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Abstract

This thesis addresses the problem of optimal management of water resources in inland
navigation networks from a control theory perspective. In particular, the main objective
to be attained consists in guaranteeing the navigability condition of the network, i.e.,
ensuring that the water levels are such that vessels can travel safely. More specifically,
the water levels must be kept within an interval around the setpoint. Other common
objectives include minimizing the operational cost and ensuring a long lifespan of the
equipment. However, inland navigation networks are large-scale systems characterized
by a number of features that complicate their management, namely complex dynamics,
large time delays and negligible bottom slopes.

In order to achieve the optimal management, the efficient control of the hydraulic
structures, e.g., gates, weirs and locks, must be ensured. To this end, a control-oriented
modeling approach is derived based on an existing simplified model obtained from the
Saint-Venant equations. This representation reduces the complexity of the original
model, provides flexibility and allows to coordinate current and delayed information
in a systematic manner. However, the resulting model formulation belongs to the class
of delayed descriptor systems, for which standard control and state estimation tools
would need to be extended. Instead, model predictive control and moving horizon es-
timation can be easily adapted for this formulation, as well as being able to deal with
physical and operational constraints in a natural manner.

Due to the large dimensionality of inland navigation networks, a centralized im-
plementation is often neither possible nor desirable. In this regard, non-centralized
approaches are considered, decomposing the overall system in subsystems and distribut-
ing the computational burden among the local agents, each of them in charge of meeting
the local objectives. Given the fact that inland navigation networks are strongly coupled
systems, a distributed approach is followed, featuring a communication protocol among
the agents.
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Despite the optimality of the computed solutions, state estimation will only be ef-
fective provided that the sensors acquire reliable data. Likewise, the control actions
will only be applied correctly if the actuators are not impacted by faults. Indeed, any
malfunction can lead to an inefficient management of the system. Therefore, the last
part of the thesis is concerned with the design of supervisory strategies that allow to
detect and isolate faults in inland navigation networks.

All the presented modeling, centralized and distributed control and state estimation
and fault diagnosis approaches are applied to a realistic case study based on the inland
navigation network in the north of France to validate their effectiveness.

Keywords: inland navigation networks, large-scale systems, time-delay systems,
Saint-Venant equations, control-oriented modeling, model predictive control, moving
horizon estimation, system partitioning, distributed control and state estimation, fault
diagnosis.

viii



Résumé

Cette thèse contribue à répondre au problème de la gestion optimale des ressources
en eau dans les réseaux de navigation intérieure du point de vue de la théorie du contrôle.
L’objectif principal à atteindre consiste à garantir la navigabilité des réseaux de voies
navigables, c’est à dire, à veiller à ce que les niveaux d’eau de chaque partie des réseaux
soient tels que les bateaux puissent naviguer en toute sécurité. Plus spécifiquement, les
niveaux d’eau doivent être maintenus dans un intervalle autour de points de consigne.
Parmi les autres objectifs de gestion, il est nécéssaire de veiller à la réduction des coûts
opérationnels et la longue durée de vie des équipements. Lors de la conception de lois
de contrôle, les caractéristiques des réseaux de voies navigables doivent étre prises en
compte, à savoir leurs grandes dimensions, leur composition (biefs interconnectés), leurs
dynamiques complexes, des retards importants et variables, et parfois l’absence de pente.

Afin de réaliser la gestion optimale de réseaux de voies navigables, le contrôle effi-
cace des structures hydrauliques, par exemple des portes, des déversoirs et des écluses,
doit être assuré. À cette fin, une approche de modélisation orientée contrôle est dérivée
d’un modèle simplifié existant, obtenu à partir des équations de Saint-Venant. Cette
représentation réduit la complexité du modèle d’origine, offrant de la flexibilité et per-
mettant de coordonner les informations actuelles et retardés de manière systématique.
Cependant, la formulation du modèle obtenue appartient à la classe des systèmes de
descripteurs retardés, pour lesquels les outils de contrôle standard et d’estimation d’état
doivent être étendus. La commande prédictive MPC et l’estimation d’état sur horizon
glissant MHE peuvent être facilement adaptés à cette formulation, tout en permettant
de gérer les contraintes physiques et opérationnelles de manière naturelle.

En raison de la grande dimensionnalité des réseaux de voies navigables intérieures,
une mise en œuvre centralisée n’est souvent ni possible ni souhaitable. À cet égard,
les approches non centralisées sont considérées, décomposant le système global en sous-
systèmes et répartissant la charge de calcul entre les agents locaux, chacun d’entre eux
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chargé de garantir les objectifs locaux. Compte tenu du fait que les réseaux de navigation
intérieure sont des systèmes fortement couplés, une approche distribuée est proposée,
incluant un protocole de communication entre agents.

Malgré l’optimalité des solutions calculées, l’estimation d’état n’est efficace que si
les capteurs acquièrent des données fiables. De même, les actions de contrôle ne sont
appliquées correctement que si les actionneurs ne sont pas impactés par des défauts.
Toute erreur peut entraîner une gestion inefficace du système. Par conséquent, les
dernières contributions de la thèse concernent la conception de stratégies de supervision
permettant de détecter et d’isoler les pannes des équipements hydrauliques.

Toutes les approches de modélisation, de commande centralisée et distribuée,
d’estimation d’état et de diagnostic de pannes présentées sont appliquées à une étude de
cas réaliste basée sur le réseau de voies navigables du nord de la France afin de valider
leur efficacité.

Mots-clés: réseaux de voies navigables, systèmes à grande échelle, systèmes à re-
tard, équations de Saint-Venant, modélisation orientée contrôle, commande prédictive,
estimation d’état sur horizon glissant, partitionnement de systèmes, commande et esti-
mation d’état distribuées, diagnostic de pannes.
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Resum

La present tesi versa sobre el problema de la gestió òptima dels recursos hídrics en
vies de navegació interior des de la perspectiva de la teoria de control. Concretament,
l’objectiu principal radica en garantir la condició de navegabilitat del sistema. Dit d’una
altra manera, es vol garantir que els nivells d’aigua siguin tals que les embarcacions
puguin navegar-hi de forma segura. Aquest objectiu s’assoleix mantenint els nivells a
l’interior d’un interval construït al voltant del punt d’operació. Altres objectius comuns
en aquest context aspiren a minimitzar els costos associats a l’operació dels equips, així
com a prolongar-ne la seva vida útil. Ara bé, les vies de navegació interior són sistemes a
gran escala caracteritzats per dinàmiques complexes, grans retards temporals i pendents
negligibles, aspectes que en dificulten la gestió.

Per tal d’assolir la gestió òptima, s’ha de garantir un control eficient de les es-
tructures hidràuliques tals com comportes, dics i rescloses. Amb aquesta finalitat, es
deriva un modelat del sistema orientat a control basat en un model existent simplificat,
obtingut a partir de les equacions de Saint-Venant. Aquesta nova representació redueix
la complexitat del model original, proporciona flexibilitat i permet coordinar informació
actual i retardada de manera sistemàtica. Malgrat això, la formulació resultant pertany
a la classe de sistemes descriptors amb retard, per als quals les tècniques de control i
d’estimació estàndards necessiten ser esteses. En canvi, el control predictiu basat en
models i l’estimació d’estat amb horitzó lliscant es poden adaptar fàcilment a la formu-
lació proposada. A més, són capaços de tractar amb restriccions físiques i operacionals
de forma natural.

Degut a les grans dimensions de les vies de navegació interior, una implementació
centralizada no resulta, tot sovint, ni possible ni desitjada. Per tal de pal.liar aquest
problema, es consideren mètodes no centralitzats. D’aquesta manera, es descompon el
sistema global en subsistemes i es distribueix la càrrega computacional del problema
centralitzat entre els agents locals, de manera que cadascun d’ells s’encarrega de fer

xi



complir els objectius locals. En tant que les vies de navegació interior són sistemes
fortament connectats, se segueix un plantejament distribuït, incloent un protocol de
comunicació entre els agents.

Malgrat la optimalitat dels resultats que les estratègies proposades puguin propor-
cionar, l’estimació d’estat només serà efectiva a condició que els sensors proveeixin infor-
mació fiable. Igualment, les accions de control únicament es podran aplicar correctament
si els actuadors no estan afectats per fallades. En efecte, qualsevol avaria pot conduir
a una gestió ineficaç del sistema. És per aquest motiu que la darrera part de la tesi
tracta sobre el disseny d’estratègies de supervisió, que permetin detectar i aillar fallades
en vies de navegació interior.

Tots els resultats de modelat, control i estimació d’estat centralitzats i distribuïts,
així com de diagnòstic de fallades, s’apliquen a un cas d’estudi realista, basat en les vies
de navegació interior del nord de França, per tal de provar-ne la seva eficàcia.

Paraules clau: vies de navegació interior, sistemes a gran escala, sistemes amb
retards temporals, equacions de Saint-Venant, modelat orientat a control, control pre-
dictiu basat en models, estimació d’estat amb horitzó lliscant, partit de sistemes, control
i estimació d’estat distribuïts, diagnòstic de fallades.
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Resumen

La presente tesis versa sobre el problema de la gestión óptima de los recursos hídricos
en vías de navegación interior desde la perspectiva de la teoría de control. En concreto,
el objetivo principal consiste en garantizar la condición de navegabilidad del sistema, es
decir, garantizar que los niveles de agua de los canales sean tales que las embarcaciones
puedan navegar de forma segura. Dicho objetivo se consigue manteniendo los niveles
dentro de un intervalo alrededor del punto de operación. Otros objetivos comunes consis-
ten en minimizar los costes asociados a la operación de los equipos, así como a extender
su vida útil. Hay que tener en cuenta que las vías de navegación interiores son sistemas
a gran escala caracterizados por dinámicas complejas, grandes retardos temporales y
pendientes prácticamente nulas, lo que dificulta su gestión.

Para alcanzar la gestión óptima, se debe garantizar un control eficiente de las es-
tructuras hidráulicas tales como compuertas, diques y esclusas, y para ello se deriva un
modelado del sistema orientado a control, basado en un modelo simplificado ya exis-
tente, obtenido a partir de las ecuaciones de Saint-Venant. Esta nueva representación
reduce la complejidad del modelo original, proporciona flexibilidad y permite coordinar
información actual y retardada de forma sistemática. Sin embargo, la formulación re-
sultante pertenece a la clase de sistemas descriptores con retardos, para los cuales las
técnicas de control y de estimación de estado estándares necesitan ser extendidas. En
cambio, el control predictivo basado en modelos y la estimación de estado con horizonte
deslizante pueden ser fácilmente adaptadas para la formulación propuesta, además de
permitir lidiar con restricciones físicas y operacionales de forma natural.

Hay que tener en cuenta que, debido a las grandes dimensiones de las vías de nave-
gación interior, una implementación centralizada no es, a menudo, ni posible ni deseada,
y para paliar este problema se consideran los enfoques no centralizados. De este modo,
se descompone el sistema global en subsistemas y se distribuye la carga computacional
del problema centralizado entre los agentes locales, de manera que cada uno de ellos se
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encarga de cumplir los objetivos locales. Como las vías de navegación interior son sis-
temas fuertemente conectados, se sigue un enfoque distribuido, incluyendo un protocolo
de comunicación entre los agentes.

También se ha de considerar que la estimación de estado sólo será efectiva a condi-
ción de que los sensores provean información fiable. Asimismo, las acciones de control
únicamente se podrán aplicar correctamente si los actuadores no están afectados por
fallas. En efecto, cualquier avería puede conducir a una gestión ineficaz del sistema. Es
por ello que la última parte de la tesis trata sobre el diseño de estrategias de supervisión
que permitan detectar y aislar fallas en vías de navegación interior.

Todos los resultados de modelado, control y estimación de estado centralizados y
distribuidos, así como de diagnóstico de fallas, se aplican a un caso de estudio realista
basado en las vías de navegación interior del norte de Francia para probar su eficacia.

Palabras clave: vías de navegación interior, sistemas a gran escala, sistemas con
retardos temporales, ecuaciones de Saint Venant, modelado orientado a control, control
predictivo basado en modelos, estimación de estado con horizonte deslizante, parti-
cionado de sistemas, control y estimación de estado distribuidos, diagnóstico de fallas.
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Notation

Symbol Description
{· · · } set
a ∈ A a is an element of the set A
R set of real numbers
Rn space of n-dimensional column vectors with real entries
Rn×m space of n-by-m matrices with real entries
R≥0 set of non-negative real numbers, defined as R≥0 , R \(−∞, 0)
Z set of integer numbers
Z≥0 set of non-negative integer numbers, defined as Z≥0 , Z \(−∞, 0)
X × Y Cartesian product of the sets X and Y, defined as

X × Y , {(x, y) : x ∈ X , y ∈ Y}
X (⊂) ⊆ Y X is a (strict) subset of Y
xi i-th element of the vector x ∈ Rn

Xij element in the i-th row and j-th column of the matrix X ∈ Rn×m

xᵀ (Xᵀ) transpose of a vector x ∈ Rn (matrix X ∈ Rn×m)
X−1 inverse of the matrix X ∈ Rn×m

max(·) operator that returns, among the elements of its argument, the one
with maximum value

d·e operator that rounds its argument to the nearest integer greater than
or equal to the argument (ceiling operator)

| · | operator that returns the cardinality of the argument set
In identity matrix of dimension n
ẋ derivative of x with respect to time, defined as ẋ , d

dtx(t)
xk the subindex k indicates discrete time
xk+j|k predicted value of x at time instant k + j, performed at the current

time instant k
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Acronyms

Acronym Description
ARX AutoRegressive eXogenous
CMHE Centralized Moving Horizon Estimation (or Estimator)
CMPC Centralized Model Predictive Control (or Controller)
DMHE Distributed Moving Horizon Estimation (or Estimator)
DMPC Distributed Model Predictive Control (or Controller)
FDI Fault Detection and Isolation
FTC Fault-Tolerant Control
HNL Higher Navigation Level
ID Integrator Delay
IDZ Integrator Delay Zero
IR Integrator Resonance
LNL Lower Navigation Level
LQR Linear Quadratic Regulator
LSS Large-Scale System(s)
MHE Moving Horizon Estimation (or Estimator)
MPC Model Predictive Control (or Controller)
NNL Normal Navigation Level
UIO Unknown Input Observer
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Chapter 1

Introduction

1.1 Context of the thesis

The results presented in this thesis have been developed in a co-tutoring agreement
between Institut Mines Télécom Lille Douai (IMT) in France and Universitat Politècnica
de Catalunya (UPC) in Spain. The three-year doctoral program is divided into two parts
of equal duration: the first part was carried out at IMT, whereas the second was carried
out at UPC, both under the supervision of Prof. Vicenç Puig and Prof. Éric Duviella.

1.2 Motivation

Hydrographical networks are large and complex systems used to meet the needs of
mankind in terms of irrigation, transport, water supply and responses to the needs of
industries. The long-term response to these requirements has resulted in structures
and measurement systems that are generally remote, enabling the implementation of
strategies for the efficient management of water resources. However, in an increasingly
constrained context, notably due to changes in water demand, resource depletion and
climate change, the management of hydrographical networks must be carried out opti-
mally.

This thesis focuses on water management in inland waterways, also known as inland
navigation networks (both namings are used indistinctly throughout the thesis). Such
networks can be located within several watersheds and transport water among these
watersheds and towards the sea. They are generally composed of several interconnected

3
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reaches, which can be defined as artificial canals and natural rivers located between two
actuators or measurement points. Thus, inland waterways are equipped with a large
number of sensors and actuators spatially distributed and connected. The large dimen-
sionality of these systems complicates the collection and transmission of measurements,
as well as entailing a considerable computational burden. All these reasons cause the
management of inland waterways to be a challenging problem.

More specifically, an efficient management is such that the transportation of pas-
sengers and freight can be conducted in a safe manner. Furthermore, water resources
must be managed optimally, which means that their misuse should be minimized. To
guarantee seamless transport chains, the water levels must be kept within boundaries
around a reference level. To this end, cross structures are operated in the waterways to
regulate the levels of the reaches. A two-level control architecture is typically considered
in this environment [POMN15]: the global control level determines the setpoints and
sends them to the local controllers available at each control structure. In turn, these lo-
cal controllers must ensure that the actuators supply adequate flows. Nevertheless, this
thesis deals only with the global control level, thus assuming that the local controllers
are able to perform as desired.

The control strategy must also reject the disturbances that affect the system and
interfere with the control objectives. In the framework of inland waterways, these dis-
turbances refer to the request of lock operations each time that a boat reaches a lock.
Indeed, vessels navigate along the network until their final destination, probably along
several reaches in their way. The access from one reach to the adjacent one is granted by
means of locks, i.e., enclosures that enable boats to overcome the difference in elevation
between the reaches. Lock operations require large water volumes to be withdrawn from
the origin reach, which are then discharged into the destination reach. The reason for
considering lock operations as disturbances is that they cannot be postponed for a long
time from the moment a boat reaches a lock, according to existing policies. Therefore,
it is not possible to schedule lock operations in an optimal manner.

Taking into account all these issues, the problem that this thesis intends to solve
is that of designing control strategies that guarantee an optimal management of inland
waterways. To do so, a model of the system is needed. Then, control strategies must
be designed based on this model, bearing in mind physical and operational constraints
that might limit the performance of the system. Moreover, possible unmeasurable states
of the system have to be estimated based on available measurements of the inputs and
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Figure 1.1: Navigation canal and its water-resource exchanges

outputs. Furthermore, the occurrence of faults in the system must be considered, leading
to strategies that allow to diagnose whether the system is in faulty condition.

To illustrate the framework within which this thesis rests, Fig. 1.1 depicts part of a
network consisting of three reaches, separated from one another by cross structures. The
red solid arrows represent uncontrolled inputs and outputs such as natural bifurcations.
On the other hand, the green dashed arrows indicate the flows generated due to the lock
operations. Finally, the blue dotted arrows represent controlled actions, carried out by
gates and weirs in order to regulate the water levels. Note that the locks are often built
next to a control structure.

1.3 Thesis objectives

The main objectives of the thesis are described below:

— Characterize the dynamics of inland waterways by means of a precise mathematical
representation that is both simple and flexible.

— Design a control strategy that allows to guarantee the navigability condition, as
well as fulfilling other operational goals.

— Enhance the control design by means of a state estimation approach that supplies
the controller with the unmeasurable states of the system.

— Take into account the large dimensionality of inland waterways in the implementa-
tion of the proposed solutions. In this regard, consider non-centralized approaches.
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— Address the occurrence of faults in the system to ensure that the proposed ap-
proaches are able to perform as expected.

1.4 Outline of the thesis

The contents of the thesis, which tackle the objectives described in Section 1.3, are
arranged in three parts, which in turn are further divided in chapters. The list of
publications upon which they are based are given below each chapter.

Part I presents the framework of the thesis and introduces preliminary concepts
regarding the management of inland waterways. It is organized in two chapters:

— Chapter 1 justifies the motivation behind the topic considered in this thesis,
states the problem to be solved and introduces briefly the subsequent chapters.

— Chapter 2 provides some background on the main topics that are covered in
this thesis, namely modeling, control and state estimation using both centralized
and non-centralized approaches, and fault diagnosis. Moreover, a review of the
literature is carried out, aiming at identifying relevant works in the context of this
thesis.

Part II constitutes the central core, as it gathers all the results derived in this thesis.
It is organized in four chapters:

— Chapter 3 addresses the modeling of open-flow water systems for control, state
estimation and fault diagnosis purposes. More specifically, a modeling methodol-
ogy based on an existing simplified model is derived. The main improvements that
this novel approach offers with respect to the original methodology lie in reducing
the complexity of the resulting model, providing more flexibility and allowing to
coordinate current and delayed information in a systematic manner. The content
of this chapter has been featured in the following works:

◦ P. Segovia, K. Horváth, L. Rajaoarisoa, F. Nejjari, V. Puig, and E. Duviella.
Modeling of two sub-reach water systems: application to navigation canals
in the north of France. In 14th International Conference on Informatics in
Control, Automation and Robotics (ICINCO), pages 459–467, 2017.
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◦ P. Segovia, L. Rajaoarisoa, F. Nejjari, V. Puig, and E. Duviella. Modeling of
interconnected flat open-channel flow: application to inland navigation canals.
In Advances in Hydroinformatics, pages 75–90. Springer Singapore, 2018.

◦ P. Segovia, L. Rajaoarisoa, F. Nejjari, V. Puig, and E. Duviella. Decentral-
ized control of inland navigation networks with distributaries: application to
navigation canals in the north of France. In American Control Conference,
pages 3341–3346. IEEE, 2017.

◦ P. Segovia, L. Rajaoarisoa, F. Nejjari, E. Duviella, and V. Puig. Model
predictive control and moving horizon estimation for water level regulation
in inland waterways. Journal of Process Control, 76C:1–14, 2019.

◦ P. Segovia, J. Blesa, E. Duviella, L. Rajaoarisoa, F. Nejjari, and V. Puig.
Sensor fault diagnosis in inland navigation networks based on a grey-box
model. IFAC-PapersOnLine, 51(24):742–747, 2018.

— Chapter 4 proposes a centralized control and state estimation approach based on
the model formulation derived in the previous chapter. The goal is to ensure the
navigability of inland waterways. In this regard, the proposed approaches are of
predictive nature, as they have proven to perform well in the past for these kinds
of systems, given their features. The obtained results have been published in:

◦ P. Segovia, L. Rajaoarisoa, F. Nejjari, E. Duviella, and V. Puig. Input-delay
model predictive control of inland waterways considering the backwater effect.
In 2018 IEEE Conference on Control Technology and Applications (CCTA),
pages 589–594. IEEE, 2018.

◦ P. Segovia, L. Rajaoarisoa, F. Nejjari, E. Duviella, and V. Puig. Model
predictive control and moving horizon estimation for water level regulation
in inland waterways. Journal of Process Control, 76C:1–14, 2019.

— Chapter 5 discusses the limitations of the centralized implementation designed
in the previous chapter. In this regard, a non-centralized strategy that belongs to
the family of distributed approaches is proposed. To this end, the overall system
is partitioned into subsystems, which are coordinated by means of local agents
that solve smaller optimization problems with regard to the centralized one, and
exchange information with one another. The results are gathered in:

◦ P. Segovia, L. Rajaoarisoa, F. Nejjari, E. Duviella, and V. Puig. Distributed
Input-Delay Model Predictive Control of Inland Waterways. In Goffredo
La Loggia, Gabriele Freni, Valeria Puleo, and Mauro De Marchis, editors,
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HIC 2018. 13th International Conference on Hydroinformatics, volume 3 of
EPiC Series in Engineering, pages 1893–1901. EasyChair, 2018.

◦ P. Segovia, L. Rajaoarisoa, F. Nejjari, E. Duviella, and V. Puig. A
communication-based distributed model predictive control approach for large-
scale systems. In 2019 IEEE Conference on Decision and Control (CDC),
2019. Submitted.

