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Objectives of the thesis

Analysis and control of uncertain systems are among the most chal-
lenging problems in systems and control theory. The last two decades
have seen an increasing growth of the literature dedicated to analyti-
cally solve control problems where uncertainty is present either in the
system representation or the measurements. However, this profusion
of scientific production in the field of control with a marked theore-
tical orientation has not been paralleled with a similar production of
application-oriented issues works. The present thesis is intended to con-
tribute in the understanding of some practical implementation issues
of some specific control algorithms. More precisely, we deal with the
popular backstepping design and a recently developed computational
technique for control synthesis.

For nonlinear systems, the 1990s started with a breakthrough:
backstepping, a recursive design for systems with nonlinearities not
constrained by linear bounds. Although the idea of integrator back-
stepping may be implicit in some earlier works, its use as a design tool
was initiated by [[si89, BI8Y, £S89, [KS89, FKS9(]. However, the true
potential of backstepping was discovered only when this approach was
developed for nonlinear systems with structured uncertainty [KKK93)|.
The ease with which backstepping incorporated uncertainties and un-
known parameters contributed to its instant popularity and rapid ac-
ceptance, mainly within the theoretically oriented control community.
Applications of this technique have been recently reported ranging from
robotics to industry [FG9g] or aerospace [KKO0J]. This the-
sis is concerned, at one hand, with applying the backstepping design
in the field of Civil Engineering and, at the other hand, studying a
practical implementation issue of this technique, namely its numerical
sensitivity.

In our Civil Engineering application, a hybrid seismic control sys-
tem for building structures is considered, which combines a class of

1



passive nonlinear base isolator with an active control system. The ob-
jective of the active control component applied to the structural base is
to keep the base displacement relative to the ground and the inter-story
drift within a reasonable range according to the design of the base iso-
lator. The base isolator device exhibits a hysteretic nonlinear behavior
which is described analytically by the Bouc-Wen model [Wen7q]. The
control problem is formulated representing the system dynamics in two
alternative coordinates: absolute (with respect to an inertial frame)
and relative to the ground. A comparison between both strategies is
presented by means of numerical simulations, and it is shown that,
in our case, the backstepping-based adaptive tuning functions design
ensures reasonably good stability and performance properties of the
closed loop.

There is a continuing and growing need in the systems and con-
trol community for good algorithms and robust numerical software for
increasingly challenging applications [Var04, [Doo04, [HKMP04|. This
way, in order to contribute to the accurate and efficient numerical solu-
tion of problems in control systems analysis and design we have focus
on some sensitivity and accuracy issues. This way, another complemen-
tary line of research pursued in this thesis is the study of the numerical
sensitivity of the backstepping-based adaptive tuning functions design.
Indeed, the complexity of the controller makes inevitable the use of
digital computers to perform the calculation of the control signal. Our
work addresses for the first time the issue of the numerical sensitivity
of the adaptive tuning functions design. It is shown that, while the
increase of the design parameters may be desirable to achieve a good
transient performance, it harms the control signal as this increase in-
troduces large high-frequency components due to the numerical errors.

A third related line of research treated in this work is the use
of computer-based solutions of control problems when analytical tech-
niques as backstepping fail or are cumbersome. Indeed, a theoretical
limitation of the backstepping technique is the necessity for the con-
trolled system to be under a triangular form. Also, a practical limita-
tion of this technique may lie in its numerical sensitivity or the great
complexity of the controller. As an alternative to analytical solutions
for control problems, a new computational approach has been intro-
duced in [Par0(]. This technique is based on a recent convergence cri-
terion that can be viewed as a dual to Lyapunov’s second theorem and
recent numerical methods for verification of positivity of multivariate




polynomials based on sum of squares decompositions. Our contribu-
tions in this area consist in (1) extending this technique to rational
systems and (2) include parametric uncertainty in the formulation of
the controller synthesis.

Layout of the thesis
The thesis is organized in the following chapters:
» PART I. ADAPTIVE CONTROL DESIGN

> Chapter 1 presents a historical perspective of automatic con-
trol and an introduction to adaptive control. A backstepping
preview with a generic third order system is also considered.

> Chapter 2 presents the adaptive backstepping tuning func-
tions design for linear systems in a particular case, when both
the relative degree and the plant order are known (p = n = 3)
but with unknown plant parameters. It is also shown that
all the signals in the closed-loop adaptive system are globally
uniformly stable and asymptotic tracking is achieved. Com-
putable bounds on both £ and L., norm of the error variables
are presented. Finally, it is showed that, with a correct choice
of the design parameters, the transient performance can be
improved.
Recent developments of the adaptive backstepping tuning func-
tions design for linear systems are also presented in this chap-
ter. The contributions are organized according to this scheme:
robustness issues with respect to unmodelled dynamics and/or
external disturbances; improvement of the transient perfor-
mance; stability and asymptotic performance of modified ver-
sions (parameter variation, digital implementation, schemes
that do not assume the knowledge of the high-frequency gain
and multivariable versions). This section also presents the re-
lationships among the different research groups dealing with
tuning functions designs for linear systems.

> Chapter 3 deals with the problem of controlling unknown
linear systems in the presence of bounded disturbances. In
this chapter, the transient issue is addressed for backstepping
adaptive controllers. A L. bound on the tracking error is
explicitly given as a function of the design parameters. This



shows that the error can be made arbitrarily small by suffi-
ciently increasing the design gains.

> In Chapter 4 an application in the field of structural control
is presented where a hybrid seismic control system for building
structures is considered. The hybrid control system combines
a class of passive nonlinear base isolator with an active control
system. The analytical model of the system is represented in
two different coordinates: absolute (with respect to an inertial
frame) and relative to the ground. We also consider that the
parameters of the models are uncertain. For that reason, we
use adaptive control to stabilize the control loop. To have
computable bounds on the transient behaviour, we use the
backstepping approach. A comparison between the strategies
is presented by means of numerical simulations.

> In Chapter 5 the numerical sensitivity of the adaptive tun-
ing functions is analyzed. It is shown that while the increase
of the design parameters may be desirable to achieve a good
transient performance, it harms the control signal as this in-
crease introduces large high-frequency components due to the
numerical errors.

» PART II. CONTROL SYNTHESIS BY SUM OF SQUARES OPTI-
MIZATION

> In Chapter 6 we show how the synthesis of linear systems is
a problem completely solved via the computational methods
using semidefinite programming or linear matrix inequalities
(LMI). We introduce the basic notation for the LMI methods.
The problem of the joint search of a controler and a Lyapunov
function for a linear system is solved using this methodology.
We also introduce in this Chapter a new computational ap-
proach to nonlinear control synthesis. The basis is a recent
convergence criterion with a remarkable convexity property —
that can be viewed as a dual to Lyapunov’s second theorem-—,
which is used for controller synthesis of polynomial and ratio-
nal vector fields via convex optimization. Recent numerical
methods for verification of positivity of multivariate polyno-
mials based on sum of squares decompositions are used.

> Using the theory of semialgebraic sets the computational tools
presented in the previous chapter are extended in Chapter 7



for the case of polynomial or rational systems with uncertainty
parameters.

» CONCLUSIONS AND FUTURE WORK. We present the conclusions
of the thesis and finally, the foreseen future developments are dis-
cussed.
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Chapter 1

Introduction

Engineering is concerned with understanding and controlling the mate-
rials and forces of nature for the benefit of humankind. Control system
engineers are concerned with understanding and controlling segments
of their environments —systems— to provide useful products for society.
The two goals of understanding and control are complementary because
effective systems control requires that the systems be understood and
modelled. Perhaps, the most characteristic quality of control engineer-
ing is the opportunity to control machines and industrial and economic
processes for the benefit of society.

Control engineering is based on the foundations of feedback the-
ory and linear system analysis. Therefore its applicabilities are not
restricted to any engineering area but it can be equally used in aero-
nautical, mechanical, environmental, civil, electrical engineering, etc.

Due to the increasing complexity of the systems under control
and the interest in achieving optimum performance, the importance of
control system engineering has grown in the past decades. Furthermore,
as the systems become more and more complex, the interrelationship
of the controlled variables must be considered in the control scheme.

One of the reasons for the emergence of adaptive control is its
capability to build systems capable of controlling unknown plants or
adapting to unpredictable changes in the environment.
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It is widely known that the cost of computers has dropped dra-
matically. This fact has given rise to their integration as a part of the
control systems. Therefore, the research into adaptive control algo-
rithms has increased and the applications of the modern control theory
are not strictly related to the engineering, even with applications in
different sciences such as biology, biomedicine and economy.

1.1 A historical perspective of automatic control

The use of feedback to control a system has had a fascinating history.
The progress of feedback control, as a engineering discipline, is closely
tied to the practical problems that needed to be solved during any phase
of human history. The key developments in the history of mankind that
affected the progress of feedback control were:

> The preoccupation of the Greeks and Arabs with keeping
accurate track of time. The first applications of feedback con-
trol appeared in the development of float regulator mechanisms in
Greece in the period 300 to 1 BC. The water clock of Ktesibios used
a float regulator. An oil lamp devised by Philon in approximately
250 BC used also a float regulator in an oil lamp for maintaining
a constant level of fuel oil. Heron of Alexandria, who lived in the
first century AD, published a book which outlined several forms
of water-level mechanisms using float regulators.

> The Industrial Revolution in Europe. The first feedback sys-
tem to be invented in Modern Europe was the temperature reg-

ulator of Cornelis Drebbel (1572-1633) of Holland. Dennis Papin
invented the first pressure regulator for steam boilers in 1681.

The first automatic feedback controller used in an

industrial process is generally agreed to be James

Watt’s flyball governor, developed in 1769 for con-

trolling the speed of a steam engine.

It is extremely important to realize that the Indus-

___ trial Revolution did not start until the invention of
~ improved engines and automatic control systems to




1.1. A historical perspective of automatic control 11

The period preceding 1868 was characterized by the development
of automatic control systems through intuition and invention. Ef-
forts to increase the accuracy of the control system led to a slower
attenuation of the transient oscillations and even to unstable sys-
tems. It then became imperative to develop a theory of automatic
control. J.C. Maxwell analyzed the stability of Watt’s flyball gov-
ernor. His technique was to linearize the differential equations of
motion to find the characteristic equation of the system (1868).
He studied the effect of the system parameters on stability and
showed that the system is stable if the roots of the characteristic
equation have negative real parts. With the work of Maxwell we
can say that the theory of control systems was firmly established.

During the same period, [.A. Vyshnegradskii formulated a math-
ematical theory of regulators.

The work of A.M. Lyapunov was seminal in control theory. He
studied the stability of nonlinear differential equations using a gen-
eralized notion of energy in 1892. Unfortunately, though his work
was applied and continued in Russia, the time was not ripe in the
West for his elegant theory, and it remained unknown there until
approximately 1960, when its importance was finally realized.

> The beginning of mass communication and the First and
Second World Wars. Prior to World War II, control theory
and practice developed in the United States and Western Europe
in a different manner than in Rusia and Eastern Europe. A main
impetus for the use of feedback in the United States was the devel-
opment of the telephone system and electronic feedback amplifiers
by Bode, Nyquist and Black at Bell Telephone Laboratories. In
contrast, the eminent mathematicians and applied mechanicians
in the former Soviet Union inspired and dominated the field of
control theory.

A large impetus to the theory and practice of automatic control
occurred during World War II when it became necessary to design
and construct automatic airplane pilots, gun-positioning systems,
radar antenna control systems and other military systems based
on the feedback control approach.
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Prior to 1940, for most cases, the design of control systems was
an art involving a trial-and-error approach. During the 1940s,
mathematical and analytical methods increased in number and in
utility, and control engineering became an engineering discipline
in its own right.

Frequency-domain techniques continued to dominate the field of
control following World War II with the increased use of Laplace
transform and the complex frequency plane. During the 1950s, the
emphasis in control engineering theory was on the development
and use of the s-plane methods.

The beginning of the space/computer age. During the 1980s,
the utilization of digital computers for control components be-
came routine. The technology of these new control elements to
perform accurate and rapid calculations was formerly unavailable
to control engineers. These computers are employed especially for
process control systems in which many variables are measured and
controlled simultaneously by the computer.

With the advent of Sputnik —launched in 1957— and the space
age, another new impetus was imparted to control engineering.
It became necessary to design complex, highly accurate control
systems for missile and space probes.

1.2 Emergence of adaptive control

Adaptive controllers were developed in the early 1950s with the aim
of designing autopilots for high-performance aircraft when difficulties
were encountered applying PID controllers to this task.

A sophisticated controller, such as an adaptive controller, that

could learn and accommodate changes in the aircraft dynamics was

needed.

But, when is a controller adaptive? A possible answer was offered

by G. Zames during a presentation made at the 35th Conference on
Decision and Control, Kobe, Dec. 1996:

“a non-adaptive controller is based solely on a-priori informa-
tion whereas an adaptive controller is based also on a poste-
riori information”



1.2. Emergence of adaptive control 13

The ability of adaptive control to adapt —“to adjust oneself to
particular conditions; to bring oneself in harmony with a particular
environment; to bring one’s acts, behaviour in harmony with a particu-
lar environment” | according to the Webster’s dictionary— to variations
in flight characteristics caused by such factors as air speed, altitude
and aircraft load, and the ability to incorporate all these factors into a
single mathematical control strategy, made adaptive control the ideal
candidate for this task.

Anyhow, to incorporate these factors requires the development of
a mathematical model that can be used to represent the responses of
the aircraft. From an academic perspective, adaptive control theory es-
sentially deals with finding parameter adjustment algorithms that offer
global stability and convergence guarantees. The mathematical devel-
opment, along with the requirement of a fast computer to execute the
algorithm, are the major reasons that the potential of adaptive control
has taken so long to be realized in conventional industrial applications.
Adaptive control has been limited primarily to specialized applications
in aerospace and naval auto-pilots.

Model reference adaptive control was suggested by Whitaker et al.
to solve the autopilot control problem. Although the original algorithm
proved unstable, it lead to the development during the 1970s and 1980s
of algorithms with guaranteed stability, convergence and robustness
properties.

The 1960s became one of the most important periods for the devel-
opment of adaptive control. State space techniques and stability theory
based on Lyapunov were introduced. Developments in dynamics pro-
gramming (Bellman, 1957) and dual control (Feldbaum, 1960) played
a crucial role in the reformulation and redesign of adaptive control.

In the 1970s, the simultaneous development and progress in com-
puter and electronics that made the implementation of complex con-
trollers, such as the adaptive ones, feasible contributed to an increased
interest in applications of adaptive control. By the early 1980s, several
types of adaptive schemes were proven to provide stable operation and
asymptotic tracking and at the same time more and more examples
of instabilities were published demonstrating lack of robustness in the
presence of unmodelled dynamics or bounded disturbances.
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We refer to the results of this period as adaptive linear control or
traditional adaptive control. All the traditional schemes involve para-
meter identification with parameter estimators —in which the vital part
is the parameter adaptation algorithm or parameter update law— and
are classified as

> direct, when the updated parameters are those of the controller,
and

> indirect, when the updated parameters are those of the plant,
and as

> Lyapunov-based

> estimation-based

The distinction between Lyapunov-based and estimation based is
dictated in part by the type of parameter update law and the corre-
sponding proof of stability and convergence.

An important feature of traditional adaptive control is its reliance
on certainty equivalence controllers. Those schemes ignore the uncer-
tainty on the estimates by treating them as true values. The resulting
controller is either estimated (direct) or designed for the estimated plant
(indirect).

1.2.1 A structural obstacle

Traditional estimation-based designs cannot be applied to nonlinear
systems whereas Lyapunov-based can. However, in the linear case the
Lyapunov-based design has been restricted to plants with transfer func-
tions of relative degree one and two. In the nonlinear case, this struc-
tural restriction is translated into a level of uncertainty —number of in-
tegrators between the control input and the unknown parameter— zero
or one. When the level of uncertainty is zero, the uncertainty and the
control are matched, because they appear in the same equation. When
the level of uncertainty is one it corresponds to the extended-matching
case.
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traditional adaptive schemes

the updated|parameters type of parameter update law
are those of the and proof of stability and conv.
controller plant
direct || indirect Lyapunov- Estimation-
based based

. non- .
relative degree < 3 linear | . o linear
case case
case
level uncertainty <2 K— ()

remove this
structural obstacle

adaptive backstepping designs

| |

’ overparametrization ‘ ’ tuning functions ‘ ’ modular identifiers ‘

Figure 1.1. Traditional adaptive schemes and adaptive backstepping designs.

The extended matching barrier was finally broken with a new re-
cursive design procedure called adaptive backstepping. The adaptive
backstepping —emerged as a confluence of the adaptive estimation idea
and nonlinear control ideas— removes this structural obstacle and allows
the Lyapunov-based designs to be applied to wide classes of uncertain
systems. Adaptive backstepping also stimulated efforts to reduce its
overparametrization. Finally, with the invention of tuning functions
was introduced a new design which completely removed the overpara-
metrization.

We can summarize the three types of adaptive backstepping tech-
niques —which differ in construction of adaptation law— as follows:

> adaptive backstepping with overparametrization, when at
each step a new vector of adjustable parameters and the corre-
sponding adaptation law are introduced;
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> adaptive backstepping with tuning functions, when at each
step a virtual adaptation law called tuning function is introduced,
while the actual adaptation algorithm is defined at the final step
in terms of all the previous tuning functions, as we will see in next
sections;

> adaptive backstepping with modular identifiers, when a
slight modification of the adaptive controller allows one to inde-
pendently construct estimation-based identifiers of unknown pa-
rameters.

1.3 Adaptive backstepping and tuning functions
1.3.1 A first Lyapunov-based example

Let us start this section applying the Lyapunov-based approach to the
adaptive control problem for the nonlinear plant

i =u+ 0z° (1.1)

where u is the control and 6 is an unknown constant. In this procedure
we seek a parameter update law for the estimate 6(t),

0= 7(z,0), (1.2)

which, along with a control law u = «(z, é), will make the Lyapunov
function

R 1 1 -~
V(z,0) = 5:@2 + 5(0 —0)? (1.3)

a nonincreasing function of time. R
To this end, we express V' as a function of u and seek «a(z, ) and

7(z, é) to guarantee that V < —pz? with p > 0, namely

V =xi+ () —0)f (1.4)
= 2(u+ 02%) + (0 — 9)9 (1.5)
:xu—i—éé—i—@(:ﬂS—é). (1.6)

The requirement V < —px.2 imposes the following condition of the

choice of an update law for 0 and a control law for wu:

a:u—i—éé—l—@(:vg —é) < —pa®. (1.7)
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To eliminate the unknown 0, a possible choice for the update law is
7(x,0) = 23, that is

-3 (1.8)

so that ([.q) reduces to
zu+ %0 < —pa® (1.9)

This condition allows us to select a(z, é) in various ways. One of them
are, for example,

u = —px — 0z, (1.10)

1.3.2 Backstepping preview with a generic third order system
Consider now, for example, the class of pure-feedback systems
B = 29 + @] (21, 12)0
Ty = a3 + 5 (11, 19, 13)0 (1.11)
B3 = u+ @3 (21, 79, 73)0,

where 6 is constant and unknown.

The idea of backstepping is to design a controller for ([[.T]) recur-
sively by considering some of the states variables as virtual controls and
designing for them intermediate control laws. In ([[.I1)) the first virtual
control is x. It is used to stabilize the first equation as a separate sys-
tem. Since 6 is unknown, this task is solved with an adaptive controller

consisting of the control law o (z1) and the update law 6 = 7(x1), as
in the previous example.

In the next step the state x3 is the virtual control which is used to
stabilize the subsystem consisting of the first two equations of ([L.11]).
This is again an adaptive control task, and a new update law is to be
designed.

However, an update law 0 = 7(z1) has already been designed in
the first step and this does not seem to allow any freedom to proceed
further. We can treat this in two different ways:

> adaptive backstepping with overparametrization. In this
case the parameter 6 in the second equation of ([[.I1]) is treated
as a new parameter and assigns to it a new estimate with a new
update law. As a result, there are several estimates for the same
parameter (overparametrization).
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> adaptive backstepping with tuning functions. The over-
parametrization is avoided by considering that in the first step

0 = (1) is not an update law but only a function 7(z1). This
tuning function is used in subsequent recursive steps and the dis-

crepancy 6 — 7(z1) is compensated with additional terms in the

controller. Whenever the second derivative 6 would appear, it is
replaced by the analytic expression for the first derivative of 7(x1).

Both designs achieve the goals of stabilization and tracking. The
proof of these properties is a direct consequence of the recursive pro-
cedure during which a Lyapunov function is constructed for the entire
system, including the parameter estimates.

The tuning functions approach is an advanced form of adaptive
backstepping. It has the advantage that the dynamic order of the
adaptive controller is minimal. The dimension of the set to which the
states and parameter estimates converge is also minimal.
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Tuning functions design
for linear systems

We now present a more detailed approach to adaptive control of linear
systems via a backstepping tuning function control design. This design
removes several obstacles from adaptive linear control. Since the design
is based on a single Lyapunov function incorporating both the state
of the error system and the update law, the proof of global uniform
stability is direct and simple. Moreover, all the error states except for
the parameter error converge to zero.

