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Abstract
Capturing sounds on a recording medium to enable their preservation and
reproduction started to be possible during the industrial revolution of the
19th century, originally achieved through mechanic and acoustic devices,
and later electronic and magnetic ones. Eventually, the digital age of
the mid-20th century brought about the democratization of recording and
reproduction devices, as well as accessible ways of storing and sharing
content. As a consequence, massive collections of audio samples are
nowadays increasingly available online, some of which are created col-
laboratively thanks to sharing platforms. This content has become essen-
tial for entertainment media, such as movies, music, video games, and for
human-machine interaction. Nonetheless, given the amount and diversity
of the content, exploring, searching and retrieving from collaborative col-
lections becomes increasingly challenging. Methods for automatically or-
ganizing content, and facilitating its retrieval therefore become more and
more necessary, creating an opportunity for novel Information Retrieval
approaches.

This thesis aims at improving the retrieval of sounds in large collab-
orative collections, and does so from different perspectives. We first in-
vestigate data collection methodologies for creating large and sustainable
audio datasets, including the design and development of a website and
an annotation tool to engage users in the collaborative process of dataset
creation. Additionally, we focus on improving the manual annotation of
audio samples when using large taxonomies. This calls for specialized
tools to assist users towards providing exhaustive and consistent annota-
tions. This produced a number of publicly available large-scale datasets
for developing and evaluating machine listening models. From another
perspective, we propose novel methods for learning audio representations,
suitable for diverse machine learning applications, by taking advantage of
large amounts of online content and its metadata. We then investigate the
problem of unsupervised classification by first identifying which type of
audio features are suited for clustering the wide variety of sounds present
in online collections. Finally, we focus on Search Results Clustering, an
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approach that organizes the search results into coherent groups. This re-
search improved the retrieval of sounds from large collections, namely
through facilitating exploration and interaction with search results.
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Resumen
A mediados del siglo XIX, y más precisamente durante la segunda Rev-
olución Industrial, comenzó a ser posible la captura de sonidos gracias
a un soporte de grabación, permitiendo su conservación y su reproduc-
ción. En un principio, esto se logró gracias a dispositivos mecánicos y
acústicos, y posteriormente éstos fueron electrónicos y magnéticos. Fi-
nalmente, a mediados del siglo XX, la era digital trajo consigo la de-
mocratización de los dispositivos de grabación y de reproducción, así
como el acceso a otras formas de almacenamiento y de compartimiento
de contenido. Como consecuencia, hoy en día, aumentan las colecciones
disponibles en línea. Se trata de colecciones masivas de muestras de
audio, algunas de las cuales se crean de forma colaborativa, gracias a
las plataformas de intercambio. Este contenido ha llegado a ser impre-
scindible para los medios de entretenimiento, como películas, música,
videojuegos y para la interacción hombre-máquina. No obstante, dada la
cantidad y la diversidad existentes, explorar, buscar y recuperar contenido
de colecciones colaborativas es cada vez más difícil. Así, los métodos
para organizar automáticamente el contenido y facilitar su recuperación,
son cada vez más necesarios. Esta situación es una oportunidad para el
estudio de enfoques novedosos cuyo objetivo es la recuperación de infor-
mación.

Desde diferentes perspectivas, esta tesis tiene como objetivo el facil-
itar la recuperación de sonidos ubicados en grandes colecciones colab-
orativas, En primer lugar, investigamos los métodos de recopilación de
datos para crear grandes conjuntos sostenibles de datos de audio, inclu-
ido el diseño y el desarrollo de una aplicación web y de una herramienta
de anotación para involucrar a los usuarios en el proceso colaborativo de
creación de conjuntos de datos. Además, nuestro trabajo se enfoca hacia
la mejora de la anotación manual de muestras de audio, cuando usamos
taxonomías grandes. Esta operación requiere herramientas especializadas
que faciliten las anotaciones exhaustivas y consistentes. El resultado es la
producción de una serie de conjuntos de datos a gran escala disponibles,
a nivel público, que permiten desarrollar y evaluar modelos de apren-
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dizaje de máquinas. Desde una perspectiva original, proponemos méto-
dos novedosos y adecuados para, en primer lugar, aprender representa-
ciones de audio y, en segundo lugar, para realizar diversas aplicaciones de
aprendizaje automático, aprovechando grandes cantidades de contenido
en línea y sus metadatos. En segundo lugar, investigamos el problema de
la clasificación sin supervisión, identificando qué tipo de características
de audio son las adecuadas para agrupar la amplia variedad de sonidos
presentes en las colecciones en línea. Por último, nos centramos en la
agrupación de resultados de búsqueda, un enfoque que organiza los resul-
tados en grupos coherentes. Esta investigación facilita la recuperación de
sonidos de grandes colecciones, principalmente, al facilitar la exploración
y la interacción con los resultados de búsqueda.

vii



Contents

List of figures xiv

List of tables xvii

1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Sound retrieval . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Text-based and content-based search . . . . . . . 3
1.2.2 The role of user interfaces . . . . . . . . . . . . 5

1.3 Innovative methods . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Classification . . . . . . . . . . . . . . . . . . . 7
1.3.2 Audio representation . . . . . . . . . . . . . . . 8
1.3.3 Clustering . . . . . . . . . . . . . . . . . . . . . 9

1.4 Objectives and outline of the thesis . . . . . . . . . . . . 10

2 Data Collection 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Annotation and taxonomies . . . . . . . . . . . 16
2.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Dataset desirata . . . . . . . . . . . . . . . . . . 18

2.2 The Freesound Annotator platform . . . . . . . . . . . . 20
2.2.1 FSD: a dataset for general machine listening . . 21
2.2.2 Functionalities of the platform . . . . . . . . . . 22

2.3 Outcomes and conclusion . . . . . . . . . . . . . . . . . 29

viii



Contents

3 Improving the Manual Annotation of Audio Content 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Audioset . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Motivating new annotation tools . . . . . . . . . 36

3.3 The annotation tools . . . . . . . . . . . . . . . . . . . 37
3.3.1 Generate annotations . . . . . . . . . . . . . . . 38
3.3.2 Refine annotations . . . . . . . . . . . . . . . . 38

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Methodology . . . . . . . . . . . . . . . . . . . 43
3.4.2 Results and discussion . . . . . . . . . . . . . . 43

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Audio Feature Performance Comparison for Unsupervised
Sound Classification 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Audio features . . . . . . . . . . . . . . . . . . 51
4.2.2 Clustering . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Clustering validation . . . . . . . . . . . . . . . 55

4.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Clustering methods . . . . . . . . . . . . . . . . 56
4.3.2 Audio features . . . . . . . . . . . . . . . . . . 57
4.3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.1 Automatic evaluation . . . . . . . . . . . . . . . 58
4.4.2 Qualitative evaluation . . . . . . . . . . . . . . 64
4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . 69

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Co-Aligned Autoencoders for Learning Semantically Enriched
Audio Representations 80
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Co-aligned autoencoders . . . . . . . . . . . . . . . . . 83

ix



Contents

5.2.1 Learning low-level audio and semantic features . 85
5.2.2 Alignment of acoustic and semantic features . . 87

5.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.1 Pre-training dataset and data pre-processing . . . 89
5.3.2 Utilized hyper-parameters, training procedure, and

models . . . . . . . . . . . . . . . . . . . . . . 90
5.3.3 Downstream classification tasks . . . . . . . . . 91
5.3.4 Models from the literature . . . . . . . . . . . . 92
5.3.5 Correlation analysis with acoustic features . . . . 93

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.1 Classification performance . . . . . . . . . . . . 93
5.4.2 Correlation analysis . . . . . . . . . . . . . . . 95
5.4.3 Clustering performance . . . . . . . . . . . . . . 96

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Learning Contextual Tag Embeddings for Cross-modal Align-
ment of Audio and Tags 101
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Proposed method . . . . . . . . . . . . . . . . . . . . . 103

6.2.1 Audio encoding and decoding . . . . . . . . . . 104
6.2.2 Multi-head, self-attention tags encoding . . . . . 105
6.2.3 Cross-modal alignment and optimization . . . . 106

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.1 Pre-training dataset and data pre-processing . . . 107
6.3.2 Audio-based classification . . . . . . . . . . . . 108

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Search Results Clustering 113
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Related work . . . . . . . . . . . . . . . . . . . . . . . 121
7.3 Proposed approach . . . . . . . . . . . . . . . . . . . . 124

7.3.1 Audio features . . . . . . . . . . . . . . . . . . 124
7.3.2 Graph-based clustering . . . . . . . . . . . . . . 126

x



Contents

7.3.3 Discarding low quality clusters . . . . . . . . . . 126
7.3.4 Selection of cluster representative examples . . . 127
7.3.5 User interfaces . . . . . . . . . . . . . . . . . . 127

7.4 Feature performance comparison . . . . . . . . . . . . . 130
7.4.1 Internal validation . . . . . . . . . . . . . . . . 130
7.4.2 External validation . . . . . . . . . . . . . . . . 131
7.4.3 Results . . . . . . . . . . . . . . . . . . . . . . 133

7.5 User evaluation . . . . . . . . . . . . . . . . . . . . . . 134
7.5.1 Methodology . . . . . . . . . . . . . . . . . . . 135
7.5.2 Results and discussion . . . . . . . . . . . . . . 136

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 140

8 Conclusions 145
8.1 Summary of contributions . . . . . . . . . . . . . . . . 146
8.2 Building high-quality datasets . . . . . . . . . . . . . . 148
8.3 Audio representation learning . . . . . . . . . . . . . . . 150
8.4 Feature performance for clustering . . . . . . . . . . . . 152
8.5 Search Results Clustering . . . . . . . . . . . . . . . . . 153

xi



List of Figures

1.1 Diagram representing the topics covered in this thesis. An
arrow indicates that the outgoing element contributes to
the incoming element. . . . . . . . . . . . . . . . . . . . 12

2.1 Screenshot of the familiarisation interface of the Freesound
Datasets platform validation task . . . . . . . . . . . . . 22

2.2 Screenshot of the interface when performing the valida-
tion task. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Screenshot of the annotator ranking during an annotation
event. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Screenshot of a category exploration table, with the error
report tracking. . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Screenshot a section of the mapping rule monitoring page
which allow maintainers to retrieve new candidate anno-
tations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Screenshot of inspection section of the mapping rule mon-
itoring page for a specific category and submitted mapping. 28

3.1 Representation of a small part of the AudioSet Ontology
hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Screenshot of the Audio Commons Manual Annotator . . 39
3.3 Screenshot of the Audio Commons Manual Annotator tax-

onomy table, showing the descriptions and examples of
“Sigh” and “Groan”, together with their hierarchy location 40

xii



List of Figures

3.4 Screenshot of the Audio Commons Refinement Annotator
displaying a sound sample and its three suggested label
paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Screenshot of the Audio Commons Refinement Annotator
showing a dropdown displaying the children categories of
“Guitar” . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Screenshot of the Audio Commons Refinement Annota-
tor showing the description and examples of the “Guitar”
category in a popup . . . . . . . . . . . . . . . . . . . . 42

4.1 Box-plots of the Adjuster Mutual Information scores re-
grouped by dataset family and for all the datasets. . . . . 64

4.2 Visualisation of the clustered graph for the "Brass instru-
ment" dataset using the AudioSet features. The graphs
for different datasets and features can be explored from a
browser at this url: https://xavierfav.github
.io/feature-comparison-clustering/we
b-visu/ . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 First two components of the PCA decomposition of the
audioset embeddings for the different datasets. The first
two plots’ colors represent clusters obtained with the KNN
and the K-means approaches respectively, the last one dis-
plays the ground truth labels. . . . . . . . . . . . . . . . 74

5.1 Illustration of our proposed method. Za and zt are aligned
through maximizing their agreement and, at the same time,
are used for reconstructing back the original inputs. . . . 84

6.1 Illustration of our method. φφφa and φφφw are aligned by max-
imizing their agreement through contrastive learning and,
at the same time, Za is used for reconstructing back the
original spectrogram input. Word embeddings are passed
through a multi-head scaled dot-product self-attention layer
in order to build higher-level semantic vectors that are fi-
nally aggregated into a single vector φφφw. . . . . . . . . . 105

xiii



List of Figures

7.1 Screenshot of the publicly available web search results
clustering interface using Carrot2 requested with the “pan-
das” query. . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Screenshot of the the Yippy search engine requested with
the “pandas” query. . . . . . . . . . . . . . . . . . . . . 119

7.3 Screenshot of the the Google image search engine re-
quested with the “pandas” query. . . . . . . . . . . . . . 120

7.4 Diagram representing the steps of our clustering engine. . 124
7.5 Page displaying the result of the query glass of the cluster

#1. Clicking on a cluster facet on the right applies a clus-
ter filter. Three labels are shown for each cluster, together
with the number of sounds they contain. . . . . . . . . . 128

7.6 The graphical 2D visualisation of sounds retrieved with
the query guitar. Each circle represents a sound. Placing
the mouse on one will play the associated sound. Clicking
on it displays some information at the top of the screen
and highlights neighbor nodes. . . . . . . . . . . . . . . 129

7.7 Diagram representing the steps of our internal evaluation
making use of user-provided tags. The Calinski-Harabasz
Index is calculated between the labels corresponding to
the obtained clusters and the features derived from the
sound tags. This evaluation is performed on the results of
the 1000 most popular queries performed by Freesound
users. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.8 Results from the guitar query in the search engine. Clus-
tering facets behave like the traditional one, enabling users
to combine different types of facets to further narrow down
the search results. . . . . . . . . . . . . . . . . . . . . . 142

7.9 The 2D visualisation displaying the kNN-graph for the
guitar query. . . . . . . . . . . . . . . . . . . . . . . . . 143

xiv





List of Tables

4.1 Dataset families content. . . . . . . . . . . . . . . . . . 59
4.2 Average performance (AMI) across the different dataset

families of the K-means and the KNN-Graph clustering
methods with the different features. An AMI close to 0
corresponds to a random partition while perfect matches
gives 1 AMI. . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Average mean accuracies for SER, MGC, and MIC. Addi-
tional performances are taken from the literature (Cramer
et al., 2019; Salamon & Bello, 2017; Pons & Serra, 2019b;
Lee et al., 2018; Ramires & Serra, 2019). . . . . . . . . 94

5.2 CCA correlation scores between the embeddings model
outputs and some acoustic features statistics. . . . . . . . 96

5.3 Average performance (AMI) across the different dataset
families of the K-means and the KNN-Graph clustering
methods with the different features. An AMI close to 0
corresponds to a random partition while perfect matches
gives 1 AMI. . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 Average mean accuracy for SER, MGC, and MIC. Addi-
tionally performances on US8K dataset using a tag-based
classifier are reported in the last column. . . . . . . . . 111

7.1 The different features compared in this work. . . . . . . 125

xvi



List of Tables

7.2 Clustering validity score (Calinski-Harabasz Index) us-
ing the different feature sets. Mean and standard devi-
ation is calculated on the performance of the clustering
of the results from the top 1000 most popular queries in
Freesound. The pruning column corresponds to the va-
lidity score when discarding the cluster with the lowest
confidence score defined in Section 3.3. . . . . . . . . . 134

7.3 Average performance (AMI) across the different dataset
with the different features. An AMI close to 0 corre-
sponds to a random partition while perfect matches gives
1 AMI. The pruning column corresponds to the perfor-
mance when discarding the cluster with the lowest confi-
dence score defined in Section 7.3.3. . . . . . . . . . . . 135

xvii



Chapter 1

Introduction

1



Chapter 1. Introduction

1.1 Motivations
The rapid advance in music technology, including hardware and informa-
tion technologies, has made digital audio a major part of modern every-
day life. Sound collections are often used by sound designers for making
movies, video-games and other media, an immersive multisensorial expe-
rience. Therefore, the need to interact effectively with increasingly large
digital audio collections is growing in many applications. Whenever we
hear footsteps, a door closing or thunder in a movie clip, it almost always
originates from large libraries of sound effects. In computer games, sound
is a valuable and necessary component for producing emotional reactions.
Moreover, composers and arrangers of music frequently use collections of
sounds to create musical pieces. From simple clips to more complex mu-
sic loops, electronic composers have numerous possibilities to arrange,
transform and finally create new pieces of music. As an other example,
audio is intensively used in human-computer interaction to provide richer
and more robust and inclusive environments, compared to just having the
graphic representation. Audio feedback can complement graphics and
text for reinforcing a concept in the user’s mind. Efficient approaches for
retrieving and interacting with audio content from large collections will
therefore empower a large and diverse group of creators and consumers
in their usability and creative needs and experiences.

Nowadays, the creation and generation of audio content is widely fa-
cilitated, without the need of extensive resources and equipment. Thanks
to online sharing platforms, this content can be easily and freely shared,
resulting in an exponential growth in available data. In these platforms,
sound collections are collectively generated by their users instead of com-
ing from professional studios, which poses challenges for their organiza-
tion and retrieval as the collections are typically not uniformly labeled and
categorized. Moreover, the increasing size of collaborative collections is
one of the main challenges in the management and retrieval of its sounds.

Effective retrieval from large collections requires the content to be or-
ganized and accompanied by the necessary information. The information
that complements a sound file, also known as metadata, can be either gen-
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Chapter 1. Introduction

erated automatically, or provided by the user. Most importantly, metadata
includes annotations in the form of textual representation and descrip-
tions. Online sharing sites often rely on the creator of the sound for anno-
tating its content. Each platform has its own content description approach,
typically consisting of a form with several predefined fields. The user then
specifies e.g. the musical genre, or information about the sound source(s).
Other strategies employ a more flexible description form, where the user
can provide a textual description, together with a list of labels. These la-
bels are known as tags and are widely used in various multimedia sharing
platforms, such as Flickr, Vimeo, Soundclound, Last.fm or Freesound.
Since it is provided by many users with different backgrounds, crowd-
generated content is non-uniformly annotated when compared to that of
commercial libraries, which employ trained experts (Font et al., 2018).
Efficient indexing and curation of user-generated content, whose meta-
data do not comply to a standard format, is therefore very challenging.
Moreover, given the pace at which new audio content is nowadays gen-
erated, human expert annotation simply does not scale. These concrete
and open challenges, together with the potential of recent advances in
machine learning, motivate the research presented in this thesis.

1.2 Sound retrieval
As with any type of multimedia content, sound retrieval involves mainly
indexing and searching. These techniques lie in the scope of Information
Retrieval, defined as “a field concerned with the structure, analysis, or-
ganization, storage, searching, and retrieval of information”, according to
one of its pioneers (Salton, 1968). In this section we’ll look into different
aspects of the field of Information Retrieval when applied to sound.

1.2.1 Text-based and content-based search
Search techniques can be divided into keyword-based retrieval (Jacobs,
2014) and content-based retrieval (Lew et al., 2006). The former cor-
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Chapter 1. Introduction

responds to the use of text-based search engines, which rely on the ac-
companying text elements of sounds such as title, description or tags.
Content-based retrieval consists in performing search directly using the
content itself, or more particularly, representations derived from it. In
both cases, the retrieval engine can benefit from automatic methods that
either augment the metadata with new annotations, or provide a numer-
ical representation that reflects high-level characteristics of the sounds.
The latter can be used with a distance metric for performing queries by
examples, for instance.

The majority of current platforms rely heavily on text-based search
engines to retrieve sounds. Generally, audio sample providers employ
predefined categories to annotate the content, e.g. dog bark, guitar and
loop. Organizing a collection through such a controlled set of categories
significantly facilitates the indexing and retrieval of its sounds by allowing
to display sounds to users organized in such controlled categories. This
is particularly suitable when the collections are relatively small and focus
on specific types of sounds, i.e. a smaller number of categories. For ex-
ample, many professional libraries specialize into animal, urban, or even
fantasy creature sounds. As a consequence, searching for sounds in such
reduced-scope collections is easier than exploring more comprehensive
ones, containing mixed types of sounds.

Alternatives to professional libraries, such as the ones available in col-
laborative platforms, are usually more diverse in the nature and quality of
their content. Resources are often freely annotated, rather than following
a set of predefined categories. It has the advantage of being less demand-
ing for the contributing user, as it gives her the freedom to employ her
own vocabulary. However, this hinders the performance of the search en-
gine (Furnas et al., 1987). If the user-formulated query does not include
the exact terms used in the description or tags of the sounds, according to
which the content is indexed, the system will potentially not retrieve the
relevant sounds. In other words, this will affect the recall of the system.
In addition, if the metadata and/or query text are not precise enough or
include erroneous terms, the system may retrieve irrelevant sounds, thus
decreasing the precision of the search. In collaborative collections, these
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types of vocabulary miss-matches can be frequent, and represent a signif-
icant bottleneck for traditional text-based search approaches.

There are several possible solutions to these problems. A popular
category of approaches rely on comprehensive human knowledge in or-
der to appropriately grasp the semantic content of the text to improve
search. For example, one strategy is to expand the queries with terms or
features that are synonyms or related to the user input. This technique
is known as query expansion, and can improve retrieval performance by
bridging the gap in the vocabulary used in the query and that used in the
documents (Carpineto & Romano, 2012). In addition, word sense dis-
ambiguation is employed in order to tackle polysemy (Navigli, 2009).
Natural language processing approaches to improve search are however
outside of the scope of this thesis. Another way to tackle this challenge
is to concentrate on content-based approaches, such as automatic anno-
tation and classification of sounds (Martınez et al., 2009; Turnbull et al.,
2008). When relying on the content, the search performance becomes less
dependent on the quality of the user-provided annotations.

1.2.2 The role of user interfaces
Human Computer Interaction research also plays an important role in In-
formation Retrieval. Graphical user interfaces enable the creation of pow-
erful tools that combine human and machine capabilities. Existing works
emphasized on automatic algorithms are rarely concerned with how users
can interact with these algorithms. However, human computer interaction
is a very important aspect in the creation of effective retrieval systems.
Most of the tools used by sound designer and musicians offer limited
capabilities for browsing large collections of audio files. Digital audio
workstations typically display filenames and sometimes some forms of
tag to explore personal collections of sounds. Professional collections
are grouped by type and structured with handcrafted organization of con-
cepts which may allow text-based retrieval method to be efficient enough.
In the case of online large collections, tag clouds have been introduced
and provide to users a valuable visual interface to browse web collec-
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tions (Hassan-Montero & Herrero-Solana, 2006). They list the most pop-
ular tags present in the data collection and allow to construct queries by
selecting tags. Even if tags are sometimes disorganized due to their per-
sonal and subjective origin, they directly reflect the vocabulary of users,
enabling matching users’ real needs and language. Another aspect, called
faceted search, allows to browse the collection in a multi-step refinement
process by selecting categories, proprieties, attributes or characteristics
of the content (Fagan, 2010). Using facets to structure the information is
commonly used for providing an intuitive interface for browsing collec-
tions using metadata.

Alternatives based on content-oriented methods for the browsing and
the exploration of sound collections have been investigated. They often
consist in projecting the numerical audio features into a small dimensional
space where similar sounds are close from one another. This type of ap-
proaches can be considered appealing to some, by providing interaction
methods that can make the process of browsing content more exciting and
joyful (Schedl, 2017).

1.3 Innovative methods
Advancements in Information Retrieval and Machine Learning have a
great potential for improving sound retrieval methods in different ways.
First, by using automatic annotation tools, online content can be aug-
mented with annotations that then can be indexed and used to improve
the text-based retrieval engine. As a requirement for automatic methods,
having good numerical audio representations are a key to their success.
Finally, clustering is considered suitable for data exploration since it can
automatically discover hidden patterns in large amount of data (Berkhin,
2006).
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1.3.1 Classification
In the past decades, automatic content description methods have prolifer-
ated and can be used, with different accuracies, for detecting semantic
concepts from low-level features derived from the content digital rep-
resentation. However, there is a persistent semantic gap (Celma et al.,
2006) produced by the lack of accordance between the information that
can be extracted from the data and the interpretation that the same data
has for a user. Successful automatic description methods are based on ap-
proaches that often rely on a lot of data for training and evaluation. As a
consequence, manual generation of content description is of high impor-
tance for the realisation of intelligent systems able to produce meaningful
automatic content descriptions, and to make steps towards reducing the
semantic gap.

In the context of machine learning, classification was typically per-
formed by using a set of hand-crafted features that would then be input
to a classification model that would learn to assign labels to content. Re-
cently, deep learning has been able to leverage massive amount of data in
order to both learn audio representations and train classifiers. However,
successful approaches often make use of large annotated corpus which
requires to have previously selected a set of classes. When dealing with
online audio data comprising a large range of type of sounds, these set of
classes needs to be large enough in order to accurately describe the con-
tent. The largest public taxonomy of concepts used in audio is AudioSet
and consists of more than 600 classes, organized in a hierarchy (Gem-
meke et al., 2017). In the image field however, where deep learning has
enabled huge improvements, the size of these taxonomies is much larger
and can include thousands of concepts. However, generating ground truth
with categories drawn from large sets of categories is difficult, since hu-
man annotators need to have a good knowledge about them in order to
use them appropriately. To address this issue, better tools for manual an-
notation should be developed that better assist users in dealing with large
taxonomies in the ground truth generation process. This thesis proposes
to leverage online audio content to build larger audio datasets that can be
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used to train general-purpose audio classifiers. To do so, novel interfaces
that intelligently guides users in the process of annotating audio content
are investigated.