◦ P. Segovia, L. Rajaoarisoa, F. Nejjari, E. Duviella, and V. Puig. A distributed
model predictive control and moving horizon estimation approach for the
optimal management of inland waterways. To be submitted.

— Chapter 6 is concerned with the design of supervisory strategies that allow to
diagnose whether the system is in faulty condition. Indeed, the centralized and
state estimation approaches described in previous sections will only be effective
provided that the sensors and actuators are not affected by faults. Two different
strategies, both based on the general model formulation derived in Chapter 3, are
tested. The outcome of this work has been published in:

◦ P. Segovia, L. Rajaoarisoa, E. Duviella, J. Blesa, F. Nejjari, V. Puig, and
K. Horváth. Fault detection and isolation in flat navigation canals. In 2017 4th
International Conference on Control, Decision and Information Technologies
(CoDIT), pages 427–432, 2017.

◦ P. Segovia, J. Blesa, K. Horváth, L. Rajaoarisoa, F. Nejjari, V. Puig, and
E. Duviella. Modeling and fault diagnosis of flat inland navigation canals.
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of
Systems and Control Engineering, 232(6):761–771, 2018.

◦ P. Segovia, J. Blesa, E. Duviella, L. Rajaoarisoa, F. Nejjari, and V. Puig.
Sensor fault diagnosis in inland navigation networks based on a grey-box
model. IFAC-PapersOnLine, 51(24):742–747, 2018.

◦ P. Segovia, J. Blesa, E. Duviella, L. Rajaoarisoa, F. Nejjari, and V. Puig.
Sliding window assessment for sensor fault model-based diagnosis in inland
waterways. IFAC-PapersOnLine, 51(5):31–36, 2018.

The approaches and strategies derived in Part II are tested using a realistic case
study, which allows to discuss the obtained results and draw conclusions.

Part III, which is only composed of Chapter 7, draws the concluding remarks of
this dissertation. Moreover, some topics that were left outside of the scope of this thesis
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are presented, opening the door to possible future works.

Part IV gathers the two appendices:

— Appendix A completes the modeling results in Chapter 3. In particular, a model
that links the discharges and the depths at the boundaries of a system character-
ized by a distributary is derived. This model is expressed using the external
representation.

— Appendix B is also linked to Chapter 3. In this case, an alternative structure
for a model characterized by the state-space representation is obtained. Such
formulation provides a more compact notation and is to be used for parameter
estimation purposes.

The connections among chapters are illustrated by means of the road map presented
in Fig. 1.2, suggesting the appropriate reading order.
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Figure 1.2: Road map of the thesis
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Chapter 2

Literature review and
background

This chapter provides some background on the main topics that are tackled in this
thesis. For each of them, relevant works are presented and discussed. First, the mod-
eling of open-flow water systems is discussed in Section 2.1: the nonlinear differential
equations that govern their dynamics are presented, from which the existing simplified
control-oriented modeling approaches are derived. Afterward, a review of model pre-
dictive control (MPC) and moving horizon estimation (MHE) is carried out in Section
2.2. The main features of these control and state estimation approaches are described,
and their suitability to solve the inland waterways management problem is discussed.
Then, Section 2.3 discusses the limitations of a centralized implementation, and hence
the non-centralized paradigm is introduced. Finally, the issue of fault diagnosis in water
systems is analyzed in Section 2.4. Indeed, it is necessary to design supervisory methods
that enable the detection and prediction of faults to guarantee that the aforementioned
tools yield reliable results.

2.1 Modeling

It was in 1871 that Adhémar Jean Claude Barré de Saint-Venant, a French mechani-
cian and mathematician, published the seminal paper in which he derived the unsteady
open-channel flow shallow water equations in unidirectional form [dSV71]. This is a set

11
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Figure 2.1: Open-channel flow along the longitudinal axis x (taken
from [LF09])

of coupled nonlinear partial derivative equations that can be obtained from the appli-
cation of conservation of mass and linear momentum principles, and is commonly used
to model transient open-channel flow. Its formulation is as follows [Cho59]:

∂A(x, t)
∂t

+ ∂Q(x, t)
∂x

= 0, (2.1a)

∂Q(x, t)
∂t

+ ∂

∂x

[
Q2(x, t)
A(x, t)

]
+ gA(x, t)

[
∂Y (x, t)
∂x

+ Sf (x, t)− Sb(x)
]

= 0, (2.1b)

with x the longitudinal abscissa and t the time. Relation (2.1a) is the mass conservation
equation, whereas (2.1b) is the momentum conservation equation, and is the summation
of the descriptions for the inertia, advection, gravitational force and friction force, re-
spectively. According to Fig. 2.1, the following notation is used: A(x, t) represents the
wetted area [m2], Q(x, t) the discharge [m3/s] across section A, V (x, t) the average ve-
locity [m/s] in section A, Y (x, t) the water depth [m], Sf (x, t) the friction slope [m/m],
Sb(x) the bed slope [m/m] and g the gravitational acceleration [m/s2].

In addition, the friction slope Sf is modeled with the classical Manning formula
[Man91]:

Sf = Q2n2

A2R4/3 , (2.2)

with n the Manning coefficient [s/m1/3] and R the hydraulic radius [m], defined by
R = A/Pw, where Pw is the wetted perimeter [m].
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The Saint-Venant equations remain to this day as the most accurate mathematical
representation of the dynamics of open-flow water systems. Alas, they suffer from a
number of drawbacks that render them inadequate for control purposes. First of all,
an analytical solution only exists in the uniform case (constant flow and water depth),
a situation seldom encountered in practice [LF04a]. Furthermore, they are extremely
sensitive to geometry errors and unmodeled dynamics. All these reasons have fostered
the design of simpler models. Indeed, the main goal is to approximate the dominant
dynamical behavior while retaining most of the system response behavior required for
control needs [DRBG17].

A survey of the existing literature on the topic shows a considerable attention from
the community. In this regard, one of the first proposals was the Integrator Delay
(ID) model, an approximation model for flow in an open channel with backwater effect
[SBB95, SCD+99]. As its name implies, the ID model uses two parameters to capture
the main features of the dynamics of a canal: an integrator, which reflects the change
in volume of the canal according to the variation of the water level, and a time delay,
which measures the required time for actions at one end of the canal to have an impact
at the other end.

However, as it was discussed in [LF04b], while the ID model is able to character-
ize satisfactorily the low frequency behavior, it fails to represent the high frequency
phenomena. Indeed, the authors proposed in [LF04a] a modification of the original ID
model that was able to describe a canal in any flow condition. This model, known as the
Integrator Delay Zero (IDZ) model, was obtained from mathematical approximations
of the exact transfer matrix. It extended the ID model formulation with a zero, which
represents the direct influence of the discharge on the water level in high frequencies.
Among others, it was successfully employed to design controllers for an irrigation canal
with H∞ performance in [LF06].

More recently, the Integrator Resonance (IR) model was proposed in [vOMB+10,
vOB12], aiming at determining the properties of reflecting waves, which dominate the
behavior of short and deep open water canals. The testing of this model resulted in
good estimations of the frequency and magnitude of the first resonant peak, and was
used in [vOHA14] to design predictive controllers for water level regulation purposes.

The presented approaches fall into the category of white-box models, which can be
perfectly constructed using prior knowledge and physical insight. Two other cases can
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be distinguished according to the level of assumed prior knowledge [SZL+95]: on the one
hand, gray-box models can be used when some physical insight is possessed, but several
parameters remain to be determined from observed data. On the other hand, black-box
models do not apply any physical insight, although they might resort to model structures
that have proved to perform well in the past. Such approaches have also found some
success in the field of open-flow water systems [OW01, Wey01, BBPE02, DBSM+13,
RPFBCGLS14, HDB+14].

Other techniques aim at providing a representation of the dynamics of canals in
various operating points. Indeed, it can be argued that these systems do not always
work close to the same operating point, and hence linear models, which are obtained
by linearizing the Saint-Venant equations around a setpoint, yield predictions that
are far from the real behavior in these situations. In this regard, Linear Parameter-
Varying (LPV) models, which describe a class of nonlinear systems that can be mod-
eled as parametrized linear systems, each of them designed at a different operating
point (average flow along the canal), can be used. This approach has been applied in
[PQE+05, BMGGMG09, BPB14, BP16] for real-time control of irrigation and navigation
canals. Other approaches linked to the control of open-channel systems characterized by
several operating modes have been proposed in [DCCC05, DPC+10, DSMRD12], where
multi-models are considered.

Finally, numerical approaches in which spatial and temporal discretizations of the
original shallow equations are performed have also been employed for control purposes.
Although these techniques do not fall under the scope of the thesis, several related works
are recalled here for convenience [CN09, HDLM10, PCL+10, DSMWR14, PGB14].

2.2 Centralized control and state estimation

Once the system has been modeled using one of the approaches presented in Section
2.1, the problem at stake is that of designing control strategies that allow to fulfill the
management policy. Typically, two management scales are considered:

— The lower management scale is concerned with the water level control. Indeed,
water levels must be kept within a predefined interval known as the navigation
rectangle, which is depicted in Fig. 2.2. This interval is bounded by the lower
and the higher navigation levels (NNL and HNL, respectively), which set the
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 Navigation Rectangle

NNL
HNL

LNL

Figure 2.2: Navigation rectangle, delimited by the LNL and the HNL

admissible minimum and maximum water levels in the reaches that allow vessels
to travel safely. This thesis falls within the context of a lower management scale
policy.

— The higher management scale aims at dispatching the water resources in an optimal
manner, i.e., minimizing their losses. Indeed, it is of the utmost importance that
these resources are carefully managed, especially in the current context of climate
change [Int14].

Several approaches have been reported in the literature to deal with this problem.
From the many existing possibilities, MPC is chosen for this purpose. Its adequacy
to deal with these kinds of systems as well as the basic features of its formulation are
discussed next. This approach requires the vector of states to be known at current time,
which are not always measurable. Thus, the MHE approach, which is often regarded as
the dual problem of MPC, is also presented. These tools are introduced in a centralized
manner in this section. By contrast, Section 2.3 discusses its suitability to deal with
large-scale systems (LSS) and introduces the non-centralized philosophy.

2.2.1 Centralized model predictive control

Centralized model predictive control (CMPC) is one of the most widespread con-
trol techniques in many fields due to its ease of understanding and application. In
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the framework of water systems, it has been employed in irrigation and drainage
canals [BRB+07, LMN+09, vOCS+10, ÁRRS13, OMPCQ13], navigation canals and
rivers [PRQ+09, VONDSVDG10, HRD+15, POMN15] and water distribution networks
[GOMPJ14, WOP16, WPC17, KPPC18].

The following interesting features, among others, can be stated [CB98, Mac02]:

— The model of the system captures the dynamic and static interactions between
input, output and disturbance variables.

— The physical constraints on inputs and outputs can be handled in a systematic
manner.

— Multiple operational goals can be taken into account simultaneously.

— It is particularly suitable for those systems for which the disturbances can be
forecast.

The main principle of this optimization-based technique resides in computing an
optimal sequence of inputs that minimizes the value of a cost function, often composed
of several weighted terms, subject to physical and operational constraints over a temporal
horizon.

To begin with, the general linear discrete-time state-space representation

xk+1 = Axk + Buk, (2.3a)

yk = Cxk + Duk (2.3b)

is considered, where k ∈ Z≥0 denotes the discrete time instant. The vectors xk ∈
X ⊆ Rnx , uk ∈ U ⊆ Rnu and yk ∈ Y ⊆ Rny represent the system states, control
inputs and system outputs, respectively, while A, B, C and D are the system matrices
of appropriate dimensions. Moreover, X , U and Y define, using set membership, the
feasible sets according to the physical and operational constraints [RM09]. Note that
(2.3a) and (2.3b) represent the state and the output equations, respectively.

Remark 2.1. The justification of the use of a linear model follows from Section 2.1, where
it was stated that the use of a simpler linear model is preferred for control purposes. �

Then, the solution of the CMPC is computed by solving the following optimization
problem:
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min
{ui|k}

k+Hp−1
i=k , {xi|k}

k+Hp
i=k , {yi|k}

k+Hp−1
i=k

J
(
ui|k,xi|k,yi|k

)
(2.4a)

subject to:

xi+1|k = Axi|k + Bui|k, i ∈ {k, ..., k +Hp − 1}, (2.4b)

yi|k = Cxi|k + Duui|k, i ∈ {k, ..., k +Hp − 1}, (2.4c)

ui|k ∈ U , i ∈ {k, ..., k +Hp − 1}, (2.4d)

xj|k ∈ X , j ∈ {k, ..., k +Hp}, (2.4e)

yi|k ∈ Y, i ∈ {k, ..., k +Hp − 1}, (2.4f)

xk|k = xk, (2.4g)

with {ui|k}
k+Hp−1
i=k , {uk|k,uk+1|k, · · · ,uk+Hp−1|k}, and xi|k and yi|k are defined in the

same manner. As stated before, the CMPC yields the optimal sequence of inputs to
be applied to the system, provided that (2.4) is feasible. However, only uk|k is applied
to the system and the rest of components are disregarded, according to the receding
philosophy uMPC

k , uk|k. This procedure is repeated at the next time instant.

2.2.2 Centralized moving horizon estimation

The CMPC presented in Section 2.2.1 uses the current state to compute the set of
future inputs that moves the system to the setpoint in an optimal manner with respect
to the chosen criteria. In general, the measurements of all states are not available, which
motivates the design of observers to estimate the values of the unmeasured states.

There is little doubt that the work of Kalman [Kal60, KB61] constitutes the seminal
result in state estimation [Rao00]. However, Kalman filtering does not address the issue
of constraints. As it has been discussed before, physical and operational constraints
limit the system performance, and thus the design of the observer must take this matter
into account.

Therefore, the chosen observer is no other than the centralized moving horizon esti-
mation approach (CMHE). The combination of CMPC and CMHE is especially attrac-
tive since the MHE formulation corresponds also to an online optimization problem that
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can explicitly handle constraints [CH17]. Unlike MPC, this technique started receiving
wider attention only a few years ago [TR02]. Indeed, the combination of MPC and MHE
has been applied in diverse fields such as autonomous agricultural vehicles [KFK+13],
unmanned aerial vehicles [QCH15], preventive sensor maintenance [LEDC15], airborne
wind energy systems [VGH+15] and blood glucose regulation [CGH17]. Concerning wa-
ter systems, the combination of these techniques is not so common, although it has been
used for flood prevention in rivers [BBM10], pollution mitigation for combined sewer
networks [JDOMC14] and to deal with offset problems due to a mismatch between the
real system and a model [AvORT17].

Considering the general state-space representation introduced in (2.3), the CMHE
can be easily formulated using the CMPC problem (2.4) as follows:

min
{x̂i|k}ki=k−N

(
x̂k−N |k − xk−N

)ᵀ
P−1

(
x̂k−N |k − xk−N

)
+ (2.5a)

k−1∑
i=k−N

(
wᵀi|kQ

−1wi|k + vᵀi|kR
−1vi|k

)

subject to:

wj|k = x̂j+1|k −
(
Ax̂j|k + Buj|k

)
, j ∈ {k −N, ..., k − 1}, (2.5b)

vj|k = yj|k −
(
Cx̂j|k + Duj|k

)
, j ∈ {k −N, ..., k − 1}, (2.5c)

x̂i|k ∈ X , i ∈ {k −N, ..., k}, (2.5d)

where wk represents the system noise (disturbances) and vk accounts for the measure-
ment noise.

The CMHE problem is formulated as a quadratic program using a sliding window
of a fixed size to take into account only the most recent measurements. Indeed, the
amount of data processed with time can result in a high computational burden, which
might render the full-information problem intractable. Instead, a truncated sequence of
state estimates is computed at each time step.

Therefore, at the current time instant k, N input-output pairs
[(uk−N ,yk−N ) : (uk−1,yk−1)] shall be available. Note that N is the length of the
moving estimation window, thus bounding the size of the problem. The solution
of the CMHE is given by the sequence {x̂i|k}ki=k−N , {x̂k−N |k, x̂k−N+1|k, · · · , x̂k|k}.
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However, as in the CMPC, only one value in the sequence is considered, and the rest
are discarded. Therefore, x̂MHE

k , x̂k|k. In the next time instant, the sequence of
input-output pairs is shifted in time to consider the most recent data, and a new
estimation problem is solved.

2.3 Non-centralized control and state estimation

Centralized approaches such as those presented in Section 2.2 might not be practical
to implement in the case of LSS such as inland navigation networks [MN14]. Indeed,
these systems spread over large areas, and thus their models often involve a large number
of states and control signals. Aside from the computational burden that this may cause
on a centralized control agent, which may even compromise its reliability, a centralized
approach also would require to rebuild the control-oriented model when the system
configuration changes, thus complicating its maintenance [OMBP11].

To overcome the aforementioned issues, non-centralized approaches have been pro-
posed. These consider multiple agents, each of them in charge of a different part of the
network. An agent can be defined as a computing system within an environment that
is capable of performing certain actions, aiming at attaining its objectives [WJ95]. In
this context, agents are controllers and estimators.

Two main types of non-centralized strategies can be distinguished based on the
interactions between the local agents [NvOKDS09, CSMndlPnL13]:

— Decentralized strategies often solve the subproblems by considering other subsys-
tems’ inputs as external disturbances. Depending on the degree of coupling, i.e.,
how closely linked the different subsystems are, this approach might lead to a poor
overall performance [Sil11].

— Distributed strategies take into account the effects of local actions at the sys-
temwide level. Indeed, the exchange of information among local agents is possible
nowadays thanks to the developments in information and communication tech-
nologies, which allows them to cooperate and negotiate with each other, aiming
at achieving the best global performance.

Indeed, both approaches have found success in the framework of water systems,
as the review of the literature reveals. For instance, the decentralized approach has
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been used for open-flow systems in [SFMC01, GRM02, BFR07, PLGB14] and water
distribution networks [OMBP11, OMBPB12]. On the other hand, the distributed
approach has also been applied to the control of open-flow systems [NvOKDS09,
NvODS09, ZCMR+11, FMH+14, NPLGC17, VTSM19] and water distribution networks
[GOMP17a, GOMP17b, TOMCP18].

Bearing in mind the differences between decentralized and distributed control, the
latter is preferred in the context of this thesis. Inland waterways are strongly coupled
systems, as each reach is physically connected to the adjacent ones at its boundaries,
which causes local control actions to have an effect on the adjacent reaches that cannot
be neglected without compromising the overall performance of the system. Therefore,
it is desirable that the agents perform negotiation and cooperation at the benefit of
optimality. Nevertheless, due to the many iterations that might be required for the
agents to find a common satisfactory solution, distributed approaches usually result in
higher computation times compared to their decentralized counterparts.

In order to perform distributed control and state estimation, the overall system
must be decomposed into subsystems. To this end, partitioning strategies that aim at
minimizing the number of couplings among subsystems can be looked at. Of course,
this additional step might increase the computation time of non-centralized approaches.

Most of the system partitioning approaches are based on graph-theoretic methods,
and thus the problem of system decomposition often leads to the problem of graph
partitioning. Indeed, the structural properties of a linear dynamic system S such as
(2.3) can be interpreted by means of the associated graph G = (V, E), whose elements
are defined in the following manner:

— V = U × X × Y is the set of vertices, where U = {u1, u2, ..., unu}, X =
{x1, x2, ..., xnx} and Y = {y1, y2, ..., yny} are the nonempty input, state and output
sets of G , respectively.

— E is the set of edges, i.e., the set of arcs that connect the vertices of G .

The system partitioning approach followed in this thesis consists in formulating
the structural properties of the system by means of the adjacency matrix. Then, a
permutation of the elements of this matrix allows to divide the overall system into
smaller sets Gi, i = {1, ...,M}. Assuming that the overall system can be decomposed
into M subsystems, each of them defining a different subproblem, distributed model
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predictive controllers (DMPC) and distributed moving horizon estimators (DMHE) can
be designed based on the centralized problems given by (2.4) and (2.5), respectively.
However, it is possible that one or more variables appear in more than one subproblem
(coupled variables). Then, each agent must exchange information with the rest of agents
with whom a coupled input or state is shared, aiming at obtaining a common solution
that satisfies all subproblems.

2.4 Fault diagnosis

Given the large dimensionality of inland waterways, a large number of sensors and
actuators are placed throughout the system in order to collect data and to operate the
hydraulic equipment, respectively. However, these devices are subject to measurement
errors and faults. This fact justifies the need for tools or procedures that are able to
detect the occurrence of a fault. Faults can be of varied nature, e.g., internal events,
environmental conditions and undetected design errors, but they all change the behavior
of a system such that it no longer performs as expected, and thus it no longer satisfies
its purpose.

Fault detection and isolation (FDI) allows, under certain circumstances, to detect
whether or not a fault appears in the system and to be able to isolate it from the rest
of possible faults, i.e., to identify in which component the fault occurs. Many different
diagnosis methods exist, but they all follow the principle of consistency [CP99, BKLS06,
Din08]. First, the nominal behavior of the system needs to be characterized by means of
a plant model. Next, it is checked whether the measurements (input-output pairs) and
the nominal behavior are consistent: if so, no inconsistency is detected. However, it is
possible that two (or more) different faults cause the same pair, and thus an ambiguity
in the diagnosis result exists. Thus, it is not possible to detect a fault with just the
information about the nominal behavior of the system.

On the other hand, fault isolation requires information about the faults and their
impact on the system, which means that models of the faults are required. Unfortu-
nately, this information is not always enough to isolate faults, since more than one fault
may generate the same effect, which means that, again, an ambiguity is present.

An additional issue to be taken into account is that of distinguishing faults from
model uncertainties. Indeed, environmental systems such as open-flow water systems are
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subject to uncertainties, which stem from natural unmodeled phenomena, e.g., seepage,
evapotranspiration and rain.

In general, two main approaches are used to solve the FDI problem, model-based
and data-driven methods [BKLS06]:

— Model-based approaches compare the measured data with the estimated data from
the knowledge of the nominal behavior of the system. This comparison generates
a residual, which is an expression that is close to zero when no fault is present in
the system, and that deviates from zero when a fault occurs. However, since it is
necessary to compute a model that represents the normal behavior of the plant in
order to contrast the measured data, a deep knowledge of the physical principles
governing the system is required.

— On the other hand, data-driven methods rely on the use of experimental data. One
possible approach consists in using part of these data to estimate the parameters
of a model that describes the faultless behavior of the system. Of course, it must
be ensured that the used data are not impacted by faults. Moreover, the structure
of the model can be based on previous physical knowledge. Other possibilities
regard, for instance, building a classifier that is able to characterize the normal
and faulty models, and to detect and localize in which component the fault occurs
[SFCB+17]. However, the main drawback of this approach is that the applicability
of this problem is restricted by the available data. This means that only past faults
may be detected, as they are the only ones that have been experimented by the
system.