However, the main advantage of the tuning functions design over
traditional certainty equivalence adaptive designs is in the transient
performance. The nonlinear control law which incorporates the para-
meter update law keeps the parameter estimation transients from caus-
ing bad tracking transients. The performance bounds obtained for the
tuning functions scheme are computable and can be used for systematic
improvement of transient performance.

As a prototype, we consider a linear single-input single-output sys-
tem

b
JCR— al)“(s)’ (2.1)

where the coefficients ay, as,b € R are constant but unknown.

The control objective is to asymptotically track a given reference
signal y,(t) with the output y(t).

We assume the following for the plant:

y(s) = o

Assumption 1 The sign of the high-frequency gain (sgn(b)) is known.

19
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Assumption 2 The relative degree (p = 3) and the plant order (n =
3) are known.

The class of reference signal we employ, y,(t), and its first p = 3

derivatives are known and bounded, and, in addition, y,(n ) is piecewise

continuous. In particular, we consider y,(t) as the output of a stable
filter of order p + 1.

2.1 State estimation filters

We start by representing the plant (£-])) in the observer canonical form

T1 = X9 — agy (2.2a)
.fg = T3 — a1y (22b>
.i?g = bu (22C)
y=x (2.2d)
or, in a more compact way, as
. a 0
x:Am—y{O}—k{ Qbﬂ} (2.3)
y=ez, (24)
where
010 a
A=10 0 1], a:{;} (2.5)
000 !
In this situation, we are able to express (R.3)-(R.4) as
i = Azx + F(y,u)"0
y=eit,
where
(2.8)

and the parameter vector 6 is defined by

0" =[b o ]. (2.9)
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For state estimation we employ the filters

€= A+ ky (2.10)
O = 4,07 + F(y,u)", (2.11)

where the vector k = [ky, ks, k3T is chosen so that the matrix

-k 10
Ap=A—kel = | —ks 0 1 (2.12)
—ks 0 0
is Hurwitz, and hence P exists such that
PAy+AjP=—1, P=P">0. (2.13)
With the help of those filters our state estimate is
& =¢+Q%, (2.14)

and the state estimation error

e=r—2= (2.15)
vanishes exponentially because it satisfies

£ = Ape. (2.16)

A further practical step is to lower the dynamic order of the Q-filter by
exploiting the structure of F(y,u) in (B.§). We denote the first column
of QT by vy and the remaining 2 columns by Z,

Q" = [vo, =], (2.17)

and show that due to the special dependence of F(y,u) of u, the equa-
tion for the first column of Q1 is governed by

’Ub = A()UO + esu. (218)
This means that the vector vg can be obtained from only the input filter
j\ = AQ)\ + esu (219)

considering vy = .
In a similar manner, = is governed by

—{ L2 ]y (2.20)

01><2

[1]-

(1]
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or equivalently, if = = [Z;, =],

El = A()El — €1y (221)
EQ = AoEQ — €2y (222)

and thanks to the special structure of Ay,
Ales=es_j, j=0,1,2 (2.23)
= can be obtained from only one input filter
1= Ao + ey, (2.24)
through the algebraic expression
== —[A2n, Agn). (2.25)
Finally, with the identity
Ades = —k, (2.26)

the vector ¢ in (B-I0) can be obtained from the filter (:29) trough the
algebraic expression

£ = —Agn. (2.27)

What has been achieved thus far is a static relationship between the
state x and the unknown parameter 6:

r=E+ 00+ ¢ (2.28)

In conclusion, the table of the K-filters is:

n = Aon+esy
A Ap\ + ezu
= = —[Afn, Ao
£ = —Afn

Vo = A

or = [vo, Z]

Table 2.1. Kreisselmeier filters (K-filters)
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Remark 1 From (R.2§) and the expressions in Table B.1] an equivalent
expression for the virtual estimate Z is

2
=1

= B(Ag)A — A(Ao)n. (2.29)

where A(:) and B(-) are matrix-valued polynomial functions. With
(B29) we get an explicit relationship among A, 7, and € and :

r = B(Ag)\ — A(Ao)n + ¢. (2.30)

The backstepping design for the plant (R.]) starts with its output
y, which will be the only plant state allowed to appear in the control
law. For this reason, (B.2) is rewritten as:

§ =y — azy = T3 — ye, a. (2.31)
From the algebraic expressions (B.28) we have

Ty =&+ Qpf + &
=&+ [vo2, E@))0 + &2 (2.32)
= b'UO’2 -+ 52 -+ [0, E(g)]@ + &9 (233)

Substituting both (£:39) and (P-33) into (B-3]]), we obtain the following

two important expressions for y:

j=E&+wl+e (2.34)
= b’UO72 + 62 + CDTQ + E9, (235)

where the ‘regressor’ w and the ‘truncated regressor’ @ are defined as

w = o2, Z2) —yer]" (2.36)
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! B(s) -
A(s)
Y Y
(7-4,)"e, (61-4,)"e,
A n
Y Y
B(4,) A(4y)

Figure 2.1. Virtual estimate & generated with input filter X and output filter n.

2.2 Tuning functions design

2.2.1 Design procedure

Thanks to the minimum phase of the plant the design is restricted to
the p = 3 equations in (£.9):

Ty = Ty — GgY
.fQ = T3 — a1y (238)

In the backstepping approach we view the state variable x;,; as
a control input to the subsystem consisting of the states zq,...,x;,
and we design a stabilizing function «; which would achieve the control
objective if x;,1 were available as a control input. The control law for
the actual control input w is obtained at the pth step of the recursive
design.

Because only the system output y = x; is measured, we replace
(B-39) with a new system whose states are available.
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We start with (.39), with is just an alternative form of the first
equation in (P39). Equation (B.37) suggests that vy is chosen instead
of the unmeasured x5 to be the ‘virtual control” input for backstepping.
The reason for this choice is that both zy and vyo are separated by
only p—1 = 2 integrators from the actual control u, which is clear from
(ETS).

A closer examination of the filters in Table P.]] reveals that more
integrators stand in the way of any other variable. Therefore, the design
system chosen to replace (R.39) is

Y= bvog + & + oth+ &9
=03 — kQ'UO’l (239)

= —]{?31)071 + u.

Vo,2

Vo 3
or equivalently

J=bha+ & 4010+ e
Ao = —kadi + A (2.40)
)'\3 = —/{3)\1 + u.

All of these states are available for feedback. Our design task is
to force the output y to asymptotically track the reference output y,
while keeping all the closed-loop signals bounded.

We employ the change of coordinates

21=Y—Yr (2.41)
2o = Ay — éyr —Qq (2-42)
23 = A3 — 0¥r — Quz, (243)

where ¢ is an estimate of o = 1/b. Our goal is to regulate z = [zy, 29, 23| T
to zero because by regulating z to zero we will achieve asymptotic
tracking of y,.(t) by y(t).

Step 1. We start with the equation for the tracking error z; obtained
from (R.41)) and (2.40):
Z21=Y—Yr
= b)\g + 52 + @TG + &2 — yr. (244)
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By substituting Ay = 25 + 0y, + oy from (P.49) into (£.49), we get

31 = bzy + boy + b0y, + & + 010+ 5 — 9y
=boy + &+ @010 + g5 — by, + bzo. (2.45)

Scaling the first stabilizing function oy as

a1 = 00y, (2.46)
we obtain
Sh=ay+ &+ 010+ ey — by + @)+ bz (2.47)
Then the choice
a1 = —c121 —d1z; — & — 210 (2.48)
results in the system
b= —c1z1 —dy2y +eg + 070 — b(y, + a1)6 + bz (2.49)

We stress that (P.49) along with (E.16) would be globally asymptotically
stable if 6, ¢ and 2, were zero. With (P-43), (£:49), and (E-30), we have

= (w—o0(yr + 071)61)T9~ + 622- (2.50)
Substituting (B.50) into (.49) we get

Z"l = —C1%1 — d1Z1 + &9 + (w — @(yr + @1)61)T9~ — b(yr + dl)é + 622.
(2.51)

This system along with (R.14) is to be stabilized by selecting update
laws for the parameter estimates 6 and 0. These update laws will be
chosen to achieve stability with respect to the Lyapunov function

0]

1 1o o~ 1
Vi=-224-0"T"'0+ 3>+ —c'P 2.52
1= 3R T, T g e (2:52)
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We examine the derivative of Vi:

Vi=2 |—c1z1 — diz1 + g2+ (W — 6(9 + an)el)d — by, + an)o + 622]

- X b’ . 1
—QTF_lg— |_~A_ - T
00— g
- 1 . _ x
= — 12} + b2z — WQ; [VSgn(b)(% + o)z + Q]

- X 1
+ EF_I F(w — @(yr + 0_61)61)21 — 6i| — dlzf + z169 — EgT&
1
(2.53)

To eliminate the unknown indefinite 6, g-terms in (B:53) we choose
o= —ysen(b) (g, + @)z, >0 (2.54)

and é = I'ry, where
= (w—0(y, +1)er)z. (2.55)

We do not use § = I'ry as the update law for é, because 6 will reappear
in subsequent steps. However, ¢ will not reappear, so we do use (B.54)
as the actual update law for 9. We retain (£.53) as our first tuning

function for §. Substituting (£.54) and (258) into (253), we obtain
vV, < —c123 + bzyzo + OF (7’1 — F_lé) ) (2.56)

We pause to determine the arguments of the function «;. By
examining (2.48) along with (B.37), we see that «; is a function of

y? n? 97 é? and y""
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Step 2. Differentiating (B.49) with the help of the second equation in

(B40) we obtain

22 :}\2 - éyr - @yr - dl (y> m, 9, @a yr)
8041
dy

:)‘3 - kQ}‘l - @yr - @yr - (52 + WTG + 82)

e

Y
a051 aOél . 8&1 A 8041 i
- A + e - Yr — ——x - ~
on (Aon . 3Y) 8yry BY; 90 o

N .. day T daq A
22 — B — Gilr —y(w 9+52) — (2.57)

where (3 is a function of available signals:

B Oy TA Ooy
Ba =kaAi + By <§2 +w 9) + o (Aon + eny)
Oay | ) Oa \
—, .+ — 0. 2.58
+3yry+(y+80>g (2:58)
Noting from (.-43) that A3 — 0¥, = 23 + o, we get

. 8@1 T (90(1 A
ZQ—@Q_/BQ_a_y(W 6+52>— aé0+23. (259)

Since our system is augmented by the new state z,, we augment the
Lyapunov function (.53) as

1 2 1 T
Vy V1+222+4d25 g, (2.60)
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where another e-term was included to account for the presence of €5 in

(B59). In view of (£50), (2:59), and (B.16)), the derivative of V; satisfies
Vg < — clzf + bzyze + or (7’1 - F_1é>

8051 T 8061 A 1 T
+ 29 {ag—ﬁz—a—y(w 9+€2> — 3@ 0+23:| —@E 9
< — 122+ 29z + 0 (Tl — %wzg — F_1§>
dy
A 8061 A 8041 1 2
bz — — —0| —zp—e9 — —
+ 29 |:052 + 021 ﬁg o0 :| Z2 ay E9 4d282
= — 012% + 2023 + é_T (T1 — %WZQ — F1é>
dy
~ aal ;:|
+ 29 Qg + bz — — —0
2 |: 2 1 52 80
Ao\’ Oa 1 2
+ d2 (a—yl) Z% — dg (Zga—yl + 2_61262) . (2.61)

The elimination of the unknown indefinite f-term from (B-61)) can be

achieved with the update law = I'1y, where

0
To = T1 — aiylwzQ. (262)
Then, if z3 were zero, the stabilization function
a2 - Oa
Qg = —CoR9 — dg <a—y1) 9 — bZl -+ ﬂg + aél FTQ (263)
would yield
: d 1\’
Vo < —c128 — cpzs — ds <ZQ% + 2—d262) < —c12f — 7. (2.64)

However, since z3 # 0, we do not use § = I'r, as an update law.
Instead, we retain 75 as our second tuning function and «y as our second
stabilizing function. Upon the substitution into (R.61]), we obtain

. ~ x oo 3
< 22 T -l 1 —_9)
Vo < —c12] — €925 + 2023 + 0 <7'2 r 9) + 29 pY: (FTQ 9)
(2.65)
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Step 3. By differentiating (R.43)) with the help of the third equation in
(B40), we have

23 :>\3 - @y1(ﬂ3) - @yr - d2<ya 7, éa @7 )\17 )\27 Yr, yr)

8042 . 60427,7 60@01
Yy — — =

dy on o0

0042 . 80&2 \ 8042 : 6042 8042

=u — k3 — @yﬁg) - @yr -

B AR YR VR T TR
=u — ks — oy — oij, — %;.; (fz +wT(0+6) + 52)
— %—(:72 (Aon + e3y) — 80129% - 686;29; - gif (—k1A1+ A2)
- Z_if (—kaA1 4+ A3) — g;“fyr - %Qr
—u— oy — By — %i; <wTé + gg) - %é, (2.66)
where
B3 =ksA1 + %(52 +wT0) + %;.;72(14077 + e3y) + %Qr + %ﬂr
+ S22+ ) + 2+ ) + (y ¥ %) i
(2.67)
If we define
as =u— oy, (2.68)
we can write
e = g — fa — %i; (wTé + 52) _ E;O(;Qé. (2.69)

Since our system is augmented by the new state z3, we also augment
the Lyapunov function (R.60):

1 2 1 T
= = —c¢" Pe. 2.
Vs =Vo+ 573 + 4d35 € (2.70)
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In view of (2.69), (R.69), and (.1€), the derivative of Vj is

Vo < — clzf — 0223

O * O 1
+ 23 (043 + 2o — Bg — —?6) — 238_;62 — 4—d3€§ (271)

As in the previous steps, for the elimination of the unknown indefinite
O-term from (R.71]), we can choose the update law

6= I'r, (2.72)
where
T3 =Ty — %wzg. (2.73)

Noting that

X X o X
F7—2_QZFTQ_F73+FT3_9:F8&;C(123+<F7_3_9>7 (274)

(B7T) becomes
Vg < - clzf — Cng

+ 07 (7'3 — F’1é> + 29 aaog <F7'3 — é) + ZQ%F%WZ;g

8&21)
+ 23| g3+ 29 — B3 — —0
3(3 2 — 3 Y

(90(2 2 8a2 1 2
ran() S (a g

+ 23| a3+ 20— 03— —0+ 29—
3(3 2 — s Y; 20 Oy

oy (202 2 (2.75)
dy 3
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Remembering that our actual update law for 0 is § = '3 and the choice
of the stabilization function as

Ao\ oo Oay _Oa
3 = —C323 — dg (a—;> 23 — Z9 + 53 + 89? FTg — zza—élf‘a—;w
(2.76)
makes V3 negative semidefinite:
Vs < —122 — ozt — c;;zg. (2.77)

The control law (R.6§) which has helped us to achieve (B.77) is our

actual control law:
u = as+ oy, (2.78)

T

The resulting error system is

21 = —C121 — d1z1 + 622 + &9 + ((.U - @(yr + 651>61)T§

— b(y, +an)o (2.79)
Z9 = — Co2y — do (%)2 2y — I;zl + 23 — 8803 <é — FTQ)

~ %;‘;152 _ %wTé (2.80)
Z3 = — C323 — d3 (%)2 23 — 29 — aaoilf’%.;zg

_ ‘980;2 (g _ p73> _ %;‘;52 _ %WTQ (2.81)

In view of (R.63) and (R.73) we have

f—Try =Drs — Iry = [(15 — 1) = —F%i;wzg (2.82)
f—Tr =I'ry— Ty = (I — P'my) + (D1, — Iy
- F%WZ:; - F%wzg. (2.83)
Defining
oy & 9010051 (2.84)
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(E59)- () yields

_8&1 (é — FTz) = 09323. (2.85)

By substituting (£.87), we bring the error system (R.79)-(2.81)) into the
compact form

2= A (2, 1)z + Woz, t)es + Wo(z, )"0 — by, + ay)e1d, (2.86)

where the system matrix A,(z,t) is given by

—C1 — d1 ZA) 0
~ 2
A(z,t) = —b - —d (83%1) 14023 (2.87)
2
0 —1- 093 —C3 — d3 (%)

and W_.(z,t) and Wy(z,t) are

1
Wo(zt) = | =%y (2.88)
_day
Ay
Wy(z, )" = Wo(z,t)w™ — 6(3, + ar)ese] . (2.89)

In a generic case, i.e., when we consider linear single-input single-
output systems

by s™ + - -+ bis + by

_ 2.90
y<8) S" 4 18"+ b ars+Fag ( )

the design of the control law is analogous to the preceding description,
but an extra assumption is needed:

Assumption 3 The plant is minimum-phase, i.e., the polynomial B(s) =
b 8™ + -+ -+ bys + by is Hurwitz.

We can summarize the tuning functions design for linear systems in the
generic case as follows:

Error variables

a = y—y
2 = vmyi—@yﬁ%l)—ai,l, i=2,...,p
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Stabilizing functions

o = 00 R

ay = —(cp+dy)zy —&— ot

ay = —bpz — {02 + dy <8a1> 2o+ B + 8O‘1FT
I b . 3% 1 . o4 Qo

Q; = Zi—1 & + dz Zi zZi + ﬁz + 90 FTZ

P Beui_
—Z a] =T rjw, i=3,...,p

B = (& +w0) + T5 (Ao +eny) + Z it + kit

m+i—1

P S g () )

Tuning functions

n = (Ld — @(yr + 6&1)61)21
8047, 1 :
T = Ti_1 — Dy (,()Z“ 1 :2,...,[)

Parameter update laws

é = I,

0 = —ysgn(bn)(yr + )z
Adaptive control law
U = Q) — Uppr1 + @yf(’p) ‘

2.2.2 Stability analysis

For the adaptive scheme developed in the previous subsection, we es-
tablish the following result. In a generic case, both the result and its
proof are done in a similar way.

Theorem 1 (Tuning Functions) [KKKJ], Chapter 10] All the sig-
nals in the closed-loop adaptive system consisting of the plant (B-]), the
control (R.7§) and update laws (R.54)-(R.74) and filters in Table P.1] are

globally uniformly bounded, and asymptotic tracking is achieved:

lim [y(t) — (1)) = 0 (2.91)
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Proof. Due to the piecewise continuity of y,(t), 9.(t), §,.(¢) and y,(g)(t)
(Assumption f) and the smoothness of the control law (see eq. (B.79)),
the update law and the filters, the solution of the closed-loop adaptive
system exists and is unique. Let its maximum interval of existence be
0,¢7). Let us consider the Lyapunov function

b
= —z Tot = Z—sTP5+ Lorpig 4 ol ’~2 (2.92)

, 3
In (R77) we established that V3(¢) is nonincreasing (Vg <=3 ckz,§>.
k=1

Hence, z, 0, §, and £ are bounded on [0,%f). Since z; and y, are bounded,
y is also bounded (23 = y — y,). Then, from (B:24) (n = Aon + esy)
we conclude that 7 is bounded. Our main concern is A\ because the
boundedness of x will be immediate from the boundedness of ¢, and

A. From (R.19) ()\ = A\ + 63u> it follows that
Al L s o
K(s)
where K(s) = s® + kis? + kgs + k. By substituting (B-1]) we get
(8" + ks 2 4 4 ki) A(s)
K(s)B(s)

In view of the boundedness of y and the plant is minimum phase, the
last expression proves that A; is bounded. We now return to the coor-

dinate change (P.41))-(R-43) which gives
)\2 = 29 + @yr + al(y7 7, é? @7 yT> (295)
)\3 = Z3+@Qr+042(y,77,é> éa )\la)\Zayr‘?yT)' (296)

Ai(s) = u(s), i=1,2,3, (2.93)

Ai(s) = y(s), i=1,2,3. (2.94)

The boundedness of 25 and y, 7, é, 0, yr and g, proves that Ay is bounded.
The boundedness of A1, Ao, 23,v,7, 0, 0,4, and 3, proves that A3 is also
bounded. Finally, in view of (2:37) and the boundedness of 1, A, and &,
we conclude that x is bounded.

We have thus shown that all the signals of the closed-loop adaptive
system are bounded on [0,¢¢) by constants depending only on the initial

conditions, design gains, and the external signals y,(t), ... ,yfnn) (t), but
not on t;. The independence of the bound of ¢y proves that t; = oo
Hence, all signals are globally uniformly bounded on [0, c0).
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By applying the LaSalle-Yoshizawa theorem to (B.77), it further
follows that z(t) — 0 as t — oo, which implies that

Jim [y(t) =y (1)] = 0,

as we wanted. 0

Theorem [] establishes global uniform boundedness of all signals
but not global uniform stability of individual trajectories.