1.3.2 Audio representation
Audio representations were originally created by relying on hand-crafted
numerical features designed using domain knowledge about invariances
in classes and as an attempt to extract audio characteristics that might be
perceptually relevant. Some are derived directly from the time domain au-
dio representation, while others are derived from spectral representations
of the sounds which is mostly motivated by the fact that human percep-
tion widely relies on the frequency content of sound signals. These sets
of features allow representing audio in a high-dimensional space, which
enable the use of automatic methods for describing the content. These
features have been successful to some extent in a number of applications
such as musical instrument classification (Eronen & Klapuri, 2000), mu-
sic genre recognition (Tzanetakis & Cook, 2002), acoustic scene classi-
fication (Barchiesi et al., 2015), sound event recognition (Janvier et al.,
2012) or clustering (Herrera-Boyer et al., 2003). Moreover, they allow
to perform content-based retrieval by for instance proposing to query by
example (Helén & Virtanen, 2009), imitation or humming (Ghias et al.,
1995). As a more practical example, in the Freesound sound sharing plat-
form (Font et al., 2013a), an aggregation of statistics over a large amount
of acoustic features is used in order to propose a query by example system
where the user can quickly access similar sounds of a previously retrieved
one.

Deep learning has been able to produce high-quality audio features
that can can be re-used for different applications through transfer learn-
ing (Choi et al., 2017). These types of approaches make use of pre-trained
models as a starting point for different tasks. First layers from trained
neural networks often learn similar features which can be applicable for
many datasets and tasks (Yosinski et al., 2014). Intermediate layers can
serve as higher-level representations which can be used, for instance, in
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clustering (Jansen et al., 2017). In this thesis we are interested in identi-
fying what kind of features are adequate for dealing with the wide vari-
ety of sounds present in nowadays large and heterogeneous sound collec-
tions. Moreover, we investigate approaches to leverage the large amount
of publicly available sounds from online collections to learn competitive
features without the need of building curated datasets.

1.3.3 Clustering
Search engines enable the users to interact with audio collections by lever-
aging accompanying metadata. In response to a query, these systems typ-
ically return a list of results ranked in order of relevance to the query.
The user normally starts at the top of the list and examines one result
at a time, until she satisfies her need. For broad or ambiguous queries,
the results on different subtopics or meanings will be mixed together in
the ranked list. That issue is more severe in collaborative collections,
were the crowd-generated nature of the content makes it non-uniformly
– and sometimes incorrectly – annotated. It implies that the user has of-
ten to go through a large number of irrelevant items to finally locate the
one of interest, hence making the task of sound retrieval slow and tedious.
One solution for addressing this issue is Search Results Clustering (SRC),
which consists of grouping search results into different labeled clusters or
categories (Hearst et al., 1995). For instance, clustering search results
enables the user to enter a weakly-specified query and explore different
topics that have been extracted from the retrieved results. SRC can pro-
vide a faster way to retrieve relevant items, enabling topic exploration and
alleviating information overlook (Carpineto et al., 2009). Moreover, the
ability to rely on machine generated audio features as input of clustering
engines can enable to detect perceptually relevant clusters that could have
not been discovered from the accompanying crowd-generated metadata.

Nonetheless, the development of clustering engines that can efficiently
complement traditional retrieval engines poses some challenges (Carpineto
et al., 2009). First, the clustering method should have a decent perfor-
mance in terms of compactness and separation. In other words, objects
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in a cluster should be similar to other objects in the same cluster, and ob-
jects from other clusters should be dissimilar to other objects from other
clusters (Liu et al., 2010). Then, in order to enable interactive use of the
clustered results: meaningful labels have to be assigned to each cluster;
the clustering has to be performed online within a short response time;
and a graphical user interface should provide an intuitive way to navigate
through the clusters. This thesis investigates the use of audio-based SRC
for helping users to browse large online sound collections.

1.4 Objectives and outline of the thesis
The main goal of this thesis is to better support exploration and retrieval
of sounds in large collaborative collections. We therefore formulate a set
of research questions that we address throughout this manuscript:

(i) How can we make best use of sound collaborative collections in
order to build high-quality datasets for supporting advances in ma-
chine learning?

(ii) To what extent and in what way can collaborative collections be
directly used to learn audio representations that are useful for clas-
sification tasks?

(iii) How do deep learning features perform for unsupervised classifica-
tion with a wide variety of sounds?

(iv) How feasible and valuable is Search Results Clustering for retriev-
ing content from collaborative sound collections?

These questions have led us to the following objectives:

• Build datasets to foster advances in machine listening.

• Investigate and develop novel tools for manual annotation.
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• Investigate and develop novel approaches to leverage online audio
content in order to learn competitive audio features.

• Investigate which type of audio features are suited for clustering
purposes in light of the diversity of sounds present in online collec-
tions.

• Integrate clustering into the Freesound search engine by investi-
gating and developing a Search Results Clustering engine. This
includes having a fast and effective clustering algorithm, together
with an interface that allows users to interact with the clusters.

In order to illustrate the content of this thesis, Figure 1.1 represents
the different topics covered. Collaborative Sound Collections are the cen-
ter component in this thesis, and the main motivation is to contribute to
improve their value for creative and research purposes. The arrows im-
ply a contribution from one component to the next. Specifically, we con-
sider Freesound as use case. Based on the Creative Commons philosophy,
Freesound1 is a collaborative platform hosting a repository of Creative
Commons licensed audio samples (Font et al., 2013a). At the time of
writing, it contains more than 450k sounds and millions registered users.
The sounds are very diverse, ranging from field recordings to synthesized
effects.

The rest of this manuscript is organized as follows. Chapter 2 de-
scribes my perspective on the best way to create high-quality datasets to
best promote advances in Machine Learning. In this context, the chapter
presents Freesound Annotator, a platform for the collaborative creation
of open audio datasets using content from Freesound. As a first result,
we describe FSD, a large-scale audio dataset, annotated with categories
drawn from the AudioSet Ontology.

Chapter 3 focuses on solving concrete problems induced by common
data collection and annotation processes. This is achieved by propos-
ing novel manual annotation tools. Following a user-centered design ap-
proach, we propose general-purpose tools for annotating diverse audio

1https://freesound.org/
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Figure 1.1: Diagram representing the topics covered in this thesis. An
arrow indicates that the outgoing element contributes to the incoming el-
ement.
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content, that supports the exploration and use of predefined categories
taken from large hierarchical taxonomies.

Chapter 4 outlines research on identifying which type of audio fea-
tures are most suited for clustering sounds present in nowadays large and
diverse online sound collections. To this end, we compare the perfor-
mance of several sets of audio features, including state-of-the-art deep
learning representations. An evaluation using several diverse datasets is
made possible due to the outcomes presented in Chapters 2 and 3.

Chapter 5 and 6 investigates approaches that can leverage user-generated
content from online sound sharing platforms, in order to learn audio rep-
resentations that can serve as a base to various classification tasks. This is
achieved by aligning the latent representations learned for audio to those
learned for the associated tags.

Chapter 7 discusses the research on Search Results Clustering sys-
tems, appropriate for supporting the retrieval of sounds in large collab-
orative collections. The proposed clustering method relies on a graph-
based approach which uses deep audio features as input. We propose a
novel way to leverage textual metadata in order to assess the clustering
performance at scale. We finally evaluate the SRC system in a real-word
context, by observing its use by users in both sound-design and musical-
related tasks.

We conclude this thesis in Chapter 8, by summarizing the work done
and by providing a discussion of the main findings. Additionally, we high-
light perspectives on new methods and research opportunities identified as
promising for the organization and retrieval of audio content.
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2.1 Introduction
Digital audio content is nowadays increasingly available over the internet.
Many people have contributed to create a large number of audio files from
a wide variety of types and audio sources. Much of this data serves cre-
ative purposes, often related to the creation of entertainment media, such
as movies, music or human-machine interaction. In order to take the most
value out of audio collections, their content must be properly stored and
organized, facilitating access and retrieval. As introduced in Chapter 1,
the growing size of collaborative collections makes storing and organizing
their content a challenging task. As a potential solution, machine learning
and signal processing techniques have proven successful in the classifica-
tion of audio content on multiple domains, including (Neumayer et al.,
2005b; Herrera-Boyer et al., 2003; Eronen & Klapuri, 2000; Tzanetakis
& Cook, 2002; Muller & Ewert, 2010; Hershey et al., 2017).

In this chapter, we highlight the importance and complexity of the
different decisions that go in the design and maintenance of large au-
dio collections, in particular with the aim of improving their utility as
input for machine learning and signal processing methods. The chapter
includes several concrete implementation examples in the context of the
Freesound Annotator platform, introduced in Section 2.2.

2.1.1 Annotation and taxonomies
In order to achieve good performance, machine learning and signal pro-
cessing methods often require large amounts of annotated data, which in
its turn relies on manual human annotation as a starting point (Favory
et al., 2018). Moreover, the organization of sounds requires the use of
a suitable set of predefined categories or classes that cover the types of
sounds and/or their characteristics. These sets of categories are referred
to as taxonomies, and are usually organized as hierarchies.

In limited-scope domains, containing few types of sounds, defining
taxonomies is likely to be straightforward. This gets however more com-
plicated as the diversity of the sounds to be described increases. To date,
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the largest released public taxonomy for audio contains more than 600
distinct classes (Gemmeke et al., 2017). As a comparison, taxonomies
used for image-based classification can often include more than 10k classes,
as it is the case for ImageNet (Deng et al., 2009). These large image
datasets have contributed to major improvements, e.g. in automatic ob-
ject identification, and critically depend on dictionaries of concepts taken
from large lexical databases such as WordNet (Miller, 1998).

However, the use of lexical databases for audio has not yet been adopted.
One possible explanation is that these lexical resources are not always ap-
propriate for describing audio content. They contain concepts that are
either too specific for conveying audio description, or either not specific
enough. This can be understood by the fact that sounds are often more
abstract and ambiguous than images and, as a consequence, the neces-
sary vocabulary can include words with different meanings. As an ex-
ample, echo and reverberation are considered different concepts in audio,
although they originate from the same acoustic phenomenon. However,
according to the lexical resource WordNet, the two concepts are consid-
ered synonyms 1. Furthermore, there are many concepts in music which
are simply not present in lexical resources. For example, the concept of
jingle, defined as “a short song or tune used in advertising and for other
commercial uses”2, does not exist in WordNet. And there are numer-
ous highly-specific concepts used by music producers for describing the
content they use or create which are also not included in general lexi-
cal databases. The first challenge in generating high-quality annotations
therefore lies in deciding upon the set of concepts and categories to de-
scribe the sounds, i.e. the selecting a suitable taxonomy.

2.1.2 Datasets
Datasets of sounds have been proposed for many different purposes, in-
cluding classification or auto-tagging, speaker identification, source sep-
aration, and music transcription. Since this thesis focuses on the im-

1http://wordnetweb.princeton.edu/perl/webwn?s=echo
2https://en.wikipedia.org/wiki/Jingle
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provement of classification and tagging of audio content, we will focus
on datasets designed for this purpose. Our interest lies mainly on the an-
notation of content with semantic labels, which can be used to pinpoint
the audio source(s) present in a file, describe properties of said source(s),
identify the acoustic scene, and so on. The main goal is to contribute to
advances in machine listening, with the aim of obtaining maximum value
from existing sound collections. This entails proposing and improving
methodologies for the development of datasets. For the remaining of this
manuscript, we consider a dataset as being composed of (i) a sound col-
lection i.e. a set of audio files, (ii) a set of pre-defined categories and, (iii)
the annotations that associate the audio content to the categories.

2.1.3 Dataset desirata
We consider the collaborative creation of audio datasets by a community
of users. Embracing the ideas described by (McFee et al., 2016) and
(Stodden et al., 2016) for sustainable information retrieval evaluation and
reproducibility of computational methods, the datasets and their creation
should ideally subscribe to the following principles:

• Size. Having sufficient data is one of the major concerns for many
researchers. Small datasets may limit the application of certain machine
learning techniques, where larger datasets are needed. In particular, novel
deep learning approaches often require large amounts of data.

• Openness. It is indispensable that datasets are completely open, in-
cluding audio and ground truth data. Both should be available under open
licenses that allow the free distribution and reuse. Furthermore, other rel-
evant data generated during the dataset creation process could be made
available (e.g., annotation procedures and the original raw annotations).
Keeping this information as open as possible aids in the detection of po-
tential issues or biases in the collection process.

• Transparency. It is important that workflows in the dataset cre-
ation process are clear to the users. This will allow a better understanding
of the dataset itself, its potential and limitations. In this regard, facilitat-
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ing the exploration of the content through intuitive interfaces is a crucial
functionality that is often overlooked. Moreover, splits of datasets (e.g.,
train and test) should be proposed and made publicly available for system
benchmarking and to ensure reproducibility, so that researchers can carry
out experiments with directly comparable results.

• Diversity. Many datasets focus on a specific type of sounds rather
than covering a broad spectrum of sound types. Diverse datasets are more
suited for covering the entire range of sounds present in online collections,
such as Freesound, and are therefore preferred. Moreover, machine listen-
ing systems can be used in various distinct applications and devices, e.g.
to monitor sounds in cities (Bello et al., 2019), healthcare (Hüwel et al.,
2020), bioacoustics monitoring (Xu et al., 2017), surveillance (Crocco
et al., 2016), smart devices (Do et al., 2018), or conversational agents
(Park et al., 2020). Some online collections are collaboratively generated
by users with different backgrounds and levels of expertise, and using dif-
ferent devices for recording or producing sounds. By reflecting the vari-
ability in input and recording conditions, the resulting content can better
serve a variety of aims.

• Dynamism. It is desirable, and even necessary, that the dataset and
its collection be the subject of constant discussion and improvement. In-
deed, research has been devoted to the analysis and critique of existing
datasets (Sturm, 2013), as well as proposing updated versions (Kereliuk
et al., 2015). We envision such criticism and proposals happening in a
collaborative online platform where detected faults and issues can be dis-
cussed and adequately addressed. This would imprint a dynamic character
to datasets which could be versioned and updated with contributions from
the community.

• Sustainability. To ensure that datasets with the aforementioned
properties stand in the long term, a sustainable approach is required not
only for gathering audio content and annotations, but also in its mainte-
nance. In the ideal scenario, the community acts as a continuous source
of information at different levels. Ideally, the community would be self-
sufficient, providing a large-scale source of audio-related content. As a
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matter of fact, previous works have adopted similar ideas for gathering
large amounts of user-provided data. Notable examples are AudioSet,
based on YouTube videos (Gemmeke et al., 2017), and ImageNet, based
on Flickr and other search engines (Deng et al., 2009). In order to con-
struct the corresponding ground truth annotations at a large scale, a sub-
stantial part of the annotations is likely obtained through crowdsourcing.
Finally, technical maintenance requirements should be kept as low as pos-
sible.

The remaining of this chapter introduces the Freesound Annotator
platform, our effort towards sustainable construction and maintenance of
collaborative datasets with the aforementioned properties.

2.2 The Freesound Annotator platform
Freesound Annotator is a website that allows the collaborative creation
and curation of open audio datasets. It serves three main goals in fa-
cilitating i) the management of datasets, ii) the creation and verification
of annotations, and iii) browsing and exploration by users. Currently,
Freesound Annotator hosts the FSD dataset, introduced in Section 2.2.1.

Freesound Annotator was originally released in April 2017, but its de-
velopment is an ongoing process. Initially, it started by providing tools
for exploring taxonomies and validating automatically-generated annota-
tions. These tools were used by users early-on in the development process
in a controlled scenario, in order to start gathering annotations and col-
lecting feedback for improving the platform. Additional features were
subsequently added e.g. for providing clearer guidelines, better category
and taxonomy visualisations, and practical answers to common doubts.
Since one of our intentions is to crowdsource the annotation of content,
we also implemented several quality control mechanisms (Ipeirotis et al.,
2010; Sabou et al., 2014). One of such mechanisms consists in prompting
the annotating users with test cases, i.e. audio clips with known annota-
tions. The users are not aware of this fact, which allows us to assess the
reliability of their answers and filter potential spam. Another indicator of
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annotation quality is the agreement between multiple users for the same
category and clip, which is therefore another key mechanism for generat-
ing ground truth annotations. The implementation of these features was
crucial when advertising our platform, and allowed us to collect contribu-
tions from more than 500 people. As an complement to crowdsourcing,
we also developed specialized tools suited for expert annotators, needed
to over more challenging annotation tasks (Chapter 3). Finally, monitor-
ing tools were added, allowing us to follow the current state of the dataset
by visualizing the progress for each category’s annotation. Moreover, the
monitoring tools also enabled us to easily inspect users’ contributions or
quickly detect mistakes.

As a technical remark, the platform uses the Django Python Frame-
work for the development of the application and relies on Postgres as a
database. The database model allows us to store, manage and retrieve
sounds and their annotations. Moreover, since it is based on crowdsourc-
ing, a user model allows us to keep track of the contributions of the users.
Maintaining these models allows for instance to assign some scores to an-
notations in order to prioritize certain types of sound and to reach users’
agreement faster on the validation of annotations by multiple people. We
also store and keep all the contributions made by any user so that they can
be reused in any other ways. The code of the platform is available publicly
at: https://github.com/MTG/freesound-datasets

2.2.1 FSD: a dataset for general machine listening
Hosted on Freesound Annotator, the FSD dataset is a collection of audio
samples from Freesound. As described by Fonseca et al. (2017b), each
clip in FSD is annotated with categories drawn from the AudioSet Ontol-
ogy, the largest publicly-available taxonomy for audio. It is a hierarchical
collection of over 600 classes. Currently, FSD displays annotations that
express the presence of a sound category in an audio sample. We decided
to first focus on the FSD dataset, as it can serve many applications in
general machine listening. The creation of FSD started by automatically
populating each category of the AudioSet Ontology with several candi-
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date audio samples from Freesound. This process generated over 600k
candidate annotations. In the following, we introduce functionalities of
Freesound Annotator, in its application to the FSD dataset.

2.2.2 Functionalities of the platform
To verify the validity of these automatically generated annotations, we de-
veloped a validation tool with an interface that helps users to understand
a category and its context in the AudioSet Ontology.

• Validation of candidate annotations. This validation tool is de-
ployed in the Freesound Annotator platform. Figure 2.1 shows the part
of the interface used by the users in order to familiarise themselves with
a given category. It displays information such as the name, description,
sibling and children categories of a specific category.

Figure 2.1: Screenshot of the familiarisation interface of the Freesound
Datasets platform validation task

After getting familiarized with a given category, the user is presented
with a page containing several sounds for the which he is asked to validate
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the presence of the sound category (see Figure 2.2). At first, after submit-
ting his contribution for the page of 12 sounds, the user was thanked and
was asked if he wanted to continue or select another category. We real-
ized that many sporadic users were then only contributing with one page,
which was not very profitable. As already identified in crowdsourcing
annotation scenario (Sabou et al., 2014), users tend to produce better an-
notations after having spend some time annotating, often referred as a
training phase. Therefore, we decided to organize the validation task in
sessions of 6 pages, before thanking the user and proposing him some
deserved rest. As a result, we saw an increase of the number of contribu-
tions from some users, which tended to provide much more annotations.

Figure 2.2: Screenshot of the interface when performing the validation
task.
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• Beginner and advanced tasks. The Audioset Ontology is com-
posed of many categories. Some are fairly easy to identify for any human
being (e.g. dog bark), whereas others can be more challenging (e.g. so-
prano saxophone). We therefore decided to divide the validation task in
two. One called beginners that would assign a random category among
a few simple ones, and another one called advanced, that allows the user
to choose a category among more complicated ones. In order to be able
to contribute to the advanced task, users were first asked to contribute
at least once to the beginners task. This would for instance mitigate the
effect of user spam for any category or enforce the idea of progression
through a gamification rewarding concept (Morschheuser et al., 2016).

• Gathering participants. Few design decisions were made related
to gamification. Nonetheless, we provided a ranking of the top contribu-
tors, displaying all time top contributors as well as last 24 hours top con-
tributors, as shown in Figure 2.3. This was mainly used during several
tagathon events, to motivate the gathered participants in their annotation
process.

• Monitoring tools. In order to follow the progression towards the
annotation of the collection, we provided tools in order to monitor differ-
ent aspects of the platform. These include: the number of contributions,
ground truth annotations, repeated wrong answers to quality control test
cases, repeated annotator disagreement on validation, and so on. More-
over, individual contributions of annotators can also be inspected.

• Amend mistakes. In order to facilitate the detection and correction
of mistakes in dataset releases, we provide a way to explore and report er-
rors in existing labels as shown in Figure 2.4. These error reports are kept
in database for allowing further inspection by maintainers of the dataset.

• Gather more candidate annotations. The creation of the dataset
started with the automatic generation of candidate annotations, that were
obtained using a tag-matching process. As a result, some categories did
not have a large amount of candidates. New tag-matching rules can be
modified from the web application, in order to facilitate the generation of
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Figure 2.3: Screenshot of the annotator ranking during an annotation
event.

new candidate annotations. The form shown in Figure 2.5 allows main-
tainer to visualize existing mapping rules, or directly adding sounds from
Freesound using their numerical identifiers, or propose new tag-matching
rules. Once submitted, boolean queries are perform to the database, and
some statistics are presented to the user. Figure 2.6 shows the number of
sound retrieved and the proportion that are already considered as candi-
date in the platform. Additionally, the proportion of existing validation
votes are displayed, as well as existing tags for the sounds reported as
not containing the specific sound category through the validation task. Fi-
nally, random examples are shown at the bottom of the page, and the user
can quickly asses their validity, in order to get an estimate of the quality
of the new mapping.
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Figure 2.4: Screenshot of a category exploration table, with the error re-
port tracking.
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Figure 2.5: Screenshot a section of the mapping rule monitoring page
which allow maintainers to retrieve new candidate annotations.
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Figure 2.6: Screenshot of inspection section of the mapping rule monitor-
ing page for a specific category and submitted mapping.
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2.3 Outcomes and conclusion
Through the existence of the Freesound Annotator platform, several dataset
releases have been made accessible for the public for different purposes:

• FSD50K is the latest and main release of FSD (Fonseca et al.,
2020a). It contains 51,197 audio clips from Freesound, totalling over
100h of content manually labeled using 200 classes drawn from the Au-
dioSet Ontology. The audio clips are licensed under Creative Commons
license. The annotations are provided at a clip level, meaning that they
only convey the presence of a sound category in an entire clip whether
than providing exact location in the clips. To our knowledge, it is the
largest fully-open dataset of human-labeled sound events ever released.
In total there are 152,867 annotations in the dataset. In order to enable
reproducibility and fair comparabitily results when using the dataset, it
provides pre-computed splits. The development set consists of a train-
ing and a validation part. It contains labels that are correct but could be
occasionally incomplete. The evaluation set has been annotated exhaus-
tively, meaning that all labels are correct and complete for the considered
vocabulary.

• Collection of datasets for clustering validation. This is a collec-
tion of relatively small datasets that have been created using data from
FSD. They aim at enabling an evaluation of different audio features for
the clustering of diverse types of sounds. This collection contains 44
datasets organized in 6 families comprising a total around 30k sounds.
These datasets will be presented more in detail in Chapter 4, as long with
a comparative study of feature performances for the unsupervised classi-
fication of sounds.

• FSDKaggle2018 (Fonseca et al., 2018). Dataset containing 11k au-
dio clips and 18 hours of training data unequally distributed in 41 classes
of the AudioSet Ontology. It was collected for the DCASE Challenge
2018 Task 23, which was run as the Kaggle competition Freesound General-

3http://dcase.community/challenge2018/task-general-purpo
se-audio-tagging-results

29



Chapter 2. Data Collection

Purpose Audio Tagging Challenge4.

• FSDnoisy18k (Fonseca et al., 2019a). Dataset collected with the
aim of fostering the investigation of label noise in sound event classifica-
tion. It contains 42.5 hours of audio across 20 sound classes, including
a small amount of manually-labeled data and a larger quantity of real-
world noisy data. Described in its companion site and in our ICASSP
2019 paper.

• Free Universal Sound Separation Dataset (Wisdom et al., 2020).
This dataset contains arbitrary sound mixtures and source-level refer-
ences, for use in experiments on arbitrary sound separation. It uses a
subset from FSD50K and was used during the DCASE2020 Challenge
Task 45.