Fault diagnosis in inland waterways is mostly concerned with the occurrence of sensor
and actuator faults. Indeed, any error caused by a failure in a level sensor or in a flow
control device can lead to inefficient management of the water resources, which can affect
the navigation. Therefore, sensor and actuator fault diagnosis represents an important
issue for inland navigation systems monitoring and supervision. This topic has attracted
considerable attention in the past years, and an extensive body of literature dedicated to
fault diagnosis in open-flow water systems has been produced. Several different strategies
have been applied to diagnose faults in irrigation [BLKM06, BPB10, BW11, NMB12]
and navigation canals [DRBC13, BHD+14, HBD+14].
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2.5 Summary

This chapter has discussed some preliminary concepts regarding the main topics that
will be covered in this thesis. More precisely, a general background on modeling, central-
ized and distributed control and state estimation, and fault diagnosis in the framework
of water systems has been introduced. The study of these topics aims at dealing with
the management of inland waterways, which requires the water levels to be kept within
an interval to guarantee that vessels travel safely. Moreover, a general literature review
has been carried out not only to familiarize with the existing approaches, but also to
identify novel strategies proposed in this thesis with respect to the current state of the
art.
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Chapter 3

Modeling

This chapter addresses the problem of modeling open-flow water systems for control,
state estimation and fault diagnosis purposes. First of all, the IDZ model is chosen and
described in Section 3.1. This model, formulated as a continuous-time transfer function
matrix, was originally conceived for single-reach systems. The original formulation is
extended in Section 3.2 to deal with larger portions of inland waterways. A modeling
strategy for systems with several reaches in cascade is proposed, which can be used, for
instance, to model reaches with secondary inputs along its course. These contributions
have been published in [SHR+17] and [SRN+18c]. Furthermore, inland waterways are
characterized by water streams that branch off from the main stream and flow away
(distributaries), as well as water streams that flow into other larger streams or lakes
(tributaries). Imposing boundary conditions at the nodes, i.e., the locations in which
these mergings and splittings take place, allows to extend the original IDZ formulation
to model these topologies. These results have been collected in [SRN+17].

Nevertheless, it becomes apparent that this procedure is rather inadequate even in
the case of small networks. It is therefore required to devise an alternative modeling
approach that provides more flexibility in terms of adding reaches to or removing them
from the considered system. For this purpose, a more suitable state-space representa-
tion is derived in Section 3.3 by taking into account the full model to account for the
backwater effect. Indeed, a standard transformation leads to the equivalent IDZ model
in the state-space form, which can then be used to model each reach separately. The rest
of elements that integrate the system are also described mathematically to complete the
model. Then, the links between reaches are established by means of mass balances at
the nodes, which can be either incorporated into the model or formulated by means of

27
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equality constraints. This static behavior leads to a delayed descriptor formulation, for
which the appropriate control and state estimation techniques are designed in Chapter
4. All these modeling contributions have been published in [SRN+19b]. Furthermore, a
parameter estimation approach is discussed in Section 3.4, which can be used in those
cases where the lack of knowledge of a physical parameter prevents the computation of
the IDZ model. This methodology was presented in [HDB+14] and has been further
extended in [SBD+18a]. Finally, the modeling results for the approaches presented in
Sections 3.3 and 3.4 are gathered in Section 3.5.

3.1 Modeling a canal: the IDZ model

The IDZ input-output model links the discharges and the water levels at the bound-
aries of a reach and is given by:y1(s)

y2(s)

 =

p11(s) p12(s)
p21(s) p22(s)


︸ ︷︷ ︸

Rr

q1(s)
q2(s)

 , (3.1)

where the subscripts 1 and 2 indicate the initial (upstream) and final (downstream) ends
of the reach, y1(s) and y2(s) are the upstream and downstream water levels, q1(s) and
q2(s) are the upstream inflow and downstream outflow, and the several IDZ terms are
given by:

p11(s) = z11s+ 1
Aus

, p12(s) = z12s+ 1
Aus

e−τus,

p21(s) = z21s+ 1
Ads

e−τds, p22(s) = z22s+ 1
Ads

.
(3.2)

Remark 3.1. q1(s) ∈ R≥0 and q2(s) ∈ R≥0. However, the latter is an outflow, which
means that it causes the water levels to diminish. Therefore, p12(s) and p22(s) are
negative. �

Remark 3.2. The parameters linked to the upstream level equation are denoted with a
subscript u, whereas those linked to the downstream level are denoted with a subscript
d. �

Remark 3.3. The terms p11(s) and p22(s) do not include a time delay as the discharges
are assumed to have an immediate effect at the locations where they take place. �

The IDZ model contains an integrator, a time delay and a zero. The system can be
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characterized by two different behaviors in the frequency domain. In low frequencies,
the behavior of the system is similar to a tank that is being filled and/or emptied. In
this situation, the integrator gain and the time delay have a predominant role. The
former reflects how the volume changes according to the water level variation, whereas
the latter expresses the minimum time that a perturbation requires to travel from one
end of the canal to the other one. Two different time delays are defined:

τu = L

Cw − V
,

τd = L

Cw + V
,

(3.3)

where L [m] is the length of the reach, Cw [ms−1] is the wave celerity and V [ms−1] is the
wave velocity. Additionally, (3.3) corresponds to the case in which both the celerity and
the velocity are constant. More precisely, the celerity is defined as the relative velocity
of a wave with respect to the fluid in which it travels, whereas the velocity measures
the variation of the particles’ position of a fluid with respect to time. In particular, τu
is measured from the downstream end to the upstream end, while τd is measured in the
inverse direction.

Finally, the high frequency phenomena is approximated by the zero of pij(s). More
specifically, its constant gain approximates the oscillating modes caused by the gravity
waves, which are predominant in high frequencies. Therefore, the IDZ model is not
capable of representing the subsequent attenuated peaks that can be observed in the
evolution of the water levels.

It is worth noting that the complete model is taken into consideration. Indeed,
it is common practice to design only downstream water level controllers [LF09] for
other systems such as irrigation and drainage canals and sewage networks, as their
bottom slopes are usually non-negligible. Navigation reaches, on the other hand, are
usually characterized by negligible bottom slopes, and therefore the backwater effect
becomes of increasing importance. This effect takes place at the downstream hydraulic
structure of a reach: when the water waves impact upon the structure, the water can flow
back to the upstream end, resulting in a back-and-forth mass transport known as the
resonance phenomena. Therefore, considering the full model allows to take into account
the backwater effect in the upstream water level, which constitutes a novel feature of
the modeling and control approaches that will be derived in the following.
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In order to compute all the IDZ model parameters, it is necessary to know where
the transition between the upstream uniform and downstream backwater flows occurs.
The value of this abscissa is named x1 [LF04b] and can be obtained as follows:

x1 =

max
(
L− yL−yn

sL
, 0
)

ifsL 6= 0

L ifsL = 0
, (3.4)

with yL [m] the downstream boundary condition, yn [m] the normal depth and sL

(dimensionless) the deviation from bed slope of the line tangent to the water curve at the
downstream end of the pool. More details about the computation of these magnitudes
can be found in [LF04b].

According to (3.4), x1 can either be 0, L or take an intermediate value between
0 and L. The reach is completely under backwater flow if x1 = 0, completely under
uniform flow if x1 = L or present both kinds of flow if 0 < x1 < L. In particular, the
interval (0, x1) is under uniform flow whereas the interval (x1, L) is under backwater
flow. This is an important fact in the computation of the parameters, as they have to
be computed for each kind of flow: the same formulas are applied for the uniform and
backwater parts, but are evaluated according to the length of each part. The partial
uniform and backwater parameters are merged into the so-called equivalent parameters,
which represent the whole pool. In the event that x1 = 0 or x1 = L, they will only have
to be computed once, for the whole length of the reach.

3.2 Modeling inland navigation networks using the IDZ
model

Model (3.1) is used to characterize systems with reaches in cascade, as well as systems
with tributaries and distributaries.

3.2.1 Networks with reaches in cascade

Figure 3.1 depicts a reach with a finite number of intermediate flows (either inflows or
outflows) between the initial and final ends of the reach. Each of the abscissas in which
these flows take place will be called a section. It is assumed that all these intermediate
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Figure 3.1: Scheme of a reach with m sections
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. . .

q q q q qq q
1 2 3 4 m-2 m-1 m

y y y ynn-1α β

Figure 3.2: Scheme of a reach with only n measured water levels

flows can be controlled, and thus they are regarded as m known inputs of the system.
However, it is also considered that it is not always possible to measure the water level for
each section, but only for n of them (n ≤ m). This fact justifies the notation introduced
in Fig. 3.2:

The model that describes the system depicted in Fig. 3.2 can be written as follows:
yα

yβ
...
yn

 =


pα,1 pα,2 · · · pα,m

pβ,1 pβ,2 · · · pβ,m
...

... . . . ...
pn,1 pn,2 · · · pn,m


︸ ︷︷ ︸

R


q1

q2
...
qm

 , (3.5)

with each of the pij elements as in (3.2), for i = {1, ..., n} and j = {1, ...,m}.

To obtain all the pij terms, it is necessary to compute (3.1) between each pair of
sections. After that, each of these elements is placed inside R in the position that links
the corresponding pair. However, following these steps results in computing m−1 times
the terms that link the input and the output in the same section, which leads to an
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Figure 3.3: Scheme of a reach with n measured levels and final
notation

overlapping problem. Consider, for instance, the term that links the water level and the
discharge in section 2: it can be computed considering the part of the stream comprised
between sections 1 and 2, but also between sections 2 and 3, between sections 2 and 4,
and so on.

The position of these overlapped terms inside R depends on the measurable water
levels, and therefore no fixed pattern can be established. For the sake of convenience, the
variables in Fig. 3.2 are renamed so that the numbering of water levels and discharges
match:

Equation (3.5) is modified according to the change of notation introduced in Fig.
3.3: 

yα

yβ
...
yn

 =


pα,α pα,β · · · pα,n

pβ,α pβ,β · · · pβ,n
...

... . . . ...
pn,α pn,β · · · pn,n


︸ ︷︷ ︸

R1


qα

qβ
...
qn

+


pα,µ pα,π · · · pα,ω

pβ,µ pβ,π · · · pβ,ω
...

... . . . ...
pn,µ pn,π · · · pn,ω


︸ ︷︷ ︸

R2


qµ

qπ
...
qω

 (3.6)

The interesting fact about this new formulation is that R is split into two matrices
R1 and R2, where the former is a square matrix whose diagonal elements link the input-
output pair for the same section, and thus the overlapped terms are always placed in
this diagonal. In this way, it is only necessary to define a criterion to select one of
the m − 1 possibilities for each term in the diagonal of R1. These elements satisfy the
property that the time delay is equal to zero. Hence, they only consist of a zero and an
integrator:

— The integrator gain accounts for the storage of water in low frequencies. Therefore,
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Figure 3.4: Schematic view of a: (a) Distributary. (b) Tributary.

the total area of the canal should be considered, and not any other area comprised
between two intermediate sections.

— The zero of each transfer function depends, according to [LF04b], on the length
of the reach, which again means the total length should be considered in order to
account for the whole canal.

3.2.2 Networks with distributaries and tributaries

Schematic views of a distributary and a tributary are depicted in Fig. 3.4. These two
topologies are regarded as composed of three reaches: a main reach, which is divided into
two parts at the node, and a secondary reach, which either branches off from the main
stream and flows away (distributary) or flows into the main reach (tributary). Since
there exists a parallelism between both situations, they are studied together. However,
only the first case is dealt with, as it is rather straightforward to derive analogous
expressions for the tributary case.

The goal is to obtain a model that links the discharges and the depths at the bound-
aries by imposing certain conditions in the central node, where a natural bifurcation
takes place. The complete procedure to derive such model is detailed in Appendix A.
As a result, the global model
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is obtained, with

p
(G)
11 = p
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21

(1− λ)p(3)
11 + p

(1)
22
. (3.8i)

Remark 3.4. Note that the dependance of the terms in (3.7) and (3.8) on the Laplace
variable s is omitted for readability. �

3.3 Limitations and equivalent state-space representation

It becomes apparent at this point that the modeling approaches introduced in Section
3.2 are rather inadequate. Indeed, not only the derivation of (3.8) involves painstaking
algebraic manipulations, but also these formulas can only be applied to the particular
configuration depicted in Fig. 3.4. If a fourth reach is added to the system, additional
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conditions must be imposed, increasing the size and complexity of the model. Therefore,
it is necessary to find an alternative modeling approach in order to circumvent this issue.

The proposed alternative consists in transforming the original IDZ model (3.2) into
its equivalent state-space representation. This new formulation offers some interesting
features:

— The complexity of the model is reduced, as it makes use of a more compact rep-
resentation.

— It also provides more flexibility in terms of adding reaches to or removing them
from the considered system. Although the size of the matrices increases with the
number of considered reaches, it is much easier to link reaches. Indeed, it is only
required to impose mass balances at the nodes, which can be either incorporated
into the model (performing the necessary substitutions) or formulated by means
of equality constraints, which are then added to the rest of constraints.

— It allows to coordinate current and delayed information in a systematic manner.
Indeed, the model is described by variables with an immediate and a delayed effect.
Those variables with a delayed effect are provided to the control and state estima-
tion algorithms as parameters, ensuring that their values are taken into account
adequately, which is crucial for a satisfactory performance of the algorithms.

The final control-oriented modeling approach is presented below. An inland water-
ways model can be regarded as composed of a set of elements, which are introduced
and described below. Note that the physical nature of the variables, e.g., water levels,
flows, openings and elevations, as well as other elements in the waterways, constrains
the performance of the system.

3.3.1 Actuators

Gates and weirs are used to regulate the water levels in the reaches. In particular,
two kinds of structures are considered: undershot gates and sharp crested weirs. An
undershot gate is a bottom opening in a wall, whose height can be regulated. Conversely,
in the case of a weir, the water flows over its crest, whose elevation is also adjustable.
A schematic representation of an undershot gate and a weir is given in Fig. 3.5. Note
that q is the flow through the cross structure, u is the opening/elevation, and y1 and y2

are the upstream and downstream water levels, respectively.
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Figure 3.5: Water level regulation with: (a) an undershot gate. (b) a
sharp crested weir.

Discharges, openings and elevations can be used in the automated control of canals.
The global control level must compute the optimal action and send it to the slave con-
troller that operates the gate or weir. If the discharge is used as the control variable,
the slave controller must convert the given discharge into an equivalent opening or ele-
vation, which is not as straightforward as inverting the discharge equation [LMBRB08].
Furthermore, choosing the openings and elevations allows to link them with the lo-
cal discharges and the upstream and downstream water levels at the structure, thus
taking into account such complex dynamics [Mal95]. For these reasons, the openings
and elevations are chosen as control variables in this thesis. The conversion is carried
out following the methodology described in [BPB14], which basically consists in using
linearized equations that describe the relationship between openings and discharges.

The lower and upper operating limits of these elements are characterized as follows:

um ≤ umk ≤ um , m = 1, ..., Nm , (3.9)

where um and um are the lower and upper opening or elevation limits of the m-th
actuator, and Nm is the total number of actuators in the system.

The type of flow at the structure determines the general linearized equation to be
used:

— The free-flow case is characterized by critical or super-critical flow at the structure,
which overrides the effect of the downstream water level on the gate discharge. The
linearized expression reads as
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q
(1)
2 (s) ≈ q(2)

1 (s) = k(1)
y y

(1)
2 (s) + kuu(s). (3.10)

— The submerged flow case is characterized by sub-critical flow at the structure. In
this case, the discharge is affected by the downstream water level:

q
(1)
2 (s) ≈ q(2)

1 (s) = k(1)
y y

(1)
2 (s) + k(2)

y y
(2)
1 (s) + kuu(s). (3.11)

In both cases, q(1)
2 is the inflow of the structure at the downstream end of reach 1,

q
(2)
1 is the outflow of the structure at the upstream end of reach 2, y(1)

2 is the water
level upstream of the structure, y(2)

1 is the water level downstream of the structure, u
is the opening or elevation and k

(1)
y , k(2)

y and ku are the coefficients obtained in the
linearization of the nonlinear equations of the gates and weirs. Indeed, (3.10) and (3.11)
are derived from the corresponding nonlinear equations of the gates and the weirs, which
are introduced in [LF09] and are given in (3.12) and (3.13), respectively. Note that the
notation used corresponds to the variables in the general representation depicted in Fig.
3.5.

Free flow case

Undershot gate: q = CdgLgu
√

2gy1

Weir: q = Cdw
√

2g (y1 − u)3/2
(3.12)

Submerged flow case

Undershot gate: q = CdgLgu
√

2g (y1 − y2)

Weir: q = Cdw
√

2g (y1 − y2)3/2
(3.13)

3.3.2 Disturbances

Systems are usually affected by disturbances, denoted here by dk. Therefore, the
control strategy must minimize their effect on the system. As mentioned before, these
disturbances correspond to lock operations, which makes it more difficult to stay close
to the setpoints. Although lock operations are rather unpredictable and cannot be
postponed for a long time, they can be somewhat anticipated. Indeed, when a boat
passes through a lock, its manager informs the rest of the managers. In this way, the
arrival time of the boat to the adjacent locks can be predicted, taking into account the
distance and the average speed of the boat, which yields a close approximation, with an
error of only several minutes. This allows the lock managers to elaborate lock operation
time-series profiles ahead of time.
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3.3.3 Nodes

Inland waterways are characterized by distributaries, i.e., streams that branch off
from the main stream and flow away. When water streams flow into larger streams
or lakes, they are referred to as tributaries. The locations in which these splittings
and mergings take place are called nodes. They are regarded as mass balance relations
modeled as equality constraints given by:

0 = Euuk + Eunuk−n + Eddk + Edndk−n. (3.14)

Matrices Eu and Eun have as many rows as nodes are in the studied system, and
as many columns as controlled inputs are available. Therefore, each equation in (3.14)
establishes a link among the variables involved (mass balance at the node), and thus
reduces one degree of freedom. Note that both the controlled inputs and the disturbances
have an immediate and a delayed effect on the system. The delayed effect must be taken
into account at the controller and estimator design stages.

3.3.4 Reaches

An accurate mathematical representation of the dynamics of inland waterways is
required in order to design effective controllers and observers. Indeed, a model of the
system is needed in the control design stage to compute the predicted output at future
time instants. Likewise, it is used to align measured and predicted values of the process,
which results in the optimal state estimates. Since the IDZ model has been described
in detail in Section 3.1, its formulation is not repeated here for the sake of convenience.

It is important to take into account the performance constraints that the reaches
introduce in the model formulation. Indeed, the navigability condition imposes some
restrictions on the water levels. This constraint might be relaxed for a short period of
time, depending on factors such as the weather condition. Thus, a relaxation parameter
αk is considered in the constraint, and a quadratic penalty on this parameter is included
in the objective function.

The navigability condition is formulated as

y
r
−αk ≤ yk ≤ yr +αk, (3.15)
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Figure 3.6: Navigation canal schematic with the variables involved

with y
r
and yr the LNL and HNL bounds around the NNL values, respectively. These

relaxation parameters αk must satisfy

αk ≥ 0. (3.16)

Figure 3.6 depicts a waterway composed of several reaches for a better understanding
of the variables introduced to formulate the problem, and how they are linked to one
another. Note that the locks are not depicted in this figure, but their operations are
labeled using the variable d, as defined before.

Remark 3.5. The direction of the disturbance arrows indicates that their effect is that
of an additional but uncontrolled input to the downstream reach. �

3.3.5 Final formulation

After describing all the elements, the final, equivalent state-space representation is
derived step by step.

Remark 3.6. In the state-space model formulation, the notation q represents the dis-
charges, whereas the variable u is saved for the openings and elevations, and will be
used later on. �
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Model (3.1) can be rewritten as

y1(s) = p11(s) q1(s)− p12(s) q2(s),

y2(s) = p21(s) q1(s)− p22(s) q2(s).
(3.17)

Note that the complete model is taken into consideration. Indeed, it is common
practice to design only downstream water level controllers [LF09]. Instead, the full
model allows to take into account the backwater effect in the upstream water level,
which is of relevance due to the negligible bottom slope of the reaches. Then, (3.2) is
substituted in (3.17), taking into account the parameter naming adopted before, leading
to

y1(s) = z11s+ 1
Aus

q1(s)− z12s+ 1
Aus

e−τusq2(s),

y2(s) = z21s+ 1
Ads

e−τdsq1(s)− z22s+ 1
Ads

q2(s).
(3.18)

In order to simplify the task, the delays are initially dropped, and then reincor-
porated when the state-space representation is obtained. Additionally, a convenient
manipulation of (3.18) leads to

y1(s) =
(1/Au

s
+ z11
Au

)
q1(s)−

(1/Au
s

+ z12
Au

)
q2(s),

y2(s) =
(1/Ad

s
+ z21
Ad

)
q1(s)−

(1/Ad
s

+ z22
Ad

)
q2(s).

(3.19)

A standard transformation of (3.19) (see Section 2.5 in [Oga02] for more details)
yields the state-space representation

ẋ(t) =

0 0
0 0

x(t) +

1 −1
1 −1

q(t),

y(t) =

 1
Au

0
0 1

Ad

x(t) +

 z11
Au

− z12
Au

z21
Ad

− z22
Ad

q(t).

(3.20)

Model (3.20) is discretized with a sampling time Ts as follows:
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xk+1 =

1 0
0 1

xk +

Ts −Ts
Ts −Ts

qk,

yk =

 1
Au

0
0 1

Ad

xk +

 z11
Au

− z12
Au

z21
Ad

− z22
Ad

qk.

(3.21)

The time delays are re-incorporated into (3.21), which yields

xk+1 =

1 0
0 1

xk +

Ts 0
0 −Ts

qk +

 0 −Ts
Ts 0

qk−n,

yk =

 1
Au

0
0 1

Ad

xk +

 z11
Au

0
0 − z22

Ad

qk +

 0 − z12
Au

z21
Ad

0

qk−n ,

(3.22)

where qk−n is the vector of discharges delayed n samples, with n = dτ/Tse. In the case of
inland waterways, τd ≈ τu, which leads to a single value of n. Indeed, the bottom slope
of these reaches is usually negligible, which allows to make this assumption, depending
on the chosen sampling time. The proposed approach works also for different upstream
and downstream time delays, being only necessary to adapt the formulation.

Remark 3.7. One of the most widespread approaches in order to model systems with
delay consists in deriving an augmented representation. Although this representation is
well suited for classical control and state estimation approaches, the order of the system
scales linearly with dead-time length [SLNRA12]. Furthermore, augmented represen-
tations do not allow for a flexible LPV formulation, as the order of the system (the
maximum delay in the network) varies with the operating point, thus being necessary to
reconfigure its structure at each variation. Conversely, model representation (3.22) does
not suffer from these drawbacks, although additional effort may be required in order to
prove properties such as the controllability and the observability. �

Finally, the disturbances are incorporated to the model. Since these lock operations
are also flows, and the locks are generally next to the actuators, their effect on the
system can be assumed to be the same as the controlled discharges. Thus, the matrices
for controlled discharges and disturbances are the same, leading to
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xk+1 =

1 0
0 1

xk +

Ts 0
0 −Ts

qk +

 0 −Ts
Ts 0

qk−n

+

Ts 0
0 −Ts

dk +

 0 −Ts
Ts 0

dk−n,

yk =

 1
Au

0
0 1

Ad

xk +

 z11
Au

0
0 − z22

Ad

qk +

 0 − z12
Au

z21
Ad

0

qk−n

+

 z11
Au

0
0 − z22

Ad

dk +

 0 − z12
Au

z21
Ad

0

dk−n.