» We now determine an error system which translates the investi-
gated system to the origin.

» Then we prove that the equilibrium at the origin is globally uni-
formly stable, and all the error states except the parameter error
are regulated to zero.

We start with the subsystem (z,e,é, 0) whose 10 states are en-
compassed by the Lyapunov function (R.92), and construct additional
equations to form a complete error system. We first introduce the
equation for the reference signal n"

n" = A" + esyr, (2.97)
so that the error state 7 =n —n" is governed by
ﬁ = Aoﬁ + €3%1. (298)

tem.
We have now characterized the error system

b= A (z,t)2 4+ We(z,t)ea + Wa(z, )10 — b(y, + @y)ers (2.99)
¢ = Age (2.100)
1= Ao+ esz (2.101)
= TWy(z1)2 (2.102)
0 = ysgu(b)(yr + an e 2 (2.103)

which possesses the desired stability and regulation properties.

Corollary 1 The error system (2.99)-(R.103) has a globally uniformly
stable equilibrium at the origin. Moreover, its 13-dimensional state
converges to the 9-dimensional manifold

M={z=0, =0, =0} (2.104)
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Corollary [ has not dealt with a correspondence between the orig-
inal system (z, A, 7,0, 0) and the error system (z,¢,7,0, ), which can
be done by analyzing the coordinate change

(£, 0,1,0,0) — (2,¢,7,0,0). (2.105)

Whenever B(s) and K (s) are coprime, this coordinate change is a global
C*-diffeomorphism for each ¢t > 0. Although the coprimeness condition
cannot be guaranteed by design because the coefficients of B(s) are
unknown, it is satisfied with probability one.

2.2.3 Transient performance with tuning functions

In the absence of disturbances and unmodeled dynamics, the tracking
error of most adaptive control schemes converges to zero, that is, they
try to achieve the stated asymptotic performance objective. In appli-
cations, however, the system’s transient performance is also important.

Transient performance of the adaptive system

We derive computable bounds on both £, and £, norms of the states
z and 7 of the adaptive system, and we show how they can be made

arbitrarily small by a choice of the design parameters ¢y, o, c3, dy, ds, d3
and I'.

Theorem 2 (£, performance) [KKK93, Chapter 10] The £, norms
of the states z and 7 of the adaptive system (B.99)-(R.103), are bounded
by

11l s¢—10_0 V,(0) (2.106)

Il s%\/vpm)nwﬁuw (2.107)

where ||Wj||« is independent of ¢y, dy and T

Proof. As shown in (B77) <V3 < —12f — 2k — c;:,z%), the derivative
of V3 along the solutions of (.99)-(R.100) is

Vs < —colz|?. (2.108)
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Since V3 is nonincreasing, we have

418 = [ I=(r)Pdr < - (1A(0) = Valoc)) < 1a(0),  (2109)

Co

which implies (P-10§). From (2100) and if we define Wj(s) £ (sI —
Ag)tes we get

_ 1
1715 < 1Wallooll 21112 < ﬁ\/vp(o)HWﬁHoo- (2.110)

The initial value of the Lyapunov function is

1 1 1,-
Vo(0) = 5[=(0)° + E!€\%+§!9(0)\%fl- (2.111)

From (R.104) and (P.I11)) it may appear that by increasing ¢y we reduce
the bound on ||z||2. This would be so only if €(0),8(0), and z(0) were
independent on ¢y. While £(0), 0(0), and 21 (0) = y(0) —y,-(0) are clearly
independent of ¢;,d;, and T', the initial values z3(0), 23(0) depend on
¢;,d;, and I'. Fortunately, we can set z(0) to zero by appropriately
initializing the reference trajectory. Following (R.41)-(B.43), z(0) is set
to zero by selecting

4r(0) =y(0) (2112)
. 1 A A

8(0) =555 [22(0) = a1 (4(0),7(0), 6(0), &(0), - (0)) (2.113)
.. 1 A . .

5+(0) =555 [29(0) = e (5(0), 9(0), 000), 200), 21(0), X2(0). 10 (0). 5] (2:119)

Since b # 0 it is reasonable to choose b(0) # 0. Then the choice
0(0) = 1/b(0) makes (B.I13)-(R.114) well-defined. Thus, by setting
2(0) = 0, we make

1 1~
g% + =10(0) [ (2.115)

V3(0) = 10 5
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a decreasing function of dy and I', independent of ¢y. This means that
the bounds resulting from (£.I0¢) and (P.1I07) for I' = 1,

1 /1. 1 1/2
< — | — 24 2 .

1

N 1 1 12
il < 5= (SBOR + 110 ) Wyl (2117

(2.118)

can be systematically reduced either by increasing ¢y or by simultane-
ously increasing dy and . The possibility to improve performance with
the adaptation gain + is particularly clear in the case £(0) = 0, when
the £y bounds of Theorem [ become

1 ~
< .
[[2]]2 < WW(O)I (2.119)
i 1 -
177]l2 < 160(0)|[IWi |- (2.120)

V2¢yy

For a further characterization of the achieved performance, we pro-
ceed to derive L., norm bound for the states of the adaptive system
(B99)-(B.107). These bounds are also useful for a comparison with
nonadaptive systems. R

We first give simple bounds on [|z||« and ||0|o:

12]l0e < /2V5(0) (2.121)
16]loc < /AT)v/2V5(0), (2.122)

Since V3 < 0, the bound (B.121)) follows immediately from

1 -
2V3(t) = [2(t)]* + ﬁk(t)ﬁa +10(t)[F-1 < 2V5(0), (2.123)
0
and the bound (R.123) is obtained by noting that
#\é? < 102, < 2V3(0) (2.124)
AT = I = A '

For ' = ~1, it further follows from (R.123)-(R.123) that

16lloe < v/12(0)] + 2%0|€(0)IP +16(0)]. (2.125)
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In this way, ||| is explicitly related to initial conditions and design
parameters.

Theorem 3 (L., Performance) [KKK95, Chapter 10] The states z
and 7 of the adaptive system (£:99)-(B-107) are bounded by

|2(1)| < M + |z(0)]e=* (2.126)

1
vV Codo

()] < ( T \z(O)\) ol (2.127)

where

v 25 { ARV [l (VIO + ) + )
3 (113) |5(0)|p} , (2.128)

and [[wgl|1, [[well1, |holli, and £, are independent of ¢y, do, and T".

Proof. Differentiating $|z|* along the solutions of (2:99), we get

CZC"Q) 23:% id (aak 1>2

k=1
3
— Zkag_l (GTW+52>
k=1 Y
2
< —colz|* + 0w +¢ey) . 2.129
ol + g (0 + 22) (2.129)

Lemma 1 Let v and p be real-valued functions defined on R, and let
b and ¢ be positive constants. If they satisfy the differential inequality

v < —cv+ bp(t)?, v(0) >0,
then the following holds:
(i) If p € L, then v € L, and

e, b
o(t) < () + 2.
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By applying Lemma [l], we obtain

—— 10w + &% (2.130)

[e.o]

¢ 2< 0 2 —2cot
0P < RO + 1

From (B-I0) (¢ = Ae) and (BI3) (PAy+ AJP = —1, P = PT > 0) we
have 4|e|2, < —|¢|?, which gives

ezl < 5o O 2.131)
With (2.130) and (R-I31)) we obtain

2(1)] <

1
2\/ Codo

We can express the regressor w as

N 1 —cot
(HQHooHWHoo + W|€(O)|P> +12(0)]e™*". (2.132)

w=H,(s)y + wo(t), (2.133)
where
s+ ki [A(s) [, "
Ho(s) = ﬁ [%ﬁ; E ,s}] (2.134)

and |wo(t)| < k,e 7" is the response due to the initial conditions of 7(0)
and A(0), and k., and o depend only on the plant and filter parameters
and not on ¢y, dp, and I'. Now, using y = 21 + v, and (R.121), we get

lwlloo <lHhuwllt (llztlloo + yrlleo) + Fuwe™

<lolly (v/2V50) + lllloc) + s (2.135)

where h,,(t) denotes the inverse Laplace transform of H,(s).

Substituting (P-I37) into (E:I37) and using (E127) we obtain

01 < ey { VAOWETE) (Il (VIO + i) + ]

1 —cot
WL’?(OHP} + [2(0)e

A

1
vV Codo

LH,(s) is proper and stable, and its coefficients depend only on the plant parameters 6 and
the filter coefficients k1, ko, k3.

M + |z(0)]e=* (2.136)
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From (R.101)
i = Aof] + €3z (2.137)
Wi(s) £ (sI — Ag) 'es, (2.138)

we get
1

A0 < [lws o< —M 41200 s 2.139
750 < gl (¢a% vmow%m (2.139)
]

A special form of the above L., bounds is more revealing.

Corollary 2 In the case z2(0) = 0,£(0) = n(0) = A(0) =0, and I' = 1,
the £, bounds of Theorem J become

B, (
< ANl
el < 5=

: W@mmm(
OO<—
Jill < =5 e

1 -
mwm+;#wm0 (2.140)

1 -
mww+7¢ww)mmn (2.141)

The assumption z(0) = 0,(0) = n(0) = A(0) = 0 is satisfied in
the particular case where z(0) = 1(0) = A(0) = 0 and the trajectory
initialization is performed. In this case the system is driven only by
the reference trajectory. The form in bounds in Corollary Y clarifies
the dependence of the L, performance on the parameter uncertainty
160(0)| and the design parameters ¢, dy, and 7. Any increase on those
parameters results in an improvement of the £, performance. It is of
interest to observe that dy, present in the L., bounds (R.140)-(R.141),

is absent from the £, bounds (B.119)-(R.120).
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2.3 Recent developments

An increasing interest in the backstepping based designs has been wit-
nessed during the last few years, especially the adaptive version pre-
sented in Sections 2.1-2.2. In the following sections, we present the
latest results with respect to the adaptive backstepping tuning func-
tions design for linear systems. The research on this field can be orga-
nized in three categories: (1) stability and asymptotic performance (2)
robustness and (3) transient performance.

For the sake of obtaining a global vision of the state-of-the-art
in this field, we have depicted in Figure P.J a simple scheme with the
different authors interested in adaptive backstepping for linear systems.
We have also included in Figure P.J the papers as they are referenced in
this work. The main topics of research covered in adaptive backstepping
for linear systems can be found in Figure B.3

0
/

. k Kokotovic ‘ —
_Kanellako oulos ] i -lmal
P L) . [CHIKO03]

| )
[KKKO4] LEKK95] ‘

[IK98a] [IK98b]

[o1G01]
-zu g [ZIC96]
Zwsoo M

[Wzs99) IRGY7
T mes) RO (o]
m m 1 ' [Rabeh | (2100}
[WS96] [GR199] (1S9 [ZI98]
Sun

Lin Tao Wu Yu Nikiforov Voronov Miyasato
LT Y VO iy

Figure 2.2. Different authors interested in adaptive backstepping for linear
systems. FEach line corresponds to a published paper.
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STABILITY AND ASYMPTOTIC PERFORMANCE

Paper modifications
(GRI99] plant parameters unknown o-modification in the
and time varying parameter update law
[RIG99] digital implementation d-operator
of continuous control o-modification

unknown high-frequency gain

partially unknown rel. degree Nussbaum Gain

[Miy00b]

Nussbaum Gain

[ZWS00] unknown high-frequency gain augmented error

[LT96] MIMO plant
[WY98] MIMO plant
[CHIKO03] MIMO plant

Table 2.2. The asymptotic performance of the adaptive backstepping tun-
ing functions control design in the last few years.

2.3.1 Stability and asymptotic performance

The parameter variation has been treated in [[GRI9Y by using a o-modi-
fication in the parameter update law. In this case, the slower the plant
variation, the larger the region of attraction and the best the asymp-
totic performance. The digital implementation of the continuous back-
stepping adaptive counterpart has been considered in [RIG9Y], given a
discrete-time representation in the J-operator and a o-modification in
the parameter update law. The knowledge of the high-frequency gain is
supposed in all the previous works. [Miy0OH, ZWS00| present schemes
that do not assume the knowledge of the high-frequency gain. In both
works a Nussbaum gain is introduced in the backstepping algorithm.
In [Miy00H| the relative degree is partially unknown and in [ZWS00]
an augmented error is used in the design.

Multivariable versions of the tuning functions design were proposed
in [LT9q, WY9§, [CHIK0J]. A nonlinear backstepping design for adap-
tive control of linear plants with multiple inputs and multiple outputs
is developed in a similar way that the original backstepping in [[LT96q],
and in a different approach in [WY9§. In both cases, global stability
of the closed-loop system is guaranteed and the tracking error tends
to zero. On the contrary, develops a multivariable analog of
the Lyapunov-based model-reference design of minimum phase linear
systems with relative degree one.
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/o

Kancllakopogiog ‘ “ Kokotovic | ‘MIMO
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1 M S UN

Figure 2.3. Main topics covered in adaptive backstepping for linear systems.

The recent developments with respect to the stability and asymp-
totic performance of the adaptive backstepping tuning functions control
design are summarized in Table R.2.

2.3.2 Robustness

Since the publication of adaptive tuning functions design applied to
linear systems [KKK94], research on this field has focused mainly on
robustness with respect to unmodelled dynamics and/or external dis-
turbances [WS96, 19§, [K984, [K98H, WZS99, PIGO1], NVOTIH].

In [WS9q] a design approach of robust adaptive control using back-
stepping and parameter projection is presented. In this design, no a
priori knowledge on the unmodelled dynamics is required. The class of
systems considered

y(t) = {ﬁg; [+ g (s)] + uQAz(S)} wrdt),  (2142)
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where the size of the uncertainties, p; and o, are nonnegative con-
stants, A;(s) and Ay(s) are the multiplicative and additive stable and
proper unstructured uncertainties and d(¢) denotes an output distur-
bance. Modifying the adaptive law by using the projection operation,
global stability of the system is guaranteed and the output tracking
error is bounded by a function of the sizes of the unmodelled dynamics
and external disturbances.

ROBUSTNESS
Paper kind of uncertainties modifications
[IK98a] y(t) = ié ;(1 + pA(s))u(t) + d(t) parameter projection
B(s) o-modification
[IK98b] y(t) = A(s) (L+ pA(s)u(t) +d(?) in tuning functions
_ B(s)
[NVO1Db] y(t) = A [u(t) + f]
[OIGO01] y(t) = f ES; = IA( )u(t) + d(t) o-modification
s nA(s
[WS96] | y(t) = { S [1 + 1 Ai(s)] + ;@Ag(s)} u+d(t) | parameter projection
(WZS899] | w(t) = (3 (1 +mAi(s)ult) + n2Ba(s)y(1)
dynamic norm. signal
_ Bs)(y
(2198 y(t) = Zeoy (14 A®)) (u(t) + du(t) + dy(t) o-modification

Table 2.3. The robustness of the adaptive backstepping tuning functions
control design in the last few years.

[Z199] considers not only multiplicative uncertainties but also input
and output disturbances in the SISO model plant

V) = 531+ A ) + dult) + 0 (2,143

where A(s) is stable and proper.

In order to improve the robustness of the original schemes with
respect to this model plant, a (p—1)-differentiable dynamic normalizing
signal and a (p — 1)-differentiable switching o-modification have been
introduced. It is also important that choosing the design parameters in

an appropriate way, performance can be improved without sacrificing
robustness and stability bounds.
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In [[K984, [K98H] a multiplicative uncertainty and external dis-
turbances has been introduced in the linear single-input single-output

plant:
B(s)
y(t) = m(l + pA(s))u(t) 4+ d(t), (2.144)

where A(s) is stable but possibly improper. In [[K98H] a switching o-
modification is added to the tuning functions and as a result, achievable
robustness results are not global in the improper case but regional, with
a region of attraction inversely proportional to the size of the unmod-
elled dynamics. The solution presented in [[K984] can be summarized
as tuning functions with damping. In this new design is proposed a
controller modification which enables the use of projection. In fact,
the projection operator is used in the choice of the update law for the
parameter estimates.

[OIGOT] considers the problem of controlling linear systems in pres-
ence of external disturbances and unmodelled dynamics represented by
the inverse multiplicative form

B(s) 1
y(t) =

A(s) 1+ pA(s)
where A(s) is asymptotically stable. In order to make the involved
parameter parameter adaptive law robust, a switching o-modification
is introduced and so the closed-loop is locally stable with a region of
attraction inversely proportional to the size of the unmodelled dynam-
ics.

Even without any modification on the backstepping design, [WZS9Y
shows that the stabilization of the system can be achieved with respect
to a class of unmodelled dynamics described by

B(s
) = SO A )ult) + ada(sly(e). (2140

u(t) + d(t), (2.145)

where both A(s) and Ay(s) are stable and strictly proper.
In the presence of inaccessible constant input disturbances

V1) = o ) + ] (2147

it is shown in [NVOID] that the standard backstepping design results
in an adaptive controller with integral action, i.e., with a special para-
metrization the design procedure leads to a controller completely elim-
inating these constant input disturbances.
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The recent developments with respect to the robustness of the
adaptive backstepping tuning functions control design are summarized
in Table 3.

2.3.3 Transient performance

A modified tuning functions scheme that borrows elements from the
certainty-equivalence controllers have been proposed in [ZI0(]. This
new controller can achieve the same level of performance as promised
by the tuning functions design, though the way they achieve such per-
formance is different.

The transient performance of unknown linear systems in the pres-
ence of strictly proper unmodelled dynamics and bounded disturbances,

y(t) = ig;

(1+ pA(s))u(t) + d(t), (2.148)

has been considered in [[RG97], where the unmodelled effects have been
coped with using a o-modification in the parameter update law. A L
bound on the tracking error is given and it can be made arbitrarily
small by sufficiently increasing the design gains.

Besides the robustness of the adaptive controller designed using the
backstepping technique proposed in [KKK9Y], the system transient per-
formance in the presence of multiplicative unmodelled dynamics (B.146)
is evaluated in [WZS99 by both L., and L5 bounds of the states. It is
also proved that these bounds can be made arbitrary small by properly
choosing the control design parameters.

The recent developments with respect to the transient performance

of the adaptive backstepping tuning functions control design are sum-
marized in Table £.3J.

2.4 Conclusions

We have presented a class of adaptive design for linear systems. The
tuning functions design removes several other obstacles from adaptive
linear control. Since the design is based on a single Lyapunov function
incorporating both the state of the error system and the update law,
the proof of global uniform stability is direct and simple. Moreover, all
the error states except for the parameter error converge to zero. This
is the strongest convergence without persistency of excitation.
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TRANSIENT PERFORMANCE

Paper plant modifications
_ B(s) o-modification in the
[IRGI7] | y(t) = (1 + pA(s))u(t) +d(t) parameter update law
[WZS99] | y(t) = T (1 + m A1 (s))u(t) + p2da(s)y(t) no modification
_ B(s) normalized
[2100] y(t) = A(S)u(t) adaptive law

Table 2.4. The transient performance of the adaptive backstepping tuning

functions control design in the last few years.

The main advantage of the tuning functions design over traditional
certainty equivalence adaptive designs is in transient performance. The
nonlinear control law which incorporates the parameter update law
keeps the parameter estimation transients from causing bad tracking
transients. The performance bounds obtained for the tuning functions
scheme are computable and can be used for systematic improvement of

transient performance.

We have also presented the latest developments with respect to

the adaptive backstepping tuning functions design for linear systems.
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Chapter 3

Unknown linear systems
in the presence of
bounded disturbances

This chapter deals with the problem of controlling unknown
linear systems in the presence of bounded disturbances. Adap-
tive controllers that ensure the closed-loop global (uniform)
stability and asymptotic performances can be designed follow-
ing either the backstepping approach or the certainty-equiva-
lence method. The main shortcoming of the involved con-
trollers is that they do not allow quantification of the closed-
loop transient behaviour. In this chapter, the transient issue
is addressed for backstepping adaptive controllers as we have
described in the previous chapter. A L, bound on the tracking
error is explicitly given as a function of the design parame-
ters. This shows that the error can be made arbitrarily small
by sufficiently increasing the design gains.

3.1 Problem statement

We are interested in controlling plants that can be described by a model
of the form

B(s)
A(s)

where A(s) and B(s) are polynomial operators of the form

y(t) = 2 <ult) +p(?), (3.1)

A(s) = 8"+ ap_18" 4 -+ as + ag, (3.2)
B(s) = bps™ 4+ -+ + bys + bo. (3.3)

51
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The parameters a; and b; are constant but unknown. The following
assumptions complete the plant description:

Assumption 4 The plant is minimum phase, i.e., the polynomial B(s)
is Hurwitz. The plant order (n), relative degree (p = n —m) and sign
of the high frequency gain (sgn(b,,)) are known.

Assumption 5 The output disturbance p(t) and its first derivative are
uniformly bounded. p(t) is piecewise continuous.

Assumption 6 Upper bounds My and M, of ||f|| and |o| = |1/by],
respectively, are known, where 6 = (by,...,bo,an_1,--.,a0)T is the
unknown parameter vector.