Additionally, there exist other datasets that are partially built using
content from FSD:

• FSDKaggle2019 (Fonseca et al., 2019b). This dataset contains data
from FSD and from the Yahoo Flickr Creative Commons 100M dataset
(YFCC). It includes 29,266 audio files annotated with 80 labels from the
AudioSet Ontology. It has been used for the DCASE Challenge 2019
Task 26, which was run as a Kaggle competition titled Freesound Audio
Tagging 20197.

• DCASE 2019 task 4 (Turpault et al., 2019a) . The dataset is com-
posed audio clips recorded in domestic environment or synthesized to
simulate a domestic environment. It was used in the DCASE 2019 task 4
challenge8. A subset of FSD is used as foreground sound events for the
synthetic subset of the dataset.

4https://www.kaggle.com/c/freesound-audio-tagging
5http://dcase.community/challenge2020/task-sound-event-d

etection-and-separation-in-domestic-environments-results
6http://dcase.community/challenge2019/task-audio-tagging
7https://www.kaggle.com/c/freesound-audio-tagging-2019
8http://dcase.community/challenge2019/task-sound-event-d

etection-in-domestic-environments
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In the previous chapter we introduced FSD, a large-scale open audio
dataset based on Freesound content and annotated with categories drawn
from the AudioSet Ontology. The data collection process started by au-
tomatically generating labels and verifying their validity using a manual
validation tool. This approach produced a considerable number of anno-
tations, that have already proved useful in the machine-listening commu-
nity (Fonseca et al., 2018). However, generating annotations automati-
cally presents a number of shortcomings such as generating incorrect or
non specific labels and failing to generate existing ones.

In this chapter, we present novel annotation tools to solve specific
problems induced by our initial data collection and annotation processes.
In addition, these annotation tools were designed in order to benefit both:
i) the process of publishing audio content in an online platform (e.g., when
content creators upload content to Freesound), and ii) post-annotation
steps, in which users of a platform can collaboratively contribute to the
annotation of content and ground truth generation (e.g. in the Freesound
Annotator platform). Assigning labels from a large vocabulary to audio
resources is a difficult task for non-experts and creates a number of chal-
lenges. We try to mitigate these challenges by proposing interfaces that
guide users in the process. Following a user-centered design approach,
we propose general-purpose annotation tools for annotating diverse audio
content. We take advantage of the AudioSet Ontology which provides
a hierarchical taxonomy of broad acoustic categories. The main goal is
to facilitate the exploration and use of predefined categories taken from
large taxonomies.

3.1 Introduction
Recent advancements in machine learning partially come from the pop-
ularity of online sharing platforms, which made large amounts of data
available (Russakovsky et al., 2015). In these platforms, description and
tagging systems have become increasingly popular. Users can add textual
descriptions or keywords (i.e., tags) to Internet resources (e.g., web pages,
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images, music) without relying on a controlled vocabulary. This makes it
less demanding for users than, for example, classifying objects into pre-
defined categories. Although these user-generated descriptions enable the
development of valuable search tools for online-shared content (Marlow
et al., 2006), they are not always directly adequate for the effective man-
agement of multimedia content. Indeed, the interoperability of the content
descriptions is fundamental for information sharing, exchange and reuse.
It is therefore crucial to have semantic content metadata that is under-
standable and processable both by machines and humans. One of the chal-
lenges in making use of shared audio content comes from the fact that it
is provided by various sources and by authors with different backgrounds
and levels of expertise. Therefore, the content is often unstructured and
not properly annotated, which hinders its efficient retrieval. Moreover,
there is a scarcity of tools and established methods to aid users in the
task of annotating audio content through common procedures. Guiding
users intelligently throughout the annotation process would allow a reli-
able, uniform and complete description of the content, thus facilitating its
sharing.

To address this issue, taxonomies allow to organize and structure con-
cepts. In the audio-related fields they are the first step towards the classi-
fication of sounds into groups based on different subjective or contextual
properties (Schafer, 1993). Disparate taxonomies have been developed
based on subjective similarity, sound source or common environmental
context. However, since sounds are multimodal, multicultural and mul-
tifaceted, there is not a common taxonomy that allows to organize large
and diverse sound collections. Some works proposed taxonomies for en-
vironmental sounds, based on the interaction of materials (Gaver, 1993)
or according to their physical characteristics (Schafer, 1993). More recent
research on studying soundscapes shows that the taxonomical categorisa-
tion of environmental sounds is not trivial and involves many different
fields, e.g., human perception or urban design (Brown et al., 2011; Sala-
mon et al., 2014). For musical content, many music genre taxonomies
appeared from the Music Industry and its consumers. Yet no standard
taxonomy has been established since it depends highly on our cultural
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contexts. In fact, each distributor has his own strategy towards its tar-
geted market (Pachet & Cazaly, 2000).

Despite all the accomplishment in designing specific taxonomies, the
creation of larger, general-purpose taxonomies has recently gained atten-
tion among the research community (Gemmeke et al., 2017). Instead
of focusing on the recognition of a specific subset of sounds, general-
purpose taxonomies enable tasks that aim to recognise and describe a
wider (and usually more generic) range of sounds (Fonseca et al., 2018).
Methods to solve these tasks are desirable, for example, in environments
such as smart buildings or smart cities and more generally in IoT appli-
cations. Another application is the automatic description of multimedia
content in the context of large online collections like Freesound (Font
et al., 2013a) or Youtube. This can enable the enhanced organisation
and retrieval of multimedia content, thus making it more accessible to
the public. In these cases, training general-purpose systems with large-
vocabulary audio datasets seems more suitable to be able to describe a
wide variety of content types.

The recently released AudioSet Ontology proposes one of the biggest
taxonomies which structures 632 audio-related categories (Gemmeke et al.,
2017). Rather than being domain-specific, it contains the most common
concepts used for describing everyday sounds. AudioSet has a companion
website that includes a web-interface to navigate through the taxonomy
and listen to sound examples, which provides an overview of its content1).
Sounds related to a wide variety of concepts, such as nature, urban design,
music and culture. Consequently, sound-related taxonomies may evolve
and adapt, and it is important for people to understand, use and discuss
about them. For this reason, proposing tools and interfaces for browsing
taxonomies would lead to vast advancements in the many related fields.
Likewise, these tools can assist the annotation of the content in online
sharing platforms, which would facilitate its use for research or multime-
dia sharing.

The rest of the chapter is as follows. In Section 3.2, we first explain
the motivations of this work. Section 3.3 describes the annotation tools

1https://research.google.com/audioset/
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we developed. An evaluation with users is presented in the following
section and we finally conclude the chapter in the last section.

3.2 Motivations

3.2.1 Audioset
AudioSet is the largest dataset of sound events ever released, consisting
of more than 2M audio clips manually labeled using 527 classes drawn
from the AudioSet Ontology (Gemmeke et al., 2017). Contrary to many
existing datasets, it puts emphasis on general-purpose sound event recog-
nition, enabling the description using a wide variety of sound classes. The
ontology contains 632 categories organized in a hierarchy. It consists of a
hierarchical structure that has a maximum depth of 6 levels, starting with
broad and common concepts (e.g. Music and Speech), and up to much
more specific and scarce categories (e.g. Bicycle bell). This hierarchy
facilitates the exploration of the classes by introducing them in a gradual
level of specificity, which can facilitate the annotation process. The cre-
ation of the ontology started from an analysis of web text using natural
language processing techniques that led to a list of terms. These terms
were then manually organized into a hierarchy, which was then compared
to existing taxonomies, and adapted consequently. The ontology then re-
ceived further modification after using it for annotation purposes, until
it was eventually finalized and published. It contains many information
about the classes, such as name, description, and sometimes URIs from
WordNet (Miller, 1998) or Wikipedia.

Although the hierarchy provides a way to explore the ontology, the
large number of categories makes it quite difficult to visualize and remem-
ber the entire hierarchy. As an example, Figure 3.1 represents slightly
more than 10% of the entire ontology.
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Figure 3.1: Representation of a small part of the AudioSet Ontology hi-
erarchy.

3.2.2 Motivating new annotation tools
On of our goal is to provide annotations tools that can be suited for the
post-process annotation of content in a platform such as Freesound An-
notator. In this context, the annotations that were automatically generated
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presented a number of shortcomings. For instance, an automatic process
can generate incorrect or not specific labels, and it can also fail to gener-
ate some labels. We argue that the usefulness and reliability of datasets
increase with the proximity of its annotations towards what we denote as
complete or exhaustive labeling (i.e., all the acoustic material present in
the audio file is annotated).

To achieve this complete labeling status through manual annotation,
a number of actions would be required. First, assuming the existence of
automatically generated annotations, it would be needed to validate them.
Then, missing labels should be generated, and generic or unspecific la-
bels should be further refined. Additionally, the refining scenario that we
will present can also benefit users that upload content, where the iterative
specification of labels from generic ones can ease the annotation process.
The two annotation tools presented in the next section address the two
latter issues.

3.3 The annotation tools
In this section we describe the two novel interfaces that we developed.
The code is available at: https://github.com/MTG/freesou
nd-datasets/tree/annotation-tools-FRUCT2018/. Both
tools are implemented mostly with web client languages, which allows
their easy integration in other projects. The Audio Commons Manual An-
notator (AC Manual Annotator) aims at adding missing labels, whereas
the Audio Commons Refinement Annotator (AC Refinement Annotator)
allows to refine and specify existing labels. These tools can be useful
not only to annotate during a post-precessing stage, like in Freesound
Datasets, but also to provide annotations when a user publishes content in
an online platform such as Freesound. Both of the tools focus on anno-
tating a single sound resource at a time. The audio content is accessible
from a player displaying the spectrogram of the sound, which can facili-
tate the localisation and recognition of sound events in the clip (Fig. 3.2
& 3.4) (Cartwright et al., 2017).
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3.3.1 Generate annotations
With the AC Manual Annotator, labels can be assigned to an audio clip.
The main idea behind this interface is to provide a way to facilitate the
quick overview of categories. Moreover, considering the large size of
the hierarchical structure in taxonomies like AudioSet, it is important to
show the location and context of the categories within the hierarchy. An-
other design criteria was to allow the comparison of different categories
by simultaneously displaying their information. In the proposed inter-
face, a text-based search allows to locate categories in the taxonomy ta-
ble. We used text from the category names and descriptions to perform
some trigram-gbased queries (a feature that Postgres, our database back-
end, implements2). The taxonomy table allows users to open parts of the
taxonomy in order to visualise children categories simultaneously. For
each category, textual descriptions are shown, along with sound examples
when available (Fig. 3.3).

A typical use workflow would consist in:

• Listen to the sound sample (Fig. 3.2, top).

• Use the text-based search to locate categories in the taxonomy table
(Fig. 3.2).

• Explore the taxonomy table to understand well the located category,
and perhaps find other more relevant categories (Fig. 3.3).

3.3.2 Refine annotations
The AC Refinement Annotator displays some previously existing labels
as rows, as it can be seen in Fig. 3.4. The annotator can examine their
location in the AudioSet hierarchy as well as their siblings and children
categories. By making use of the hierarchy, the main goal of this tool is
to aid the annotation process by providing an iterative way of specifying

2https://www.postgresql.org/docs/9.6/static/pgtrgm.html
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Figure 3.2: Screenshot of the Audio Commons Manual Annotator

the type or nature of the content. Fig. 3.5 shows how the children cate-
gories of the proposed label “Guitar” are displayed in a dropdown, which
allows to modify the label and define it more precisely. For every label,
popups show the category description and examples when available (Fig.
3.6). Moreover, it is possible to duplicate a label using the icon at the top
right corner of a label path. This allows, for instance, to specify a label
by adding two of its children categories. In the final step of the refine-
ment process, the user is asked to verify the presenceness of the selected
category in the audio clip.

A typical use workflow would consist in:
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Figure 3.3: Screenshot of the Audio Commons Manual Annotator taxon-
omy table, showing the descriptions and examples of “Sigh” and “Groan”,
together with their hierarchy location

• Listen to the sound sample (Fig. 3.4, top).

• Inspect the proposed labels (Fig. 3.4).

• Refine the proposed labels by inspecting the related siblings and
children (Fig. 3.5 & 3.6).
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• Validate the presence of the proposed or refined category.

Figure 3.4: Screenshot of the Audio Commons Refinement Annotator
displaying a sound sample and its three suggested label paths

3.4 Evaluation
In the context of sound collections annotation, there is a need for propos-
ing new manual interfaces to properly annotate audio content, with labels
that are comparable and of the same nature. In this experiment, we present
our user-centered design process on the development of novel tools for
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Figure 3.5: Screenshot of the Audio Commons Refinement Annotator
showing a dropdown displaying the children categories of “Guitar”

Figure 3.6: Screenshot of the Audio Commons Refinement Annotator
showing the description and examples of the “Guitar” category in a popup

annotating audio content from a wide variety of types. We use the anno-
tator tools as technology probes to observe their use in a real context, to
evaluate their functionalities and to inspire new ideas (Hutchinson et al.,
2003).
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3.4.1 Methodology
We gathered eight participants with different levels of expertise. Each
one of them was provided with one of the tools and was asked to anno-
tate a list of sounds one by one. We selected sounds from the Freesound
Annotator platform featuring one or more of the following aspects: (i)
containing multiple sound sources, (ii) presenting background noise or
(iii) being hard to recognise. This process resulted in a list of 9 and 15
sounds for the generation and refinement tools respectively. Some guide-
lines were shown to the participants, together with verbal explanations
given by the examinator. At the end of the task, they were provided with
a questionnaire containing some usability and engagement questions. Fi-
nally, semi-structured interviews were carried out, including open-ended
questions as well as specific questions related to observed behaviors dur-
ing the development of the task. This enables discussion using thematic
analysis in order to identify emerging themes from participants’ answers.

3.4.2 Results and discussion
Finding a category in the taxonomy

It is essential to provide ways for efficiently browsing and exploring such
an extensive set of audio categories. Text-based search provides a way
for people to find categories with their own words. This is particularly
efficient when the annotator recognises the sources and want to quickly
add the corresponding audio category to the content. As a way to im-
prove the retrieval from the text-based search, one participant proposed
to add some of the children of the retrieved categories to the results. This
option was tested when developing the search engine, but was discarded
because it tended to add a lot of results which made the localisation of the
relevant categories harder. Moreover, we could also use external lexical
resources such as WordNet or Wikipedia to improve system’s recall, by
using synonyms terms and page content terms respectively.

However, text-based search can fail when the annotator is not familiar
with the vocabulary. She can then rely on the hierarchical structure of
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the categories. Tree visualisations are a direct representation of it, and
can help by allowing to iteratively define more precise concepts starting
from the broader upper levels of the taxonomy. As well, tables are a
natural way for browsing collections of items. The taxonomy table we
provided in the AC Manual Annotator aims at combining tree and table
structures in order to allow efficient and fast exploration of the categories.
Moreover, locating similar categories close from each other helps to refine
and validate the choice of a category (especially for categories that are
almost identical and differ only in small details).

Exploring the taxonomy

The hierarchy structuring the audio related concepts assumes that deep
located categories convey more information that the others. Therefore, it
is important to use labels as specific as possible in order to accurately de-
scribe the audio content. When using the AC Refinement Annotator, some
participants showed interest in seeing all the hierarchy at once. However,
we believe that the task is facilitated if only the relevant context for each
step of the iterative process is shown. Specifying labels in an iterative
fashion (i.e., progressively, such that their meaning is narrowed down in
every step) seems to be helpful. It can ease and speed up the generation
of accurate labels by focusing on the most relevant semantic audio as-
pects. Nonetheless, during the navigation through the different levels of
specificity in the hierarchy, a participant was sometimes not inspecting,
or hesitating to check, the children of a category. This occurred due to
several reasons: (i) since no sound examples were available in the present
category, he assumed this would also be the case in deeper hierarchy lev-
els. Hence, he decided not to explore this branch due to lack of confidence
with it; (ii) he also assumed that since the original category was not appro-
priate, none of the children would be either (where in fact, one of them
was). The AC Manual Annotator mitigates this problem and facilitates
quick inspection of the categories, since the children can be automatically
displayed when a category is selected in the taxonomy tree.
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Difficulty in recognising a sound identity

In the context of post-processing annotations of audio content, the anno-
tator is typically not the publisher of the content. Hence, the annotator
usually does not know the details of the recording conditions or what
sound sources were captured. Furthermore, listening to the sound does
not necessarily lead to the identification of the sound source(s) as it can
sometimes be a very complex task. Under these circumstances, for the
audio content that annotators were not able to recognize, the following
behaviors were observed. When using the AC Manual Annotator, the
annotators tended to choose abstract categories that do not convey the
source identity, but rather some other aspects of the sound source (e.g.,
onomatopoeic labels that phonetically imitate, resemble, or suggest the
sound it describes). In the AC Refinement Annotator tool, where par-
ticipants were guided towards the identification and specification of the
sources, they usually stopped at a certain hierarchical level, thus providing
some imprecise labels. As expected, labels gathered with the generation
tool were much more different than those gathered with the refinement
tool. One of the reason was that with the AC Manual Annotator tool,
users chose different abstract labels for describing the content, since their
exact meaning seems to vary across annotators.

To improve the consistency of the produced labels, it was discussed
to give access to the metadata that often accompany online shared media,
e.g., title, description and tags. These informations can guide annotators
on understanding the context and providing more accurate annotations.
However, some participants argued that these informations should not be
given at first. For them, access to metadata should be an additional aid that
could be requested only after having spent a certain effort on analysing the
audio content. Providing directly the metadata would correspond more to
a transcription task, where annotators could focus only on the metadata,
and forget some important sound aspects that the metadata fail to convey.
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The annotators’ commitment is highly variable

In addition to the precision of labels, the AC Refinement Annotator also
allows to explore siblings categories that can sometimes correspond to
slightly different concepts. This enables correcting the, potentially noisy,
automatically generated labels. However, this feature led to variable re-
sults in terms of labels produced and time spent annotating. Users of
the refinement annotator spent from 35 minutes to 1h20 annotating 15
sounds. Some participants put a lot of efforts exploring sibling categories
in the hierarchy, making them waste time when considering the amount
of refined labels (from 23 to 34 labels with a present validation). In con-
trast, the users of the AC Manual Annotator spent from 25 to 30 minutes
performing the task.

Finally, it was observed that some participants gave a lot of impor-
tance to category sound examples and children, rather than relying on the
name and textual description. This presents a risk since, in many occa-
sions, neither the sound examples nor the listed children can be fully rep-
resentative of a category diversity and complexity. It is therefore impor-
tant that the tools promote the utilization of all the available information
for annotators to take more solid and reliable decisions.

3.5 Conclusion
In this chapter we motivated the need for novel interfaces that facilitate the
use of categories from large-scale taxonomies when annotating audio con-
tent. We presented the context of the Freesound Datasets initiative, which
aims at creating openly available audio datasets. Two annotation inter-
faces were presented, which allow to target specific shortcomings when
automatically generating labels. A preliminary evaluation with users al-
lowed to evaluate our first versions of the tools and engage discussions.

Future work should focus on making the tasks faster, and aid the an-
notators on producing more exhaustive and consistent annotations. It will
include improvements on the design, such as making the sound player
more reachable to allow simultaneous exploration of category examples
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and comparison with the audio resource being annotated. In addition, im-
proved and more detailed task instructions should be designed, containing
specific indications to make users focus on specific sound aspects covered
by the taxonomy. These measures could help annotators to produce more
comprehensive annotations.

Finally, the use of such tools by users when they upload content in to
platforms such as Freesound has not been investigated. Even though the
annotation processes proposed in this chapter seem more demanding than
allowing users to use free form tags or textual descriptions, it seems that
it could provide a more uniform way to annotate the content. Existing
labels that were asked to be refined by the participants of the experiments
were actually labels that were generated based on the tags already associ-
ated with the content. This refinement strategy could be proposed to the
users of the platform, after having proposed some tags, which could pro-
duce more precise labels. This would benefit both users of the platform
that would benefit from a more complete annotation of the content and
the models that can be trained using predefined labels from an existing
taxonomy.
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Given the enormous amount of multimedia data available nowadays,
retrieving and exploring content becomes difficult. Clustering is a possi-
ble solution for enabling data exploration. It can provide ways to find sim-
ilarities within the data or discover underlying structures. Having cluster-
ing methods that can produce good performance for the diversity of con-
tent present in large sound databases is very challenging and relies sub-
stantially on the audio features used to represent the data. Recently, new
kinds of audio representation have appeared through training deep neu-
ral networks with large amounts of data, resulting in better performance
for the supervised classification of sounds. However, it is still unclear if
these deep audio features can provide benefits within the unsupervised
scenario, such as in sound clustering. In this chapter, we are interested in
identifying which type of audio features is the most suited for clustering
sounds present in large and diverse online sound collections. To this end,
we compare the performance of five sets of audio features, using two dif-
ferent clustering algorithms. The evaluation is done using a collection of
datasets, an outcome of previous chapters.

4.1 Introduction
The massive amount of content shared in online platforms challenges its
successful exploration. Content-based methods, which rely on the con-
tent itself, are of great potential specially when accompanying metadata
is incomplete or unstructured. Clustering is a fundamental technique of
data mining that allows partitioning collections into groups. Clustering
methods aim at unveiling hidden patterns by discovering natural groups
in the data. It is often framed as an unsupervised classification problem,
where no label associated to the content is known. Therefore it is consid-
ered one of the fundamental approaches in fields like bioinformatics or
multimedia processing (Saxena et al., 2017). It differs from supervised
classification which seeks to label objects with predefined classes.

In this chapter, we investigate the benefit of recent deep learning fea-
tures for the unsupervised classification of sounds, specifically in the con-
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text of real-world collaborative collections. We assess if supervised ap-
proaches relying on large annotated datasets are able to learn valuable
re-usable audio features. Since annotated datasets are difficult and expen-
sive to acquire, self-supervised approaches arise as an alternative with the
potential to produce competitive features. Given the increasing amount
of data generated and shared online, self-supervised approaches can take
advantage of larger amounts of data compared to supervised approaches,
which require manual curation. The next section provides an overview of
related work. We present our experiment in Section 4.3 and the results in
Section 4.4, followed by a conclusion section.

4.2 Related work

4.2.1 Audio features
Clustering can be understood as an unsupervised classification method.
The first requirement for many supervised or unsupervised classification
methods is to have a reliable feature representation, suitable for the partic-
ular data and application. For unsupervised methods, a similarity measure
is often used. Generally, it is obtained by applying a distance metric on
some numerical features. Numerous features have been developed, often
tailored to suit specific applications and type of sounds.

The feature extraction step has often relied on feature engineering:
the process of carefully designing features from low-level descriptors, re-
lying on domain knowledge about the invariance of classes of sounds.
Some are derived directly from the time domain audio representation.
For instance, the zero-crossing rate allows the differentiation of periodic
sounds, including musical instrument notes and noisy sounds like ocean
waves (Peeters et al., 2011). Other features are derived from spectral
representations of the sounds and are mostly motivated by the fact that
human perception widely relies on the frequency content of sound sig-
nals. A great example showing the potential of feature engineering is
the mel-frequency cepstral coefficients (MFCCs) feature, which were in-
spired by the human voice production mechanism and its auditory per-
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ception. These coefficients allow a compact representation of the spec-
tral envelope, that can efficiently represent a component of instruments’
timbres (Herrera-Boyer et al., 2003), or more high-level features such as
music mood (Kim et al., 2010). However, this type of spectral features do
not convey temporal dynamics of the sound (Herrera-Boyer et al., 2003),
which can be done by complementing them with temporal features in or-
der to provide good performances for tasks such as instrument classifica-
tion (Eronen & Klapuri, 2000). For music content, aspects related to the
instrumentation, rhythmic structure and harmonic content can character-
ize specific music genres (Tzanetakis & Cook, 2002). Harmony can be
represented using chroma features, which is robust to variation in timbre
and thus allow to capture harmonic progressions independently from the
instruments used (Muller & Ewert, 2010).

These sets of features allow representing audio in a high-dimensional
space. However, having a large set of features increases the time and
memory requirements of the learning algorithms and also degenerates the
performances due to the curse of dimensionality and the existence of irrel-
evant, redundant and noisy dimensions. In order to mitigate this problem,
feature selection is used for reducing the dimensionality by selecting a
subset of the most relevant features. Feature selection has been shown to
be an effective and efficient way to handle high-dimensional data (John
et al., 1994). Moreover, it can improve performance, lower computational
cost and improve model interpretability (Alelyani et al., 2013).

The temporal aspect of sounds is not often reflected in the audio fea-
tures which are computed on relatively short frames of the audio signal.
Representing audio clips often requires another abstraction, which gen-
erally consists in an aggregation step where the frame-based features are
combined to produce a fixed-length numerical feature vector. Simple sta-
tistical representations which loose temporal relations and mix different
components in a single representation are commonly used. Alternatives
rely on using more advanced statistical models. Gaussian Mixture Mod-
els are able to have a better probabilistic representation (Li et al., 2003;
Jensen et al., 2007), while extensions using Hidden Markov Model can
capture temporal attributes (Herrera-Boyer et al., 2003). However in the
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case of clustering where a distance measure has to be defined for com-
paring numerical audio representation vectors, using these probabilistic
models is not always convenient, since defining efficient distance mea-
sures between probability densities is not straightforward and can be com-
putationally expensive (Jensen et al., 2007).