(3.23)

As mentioned before, (3.23) must be obtained for each reach in the case study. Then,
qk and qk−n must be substituted in each case by either (3.10) or (3.11) accordingly. It
can be anticipated that this substitution will cause delayed states to appear in the model.
Indeed, qk = f

(
yk,uk

)
, and thus qk−n = f

(
yk−n,uk−n

)
, with yk−n = g (xk−n), and f

and g are the corresponding relationships.

Remark 3.8. The well-posedness of (3.23) may be proved following the ideas in [LF12].
�

More generally, the model formulation of a system with nx states, nu inputs and ny
outputs is

xk+1 = Axk + Anxk−n + Buuk + Bunuk−n + Bddk + Bdndk−n, (3.24a)

yk = Cxk + Cnxk−n + Duuk + Dunuk−n + Dddk + Ddndk−n, (3.24b)

with xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny , and A, An, Bu, Bun, Bd, Bdn, C, Cn, Du, Dun,
Dd and Ddn are time-invariant matrices of suitable dimensions. The state equation is
given by (3.24a), and (3.24b) is the output equation. The mass balances given by (3.14)
can be either formulated by means of constraints or incorporated into (3.24) as shown
in [GOMPJ14].

Model (3.24) corresponds to the case of only one delay in the network. The general
case for a system with multiple delays given by the set S = {n1, n2, ..., np} reads as

xk+1 = Axk + Buuk + Bddk +
∑
ni∈S

(Anixk−ni + Buniuk−ni + Bdnidk−ni) , (3.25a)

yk = Cxk + Duuk + Dddk +
∑
ni∈S

(Cnixk−ni + Duniuk−ni + Ddnidk−ni) . (3.25b)
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Furthermore, (3.14) must be modified as

0 = Euuk + Eddk +
∑
ni∈S

(Euniuk−ni + Ednidk−ni) (3.26)

in order to take into account multiple time delays.

Finally, and because of the delayed terms, (3.24) and (3.25) are not representable
using the standard state-space formulation. While the theory of other classical state
feedback control techniques might not be used for this representation, the combination
of MPC and MHE can deal with these models in a suitable manner. Furthermore,
this formulation also allows a flexible and more compact notation of a system with
delayed variables. Indeed, a common approach to represent such systems consists in the
augmentation procedure described in [SNRL10], where the delay effect is incorporated
as a dead-beat dynamic to obtain an undelayed representation. However, a downside
of this methodology lies in the large dimensionality of the resulting description. By
contrast, no augmented model needs to be derived in the case of MPC and MHE.

3.4 An alternative grey-box modeling approach

The IDZ model described in Section 3.1 relies on the knowledge of the physical
characteristics of the system to compute the model parameters. However, it can happen
that certain physical data are unavailable. Hence, a grey-box modeling approach can
be used to estimate model parameters, as these strategies allow to incorporate previous
physical knowledge and to apply statistical methods for parameter estimation purposes
[KMJ04].

Therefore, this section is concerned with the estimation of the model parameters of
a grey-box model in those cases in which experimental data are available. The com-
plete derivation of its structure is carried out in Appendix B and is recalled here for
convenience:

ŷk+1 = Ãyk|κ + B̃qk|κ, (3.27)

with Ã ∈ Rny×(ny×nκ), B̃ ∈ Rny×(nu×nκ), yk|κ =
[
y(1)
k|κ y(2)

k|κ · · · y(ny)
k|κ

]ᵀ
and qk|κ =[

q(1)
k|κ q(2)

k|κ · · · q(nu)
k|κ

]ᵀ
.

Remark 3.9. The general description given in Appendix B is particularized in this thesis
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by assuming that each actuator is equipped with one level sensor. Therefore, ny = nu =
n. �

The grey-box modeling approach is formulated as follows: the time delays are de-
termined according to the well-known relations given in [LF09]. On the other hand,
matrices Ã and B̃ are estimated using available input-output data. To this end, (3.27)
can be rewritten as follows:

ŷk+1 = M Φk. (3.28)

According to the structure of Ã and B̃ given in Appendix B, the i-th level ŷ(i)
k+1 can

be estimated as

ŷ
(i)
k+1 = M(i) Φ

(i)
k , (3.29)

with M(i) =
[
Ã(i) B̃(i)

]
and Φ

(i)
k =

[
y(i)
k|κ q(i)

k|κ

]ᵀ
.

Then, M(i) is the solution of the linear least squares problem. N samples of the
measured discharges Q(i)

k and levels L(i)
k are considered in its computation:

M(i) = Y(i)
(
Φ(i))ᵀ (Φ(i) (Φ(i))ᵀ)−1

, (3.30)

with Y(i) =
[
y

(i)
χ+1 · · · y

(i)
N

]
, Φ(i) =

[
Φ(i)
χ · · · Φ

(i)
N−1

]
, and χ = max(κ) + 1, where

max(κ) is the maximum entry of matrix κ.

Remark 3.10. As mentioned in Appendix B, the problem of estimating the time delays
from the available data is not addressed in the thesis. �

The following fit coefficients are used to determine the accuracy of the model with
respect to the measurements:

— The Pearson product-moment correlation coefficient measures the linear depen-
dence between two variables:

Ri =

N∑
k=1

(
y

(i)
k − λy(i)

) (
ŷ

(i)
k − λŷ(i)

)
√

N∑
k=1

(
y

(i)
k − λy(i)

)2
√

N∑
k=1

(
ŷ

(i)
k − λŷ(i)

)2
, (3.31)
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with λy(i) and λŷ(i) the mean value of measured and estimated water levels, respec-
tively. This coefficient is bounded between +1 (total positive linear correlation)
and -1 (total negative linear correlation), and 0 means that there is no linear
correlation.

— The Nash-Sutcliffe model efficiency coefficient is used to assess the predictive
power of hydrological models [NS70]:

E(i) = 1−

N∑
k=1

(
y

(i)
k − ŷ

(i)
k

)2

N∑
k=1

(
y

(i)
k − λy(i)

)2
. (3.32)

E(i) can range from 1 to −∞, where 1 indicates a perfect match of modeled and
observed values, 0 corresponds to the case in which the model predictions are
as accurate as the mean of observed data and E(i) < 0 means that the model
predictions are less accurate than the mean of observed data.

3.5 Modeling results

This section gathers the modeling results for the IDZ-based approach presented in
Section 3.3 and the grey-box modeling approach described in Section 3.4. Both strate-
gies are equally valid to design controllers, estimators and fault diagnosis approaches.
However, real data are only available for part of the case study depicted in Fig. 3.7,
namely reach NR2, hereinafter referred to as the Cuinchy-Fontinettes reach, or simply
the CFr. Based on this limitation, the usages of two models are described next:

— The IDZ-based approach will be used to design centralized and distributed con-
trollers and estimators in Chapters 4 and 5, respectively. Furthermore, a model-
based fault diagnosis approach considering this model will be proposed in Section
6.1. In order to be able to compare both fault diagnosis strategies, the model-based
fault diagnosis approach will only focus on the CFr.

— The grey-box modeling approach will be used to design a data-driven fault diag-
nosis approach in Section 6.2.

Section 3.5.1 presents the complete case study that will be used throughout the
thesis. Then, Section 3.5.2 gathers the results concerning individual IDZ models, its
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Figure 3.7: Part of the inland waterways in the north of France

validation and the building of the global state-space representation. On the other hand,
the computation and validation of the identified data-based model are carried out in
Section 3.5.3.

3.5.1 Description of the system

The inland waterways in the north of France is linked with the Belgian and Dutch
inland waterways, and is managed by Voies Navigables de France 1 (VNF). Its main
objective is that of guaranteeing the navigability condition, which is achieved by keeping
the water levels inside the navigation rectangle defined by the LNL and the HNL, and
as close as possible to the NNL.

This inland navigation network consists of more than fifty reaches that are inter-
connected by locks, gates and weirs. Part of it is depicted in Fig. 3.7, which shows
the two reaches considered in the case study. The i-th reach is labeled as NRi, and its
setpoint (NNL) is specified in red. In addition, the locks that connect adjacent reaches
are labeled in black.

The choice of the case study is motivated by the following reasons:

— It features a distributary, which branches off from NR1 at an intermediate point
and flows away, to the lock of Don. This topology is regarded as of special in-
terest, since the mass balance at this natural bifurcation (not controlled) is not

1. http://www.vnf.fr

http://www.vnf.fr
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Figure 3.8: Schematic diagram of the case study

straightforward to model. Indeed, a possible approach for this situation is shown
below.

— Besides, NR2 is an important reach in this network for two reasons: its strategic
location, which allows dispatching water among the three major catchments in
the region; and its downstream lock in Fontinettes, which performs the largest
lock operations in terms of volume, and is therefore responsible for the largest
disturbances. Being able to deal with the worst-case scenario can give a feel for
the magnitude of the disturbances that the control strategy attempts to reject.

3.5.2 IDZ-based state-space approach

The complete case study depicted in Fig. 3.7 is used to illustrate the approach
presented in Section 3.3. A more schematic view is provided in Fig. 3.8. Since the
bifurcation is of natural type (uncontrolled), this node can be eliminated, based on an
estimation of the ratios of the total flow for each stream after the bifurcation. Due to the
physical characteristics of the system, it can be considered that each of the flows after
the bifurcation corresponds to 50% of the flow before the bifurcation. This yields the
simplified, final three-reach case study scheme given in Fig. 3.9. Note that the reaches
are renamed for convenience, and also the nodes for labeling purposes.

Computing and testing individual IDZ models

The physical parameters of the three reaches are summarized in Table 3.1. LNL,
NNL and HNL are the relative lower, normal and higher navigation levels (with respect
to the bottom of the reach), L is the length of the reach, wr is the bottom width, mr is
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Figure 3.9: Simplified schematic diagram of the case study

Table 3.1: Parameters of the reaches

Reach nr. LNL [m] NNL [m] HNL [m] L [m] wr [m] mr [m/m] sb [m/m] nr [s/m1/3] Qs [m3/s]
(1,2) 3.95 4.1 4.25 39000 50 0 0 0.035 0.6
(1,3) 3.95 4.1 4.25 37000 50 0 0 0.035 0.6
(4) 3.65 3.8 3.95 42000 50 0 0 0.035 0.6

Table 3.2: Time delays of each reach

Reach nr. τu [s] τd [s]
(1,2) 6391 6384
(1,3) 6063 6057
(4) 6882 6875

the side slope (mr = 0 for a rectangular cross section), sb is the bottom slope (sb = 0 for
a flat reach), nr is the Manning roughness coefficient (nr = 0.035 for a stony excavated
earth channel [Whi99]) and Qs is the operating point considered when linearizing the
Saint-Venant equations. Indeed, it is considered that an average flow of 1.2 m3/s comes
from upstream of Douai, and that it is divided into two equal parts after it.

Table 3.2 summarizes the time delays τu and τd for the three reaches. Note that all
of them are in the interval [6063, 6882] s, or equivalently [5.05, 5.73] samples. Thus, a
unique delay of 6 samples can be considered, according to the ceiling rule introduced in
(3.22). Thus, model (3.24) can be used.

The rest of the IDZ parameters of the reaches can be computed according to the
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Figure 3.10: Evolution of the water levels in reach (4) for a lock
operation in Fontinettes.

formulas given in [LF04b], which allows to build the partial IDZ models (3.23). However,
the quality of these models needs to be tested before building the global model. To do
so, the reaches are disturbed by simulating the effect of a lock operation. Then, its
behavior is compared with the results obtained using the hydraulic simulator SICˆ2 2,
developed at IRSTEA Montpellier [MDB14]. Since SICˆ2 solves numerically the Saint-
Venant equations without simplification, the results provided by this software are taken
as the reference to check the performance of the computed IDZ model. The evolution
of the water levels caused by a lock operation in Fontinettes are depicted in Fig. 3.10.
Since the dynamics of all reaches are rather similar, the evolution of the water levels is
only shown for reach (4).

The effect of the lock operation in Fontinettes is only detected at the upstream end of
the reach after τu (defined in Section 3.1) has elapsed. Note that the resulting IDZ model
is able to predict successfully the downstream water level, although it overestimates the
magnitude of the upstream water level peak. This mismatch needs to be corrected
by calibrating the zero of the model to ensure the correct prediction of the peak, for
which the zero accounts. The water levels predicted by both the uncalibrated and the
calibrated models are depicted in Fig. 3.10, proving the effectiveness of the calibration.

2. http://sic.g-eau.net

http://sic.g-eau.net
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On a separate note, it might seem that the magnitude of a lock operation (around
7 cm) is not so relevant in comparison with the water depth of the reach (3.8 m).
An individual lock operation, although rather large in magnitude, does not seem to
have a noteworthy effect on the system, given its large dimensionality. However, the
combined effect of several consecutive lock operations might cause the water levels to not
remain within the navigation rectangle [LNL, HNL]. This is a requirement of the utmost
importance for VNF, who might be forced to stop the navigation for safety reasons if
this condition is not fulfilled. This issue justifies the need for water level regulation
strategies.

Building the global state space representation

Once the models of the reaches are validated, these are stacked to build the central-
ized model given by:
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Remark 3.11. The superscripts of the variables in (3.33) refer to the labeling of the
nodes given in Fig. 3.9. �

Next, the linearized versions of the nonlinear equations of gates and weirs (3.12) are
computed, as the studied system falls under the free-flow case. To do so, the nonlinear
equations are linearized around the NNL and Qs values provided in Table 3.1. In this
particular case, (3.10) is used for both gates and weirs due the free flow at the structures.

Douai: qDk = 27.5553uDk , (3.34a)

Cuinchy: qCk = 1.32 · 10−6x
C(1,2)
k − 1.8524uCk , (3.34b)

Don: qDonk = 1.32 · 10−6xDonk − 1.8524uDonk , (3.34c)

Fontinettes: qFk = 5.63 · 10−8xFk + 25.9037uFk . (3.34d)

Remark 3.12. qDk does not depend on the water level upstream of the structure. Indeed,
this water level is outside of the scope of the control problem. Following the modeling
approach presented in [BPB14], where a reservoir, it is considered that there is enough
water upstream of Douai, and therefore this level remains constant. �

Finally, (3.34) is substituted in (3.33). Note that this substitution is performed in
such a way that the mass balances, originally described by (3.33c), are embedded in the
final model (3.35) to be consistent with the current implementation. This representation
is equivalent to expressing the mass balances by means of equality constraints, as stated
before. Therefore, the final numerical model reads as follows:
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3.5.3 Grey-box approach

The second modeling approach lies in identifying the parameters of a grey-box model
based on the available real data for the CFr, recorded from October 30, 2013 (Thursday)
to November 17, 2013 (Sunday). This reach is depicted in detail in Fig. 3.11, and
is equipped with two locks (in Cuinchy and Fontinettes), three sensors that allow to
measure the level in Cuinchy (LC), Aire (LA) and Fontinettes (LF ) with a sampling time
Ts = 1 min, and three hydraulic devices in Cuinchy (QC), Aire (QA) and Fontinettes
(QF ) that are used to regulate the water levels. These discharges are measured each 15
min and then oversampled every minute.

Remark 3.13. The gate in Aire is only used during flood episodes to dispatch water
to secondary reaches, and also to convey water from those reaches to the CFr during
drought episodes. These phenomena are outside of the scope of the thesis, and it is the
reason why this gate was not considered in the IDZ-based model formulation (3.33). �

The first step consists in determining the delays between each part of the CFr.
These are computed according to the characteristics given in Table 3.1, which allows
to determine the maximum delay in the system. Then, κ can be built based on this
information. According to these delays, the input and output vectors uk|κ ∈ R9×1 and
yk|κ ∈ R9×1 are built by considering the following inputs and outputs: q(1)

k = QCk and
y

(1)
k = LCk for Cuinchy, u(2)

k = QAk and y(2)
k = LAk for Aire, and u(3)

k = QFk and y(3)
k = LFk

for Fontinettes. The vectors qk|κ and yk|κ are used in the parameter identification of
the model by considering a sliding window of size Nw = 1440 min (1 day).

On the other hand, matrices Ã and B̃ in (3.27) are determined by considering data
from the first five consecutive days. A model for each window is identified, which can
then be used to estimate the levels L̂(i)

k as outputs of the model. The real measurements
L

(i)
k and the estimated L̂

(i)
k are depicted in Fig. 3.12 in blue and dashed red lines,

respectively, for each of the three level sensors. These values are relative to the NNL,
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Figure 3.11: Detailed schematic representation of the CFr
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Figure 3.12: Measured (blue solid line) and estimated (red solid line)
water levels in: (a) Cuinchy. (b) Aire. (c) Fontinettes.

and therefore the values L(i)
k = 0 and L̂(i)

k = 0 correspond to the NNL.
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k terms (blue solid lines) and thresholds (black

dashed lines): (a) a(1,1). (b) a(2,2). (c) a(3,3). (d) RC
(red solid line) and EC (blue solid line).

The grey-box parameters change for each window. Note that the free model case
defined in Appendix B is identified, thus not forcing null coefficients in Ã(i). However,
it is precisely the a(i,i) terms, whose evolution is depicted in Fig. 3.13, which retain
the main information in Ã(i). Based on these data, the intervals for these terms are
determined, which are depicted as black dashed lines in Fig. 3.13. These intervals will
be used to detect and isolate faults in Section 6.2.

On the other hand, the Nash-Sutcliffe
(
E(i)

)
and correlation

(
R(i)

)
coefficients are

also computed to verify the quality of the model. The average values of these coefficients
for the three level sensors are given in Table 3.3. The closeness of these fitting indicators
to the maximum theoretical values indicate that the model predictions are accurate with
regard to the real data, and thus the effectiveness of the grey-box modeling approach is
proved. In particular, the evolution of the coefficients for LC are also depicted in Fig.
3.13.
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Table 3.3: Average values of Nash-Sutcliffe
(
E(i)

)
and correlation(

R(i)
)
coefficients

Water level E(i) [%] R(i) [%]
C 90 95
A 87 93
F 76 87

3.6 Summary

Chapter 3 has addressed the problem of obtaining accurate models for open-flow
water systems, which are to be used in the following for the purposes of control, state
estimation and fault diagnosis. The IDZ model, which is among the existing simplified
modeling approaches presented in Section 2.1, is chosen and extended to describe the
dynamics of inland waterways composed of several reaches based on the original formu-
lation. However, it becomes apparent that the proposed approach is rather inadequate,
which motivates the derivation of an equivalent state-space representation. In doing
so, the connections between reaches can be easily established by means of additional
constraints that represent mass balances, which describe the static part of the model.
This leads to a delayed descriptor formulation, for which the appropriate control and
state estimation techniques will be proposed in Chapter 4. Finally, a parameter esti-
mation approach has also been proposed to deal with the lack of knowledge of physical
parameters.
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Chapter 4

Centralized control and state
estimation

Chapter 3 has addressed the problem of modeling open-flow water systems, for which
a new approach has been proposed. This method is particularly suitable for large in-
land waterways composed of many reaches. Chapter 4 builds on the derived modeling
approach in order to design a CMPC that fulfills a set of operational goals linked to the
system performance. The controller requires the vector of states to be known at current
time to compute the set of future optimal inputs. In general, the measurements of all
states are not available, and thus estimates of unmeasured states must be provided to the
CMPC using observers. Although there exist many possibilities to estimate the states,
a CMHE, which is considered as the dual problem of CMPC, is chosen for this purpose.
Their combination is especially attractive since the MHE formulation corresponds also
to an online optimization problem that can explicitly handle constraints [CH17]. The
choice of MPC and MHE is motivated by the fact that standard tools for control and
state estimation such as the linear quadratic regulator (LQR) and the Kalman filter
need to be extended to deal with delayed descriptor systems. Moreover, they cannot
deal with input and state/output constraints. Conversely, MPC and MHE can be easily
adapted for this model formulation, as well as being able to deal with constraints on the
states, inputs and outputs in a natural manner.

Chapter 4 is organized as follows: Section 4.1 gathers the operational goals, the multi-
objective function and the set of constraints to build the CMPC. Section 4.2 is concerned
with the design of the CMHE, which can be easily formulated from the CMPC. Then,
some ideas on how to implement both optimization problems are presented in Section 4.3.

59
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It is also shown how both problems are connected: indeed, the solution of the controller
is used to solve the estimation problem, and vice versa. Finally, Section 4.4 gathers
the results obtained by applying the presented techniques on the system described in
Section 3.5. These contributions have been published in [SRN+18b, SRN+19b].

4.1 Control design: the MPC approach

Modern inland waterways are complex, multi-variable systems whose management
requires the use of advanced control methods [vO06]. As discussed in Section 2.2.1,
MPC possesses several interesting features that make it a suitable tool for the inland
waterways control problem. Its main principle resides in computing a sequence of inputs
that causes the predicted response of the system to move to the desired setpoint in
an optimal manner while respecting the constraints. The constraints imposed by the
elements that make up the model have already been defined in Section 3.3. On the other
hand, the set of operational goals is defined below.

4.1.1 Operational goals and multi-objective function

One or more operational goals are expected to be achieved during the process. To
this end, a certain criterion is optimized in the computation of the control signals. This
criterion is usually built as the weighted sum of several terms, where each of them
represents an operational goal. Note that the set of operational goals that can be taken
into account is not unique. In this thesis, the following are considered:

— Maintaining the water levels close to the setpoints: This is the most important
objective to be fulfilled. Its mathematical formulation reads as

J1
k = (yk − yr)ᵀ (yk − yr) , (4.1)

with yr the vector of NNL values.

— Cost reduction: This term reflects the economic costs derived from operating the
available equipment. It can be formulated as

J2
k = ce uᵀkuk , (4.2)
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with ce the vector of known costs associated to the equipment operation.

— Smoothness of the control signal: In order to avoid wear and tear, and increase the
lifespan of the equipment, it is a common practice to penalize the control signal
variation between consecutive time instants:

J3
k = ∆uᵀk∆uk , (4.3)

with ∆uk = uk − uk−1.

— Penalty in the relaxation parameter: αk, which was introduced in (3.15), is penal-
ized to ensure that the water levels are outside the navigation interval as little as
possible:

J4
k = αᵀkαk. (4.4)

The multi-objective function J that gathers the control objectives can be described
by

J (uk,yk,αk) =
Hp∑
k=1

4∑
j=1

βj J jk , (4.5)

where Hp is the prediction horizon and βj are the weights of the j-th objective. Note
that Hp must be chosen according not only to the system dynamics (settling time), but
also to take into account the system delays. Therefore, Hp > ts + max(S), where ts
is the settling time (in samples), and S was defined for (3.25). Moreover, the stability
of the resulting MPC may be proved based on the ideas in [ON08, RA10] for time-
delay systems. Finally, in order to set the weight of each objective in a multi-objective
optimization problem, the procedure described in [TOML+11] can be used.