Note that the above assumptions are vey standard in the literature
devoted to robust adaptive control [[S9q].

Let y,.(t) be any bounded reference signal such that y,(¢) and its
first p derivatives are known and bounded and, in addition, yff’ ) is piece-
wise continuous. For instance, y,.(¢f) may be the output of a reference
model of relative degree p, > p with piecewise continuous input r(¢).

Our objective is to design an adaptive controller such that

(i) all the closed-loop signals should be globally bounded;

(ii) the output tracking error y(t) — y,(t) should be proportional, in
the mean, to the size of the unmodelled effects. Furthermore, the
transient behaviour of y(¢) — y,.(t) should be explicitly quantified;

(iii) in the ideal case, i.e., p(t) = 0, the error should converge to zero.

3.2 Controller design and robustness analysis

3.2.1 Controller design

In this section, we design a backstepping-based adaptive controller for
the system (B.I]). Following the tuning functions backstepping design

in Chapter P [KKK93, Chapter 10], we first represent the plant (B.1])
in the observer canonical form:

= Apx+ (k—a)ry +bu, y=ux,+p,
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where
-k 10 0
—ky 01 -+ 0
Ao=| = oo k=R o k],
—k, 1 00 - 1
—k, 00 -+ 0
a:[an—l aD]Ta b:[o(pfl)xl bm bO}Tv

where the parameters k; are chosen so that the polynomial
K(s) =ky+kn_15+ -+ kis" ' 45"
is Hurwitz. By filtering u and y with two n-dimensional filters
n=Am+eny, A=A+ enu, (3.4)
the state estimate is formed as
&= B(Ao)A — A(Ao)n, (3.5)
where B(X) and A(X) are described by (B-3) and (B-J). Then the

estimation error € = x — I satisfies
e = Ape + (a — k)p. (3.6)

We define the vectors v;, =, &, w and @ as

v;=AN\ j=0,...,m, (3.7)
E=—[AVn,... ), (3.8)
§=—Afm, (3.9)
W= [Um2;.-.,002, 2(2) — yei]t, (3.10)
@ =0,0m-12,--.,02 =@ — yei ] . (3.11)

The control law and the parameter update laws are designed in p steps
(see Figure B.1). To estimate the unknown plant parameters 6 and o,
we propose the following switching o-modification algorithm:

6 =Tr, — Ty, (3.12)
o= —sgn(bm) (G + 1) 21, (3.13)

where 0y and o, are updated as follows:
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0 1] < M,

09 =19 O, 16]] > 2M, (3.14)
smooth connecting function, otherwise
0, o] < M,

Tp =1 Osp, lo| > 2M, (3.15)

smooth connecting function, otherwise

for some positive constants oy and o, and adaptation gains v > 0
and I' = I'" > 0. The switching o-modification has proved to be useful
to deal with the plant unmodelled dynamics and disturbances [[K98H].
Note that in the standard tuning functions design derived in the ideal
case (i.e. in the absence of external disturbances) [KIKK99, Section
10.2.1], the terms Y;, ¢ = 1,2,...,p are zero. In a nonideal situation,
we introduce the following modifications:

T1 - _gosgn(bm>(yr + 0_51)2217 (316)
oy A - 0oy .

Y, = -0yl — [y~ 4 22 b =23 ... 3.17
20 of ( + 9 )7099, i=2,3,...,p (3.17)

for some positive design constant gyg. The modification (B.16) takes ac-
count of the perturbation terms introduced by the parameter estimates
by, and 0. If b, is known, then we can take go = 0. The term (B.17)
is introduced so that the control law is compatible with the switching
o—modification present in the parameter update laws (B.19)-(B.13).

3.2.2 Robustness analysis

In this section we present the robustness and asymptotic performance
result obtained using the design of the previous section. We also give
the notations and definitions that will be used in the next section.

Theorem 4 Consider the plant (B.1]) subject to Assumptions fHg and
the adaptive controller composed of the control law of Figure BJ] and
the parameter update law B.IZH3.13. There exist positive constants ¢
and g independent of p and p such that we have

(i) all the signals of the closed loop are globally bounded,
(i) the tracking error is proportional to the size of perturbations:
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Error variables

H=Y =Y zi=Umi— 0y~ =20

Stabilizing functions
ap = pa; + T

] = —(61 + d1)2’1 — fg — (I)Te

. da\ 2 B
ag = —bpz — |2+ do (m) 29 + B2 + o 'y + Yo
dy o0
8ai1>2 0oy
;= —zi—1— |¢ +d; zi + D0 + —I'r;
! ( dy & a0
i—1
—Zaajflfagl_lzj—i—l‘i, i=3,....p
= 00 Y
80&1‘7 ~ 80@-, = 8041-, ;
Bi = Tyl(& +whf) + S (Aon + eny) + Z 5 (j_i) Y9 + kv
J=1 Yr
m4i—1 aai .
+ > o (—kjA1 + Ajr1)
j=1

. oo . _ .
- <y< Dy ag) A ) s+ G1)71s = 2esp

T1 = —gosgn(ba)(yr + 1)°21
_3041'71

Tim = Togf — (yﬁ“) + acg'él) NoLH, i=2,....p

Tuning functions
7= (w—0(yr +ai)e1)z1, Ti=Ti—1—
Parameter update laws

6 = I'r, — Togd, 6= —vsg(bm) (Ur + @1) 21 — Y0 ,0
Adaptive control law

U=y — V23 + 0Yr

Figure 3.1. Tuning functions design
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/ T ) — () < g+ / () dr, VLT 20
(3.18)

Proof. The stability analysis is carried out by using a similarity trans-
formation which yields

X1 = T2 — Ap-1T1,

i, =C T — ATy + by, (3.19)

¢ = ApC + by,
y=a +p7
where 7 = (z1,...,2,,(")T, ¢, € R", and b, € R™. The deviation

(~ = ( — (, is governed by

C= Al + by, C(0) =0 (3.20)
and x1, is defined as
T = T1 — Yy (3.21)
For the 7n variables we have
1= Aol + enz1, 7(0) = 0.
A Lyapunov function V' for the closed loop is
V:Z (—z + — TP05> + ’bm|(g—é)2+%(9—é)TF_1(9—é)

Jj=1 2

%—TPn+— Létpe, (3.22)

V can be given the form V = xT P,y with

X: (ZT7€T?77T76T7§T7§)T' (3'23)
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Then, it can be shown that [[K98H]

) (3.21)
V< =S 00) — ) + i (3.25)

where

At (Po) At (Ps)

. C1 i
a =min< —,2cy, ..., 2¢c,, — ,
4 4

4 )
)‘r;iln(Pl)’ /\1;111n(P2) : /70-597 059_ 7 (326)
8 8 " 1bm| Amm(I )
B =c(p® +p* + 0o + 0s0), (3.27)
Bo =c(p* + p?) (3.28)

for some positive constant ¢ independent of p and p. This shows that
V (t) is globally bounded. The asymptotic performance result (B.1§) is
obtained by integrating both parts of (B.23). O

3.3 Transient bounds

In this section, we give explicit L., bounds on the tracking error z;.
This results will be summarized in Theorem .

Theorem 5 Consider the plant (B-]) subject to Assumptions g and
the adaptive controller composed of the control law of Figure B.1 and
the parameter update law B.IZB.13. There exist positive constants c
and ¢ independent of p and p such that the £, norm of the tracking
error can be made arbitrarily small by increasing sufficiently dy and gy :

1
2\/ COdQ

O (0 + [0]) + [bm| 0

2\/ 6090|bm| 7

ly(t) = 9 (lloe < (@8 + 2200 + [Plloc + a1l Pl )

+

(3.29)
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where (w7') s, €200, 0o, 0o € R such that

w000 < (W 0o
[e2]] < €20o
10]ls0 < 0o
[0lloe < co-

Remark 2 It is worth noticing that the above L., bounds depends
only on 6(0),2(0), [pllsc, [Pllec and o,s.

Proof. See [[RGI7] for details. 0

3.4 Conclusions

In this chapter we have generalized the results of Chapter 2 to the
non-ideal case, that is when the controlled plant is subject to bounded
output disturbances. The above effects have been coped with using
a o-modification in the parameter adaptive law, and changing accord-
ingly the adaptive control law. An explicit L., bound on the state error
is derived and shown to be a decreasing function of the design para-
meters. More precisely, the state error can be made arbitrarily small
by increasing sufficiently the involved design parameters. The control
presented here is used in the next chapter to develop control schemes
for a class of structural control problem.



" Chapter 4

Adaptive backstepping
control of hysteretic
base-isolated structures

A hybrid seismic control system for building structures is con-
sidered, which combines a class of passive nonlinear base iso-
lator with an active control system. The objective of the active
control component applied to the structural base is to keep the
base displacement relative to the ground and the interstory
drift within a reasonable range according to the design of the
base isolator. We use the techniques developed in Chapter 3
for the control design. The base isolator device exhibits a hys-
teretic nonlinear behavior which is described analytically by
the Bouc-Wen model. The control problem is formulated rep-
resenting the system dynamaics in two alternative coordinates:
absolute (with respect to an inertial frame) and relative to the
ground. A comparison between both strategies is presented by
means of numerical simulations.

Introduction

With the aim of keeping the seismic response of structures within safety,
service and comfort limits, the idea of cooperatively combining both
passive base isolators and feedback controllers (applying forces to the
base) has been increasingly considered in the last years. Some works
have proposed active feedback systems, like for instance [BRRM9Y],
[SK9Y and [KLS87]. More recently, semiactive controllers have been
proposed in the same setting trying to get advantages of their easier

implementation (see for instance [LRVISOI] and [RJS0Z)).
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The basic concept of base isolation is to ideally make the structure
behave like a rigid body through a certain degree of decoupling from the
ground motion. In this way it is possible to absorb part of the energy
induced by the earthquake, by reducing simultaneously the relative
displacements of the structure with respect to the base (damage source)
and the absolute accelerations (endangering human comfort and safety
of installations). The feasibility of adding a feedback control is based
on the premise that only a control action is to be applied at the base
with force magnitudes which are not excessive due to the high flexibility
of the isolators. The benefits of the inclusion of the control lie mainly
in that the “cooperation” of such a force can avoid large displacements
of the base isolator, which could endanger the scheme integrity; and it
may also introduce an additional resistant scheme not dependable of
the interstory drifts, which are already small due to the effect of the
isolator. This may be useful, particularly for structures having sensitive
installations, like hospitals, public services, computer facilities, etc.

From a theoretical point of view, the development of a control
law to calculate the active forces involves difficulties associated with
the nonlinear behavior of the base isolators and with the uncertainties
in the model describing the structure-base-isolator system and in the
seismic excitation. An important issue in considering the model for the
control formulation is the coordinates adopted to represent the motion.
In the vein of the most common practice in the earthquake engineering
design of base isolation systems, some authors have used models based
on coordinates relative to the ground for the control design (see for
example [[SK9Y] and [RJS03]). Other authors have approached the
problem by using absolute coordinates with respect to an inertial frame
of reference, like in [BRRMO9Y], [KLS87| and [LRVISOT)].

In this work, we design a control system for a simple prototype
base isolated uncertain structure by using models in both coordinates
trying to give some insight on their advantages and drawbacks.

4.2 Structural models

Consider a base isolated structure with an active controller as illus-
trated in Figure .. The passive component consists of a hysteretic
base isolator.
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x,(t

2 > Structure 1D
(0}
£ N )
:8 Active controller Base yl( )
<
pS
(0}
=

Isolation
system

Foundation

d(t)

Figure 4.1. Building structure with hybrid control system.

The whole system can be described by a model composed of two
coupled systems: Y (the structure) and 3, (the base). It can be rep-
resented in two different coordinate systems: absolute (with respect to
an inertial frame) and relative to the ground.

The relative equations Xj, 7 of motion are

S madh 4 (61 + G)in + (k1 + ko) =
= ];ZQyQ + Egyg — q)(yl, t) — mld +u (41)
Y0 mals + CoYa + koys — Gt — koyr = —mad (4.2)

The absolute equations of motion ¥f, X% are the following

NS¢ myiy + (6 + )iy + (ky + ko)ay =
= E’QZ‘Q + Egi‘g — (D(Jfl - d, t) + éld -+ Eld +u (43)
EZ . mga'f'g + 62.@2 + ffgl‘g — ngij‘l — ]2‘2.271 =0 (44)
where m; and my are the mass of the base and the structure, respec-
tively; ¢; and ¢, are the damping coefficients; k1 and k5 are the stiffness
coefficients; the absolute displacement of the base is 1 and the absolute
displacement of the structure is x5, which can be measured by using

some recently developed technique [[SGS94];

the dynamic earthquake excitation is produced by a horizontal seismic
ground motion characterized by an inertial displacement d(t), velocity

d(t) and acceleration d(t); the base displacement relative to the ground
is y; = x1 — d while y5 = x5 — d is the relative structure displacement;
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® is the restoring force characterizing the hysteretic behavior of the
isolator material, which is usually made with inelastic rubber bearings;
and wu is the control force supplied by an appropriate actuator.

The hysteretic force @ is described by the Bouc-Wen model [Wen7q]
in the following form:

O(z) = akor + (1 — a)Dkyz (4.5)
=D [Ai — flE|[2|" 2 — yi]2]"] (4.6)

where ®(x,t) can be considered as the superposition of an elastic com-
ponent akox(t) and a hysteretic component (1 — a)) Dkoz(t), in which
D > 0 is the yield constant displacement, o € [0, 1] is the post to pre-
yielding stiffness ratio. The hysteretic part involves a dimensionless
auxiliary variable z which is the solution of the nonlinear first order
differential equation ([£@). In this equation, A, 3 and 7 are dimension-
less parameters which control the shape and the size of the hysteresis
loop, while n is an scalar that governs the smoothness of the transition
from elastic to plastic response.

4.3 Control strategies

Looking at (), it is clear that a feedback control law can be designed
to supply a force u able to control the relative displacement of the
base against the earthquake excitation, which is the ground accelera-
tion. However, this excitation enters also in ([.9), which has no control.
This means that the relative motion of the structure is subjected to the
seismic acceleration but no feedback control is directly exerted to miti-
gate the effect of this excitation. In fact, the use of relative coordinates
arises from the desire to keep the motion (displacement and velocity)
of each floor relative to the ground small (and hence, of a given floor
relative to those below and above it). Roughly speaking, feedback con-
trol is employed to achieve that end attempting “to move the whole
structure” so as to follow the motion of the ground [KLS87)].

Looking at ([.J), it is clear that a feedback control law can be
designed to supply a force u able to control the absolute displacement
of the base against the earthquake excitation, which is now a linear
combination of the ground displacement and velocity.
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u 1 + N c,s+k,
ms® +(c, +¢,)s + (k, + k, +ok,)

\

2 V2
mys” +c,s +k,

+,Y

c,s+k, P
mys® + (¢, +¢,)s + (k, +k, +ak,)

Figure 4.2. Block diagram representation.

We may observe that this excitation does not enter in ({.4). Then, the
control of the base motion leads to the control of the structure’s motion.
Also, it is expectable that the effort to control the system ([L.3)-(Z.4)
be smoother than in the case of controlling system ({.1)-({.3) since
the ground displacement and velocity are smoother than the ground
acceleration. The origin of the use of absolute coordinates can be found
in [KLS87] based on the idea of keeping the whole structure stationary
relative to its initial configuration (i.e., relative to an inertial frame of
reference) and, roughly speaking, “letting the ground move under it”.

In order to establish a comparison between both alternatives we
consider two control strategies:

(a) when using the relative coordinates: measure y; and regulate y;
(b) when using the absolute coordinates: measure x; and regulate x;.

In Section [LJ, a comparison between the strategies is presented
by means of numerical simulations.

4.4 Controller design

In order to use the techniques developed in Chapter B for the con-
trol design, we need to describe the models (f.1))-({.2) and (E.3)-(E.4),
respectively, along with equations ([E5)-([.6), in the transfer function
form.

4.4.1 Model description

Applying the Laplace transform to the equations ([1))-(f.3) we obtain
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[m1s® + (61 + G2)s + (k1 + ko + ako)| y1(s) — [Gas + ko] ya(s) =
= u(s) + (1 — a)Dkoz(s) — mys°d(s) (4.7)

[mas® + s + ko] ya(s) — [Cos + ko] y1(s) = —mas®d(s) (4.8)

We consider d(t) and z(t) as external disturbances. In the partic-

ular case d(t) = 0 and z(t) = 0, we can write the equations ([7)-([.g)
in a block diagram representation depicted in Figure [L.2.
In this case it can be shown, using the Nyquist stability criterion, that
the system represented in Figure is always stable, that is, the trans-
fer function between the signals y5 and u is stable. The explicit expres-
sion of this transfer function is

ya(s) = Wu(s) (4.9)

where

m152 + 52m2 + Elmg 3
S
mime
m1k2 + k1m2 + ]{ngg + Oék’()mQ + C1Co 2
S

A(s) =s* +

mime
klég + 51]{?2 + akoég Ozk?()kfg + klkg
+ s+
mimso mimse

(4.10)

The stability of the transfer function in equation (f.9) implies the sta-
bility of the denominator A(s), that is, the roots of A(s) have negative
real parts. The stability of this polynomial expression will be used in
the following lines.

In the general case (d(t) # 0, z(t) # 0), after some manipulations
and eliminating the variables y, and xq, the models (E.)-(f.3) and
(E3)-(E-4), respectively, along with equations ([.§)-([L.§), can be written
as
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pr(t)
n(®) = Jotul) + D) + S
=St + (0 (4.11)
21 (t) = ié:’; u(t) + \Zf}(f‘)) d(t) + i?(f; 0
Pa(t)
— S0+ (0 (4.12)

where A(s) coincides with the polynomial expression in equation ([L.10)
and

1 k
Bls)=—s 4 — 2oy 2
my mime mime
BZ(S) _ 84 _ ™M1Co + MaCa 83 _ kaQ + m1k2 82
m1Mme m1Mmso
—(1—a)Dk —&y(1 — ) Dk —ko(1 — a) Dk
B'(s) = (1-a) L &(l—a) 0g 4 2(1 — @) Dko
my mime mymes
Bg(s) :233 X k1m2 + Oé]{?()mQ + C1Co 52 i EQO(]CO + ]{?251 + 52]{718
m mqme mq1meo
1 Ojk‘ok?g + k’lk’g
mqme
—(1—a)Dk —&(1 — a) Dk —ks(1 — ) Dk
B(s) = (1-a) 02 4 &l —a) 0g 4 2(1 — @) Dko
my mimso mims

In models (E11]) and (EI3), we consider both the earthquake mo-
tion d(t) and the hysteretic variable z(¢) as unknown disturbances. This
is why we define the signals p,(t) and p,(t). The direct transfer func-
tion between the control force u and the controlled output is the same
for both models:

B(S) - b252 + b18 + bo <4 13)
A(s) s 4 assd + ays? + ars + ag '
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where the coefficients are

1 Co k’g
b2 - ) bl - ) bO -
ma mims mims
mlég + EQmQ + 61m2
as —
mime
komo + C1Co + akgmy + kyma + miks
a9 =
mime
klEQ + Oékoéz + 51/{2
ayp =
mims
Oékok'Q + k’lkg
an = ———.
myims

In order to use the adaptive backstepping controller developed in
Chapter 4, we need to show that the signals p,(¢) and p,(t) are bounded
disturbances.

On one hand, we assume that the earthquake motion d(t) is boun-
ded. On the other hand, it has been shown, in a previous work [IMR04],
that the hysteretic component z(t) is always bounded under a particular
choice of the parameters A, 3 and ¥ (A >0, 3+%5 > 0,3—-75 > 0 or
A>0,-5<0,>0).

The boundedness of the signals d(t) and z(¢) and the stability of
the polynomial expression A(s) allows us to consider p,(t) and p,(t) as
bounded disturbances.

4.4.2 Adaptive backstepping control

Since we consider that the parameters of the models are uncertain, we
use adaptive control to stabilize the control loop. Denoting anyone of
the parameters m;, ks, &, (i = 1,2), ko and « by p, we assume that p €
[Pmins Pmax), Pmin and ppay being known, i.e. we assume the knowledge
of an interval for each parameter.

To have computable bounds on the transient behavior, we use
the backstepping approach in the presence of bounded disturbances
described in Chapter B

Our objective is to design an adaptive controller such that

(i) all the closed-loop signals should be globally bounded;
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(ii) the output tracking error y;(t) — y,(t) (resp. x1(t) — x,.(t)) should
be proportional, in the mean, to the size of the unmodelled effects.
Furthermore, the transient behaviour of y;(¢) —y,.(t) (resp. x1(t) —
x,(t)) should be explicitly quantified;

(iii) in the ideal case, i.e., p.(t) = 0 (resp. p,(t) = 0), the error should
converge to zero.

In our implementation, the reference signals y,.(t) and z,(t) are
chosen as y,.(t) = z,.(t) = 0.

