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Abstract

Model-based Fault Detection and Isolation (FDI) is a major theoretical topic that is

becoming increasingly to one of the most significant key features to increase safety and

reliability of complex automatic control systems. Basically, model-based FDI relies on

the use of a mathematical model to describe the system behavior. However, uncer-

tainty remains always present when modelling a system since its effect is non-negligible

even if there are no process faults. One way to deal with uncertainty is to assume

its unknown-but-bounded description. Generally speaking, the uncertainty in so-called

set-based approaches is represented by a set that is unknown-but-bounded at each time

instant. Set-based approaches can be classified into three main paradigms: interval ob-

server approach, set-membership approach and set-invariance approach. In this thesis,

the influence of the uncertainty is addressed using the set-based approaches considering

a zonotopic representation. Moreover, this thesis presents both analysis and comparison

of the set-based approaches for the state estimation and FDI frameworks with the goal

of establishing the advantages and disadvantages of each approach, and also, to find

out their relationship in a formal mathematical framework. However, the mentioned

set-based approaches implicitly assume time-varying uncertainty. In the set-based ap-

proach, the propagation of the state set is affected by several problems such as the

wrapping effect, temporal variance on uncertain parameters (or uncertain parameter

time dependency) and range evaluation of an interval function, especially in the case of

using the interval hull of the set at each iteration. Therefore, conservative and unstable

results may be obtained (for even a stable system) when using the set-based approach

in the simulation of the system with parametric time-invariant uncertainties. On the

other hand, the approximated state set can be computed based on a set of point-wise

trajectories. This type of approach is called trajectory-based approach. Therefore, the

uncertain parameter time dependency is preserved if the set of point-wise trajectories is

generated using the mentioned trajectory-based approach.
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This thesis includes six parts. The first part addresses the state of the art and pro-

vides an introduction of the research tools. The second part proposes the mathematical

relationship between interval observer and set-membership approaches. The third part

focuses on the integration of the observer-based and set-invariance approaches in FDI

framework by means of computing both the minimum detectable and the minimum

isolable faults. The fourth part presents the design of an interval observer approach

enhancing the sensitivity to faults with respect to disturbances. The fifth part proposes

the robust interval observer design for uncertain systems subject to both time-invariant

and time-varying uncertainties. The last part draws some conclusions, summarizes this

research and gives clues for the future work.

Keywords: Uncertain systems, interval observer approach, set-membership ap-

proach, set set-invariance approach, fault detection, bounded uncertainties, zonotopes,

sensitivity analysis, minimum detectable/isolable fault, time-invariant and time-varying

uncertainties
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Resumen

La detección y el aislamiento de fallos (DAF) basado en modelos es un problema teórico

importante que se está convirtiendo cada vez más en una de las caracteŕısticas clave

para aumentar la seguridad y fiabilidad de los sistemas de control automático complejos.

Básicamente, la DAF basada en modelos utiliza un modelo matemático para describir

el comportamiento del sistema. Sin embargo, la incertidumbre permanece siempre pre-

sente cuando se modela un sistema, ya que su efecto no es despreciable, incluso si no hay

fallos que afecten al sistema. Una forma de tener en cuenta la incertidumbre es asumir

una descripción desconocida pero acotada. En términos generales, la incertidumbre en

los llamados enfoques basados en conjuntos se representa mediante un conjunto que es

desconocido pero acotado en cada instante de tiempo. Los enfoques basados en conjun-

tos se pueden clasificar en tres paradigmas principales: enfoque basado en observadores

intervalares, enfoque de pertenencia al conjunto y enfoque basados en conjuntos invari-

ante. En esta tesis, la influencia de la incertidumbre se aborda utilizando los enfoques

basados en conjuntos y representaciones zonotópicas de los mismos. Además, esta tesis

presenta tanto el análisis como la comparación de los enfoques basados en conjuntos

para la estimación de estado con el objetivo de establecer las ventajas y desventajas de

cada enfoque, y también, para descubrir su relación en un marco matemático formal.

