thus, we set
to zero the highest order divergence arising in the expression:

−ℏ2

m
∇2f(r) +

(σ12(si, sj)
rij

)12

−
(
σ6(si, sj)

rij

)6
 f(r) = 0 (3.143)

which is of O
(
1/r12

)
. Assuming σ12 is spin-independent, this is achieved by setting:

b =
(
σ12

12
m

25ℏ2

)1/10
. (3.144)

As it is common in systems with periodic boundary conditions, the two-body Jastrow
factor is set to a constant for inter-particle distances greater than L/2 (as shown in
Sec. 3.5.3). However, in this case we employ a different prescription for the trial factor
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with respect to the previous Section. The Jastrow factor f2b(rij) employed is:

f2b(rij) =


ρ2b,T(rij)/

(
CA exp

(
− CB

(L/2)2 − CB
(L/2)2

))
rij < R∗

CA exp
(
−CB

r2 − CB
(L−r)2

)
/

(
CA exp

(
− CB

(L/2)2 − CB
(L/2)2

))
R∗ < r < L/2

1 rij > L/2

(3.145)

with:

CA = ρ2b,T(R∗) exp
(

CB
(R∗)2 + CB

(L− (R∗)2)

)
(3.146)

CB = 1
ρ2b,T(R∗)

dρ2b,T
drij

∣∣∣∣∣
R∗

1

2
(

1
(R∗)3 − 1

(L−R∗)3

) (3.147)

Here ρ2b,T(rij) is the two-body factor described previously, which depends on the
interaction potential, and R∗ is a matching point. This Jastrow factor corresponds
to the matching of ρ2b,T(rij) to a phonon-like wave function, CA exp

(
−CB

r2 − CB
(L−r)2

)
.

Eqs. (3.146) and (3.147) are obtained by imposing continuity and differentiability in the
matching point. We have not seen a strong variational influence of the parameter R∗,
which is set to R∗ = 0.22L. No significant changes are seen when setting R∗ = 0.4L in
the tested cases. The number of walkers in the DMC simulations is set to Nw = 1000
while the time-step range is chosen in the range ∆τ ∈ [7 × 10−4, 5.6 × 10−3].

The choice of the parameters of the two-body interaction V̂ij determines the different
channel scattering lengths as,s′ , as according to Ref. [66] the inclusion or not of the
SOC term does not appreciably change them. The values used in this Section fulfill
the condition a+1,+1 = a−1,−1 > a+1,−1 = a−1,+1, as in the experiments of Ref. [2].
Finally, we express all quantities in dimensionless form, with the characteristic energy
and length scales given in Sec. 3.2.1 with ηRm. = 1.

In order to characterize the phase diagram of the model, we use the standard gas
parameter na3, with a = a+1,+1 the scattering length of the interaction in the (+1,+1)
channel. It should be noted that, for this system, na3 is not a scaling parameter.
However, we use it to characterize the combined effect of the density and the interaction.
We have checked, though, that for very low values of na3 one recovers the mean field
results, while for larger values, the DTDMC simulations reveal that the extension of
the stripe phase domain is increased with respect to the mean field prediction. This
may be a relevant issue for experiments willing to detect and/or characterize the stripe
phase. In order to illustrate that, we set the density to n = 3.7 × 10−3, with the
number of particles N ∈ [50, 120] and the size of the simulation box changing as a
function of the momentum of the trial wave function. We tune the spin-dependent
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scattering lengths such that na3 ∈ (10−4, 10−1) by changing the two-body potential
parameters. In this sense, increasing the gas parameter is equivalent to increasing the
range and strength of the interactions, which enhances the effect of correlations in the
medium. We set the interaction contrast γ = (a − a+1,−1)/(a + a+1,−1) to γ = 0.4,
since non-zero values of this quantity are necessary for the existence of a stripe ground
state [25]. This contrast is employed for the elaboration of the phase diagram, and
the computation of the pair correlation functions and the one-body density matrix.
However, the quantitative characterization of the superfluidity in the stripe phase and
the computation of the static structure factor is performed with the contrast used in
Ref. [2], γ = 0.904. It must be remarked that the quantity γ is a tunable property in
the experimental setup of Ref. [2].
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Fig. 3.7 Variational energy per particle of the system under Raman SOC in the stripe
phase for Ω = 3.1, na3 = 10−3 as a function of the variational momentum k. All
quantities are reported in reduced units.

In order to illustrate the Variational Monte Carlo method introduced in Sec. 3.3,
we present in Fig. 3.7 the variational energy of the system in the stripe phase with
a SS interaction for Ω = 3.1, na3 = 10−3, V0 = 4, R0(+1,+1) = R0(−1,−1) = 1.315,
R0(+1,−1) = R0(−1,+1) = 0.871, as a function of the variational momentum k. The
value of k employed in the trial wave function for the DMC simulations in this case is
the one corresponding to the energy minimum, k = 0.64, which is the optimal value of
the momentum in the dilute regime [25].

The DTDMC phase diagram of the SOC system is reported in Fig. 3.8 for fixed
density and varying scattering length. The upper and middle plots correspond to
the DTDMC results for the SS and LJ interactions, respectively, while the lower plot
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Fig. 3.8 DTDMC Phase diagram of the many-body system with Raman Spin Orbit
Coupling. The upper plot corresponds to the DTDMC diagram using the SS potential,
while the middle one corresponds to the LJ potential. Dashed lines are a guide to the
eye. In the lower plot, we report the mean field phase diagram.

shows the mean field phase diagram. The points indicate the computed transition
lines between the different phases. Errorbars in the DTDMC results account for
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Fig. 3.9 Rescaled DMC energies per particle as a function of the imaginary time step
for na3 = 10−4, Ω = 2.9 (top) and Ω = 3.1 (bottom), for the SS interaction. All
quantities are reported in reduced units.

the statistical variance of the energy estimations. In order to provide an illustrative
example of phase characterization, we show in Fig. 3.9 the DMC energies as a function
of the imaginary time step for the stripe and plane wave phases, for na3 = 10−4 with
Ω = 2.9 and Ω = 3.1, for the SS interaction. We see that at Ω = 2.9 the stripe phase
provides a statistically significant lower energy than the plane wave phase, while at
Ω = 3.1 the opposite happens. We have omitted the single minimum energy since it
lays above both of them.

Looking at the DTDMC phase diagrams it can be seen that, as the two-body
scattering length increases, the value of the reduced Raman coupling at which the
plane wave-stripe phase transition takes place, also increases. Remarkably, this effect
is absent at the mean field level, and is also robust with respect to the interaction
employed. Based on this, we conclude that the enhancement of the stripe phase in the
DTDMC phase diagrams is produced by the increase of inter-atomic correlations. This
enhancement takes place because the DTDMC correction to the mean field energy of
the stripe (∆EDMC,S) and plane wave (∆EDMC,PW) phases and the energy difference
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between these phases at the mean field level (∆EMF) fulfill
∣∣∣∆EDMC,S

∆EMF

∣∣∣ ≃
∣∣∣∆EDMC,PW

∆EMF

∣∣∣ ≃ 1
over a wide region of the phase diagram. Not only do the DTDMC phase boundaries
depart from the mean field prediction as the gas parameter increases, but also the
energies of each phase do. To show this, we present in Table 3.4 the DMC energies
per particle of the stripe wave function for both the SS and LJ interactions, together
with the mean field energy. We report the same for the plane wave wave function in
Table 3.5. We remark that the {Ω, na3} points where the energy is reported do not
necessarily correspond to points in the diagram where a given phase dominates. As the
gas parameter increases, we can see how the DTDMC energy departs from the mean
field result, and also how the energy obtained when employing different interactions
depart from each other.

The stripe phase is favored over the plane wave phase in the DTDMC diagram
because of the different polarization between phases: while the stripe phase is always
unpolarized, the plane wave phase has non-zero polarization. Since the potentials
employed in this work are less repulsive in the (+1,−1) and (−1,+1) channels in
accordance to the experiment of Ref. [2], the beyond mean field corrections favor
an unpolarized state over a polarized one. In this sense, the DTDMC corrections
drastically determine the transition line. In order to showcase the different polarizations
of each phase, we show in Fig. 3.10 the average of the z-component of the spin for
these two phases as a function of the imaginary time step, with na3 = 10−4, Ω = 2.9
for the stripe phase and Ω = 3.1 for the plane wave phase.

In contrast to the case discussed above, the single minimum region of the diagram
is only slightly changed by DTDMC with respect to the mean field prediction. This
is because the energy gap in mean field between this phase and the stripe and plane
wave phases is larger in absolute value than the DTDMC corrections over the majority
of the phase diagram.

In mean field, the stripe-plane wave and the stripe-single minimum transitions
are of first order, while the plane wave-single minimum transition is of second order
according to Refs. [25, 60]. This is directly reflected in the value of the momentum
that minimizes the energy in each phase at the mean field level: while there is a

na3 Ω DMC SS DMC LJ MF
10−3 3.1 −0.5721 ± 0.0001 −0.5711 ± 0.0002 −0.5723
10−2 3.4 −0.6485 ± 0.0005 −0.6508 ± 0.0005 −0.6590
2 × 10−2 3.6 −0.7037 ± 0.0004 −0.7160 ± 0.0007 −0.7276
3.33 × 10−2 3.6 −0.6720 ± 0.0003 −0.6964 ± 0.0005 −0.7124

Table 3.4 Results for the energy per particle estimation (in reduced units) for the stripe
trial wave function for several points of the {Ω, na3} diagram. "DMC SS" indicates
the DMC energies per particle with a SS two-body interaction, "DMC LJ" indicates
the same for the LJ potential and "MF" indicates the mean field energies per particle.
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na3 Ω DMC SS DMC LJ MF
10−3 3.1 −0.5717 ± 0.0001 −0.5715 ± 0.0002 −0.5754
10−2 3.4 −0.6466 ± 0.0002 −0.6437 ± 0.0003 −0.6706
2 × 10−2 3.6 −0.7037 ± 0.0002 −0.7177 ± 0.0005 −0.7468
3.33 × 10−2 3.6 −0.6683 ± 0.0001 −0.6951 ± 0.0005 −0.7352

Table 3.5 Same quantities as in Table 3.4 for the plane wave trial wave function.

Fig. 3.10 DMC average of the z-component of the spin per particle as a function of the
imaginary time step for na3 = 10−4, Ω = 2.9 (stripe phase, top) and Ω = 3.1 (plane
wave phase, bottom), for the SS interaction. Notice that the values displayed for the
stripe phase have largely been rescaled.

discontinuity in this parameter between the stripe and the other two phases at the
transition, the optimal momentum changes continuously from the plane wave to the
single minimum phase [25, 60]. We believe that the inclusion of correlations in the
DTDMC calculation does not change the nature of any of these phase transitions.
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Fig. 3.11 Isotropic contribution to the pair distribution function for the (+1,+1) and
(+1,−1) channels of the SS interaction (four top plots) and the LJ interaction (bottom
plots). For each interaction, the two upper plots correspond to the stripe phase, while
the bottom ones correspond to the plane wave phase. Left and right plots correspond
to na3 = 10−3 and na3 = 10−2, respectively.

The presence of inter-atomic correlations can be seen in the pair distribution
function, g(r⃗i − r⃗j), which yields the probability of finding two particles with a relative
position vector r⃗i − r⃗j . For an isotropic system, g(r⃗) depends on |r⃗|, while for a
non-isotropic system, as it is the case of the stripe phase, an expansion in partial
waves of the form g(r⃗i − r⃗j) = ∑

l,m gl,m(rij)Y m
l (θ, ϕ) yields non-zero contributions for
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l > 0. Notice that, in this expression, θ is the angle formed by r⃗ and the x-axis, while
the stripes are formed along planes perpendicular to that direction. The short range
behaviour of the pair distribution function depends on the specific model potential
employed, and is also sensitive to the gas parameter of the system. In order to
illustrate this, we report in Fig. 3.11 the isotropic mode (l = 0) for the plane wave
and stripe phases, for both the SS and LJ interactions, and for two different values
of the gas parameter na3 = (10−2, 10−3). In the figures, g0,0(r) is normalized such
that limr→∞ g0,0(r) = 1 for all spin channels. As can be seen from the Figure, an
increase of the gas parameter leads to lower values of g0,0(r) at short distances for
both phases and model potentials, which is the result of the stronger repulsion induced
by the interaction. The Figure also shows that the pair distribution function of the
LJ interaction approaches zero at short inter-particle distances, while this is not the
case for the SS interaction. This is a consequence of the infinite repulsion of the LJ
potential as r → 0. Remarkably, g0,0(r) is sensitive to the different spatial symmetries
present between the plane wave and stripe phases, since small oscillations can be seen
in the stripe case. These oscillations are induced by the periodic density modulations
of the stripes. As mentioned, the two phases are clearly distinguished when looking
at the leading correction to the isotropic mode, which is reported in Fig. 3.12, for
Ω = 3.1, na3 = 10−3. Only the (+1,+1) component is reported since results for the
other two-body channels are similar. The Figure depicts the l = 2,m = 0 modes for
the SS interaction. It should be pointed out that, for the specific type of interactions
used in this work, only the m = 0 contributions survive. As one can see, g2,0(rij) is
zero in the plane wave phase, while it yields a non-vanishing contribution in the stripe
phase. This reflects the different spatial symmetries associated to each phase [25]. This
quantity also vanishes for the single minimum phase. Very similar results hold for the
LJ interaction.

Since in the stripe phase the x-axis is transverse to the stripe planes, the static
structure factor along the x-direction, S(kx), develops a peak at a momentum propor-
tional to the inverse of the characteristic distance separating the stripes, a feature also
present at the Bogoliubov level [4]. We show in the upper panel of Fig. 3.13 the static
structure factor S(k⃗) for conditions similar to the experiment of Ref. [2] (γ = 0.904,
Ω = 0.3131 and na3 = 5 × 10−5). The lower panel shows the same quantities for
Ω = 2.8, where the stripe modulation is much more apparent due to the higher value of
Ω compared to E0. In accordance to that experiment, where reduced Raman coupling
values lay in the interval Ωexp ∈ [0, 0.4], we recover the stripe phase as the lowest
energy state. The periodicity of the stripes has been quantitatively characterized before
both in the mean field regime [25, 4] and in experiments [2]. The static structure factor
does not show any peak in the plane wave and single minimum phases, a consequence
of the lack of density modulations in these phases [25].
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Fig. 3.12 Leading correction to the isotropic contribution of the pair distribution
function in the (+1,+1) channel, corresponding to l = 2,m = 0, for the SS interaction.

Next, we characterize the superfluidity of the system in the stripe phase, where
other systems have shown a non-trivial dependence along different directions [47].
In order to recreate the conditions of contrast and diluteness of Ref. [2], we set
γ = 0.904 and use gas parameters spanning the range na3 ∈ [5 × 10−5, 2 × 10−4]. We
measure the superfluid density using the zero-temperature limit of the winding number
estimator [67], which is extracted from the mean squared displacement of the center of
mass of the particles during imaginary time evolution. The superfluid fraction along a
given direction u is computed as [47]

ρus
ρ

= lim
τ→∞

N

2τ ⟨
∣∣uc.m.(τ) − uc.m.(0)

∣∣2⟩ (3.148)

with uc.m. = ∑N
k=1

ui
N , u = x, y, z. The superfluid fraction is normalized such

that it yields unity if a system is fully superfluid along a given direction. We show
in Fig. 3.14 results for the superfluid fraction ρxs in the stripe phase along the x

direction as a function of Ω, and for three different values of the gas parameter,
na3 = 5 × 10−5, 1 × 10−4, and 2 × 10−4. The reported values are close to those present
in Ref. [49], obtained at the mean field level using the twisted phase method. We
see from the plot that the main parameter governing changes in ρxs is Ω, while little
dependence on the specific value of the gas parameter is found. As Ω increases, the
system becomes less superfluid in the x direction. This is a direct consequence of the
fact that the amplitude of the density modulation increases with Ω, as already seen
in mean field theory. For large values of Ω, exchanges of particles between different
stripe planes are less favored, and thus localization along the x axis is enhanced. In the
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Fig. 3.13 Static structure factors for the SS interaction, for two different points with
na3 = 5 × 10−5 and γ = 0.904, both corresponding to the stripe phase. The upper and
lower panels correspond to Ω = 0.3131 and Ω = 2.8, respectively.

other two directions, parallel to the stripe planes, the system remains fully superfluid
(ρys = ρzs = 1). Notice also that, for the values of Ω employed in the experiment of
Ref. [2], the superfluid fraction ρxs equals one. This, together with the periodic density
modulations in the static structure factor reported in Fig. 3.13, yields a quantitative
indication of simultaneous spatial periodicity and superfluidity in the system.

The superfluid fraction for the plane wave and single minimum phases has been
obtained at the mean field level using the phase twist method [49] and in the Bogoliubov
model through the evaluation of the transverse current operator [68]. In this case, the
superfluidity along y and z equals unity, while ρsx shows a dependence on the Raman
coupling. We recover these results with DTDMC for the gas parameters mentioned
previously by using the expression for the normal density of Ref. [68], replacing the
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Fig. 3.14 Superfluid fraction along the direction transverse to the stripe planes, as a
function of the reduced Raman coupling, for na3 = 5 × 10−5 and γ = 0.904.

mean field value of ⟨σ̂x⟩ with the value obtained with DTDMC. For the plane wave
phase, this corresponds to:

ρxs
ρ

= 1 − Ω
(2 − 2G2) (2 − 2G2k1)⟨σ̂x⟩ (3.149)

k1 =
√

1 − Ω2

4 (2 − 2G2)2 (3.150)

while for the single minimum phase, we have:

ρxs
ρ

= 1 − 4
Ω − 4G2

⟨σ̂x⟩ (3.151)

where G2 = 8πn(a+1,+1 − a+1,−1)/4 and all quantities are expressed in reduced units.
The difference in sign of the terms proportional to ⟨σ̂x⟩ with respect to the expressions
reported in Ref. [68] account for the different sign of the term proportional to Ω in
Eq. (3.3).

Finally, we report the one-body density matrix of the system, ρ(r⃗i − r⃗′
i), defined as:

ρ(r⃗ − r⃗′) =
∑
S⃗

∫
dR⃗N−1 Ψ∗(r⃗, R⃗N−1, S⃗)Ψ(r⃗′, R⃗N−1, S⃗)

⟨Ψ|Ψ⟩
. (3.152)

Here, R⃗N−1 stands for the position vector of an N − 1 particle system. As other
quantities, this function presents in general both radial and angular dependences,
although for isotropic systems the latter is missing. However, the condensate fraction
of the system is obtained from the long distance value of the s-wave component of
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Fig. 3.15 Several realizations of the one-body density matrix and its average (wider
line) for the stripe (upper plot, Ω = 3.1, na3 = 10−3) and plane wave (lower plot,
Ω = 3.3, na3 = 10−3) phases. γ is set to γ = 0.4.

ρ(r⃗ − r⃗′) [47]. Thus, we show in Fig. 3.16 the isotropic contribution to the one-body
density matrix for the plane wave and stripe trial wave functions. Results for the
single minimum are not reported as they are qualitatively equivalent to those of
the plane wave phase. For the stripe case these are calculated at {Ω, na3} equal to
{2.4, 10−4} and {3.1, 10−3}, while for the plane wave case these are computed at
{Ω, na3} = {3.1, 10−4} and {3.3, 10−3 }. In all cases, the two-body interaction is of
SS type. In order to obtain the data shown in Fig. 3.16 we have averaged the s-wave
component of ρ(r⃗) obtained from seven realizations of the simulation. We show in
Fig. 3.15 some of these realization and its average for both the stripe and plane wave
cases at {Ω = 3.1, na3 = 10−3} and {Ω = 3.3, na3 = 10−3} respectively. In order to
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obtain a condensate fraction for the stripe phase, we take the value of the one-body
density matrix at the highest possible |r⃗| and incorporate an errorbar which accounts
for the small oscillations. Looking at Fig. 3.16 we can see that the stripe phase has
always a lower condensate fraction than the plane wave phase. We can also see how
the condensate fraction on both phases decreases as the gas parameter increases, which
is already expected. Finally, notice how ρ(r) shows marked oscillations in the stripe
phase. This is caused by the periodicity of the stripes.

Fig. 3.16 One-body density matrix for the stripe and plane wave phases. The upper
plot corresponds to Ω = 3.3 and na3 = 10−3, while the lower plot corresponds to
Ω = 3.5 and na3 = 10−2. γ = 0.4 in both cases.



Chapter 4

Beyond Mean Field Effects in
Raman Spin-Orbit Coupled
Systems
4.1 Introduction

As stated in Chapter 1, despite the large number of experiments accurately described
by mean field theories, these approaches have some limitations. On one hand, they
are unable to account for inter-atomic correlations for large enough gas parameters.
On the other hand, one can find some examples of systems for which the mean field
approximation predicts a collapse while experiments do not show so. This is the case
for dipolar systems in three dimensions [9, 10] and ultra-dilute unstable Bose-Bose
mixtures [35, 37, 36]. In this context, it is necessary to account for correlations at a
higher order in order to provide a quantitatively accurate description of the many-
body system. The first correction to the mean field prediction can be obtained by
following Beyond Mean Field prescriptions. In this context, a system is modeled as a
mostly populated BEC with a small fraction of particles excited out of the condensate
due to the effect of interactions. These approaches can not account for inter-atomic
correlations at the same level as Monte Carlo methods, but have the advantage of being
generally of much lower computational cost, and the ability to simulate arbitrarily
large systems. On top of this, the only parameter to be considered from interactions
is the scattering length, which means that the results obtained from Beyond Mean
Field calculations are independent of the details of the potential, so they are universal.
While for non-SOC systems, Beyond Mean Field methods are strictly less accurate than
Monte Carlo methods, in the case of SOC systems they are complementary. While,
as previously mentioned, Monte Carlo methods account for inter-atomic correlations
exactly, they resort to the fixed phase approximation, whereas this is not the case
with Beyond Mean Field techniques. We present in this Chapter a review of the
theoretical framework needed to include beyond mean field terms in Raman Spin-Orbit
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Coupling systems. We discuss two approaches: a matrix variation [3] of the standard
Bogoliubov formalism. [69] (see Sec. 4.2), and the Bogoliubov-de Gennes method [70]
(see Sec. 4.3). We first recover the known results for a non-SOC system and then
extend both formalisms to the Raman SOC case, for all the stripe, plane wave and
single minimum phases. We obtain, for the first time, the Lee-Huang-Yang (LHY)
correction for the stripe phase of a Raman SOC system. Afterwards, we present an
application of this calculation: we study how the beyond mean field energy correction
stabilizes a Raman SOC system in the stripe phase that is unstable at the mean field
level (see Sec. 4.4). The mean field instability in this system is induced by an attractive
inter-spin interaction. We characterize the phases that emerge in the system stabilized
by the beyond mean field effects, also known as quantum fluctuations: the gas and the
liquid phases. We also show that the stabilized system admits droplet-like solutions
that feature a striped density pattern, which we call supersolid striped droplets.

Through all this Chapter, the SOC Hamiltonian is defined as:

ĤSOC =
N∑
k=1

[
P̂ 2
k

2M + Ŵ SOC
k

]
+

N∑
k,j=1
k<j

V̂ 2b
k,j , (4.1)

with N the number of particles enclosed in a volume V . Through this Section, we use
M to denote the mass instead of m, since the letter m is employed as a summation
index in several expressions. The potentials are given by:

Ŵ SOC
k = λℏ

M
P̂ xk σ̂

z
k + λ2ℏ2

2M − Ω
2 σ̂

x
k (4.2)

V 2b
k,j

(
r⃗k, r⃗j , sk, sj

)
=

4πℏ2ask,sj

M
δ
(
r⃗k − r⃗j

)
, (4.3)

with ask,sj the spin-dependent scattering length, which fulfills a+1,−1 = a−1,+1. We set
a+1,+1 = a−1,−1. We define the parameter γ = (a+1,+1 − a+1,−1)/(a+1,+1 + a+1,−1),
which accounts for the contrast of the two-body spin-dependent interaction. All results
are reported in reduced units. We chose the length and energy scales to be:

a0 = 1
λ
, ϵ0 = ℏ2

2Ma2
0

= ℏ2λ2

2M . (4.4)

which correspond to the length and energy scales chosen in Chapter 3 with ηRm. = 1.
The non-SOC Hamiltonian reads:

Ĥno-SOC =
N∑
k=1

P̂ 2
k

2M +
N∑

k,j=1
k<j

4πℏ2a

M
δ
(
r⃗k − r⃗j

)
. (4.5)
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In second quantization, any Hamiltonian Ĥ composed by the sum of one-body terms
Ĥ0 and a local two-body interaction V̂ can be written as [69]:

Ĥ =
∫
d⃗r1d⃗r2Ψ̂† (r⃗1) ⟨r⃗1| Ĥ0 |r⃗2⟩ Ψ̂ (r⃗2) + 1

2

∫
d⃗r1d⃗r2Ψ̂† (r⃗1) Ψ̂† (r⃗2)V (r⃗1, r⃗2) Ψ̂ (r⃗1) Ψ̂ (r⃗2) ,

(4.6)

where Ψ̂ (r⃗) stands for to the field operator.

4.2 Matrix formulation of the standard Bogoliubov for-
malism

4.2.1 Non-SOC case

The first steps to follow within this approach are analogous to the ones in Ref. [69].
We expand the field operator in eigenstates of the momentum operator:

Ψ̂ (r⃗) =
∑
k⃗

1√
V
eik⃗r⃗â

k⃗
(4.7)

with â
k⃗

the annihilation operator of momentum k⃗. We assume that the state of our
system lies close to the mean field regime, i.e. the number of particles occupying the
zero momentum state is orders of magnitude larger than the population of the k⃗ ̸= 0
states. We denote by N0 the population of the condensate (zero momentum state in
this case). This assumption allows us to treat the creation and annihilation operators
of the zero-momentum state as complex numbers, i.e., â0 ∼ â†

0 ∼
√
N0 Expanding

the Hamiltonian of the system in terms of the creation and annihilation operators
yields [69]:

Ĥ =
∑
k⃗ ̸=0

ℏ2k2

2M â†
k⃗
â
k⃗

+ 2πℏ2a

MV

∑
q⃗1,q⃗2 ,⃗k

â†
q⃗1−k⃗

â†
q⃗2+k⃗

âq⃗1 âq⃗2 (4.8)

where the momentum indexes of the two-body potential reflect the momentum con-
servation on a collision of particles, a consequence of the dependence of the two-body
interaction on the relative distance between particles only. We now expand this ex-
pression in powers of N1/2

0 and keep only the main contributions of the two-body
interaction up to O(N0), which results into:

Ĥ =
∑
k⃗ ̸=0

ℏ2k2

2M â†
k⃗
â
k⃗

+ 2πℏ2a

MV

N2
0 + 4N0

∑
k⃗ ̸=0

â†
k⃗
â
k⃗

+N0
∑
k⃗ ̸=0

(
â
k⃗
â−k⃗ + â†

k⃗
â†

−k⃗

) (4.9)
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At the mean field level, we retain only the largest power in N0 and consider that only
the zero-momentum state is occupied, i.e. N = N0, which yields the known result:

EMF = 2πℏ2aN2

MV
(4.10)

In order to incorporate beyond mean field corrections, we must first discuss the
conservation of the number of particles. Because of the dropped contributions to the
two-body part of the exact Hamiltonian, the approximated Hamiltonian no longer
commutes with the total number operator [71] N̂ = ∑

k⃗
â†
k⃗
â
k⃗

= N0 + ˆδN . In order to
solve this issue, we work in the grand-canonical ensemble. By doing so, we recover the
eigenvalues and eigenstates of Ref. [69]. The grand-canonical Hamiltonian, K̂ = Ĥ−µN̂
reads, up to O(N0)

K̂ =
∑
k⃗ ̸=0

ℏ2k2

2M â†
k⃗
â
k⃗

+ 2πℏ2a

MV

N2
0 + 4N0

∑
k⃗ ̸=0

â†
k⃗
â
k⃗

+N0
∑
k⃗ ̸=0

(
â
k⃗
â−k⃗ + â†

k⃗
â†

−k⃗

)− µN0 − µ
∑
k⃗ ̸=0

â†
k⃗
â
k⃗

(4.11)

with µ the chemical potential and N̂ = ∑
k⃗
â†
k⃗
â
k⃗

= N0 + ∑
k⃗ ̸=0 â

†
k⃗
â
k⃗
. The chemical

potential is obtained as the eigenvalue of the time-independent Gross-Pitaevskii equa-
tion (tiGPE). For an homogeneous gas, the solution of the tiGPE is a constant wave
function with eigenvalue

µ = 4πℏ2aN0
MV

, (4.12)

so upon substitution in the previous equation, the grand-canonical Hamiltonian be-
comes:

K̂ =
∑
k⃗ ̸=0

ℏ2k2

2M â†
k⃗
â
k⃗

+ 2πℏ2a

MV

2N0
∑
k⃗ ̸=0

â†
k⃗
â
k⃗

+N0
∑
k⃗ ̸=0

(
â
k⃗
â−k⃗ + â†

k⃗
â†

−k⃗

)+ 2πℏ2aN2
0

MV
− µN0

(4.13)

We can rewrite the sum over momenta as a sum running over kx > 0 only, so that the
grand-canonical Hamiltonian reads

K̂ =
∑
kx>0

(
ℏ2k2

2M + 4πℏ2aN0
MV

)(
â†
k⃗
â
k⃗

+ â†
−⃗k
â−⃗k

)
+ 4πℏ2aN0

MV

∑
kx>0

(
â
k⃗
â−k⃗ + â†

k⃗
â†

−k⃗

)

+ 2πℏ2aN2
0

MV
− µN0 (4.14)
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We now proceed to diagonalize K̂. We do so following the approach of Ref. [3]. We
define:

ψ̂
k⃗

=

 â
k⃗

â†
−k⃗

 ψ̂†
k⃗

=
(
â†
k⃗

â−k⃗

)
(4.15)

and use them to write K̂ in matrix form as:

K̂ = 2πℏ2aN2
0

MV
− µN0 +

∑
kx>0

ψ̂†
k⃗

ℏ2k2

2M + 4πℏ2aN0
MV

4πℏ2aN0
MV

4πℏ2aN0
MV

ℏ2k2

2M + 4πℏ2aN0
MV

ψ̂
k⃗

− ℏ2k2

2M − 4πℏ2aN0
MV


= 2πℏ2aN2

0
MV

− µN0 +
∑
kx>0

[
ψ̂†
k⃗
K
k⃗
ψ̂
k⃗

− ℏ2k2

2M − 4πℏ2aN0
MV

]
(4.16)

where we have used the commutation relation for boson operators, [â
k⃗
â†
k⃗′ ] = δ

k⃗,⃗k′ , to
write

∑
kx>0

(
ℏ2k2

2M + 4πℏ2aN0
MV

)
â†

−k⃗
â−k⃗ =

∑
kx>0

(
ℏ2k2

2M + 4πℏ2aN0
MV

)
â−k⃗â

†
−k⃗

− ℏ2k2

2M − 4πℏ2aN0
MV

(4.17)

and we have defined

K
k⃗

=

ℏ2k2

2M + 4πℏ2aN0
MV

4πℏ2aN0
MV

4πℏ2aN0
MV

ℏ2k2

2M + 4πℏ2aN0
MV

 (4.18)

We want to diagonalize each one of the matrices K
k⃗
, i.e. we want to find a vector of

operators

ϕ̂
k⃗

=

 b̂
k⃗

b̂†
−k⃗

 (4.19)

such that each matrix K
k⃗

can be written in diagonal form. This is equivalent to
performing a Bogoliubov transformation. These vectors are related to the vectors ψ̂

k⃗

defined in Eq. (4.15) by the transfer matrix M
k⃗
, i.e.