The control law and the parameter update law are designed in
p = 2 steps. Figure [L.] summarizes these steps and serves as an al-
gorithm for the control implementation. In this table, the quantities
1,2, dy, da, go, 7Y, 0sp, 0sp and I' are positive design parameters and My
is defined as

3

2
1=0

=0

4.4.3 Robustness analysis

In this section we present the robustness and asymptotic performance
result obtained using Theorem f] in Chapter [

If we consider the system (1) (resp. FI3J) and the adaptive
controller composed of the control law and the parameter update law
described in Figure [1.3, then there exists positive constants ¢ and ¢
independent of p, and p, (resp. p, and p,) such that

(1) all the signals of the closed loop are globally bounded

(ii) the magnitude of the output is proportional to the size of pertur-
bations:

t+T t+T
/t y2(T)dr < g+ c/t (pr(7)* + po(7)?) dr (4.14)

/t ri(r)dr < g+ c/t (pa(T)2 +pa(7)2) dr (4.15)
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Error variables
=YY, Z2=U22 — 0 — 1
Stabilizing functions

ap = pag + T
ap = —(Cl +d1)2’1 — & —(I)Té

~ 80&1 2
Qg = 7()22’1 — |co + d2 87
Y
Oy T Oog day
= — 0)+ —(A —.+ k
B By (o +w™0) + o (Aon + eay) + o, Yr + kava1
day Jdoy day
—(—k1 A1+ A ko1 + A ksA1 + A
+8)\1( 1A+ 2)+8>\( 9A1 + A3) + 8)\3( 3A1 + A\g)
. 8 S
- ( % ) vsgn(b2) (Yr + a1)z1
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4.4.4 Transient bounds

In this section we give explicit L., bounds on the magnitude of the
outputs, as a direct application of Theorem ] in Chapter B

Consider the system ([L11) (resp. [19) and the adaptive controller
composed of the control law and the parameter update law described

in Figure [£.3. Then we have:

1
91 () lloo < _\/— m (4.16)
1 (8) ! (4.17)

o Sl t Vel

where f,, g., f, and g, are scalar functions that depends only on the
process parameters a;, b;, the observer parameters, ||p.|s and |[p,|lc
(resp. [|palloo and ||Palleo). co and dy are defined as

2 -1
. 1
G =miye;, do = (Z g)

i=1

4.5 Numerical simulations

In order to investigate the efficiency of the proposed control and to
establish a comparison between the relative and absolute coordinates
strategies, we consider the 1952 Taft and the 1989 Loma Prieta earth-
quakes.

In our simulation, the structure is modeled as a single-degree-of-
freedom system, whose parameters are listed in Table f.]. The hys-
teretic parameters are also described in Table .3, We remark that this
particular choice of the hysteretic parameters satisfies A > 0,34+ > 0
and 3 — % > 0, that is, the hysteretic component z(¢) will be always

bounded [[MR0].
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base structure

mass m1 =6 x 10° kg me =6 x 10° kg
stiffness || k; = 0.1185 x 10% N/m ks =9 x 108 N/m
damping || ¢; = 0.1067 x 107 Ns/m | é = 0.2324 x 107 Ns/m

Table 4.1. Model coefficients of the single-degree-of-freedom system.

a=0.5 A=1
ko =61224.49 N/m | 5 =0.5
D=00245m | 5=05

Table 4.2. Parameters of the hysteresis model.

We note that the responses of the floors in open loop experiments
are practically identical, because, in general, base isolated buildings be-
have as rigid body systems concentrating the maximum displacements
at the isolators. Consequently, single degree of freedom approximations
are useful to simulate their response for the purpose of comparing the
performance of different control strategies.

We use an index () in order to evaluate the response improvement
due to active control with respect to the response where only passive
control is applied. The index is defined as follows. For a fixed norm (in
this chapter both the infinity and the root-mean-square norm are used)
and a fixed system representation (in relative or absolute coordinates),
we compute the ratio between the norms of the controlled and the
uncontrolled response. For example, as can be seen in Table [[.4], in the
uncontrolled case the infinity norm of the relative base displacement is

o = |y1lloe = 1.9845 - 1072 m

and the norm in the controlled case with design parameters ¢y = dy =
go = 9o 18

e = |[y1]loo = 1.0452 - 1072 m.

This way, we define the index p, of response improvement as

foo = €100 = 52.67% (4.18)

u
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Equivalently, the root-mean-square norm of the relative base dis-
placement is

To = ||y1l|rars = 8.0442 - 1073 m

and the norm in the controlled case with design parameters ¢y = dy =
go =D is

re = |\l rms = 3.7167 - 1073 m.

This way, we define the index pgrprs of response improvement as

Hras = :— -100 = 46.20% (4.19)

u

The infinity norm of a signal w is defined as

W|loo = max |w(f)|.
Jull = max fw(t)
Thus, the infinity norm will be useful in considering the maximum
absolute values of the signals we are analyzing. On the other hand, a
measure of a signal that reflects its eventual, average size is its root-
mean-square value (in a finite interval), defined by

1 h
= 2(t).
folesss =5 [ w0

This is a classical notion of the size of a signal, widely used in many ar-
eas of engineering and, in our analysis, this norm can give us a measure
of the reduction of the structure oscillations.

4.5.1 Results

Two sets of numerical experiments have been performed. In the first
one, the system is excited by the 1952 Taft earthquake. Figure {4
shows the ground acceleration, velocity and displacement for this earth-
quake. The second set of experiments corresponds to the excitation of
the 1989 Loma Prieta earthquake, whose ground motion is shown in
Figure [.19. Table [l.3 summarizes the results presented in this section.

For the Taft case, Figure [ displays the time histories of the base
and the structure motions (displacement, velocity and interstory drift)
and the control signal acceleration for the control designed using the
relative coordinates. Figure [I.g gives the same information for the case
with absolute coordinates.
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TAFT EARTHQUAKE | LoMA PRIETA EARTHQUAKE
Figure Content Figure Content

1.4 Taft earthquake 4.1 Taft earthquake
1.5 Time histories in rel. coord. .13 Time histories in rel. coord.
1.6 Time histories in abs. coord. .14 Time histories in abs. coord.
4.7 index pio in rel. coord. 4.15 index pio in rel. coord.
x index fio in abs. coord. .16 index pio, in abs. coord.
1.9 index pprps in rel. coord. .17 index prass in rel. coord.
1. 1( index pgrps in abs. coord. 1. 18 index pprass in abs. coord.
.11 norm of the control .19 norm of the control

Table 4.3. List of figures.

In both cases the following control parameters have been selected:

co=do=go=v=30, I'=n~l, o04=o0,,=40.

In order to check the influence of the control parameters, the same
experiments of the cases of Figures [I.] and f.§ have been performed for
different values of the parameters ¢y, dy and go. For each experiment,
we compute the indices 1o, and ppys defined in equations ([I§) and
(E19). Figures .4 and [£.§ shows the index p, for both relative and
absolute coordinate cases respectively. Figures .9 and shows the
index pgars for both relative and absolute coordinate cases respectively.
Finally, Figure shows the infinity and the root-mean-square norms
of the control accelerations in both the relative and absolute coordinate
cases.

For the Loma Prieta earthquake, Figures show the same
kind of results.

Table .4 gives the peak values (|| - ||o) of the base and structure
relative displacements and the interstory drift for the cases in Figure
E7. Table L. gives the peak values of the base and structure absolute
displacements and the interstory drift for the cases in Figure [I.§. Tables
f.g and [L.7 gives the same kind of results as in Tables .4 and [L.5, but

with respect to the root-mean-square norm.
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4.5.2 Discussion of the results

Looking at Figure [[.J, we may observe that the controlled relative
displacement and velocity, both for the base and the structure, are sig-
nificantly reduced compared to the uncontrolled case. The controlled
interstory drift is increased but it remains within acceptable small val-
ues. Figure .6 shows that the controlled absolute displacements and
velocities are also significantly reduced. In this case the interstory drift
is reduced in contrast with the interstory behavior of the relative case
in Figure [L.J. By comparing the control action in Figures [£.5 and [L.6,
this action is clearly smaller and smoother in the case of using absolute
coordinates.

By analyzing the plots of the indices i in Figures [T, we get
a more detailed insight on the performance of the control. To help to
this analysis, let us consider the Laplace transform of the dynamical
equations 7 and ¢ (see equations ([.2) and ([L.4)):

Cos + ko Mos?

- —T
mes? + Cos + ko

_ _ _d 4.20
ya(s) Mas® + Cas + ky vils) + Mas? + Ca + ko (s) (420)
CoS + ];32
= _ 421
x2(8> TTL252 + 528 + k’g e (S) ( )
and using norms we have:
CaS + ks mes>
Al = —(t _d(t 4.22
] = |24 |
CoS + ]%2
a0l | n (o) (123

Looking at Figures [L.4E10, we observe that, by increasing the
control design parameters, the indices p of response of the system (dis-
placements and velocities of the structure and the base) are decreasing
in both relative and absolute coordinates. By comparing Figures [L.1HE§
(resp. Figures [L.9H£.10), we note that the interstory drift increases with
the control action in the case of relative coordinates, while it decreases
in the case of absolute coordinates.
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We recall that the control objective is the regulation of the base
displacement, y; in the relative case and x; in the absolute case. The
structure relative displacement s and absolute displacement x5 are not
directly controlled. According to this, it is normal that in Figures [L.7-
[.I{ the indices p are lower for x; than for x5 and also lower for y; than
for ys.

As can be seen in equations ([:29)-([:23), any improvement in the
absolute base displacement z; leads to a direct improvement of the
absolute structure displacement x5. Nevertheless, the improvement in
the relative base displacement y; influences y, but it is also affected
by the presence of the perturbation earthquake term d which is not
zero during the ground motion. When the design parameters are aug-
mented in order to improve these indices (see equations ([.14)-(E.17)),
the improvements of the base and the structure in the relative case are
sensibly uncoupled whereas in the absolute case both floors move as a
single unit. This is also more evident in the index u representations of
the relative velocities. Roughly speaking, in equation ([£.29) we may see
that, when y; () goes to zero, the structure displacement y»(t) tends to
be in open loop under the effect of the earthquake d(t).

It is also remarkable in Figures [HL.IQ that improvements in
the absolute case are bigger than those of the relative case. The ab-
solute coordinates based scheme makes use of advantages introduced
by base isolation by seeking to keep the building stationary relative to
its undisturbed configuration, rather than attempting to move it with
the ground to keep relative motion small.

Figure [L.T]] shows the infinity and the root-mean-square norm of
the control signal in the absolute and the relative cases. Both the
infinity and root-mean-square norm in the absolute case are practically
constant when the design parameters are augmented whereas the norm
in the relative case increases almost linearly with those parameters.
This means that, in the absolute case, the responses can be reduced
without increasing the peak and the root-mean-square values of the
control force. However, in relative coordinates, reducing the response
is achieved with the cost of increasing the control effort.

The same results have been obtained with the Loma Prieta earth-
quake. We have then showed that our adaptive backstepping control
has dealt with these two earthquakes with different characteristics. This
way, we consider that this strategy can be applied to a wide class of
earthquakes.
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! I lwlle [ Mwellse T llyz—wllso |

uncontrolled 1.9845-1072 | 1.9987-10=2 | 1.4490 - 10~ %
co=dyo=go=5 | 1.0452-10"2 | 1.0767 - 102 | 3.3969 - 10~ *
co=dy=go=10 || 6.7747-1073 | 6.8965- 103 | 4.6492 - 10~ *
co=dyp=go=15 | 5.0135-10=3 | 5.0869 - 103 | 5.6237 - 10~
co=do=go=20 || 4.0826-1073 | 4.2223-103 | 6.2589 - 10~ *
co=dy=go=25 || 3.4416- 1073 | 3.6495-10 3 | 7.1248 - 10 *
co=dy=go=230 || 2.9699-1073 | 3.2397-103 | 7.8056 - 10~ *

Table 4.4. Peak values of the base and structure relative displacements
and the interstory drift for the cases in Figure m

’ [ leillee [ dzelle | llzz — 21l |

uncontrolled 5.9997-1072 [ 6.0083 - 102 [ 1.4467-10 1
co=dy=go=> | 7.1816-1073 | 7.2513-10"° | 9.4010- 10—
co=dyp=go=10 [ 3.9191-1073 | 3.9812- 1073 | 6.9284 - 10~
co=do=g¢go=15 | 2.6517-1073 | 2.6885-103 | 5.6743 - 10>
co=dyp=go=20 [ 1.9928 - 103 | 2.0169 - 103 | 4.8190 - 10~
co=dy=go=251 1.5920- 1073 | 1.6107 - 103 | 4.1966 - 10~°
co=dy=go=230 || 1.3244-1073 | 1.3397-10~° | 3.6834 - 10"

Table 4.5. Peak values of the base and structure absolute displacements
and the interstory drift for the cases in Figure @

’ I lwillems | lwelless | lly2 —willrms |

uncontrolled 8.0442-107% [ 8.0979 - 1072 [ 5.6761-10~°
co=do=¢go=>5 || 3.7167-1072 | 3.8174-1073 | 1.2670-10~*
co=dy=go=10 || 2.3630-1073 | 2.4540-103 | 1.3924-10*
co=dy=go=15 || 1.7106 - 1073 | 1.7972-10=3 | 1.5492-10*
co=dy=go=20 [ 1.3342- 103 | 1.4195-10~3 | 1.7007-10~*
co=dy=go=251 1.0909-10~3 | 1.1770- 1073 | 1.8394-10*%
co=dy=go=230 | 9.2174-10~% | 1.0102-10~3 | 1.9653 - 10~ *

Table 4.6. Root-mean-square norms of the base and structure relative
displacements and the interstory drift for the cases in Figure @
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Figure 4.4. 1952 Taft earthquake, ground acceleration (up), velocity (mid-
dle) and displacement (down).
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Taft earthquake. Model based in relative coordinates.

From left to right and top to bottom: control signal acceleration, u(t)/my (m/s*);
closed loop interstory drift (black) and open loop interstory drift (red) (m); closed
loop base displacement (solid) and open loop base displacement (dashed) (m); closed
loop structure displacement (solid) and open loop structure displacement (dashed)
(m); closed loop base velocity (solid) and open loop base velocity (dashed) (m); closed
loop structure velocity (solid) and open loop structure velocity (dashed) (m).
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Figure 4.6. 1952 Tuft earthquake. Model based in absolute coordinates.
From left to right and top to bottom: control signal acceleration, u(t)/my (m/s®);
closed loop interstory drift (black) and open loop interstory drift (red) (m); closed
loop base displacement (solid) and open loop base displacement (dashed) (m); closed
loop structure displacement (solid) and open loop structure displacement (dashed)
(m); closed loop base velocity (solid) and open loop base velocity (dashed) (m); closed
loop structure velocity (solid) and open loop structure velocity (dashed) (m).
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Figure 4.7. Taft earthquake. Index po for some design parameters for
the case of relative coordinates.
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Figure 4.8. Taft earthquake. Inder po for some design parameters for
the case of absolute coordinates.
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Figure 4.9. Taft earthquake. Index pppys for some design parameters for
the case of relative coordinates.
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Figure 4.10. Taft earthquake. Index pppas for some design parameters
for the case of absolute coordinates.
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Figure 4.11. Taft earthquake. Infinity norm (up) and root-mean-square
norm (down) of the control signal acceleration in both the relative and the absolute
coordinates cases.
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! [ l=illems | lwellems | o2 — #1]lrus |

uncontrolled 2.5625-102 [ 2.5651-10~2 [ 5.6761-107°
co=do=go=5 | 2.0534-10"% | 2.0755-10~3 | 2.9725-107°
co=dy=go=10 | 1.1099 - 103 | 1.1241-1073 | 2.0244-107°
co=dy=go=15 | 7.4547-10~% | 7.5564 - 10~ | 1.5422-10~°
co=do=g¢go=20 || 5.5832-10~* | 5.6620-10~* | 1.2545-10—°
co=dy=go=25 || 4.4552-10~% | 4.5193-10~* | 1.0629-10~°
co=dy=go=230 || 3.7025-10~% | 3.7564-10~* | 9.2508-10~°

Table 4.7. Root-mean-square norms of the base and structure absolute
displacements and the interstory drift for the cases in Figure ,

Relative coordinates Absolute coordinates

[lu/ma || oo llu/millras [lu/ma || oo llu/millras
co=do=¢go=>5 | 7.7510- 10T | 2.8360- 10T || 9.8850- 10T | 4.7200- 10 *
co=do=go =10 1.0269 3.2800- 10~ || 9.8690 - 10~ | 4.6580 - 10~ "
co=do=go=15 1.2487 3.6760- 10T |[ 9.9210- 10T | 4.6340 - 10~ *
co =do = go =20 1.5035 4.0060- 1071 [ 9.9180-10"T | 4.6220- 10T
co=do = go =25 1.6938 4.2870-10"1 [[ 9.9040-107T | 4.6150- 1071
co=do = go =30 1.8487 4.5250-10"T [[ 9.8960- 10" | 4.6100- 107 T

Table 4.8. Control effort.

4.6 Conclusions

From a structural engineering point of view, the objective of an active
control component, as part of a hybrid seismic control system for build-
ing structures, is to keep the base displacement relative to the ground
and the relative displacement between the structure and the base (in-
terstory drift) within a reasonable range according to the design of the
base isolator. In this work, we have proposed a backstepping adaptive
control formulated using two alternative coordinates: relative to the
ground and relative to an inertial frame (absolute). In order to estab-
lish a comparison between both alternatives two control strategies have
been considered: (a) measure y; and regulate y; (in the relative case);
and (b) measure x; and regulate z; (absolute coordinates). In order
to investigate the efficacy of the proposed control and to establish a
comparison between the relative and the absolute coordinates strate-
gies, the 1952 Taft and the 1989 Loma Prieta earthquakes have been
considered. If we consider the following items for our analysis:
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» base displacement relative to the ground
» interstory drift
» control effort and smoothness of the control signal

we may summarize the following from the results discussed in Section
[.5.2
» the base displacement y; in the relative case is clearly reduced with

respect the strict passive control. This has been the objective for
the backstepping control.

» in the absolute coordinates case, the backstepping control objec-
tive has been stated in reducing the absolute base displacement
x1 and this has been achieved. The relative base displacement
y1 = x1 —d is augmented but it is still within an acceptable range.

» the interstory drift zo — x; in the absolute case is significantly
reduced whereas in the relative case, y, — y; is augmented with
respect the uncontrolled situation. Anyhow, both interstories are
considered acceptable.

» the control signal in the absolute case is relatively smooth. The
control signal in the relative case contains high-frequencies. The
control effort is larger in the relative coordinates strategy.

From these issues we recommend the use of the absolute coordinates
strategy. Besides, the choice of a backstepping adaptive control has
allowed to consider that the parameters of the models are uncertain
and to have computable bounds on the transient behavior. Finally, the
error can be made arbitrarily small by sufficiently increasing the design
gains. When using the absolute coordinates, it has been shown that
this increase does not lead to an increased of the peak and the root-
mean-square norm of the control forces. This behavior of the control
forces can also be observed in the simulation results in [[RG97).
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Figure 4.13. 1989 Loma Prieta earthquake. Model based in relative coor-
dinates. From left to right and top to bottom: control signal acceleration, u(t)/my
(m/s*); closed loop interstory drift (black) and open loop interstory drift (red)
(m); closed loop base displacement (solid) and open loop base displacement (dashed)
(m); closed loop structure displacement (solid) and open loop structure displacement
(dashed) (m); closed loop base velocity (solid) and open loop base velocity (dashed)
(m); closed loop structure velocity (solid) and open loop structure velocity (dashed)

(m).
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Figure 4.14. 1989 Loma Prieta earthquake. Model based in absolute coor-
dinates. From left to right and top to bottom: control signal acceleration, u(t)/my
(m/s?); closed loop interstory drift (black) and open loop interstory drift (red)
(m); closed loop base displacement (solid) and open loop base displacement (dashed)
(m); closed loop structure displacement (solid) and open loop structure displacement
(dashed) (m); closed loop base velocity (solid) and open loop base velocity (dashed)
(m); closed loop structure velocity (solid) and open loop structure velocity (dashed)

(m).
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Figure 4.15. Loma Prieta earthquake. Index i for some design para-
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Figure 4.16. Loma Prieta earthquake. Index i for some design para-
meters for the case of absolute coordinates.