Sin embargo, los mencionados enfoques basados en conjuntos suponen impĺıcitamente

una incertidumbre variante en el tiempo. En el enfoque basado en pertenencia a conjun-

tos, la propagación del conjunto de estados se ve afectada por varios problemas, como el

efecto de del aumento de incertidumbre, la varianza temporal de los parámetros inciertos

(o la dependencia temporal de los parámetros inciertos) y la evaluación de rango de una

función de intervalo, especialmente cundo se usa el ”Interval Hull” en cada iteración. Por

lo tanto, se pueden obtener resultados conservadores (incluso para un sistema estable)

en la simulación del sistema con incertidumbres paramétricas invariantes en el tiempo

con el uso del enfoque basado en pertenencia a conjuntos. Por otro lado, el conjunto
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de estados aproximados se puede calcular con base en un conjunto de trayectorias pun-

tuales. Este tipo de enfoque se denomina enfoque basado en trayectorias. Por lo tanto,

la dependencia temporal del parámetro incierto se conserva si el conjunto de trayectorias

puntuales se genera utilizando el mencionado enfoque basado en trayectorias.

Esta tesis incluye seis partes. La primera parte aborda el estado del arte y ofrece una

introducción de las herramientas de investigación. La segunda parte propone la relación

matemática entre los enfoques basados en observadores intervalares y de pertenencia

a conjunto. La tercera parte se centra en la integración de los enfoques basados en

observadores intervalares y conjuntos invariantes en el marco de la DAF mediante el

cálculo de los mı́nimos fallos detectables y aislables. La cuarta parte presenta el diseño

de un enfoque de observador intervalar que mejora la sensibilidad a fallos respecto a

las perturbaciones. La quinta parte propone el diseño robusto del observador intervalar

para sistemas inciertos sujetos a incertidumbres invariantes en el tiempo y variantes en el

tiempo. La última parte extrae algunas conclusiones, resume la investigación desarollada

y sienta las bases para el trabajo futuro.

Palabras clave: Sistemas inciertos, enfoque basados en observadores intervalares,

enfoque de pertenencia a conjunto, enfoque basado en conjuntos invariantes, detección

de fallos, incertidumbres acotadas, zonotopos, análisis de sensibilidad, fallos mı́nimos

detectables/aislables, incertidumbres invariantes en el tiempo y variantes en el tiempo
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Resum

La detecció i äıllament de fallades basada en models (DAF) és un problema teòric im-

portant que està esdevenint cada cop més una de les caracteŕıstiques clau per augmentar

la seguretat i la fiabilitat dels sistemes de control automàtic complexos. Bàsicament, la

DAF basada en models es basa en l’ús d’un model matemàtic per descriure el compor-

tament del sistema. Tanmateix, la incertesa roman sempre present quan es modelitza

un sistema ja que el seu efecte no és insignificant, fins i tot si no hi ha fallades en el

procés. Una forma de fer front a la incertesa és assumir una descripció desconeguda

però acotada. En termes generals, la incertesa en els anomenats enfocaments basats

en conjunts està representada per un conjunt desconegut però acotat en cada instant.

Els enfocaments basats en conjunts es poden classificar en tres paradigmes princi-

pals: l’enfocament d’observadors d’intervals, l’enfocament de pertinença a conjunts i

l’enfocament d’invariància. En aquesta tesi, s’aborda la influència de la incertesa mit-

jançant els enfocaments basats en conjounts fent servir una representació zonotòpica. A

més, aquesta tesi presenta tant l’anàlisi com la comparació dels enfocaments basats en

conjounts per a l’estimació de l’estat i la seva aplicació a DAF amb l’objectiu d’establir

els avantatges i desavantatges de cada enfocament i, a més, conèixer la seva relació en

un marc matemàtic formal. Tanmateix, els esmentats enfocaments basats en conjunts

assumeixen impĺıcitament una incertesa variable en el temps. En l’enfocament basat