Recently, techniques using Artificial Neural Networks have been able
to provide an alternative to the handcrafted features previously developed.
Tasks, such as auto-tagging or classification can be performed directly
from the raw audio (Pons et al., 2017a), or using a spectrogram represen-
tation (Hershey et al., 2017). Furthermore, the internal representation that
the neural network learns on one task, can be used for other applications,
which is known as transfer learning (Choi et al., 2017). These types of
approaches make use of pre-trained models as a starting point for differ-
ent tasks. First layers from trained neural networks often learn similar
features which can be applicable for many datasets and tasks (Yosinski
et al., 2014). Intermediate layers can serve as a higher-level representa-
tions which can be used for instance in clustering (Jansen et al., 2017).

4.2.2 Clustering
Clustering is a type of unsupervised classification which consists in organ-
ising similar objects in groups called clusters. The clustering problem has
been extensively addressed in the research community but is still a core
challenge in the Information Retrieval field (Jain et al., 1999; Xu & Wun-
sch, 2005; Saxena et al., 2017). It is considered as an appealing approach
for exploratory data analysis, as it can discover natural groupings or sets
of patterns in data collections (Jain, 2010). Clustering approaches are
based on optimising a metric derived from its objective definition: objects
within a valid cluster should be more similar to each other than they are
to an object belonging to a different cluster. The different approaches can
be mainly divided into partitional clustering (such as K-means) and hier-
archical clustering (such as agglomerative clustering) (Jain et al., 1999).
In all the possible approaches, the content similarity measure involved is
fundamental to the definition of a cluster.
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When clustering sound collections, the features and distance measures
are often chosen carefully for a given specific type of sounds, e.g. speech
(Black & Taylor, 1997), musical instrument (Martins et al., 2007) and
sound event recognition (Niessen et al., 2013)). This makes clustering
sounds from online collections difficult, since the adopted features should
be appropriate for the distinct types of content present in the collections.
Moreover, the user-generated nature of online sound collections makes
the content inconsistently distributed in terms of type and nature. As an
example, in a collaborative audio database such as Freesound, we can
find many instances of guitar sounds, while sitar sounds are rare. This
can produce uneven densities in the feature space, which makes cluster-
ing approaches based on distance measures not always reliable (Roma
et al., 2012). In addition, clustering algorithms are often fine-tuned by ex-
perts and researchers in order to provide good results on specific datasets,
which cannot be achieved by users of online sound collections in the con-
text of Search Result Clustering for instance. Furthermore, a large number
of clustering algorithms are impractical due to their computational cost,
specially when the clustering needs to be performed quickly to provide a
good user experience.

Graph-based algorithms such as the ones relying on neighborhood
graphs are a common method for dealing with large datasets (Fortunato,
2010; Liu et al., 2007). In particular, K-Nearest Neighbor Graphs can
adapt to areas of different densities, since no fixed distance is assumed (Roma
et al., 2012), which is suitable when dealing with unbalanced online col-
lections. This type of graph can also help with the curse of dimensionality
associated with the size of the feature space, as content features are not
directly used in the clustering step (Marimont & Shapiro, 1979). In the
case of images, large scale nearest neighbor searches enable scalability
of such graph-based clustering methods (Liu et al., 2007). Graph par-
titioning, also referring to community detection, consists in dividing a
graph into disjoint sets of nodes (Schaeffer, 2007). Among the different
methods for automatically partitioning graphs (Fortunato, 2010), some
approaches make use of a particular measure of the quality of a partition
which is called modularity (Newman & Girvan, 2004). This measure is
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proportional to the number of edges within clusters minus the expected
number in an equivalent network with edges placed randomly. Although
optimising this measure for finding a partition of the graph is a compu-
tationally hard task, some heuristic methods such as the Louvain method
can provide decent performances in terms of quality and computational
efficiency (Blondel et al., 2008). This makes these methods suitable for
fast clustering purposes.

4.2.3 Clustering validation
In supervised classification, the evaluation of the resulting classification
model is usually a straightforward process, and there are well-accepted
evaluation measures and procedures, e.g., accuracy and cross-validation,
respectively. However, clustering evaluation is not a well-developed or
commonly used part of cluster analysis. Nonetheless, cluster evaluation
is important and there exist different types of approaches which involve
assessing the appropriateness of a partition after clustering, which is of-
ten called cluster validation (Arbelaitz et al., 2013; Liu et al., 2010).
Clustering validation can be performed using internal or external crite-
ria. On one hand, internal validation measures only rely on information
from the data itself. They can be used to choose the best clustering al-
gorithm as well as the optimal cluster number in an automatic way, with-
out the use of any additional information (Halkidi & Vazirgiannis, 2001).
These measures often rely on a mathematical formulation of the clus-
tering objective related to what is referred as compactness or coherence
(minimum intra-cluster variance) and separation or distinctiveness (inter-
cluster density) (Liu et al., 2010). However, these evaluation methods
rely on the same input features feeded to the clustering algorithms, and
therefore do not allow comparing the performance of different audio rep-
resentations. These measures are suitable for evaluating the clustering
methods, once we already have a set of pre-defined features. On the other
hand, when we have external information about the data, it is typically in
the form of externally derived class labels for the data objects. In such
cases, the usual procedure is to measure the degree of correspondence
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between the cluster labels and the class labels. There exist some metrics
that are based on classification performance measures such as Purity or F-
measure(Manning et al., 2008). Other measures are based on the premise
that any two objects that are in the same cluster should belong to the
same class and two objects that are in two different cluster should belong
to distinct classes. This type of measures, that can be referred as similar-
ity measures between partitions, are the most widely used in the recent
literature. They include Adjusted Rand Index (ARI) (Hubert & Arabie,
1985) and Adjusted Mutual Information (AMI) (Vinh et al., 2010). The
literature suggests that AMI score is suited when the reference clustering
(ground truth) is unbalanced and there exist small clusters. This corre-
sponds often to what we have in collaborative audio collections where
the content inconsistently distributed in terms of type and nature. On the
contrary, when clusters are more balanced, ARI may be more appropri-
ate (Romano et al., 2016).

Alternatively, evaluation methods based on human judgements may be
carried out. These methods are appropriate for clustering tasks in which
there is no objective solution, but they are more expensive and require
careful design of user experiments. We carry out user-based evaluations
of clustering algorithms in a real-world context in Chapter 7. In this sec-
tion, we mainly focus on automatic evaluation, relying on external valida-
tion metrics by leveraging annotated data with content and tools presented
in Chapter 2 and 3. As a complement, we perform a preliminary qualita-
tive evaluation based on my personal judgment.

4.3 Experiment

4.3.1 Clustering methods
We propose to compare clustering performances using two different meth-
ods: K-means and a graph-based approach. In the graph-based approach,
instead of directly using the features as input of a clustering method, we
construct an intermediate representation of the data using a K-Nearest
Neighbor Graph (KNN-Graph) (Dong et al., 2011). Each vertex repre-

56



Chapter 4. Audio Feature Performance Comparison for Unsupervised
Sound Classification

sents a sound, and undirected edges connect each sound to its k most
similar according to the euclidean distance in the feature space. Some
preliminary empirical tests made us choose blog2(N)c for the value of k,
where N is the number of elements to cluster. This allows us to reach a
sufficient number of neighbors for small collections, while limiting it for
larger collections, which ensures low-computational complexity. Then,
we use a community detection algorithm based on modularity optimisa-
tion for finding a partition of the graph (Blondel et al., 2008). For the
K-means algorithm, in our experiments, we always set the number of
clusters as equal to the number of classes in the dataset.

There are several reasons why we are interested in the graph-based ap-
proach. First, the number of clusters to obtain does not need to be spec-
ified unlike for the K-means algorithm. Then, it has been shown to be
able to find clusters of different densities (Roma et al., 2012). Also, it can
take advantage of nearest neighbors search techniques that can be fast to
compute (e.g. (Cayton, 2008) or similar approximate methods (Aumüller
et al., 2019)). Another advantage of these graph-based methods is their
simplicity, which allows to use some interpretable heuristics for modify-
ing the graph, its partition, or discarding clusters of low quality. The idea
of discarding low quality clusters will be investigated in Chapter 7.

4.3.2 Audio features
In this work, we compare the performance of two clustering methods us-
ing five different sets of features. One set uses MFCC features, and the
rest consist of pretrained deep learning embeddings taken from the liter-
ature. AudioSet embeddings use a spectrogram-based CNN architecture
trained on a classification task on a large dataset containing millions of
items and hundreds of semantic classes (Hershey et al., 2017; Gemmeke
et al., 2017). OpenL3 also uses a spectrogram-based CNN architecture
but is trained through self-supervised learning of audio-visual correspon-
dence in videos (Cramer et al., 2019). Two models are available, OpenL3
music and OpenL3 env, which have been trained respectively with music
and environmental content. SoundNet uses 1D convolutions directly on
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the waveform, and was trained by transferring discriminative knowledge
from a pretrained visual recognition network (Aytar et al., 2016). All
these features are computed at a frame-based level and are then aggre-
gated with arithmetic mean in order to obtain a fixed-sized feature vector
for each clip.

4.3.3 Datasets
Since our main goal is to provide a comparison of clustering performances
using different feature sets on diverse types of audio content, we leverage
Freesound content for building multiple datasets that can represent the di-
versity in online sound collections. We make use of data gathered within
Freesound Annotator to construct 44 datasets organized in 6 families com-
prising a total around 30k sounds. All sounds have a duration inferior to
10 seconds and most of them contain only one salient source, which, to
some extent, mitigates the inconvenient of using a statistical aggregation
over the frame-based features. Each faimily regroups datasets of similar
theme as seen in Table 4.1. The classes are drawn from the AudioSet
Ontology, a hierarchical taxonomy of sound-related concepts (Gemmeke
et al., 2017). In our experiment, a dataset consists of one node in the
taxonomy, and its labels are its direct children. This creates datasets that
have different levels of specificity. For instance, inside the Nature family,
one very broad dataset is the Nature dataset itself whereas Wind corre-
spond to a more specific one. In total, our datasets present 215 different
labels. Their distributions are kept unbalanced, in order to represent the
non uniform distribution of content types present in online sound collec-
tions.

4.4 Results

4.4.1 Automatic evaluation
For evaluating the different set of features with the two clustering meth-
ods, we perform clustering on all the datasets and compute the validation
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Dataset Families Name of the datasets

Sound of Things
Bell, Alarm, Domestic, Door, Explosion, Engine,
Glass, Tools, Mechanisms

Natural Water, Natural, Liquid, Wind

Vehicle
Vehicle, Aircraft, Non-motorized land vehicle,
Car, motor vehicle (road), Rail transport

Instruments
Plucked string, Bowed string, Mallet, Instruments,
Wind, Percussion, Keyboard, Guitar, Musical
concepts, Brass

Animals
Livestock, Domestic animals, Cat, Dog, Wild
animals, Cattle & bovinae

Human
Respiratory, Human voice, Singing, Human, Speech,
Human group actions, Digestive, Hands,
Human locomotion

Table 4.1: Dataset families content.

score. We measure the similarity between the real partition (given by the
ground truth labels) and the one given by the clustering methods by com-
puting the Mutual Information score adjusted for chance (AMI) (Vinh
et al., 2010). Table 7.3 displays the mean average scores for the differ-
ent dataset families, audio features and methods. Figure 4.4.1 represent
box-plots of the AMI score on the different dataset families and on all the
datasets. Random partitions have an AMI close to 0 and perfect labelings
have a score of 1. This allows us to compare the performance of the dif-
ferent features on different types of audio samples and at different levels
of specificity. A discussion about these results is given in Sec. 4.4.3 The
code for replicating the clustering is available at: https://github.c
om/xavierfav/feature-comparison-clustering
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Natural Sounds

61



Chapter 4. Audio Feature Performance Comparison for Unsupervised
Sound Classification

Vehicles

Instruments

62



Chapter 4. Audio Feature Performance Comparison for Unsupervised
Sound Classification

Animals

Human Sounds

63



Chapter 4. Audio Feature Performance Comparison for Unsupervised
Sound Classification

All

Figure 4.1: Box-plots of the Adjuster Mutual Information scores re-
grouped by dataset family and for all the datasets.

4.4.2 Qualitative evaluation
In order to complement the automatic evaluation, we performed some
qualitative evaluation of the performance of the different features with
the graph-based clustering method (KNN) only. The reasons why we
do not perform such analysis with the K-means algorithm are because
of time constrains and based on the intuition that the KNN approach is
more efficient and computationally efficient. We qualitatively evaluate
our approach by manually inspecting the clustering results performed on
the different datasets. For this purpose, we use an interface that displays
nodes and edges in a two-dimensional space using a force-directed al-
gorithm for computing the layout1 (Eades, 1984; Eades & Klein, 2018),

1Also called as Spring layout. Nodes are modeled as physical objects that mutually
exert forces on each other. We use the d3 javascript library’s implementation: https:
//github.com/d3/d3-force.
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Figure 4.2: Visualisation of the clustered graph for the "Brass instrument"
dataset using the AudioSet features. The graphs for different datasets and
features can be explored from a browser at this url: https://xavier
fav.github.io/feature-comparison-clustering/web-
visu/

and allows to listen to the sounds (Figure 4.2). The clustered graphs for
the different datasets are made available from the browser at this address:
https://xavierfav.github.io/feature-comparison-c
lustering/web-visu/. In this page, buttons at the top allow you to
choose the dataset and the feature set used for the graph creation and its
partition. When hovering the nodes with the mouse, sounds are played,
and the name of the audio clip and its tags is displayed. The colors corre-
spond to the assigned clusters. You can zoom in and out using the mouse
wheel, and move in the space by dragging.

In order to get some insights about how the different feature sets
perform in combination with the clustering algorithms, we explored the
graphs created for different datasets by visualizing them and listening to
the sounds. Qualitative observations for three datasets (Guitar, Wind in-
struments , Natural sounds and Domestic sounds, home sounds) are listed
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bellow:

1. Guitar corresponds to a dataset containing sounds that are rela-
tively specific and not very varied.

(a) MFCC
• A lot of clusters appear very separated.
• Very similar sounds are often clustered together, e.g. string
harmonics, metal distorted power chords, strums. Many of
these clusters consist of sounds of a single instrument recorded
several times.
• The system seems able to cluster sounds that have different
spectral balances, e.g. bass guitar sounds are well separated
from acoustic guitars.
• However we can often see very different content mixed in a
cluster.

(b) AudioSet
• A lot of clusters look much more closer to each other.
• The content of the clusters seems a bit more diverse and
include sounds from different instruments and users. The re-
sults are quite coherent, e.g. distorted sounds, acoustic gui-
tars, clean electric guitars appear in distinct clusters.

(c) OpenL3 env
• The clusters appear much more separated. Similarly to the
MFCC features, very similar sounds are clustered together.
• However, the system is able to cluster most of the bass
guitar sounds together, even if they don’t come from the same
user and instrument.
• Clusters appear a bit more fuzzy and overlapped in the mid-
dle of the graph.

(d) OpenL3 music
• Similarly to the OpenL3 env features, we get many clusters
that are quite separated from the others and that correspond to
very similar sounds often produced by one user.
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(e) SoundNet
• Very similar sounds are clustered together.
• However, several types of sounds get mixed together in
large clusters, e.g. bass, guitar strums, single note, slides, ...

2. Wind instruments corresponds also to a dataset containing sounds
that are relatively specific with a low range of different types.

(a) MFCC
• Very similar sounds are clustered together but mixed with
different instruments, e.g. flute with oboe.
• Different flutes are not in the same cluster.

(b) AudioSet
• Again, many clusters appear closer to each other.
• Clarinet sounds are mixed with saxophone sounds.
• A bit fuzzy in the middle with many things mixed together,
presence of a considerable amount of weird timbre, e.g. clar-
inet sounding like high pitch oboe note.
• Single notes are clustered together, full scales are also to-
gether.

(c) OpenL3 env
• Again clusters appear quite separated.
• Specific playing techniques appear in different clusters, e.g.
staccato, legato, single notes, scales.

(d) OpenL3 music
• Clusters appear even more separated.
• Again it separates specific playing techniques.

(e) SoundNet
• Clusters are close to each other and do not appear very
separated.
• They actually contain very different content.
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3. Natural sounds consists in a dataset that contains a broader range
of types of sounds.

(a) MFCC
• Sounds with similar timbre or color are sometimes in a same
clusters.
• However, semantically different sounds are often mixed in
the same cluster.
• Clusters appear to be quite separated in the graph.

(b) AudioSet
• Clusters look a bit more separated.
• More semantically coherent.
• The system is able to also cluster sounds according to some
perceptual characteristics, e.g. strong and light water flows or
stream.
• Sometimes the system clusters together semantically dif-
ferent sounds but that convey similar perceptual features, e.g.
fire crackles and water splash.

(c) OpenL3 env & music
• Clusters look much closer to each other, which was not the
case for musical sounds from previous datasets.
• As a result, some clusters contains different types of sound.

(d) SoundNet
• Clusters look relatively close to each other.
• Clusters are mixed with semantically different sounds and
do not seems to regroup sounds with similar perceptual fea-
tures.

4. Domestic sounds, home sounds consists in a dataset that contains
a broad range of types of sounds.

(a) MFCC
• Sounds with similar timbre or color are sometimes in a same
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clusters. For instance rustling sounds such as coin dropping,
teaspoon clinks, keys jangling, scissors or knife sharping are
grouped in one cluster.
• Relatively short sounds are often separated from sustained
or repetitive ones.
• Clusters contain semantically different types of sound.

(b) AudioSet
• The partition is sometimes more consistent semantically,
e.g. one cluster contains a lot of water sounds.
• A lot of clusters seem to overlap between each others.

(c) OpenL3 env & music
• There still exist some overlap between clusters but they look
more separated.

(d) SoundNet
• The structure of the graph does not seem to correspond to
any perceptual or semantic clue.

4.4.3 Discussion
Performance

Overall, we observe that the AudioSet features produce the best mean av-
erage AMI. MFCC and OpenL3 features can in some cases provide the
best performance, whereas SoundNet leads to bad performance with re-
sults close to random partitions. AudioSet provides clear benefits in the
Human Sounds, Vehicles and Sound of Things families compared to the
other features. The corresponding datasets can include a wide range of
complex sounds where the distinction between some classes can be hard
to achieve even for human listeners. Recognizing cars among truck or bus
sounds can be sometimes difficult. Within the Sound of Things family, a
wide class variability can make the approach to produce clusters different
from the ground truth labels. For instance, the Tools dataset can include
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Guitar

70



Chapter 4. Audio Feature Performance Comparison for Unsupervised
Sound Classification

Wind instrument, woodwind instrument
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Glass
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Human Sounds

Figure 4.3: First two components of the PCA decomposition of the au-
dioset embeddings for the different datasets. The first two plots’ colors
represent clusters obtained with the KNN and the K-means approaches
respectively, the last one displays the ground truth labels.
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electric or mechanical sawing machines, hammers can be used to blow
metallic or wooden object that would produce very particular sounds. In
these scenarios, AudioSet features that were learned on a supervised clas-
sification task seem more suited in order to provide semantically coherent
clusters. These features are trained on a supervised classification task on
a large dataset labeled with hundreds of semantic categories. They enable
to obtain clusters for complex sounds that seem to be hard to obtain when
using MFCC features or embedding trained in a self-supervised manner.
However, it is worth mentioning that AudioSet features were learned on
a classification task using a dataset which uses labels that also exist in
the evaluation datasets we use here, but with different sounds. Therefore,
they are logically well suited for producing clusters that are similar to the
ground truth labels in our datasets.

OpenL3 music features show better performance for the Instruments
datasets family, which suggests that training a model within the specific
context of sounds (in this case musical instruments) can lead to better
performances on related data. Similarly, when using the OpenL3 features
trained on the environmental dataset (OpenL3 env), we observe better
clustering performance on the Natural datasets family. This suggests that
having specific models adapted for different contexts can lead to better
performance compared to using only one general model. Training an em-
bedding model with content from a specific range of sounds can allow to
get more specialized models. However, for all the other families, we don’t
observe major differences in performances for the two OpenL3 models.

As a complement to the external evaluation, a qualitative evaluation
based on my personal judgment is provided. In some cases, MFCC fea-
tures are able to produce sometimes coherent clusters according to some
perceptual low-level features related to timbre and color of the sounds.
Moreover, this can sometimes provide good performance in term of se-
mantic coherence. This is the case for instance when the dataset contain
classes that have very distinct low-level characteristics, such as string har-
monics, distorted power chords and strums within some guitar sounds.
However, it can in other cases produce cluster that do not keep seman-
tic coherence for instance for the Domestic sounds, home sounds dataset.
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On the contrary, it seems that deep learning features are able to produce
much more coherent clusters for a larger number of datasets. The auto-
matic evaluation, to some extent, corresponds to the qualitative observa-
tions. For instance in the case of natural sounds, MFCC features seem to
produce better results than in the case of domestic sounds, home sounds,
where many different types of sounds are mixed in one cluster. Finally,
MFCC features seem adequate for Animal sounds, for which such a spec-
tral representation seems sufficient for describing animal vocalizations.

Similarity notion

When using MFCC features, the system seems to be able to group to-
gether very similar sounds, such as some produced by one single instru-
ment recorded in similar conditions. This happens particularly a lot with
instrument sounds, where users from Freesound upload various record-
ings of a single instrument in a specific recording condition, often orga-
nized in packs 2. This creates very coherent clusters that are too spe-
cific and fail to cover a wider range of samples from a same or simi-
lar instruments. This effect of having clusters that contain very particu-
lar instances of a class seems mitigated when using the AudioSet or the
OpenL3 features. These features often produce larger or less separated
clusters and can cover a wider range of variability within a class. For
instrument sounds, our qualitative inspection of the clusters suggests that
the AudioSet features are the ones that produce better clusters in terms
of covering a semantic class variability. The fact that AudioSet consist
of embeddings training on a supervised classification task in order to rec-
ognize sound events such as instrument notes seem to make them more
appropriate for providing a wider notion of similarity that seem to be more
appropriate for providing informative clusters for exploring sounds.

2A lot of the largest packs consist of musical instrument samples https://free
sound.org/browse/packs/?order=-num_sounds

76



Chapter 4. Audio Feature Performance Comparison for Unsupervised
Sound Classification

Graph structure

Interestingly, it happens that when using the MFCC or the SoundNet fea-
tures, we obtain graphs that have a visual structure with very separated
clusters. However, when inspecting the sounds, these clusters often mix
different types of content. On the contrary, when using the AudioSet fea-
tures, when clusters look visually separated, it often seems that the clus-
ters are more coherent. And, when some clusters look fuzzy and seem to
visually overlap, they are often not so coherent and they contain a wider
range of sounds. This means that when partitioning the graph built using
the MFCC or the SoundNet features, the algorithm was able to optimize
the clustering objective (modularity) well, meaning that the partition ob-
tained according to the considered features seems of good quality. How-
ever, the clustering performance is not as good according to the external
and qualitative evaluations. The visually well-defined clusters are often
not coherent and contain very dissimilar sounds. This suggests that the
MFCC and SoundNet features contain noise that hinders the performance
of the clustering system. However, the graph structure seems to corre-
spond to the quality of the clustering when using the AudioSet features.
This can be promising for instance for automatically assessing its quality
from the modularity or the graph structure.

Clustering method

According to the quantitative evaluation, the K-means algorithm is pro-
ducing slightly better results than the KNN approach. However, from Fig-
ure 4.1, the performance score is less consistent and tends to vary more
across the different datasets. Moreover, the K-means algorithm needs to
be specified with the number of clusters in advance, which was automat-
ically set to the number of classes in each datasets for this experiments.
When we look at the visualisation Figure 4.3, we observe that the KNN-
based approach tend to produce more clusters than the existing classes in
the dataset. And when listening to the sounds from different clusters in the
graph, we sometimes find clusters that are more precise than the ground
truth labels. Additionally, K-means seem to fail to discover classes that
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appear to be overlapping when looking at the first two PCA components.
This is clear for instance in the Wind instrument, woodwind instrument
and the Guitar datasets, where the different instruments are overlapping
in the 2D space. As a reminder, K-means is computed directly on the
feature sets, and not after the PCA transformation. On the contrary, the
KNN-based approach seem to be able to discover clusters that appear as
overlapped in the PCA visualisations.

4.5 Conclusion
With the advancement of machine learning, novel features appeared that
improve the performance of supervised classification methods. In this
work we evaluated some of these novel features in a clustering scenario
using many datasets which reflect a large variety of types of sounds present
in online collections.