4.6. Conclusions 91

Relative coordinates

10 ‘ ‘
S
n
s
24
=3
|
X
(]
©
£
3
10 1 1 1 1
5 10 15 20 25 30
Value of co=d0=gO
Relative coordinates
1000 ‘ ‘
900
800
g
2
= 700
=
|
3 600
©
£
=1
500
400
¢

1 1
5 10 15 20 25 30
Value of c0=do=g0

Figure 4.17. Loma Prieta earthquake. Index pugrys for some design pa-
rameters for the case of relative coordinates.
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Figure 4.18. Loma Prieta earthquake. Index pugpys for some design pa-
rameters for the case of absolute coordinates.
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R \§ Chapter 5

Sensitivity analysis of the
~ backstepping adaptive
tuning functions control
design

The backstepping-based adaptive tuning functions design is
a control scheme for uncertain systems that ensures reason-
ably good stability and performance properties of the closed
loop. The complexity of the controller makes inevitable the
use of digital computers to perform the calculation of the con-
trol signal. This chapter addresses the issue of the numerical
sensitivity of the adaptive tuning functions. It is shown that
while the increase of the design parameters may be desirable
to achieve a good transient performance, it harms the control
signal as this increase introduces large high-frequency compo-
nents due to the numerical errors.

5.1 Introduction

The last few years witnessed an increasing interest in the backstepping
based designs for control of uncertain systems, especially their adaptive
version [KKK97. Unlike most certainty-equivalence designs [[S9¢], the
adaptive tuning functions offers the designer explicit bounds on the
transient behavior of the closed loop [KKK9Y, Chapter 10]. Since the
publication of adaptive tuning functions design applied to linear sys-
tems [KKK94], research in this field has focused mainly on robustness
issues with respect to unmodelled dynamics and/or external distur-

bances [[K984, [K98H, [RGI7, NVOTH, OIG0T, F198, W59d, WZ599 .

95
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The digital implementation of the continuous backstepping adaptive
counterpart has been considered in [RIG99|. A modified tuning func-
tions scheme that borrows elements from the certainty-equivalence con-
trollers have been proposed in [[ZI00]. The parameter variation has
been treated in [[GRIOY and schemes that do not assume the knowl-
edge of the high-frequency gain were proposed in [Miy00H, ZWS0(]. A

multivariable version of the tuning functions design was proposed in
[CT94, VY98, CHIKTY).

With respect to numerically reliable algorithms for solving con-
trol problems, we cannot forget that there is a continuing and grow-
ing need in the systems and control community for good algorithms
and robust numerical software for increasingly challenging applications
[Var04]. This way, in order to contribute to the accurate and effi-
cient numerical solution of problems in control systems analysis and
design we must focus on algorithm development, sensitivity and ac-
curacy issues, large-scale computations and high-performance software
[HKMP04, Dool4].

In our case, the complexity of the resulting nonlinear controller
makes inevitable the use of a computer to deliver the control signal.
Due to the representation of real numbers on a finite number of digits,
numerical errors propagate during the process of computing the con-
trol law. A crucial question that arises naturally is: how sensitive is
the control signal to the numerical errors that are generated by the
computational process?

This question was considered for the first time in [PIR04H by
means of numerical simulations. The sensitivity of the control law
with respect to the numerical errors and the influence of the design
parameters are analyzed in this chapter. For simplicity, we consider
a third order linear system with unknown parameters in closed loop
with the standard adaptive tuning functions design [KKK99, Chapter
10]. With reasonable design parameters, it has been observed that the
control signal is corrupted by large high-frequency components.

5.2 Plant and controller design

Consider here a specific system as a prototype. For this system we
summarize the control law to be implemented and analyzed.
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5.2.1 Plant

We consider the linear single-input single-output system

bo
s2 + ass + ay)

) = u(s), (51)

where the coefficients a; = 5, as = 1, by = 1 are unknown.
The control objective is to ensure the output y(¢) to asymptotically
track a given smooth reference signal with the specific form

2
2¢;
where p;(s) = j? + &

+1, & =07, w; =49 (i =1,2) and r(t) is

i 7

the unit step.

5.2.2 Design procedure

We use the standard tuning functions design developed in Chapter B,
which is schematically outlined in the following control algorithm.

Error variables

21=Y —Yr
29 = Aoy — @?)r —Qq (5-3)

23:)‘3_@yr_042
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Stabilizing functions

ap =00
ap = — (Cl + dl)Zl — 52 — (I}Té
2
042——[;021 - 62+d2 (%) ] Z9
y
8041
+ By + —I'
Bo P
8 2
a3 =— 2 — |c3+d3 <8iy2) 23 + (33
Oavy Oay Oy
Iy — —I'—=
T o0 oy
Jda -~ Oa
& _8_;(52 +wT6) + = (Ao + esy)
0 0
+ (9(;1 Up + koA + a;;:(—lﬁ)q + o)

i ._l_a@l X
Yr 90 Y

_Oay Th
=3y (&+w )+

day

on
8042 .. 8052

+ a_yryr + ks + 3_)\1
0&2

.. 5CY2 iR
+ a—AQ(—szl + X3) + (yr + a_@) 0

s

(k1A + A2)

Tuning functions

7 = (w— 0(Y + a1)er)z

1

To = T1 — (W2
dy
8042

T3 = T — —(—W2Zz3

Oy
(Aon + esy) + @yr

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)
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Parameter update laws

0 =T (5.14)
0 = —msen(bo) (9 + a1)z (5.15)
K-filters
n = Aon+ esy (5.16)
).\ = AO)\ “+ esu (517)
Adaptive control law
u=ag + oy (5.18)

We present in Figure p.] simulations results of the closed-loop
system (B.) for two different values of the design parameters. The
propagated errors are not significant for ¢; = d; = 0.5, i = 1, 2, 3 neither
in the tracking error z; = y—uy, or in the control law u. On the contrary,
the control signal is clearly corrupted for ¢; = d; = 2, i = 1,2, 3. We will
give, in the following lines, a more detailed insight into these numerical
issues.

5.3 Sensitivity analysis

As is well known, a mathematical model comprises independent vari-
ables, dependent variables, and relationships (for instance, equations
or differential equations) between these quantities.

With respect to the algorithm described in Section p.9, the numer-
ical methods needed to solve the differential equations of the K-filters
(b-19)-(b.17) and the parameter update laws (p.14)-(b.15) introduce
themselves numerical errors. The effects of such errors must be quan-
tified in order to assess the respective model’s range of validity.
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As considered in [Cac0J], the most common procedure for assessing
the effects of parameter variations on a model is to vary selected input
parameters, rerun the code, and record the corresponding changes in
the results, or responses, calculated by the code. The model parame-
ters responsible for the largest relative changes in a response are then
considered to be the most important for the respective response.
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As can be seen in Section p.9, for any time ¢ and for fixed design
parameters ¢;,d; > 0, ¢ = 1,2,3 and 7 > 0 —these design parameters
are chosen by the designer to achieve a good transient performance—,
the control signal u can be computed as a function of the reference
signal y, and its derivatives, the K-filters n = (11,72,73)T and \ =
(A1, A2, A3)T, the estimated parameters 0 = (él, 0, ég)T and ¢ and the
output signal y. We can then write

u(t) = f e b ey 0" N0, ). (5.19)

The variables n,)\,é,@ and y are explicitly related as can be seen in
(B-14)-(B.17), that is, these variables are not independent and, for in-
stance, any perturbation ¢ in the measure of the output y is immediately
propagated through the filters and the estimated parameters. However,
we are not analyzing the error propagation through the different sig-
nals. We are interested in the sensitivity analysis of the control law
u = [ with respect to small variations in the value of its variables,
although they are clearly dependent.

The influence of the perturbed variables with respect to the control
signal will be different, as we will see in the next subsections.

5.3.1 Elements of the analysis

It has been shown that the control signal u is a function of 15 variables,
see equation (p.19). However, the reference signal y, and its derivatives
are external signals so that they will be assumed to be exactly known.

In order to fully understand the sensitivity of the control law wu,
let us consider a perturbation function

e:fa,b] CR" =R, 0<a<b.
We consider the ideal case when the control problem is solved ide-

ally without numerical errors. We consider then that u(t) is the control
law, n(t) and A(¢) are the K-filters, 6(¢) and 6(t) are the estimated
parameters and y(t) is the output signal.

Consider now any of the variables of the function f, for instance
y. For any time t € [a, b] we define the function 4, as

y(t) = fye (1), -+ 0(t), y(t) + (1)),
For any time ¢, @,(t) can be considered as the perturbed control gen-
erated if only the variable y(t) is perturbed by a quantity defined by

e(t).



102 Chapter 5. Sensitivity analysis of the backstepping control design

Finally, we define the sensitivity function, Dy(t) of u with respect
to y and associated to the perturbed function £(t) as

t) — u,(t
Dyt — 110 =)
m
where m is the maximum absolute value of the control signal u,

Y

m = tem[amb(} lu(t)].
The function €(t) can be considered as a function that, for any
€ [a,b], contains random numerical errors that are generated by the
computational process. This way, Dy(t) is a certain measure of the
relative error with respect to the control signal and can be considered
as a time-dependent function:

Dy:RT - R
t — Dy(t)

5.3.2 First consideration

Let x be any of the 15 variables of the control law v = f. We have
considered its sensitivity function Dz defined as

Dz :RT - R

For each t € [0,4], we have rerun the code (that is, the control algo-
rithm in Section p.2.9) and computed Dx(t). In Figure f.9 they are
depicted the time hlstory representations of the sensitivity functions
Dny, Dny, Dns, D1, D)y, D)s, D91, DQQ, D93, Do and Dy in a semilog-
arithmic scale, with the choice of a constant perturbed function &(t) =
107 and design parameters ¢; =d; =y =2, i = 1,2, 3.

Even for very small values of £(t), the sensitivity of the variable n
is considerable, specially 7.

The same results have been obtained for different choices of aq, as
and by —see equation (p.1)— and even for unstable systems, as can be
seen in Tables p.3.9 and 5.3.7.

As a conclusion, although all the variables have a certain influence,
the variable 7, is the responsible for the largest relative changes in the
control law, and it must be then considered to be the most important
for the sensitivity analysis.
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Figure 5.2. Time history representation of Dy, Dna, Dns, DA1, DAg,
D)3, DOy, DO, DOs, Dp and D,, in a semilogarithmic scale, with e(t) = 1077, t €
0,4 and ¢; =d; =y =2, i=1,2,3.

5.3.3 Second consideration

A question that can arise naturally at this point is: how is the influence
of the choice of the design parameters in the control signal u?

For any time instant ¢, fixed equal design parameter ¢; = d; = v =
k>0, 1=1,23, (so as to simplify the analysis), and if we consider
the perturbed control

Uy (1) = F Wy Uy sy T+ €Te(t), AT, 07, 6, 1),

the absolute error of the control design |u(t) — @, (¢)| can be expressed
as a function of e(¢) and &,

|u(t) = iy, ()] =Z€(t)izwj(t)/€j- (5.20)
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variable max_ Dux(t)
te[0,4]
T c=di=v=05 ¢ =di=v=2
m 5.9634 - 102 4.1743 - 1071
M2 1.9197 - 102 6.4881 - 1010
3 3.8149-1073 5.6228 - 10~ 1
A 4.6353-10~* 1.8945 - 1072
Ao 9.8813-1076 1.1022 - 102
A3 7.4611-1076 3.0353 - 1074
6, 6.6353 - 1076 9.9091 - 104
6, 5.1341-1076 2.5940 - 1073
05 2.4707-1076 1.1271-1073
0 2.8861-107° 7.3046 - 1073
y 4.8361-1074 6.3120 - 102

Table 5.1. Mazimum values of the sensitivy functions Dx(t), for e(t) =
1077 and ay = 5,a2 = by = 1 (stable system).

variable max Dx(t)
te[0,4]
T Ci:di:’y:Oﬁ Ci:di:’y:2
n 5.8476 - 1072 4.0583 - 10T
o 1.8739 - 102 6.2983 - 1010
03 3.7151-1073 5.4416 - 101
M 4.5985-10~* 1.8632 - 102
Ao 1.0446 - 107° 1.0809 - 1072
A3 7.4021 -106 2.9852-10~4
0, 8.0584 - 106 1.0365 - 10—2
0, 5.6264 - 1076 2.8132-1073
05 2.9390 - 1076 1.2153-107°
0 3.9099 - 10—° 7.9106 - 1073
y 4.7352 - 1074 6.1479 - 1072

Table 5.2. Mazimum values of the sensitivy functions Dx(t), for e(t) =
1077 and a; = —1,as = bg = 1 (unstable).

The explicit analytical expression of equation (5.20) in function
of the perturbation function () and the design parameters ¢;, d;, i =
1,2, 3, and v, are generated using the symbolic calculus software Maplef]
The complete analytical expression of equation (f.20) has been omitted
for space reasons, but we have shown its structure.

2Maple is a trademark of Waterloo Maple Inc.
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Figure 5.3. Time history of the coefficient vy 2.

We are interested in the magnitude of the coefficient vy 15 of the
term ex'?, which is the most important term responsible of the error
propagation. Using again the symbolic calculus software Maple, the
explicit expression of this coefficient is:

viaa(t) =0° (9.81 - 10° — 8.24 - 10%(y — y,)my

—8.07 -
—1.28 -
—-3.23 -

+9.70 -
+1.60 -

107(y — yr)7m2

10°(y — yr)ms
10%yy, + 2.26 - 105>

10%2 — 1.62 - 10°6,
104é3> (5.21)
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The time history of the coefficient 14 15 is depicted in Figure p.3. It can
be seen that v 12 =~ 10°. Therefore only with a choice of 0 < k < 1 the
term y1,125/112 can be made small. In the same sense, a choice of Kk > 1
leads to a big absolute error of the control signal. This phenomenon
can be appreciated in Figure p.J] for two different values of the design
parameters, Kk = 0.5 < 1 and Kk = 2 > 1. In fact, when x = 0.5, the
backstepping control signal is smooth according to what is expected
from the theory presented in Chapter f]. However, when x = 2, the
control signal is clearly corrupted.

5.4 Conclusions

This chapter has focused on a analysis via numerical simulations and
with the help of symbolic calculus of the sensitivity of the adaptive
backstepping tuning functions control design for a relative degree three
linear system —in both stable and unstable plants. Improving the
transient behavior is done generally by increasing the design gains cg, dy
and . It has been observed that for ¢y = dy = v < 1 the effect of small
numerical error propagation remains negligible, while for ¢g = dy > 1
the control signal is corrupted by noise arising from the computational
process.

The analysis of the phenomenon led to the following conclusion:
to improve the tracking error performance y — y,, an increase of the
gains ¢g and dy is desirable. However, this enlarges the effect of the
numerical errors in the inherent computations. The effect of the error
propagation leads to an unnecessary actuator effort and a large control
amplitude. The tuning function design has thus shown to be sensitive to
the numerical errors that are generated by the computational process.

The need for reliable algorithms for solving complex control prob-
lems, such as the backstepping one, has made necessary to focus on
sensitivity and accuracy issues. In our case, the complexity of the con-
trol algorithm makes indispensable a certain compromise between the
choice of the design parameters and the sensitivity of the control law.
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" Chapter 6

- Control synthesis of
polynomial and rational
systems

We introduce in this chapter a recently developed computa-
tional approach to nonlinear control synthesis [|Par0(/. The
basis is a recent convergence criterion that can be viewed as a
dual to Lyapunov’s second theorem. The criterion is stated in
terms of a function which can be interpreted as the stationary
density of a substance that is generated all over the state-space
and flows along the system trajectories toward the equilibrium.
This criterion has a remarkable convexity property, which is
used for controller synthesis of polynomial and rational vector
fields via convex optimization. Recent numerical methods for
verification of positivity of multivariate polynomials based on
sum of squares decompositions are used.

Introduction

Analysis and control of nonlinear systems are among the most chal-
lenging problems in systems and control theory. Despite many years of
research, there is still no universal methodology for analyzing stability
and performance of nonlinear systems, let alone constructing controllers

that stabilize such systems.
Various approaches based on Lyapunov and storage functions for

analysis as well as control Lyapunov functions (CLFs) for synthesis
have been proposed [Kha9q]. However, these approaches suffer from the
following drawback: constructing such functions is hard, and moreover,
no coherent and tractable computational method exists to aid us in

constructing them.

109
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On one hand, there has also been a strong development of compu-
tational tools based on Lyapunov functions. Many such methods are
based on convex optimization and solution of matrix inequalities, ex-
ploiting the fact that the set of Lyapunov functions for a given system
is convex.

On the other hand, a serious obstacle in the controller synthesis
is however that the joint search for a controller u(z) and a Lyapunov
function V' (z) is not convex. Consider the synthesis problem for the
affine nonlinear system

&= f(z)+g(x)u.
The set of v and V satisfying the condition

o
ox

is not convex. In fact, for some systems the set of v and V satisfying
the inequality is not even connected.

Given the difficulties with Lyapunov based controller synthesis, it
is most striking to find that the convergence criterion presented here as
Theorem [, based on the so-called density function p has a remarkable
convexity property. Indeed, the set of (p, u) satisfying the dual criterion
or divergence inequality

[f(x) + g(z)u(z)] <0

Vo lp(f +gu)] >0 (6.1)

is convex. This convexity property will be exploited in the compu-
tation of stabilizing controllers in the case of polynomial or rational
vector fields. Recent numerical methods for verification of positivity of
multivariate polynomials based on sum of squares decompositions are
used.

6.2 Control synthesis of linear systems via LMI

The synthesis of linear systems is a problem completely solved via the
computational methods using semidefinite programming or linear ma-
trix inequalities (LMI). In this section we introduce the basic notation
for the LMI methods. The problem of the joint search of a controller
K(x) and a Lyapunov function V' (z) for a linear system is solved using
this methodology and the linearized inverted pendulum is controlled in
an example.
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6.2.1 Linear matrix inequalities

A linear matrix inequality (LMI) has the form

F(z) &2 Fy+ ) aF; >0, (6.2)

=1

where x € R™ is the variable and the symmetric matrices F; = FF €
R™ ™ = 0,...,m, are given. The inequality symbol in (p.2) means
that F'(z) is positive-definite, i.e., u'F(z)u > 0 for all nonzero u €
R™. Of course, the LMI (£.J) is equivalent to a set of n polynomial
inequalities in z, i.e., the leading principal minors of F(x) must be
positive.

We will also encounter nonstrict LMIs, which have the form

F(z) > 0. (6.3)

The LMI (6.9) is a convex constraint on x, i.e., the set {x | F(z) >
0} is convex. Although the LMI (F.d) may seem to have specialized
form, it can represent a wide variety of convex constraints on z. In
particular, linear inequalities, (convex) quadratic inequalities, matrix
norm inequalities, and constraints that arise in control theory, such as
Lyapunov and convex quadratic matrix inequalities, can all be cast in
the form of an LMI.

For a more extended development of the LMI techniques and its

applications see [BGFB94, GNLC93, EW].

6.2.2 Synthesis of linear systems via LMI

Consider the linear system
& = Az + Bu, (6.4)

where z € R*, A € R™" B € R™! and v € R. To find a stabilizing
controller u = Kz, we need a Lyapunov function V(z) := 2" Pz with
P positive definite such that A + BK is stable, i.e.,

P(A+ BK)+ (A+ BK)'P <0. (6.5)

The objective is to find, at the same time, both the controller K and
the matrix P, but this condition is not affine in both P and K, so it
cannot be expressed as a linear matrix inequality.
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lcos(0)

O Q)

Figure 6.1. Inverted pendulum.

By multiplying the expression above by @ := P~! (we can invert
P thanks to its positive definiteness), and defining a new variable L :=
K@, we obtain

P 'P(A+ BK)P '+ P Y(A+ BK)'PP ' =

= (A+ BK)Q + Q(A+ BK)"

= AQ+ BKQ + (AQ + BKQ)"*

= AQ + BL+ (AQ + BL)" <0, (6.6)

which is affine in both @) and L. Since @) > 0, we can always find the
controller K as K = LQ™".
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Example 6.1 In this example we shall consider the design of an in-
verted pendulum control system via linear matrix inequalities. We shall
design a controller to keep the pendulum upright at steady state after
transient periods are over.

Consider the inverted pendulum mounted on a motor-driven cart
as shown in Figure p.]. The inverted pendulum is unstable in that in
may fall over any time in any direction unless a suitable control force
is applied. Here we consider only a two-dimensional problem in which
the pendulum moves only in the plane of the page. Assume that the
pendulum mass is concretated at the center of the rod, as shown in the
Figure B.1. Assume that the rod is massless. The control force force u
is applied to the cart. Define the angle of the rod from the vertical line
as 0. Since we want to keep the inverted pendulum vertical, angle 0 is
assumed to be small.

The nonlinear dynamic equations of the system are

%mﬁé +ml cos i — mglsinf = 0 (6.7)
(M 4 m)i + ml cos 88 — mlsin 66 = u, (6.8)

where m is the mass of the ball, M the mass of the cart and 2¢ the
total length of the rod.

Since we must keep the inverted pendulum vertical, we can assume
that 6(t) and 0(t) are small quantities such that sinf ~ 0,cosf ~ 1,
and 002 ~ 0. Then, equations (B7)-(B3) can be linearized as follows:

4 .
§m€29 + mli —mgll =0, (6.9)

(M +m)i + mlf = u. (6.10)

Define state variables x1, x9, x3 and x4 by

Ty =X,
$2:i',
I3:€,

.2134:9
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In terms of vector-matrix equations, we have

i 01 0 0] [a 0
. m, 44

By | |00 —qpg O | o | | dme |,
Ztg 0 0 0 1 T3 0 )
‘ 3(M+m 3

T4 0 0 4(MZ+m)g 0 L4 T A me

In this example, we assume the following numerical values for M, m,
and £:

M=2kg, m=0.1kg, ¢=0.5m.