ψ̂
k⃗

= M
k⃗
ϕ̂
k⃗
. (4.20)
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In this way, we can write

ψ̂†
k⃗
K
k⃗
ψ̂
k⃗

− ℏ2k2

2M − 4πℏ2aN0
MV

= ϕ̂†
k⃗
M †
k⃗
K
k⃗
M
k⃗
ϕ̂
k⃗

− ℏ2k2

2M − 4πℏ2aN0
MV

= ϕ̂†
k⃗
K
d,⃗k
ϕ̂
k⃗

− ℏ2k2

2M − 4πℏ2aN0
MV

− E(−k⃗) + E(−k⃗)

= E(−k⃗)b̂†
−k⃗
b̂−k⃗ + E(k⃗)b̂†

k⃗
b̂
k⃗

− ℏ2k2

2M − 4πℏ2aN0
MV

+ E(−k⃗) ,

(4.21)

with

K
d,⃗k

=

E(k⃗) 0
0 E(−k⃗)

 = M †
k⃗
K
k⃗
M
k⃗

(4.22)

Here, E(k⃗) are the excitation spectrum energies. The commutation relation of the â
k⃗
,

â†
k⃗

operators can be written in matrix form as:

ψ̂
k⃗
ψ̂†
k⃗

−
[(
ψ̂†
k⃗

)τ
ψ̂τ
k⃗

]τ
= Ĩ =

1 0
0 −1

 , (4.23)

where τ indicates the transpose operation. It can be checked that:

ψ̂
k⃗
ψ̂†
k⃗

=

 â
k⃗
â†
k⃗

â
k⃗
â−k⃗

â†
−k⃗
â†
k⃗

â†
−k⃗
â−k⃗


[(
ψ̂†
k⃗

)τ
ψ̂τ
k⃗

]τ
=

 â†
k⃗
â
k⃗

â
k⃗
â−k⃗

â†
−k⃗
â†
k⃗

â−k⃗â
†
−k⃗

 (4.24)

We want the b̂
k⃗
, b̂†

k⃗
operators to be associated to the creation and annihilation of

bosonic quasi-particles. Therefore, we impose

ϕ̂
k⃗
ϕ̂†
k⃗

−
[(
ϕ̂†
k⃗

)τ
ϕ̂τ
k⃗

]τ
= Ĩ

M
k⃗
ψ̂
k⃗
ψ̂†
k⃗
M

†
k⃗

−
[(
M

†
k⃗

)τ (
ψ̂†
k⃗

)τ
ψ̂τ
k⃗
M

τ
k⃗

]τ
= Ĩ , (4.25)

where we have defined M
k⃗

= M−1
k⃗

. We now multiply both sides of Eq. (4.25) by M
k⃗

on the left and M †
k⃗

on the right, which results into

ψ̂
k⃗
ψ̂†
k⃗

−
[(
ψ̂†
k⃗

)τ
ψ̂τ
k⃗

]τ
= M

k⃗
ĨM †

k⃗
, (4.26)
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and thus, the matrix M
k⃗

must fulfill the condition

M
k⃗
ĨM †

k⃗
= Ĩ , (4.27)

We can get an additional property of the M
k⃗

matrices from Eq. (4.27). If we multiply
both sides of the Equation by M †

k⃗
Ĩ in the left and ĨM

k⃗
in the right we get

M †
k⃗
ĨM

k⃗
ĨM †

k⃗
ĨM

k⃗
= M †

k⃗
Ĩ Ĩ ĨM

k⃗
= M †

k⃗
ĨM

k⃗
. (4.28)

By defining A = M †
k⃗
ĨM

k⃗
we can write:

AĨA = A , (4.29)

Assuming that A−1 exists, we can write this expression in the form

ĨA = I , (4.30)

which implies A = Ĩ. Therefore, M
k⃗

fulfills the relation

M †
k⃗
ĨM

k⃗
= Ĩ (4.31)

This expression is useful when deriving the Bogoliubov amplitudes. Multiplying both
sides of Eq. (4.22) by M

k⃗
Ĩ and using Eq. (4.27) we get:

M
k⃗
ĨK

d,⃗k
= ĨK

k⃗
M
k⃗

. (4.32)

From Eq. (4.32) we can see that the columns of the matrix M
k⃗

correspond to the eigen-
vectors of Keff

k⃗
= ĨK

k⃗
, while the eigenvalues are E(k⃗) and −E(−k⃗). We can compute

the excitation spectrum and the Bogoliubov amplitudes following this prescription.
The matrix to be diagonalized is:

Keff
k⃗

=

ℏ2k2

2M + 4πℏ2aN0
MV

4πℏ2aN0
MV

−4πℏ2aN0
MV −ℏ2k2

2M − 4πℏ2aN0
MV

 (4.33)

The eigenvalues ϵ
k⃗

of Keff
k⃗

are given by

ϵ±
k⃗

= ±

√√√√(ℏ2k2

2M

)2

+ 2
(
ℏ2k2

2M

)
4πℏ2aN0
MV

= ±E(±k⃗) , (4.34)
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while its eigenvectors are given by

v+ =

 1
−ξ

k⃗

 v− =

−ξ
k⃗

1

 ξ
k⃗

= MV

4πℏ2aN0

(
ℏ2k2

2M + 4πℏ2aN0
MV

− E(k⃗)
)

, (4.35)

The normalization of the eigenvectors is obtained from Eq. (4.31), i.e.

(v+
1 )2 − (v+

2 )2 = 1

(v−
1 )2 − (v−

2 )2 = −1 (4.36)

Thus, the normalized eigenvectors are:

v+ =


1√

1−ξ2
k⃗

− ξ
k⃗√

1−ξ2
k⃗

 v− =


− ξ

k⃗√
1−ξ2

k⃗

1√
1−ξ2

k⃗

 (4.37)

with the matrix M
k⃗

given by

M
k⃗

=


1√

1−ξ2
k⃗

− ξ
k⃗√

1−ξ2
k⃗

− ξ
k⃗√

1−ξ2
k⃗

1√
1−ξ2

k⃗

 (4.38)

In this way, we recover the eigenvalues and the Bogoliubov amplitudes of Ref. [69].
The lowest eigenvalue of the operator K̂ corresponds to k⃗ = 0 and can be inferred
from Eqs. (4.16) and (4.21). It is given by:

K0 = 2πℏ2aN2
0

MV
− µN0 +

∑
kx>0

(
−ℏ2k2

2M − 4πℏ2aN0
MV

+ E(−⃗k)
)

, (4.39)

Transforming the sum into an integral, we obtain

K0 = 2πℏ2aN2
0

MV
− µN0 +

∫
kx>0

d⃗k
V

(2π)3

(
−ℏ2k2

2M − 4πℏ2aN0
MV

+ E(−⃗k)
)

= 2πℏ2aN2
0

MV
− µN0 + V

(2π)2

∫ ∞

0
dkk2

(
−ℏ2k2

2M − 4πℏ2aN0
MV

+ E(−⃗k)
)

. . (4.40)

The integral in Eq. (4.40) is divergent. This can be seen by computing the k → ∞
limit of the integrand, which yields



4.2 Matrix formulation of the standard Bogoliubov formalism | 87

lim
k→∞

k2
(

−ℏ2k2

2M − 4πℏ2aN0
MV

+ E(−⃗k)
)

= lim
k→∞

k2

−ℏ2k2

2M − 4πℏ2aN0
MV

+
(
ℏ2k2

2M

)√√√√1 + 2
(

4πℏ2aN0
MV

)(
2M
ℏ2k2

)
= lim

k→∞
k2

−ℏ2k2

2M − 4πℏ2aN0
MV

+
(
ℏ2k2

2M

)1 +
(

4πℏ2aN0
MV

)(
2M
ℏ2k2

)
− 1

2

(
4πℏ2aN0
MV

)2( 2M
ℏ2k2

)2



= −
(

4πℏ2aN0
MV

)2(
M

ℏ2

)
(4.41)

i.e. the integrand tends to a constant. In order to regularize the integral, we apply
Dimensional Regularization [72, 73]. We start by rewriting K0 as:

K0 = 2πℏ2aN2
0

MV
− µN0 + V

(2π)2

∫ ∞

0
dkk2

(
−ℏ2k2

2M − 4πℏ2aN0
MV

+ E(−⃗k)

+
(

4πℏ2aN0
MV

)2(
M

ℏ2(k2 + c2)

)− 1
2

V

(2π)3

∫
d⃗k

(
4πℏ2aN0
MV

)2(
M

ℏ2(k2 + c2)

)
.

(4.42)

where we have just added and subtracted to Eq. (4.40) the quantity
∫
kx>0 d⃗k

(
4πℏ2aN0
MV

)2 (
M

ℏ2(k2++c2)

)
,

with c a real parameter, and have also used that

∫
kx>0

d⃗k

(
4πℏ2aN0
MV

)2(
M

ℏ2(k2 + c2)

)
= 1

2

∫
d⃗k

(
4πℏ2aN0
MV

)2(
M

ℏ2(k2 + c2)

)
.

(4.43)

Now, the first integral of Eq. (4.42) is convergent for all values of c, while the second
can be regularized via Dimensional Regularization.

In Dimensional Regularization, one first generalizes the integral to be regularized
by turning the dimensionality of the space into a continuous variable. Afterwards,
one computes it in the domain of the dimensionality where it converges. Finally, one
performs the analytical continuation of the converged result, which can be shown to
be unique [73] and provides the numerical value of the regularized integral at the
dimensionality of interest, in our case d = 3. Let us illustrate this process. We want to
regularize the second integral in Eq. (4.42),
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I = 1
2

V

(2π)3

∫
d⃗k

(
4πℏ2aN0
MV

)2(
M

ℏ2(k2 + c2)

)
= V

(2π)3

(
4πℏ2aN0
MV

)2
M

ℏ2
4π
2

∫ ∞

0
dk

k2

k2 + c2 .

(4.44)

We now assume that the dimensionality of the space, d, is a continuous parameter.
The generalized integral then becomes

Id = V

(2π)3

(
4πℏ2aN0
MV

)2
M

ℏ2
Sd
2

∫ ∞

0
dk

kd−1

k2 + c2 = Cd

∫ ∞

0
dk

kd−1

k2 + c2 = CdĨd . (4.45)

with Sd the integral of the solid angle in d dimensions. Notice that Id converges for
d ∈ [1, 2]. We can rewrite Ĩd using the relation:

a−z = 1
Γ(z)

∫ ∞

0
dt tz−1 exp(−at) (4.46)

with Γ(z) the Euler-Gamma function. This results into:

Ĩd =
∫ ∞

0
dk

∫ ∞

0
dt kd−1 exp

(
−t
(
k2 + c2

))
=
∫ ∞

0
dt exp

(
−tc2

) ∫ ∞

0
dk kd−1 exp

(
−tk2

)
. (4.47)

We now perform the change of variables, y = k2, to find

Ĩd =
∫ ∞

0
dt exp

(
−tc2

) ∫ ∞

0
dy

1
2√

y
y(d−1)/2 exp (−ty)

= 1
2

∫ ∞

0
dt exp

(
−tc2

) ∫ ∞

0
dy yd/2−1 exp (−ty)

= 1
2Γ
(
d

2

)∫ ∞

0
dt exp

(
−tc2

)
t−d/2

= cd−2

2 Γ
(
d

2

)
Γ
(

1 − d

2

)
, . (4.48)

We can now perform the analytical continuation of Ĩ by using the well-known analytical
continuation of the Gamma function, which extends Γ(z) to z < 0. Notice that
Eq. (4.48) involves positive arguments of the Gamma function for d ∈ (1, 2), the
convergence interval of the unregularized integral. One can now obtain the regularized
integral I by substituting Ĩd in Eq. (4.44) and particularizing the result to d = 3.

I = V

(2π)2

(
4πℏ2aN0
MV

)2
M

ℏ2
c

2Γ
(3

2

)
Γ
(

−1
2

)
(4.49)
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Substituting in Eq. (4.42) we write K0 as

K0 = 2πℏ2aN2
0

MV
− µN0 + V

(2π)2

∫ ∞

0
dkk2

(
−ℏ2k2

2M − 4πℏ2aN0
MV

+ E(−⃗k)+

(
4πℏ2aN0
MV

)2(
M

ℏ2(k2 + c2)

)− V

(2π)2

(
4πℏ2aN0
MV

)2
M

ℏ2
c

2Γ
(3

2

)
Γ
(

−1
2

)
.

(4.50)

It must be remarked that the above result is independent of the chosen value of c. In
particular, it can be shown in the framework of Dimensional Regularization, that for
c = 0 one has [72]:

I = 0 (4.51)

K0 = 2πℏ2aN2
0

MV
− µN0 + V

(2π)2

∫ ∞

0
dkk2

−ℏ2k2

2M − 4πℏ2aN0
MV

+ E(−⃗k) +
(

4πℏ2aN0
MV

)2(
M

ℏ2(k2)

) ,

(4.52)

and the integration yields [69]

K0 = 2πℏ2aN2
0

MV

1 + 128
15

√
π

√
N0
V
a3

− µN0 (4.53)

However, this is the lowest eigenvalue of the grand-canonical Hamiltonian. In order to
obtain the ground state energy of the system, we must obtain the lowest eigenvalue of
the Hamiltonian.

Eg.s. = 2πℏ2aN2
0

MV

1 + 128
15

√
π

√
N0
V
a3

− µN0 + µN

= 2πℏ2a(N0 + δN−)2

MV

1 + 128
15

√
π

√
N0 + δN − δN

V
a3

+ µδN

= 2πℏ2a(N − δN)2

MV

1 + 128
15

√
π

√
N − δN

V
a3

+ µδN

= 2πℏ2aN2

MV

1 + 128
15

√
π

√
N − δN

V
a3

− 2δN 2πℏ2a

MV

1 + 128
15

√
π

√
N − δN

V
a3

+ µδN

where N = N0 + δN , with N the total number of particles in the system and δN the
fraction of particles outside of the condensate. Using Eq. (4.12) and the fact that
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µδN = δN 4πℏ2aN
MV + O

(
δN2

)
, we get

Eg.s.
N

= 2πℏ2aN

MV

1 + 128
15

√
π

√
N − δN

V
a3

− 2δN
N

2πℏ2a

MV

 128
15

√
π

√
N − δN

V
a3

 .

(4.54)

By computing the condensate fraction, it can be shown that:

128
15

√
π

√
N

V
a3 ∼ O

(
δN

N

)
(4.55)

Therefore, one can write:

Eg.s.
N

= 2πℏ2an

M

(
1 + 128

15
√
π

√
na3

)
+ O

(δN
N

)2
 . (4.56)

where n = N/V is the density. In this way, we have recovered the well-known
Lee-Huang-Yang correction to the mean field energy.

4.2.2 Raman SOC case: Plane Wave and Single Minimum phases

We now present the application of the formalism introduced in the previous Section to
a system under Raman SOC in the plane wave and single minimum phases [3], focusing
on the computation of the excitation spectrum and the LHY energy correction to the
mean field prediction. We start by expanding the field operator in terms of linear
combinations of eigenstates of the one-body Hamiltonian

ĤSOC,1b = P̂ 2

2M + λℏ
M
P̂ xσ̂z + λ2ℏ2

2M − Ω
2 σ̂x (4.57)

Therefore, we write the field operator as

Ψ̂ (r⃗) =
∑
k⃗,d

1√
V

exp
(
ik⃗r⃗
)
â
k⃗,d

∣∣∣d(k⃗)
〉

(4.58)

where k⃗ denotes the momentum and d = ±1 denotes the branch index, since the
excitation spectrum of the system has two distinct branches due to the spin degrees of
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freedom. Furthermore (see Chapter 2):∣∣∣d = +1(k⃗)
〉

= sin θ
∣∣∣↑̃〉

k⃗
+ cos θ

∣∣∣↓̃〉
k⃗

(4.59)∣∣∣d = −1(k⃗)
〉

= − cos θ
∣∣∣↑̃〉

k⃗
+ sin θ

∣∣∣↓̃〉
k⃗

(4.60)∣∣∣↑̃〉
k⃗

= sinχk |+1⟩ + cosχk |−1⟩ (4.61)∣∣∣↓̃〉
k⃗

= − cosχk |+1⟩ + sinχk |−1⟩ (4.62)

sinχk =
√

1 − sin θk
2 (4.63)

cosχk =
√

1 + sin θk
2 (4.64)

sin θk = (2ℏ2λkx)/(ΩM)√
1 +

(
(2ℏ2λkx)/(ΩM)

)2 (4.65)

Here, exp
(
ik⃗r⃗
) ∣∣∣↑̃〉

k⃗
and exp

(
ik⃗r⃗
) ∣∣∣↓̃〉

k⃗
are the eigenstates of the one-body Hamilto-

nian of Eq. (4.57), obtained in Chapter 2. Therefore, the states exp
(
ik⃗r⃗
) ∣∣∣d = ±1(k⃗)

〉
that appear in Eq. (4.58) correspond to linear combinations of these eigenstates. The
states |±1⟩ appearing in Eqs. (4.61) and (4.62) are the eigenstates of the σ̂z operator.
We assume that the condensation state is exp

(
ik⃗0r⃗

) ∣∣∣d = −1(k⃗0)
〉
. The values for θ

and k⃗0 (the ground state momentum) will be obtained by diagonalizing the Hamiltonian
in second quantization up to O

(
N

3/2
0 /V

)
and minimizing its lowest eigenvalue. This

procedure leads to the same condensate wave function as that of Ref. [25]. We can
express the states |d = ±1⟩

k⃗
in terms of |±1⟩ as:∣∣∣d = +1(k⃗)

〉
= − cosαk |+1⟩ + sinαk |−1⟩ (4.66)∣∣∣d = −1(k⃗)

〉
= − sinαk |+1⟩ − cosαk |−1⟩ (4.67)

with αk = θ+χk. We now write the Hamiltonian of the system in second quantization,
starting with the one-body terms. These are given by:∫
d⃗r1d⃗r2Ψ̂† (r⃗1) ⟨r⃗1| Ĥ0 |r⃗2⟩ Ψ̂ (r⃗2) =

∫
d⃗r1d⃗r2

∑
k⃗,⃗k′,d,d′

â†
k⃗,d
â
k⃗′,d′e

−ik⃗r⃗1
〈
d(k⃗)

∣∣∣ ⟨r⃗1| Ĥ0 |r⃗2⟩ |d′(k⃗′)⟩ eik⃗′r⃗2

=
∑
k⃗,d,d′

â†
k⃗,d′ âk⃗,dE1b(k⃗, d, d′) (4.68)
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where:

E1b(k⃗,+1,+1) = sin2 θ E1b(k⃗, ↑̃) + cos2 θ E1b(k⃗, ↓̃) (4.69)

E1b(k⃗,−1,−1) = cos2 θ E1b(k⃗, ↑̃) + sin2 θ E1b(k⃗, ↓̃) (4.70)

E1b(k⃗,+1,−1) = E1b(k⃗,−1,+1) = sin θ cos θ(−E1b(k⃗, ↑̃) + E1b(k⃗, ↓̃)) , (4.71)

where we have used the fact that the states eik⃗r⃗
∣∣∣↕̃〉

k⃗
are eigenstates of Ĥ0 corresponding

to an energy E1b(k⃗, ↕̃) and that they are orthogonal to each other (see Chapter 2).
The two-body terms are given by:

1
2

∫
d⃗r1d⃗r2Ψ̂† (r⃗1) Ψ̂† (r⃗2)V (r⃗1, r⃗2) Ψ̂ (r⃗1) Ψ̂ (r⃗2) =

2πℏ2

MV

∑
q⃗1,q⃗2 ,⃗k
d1,d2
d′

1,d
′
2

 ∑
sA,sB

asA,sB ⟨d′
1(q⃗1 − k⃗)|sA⟩ ⟨d′

2(q⃗1 + k⃗)|sB⟩
〈
sA
∣∣d1(q⃗1)

〉 〈
sB
∣∣d2(q⃗2)

〉

× â†
d′

1,q⃗1−k⃗
â†
d′

2,q⃗2+k⃗
âd1,q⃗1 âd2,q⃗2 (4.72)

where
∣∣sA,B = ±1

〉
are the eigenstates of the σ̂z operator. We have followed the

same steps as in [69] to express the two-body interaction in terms of the creation
and annihilation operators. Assuming that the condensation state is macroscopically
occupied, we can write â−1,⃗k0

∼
√
N0. We now retain the two-body contributions up

to O
(
N0

√
N0/V

)
:

1
2

∫
d⃗r1d⃗r2Ψ̂† (r⃗1) Ψ̂† (r⃗2)V (r⃗1, r⃗2) Ψ̂ (r⃗1) Ψ̂ (r⃗2) ≃

N2
0

2πℏ2

MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2
+N0

√
N0

4πℏ2

MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2 〈−1(k⃗0)

∣∣∣sB〉〈sB∣∣∣+1(k⃗0)
〉(

â+1,⃗k0
+ â†

+1,⃗k0

)
(4.73)

where we have used that the products
〈
d(k⃗)

∣∣∣s〉 are real. Therefore, the Hamiltonian
up to O

(
N0

√
N0/V

)
is given by

Ĥ ≃ E1b(k⃗0,−1,−1)N0 +N2
0

2πℏ2

MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2

+N0
√
N0

E1b(k⃗,+1,−1) + 4πℏ2

MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2 〈−1(k⃗0)

∣∣∣sB〉〈sB∣∣∣+1(k⃗0)
〉

×
(
â+1,⃗k0

+ â†
+1,⃗k0

)
(4.74)
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We now find the value of the condensation momentum k⃗0 and the superposition angle
θ by imposing:

E1b(k⃗,+1,−1) + 4πℏ2

MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2 〈−1(k⃗0)

∣∣∣sB〉〈sB∣∣∣+1(k⃗0)
〉

= 0

(4.75)

i.e. by making the non-diagonal contributions to the Hamiltonian vanish. In this way,
we are diagonalizing the Hamiltonian. This gives a set of {k⃗0, θ} values. We then
minimize:

EMF = E1b(k⃗0,−1,−1)N0 +N2
0

2πℏ2

MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2
(4.76)

i.e. the mean field energy, with respect to k⃗0 and θ, and set the final values for
these parameters as the ones that minimize EMF . This process can be carried out
numerically. As mentioned previously, this approach yields the same condensation
state and mean field energy as the ones provided by the ansatz used in Ref. [25].

Once the mean field ground state is obtained, we can go further by retaining higher
order terms of the two-body part of the Hamiltonian. As in the previous Section, we
must work with the grand-canonical Hamiltonian due to its non-commutativity with
the number operator when these terms are retained. The chemical potential of the
condensate state corresponds to the eigenvalue of the Gross-Pitaevskii equation, which
is given by:

µ = E1b(k⃗0,−1,−1) + 4πℏ2N0
MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2 (4.77)

Up to O
(
N0
V

)
, K̂ = Ĥ − µN̂ can be written as:

K̂ ≃ E1b(k⃗0,−1,−1)N0 +N2
0

2πℏ2

MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2 − µN0

+
∑
k⃗ ̸=k⃗0
d,d′

(
E1b(k⃗, d, d′) − E1b(k⃗0,−1,−1)

)
â†
k⃗,d′ âk⃗,d

+ 2πℏ2N0
MV

∑
k⃗ ̸=0
d′

1,d
′
2

 ∑
sA,sB

asA,sB

〈
d′

1(k⃗0 − k⃗)
∣∣∣sA〉〈d′

2(k⃗0 + k⃗)
∣∣∣sB〉〈sA∣∣∣−1(k⃗0)

〉〈
sB
∣∣∣−1(k⃗0)

〉
× â†

d′
1 ,⃗k0−k⃗

â†
d′

2 ,⃗k0+k⃗
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+ 4πℏ2N0
MV

∑
q⃗1 ̸=k⃗0
d1,d′

1

 ∑
sA,sB

asA,sB

〈
d′

1(q⃗1)
∣∣∣sA〉〈−1(k⃗0)

∣∣∣sB〉 〈sA∣∣d1(q⃗1)
〉 〈
sB
∣∣∣−1(k⃗0)

〉
× â†

d′
1,q⃗1

âd1,q⃗1

+ 4πℏ2N0
MV

∑
k⃗ ̸=0
d1,d′

2

 ∑
sA,sB

asA,sB

〈
−1(k⃗0)

∣∣∣sA〉〈d′
2(k⃗0 + k⃗)

∣∣∣sB〉〈sA∣∣∣d1(k⃗0 + k⃗)
〉〈
sB
∣∣∣−1(k⃗0)

〉
× â†

d′
2 ,⃗k0+k⃗

â
d1 ,⃗k0+k⃗

+ 2πℏ2N0
MV

∑
k⃗ ̸=0
d1,d2

 ∑
sA,sB

asA,sB

〈
−1(k⃗0)

∣∣∣sA〉〈−1(k⃗0)
∣∣∣sB〉〈sA∣∣∣d1(k⃗0 + k⃗)

〉〈
sB
∣∣∣d2(k⃗0 − k⃗)

〉
× â

d1 ,⃗k0+k⃗âd2 ,⃗k0−k⃗

− 4πℏ2N0
MV

∑
k⃗ ̸=k⃗0
d,d′

 ∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2
 â†

k⃗,d′ âk⃗,d , (4.78)

where we have neglected the terms involving the operators â
k⃗0,+1, â†

k⃗0,+1
. This is

equivalent to not computing the value of the excitation spectrum of the system at a
single point in momentum space. Therefore, this approximation has no effect in the
quantities we report later in this Section. It is convenient to rewrite the grand-canonical
Hamiltonian as [3]:

K̂ ≃ E1b(k⃗0,−1,−1)N0 +N2
0

2πℏ2

MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2 − µN0

+
∑
kx>0
d,d′

[(
E1b(k⃗0 + k⃗, d, d′) − E1b(k⃗0,−1,−1)

)
â†
k⃗0+k⃗,d′ âk⃗0+k⃗,d

+
(
E1b(k⃗0 − k⃗, d, d′) − E1b(k⃗0,−1,−1)

)
â†
k⃗0−k⃗,d′ âk⃗0−k⃗,d

]

+ 2πℏ2N0
MV

∑
kx>0
d′

1,d
′
2


 ∑
sA,sB

asA,sB

〈
d′

1(k⃗0 − k⃗)
∣∣∣sA〉〈d′

2(k⃗0 + k⃗)
∣∣∣sB〉〈sA∣∣∣−1(k⃗0)

〉〈
sB
∣∣∣−1(k⃗0)

〉

×â†
d′

1 ,⃗k0−k⃗
â†
d′

2 ,⃗k0+k⃗
+

 ∑
sA,sB

asA,sB

〈
d′

1(k⃗0 + k⃗)
∣∣∣sA〉〈d′

2(k⃗0 − k⃗)
∣∣∣sB〉〈sA∣∣∣−1(k⃗0)

〉〈
sB
∣∣∣−1(k⃗0)

〉
×â†

d′
1 ,⃗k0+k⃗

â†
d′

2 ,⃗k0−k⃗

}
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+ 4πℏ2N0
MV

∑
kx>0
d1,d′

1


 ∑
sA,sB

asA,sB

〈
d′

1(k⃗0 + k⃗)
∣∣∣sA〉〈−1(k⃗0)

∣∣∣sB〉〈sA∣∣∣d1(k⃗0 + k⃗)
〉〈
sB
∣∣∣−1(k⃗0)

〉

×â†
d′

1 ,⃗k0+k⃗
â
d1 ,⃗k0+k⃗ +

 ∑
sA,sB

asA,sB

〈
d′

1(k⃗0 − k⃗)
∣∣∣sA〉〈−1(k⃗0)

∣∣∣sB〉〈sA∣∣∣d1(k⃗0 − k⃗)
〉〈
sB
∣∣∣−1(k⃗0)

〉
×â†

d′
1 ,⃗k0−k⃗

â
d1 ,⃗k0−k⃗

}

+ 4πℏ2N0
MV

∑
kx>0
d1,d′

2


 ∑
sA,sB

asA,sB

〈
−1(k⃗0)

∣∣∣sA〉〈d′
2(k⃗0 + k⃗)

∣∣∣sB〉〈sA∣∣∣d1(k⃗0 + k⃗)
〉〈
sB
∣∣∣−1(k⃗0)

〉

×â†
d′

2 ,⃗k0+k⃗
â
d1 ,⃗k0+k⃗ +

 ∑
sA,sB

asA,sB

〈
−1(k⃗0)

∣∣∣sA〉〈d′
2(k⃗0 − k⃗)

∣∣∣sB〉〈sA∣∣∣d1(k⃗0 − k⃗)
〉〈
sB
∣∣∣−1(k⃗0)

〉
×â†

d′
2 ,⃗k0−k⃗

â
d1 ,⃗k0−k⃗

}

+ 2πℏ2N0
MV

∑
kx>0
d1,d2


 ∑
sA,sB

asA,sB

〈
−1(k⃗0)

∣∣∣sA〉〈−1(k⃗0)
∣∣∣sB〉〈sA∣∣∣d1(k⃗0 + k⃗)

〉〈
sB
∣∣∣d2(k⃗0 − k⃗)

〉

×â
d1 ,⃗k0+k⃗âd2 ,⃗k0−k⃗ +

 ∑
sA,sB

asA,sB

〈
−1(k⃗0)

∣∣∣sA〉〈−1(k⃗0)
∣∣∣sB〉〈sA∣∣∣d1(k⃗0 − k⃗)