We demonstrate that novel deep learning features can be used for clus-
tering diverse sound collections and achieve competitive or superior per-
formance compared to more traditional features such as MFCC. More-
over, this study suggests that spectrogram-based convolutional architec-
tures trained on a supervised task using a large taxonomy of semantic con-
cepts can provide features with better performance for clustering complex
sounds. Intermediate layers of the networks convey high-level semantics
which makes them suitable for obtaining a similarity metric adapted for
a large variety of sounds. Additionally, training features in a specific do-
main can also provide better performance within this restricted domain.
Finally, an advantage of deep learning features seems to be that they can
compute accurate features on larger audio frames As an example, Au-
dioSet embeddings consist of a 128-sized feature vector calculated over a
window of 1 second, whereas MFCC features are typically computed on
tens or hundreds millisecond frames.

Learning features with large annotated dataset seems provide audio
representations that can produce better clustering. However, building
these datasets is difficult and requires a considerable amount of effort.
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In order to leverage larger amount of data, unsupervised approaches seem
promising, but do not yet reach the same performance.

Handcrafted features such as MFCCs are in some case able to produce
good clustering, but they sometimes fail to be able to capture semantic
properties conveyed by audio signals.

The graph-based clustering methods has several advantages over the
traditional K-means algorithm. First, it does not require to specify the
number of clusters in advance. Moreover, unlike K-means, it is able to
discover clusters that are more consistent with the ground truth labels.
In particular, it is able to identify clusters that are not linearly separable
according to the two dimensions with maximum variability. Approaches
based on distances to centroids attribute a higher importance to dimen-
sions with high variability, which may not correlate with the separation
between categories.
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Audio representation learning based on deep neural networks (DNNs)
emerged as an alternative approach to handcrafted features. In the last
chapter we saw that DNNs can produce features that provide good perfor-
mance for the unsupervised classification of sounds. However, for achiev-
ing such performance, these DNNs need to be trained with a large amount
of annotated data which can be difficult and costly to obtain. In this chap-
ter, we introduce COALA, which stands for Co-Aligned Autoencoders
for Learning Semantically Enriched Audio Representations. This method
learns audio representations, by aligning the learned latent representations
of audio and associated tags taken from an online sound sharing platform.
The alignment is done by maximizing the agreement of the latent repre-
sentations of audio and tags, using a contrastive loss function. The result
is an audio embedding model which reflects acoustic and semantic char-
acteristics of sounds. We evaluate the quality of our embedding model,
measuring its performance as a feature extractor on three different tasks
(namely, sound event recognition, music genre classification and musi-
cal instrument classification), and investigate what type of characteristics
the model captures. Our results are promising, sometimes in par with
the state-of-the-art in the considered tasks. Furthermore, the embeddings
produced with our method are well correlated with some acoustic descrip-
tors.

5.1 Introduction
Traditional audio-based machine learning models were trained using sets
of handcrafted features. Recent approaches based on deep learning (DL)
are able to learn such features directly from the data. Achieving high per-
formance with DL-based methods and models, often requires sufficient
labeled data which can be difficult and costly to obtain, especially for au-
dio signals (Favory et al., 2018). As a way to lift the restrictions imposed
by the limited amount of audio data, different published works employ
transfer learning on tasks were only small datasets are available (Yosinski
et al., 2014; Choi et al., 2017). Usually in such a scenario, an embedding
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model is first optimized on a supervised task for which a large amount of
data is available. Then, this embedding model is used as a pre-trained fea-
ture extractor, to extract input features that are used to optimize another
model on a different task, where a limited amount of data is available (Van
Den Oord et al., 2014; Choi et al., 2017; Pons & Serra, 2019a; Alonso-
Jiménez et al., 2020).

Recent approaches adopt self-supervised learning, aiming to learn au-
dio representations on a large set of unlabeled multimedia data, e.g. by
exploiting audio and visual correspondences (Aytar et al., 2016; Arand-
jelovic & Zisserman, 2017). Such approaches have the advantage of not
requiring manual labelling of data, and have been successful for learn-
ing audio features that can be used in training easy-to-use, but competi-
tive classifiers (Cramer et al., 2019). Other approaches focus on learning
audio representations by employing a distance metric learning strategy
and weakly annotated data. For example, by utilizing the triplet-loss to
maximize the agreement between different songs of a same artist (Park
et al., 2017) or by using or another contrastive loss for maximizing the
similarity of different transformations of the same example (Chen et al.,
2020). Other approaches leverage images and their associated tags to
learn content-based representations by aligning autoencoders (Schonfeld
et al., 2019).

In our work we are interested in learning audio representations that
can be used for developing general machine listening systems suited for a
wide range of types of sounds, instead of focusing on one sort of sounds
in particular. We take advantage of the massive amount of online au-
dio recordings and their accompanying tag metadata, and learn acousti-
cally and semantically meaningful features. To do so, we propose a new
approach inspired from the image and the natural language processing
fields (Schonfeld et al., 2019; Silberer & Lapata, 2014), but we relax the
alignment objective by employing a contrastive loss (Chen et al., 2020).
This allows a co-regularization of the latent representations of two au-
toencoders, each one learned on a different modality. The contributions
of our work are:

• We adapt a recently introduced constrastive learning framework (Chen
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et al., 2020), and we apply it for audio representation learning in
an heterogeneous setting (the embedding models process different
modalities).
• We propose a learning algorithm, combining a contrastive loss and

an autoencoder architecture, for obtaining aligned audio and tag
latent representations that reflect both semantic and acoustic char-
acteristics.
• We provide a thorough investigation of the performance of the ap-

proach, by employing three different classification tasks.
• Finally we conduct a correlation analysis of our embeddings with

acoustic features in order to get more understanding of what char-
acteristics they capture.

The rest of the chapter is organized as follows. In Section 5.2 we
present our proposed method. Section 5.3 describes the utilized dataset,
the tasks and metrics that we employed for the assessment of the per-
formance, the baselines that we compare our method with, and the cor-
relation analysis with acoustic features that we conducted. The results
of these evaluation processes are presented and discussed in Section 5.4.
Finally, Section 5.5 concludes the chapter and proposes future research
directions.

5.2 Co-aligned autoencoders
Our method employs two different autoencoders (AEs) and a dataset of
multi-labeled annotated (i.e. multiple labels/tags per example) time-fre-
quency (TF) representations of audio signals, G = {(Xq

a ,y
q
t )}Qq=1, where

Xq
a ∈ RN×F is the TF representation of audio, consisting of N feature

vectors with F log mel-band energies, yqt ∈ {0, 1}C is the multi-hot
encoding of tags for Xq

a , out of a total of C different tags, and Q is
the amount of paired examples in our dataset. These tags characterize
the content of each corresponding audio signal (e.g. “kick”, “techno”,
“hard”).

The audio TF representation and the associated, multi-hot encoded
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Figure 5.1: Illustration of our proposed method. Za and zt are aligned
through maximizing their agreement and, at the same time, are used for
reconstructing back the original inputs.

tags of the audio signal, are used as inputs to the two different AEs, one
targeting to learn low-level acoustic features for audio and the other learn-
ing semantic features (for the tags), by employing a bottleneck layer and
a reconstruction objective. At the same time, the learned low-level fea-
tures of the audio signal are aligned with the learned semantic features of
the tags, using a contrastive loss. All employed modules are jointly opti-
mized, yielding an audio encoder that provides audio embeddings which
capture both low-level acoustic characteristics and semantic information
regarding the contents of the audio. An illustration of our method is in
Figure 5.1.
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5.2.1 Learning low-level audio and semantic features
For learning low-level acoustic features from the input audio TF repre-
sentation, Xa

1, we employ a typical AE structure based on convolutional
neural networks (CNNs) and on having a reconstruction objective. Since
AEs have proven to be effective in unsupervised learning of low-level fea-
tures in different tasks and especially in audio (Van Den Oord et al., 2017;
Amiriparian et al., 2017; Mimilakis et al., 2018; Drossos et al., 2018), our
choice of the AE structure followed naturally.

The AE that processes Xa is composed of an encoder ea(·) and a de-
coder da(·), parameterized by θea and θda, respectively. ea accepts Xa as
an input and yields the learned latent audio representation, Z ∈ RT ′×F ′

≥0 .
Then, da gets as an input Za and outputs a reconstructed version of Xa,
X̂a, as

Za = ea(Xa; θea), and (5.1)

X̂a = da(Za; θda). (5.2)

We model ea using a series of convolutional blocks, where each convo-
lutional block consists of a CNN, a normalization process, and a non-
linearity. As a normalization process we employ the batch normalization
(BN), and as a non-linearity we employ the rectified linear unit (ReLU).
The process for each convolutional block is

Hlea = ReLU(BNle(CNNle(Hle−1))), (5.3)

where lea = 1, . . . , NCNN is the index of the convolutional block, Hlea ∈
RKlea×T ′

lea
×F ′

lea
≥0 is theKlea learned feature maps of the lea-th CNN, HNCNN =

Za, and H0 = X.
Audio decoder, da, is also based on CNNs, but it employs transposed

convolutions (Radford et al., 2016; Dumoulin & Visin, 2016) in order to
expand Z back to the dimensions of X. For having a decoding scheme

1For the clarity of notation, the superscript q is dropped here and for the rest of the
document, unless it is explicitly needed.
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analogous to the encoding one, we employ another set of NCNN convo-
lutional blocks for da, again with BN and ReLU, and using the same se-
rial processing described by Eq. (5.3). This processing yields the learned

feature maps of the decoder, Hlda ∈ R
Klda

×T ′
lda
×F ′

lda
≥0 , with lda = 1 +

NCNN, . . . , 2NCNN and H2NCNN = X̂a. To optimize ea and da, we employ
the generalized KL divergence, DKL, and we utilize the following loss
function

La(Xa, θea, θda) = DKL(Xa||X̂a). (5.4)

Each audio signal represented by Xa is annotated by a set of tags from a
total of C possible tags. We want to exploit the semantics of each tag and,
at the same time, capture the semantic relationships between tags. For that
reason, we opt to use another AE structure, which outputs a latent learned
representation of the set of tags of Xa as the learned features from the
tags, and then tries to reconstruct the tags from that latent representation.
Similar approaches have been used in (Silberer & Lapata, 2014), where
an AE structure was employed in order to learn an embedding from a k-
hot encoding of tags/words that would encapsulate semantic information.
Specifically, we represent the set of tags for X as a multi-hot vector, yt ∈
{0, 1}C . We use again an encoder et and a decoder dt, to obtain a learned
latent representation of yt as

zt = et(yt; θet), and (5.5)
ŷt = dt(zt; θdt), (5.6)

where zt ∈ RM
≥ is the learned latent representation of the tags for X, yt

and ŷt is the reconstructed multi-hot encoding of the same tags yt. The et

consists of a set of trainable feed-forward linear layers, where each layer
is followed by a BN and a ReLU, similar to Eq. 5.3. That is, if FNNlt is
the lt-th feed-forward linear layer, then

hltt = ReLU(BNlt(FNNlt(hlt−1t ))), (5.7)

where lt = 1, . . . , NFNN, hNFNN
t = zt, and h0

t = yt. To obtain the re-
constructed version of yt, ŷt, through zt, we use the decoder dt, which
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is modeled analogously to et and containing another set of NFNN feed-
forward linear layers. dt processes zt similarly to Eq. 5.7, with h1+NFNN

t to
be the output of the first feed-forward linear layer of dt, and h2NFNN

t = ŷt.
To optimize et and dt we utilize the loss Lt(yt, θet, θdt) = CE(yt, ŷt),
where CE is the cross-entropy function.

5.2.2 Alignment of acoustic and semantic features
One of the main goals of our method is to infuse semantic information
from the latent representation of tags to the learned acoustic features of
audio. To do this, we maximize the agreement between (i.e align) the
paired latent representations of the audio signal, Zq

a , and the correspond-
ing tags, zqt , by using a contrastive loss. Aligning these two latent rep-
resentations (by pushing Zq

a towards zqt ), will infuse Zq
a with information

from zqt . This task is expected to be difficult, due to the fact that some
acoustic aspects may not be covered by the tags, or that some existing
tags may be wrong. Therefore, we utilize two affine transforms, and we
align the output of these transforms. Specifically, we utilize the affine
transforms AFFa and AFFt, parameterized by θaf-a and θaf-t, respectively,
as

ΦΦΦa = AFFa(Za; θaf-a), and (5.8)
φφφt = AFFt(zt; θaf-t). (5.9)

where ΦΦΦa ∈ RT ′×F
≥0 and φφφt ∈ RM

≥0. Then, since ΦΦΦa is a matrix and φφφt a
vector, we flatten ΦΦΦa to φφφa ∈ RT ′F ′

≥0 .
To align φφφa with its paired φφφt, we utilize randomly (and without rep-

etition) sampled minibatches Gb = {(Xb
a,y

b
t )}

Nb
b=1 from our dataset G,

where Nb is the amount of paired examples in the minibatch Gb. For each
minibatch Gb, we align the φφφba with its paired φφφbt and, at the same time, we
optimize ea, da, et, dt, AFFa and AFFt. To do this, we follow (Chen et al.,
2020) and we use the NT-Xent contrastive loss function
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`ξ(i, j) = − log
Ξ(ψψψi,ψψψj, τ)

2Nb∑
k=1

1[k 6=i]Ξ(ψψψi,ψψψk, τ)

, where (5.10)

ψψψi =

{
φφφia if i ≤ Nb

φφφi−Nb
t if i > Nb

(5.11)

Ξ(a,b, τ) = exp(sim(a,b)τ−1), (5.12)

sim(a,b) = a>b(||a|| ||b||)−1, (5.13)

Θc = {θea, θaf-a, θet, θaf-t}, 1A is the indicator function with 1A = 1
iff A else 0, and τ is a temperature hyper-parameter. The final alignment
loss Lξ(Gb,Θc) is then calculated as the sum over all paired audio and
tag representations, both (i, j) and (j, i). Finally, we jointly optimize θea,
θda, θet, and θdt, for each minibatch Gb, minimizing

Ltotal(Gb,Θ) = λa

NB∑
b=1

La(X
b
a,Θa) + λt

NB∑
b=1

Lt(y
b
t ,Θt)

+ λξLξ(Gb,Θc), (5.14)

where Θa = {θea, θda}, Θt = {θet, θdt}, Θ is the union of the Θ? sets in
Eq. (5.14), and λ? is a hyper-parameter used for numerical balancing of
the different learning signals/losses. After the minimization of Ltotal, we
use ea as a pre-learned feature extractor for different audio classification
tasks.

5.3 Experiment

We conduct an ablation study where we compare different methods
for learning audio embeddings on their classification performance at dif-
ferent tasks, using as input the embeddings from the employed methods.
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This allows us to evaluate the benefit of using the alignment and the re-
construction objectives in our method. We consider a traditional set of
handcrafted features, as a low anchor. Additionally, we perform a corre-
lation analysis with a set of acoustic features in order to understand what
kind of acoustic properties are reflected in the learnt embeddings.

5.3.1 Pre-training dataset and data pre-processing
For creating our pre-training dataset G, we collect all sounds from Free-
sound that have a duration of maximum 10 seconds. We remove sounds
that are used in any of our downstream tasks dataset. We apply a uniform
sampling rate of 22 kHz and length of 10 secs to all collected sounds,
by resampling and zero-padding as needed. We extract F = 96 log-
scaled mel-band energies using sliding windows of 1024 samples (≈46
ms), with 50% overlap and the Hamming windowing function. We create
overlapping patches of T = 96 feature vectors (≈2.2 s), using a step of
12 vectors for overlap. Then, we select the T × F patch with the max-
imum energy. This process is simple but we assume that in many cases,
the associated tags will refer to salient events present in regions of high
energy. We process the tags associated to the audio clips, by firstly remov-
ing any stop-words (obtained with the NLTK natural language processing
Python library2) and making any plural forms of nouns (obtained with the
inflect Python library3) to singular. We remove tags that occur in more
than 70% of the sounds as they can be considered less informative, and
consider the C=1000 remaining most occurring tags, which we encode
using the multi-hot scheme. This corresponds to using the vector space
model representation (Salton, 1989) and produces a feature that is a high-
dimentional sparse vector where a value of 1 in one dimension refers to
the presence of a specific tag. Finally, we discard sounds that were left
with no tags after this filtering process. This process generated Q =189
896 spectrogram patches for our dataset G. 10% of this patches are kept
for validation and all the patches are scaled to values between 0 and 1.

2https://www.nltk.org/
3https://github.com/jazzband/inflect
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We consider three different cases for our method for evaluating the
benefit of the alignment and the reconstruction objectives. The first is the
method presented in Section 5.2, termed as AE-C. At the second, termed
as E-C, we do not employ da and dt, and we optimize ea using only Lξ,
similar to (Chen et al., 2020). The third, termed as CNN, is composed
of ea, followed by two fully connected layers and is optimized for di-
rectly predicting the tag vector yt using the CE function. Additionally,
we employ the 20 first mel-frequency cepstral coefficients (MFCCs) with
their ∆s and ∆∆s as a low anchor, using means and standard deviations
through time, and we term this case as MFCCs. Finally, we compare
the performance of our embeddings with different results taken from the
literature. The models and results we compare to are presented later, in
Section 5.3.4.

The code of our method is available online at: https://github.c
om/xavierfav/coala. We provide the pre-training dataset G online,
freely, and publicly at: https://zenodo.org/record/3887261.
Sounds were accessed from the Freesound API on the 7th of May, 2019.

5.3.2 Utilized hyper-parameters, training procedure, and
models

For the audio autoencoder, we useNCNN=5 convolutional blocks each one
containing Klea = 128 filters of shape 4x4, yielding an embedding φφφa of
size 1152. This audio encoder model has approximately 2.4M parame-
ters. The tag autoencoder is composed of NFNN=3 layers of size 512, 512
and 1152, accepting a multi-hot vector of dimension 1000 as input. We
train the models for 200 epochs using a minibatch size NB=128, using an
SGD optimizer with a learning rate value of 0.05. We utilize the valida-
tion set to define the different λ’s at Eq. (5.14) and the constrastive loss
temperature parameter τ , to λa=λt=5, λξ=10, and τ = 0.1. We add a
dropout regularization with rate 25% after each activation layer to avoid
overfitting while training. The CNN baseline that is trained by predicting
directly the multi-hot tag vectors from the audio spectrogram has follows
the same architecture as the encoder from the audio autoencoder. It has
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been trained for 20 epochs using a minibatch size NB=128 and an SGD
optimizer as well.

5.3.3 Downstream classification tasks
To assess the performance of the embeddings extracted with our embed-
ding model ea, we consider three different audio classification tasks:

• Sound Event Recognition. We use the UrbanSound8K dataset
(US8K) (Salamon et al., 2014) in our experiment, which consists of around
8000 single-labeled sounds of maximum 4 seconds and 10 classes. We
use the provided folds for cross-validation.

• Music Genre Classification. We use the fault-filtered version of
the GTZAN dataset (Tzanetakis & Cook, 2002; Kereliuk et al., 2015)
consisting of music excepts of 30 seconds, single-labeled split in pre-
computed sets of 443 songs for training and 290 for testing.

•Musical Instrument Classification. use the NSynth dataset (Engel
et al., 2017) which consists of more than 300k sound samples organised
in 10 instrument families. However, because we are interested to see
how our models performs with relatively low amount of training data, we
sample from NSynth a balanced set of 20k samples from the training set
which correspond to approximately 7% of the original set. The evaluation
set is kept the same.

For the above tasks and datasets, we use non-overlapping frames of
audio clips that are calculated similarly to the pre-training dataset, and
are given as input to the different methods in order to obtain the embed-
dings. Then, these embeddings are aggregated into a single vector (e.g.
of 1152 dimensionality for our ea) employing the mean statistic, and are
used as an input to a classifier that is optimized for each corresponding
task. Embeddings and MFCCs vectors are standardized to zero-mean and
unit-variance, using statistics calculated from the training split of each
task. As a classifier for each of the different tasks, we use a multi-layer
perceptron (MLP) with one hidden layer of 256 features, similar to what
is used in (Cramer et al., 2019). To obtain an unbiased evaluataion of our
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method, we repeat 10 times the training procedure of the MLP in each
task, and average and report the mean accuracies.

5.3.4 Models from the literature
We compare the performance of our embedding in the different tasks and
with different results taken from the literature. Here are presented the
models and results that we then use as a comparison.

OpenL3 (Cramer et al., 2019) is an open source implementation of
Look, Listen, and Learn (L3-Net) (Arandjelovic & Zisserman, 2017). It
consists of an embedding model using blocks of convolutional and max-
pooling layers, trained through self-supervised learning of audio-visual
correspondence in videos from YouTube. The model has around 4.7M
parameters and computes embedding vectors of size 6144. In Cramer
et al. (2019), the authors report the classification accuracies of different
variants of the model used as a feature extractor combined with a MLP
classifier on the US8K dataset. Their mean accuracy is 78.2%.

VGGish (Hershey et al., 2017; Gemmeke et al., 2017) consists of
an audio-based CNN model, a modified version of the VGGNet model
(Simonyan & Zisserman, 2014) trained to predict video tags from the
Youtube-8M dataset (Abu-El-Haija et al., 2016). The model has around
62M parameters and computes embedding vectors of size 128. Its accu-
racy when used as a feature extractor combined with a MLP classifier on
the US8K dataset is reported in (Cramer et al., 2019) as being 73.4%.

DeepConv (Salamon & Bello, 2017) is a deep neural network com-
pose of convolutional and max-pooling layers. When trained with data
augmentation on the US8K dataset, it achieved 79.0% accuracy.

rVGG (Pons & Serra, 2019b) corresponds to a VGGish non-trained
model (randomly weighted). The referenced work experiment using it
as a feature extractor by comparing different embeddings from different
layers of the network. The best accuracies on US8K and GTZAN when
combined with an SVM classifier were reported as 70.7% and 59.7% re-
spectively, using an embedding vector of size of 3585.

sampleCNN (Lee et al., 2018) is an deep neural network that takes as
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input the raw waveform and is composed of many small 1D convolutional
layers and that has been designed for musical classification tasks. When
pre-trained on the Million Song Dataset (Bertin-Mahieux et al., 2011),
this model reached a 82.1% accuracy on the GTZAN dataset.

smallCNN (Pons et al., 2017b) is a neural network composed of one
CNN layer with filters of different sizes that can capture timbral char-
acteristics of the sounds. It is combined with pooling operations and a
fully-connected layer in order to predict labels. In (Ramires & Serra,
2019), it has been trained with the NSynth dataset in order to predict the
instrument family classes and was reported to reach 73.8% accuracy.

5.3.5 Correlation analysis with acoustic features
We perform a correlation analysis using a similarity measure involving the
Canonical Correlation Analysis (CCA) (Hardoon et al., 2004), to investi-
gate the correlation of the output embeddings from our method, with var-
ious low-level acoustic features. Similar to (Raghu et al., 2017), we use
sounds from the validation set of the pre-training dataset G, and we com-
pute the canonical correlation similarity of our audio embedding Za with
statistics of acoustic features computed with the librosa library (McFee
et al., 2015). These features correspond to MFCCs, chromagram, spectral
centroid, and spectral bandwidth, all computed at a frame level.

5.4 Results

5.4.1 Classification performance
In Table 5.1 are the results of the performance of the different embeddings
and our MFCCs baseline, and results reported in the literature. In all tasks,
all the learned embeddings yielded better results than the MFCCs base-
line, showing that it is possible to learn meaningful audio representations,
by taking advantage of tag metadata. However, the CNN case does not
even reach the performance of the MFCCs features. This clearly indicates
the benefit of our approach for building general audio representations by
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Table 5.1: Average mean accuracies for SER, MGC, and MIC. Additional
performances are taken from the literature (Cramer et al., 2019; Salamon
& Bello, 2017; Pons & Serra, 2019b; Lee et al., 2018; Ramires & Serra,
2019).

US8K GTZAN NSynth
MFCCs 65.8 49.8 62.6
AE-C 72.7 60.7 73.1
E-C 72.5 58.9 69.5
CNN 48.4 47.0 56.4
OpenL3 78.2 – –
VGGish 73.4 – –
DeepConv 79.0 – –
rVGG 70.7 59.7 –
sampleCNN – 82.1 –
smallCNN – – 73.8

leveraging user-provided noisy tags . When comparing the different pro-
posed embeddings, we see that the AE-C case consistently leads to better
results. For the MIC (NSynth) task, combining reconstruction and con-
trastive objectives (i.e. AE-C case) brings considerable benefit. For the
MGC (GTZAN) task, these benefits are still significant but not as great,
and finally, when looking at the SER (US8K) task, adding the reconstruc-
tion objective does not improve the results much. Our assumption is that
recognizing musical instruments can be more easily done using lower-
level features reflecting acoustic characteristics of the sounds, and that
the reconstruction objective imposed by the autoencoder architecture is
forcing the embedding to reflect low-level characteristics present in the
spectrogram. However, for recognizing urban sounds or musical genres, a
feature that reflects mainly semantic information is needed, which seems
to be learned successfully when considering the contrastive objective.