We assume that all the states are available for feedback, and therefore
we can consider a control of the form

€
X2

UZKQSZ[]ﬁ kg kg k4} :/{71£U1+l€2$2+k’31133+k‘4$4

€3
Ty

We are now interested in to find a symmetric positive definite matrix P
and a vector K that stabilizes the equations of the inverted pendulum.
We know that Q = P~ is also symmetric and positive definite, i.e.,

Q>0 Q=Q". (6.11)
Using equation (.q) we have that
AQ+ BL +(AQ+ BL)" <0 (6.12)

In order to apply the Matlab LMI toolbox, we need to express these
linear matrix inequalities in a single linear matrix inequality. This way,
we obtain the matrix

AQ + BL+ (AQ + BL)" 0
0 —Q
After solving the LMI, we obtain

L= [ —10.9142 —5.2440 9.2310 —-9.5140 ] ,

3.6858 —1.1346 —0.3346  0.1540
| —1.1346  5.1372  0.0110 —3.0648
@= —0.3346  0.0110  0.1945 —0.6203
0.1540 —3.0648 —0.6203  4.8183

< 0. (6.13)
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Figure 6.2. Simulation of the linearized inverted pendulum with initial
conditions (z,,0,0) = (0.1,—2,0.2,—0.4).

Using P = Q7! and K = LP the final expressions for these matrices
are

1.9100  2.0958 12.2560  2.8499

p_ 2.0958  2.8247 15.2049 3.6872
~ | 12.2560 15.2049 93.2442 21.2839 |~
2.8499  3.6872 21.2839 5.2019

K = [ 54.3317 67.7675 445.8293 96.7857 |.
In other words, the controller is

u = 54.3317x1 4+ 67.7675x9 + 445.829323 4 96.7857x24
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and the related Lyapunov function of the closed-loop is

V(z) =1.910022 + 4.19162, 25 + 24.51202, 5
+ 5.6998z 124 + 2.824722 + 30.4098z925
+ 7.3744w0m4 + 93.244222 + 4256782374 + 5.201927.

Simulation results can be found in Figure [(.9. |

Extending this procedure to the nonlinear case does not seem fea-
sible, at least in a reasonably straightforward way. Consider an affine
nonlinear system

i = f(x)+ g(z)u.
While the condition

ov

5g (@) +9(2)k(2)] <0

is clearly the nonlinear equivalent of equation (B.H) above, there does
not seem to be an efficient way of searching simultaneously over the
Lyapunov function V' and the controller k(z).

Nevertheless, in Section f.g we introduce a partial solution of this
problem in the case where f(x) and g(z) are polinomial or rational
vector fields via two computational relaxations.

6.3 Control synthesis of polynomial systems
6.3.1 Hilbert’s 17th problem

The history of the problem of expressing nonnegative polynomials as a
sum of squares dates back to before the beginning of the 20th century.
We define some notation that we use throughout the following chapters.
Let P, denote the set of polynomials (the underlying polynomial ring
is understood from the context) that are globally nonnegative, P, (K)
the set of polynomials nonnegative on a set K C R", and X2 the set of
polynomials that can be expressed as the sum of squares of other poly-
nomials. Starting with the observation that any univariate polynomial
that is nonnegative on all of R may be written as the sum of squares
of other polynomials (in fact, of two other polynomials), Hilbert asked
whether this fact generalizes to higher dimensions, that is, to multi-
variate polynomials. In other words, having seen that

¥? =P, in R[z],
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Hilbert asked whether this equality is always true, or whether the in-
clusion is ever strict. Hilbert gave the negative answer himself with a
nonconstructive proof. At the Paris Congress in 1900, he then posed his
famous 17th question, now known as Hilbert’s 17th problem, of whether
a nonnegative polynomial can be expressed as the sum of squares of ra-
tional functions.

In 1927, Artin developed, and then used what is now known as the
Artin-Schreier theory of closed fields, to give an affirmative answer to
Hilbert’s 17th problem: Any polynomial, nonnegative on all R", may
be expressed as the sum of quotients of polynomials.

While Hilbert proved that the inclusion ¥? C P, is in general
strict, the proof was not constructive. Motzkin is the first credited to
have written down a concrete example, and this did not happen until
the 1960’s. Motzkin’s famous example is the homogeneous polynomial
(or form) in three variables:

M(z,y, 2) = a*y? + 2%y* + 20 — 327?22

While this is nonnegative for any (z,y, z) € R, it cannot be written as
a sum of squares of other polynomials.

The connection between P, and polynomial optimization has be-
gun to be exploited, due to the computational tractability of X2, as
described in the following sections.

6.3.2 First relaxation: the sum of squares approach

In order to understand the possibilities and limitations of computa-
tional approaches to nonlinear stability, an issue that has to be ad-
dressed is how to deal numerically with functional inequalities such as
the standard Lyapunov one, or the divergence inequality (.17).

Even in the restricted case of polynomial functions, it is well-known
that the problem of checking global nonnegativity of a polynomial of
quartic (or higher) degree is computationally hard. For this reason, we
need tractable sufficient conditions that guarantee nonnegativity, and
that are not overly conservative. A particularly interesting sufficient
condition is given by the existence of a sum of squares decomposition:
can the polynomial p(z) be written as

p(@) = S r(a),
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for some polynomials p;(x)? Obviously, if this is the case, then p(x)
takes only nonnegative values. Notice that in the case of quadratic
forms, for instance, the two conditions (nonnegativity and sum of squa-
res) are equivalent.

In this respect, it is interesting to notice that many methods used
in control theory for constructing Lyapunov functions (for example,
backstepping, as can be seen in Part []) use either implicitly or explicitly
a sum of squares approach.

The problem of checking if a given polynomial can be written as
a sum of squares can be solved via convex optimization, in particular
semidefinite programming. For our purposes, however, it will enough
to know that while the standard semidefinite programming machinery
can be interpreted as searching for a semidefinite element over an affine
family of quadratic forms, the new tools provide a way of finding a
sum of squares, over an affine family of polynomials. For instance,
these tools can be used in the computation of Lyapunov functions for
proving that a nonlinear system is stable.

6.3.3 Second relaxation: the dual theorem of Lyapunov

Lyapunov’s second theorem has long been recognized as one of the most
fundamental tools for analysis and synthesis of nonlinear systems. The
importance of the criterion stems from the fact that it allows stabil-
ity of a system to be verified without solving the differential equation
explicitly.

Lyapunov functions play a role similar to potential functions and
energy functions. Moreover, when asymptotic stability of an equilib-
rium has been proved using Lyapunov’s theorem, input—output stability
can often be proved using the Lyapunov function as a “storage func-
tion”.

Lyapunov’s theorem has a close relative, Theorem f]. The relation-
ship between the two theorems can be considered as an analogous to
the duality that has been used since 1940s for closely related problems
in calculus of variations.

The notation

ov. oV
=|=... R" — R
vV |:afL’1 8ZETL:|7 v ’
V-f—% ...+8f” f:R* = R"

- Om ox,’
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will be used throughout the chapter.
The proof of the Theorem [ relies on the following lemma, which
can be viewed as a version on Liouville’s theorem.

Lemma 2 Let f € C'(D,R") where D C R" is open and let p €
C!'(D,R) be integrable. For xy € R", let ¢;(xq) be the solution () of
# = f(x), (0) = xg. For a measurable set Z, assume that ¢,(7) =
{¢-(x) | x € Z} is a subset of D for all 7 between 0 and ¢. Then

/t(z)p(x)dx—/ dz—/ / () dadr

Proof. Note that for every C! matrix function M(¢) with M(0) = T

2detM()

p = traceM'(0).

t=0

This follows by direct expansion of the determinant, since the first-order
terms in ¢ correspond to the diagonal elements of M (?).

Let M(t) = (2%)(2) and use | - | to denote determinant. The
differentiability of f gives that ¢;(z) is of class C! in z and C? in t.

Hence

02
|~ [rweaet)],

af
= tracea(z) = [V fl(»)

H

and with the notation p;(z) = p(¢4(2)) |(8¢t (2))‘

e =V eV D) =1V (GRG),
o 0 0~
20| — 5 {mionon) 8Z<>}h0

~ 17 (oo, |52
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Let x(-) be the characteristic function of Z. Then

[t [ ez [ ptonior@ni - [ oteja:
- ; o)) |2 o [ ooy
= — p(z)]dz

[pe(2)
= / / 19 () (6:(2) ‘f‘j )

-/ t / T (o)

drdz

Theorem 6 Given the equation

#(t) = f(z(1)),

where f € C*(R",R") and f(0) = 0, suppose there exists a non-negative
p € CH(R™ — {0},R) such that

>w is integrable on {z € R" : |z| > 1} and (6.14)
T
» [V - (fp)] > 0 for almost all z. (6.15)

Then, for almost all initial states x(0) the trajectory x(t) exists
for t € [0, 00) and tends to zero as t — oc.

Moreover, if the equilibrium z = 0 is stable, then the conclusion
remains valid even if p takes negative values.

Proof. (Second statement). Here it is assumed that z = 0 is a stable
equilibrium while p may take negative values.

Rather than exploiting that f € C'(R", R™), we will actually prove
the result under the weaker condition that f € C'(R" — {0}, R") and
f(z)/]z| is bounded near z = 0. Given any xy € R", let ¢y(z) for t > 0
be the solution x(t) of @(t) = f(x(t)), z(0) = zy. Assume first that p
is integrable on {z € R™ | |z| > 1} and |f(x)|/|z| is bounded, that is,
f(z) is Lipschitz. Then, thanks to the Picard’s existence theorem, ¢,
is well defined for all ¢.
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Given r > 0, define

Z = ﬂ{xo : |@e(zo)| > r for some t > [}.

Notice that Z contains all trajectories with lim sup |z(¢)| > r. The
—00
set Z, being the intersection of a countable number of open sets, is

measurable. Moreover, ¢,(Z) = {¢(z) | x € Z} is equal to Z for every
t. By stability of the equilibrium z = 0, there is a positive lower bound &
on the norms of the elements in Z, so Lemma ] with D = {z : |z| > ¢}

gives
o—/W oz )dx—/Zp(z)dz

/ /T (x)dxdrT.

By assumption in equation ([.17), this implies that Z has measure
zero. Consequently, lim sup |z(t)| < r for almost all trajectories. As

t—o00
r was chosen arbitrarily, this proves that tlim |z(t)] = 0 for almost all
—00
trajectories.
When |f(x)|/]x| is unbounded and, in particular, it is not a Lip-
schitz function anymore, there may not exist any non-zero t such that
¢1(2) is well defined for all z. We then introduce

e U@P)
S FEave e B
_ )l
ole) = po(x)

Then | fo(z)|/|z| is bounded and py is integrable on {z € R™ : |z| > 1},
so the argument above can be applied fo fy together with pg to prove
that lim |y(7)| = 0 for almost all trajectories of the system dy/dr =

fo(y(7)). However, modulo a transformation of the time axis
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the trajectories are identical: z(t) = y(7). This, together with the
boundedness of f(x)/|z| near x = 0, also shows that z(t) exists for
t € [0,00) and tends to zero as t — oo provided that lim |y(7)| = 0.

The proof of the second statement in Theorem [ is complete. 0

Theorem 7 Consider a measure space (X, A, i), aset P C X of finite
measure and a measurable map T : X — X. Suppose that

w(T~1Y) < pu(Y) for all measurable Y C X. (6.16)

Define Z as the set of elements x € P such that 7" (z) € P for infinitely
many integers n > 0. Then u(T'Z) = p(Z2).

Proof. Note that

Z=Pn (ﬁ GT"“(P)) :

j=1k=j

so Z is measurable. Let the superscript ¢ denote the complementary
set with respect to X, like Z¢ = X — Z. Define forn =1,2,...

Zn=JTM2), Z =0
k=1

The set Z,, for n > 1 consists of those elements of X that are mapped
into Z in n or less steps. Let us prove by induction over n that

T NZ) > (Za N Z) + (T H(2) N Z3). (6.17)

The inequality holds trivially for n = 0. Assuming that it holds for
some n > 0, we get
T NZ2) 2u(Z, N Z) + (T H(Z) N Zy)
=(Z,NZ)+ (T Y Z2)NZN Z)
+ (T HZ)N ZEN Z°)
> u(Z, U (T (2) 1 25)) 1 2)
+u(THT " HZ)N Z5N Z°9))
(Zuis 0 Z) + p(T2(Z) 0 ZE,).
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Induction over n therefore proves equation (6.17) for all integers n > 0.
It follows that

w(2) 2 p(T7H2)) z swp (2N Z) = p(2),

where the last equality is due to Z = ( U T‘”(Z)) N P. O
n=1

Proof. (First statement of Theorem f). We may assume without
restriction that p is integrable for |z| > 1 and |f(x)|/|z| is bounded
by some constant C' so ¢:(x) is well defined for all xg,¢. Define X =
R*" P={zeR" : |z| >r},T(z) = ¢1(z) and

uw(Y) = / p(x)dz for measurable Y C X.
Y

The condition (f.1d) holds by Lemma B. Hence u(T'2) = u(Z) for Z
defined as in Theorem [], so by Lemma P with ¢ = —1 and D = {x €
R"™ : |z| > €} for some sufficiently small € > 0

/] ¥ oldadr <o

This gives that the Lebesgue measure of ¢,(Z) is zero for almost all
7 € [—1,0]. Hence, Z must have measure zero and for almost all x € P
there exists 7 > 0 such that

|pn(z)| <7, forn>j.

The choice of r was arbitrary, so tlim |pn(z0)] = 0asn =1,2,... for

almost all xy. For a real positive number ¢, let [¢t] denote its integer
part. The global bound |f(x)|/|z| < C gives |&| < C|z| so

()] < Mz ([t])] < e“la([t)] — 0 ast — co.

Hence |¢¢(x9)] — 0 also for non-integer values of ¢ and the proof is
complete. a
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Examples

Example 6.2 The system

o | | =22+ a2 — a3
i’g o —21‘2 + 2£L'1£E2

has two equilibria (0,0) and (2,0). Let f(x) be the right-hand side and
let p(z) = |z|~*. Then

V- (foll(x) =Vp- f+p(V-f)
= —alz|* %2 f + || *(4xy — 4)
=~z (21 = 2)[f* + [o| " (421 — 4)
= |z|7*[(4 — a)z; + 20 — 4].

With o = 4 all conditions of Theorem [] hold, so almost all trajectories
tend to (0,0) as ¢ — oo. The exceptional trajectories turn out to be
those that start with z; > 2, x5 = 0. See Figure for a phase plane
plot of this system. [ |

Example 6.3 The system

o || —2x + 2% —ad
j}2 - —61’2 + 2561%2

has four equilibria (0,0), (2,0) and (3, 4£+/3). In this case, p(x) = ||~
gives

[V - (fo)l(x) = =4|z| %z f + |2 (421 — 8)
= —d|z| % [(z1 — 2)|2|” — 23] + |z| " (421 — 8)

= 1625|z|°

so again Theorem [ shows that almost all trajectories tend to (0,0) as
t — o00. The exceptional trajectories are the three unstable equilibria,
the axis xo = 0,27 > 2 and the stable manifold of the equilibrium (2, 0),
that spirals out from the equilibrium (3, £+v/3). |
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Figure 6.3. Phase plane plot for Example @

6.3.4 Convexity in nonlinear stabilization

An important application area for Lyapunov function is the synthesis of
stabilizing feedback controllers. For a given system, the set of Lyapunov
functions is convex. This fact is the basis for many numerical methods,
most notably in computation of quadratic Lyapunov functions using
linear matrix inequalities, as can be seen in Section or in a more de-
tailed way in [BGFB94]. However, when the control law and Lyapunov
function are to be found simultaneously, no such convexity property is
at hand. In fact, the set of (V,u) satisfying

VV - (f+gu) <0

may not even be connected.
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Figure 6.4. Phase plane plot for Ezample .

Given this problem, it is most striking to find that the correspond-
ing synthesis problem for the convergence criterion in Theorem [ is
convex. In fact, the divergence criterion

VV-(f +gu)p] > 0

is convex in the pair (p, up).

6.3.5 Polynomial systems

Consider the system

&= [f(z) +g(z)u
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where f(z) and g(x) are polynomial vectors. To apply the tools pre-
sented in the previous sections to the stabilization of this system, con-
sider the following parameterized representation for p and up:

a(z)

x) = , u(x)p(x) =
pla) = oy w)ola)
where a(x),b(x), c(z) are polynomials, b(z) is positive, and « is chosen
large enough so as to satisfy the integrability condition in Theorem
B. Note that by choosing this particular representation, we presuppose
that we will be searching for p and u that are rationals. In particular,
the resulting control law will be

c(z)

u(z) = ()

In this case, the divergence criterion can be written as

VD7 gl = V- [ a0

— _abalJerb- (fa+gc) + biaV (fa+ gc)
— balﬂ bV - (fa+gc) —aVb- (fa+go)].

Since b is positive, we only need to satisfy the inequality

‘bV-(fa—l—gc)—aVb-(faJrgc)>O.‘ (6.18)

For fixed b, o, the inequality is linear in a,c. Instead of checking pos-
itivity, we check that the left-hand side is a sum of squares, and then
the problem can be solved using semidefinite programming.

Example 6.4 A simple numerical example is the following:

‘fl = X9 — LU? + Q?%

j,‘g =Uu.
The function b(x) is chosen based on the linearization of the system. We
picked b(x) = 32?2 + 2115 + 222, which is a control Lyapunov function
(CLF) for the linearized system and, therefore, b(x)~* (for some «)
will be a good choice for a p function near the origin. Since we will be

using a cubic polynomial for ¢(x), and a(x) is taken to be a constant,
we choose a = 4 to satisfy the integrability condition.
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In this case, after solving the sum of squares inequality
bV - (fa+ gc) —aVb- (fa+ gc) >0, (6.19)

we obtain an explicit expression for the controller, as a third-order
polynomial in x; and x5. The optimization criterion chosen is the /¢,
norm of the coefficients. This way, we approximately try to minimize
the number of nonzero terms. The expression for the final controller is

u(zy, 29) = —1.220; — 0.5729 — 0.12925.
A phase plot of the closed-loop system is presented in Figure p.5. 1

Trajectory of the system
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Figure 6.5. Phase plot of the closed-loop system in Ezample . The
solid curve is the trajectory with initial conditions (5, —5).

Example 6.5 (Attitude control of a body) We will now look at
the attitude control of a rigid body using three inputs as a physi-
cally motivated example. The complete attitude dynamics of a rigid
body can, for example, be described using the following state equations

Bhud]:
w=J1S(w)Jw+ J (6.20)
)= H(y)w (6.21)
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with w € R? the angular velocity vector in a body-fixed frame, 1) € R3
the Rodrigues parameter vector, and u € R? the control torque. The
matrix J is the positive definite inertia matrix, while S(w) and H (%))
are given by

0 w3 —Wa

Sw)=1| —ws 0  w (6.22)
%) —Ww1 0

H) = 5 (I - S() + ") (6.23)

2

We will apply the method described in this Chapter to numerically
construct a stabilizing controller for this system. Synthesis of stabilizing
controller for this system can also be performed using backstepping

[KT9g]. In our construction, the matrix

J:

S O =
O N O
—_ o O

will be chosen as the inertia matrix. In a state-space representation,
the system will be:

, 1
w1 = dwows + Zul

d)g = —6W1W3 + §U2

w3 = 2wiwy + us

Uy =5 [+ 9Dwr + (e — Ya)wr + (193 + 1o)ws]
o = 3 (s ) + (1 + v )en + (s — )]
= 5 [aths — ) + (s + va)en + (1+ 93]

DN | —

First, a density function of the following type is used:

a(w, )
(el + l[112)

plw, ) = (6.24)
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where a(w, ) will be obtained from convex optimization. Using this
density function and a = 6, it is possible to obtain a controller of the
form

Ci(“aw)
a(w,¥)’

with a(w, 1)) being positive definite. In fact, the function a(w,?) is a
homogeneous polynomial of degree 2, whereas the ¢;(w, 1)’s are polyno-
mials of degree 5. Since the lowest degree of the monomials in ¢;(w, 1) is
equal to 3, we have lqlbr)n Ui (w, 1) = 0, and thus we may set u;(0,0) = 0

(w7

U/i(w7 W =

i=1,2,3 (6.25)

to obtain a continuous controller as well as to make the origin an equi-
librium of the closed-loop system.