4.1.2 CMPC formulation

Gathering the control-oriented model, the system constraints and the multi-objective
function, the design of the CMPC follows classical approaches [CB98, Mac02, RM09]:
an optimization problem is solved over a prediction horizon, minimizing a cost function
while respecting the system constraints. The first component of the vector of control
inputs is extracted from the solution and is applied to the system, and the rest are
disregarded. This procedure is repeated at each time instant, following a receding-
horizon strategy.
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The optimization problem is given by:

min
{ui|k}

k+Hp−1
i=k , {yi|k}

k+Hp−1
i=k , {αi|k}

k+Hp−1
i=k

J
(
ui|k,yi|k,αi|k

)
(4.6a)

subject to:

xi+1|k = Axi|k + Anxi−n|k + Buui|k + Bunui−n|k+ (4.6b)

Bddi|k + Bdndi−n|k, i ∈ {k, ..., k +Hp − 1},

yi|k = Cxi|k + Cnxi−n|k + Duui|k + Dunui−n|k+ (4.6c)

Dddi|k + Ddndi−n|k, i ∈ {k, ..., k +Hp − 1},

0 = Euui|k + Eunui−n|k + Eddi|k + Edndi−n|k, i ∈ {k, ..., k +Hp − 1}, (4.6d)

um ≤ umi|k ≤ um, i ∈ {k, ..., k +Hp − 1}, (4.6e)

y
r
−αi|k ≤ yi|k ≤ yr +αi|k, i ∈ {k, ..., k +Hp − 1}, (4.6f)

αi|k ≥ 0, i ∈ {k, ..., k +Hp − 1}, (4.6g)

xj|k = x̂MHE
j , j ∈ {k − n, ..., k}, (4.6h)

ul|k = uMPC
l , l ∈ {k − n, ..., k − 1}, (4.6i)

where k is the current time instant, i is the time instant along the prediction horizon
and k+i|k indicates the predicted value of the variable at instant k+i using information
available at instant k.

Remark 4.1. j and l are used to indicate the use of past information, for which the
considered time intervals are different than the one described by i. �

Equations (4.6b) and (4.6c) correspond to the model described by (3.24), (4.6d) are
the mass balances given in (3.14), and (4.6e)–(4.6g) are the constraints given in (3.9),
(3.15) and (3.16), respectively. Equation (4.6h) sets the values of the delayed states
according to the solution provided by the CMHE (noted as x̂MHE

i ) in past iterations.
Note that the CMHE will be introduced in the following section. These delayed values
are provided to the CMPC as parameters. Similarly, the delayed control actions obtained
by the CMPC (noted as uMPC

i ) in previous iterations are also provided as parameters
by means of (4.6i).

The optimal solution is given by the sequences {ui|k}
k+Hp−1
i=k , {yi|k}

k+Hp−1
i=k ,
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{αi|k}
k+Hp−1
i=k

1. As it was stated before, only uk|k is applied to the system, accord-
ing to the receding philosophy

uMPC
k , uk|k. (4.7)

4.2 State estimation: the MHE approach

The CMPC presented in Section 4.1 uses the states to compute the set of optimal
control actions. The system states oftentimes are not directly measurable, and therefore
they need to be estimated from the available data using a state estimator.

Thus, the problem to be solved is that of designing an observer that fully reconstructs
the system states, for which a CMHE is proposed. The main principle of this technique
consists in formulating the estimation problem as a quadratic program using a moving
estimation window of a fixed size [ABQ+99, RRL01]. Indeed, it is assumed that only part
of the available information of the system (inputs and outputs) is considered, which is
shifted in time to consider the most recent information. Otherwise, the computational
burden renders the full-information problem impractical to solve, as more and more
data are processed with time. In this way, a truncated sequence of state estimates
is computed at each time step instead of the full-state sequence to make the problem
tractable [Rao00].

The formulation corresponding to the optimization problem solved by the CMHE
reads as

min
{x̂i|k}ki=k−N , {γi|k}

k
i=k−N

(
x̂k−N |k − xk−N

)ᵀ
P−1

(
x̂k−N |k − xk−N

)
+ (4.8a)

k−1∑
i=k−N

(
wᵀi|kQ

−1wi|k + vᵀi|kR
−1vi|k

)
+ γᵀi|kγi|k

subject to:

wj|k = x̂j+1|k −
(
Ax̂j|k + Anx̂j−n|k + Buuj|k + Bunuj−n|k+ (4.8b)

Bddj|k + Bdndj−n|k
)
, j ∈ {k −N, ..., k − 1},

vj|k = yj|k −
(
Cx̂j|k + Cnx̂j−n|k + Duuj|k + Dunuj−n|k+ (4.8c)

1. {ui|k}
k+Hp−1
i=k , {uk|k, uk+1|k, · · · , uk+Hp−1|k}; yi|k and αi|k are defined in the same manner
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Dddj|k + Ddndj−n|k
)
, j ∈ {k −N, ..., k − 1},

0 = Euuj|k + Eunuj−n|k + Eddj|k + Edndj−n|k, j ∈ {k −N, ..., k − 1}, (4.8d)

xr ≤ x̂i|k ≤ xr, i ∈ {k −N, ..., k}, (4.8e)

− γi|k ≤ x̂D(1,2)
i|k − x̂D(1,3)

i|k ≤ γi|k, i ∈ {k −N, ..., k}, (4.8f)

γi|k ≥ 0, i ∈ {k −N, ..., k}, (4.8g)

x̂l|k = x̂MHE
l , l ∈ {k −N − n, ..., k −N − 1}, (4.8h)

um|k = uMPC
m , m ∈ {k −N − n, ..., k − 1}, (4.8i)

yo|k = yo, o ∈ {k −N, ..., k − 1}, (4.8j)

with (4.8b) accounting for the system disturbances and (4.8c) for the measurement
noise. Additionally, (4.8d) describes the static part of the model, (4.8e) defines the
valid interval of the state variables, (4.8f) establishes a link between two of the states
in (3.33), (4.8g) imposes the non-negativity of the relaxing parameter γk, and (4.8h),
(4.8i) and (4.8j) set the values of the delayed states, inputs and outputs, respectively,
following the same ideas as in (4.6). Additional insight on the CMHE formulation is
given below:

— The value xk−N in (4.8a) corresponds to the most likely initial state vector, and
is chosen based on the available knowledge of the system, whereas x̂k−N |k is the
first value of the optimal state sequence computed by the CMHE at time instant
k. The error in this initial guess, given by

(
x̂k−N |k − xk−N

)
, is weighted by means

of the matrix P−1, which indicates the confidence into the initial state, and its
tuning allows to guarantee the boundedness of the estimation, as discussed in
[RRM03]. On the other hand, Q−1 and R−1 are the weighting matrices inverses
of suitable dimensions linked to the confidence in the quality of the model and the
measurements, respectively. The larger these matrices are, the lesser the confidence
in the associated term is, as the matrices are inverted. These inverses are directly
related to the covariance matrices only in the case of linear systems with zero-
mean uncorrelated random variables for unknown disturbances [Boe14]. In any
other situation, e.g., constrained states, this connection is only an approximation.

— On the other hand, the need for (4.8f) and (4.8g) comes from the mass balance at
the bifurcation node, which requires to impose an additional relationship between
the state variables immediately after the bifurcation. Indeed, note that the states
can be interpreted in terms of water volumes, which can be deduced by inspecting
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matrix C in (3.23). Therefore, x̂D(1,2)
k /x̂D(1,3)

k = ψk, where ψk is the existing
proportionality between the two variables and is equal to the ratio of the flows
after the bifurcation. Since it was considered in Section 3.5 that both flows are
of equal magnitude, ψk = 1 and thus the values of the states must be equal to
one another. Note that this equality is relaxed by means of γk to avoid possible
numerical infeasibility during the simulation.

— Finally, note that the cost function (4.8a) is extended with an additional term,
given by γᵀi|kγi|k, to penalize large differences in the estimates. Indeed, a quadratic
penalty is set on the relaxation parameter γi|k, which must be monitored to ensure
that large differences between the estimates x̂D(1,2)

i|k and x̂D(1,3)
i|k are not permitted.

The CMHE problem (4.8) is formulated as follows: at the current time instant k, N
input-output pairs [(uk−N ,yk−N ) : (uk−1,yk−1)] shall be available. Therefore, N is the
length of the moving estimation window, which bounds the size of the problem. The
resulting least-squares problem is solved, yielding the optimal sequences {x̂i|k}ki=k−N ,
{γi|k}ki=k−N 2. However, as is the case in the CMPC problem, only one value in the
sequence of state estimates is considered, and the rest are discarded. In the CMHE
problem, this corresponds to the last value, that is, x̂k|k. Therefore,

x̂MHE
k , x̂k|k. (4.9)

In the next iteration (k′ = k + 1), the truncated data sequence is
updated and becomes [(uk′−N ,yk′−N : (uk′−1,yk′−1)], which is equivalent to
[(uk−N+1,yk−N+1) : (uk,yk)]. Note that the oldest measurement pair (uk−N ,yk−N )
is dropped, and the newest measurement pair (uk,yk) is incorporated, following the
moving horizon philosophy.

4.3 Implementation of the CMPC and the CMHE

Once the CMPC and the CMHE are designed, they must be integrated in the sim-
ulation loop. Algorithm 4.1, coded in MATLABR© using YALMIP [Löf04] as parser,
illustrates how the solution provided by the controller is used by the estimator, and vice
versa. Note that the simulation is designed in such a way that the estimator is called

2. {x̂i|k}ki=k−N , {x̂k−N|k, x̂k−N+1|k, · · · , x̂k|k}; γi|k is defined in the same manner
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Algorithm 4.1 Integration of the CMPC and CMHE in the simulation loop
Require: yi,ui ∀i ∈ [k −N, k − 1] and parameters in (4.6) and (4.8)
1: Estimate the initial state x̂k=1 by solving (4.8) using [(uk−N ,yk−N ) : (uk−1,yk−1)]
2: x̂MHE

k , x̂k=1
3: for k = 1 : tsim do
4: Solve the control problem (4.6) using x̂MHE

k

5: uMPC
k , uk|k

6: Apply uMPC
k to the system

7: Measure yk
8: Update the sequence of data as

[
(uk−N+1,yk−N+1) : (uMPC

k ,yk)
]

9: Solve the estimation problem (4.8) using the sequence of data defined in step 8
10: x̂MHE

k , x̂k+1|k+1
11: end for

first, which allows to initialize the system. The initial state is used as the starting point
by the controller to compute the set of optimal inputs. The first element in the sequence
is applied to the system, which allows to measure the outputs at current time. This
information is then used by the estimator to provide the state estimates for the next
time instant (with a slight abuse of notation to preserve the same variable name), which
prepares the simulation for the next iteration.

Real systems are usually equipped with sensors that provide measurements, which
are necessary to estimate the unmeasurable states. If these measurements were not
available (as was the case at this stage), they would need to be generated in simulation,
using the output equation. The effect of this limitation is that the estimator cannot
be used for the first time at k = 1, but at k = N + 1. Indeed, an input-measurement
pair (uk,yk) is generated at each time instant k, using the solution of the controller.
Thus, the necessary data to compute the state estimates is not available until N samples
elapsed. Furthermore, the initial state x̂k=1 has to be selected as any feasible state.

Finally, note that, at time k, the CMPC yields the sequence {ui|k}
k+Hp−1
i=k . It is

therefore necessary to know the disturbances until, at least, the instant k +Hp − 1. By
contrast, the CMHE sets its starting point N samples in the past, and reconstructs the
optimal sequence of state estimates until the current time instant k. This requirement
in terms of available information is fulfilled based on the policy introduced in Chapter
3, which allows to anticipate future lock operations.
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Table 4.1: Lock operations

Lock Dispatched water volume [m3] Duration [min]
Douai 18000 20
Cuinchy 12000 20
Don 12000 20

Fontinettes 30000 20

4.4 Simulation results for the CMPC and CMHE

The last section illustrates the performance of the CMPC and the CMHE by means of
the realistic case study system depicted in Fig. 3.9. Its numerical model was obtained
in Section 3.5 and is given by (3.35). The lock operations that take place in Douai,
Don, Cuinchy and Fontinettes disturb the system, and their average magnitudes and
durations are given in Table 4.1. The magnitudes of the lock operations are rather large
compared to the operating points given in Table 3.1, which might temporarily cause
the system dynamics to be far from those predicted by the linearized model. As it will
be discussed in Chapter 7, a possible solution might be to resort to LPV or nonlinear
modeling strategies. However, the use of a controller is expected to minimize the effect
of such mismatch.

A realistic 24-hour scenario, depicted in Fig. 4.1, is designed by considering a lock
operation time-series model for a typical navigation profile. Additionally, the following
management restrictions must be taken into account:

— A day is divided in two periods: navigation and stoppage. Boats are only allowed
to navigate during the navigation period, which starts each day at 6 a.m. and
finishes after fourteen hours, at 8 p.m. The navigation is interrupted until the
next day at 6 a.m.

— The current policy allows a maximum of two lock operations per hour.

Besides, the scenario does not consider changes in the setpoints, thus assuming
that the navigation conditions do not change during the simulation. Such modifications
typically occur due to changes in the weather condition, e.g., flood and drought episodes,
which might require to readjust the LNL, NNL and HNL values.
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Figure 4.1: The considered lock operation profile

On the other hand, the same four nodes are equipped with controlled devices which
allow to dispatch water to fulfill the control objectives. In particular, Douai and
Fontinettes are equipped with undershot gates, whereas Don and Cuinchy are equipped
with weirs. It is considered that all gates and weirs can deliver a maximum flow of 10
m3/s, which will have to be converted into maximum gate openings and sill elevations,
respectively. Their nonlinear expressions, as well as their linearized equations, are given
by (3.12) and (3.34), respectively.

The simulation is carried out in MATLABR©, using a processor IntelR© CoreTM i5-
3230M CPU 2.60GHz and 4 GB of RAM. Figure 4.2 depicts, for each discrete-time
instant, the computation times spent in solving the CMPC plus the CMHE. Note that
the CPU times include YALMIPs overhead to convert the problem to solver-specific
format, and not only the solver times. Although some coding effort could be made to
reduce computation times, the current design is satisfactory and could be implemented
in real time, given the considered sampling time. Furthermore, the total simulation time
is 22.12 s.
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Figure 4.2: CMPC+CMHE computation time

4.4.1 CMHE

In order to estimate the states, the measurements of the system are needed. Depend-
ing on the structure of the problem, e.g., the topology of the network or the connections
between reaches, not all measurements are required. This statement can be realized
by inspecting matrix C, which links the states and the measurements. In the present
case, it is not necessary to consider the measurement yC(1,2)

k , since the associated state
has an effect on the downstream level yC(4)

k , given by the off-diagonal, nonzero entry in
the fourth row of C. Hence, in order to show the effectiveness of the approach, the six
states are reconstructed with only five measurements, i.e., assuming that the water level
y
C(1,2)
k is not available. Thus, this value is obtained from the state estimates.

The comparison between the optimal estimated states given by the CMHE and the
real states obtained in simulation are depicted in Figure 4.3. As mentioned in Section
3.5, real data are only available in this thesis for a small part of the system, and thus the
output equation is used to compute the water levels. On the other hand, the CMHE is
fed with the corresponding sequence of N input-measurement pairs at each time instant,
which are used to compute the optimal sequence of states. The following weights are
used in the definition of the CMHE: P−1 = Inx = I6, Q−1 = Iny−1 = I5 and R−1 =
Inx = I6.
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Figure 4.3: State estimates (blue solid lines) and computed states
(dash-dot gray lines)

In general, the values provided by the estimator match the real states with no sig-
nificant error. In addition, the real states are noisier than the estimated states. This
behavior is in line with the nature of the observer, which acts as a filter, smoothing
the predictions. Furthermore, the constraints on the state bounds are satisfied. Such
bounds are not even depicted in Fig. 4.3 for the benefit of a better visualization of the
results, as the states are far from the bounds.

On the other hand, recall the relationship between x̂D(1,2) and x̂D(1,3) given by
(4.8f). According to what was stated in Section 4.2, although these two variables must
be equal to one another, this condition was relaxed in order to avoid possible numerical
infeasibility. It can be seen how the two state estimates are not exactly the same, for
which the relaxation parameter γ accounts. However, the differences are rather small,
being the largest relative difference equal to 0.5%.
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Table 4.2: Correlation coefficients for the CMHE

D (1,2) C (1,2) D (1,3) Don C (4) F
0.8389 0.8856 0.8841 0.9276 0.9654 0.9403

In order to ensure a quantitative comparison between the real and the estimated
states, the similarity of both signals is quantified by means of the correlation coefficient.
Given a pair of signals (mt, nt) with M observations each, the correlation coefficient is
defined as

ρm,n = 1
M − 1

M∑
i=1

(
mi − µm
σm

)(
ni − µn
σn

)
, (4.10)

where µm and σm are the mean and standard deviation ofmt, respectively, and µn and σn
are the mean and standard deviation of nt. This coefficient is bounded between 1 and -1:
the closer this coefficient is to 1 (respectively -1), the stronger the positive (respectively
negative) correlation between the pair of signals is. The correlation coefficients between
the real and the estimated states are summarized in Table 4.2.

It can be stated that the performance of the CMHE is satisfactory, since all the
correlation coefficients are very close to 1, which indicates a strong, positive correlation.
Indeed, the main goal of the estimator is that of reconstructing an accurate state se-
quence that is not directly measurable. This procedure is used to achieve the final goal,
which consists in fulfilling the control objectives, so that the desired system performance
is attained. Therefore, state estimation is regarded as a tool employed by the controller
in pursuit of the final goal.

4.4.2 CMPC

The estimated states are used by the controller in order to compute the sequence
of future optimal inputs, applying only its first component. It must be recalled that
the real system measurements are not available at this stage, and thus they must be
obtained using the output equation.

Based on the control objectives defined before, two main results are looked at: the
water levels and the control signals, depicted in Figs. 4.4 and 4.5, respectively. The
following weights are used in the definition of the CMPC: β1 = 20, β2 = 2, β3 = 5 and
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Figure 4.4: Water levels (blue solid lines) and LNL, NNL and HNL
(black dashed lines)

β4 = 1.

The modeling simplification introduced in Fig. 3.9 led to considering three reaches,
where their upstream and downstream water levels are arranged by columns in Fig. 4.4.
Recall that yC(1,2)

k is not measured, but computed from the state estimates.

Regarding the control objectives linked to the water levels, it can be stated that the
CMPC is able to keep the levels very close to the setpoints despite of the disturbances.
To quantify the performance of the controller, consider the indices given by:

TP = 1− 1
Hp

√√√√√Hp∑
k=1

 yk − yr
1
2

(
yr − y

r

)
2

, (4.11)

with Hp the prediction horizon as defined in (4.5). Equation (4.11) was introduced in
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Table 4.3: Tracking performances for the CMPC

D (1,2) C (1,2) D (1,3) Don C (4) F
0.9930 0.9877 0.9904 0.9907 0.9693 0.9717

[SRN+18b] as a modification of the standard root relative squared error. These tracking
performance indices are defined as the relative error between the predicted levels yk
and the setpoints yr (NNL values). The denominator, given by 1

2

(
yr − y

r

)
, equals the

semi-amplitude of the symmetric [LNL, HNL] interval, which is the maximum allowed
variation from yr. The squaring emphasizes larger differences, which is of interest in
this case, since it focuses on the water levels yk that are far from the setpoints yr.

The numerical values of the indices for each water level are summarized in Table 4.3.
Note that TP is bounded between 0 and 1, where 1 corresponds to the perfect tracking
performance. Therefore, it can be stated that the CMPC provides satisfactory results
in terms of keeping the water levels close to the setpoints. Moreover, Fig. 4.4 shows
that the levels are never outside of the navigation rectangle, and therefore the penalty
on this behavior, represented by αααk in (4.4), equals 0.

On the other hand, the control objectives (4.2) and (4.3) are linked to the control
signals, depicted in Fig. 4.5. The undershot gates in Douai and Fontinettes allow
maximum flow for a maximal gate opening, and zero flow for a null gate opening.
Conversely, the weirs in Cuinchy and Don allow maximum flow for null sill elevation,
and zero flow for a maximal sill elevation. This fact can be realized by the minus sign in
the linearized weir equations (3.34). The controller regulates the openings and elevations
so that there is neither a deficit nor an excess of water in the reaches. Indeed, while
the gate openings in Douai and Fontinettes are minimal (no flow), the sill elevations in
Don and Cuinchy are maximal (no flow), and vice versa. Of course, the transport delays
need to be taken into account for the sake of a complete explanation.

On the other hand, minimum flows, i.e., minimal gate openings and maximal sill
elevations, are expected to be delivered by the actuators when the water levels reach
the setpoints. However, rejecting disturbances results in continuously operating the
actuators, as these disturbances go against the control objectives. Therefore, it can be
seen how the actuators work close to their maximum capacity only during short periods
of time, and always within the equipment design range. During most of the simulation,
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Figure 4.5: Gate openings and sill elevations (blue solid lines) and
physical limits (dash-dot black lines)

the inputs are far from the limits of the actuators, thus taking into account the cost
reduction objective (4.2).

Regarding the smoothness of the control signals given by the operational goal (4.3),
the control actions present some peaks. However, there are no large variations between
consecutive control actions, especially compared with the design range of the actuators.
This behavior should result in a long lifespan of the equipment. Although the weight of
this objective could be increased, this would probably interfere with the rest of objectives.

4.5 Summary

Chapter 4 has approached the issue of designing a controller and an observer using
the centralized approach. Given the model formulation proposed in Chapter 3, MPC and
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MHE have been chosen due to their adequacy to deal with delayed descriptor systems
in a natural manner, as well as their suitability to take into account multiple objectives
and physical and operational constraints. In particular, MPC aims at guaranteeing
that the water levels are kept within the navigation interval and minimizing the control
effort, with an additional term that penalizes non-smooth control actions. This strategy
requires the vector of states to be known at current time, which can be estimated by
the MHE based on available data. This observer considers the most recent data to solve
an optimization problem with a structure that is closely linked to the MPC problem.
Both approaches are tested in simulation in the last part of the chapter, and their
performances are discussed and validated with regard to the design goals. However, a
centralized implementation might not be the most efficient option for large-scale systems
such as inland waterways. In this regard, the next chapter discusses its adequacy and
explores non-centralized implementation alternatives.
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Chapter 5

Distributed control and state
estimation

Centralized control and state estimation approaches for large-scale systems such as
those presented in Chapter 4 might lead to implementation problems due to the spatial
distribution, multi-time scales and non-scalability. Indeed, the large dimensionality of
the centralized model often renders such representation impractical to reconfigure when
part of the network needs to be disregarded because of maintenance or malfunctioning
[OMBPB12]. Furthermore, the centralization of decisions in a single controller might
compromise the network reliability [GOMP17b] or be affected by bandwidth limitations
[Sca09]. Non-centralized approaches, on the other hand, provide more flexibility and
allow to build the controller in an incremental manner, i.e., adding new parts to an
existing control scheme.