Comparing our method to others for the SER, we can see that we are
slightly outperformed by VGGish (Hershey et al., 2017; Gemmeke et al.,
2017), according to results taken from (Cramer et al., 2019), which has
been trained with million of manually annotated audio files using pre-
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defined categories. This shows that our approach which only takes ad-
vantage of small-scale content with their original tag metadata is very
promising for learning competitive audio features. However, our model is
still far from reaching performances given by OpenL3 or the current state-
of-the-art DeepConv with data augmentation. Similarly in MGC, using a
sampleCNN as embedding model trained on the Million Song Dataset
(MSD) (Lee et al., 2018) produces better results than our approach. But,
all these models have been either trained with much more data than our
approach, or use a more powerful classifier than we used. Finally, NSynth
dataset has been originally released in order to train generative models
rather than classifiers. Still, results from (Ramires & Serra, 2019), show
that our approach training using around 8% of the training data, is only
slightly outperformed by a CNN trained with all the training data (small-
CNN).

5.4.2 Correlation analysis
Table 5.2 shows the correlation for the different embeddings Za with the
mean, the variance, and the skewness of the different acoustic feature vec-
tors. Overall, we observe a consistent increase of the correlation between
the acoustic features and embeddings trained with models containing an
AE structure. This suggests that the reconstruction objective enables to
learn features that reflect some low-level acoustic characteristics of audio
signals, which makes it more valuable as a general-purpose feature. More
specifically, there is a significant correlation increase between the MFCCs
mean and models that contain AE structure, showing that they can cap-
ture more timbral characteristics of the signal. However, variance and
skwewness did not significantly increased, which shows that our embed-
dings lack to capture temporal cues. Considering chromagrams, which
reflect the harmonic contents of a sound, we see little improvement with
AE models. This suggests that our embeddings still lack some impor-
tant musical characteristics. Regarding the lower-level features spectral
centroid and bandwidth, we only observe a slight increase of correlations
with AE-based embeddings. This suggests that spectrogram-based CNN
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Table 5.2: CCA correlation scores between the embeddings model out-
puts and some acoustic features statistics.

mean var skew mean var skew
MFCCs Chromagram

AE-C 0.84 0.51 0.42 0.48 0.37 0.40
E-C 0.58 0.49 0.39 0.38 0.36 0.32
CNN 0.73 0.43 0.32 0.59 0.33 0.48

Spectral Centroid Spectral Bandwidth
AE-C 0.97 0.87 0.80 0.96 0.86 0.84
E-C 0.93 0.82 0.76 0.92 0.82 0.81
CNN 0.95 0.76 0.74 0.91 0.72 0.80

models can already reflect some low-level acoustic characteristics of the
signals, without the need of involving a reconstruction objective during
the training.

5.4.3 Clustering performance
As we observe indications that the features learned combining autoen-
coders with the constrastive learning can performed competitively with
state-of-the-art features in the case of supervised classification tasks with
relatively small datasets, we are now interested in seeing how well these
features can perform in a clustering scenario. One of our main goal is
to learn a representation that reflects both low-level and high-level char-
acteristics for a wide range of everyday sounds, which can be adequate
when having to cluster sounds from large and varied sound collections.
In this experiment, we perform an external validation using the same col-
lection of datasets used for the evaluation of the clustering approaches
(Section 4.4.1) However, because both the training dataset and the ones
used for the clustering evaluation contain data from Freesound, approx-
imately 70% of the sounds in the evaluation set were are present in the-
dataset for training the model. Therefore, we remove from the evaluation
datasets these sounds which results in having much less data for the eval-
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uation. Although this is not an ideal evaluation setup, it gives us an idea of
the potential of our learned representations for the unsupervised classifi-
cation of sounds. Additionally, we decide to remove the evaluation of the
SoundNet features, given the poor performance they showed in Chapter 4.

We compare clustering performances using two different approaches
(K-means and a k-NN graph) on many small datasets. The results which
are are shown in Table 5.3, suggest that our embedding can produce good
performance for clustering tasks, sometimes better than state-of-the-art
models. One intuition on why the feature we learn seem to produce better
result is that they may be more suited for clustering methods that employ
a similarity notion in the embedding space. Since our approach involves a
contrastive loss that relies on cosine similarities in the embedding space,
it produces a feature space that can be more naturally used by our cluster-
ing methods. For the embeddings taken from the literature, the objective
function comes from either a binary cross-entropy loss in the case of Au-
dioSet when predicting labels, or as a modality matching prediction in the
case of OpenL3. This produces good discriminative features, but may be
less adapted to computing similarities in the embeddding latent space.

5.5 Conclusions
In this work we present a method for learning an audio representation
that can capture acoustic and semantic characteristics for a wide range
of sounds. We utilise two heterogeneous autoencoders (AEs), one taking
as an input audio spectrogram and the other processing a tag representa-
tion. These AEs are jointly trained and a contrastive loss enables to align
their latent representations by leveraging associated pairs of audio and
tags. We evaluate our method by conducting an ablation study, where we
compare different methods for learning audio representations over three
different classification tasks. We also perform a correlation analysis with
acoustic features in order to grasp knowledge about what type of acoustic
characteristics the embedding captures. And we finally evaluate our best
learned embedding in the context of clustering.
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Results indicate that combining reconstruction objectives with a con-
trastive learning framework enables to learn audio features that reflect
both semantic and lower-level acoustic characteristics of sounds, which
makes it suitable for general audio machine listening applications. Also,
our learned representations seem to produce better results for the unsu-
pervised classification of sounds.
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Self-supervised audio representation learning offers an attractive alter-
native for obtaining generic audio embeddings, capable to be employed
into various downstream tasks. In the last chapter, we investigated the use
of audio and associated tags in order to learn audio features. However, the
text-based processing model we used is not capable to generalize to tags
that were unseen during training. In this chapter we propose a method
for learning audio representations using an audio autoencoder (AAE), a
word embedding model (WEM), and a multi-head self-attention (MHA)
mechanism. MHA attends on the output of the WEM, providing a con-
textualized representation of the tags associated with the audio, and we
align the output of MHA with the output of the encoder of AAE using a
contrastive loss. We jointly optimize AAE and MHA and we evaluate the
audio representations (i.e. the output of the encoder of AAE) by utiliz-
ing them in three different downstream tasks, namely sound, music genre,
and music instrument classification.

6.1 Introduction
In the natural language and image processing fields, both supervised and
unsupervised approaches enabled the creation of powerful pre-trained mod-
els, that are often employed in many different tasks (Mikolov et al., 2013;
Devlin et al., 2018; Chen et al., 2020). The association of images and text
can be exploited for learning embeddings (Wu et al., 2019), e.g. by us-
ing a self-attention mechanism to learn context sensitive text embeddings
that are then aggregated into sentence embeddings. Similar approaches
have been adopted for machine listening, for instance unsupervised pre-
training of transformer models can improve speech recognition perfor-
mance by employing contrastive predictive coding strategies (et al., 2019;
Oord et al., 2018). In (Turpault et al., 2019b), the authors employ a semi-
supervised sampling strategy to create triplets for benefiting automatic
tagging systems. However, these approaches consider just one modality,
i.e. audio.

A cross-modal method for learning and aligning audio and tag latent
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representations (COALA) was presented in the last chapter and in Favory
et al. (2020a). Latent representations were learnt using autoencoders,
one aiming at encoding and reconstructing spectrogram representations
of sounds, and the other focusing on encoding and reconstructing a set
of tags represented as multi-hot vectors. The outcomes suggest that it is
possible to leverage user-generated audio data and accompanying tags,
for learning semantically enriched audio representations that can be used
for different classification tasks. However, in COALA the tag-based input
representation was fixed, and therefore the tag-based encoder cannot gen-
eralize to new terms that have not been seen during training. This makes
the approach loose the flexibility of contrastive representation learning.

In this chapter we propose a method for allowing the textual gener-
alization of cross-modal approaches, using pre-trained word embedding
models which project words into semantic spaces. We propose to use
an attention mechanism for learning higher-level contextualized semantic
representation similarly to Wu et al. (2019). However, our approach relies
on accompanying tags instead of text, and therefore employs a simpler
approach for computing semantic embeddings. The rest of the chapter is
as follows. In Section 2 we present our proposed method. Section 3 de-
scribes the utilized dataset, the tasks and metrics that we employed for the
assessment of the performance, the baselines that we compare our method
with. The results of the evaluation is presented and discussed in Section
4. Finally, Section 5 concludes the chapter and proposes future research
directions.

6.2 Proposed method
Our method, illustrated in Figure 1, consists of an audio encoder, ea(·), an
audio decoder, da(·), a pre-trained word embedding model, ew(·), and
multi-head self-attention, Att(·). As input to our method, we employ
a dataset of NB paired examples, G = {(XnB

a ,xnB
w )}NB

nB=1, where Xa ∈
RTa×Fa is a time-frequency audio representation of Ta audio feature vec-
tors of Fa features, and xw = {xiw}Tw

i=1 is a set of Tw tags, xiw, like “techno”
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and “bark”, and associated with Xa
1. Att extracts from xw an embedding

containing the context of the tags, and by using a contrastive loss we align
the output za = ea(Xa) with the output of Att. za is also used as an input
to da, to reconstruct Xa, effectively infusing za with both semantic (from
xw) and low-level acoustic information (from the reconstruction by da).
The code of our method is available online2.

6.2.1 Audio encoding and decoding
As in COALA, presented in chapter 5, the encoder ea consists of Ne-a

cascaded 2D convolutional neural networks (CNNs), CNNne-a , with C in
ne-a

and Cout
ne-a

input and output channels, respectively, a square kernel of Ke-a

size, and Se-a stride. The CNNs process Xa is a serial fashion, and each
CNNne-a is followed by a batch normalization process (BNne-a), a rectified
linear unit (ReLU), and a dropout (DO) with probability pa, as

Hne-a = DO(ReLU(BNne-a(CNNne-a(Hne-a−1)))), (6.1)

where H0 = Xa. HNe-a ∈ RCe-out
Ne-a
×T ′

Ne-a
×F ′

Ne-a
≥0 is flattened to a vector and

given as an input to a layer normalization process (LN) (Ba et al., 2016)
(FFNe-a), as za = LN(hNe-a), where hNe-a is the flattened HNe-a , and za ∈
RV , with V = Ce-out

Ne-a
· T ′Ne-a

· F ′Ne-a
, is the learned audio embedding by our

method. za is used at the employed contrastive loss, in order to be aligned
with the information contained at the associated tags xw, and as an input
to da in order to encode low-level acoustic features in za.

The decoder da takes as an input za and processes it through a series
of Ne-a transposed 2D CNNs (Radford et al., 2016; Dumoulin & Visin,
2016), CNNnd-a , in a reverse fashion to ea. Firstly za is turned to the
matrix Za ∈ RCe-out

Ne-a
×T ′

Ne-a
×F ′

Ne-a and then is processed by CNNnd-a as

Hnd-a = ReLU(BNne-a(CNNnd-a(DO(Hnd-a−1)))), (6.2)

1For the clarity of notation, the superscript nB is dropped here and for the rest of the
document, unless it is explicitly needed.

2https://github.com/xavierfav/ae-w2v-attention

104



Chapter 6. Learning Contextual Tag Embeddings for Cross-modal
Alignment of Audio and Tags

Figure 6.1: Illustration of our method. φφφa and φφφw are aligned by max-
imizing their agreement through contrastive learning and, at the same
time, Za is used for reconstructing back the original spectrogram input.
Word embeddings are passed through a multi-head scaled dot-product
self-attention layer in order to build higher-level semantic vectors that
are finally aggregated into a single vector φφφw.

where H0 = Za and BNne-a is the batch normalization process used after
CNNnd-a . The reconstructed input, X̂a, is obtained as X̂a = σ(HNd-a),
where σ is the sigmoid function.

6.2.2 Multi-head, self-attention tags encoding
As our ew we select a pre-optimized word embedding model, using an
embedding dimensionality of Fw, which outputs ztww ∈ RFw . For process-
ing the output of ew we follow the recent proposal of multi-head, self-
attention in the Transformer model, where a scaled dot-product attention
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mechanism is employed to extract the relevant information of each word
in a sentence (et al., 2017). Since we use an unordered set of tags, we
do not employ the positional embeddings for each tag. The multi-head
self-attention attends on the set of encoded tags by the word embeddding
model ew, and extracts a contextual embedding of the set of tags. We
use this contextual embedding as the latent representation of tags for our
cross-modal alignment process with the contrastive loss.

Specifically, we employ three feed-forward neural networks, FNNq,
FNNk, and FNNv, FNNo (without non-linearities) as our linear transfor-
mations for the query, key, value and output of the self-attention mecha-
nism, respectively. We follow the original paper of the self-attention (et al.,
2017), we use H attention heads, and we apply the self-attention, Att, on
the embeddings of tags, Zw. The output of Att is O ∈ RH×Tw×Fw , accord-
ing to (et al., 2017). Then, we concatenate the result of each H , resulting
to O′ ∈ R(H·Tw)×Fw . Finally, to process the output of each attention head
H and obtain the contextual embedding for the input tags, φφφw, we em-
ploy FNNo and a layer normalization process, LN, and we calculate the
contextual embedding, φφφw ∈ RV , as

O′ =FNNo(O) and (6.3)

φφφw =LN(
Tw∑
i=1

O′i) , (6.4)

where O′ ∈ RTw×V and FNNo has its weights shared along the H · Tw

dimension.

6.2.3 Cross-modal alignment and optimization
To align the learned latent representations from audio and tags, we employ
a constrastive loss and we maximize the agreement of φφφnB

a and φφφnB
w on

minibatches Gb of size Nb, randomly sampled from our dataset G. To
reduce the mismatch between the two different modalities, we employ a
feed-forward neural network (FNNc-a) to process znB

a , as

φφφnB
a = FNNc-a(z

nB
a ). (6.5)
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Then, we employ a contrastive loss between φφφnB
a and φφφnB

w and we
jointly optimize ea, da, FNNq, FNNk, FNNv, and FNNo by minimizing
the loss

L(Gb, ea, da,Att) = λaLa + λξLξ, (6.6)

where La is the generalized Kullback-Leibler divergence between Xa and
X̂a, shown to work good for audio reconstruction (Drossos et al., 2018;
Mimilakis et al., 2018). Lξ is the contrastive loss between paired φφφnB

a and
φφφnB

w and other examples in the minibatch, as defined in (Chen et al., 2020).
We use a temperature parameter τ for Lξ, and λ? is a hyper-parameter
used for numerical balancing of the two losses.

6.3 Evaluation
We evaluate our method by assessing the performance of ea as a pre-
trained audio embedding extractor in different audio classification tasks.
We utilize a different audio dataset for each task and we compare the
performance of our ea against COALA and a set of handcrafted MFCCs
feature.

6.3.1 Pre-training dataset and data pre-processing
We use the same dataset as used in COALA, which consists of sounds and
associated tags collected from Freesound platform (Font et al., 2013a).
We compute Fa = 96 log-scaled mel-band energies using sliding win-
dows of 1024 samples (≈46 ms), with 50% overlap and the Hamming
windowing function. Then, we select the spectrogram patch of size Ta =
96 that has maximum energy in each sample. This process leads to 189
896 spectrogram patches. 10% of these patches are kept for validation
and all the patches are scaled to values between 0 and 1. We process the
tags associated to the audio clips by firstly removing any stop-words and
making any plural forms of nouns to singular. We remove tags that occur
in more than 70% of the sounds as they can be considered less informa-
tive, and consider the C=1000 remaining most occurring tags. Then we
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train a continuous bag-of-words Word2Vec model (Mikolov et al., 2013)
using these processed tags and we use this model as our ew.

To have our method comparable with COALA and assess the impact
of our proposed approach for learning contextual tags, we follow COALA
and we useNe-a = 5 CNNne-a , withKe-a = 4 and Se-a = 2. We useC in

1 = 1
and Cout

ne-a
= 128. These hyper-parameters result to V = 1152 and ea has

approximately 2.4M parameters. The tag encoder takes a set of Tw = 10
maximum tags. It uses fully-connected linear transformations that retain
the same dimension as the word embeddings, producing tag-based em-
bedding vectors of the same dimension. We utilize two different Fw, one
of 128 and another of 1152. The first of 128 is due to the fact that we are
using a small scale vocabulary and we choose to have a small embedding
size for ew. The second, is for having Fw = V . Additionally, we em-
ploy two different set-ups for our Att, one with far and another with one
attention head. We indicate the different combinations as “w2v-Fw-Hh”,
where H is the amount of attention heads. For example, “w2v-128-1h”
means that we are using Fw = 128 and one attention head. We also
employ the self-attention strategy with a simple mean aggregation of the
tags’ word embeddings, which we refer as w2v-128-mean and w2v-1152-
mean, to assess the impact of Att when using a simpler aggregation of its
output. Finally, we employ the 20 first mel-frequency cepstral coefficients
(MFCCs) with their ∆s and ∆∆s as a low anchor, using means and stan-
dard deviations through time, and we term this case as MFCCs.

All our models are trained for 200 epochs, using a minibatch size
NB=128 and an SGD optimizer with a learning rate value of 0.005. We
utilize the validation set to define the different λ’s at Eq. (11) and the
constrastive loss temperature parameter τ , to λa=5, λξ=10, and τ = 0.1.
We use dropout probability of 0.25 for our ea and da and 0.1 after the
tag-based embedding model to avoid overfitting while training.

6.3.2 Audio-based classification
We assess the performance of the different embeddings extracted with ea

in three different audio classification tasks. For each task, we employ
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the pre-trained, with our method, ea, and we extract audio embeddings za

for the the audio data of the corresponding task. Then, adopt the corre-
sponding training protocol of the task (e.g. cross-fold validation) and we
optimize a multi-layer perceptron (MLP) with one hidden layer of 256
features, similar to what is used in (Cramer et al., 2019; Favory et al.,
2020a). Finally, we assess the performance of the classifier using the data
and the testing protocol of each task. To obtain an unbiased evaluation of
our method, we repeat 10 times the training procedure of the MLP in each
task and report the mean accuracy. Additionally, in order to understand
if the self-attention mechanism is actually beneficial for obtaining a bet-
ter semantic embedding from tags, we perform a tag-based classification
for comparing the different approach versions. For this purpose, we use
the UrbanSound8K dataset and the tags of the associated samples from
Freesound.

As done in the evaluation proposed in Chapter 5, we first consider
Sound Event Recognition (SER), where we use the UrbanSound8K dataset
(US8K) (Salamon et al., 2014). We additonally consider the task of Mu-
sic Genre Classification (MGC), where we use the fault-filtered version of
the GTZAN dataset (Tzanetakis & Cook, 2002; Kereliuk et al., 2015). Fi-
nally, we consider the Musical Instrument Classification (MIC) task. We
use the same sample of the NSynth dataset used in the last chapter (Engel
et al., 2017).

For the above tasks and datasets, we use non-overlapping audio frames
that are calculated similarly to the pre-training dataset. These frames are
given as input to the different models in order to obtain audio embed-
dings. In order to obtain fixed-length vectors, the audio embeddings are
aggregated using a mean average statistic and finally used as an input to a
classifier that is trained for each corresponding task. Additionally, result-
ing embedding and MFCCs vectors are standardized to zero-mean and
unit-variance, using statistics calculated from the training split of each
task.
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6.4 Results
Table 1 shows the performances of the different embeddings, our MFCCs
baseline and previous results from COALA (Chapter 5). The self-attention
mechanism used in the tag-based network benefits the classification per-
formance in SER and MGC. This indicates that our proposed method in-
deed results in learning a contextual embedding that can be effectively
used for learning better general audio representations. For MIC however,
we do not observe any benefit from it. A reason may be that the clas-
sification of a musical instrument does not rely much on the context of
employed textual descriptions, at least for the musical instruments con-
tained in the employed dataset for MIC. This means that that classifying
instrument samples can be done by solely using representations learned
by the audio autoencoder, without any semantic information. In the previ-
ous chapter, it was observed that the reconstruction objective was bring-
ing important improvements in this case, and probably, the enrichment
of semantics achieved with the alignment with the tag-based latent repre-
sentation losses its benefits. Using more attention heads is able to bring
better performance in SER and MGC. This suggests that the pre-trained
word representation we use can benefit from a more powerful attention
mechanism. The impact of the embedding size of the word embeddings
is not clear from our experiment. But, our findings suggest that using
different dimensions for the audio autoencoder and the tag-based encoder
does not necessarily hinder the contrastive alignment.

When using tags for performing the classification on US8K for SER,
there is no benefit of using multiple attention heads, and the self-attention
mechanism is only slightly improving the performance compared to the
mean aggregation strategy. Moreover, the results show that audio-based
classification is still not performing as well as the tag-based one, which
could suggest that more powerful audio encoders could be better aligned
with the semantics of the content, and produce better results.
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Table 6.1: Average mean accuracy for SER, MGC, and MIC. Additionally
performances on US8K dataset using a tag-based classifier are reported in
the last column.

SER MGC MIC US8K-tag

MFCCs 65.8 49.8 62.6 -
w2v-128-1h 71.5 61.3 68.9 79.2
w2v-1152-1h 72.1 61.5 68.6 80.3
w2v-128-4h 73.5 59.6 69.7 79.4
w2v-1152-4h 70.5 63.4 69.9 78.7
w2v-128-mean 71.3 60.4 70.0 79.7
w2v-1152-mean 71.1 60.7 68.4 78.5
COALA 72.7 60.7 73.1 -

6.5 Conclusion
In this chapter we presented a method for cross-modal alignment of audio
and tags. The proposed approach uses a pre-trained word embedding and
learns contextual tag embeddings that are aligned with audio embeddings
using contrastive learning. From audio samples and associated tags, our
method is able to learn semantically enriched audio representation that
can be used in different classification tasks. The embedding model pro-
duced is evaluated in three different downstream tasks, including sound
event recognition, music genre and music instrument classifications. Over
the previous similar method COALA, presented in Chapter 5, the pro-
posed approach relies on pre-trained word embeddings that grants the the
advantage of being directly able to be used in a wider range of applica-
tions, such as cross-modal retrieval or zero-shot learning.

However, in order to enable these types of applications, further inves-
tigations need to be performed. For instance, considering a more gen-
eral pre-trained word embedding model, trained with a larger vocabulary,
would be interesting. For that, leveraging additional text information,
such as the accompanying text description of the sounds in Freesound, or
textual descriptions of audio categories from AudioSet (Gemmeke et al.,
2017) could enable a better generalization towards natural language. For
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cross-modal retrieval, future work could focus in evaluating our approach
in this context. Similar approaches in the video processing field indicate
promising results in this type of application (Galanopoulos & Mezaris,
2020)
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The large size of nowadays’ online multimedia databases makes re-
trieving their content a difficult and time-consuming task. Users of online
sound collections typically submit search queries that express a broad in-
tent, often making the system return large and unmanageable sets of re-
sults. Search Result Clustering (SRC) is a technique that organises search
result contents into coherent groups, which allows users to identify use-
ful subsets in their results. Obtaining coherent and distinctive clusters
that can be explored with a suitable interface is crucial for making this
technique a useful complement of traditional search engines.

In this chapter, we present a SRC system that we developed and in-
tegrated in the Freesound website. The clustering algorithm relies on the
graph-based approach presented in Chapter 4, which can be used with dif-
ferent audio features as input. One important requirement is that the al-
gorithm needs to be able to produce acceptable performance on the wide
variety of types of content present in online sound collections such as
Freesound. We propose an approach to assess the performance of differ-
ent audio features at scale, by taking advantage of the metadata associated
with each sound. This analysis is complemented with an evaluation using
ground-truth labels from manually annotated datasets, similarly to what
has been presented in Chapter 4. We also show that using a confidence
measure for discarding inconsistent clusters improves the quality of the
partitions according to the available ground truth labels. After identify-
ing the most appropriate features for clustering, we conducted two ex-
periments with users performing a sound design and a music related task
respectively. This allowed us to evaluate our approach and its user in-
terface. Such experiments were followed by usability questionnaires and
semi-structured interviews with the participants. This provided us with
valuable novel insights regarding the features and specifications that pro-
mote efficient interaction with the clusters.
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7.1 Introduction
Sounds used in movies, video-games, music and other media often orig-
inate from sound collections. Given the often large size of sound collec-
tions, retrieving content effectively from them can become challenging.
Searching content in collaborative collections is further hindered by the
heterogeneity of the content metadata.