Controllers with simpler expressions can be obtained by choosing
a control Lyapunov function (CLF) of the linearized system, such as

b(w, ) = llw +¥[* + ¥]* (6.26)

or
b(w, ¥) = lw + P* + [lw]? (6.27)

for the denominator of the density function. Using (p.27) as the de-
nominator and « again equal to 6, the controller obtained from convex
optimization is given in the next equations:

uy(w,¥) = — 0.49¢7 — 0.86w; — 1.2w1] — 1.5w1h; — 1.1w2h3

+ 0.37w?thy — 2.6w1 — 0.7721 + 0.035wath11y (6.28)
U (w, ) = — 0.283 — 0.29w3 — 0.27wo1h? + 0.17w?2 — 0.372h%),

— 0.69wo1b3 — 1.1wytps — 0.45191h3 — 1.1wiws

— 0.44w111pg — 0.4619 — 1. 1wy + 0.24w w1y (6.29)
uz(w, 1) = — 0.1495 — 0.18w3 — 0.44w?ws — 0.34wiws — 0.55w31)3

+ 0.11wips + 0.052withs — 0.1821h3 — 0.039h31)3

— 0.2w3th3 — 0.38w313 + 0.4wowshs + 0.3Twi w3

+ 0.43wothaths — 0.69w3 — 0.351s. (6.30)

A trajectory of the closed-loop system as well as its resulting control
law is shown in Figure p.4.
|
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0]

Figure 6.6. Trajectory of the controlled rigid body with initial condi-
tions (w,¢) = (—1,1,0,—1,2,=3) (first and second row) and control law u(t) =
(up(t), ua(t),us(t)) (third row).
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6.3.6 Extension to the rational case

Consider the system

&= f(x) +g(@)u
where f(z) and g(x) are rational vectors. Without lose of generality,
we can consider that

o) =10 o) = 2

where f(x),j(z) and h(z) are polynomial expressions.

To apply the tools presented in the previous sections to the stabi-
lization of this system, consider also the following parameterized rep-
resentation for p and up:

a(z)

p([[‘) - b(ff)a’ U(l’)p(l’) - b(l’)a’
where a(x),b(z), c(x) are polynomials, b(z) is positive, and « is chosen
large enough so as to satisfy the integrability condition in Theorem
. Note that by choosing this particular representation, we presuppose

that we will be searching for p and u that are rationals. In particular,
the resulting control law will be
c(x)

u(z) = ()

In this case, the divergence criterion presented in Theorem [ can
be written as

VD7 )] = V- [+ o)

bh o
ba+1h2v (fa+gc)+vﬁ (fa+ ge)
ba+1h [ fa + ge) — (ahVb+bVh) - (fa+ ge)| .
Since both b(z) and h(z)? are positive, we only need to satisfy the
inequality
bhV - (fa + gc) — (ahVb + bVA) - (fa + ge) > 0. (6.31)

For fixed b, ar, the inequality is linear in a,c. Instead of checking
positivity, we check that the left-hand side is a sum of squares, and
then the problem can be solved using semidefinite programming.
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6.4 Conclusions

A recently derived computational approach to nonlinear control syn-
thesis [Par0(] has been outlined here. The basis is a recent convergence
criterion which is closely related to earlier work on optimal control and
makes it possible to state the synthesis problem in terms of convex op-
timization. Polynomials are used for parameterization and positivity
is verified and certified using the sum of squares relaxation. In gen-
eral, a controller designed using this approach is only guaranteed to
make almost all trajectories of the closed-loop system tend to the ori-
gin. In many cases, however, such a controller will actually be globally
asymptotically stabilizing.

In this work we have extended the procedures developed in [Par00
to rational systems and we have implemented a special version of the
software presented in [PPP0J] that uses an alternative semidefinite
programming solver. New developments in sum of squares optimiza-
tion focus on structure-exploiting techniques for sparse and structured
polynomials and in extending these procedures to develop techniques
in other scientific areas.
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Chapter 7

Control synthesis of
systems with uncertain
parameters

As presented in Chapter [, there is a recently derived sta-
bility criterion for nonlinear systems —which has a remark-
able convexity property— and the development of numerical
methods for verification of positivity. These tools had allowed
the computation —via semidefinite programming— of stabilizing
controllers for the case of systems with polynomaial or ratio-
nal vector fields. Using the theory of semialgebraic sets these
computational tools are extended in this chapter for the case
of polynomial or rational systems with uncertain parameters.

A question that arises naturally at this point is: the computational
tools presented in the previous chapter can be employed to stabilize
systems with uncertain parameters?

With the help of the theory of semialgebraic sets this can be done
by considering the uncertain parameters as new polynomial variables
(pseudo-variables) and without augmenting the dynamic of the system.
This way, our objective is to find a worst case controller, in the sense
that the system will be stabilized for all the possible values of the
uncertain parameters.

In order to formalize all these questions, we must introduce some
notation and a key theorem.
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7.1 Putinar’'s theorem

Definition 1 Let ¥? C R[zy,...,z,] denote the set of polynomials
which can be written as a sum of squares of other polynomials, that is,

Y= {G(z) € R[zy,...,2z,] @ I(2),... (7)) € Ry, ..., 2]
such that G(z) = Z hi(z)*}

=1

Definition 2 A subset of R™ which is a finite Boolean combination of
sets of the form {x = (z1,...,2,) : p(x) > 0} and {z : q(z) = 0},
where p,q € Rxy,...,z,] —i.e. a set that is defined by polynomial
inequalities, equalities, and nonequalities— is called a semialgebraic set.

Theorem 8 (Putinar) Suppose we are given a set
K:={zeR" : ¢(z)>0,i=1,...,m} (7.1)

that is compact, and furthermore satisfies the condition that there ex-
ists a polynomial h(z) of the form

m

h(x) = so(z) + Y si(x) - ci),

i=1
where the s; € 32 are sum of squares and ¢; € R[z], whose level set
{z €eR" : h(z) >0}

is compact. Then, for any polynomial G(z) positive on all of K, there
exist sg, S1,...,5m € X2, such that

Proof. See [Put9]]. 0

It is worth noting that for a large host of applications, the ad-
ditional constraint required for Theorem { is easily satisfied by the
corresponding sets K. For instance, the following cases fall into this
category.
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1. Suppose some ¢; in the definition of K satisfies, on its own, the
condition {¢;(x) > 0} compact. Then Theorem J applies. This in-
cludes any instance where we are taking intersections with ellipses,
or circles, among others.

2. Perhaps very importantly, any 0 — 1 integer programming problem
falls easily into this framework. The integer constraint is given by
polynomial relations z? — z; = 0. Consider now the polynomial
u(z) = Y. (x; — 7). This is of the correct, and indeed satisfies
{u(z) > 0} compact.

3. If K is compact, and is defined only by linear functions, then we
can directly apply Theorem f. Note that this includes all poly-
topes.

4. If we know that the compact set K lies inside some ball of radius
R, we can simply add the interior of the ball, > 27 < R? as
a redundant constraint, thus not changing K, but automatically
satisfying Theorem [, without appreciably changing the size of
definition of the problem (especially if we already have a large
number of functions defining K).

In what follows we assume that the set K defined as in equation
() satisfies the hypotheses of the Theorem B. Using this theorem, we
translate the pointwise property

G(x) >0, VrekK (7.2)

to the algebraic property

m

3s1,..., 8, € X2 such that (G(:c) - Z sl(:c)cl(x)> ex?  (7.3)

=1

The membership test in equation (f.3) can be performed in time poly-
nomial in the size of the polynomial G(z) using the computational tools
presented in [P ]).

7.2 Synthesis procedure

Consider the nonlinear affine system

&= f(z,p) + g(z, p)u, (7.4)
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where = € R" is the state vector, p = (p1,...,pm) € R™ is the un-
certainty parameter vector and f,g : R™ x R™ — R™ are polynomial
functions describing the system dynamics. We are searching a con-
troller u that stabilizes the system for all the possible values of the

parameter p.
We assume that the following intervals are known:

p,<pi<pP; t=1...,m (7.5)
Equation ([.J) can be expressed as

ci=pr—p, =20
co=py—p1 =0

Com—1 = Pm —p, 20
Com = Dy — Pm = 0
This way, the set K can be defined as
K={peR"™ : ¢,>0,60>0,...,¢, >0}.
Let us define & = [x,p]T. The system ([[.4) is now
T = f(z)+ g(ZT)u. (7.6)

To apply the tools presented in Chapter [ to the stabilization of the
system ([[g), consider the parameterized representation for p and wp:

plo) = ik ulolple) = o

where a(x),b(z), c(x) are polynomials, b(z) is positive, and « is chosen
large enough so as to satisfy the integrability condition in Theorem f.
In this case, the divergence criterion can be written as

Vo - p(f + gu)] =

v [hm o]

1 1
= —&anb‘ (fa+gc)+ - Vn-(fa+go)

ba
1

= g BV (fa+ go) = a¥ob- (fa+ge)],
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where the following modified versions of the operators gradient and
divergence have been considered:

Vv,V = 8_V(9_V , V:R"XR"™ >R
81'1 axn

SR TS |
o0xy ox,,

Since b is positive, we only need to satisfy the inequality
G(Z) :=bV,, - (fa+gc) —aV,b- (fa+gc) >0, Vpe K. (7.7)

Although the system contains uncertain parameters, the explicit ex-
pressions of the functions f and g are known and so equation ([7.]) can
be computationally treated.

For fixed b, cr, the inequality is linear in a,c. Instead of checking
positivity, we check that the left-hand side is a sum of squares. Using
Theorem § and, more precisely, equation ([(.3), the pointwise property
([7) is translated to the algebraic property

3s1, ..., Som € X% such that
2m

(G(f) — Z si(x)cZ) €2,
i=1

that can be performed in polynomial time using the computational

tools presented in [PPP0J).

7.3 A simple example

In order to show the applicability of the computational approach de-
scribed in Section [, let us consider the following nonlinear system
with an uncertain parameter as the coefficient of the linear term in the
first equation:

& =pry — 23+ 22, pe[0.7,1.3] (7.8)

.ij =Uu 7.9

The system is defined by polynomial expressions in the variables x, x9
and, for computational purposes, p can be treated as a third variable.
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Our objective is to find a control function u that stabilizes the
system for every p € [0.7,1.3]. Such a control law w for this system can
be found using the techniques described in Chapter [§. We only need
to satisfy the inequality ([[77]) in the case n = 2, that is

G(z,p) =bVy - (fa+gc) —aVab- (fa+gc) >0, Vpe K (7.10)
where

I
f(xlax%p): |ip ? 01 ! )

g(@1, w2, p) = [ (1] } :

and b can be chosen as it is described in [PPR04]

b(wy, 29) = 327 + 21179 + 2775
= (21 + 29)* + 227 + 3.
Since we will be using a cubic polynomial for ¢(z1,z5), and a(xy, z5)
is taken to be a constant, we choose o = 4 to satisfy the integrability
condition. We note that G(x,p) can be considered as a polynomial
expression in R[zy, z9, p|.
K is defined as follows
K={peR :13-p>0, p—0.7>0}
={peR : ¢, >0, ¢ >0}.

We translate the equation ([.1() to the algebraic property

351, 59 € ¥ such that
(G(z,p) — s1(x)ey — s2(w)ey) € X2
After solving the sum of squares problem, using the software introduced
in [PPP0Z], the results are
u(z) = —1.34462, — 0.900525 — 0.090273,
s1(x) = 6.249627 + 14.695x5 + 19.1664x, 7,
= (13721 + 2.0925)% + (2.092; + 3.2125)?,
so(7) = 6.249627 4 4.695235 — 10.83365, 5
= (1.89z — 1.64x9)* + (14235 — 1.641,)>.
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Figure 7.1. Phase plot of the closed-loop system in Section @ Solid
curves are trajectories with initial conditions (x1,x2) = (1,0) and for four different
values for the parameter p, 0.7,0.9,1.1 and 1.3.

In Figure [(.]] we have depicted the trajectories of the closed-loop sys-
tem in equations ([.§)-([.9) with initial conditions (1,0) and for four
different values for the parameter p, 0.7,0.9,1.1 and 1.3. It can be seen
that all the trajectories converge to the origin as it was to be expected.

7.4 Conclusions

In this chapter we have extended, with the help of the theory of semi-
algebraic sets, the computational tools presented in Chapter  to sta-
bilize polynomial or rational systems with uncertain parameters. We
have considered the uncertain parameters as new polynomial variables
but we have not augmented the dynamic of the system. Systems with
bounded external disturbances can also be considered. The size of
the semidefinite programs makes it possible to handle problems that
are otherwise too large to solve using state-of-the-art semidefinite pro-
gramming solvers.
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Conclusions and future work

Conclusions

This thesis has dealt with the problem of controlling uncertain systems.
Chapter 2 has presented an adaptive version of the backstepping de-
sign for linear systems with uncertainties in the parameters developed
in [KKK94]. The design needs only the measurement of the output and
uses a Kresseilmeier filter to estimate the state of the system. The con-
trol law is obtained using a recursive algorithm of as many steps as the
relative degree of the linear system. The a-priori knowledge on the lin-
ear system is the same as in certainty-equivalence adaptive algorithms;
that is the degree and relative degree of the linear system (which is
assumed to be minimum phase) and the sign of the high frequency
gain. The stability result is global and tracking is assured asymptoti-
cally. Furthermore, £, and £, bounds on the transient behavior can
be derived.

Chapter 2 has also presented the main recent developments rel-
ative to the tuning functions design. Research has followed several
complementary lines: the extension of the technique to multivariable
systems has been made in [[LT96, WY9]| and [CHIKOJ]| while its exten-
sion to discrete-time systems and time-varying systems has been done
respectively in [RIG99] and [[GRI9Y. The a-priori knowledge assump-
tion of the high frequency gain has been removed in [Miy00H] using the
Nussbaum gain. The robustness of the tuning functions design vis-a-vis
unmodelled dynamics and external disturbances has been explored in
K984 and [OIGO]] using a switching o-modification, in [[K98H and
[WS9q] using a parameter projection, and [ZI9§ using signal normal-
ization and o-modification.
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In [NVOTIH] it has been shown that, contrarily to certainty equivalence
algorithms, the tuning functions design does not act as an integrator in
the presence of constant disturbances. The robust transient behavior
of this adaptive design has been explored in [[RG97 and [WZS99.
Chapter 3 has presented the robust version of the tuning func-
tions design presented in [[RGO7. This design presents two modifica-
tions with respect to the standard design of [KKK99]. First it uses a
switching o-modification in the update parameter laws. This prevents
parameter drift in the presence of external disturbances and /or unmod-
elled dynamics. Second, it uses an additional term in the first step of
the recursive design to counteract the negative effect of disturbances
on asymptotic and transient behavior. These modifications allow the
adaptive controller to insure the global boundedness of all closed loop
signals in the presence of strictly proper unmodelled dynamics and
bounded disturbances. Furthermore, it can be shown that the perfor-
mance of the closed loop, both asymptotically and in the transient, can
be improved arbitrarily by increasing the gains of the controller.
Chapter 4 has focused on the application of the modified version
of the tuning functions design presented in Chapter 3 to a problem in
the field of Civil Engineering, which consists in a building structure
that combines a passive nonlinear base isolator with an active control
system.
The objective of the active control component applied to the structural
base was to keep the base displacement relative to the ground and the
interstory drift within a reasonable range according to the design of
the base isolator. The base isolator device exhibits a hysteretic non-
linear behavior which is described analytically by the Bouc-Wen model
Wen7d).
The control problem was formulated representing the system dynamics
in two alternative coordinates: absolute (with respect to an inertial
frame) and relative to the ground. It has been observed by the means
of numerical simulations that the base displacement in the relative case
is clearly reduced with respect to the strict passive design whereas in
the absolute case the relative displacement of the base increases but
remains within an acceptable range. Furthermore, it has been observed
that the interstory drift is significantly reduced in the absolute case,
while it increases in the relative case with respect to the uncontrolled
situation.
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Finally, it has been observed that the control signal is relatively smooth
in the absolute case while this signal contains large high frequency com-
ponents in the relative coordinate strategy. Thus, we recommend the
use of the absolute coordinates. Besides, the choice of a backstepping
adaptive control has allowed to consider that the parameters of the
models are uncertain and to have computable bounds on the transient
behavior.

In Chapter 5, we were interested in an implementation issue of
the tuning functions design: that of numerical sensitivity. Indeed, the
complexity of the controller makes inevitable the use of digital com-
puters to perform the calculation of the control signal. Our work has
addressed the issue of the numerical sensitivity of the adaptive tuning
functions using both numerical simulations and an analytical descrip-
tion of the phenomenon. We have considered a relative degree three
linear system with unknown parameters and we have used the stan-
dard design of [KKK94]. Our methodology was to perturb slightly the
signals that the control law uses as inputs and observe the behavior
of the closed loop. It has been shown that while the increase of the
design parameters may be desirable to achieve a good transient per-
formance, it harms the control signal as this increase introduces large
high-frequency components due to the numerical errors. The analytical
expression of the effect of the parameters design on the control signal
has been obtained using the symbolic calculus sofware Maple. This
expression shows that if the design parameters have values larger that
unity, then they act as large high gains which explains the sensitivity
of the control to numerical disturbances.

Chapter 6 has extended the problem of synthesis to a class of non-
linear systems by means of computational methods. The basis of this
new computational approach is a recent convergence criterion [Ran01]|
with a remarkable convexity property and the sum of squares opti-
mization which is a computational relaxation that can be used in any
problem related to polynomial nonnegativity.
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Finally, in Chapter 7, we have considered polynomials and ratio-
nal vector fields and, thanks to the theory of the semialgebraic sets
[Put93], these computational tools have also been extended for the
case of polynomial and rational systems with uncertain parameters.
This can be done by considering the uncertain parameters as new poly-
nomial variables without augmenting the dynamic of the system. The
size of the semidefinite programs makes it possible to handle problems
that are otherwise too large to solve using state-of-the-art semidefinite
programming solvers. Semidefinite programming, or sum of squares
optimization, has a great deal of applications of linear and nonlinear
systems analysis and synthesis. Furthermore, these procedures can also
be extended to general computational methods in applied mathematics.

Future work

The immediate future work will focus on the following subjects:

Structural control

As an application of the adaptive backstepping control of linear systems
in the presence of bounded disturbances, we have developed a hybrid
(passive and active) seismic control system for hysteretic base-isolated
structures. In this thesis we have considered that the base isolator
device exhibits a hysteretic nonlinear behavior which is described an-
alytically by the Bouc-Wen model. The future research in the field of
structural control can be precised in the following lines.

From conceptual and potential effectiveness points of view, active
control systems have not yet been fully adopted by engineers. This may
be due in large part to the requirements in force and power supplies
and the risks of keeping systems continuously operative and reliable
during earthquakes. As an appealing alternative, semiactive control
strategies become very promising. In a semiactive control system, on-
line adjustment of the damping and/or stiffness of adaptable devices
are done according to feedback signal and control commands.

Moreover, we will consider other hysteretic base-isolated structures
and frictional base isolation systems.
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We also will evaluate these control algorithms in a benchmark
structure fully described in [NNJGO04]. The benchmark considered is
an eight story building and provides a well defined base isolated build-
ing with a broad set of carefully chosen parameter sets, performance
measures and guidelines to the control designers.

Backstepping complexity

In the case of the backstepping adaptive tuning functions control de-
sign, this thesis has addressed for the first time sensitivity and accuracy
issues. As a future work, we will focus on the unexplored field of the
complexity (a measure of time or space used by an algorithm) of the
backstepping algorithm with respect to the size of the problem (plant
order n or the relative degree of the plant p) with the help of compu-
tational tools and symbolic calculus software.

Sum of squares applications

In the thesis we have presented a computational relaxation to solve the
problem of synthesis of nonlinear systems with polynomial or rational
vector fields. Using the theory of semialgebraic sets these computa-
tional tools have been extended for the case of polynomial or rational
systems with uncertain parameters. Semidefinite programming, and
more precisely, sum of squares optimization, is a computational relax-
ation that can be used in any problem related to polynomial nonnega-
tivity. We propose continuing in the field of sum of squares optimization
in more applications of linear and nonlinear systems analysis and syn-
thesis (dissipativity analysis, parameter-state dependent LMI, stability
of hybrid systems, stability of time-delay systems, estimating domain
of attraction, safety verification, robustness analysis and density-based
synthesis), and extend these procedures to develop techniques for con-
structing polynomial functions whose purpose is to provide lower and
upper bounds for the functional outputs of the exact solution of partial
differential equations.
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Analysis, identification and control of systems with friction

Another question that will be considered is the analysis of mechanical
systems with frictional elements. Although friction may be a desirable
property, as it is for brakes, it is generally an impediment for servo
control. We will follow three complementary lines of research: the first
one will focus on the analysis of mechanical systems with a more com-
plete model of friction. The second line will deal with developing new
methodologies to identify the parameters that appear in the models of
friction. Finally, the third line will be devoted to proposing new con-
trol algorithms that can cope with the friction present in the mechanical
system.
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