〉〈
sB
∣∣∣d2(k⃗0 + k⃗)

〉
×â

d1 ,⃗k0−k⃗âd2 ,⃗k0+k⃗

}
− 4πℏ2N0

MV

∑
kx>0
d,d′

 ∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2
(â†

k⃗0+k⃗,d′ âk⃗0+k⃗,d + â†
k⃗0−k⃗,d′ âk⃗0−k⃗,d

)

(4.79)

Analogously to the previous Section, we introduce the vectors:

ψ̂
k⃗

=


â
k⃗0+k⃗,−1
â
k⃗0+k⃗,+1
â†
k⃗0−k⃗,−1
â†
k⃗0−k⃗,+1

 ψ̂†
k⃗

=
(
â†
k⃗0+k⃗,−1

â†
k⃗0+k⃗,+1

â
k⃗0−k⃗,−1âk⃗0−k⃗,+1

)
(4.80)

ϕ̂
k⃗

=


b̂
k⃗0+k⃗,−1
b̂
k⃗0+k⃗,+1
b̂†
k⃗0−k⃗,−1
b̂†
k⃗0−k⃗,+1

 ϕ̂†
k⃗

=
(
b̂†
k⃗0+k⃗,−1

b̂†
k⃗0+k⃗,+1

b̂
k⃗0−k⃗,−1b̂k⃗0−k⃗,+1

)
(4.81)

In terms of these vectors, K̂ can be written as:
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K̂ ≃ E1b(k⃗0,−1,−1)N0 +N2
0

2πℏ2

MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2 − µN0

+
∑
kx>0

[
ψ̂†
k⃗
K
k⃗
ψ̂
k⃗

−K
k⃗
(3, 3) −K

k⃗
(4, 4)

]
(4.82)

where K
k⃗
(i, j) indicates the element in the i-th row and the j-th column of the matrix

K
k⃗
. Its elements are given by:

K
k⃗
(1, 1) = E1b(k⃗0 + k⃗,−1,−1) − E1b(k⃗0,−1,−1)

+ 4πℏ2N0
MV

 ∑
sA,sB

asA,sB

〈
−1(k⃗0 + k⃗)

∣∣∣sA〉〈−1(k⃗0)
∣∣∣sB〉〈sA∣∣∣−1(k⃗0 + k⃗)

〉〈
sB
∣∣∣−1(k⃗0)

〉
+ 4πℏ2N0

MV

 ∑
sA,sB

asA,sB

〈
−1(k⃗0)

∣∣∣sA〉〈−1(k⃗0 + k⃗)
∣∣∣sB〉〈sA∣∣∣−1(k⃗0 + k⃗)

〉〈
sB
∣∣∣−1(k⃗0)

〉
− 4πℏ2N0

MV

 ∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2
 (4.83)

K
k⃗
(1, 2) = E1b(k⃗0 + k⃗,+1,−1)

+ 4πℏ2N0
MV

 ∑
sA,sB

asA,sB

〈
−1(k⃗0 + k⃗)

∣∣∣sA〉〈−1(k⃗0)
∣∣∣sB〉〈sA∣∣∣+1(k⃗0 + k⃗)

〉〈
sB
∣∣∣−1(k⃗0)

〉
+ 4πℏ2N0

MV

 ∑
sA,sB

asA,sB

〈
−1(k⃗0)

∣∣∣sA〉〈−1(k⃗0 + k⃗)
∣∣∣sB〉〈sA∣∣∣+1(k⃗0 + k⃗)

〉〈
sB
∣∣∣−1(k⃗0)

〉
(4.84)

K
k⃗
(1, 3) = 4πℏ2N0

MV

 ∑
sA,sB

asA,sB

〈
−1(k⃗0 − k⃗)

∣∣∣sA〉〈−1(k⃗0 + k⃗)
∣∣∣sB〉〈sA∣∣∣−1(k⃗0)

〉〈
sB
∣∣∣−1(k⃗0)

〉
(4.85)

K
k⃗
(1, 4) = 4πℏ2N0

MV

 ∑
sA,sB

asA,sB

〈
−1(k⃗0 + k⃗)

∣∣∣sA〉〈+1(k⃗0 − k⃗)
∣∣∣sB〉〈sA∣∣∣−1(k⃗0)

〉〈
sB
∣∣∣−1(k⃗0)

〉
(4.86)
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K
k⃗
(2, 2) = E1b(k⃗0 + k⃗,+1,+1) − E1b(k⃗0,−1,−1)

+ 4πℏ2N0
MV

 ∑
sA,sB

asA,sB

〈
+1(k⃗0 + k⃗)

∣∣∣sA〉〈−1(k⃗0)
∣∣∣sB〉〈sA∣∣∣+1(k⃗0 + k⃗)

〉〈
sB
∣∣∣−1(k⃗0)

〉
+ 4πℏ2N0

MV

 ∑
sA,sB

asA,sB

〈
−1(k⃗0)

∣∣∣sA〉〈+1(k⃗0 + k⃗)
∣∣∣sB〉〈sA∣∣∣+1(k⃗0 + k⃗)

〉〈
sB
∣∣∣−1(k⃗0)

〉
− 4πℏ2N0

MV

 ∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2
 (4.87)

K
k⃗
(2, 3) = 4πℏ2N0

MV

 ∑
sA,sB

asA,sB

〈
+1(k⃗0 + k⃗)

∣∣∣sA〉〈−1(k⃗0 − k⃗)
∣∣∣sB〉〈sA∣∣∣−1(k⃗0)

〉〈
sB
∣∣∣−1(k⃗0)

〉
(4.88)

K
k⃗
(2, 4) = 4πℏ2N0

MV

 ∑
sA,sB

asA,sB

〈
+1(k⃗0 − k⃗)

∣∣∣sA〉〈+1(k⃗0 + k⃗)
∣∣∣sB〉〈sA∣∣∣−1(k⃗0)

〉〈
sB
∣∣∣−1(k⃗0)

〉
(4.89)

K
k⃗
(3, 3) = E1b(k⃗0 − k⃗,−1,−1) − E1b(k⃗0,−1,−1)

+ 4πℏ2N0
MV

 ∑
sA,sB

asA,sB

〈
−1(k⃗0 − k⃗)

∣∣∣sA〉〈−1(k⃗0)
∣∣∣sB〉〈sA∣∣∣−1(k⃗0 − k⃗)

〉〈
sB
∣∣∣−1(k⃗0)

〉
+ 4πℏ2N0

MV

 ∑
sA,sB

asA,sB

〈
−1(k⃗0)

∣∣∣sA〉〈−1(k⃗0 − k⃗)
∣∣∣sB〉〈sA∣∣∣−1(k⃗0 − k⃗)

〉〈
sB
∣∣∣−1(k⃗0)

〉
− 4πℏ2N0

MV

 ∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2
 (4.90)

K
k⃗
(3, 4) = E1b(k⃗0 − k⃗,+1,−1)

+ 4πℏ2N0
MV

 ∑
sA,sB

asA,sB

〈
−1(k⃗0 − k⃗)

∣∣∣sA〉〈−1(k⃗0)
∣∣∣sB〉〈sA∣∣∣+1(k⃗0 − k⃗)

〉〈
sB
∣∣∣−1(k⃗0)

〉
+ 4πℏ2N0

MV

 ∑
sA,sB

asA,sB

〈
−1(k⃗0)

∣∣∣sA〉〈−1(k⃗0 − k⃗)
∣∣∣sB〉〈sA∣∣∣+1(k⃗0 − k⃗)

〉〈
sB
∣∣∣−1(k⃗0)

〉
(4.91)

K
k⃗
(4, 4) = E1b(k⃗0 − k⃗,+1,+1) − E1b(k⃗0,−1,−1)

+ 4πℏ2N0
MV

 ∑
sA,sB

asA,sB

〈
+1(k⃗0 − k⃗)

∣∣∣sA〉〈−1(k⃗0)
∣∣∣sB〉〈sA∣∣∣+1(k⃗0 − k⃗)

〉〈
sB
∣∣∣−1(k⃗0)

〉
+ 4πℏ2N0

MV

 ∑
sA,sB

asA,sB

〈
−1(k⃗0)

∣∣∣sA〉〈+1(k⃗0 − k⃗)
∣∣∣sB〉〈sA∣∣∣+1(k⃗0 − k⃗)

〉〈
sB
∣∣∣−1(k⃗0)

〉
− 4πℏ2N0

MV

 ∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2
 (4.92)
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Since K
k⃗

is an hermitian matrix (due to the hermiticity of the grand-canonical Hamil-
tonian), the rest of the elements can be obtained using that K

k⃗
(j, i) = K

k⃗
(i, j). We

have omitted the complex conjugate because all the terms in Eqs. (4.83)- (4.92), which
denote the components of the K

k⃗
matrix, are real. We can now apply the prescription

introduced in the previous Section: by diagonalizing Keff
k⃗

= ĨK
k⃗

with:

Ĩ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , (4.93)

we can compute the matrix of Bogoliubov amplitudes, M
k⃗
, which fulfills Eqs. (4.20), (4.31),

and the excitation spectrum. The four eigenvalues obtained at each momentum when
diagonalizing Keff

k⃗
are E(k⃗0 + k⃗,−1), E(k⃗0 + k⃗,+1), -E(k⃗0 − k⃗,−1) and -E(k⃗0 − k⃗,+1)

respectively. As a benchmark, we show in Fig. 4.1, the excitation spectrum for the
plane wave and the single minimum phases in the same conditions of Ref. [3], and
as can be seen from the Figure, we recover their results. Remarkably, the excitation
spectrum shows a roton in the plane wave phase, which is absent in the single minimum
phase. The roton present in the plane wave spectrum is reminiscent of the double well
structure of the energy dispersion in the one-body problem (see Chapter 2).

Fig. 4.1 Lowest branch of the excitation spectrum for the plane wave (Ω = 2) and
the single minimum (Ω = 6) phases, for a = a+1,+1 = a+1,−1 = a−1,+1 = a−1,−1 and
gn/

(
ℏ2λ2

2M

)
= 0.5 with g = 4πℏ2a

M , as in Ref. [3]. The lines correspond to our results
while points correspond to the results of Ref. [3]. All quantities are expressed in reduced
units. The horizontal axis is shifted by k0,x, with k0,x the ground state momentum.
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Analogously to the previous Section, the lowest eigenvalue of the operator K̂ is
given by:

K0 = E1b(k⃗0,−1,−1)N0 +N2
0

2πℏ2

MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2 − µN0

+ V

(2π)2

∫ ∞

0
dkk2

(
−K

k⃗
(3, 3) −K

k⃗
(4, 4) + E(k⃗0 − k⃗,−1) + E(k⃗0 − k⃗,+1)

)
.

(4.94)

It can be seen numerically that the above integral has the same divergent behaviour
as in the non-SOC case (the integrand tends to a constant as k goes to infinity).
Therefore, the divergence can be eliminated by adding and subtracting a function of
the type freg(k) = η/(k2) and applying Dimensional Regularization to the integral of
this function. It can be checked that the coefficient η that cures the divergence is given
by:

η =
(

4πℏ2N0
MV

)2 ∑
sA,sB

a2
sA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2
(
M

ℏ2

)
(4.95)

Therefore, after regularizing K0 analogously to what was done in the previous Section,
we obtain:

K0 = E1b(k⃗0,−1,−1)N0 +N2
0

2πℏ2

MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2 − µN0

+ V

(2π)2

∫ ∞

0
dkk2

(
−K

k⃗
(3, 3) −K

k⃗
(4, 4) + E(k⃗0 − k⃗,−1) + E(k⃗0 − k⃗,+1)

+
(

4πℏ2N0
MV

)2 ∑
sA,sB

a2
sA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2
(

M

ℏ2(k2)

) . (4.96)

We can express the integral as:

V

(2π)2

∫ ∞

0
dkk2

(
−K

k⃗
(3, 3) −K

k⃗
(4, 4) + E(k⃗0 − k⃗,−1) + E(k⃗0 − k⃗,+1)

+
(

4πℏ2N0
MV

)2 ∑
sA,sB

a2
sA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2
(

M

ℏ2(k2)

)
= ΓLHY(N0)2πℏ2N2

0
MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2 (4.97)

where we have defined ΓLHY(N0), which corresponds to the ratio between the integral
and the mean field interaction energy. In this way, K0 can be written as:
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K0 = E1b(k⃗0,−1,−1)N0 + 2πℏ2N2
0

MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2 (1 + ΓLHY(N0)
)

− µN0 .

(4.98)

We now compute the ground state energy as we did in the previous Section. We use
that ΓLHY(N0) = ΓLHY(N) + O

(
δN2

)
, since the ratio between the LHY correction

and the interaction mean field energy, ΓLHY, is of O(δN). We reach

E0 = K0 + µN = E1b(k⃗0,−1,−1)N

+ 2πℏ2N2

MV

∑
sA,sB

asA,sB

∣∣∣∣〈−1(k⃗0)
∣∣∣sA〉∣∣∣∣2∣∣∣∣〈sB∣∣∣−1(k⃗0)

〉∣∣∣∣2 (1 + ΓLHY(N)
)

(4.99)

We report in Fig. 4.2 results for ΓLHY in the same conditions as in Ref. [3] as a test to
our calculations. As we can see from the Figure, we recover the results from Ref. [3].
Remarkably, ΓLHY decreases with respect to Ω in the plane wave phase (Ω < 4), while
this trend is reversed in the single minimum phase (Ω > 4).

Fig. 4.2 Results for ΓLHY for different values of Ω, for a = a+1,+1 = a+1,−1 =
a−1,+1 = a−1,−1 and n/λ3 = 1 as in Ref. [3]. The left and right panels correspond to
na3 = 8 × 10−6 and na3 = 1 × 10−3, respectively. The lines show our results while
points denote the results of Ref. [3]. All quantities are expressed in reduced units.

4.3 The Bogoliubov-de Gennes formalism

We present in this Section an alternative formalism to the one previously discussed in
order to compute beyond mean field properties. This formalism is more convenient
to perform calculations for a Raman SOC system in the stripe phase. As in the
previous Section, we first solve the non-SOC case and discuss the Raman SOC case
afterwards. We focus on the computation of the excitation spectrum and the LHY
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energy correction, although we also report the static structure factor for the Raman
stripe phase.

4.3.1 Non-SOC case

The Heisenberg equation of motion for the field operator corresponding to a system
under two-body contact interactions characterized by a scattering length a is given
by [74]:

iℏ
dΨ̂(t)

dt = Ĥ0Ψ̂ + 4πℏ2a

M
Ψ̂†Ψ̂Ψ̂ , (4.100)

while the time-dependent field operator reads [70]:

Ψ̂(t) = e−iµt/ℏ
(
ψ̂0 + ˆδΨ(t)

)
(4.101)

with ψ̂0 the condensate state and µ the chemical potential. As it can be seen, we
are separating the condensate contribution, denoted by ψ̂0, from the rest, denoted by
ˆδΨ(t), which is often referred as the quantum fluctuations part. We assume that the

majority of the particles of the system lay in the condensate. We substitute Eq. (4.101)
into Eq. (4.100), we obtain

µψ0(r⃗) + iℏ
d ˆδΨ
dt = Ĥ0ψ0(r⃗) + 4πℏ2a

M

∣∣ψ0(r⃗)
∣∣2ψ0(r⃗)

+ Ĥ0 ˆδΨ(t) + 8πℏ2a

M

∣∣ψ0(r⃗)
∣∣2 ˆδΨ(t) + 4πℏ2a

M

∣∣ψ0(r⃗)
∣∣2 ˆδΨ†(t) − µ ˆδΨ(t) = 0 (4.102)

This equation is fulfilled if

µψ0(r⃗) = Ĥ0ψ0(r⃗) + 4πℏ2a

M

∣∣ψ0(r⃗)
∣∣2ψ0(r⃗) (4.103)

iℏ
d ˆδΨ
dt = Ĥ0 ˆδΨ(t) + 8πℏ2a

M

∣∣ψ0(r⃗)
∣∣2 ˆδΨ(t) + 4πℏ2a

M

∣∣ψ0(r⃗)
∣∣2 ˆδΨ†(t) − µ ˆδΨ(t) (4.104)

Notice that Eq. (4.103) corresponds to the time-independent Gross-Pitaevskii equation
for the condensate state, while Eq. (4.104) governs the dynamics of the quantum
fluctuations. Analogously to Sec. 4.2, we use a basis of momentum states to expand
the field operator. Assuming that particles condensate at k⃗ = 0, we can write

ψ̂0 = 1√
V
â0 ∼

√
N0/V , (4.105)

with N0 the number of particles in the condensate. In much the same way, we write
ˆδΨ(t) as:
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ˆδΨ(t) =
∑
k⃗ ̸=0

1√
V
eik⃗r⃗â

k⃗
(t) =

∑
k⃗ ̸=0

1√
V
eik⃗r⃗

(
u(k⃗)b̂

k⃗
(t) + v∗(−k⃗)b̂†

−k⃗
(t)
)

= 1√
V

∑
k⃗ ̸=0

(
u(k⃗, r⃗)b̂

k⃗
(t) + v∗(−k⃗, r⃗)b̂†

−k⃗
(t)
)
. (4.106)

where

u(k⃗, r⃗) = eik⃗r⃗u(k⃗) (4.107)

v∗(−k⃗, r⃗) = eik⃗r⃗v∗(−k⃗) . (4.108)

With a suitable election, the chosen dependence on the b̂
k⃗
(t), b̂†

−k⃗
(t) decouples

Eq. (4.104), as can be checked by plugging Eq. (4.106) into Eq. (4.104).

∑
k⃗ ̸=0

iℏu(k⃗, r⃗)
db̂
k⃗
(t)

dt + iℏv∗(−k⃗, r⃗)
db̂†

−k⃗
(t)

dt =
∑
k⃗ ̸=0

(
Ĥ0 + 8πℏ2aN0

MV
− µ

)
u(k⃗, r⃗)b̂

k⃗
(t)

+
(
Ĥ0 + 8πℏ2aN0

MV
− µ

)
v∗(−k⃗, r⃗)b̂†

−k⃗
(t) + 4πℏ2aN0

MV
u∗(k⃗, r⃗)b̂†

k⃗
(t)

+ 4πℏ2aN0
MV

v(−k⃗, r⃗)b̂−k⃗(t) . (4.109)

The above Equation is fulfilled if we impose for each b̂
k⃗
, b̂†

−⃗k
that:

iℏu(k⃗, r⃗)
db̂
k⃗
(t)

dt =
(
Ĥ0 + 8πℏ2aN0

MV
− µ

)
u(k⃗, r⃗)b̂

k⃗
(t) + 4πℏ2aN0

MV
v(k⃗, r⃗)b̂

k⃗
(t)

(4.110)

iℏv∗(−k⃗, r⃗)
db̂†

−k⃗
(t)

dt =
(
Ĥ0 + 8πℏ2aN0

MV
− µ

)
v∗(−k⃗, r⃗)b̂†

−k⃗
(t) + 4πℏ2aN0

MV
u∗(−k⃗, r⃗)b̂†

−k⃗
(t)

(4.111)

Changing −k⃗ → k⃗ in Eq. 4.111, we obtain a system of two equations, for b̂
k⃗

and b̂†
k⃗
,

with two unknowns, u(k⃗, r⃗) and v(k⃗, r⃗), i.e

iℏu(k⃗, r⃗)
db̂
k⃗
(t)

dt =
(
Ĥ0 + 8πℏ2aN0

MV
− µ

)
u(k⃗, r⃗)b̂

k⃗
(t) + 4πℏ2aN0

MV
v(k⃗, r⃗)b̂

k⃗
(t)

(4.112)

iℏv∗(k⃗, r⃗)
db̂†
k⃗
(t)

dt =
(
Ĥ0 + 8πℏ2aN0

MV
− µ

)
v∗(k⃗, r⃗)b̂†

k⃗
(t) + 4πℏ2aN0

MV
u∗(k⃗, r⃗)b̂†

k⃗
(t)

(4.113)



4.3 The Bogoliubov-de Gennes formalism | 103

Since Eqs. (4.112) and (4.113) are differential equations with constant coefficients with
respect to t, the system admits a solution for b̂

k⃗
(t) of the form:

b̂
k⃗
(t) = exp

(
−itE(k⃗)/ℏ

)
b̂
k⃗

b̂†
k⃗
(t) = exp

(
itE(k⃗)/ℏ

)
b̂†
k⃗

(4.114)

The coefficients in the exponent of the imaginary exponentials are the excitation
energies, since the operators b̂

k⃗
, b̂†

k⃗
diagonalize the beyond mean field Hamiltonian.

Substituting Eqs. (4.114) into Eqs. (4.111) we obtain:

E(k⃗)u(k⃗, r⃗) =
(
Ĥ0 + 8πℏ2aN0

MV
− µ

)
u(k⃗, r⃗) + 4πℏ2aN0

MV
v(k⃗, r⃗) (4.115)

−E(k⃗)v∗(k⃗, r⃗) =
(
Ĥ0 + 8πℏ2aN0

MV
− µ

)
v∗(k⃗, r⃗) + 4πℏ2aN0

MV
u∗(k⃗, r⃗) (4.116)

Using Eqs. (4.107) and (4.108), the system can be written in matrix form. Also, we
use that

∣∣ψ0(r⃗)
∣∣2 = N0 and Eq. (4.12) to get:ℏ2k2

2M + 4πℏ2aN0
MV

4πℏ2aN0
MV

−4πℏ2aN0
MV −ℏ2k2

2M − 4πℏ2aN0
MV

u(k⃗)
v(k⃗)

 = E(k⃗)

u(k⃗)
v(k⃗)

 (4.117)

Similarly, the equations for b̂−k⃗, b̂
†
−k⃗

, which are obtained by applying a change k⃗ → −k⃗
to Eqs. (4.112) and (4.113), yieldℏ2k2

2M + 4πℏ2aN0
MV

4πℏ2aN0
MV

−4πℏ2aN0
MV −ℏ2k2

2M − 4πℏ2aN0
MV

v(−k⃗)
u(−k⃗)

 = −E(−k⃗)

v(−k⃗)
u(−k⃗)

 (4.118)

Notice that the matrix in Eqs. (4.117) (4.118) is the same as the one in Eq. (4.33), ob-
tained through the previous approach. Therefore, by diagonalizing Eqs. (4.117) (4.118)
one can obtain the excitation spectrum and the Bogoliubov amplitudes. These fulfill
the normalization condition of Eq. (4.31), i.e.

u2(k⃗) − v2(k⃗) = 1 (4.119)

v2(−k⃗) − u2(−k⃗) = −1 (4.120)

We now compute the Lee-Huang-Yang correction. Since the Bogoliubov Hamiltonian
does not commute with N̂ , as stated in the previous Section, one must work in
the grand-canonical ensemble. In the following, we refer to the ground state of the
Bogoliubov Hamiltonian as |0b⟩. We can write:

Eg.s. = Kg.s. + µN = ⟨0b| Ĥ − µN̂ |0b⟩ (N0) + µN

= KM.F.(N0) +KLHY(N0) + µN (4.121)
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where we have split the ground state of the grand-canonical Hamiltonian into a mean
field contribution and a Lee-Huang-Yang term. Using Eq. (4.10) for the mean field
energy and Eq. (4.12) for the chemical potential, we can write KM.F.(N0) + µN as:

KM.F.(N0) + µN = 2πℏ2aN2
0

MV
− 4πℏ2aN2

0
MV

+ 4πℏ2aN0N

MV
(4.122)

We decompose the total number of particles, N , as N = N0 + δN , with δN the
depletion of the condensate. Therefore:

KM.F.(N0) + µN = 2πℏ2aN2
0

MV
− 4πℏ2aN2

0
MV

+ 4πℏ2aN0N

MV

= 4πℏ2aN2

MV
+ O

(
δN2

)
= EM.F.(N) + O

(
δN2

)
, (4.123)

so that

Eg.s. = EM.F.(N) +KLHY(N0) + O
(
δN2

)
= EM.F.(N) +KLHY(N) + O

(
δN2

)
(4.124)

which implies that ELHY(N) = KLHY(N). We proceed to compute KLHY(N). In order
to do so, we write the Hamiltonian in terms of the field operator and decompose it
using Eq. (4.101), which leads to

KLHY(N) = ⟨0b| Ĥ − µN̂ |0b⟩ (N) −KM.F.(N)

= ⟨0b|
∫
d⃗r1d⃗r2δΨ̂†(r⃗1)

(
⟨r⃗1| Ĥ0 |r⃗2⟩ − µδ (r⃗2 − r⃗1)

)
δΨ̂(r⃗2) |0b⟩

+ 2πℏ2a

M
⟨0b|

∫
d⃗rψ∗

0(r⃗)ψ∗
0(r⃗)δΨ̂(r⃗)δΨ̂(r⃗) |0b⟩

+ 8πℏ2a

M
⟨0b|

∫
d⃗rψ∗

0(r⃗)δΨ̂†(r⃗)ψ0(r⃗)δΨ̂(r⃗) |0b⟩

+ 2πℏ2a

M
⟨0b|

∫
d⃗rδΨ̂†(r⃗)δΨ̂†(r⃗)ψ0(r⃗)ψ0(r⃗) |0b⟩ (4.125)

where |0b⟩ is the beyond mean field ground state. At this point we have already
retained all the terms containing an even number of δΨ̂(r⃗), δΨ̂†(r⃗) operators, since
only terms proportional to b̂

k⃗
b̂†
k⃗

survive, as all b̂
k⃗

operators with k⃗ ̸= 0 annihilate the
beyond mean field ground state. One should now decompose the quantum fluctuations
operator according to Eq. (4.106) and perform the sum in momentum space. After
applying the regularization scheme presented in the previous Section, this calculation
is the same as the one performed in Ref. [69], which yields the Lee-Huang-Yang energy
correction previously obtained.
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4.3.2 Raman SOC case: Plane Wave and Single Minimum phases

We now apply the Bogoliubov-de Gennes formalism to a Raman SOC system in the
plane wave and single minimum phases in order to obtain the LHY energy correction
and the excitation spectrum. The Heisenberg equation of motion for the field operator
of a system governed by the Hamiltonian of Eq. (4.1) is given by [61]:

iℏ
dΨ̂(t)

dt = Ĥ0Ψ̂ +
[

2G1
n

Ψ̂†Ψ̂ + 2G2
n

(
Ψ̂†σ̂zΨ̂

)
σ̂z

]
Ψ̂ . (4.126)

where

G1 = n
(
g+1,+1 + g+1,−1

)
4 (4.127)

G2 = n
(
g+1,+1 − g+1,−1

)
4 . (4.128)

Again, we write the time-dependent field operator as:

Ψ̂(t) = e−iµt/ℏ
(
ψ̂0 + ˆδΨ(t)

)
(4.129)

where, analogously to what has been done in Sec. 4.2.2:

ψ̂0 = 1√
V
eik⃗0r⃗â

k⃗0,−1 |d = −1⟩
k⃗0

∼

√
N0
V
eik⃗0r⃗ |d = −1⟩

k⃗0
= eik⃗0r⃗ϕ⃗0 (4.130)

δΨ̂ (r⃗, t) =
∑

k⃗ ̸=k0,d

1√
V
ud
k⃗
(r⃗)â

k⃗,d
(t) |d⟩

k⃗
+ 1√

V
u+1
k⃗0

(r⃗)â
k⃗0,+1(t) |+1⟩

k⃗0
(4.131)

with |d = −1⟩
k⃗0

for the condensate state and |d⟩
k⃗

given by a linear combination of the
eigenstates of momentum k⃗ of the Hamiltonian in Eq. (4.57) (see Sec. 4.2.2). As we did
in Sec. 4.2.2, we have neglected, for simplicity, the terms proportional to the operators
â
k⃗0,+1, â†

k⃗0,+1
in the expansion of δΨ̂ (r⃗, t), since this is equivalent to not computing

the value of the excitation spectrum of the system at a single point in momentum
space. Thus, we write:

δΨ̂ (r⃗, t) =
∑

k⃗ ̸=k0,d

1√
V
ud
k⃗
(r⃗)â

k⃗,d
(t) |d⟩

k⃗
. (4.132)

Substituting Eq. (4.129) into 4.126) we obtain, to first order in δΨ̂:

µψ0 = Ĥ0ψ0 +
[

2G1
n

|ψ0|2 + 2G2
n

(
ψ∗

0σ̂zψ0
)
σ̂z

]
ψ0 . (4.133)
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µδΨ̂ + iℏ
dδΨ̂
dt = Ĥ0δΨ̂ + 2G1

n

[
|ψ0|2δΨ̂ + ψ∗

0δΨ̂ψ0 + δΨ̂†ψ0ψ0
]

+ 2G2
n

[
ψ∗

0σ̂zψ0σ̂zδΨ̂ + ψ∗
0σ̂zδΨ̂σ̂zψ0 + δΨ̂†σ̂zψ0σ̂zψ0

]
(4.134)

We now expand the quantum fluctuations contribution to the field operator as [3, 70]:

δΨ̂ (r⃗, t) =
∑

kx>0,d

1√
V
ei(k⃗0+k⃗)r⃗â

k⃗0+k⃗,d(t) |d⟩
k⃗0+k⃗ + 1√

V
ei(k⃗0−k⃗)r⃗â

k⃗0−k⃗,d(t) |d⟩
k⃗0−k⃗

= 1√
V

∑
kx>0,d

f⃗
k⃗0+k⃗,d(k⃗, r⃗)b̂k⃗0+k⃗,d(t) + f⃗∗

k⃗0−k⃗,d(k⃗, r⃗)b̂
†
k⃗0−k⃗,d

(t)

+ g⃗
k⃗0−k⃗,d(k⃗, r⃗)b̂k⃗0−k⃗,d(t) + g⃗∗

k⃗0+k⃗,d(k⃗, r⃗)b̂
†
k⃗0+k⃗,d

(t) (4.135)

where f⃗
k⃗0+k⃗,d(k⃗, r⃗), f⃗

∗
k⃗0−k⃗,d

(k⃗, r⃗), g⃗
k⃗0−k⃗,d(k⃗, r⃗) and g⃗∗

k⃗0+k⃗,d(k⃗, r⃗) are two-component
spinors that can be written as

f⃗
k⃗0+k⃗,d(k⃗, r⃗) = ei(k⃗0+k⃗)r⃗f⃗

k⃗0+k⃗,d (4.136)

f⃗∗
k⃗0−k⃗,d(k⃗, r⃗) = ei(k⃗0+k⃗)r⃗f⃗∗

k⃗0−k⃗,d (4.137)

g⃗
k⃗0−k⃗,d(k⃗, r⃗) = ei(k⃗0−k⃗)r⃗g⃗

k⃗0−k⃗,d (4.138)

g⃗∗
k⃗0+k⃗,d(k⃗, r⃗) = ei(k⃗0−k⃗)r⃗g⃗∗

k⃗0+k⃗,d . (4.139)