In this regard, many non-centralized control strategies have been proposed in the
last years. One of the possibilities consists in partitioning the systemwide plant into
subsystems with local agents in charge of meeting the local objectives. The notion of
agent was defined in Section 2.3 as a computing system within an environment that
is capable of performing certain actions, aiming at attaining its objectives. In general,
the system partitioning leads to a set of smaller subsystems, each of them defining a
subproblem. These subsystems are usually not completely decoupled from one another,
i.e., one or more variables appear in more than one subproblem. Therefore, a distributed
approach is usually preferable over a decentralized one.

77
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Chapter 5 is organized as follows: an existing partitioning approach based on a reor-
ganization of the interconnection (or adjacency) matrix is presented in Section 5.1. The
first step is concerned with the derivation of the adjacency matrix associated to Fig. 3.9.
Then, this matrix is reordered based on a row-and-column permutation methodology,
and its final structure determines the number of subsystems in which the overall system
decomposes, as well as the couplings between subsystems. The resulting partitioning
allows to perform distributed control and state estimation, and thus the distributed per-
formance can be compared with the centralized results presented in Chapter 4. Section
5.2 regards the coordination of the subproblems based on a communication protocol,
where the coupled variables are optimized for each subsystem and then shared with the
rest of subsystems. Then, the solution for each coupled variable at each time instant
is assumed to be found only when the values computed by all agents match with no
significant error and the convergence between consecutive iterations is guaranteed. The
implementation of the DMPC and DMHE is provided in Section 5.3, following the ideas
used in the design of Algorithm 4.1. Finally, Section 5.4 performs the partitioning of
the centralized model given in Chapter 4, and gathers and discusses the results obtained
using the distributed approach. The content featured in this chapter has been published
in [SRN+18a] and submitted for publication in [SRN+19a, SRN+].

5.1 System partitioning

This section regards the partitioning of large-scale systems. The proposed approach
consists in two steps: first, the adjacency matrix is defined. Then, it is manipulated
based on row-and-column permutation operations, which allows to identify possible
subsystems into which the overall system can be decomposed.

5.1.1 Building the adjacency matrix

The adjacency matrix of a system defines its structural properties in a compact
manner. The same information can be retrieved from the graph representation, where
each variable is assigned to a vertex of the graph, and an edge connects a pair of variables
whenever the corresponding coefficient in the system matrix is different from zero. This
matrix can be built as follows [Sil11]:
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E =


Ā B̄ 0
0 0 0
C̄ 0 0

 , (5.1)

where the matrices Ā = (āij) ∈ Rnx×nx , B̄ =
(
b̄ij
)
∈ Rnx×nu and C̄ = (c̄ij) ∈ Rny×nx

are defined as

āij =

1, aij 6= 0,

0, aij = 0,
b̄ij =

1, bij 6= 0,

0, bij = 0,
c̄ij =

1, cij 6= 0,

0, cij = 0,
(5.2)

and the dimensions of the several 0 blocks are as given in [Sil11] so that E is a square
matrix.

However, note that (5.1) needs to be adapted in order to deal with the centralized
model (3.35). Indeed, its current formulation does not represent systems with a nonzero
feedforward matrix D. Furthermore, the delayed matrices An, Bun, Cn and Dun must
be also included in E, as they provide additional links between variables. To do so, the
delays can be dropped when building the adjacency matrix as it was done in (3.19).
Indeed, removing the delays does not affect the structural properties of the system.
Therefore, and following the notation introduced in (3.24), the modified version of the
adjacency matrix E reads as

Ẽ =


Ã B̃ 0
0 0 0
C̃ D̃ 0

 , (5.3)

where Ã = (ãij), B̃ =
(
b̃ij
)
, C̃ = (c̃ij) and D̃ =

(
d̃ij
)
are given by

ãij =

1, aij 6= 0 ∨ anij 6= 0,

0, otherwise,
b̃ij =

1, buij 6= 0 ∨ bunij 6= 0,

0, otherwise,

c̃ij =

1, cij 6= 0 ∨ cnij 6= 0,

0, otherwise,
d̃ij =

1, duij 6= 0 ∨ dunij 6= 0,

0, otherwise.

(5.4)

Remark 5.1. The structural approach followed in this work does not take into account
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quantitative information, i.e., the degree of coupling. A future extension of the sys-
tem partitioning method could include additional criteria that takes into account the
magnitude of the couplings. �

5.1.2 The reordering Cuthill-McKee algorithm

Once the adjacency matrix has been obtained, the next step consists in determin-
ing possible configurations for the subsystems. The definition of configuration in this
framework is that of a set of groups of variables and model equations, where each group
defines a subproblem. The chosen approach consists in manipulating Ẽ such that a
block-diagonal structure is attained. A number of methods can be employed, although
not all of them are well suited for this task. For instance, some approaches compromise
the coupling information due to the elimination of some matrix coefficients. Hence, the
Cuthill-McKee ordering algorithm [GL81] is chosen here, and consists in performing
row and column permutations on both symmetric and asymmetric matrices to yield
a reordered matrix with all its nonzero entries closer to the diagonal. This algorithm
is implemented in MATLABR©: the command symrcm returns the permutation vector
order, so that the block-diagonal matrix Ẽblk can be obtained as Ẽ(order, order). Then,
each of the identified blocks can be regarded as a subsystem, and the coupled variables
are those

5.2 Coordinating multiple optimization problems: a
communication-based strategy

Once the system partitioning has been performed, the next problem to be solved
is that of synthesizing the controllers and estimators for the identified subsystems, as
well as their coordination. In this regard, the proposed approach consists in solving
the subproblems in combination with a communication strategy that allows each local
agent to compare its optimal solution with the solution obtained by the other agents
[CJKT02, RS08]. The proposed strategy considers that a local controller and a local
estimator are available for each subsystem, which exchange information with the rest of
controllers and estimators involved in the computation of the same coupled inputs and
states, respectively.
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This procedure is repeated until two conditions are met. First, the differences among
the local solutions must not exceed a given threshold. Moreover, the convergence of the
solutions between consecutive iterations must be ensured. Only when these conditions
are verified, the receding philosophy given by (4.7) and (4.9) is followed in a distributed
manner.

5.2.1 DMPC formulation

The distributed control problems can be obtained from the original centralized for-
mulation (4.6). Note that the local control problems solved by each agent have the same
structure. Assuming that the overall system can be decomposed into M subsystems,
the problem solved by the controller assigned to subsystem Σa reads as follows:

min{
u(Σa)
i|k

}k+Hp−1

i=k
,
{

y(Σa)
i|k

}k+Hp−1

i=k
,
{
α

(Σa)
i|k

}k+Hp−1

i=k
,
{
ε
(Σa)
i|k

}k+Hp−1

i=k

J (Σa)
(
u(Σa)
i|k ,y(Σa)

i|k ,α
(Σa)
i|k , ε

(Σa)
i|k

)
(5.5a)

subject to:

x(Σa)
i+1|k = A(Σa)x(Σa)

i|k + A(Σa)
n x(Σa)

i−n|k + B(Σa)
u u(Σa)

i|k + B(Σa)
un u(Σa)

i−n|k+ (5.5b)

B(Σa)
d d(Σa)

i|k + B(Σa)
dn d(Σa)

i−n|k, i ∈ {k, ..., k +Hp − 1},

y(Σa)
i|k = C(Σa)x(Σa)

i|k + C(Σa)
n x(Σa)

i−n|k + D(Σa)
u u(Σa)

i|k + D(Σa)
un u(Σa)

i−n|k+ (5.5c)

D(Σa)
d d(Σa)

i|k + D(Σa)
dn d(Σa)

i−n|k, i ∈ {k, ..., k +Hp − 1},

0 = E(Σa)
u u(Σa)

i|k + E(Σa)
un u(Σa)

i−n|k + E(Σa)
d d(Σa)

i|k + E(Σa)
dn d(Σa)

i−n|k, (5.5d)

i ∈ {k, ..., k +Hp − 1},

u(Σa) ≤ u(Σa)
i|k ≤ u(Σa), i ∈ {k, ..., k +Hp − 1}, (5.5e)

y(Σa)
r
−α(Σa)

i|k ≤ y(Σa)
i|k ≤ y(Σa)

r +α(Σa)
i|k , i ∈ {k, ..., k +Hp − 1}, (5.5f)

α
(Σa)
i|k ≥ 0, i ∈ {k, ..., k +Hp − 1}, (5.5g)

x(Σa)
j|k = x̂MHE (Σa)

j , j ∈ {k − n, ..., k}, (5.5h)

u(Σa)
l|k = uMPC (Σa)

l , l ∈ {k − n, ..., k − 1}, (5.5i)

− ε(Σa)
i|k ≤ u(Σa)

i|k − u(Σb)
i ≤ ε(Σa)

i|k , i ∈ {k, ..., k +Hp − 1}, (5.5j)

∀b | u(Σa) ∩ u(Σb) 6= ∅,
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ε
(Σa)
i|k ≥ 0, i ∈ {k, ..., k +Hp − 1}. (5.5k)

Additional insight on the DMPC formulation is provided below:

— The superscripts (Σa) and (Σb) indicate that the corresponding parameters and
variables are linked to the a-th and b-th subsystems, respectively. Moreover, Σb

regards all subsystems with a coupled input with Σa, and not just a single sub-
system, as stated in (5.5j).

— Constraints (5.5j) and (5.5k) are added to the original centralized formulation to
guarantee that the differences between the solutions provided by subsystems Σa

and Σb remain within the specified bounds [−ε(Σa), ε(Σa)]. Although these bounds
can be determined offline based on some desirable performance, they are defined
here as decision variables to avoid possible infeasibility problems in the first steps
of the iteration. In this case, these values must be monitored to ensure that
significant differences for the coupled inputs are not permitted.

— Furthermore, the term u(Σb)
i in (5.5j) is not a decision variable, but a parameter

that corresponds to the solution obtained for the subsystem Σb. This constraint
accounts for the communication between agents. Moreover, note that (5.5j) re-
gards not only the first value of the optimal input sequence

{
u(Σa)
i|k

}k+Hp−1

i=k
, but

the sequence for the whole prediction horizon. Indeed, the whole sequence is
transmitted to other agents, and not only its first component.

— An additional term must be added to the local objective function (5.5a) with
respect to the original global objective function (4.6a) to penalize large values of
ε(Σa), which can be simply formulated as

(
ε

(Σa)
k

)ᵀ
ε

(Σa)
k . An analogous formulation

could be that of a reward or bonus, aiming at promoting cooperation among local
agents.

5.2.2 DMHE formulation

Following the same ideas as in Section 5.2.1, the DMHE problem solved for by the
estimator assigned to subsystem Σa reads as follows:
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min{
x̂(Σa)
i|k

}k
i=k−N{

γ
(Σa)
i|k

}k
i=k−N

(
x̂(Σa)
k−N |k − x(Σa)

k−N

)ᵀ (
P(Σa)

)−1 (
x̂(Σa)
k−N |k − x(Σa)

k−N

)
+ (5.6a)

k−1∑
i=k−N

((
w(Σa)
i|k

)ᵀ(
Q(Σa)

)−1
w(Σa)
i|k +

(
v(Σa)
i|k

)ᵀ(
R(Σa)

)−1
v(Σa)
i|k

)
+

(
γ

(Σa)
i|k

)ᵀ
γ

(Σa)
i|k

subject to:

w(Σa)
j|k = x̂(Σa)

j+1|k −
(
A(Σa)x̂(Σa)

j|k + A(Σa)
n x̂(Σa)

j−n|k + B(Σa)
u u(Σa)

j|k + B(Σa)
un u(Σa)

j−n|k+ (5.6b)

B(Σa)
d d(Σa)

j|k + B(Σa)
dn d(Σa)

j−n|k

)
, j ∈ {k −N, ..., k − 1},

v(Σa)
j|k = y(Σa)

j|k −
(
C(Σa)x̂(Σa)

j|k + C(Σa)
n x̂(Σa)

j−n|k + D(Σa)
u u(Σa)

j|k + D(Σa)
un u(Σa)

j−n|k+ (5.6c)

D(Σa)
d d(Σa)

j|k + D(Σa)
dn d(Σa)

j−n|k

)
, j ∈ {k −N, ..., k − 1},

0 = E(Σa)
u u(Σa)

j|k + E(Σa)
un u(Σa)

j−n|k + E(Σa)
d d(Σa)

j|k + E(Σa)
dn d(Σa)

j−n|k, (5.6d)

j ∈ {k −N, ..., k − 1},

x(Σa)
r ≤ x̂(Σa)

i|k ≤ x(Σa)
r , i ∈ {k −N, ..., k}, (5.6e)

− γ(Σa)
i|k ≤ x̂(Σa)

i|k − x̂(Σb)
i ≤ γ(Σa)

i|k , i ∈ {k −N, ..., k}, (5.6f)

∀b | x̂(Σa) ∩ x̂(Σb) 6= ∅,

γ
(Σa)
i|k ≥ 0, i ∈ {k −N, ..., k}. (5.6g)

x̂(Σa)
l|k = x̂MHE (Σa)

l , l ∈ {k −N − n, ..., k −N − 1}, (5.6h)

u(Σa)
m|k = uMPC (Σa)

m , m ∈ {k −N − n, ..., k − 1}, (5.6i)

y(Σa)
o|k = y(Σa)

o , o ∈ {k −N, ..., k − 1}. (5.6j)

In the case of the DMHE, Σb refers to all subsystems with a coupled state with Σa,
as stated in (5.6f).
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Algorithm 5.1 Integration of the DMPC and DMHE in the simulation loop
Require: y(l)

i ,u
(l)
i ∀i ∈ [k −N, k − 1] and ∀l = {1, 2, ..., N}, and all parameters in (5.5)

and (5.6)
1: Define the initial states x̂MHE (l)

k based on the centralized solution
2: x̂MHE (l)

k , x̂(l)
k=1

3: for k = 1 : tsim do
4: Solve the control subproblems (5.5) using x̂MHE (l)

k

5: while any difference between local solutions exceeds the threshold or any local
solution does not converge do

6: Update the transmitted information as: u(l)
i = u(l)

i|k
7: Repeat step 4
8: end while
9: uMPC (l)

k , u(l)
k|k

10: Apply uMPC (l)
k

11: Measure y(l)
k

12: Update the sequences of data as:
[
(u(l)

k−N+1,y
(l)
k−N+1) : (uMPC (l)

k ,y(l)
k )
]

13: Solve the estimation subproblems (4.8) using the sequences defined in step 12
14: while any difference between local solutions exceeds the threshold or any local

solution does not converge do
15: Update the transmitted information as: x̂D (l)

i = x̂D (l)
i|k

16: Repeat step 13
17: end while
18: x̂MHE (l)

k , x̂(l)
k+1|k+1

19: end for

5.3 Implementation of the DMPC and the DMHE

This section is concerned with the integration of the DMPC and the DMHE in the
simulation loop, which follows the main ideas in the design of Algorithm 4.1. However,
the existing differences between the centralized and the distributed implementation need
to be stressed. In the centralized approach, the optimal inputs and state estimates are
computed only once at every time instant k, and then the simulation moves on to k+ 1,
where the same steps are performed. By contrast, the distributed problems are not
solved by a unique agent, but by a set of local agents. Hence, an iterative procedure of
coordination and exchange of information is implemented in Algorithm 5.1, thus being
necessary to define secondary loops inside the main simulation loop. The simulation
only moves on to the next time instant when the differences between the local solutions
remain within the allowed bounds and the convergence of the solutions is guaranteed.

Algorithm 5.1 is initialized based on the centralized solution, which is assumed to
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be available. Another alternative could be to perform the estimation of these values
following the steps defined in the second while loop (lines 14-17). Regarding the iterative
nature of the approach, note that it is only necessary to perform the while subroutines
provided that the solution obtained in the first iteration does not comply with the design
specifications in terms of convergence and accuracy of the local solutions. When all the
local solutions converge from one iteration to the next one and the values of the coupled
variables computed by all the agents involved are similar enough, the simulation can
move on.

Finally, the attention is drawn towards lines 7 and 16, in which the control and
state estimation iterations are performed, respectively. Note that the only difference
between iterations lies in the information transmitted to the other agents, which is
updated in order to provide the last computed values. The current states and the data
sequences used by the controllers and the estimators, respectively, remain the same until
the simulation moves on to the next time instant.

5.4 Simulation results for the DMPC and DMHE

The scenario described in Section 4.4 is considered to test the distributed control
and state estimation approaches presented in Section 5.2. First, the partitioning of the
centralized model (3.35) is carried out, analyzing several possibilities. Then, the analysis
of the results obtained using the distributed approach follows guidelines similar to those
presented for the centralized approaches in Section 4.4.

The computation times are reported in Fig. 5.1 for each time instant, in order to
ensure a quantitative comparison with the centralized implementation, depicted in Fig.
4.2. Since several iterations are required at each time instant in order to find a solution
that satisfies all local agents, the computation times are higher in the distributed case
(103.87 s) than in the centralized case (22.12 s, given in Section 4.4). Note that the case
study considered in this thesis might tarnish the advantages offered by the distributed
approach, as the simulation results seem to indicate that a centralized approach is more
advantageous than the distributed counterpart. However, a real implementation would
most likely need to be carried out in a non-centralized manner, given the dimensionality
of the system.
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Figure 5.1: DMPC+DMHE computation time

5.4.1 Partitioning of the centralized model

The criteria introduced in (5.4) are used to build the Ẽ, given below:

xD(1,2) xC(1,2) xD(1,3) xDon xC(4) xF uD uC uDon uF



1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 x1
(1,2)

0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 x2
(1,2)

0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 x1
(1,3)

0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 x2
(1,3)

0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 x1
(4)

0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 x2
(4)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 y1

(1,2)

0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 y2
(1,2)

0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 y1
(1,3)

0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 y2
(1,3)

0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 y1
(4)

0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 y2
(4)

(5.7)
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Note that the columns represent the variables (states and inputs), whereas the rows
represent each of the state and output equations. The labeling of the rows indicates
whether it corresponds to a state (x) or an output equation (y), the subscript denotes the
reach numbering according to the notation introduced in Fig. 3.9 and the superscripts
1 and 2 indicate whether it corresponds to the upstream or the downstream equation,
respectively.

Then, Ẽ is provided to the Cuthill-McKee algorithm, yielding

order = [10 6 15 5 16 8 2 11 1 12 7 4 13 3 14 9] , (5.8)

and consequently Ẽblk = Ẽ(order, order) reads as follows:

uF xF xC(4) uC xC(1,2) xD(1,2) uD xDon xD(1,3) uDon



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 x2

(4)

1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 y1
(4)

1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 x1
(4)

1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 y2
(4)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 x2

(1,2)

0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 y1
(1,2)

0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 x1
(1,2)

0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 y2
(1,2)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 x2

(1,3)

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 y1
(1,3)

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 x1
(1,3)

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 y2
(1,3)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(5.9)

The final partitioning depends on the goal that is to be achieved. The most common
approach consists in identifying blocks that are minimally coupled to reduce the commu-
nication costs between subsystems. However, another possibility might be to determine
blocks with similar sizes, so that the subsystems have similar dimensions. Furthermore,
the partitioning needs to respect the physical nature of the system, which means that
variables that belong to the same reach should be part of the same subproblem. For
instance, there is little sense in considering the discharge and the water level for a given
node in different subproblems.
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Based on these considerations, two different partitionings can be proposed. Note
that they are defined by means of two sets: the first set indicates the variables, whereas
the second one indicates the model equations.

— Partitioning (a) considers three subsystems:

SS1(a) =
{{
uF , xF , xC(4), uC , xC(1,2)

}
,
{
x2

(4), y
1
(4), x

1
(4), y

2
(4)

}}
,

SS2(a) =
{{
uC , xC(1,2), xD(1,2), uD

}
,
{
x2

(1,2), y
1
(1,2), x

1
(1,2), y

2
(1,2)

}}
,

SS3(a) =
{{
uD, xDon, xD(1,3), uDon

}
,
{
x2

(1,3), y
1
(1,3), x

1
(1,3), y

2
(1,3)

}}
.

— Partitioning (b) considers two subsystems:

SS1(b) =
{{

uF , xF , xC(4), uC , xC(1,2), xD(1,2), uD
}
,{

x2
(4), y

1
(4), x

1
(4), y

2
(4), x

2
(1,2), y

1
(1,2), x

1
(1,2), y

2
(1,2)

}}
,

SS2(b) =
{{
uD, xDon, xD(1,3), uDon

}
,
{
x2

(1,3), y
1
(1,3), x

1
(1,3), y

2
(1,3)

}}
.

Note that both partitionings respect the physical nature of the system, grouping
the variables that are physically linked in the same subsystem. On the one hand,
partitioning (a) yields three subsystems with almost the same size in terms of variables
and model equations involved, but at the cost of more coupled variables than the second
partitioning. Note that this possibility basically regards each of the three reaches as a
subsystem. On the other hand, the second option proposes two subsystems, being one of
them the combination of reaches (1,2) and (4). This results in a lower number of variable
couplings, as uD is the only common variable between SS1(b) and SS2(b). However, the
relationship between xD(1,2) and xD(1,3) introduced in Section 4.2 forces an additional
coupling between both subsystems. Indeed, xD(1,2) belongs to SS1(b), whereas xD(1,3)

belongs to SS2(b), which requires to introduce also a communication protocol between
the estimators.

With all this in mind, partitioning (b) is chosen over partitioning (a) in order to
have minimal coupled variables, and thus minimal communication costs. The strategies
presented in Section 5.2 are illustrated next by considering two DMPC and two DMHE.

5.4.2 DMHE

The comparison between the optimal estimated states given by the DMHE and the
real states obtained in simulation are depicted in Fig. 5.2. The corresponding sequence
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Figure 5.2: State estimates (SS1: blue solid lines; SS2: red solid
lines) and computed states (dash-dot gray lines)

of N input-measurement pairs is provided to the DMHE at each time instant, which are
used to estimate the optimal state sequence.

It can be observed that the state estimates provided by the DMHE match the real
states with no significant error while respecting the constraints on the state bounds.
Note that these are not depicted in Fig. 5.2, as the states are kept far from the bounds.
On the other hand, the distributed estimation approach proves to perform well when the
states x̂D(1,2) and x̂D(1,3) are compared. Indeed, constraint (5.6f) restricts the difference
between these two states by penalizing its difference, defined as a decision variable, in the
objective function. As in the case of the CMHE, the DMHE does not provide the exact
same values for both states, although its maximum difference amounts to 1.5% (slightly
larger than in the case of the CMHE), for which the relaxation parameter accounts.