The primary role of retrieval systems is to support users in accessing
relevant content according to their needs. The relevance of results de-
pends significantly on the specific use-case. Most individuals experience
similar problems when for instance exploring music collections. How-
ever, in this case, people are generally interested in retrieving or discover-
ing content that fits their taste or current mood. This media consumption
corresponds to what has been referred as the read-only culture, which is
in fact the dominant approach in modern mass-media culture (Lawrence,
2008). However, when browsing sound collections for creative purposes,
such as sound design or music creation, the pertinence of the content de-
pends on the specific user task. In contrast with the read-only approach, in
a read-write culture (also known as the remix culture), individuals com-
bine, rearrange and edit existing materials in a creative way to produce
new content.

When interacting with sound collections, users typically rely on text-
based search engines. After entering a text query, a user often faces a
long list of results. In the absence of specific query terms, the system
may be unable to differentiate the relevance of the retrieved sounds to
the user, whose needs are frequently very precise and highly specialised.
The user might be looking for audio clips, with distinctive and detailed
characteristics, that can be described by a wide range of properties. In
sound design, for instance, a user could be searching for a door-closing
sound with a grinding noise that fits the movie ambiance and the visual
aspect of the door. In the case of music creation, they may be interested
in finding instrument loops in a certain tonality, at a specific tempo and
with different timbres. In order to locate sounds of interest, the user usu-
ally needs to inspect the results one by one, listening to some of them
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and judging their relevance. The process of finding the most appropriate
sounds can be very time consuming and fail to retrieve important sounds,
when interacting with large collections.

Users can narrow down the search by reformulating their queries by
using for instance facet-based and tag-based filters (Tunkelang, 2009).
When available, a user might find it very informative to explore the text
and tags accompanying the sounds in the results page. This can help
identify new terms for reformulating the query. Tag clouds that organise
and display popular tags from the results are particularly useful for that
purpose. The user can quickly find particular sub-topics in the search re-
sults (Sinclair & Cardew-Hall, 2008). Nonetheless, functionalities based
on textual metadata depend critically on the quality of the annotations,
which is often limited in collaborative collections. For this reason, content-
oriented methods that are based on the audio content itself, have increased
potential in the development of novel approaches to navigate search re-
sults.

To that end, one complementary feature that search engines can incor-
porate is audio-based SRC, which consists of grouping the results into
labeled clusters or categories. It allows the user to submit a weakly-
specified query and then explore the different themes that have been au-
tomatically extracted from the query results. Clustering engines can com-
plement the search by providing a faster way to retrieve relevant items,
facilitating topic exploration and preventing the overlook of information
(Carpineto et al., 2009). However, such systems depend on more than just
the clustering algorithm. In order to guide the user to locate relevant items
in the different clusters, meaningful labels should be assigned to each of
them. Moreover, the clustering is desirable to be performed online within
a short response time, therefore requiring high computational efficiency.
Finally, the clustering engine requires a graphical user interface that pro-
vides an intuitive way to navigate the clusters, e.g. by conveying visual
information.

SRC has been extensively studied in the context of web documents
(Carpineto et al., 2009; Zamir & Etzioni, 1999; Osiński, 2003; Mecca
et al., 2007; Sadaf & Alam, 2012) and images (Cai et al., 2004; Jing et al.,
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2006; Ben-Haim et al., 2006). Although many web search engines incor-
porating clustering do not exist anymore, Carrot2 (Stefanowski & Weiss,
2003) is probably one of the most popular remaining ones. It is open
source and still in active development. It can automatically cluster small
collections of web documents. It consists of a software component that
can be integrated with other software as an external component (with the
usage of an API). Several clustering algorithms are available, as well as
different ways to interact with the clusters. For instance, the clusters can
be displayed as a list of folders which content can be individually in-
spected as seen in Figure 7.1. Alternative cluster visualisations include a
Voronoi treemap (Balzer & Deussen, 2005) and pie-chart.

Another popular commercial web clustering engines is Yippy1 (for-
merly Clusty). It is probably the tool that is applied to the biggest size
of web indexed document available publicly. When submitting a query
to the search engine, many results are retrieved from the web. A list of
clusters can be explored in the same way we explore folders. Moreover,
it includes a certain hierarchy in the obtained clusters (Figure 7.2).

In the case of images, Google proposes a tool that can identify differ-
ent groups from the search results (Figure 7.3). A list of labels appear at
the top of the results, which allows to filter the results. Interestingly, when
adding one of the labels, the cluster labels get updated and provide new
ones that can correspond to more specific topics covered in the previously
selected cluster. The clustering method is not known, but it may probably
be similar to what is present by (Liu et al., 2007), which relies on approx-
imate nearest neighbor searchers for scalability and uses content-based
(image) features.

In the remaining of this chapter, we describe the development of an
audio-based SRC engine that can be integrated in the Freesound web-
site (Font et al., 2013a). In Section 2, we provide an overview of related
work. We then introduce our graph-based clustering approach and our
interface in Section 3. In Section 4, we compare the performance of dif-
ferent features taken from the literature, by using sound metadata and
ground-truth labels from manually-annotated datasets. Section 5 presents

1https://yippy.com/
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Figure 7.1: Screenshot of the publicly available web search results clus-
tering interface using Carrot2 requested with the “pandas” query.
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Figure 7.2: Screenshot of the the Yippy search engine requested with the
“pandas” query.
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Figure 7.3: Screenshot of the the Google image search engine requested
with the “pandas” query.
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an evaluation of the system with users performing a sound design or a
music-related task. We end the chapter with some concluding remarks.

7.2 Related work
In order to be able to organize and retrieve a large amount of poorly
labeled data, automatic annotation methods have been extensively ad-
dressed in the research community (Peeters et al., 2011; Herrera-Boyer
et al., 2003; Kim et al., 2010; Eronen & Klapuri, 2000; Tzanetakis &
Cook, 2002; Fu et al., 2010). The main requirement of these content-
based approaches is a reliable numerical feature that can represent the
content. Recently, techniques using Artificial Neural Networks have been
able to provide an alternative to the handcrafted features previously de-
veloped. Intermediate layers of pre-trained neural networks can serve as a
higher-level representation which can be used for clustering (Jansen et al.,
2017).

Clustering is a type of unsupervised classification which consists in
organising similar objects in groups called clusters. Regardless of the
clustering method, the content similarity measure involved is fundamen-
tal to the definition of a cluster. This similarity notion is often derived
from a feature space, on which a numerical distance or similarity is calcu-
lated. When clustering audio content, the features and distance measures
are often chosen carefully for a given specific task (Black & Taylor, 1997;
Martins et al., 2007; Niessen et al., 2013). However in the context of large
online collections, the content is very diverse, containing speech, musical
or environmental sounds. This makes the choice of features and distance
metric even more challenging. Among the different approaches for clus-
tering (Fahad et al., 2014; Xu & Tian, 2015), in the context of multime-
dia documents, density-based algorithms such as graph-based clustering
methods are particularly well designed for dealing with computational ef-
ficiency and the heterogeneous aspect of the data (Petkos et al., 2017).
Moreover, in the context of sounds, graph-based algorithms based on k-
Nearest Neighbors have been shown to be scalable and able to adapt to
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areas of different densities (Roma Trepat et al., 2015).
In content-based methods, the media is retrieved and/or ranked using

features derived from the content itself. This kind of methods makes use
of signal processing and machine learning techniques to extract informa-
tion from directly from the data. It has the advantage for instance to be
able to retrieve poor-labeled data for the which no one provided a precise
textual description. Moreover, it can provide a solution for the organi-
sation of large amount of audio content. There are two main types of
content-based methods. Some try to assign high-level concepts with the
use of classifiers for instance, while others attempt to extract meaning-
ful numerical vectors that can reflect low-level proprieties of the sounds.
The first type, that we refer as classification approaches can be used at a
pre-processing stage, in order to produce additional text metadata that
can be indexed and used by traditional text search engines. The sec-
ond, based on using feature spaces, can enable alternative methods for
the browsing and the exploration of sound collections. These techniques
often make use of a dimensionality reduction technique over numerical
features, and project the content into a small dimensional space where
similar sounds are close from each other. The user can locate a sound
of interest and then explore its neighborhood. Although not many com-
mercial tools propose this kind of alternative methods and rely only on
more traditional text-based search engines, in the research community,
different approaches and interfaces have been proposed. These different
approaches can be considered appealing to some, by providing interaction
methods that can make the process of browsing content more exciting and
joyful (Schedl, 2017). For instance, spaces conveying timbral character-
istics of the sounds enable quick exploration of collections (Tzanetakis
& Cook, 2001). The use of visualisation tools in browsing systems have
been shown to facilitate and encourage broader exploration (Wongsupha-
sawat et al., 2015). Some approaches rely on spectral features and organ-
ise the content into two-dimensional spaces. Rhythmic features modeled
from energy frequency band fluctuations are used in (Neumayer et al.,
2005a,b), combined with self-organizing map in order to provide an in-
teractive exploration of musical spaces according to features similarity of
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audio tracks. Freesound Explorer provides a visual interface for exploring
sounds in a 2-dimensional space (Font & Bandiera, 2017). It allows users
to perform text-based queries to Freesound, and see the results arranged
in the space. It uses t-SNE as a dimensionality reduction, learned using
spectral or tonality features. This way, sounds are self-organised accord-
ing to some sort of timbre or harmonic similarity. Additionally, clustering
identifies groups of similar sounds. Labels are assigned to each of the
clusters and displayed in the space to facilitate the exploration. Sonic
Browser proposes different ways to visualize and interact personal audio
collections using 2-dimensional spaces, trees or graphs, and dynamic slid-
ers filtering mechanism (Brazil & Fernstrom, 2003). In FastMap (Cano
et al., 2002), the authors propose to use multi-dimensional scaling in order
to discover underlying spatial structures of a set of data, from similarity
information between the data. This makes this approach more general by
being able to use low-level attribute, content metadata, or any underlying
similarity notion. Some researchers proposed to integrate audio features
with metadata into traditional search engine (Urbain et al., 2016). They
combine a code-book learning approach and acoustic features in order to
index content-based information into a search-engine. This enables fast
content-based similarity searches, as well as visualisation with a similar-
ity map. Clustering can be used in this feature spaces in order to automat-
ically extract groups of similar sounds or music (Neumayer et al., 2005b).
However, to our knowledge, this is the first study describing the integra-
tion of a sound clustering algorithm in a search engine. More recently,
approaches for the exploration and visualisation of data have been relying
on deep learning features trained on supervised tasks (Suh et al., 2017).
These features seem to have the advantage of capturing more high-level
characteristics of the signals, together with more low-level features. In
previous chapters, the use of deep learning features such as the one ob-
tained when training a VGGish network (Hershey et al., 2017) on large
a dataset such as AudioSet (Gemmeke et al., 2017), has been proven ef-
ficient for clustering purposes, producing clusters grouping semantically-
related sounds. In Chapter 5, we presented an approach that is able to
learn an audio representations that can capture high and low-level charac-
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Figure 7.4: Diagram representing the steps of our clustering engine.

teristics.

7.3 Proposed approach
Our clustering engine consists of several steps illustrated in Figure 7.4.
After collecting the results retrieved by the user’s query, (i) nearest neigh-
bor searches are computed for the top ranked results, (ii) a K-Nearest
Neighbors graph is created, (iii) a community detection algorithm assigns
each sound to one cluster with possible extra refinements, (iv) and fi-
nally the results are displayed with a visualisation. The method is avail-
able as a service and its integration within the Freesound search engine
is currently under development. The code is available at this repository:
http://omitted.for.blind.review. We describe the audio
features we will be using and comparing (Section 3.1), the graph-based
clustering method (Section 3.2), a refinement strategy for discarding in-
consistent clusters (Section 3.3) and the user interface of the system (Sec-
tion 3.4).

7.3.1 Audio features
In this work, we compare the performance of our clustering method using
three different sets of features. One set of manually selected features
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Feature sets Features

F1

spectral centroid / complexity / spread / energy
energyband high / skewness /flatness db / rolloff,
temporal decrease / spread / kurtosis / skewness /
centroid, logattacktime, strongdecay,
effective duration, zerocrossingrate,
tristimulus, mfcc, dissonance

F2 lowlevel features from the Essentia Freesound Extractor2

F3 embeddings from AudioSet pre-trained model3

Table 7.1: The different features compared in this work.

motivated from the literature (F1) (Peeters et al., 2011; Herrera-Boyer
et al., 2003; Kim et al., 2010; Eronen & Klapuri, 2000; Tzanetakis &
Cook, 2002), another set contains all of the lowlevel features available
from the Essentia Freesound Extractor (F2) (Bogdanov et al., 2013), and
the third one uses embeddings from a neural network model trained on
AudioSet (Hershey et al., 2017; Gemmeke et al., 2017) (F3). Table 7.1
details the different features.

Most of the traditional acoustic features (F1, F2) are computed on
frames of approximately 50 ms. These frame-based features are sum-
marised into a single feature vector, which ignores the temporal order. It
includes minimum and maximum values, mean and variance of the direct
features and of their first and second derivatives. The rest of the features,
e.g. logattacktime, consist of a single numerical value for an entire audio
clip. A dimentionality reduction is then performed using Principal Com-
ponent Analysis over the entire sound collection, to reduce these concate-
nated statistics and values into a feature vector with 100 dimensions. The
deep neural network embeddings (F3) are calculated on windows of ap-
proximately 1 second. These frame-based features are then aggregated
with the mean statistic only.
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7.3.2 Graph-based clustering
We use the same graph-based clustering method presented and motivated
in Section 4.3.1. In the following lines we give a brief reminder and some
additional information. In the graph-based clustering method, instead of
directly using the features as input of a clustering method, we construct
an intermediate representation of the data using a k-Nearest Neighbor
Graph (Dong et al., 2011). Each vertex represents a sound, and undi-
rected edges connect each sound to its k most similar according to the
euclidean distance. Then, we use a community detection algorithm based
on modularity optimisation for finding a partition of the graph (Blondel
et al., 2008). We use the Gaia library4 for performing nearest neighbor
searches with log2(N) for the value of k, where N is the number of el-
ements to cluster. Among the different reasons that motivates the usage
of such a graph-based method, one corresponds to its simplicity which
allows us to use some interpretable heuristics for modifying the graph or
its partition like discarding clusters of low quality.

7.3.3 Discarding low quality clusters
The amount of intra-cluster and inter-cluster edges (which are related to
the modularity definition (Newman & Girvan, 2004)) can be used for
defining an internal quality metric which is only based on data used by
the clustering algorithm. Since we use the same data representation for
the quality metric and for the clustering algorithm, it is not clear if it can
be used for automatically assessing the quality of a cluster in terms of
compactness and distinctiveness. In this work, we are interested in in-
vestigating its use as a confidence score for quantizing the quality of an
individual cluster, and possibly discard low quality clusters that should
not be presented to the user in the context of Search Result Clustering.
Our confidence score c of a cluster ranges from 0 to 1 and is defined as

4\url{https://github.com/MTG/gaia}
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following:

c =
number of intra cluster edges

total number of inter & intra cluster edges
(7.1)

This confidence score will be higher for clusters that are more coherent,
i.e., the sounds within a cluster are more similar to sounds within the
same cluster than to sounds from other clusters. In the case that many
of the elements of a cluster have edges to elements of other clusters, this
score will be lower. This score penalises clusters that are not compact and
distinct from other clusters. In this work, we investigate the use of this
simple internal metric (which does not make use of any external knowl-
edge about the data) as a confidence measure for discarding potentially
irrelevant clusters.

7.3.4 Selection of cluster representative examples
In order to enhance the ability of the users to quickly have an idea of what
each cluster contains, we aim at selecting representative audio examples
for each cluster. The examples are selected by relying on the concept
of centrality in each cluster in the graph. For each cluster, the corre-
sponding sub-graph consisting of all the sounds belonging to the cluster,
is considered. The degree of each node in its cluster is computed, which
corresponds to the number of intra cluster edges. Then, we consider as
representative examples, the nodes with highest degree in each cluster. In
our experiment, we limit to 7 the number of selected examples.

7.3.5 User interfaces
To allow the user to interact with the clusters, we propose two different
interfaces. One consists of a traditional facet filtering approach, where the
user can apply filters on the result to display only sounds from one clus-
ter. Figure 7.5 shows the modified Freesound search interface with the
added clusters facets. Three labels are displayed for each cluster which
correspond to the most occurring tags in the cluster. The second interface
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Figure 7.5: Page displaying the result of the query glass of the cluster
#1. Clicking on a cluster facet on the right applies a cluster filter. Three
labels are shown for each cluster, together with the number of sounds they
contain.

consists of a 2D visualisation of the k-Nearest Neighbor Graph, where
colors are used for representing clusters as shown in Figure 7.6. Sounds
can be played by hovering the mouse on the nodes. Moreover, clicking
on a node will highlight its neighbors in order to ease neighborhood ex-
ploration.

After performing a first user evaluation presented in Section 5, we
slightly modified the prototypes. These modifications include the addi-
tion of the selected representative examples. We make them available to
be listened to by adding a icon in the clustering facets which when being
hovered by the mouse, plays the corresponding selected examples one af-
ter the other. In addition, in the 2D visualisation, a waveform visualisation
was added when playing the sounds.
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Figure 7.6: The graphical 2D visualisation of sounds retrieved with the
query guitar. Each circle represents a sound. Placing the mouse on one
will play the associated sound. Clicking on it displays some information
at the top of the screen and highlights neighbor nodes.
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7.4 Feature performance comparison
In this section we show some comparative performance results of our ap-
proach using the different sets of features previously described. We per-
form two different evaluations: one using internal validation and another
using external validation. For the first one, we propose to leverage in-
formation from an existing sound sharing website to automatically eval-
uate the clustering performances at scale. We then perform a standard
evaluation which uses ground truth labels taken from manually annotated
datasets. One of the goals to perform these two evaluations is to validate
that our first evaluation that does not require known ground truth labels is
adequate for comparing the performance of different clustering methods.

7.4.1 Internal validation
We consider the Freesound database as a use case and we perform cluster-
ing on the search results of popular queries submitted by real users of the
platform. We focus only on sounds with duration from 0 to 10 seconds.
For a quantitative evaluation, we make use of the sounds’ metadata that is
provided by the creator of the content in the Freesound platform.

Evaluating a clustering automatically is a complicated task, and there
are different types of metrics that can be used (Manning et al., 2010).
Some of them are referred as internal metrics, and they are used when no
ground truth label is known (Liu et al., 2010). The Calinski-Harabasz
Index (CHI) (Caliński & Harabasz, 1974) evaluates the cluster valid-
ity based on the average between- and within-cluster sum of squares as
shown in this equation:

CH(k) = [B(k)/W (k)][(n− k)/(k − 1)] (7.2)

Where n corresponds to the number of data points, k to the number of
clusters, W (k) to the within cluster variation and B(k) to the between
cluster variation.

Instead of calculating this metric using the audio features used for
clustering, we make use of the user-provided tags associated with the au-
dio content as an external information. This allows us to evaluate the
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overall quality of a clustering, from a semantic perspective. From the tags
associated to the content, we derive a feature using a Vector Space Model
representation (Salton, 1989). This feature is a high-dimentional sparse
vector where a value of 1 in one dimension refers to the presence of a
specific tag. We only consider the 5000 tags that occur the most in the
overall Freesound collection. We then reduce the size of this vector to
100, by applying Latent Semantic Analysis, which can capture synonymy
relations (Deerwester et al., 1990). Due to the nature of tags, the validity
metric we use is not always accurate. In order to mitigate this problem,
we average this metric on clusterings performed on the results of the 1000
most popular queries in Freesound. In total, approximately 80k different
sounds were used in this evaluation. Figure 7.7 represents the evaluation
pipeline. The statistics are presented in Table 7.2. A discussion of the
results in given in Section 7.4.3.

7.4.2 External validation
As an additional evaluation, we also make use of an external validation
metrics, which relies on known ground truth labels. We exploit data gath-
ered within Freesound Annotator (Fonseca et al., 2017b) to construct
44 datasets comprising in total around 30k sounds and 215 different la-
bels. Labels are drawn from the AudioSet Ontology (Gemmeke et al.,
2017), which consists of a hierarchical taxonomy of 635 sound-related
categories. In our experiment, a dataset consists of one node in the tax-
onomy, and its labels are its direct children. This creates datasets of
different sizes and with different levels of specificity. For instance, one
broad dataset corresponds to natural sounds, containing the water, wind,
thunderstorm and fire classes. A more specific one contains only wa-
ter sounds, with the rain, stream, steam, waterfall, gurgling, and ocean
classes. All the datasets contain sounds with a duration lower than 10 sec-
onds and most of them contain only one salient source, which mitigates
the inconvenience of using a statistical aggregation over the frame-based
features. Among the popular metrics used for comparing dataset par-
titions, the literature suggests that Adjusted Mutual Information (AMI)
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Figure 7.7: Diagram representing the steps of our internal evaluation mak-
ing use of user-provided tags. The Calinski-Harabasz Index is calculated
between the labels corresponding to the obtained clusters and the features
derived from the sound tags. This evaluation is performed on the results
of the 1000 most popular queries performed by Freesound users.
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score (Vinh et al., 2010) is suited when the reference clustering (ground
truth) is unbalanced and there exist small clusters (Romano et al., 2016).
This corresponds often to what we find in collaborative collections where
the content is inconsistently distributed in terms of type and nature. For
evaluating the different sets of features with the different features, we
perform clustering on the datasets and measure the similarity between the
real partition (given by the ground truth labels) and the one given by the
clustering methods by computing the Mutual Information score adjusted
for chance (AMI), calculated as following:

AMI(U, V ) =
MI(U, V )− E{MI(U, V )}

max{H(U), H(V )} − E{MI(U, V )}
(7.3)

MI(U, V ) =
∑
i

∑
j

P (i, j) log(
P (i, j)

P (i)P (j)
) (7.4)

Where U and V are the two partitions to compare, H(U) and H(V ) their
associated entropy. P (i) and P (j) the probabilities that a point belongs to
cluster Ui or Vj respectively, P (i, j) the probability that a point belongs to
both cluster Ui and Vj from U and V respectively, andE{MI(U, V )} cor-
responds to the expected mutual information between two random clus-
terings. The Mutual Information metric (MI) quantifies the information
shared by the two partitions and therefore can be used as a clustering sim-
ilarity measure. When adjusted for chance, the metric takes a value of 1
for two identical partitions and the value of 0 for two randomly dissimilar
partitions. Table 7.3 shows some statistics of this score for the different
audio features.

7.4.3 Results
In both evaluations, AudioSet embeddings lead to the best clustering per-
formance. This shows that novel deep learning approaches can produce
semantically meaningful features that outperform traditional handcrafted
features for the unsupervised classification of sounds, which is in line
with our findings from Chapter 4. There is not any meaningful difference
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Features
CHI

no pruning pruning
mean std mean std

F1 3.36 5.87 3.88 7.25
F2 3.44 6.37 3.86 7.07
F3 4.29 6.82 5.29 11.06

Table 7.2: Clustering validity score (Calinski-Harabasz Index) using the
different feature sets. Mean and standard deviation is calculated on the
performance of the clustering of the results from the top 1000 most popu-
lar queries in Freesound. The pruning column corresponds to the validity
score when discarding the cluster with the lowest confidence score de-
fined in Section 3.3.

when applying manual feature selection over handcrafted features (F1)
motivated by results taken from the literature compared to using a large
set of low-level features (F2).

Our approach for discarding low quality clusters using the confidence
measure described in Section 3.3 shows little but consistent improvement
with all the features in both experiments.

Another conclusion is that our proposed internal validation which
makes use of accompanying tags provided by the users of the platform
can give similar results as an external validation using ground-truth labels.
This provides a valuable framework for evaluating clustering algorithms
in existing multimedia collections at scale, without needing to manually
annotate a large amount of data.

7.5 User evaluation
In this section, we present our user-centered design process on the devel-
opment of an interface for browsing sounds from large databases using
the proposed clustering engine. In this experiment, we use the AudioSet
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Features
AMI

no pruning pruning
mean std mean std

F1 0.16 0.08 0.18 0.10
F2 0.15 0.09 0.16 0.12
F3 0.20 0.10 0.21 0.11

Table 7.3: Average performance (AMI) across the different dataset with
the different features. An AMI close to 0 corresponds to a random parti-
tion while perfect matches gives 1 AMI. The pruning column corresponds
to the performance when discarding the cluster with the lowest confidence
score defined in Section 7.3.3.

features (F3), which achieved the best performance in our comparative
performance evaluation. We use our interface prototypes as technology
probes to observe their use in a real context, to evaluate their functionali-
ties and to inspire new ideas (Hutchinson et al., 2003).

7.5.1 Methodology
We performed 2 experiments in an iterative fashion. We first evaluated our
system using the first interface prototype described in Section 3.4. Then,
we included the modifications previously described and repeated a second
user experiment. Both experiments were performed with 4 different users
that are experienced with audio and sound design tasks, which is sufficient
for detecting a large amount of usability problems (Nielsen, 2000). All
the participants were presented with the two searching tools (clustering
facets filtering and 2D visualisation) presented in Section 3.4. The first
task consisted in gathering all the audio content needed in order to build
the soundtrack of a short video, available at: https://vimeo.com/
333837958. This video was chosen because it was short but presenting
a lot of variety of elements to sonify. The original sound was removed
from the video. The second task was musically oriented. The users had
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to listen to short music loops, and asked to gather all the content needed
to be able to rebuild them in their own way. Loops were selected from
commercial music, including a wide variety of genres and instruments
sounds. Both tasks can be considered as more searching tasks rather than
exploratory.