Since the only time-dependent terms in Eq. (4.134) are the b̂
k⃗,d

(t) operators, contained
inside δΨ̂, their time-dependent part is given by:

b̂
k⃗0+k⃗,d(t) = e

−iE
k⃗0+k⃗,d

t/ℏ
b̂
k⃗0+k⃗,d (4.140)

b̂
k⃗0−k⃗,d(t) = e

−iE
k⃗0−k⃗,d

t/ℏ
b̂
k⃗0−k⃗,d (4.141)

b̂†
k⃗0+k⃗,d

(t) = e
iE

k⃗0+k⃗,d
t/ℏ
b̂†
k⃗0+k⃗,d

(4.142)

b̂†
k⃗0−k⃗,d

(t) = e
iE

k⃗0−k⃗,d
t/ℏ
b̂†
k⃗0−k⃗,d

(4.143)

We now insert Eq. (4.135) into Eq. (4.134) obtain:

(µ+ E
k⃗0+k⃗,d)f⃗k⃗0+k⃗,d = Ĥ0(k⃗0 + k⃗)f⃗

k⃗0+k⃗,d + 2G1
n

[∣∣∣ϕ⃗0
∣∣∣2f⃗k⃗0+k⃗,d

+ϕ⃗†
0f⃗k⃗0+k⃗,dϕ⃗0 + g⃗τ

k⃗0+k⃗,dϕ⃗0ϕ⃗0

]
+ 2G2

n

[
ϕ⃗†

0σ̂zϕ⃗0σ̂z f⃗k⃗0+k⃗,d + ϕ⃗†
0σ̂z f⃗k⃗0+k⃗,dσ̂zϕ⃗0

+g⃗τ
k⃗0+k⃗,dσ̂zϕ⃗0σ̂zϕ⃗0

]
(4.144)
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(µ− E
k⃗0+k⃗,d)g⃗

∗
k⃗0+k⃗,d = Ĥ0(k⃗0 − k⃗)g⃗∗

k⃗0+k⃗,d + 2G1
n

[∣∣∣ϕ⃗0
∣∣∣2g⃗∗

k⃗0+k⃗,d

+ϕ⃗†
0g⃗

∗
k⃗0+k⃗,dϕ⃗0 + f⃗ †

k⃗0+k⃗,d
ϕ⃗0ϕ⃗0

]
+ 2G2

n

[
ϕ⃗†

0σ̂zϕ⃗0σ̂z g⃗
∗
k⃗0+k⃗,d + ϕ⃗†

0σ̂z g⃗
∗
k⃗0+k⃗,dσ̂zϕ⃗0

+f⃗ †
k⃗0+k⃗,d

σ̂zϕ⃗0σ̂zϕ⃗0

]
(4.145)

(µ− E
k⃗0−k⃗,d)f⃗

∗
k⃗0−k⃗,d = Ĥ0(k⃗0 + k⃗)f⃗∗

k⃗0−k⃗,d + 2G1
n

[∣∣∣ϕ⃗0
∣∣∣2f⃗∗

k⃗0−k⃗,d

+ϕ⃗†
0f⃗

∗
k⃗0−k⃗,dϕ⃗0 + g⃗†

k⃗0−k⃗,d
ϕ⃗0ϕ⃗0

]
+ 2G2

n

[
ϕ⃗†

0σ̂zϕ⃗0σ̂z f⃗
∗
k⃗0−k⃗,d + ϕ⃗†

0σ̂z f⃗
∗
k⃗0−k⃗,dσ̂zϕ⃗0

+g⃗†
k⃗0−k⃗,d

σ̂zϕ⃗0σ̂zϕ⃗0

]
(4.146)

(µ+ E
k⃗0−k⃗,d)g⃗k⃗0−k⃗,d = Ĥ0(k⃗0 − k⃗)g⃗

k⃗0−k⃗,d + 2G1
n

[∣∣∣ϕ⃗0
∣∣∣2g⃗k⃗0−k⃗,d

+ϕ⃗†
0g⃗k⃗0−k⃗,dϕ⃗0 + f⃗ τ

k⃗0−k⃗,dϕ⃗0ϕ⃗0

]
+ 2G2

n

[
ϕ⃗†

0σ̂zϕ⃗0σ̂z g⃗k⃗0−k⃗,d + ϕ⃗†
0σ̂z g⃗k⃗0−k⃗,dσ̂zϕ⃗0

+f⃗ τ
k⃗0−k⃗,dσ̂zϕ⃗0σ̂zϕ⃗0

]
(4.147)

where Ĥ0(k⃗) corresponds to the Hamiltonian of Eq. (4.57) evaluated at momentum k⃗

(since [Ĥ0 , ˆ⃗p] = 0), which is a two-by-two matrix. By using the relations (x⃗τ v⃗)w⃗ =
(w⃗v⃗τ )x⃗ and (v⃗τ x⃗)w⃗ = (w⃗v⃗τ )x⃗, with x⃗, v⃗, w⃗ vectors, Eqs. (4.144) and (4.145) can be
written as an eigenvalue problem of the form:

A(k⃗)

f⃗k⃗0+k⃗,d
g⃗
k⃗0+k⃗,d

 = E
k⃗0+k⃗,d

f⃗k⃗0+k⃗,d
g⃗
k⃗0+k⃗,d

 , (4.148)

while the corresponding system for Eqs. (4.146) and (4.147) is:

A(k⃗)

f⃗k⃗0−k⃗,d
g⃗
k⃗0−k⃗,d

 = −E
k⃗0−k⃗,d

f⃗k⃗0−k⃗,d
g⃗
k⃗0−k⃗,d

 . (4.149)

A(k) is a 4 × 4 matrix that can be written as

A(k) =

A(1, 1) A(1, 2)
A(2, 1) A(2, 2)

 (4.150)
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with the 2 × 2 submatrices A(i, j) given by

A(k)(1, 1) = Ĥ0(k⃗0 + k⃗) + 2G1
n

(∣∣∣ϕ⃗0
∣∣∣+ ϕ⃗0ϕ⃗

†
0

)
+ 2G2

n

(
ϕ⃗†

0σ̂zϕ⃗0σ̂z + σ̂zϕ⃗0ϕ⃗
†
0σ̂z
)

− µ (4.151)

A(k)(1, 2) = 2G1
n
ϕ⃗0ϕ⃗

τ
0 + 2G2

n
σ̂zϕ⃗0ϕ⃗

τ
0 σ̂z

A(k)(2, 1) = −2G1
n
ϕ⃗0ϕ⃗

τ
0 − 2G2

n
σ̂zϕ⃗0ϕ⃗

τ
0 σ̂z (4.152)

A(k)(2, 2) = −Ĥ0(k⃗0 − k⃗) − 2G1
n

(∣∣∣ϕ⃗0
∣∣∣+ ϕ⃗0ϕ⃗

†
0

)
− 2G2

n

(
ϕ⃗†

0σ̂zϕ⃗0σ̂z + σ̂zϕ⃗0ϕ⃗
†
0σ̂z
)

+ µ (4.153)

Since both A(k) and the excitation spectrum E
k⃗0±k⃗,d are real for all values of the

momentum, we can assume the terms f⃗
k⃗0±k⃗,d, g⃗k⃗0±k⃗,d are also real. Notice that both

eigenvalue problems are equivalent. This means that by diagonalizing

A(k)v⃗ = Ev⃗ (4.154)

we obtain four eigenvalues, i.e. E
k⃗0+k⃗,−1, E

k⃗0+k⃗,+1, −E
k⃗0−k⃗,−1 and −E

k⃗0−k⃗,+1, cor-
responding to the two bands of the excitation spectrum. The eigenvalues E

k⃗0+k⃗,−1
and E

k⃗0+k⃗,+1 yield the two branches of the spectrum for k⃗0 + k⃗ while E
k⃗0−k⃗,−1 and

E
k⃗0−k⃗,+1 provide the excitation bands for k⃗0 − k⃗. We also obtain four eigenvectors, i.e.

v⃗−1(k⃗0 + k⃗) =

f⃗k⃗0+k⃗,−1
g⃗
k⃗0+k⃗,−1

 v⃗+1(k⃗0 + k⃗) =

f⃗k⃗0+k⃗,+1
g⃗
k⃗0+k⃗,+1


v⃗−1(k⃗0 − k⃗) =

f⃗k⃗0−k⃗,−1
g⃗
k⃗0−k⃗,−1

 v⃗+1(k⃗0 − k⃗) =

f⃗k⃗0−k⃗,+1
g⃗
k⃗0−k⃗,+1

 (4.155)

One can check that writing the system in the spin basis {|d = −1⟩
k⃗
, |d = +1⟩

k⃗
}

introduced in Sec. 4.2.2, the matrix A(k⃗) becomes the matrix Keff.
k⃗

= ĨK
k⃗

obtained in
Sec. 4.2.2, with the matrix elements of K

k⃗
given in Eqs. (4.83)- (4.92) and Ĩ given in

Eq. (4.93). We must discuss now the normalization condition of these eigenvectors.
In the spin basis {|d = −1⟩

k⃗
, |d = +1⟩

k⃗
} the matrix of eigenvectors M

k⃗
satisfies the

condition (see Secs. 4.2.1, 4.2.2):

M †
k⃗
ĨM

k⃗
= Ĩ (4.156)
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where:

M
k⃗

=

f⃗k⃗0+k⃗,d=−1 f⃗
k⃗0+k⃗,d=+1 f⃗

k⃗0−k⃗,d=−1 f⃗
k⃗0−k⃗,d=+1

g⃗
k⃗0+k⃗,d=−1 g⃗

k⃗0+k⃗,d=+1 g⃗
k⃗0−k⃗,d=−1 g⃗

k⃗0−k⃗,d=+1

 (4.157)

However, for practical reasons it is convenient to choose the eigenbasis of σ̂z when
diagonalizing Eq. (4.154). We denote the matrix of eigenvectors in this basis by M z

k⃗
,

which becomes

M z
k⃗

=


− cosαk0+k − sinαk0+k 0 0
sinαk0+k − cosαk0+k 0 0

0 0 − cosαk0−k − sinαk0−k

0 0 sinαk0−k − cosαk0−k

Mk⃗
= U

k⃗
M
k⃗
, (4.158)

where the subindexes k and k0 of the angles refer only to the x component of the
momentum and we have defined the matrix U

k⃗
. The angles αk are introduced in

Eqs. (4.66) and (4.67). Notice that the matrix U
k⃗

is unitary. We can write

M †
k⃗
ĨM

k⃗
= (U †

k⃗
M z
k⃗
)†ĨU †

k⃗
M z
k⃗

= M z,†
k⃗
U
k⃗
ĨU †

k⃗
M z
k⃗
. (4.159)

Using the expression for Ĩ (given in Eq. 4.93), one has

M z,†
k⃗
U
k⃗
ĨU †

k⃗
M
k⃗

= M z,†
k⃗
ĨM z

k⃗
(4.160)

which implies
M z,†
k⃗
ĨM z

k⃗
= Ĩ (4.161)

i.e. the normalization condition remains unchanged.
We proceed now to compute the beyond mean field energy of the system. Following

the prescription of Sec. 4.3.1, we write:

Eg.s. = EM.F.(N) +KLHY(N0) + O
(
δN2

)
(4.162)

KLHY(N0) = ⟨0b| Ĥ − µN̂ |0b⟩ (N0) −KM.F.(N0) (4.163)

KM.F.(N0) = EM.F.(N0) − µN0 (4.164)

with EM.F. given in Eq. (4.76) and µ given in Eq. (4.77). We need to compute
KLHY(N0). As in the previous Section, we write the Hamiltonian of the system in
terms of the field operator and decompose it as a mean field contribution plus the
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quantum fluctuations correction.

KLHY(N0) = ⟨0b| Ĥ − µN̂ |0b⟩ (N0) −KM.F.(N0)

= ⟨0b|
∫
d⃗r1d⃗r2Ψ̂†(r⃗1)

(
⟨r⃗1| Ĥ0 |r⃗2⟩ − µδ (r⃗2 − r⃗1)

)
Ψ̂(r⃗2) |0b⟩

+ 1
2 ⟨0b|

∫
d⃗r1d⃗r2Ψ̂†(r⃗1)Ψ̂†(r⃗2)V (r⃗1, r⃗2)Ψ̂(r⃗1)Ψ̂(r⃗2) |0b⟩ −KM.F.(N0)

= ⟨0b|
∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)

(
⟨r⃗1| Ĥ0 |r⃗2⟩ − µδ (r⃗2 − r⃗1)

)
ψ̂0(r⃗2) |0b⟩

+ ⟨0b|
∫
d⃗r1d⃗r2δΨ̂†(r⃗1)

(
⟨r⃗1| Ĥ0 |r⃗2⟩ − µδ (r⃗2 − r⃗1)

)
δΨ̂(r⃗2) |0b⟩

+ 1
2 ⟨0b|

∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)ψ̂†

0(r⃗2)V (r⃗1, r⃗2)ψ̂0(r⃗1)ψ̂0(r⃗2) |0b⟩

+ ⟨0b|
∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)ψ̂†

0(r⃗2)V (r⃗1, r⃗2)δΨ̂(r⃗1)δΨ̂(r⃗2) |0b⟩

+ ⟨0b|
∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)δΨ̂†(r⃗2)V (r⃗1, r⃗2)ψ̂0(r⃗1)δΨ̂(r⃗2) |0b⟩

+ ⟨0b|
∫
d⃗r1d⃗r2δΨ̂†(r⃗1)ψ̂†

0(r⃗2)V (r⃗1, r⃗2)ψ̂0(r⃗1)δΨ̂(r⃗2) |0b⟩ −KM.F.(N0) ,

(4.165)

where we have kept only the terms containing an even number of δΨ̂ operators, since
terms with an odd number vanish (analogously to the calculation in Sec. 4.3.1). Again,
|0b⟩ corresponds to the beyond mean field ground state. We have also used the fact
that:

⟨0b|
∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)ψ̂†

0(r⃗2)V (r⃗1, r⃗2)δΨ̂(r⃗1)δΨ̂(r⃗2) |0b⟩

= ⟨0b|
∫
d⃗r1d⃗r2δΨ̂†(r⃗1)δΨ̂†(r⃗2)V (r⃗1, r⃗2)δψ̂0(r⃗1)ψ̂0(r⃗2) |0b⟩ (4.166)

⟨0b|
∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)δΨ̂†(r⃗2)V (r⃗1, r⃗2)ψ̂0(r⃗1)δΨ̂(r⃗2) |0b⟩

= ⟨0b|
∫
d⃗r1d⃗r2δΨ̂†(r⃗1)ψ̂†

0(r⃗2)V (r⃗1, r⃗2)δΨ̂(r⃗1)ψ̂0(r⃗2) |0b⟩ (4.167)

⟨0b|
∫
d⃗r1d⃗r2δΨ̂†(r⃗1)ψ̂†

0(r⃗2)V (r⃗1, r⃗2)ψ̂0(r⃗1)δΨ̂(r⃗2) |0b⟩

= ⟨0b|
∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)δΨ̂†(r⃗2)V (r⃗1, r⃗2)δΨ̂(r⃗1)ψ̂0(r⃗2) |0b⟩ (4.168)

Now, since

KM.F.(N0) = ⟨0b|
∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)

(
⟨r⃗1| Ĥ0 |r⃗2⟩ − µδ (r⃗2 − r⃗1)

)
ψ̂0(r⃗2) |0b⟩

+ 1
2 ⟨0b|

∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)ψ̂†

0(r⃗2)V (r⃗1, r⃗2)ψ̂0(r⃗1)ψ̂0(r⃗2) |0b⟩ , (4.169)
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we can write

KLHY(N0) = ⟨0b|
∫
d⃗r1d⃗r2δΨ̂†(r⃗1)

(
⟨r⃗1| Ĥ0 |r⃗2⟩ − µδ (r⃗2 − r⃗1)

)
δΨ̂(r⃗2) |0b⟩

+ ⟨0b|
∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)ψ̂†

0(r⃗2)V (r⃗1, r⃗2)δΨ̂(r⃗1)δΨ̂(r⃗2) |0b⟩

+ ⟨0b|
∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)δΨ̂†(r⃗2)V (r⃗1, r⃗2)ψ̂0(r⃗1)δΨ̂(r⃗2) |0b⟩

+ ⟨0b|
∫
d⃗r1d⃗r2δΨ̂†(r⃗1)ψ̂†

0(r⃗2)V (r⃗1, r⃗2)ψ̂0(r⃗1)δΨ̂(r⃗2) |0b⟩

= KLHY,0 +KLHY,1 +KLHY,2 +KLHY,3 . (4.170)

We now compute each one of these terms:

KLHY,0 = ⟨0b|
∫
d⃗r1d⃗r2δΨ̂†(r⃗1)

(
⟨r⃗1| Ĥ0 |r⃗2⟩ − µδ (r⃗2 − r⃗1)

)
δΨ̂(r⃗2) |0b⟩

= 1
V

⟨0b|
∫
d⃗r1d⃗r2

 ∑
kx>0,d

f⃗
k⃗0+k⃗,de

i(k⃗0+k⃗)r⃗1 b̂
k⃗0+k⃗,d + f⃗∗

k⃗0−k⃗,de
i(k⃗0+k⃗)r⃗1 b̂†

k⃗0−k⃗,d

+ g⃗
k⃗0−k⃗,de

i(k⃗0−k⃗)r⃗1 b̂
k⃗0−k⃗,d + g⃗∗

k⃗0+k⃗,de
i(k⃗0−k⃗)r⃗1 b̂†

k⃗0+k⃗,d

}† (
⟨r⃗1| Ĥ0 |r⃗2⟩ − µδ (r⃗2 − r⃗1)

)
×

 ∑
kx>0,d

f⃗
k⃗0+k⃗,de

i(k⃗0+k⃗)r⃗2 b̂
k⃗0+k⃗,d + f⃗∗

k⃗0−k⃗,de
i(k⃗0+k⃗)r⃗2 b̂†

k⃗0−k⃗,d

+ g⃗
k⃗0−k⃗,de

i(k⃗0−k⃗)r⃗2 b̂
k⃗0−k⃗,d + g⃗∗

k⃗0+k⃗,de
i(k⃗0−k⃗)r⃗2 b̂†

k⃗0+k⃗,d

}
|0b⟩

=
∑

kx>0,d,s1,s2

{
f
k⃗0−k⃗,d,s1

f∗
k⃗0−k⃗,d,s2

[
H0(k⃗0 + k⃗, s1, s2) − δs1,s2µ

]
+g

k⃗0+k⃗,d,s1
g∗
k⃗0+k⃗,d,s2

[
H0(k⃗0 − k⃗, s1, s2) − δs1,s2µ

]}
=

∑
d,s1,s2

V

(2π)3

∫
kx>0

d⃗k

{
f
k⃗0−k⃗,d,s1

f∗
k⃗0−k⃗,d,s2

[
H0(k⃗0 + k⃗, s1, s2) − δs1,s2µ

]
+g

k⃗0+k⃗,d,s1
g∗
k⃗0+k⃗,d,s2

[
H0(k⃗0 − k⃗, s1, s2) − δs1,s2µ

]}
(4.171)

where H0(k⃗, s1, s2) stands for ⟨s1|H0(k⃗) |s2⟩, i.e. the matrix element of the one-body
Hamiltonian in the momentum and spin-z representation. The other contributions
yield:

KLHY,1 = ⟨0b|
∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)ψ̂†

0(r⃗2)V (r⃗1, r⃗2)δΨ̂(r⃗1)δΨ̂(r⃗2) |0b⟩

= 4πℏ2

M
⟨0b|

∫
d⃗rψ̂†

0(r⃗)ψ̂†
0(r⃗)

∑
s1,s2

as1,s2 |s1, s2⟩ ⟨s1, s2|

 δΨ̂(r⃗)δΨ̂(r⃗) |0b⟩
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= 4πℏ2

M

∑
kx>0,d,s1,s2

[
ϕ∗

0,s1ϕ
∗
0,s2as1,s2fk⃗0+k⃗,d,s1

g∗
k⃗0+k⃗,d,s2

+ϕ∗
0,s1ϕ

∗
0,s2as1,s2gk⃗0−k⃗,d,s1

f∗
k⃗0−k⃗,d,s2

]
= 4πℏ2V

M(2π)3

∑
d,s1,s2

∫
kx>0

d⃗k

[
ϕ∗

0,s1ϕ
∗
0,s2as1,s2fk⃗0+k⃗,d,s1

g∗
k⃗0+k⃗,d,s2

+ϕ∗
0,s1ϕ

∗
0,s2as1,s2gk⃗0−k⃗,d,s1

f∗
k⃗0−k⃗,d,s2

]
(4.172)

KLHY,2 = 4πℏ2V

M(2π)3

∑
d,s1,s2

∫
kx>0

d⃗k

[
ϕ∗

0,s1fk⃗0−k⃗,d,s2
as1,s2f

∗
k⃗0−k⃗,d,s2

ϕ0,s1

+ϕ∗
0,s1gk⃗0+k⃗,d,s2

as1,s2g
∗
k⃗0+k⃗,d,s2

ϕ0,s1

]
(4.173)

KLHY,3 = 4πℏ2V

M(2π)3

∑
d,s1,s2

∫
kx>0

d⃗k

[
ϕ∗

0,s1fk⃗0−k⃗,d,s2
as1,s2ϕ0,s2f

∗
k⃗0−k⃗,d,s1

+ϕ∗
0,s1gk⃗0+k⃗,d,s2

as1,s2g
∗
k⃗0+k⃗,d,s1

ϕ0,s2

]
. (4.174)

In this way, collecting all these results we see that, for a system of N particles, the
beyond mean field ground state energy is given by:

Eg.s. = EM.F.(N) + V

(2π)3

∑
d,s1,s2

∫
kx>0

d⃗k

{[
f
k⃗0−k⃗,d,s1

f∗
k⃗0−k⃗,d,s1

[
H0(k⃗0 + k⃗, s1, s2) − δs1,s2µ

]
+g

k⃗0+k⃗,d,s2
g∗
k⃗0+k⃗,d,s2

[
H0(k⃗0 − k⃗, s1, s2) − δs1,s2µ

]]
+4πℏ2n

M

[
χ∗

0,s1χ
∗
0,s2as1,s2fk⃗0+k⃗,d,s1

g∗
k⃗0+k⃗,d,s2

+ χ∗
0,s1χ

∗
0,s2as1,s2gk⃗0−k⃗,d,s1

f∗
k⃗0−k⃗,d,s2

]
+4πℏ2n

M

[
χ∗

0,s1fk⃗0−k⃗,d,s2
as1,s2f

∗
k⃗0−k⃗,d,s1

χ0,s2 + χ∗
0,s1gk⃗0+k⃗,d,s2

as1,s2g
∗
k⃗0+k⃗,d,s1

χ0,s2

]
+4πℏ2n

M

[
χ∗

0,s1fk⃗0−k⃗,d,s2
as1,s2f

∗
k⃗0−k⃗,d,s2

χ0,s1 + χ∗
0,s1gk⃗0+k⃗,d,s2

as1,s2g
∗
k⃗0+k⃗,d,s2

χ0,s1

]}
(4.175)

with n = N/V and ϕ⃗0 =
√
N/V χ⃗0.

Apart from the correction to the ground state energy, we can also compute other
physical quantities like the static structure factor S(k⃗), the spin static structure
factor Sσ(k⃗), and the condensate fraction fc = δN/N . We proceed to compute these
observables, although we focus on the kx dependence of S(k⃗) and Sσ(k⃗), since the
influence of SOC is mainly captured in the x-axis due to the contribution of Raman
SOC proportional the x component of the momentum (see Eq. 4.57). The static
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structure factor is given by [4]:

S(qx) = 1
N

⟨0b|

 N∑
n=1

eiqxxn

 N∑
n=1

e−iqxxn

 |0b⟩ =
∑
l,⃗k

∣∣∣∣∣∣ 1√
N

⟨0b|

 N∑
n=1

eiqxxn

 |l⟩
k⃗

∣∣∣∣∣∣
2

=
∑
l,⃗k

∣∣∣sl,⃗k(qx)
∣∣∣2 (4.176)

where we have introduced the identity Î = ∑
l,⃗k

|l⟩
k⃗

⟨l|
k⃗

with |l⟩
k⃗

the eigenstates
associated to the creation operators b̂†

k⃗,l
. The elements s

l,⃗k
(qx) can be written in terms

of the field operator as:

s
l,⃗k

(qx) = 1√
N

⟨0b|
∫
d⃗rΨ̂†(r⃗)eiqxxΨ̂(r⃗) |l⟩

k⃗

= 1√
N

⟨0b|
∫
d⃗rψ̂†

0(r⃗)eiqxxψ̂0(r⃗) |l⟩
k⃗

+ 1√
N

⟨0b|
∫
d⃗rδΨ̂†(r⃗)eiqxxψ̂0(r⃗) |l⟩

k⃗

+ 1√
N

⟨0b|
∫
d⃗rψ̂†

0(r⃗)eiqxxδΨ̂(r⃗) |l⟩
k⃗

+ 1√
N

⟨0b|
∫
d⃗rδΨ̂†(r⃗)eiqxxδΨ̂(r⃗) |l⟩

k⃗

(4.177)

The element s
l=0,⃗k=k⃗0

(qx), which corresponds to the lowest energy state, characterized
by the quantum numbers l = 0 (lowest branch) and k⃗ = k⃗0 (condensate momentum),
is proportional to δ[qx], with δ[x] the Kronecker delta function. We focus on the terms
which yield a non-trivial dependence on qx of the static structure factor, which are:

s
l,⃗k

(qx)
∣∣∣∣
l ̸=0,⃗k ̸=k⃗0

= 1√
N

⟨0b|
∫
d⃗rδΨ̂†(r⃗)eiqxxψ̂0(r⃗) |l⟩

k⃗
+ 1√

N
⟨0b|

∫
d⃗rψ̂†

0(r⃗)eiqxxδΨ̂(r⃗) |l⟩
k⃗

= s
l,⃗k,1(qx) + s

l,⃗k,2(qx) (4.178)

We now evaluate each of these contribution separately. By setting k⃗ = k⃗0 + k⃗′, k′
x > 0:

s
(+)
l,⃗k,1

(qx) = 1√
N

⟨0b|
∫
d⃗rδΨ̂†(r⃗)eiqxxψ̂0(r⃗)b̂†

k⃗0+k⃗′,l
|0⟩b = 1

V

∫
d⃗rg⃗τ

k⃗0+k⃗′,l
ei(−k⃗0+k⃗′)r⃗eiqxxχ⃗0e

ik⃗0r⃗

= g⃗τ
k⃗0+k⃗′,l

χ⃗0δ[⃗k′ + qx] (4.179)

while with k⃗ = k⃗0 − k⃗′, k′
x > 0 we obtain:

s
(−)
l,⃗k,1

(qx) = 1√
N

⟨0b|
∫
d⃗rδΨ̂†(r⃗)eiqxxψ̂0(r⃗)b̂†

k⃗0−k⃗′,l
|0⟩b = 1

V

∫
d⃗rf⃗ τ

k⃗0−k⃗′,l
e−i(k⃗0+k⃗′)r⃗eiqxxχ⃗0e

ik⃗0r⃗

= f⃗ τ
k⃗0−k⃗′,l

χ⃗0δ[⃗k′ − qx] . (4.180)

Therefore:

s
(−)
l,⃗k,1

(qx) = g⃗τ
k⃗0+k⃗′,l

χ⃗0δ[⃗k′ + qx] + f⃗ τ
k⃗0−k⃗′,l

χ⃗0δ[⃗k′ − qx] , (4.181)
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and similarly:

s
(+)
l,⃗k,2

(qx) = χ⃗τ0 f⃗k⃗0+k⃗′,lδ[⃗k
′ + qx] (4.182)

s
(−)
l,⃗k,2

(qx) = χ⃗τ0 g⃗k⃗0−k⃗′,lδ[⃗k
′ − qx] . (4.183)

Collecting these results, we arrive at

S(qx) =
∑
l,k′

x>0

∣∣∣∣∣
(
g⃗τ
k⃗0+k⃗′,l

χ⃗0 + χ⃗τ0 f⃗k⃗0+k⃗′,l

)
δ[⃗k′ + qx]

∣∣∣∣∣
2

+
∣∣∣∣∣
(
f⃗ τ
k⃗0−k⃗′,l

χ⃗0 + χ⃗τ0 g⃗k⃗0−k⃗′,l

)
δ[⃗k′ − qx]

∣∣∣∣∣
2

.

(4.184)

Analogously, we can obtain the spin static structure factor Sσ(k⃗), defined as [4]:

Sσ(qx) = 1
N

⟨0b|

 N∑
n=1

σ̂z,ne
iqxxn

 N∑
n=1

σ̂z,ne
−iqxxn

 |0b⟩ =
∑
l,⃗k

∣∣∣∣∣∣ 1√
N

⟨0b|

 N∑
n=1

σ̂z,ne
iqxxn

 |l⟩
k⃗

∣∣∣∣∣∣
2

(4.185)

which, in our case, reads

Sσ(qx) =
∑
l,k′

x>0

∣∣∣∣∣
(
g⃗τ
k⃗0+k⃗′,l

σ̂zχ⃗0 + χ⃗τ0 σ̂z f⃗k⃗0+k⃗′,l

)
δ[⃗k′ + qx]

∣∣∣∣∣+
∣∣∣∣∣
(
f⃗ τ
k⃗0−k⃗′,l

σ̂zχ⃗0 + χ⃗τ0 σ̂z g⃗k⃗0−k⃗′,l

)
δ[⃗k′ − qx]

∣∣∣∣∣
2

(4.186)

Finally, we compute the condensate fraction of the system, which is defined as:

fc = ⟨0b| δN |0b⟩
N

= 1
N

∑
k⃗ ̸=0,d

⟨0b| â†
k⃗0+k⃗,d

â
k⃗0+k⃗,d |0b⟩ (4.187)

The condensate fraction corresponds to the fraction of the particles that lay outside of
the condensate state. It can be rewritten as

fc = δN

N
= 1
N

∑
kx>0,d

⟨0b| â†
k⃗0+k⃗,d

â
k⃗0+k⃗,d + â†

k⃗0−k⃗,d
â
k⃗0−k⃗,d |0b⟩ , (4.188)

and in terms of the vectors of Eq. (4.80), we can express it as:

fc = 1
N

∑
kx>0

⟨0b| ψ̂†
k⃗
ψ̂
k⃗

−
∑
d

1 |0b⟩

 = 1
N

∑
kx>0

⟨0b| ϕ̂†
k⃗
M †
k⃗
M
k⃗
ϕ̂
k⃗

−
∑
d

1 |0b⟩


(4.189)

where we have used the commutation relation [â
k⃗
, â†
k⃗′ ] = δ

k⃗,⃗k′ for the elements
â†
k⃗0−k⃗,d

â
k⃗0−k⃗,d, which explains the appearance of the contribution∑d 1. Using Eq. (4.158),
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this becomes

fc = 1
N

∑
kx>0

⟨0b| ϕ̂†
k⃗
M z,†
k⃗
M z
k⃗
ϕ̂
k⃗

−
∑
d

1 |0b⟩


= 1
N

∑
kx>0

(
(M z,†

k⃗
M z
k⃗
)(3, 3) + (M z,†

k⃗
M z
k⃗
)(4, 4) − 2

)
= 1

(2π)3n

∫
kx>0

d⃗k
(
(M z,†

k⃗
M z
k⃗
)(3, 3) + (M z,†

k⃗
M z
k⃗
)(4, 4) − 2

)
(4.190)

which is an expression that can be used to compute the condensate fraction once the
matrix of eigenvectors M z

k⃗
has been computed. It can be shown that the condensate

fraction can be written as

fc = 1
N

⟨0b|
∫
d⃗r1δΨ̂†(r⃗1)δΨ̂(r⃗1) |0b⟩ (4.191)

We employ this expression in Sec. 4.3.3.