The correlation coefficients given by (4.10) are computed also in the case of the
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Table 5.1: Correlation coefficients for the DMHE

D (1,2) C (1,2) D (1,3) Don C (4) F
0.8157 0.8703 0.8801 0.9113 0.9517 0.9375

Table 5.2: Correlation coefficients differences (CMHE vs DMHE)

D (1,2) C (1,2) D (1,3) Don C (4) F
0.0232 0.0153 0.0040 0.0163 0.0137 0.0028

DMHE, aiming at measuring not only the similarity of the real and the estimated
states, but also at providing additional quantitative information that allows to com-
pare the performance of the CMHE and DMHE. These values are summarized in Table
5.1. The performance of the DMHE can also be deemed satisfactory, since all the cor-
relation coefficients are very close to 1. The differences between the centralized and the
distributed correlation coefficients, obtained by subtracting the values in Table 5.1 from
those in Table 4.2, are given in Table 5.2. The positive differences indicate a slightly
superior performance of the centralized approach over the distributed approach.

5.4.3 DMPC

The water levels and the control signals obtained using the DMPC are presented
and analyzed in Figs. 5.3 and 5.4, respectively. It can be stated that the DMPC
succeeds at keeping the water levels close to the setpoints by rejecting the disturbances
reported in Fig. 4.1. The tracking indices defined in (4.11) are used again to quantify
the performance of the DMPC, and are summarized in Table 5.3. These indices are
bounded between 0 and 1, where 1 corresponds to the perfect tracking performance.

Again, the centralized and the distributed approaches are compared by computing
the differences in terms of tracking performances, summarized in Table 5.4. In the light
of the results, the DMPC provides satisfactory results, although it is slightly outper-
formed by the CMPC.

On the other hand, the control signals computed by the DMPC are depicted in Fig.
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Figure 5.3: Water levels (SS1: blue solid lines; SS2: red solid lines)
and LNL, NNL and HNL (black dashed lines)

Table 5.3: Tracking performances for the DMPC

D (1,2) C (1,2) D (1,3) Don C (4) F
0.9656 0.9622 0.9672 0.9666 0.9597 0.9705

Table 5.4: Tracking performance differences (CMPC vs DMPC)

D (1,2) C (1,2) D (1,3) Don C (4) F
0.0274 0.0255 0.0232 0.0241 0.0096 0.0012
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Figure 5.4: Gate openings and sill elevations (SS1: blue solid lines;
SS2: red solid lines) and physical limits (black dash-dot
lines)

5.4. Note that the coupled input is depicted for both subsystems in the top left-hand
subplot of Fig. 5.3. It can be concluded that the communication-based DMPC is able
to provide solutions that match with no significant error, as the solutions computed for
uD by both subsystems are almost identical. Furthermore, the DMPC computes a set
of control actions that are far from the operational limits during most of the simulation.
It can also be realized that, while the CMPC signals span the whole design range of the
actuators, the DMPC signals are bounded in a much narrower interval. Nevertheless, it
is not easy to assess which of the two approaches provides a smoother solution.

An analysis similar to the one in Section 4.4.2 can be conducted for the DMPC, which
regulates the openings and elevations so that there is the optimal amount of water in
each reach. Hence, when the gates in Douai and Fontinettes are closed (no flow), the
weirs in Don and Cuinchy are lifted to the maximal height (no flow), and vice versa.
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Again, the effect of the transport delays should be taken into account in the analysis of
the results.

5.5 Summary

The centralized control and state estimation approaches designed in Chapter 4 con-
stitute the starting point of Chapter 5. The main limitations of such implementation
are discussed, concluding that it is often advantageous to explore non-centralized al-
ternatives when dealing with large-scale systems. Such strategies are often based in
partitioning the overall system in a set of subsystems, each of them governed by a local
agent. The proposed approach performs this decomposition by identifying subsystems
that minimize the interactions (the number of coupled variables) among them. The aim
is to minimize the communication among subsystems without ignoring the interactions,
since those strategies that take interactions into account often yield better performances
than those that ignore them. Once the subsystems have been identified, DMPC and
DMHE are designed based on the centralized counterparts, including a communication
protocol that accounts for the interactions. The same case study is used to assess the
performance of the distributed strategy with respect to the centralized approach, which
allows to validate the obtained results.
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Chapter 6

Fault diagnosis

Centralized and distributed control and state estimation approaches have been pro-
posed in Chapters 4 and 5, respectively, in order to accommodate the navigation in
inland waterways. As stated before, the main objective consists in maintaining the wa-
ter levels within the LNL and the HNL, and as close as possible to the NNL, so that the
vessels can travel safely. However, the use of these strategies requires the acquisition
of reliable data. Furthermore, the control actions can only be applied correctly if the
actuators are not impacted by faults. Indeed, any error caused by a water level sensor
or an actuator can lead to an inefficient management of the system.

Chapter 6 is concerned with the design of supervisory strategies that allow to detect
and isolate faults in inland waterways. More specifically, two diagnosis approaches are
designed in order to assess the occurrence of faults. Given the fact that a substantial
modeling effort has been made in Chapter 3, it seems natural to use the derived model
structure for the purpose of fault diagnosis. However, while the first strategy directly
computes the parameters based on the procedure described in [LF09], the second only
assumes its structure and estimates the model parameters using available data. This
difference in terms of obtaining the model parameters leads to referring to the former
strategy as a model-based approach, whereas the latter is referred to as a data-based
approach.

In order to compare both strategies, real data is required to estimate a model for
the data-based approach. Given the limitations in terms of available data mentioned in
Section 3.5, both approaches are tested on the CFr, depicted in Fig. 3.11, in order to
be comparable.

95
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The present chapter is structured as follows: Section 6.1 presents the model-based
approach, which is based on the comparison of the faultless system dynamics with the
measured inputs and outputs, which are obtained using SICˆ2. The presence of a fault
can be proved when the water levels predicted by the model of the faultless system are
not consistent with the measurements provided by SICˆ2. These contributions have
been published in [SRD+17, SBH+18]. On the other hand, Section 6.2 describes the
data-based approach. Contrary to the first approach, the proposed strategy consists in
monitoring the evolution of the grey-box model coefficients. Indeed, it is shown how
faults can be correctly detected and isolated when a coefficient crosses one of the bounds
of the interval depicted in Fig. 3.12. This approach is designed to diagnose intermittent
faults, thus extending the results in [DRBC13], whose strategy was well suited to detect
abrupt and incipient faults. The contributions regarding the data-based fault diagnosis
approach have been collected in [SBD+18a, SBD+18b].

6.1 The model-based approach

6.1.1 Fault detection

Fault detection is based on checking the consistency between the measured inputs
and outputs and the behavior described by a model of the faultless system. The presence
of a fault is detected when the model of the faultless system is not consistent with the
available measurements. The model of the system should describe the behavior of the
system in any non-faulty scenario, and also in faulty scenarios where the fault can be
modeled by a change of model parameters or variables.

In the case of the use of qualitative models, i.e., mathematical models that can be
described in time or frequency domain, fault diagnosis is usually based on the evaluation
of a residual (or analytical redundancy) r(k)[Ger98, BKLS06, Ise06], which is computed
as the difference between the real observed behavior of a system y(k) provided by sensors
and the value ŷ(k) predicted by the model as

r(k) = y(k)− ŷ(k). (6.1)

In an ideal case, residuals should only be different from zero when the system is
affected by a fault. However, due to modeling errors, sensor noises and disturbances,
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the residuals can be different from zero in non-faulty scenarios. Therefore, residual-based
fault detection methods should be robust in order to avoid false alarms.

A passive robust fault detection method can be implemented by computing the
maximum positive and negative deviations (bounds σ and σ) of the residual r(k) in the
time domain from zero in a non-faulty scenario. Therefore, the values of the bounds are
directly linked to the accuracy of the model. The fault detection test can be formulated
as:

φ(k) =

0 if r(k) ∈ [σ, σ]⇒ no fault,

1 otherwise.
(6.2)

The main drawback of the fault detection test defined by (6.2) is that some faults
whose effect in the residual is not large enough to reach the threshold are not detected
(undetected faults). This means that a minimum fault magnitude is necessary to guar-
antee its detection. This minimum detectable fault ensures that the residual reaches its
threshold (triggering limit) despite model uncertainties [Ger98].

6.1.2 Fault isolation

Fault isolation usually requires the evaluation of a set of residuals r1, . . . , rnr , which
derives a set of fault signals φ1, . . . , φnr computed, for instance, by means of (6.2). The
proposed strategy follows the ideas in [MPE10, PB13] and is depicted in Fig. 6.1.

First, a memory component updates cyclically the fault occurrence signal provided by
the fault detection algorithm. When a fault is detected, the information of the different
fault signals are stored in a table. This information consists in the first activation
instant ko of the fault signal, the activation instant ki of the other signals that are
activated in the time window k ∈ [ko, ko + kw], where kw is a prefixed waiting time,
and the maximum activation value φi,max for every fault signal φi in this time window
(i = 1, ..., nr), which is computed as

φi,max(k) = max
l∈[ko,k]

|φi(l)|, (6.3)

with k ≤ ko+kw, and where kw must be chosen as the largest transient time response klt
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Figure 6.1: Fault isolation components (taken from [MPE10])

from a fault-free scenario to any faulty scenario. The advantage of using maximum acti-
vation values φi,max(k) computed by (6.3) instead of temporal fault signals φi(k) is that
the undesirable effect of non-persistent fault indicators, sensor noises and disturbances
is minimized.

Once a new event has been detected in the memory component, different time-
series analysis are carried out to compare the observed fault behavior with the different
considered fault patterns. In the fault isolation module depicted in Fig. 6.1, three
different analysis are considered. One is the standard static Boolean analysis, denoted
as factor01(k), where the Boolean fault signal activation matrix FSM01 that contains
information about the incidence or no incidence of faults (columns) on residuals (rows)
is used to determine which is the most probable fault. The probability of a fault is
determined by the match between the columns of the FSM01 matrix and a vector
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whose components are φi,max i = 1, ..., nr. factor01j is calculated for all the fault
hypotheses j = 1, ..., nf in the following manner:

factor01j(k) =

nr∑
i=1

φi,max(k) FSM01ij
nr∑
i=1

FSM01ij
zvfj(k), (6.4)

where zvfj is a zero-violation-factor defined as

zvfj(k) =


0 if ∃i ∈ {1, ..., nr} ,with FSM01ij = 0

and φi,max(k) = 1,
1 otherwise.

(6.5)

The fault signal occurrence order analysis, denoted as factororder, compares the
order of activation of the different fault signals with the expected order for all the
considered faults stored in FSMorder. factororderj is calculated for all the fault
hypotheses j = 1, ..., nf as follows:

factororderj(k) =

nr∑
i=1

(
order (φi,max(t),FSMorderij)

)
nr∑
i=1

boolean(FSMorderij)
zvforderj(k), (6.6)

where

order(φi,max(k),FSMorderij) =

 0 if order(φi,max(k)) 6= FSMorderij ,

1 if order(φi,max(k)) = FSMorderij ,
(6.7)

and zvforderj(k) is defined as zvfj(k) in (6.5), but excluding those fault hypotheses
that do not coincide in the order.

The time occurrence analysis, denoted as factortime, checks the consistency of
the delay between the different fault activation signals and the time of the first fault
signal activation time to and the expected one stored in the matrix FSMtime, whose
components are computed as follows:
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FSMtimeij =

 [κij , κ̄ij ] if FSMij = 1,
[−1,−1] if FSMij = 0,

(6.8)

where [κij , κ̄ij ] is the time interval in which the fault signal φi caused by fault fj is
expected to appear. factortimej is calculated for all the fault hypotheses j = 1, ..., nf
in the following manner:

factortimej(k) =

nr∑
i=1

(
checktime (kφi, kref ,FSMtimeij)

)
nr∑
i=1

boolean(FSMtimeij)
zvforderj(k), (6.9)

where kφi is the apparition time instant of the fault signal φi(k), kref is the appari-
tion time instant of the first observed fault signal, checktime (kφi , kref ,FSMtimeij) is
defined as

checktime (kφi , kref ,FSMtimeij) =

 0 if (kφi − kref ) /∈ FSMtimeij ,

1 if (kφi − kref ) ∈ FSMtimeij ,
(6.10)

and boolean(FSMtimeij) is defined as

boolean(FSMtimeij) =

 0 if FSMtimeij = [−1,−1],
1 if FSMtimeij 6= [−1,−1],

(6.11)

where [-1,-1] denotes no influence of a fault in a residual [PB13].

Finally, the most probable fault among all the possible candidates is selected by
means of a decision logic block, considering the result of the different time-series analysis.
A factortotalj is calculated for all the fault hypotheses j = 1, ..., nf as follows:

factortotalj(k) = factor01j(k) + factororderj(k) + factortimej(k). (6.12)

Then, the most probable fault can be computed as

f̂(k) = arg max
∀j=1,...,nf

factortotalj(k). (6.13)
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The isolation decision must be made in a time not greater than the waiting time kw,
i.e., k ≤ ko + kw, which can be computed as

kw = max
∀i,j

(κij). (6.14)

During this period of time, a likelihood index Pj(k) for every fault hypothesis j =
1, ..., nf can be defined as follows:

Pj(k) = factortotalj(k)
nf∑
i=1

factortotali(k)
. (6.15)

6.1.3 Model-based fault diagnosis in the CFr

The model-based fault diagnosis approach is applied to the CFr to compare its
performance to the data-based approach, which can only be applied to the CFr due to
the limitation in terms of data availability. Recall that the water level and discharge
in Aire do not appear in model (3.33), and thus faults in Aire are not considered in
the model-based approach. Thus, two different residuals rC(k) and rF (k) are generated
from the difference between the available level measurements in Cuinchy and Fontinettes,
yC(k) and yF (k), and the level estimations, ŷC(k) and ŷF (k). Furthermore, qC(k) and
qF (k) are the total flows in Cuinchy and Fontinettes, respectively, which are computed
as the sum of the flows through the hydraulic equipment. As stated in Section 4.4,
Cuinchy is equipped with a controlled weir with the known input uC(k) and a lock with
a known operation profile qClock(k). On the other hand, Fontinettes is equipped with a
controlled gate with the known input uF (k) and a lock with a known operation profile
qFlock(k).

The possible faults that can impact the CFr are sensor and actuator faults in both
Cuinchy and Fontinettes sensors. The effects of the considered faults in the different
variables involved in the two residual computations are:

yC(k) = yC0 (k) + fyC (k), (6.16a)

yF (k) = yF0 (k) + fyF (k), (6.16b)

qC(k) = qClock(k) + uC(k) = qClock(k) + uC0 (k) + fuC (k), (6.16c)

qF (k) = qFlock(k) + uC(k) = qFlock(k) + uF0 (k) + fuF (k), (6.16d)
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fyC fyF fuC fuF

rC 1 0 1 1
rF 0 1 1 1

Table 6.1: FSM01 matrix for the CFr

fyC fyF fuC fuF

rC 1 0 1 2
rF 0 1 2 1

Table 6.2: FSMorder matrix for the CFr

fyC fyF fuC fuF

rC 0 [-1,-1] 0 [κ1,4, κ1,4]
rF [-1,-1] 0 [κ2,3, κ2,3] 0

Table 6.3: FSMtime matrix for the CFr

where yC0 , yF0 , uC0 and uF0 denote faultless levels and controls, whereas fyC , fuC , fyF and
fuF denote sensor and actuator faults.

Then, considering the effect of the three faults in the two residuals, matrices FSM01
(Table 6.1), FSMorder (Table 6.2) and FSMtime (Table 6.3) can be obtained. The
sensor faults fyC and fyF only affect the associated level residual. Thus, the FSMorder
matrix does not provide any additional information to the FSM01 matrix, and neither
does the FSMtime matrix. On the other hand, fuC affects the two level residuals, first
rC and later rF . The time values κ2,3 and κ2,3 denote the minimum and maximum
delays from the activation of the fault signal in rC to the activation of rF in the presence
of an actuator fault in Cuinchy given by fuC , and are around the delay of the transfer
function p12(s) as in (3.2). Note that κ2,3 links the second residual (rF ) with the third
fault candidate (fuC ). Therefore, when the fault signal associated to the Cuinchy level
residual is activated, a waiting time kw = κ2,3 has to be considered in (6.3) to distinguish
between a fault in the Cuinchy level sensor (fyC ) and an actuator fault in the Cuinchy
control gate (fuC ). An equivalent analysis is valid for the other actuator fault, i.e., fuF .
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Directly Applying ∆τ
σ σ σ σ

rC [m] -0.062 0.052 -0.05 0.042
rF [m] -0.096 0.096 -0.032 0.013

Table 6.4: Residual thresholds

6.1.4 Simulation results for the model-based approach

The IDZ model (3.2) that allows to derive the equivalent state-space representation
in Section 3.5 is used to diagnose sensor and actuator faults. On the other hand, in order
to cope with errors due to uncertainty in transport delays that are present in open-flow
canal systems, the residual has been computed following the ideas in [BPB10] as

r(k) = y(k)− ŷ(k −∆κ0), (6.17)

where
∆κ0 = arg min

∆κ∈[−λκ,λκ]
|y(k)− ŷ(k −∆κ)|, (6.18)

with λκ the maximum deviation from the nominal time delay.

Uncertainties in time delays lead to important instantaneous errors in level estima-
tions. Figure 6.2 shows the evolution of residuals computed directly with (6.1) and
applying (6.17) in a realistic scenario. Maximum and minimum residual values in fault-
free scenarios have been chosen as residual bounds σ and σ used in the fault detection
procedure (6.2). The residual bounds for the two residuals computed directly and ap-
plying (6.17) are summarized in Table 6.4.

Two realistic scenarios where faults can impact the system have been generated to
study the performance of the proposed fault diagnosis method considering Tables 6.1,
6.2 and 6.3, with τ2,3 = τ1,4 = 5900 s and τ2,3 = τ1,4 = 7900 s. Note that these delays
must be converted to samples in order to implement the presented approach. However,
the simulation results are given in minutes as their interpretation is more natural.

Furthermore, and although there are four possible faulty scenarios (a sensor and an
actuator fault at each end of the reach), only one sensor and one actuator fault scenarios
are included, as the analysis for the two remaining situations are analogous.
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Figure 6.2: Level residuals rC(k) and rF (k) in a 24-hour fault-free
scenario.

Finally, and with the purpose of avoiding that uncertainty and modeling errors com-
pensate the fault effects, when a fault is detected using (6.2), the residual is computed
using (6.17) by considering ∆κ0 computed with (6.18), but changing min by max. In
the following, the results of these faulty scenarios are explained in detail.

Sensor fault in Fontinettes

An additive fault of 6 cm is simulated at the Fontinettes level sensor at t ≥ 500
min, which emulates a fall of 6 cm of an ultrasonic sensor from its support arm. Figure
6.3 shows the evolution of the two residuals: rF is activated when the fault is produced
(at t = 500 min). Then, applying (6.12) and considering Tables 6.1, 6.2 and 6.3, the
Cuinchy sensor and actuator fault hypotheses (j = 1 and j = 3, respectively) provide a
factortotalj equal to zero, j = {1, 3}. On the other hand, the Fontinettes sensor and
actuator fault hypotheses (j = 2 and j = 4, respectively) provide factortotal2 = 3 and
factortotal4 = 1.5, respectively. Therefore, the most probable hypothesis is a sensor
fault in Cuinchy, with a likelihood index (6.15) of P2 = 0.67, whereas the likelihood of
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Figure 6.3: Level residuals rC and rF for a sensor fault scenario in
Fontinettes, with fyF = 6 cm at t ≥ 500 min

an actuator fault in Cuinchy is equal to P4 = 0.33. This hypothesis is confirmed after
the waiting time Tw = 7900 s, with no more activated signals, and thus P2 = 1 and
P4 = 0, which allows to isolate the sensor fault correctly.

Actuator fault in Cuinchy

An additive fault of −4 m3/s is simulated at the Cuinchy control weir at t ≥ 300
min, which emulates a partial obstruction. Figures 6.4 and 6.5 show the residuals and
the evolution of the fault signals, respectively. The first fault signal φC is activated
at t = 342 min, 42 min after the gate is partially blocked. Later, at t = 442 min,
the fault signal φF is activated. Then, during 100 min, from t = 342 min to t = 442
min, there are two fault candidates, according to Tables 6.1, 6.2 and 6.3: fyC and fuC ,
with factortotal1 = 1.5 and factortotal3 = 3 and likelihood indices P1 = 0.67 and
P3 = 0.33, respectively. However, after the activation of φF , only fuC is consistent with
the observed fault signals, with factortotal3 different from zero. The fault diagnosis
strategy does work despite the intermittent activation of the fault signals, thanks to the
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Figure 6.4: Level residuals rC and rF for an actuator fault scenario
in Cuinchy, with fuC = −4 m3/s at t ≥ 300 min

memory component (6.3) and Table 6.3.

6.2 The data-based approach

As discussed before, the IDZ model used in the previous section is a simplified
model, thus not taking into account real features of the system, e.g., different cross
section profiles, variable time delays, uncertainties and unknown inflows and outflows.
A possible alternative consists in using models computed from real data, such as the
one proposed in Section 3.4. These models are particularly well suited to diagnose
intermittent faults, as these faults modify the dynamics of the estimated system, thus
leading to their detection and isolation. This section presents a methodology that aims
at diagnosing faults using a model whose parameters are estimated using real data.
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Figure 6.5: Instantaneous activation signals φC and φF for an
actuator fault scenario in Cuinchy

6.2.1 Fault detection and isolation

The data-based diagnosis approach focuses on sensor level faults:

L
(i)
k = L

(i,0)
k + ∆(i)

k , ∀i = 1, ..., l (6.19)

where L(i,0)
k denotes the i-th level and ∆(i)

k the fault at time k.

As model (3.27) provides the level estimations ŷk+1, the most straightforward fault
detection method consists in evaluating the difference between the level sensor measure-
ments and the estimations:

r
(i)
k = y

(i)
k − ŷ

(i)
k , ∀i = 1, ..., l, (6.20)

where r(i)
k is the temporal residual of the i-th level sensor. The fault detection test can
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be formulated as follows:

φr
(i)
k =

0 if r(i)
k ∈ [σ(i), σ(i)]⇒ no fault,

1 otherwise,
(6.21)

where bounds σ(i) and σ(i) are the maximum positive and negative deviations of the
residual r(i)

k in a fault-free scenario, respectively.

Another possibility consists in considering the evolution of the grey-box parameters.
To do so, the determination of M(i) given in (3.30) is performed by considering a time
window of size Nw. Hence, a temporal matrix Mi

k is computed at every instant k:

M(i)
k = Y(i)

k

(
Φ(i)
k

)ᵀ (
Φ(i)
k

(
Φ(i)
k

)ᵀ)−1
, (6.22)

with Y(i)
k = [y(i)

k+χ+1−Nw · · · y
(i)
k ] and Φ(i)

k = [Φ(i)
k+χ−Nw · · ·Φ

(i)
k−1].

The parameters a(j,i)
k and b(j,i)k ∀i, j = 1, ..., l are obtained from M(i)

k =
[
Ã(i)
k B̃i

k

]
.