Some guidelines were shown to the participants, together with verbal
explanations given by the examinator who was present during the entire
experiment. At the end of the task, they were provided with a question-
naire containing some usability and engagement questions. Finally, semi-
structured interviews were carried out, including open-ended questions as
well as specific questions related to observed behaviors during the per-
formance of the task. This enables discussion using thematic analysis in
order to identify emerging themes from participants’ answers.

7.5.2 Results and discussion
All the participants started by watching the video and noting down the
concepts they would then look for within the audio collections. Then,
they started to use the search engine to look for the identified concepts
needed for sonifying the video or the instruments used to reproduce the
music loops. After entering a query, users often had a quick look at the top
results. They explained that it allowed them to figure out if the content
retrieved was the one they were expecting. They then had the choice
to either reformulate their query, or explore the retrieved results. They
found particularly useful the labels associated with each clusters in order
to identify what kind of sounds were present in the results and what type
of content each cluster contained. They were either applying a cluster
filtering to then browse the results in the retrieved sounds, or they would
use terms from the cluster labels to reformulate their query.

Some participants complained that the cluster labels were sometimes
inappropriate, because they contained too broad concepts, or they were
very similar for different clusters. In these cases, it was hard to under-
stand what type of content each cluster contained. Nevertheless, the 2D
visualisation was then particularly helpful. The participants were often
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listening to many sounds in a short amount of time thanks to the the fact
that they only needed to hover the mouse on different nodes to start hear-
ing some sounds. Whereas in the flat ranked list, they would have to
manually trigger the players by clicking many times. In the 2D visualisa-
tion, their strategy was to first listen to a few dispersed sounds to quickly
get an idea of how the sounds were organised in the space and what type
of content was present in each cluster. Then, they would start explor-
ing specific regions of interest, until they satisfy their need by retrieving
one or several relevant sounds. In addition, the users were often search-
ing in a sound’s neighborhood. They explained that they wanted to find
some slightly different variations of a relevant sound they already located.
However, understanding what the dimensions were capturing in the space
was difficult. One participant reported that the graph representation of the
sound results was failing for instance to reflect timbral characteristics of
the sounds in a clear way. Moreover, even if the graph was presenting a
clear structure, it was not easy to understand to what it was correspond-
ing to and to locate all the relevant content. As a solution, a participant
wanted to be able to select any retrieved sound from the ranked list and
locate it in the 2D visualisation. This way, he explained that he could
easily switch from one interface to the other, allowing him to efficiently
combine the two interaction approaches. Moreover, several users com-
plained that in the 2D visualisation, no labels were presented, and it was
therefore hard to associate the clusters from one interface to the other. As
a solution, the idea of adding label information for each cluster in the 2D
visualisation was discussed.

The clustering engine was not always beneficial when the participants
were using precise queries containing multiple words. In the context of
sound design for example, they explained that they often know exactly
what they need. And therefore they usually formulate a precise text query
retrieving very specific content. However, one drawback is that sounds
that would not present the query terms as metadata would not be retrieved.
A solution to deal with bad recall performance of the system would be to
use the audio-based representation to expand the retrieved results with
sounds that are similar to the one retrieved. In its current state, the proto-
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type only applies clustering on the retrieved results, but does not include
sounds that could have been relevant, but were missed to be retrieved
by the text-based search engine. Using the audio-based features for ex-
panding the retrieved results would be interesting to study for queries that
retrieved very few results.

Some participants of the first experiment criticised the fact that the
2D visualisation did not provide any representation of the waveform or
any time-related information regarding the audio clips. This made it hard
to explore some results, as many of the users actively use waveforms in
order to identify for instance if a foreground sound would appear at some
time in the audio clip. For that reason, in the 2D visualisation, many par-
ticipants were skipping some audio clips because the main acoustic event
was not starting at the beginning of the clip. Moreover, some partici-
pants said that they often use the waveform representation to assess some
characteristics of the sounds, such as its dynamics, or the level of back-
ground noise present in the audio clip. Displaying the waveform with a
time progression cursor of the current sound being played is therefore a
key feature that would make the 2D visualisation more useful. However,
the waveform visualisation that was added in the 2D visualisation was not
very useful for the participant of the musically related task. Contrary to
the first experiment, where participants were searching for environmental
sounds, in the second experiment, most of the retrieved content was con-
sisting of instrument samples or loops, that did not have multiple sources
that would occurring later within the clip. Often, musical content is well
segmented because users in Freesound upload loops or samples that can
be sometimes directly used without further edition processing.

In its current state, the clustering algorithm was able to discover dis-
tinctive and coherent groups in search results for many given queries.
However, in some cases, the quality of the clustering is still low, which
made some users wasting time exploring bad clusters. Moreover, they ex-
plained that spending time exploring non-relevant clusterings could make
them lose trust in the system, and therefore make them not use it again.
It was discussed in the interview the idea of reporting an estimate of the
quality of the clustering, so that the user would be aware of its poor result
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and would be more confident while using the system. Using a confidence
measure such as the one proposed in Section 3.3 could be a solution, or
using directly the modularity of the graph partition. Our evaluation of the
strategy for discarding low quality clusters in Section 7.4 indicates that
such measures can reflect, to some extent, the quality of the clustering.

For the second experiment, we added the possibility for the users to
listen to sound examples extracted from the clusters. The users were
asked if in their opinion the audio examples seemed to correspond to the
cluster labels. Some users answered that the examples were not always
corresponding to the labels. Moreover, they argued that the examples
were distracting them sometimes, making them loose time. However,
they said that the examples were more useful to identify if a cluster could
be relevant, which allowed for instance for one participant to know if it
was worth going to explore the 2D visualisation. Finally, one participant
explained that he was sometimes getting frustrated because he found one
of the examples relevant for his task, but could not find a way to easily
have access to it for downloading it.

During the first experiment, it was commented by one user that the
way the clustering facets were applied was maybe not appropriate. For
the two experiments, the clustering was performed on the results obtained
after any filtering process. This means that if a user applies a traditional
facet filter, such as filtering by tag or samplerate, the system would make
the clustering facet disappear and compute a new clustering on the new
returned results. While the main idea of this behavior was to be able pro-
vide more possibilities of use of the clustering engine, by enabling the
user to get a huge amount of different clustering results by simply com-
bining filters, it seemed that this behavior could make the system a bit
cumbersome and inconsistent. Indeed, a user that is used to the function-
ing of facets, would expect that clustering facets would work the same
way as the classical facets. This means that combining facets is possible,
and that applying them together applies several filter over the facets’ con-
tent. This idea of having the same behavior for the clustering facet as the
classical ones was then discussed more in depth with the participants of
the second experiment, since it was something that was overlooked dur-
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ing the first. Most of the users agreed that what would make more sense
to users would be to have the clustering facet working the same way as
the classical facet. Some proposed that the ability to cluster results af-
ter applying filtering with traditional facets could be enabled by adding a
button for requesting the re-computation of the clusters.

7.6 Conclusion
In this chapter we present a Search Result Clustering approach for en-
abling users to browse large online sound collections. To our knowl-
edge, it is the first time that such an approach is applied in the context
of sounds retrieval. We perform audio clustering using a graph-based ap-
proach which is relatively fast to compute and has the advantage of not re-
quiring to specify the number of clusters in advance. We carried two eval-
uations for comparing the performance of different features. The first one
uses data of an online collection for accessing the performances at scale,
whereas the second makes use of ground-truth labels from a reduced-size
manually annotated collection. Performing two evaluations enables the
performance comparison to get more credibility. Moreover, the results
suggest that using tag metadata associated with the audio files can enable
to perform an evaluation that can give comparable results as using man-
ually assigned ground truth labels. This type of automatic evaluation can
facilitate the development of Search Result Clustering approaches in other
contexts, where an automatic evaluation at scale can be obtained without
the need of manually defining ground truth labels or partitions. Results
correspond to what has been observed in Chapter 4, where we compared
the performance of different types of features. Embeddings obtained by
training neural networks on a supervised classification task with large
amount of data can be used as a feature that increases the performance
of the clustering compared to more traditional handcrafted features.

We also investigated the use of methods for discarding low quality
clusters based on the graph structure and its partitions. An heuristic in-
volving the ratio of intra-cluster edges and the total number of edges in
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each cluster was able to improve the performance of the clustering in the
two automatic evaluations, which shows that the proposed approach is
able to discard clusters of low quality. Moreover, it suggests that structure
of the graph and its partition can be related to the quality of the partition,
which can for instance enable methods for automatically assessing the
quality of a clustering partition without relying on any extra information.

Finally, the system was integrated into the Freesound search page,
where the users can interact with the clusters using two different inter-
faces. One consists on applying filters on the retrieved results, and the
other involves a 2D visualisation of a graph representation of the sounds.
With evaluate the system in the context of real-world sound design and
music making tasks. Our results suggest that Search Result Clustering
can assist the browsing of large sound collections. Interesting feedback
was gathered which will guide future development of the clustering en-
gine and its integration within the Freesound platform. Furthermore, the
methodology followed in this work provides a valuable framework for
developing and evaluating clustering engines in the broad area of multi-
media content retrieval. As a result to these experiments, we implemented
a new version of the interfaces. Since users showed interest in navigating
from the ranked list interface to the 2D visualisation, we first decided to
embed the graph visulisation in a modal on the same page as the search
engine is on. This would allow moving from one visualisation to the other
in a smooth way. Then, we added a functionality in order to directly lo-
cate a cluster in the graph visulisation from the clustering facets. Clicking
on a cluster facet locate button, opens the graph visualisation and hilight
the desired cluster. As it was discussed during the interviews with some
users, we added some labels in the 2D visualisation in order to facilitate
the identification of what each cluster corresponds to. The current state
of the interfaces are presented in Figure 7.8 and Figure 7.9.
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In this chapter, we start by providing a summary of the main contri-
butions presented in this thesis. We then discuss its findings and high-
light perspectives on new methods and research opportunities identified
as promising for the organization and retrieval of audio content. The dis-
cussion is structured following the list of research questions:

(i) How can we make best use of sound collaborative collections in
order to build high-quality datasets for supporting advances in ma-
chine learning?

(ii) To what extent and in what way can collaborative collections be
directly used to learn audio representations that are useful for clas-
sification tasks?

(iii) How do deep learning features perform for unsupervised classifica-
tion with a wide variety of sounds?

(iv) How feasible and valuable is Search Results Clustering for retriev-
ing content from collaborative sound collections?

8.1 Summary of contributions
This thesis contributes to the advancement of the state of the art from
different perspectives in order to improve the retrieval of sounds in large
collaborative collections. The main contributions of this thesis can be
summarized as follows:

• It identifies ideal characteristics of high-quality datasets that can
contribute to advances in machine listening, and proposes a method-
ology for building such datasets using data from online sound col-
lections.

• It contributes to the creation a number of datasets that have a great
impact in the research community, by allowing researchers to de-
velop and evaluate auto-tagging models. These models are of great
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importance for collaborative sound collections, which suffer from
being non-uniformly annotated. These models can generate new
annotations that can be indexed in order to improve the retrieval
system.

• It proposes novel manual annotation tools that successfully enhance
the ability of users to understand and adopt large taxonomies. This
contributes to obtain better datasets, as well as facilitating the im-
provement audio-related taxonomies, by potentially democratizing
their usage, allowing them to be used by a wider audience and to be
kept under constant scrutiny.

• It proposes successful methods for learning audio representations
by taking advantage of sounds and their metadata. Given the enor-
mous amount of online data and its constant growth, its complete
annotation remains a big challenge. The developed approaches can
take advantage of the abundance of data, without needing to build
high-quality datasets. The learned representations can serve as a
base for many classification tasks, including auto-tagging and clus-
tering, which can eventually improve the retrieval of sounds.

• It provides a number of methodologies to compare the performance
of different features and methods for the unsupervised classification
of sounds. This allows us identifying what features and methods are
appropriate for clustering a wide variety of sounds.

• It provides a Search Results Clustering method applied to sounds
and integrated into Freesound, which has been shown to improve
the retrieval of sounds. The system is planned to be deployed in the
platform and used daily by thousands of users.

The research carried out in this thesis has been published in the form
of several papers in top international conferences. The outcomes of Chap-
ter 2 have been published in a conference paper (Fonseca et al., 2017a)
and in a pre-print journal paper (Fonseca et al., 2020a). The investigation
presented in Chapter 3 has been published in a conference paper (Favory
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et al., 2018). Furthermore, the outcome of the research carried out in
Chapter 5 has been published in a conference (Favory et al., 2020a). The
outcomes of Chapter 6 have been submitted to a conference (Favory et al.,
2020b). Finally, the work presented in Chapter 7 has been published in a
conference (Favory et al., 2020c). The full list of the author’s publications
is provided in the Appendix.

8.2 Building high-quality datasets
The creation of datasets by leveraging data from the Freesound database
was one of the contributions of this thesis with the greatest impact in the
research community. Chapter 2 highlights the ideal characteristics of such
datasets, meeting the requirements of a wide range of applications related
to machine listening and music information retrieval. In addition, we fo-
cus on investigating the problem of manual annotation of audio content.
Due to the growing amount of available data, exhaustive annotation re-
quires many human contributors, which is, for large datasets, commonly
addressed through crowdsourcing (Gemmeke et al., 2017; Law et al.,
2009; Deng et al., 2009; Drossos et al., 2020). However, instead of re-
lying on external crowdsourcing platforms, such as Amazon Mechanical
Turk or Figure Eight (formerly Crowdflower), we decided to implement
and maintain our own platform. Reasons for that include the fact that the
requirements of the annotation process we designed could not be met by
existing platforms. For example, we acquired high-quality annotations,
using a very specialized task that requires experts and a custom interface.
In addition, the use of external crowdsourcing platforms is not sustain-
able as a long-term annotation solution, which is what is aimed at in the
case of Freesound. To give an idea, we have been collecting contributions
from more than 500 users for over 3 years before releasing the FSD50K
dataset, gathering over 300k contributions. We were able to design our
own instructions, test cases, prioritization scheme to acquire data, and
thus build datasets faster. Notably, were able to design experiments to
investigate novel annotations tools.

148



Chapter 8. Conclusions

The latter was the focus of Chapter 3, where we explored the feasi-
bility of more advanced annotation tasks in a collaborative context. Pro-
ducing consistent and exhaustive annotations for generic datasets calls for
tools for handling large numbers of categories. In particular, we decided
to concentrate on facilitating the exploration and use of predefined sets of
categories taken from large taxonomies.

This research has allowed us to identify several opportunities for im-
proving data collection in sharing platforms. As an alternative to annotat-
ing the content outside the original sharing platform, the tools developed
during the course of our research can help the annotation early-on at up-
load time, if included directly in the platform. For example, users could
annotate their content using a pre-defined set of categories. At upload
time, the user could be prompted with a set of categories recommended
based on user-specific tags. The recommended categories could then be
refined or made more precise using a tool like the Refinement Annotator,
which produced consistent annotations between distinct users, as shown
in Chapter 3.

Furthermore the Manual Annotator provides an intuitive interface to
search and retrieve categories from large taxonomies, and could be useful
in the exploration of sounds. An intuitive interface for category explo-
ration democratizes the use of taxonomies, allowing them to be used by
a wider audience and to be kept under constant scrutiny. This would fa-
cilitate the maintenance of taxonomies, which need to constantly adapt
to a changing landscape of sounds. For example, if a new instrument is
invented or an unknown animal sound is recorded, taxonomies should be
maintained in a way that quickly identify and integrate these new ele-
ments.

Promising directions of research towards improving the automatic
organization of audio content, which were not explored in this thesis,
include active learning (Kholghi et al., 2018), lifelong learning (Parisi
et al., 2019), and never-ending learning (Mitchell et al., 2018). Rather
than annotating content comprehensively, active learning concentrates on
selecting those cases whose annotation is more informative and has a
greater impact on classification performance. This could potentially lead
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to significant reductions in the number of sounds that need to be anno-
tated. Similarly, lifelong and never-ending approaches could be used to
construct a content-based auto-tagging system that learns continuously
throughout time. This system could be used to recommend tags, in a sim-
ilar way it is done in Freesound using a purely tag-based recommendation
system (Font et al., 2013b). If a user accepts or discards some of the rec-
ommended tags, the model updates itself to provide better predictions and
recommendations in the future. More sophisticated approaches could also
take advantage of other behaviors of the users of online platforms. Search,
listen and download history can provide relevance feedback, which could
be used to improve the search experience, as proposed by Qi et al. (2020).
Social features such as ratings, comments, number of downloads provide
rich information and could be also taken into account for other aims, such
as automatic quality assessment.

8.3 Audio representation learning
Deep neural networks are able to learn valuable audio features when
trained with a large amounts of annotated data. As previously discussed,
obtaining high-quality datasets is difficult and time consuming. As an
alternative to supervised methods, unsupervised and self-supervised ap-
proaches can make use of larger amounts of data, by using content that
does not need to be annotated. There is a mid point between highly-
curated datasets and non-annotated datasets which is the data arising from
collaborative collections. This data and its accompanying metadata are
obtained directly from the platforms, without post-processing. Having
models that take advantage of such content without the need for resource-
intensive curation would potentially increase the amount of data available.
In Chapter 5 and 6, we introduced methods for learning audio features,
by aligning the learned latent representations of audio and associated tags
taken from Freesound. The popularity of contrastive learning has grown
substantially in the last years (Le-Khac et al., 2020). Triplet loss is one
of the most popular metric learning approaches to learning content fea-
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tures (Weinberger & Saul, 2009). However, sampling informative triplets
that are crucial to the learning process requires significant effort (Won
et al., 2020). Moreover, this approach involves triplets of data points in
the formulation of the loss, possibly missing information about relation-
ships between all members within a mini-batch. The recently introduced
infoNCE (Oord et al., 2018) or NT-Xent (Chen et al., 2020) losses over-
come these difficulties by involving all the data points within a mini-batch
when training. Employing these loss functions in a self-supervised way
has led to powerful image and audio representations learning, without the
need for annotated data (Chen et al., 2020; Fonseca et al., 2020b). We
investigated the use of this type of losses in an heterogeneous setting,
where we make use of two associated modalities: audio and tags. We
demonstrate that it is possible to leverage the accompanying tags in order
to learn high-level features in a relatively straightforward way. Moreover,
in order to learn a feature that reflects both semantic and low-level acous-
tic characteristics, we combine contrastive learning with a reconstruction
objective by employing an autoencoder architecture.

Our results are promising, sometimes in par with the state-of-the-art
deep features for audio classification tasks. Furthermore, the embed-
dings obtained when using the reconstruction objective are more corre-
lated with acoustic features, making the learned embedding suitable for a
larger number of tasks. As an example, using the reconstruction objective
led to improvements in musical instrument classification.

Regarding the tag-based model, the multi-hot encoding tag represen-
tation given as input hinders generalization to terms unseen during train-
ing and is susceptible to the curse of dimentionality, as the size of the
vocabulary increases. We therefore proposed the use of pre-trained word
representations combined with a self-attention mechanism in order to
learn aggregated and contextualized tag representations (Chapter 6). The
resulting audio embeddings reached performances comparable to the pre-
vious approach, with potential for improved semantic generalization.

The idea of generalization is however not explored in this manuscript
and remains an open direction of research. For example, we could eval-
uate the performance of the learned audio embeddings on different tasks,
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e.g. zero-shot learning (Choi et al., 2019; Schonfeld et al., 2019). As
another promising direction of research, contrastive learning with hetero-
geneous encoders can be augmented by including additional information,
e.g. text descriptions instead of tags. This would make the approach
more suitable when using data from various other online platforms, such
as YouTube, which do not employ a tag-based annotation system. In this
case, relying on more sophisticated text-based models, such as transform-
ers (et al., 2017), can be beneficial, since extracting semantic information
from text is likely to be much harder than doing so from tags.

The idea of combining different sources of data could be extended to
the use of distinct modalities. As such, we believe that associating dif-
ferent multimedia modalities, such as video, could bring about important
contributions in representation learning, potentially serving as a base for
many applications. For instance, recent approaches attempt to learn rep-
resentations by combining audio and image data (Arandjelovic & Zisser-
man, 2017; Cramer et al., 2019; Surís et al., 2018), while other approaches
combine video and text (Aytar et al., 2017; Sun et al., 2019). Since our ap-
proach learns through aligning latent representations, it has the potential
to learn from visual, audio and text correspondences. Such a multi-modal
approach could have a significant impact in different fields, making this
an interesting line of future research.

8.4 Feature performance for clustering
In Chapter 4, we aimed at identifying which type of audio features is
the most suited for clustering sounds from large and diverse online sound
collections. To this end, we compare the performance of five sets of audio
features, using two different clustering algorithms. In addition, in Chapter
7, we conducted an evaluation of three sets of features at scale, in the
context of Search Results Clustering.

Features targeted for classifying the wide variety of sounds available
in online collections such as Freesound are not so common, i.e. features
and systems are usually designed with a specific purpose in mind. More-
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over, the performance of features for unsupervised sound classification
are rarely reported in the literature. Even though deep neural network em-
beddings are believed to perform well in this context, we wanted to clarify
their merit when clustering diverse types of sounds. Our experiments indi-
cate that embeddings trained with large datasets annotated based on large
taxonomies, such as AudioSet, lead to superior clustering performances
more often than the competing methods. Self-supervised techniques em-
ploying, for instance audio and visual associations, also provided good
features (OpenL3). However, the latter did not appear to perform as well
as features learned from large annotated datasets. In addition, our results
suggest that deep learning features have the potential to yield better results
if learned based on and applied to data from more specialized domains.
As an example, features learned exclusively with environmental sounds
tend to produce better clustering performance in this specific scope. This
can be important in the context of Search Results Clustering, where fea-
tures learned with different datasets could be selected according to the
query entered by the user (e.g., music related or environmental sounds).

An essential step in proposing features for clustering is to have a sim-
ple and reliable way of evaluating them. Therefore, in Chapter 7, we
propose the use of tag metadata from Freesound to evaluate clustering at
scale, avoiding the need for external ground truth information. This ap-
proach was able to mirror the results obtained with the external validation
based on ground truth data, although a more extensive comparison would
be informative. This evaluation approach allows researchers from other
fields to assess their content-based features and clustering performances
at scale, using multimedia data with the associated tags and descriptions.

8.5 Search Results Clustering
In this thesis we investigated the use of Search Results Clustering (SRC)
for helping users to browse large online sound collections. To our knowl-
edge, it is the first time that such an approach is applied in such context.
We perform audio clustering using a graph-based approach that is rela-
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tively fast to compute and does not impose the use of a predefined num-
ber of clusters. The results indicate that SRC can significantly improve
browsing of large sound collections. In addition to the clustering algo-
rithm, we complement the system with several user interfaces, which al-
low the users to interact with the clusters using (i) facets to filter the results
with content from a specific cluster, and (ii) through an exploratory inter-
face that displays a nearest-neighbors graph in an intuitive 2-dimensional
space. The system was evaluated in the context of real-world sound de-
sign and music making tasks.

On the one hand, our experiments indicate that strategies to improve
sound retrieval can significantly improve the precision and relevance of
the search results. On the other hand, the users’ knowledge and under-
standing of the content of the collection. The former refers to the fact that
the proposed strategies narrow down the number of results, allowing the
users to easily retrieve content that would otherwise be missed because it
would not appear as a top result. The latter refers to the use of clustering
facets and their labels, allowing the users to adjust and expand their vo-
cabulary towards that of the collection, and so reformulate their queries
to better express their needs. In addition, the 2D visualisation tool pro-
vides a fast means of exploring large sets of results, while capturing the
structure and relationships between the obtained clusters.

According to our internal log history, Freesound serves more than
200k queries a day, corresponding to more than 3 queries per second.
Therefore, integrating SRC into Freesound has the potential to signifi-
cantly impact the creative needs of a large number of users. However, the
integration of SRC at such a scale raises important computational chal-
lenges. As a consequence, the successful deployment of SRC calls for
significant engineering efforts into making its execution scalable.

Clustering also has the potential to speed up the manual annotation
process by, for instance, allowing the user to annotate only a single or
a few sounds per cluster. The system could then take advantage of this
information by extrapolating those annotations to other sounds within the
cluster. On one hand, we showed that clustering methods improve sound
retrieval. On the other hand, we demonstrated how approaches that fa-
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cilitate manual annotation promote the creation of high-quality datasets.
Combining the two strategies can potentially lead to novel active learning
methods that can save annotation efforts (Shuyang et al., 2017).
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