4.3.3 Raman SOC case: Stripe phase

We proceed now to compute, for the stripe phase of a Raman SOC system, the beyond
mean field corrections of the physical quantities previously introduced, following the
Bogoliubov-de Gennes formalism. In this phase, the mean field wave function consists
on a superposition of plane waves of opposite momenta [25, 70], which gives rise
to a periodic density modulation. The first step is to obtain this wave function.
More specifically, this implies obtaining the amplitudes multiplying each plane wave
component. We write the wave function in the form [4, 70]:

ψ̂0(r⃗) =
√
N0
V

∑
n∈Z

ψ⃗0,ne
ik0x+2ink0x (4.192)

with ψ⃗0,n real spinors and k0 the ground state momentum. As we can see from
Eq. (4.192), this function features a superposition of plane waves of momenta k0 +2nk0,
n ∈ Z. We can obtain the values of ψ⃗0,n and k0 by minimizing the mean field energy
per particle of the system in terms of these parameters. When the minimization
is applied, the modulus of the wave function in Eq. (4.192) shows periodic density
modulations, commonly known as stripes, unlike the plane wave and single minimum
phases. Because of this modulations, the continuous translational symmetry of the
wave function is broken. As a result of the periodicity, the excitation spectrum of the
system features an infinite number of energy bands which are periodic in momentum
space, where Brillouin Zones can be identified. Each Brillouin Zone spans the range
k0 ∈ [nk0, (n+ 2)k0].
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In order to carry out the aforementioned minimization procedure, we must obtain
the mean field energy per particle, which is given by:

EM.F./N0 = 1
N0

∫
d⃗r

(
ψ̂†

0Ĥ0ψ̂0 + G1
n

∣∣∣ψ̂0
∣∣∣4 + G2

n

(
ψ̂†

0σ̂zψ̂0
)2
)

(4.193)

where, being ψ0 the component of the condensate which is macroscopically occupied,
it fulfills:

⟨ψ0|ψ0⟩ = N0 = N0
∑
n∈Z

ψ⃗†
0,nψ⃗0,n . (4.194)

Let us express EM.F./N0 in terms of the momentum amplitudes of ψ0(r⃗).

EM.F./N0 = 1∑
v∈Z ψ⃗

†
0,vψ⃗0,v

∑
v∈Z

(
ℏ2k2

0(2n+ 1)2

2M

(∣∣∣ψ+1
0,v

∣∣∣2 +
∣∣∣ψ−1

0,v

∣∣∣2)

+ℏ2λk0(2n+ 1)
M

(∣∣∣ψ+1
0,v

∣∣∣2 −
∣∣∣ψ−1

0,v

∣∣∣2)+ ℏ2λ2

2M

(∣∣∣ψ+1
0,v

∣∣∣2 +
∣∣∣ψ−1

0,v

∣∣∣2)− Ωψ+1
0,vψ

−1
0,v

)

+G1N0
nV

∑
v,w,l,q∈n∈Z

(
ψ+1

0,wψ
+1
0,v + ψ−1

0,wψ
−1
0,v

) (
ψ+1

0,l ψ
+1
0,q + ψ−1

0,l ψ
−1
0,q

)
δ[v − w + l − q]

+G2N0
nV

∑
v,w,l,q∈n∈Z

(
ψ+1

0,wψ
+1
0,v − ψ−1

0,wψ
−1
0,v

) (
ψ+1

0,l ψ
+1
0,q − ψ−1

0,l ψ
−1
0,q

)
δ[v − w + l − q]

 ,

(4.195)

where the spinors have been written in the eigenbasis of σ̂z. Notice that, given a
term of the sum featuring indexes j = v0,w0,l0,q0 > 0; making the transformation
j → (−j−1), ψ+1

0,j → ψ−1
0,−j−1, ψ−1

0,j → ψ+1
0,−j−1 leaves the term invariant. This is because

Ĥ is also invariant under the transformation k⃗ → −k⃗, σ̂z → −σ̂z (see Eqs. (4.126)
and (4.57)), thus the components of the wave function of opposite momentum have
their spins flipped. We minimize the mean field energy per particle numerically, using
the Simulated Annealing algorithm [75]. We denote by Nc − 1 the maximum value
of the amplitude indexes to be retained in the minimization procedure, such that the
condensate wave function reads

ψ0(r⃗) =
√
N0
V

Nc−1∑
n=−Nc

ψ⃗0,ne
ik0x+2ink0x . (4.196)

Once we have the optimal amplitudes ψ⃗0,n, we proceed to obtain the excitation
spectrum and the Lee-Huang-Yang correction to the mean field energy. As in Sec. 4.3.2,
we start from the Heisenberg equation of motion for the field operator, i.e.

iℏ
dΨ̂(t)

dt = Ĥ0Ψ̂ +
[

2G1
n

Ψ̂†Ψ̂ + 2G2
n

(
Ψ̂†σ̂zΨ̂

)
σ̂z

]
Ψ̂ . (4.197)
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As we did in Sec. 4.3.2, we write the time-dependent field operator as

Ψ̂(t) = e−iµt/ℏ
(
ψ̂0 + ˆδΨ(t)

)
. (4.198)

Now, analogously to what was done in Sec. 4.3.2, one has

ψ̂0 = 1√
V

∑
n∈Z

ψ⃗0,ne
ik0x+2ink0xâ

k⃗0,l=0 ∼

√
N0
V

∑
n∈Z

ψ⃗0,ne
ik0x+2ink0x (4.199)

δΨ̂ (r⃗, t) =
∑

kx>0,⃗k∈BZ
l

f⃗
k⃗0+k⃗,l(k⃗, r⃗)b̂k⃗0+k⃗,l(t) + f⃗∗

k⃗0−k⃗,l(k⃗, r⃗)b̂
†
k⃗0−k⃗,l

(t)

+ g⃗
k⃗0−k⃗,l(k⃗, r⃗)b̂k⃗0−k⃗,l(t) + g⃗∗

k⃗0+k⃗,l(k⃗, r⃗)b̂
†
k⃗0+k⃗,l

(t) (4.200)

Here l is the band index, which replaces the index d of Sec. 4.3.2, which only took values
d = ±1 because there are only two bands in the plane-wave and single minimum phases.
Besides, k⃗ is restricted to the first Brillouin Zone of the system (0 < kx < 2k0) [70]. In
the case of the stripe phase, l takes infinite values due to the periodicity of the system.
Analogously to Sec. 4.3.2, we set the spatial dependence of the f and g functions to:

f⃗
k⃗0+k⃗,l(k⃗, r⃗) = 1√

V
ei(k⃗0+k⃗)r⃗ ∑

n∈Z
f⃗
k⃗0+k⃗,l,ne

2ink0x (4.201)

f⃗∗
k⃗0−k⃗,l(k⃗, r⃗) = 1√

V
ei(k⃗0+k⃗)r⃗ ∑

n∈Z
f⃗∗
k⃗0−k⃗,l,ne

2ink0x (4.202)

g⃗
k⃗0−k⃗,l(k⃗, r⃗) = 1√

V
ei(k⃗0−k⃗)r⃗ ∑

n∈Z
g⃗
k⃗0−k⃗,l,ne

2ink0x (4.203)

g⃗∗
k⃗0+k⃗,l(k⃗, r⃗) = 1√

V
ei(k⃗0−k⃗)r⃗ ∑

n∈Z
g⃗∗
k⃗0+k⃗,l,ne

2ink0x (4.204)

with k⃗0 = k0ûx and ûx the unitary vector along the x-axis. In these expressions we
have expanded the f and g functions in Bloch waves due to the periodicity of the
system. The position dependence of these functions matches the one from Ref. [70].
Also, analogously to Sec. 4.3.2, we set the time dependence of the b̂ operators to:

b̂
k⃗0+k⃗,l(t) = e

−iE
k⃗0+k⃗,l

t/ℏ
b̂
k⃗0+k⃗,l (4.205)

b̂
k⃗0−k⃗,l(t) = e

−iE
k⃗0−k⃗,l

t/ℏ
b̂
k⃗0−k⃗,l (4.206)

b̂†
k⃗0+k⃗,l

(t) = e
iE

k⃗0+k⃗,l
t/ℏ
b̂†
k⃗0+k⃗,l

(4.207)

b̂†
k⃗0−k⃗,l

(t) = e
iE

k⃗0−k⃗,l
t/ℏ
b̂†
k⃗0−k⃗,l

(4.208)

The equation for δΨ̂ is given by (see Eq. (4.134))
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µδΨ̂ + iℏ
dδΨ̂
dt = Ĥ0δΨ̂ + 2G1

n

[
|ψ0|2δΨ̂ + ψ∗

0δΨ̂ψ0 + δΨ̂†ψ0ψ0
]

+ 2G2
n

[
ψ∗

0σ̂zψ0σ̂zδΨ̂ + ψ∗
0σ̂zδΨ̂σ̂zψ0 + δΨ̂†σ̂zψ0σ̂zψ0

]
(4.209)

We substitute Eq. (4.200) into Eq. (4.209) and equal the coefficients of the same b̂
operator. This results into:

(µ+ E
k⃗0+k⃗,l)f⃗k⃗0+k⃗,l(k⃗, r⃗) = Ĥ0f⃗k⃗0+k⃗,l(k⃗, r⃗) + 2G1

n

[∣∣∣ψ⃗0
∣∣∣2f⃗k⃗0+k⃗,l(k⃗, r⃗)

+ψ⃗†
0f⃗k⃗0+k⃗,l(k⃗, r⃗)ψ⃗0 + g⃗τ

k⃗0+k⃗,l(k⃗, r⃗)ψ⃗0ψ⃗0

]
+ 2G2

n

[
ψ⃗∗

0σ̂zψ⃗0σ̂z f⃗k⃗0+k⃗,l(k⃗, r⃗) + ψ⃗†
0σ̂z f⃗k⃗0+k⃗,l(k⃗, r⃗)σ̂zψ⃗0

+g⃗τ
k⃗0+k⃗,l(k⃗, r⃗)σ̂zψ⃗0σ̂zψ⃗0

]
(4.210)

(µ− E
k⃗0+k⃗,l)g⃗

∗
k⃗0+k⃗,l(k⃗, r⃗) = Ĥ0g⃗

∗
k⃗0+k⃗,l(k⃗, r⃗) + 2G1

n

[∣∣∣ψ⃗0
∣∣∣2g⃗∗

k⃗0+k⃗,l(k⃗, r⃗)

+ψ⃗†
0g⃗

∗
k⃗0+k⃗,l(k⃗, r⃗)ψ⃗0 + f⃗ †

k⃗0+k⃗,l
(k⃗, r⃗)ψ⃗0ψ⃗0

]
+ 2G2

n

[
ψ⃗∗

0σ̂zψ⃗0σ̂z g⃗
∗
k⃗0+k⃗,l(k⃗, r⃗) + ψ⃗†

0σ̂z g⃗
∗
k⃗0+k⃗,l(k⃗, r⃗)σ̂zψ⃗0

+f⃗ †
k⃗0+k⃗,l

(k⃗, r⃗)σ̂zψ⃗0σ̂zψ⃗0

]
(4.211)

(µ− E
k⃗0−k⃗,l)f⃗

∗
k⃗0−k⃗,l(k⃗, r⃗) = Ĥ0f⃗

∗
k⃗0−k⃗,l(k⃗, r⃗) + 2G1

n

[∣∣∣ψ⃗0
∣∣∣2f⃗∗

k⃗0−k⃗,l(k⃗, r⃗)

+ψ⃗†
0f⃗

∗
k⃗0−k⃗,l(k⃗, r⃗)ψ⃗0 + g⃗†

k⃗0−k⃗,l
(k⃗, r⃗)ψ⃗0ψ⃗0

]
+ 2G2

n

[
ψ⃗∗

0σ̂zψ⃗0σ̂z f⃗
∗
k⃗0−k⃗,l(k⃗, r⃗) + ψ⃗†

0σ̂z f⃗
∗
k⃗0−k⃗,l(k⃗, r⃗)σ̂zψ⃗0

+g⃗†
k⃗0−k⃗,l

(k⃗, r⃗)σ̂zψ⃗0σ̂zψ⃗0

]
(4.212)

(µ+ E
k⃗0−k⃗,l)g⃗k⃗0−k⃗,l(k⃗, r⃗) = Ĥ0g⃗k⃗0−k⃗,l(k⃗, r⃗) + 2G1

n

[∣∣∣ψ⃗0
∣∣∣2g⃗k⃗0−k⃗,l(k⃗, r⃗)

+ψ⃗†
0g⃗k⃗0−k⃗,l(k⃗, r⃗)ψ⃗0 + f⃗ τ

k⃗0−k⃗,l(k⃗, r⃗)ψ⃗0ψ⃗0

]
+ 2G2

n

[
ψ⃗∗

0σ̂zψ⃗0σ̂z g⃗k⃗0−k⃗,l(k⃗, r⃗) + ψ⃗†
0σ̂z g⃗k⃗0−k⃗,l(k⃗, r⃗)σ̂zψ⃗0

+f⃗ τ
k⃗0−k⃗,l(k⃗, r⃗)σ̂zψ⃗0σ̂zψ⃗0

]
(4.213)

As in the previous Section, we only need to diagonalize Eqs. (4.210) and (4.211), as
Eqs. (4.212) (4.213) are equivalent to Eqs. (4.210) (4.211) under the change E

k⃗0+k⃗,l →
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−E
k⃗0−k⃗,l. We can then rewrite Eqs. (4.210) (4.211) in the form

(µ+ E
k⃗0+k⃗,l)f⃗k⃗0+k⃗,l(k⃗, r⃗) = Ĥ0f⃗k⃗0+k⃗,l(k⃗, r⃗) + 2G1

n

[∣∣∣ψ⃗0
∣∣∣2f⃗k⃗0+k⃗,l(k⃗, r⃗)

+ψ⃗0ψ⃗
†
0f⃗k⃗0+k⃗,l(k⃗, r⃗) + ψ⃗0ψ⃗

τ
0 g⃗k⃗0+k⃗,l(k⃗, r⃗)

]
+ 2G2

n

[
ψ⃗†

0σ̂zψ⃗0σ̂z f⃗k⃗0+k⃗,l(k⃗, r⃗) + σ̂zψ⃗0ψ⃗
†
0σ̂z f⃗k⃗0+k⃗,l(k⃗, r⃗)

+σ̂zψ⃗0ψ⃗
τ
0 σ̂z g⃗k⃗0+k⃗,l(k⃗, r⃗)

]
(4.214)

(µ− E
k⃗0+k⃗,l)g⃗

∗
k⃗0+k⃗,l(k⃗, r⃗) = Ĥ0g⃗

∗
k⃗0+k⃗,l(k⃗, r⃗) + 2G1

n

[∣∣∣ψ⃗0
∣∣∣2g⃗∗

k⃗0+k⃗,l(k⃗, r⃗)

+ψ⃗0ψ⃗
†
0g⃗

∗
k⃗0+k⃗,l(k⃗, r⃗) + ψ⃗0ψ⃗

τ
0 f⃗

∗
k⃗0+k⃗,l(k⃗, r⃗)

]
+ 2G2

n

[
ψ⃗†

0σ̂zψ⃗0σ̂z g⃗
∗
k⃗0+k⃗,l(k⃗, r⃗) + σ̂zψ⃗0ψ⃗

†
0σ̂z g⃗

∗
k⃗0+k⃗,l(k⃗, r⃗)

+σ̂zψ⃗0ψ⃗
τ
0 σ̂z f⃗

∗
k⃗0+k⃗,l(k⃗, r⃗)

]
. (4.215)

As in Sec. 4.3.2, we have used the relations (x⃗τ v⃗)w⃗ = (w⃗v⃗τ )x⃗ and (v⃗τ x⃗)w⃗ = (w⃗v⃗τ )x⃗,
with x⃗, v⃗, w⃗ vectors. We now expand f⃗

k⃗0+k⃗,l(k⃗, r⃗) and g⃗
k⃗0+k⃗,l(k⃗, r⃗) in terms of Bloch

waves (Eqs. (4.201) to (4.203)), multiply both sides of both equations by e−2in0k0x,
n0 = −Nc,−Nc + 1, ..., Nc − 2, Nc − 1 and integrate over the volume V to get rid of
the plane wave functions. This yields:

(µ+ E
k⃗0+k⃗,l)f⃗k⃗0+k⃗,l,n0

= Ĥ0(k⃗0 + k⃗ + 2n0k0)f⃗
k⃗0+k⃗,l,n0

+ 2G1N0
nV

[
ψ⃗†

0,mψ⃗0,m′ f⃗
k⃗0+k⃗,l,nδ[n0 − (n+m′ −m)]

+ψ⃗0,mψ⃗
†
0,m′ f⃗k⃗0+k⃗,l,nδ[n0 − (n−m′ +m)]

+ψ⃗0,mψ⃗
τ
0,m′ g⃗k⃗0+k⃗,l,nδ[n0 − (m′ +m− n)]

]
+ 2G2N0

nV

[
ψ⃗†

0,mσ̂zψ⃗0,m′ σ̂z f⃗k⃗0+k⃗,l,nδ[n0 − (n+m′ −m)]

+σ̂zψ⃗0,mψ⃗
†
0,m′ σ̂z f⃗k⃗0+k⃗,l,nδ[n0 − (n−m′ +m)]

+σ̂zψ⃗0,mψ⃗
τ
0,m′ σ̂z g⃗k⃗0+k⃗,l,nδ[n0 − (m′ +m− n)]

]
(4.216)

(µ− E
k⃗0+k⃗,l)g⃗

∗
k⃗0+k⃗,l,n0

= Ĥ0(k⃗0 − k⃗ + 2n0k0)g⃗∗
k⃗0+k⃗,l,n0

+ 2G1N0
nV

[
ψ⃗†

0,mψ⃗0,m′ g⃗∗
k⃗0+k⃗,l,nδ[n0 − (n+m′ −m)]

+ψ⃗0,mψ⃗
†
0,m′ g⃗

∗
k⃗0+k⃗,l,nδ[n0 − (n−m′ +m)]

+ψ⃗0,mψ⃗
τ
0,m′ f⃗∗

k⃗0+k⃗,l,nδ[n0 − (m′ +m− n)]
]
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+ 2G2N0
nV

[
ψ⃗†

0,mσ̂zψ⃗0,m′ σ̂z g⃗
∗
k⃗0+k⃗,l,nδ[n0 − (n+m′ −m)]

+σ̂zψ⃗0,mψ⃗
†
0,m′ σ̂z g⃗

∗
k⃗0+k⃗,l,nδ[n0 − (n−m′ +m)]

+σ̂zψ⃗0,mψ⃗
τ
0,m′ σ̂z f⃗

∗
k⃗0+k⃗,l,nδ[n0 − (m′ +m− n)]

]
(4.217)

Since the matrix to be diagonalized is real, and the excitation spectrum energies must
also be real, we assume the amplitudes f⃗

k⃗0+k⃗,l,n, g⃗
k⃗0+k⃗,l,n to be real, i.e. f⃗

k⃗0+k⃗,l,n =
f⃗∗
k⃗0+k⃗,l,n, g⃗

k⃗0+k⃗,l,n = g⃗∗
k⃗0+k⃗,l,n. We then define the vectors:

x⃗τl,+ =
(
f⃗ τ
k⃗0+k⃗,l,−Nc

, ... , f⃗ τ
k⃗0+k⃗,l,Nc−1, g⃗

τ
k⃗0+k⃗,l,−Nc

, ... , g⃗τ
k⃗0+k⃗,l,Nc−1

)
(4.218)

x⃗τl,− =
(
f⃗ τ
k⃗0−k⃗,l,−Nc

, ... , f⃗ τ
k⃗0−k⃗,l,Nc−1, g⃗

τ
k⃗0−k⃗,l,−Nc

, ... , g⃗τ
k⃗0−k⃗,l,Nc−1

)
(4.219)

such that the system of equations described by Eqs. (4.216) and (4.217) can be written
in matrix form. Diagonalizing this matrix system yields the eigenvalues −E

k⃗0−k⃗,l,
E
k⃗0+k⃗,l (as in Sec. 4.3.2) and the Bogoliubov amplitudes x⃗l, for l = 0, ... , 8Nc − 1.

The normalization condition fulfilled by the Bogoliubov amplitudes is [70]:

n=Nc−1∑
n=−Nc

f⃗ τ
k0+k⃗,l,nf⃗k0+k⃗,l,n −

(
g⃗τ
k0+k⃗,l,ng⃗k0+k⃗,l,n

)
= 1 (4.220)

n=Nc−1∑
n=−Nc

f⃗ τ
k0−k⃗,l,nf⃗k0−k⃗,l,n −

(
g⃗τ
k0−k⃗,l,ng⃗k0−k⃗,l,n

)
= −1 (4.221)

As a way to check the formalism, we report in Fig. 4.3 the lowest four energy
bands of the excitation spectrum in the stripe phase, in the same conditions as in
Ref. [4] (Ω = 2, G1 = 0.6 and G2 = 0.16 in our units). Only the first Brillouin Zone
is displayed. As can be seen, we recover the results from Ref. [4]. Remarkably, the
two lowest energy bands go to zero as kx approaches the edges of the first Brillouin
Zone. The existence of these two gapless bands reflects the two symmetries that are
spontaneously broken in the stripe phase: gauge symmetry and spatial symmetry [4].

By defining the matrix:

M z
k⃗

=
(
x⃗0,+ ... x⃗4Nc−1,+ x⃗0,− ... x⃗4Nc−1,−

)
(4.222)

that has the vectors x⃗l,± as columns, we can rewrite the normalization condition as:

M z,†
k⃗
ĨM z

k⃗
= Ĩ (4.223)

Ĩ(i, j) = δ[i− j] Ĩ(4Nc + i, 4Nc + j) = −δ[i− j] j = 1, 2, ..., 4Nc (4.224)
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Fig. 4.3 Four lowest energy branches of the excitation spectrum in the stripe phase.
We have set Ω = 2, G1 = 0.6 and G2 = 0.16 as in Ref. [4]. Lines correspond to our
results while points correspond to data from Ref. [4]. All quantities are expressed in
reduced units.

We proceed now to compute the Lee-Huang-Yang energy correction of the system.
Analogously to what we did in the previous Sections, we write:

Eg.s. = EM.F.(N) +KLHY(N0) + O
(
δN2

)
(4.225)

KLHY(N0) = ⟨0b| Ĥ − µN̂ |0b⟩ (N0) −KM.F.(N0) (4.226)

ELHY(N) ≃ KLHY(N0) (4.227)

KM.F.(N0) = EM.F.(N0) − µN0 (4.228)

with EM.F. given in Eq. (4.195) and the chemical potential given by

µ = 1∑
v∈Z ψ⃗

†
0,vψ⃗0,v

∑
v∈Z

(
ℏ2k2

0(2n+ 1)2

2M

(∣∣∣ψ+1
0,v

∣∣∣2 +
∣∣∣ψ−1

0,v

∣∣∣2)

+ℏ2λk0(2n+ 1)
M

(∣∣∣ψ+1
0,v

∣∣∣2 −
∣∣∣ψ−1

0,v

∣∣∣2)+ ℏ2λ2

2M

(∣∣∣ψ+1
0,v

∣∣∣2 +
∣∣∣ψ−1

0,v

∣∣∣2)− Ωψ+1
0,vψ

−1
0,v

)

+2G1N0
nV

∑
v,w,l,q∈n∈Z

(
ψ+1

0,wψ
+1
0,v + ψ−1

0,wψ
−1
0,v

) (
ψ+1

0,l ψ
+1
0,q + ψ−1

0,l ψ
−1
0,q

)
δ[v − w + l − q]

+2G2N0
nV

∑
v,w,l,q∈n∈Z

(
ψ+1

0,wψ
+1
0,v − ψ−1

0,wψ
−1
0,v

) (
ψ+1

0,l ψ
+1
0,q − ψ−1

0,l ψ
−1
0,q

)
δ[v − w + l − q]

 .

(4.229)
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As in the previous Section, we write:

KLHY(N0) = ⟨0b|
∫
d⃗r1d⃗r2δΨ̂†(r⃗1)

(
⟨r⃗1| Ĥ0 |r⃗2⟩ − µδ (r⃗2 − r⃗1)

)
δΨ̂(r⃗2) |0b⟩

+ ⟨0b|
∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)ψ̂†

0(r⃗2)V (r⃗1, r⃗2)δΨ̂(r⃗1)δΨ̂(r⃗2) |0b⟩

+ ⟨0b|
∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)δΨ̂†(r⃗2)V (r⃗1, r⃗2)ψ̂0(r⃗1)δΨ̂(r⃗2) |0b⟩

+ ⟨0b|
∫
d⃗r1d⃗r2δΨ̂†(r⃗1)ψ̂†

0(r⃗2)V (r⃗1, r⃗2)ψ̂0(r⃗1)δΨ̂(r⃗2) |0b⟩

= KLHY,0 +KLHY,1 +KLHY,2 +KLHY,3 . (4.230)

where |0b⟩ indicates the beyond mean field ground state, which is annihilated by all
operators b̂

k⃗,l
with k⃗ ̸= k⃗0 (ground state momentum), l ̸= 0. We now compute each one

of these terms. We do so by expanding the δΨ̂ operator using Eq. (4.200) and then,
expanding the Bogoliubov amplitudes in Bloch waves using Eqs. (4.201) to (4.204).
The calculation yields

KLHY,0 = ⟨0b|
∫
d⃗r1d⃗r2δΨ̂†(r⃗1)

(
⟨r⃗1| Ĥ0 |r⃗2⟩ − µδ (r⃗2 − r⃗1)

)
δΨ̂(r⃗2) |0b⟩

= ⟨0b|
∫
d⃗r1d⃗r2


∑

kx>0,⃗k∈BZ
l

f⃗
k⃗0+k⃗,l(k⃗, r⃗1)b̂

k⃗0+k⃗,l + f⃗∗
k⃗0−k⃗,l(k⃗, r⃗1)b̂†

k⃗0−k⃗,l

+ g⃗
k⃗0−k⃗,l(k⃗, r⃗1)b̂

k⃗0−k⃗,l + g⃗∗
k⃗0+k⃗,l(k⃗, r⃗1)b̂†

k⃗0+k⃗,l

}† (
⟨r⃗1| Ĥ0 |r⃗2⟩ − µδ (r⃗2 − r⃗1)

)

×


∑

kx>0,⃗k∈BZ
l

f⃗
k⃗0+k⃗,l(k⃗, r⃗2)b̂

k⃗0+k⃗,l + f⃗∗
k⃗0−k⃗,l(k⃗, r⃗2)b̂†

k⃗0−k⃗,l

+ g⃗
k⃗0−k⃗,l(k⃗, r⃗2)b̂

k⃗0−k⃗,l + g⃗∗
k⃗0+k⃗,l(k⃗, r⃗2)b̂†

k⃗0+k⃗,l

}
|0b⟩

=
∑

kx>0,⃗k∈BZ
l,m
s1,s2

{
f
k⃗0−k⃗,l,m,s1

f∗
k⃗0−k⃗,l,m,s2

[
H0(k⃗0 + k⃗ + 2mk⃗0, s1, s2) − δs1,s2µ

]

+g
k⃗0+k⃗,l,m,s1

g∗
k⃗0+k⃗,l,m,s2

[
H0(k⃗0 − k⃗ + 2mk⃗0, s1, s2) − δs1,s2µ

]}
=
∑
l,m
s1,s2

V

(2π)3

∫
kx>0
k⃗∈BZ

d⃗k

{
f
k⃗0−k⃗,l,m,s1

f∗
k⃗0−k⃗,l,m,s2

[
H0(k⃗0 + k⃗ + 2mk⃗0, s1, s2) − δs1,s2µ

]

+g
k⃗0+k⃗,l,m,s1

g∗
k⃗0+k⃗,l,m,s2

[
H0(k⃗0 − k⃗ + 2mk⃗0, s1, s2) − δs1,s2µ

]}
(4.231)

where l is the band index, m is the Brillouin Zone index, and {s1, s2} indicate the
components of the f⃗ and g⃗ vectors in the σ̂z representation. Again, H0(k⃗, s1, s2)
corresponds to ⟨s1|H0(k⃗) |s2⟩, i.e. the matrix element of the one-body Hamiltonian of
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Eq. (4.57) in the momentum and spin-z representation. The rest of the contributions
can be obtained analogously to KLHY,0. They yield:

KLHY,1 = ⟨0b|
∫
d⃗r1d⃗r2ψ̂

†
0(r⃗1)ψ̂†

0(r⃗2)V (r⃗1, r⃗2)δΨ̂(r⃗1)δΨ̂(r⃗2) |0b⟩

= 4πℏ2

M
⟨0b|

∫
d⃗rψ̂†

0(r⃗)ψ̂†
0(r⃗)

∑
s1,s2

as1,s2 |s1, s2⟩ ⟨s1, s2|

 δΨ̂(r⃗)δΨ̂(r⃗) |0b⟩

= 4πℏ2

M
⟨0b|

∫
d⃗rψ̂†

0(r⃗)ψ̂†
0(r⃗)