The next step consists in comparing these parameters with their bounds
[
a(j,i), a(j,i)

]
and

[
b(j,i), b

(j,i)] obtained in a fault-free scenario which is representative enough and
validated by means of the fitting indicators (3.31) and (3.32). Finally, the parameter
fault signals φa(j,i)

k and φb(j,i)k can be generated in a similar way as φ
r
(i)
k

in (6.21):

φa
(j,i)
k =

0 if a(j,i)
k ∈ [a(j,i), a(j,i)]⇒ no fault,

1 otherwise.
(6.23)

φb
(j,i)
k is computed as φa(j,i)

k but considering the parameter estimations b(j,i)k and the
bounds

[
b(j,i), b

(j,i)] in (6.23). The main drawback of the fault detection test defined in
(6.23) is that a non-persistent excitation in the inputs when applying (6.22) can lead to
false alarms due to parameter estimation errors. To overcome this issue, the parameter
fault signals φa(j,i)

k and φb(j,i)k should be computed only when the input persistent exciting
order is enough to guarantee an accurate parameter estimation [Lju99].

A fault is detected when at least one fault signal φr(i)
k , φa(j,i)

k or φb(j,i)k is activated, i.e.,
its value equals 1. Once the fault is detected, it should be isolated with the information
of the different fault signals. The main problem of isolating level faults defined in (6.19)
considering model (B.14) is that, since every level is present in all level estimations, every
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Table 6.5: Considered faults

Fault Mag. [cm] Occurrence (dd:hh:mm) Duration [min]
f1 -8 01:16:44 200
f2 1.5 03:07:04 540
f3 5 00:01:24 300

level fault potentially affects all the fault signals (residual fault signals and parameter
fault signals). This means that it is not possible to isolate faults by means of the
standard Boolean fault signature matrix [Ger98]. However, as the effect of a level fault
in the limnimeter L(i)

(
∆(i)
k

)
in the estimation of the level in the limnimeter L(j)

(
ŷ

(j)
k

)
is delayed, κ can be used to isolate faults considering the fault signature occurrence
and delay as proposed in [PB13]. For instance, when a fault ∆(i)

k occurs, the temporal
residual fault signal φr(i)

k and the parametric fault signals φa(j,i)
k and φb(j,i)k ∀i = 1, · · · , l

should be activated in the first place. In the case of parametric fault signals, the effect
of the fault ∆(i)

k is more direct in the estimation of parameter a(i,i)
k . Due to the use of a

time window of length Nw, an extra delay between the fault appearance and the effect
in the fault signals can be present. Next, the effect of the fault will be propagated to
the nearest measurement point j, which will affect the estimation of the level and the
parameters. As the effect of the fault ∆(i)

k is attenuated in the propagation, it might be
observed only in the nearest measurement points.

6.2.2 Data-based fault diagnosis in the CFr: simulation results

The measurements corresponding to five consecutive days starting from November
12, 2013 (Tuesday) have been considered. Additionally, a sliding window of size Nw

= 1440 min (1 day) has been considered, which allows to take into account the CFr
dynamics during night and day, thus guaranteeing the input persistent exciting order
condition.

Then, three faulty scenarios have been created by adding three faults to the real
measurements. Fault f1 corresponds to a constant fault of -8 cm on the level LC . Fault
f2 consists in an intermittent fault with a magnitude of 1.5 cm on the level LA. Fault
f3 is also an intermittent fault with a magnitude of 5 cm on the level LF . The features
of the three faults are summarized in Table 6.5.
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Figure 6.6: Measured faulty levels (blue solid line) and estimated
levels (red solid line) in: (a) Cuinchy. (b) Aire-sur-la-Lys.
(c) Fontinettes.

The three measured levels and their estimations are depicted in Fig. 6.6 for the
three level sensors. The time occurrence and the duration of the faults are indicated
with black arrows. Due to the dynamics of the CFr and the occurrence of lock operations,
the detection of the faults is not obvious.

The level residuals have also been computed and are depicted in Fig. 6.7. It is not
possible to detect fault f1, except for two peaks in rC that appear when the constant
fault occurs and disappears. Moreover, the magnitude of these two peaks is not higher
than other peaks in the residual rC . By considering f2 and residual rA, an increase in
the frequency of peaks with a similar magnitude can be observed during the occurrence
of the fault, but their magnitude is not big enough. A similar behavior is obtained for
f3 and residual rF .

Therefore, the proposed approach is performed according to the identified grey-box
parameters by considering the a(i,i)

k terms and the predefined thresholds given in Fig.
6.7. These terms change during the simulation, as it is shown in Fig. 6.8. The parameter
a(1,1) crosses the upper threshold after the occurrence of the fault f1, which allows to
detect the occurrence of one fault. The isolation task is carried out by considering
which parameter is affected by the fault. Here, the fault f1 is isolated because the
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Figure 6.7: Level residuals (blue solid line) and thresholds (black
dashed lines) for: (a) Cuinchy. (b) Aire-sur-la-Lys. (c)
Fontinettes.

sensor level LC is impacted. The detection and isolation of faults f2 and f3 is achieved
by considering the parameters a(2,2) and a(3,3), respectively. The faults are detected
when these parameters cross one of the predefined interval bounds. It can be observed
that all faults can be detected after 4 h in average, and only the parameter residual
fault signals φa(j,i)

k are activated. The detection delays, given in Table 6.6, are due to
the size of the sliding window. However, the magnitude of the considered faults is very
small: larger faults should be detected faster and activate more fault signals.

It is shown that the detection and isolation of constant and intermittent faults can be
performed by dealing with the grey-box model parameters. The dynamics of the system
are modified in each scenario, but only one parameter moves away from its nominal
value. Thus, this approach seems well suited to diagnose these kinds of faults.

6.3 Summary

Chapter 6 has addressed the design of fault diagnosis strategies that allow to detect
and isolate sensor and actuator faults that might occur in inland waterways. Indeed, the



112 Chapter 6 : Fault diagnosis

0.75

0.8

0.85

0.9

a(2
,2

)

(b)

0 1 2 3 4 5
0.55

0.6

0.65

0.7

0.75

(c)

a(3
,3

)

0,85

0,9

0.95

1

(a)

a(1
,1

)

Time [days]

f
1

f
2

f
3

Figure 6.8: Evolution of the ai,ik parameters (blue solid line) and
determined thresholds (black dashed lines) in the faulty
case: (a) a1,1, (b) a2,2, (c) a3,3.

Table 6.6: Detection delay of each fault

Fault Detection delay [min]
f1 241
f2 261
f3 239

centralized and distributed control and state estimation techniques designed in previous
chapters will only be effective provided that the acquired data is reliable and the actua-
tors apply the correct control signals. To this end, two possible strategies are discussed
and tested, based on the general model formulation derived in Chapter 3. However,
the main difference lies in the approach that is followed to compute the parameters of
the model. Indeed, the first one uses physical principles in the parameter computation
(model-based approach), whereas the second one estimates them using available data
(data-based approach). Given the fact that data are only available for part of the case
study used throughout the thesis, both approaches are tested for the same part of the
network in order to be comparable.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis has proposed some contributions to the management of inland waterways
from a control theory perspective, aiming at guaranteeing the navigability condition of
the system, as well as other secondary operational goals. This chapter summarizes the
work that has been carried out, which allows to draw conclusions and identify possible
future works related to topics that were left out of the scope of the thesis.

— Chapter 3 has addressed the problem of modeling inland navigation networks, a
challenging task due to the complex dynamics, large time delays and negligible
bottom slopes that characterize such systems. Although the Saint-Venant equa-
tions represent the most accurate manner to describe their dynamics, these are
not well suited for control purposes. As a first step, the IDZ model is employed in
its original formulation to model systems consisting in only one reach. Owing to
the importance of the backwater effect in inland waterways, caused by the negli-
gible slope, the full model is considered, and not only the downstream equation.
However, it can be realized that this formulation is not adequate when dealing
with larger systems composed of interconnected reaches. Therefore, a more con-
venient state-space formulation is derived, which provides flexibility and allows to
coordinate current and delayed information in a systematic manner. Additionally,
mass balances at the junctions of the reaches can be incorporated into the model
formulation (static part) by means of equality constraints. These features cause
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the proposed model description to fall under the family of delayed descriptor mod-
els. Moreover, a parameter estimation approach for the state-space formulation is
proposed, which can be used when the any physical parameter is not available, but
system measurements are. These two approaches are tested using a realistic case
study based on the inland waterways in the north of France. In the first scenario,
all physical parameters are known, and thus the formulas for the IDZ parameters
can be used. The obtained results show that a correct prediction is obtained for
the downstream levels of the reaches, whereas the upstream levels deviate slightly
from those computed using an hydraulic simulator, which requires some calibra-
tion. On the other hand, available data for part of the same inland waterways
is used to adjust a gray-box model, whose predictive power is then assessed by
means of different data. Fitting indicators between measured and predicted water
levels are computed, demonstrating the effectiveness of the grey-box model.

— Chapter 4 has approached the issue of designing control and state estimation
strategies that are able to cope with the proposed model formulation. It is argued
that standard tools such as the LQR and the Kalman filter might need to be
extended to deal with such models, concluding that MPC and MHE are suitable
alternatives. Additionally, physical and operational constraints can be easily dealt
with. This chapter regards their centralized design and implementation: first, the
multi-objective function and the constraints are formulated in order to define the
MPC. Then, after discussing the need to provide the vector of states to the MPC,
the MHE is built using the MPC problem, as they are rather analogous. Some
hints about the implementation and coding of both problems are provided by
means of an algorithm, and their performance is tested by considering a realistic
scenario. Both approaches perform as expected, succeeding at fulfilling the design
goals in each case.

— Chapter 5 has discussed the adequacy of a centralized implementation for the MPC
and MHE designed in the previous chapter. Indeed, a number of limitations such as
the computational burden, the reliability and the scalability are pointed out, giving
rise to non-centralized approaches, which are based on partitioning the overall
system in subsystems and distributing the computational burden among the local
agents, each of them in charge of meeting the objectives of a subsystem. Based on
the existing available options, a distributed approach is preferred in the context of
inland waterways due to their strongly connected nature. Then, the problem can
be divided in two steps: first, the overall system is partitioned based on an existing
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method that minimizes the number of couplings among the resulting subsystems.
Next, DMPC and DMHE are designed for each local agent based on the centralized
versions designed in the previous chapter. A communication protocol that allows
them to communicate with the rest of subsystems is implemented, following the
distributed philosophy. Results are obtained for the same scenario considered in
the centralized approach, which allows to compare both results. Again, the results
demonstrate the effectiveness of the DMPC and DMHE.

— Chapter 6 has addressed the occurrence of sensors and actuator faults in inland
waterways, a topic that was not taken into account in the design of centralized
and distributed control and state estimation approaches. Their solutions will only
have the expected effect provided that sensors and actuators are not impacted
by faults. In this regard, two different strategies, each of them using one of the
approaches presented in Chapter 3 but both of them based on the computation
of residuals. The first diagnosis strategy is of model-based type, and uses the
water level predictions (given by the model) and the measurements (obtained
using an hydraulic simulator) to compute water level residuals, which are used
to assess the occurrence of faults. On the other hand, the second strategy is a
data-based approach, as it uses real data. Another difference comes from the
fact that the occurrence of faults is not deduced from water level residuals, but
from the variation of the grey-box parameters, as real water levels are affected by
unmodeled phenomena that complicates the fault diagnosis task. In any case, both
approaches demonstrate their effectiveness by diagnosing correctly faulty events
that were artificially injected into the system.

7.2 Directions for future research

Despite the efforts made in the context of this thesis to propose a solution for the
inland waterways management problem, there are still many open issues that need to
be addressed. The following list outlines open problems that were not considered within
the scope of the thesis, thus establishing some directions for future research:

— In the context of modeling open-flow water systems, this thesis assumes that the
system works always close to the same operating point, and thus that the use of
only one linear model is enough to describe the dynamics of the system during
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the whole simulation. Although this statement can be justified from the fact that
the average flows do not deviate too much from the operating point, the nonlinear
behavior can be retained, for instance, by considering LPV models. The extension
to such formulation could be obtained using the results in [BP16].

— The derived state-space model formulation could be applied to other open-flow
water systems such as irrigation and drainage canals and sewage systems, which
are modeled using the same physical principles.

— Moreover, the general delayed descriptor model formulation could be employed to
model any kind of system characterized by the transportation of mass, energy or
information. Of course, the model parameters would need to be computed using
different physical principles, but the backbone of the modeling approach remains
the same.

— From the proposed approach, it has been shown that the MPC is able to reject
the disturbances that are caused by the lock operations, using the state estimates
provided by the MHE. These disturbances are assumed to be known in this thesis,
but this seldom happens in real applications. Thus, strategies to estimate the
effect of unknown disturbances, such as the unknown input observer (UIO), could
be considered. This class of observer assumes no a priori knowledge about such
inputs, which is an interesting feature to be exploited for fault diagnosis purposes.

— The system partitioning approach used in this thesis was rather qualitative, i.e.,
the relative importance of the couplings was not taken into account in order to
define the partitioning. Future works might take into account this aspect to refine
the approach.

— In Chapter 5, an iterative procedure of synchronous nature that allows the agents
to reach a consensus was proposed. However, possible future works might consider
asynchronous communication protocols. In this regard, an existing approach that
could be investigated is that of allowing only one agent at a time to perform local
computations and send information to the next agent [NDSH08]. Furthermore,
communication reliability and decrease of performance due to loss of information
are other issues that could also be examined in order to make the protocol more
robust.

— Another possible improvement linked to control and state estimation could be
to integrate the fault diagnosis module and the control and state estimation ap-
proaches in a fault-tolerant control (FTC) strategy, aiming at ensuring that the
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navigability condition is met even when the system is in faulty condition. In this
way, each time a fault was detected, the faulty component could be isolated. Then,
a reconfiguration mechanism could modify the structure of the control and state
estimation problems, aiming at providing the optimal (degraded) performance.

— It was stated that centralized approaches are often impractical to reconfigure for
maintenance or malfunctioning purposes. Therefore, it seems natural to consider
the distributed approach for the purpose of FTC.

— Finally, the fault diagnosis approaches are tested by considering the occurrence
of only one fault at a time. This methodology could be tested in the case of
simultaneous fault occurrences.
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Appendix A

Derivation of the distributary
model

The first step consists in finding model (3.1) for each reach, which reads as

y
(κ)
1 = p

(κ)
11 (s)q(κ)

1 + p
(κ)
12 (s)q(κ)

2 ,

y
(κ)
2 = p

(κ)
21 (s)q(κ)

1 + p
(κ)
22 (s)q(κ)

2 ,
(A.1)

with κ ∈ {1, 2, 3}. Based on Remark 5.1, (A.1) can be rewritten as

y
(κ)
1 = p

(κ)
11 (s)q(κ)

1 − p(κ)
12 (s)q(κ)

2 ,

y
(κ)
2 = p

(κ)
21 (s)q(κ)

1 − p(κ)
22 (s)q(κ)

2 .
(A.2)

Then, the following conditions need to be imposed at the central node:

y
(1)
2 = y

(2)
1 = y

(3)
1 , (A.3a)

q
(2)
1 = λq

(1)
2 , (A.3b)

q
(3)
1 = (1− λ)q(1)

2 , (A.3c)

where (A.3a) ensures that no sudden jump in the water levels occurs, while λ ∈ (0, 1)
indicates that the flow is divided between the two streams after the node.

Imposing y(1)
2 = y

(2)
1 as given in (A.3a) leads to
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p
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(2)
2 , (A.4)

and substituting (A.3b) into (A.4) and reordering yields

q
(1)
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(1)
21

λp
(2)
11 + p

(1)
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+ p
(2)
12

λp
(2)
11 + p

(1)
22
. (A.5)

On the other hand, imposing the other equality y(1)
2 = y

(3)
1 given in (A.3a) leads to
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and substituting (A.3c) into (A.6) and reordering yields
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The linear combination λ·(A.5) + (1− λ) ·(A.7), where the terms are given by
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is computed and reads as follows:
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Equation (A.9) is then substituted into y(1)
1 , y(2)

2 and y
(3)
2 , whose expressions are

given by (A.1), yielding the final model (3.7):
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Appendix B

A grey-box model for inland
waterways

B.1 The autoregressive exogenous model

An AutoRegressive eXogenous (ARX) model is chosen for the purpose of time-series
modeling. Hence, it is assumed that the current value of the series of interest (output)
depends not only on past output values, but also on past values of the exogenous series
(inputs)[JWH05].

The general formulation for this class of models is as follows:

yk = −a1yk−1 − a2yk−2 − ...− anayk−na + b1uk−1 + b2uk−2 + ...+ bnbuk−nb + ek, (B.1)

where na and nb are the model orders, ai and bj are the model coefficients, for i = 1, ..., na
and j = 1, ..., nb, and ek is a white noise process.

A more compact representation of (B.1) is given below:

Ã(q−1)yk = B̃(q−1)uk + ek, (B.2)

with
Ã(q−1) = 1 + a1q

−1 + a2q
−2 + ...+ anaq

−na (B.3)
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and
B̃(q−1) = b1q

−1 + b2q
−2 + ...+ bnbq

−nb , (B.4)

where q−1 is the delay operator.

Remark B.1. The tilde in Ã and B̃ is used to avoid confusion with the state-space
matrices A and B. �

Based on the available data, the output can be estimated at each time instant as
follows:

ŷk =
(
1− Ã(q−1)

)
yk + B̃(q−1)uk + ek. (B.5)

B.2 Model derivation

A grey-box model structure, similar to (B.5), can be derived from the continuous-
time state-space representation of the IDZ model:

ẋ(t) = Ax(t) + Bqq(t) + Bqnq(t− τ), (B.6a)

y(t) = Cx(t) + Dqq(t) + Dqnq(t− τ). (B.6b)

Note that (B.6) describes any system that can be represented by the matrices A, Bq,
Bqn, C, Dq, and Dqn, e.g., one-reach systems and larger portions of inland waterways.

Then, the variable x(t) is isolated from (B.6b) as

x(t) = C−1y(t)−C−1Dqq(t)−C−1Dqnq(t− τ). (B.7)

Then, (B.7) is derived, which leads to

ẋ(t) = C−1ẏ(t)−C−1Dqq̇(t)−C−1Dqnq̇(t− τ). (B.8)

The right-hand side terms of (B.6a) and (B.8) are equated:

Ax(t) + Bqq(t) + Bqnq(t− τ) = C−1ẏ(t)−C−1Dqq̇(t)−C−1Dqnq̇(t− τ). (B.9)
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Note that A = 0 as stated in (3.20), and thus (B.9) can be simplified as

Bqq(t) + Bqnq(t− τ) = C−1ẏ(t)−C−1Dqq̇(t)−C−1Dqnq̇(t− τ). (B.10)

The discretization of (B.10) is performed in such a way that the continuous current
time instant t corresponds to the discrete time instant k:

Bqqk−1 + Bqnqk−n−1 =

C−1 yk − yk−1
Ts

−C−1Dq
qk − qk−1

Ts
−C−1Dqn

qk−n − qk−n−1
Ts

,
(B.11)

with Ts the sampling time and n = dτ/Tse as in (3.23).

Rearranging terms in (B.11) leads to

yk = yk−1 +Dqqk+(TsCBq −Dq)︸ ︷︷ ︸
B1

qk−1 +Dqnqk−n+(TsCBqn −Dqn)︸ ︷︷ ︸
B2

qk−n−1, (B.12)

which can be expressed in a more compact form as

ŷk+1 = Ãyk|κ + B̃qk|κ, (B.13)

with Ã ∈ Rny×(ny×nκ), B̃ ∈ Rny×(nu×nκ), yk|κ ∈ R(ny×nκ)×1 and qk|κ ∈ R(nu×nκ)×1.
Moreover, nu is the number of actuators, ny is the number of sensors and nκ is the
total delay in the system. On the other hand, B̃ can be built by adequately placing the
elements of Dq, B1, Dqn and B2, taking into account the corresponding delay of each
term. A schematic view of a general system that can be described by (B.13) is reported
in Fig. B.1.

Further insight on the grey-box model formulation is provided below:

— Equation (B.13) assumes that the i-th water level y(i)
k and the j-th discharge q(j)

k

have an influence on the m-th water level ŷ(m)
k+1, ∀i,m ∈ {1, . . . , ny} and ∀j ∈

{1, . . . , nu}. On the other hand, (B.12), which was derived from the IDZ model,
considers that only the i-th water level and all discharges q(j)

k have an influence
on the same i-th water water level ŷ(i)

k+1. This assumption leads to a free model
formulation, as all the relationships among variables are permitted, which is more
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Figure B.1: Time delays τij between each pair of measurement points

general than the IDZ formulation.

— With regard to the statement above, it is assumed that matrices Ã and B̃ are com-
posed of a set of blocks Ã(i) and B̃(i), respectively. Then, the pair

(
Ã(i), B̃(i)

)
links the levels yk and the discharges qk with the i-th level estimation ŷ(i)

k+1. Fur-
thermore, in order to particularize (B.13) to the IDZ case, only one term in A(i)

should be different from 0, namely a(i,i).

— The input variables qk|κ ∈ R(nu×nκ)×1 correspond to a combination of the com-

ponents of the input vector qk=
[
q

(1)
k . . . q

(nu)
k

]T
with convenient delays, where

q
(l)
k = Q

(l)
k ∀l = 1, ..., nu are the different discharges along the canal. Similarly, the

output variables yk|κ ∈ R(ny×nκ)×1 correspond to a combination of the components

of the output vector yk=
[
y

(1)
k . . . y

(ny)
k

]T
with convenient delays, where y(i)

k = L
(i)
k

∀i = 1, ..., ny are the different level measurements along the canal. More precisely:

• The vector yk|κ is expressed as

yk|κ =
[
y(1)
k|κ y(2)

k|κ · · · y(ny)
k|κ

]ᵀ
, (B.14)

with y(i)
k|κ =

[
L

(1)
k−κi,1 L

(2)
k−κi,2 · · · L

(nκ)
k−κi,nκ

]
.

• The vector qk|κ is expressed as

qk|κ =
[
q(1)
k|κ q(2)

k|κ · · · q(nu)
k|κ

]ᵀ
, (B.15)

with q(i)
k|κ =

[
Q

(1)
k−κi,1 Q

(2)
k−κi,2 · · · Q

(nκ)
k−κi,nκ

]
.
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— The estimation of the delays in the network for the grey-box model is not ad-
dressed in this thesis. Instead, it is assumed that these are characterized by the
relationships in [LF09] in a precise manner. As the system is considered to be
working within the interval [NNL, HNL] during the simulation, it is assumed that
their variation is not so large. In the future, an extension with varying operating
conditions could be carried out, thus being necessary to re-estimate all the model
parameters, and not only the delays.

Remark B.2. (B.12) and (B.13) could also be expressed in terms of openings and el-
evations by introducing the relationships given in (3.10) and (3.11), as appropriate.
However, the available input data are in terms of the discharges and not the openings,
which justifies the proposed notation. �
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