∑
s1,s2

as1,s2 |s1, s2⟩ ⟨s1, s2|



×


∑

kx>0,⃗k∈BZ
l

f⃗
k⃗0+k⃗,l(k⃗, r⃗)b̂k⃗0+k⃗,l + f⃗∗

k⃗0−k⃗,l(k⃗, r⃗)b̂
†
k⃗0−k⃗,l

+ g⃗
k⃗0−k⃗,l(k⃗, r⃗)b̂k⃗0−k⃗,l + g⃗∗

k⃗0+k⃗,l(k⃗, r⃗)b̂
†
k⃗0+k⃗,l

}

×


∑

kx>0,⃗k∈BZ
l

f⃗
k⃗0+k⃗,l(k⃗, r⃗)b̂k⃗0+k⃗,l + f⃗∗

k⃗0−k⃗,l(k⃗, r⃗)b̂
†
k⃗0−k⃗,l

+ g⃗
k⃗0−k⃗,l(k⃗, r⃗)b̂k⃗0−k⃗,l + g⃗∗

k⃗0+k⃗,l(k⃗, r⃗)b̂
†
k⃗0+k⃗,l

}
|0b⟩

= 4πℏ2

M

∑
kx>0,⃗k∈BZ

l

∫
d⃗rψ̂†

0(r⃗)ψ̂†
0(r⃗)

∑
s1,s2

as1,s2 |s1, s2⟩ ⟨s1, s2|


×
(
g⃗∗
k⃗0+k⃗,l(k⃗, r⃗)f⃗k⃗0+k⃗,l(k⃗, r⃗) + f⃗∗

k⃗0−k⃗,l(k⃗, r⃗)g⃗k⃗0−k⃗,l(k⃗, r⃗)
)

= 4πℏ2n0
M

∑
kx>0,⃗k∈BZ

l
n1,n2,n3,n4

ψ⃗†
0,n1ψ⃗

†
0,n2

∑
s1,s2

as1,s2 |s1, s2⟩ ⟨s1, s2|



×
(
g⃗∗
k⃗0+k⃗,l,n3

f⃗
k⃗0+k⃗,l,n4

+ f⃗∗
k⃗0−k⃗,l,n3

g⃗
k⃗0−k⃗,l,n4

)
δ[n3 + n4 − n1 − n2]

}

= 4πℏ2n0
M

∑
kx>0,⃗k∈BZ

l
n1,n2,n3,n4

∑
s1,s2

{
ψ∗

0,n1,s1ψ
∗
0,n2,s2as1,s2

(
g∗
k⃗0+k⃗,l,n3,s1

f
k⃗0+k⃗,l,n4,s2

+f∗
k⃗0−k⃗,l,n3,s1

g
k⃗0−k⃗,l,n4,s2

)
δ[n3 + n4 − n1 − n2]

}
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= 4πℏ2n0
M

V

(2π)3

∑
l

n1,n2,n3,n4
s1,s2

∫
kx>0,⃗k∈BZ

d⃗k
{
ψ∗

0,n1,s1ψ
∗
0,n2,s2as1,s2

×
(
g∗
k⃗0+k⃗,l,n3,s1

f
k⃗0+k⃗,l,n4,s2

+ f∗
k⃗0−k⃗,l,n3,s1

g
k⃗0−k⃗,l,n4,s2

)
δ[n3 + n4 − n1 − n2]

}
(4.232)

KLHY,2 = 4πℏ2n0
M

V

(2π)3

∑
l

n1,n2,n3,n4
s1,s2

∫
kx>0,⃗k∈BZ

d⃗k
{
ψ∗

0,n1,s1ψ0,n2,s1as1,s2

×
(
g
k⃗0+k⃗,l,n3,s2

g∗
k⃗0+k⃗,l,n4,s2

+ f∗
k⃗0−k⃗,l,n3,s2

f
k⃗0−k⃗,l,n4,s2

)
δ[−n3 + n4 − n1 + n2]

}
(4.233)

KLHY,3 = 4πℏ2n0
M

V

(2π)3

∑
l

n1,n2,n3,n4
s1,s2

∫
kx>0,⃗k∈BZ

d⃗k
{
ψ∗

0,n1,s1ψ0,n2,s2as1,s2

×
(
g
k⃗0+k⃗,l,n3,s1

g∗
k⃗0+k⃗,l,n4,s2

+ f∗
k⃗0−k⃗,l,n3,s1

f
k⃗0−k⃗,l,n4,s2

)
δ[−n3 + n4 − n1 + n2]

}
(4.234)

Collecting these results, we see that KLHY/N0 is given by:

KLHY/N0 =
∑
l,m
s1,s2

1
(2π)3n0

∫
kx>0
k⃗∈BZ

d⃗k

{
f
k⃗0−k⃗,l,m,s1

f∗
k⃗0−k⃗,l,m,s2

[
H0(k⃗0 + k⃗ + 2mk⃗0, s1, s2) − δs1,s2µ

]

+g
k⃗0+k⃗,l,m,s1

g∗
k⃗0+k⃗,l,m,s2

[
H0(k⃗0 − k⃗ + 2mk⃗0, s1, s2) − δs1,s2µ

]}
+ 4πℏ2

M

1
(2π)3

∑
l

n1,n2,n3,n4
s1,s2

∫
kx>0,⃗k∈BZ

d⃗k
{
ψ∗

0,n1,s1ψ
∗
0,n2,s2as1,s2

×
(
g∗
k⃗0+k⃗,l,n3,s1

f
k⃗0+k⃗,l,n4,s2

+ f∗
k⃗0−k⃗,l,n3,s1

g
k⃗0−k⃗,l,n4,s2

)
δ[n3 + n4 − n1 − n2]

+ψ∗
0,n1,s1ψ0,n2,s1as1,s2

(
g
k⃗0+k⃗,l,n3,s2

g∗
k⃗0+k⃗,l,n4,s2

+ f∗
k⃗0−k⃗,l,n3,s2

f
k⃗0−k⃗,l,n4,s2

)
×δ[−n3 + n4 − n1 + n2] + ψ∗

0,n1,s1ψ0,n2,s2as1,s2

×
(
g
k⃗0+k⃗,l,n3,s1

g∗
k⃗0+k⃗,l,n4,s2

+ f∗
k⃗0−k⃗,l,n3,s1

f
k⃗0−k⃗,l,n4,s2

)
δ[−n3 + n4 − n1 + n2]

}
.

≃ ELHY/N (4.235)

We define the integrals:
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I2 = 4πℏ2

(2π)3M

∑
l

n1,n2,n3,n4
s1,s2

∫
0<kx<k0

0<ky ,kz<∞
d⃗k
{
ψ∗

0,n1,s1ψ
∗
0,n2,s2as1,s2

×
(
g∗
k⃗0+k⃗,l,n3,s1

f
k⃗0+k⃗,l,n4,s2

+ f∗
k⃗0−k⃗,l,n3,s1

g
k⃗0−k⃗,l,n4,s2

)
δ[n3 + n4 − n1 − n2]

}
(4.236)

I3 = 4πℏ2

(2π)3M

∑
l

n1,n2,n3,n4
s1,s2

∫
0<kx<k0

0<ky ,kz<∞
d⃗kψ∗

0,n1,s1ψ0,n2,s1as1,s2

×
(
g
k⃗0+k⃗,l,n3,s2

g∗
k⃗0+k⃗,l,n4,s2

+ f∗
k⃗0−k⃗,l,n3,s2

f
k⃗0−k⃗,l,n4,s2

)
δ[−n3 + n4 − n1 + n2]

+ ψ∗
0,n1,s1ψ0,n2,s2as1,s2

(
g
k⃗0+k⃗,l,n3,s1

g∗
k⃗0+k⃗,l,n4,s2

+ f∗
k⃗0−k⃗,l,n3,s1

f
k⃗0−k⃗,l,n4,s2

)
δ[−n3 + n4 − n1 + n2]

(4.237)

which are particular contributions to KLHY/N0, as can be seen in Eq. (4.235). As in the
plane wave and single-minimum phases, the integrals in Eq. (4.235) diverge, and must
be properly regularized. However, before discussing the regularization procedure, we
shall comment on some technical aspects regarding the computation of these integrals.
The integration region in Eq. (4.235) is k⊥ =

√
k2
y + k2

z ∈ [0,∞), 0 < kx < k0, with k0

the ground state momentum. The sum indexes {l, n1, n2, n3, n4} range from −∞, +∞.
In practice, we introduce cut-off values in both operations and restrict the calculation
to 0 < k⊥ =

√
k2
y + k2

z < k⊥,max and −Nc < l, n1, n2, n3, n4 < Nc − 1. The integration
volume is then VI = πk2

⊥,max × 4Nck0, a cylinder of radius k⊥,max in the {ky, kz} plane
and height 4Nck0 in the kx axis, centered at the origin. We define Nx and N⊥ as
the number of points in the x and radial axes, respectively. Looking at Eq. (4.235),
one notices that the integral scales as O

(
NxN⊥N

4
c

)
, while typically, Nx ∼ O

(
102
)
,

N⊥ ∼ O
(
103
)

and the calculation becomes too expensive in computational time. In
order to make it feasible, we introduce two approximations. The first one involves
the number of momentum components of the condensate wave function (i.e. indexes
n1 and n2 in Eq. (4.235)). According to Ref. [70] and to our Simulated Annealing
calculations, the absolute value of the Bloch wave amplitudes in the condensate wave
function decreases very rapidly with the momentum index n. We thus truncate the
sum and denote by Nc,0 the number of momentum components of the condensate
wave function included in the computation of the LHY integral, and fix its value. In
this way, the LHY integral scales as O

(
NxN⊥N

2
c,0N

2
c

)
, with the integration volume

remaining unchanged. In practice, no significant changes are seen in the results when
Nc,0 > 5, so we set Nc,0 = 5.

The computational cost can be furtherly reduced when a second approximation is
introduced. It can be checked numerically that, as k⊥ and Nc increase, the integral I2 is
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dominated by the contributions from the f
k⃗0+k⃗,l,l,±1 and g

k⃗0−k⃗,l,l,±1 terms. Therefore,
we retain only the two most dominant terms for every value of l to the integral
instead of performing the whole sum over n3 and n4. Additionally, we retain only
the two first momentum modes of the condensate state when computing the integral
I3, since we have checked that these are also the dominant contributions. These
approximations reduce the scaling of the computational cost of the LHY integral
on Nc up to Max

{
O
(
NxN⊥NcN

2
c,0

)
, O

(
NxN⊥N

2
c

)}
, which, in practical terms, is

a significant reduction with respect to O
(
NxN⊥N

2
c,0N

2
c

)
. We show in Fig. 4.4 the

marginal integrand of Eq. 4.235 after integrating over the x-axis and performing the
sums, for the exact case with Nc = 9, and the approximated case with Nc = 9, Nc,0 = 5.
As it can be seen from the Figure, both curves are in excellent agreement.

Fig. 4.4 Exact (Nc = 9) and approximated (Nc = 9, Nc,0 = 5) marginal integrands of
the unregularized LHY energy per particle for Ω = 2.8, a+1,+1 = a−1,−1 = 0.641982,
γ = (a+1,+1 − a+1,−1)/(a+1,+1 + a+1,−1) = 0.4, n = 3.7 × 10−3, Nx = 200, N⊥ = 2000.

Next we proceed to discuss the regularization of ELHY/N . We define ϵLHY(VI)
as the integral of Eq. (4.235) over a finite integration volume VI . As mentioned
previously, the LHY integral for a Raman SOC stripe system is ultraviolet divergent
(i.e. limVI→∞ ϵLHY(VI) = ∞), and must be regularized. To identify the diverging
behavior, we compute ϵLHY(VI) over increasingly larger cylindrical volumes. These
volumes are defined as V (i)

I = π(k(i)
⊥,max)2 × 4N (i)

c k0, with k
(i)
⊥,max = 2N (i)

c k0, N (i)
c ∈ N.

We find that ϵLHY(VI) can be fitted to

fη,I0(VI) =
∫
VI

d⃗k η/k2 + I0 = Iη(VI) + I0 (4.238)
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Fig. 4.5 ϵLHY (blue dots) and fη,I0 (green line) computed for different integration
volumes VI , with VI = πk2

⊥,f × 2k⊥,f, a cylinder of radius k⊥,f and height 2k⊥,f, with
k⊥,f = 2Nck0, Nc ∈ [5, 25]. Other parameters are Ω = 1.0, a+1,+1 = a−1,−1 = 0.2,
γ = −21, n = 3.11 × 10−3, Nx = 300, N⊥ = 3000.

with η and I0 fitting parameters, k2 = k2
x + k2

y + k2
z , and Iη(VI) given by:

Iη(VI) = 8πηNck0

(
π

4 + log 2
2

)
(4.239)

with log 2 = 0.6931. We show ϵLHY(VI) and fη,I0(VI) as a function of the integration
volume in Fig. 4.5. Therefore, the quantity limVI→∞ ϵLHY(VI) − Iη(VI) is finite. Thus,
the LHY energy per particle can be computed as

ELHY/N = lim
VI→∞

[
ϵLHY(VI) − Iη(VI)

]
+ Ireg.

η , (4.240)

with Ireg
η the regularized Iη(∞) value, which we obtain applying Dimensional Regular-

ization [72, 73]. As mentioned in Sec. 4.2.1, the regularized integral of a polynomial
vanishes [72], which implies Ireg

η (VI = ∞) = 0. Thus, the regularized LHY integral is
given by:

ELHY/N = lim
VI→∞

[
ϵLHY(VI) − Iη(VI)

]
= I0 (4.241)

Ideally, the regularized LHY integral should be computed for Nc → ∞, Nx → ∞,
N⊥ → ∞. However, in practice, the values Nc, Nx and N⊥ used in the calculations
are finite. In order to approach the asymptotic limit, the regularized LHY integral
is computed for different values Nc ∈ [nc,0, nc,1] and for different number of points,
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Fig. 4.6 Upper plot: I0(Nx) vs Nx. Lower plot: ϵLHY(VI) − Iη(VI) computed for
different integration volumes VI , with VI = πk2

⊥,f × 2k⊥,f, a cylinder of radius k⊥,f
and height 2k⊥,f. Other parameters are: Ω = 1.0, a+1,+1 = a−1,−1 = 0.2, γ = −21,
n = 3.11 × 10−3.

Nx ∈ [nx,0, nx,1], with N⊥ = 10Nx. For each value of Nc, the cylindrical integration
volume is VI = π(2Nck0)2 × 4Nck0. For each fixed number of points, the fitting of
ϵLHY(VI) using the function in Eq. (4.238) is carried out, resulting in a function I0(Nx).
We then extrapolate I0(Nx) to Nx → ∞ using a function of the form g(Nx) = a+ b/N l

x

and take the extrapolation, I0(Nx → ∞), as the final result. The shape of the function
g(Nx) has been chosen by inspection, as it seems suitable to perform the extrapolation
in the tested cases. The range of Nc is chosen such that the quantity ϵLHY(VI) − Iη(VI)
does not depend on Nc, meaning that the asymptotic limit has been reached. We
show in Fig. 4.6, I0(Nx) as a function of the number of points Nx for Ω = 1.0,
a+1,+1 = a−1,−1 = 0.2, γ = −21, n = 3.11 × 10−3, and the quantity ϵLHY(VI) − Iη(VI)
as a function of the number of modes Nc, for Nx = 300. As it can be seen from the
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Figure, ϵLHY(VI) − Iη(VI) shows no significant dependence on Nc. The extrapolation
of I0(Nx) to Nx → ∞ yields the final result ELHY/N = I0(Nx → ∞) = 6.505 × 10−4.
In practice, one can just perform the calculations for two values of Nc and one for Nx

such that I(Nx) ≃ I(Nx → ∞). As an example, setting Nc = 5, 7 and Nx = 600 one
obtains ELHY/N = I0(Nx = 600) = 6.494 × 10−4 ≃ I0(Nx → ∞)

We can also compute other physical quantities apart from the ground state energy,
as we did in Sec. 4.3.2, like the static structure factor S(k⃗), the spin static structure
factor Sσ(k⃗) and the condensate fraction, fc. We proceed to compute these observables.
Again, we focus on the kx dependence of S(k⃗) and Sσ(k⃗). The static structure factor
is defined in Eq. (4.176). The elements s

l,⃗k
(qx) can be written in terms of the field

operator as:

s
l,⃗k

(qx) = 1√
N

⟨0b|
∫
d⃗rΨ̂†(r⃗)eiqxxΨ̂(r⃗) |l⟩

k⃗

= 1√
N

⟨0b|
∫
d⃗rψ̂†

0(r⃗)eiqxxψ̂0(r⃗) |l⟩
k⃗

+ 1√
N

⟨0b|
∫
d⃗rδΨ̂†(r⃗)eiqxxψ̂0(r⃗) |l⟩

k⃗

+ 1√
N

⟨0b|
∫
d⃗rψ̂†

0(r⃗)eiqxxδΨ̂(r⃗) |l⟩
k⃗

+ 1√
N

⟨0b|
∫
d⃗rδΨ̂†(r⃗)eiqxxδΨ̂(r⃗) |l⟩

k⃗

(4.242)

As for the plane wave and single minimum cases, we focus on the terms which yield
a non-trivial dependence on qx in the static structure factor, with 0 < qx < 2k0,
corresponding to the first Brillouin Zone. These are:

s
l,⃗k

(qx)
∣∣∣∣
k⃗ ̸=k⃗0

= 1√
N

⟨0b|
∫
d⃗rδΨ̂†(r⃗)eiqxxψ̂0(r⃗) |l⟩

k⃗
+ 1√

N
⟨0b|

∫
d⃗rψ̂†

0(r⃗)eiqxxδΨ̂(r⃗) |l⟩
k⃗

= s
l,⃗k,1(qx) + s

l,⃗k,2(qx) . (4.243)

We then compute each contribution separately. We start by setting k⃗ = k⃗0 + k⃗′, k′
x > 0,

with 0 < kx < 2k0, i.e., k⃗ in the first Brillouin Zone. Then:

s
(+)
l,⃗k,1

(qx) = 1√
N

⟨0b|
∫
d⃗rδΨ̂†(r⃗)eiqxxψ̂0(r⃗)b̂†

k⃗0+k⃗′,l
|0⟩b

= 1
V

∑
m,n

∫
d⃗rg⃗τ

k⃗0+k⃗′,l,n
ei(−k⃗0+k⃗′−2nk0x)r⃗eiqxxψ⃗0,me

i(k⃗0+2mk0x)r⃗

=
∑
n,m

g⃗τ
k⃗0+k⃗′,l,n

ψ⃗0,mδ[⃗k′ + qxu⃗x + 2(m− n)k0u⃗x] (4.244)

with u⃗x the unitary vector along the x-axis. In this expression, the only non-vanishing
contributions are:

s
(+)
l,⃗k,1

(qx) =
∑
n

g⃗τ
k⃗0+k⃗′,l,n+1ψ⃗0,nδ[⃗k′ + qxu⃗x − 2k0u⃗x] , (4.245)
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and by setting k⃗ = k⃗0 − k⃗′, k′
x > 0 we obtain

s
(−)
l,⃗k,1

(qx) = 1√
N

⟨0b|
∫
d⃗rδΨ̂†(r⃗)eiqxxψ̂0(r⃗)b̂†

k⃗0−k⃗′,l
|0⟩b

= 1
V

∑
m,n

∫
d⃗rf⃗ τ

k⃗0−k⃗′,l,n
e−i(k⃗0+k⃗′−2nk0x)r⃗eiqxxψ⃗0,me

ik⃗0r⃗+2imk0x

=
∑
m,n

f⃗ τ
k⃗0−k⃗′,l,n

ψ⃗0,mδ[−k⃗′ + qx + 2(m− n)k0u⃗x] (4.246)

The surviving contributions are

s
(−)
l,⃗k,1

(qx) =
∑
n

f⃗ τ
k⃗0−k⃗′,l,n

ψ⃗0,nδ[−k⃗′ + qx] , (4.247)

and similarly

s
(+)
l,⃗k,2

(qx) =
∑
n

ψ⃗†
0,n+1f⃗k⃗0+k⃗′,l,nδ[⃗k

′ + qxu⃗x − 2k0u⃗x] (4.248)

s
(−)
l,⃗k,2

(qx) =
∑
n

ψ⃗†
0,ng⃗k⃗0−k⃗′,l,nδ[−k⃗

′ + qxu⃗x] . (4.249)

In this way we obtain the complete expression of the static structure factor

S(qx) =
∑
l,k′

x>0

∣∣∣∣s(+)
l,⃗k,1

(qx) + s
(+)
l,⃗k,2

(qx)
∣∣∣∣2 +

∣∣∣∣s(−)
l,⃗k,1

(qx) + s
(−)
l,⃗k,2

(qx)
∣∣∣∣2 . (4.250)

Analogously, we can obtain the spin static structure factor Sσ(k⃗), defined in Eq. (4.185),
which is given by

Sσ(qx) =
∑
l,k′

x>0

∣∣∣∣s(+),σ
l,⃗k,1

(qx) + s
(+),σ
l,⃗k,2

(qx)
∣∣∣∣2 +

∣∣∣∣s(−),σ
l,⃗k,1

(qx) + s
(−),σ
l,⃗k,2

(qx)
∣∣∣∣2 (4.251)

with:

s
(+),σ
l,⃗k,1

(qx) =
∑
n

g⃗τ
k⃗0+k⃗′,l,n+1σzψ⃗0,nδ[⃗k′ + qxu⃗x − 2k0u⃗x] (4.252)

s
(−),σ
l,⃗k,1

(qx) =
∑
n

f⃗ τ
k⃗0−k⃗′,l,n

σzψ⃗0,nδ[−k⃗′ + qx] (4.253)

s
(+),σ
l,⃗k,2

(qx) =
∑
n

ψ⃗†
0,n+1σz f⃗k⃗0+k⃗′,l,nδ[⃗k

′ + qxu⃗x − 2k0u⃗x] (4.254)

s
(−),σ
l,⃗k,2

(qx) =
∑
n

ψ⃗†
0,nσz g⃗k⃗0−k⃗′,l,nδ[−k⃗

′ + qxu⃗x] (4.255)

We report in Fig. 4.7 the static structure factor and Sl(qx) for l = 0, 1 (i.e. the
contribution to the static structure factor from each band of the excitation spectrum)
for l = 0, 1 (the first and second bands, respectively)) in the same conditions as in
Ref. [4] in order to benchmark our calculations. From the Figure, we see that we
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Fig. 4.7 Total static structure factor (blue line) and first and second band contributions
to S(qx) (purple and green lines) as a function of qx. We have set Ω = 2, G1 = 0.6
and G2 = 0.16, which corresponds to the parameters of Ref. [4] expressed in our units.
Lines correspond to our results while points correspond to data from Ref. [4]. All
quantities are expressed in reduced units.

successfully recover the results in the reference. The static structure factor diverges
as qx → 2k0, which reflects the breaking of continuous translational symmetry in the
stripe phase. Moreover, we notice that the main contribution to the static structure
factor at low momentum comes from the second band. This reveals that the second
band is of density nature [4], i.e. experiments where density excitations are produced
will bring the system to a state in the second band.

We show in Fig. 4.8 the spin static structure factor and the contributions to this
quantity arising from the first and second bands of the excitation spectrum (analogously
to the static structure factor). Again, parameters are chosen to be equal to the ones
from Ref. [4] in our units. Remarkably, the first band shows a higher contribution at
low momentum to the spin static structure factor with respect to the second band.
This indicates that the first band is of spin nature [4].

The density and spin nature of each band is a property that depends on the inter-
atomic scattering lengths. By leaving g+1,+1 unchanged and decreasing g+1,−1, we see
how, at low momenta, the contribution to the static structure factor coming from the
first band increases, while the contribution coming from the second band decreases.
The opposite effect is present for the spin static structure factor. We showcase this in
Fig. 4.9. Remarkably, we have found numerically that the value of g+1,−1 for which
both bands are of spin and density nature simultaneously (i.e. they contribute equally
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Fig. 4.8 Total spin static structure factor (blue line) and first and second band
contributions to Sσ(qx) (purple and green lines) as a function of qx. We have set Ω = 2,
G1 = 0.6 and G2 = 0.16 as in Ref. [4]. All quantities are expressed in reduced units.

to both the static structure factor and the spin static structure factor at low momenta)
corresponds to the g+1,−1 that makes the effective inter-species interaction between
dressed spins, g+1′,−1′ , vanish. As shown in Chapter 2, g+1′,−1′ is given by:

g+1′,−1′ ≃ g+1,−1 + 4g+1,+1

(
Ω

8ϵ0

)2

(4.256)

Therefore, the value ghybrid
+1,−1 for which both bands are simultaneously of spin and density

nature is approximately given by:

ghybrid
+1,−1 ≃ −4g+1,+1

(
Ω

8ϵ0

)2

(4.257)

In order to validate this statement, we show in Fig. 4.10 a comparison between the
values of nghybrid

+1,−1 obtained numerically and those obtained from Eq. (4.257). As we
can see from the Figure, there is good agreement between analytical and numerical
results. It must be remarked that ghybrid

+1,−1 > −g+1,+1, so this effect is always present for
attractive inter-atomic interactions that do not lead the mean field state to collapse,
which happens for g+1,−1 = −g+1,+1 = −g−1,−1 (see Sec. 4.4).
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Fig. 4.9 Total static structure factor (upper plots, blue line) and first and second
band contributions to S(qx) (purple and green lines) as a function of qx. The lower
plots correspond to the spin static structure factor. We have set Ω = 1.0 and
ng+1,+1 = ng−1,−1 = 1.52. The left plots correspond to ng+1,−1 = −0.072, the center
plots to ng+1,−1 = −0.096 and the right plots to ng+1,−1 = −0.12. All quantities are
expressed in reduced units.
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Fig. 4.10 Comparison between results of nghybrid
+1,−1 obtained numerically (points) and

from Eq. (4.257) (line) for nghybrid
+1,−1 = 1.52. All quantities are expressed in reduced

units.
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Finally, we briefly address the computation of the condensate fraction. Analogously
to Sec. 4.3.2, it can be computed as:

fc = 1
N

⟨0b|
∫
d⃗r1δΨ̂†(r⃗1)δΨ̂(r⃗1) |0b⟩ , (4.258)

which can be written as:

fc =
∑
l,m
s1

1
(2π)3n

∫
kx>0
k⃗∈BZ

d⃗k

{
f
k⃗0−k⃗,l,m,s1

f∗
k⃗0−k⃗,l,m,s1

+ g
k⃗0+k⃗,l,m,s1

g∗
k⃗0+k⃗,l,m,s1

}
. (4.259)

This expression can be used to obtain fc once the Bogoliubov amplitudes have been
obtained during the evaluation of the LHY energy.

4.4 Application: supersolid striped droplets in a Raman
SOC system.

In this Section we apply the previous formalism to compute the LHY energy correction
for a system under Raman SOC with attractive inter-spin interactions in the stripe
phase. It must be remarked that published experimental results regarding Raman SOC
feature repulsive inter and intra-spin interactions. These systems can be accurately
described with the mean field approximation [60], at least for gas parameters up
to na3

+1,+1 ∼ 10−4 [48]. Nevertheless, state of the art experiments currently under
development, which do feature attractive inter-spin interactions, are pursuing the
observation of the effect played by quantum fluctuations in these systems.

We are interested in characterizing the role played by quantum fluctuations in a
mean field state with attractive enough inter-spin interactions that lead to a collapse.
It is a well known result from unstable Bose-Bose mixtures without SOC that the LHY
energy correction stabilizes the collapse predicted by mean field theory, resulting on a
system that behaves as a liquid [35]. In particular, a finite size system admits a droplet-
like solution, whose profile can be obtained by solving the extended Gross-Pitaevskii
equation. These droplets represent an exotic state of matter with liquid properties
at very low densities. In this Section, we evaluate the LHY energy correction for a
system under Raman SOC in the stripe phase that is unstable at the mean field level,
in order to determine whether quantum fluctuations stabilize the system or not, and
also the properties of the system in case it is stable.

4.4.1 Stability of a system in the mean field regime

We first discuss the stability criteria in the mean field regime. Let E(T, V,N) be the
mean field energy of a system. We set T = 0 (as usual in ultracold atom systems) and
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consider a fixed number of particles. Therefore:

dE = ∂E

∂V

∣∣∣∣∣
N

dV = −PdV (4.260)

A system is mechanically stable if:

∂2E

∂V 2

∣∣∣∣∣
N

> 0 → − ∂P

∂V

∣∣∣∣∣
N

> 0 (4.261)

which is equivalent to ask for the pressure of the system to decrease if the volume
increases. The condition of mechanical stability can be rewritten in terms of the energy
per volume and the density as:

∂2E

∂V 2

∣∣∣∣∣
N

= ∂

∂V

[
∂
(
E/V × V

)
∂V

] ∣∣∣∣∣∣
N

= ∂

∂V

[
V
∂
(
E/V

)
∂V

+ E/V

] ∣∣∣∣∣∣
N

= ∂

∂V

∂ (E/V )
∂n

(
−N

V

)
+ E/V

 ∣∣∣∣∣∣
N

= ∂

∂V

∂ (E/V )
∂n

(
−N

V

) ∣∣∣∣∣∣
N

+ ∂
(
E/V

)
∂n

(
− N

V 2

)

= N2

V 3
∂2E/V

∂n2 (4.262)

Thus, defining ϵ = E
N , the mechanical stability condition can be expressed as:

∂2 (nϵ)
∂n2 > 0 (4.263)

If the number of particles is not held constant, we should write

dE = ∂E

∂V

∣∣∣∣∣
N

dV + ∂E

∂N

∣∣∣∣∣
V

dN = −PdV + µdN (4.264)

with µ the chemical potential. In this case, stability with respect to the number of
particles must be consider together with mechanical stability. Thus, we have to impose

∂2E

∂N2

∣∣∣∣∣
V

> 0 → ∂

∂N

∂E

∂N

∣∣∣∣∣
V

> 0 → 1
V

∂

∂n

∂E/V

∂n

∣∣∣∣∣
V

> 0

→ ∂2 (nϵ)
∂n2 > 0 (4.265)

Therefore, the condition in Eq. (4.263) guarantees both mechanical and concentration
stability. Notice that this is a mathematical condition that involves a quantity that
only depends explicitly on the density, nϵ, and its derivatives with respect to n.
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In the case of a non-SOC system with spin-dependent scattering lengths fulfilling
a+1,+1 = a−1,−1 > a+1,−1 = a+1,−1, the mean field energy per particle is given by:

ϵ = 4πℏ2n

M

(
a+1,+1 + a+1,−1

4

)
(4.266)

Thus, the stability condition reduces to:

∂2 (nϵ)
∂n2 > 0 → 8πℏ2

M

(
a+1,+1 + a+1,−1

4

)
> 0 → a+1,+1 > −a+1,−1 (4.267)

This condition can be written as

G1 > 0 (4.268)

with G1 defined in Eq. (4.127). This stability condition is the same that is found in
the case of Bose-Bose mixtures with equal masses and inter-species interactions [35].

We move on now to the computation of the stability condition for a Raman SOC
system in the stripe phase. The mean field energy, in reduced units, is given by: [25]

ϵ = G1 − Ω2

8 (2 +G1) (4.269)

This expression corresponds to Eq. (4.195) when considering only the v = −1, 0 in
the sum. Now we define g1 = G1/n. The stability condition is given by:

∂2 (nϵ)
∂n2 = ∂

∂n

2ng1 − Ω2

8

(
2 + ng1 − ng1

(2 + ng1)2

)
= 2g1 − Ω2

4

(
−2g1

(2 + ng1)3

)

= 2g1 + 2g1
1

(2 + ng1)

(
Ω2

4 (2 + ng1)2

)
> 0 (4.270)

The momentum in the stripe phase within the mean field approximation is given
by: [25]

kstripe =
√

1 − Ω2

4 (2 + ng1)2 (4.271)

Therefore, we can write:

∂2 (nϵ)
∂n2 = g1

{
2 + 2

(2 + ng1)
(
1 − k2

stripe

)}
> 0 (4.272)
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Assuming now g1 > 0, the stability condition becomes

2
(2 + ng1)

(
1 − k2

stripe

)
> −2 . (4.273)

Since kstripe < 1 (see Eq. (4.271)), the condition is fulfilled ∀g1 > 0. However, if we set
g1 < 0, the condition becomes:

2
(2 + ng1)

(
1 − k2

stripe

)
< −2 (4.274)

This stability condition is violated ∀g1 < 0 that fulfill 2 > |ng1| with g1 < 0 in reduced
units. This second condition is always fulfilled in the calculations performed in this
Section. Therefore, for the purposes of this work, the mean field state is unstable if
g1 < 0, 2 > |ng1|.

4.4.2 The role of quantum fluctuations: phase diagram of the stabi-
lized system

In this Section, we study the effect of quantum fluctuations on a Raman SOC system
in the stripe phase with a+1,+1 = a−1,−1, a+1,−1 = a−1,+1 = −1.1a+1,+1. The choice
for the ratios between the different scattering lengths guarantees that we do not depart
excessively from the mean field stability condition. Under these circumstances, G1 < 0,
which results in the system being unstable in the mean field regime. However, the
LHY energy is positive and stabilizes the collapsing mean field state. This is similar
to the result obtained for unstable Bose-Bose mixtures without SOC [35], although
remarkable differences exist between the two cases, as detailed below.

The phase diagram of the stabilized system, as a function of Ω and a+1,+1 > 0,
for γ = −21 (i.e. a+1,−1 = −1.1a+1,+1) is shown in Fig. 4.11. The phase diagram
includes beyond mean field effects, with the ground state being the phase of minimum
energy. Error bars account for the numerical error associated to the finite number of
Brillouin Zones and integration points considered in the calculations. As it can be seen
from the Figure, depending on the value of the Raman coupling Ω and the scattering
lengths, the homogeneous system can be either a liquid (n(0) ̸= 0 with n(0) the density
where E/N is minimum) or a gas (for which dE/N

dn > 0 ∀ n). This is an effect entirely
induced by the presence of the SOC interaction, since for unstable Bose-Bose mixtures
without SOC the stabilization of the collapse by the LHY energy always brings the
homogeneous system to a liquid state [35]. In order to determine if the system is in a
liquid or in a gas state, we compute E/N for different densities for fixed {Ω, a+1,+1}.
Typically, n ∈ [3.78 × 10−4, 4.93 × 10−3], although this range is extended in some cases
up to n ≃ 0.1. We show in Fig. 4.12 an example of the mean field and total energies
per particle as a function of the density for both the liquid and the gas phases.
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Fig. 4.11 Phase diagram of the Raman SOC system stabilized by quantum fluctuations
in the stripe phase. All quantities are reported in reduced units.

Fig. 4.11 indicates that increasing the Raman coupling leads to a lower interval of
scattering lengths where the system is in the stripe liquid phase. As a consequence, for
fixed a+1,+1, increasing Ω leads to a decrease in n(0), leading to a less correlated liquid.
In much the same way, increasing a+1,+1 with γ = −21 and keeping Ω constant drives
the system from a liquid state to a gas, i.e., the equilibrium density n(0) shifts to lower
values until n(0) = 0, with the gas parameter, n(0)a3

+1,+1, also decreasing. Remarkably,
this behavior is not seen in ultradilute non-SOC Bose-Bose mixtures, where multiplying
all the scattering lengths by a constant leaves n(0)a3

+1,+1 invariant [35].
As it can be seen in Fig. 4.11, other phases arise as the ground state of the system

for high enough values of Ω. The plane wave phase is energetically favorable for
Ω ≳ 3.8, a+1,+1 ≳ 0.1, n > 3.78 × 10−4 (although the single minimum phase may have
lower energy for high enough densities), while the single minimum phase is the ground
state of the system for Ω > 4, a+1,+1 ≳ 0.03, n > 3.78 × 10−4. Remarkably, the plane
wave and single minimum phases arise only as a gas, while the stripe liquid is present
as the ground state of the system for all values of Ω if a+1,+1 ≲ 0.025. This differs
from the results obtained for fully repulsive interactions, for which the single minimum
phase is the ground state of the system for Ω > 4 both at the mean field level [60] and
when correlations are introduced [48].

The phase diagram of Fig. 4.11 has been computed fixing a+1,−1 = −1.1a+1,+1.
However, due to the mean field instability present for a+1,−1 < −a+1,+1, the LHY
correction yields clearly unphysical imaginary contributions to the energy, since the
excitation spectrum becomes imaginary at low momenta. In order to avoid that, and
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Fig. 4.12 Rescaled mean field and total energy per particle terms for: Ω = 2, a+1,+1 =
0.1, a+1,−1 = −0.11 (top) and Ω = 0.125, a+1,+1 = 0.05, a+1,−1 = −0.055 (bottom).

as usually done in the non-SOC case, we evaluate the LHY correction for a+1,−1 =
−a+1,+1, i.e., in the limit of the mean field stability, while the mean field energy
terms are computed for a+1,−1 < −a+1,+1. The changes in the phase diagram when
ELHY(a+1,−1 = −a+1,+1) is used instead of Re{ELHY(a+1,−1 = −1.1a+1,+1)} are
included in the error bars.

As it happens in ultradilute non-SOC Bose-Bose mixtures, a finite size system in
the liquid stripe phase can form a droplet. However, in the SOC case, the droplets
show a striped pattern along the x direction, defined by P̂x in Ŵ SOC (see Eq. (4.2)).
Since Raman SOC stripes are known to be supersolid [4, 49, 48], the resulting striped
droplets represent a novel quantum state of matter that mixes the self-bound character
of liquids, the spatial periodicity present in solids, and a superfluid behavior. To obtain
the ground state of the finite system, we solve the extended Gross-Pitaevskii equation
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Fig. 4.13 Beyond mean field energies per particle for the indicated phases in the
plots. The parameters are: Ω = 2, a+1,+1 = 0.125, a+1,−1 = −0.1375 (top left),
Ω = 4.05, a+1,+1 = 0.125, a+1,−1 = −0.1375 (top right) and Ω = 3.9, a+1,+1 = 0.225,
a+1,−1 = −0.2475 (bottom)

(eGPE). To this end, we build a density-dependent energy functional by fitting the
obtained LHY energy correction for different densities n. The chosen functional form
is: [

ELHY/N
]
(n) = bn+ an3/2 , (4.275)

with a and b two fitting parameters, which consistently reproduces our data in the range
of densities spanned in this Section. We show in Table 4.1 the fitting parameters of
the aforementioned model in two different density regimes for Ω = 0.125, a+1,+1 = 0.1,
a+1,−1 = −0.11. We compare the results for this model with another functional form
of the type

[
ELHY/N

]
(n) = cnm, with c and m fitting parameters. Notice how the

parameters of the first functional form show more consistency over the different density
regimes than those of the second model. Further discussion of the parametrization of
the LHY energy through a phenomenological functional is provided below. In order to
obtain the eGPE, we minimize the energy functional

E(Ψ,Ψ†) =
∫
d⃗r
(
ϵMF(Ψ,Ψ†) + Vosc(r⃗)|Ψ|2 + ϵLHY(Ψ,Ψ†)

)
(4.276)

replacing n → Ψ†Ψ in the ϵLHY term. Here, ϵMF and ϵLHY are the mean field and
Lee-Huang-Yang energy densities of the infinite system, respectively, and Ψ is the
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spinor wave function. The harmonic oscillator potential, Vosc(r⃗) = ω2r2 in reduced
units, is added to keep the system finite.

Solving directly the eGPE is technically involved for some values of the system size
because of the presence of two very different length scales: on one hand, the period
of the stripes, which for values of Ω ≤ 1 is of order Ls ∼ O(1) and, on the other,
the radius of the droplet, which is generally much larger. Nevertheless, results for a
set of parameters, for which the problem is well conditioned numerically, show that
the ground-state wave function of the system obtained from the eGPE can be well
approximated by

Ψ+1(r⃗) = Ψ−1(r⃗) ≃ fstripe(x)fdroplet(r) , (4.277)

with errors on the momentum of the stripes of at most 5%. Here, fstripe(x) ≃√
V
N0
ψ±1

0 (r⃗), a dimensionless factor which equals Eq. (4.192) multiplied by
√

V
N0

and
considering only the n = −1 and n = 0 terms in the sum. This is equivalent to taking
the mean field ansatz of Ref. [60] divided by

√
n. The function fdroplet(r) depends only

on r = |r⃗|, with r⃗ the position vector in three dimensions. We present in Fig. 4.14 the
comparison between the marginal probability density along the x-axis of the exact
solution of the eGPE and the solution obtained with the approximation in Eq. (4.277)
for a given set of parameters. As we can see from the Figure, the solution profiles are
similar, although there is a shift in momentum of about 5%.

In order to efficiently compute fdroplet(r)., we apply a further approximation: we
solve the eGPE obtained from the functional

Ẽ(Ψ,Ψ†) =
∫
d⃗r
(
ϵ̃MF(Ψ,Ψ†) + Vosc(r⃗)|Ψ|2 + ϵLHY, SOC(Ψ,Ψ†)

)
. (4.278)

Here, ϵ̃MF is the mean field energy density obtained in the absence of SOC, while
ϵLHY, SOC is the LHY energy density obtained from the full SOC calculation. Notice
that the resulting eGPE can be solved efficiently with a moderate number of points as
the problem only depends on r = |r⃗|, and thus the resulting eGPE is one-dimensional.
We show in Fig. 4.15 the comparison between the marginal probability density along
the x-axis of the solution featuring the approximation in Eq. (4.277) and of fdroplet(r)
obtained from the eGPE of the functional of Eq. (4.278).

n ∈ [7.56 × 10−4, 9.87 × 10−3] n ∈ [0.109, 0.548]
a 0.413 ± 0.037 0.401 ± 0.006
b 0.033 ± 0.003 0.044 ± 0.003
c 0.22 ± 0.02 0.439 ± 0.002
m 1.24 ± 0.02 1.419 ± 0.006

Table 4.1 Results for the fitting parameters of
[
ELHY/N

]
(n) = bn + an3/2 and[

ELHY/N
]
(n) = cnm for two different density regimes. All quantities are reported in

reduced units.
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Fig. 4.14 Marginal probability densities along the x-axis of the solution of the exact
eGPE vs the approximation of Eq. (4.277) for Ω = 0.125, a+1,+1 = 0.15, a+1,−1 =
−0.165, N = 104, ω = 1.97 × 10−5. The right plot corresponds to a zoomed region of
the left plot. All quantities are reported in reduced units.

Fig. 4.15 Marginal probability densities along the x-axis of the solution featuring
the approximation in Eq. (4.277) (purple line) and of fdroplet(r) obtained from the
eGPE of the functional of Eq. (4.278) (orange line) for Ω = 0.125, a+1,+1 = 0.15,
a+1,−1 = −0.165, N = 104, ω = 1.97 × 10−5. The right plot corresponds to a zoomed
region of the left plot. All quantities are reported in reduced units.

There is a minimum particle number required for a system to present a stable
self-bound ground state in the form of a droplet. This is known as the critical number,
Ncrit. We determine Ncrit by solving the eGPE for different strengths of the trapping
potential and comparing the solution obtained to the ground-state wave function of the
harmonic oscillator. For N ≥ Ncrit, changing the trapping strength leaves the solution
of the eGPE unaffected. We show in Fig. 4.16 the normalized wave function, obtained
under the aforementioned approximations, along the x-axis corresponding to a case
where a stable droplet is formed, with parameters Ω = 0.5, a+1,+1 = 0.12, γ = −21,
N = 1.4 × 105. The trapping strengths are ω1 = 4.93 × 10−6 and ω2 = 2.77 × 10−6.
We only show the +1 spinor component, since it is equal to the −1 component.
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Fig. 4.16 Left panel: normalized wave function of the droplet along the x-axis for
Ω = 0.5, a+1,+1 = 0.12, γ = −21, N = 1.4 × 105 with ω1 = 4.93 × 10−6 (green line).
The profile corresponding to the same N , a+1,+1, γ, Ω values but for ω2 = 2.77 × 10−6

is indistinguishable from the one reported in the left panel. The harmonic oscillator
ground-state solution for both values of ω is shown as squares and circles. Right panel:
magnified view of the two droplet wave functions at small x. Only x > 0 values are
displayed since the profile is symmetric in the x-axis.

We report in Fig. 4.17, the critical number as a function of a+1,+1 for Ω =
0.125, 0.5, 1.0 and γ = −21 (a+1,−1 = −1.1a+1,+1). Errorbars account for the nu-
merical inaccuracies associated to both the finite number of Brillouin Zones being
integrated and the number of points used in the computation of ELHY, and also for the
difference in the results obtained when employing either ELHY(a+1,−1 = −a+1,+1) or
Re{ELHY(a+1,−1 = −1.1a+1,+1)}. As can be seen from the Figure, the critical number
increases with both Ω and the scattering lengths, consistently with the results shown
in Fig. 4.11. Remarkably, the critical numbers obtained are reachable in current exper-
imental setups, opening the possibility to observe and measure quantum properties of
striped droplets. For the sake of comparison, previous experiments with SOC systems
have been carried out with N ∼ 1.8 × 105 [1] and N ∼ 105 [2] particles. Another
interesting quantity regarding the number of particles in a droplet is the saturation
number, Ns. If N > Ns, fdroplet(r) shows a plateau at a range of positions r ∈ [0, rmax.]
with rmax. increasing as N increases. For Ω = 0.125, the saturation number in all
cases is of O

(
106
)

or higher, which makes it challenging to be observed. We report

in Fig. 4.18,
√
Nfdroplet(r)/

√∫
d⃗r 2f2

droplet(r) for different numbers of particles. The
factor 2 in the denominator accounts for the fact that the wave function is a spinor
with equal up and down components. As we can see from the Figure, a plateau on
fdroplet(r) starts to be noticeable for N ≃ 2 × 106.

Despite the evaluation of ELHY for SOC systems presented in this work is quite more
involved than in non-SOC systems, the resulting observed dependence on the system
parameters is smooth enough to allow for a simple functional form approximation. In
this way, we report an approximated density functional for ELHY(a+1,−1 = −a+1,+1) in
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Fig. 4.17 Critical number as a function of the scattering length a+1,+1 for a+1,−1 =
−1.1a+1,+1 and for different values of Ω. Lines are a guide to the eye.

Fig. 4.18
√
Nfdroplet(r)/

√∫
d⃗rf2

droplet(r) for N = 2 × 106, Ω = 0.125, a+1,+1 =
0.05, a+1,−1 = −0.055, ω = 2.77 × 10−6 (left plot). Same quantity for different
numbers of particles (right plot). All quantities are reported in reduced units.

the stripe phase. This functional depends on a+1,+1, n and Ω, and has been obtained
by fitting the LHY energies in different density regimes. It is given by

ELHY/N

∣∣∣∣a+1,−1=
−a+1,+1

≃ (A+BΩ2)na2
+1,+1 + C

√
n3a5

+1,+1 (4.279)

with A = 1.89 ± 0.04, B = 2.17 ± 0.03 and C = 37 ± 2 in dimensionless form. The
above expression reproduces the obtained LHY energies with errors between 1% and
10% for 0 < Ω < 3, 0 < n ≲ 0.1, 0 < a+1,+1 < 0.225, although the limiting value of
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the density can be increased further for scattering lengths a+1,+1 ≲ 0.05, keeping the
error of the functional approximation within the mentioned boundaries.

Fig. 4.19 Dependence of the terms a and b from Eq. (4.275) for a+1,+1 = −a+1,−1. The
value of Ω is Ω = 1.0 (top plot) and Ω = 0.5 (bottom plot). All quantities are reported
in reduced units.

The form of the functional in Eq. (4.279) can be understood by looking at the
properties of the system. The first important remark is that the power series of
ELHY/N must be of the form ∑

α n
αaα+1

+1,+1fα, i.e., there must be a difference of one
between the powers in the density and the scattering length. This can be seen from
Eq. (4.235), since the whole LHY integral is a function of na+1,+1 divided by a factor
n. Here, fα is a factor that gives the sum dimensions of energy. We show in Fig. 4.19
the terms a and b of Eq. (4.275), obtained through the fitting of the LHY energies to
the functional in Eq. (4.275), with respect to a+1,+1 for fixed Ω. As can be seen from
the Figure, the type of dependence on a+1,+1 matches the aforementioned condition of
the exponent: b scales as a2

+1,+1 while a scales as a2.5
+1,+1. The second remark is that a

linear dependence with respect to n is clearly seen at low densities for some values of
Ω, a+1,+1, as it can be seen from Fig. 4.12, which justifies the linear contribution on
the density. The third remark is that the term ∝

√
n3a5

+1,+1 is introduced in analogy
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to the non-SOC case [35], and also due to the apparent consistency in the fitting shown
in Table 4.1 in two different density regimes.

Fig. 4.20 Dependence of the terms a and b from Eq. (4.275) for a+1,+1 = −a+1,−1. In
the bottom plot, a+1,+1 = 0.04. All quantities are reported in reduced units.

In order to get the dependence with respect to Ω, we compute the terms a and b

Eq. (4.275) for different values of Ω and fixed a+1,+1. We show the results in Fig. 4.20.
As it can be seen, the term b shows a quadratic dependence with Ω. The term a

is taken as a constant, computing the average over Ω. We show in Fig. 4.21, the
comparison between the numerically obtained LHY energies and the LHY energy
obtained from the functional in Eq. (4.279) for two cases not used in the fitting process:
Ω = 0.125, a+1,+1 = 0.15 and Ω = 3.0, a+1,+1 = 0.175. As we can see from the
Figure, the phenomenological functional is able to reproduce accurately the numerical
results. Therefore, one can just take this functional as an input for the eGPE and
use it to obtain information about the system without the need of going through the
full calculation of the LHY energy. However, this is only the case for a+1,+1 = a−1,−1,
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a+1,−1 = −a+1,+1. Any variation of these conditions requires the computation of a
new functional.

Fig. 4.21 Rescaled LHY energies per particle obtained through the full numerical
calculation and the phenomenological functional of Eq. (4.279) for a+1,−1 = −a+1,+1.
The upper plot corresponds to Ω = 0.125, a+1,+1 = 0.15 while the lower plot corresponds
to Ω = 3.0, a+1,+1 = 0.175. All quantities are reported in reduced units.

Regarding the potential experimental observation of the ultradilute, supersolid
striped droplets, we have performed calculations of the liquid equation of state and
the critical number for droplet formation for parameters close to the experimental
conditions of Refs. [1], [2], Ω(1,2) = 0.313, a(1)

+1,+1 ≃ 0.025 for the case close to Ref. [2],
and a

(2)
+1,+1 = 0.0146 for the case close to Ref. [1]. The densities are n(1) = 5.82 and

n(2) ≃ 50.2, with all quantities expressed in reduced units. However, we have set
γ = −21 to enable the formation of droplets, unlike the scattering lengths employed
in both experiments, which are positive and thus make the formation of droplets
not possible. Remarkably, both experimental systems lay within the stripe liquid
region of the diagram of Fig. 4.11, which implies that an interaction with an attractive
enough inter-spin component should lead to the formation of supersolid striped droplets.
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Moreover, the minimum of the energy per particle is located at a density close to
the one employed in both experiments, with n

(1)
min = 7.1 ± 1.5 and n

(2)
min = 40 ± 10.

Regarding the critical number, it lays below particle numbers employed in both
experiments, since N (1) = 105, N (2) = 1.8 × 105, while we find N

(1)
crit. = 22500 ± 2500

and N
(2)
crit. = 17500 ± 2500. For the particle numbers used in the experiments, the

droplets have a central density of n(1)
cent. ≃ 7.9, n(2)

cent. ≃ 42.9. Although our calculations
are restricted to the case a+1,+1 = a−1,−1, a+1,−1 = −1.1a+1,+1, both experiments lay
far from the liquid-gas transition of Fig. 4.11 in terms of both Ω and a+1,+1. Therefore,
we do not expect the modification of any of the conditions considered in this work
regarding the scattering lengths to disable droplet formation under the experimental
parameters of Refs. [1], [2].



Chapter 5

Spin Orbital Angular Coupling
5.1 Introduction to Spin Orbital Angular Coupling

The synthetic elaboration of Spin Orbital Angular Coupling (SOAC) was first achieved
in 2018 [49]. This type of SOC interaction involves the coupling between a spin degree
of freedom and an angular momentum component, unlike the rest of types of SOC
that have been studied in this Thesis. Because of that, SOAC lays closer to the
original meaning of "spin-orbit coupling" in atomic physics, where the orbital angular
momentum of an atom is coupled to the electron’s spin. Similarly to the experimental
set-up where Raman SOC was first implemented, two hyperfine states of a 87Rb
atom are treated as pseudospin states, for which the SOC is synthetically engineered.
However, in order to induce SOAC between the pseudospins, a pair of laser beams
with different orbital angular momentum must be employed. For this purpose, one of
the beams utilized is of the Laguerre-Gaussian type which carries non-zero angular
momentum, while the other is a Raman beam without angular momentum. In this
way, the relative winding phase of the photons is transmitted to the 87Rb during the
Raman transition, which involves angular momentum transfer, in contrast to the linear
momentum transfered in the Raman SOC scheme. The pair of Laguerre-Gaussian
beams are of the form [5]

Ej(r⃗) =
√

2Ij0 exp
[
−iljϕ

] ( ρ
w

)|lj|
exp

[
−ρ2/w2 + ikz

]
j = 1, 2 (5.1)

with r⃗ = (ρ, ϕ, z), w is the beam waist and Ij0 is the intensity of the beam. Notice
the factor exp

[
−iljϕ

]
in Eq. (5.1), which reflects the non-zero angular momentum

carried by the beam. As mentioned previously, these beams couple two hyperfine states
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of the 87Rb atom, giving rise to an effective spin-1/2 Hamiltonian, given by [5]

Ĥ0 =

− ℏ2

2m∇2 0
0 − ℏ2

2m∇2

+

1
2mω

2r2 0
0 1

2mω
2r2

+

 δ
2 0
0 − δ

2


+ ΩR

(
ρ

w

)|l1|+|l2|
exp

[
−2(ρ2/w2)

] 0 exp
[
−i(l1 − l2)ϕ

]
exp

[
i(l1 − l2)ϕ

]
0

 (5.2)

with ΩR is the Raman coupling strength, ω is the strength of the harmonic trap, δ is
the two-photon detuning, l1 and l2 is the orbital angular momentum carried by the two
beams, respectively. The application of a unitary transformation given by the matrix

U =

exp [−ilϕ] 0
0 exp [ilϕ]

 (5.3)

makes it possible to write the Hamiltonian as [5]

Ĥ0 = P̂ 2

2m + 1
2mω

2r2 + δ

2 σ̂z + ΩR

(
ρ

w

)|l1|+|l2|
exp

(
−2ρ2/w2

)
σ̂x − lℏ

mρ2 L̂zσ̂z + (lℏ)2

2mρ2 ,

(5.4)
where l = (l1 − l2)/2, with |l| the total angular momentum of the system. In this
Section, we employ the values of Ref. [5], which correspond to l1 = 0, l2 = 2, l = −1. In
contrast to the one-body Raman SOC Hamiltonian from Chapter 2, the SOC depends
on L̂zσ̂z rather than p̂xσ̂z. Remarkably, the Raman coupling term presents a spatial
dependence, absent in the SOC Hamiltonians previously presented.

The physics of the system at the single-particle level are somewhat similar to the
Raman SOC system. Notice that the Hamiltonian in Eq. (5.4) commutes with L̂z

and therefore its eigenstates have definite z-angular momentum, with lz = −1, 0, 1
as |l| = 1. This is analogous to the Raman SOC case, where the eigenstates of the
one-body Hamiltonian have definite linear momentum. From Eq. (5.4),we can infer
that the energy dispersion (energy vs z-orbital angular momentum) features a double
minima for δ = 0 at low enough ΩR, since the Hamiltonian is invariant under the
transformation lz → −lz, σz → −σz. This degeneracy is broken if δ ̸= 0, as it is the
case with Raman SOC, with the lz = 1 state being the non-degenerate ground state if
δ > 0, ΩR < ΩR,lim and the lz = −1 state being the non-degenerate ground state if
δ < 0, ΩR < ΩR,lim [5]. For ΩR > ΩR,lim, the ground state of the single particle system
has lz = 0. Remarkably, a first order phase transition takes place with respect to ΩR for
fixed δ ̸= 0 due to the discrete nature of the z-angular momentum (lz = ±1 ↔ lz = 0
in the ground state). Such effect is not present in the single-particle Raman SOC
system, for which the momentum changes continuously without degeneracy because
δ ̸= 0. The aforementioned states constitute the phase diagram of the system, which
is reported in Fig. 5.1. The polarization ⟨σ̂z⟩ is a good variable to characterize the



5.2 Spin Orbital Angular Coupling in the dilute regime: the one-dimensional
Gross-Pitaevskii equation | 151

different phases. The lz = 0 phase has ⟨σ̂z⟩ ≃ 0 while the lz = ±1 phases show a
non-zero polarization ⟨σ̂z⟩ = ∓sz,0 ̸= 0, with sz,0 > 0 [5].

Fig. 5.1 Phase diagram of the system described by the one-body Hamiltonian in
Eq. (5.4) (re-printed from Ref. [5]).

We present in this Chapter our results regarding SOAC. In Sec. 5.2, we follow the
steps of Ref. [5] to derive a simplified Gross-Pitaevskii equation featuring Spin Orbital
Angular Coupling. In Sec. 5.3, we discuss the extension of the phase diagram presented
in Ref. [5] to a regime where inter-atomic correlations are increased with respect to
the mean field level. We discuss how to rescale the experimental system of Ref. [5] in
order to do so by means of the DTDMC method presented in Chapter 3.

5.2 Spin Orbital Angular Coupling in the dilute regime:
the one-dimensional Gross-Pitaevskii equation

The introduction of interactions at the mean field level leaves the phase diagram
of the system practically unchanged with respect to the single particle picture [5].
However, properties such as the polarization are significantly modified, as we show in
this Section. In order to obtain the ground state of the system in the mean field regime,
we must solve the Gross-Pitaevskii equation. In principle, this is a three-dimensional
equation which must be discretized in position space, while imaginary time evolution
must be applied for each spatial point. Therefore, the number of operations needed
to successfully implement imaginary time propagation is of O

(
NtNxNyNz

)
, where

Nt is the number of imaginary time steps, and Nx, Ny and Nz are the number of
discretization points in the x, y and z axes of the grid, respectively. This can be
demanding from the perspective of the computational cost. One must, therefore, take
advantage of all the symmetries of the Hamiltonian in order to obtain an approximated
Gross-Pitaevskii equation of lower dimensionality, such that the computational cost is
reduced. The approximations that must be applied are presented in the supplementary
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material of Ref. [5]. Here, we present a more detailed derivation following the steps of
the Reference. We start with the imaginary time Gross-Pitaevskii equation, which, for
a SOAC system, it takes the form

−∂ψ+1(r⃗)
∂τ

= − ℏ2

2m∇2ψ+1 + 1
2mω

2r2ψ+1(r⃗) + Ω(ρ)ψ−1(r⃗) + δ

2ψ+1(r⃗)

+ i
lℏ2

mρ2

(
x
∂ψ+1
∂y

− y
∂ψ+1
∂x

)
+ l2ℏ2

2mρ2ψ+1(r⃗) +Ng+1,+1
∣∣ψ+1(r⃗)

∣∣2ψ+1(r⃗)

+Ng+1,−1
∣∣ψ−1(r⃗)

∣∣2ψ+1(r⃗) (5.5)

−∂ψ−1(r⃗)
∂τ

= − ℏ2

2m∇2ψ−1 + 1
2mω

2r2ψ−1(r⃗) + Ω(ρ)ψ+1(r⃗) − δ

2ψ−1(r⃗)

− i
lℏ2

mρ2

(
x
∂ψ−1
∂y

− y
∂ψ−1
∂x

)
+ l2ℏ2

2mρ2ψ−1(r⃗) +Ng−1,−1
∣∣ψ−1(r⃗)

∣∣2ψ−1(r⃗)

+Ng+1,−1
∣∣ψ+1(r⃗)

∣∣2ψ−1(r⃗) (5.6)

where, analogously to Chapter 2, the inter-atomic interaction is represented by a
contact potential proportional to the spin-dependent scattering lengths a±1,±1, with
a+1,−1 = a−1,+1. Through this Section, the ±1 subindexes in ψ±1 indicate the spinor
components of the wave function. Eqs. (5.5) and (5.6) can be expressed in a compact
form as:

−∂ψ±1
∂τ

= − ℏ2

2m∇2ψ±1 + 1
2mω

2r2ψ±1 + Ω(ρ)ψ∓1 ± δ

2ψ±1

± i
lℏ2

mρ2

(
x
∂ψ±1
∂y

− y
∂ψ±1
∂x

)
+ l2ℏ2

2mρ2ψ±1 +Ng±1,±1|ψ±1|2ψ±1

+Ng±1,∓1|ψ∓1|2ψ±1 . (5.7)

Notice that the only potential that depends explicitly on the z coordinate is the
harmonic oscillator. Therefore, the mean field ground state is approximated by [5]:

ψ±1(r⃗) ≃ ψ2D
±1(x, y)

exp
(
−z2/(2b2)

)
π1/4b1/2 (5.8)

Here b is the width of the atomic cloud along the z axis, measured experimentally
(although in the rescaled system that we study in the next Section, b is considered
a variational parameter). We now multiply both sides of Eqs. (5.5) and (5.6) by
exp(−z2/(2b2))

π1/4b1/2 and integrate over z. This yields a system of two equations for ψ±1(x, y),
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effectively reducing the dimensionality of the system. Eq. (5.7) becomes:

−
∂ψ2D

±1
∂τ

= − ℏ2

2m∇2
2Dψ

2D
±1 + 1

2mω
2ρ2ψ2D

±1 + Ω(ρ)ψ2D
∓1 ± δ

2ψ
2D
±1

± i
lℏ2

mρ2

(
x
∂ψ2D

±1
∂y

− y
∂ψ2D

±1
∂x

)
+ l2ℏ2

2mρ2ψ
2D
±1

+ N

πb2

(∫ ∞

−∞
dz e−2z2/b2

)(
g±1,±1

∣∣∣ψ2D
±1

∣∣∣2ψ2D
±1 + g±1,∓1

∣∣∣ψ2D
∓1

∣∣∣2ψ2D
±1

)

− ℏ2

2mb
√
π

∫ ∞

−∞
dz e−z2/(2b2) d2e−z2/(2b2)

dz2

ψ2D
±1

+ 1
2b

√
π
mω2

(∫ ∞

−∞
dz z2e−z2/b2

)
ψ2D

±1 (5.9)

where ∫ ∞

−∞
dz e−2z2/b2 = b

√
π

2 (5.10)∫ ∞

−∞
dz z2e−z2/b2 = π1/2b3

2 (5.11)∫ ∞

−∞
dz e−z2/(2b2) d2e−z2/(2b2)

dz2 = −
√
π

2b . (5.12)

Thus, Eq. (5.9) becomes:

−
∂ψ2D

±1
∂τ

= − ℏ2

2m∇2
2Dψ

2D
±1 + 1

2mω
2ρ2ψ2D

±1 + Ω(ρ)ψ2D
∓1 ± δ

2ψ
2D
±1

± i
lℏ2

mρ2

(
x
∂ψ2D

±1
∂y

− y
∂ψ2D

±1
∂x

)
+ l2ℏ2

2mρ2ψ
2D
±1

+ N√
2πb

(
g±1,±1

∣∣∣ψ2D
±1

∣∣∣2ψ2D
±1 + g±1,∓1

∣∣∣ψ2D
∓1

∣∣∣2ψ2D
±1

)
+
(

ℏ2

4mb2 + b2

4 mω
2
)
ψ2D

±1 (5.13)

Eq. (5.13) can be understood as an effective 2D GPE with effective interaction strengths
gs1,s2/

√
2πb and a chemical potential shifted by the constant term ℏ2

4mb2 + b2

4 mω
2.

In order to furtherly reduce the dimensionality of the problem, we make another
approximation. Following Ref. [5], we focus on wave functions of the form:

ψ2D
±1(ρ, ϕ) = ψ1D

±1(ρ)exp (ilzϕ)√
2π

(5.14)

with {ρ, ϕ} the polar coordinates the x-y plane. A wave function of this type describes
the main phases present in the phase diagram of Ref. [5]. These phases are analogous
to the plane wave and single minimum phases of the Raman SOC system described in
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previous Chapters, in the sense that they correspond to single z-angular momentum
component functions with lz = −1, 0 and + 1, much like the plane wave and single
minimum phases correspond to single linear momentum states.

In order to obtain a one-dimensional GPE for ψ1D
±1(ρ) we multiply Eq. (5.13) by

eilzϕ/
√

2π and integrate over ϕ, yielding

−
∂ψ1D

±1
∂τ

= − ℏ2

2m

(
∂2ψ1D

±1
∂ρ2 + 1

ρ

∂ψ1D
±1
∂ρ

)
+ ℏ2l2z

2mρ2ψ
1D
±1 + 1

2mω
2ρ2ψ1D

±1 + Ω(ρ)ψ1D
∓1 ± δ

2ψ
1D
±1

∓ llzℏ2

mρ2 ψ
1D
±1 + l2ℏ2

2mρ2ψ
1D
±1 + N

(2π)3/2 b

(
g±1,±1

∣∣∣ψ1D
±1

∣∣∣2ψ1D
±1 + g±1,∓1

∣∣∣ψ1D
∓1

∣∣∣2ψ1D
±1

)

+
(

ℏ2

4mb2 + b2

4 mω
2
)
ψ1D

±1 (5.15)

Solving Eq. (5.15) leads to the wave function of the system. One can elaborate the phase
diagram of the mean field system by computing the energy of the lz = −1, 0 and + 1
phases as a function of ΩR and δ and checking which phase provides the lowest energy.
The phase diagram is reported in Fig. 5.2 [5]. The phase diagram of the non-interacting
system (shown in Fig. 5.1) is only slightly modified by interactions at the mean field
level [5]. However, other quantities such as the polarization are significantly modified.
We present in Fig. 5.3 the average value of the spin z operator, σ̂z for ΩR = 2.269,
δ ∈ [−0.01 ,0.01] (transition P2 in Ref. [5], see Fig. 5.1) and ΩR ∈ [83.21 ,291.235],
δ = 0.129 (transition P3 in Ref. [5], see Fig. 5.1) for both the non-interacting problem
and the solution of the GPE. We also include the experimental points. Notice how the
inclusion of interactions yields points that lay closer to the experimental values. The
discrepancy between GPE results and the experiment is claimed to be caused by finite
temperature effects [5].

A wave function of the form described in Eq. (5.14) can not describe a stripe
state presenting density modulations with respect to the angle ϕ. Such state does
actually correspond to the ground state of the SOAC system over a tiny region of the
phase diagram presented in Fig. 5.2 [5, 76]. However, due to the low contrast between
different spin channels of the inter-atomic interactions of 87Rb, stripes are not visible
experimentally, and they only span a tiny region of the phase diagram. Recently, a
study on the contrast and visibility of the stripes in terms of the parameters of the
Hamiltonian has been carried out [77], yielding a set of parameters that enable their
potential experimental observation. We build the stripe wave function as:

ψstripe, 2D
±1 (ρ, ϕ, lz) = 1√

2

(
ψ1D

±1(ρ, lz)
exp (ilzϕ)√

2π
+ ψ1D

±1(ρ,−lz)
exp (−ilzϕ)√

2π

)
(5.16)
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Fig. 5.2 Phase diagram of the experimental system of Ref. [5] (re-printed), where
quantities are expressed in units of ℏω.

Fig. 5.3 Polarization of the SOAC system for the transitions labeled as P2 (ΩR = 2.269,
δ ∈ [−0.01 ,0.01], see Fig. 5.1, left plot) and P3 (ΩR ∈ [1.2 ,4], δ = 0.0258, see Fig. 5.1,
right plot) in Ref. [5]. Purple points correspond to the solution of the GPE equation,
green points correspond to the non-interacting problem and blue points correspond to
the experimental data of Ref. [5]. The parameters are N = 1.2 × 105, a+1,+1 = 0.1301,
a+1,−1 = a−1,+1 = a−1,−1 = 0.1295, w = 1.626 × 103 and b = 101.825. All quantities
are reported in reduced units, with the characteristic energy and length scales given
by ϵ0 = 500ℏω and a0 =

√
ℏ2

2mϵ0 , respectively.

We do so in analogy to the Raman SOC case. The squared modulus of the wave
function is given by:∣∣∣ψstripe, 2D

±1

∣∣∣2 = 1
4π
[
(ψ1D

±1(ρ, lz))2 + ψ1D
±1(ρ,−lz))2 + 2ψ1D

±1(ρ, lz)ψ1D
±1(ρ,−lz) cos (2lzϕ)

]
(5.17)
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As it can be seen from Eq. (5.17), the probability density of the wave function of
Eq. (5.16) shows sinusoidal modulations along the ϕ axis. Hence, the stripe phase on
a system under SOAC presents density modulations along the polar angle unlike in
Raman SOC systems, where modulations go along the x-axis. Remarkably, the period
of the stripe modulation is related to the z-angular momentum quantum number.
Thus, in principle, it could be modified experimentally by changing the orbital angular
momentum carried by the Laguerre-Gaussian beam. We now insert the functional
form of Eq. (5.16) into Eq. (5.13), which yields:

− ∂
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We now multiply Eq. (5.18) by e±ilzϕ/
√

2π and integrate along the ϕ axis in order to
obtain a set of equations for ψ1D

±1(ρ, lz) and ψ1D
±1(ρ,−lz). However, due to the presence

of the interaction, we can multiply Eq. (5.18) by e±3ilzϕ/
√

2π and integrate over ϕ to
get
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If ψ1D
±1(ρ, lz) ̸= 0 and ψ1D

±1(ρ,−lz) ̸= 0, we should impose:
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which implies:
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If ψ1D
−1(ρ, lz) ̸= 0, ψ1D

−1(ρ,−lz) ̸= 0, then:

g+1,−1
g+1,+1

= g−1,−1
g+1,−1

(5.24)

In general, for arbitrary g+1,+1, g−1,−1, g+1,−1, this condition is not fulfilled. This is
because the ansatz in Eq. (5.16) is not compatible with the ground state solution of the
system at the mean field level in the stripe phase. This is analogous to what happens
in a Raman SOC system, where the stripe ground state is a linear combination of
an infinite number of linear momentum states (as stated in Chapter 4), instead of
a linear combination of ±k0 momentum states, being 2k0 the period of the stripes.
However, as stated in Ref. [25], a simple linear combination of only the ±k0 states
turns out to be an excellent approximation to the stripe ground state under Raman
SOC. Therefore, and in analogy to that case, we take the wave function in Eq. (5.16)
as our approximation to the mean field ground state of the SOAC system in the stripe
phase, thus neglecting the contributions in Eq. (5.18) proportional to e±3ilzϕ/

√
2π.

Still, one must note that, in order to find the exact ground state, we should use an
ansatz of the form:

ψstripe, 2D
±1 (ρ, ϕ, lz) =

∞∑
n=−∞

ψ1D
±1(ρ, n, lz) exp (inlzϕ) (5.25)

which constitutes a combination of an infinite number of angular momentum states,
just like the stripe wave function of the aforementioned Raman SOC system contains
a superposition of an infinite number of linear momentum states. Considering only
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Fig. 5.4 Mean field energies per particle for the stripe phase (purple points) and for
the single z-angular momentum state (green points) for N = 60, δ = 0, w = 162.2,
a+1,+1 = 0.1301, γ = 0.4, lz = 1, l = −1. b is optimized variationally, which leads to
b = 3.78. Lines are a guide to the eye. All quantities are expressed in reduced units,
with the characteristic energy and length scales given by ϵ0 = 5ℏω and a0 =

√
ℏ2

2mϵ0 ,
respectively.

the ±lz, the equations for ψ1D
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This forms to a set of four one-dimensional coupled equations that can be solved
through imaginary time propagation. Doing so yields to the approximated ground
state of the system in the stripe phase. By setting g+1,+1 = g−1,−1 ̸= g+1,−1 and
γ = (g+1,+1 − g+1,−1)/(g+1,+1 + g+1,−1) = 0.4 we can see that the stripe phase is
energetically favourable with respect to single z-angular momentum states for a given
density dependent range of values of ΩR, thus suggesting that, as in the Raman SOC
case, an increase in the contrast of the spin-dependent inter-atomic interactions leads
to a stripe ground state. We show in Fig. 5.4 the mean field energies per particle for
both a single z-angular momentum state with lz = 1 and the stripe state for N = 60,
δ = 0, w = 162.2, a+1,+1 = 0.1301, γ = 0.4, lz = 1, l = −1. As can be seen from
the Figure, the stripe phase is energetically favourable for ΩR ≲ 220, while the single
angular momentum state corresponds to the ground state of the system for ΩR ≳ 220.
The energy of the single momentum state with lz = 0 is not shown because it is larger
than the plotted energies in the displayed regime for ΩR.

We show in Fig. 5.5 the marginal probability density on the x-y plane for both
the single angular momentum phase and the stripe phase. Notice that. while both
the +1 and −1 spinor components of the single angular momentum wave function are
isotropic, this is not the case in the stripe phase, since the sinusoidal dependence of
the probability density with respect to ϕ (see Eq. (5.17)) induces anisotropy.

5.3 Spin Orbital Angular Coupling and Diffusion Monte
Carlo

The DMC methods presented in Chapter 3 can also be employed to study a system under
SOAC. Since, in general, one has to deal with two-body spin-dependent interactions,
the results presented in this Section have been obtained with the DTDMC method
(see Chapter 3). While DMC algorithms account for inter-atomic correlations beyond
the mean field level, there exist limitations in terms of the number of particles. An
exceedingly large number of particles can lead to very large computation time scales.
Because of this, it is not possible to directly simulate the experimental system of
Ref. [5] with DMC, which has N = 1.2 × 105 particles. Therefore, rescaling the system
is a must. We introduce a rescaling scheme in Sec. 5.3.1. Afterwards, we present
in Sec. 5.3.2 the results for the phase diagram of the rescaled system, both for the
inter-atomic interaction parameters of Ref. [5], for which the stripe phase is irrelevant,
and for an interaction with non-zero contrast between the different spin channels, which
favors the stripe phase. We compare DMC and GPE results as the gas parameter of
the system increases in order to determine the effect of inter-atomic correlations in the
phase diagram.



160 | Spin Orbital Angular Coupling

Fig. 5.5 Marginal probability densities in the x-y plane for the stripe phase (lower plot)
and for the single z-angular momentum state (upper plots). Only the +1 component
is reported for the stripe phase since it equals the −1 component. The parameters are
Ω = 180 (stripe phase), Ω = 240 (single angular momentum phase), N = 60, δ = 0,
w = 162.2, a+1,+1 = 0.1301, γ = 0.4, lz = 1, l = −1. b is optimized variationally, which
leads to b = 3.78. All quantities are expressed in reduced units, with the characteristic
energy and length scales given by ϵ0 = 5ℏω and a0 =

√
ℏ2

2mϵ0 , respectively.

5.3.1 The rescaled system

In order to rescale the experimental system, we impose the condition:

N

a3
0

= 2 N (r)

(a(r)
0 )3

(5.28)

where N = 1.2 × 105 and a0 =
√

ℏ
mω , ω = 2π× 77.5Hz corresponds to the experimental

system of Ref. [5]. In this way, we rescale the number of particles together with one
of the relevant size scales of the system, the harmonic oscillator length. The scaling
law in Eq. 5.28 enables us to work with a feasible number of particles while preserving
the conditions of diluteness of the experiment of Ref. [5], as discussed below. In this
Section, we refer to the parameters of the rescaled system with the superindex (r). We
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set N (r) = 60, which implies:

ω(r) = ω

(
N

2N (r)

)2/3

= 100ω (5.29)

We also impose:
w

a0
= w(r)

a
(r)
0

(5.30)

We can recover the qualitative behaviour of ⟨σ̂z⟩ with respect to δ and ω in a rescaled
region of the phase diagram of the rescaled system, as shown in Fig. 5.6. For the
rescaled system, Ω(r) = 116.5Ωplot, δ(r) = 18δplot for the P2 transition (see Fig. 5.1)
and Ω(r) = 83.21Ωplot, δ(r) = 5δplot for the P3 transition (see Fig. 5.1). It must be
remarked that if the proposed rescaling was flawless, the ratio between the quantities
Ω(r) and δ(r) of the rescaled system and those from the plots would be constant across
all transitions, including P2 and P3. Thus, we emphasize that the rescaling procedure
leads to a system qualitatively approximated to the original one.

The rescaled system preserves the diluteness of the experimental system, which we
measure through the gas parameter, that we define as xg = Max(n)a3

+1,+1, with Max(n)
the maximum value of the density. For instance, for Ω = 2.26, δ ∈ [−0.05, 0.05] in the
experimental system we have xg ≃ 1.5 × 10−5 while for Ω = 264.33, δ ∈ [−0.9, 0.9] in
the rescaled system we have xg ≃ 4 × 10−5. Notice that, since we are working with a
harmonically trapped system, the density is not constant, hence to compute xg we use
the maximum value of the density.

5.3.2 The phase diagram of the rescaled system: DMC and GPE
results

5.3.2.1 87Rb interactions: single angular momentum states

We first focus on the case with inter-atomic scattering lengths given by a+1,+1 = 0.1301,
a+1,−1 = a−1,+1 = a−1,−1 = 0.1295 expressed in reduced units, which corresponds to
the experimental system of Ref. [5]. The GPE phase diagram of the rescaled system
is presented in Fig. 5.7. As we can see from the Figure, the diagram qualitatively
resembles the phase diagram of the aforementioned experimental system, reported in
Fig. 5.2.

We have performed DTDMC calculations at several points of the phase diagram
near the lz = 1 ↔ lz = 0 transition, as shown in Table 5.1. We can see that the
DMC energies per particle are very close to the GPE ones and thus one recovers the
transition line predicted by the GPE. This is not surprising, since the system lays in
the dilute regime, where inter-atomic correlations do not affect very much the physics
of the system.
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Fig. 5.6 Polarization of the SOAC system for the transitions labeled as P2 (see Fig. 5.1)
(left plot) and P3 (see Fig. 5.1) (right plot) in Ref. [5]. Purple and red points correspond
to the solution of the GPE equation for the experimental and the rescaled systems
respectively. The parameters of the experimental system are given in Fig. 5.3, while in
the rescaled system we have N (r) = 60, a(r)

+1,+1 = 0.1301, a(r)
+1,−1 = a

(r)
−1,+1 = a

(r)
−1,−1 =

0.1295, w(r) = 162.6 and b(r) = 10.182. All quantities are reported in reduced units,
with the characteristic energy and length scales given by ϵ0 = 500ℏω = 5ω(r) and
a0 =

√
ℏ2

2mϵ0 , respectively, with ω the harmonic oscillator frequency of the experimental
system. For the rescaled system, Ω(r) = 116.5Ωplot = 264.33, δ(r) = 18δplot for
transition P2 and Ω(r) = 83.21Ωplot, δ(r) = 5δplot = 0.129 for transition P3.

δ = 0.05 δ = 0.894 δ = 2.974
ΩR = 245 ΩR = 255 ΩR = 285 ΩR = 295 ΩR = 315 ΩR = 325

GPE lz = 1 0.2357 0.2068 −0.09954 −0.2672 −1.0734 −1.3908
DMC lz = 1 0.2344 0.2060 −0.1017 −0.2677 −1.3908 −1.3913
GPE lz = 0 0.2388 0.2050 −0.07099 −0.2686 −0.9931 −1.3914
DMC lz = 0 0.2377 0.2042 −0.0712 −0.2691 −1.3914 −1.3919

Table 5.1 Energy per particle for several points of the phase diagram of the rescaled
system. All DMC errors are ≤ 5 × 10−4. The parameters are the same as in Fig. 5.7.

In order to evaluate the effect of inter-atomic correlations, we increase the gas
parameter by raising the scattering lengths, and compare DMC and GPE results, again
for points of the phase diagram near the lz = 1 ↔ lz = 0 transition. We show the
results in Table 5.2. Remarkably, despite the increase in the gas parameter, DMC
calculations reveal that the transition line is mostly unchanged. Also, GPE results still
lay close to DMC, even for scattering lengths a factor a hundred larger than those in
the experiment of Ref. [5]. This suggests that the scattering lengths should be furtherly
increased in order for inter-atomic correlations to have an impact on the physics of the
system.

Finally, we discuss the case with inter-atomic scattering lengths given by a+1,+1 =
a−1,−1 = 0.1301, γ = 0.4, and δ = 0, expressed in reduced units, which is a configuration
that favors the stripe phase. Here, γ = (a+1,+1 − a+1,−1)/(a+1,+1 + a+1,−1), as in the
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Fig. 5.7 Phase diagram of the rescaled system at the mean field level. The parameters
are N (r) = 60, a(r)

+1,+1 = 0.1301, a(r)
+1,−1 = a

(r)
−1,+1 = a

(r)
−1,−1 = 0.1295 and w(r) = 162.6.

b(r) is optimized variationally, which leads to b(r) = 3.16. All quantities are reported in
reduced units, with the characteristic energy and length scales given by ϵ0 = 5ℏω(r) =
500ℏω and a0 =

√
ℏ2

2mϵ0 , respectively.

previous Chapters. We have already shown in Fig. 5.4 that the asymmetry present
in the spin channels leads to a stripe ground state for ΩR ≲ 220. This is confirmed
by DMC simulations, as shown in Table 5.3. Again, DMC results lay close to GPE
results. And again, we furtherly increase the scattering lengths of the system in order
to check if GPE results depart from DMC, thus shifting the transition value of ΩR.
Results are shown in Table 5.4. This time, scattering lengths are increased up to
a′
s1,s2 = 100001/3as1,s2 . As a result, we see a significant departure between the DMC

and the GPE results, meaning that the system lays in a regime where inter-atomic
correlations are relevant. Notice how the transition between the stripe and the single
angular momentum phase has shifted to lower values of ΩR: while ΩR, GPE, trans ≃ 67,
DMC calculations yield ΩR, DMC, trans ≃ 55, leading to a reduced domain of ΩR where
the stripe phase is favored. Remarkably, this situation is the opposite to what one
finds in a Raman SOC system, where inter-atomic correlations enhance the domain of
the stripe phase on the phase diagram (see Chapter 3).



164 | Spin Orbital Angular Coupling

a′
s1,s2 = 1001/3as1,s2 (xg ∼ 10−3) a′

s1,s2 = 10001/3as1,s2 (xg ∼ 10−2)
δ = 0.894 δ = 0.802 δ = 2.914

ΩR = 285 ΩR = 295 ΩR = 285 ΩR = 295 ΩR = 315 ΩR = 325
GPE lz = 1 −0.05752 −0.2455 −0.02016 −0.2137 −0.9540 −1.3409
DMC lz = 1 −0.0572 −0.2460 −0.0173 −0.2132 −0.9454 −1.3440
GPE lz = 0 −0.04830 −0.2464 −0.01470 −0.2151 −0.9404 −1.3415
DMC lz = 0 −0.0485 −0.2475 −0.0127 −0.2146 −0.9430 −1.3445

Table 5.2 Energy per particle for several points of the phase diagram of the rescaled
system for increased scattering lengths. All DMC errors are of the same order as the
last figure included in the results. The parameters are the same as in Fig. 5.7. b(r) is
optimized variationally via the GPE, which leads to b(r) = 3.44 for a′

s1,s2 = 1001/3as1,s2

and b(r) = 4.08 for a′
s1,s2 = 10001/3as1,s2 .

δ = 0
ΩR = 200 ΩR = 220

GPE lz = 1 0.3180 0.2898
DMC lz = 1 0.3160 0.2871
GPE Stripe 0.3172 0.2198
DMC Stripe 0.3149 0.2885

Table 5.3 Energy per particle for the single angular momentum and stripe phases in
the rescaled system. All DMC errors are of the same order as the last figure included
in the results. The parameters are the same as in Fig. 5.7, except for b(r) and the
scattering lengths, whose value is specified in the text. b(r) is optimized variationally
via the GPE, which leads to b(r) = 3.78.

a′
s1,s2 = 100001/3as1,s2

δ = 0
ΩR = 55 ΩR = 60 ΩR = 66 ΩR = 72

GPE lz = 0 0.9549 0.9428
DMC lz = 0 1.355 ± 0.005 1.346 ± 0.002 1.331 ± 0.003 1.316 ± 0.002
GPE Stripe 0.9502 0.9440
DMC Stripe 1.359 ± 0.004 1.353 ± 0.004 1.340 ± 0.004 1.330 ± 0.002

Table 5.4 Energy per particle for the single angular momentum (lz = 0) and stripe
phases in the rescaled system for increased scattering lengths. All DMC errors are of
the same order as the last figure included in the results. The parameters are the same as
in Fig. 5.7, except for b(r) and the scattering lengths, for which a′

s1,s2 = 100001/3as1,s2 ,
with the values as1,s2 specified in the text. The b(r) parameter is optimized variationally,
which leads to b(r) = 6 for the GPE stripe phase, b(r) = 5.25 for the GPE single angular
momentum lz = 0 and b(r) = 3.4 for the DMC calculations.



Chapter 6

Conclusions
In this Thesis we have presented two approaches to calculate ground state properties
of quantum many-body systems with Spin Orbit Coupling (SOC) interactions. On one
hand, we have presented the formalism and application of two Diffusion Monte Carlo
(DMC) methods able to deal with this kind of system. These methods have been used
to study systems under Raman SOC and Spin Orbital Angular Coupling (SOAC). On
the other hand, we have followed the Bogoliubov formalism to perform beyond mean
field calculations of Raman SOC systems at the beyond mean field level for all the
stripe, plane wave and single minimum phases.

In what follows, we summarize the main results of this Thesis.

6.1 Diffusion Monte Carlo methods for Spin Orbit Cou-
pling interactions

In Chapter 3, we have developed the formalism of two Diffusion Monte Carlo methods
able to sample Spin Orbit Coupling potentials. We have derived the propagator
for SOC Hamiltonians and discussed its implementation in the context of the DMC
formalism. These two methods are the Discrete Spin T-moves DMC (DTDMC), which
corresponds to an adaptation to discrete spins of the method presented in Ref. [19], and
the Spin Integrated DMC (SIDMC), a completely original method developed in this
Thesis. The DTDMC algorithm resorts to two approximations: the fixed phase and
the effective Hamiltonian approximations, which implies that the energy obtained with
this method corresponds to an upper bound to the fixed phase energy, which in turn
is an upper bound to the exact ground state energy. We have shown how to bypass
the effective Hamiltonian approximation via the SIDMC method by propagating the
spin integrated wave function in imaginary time. We have shown that the energy
obtained with the SIDMC method corresponds to the fixed phase energy of the system,
although this method is not able to deal with spin-dependent two-body interactions.
For both methods, we have provided schemes detailing their implementation. We
have also reported numerical tests involving the computation of the energy in one-
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body, two-body, diluted many-body and strongly correlated many-body systems, with
successful comparisons with the energies obtained using other approaches, like the
exact integration of the Schrödinger equation, or the Gross-Pitaevskii equation.

6.2 The phase diagram of a Raman SOC many-body sys-
tem: supersolid stripes enhanced by correlations

In Chapter 3 we also present results for the phase diagram of a many-body Raman SOC
system featuring spin-dependent two-body interactions. The diagram is obtained with
the DTDMC method. We extend the previously reported phase diagram, computed at
the mean field level [25], to the strongly correlated regime. Remarkably, we observe
that, even at low gas parameters, na3

+1,+1 ∼ 10−4, with n the density and a+1,+1 the
up-up scattering length, the extension of the region of the stripe phase in the diagram
is enhanced with respect to mean field calculations. This enhancement becomes
more pronounced the higher the gas parameter, where correlations are more relevant.
Therefore, we conclude that inter-atomic correlations enhance the stripe phase. We
also characterize the superfluidity of the stripes with the Monte Carlo method and
obtain a non-zero superfluid fraction in the direction across the density modulations.
Thus, this shows the stripes to be superfluid, in agreement with results obtained in
mean field, phase twist calculations [49] and in beyond mean field calculations [4].
We have characterized how the superfluid fraction changes with the Raman coupling.
We have also computed other observables of the system, such as the static structure
factor, which reflects the periodicity of the stripe phase, the two-body pair correlation
function, and the one-body density matrix.

6.3 The Lee-Huang-Yang energy correction in a Raman
SOC system in the stripe phase

In Chapter 4 we present the Bogoliubov-de Gennes formalism leading to the calculation
of the LHY energy correction for a Raman SOC system in the stripe phase, which has
not been derived before. We discuss in detail the technical aspects of the calculation,
since it is numerically challenging. We have presented the necessary approximations
in order to significantly reduce the computational cost of the calculations, which
mainly involve retaining specific contributions to the LHY energy. We have also
illustrated the application of Dimensional Regularization to the problem, in order to
successfully regularize the divergent LHY integral and produce physically meaningful
results. Finally, we have analyzed the dependence of the LHY energy on the number
of Brillouin Zones and discretization points employed in the calculations.
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6.4 Supersolid striped droplets in a Raman SOC system

We have also characterized in Chapter 4 the role played by quantum fluctuations in a
Raman SOC system in the stripe phase with attractive inter-spin interactions, which is
aimed to be realized in current state of the art experiments. We have shown that, if the
attractive component is negative enough, the system collapses at the mean field level.
However, we have reported that quantum fluctuations (the LHY energy correction)
stabilize the system, leading to either a stripe gas or a stripe liquid, depending on the
values of the parameters of the Hamiltonian. We have quantitatively characterized the
phase diagram of the stabilized system in the stripe phase. By solving the extended
Gross-Pitaevskii equation, we have also shown that, in the stripe liquid phase, the
finite system presents a droplet-like ground state for a high enough number of particles.
Remarkably, these droplet states feature density modulations induced by SOC, which
implies that they represent a state of matter that combines the self-bound character
of a liquid, density modulations reminiscent of solids, and superfluidity, since the
stripes induced by Raman SOC have been proved to be superfluid [4, 48, 49]. We
have quantitatively characterized the critical number of particles for self-binding as a
function of the Raman coupling and the scattering lengths, and we have also provided
an analytical energy functional (obtained through the fit of numerical results) in order
to ease the evaluation of the LHY energy.

6.5 Evaluation of the effect of correlations in a Spin Or-
bital Angular Coupled system

In Chapter 5, we first review the mean field formalism for a system with Spin Orbital
Angular Coupling. We present in detail the derivation of the effective one-dimensional
Gross Pitaevskii equation (addressed originally in Ref. [5]). We also present the
extension of this formalism to the stripe phase. We report a proposal for the rescaling
of the experimental system of Ref. [5], as a way to allow its study through DMC.
We evaluate the transition boundaries between the different single momentum phases
with the GPE and DMC for different values of the interaction scattering lengths,
finding little discrepancies in the regime of parameters considered. We follow the
same approach for a SOAC system with non-negligible contrast between different spin
channels, which has not yet been realized in experiments, but that supports a striped
ground state. Analogously to the results seen for the rescaled experimental system of
Ref. [5], little discrepancies between DMC and GPE results are seen for the regime of
parameters considered. This differs from the results reported for Raman SOC systems,
for which, even at low gas parameters, important differences between DMC and GPE
results regarding the phase diagram of the system are observed.
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