en conjounts, la propagació del conjunt d’estats es veu afectada per diversos problemes

com l’efecte d’embolcall, la variació temporal dels paràmetres incerts (o la dependència

en el temps dels paràmetres incerts) i l’avaluació del rang d’una funció intervalar, espe-

cialment en el cas d’utilitzar el ”Interval Hull” del conjunt a cada iteració. Per tant, es

poden obtenir resultats conservadors i inestables (fins i tot per a un sistema estable) en

la simulació del sistema amb incerteses temporals invariants paramètriques amb l’ús del

mètode basat en conjunts. D’altra banda, el conjunt d’estats aproximat es pot calcular

a partir d’un conjunt de trajectòries puntuals. Aquest tipus d’enfocament s’anomena

enfocament basat en trajectòries. Per tant, la dependència en el temps del paràmetres es
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conserva si el conjunt de trajectòries puntuals es generen utilitzant l’enfocament basat

en trajectòries esmentat.

Aquesta tesi inclou sis parts. La primera part, presenta l’estat de la tècnica i fa una

introducció de les eines de recerca. La segona part proposa la relació matemàtica entre

l’observador intervalar i els enfocaments de pertinença. La tercera part se centra en la

integració dels enfocaments basats en observadors i d’invariància de conjunts en la seva

aplicació a DAF caracteritzant la mı́nima fallada detectable i äıllable. La quarta part

presenta el disseny d’un observador intervalar que millora la sensibilitat a les fallades

respecte les perturbacions. La cinquena part proposa el disseny robust d’observadors

d’intervals per a sistemes incerts, subjectes a incerteses tant temporals com variables es

el temps. L’última part presenta algunes conclusions, resumeix la investigació realtizada

i estableix les bases per al treball futur.

Paraules clau: Sistemes incerts, enfocament d’observador d’intervals, enfocament

de pertinença a conjuntos, enfocament de conjunts invariants, detecció de fallades, in-

certeses limitades, zonotopes, anàlisi de sensibilitat, fallades mı́nima detectable/äıllable,

incerteses temporals i variable
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Notation

Throughout the thesis

R Set of real numbers

Z+ Set of non-negative integer numbers

Rn Set of n-dimensional real vectors

Rn×m Set of real n×m matrices

Br Unitary box composed of r unitary intervals

|·| Absolute value

‖·‖s Euclidean s-norm

‖·‖F Frobenius norm

‖·‖∞ Infinity norm⊕
Minkowski sum⊗
Kronecker product

In n× n identity matrix.

On×m n×m matrix with zero entries.

diag(·) Diagonal matrix with appropriate dimensions

α> Transpose of a vector/matrix α

[x, x] Interval with lower bound x and upper bound x

{·} Set

〈c, R〉 Zonotope with the center c and the shape matrix R

�X Interval hull of a set X
∈ It belongs to

⊂ Subset

∩ Intersection

xi ith element of the vector x ∈ Rn

aij ith Element in the ith row and jth column of the matrix A ∈ Rn×m

X > 0 (< 0) X is a positive (negative) definite matrix
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X ≥ 0 (≤ 0) X is a positive (negative) semidefinite matrix

xk The subindex k indicates the discrete time

min /max Minimum / maximum

X−1 Inverse of the matrix X ∈ Rn×n

cov(Z) Covariation of the zonotope Z
det(A) Determinant of the matrix A

tr(A) Trace of the matrix A

↓q Reduction operator
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Acronyms

FD Fault Detection

FDI Fault Detection and Isolation

FTC Fault-tolerant Control

IOA Interval Observer Approach

SMA Set-membership Approach

SIA Set-invariance Approach

MDF Minimum Detectable Fault

MIF Minimum Isolable Fault

RPI Robust Positively Invariant

mRPI Minimal Robust Positively Invariant

LTI Linear time-invariant

LTV Linear time-varying

TIU Time-invariant Uncertainty

TVU Time-varying Uncertainty

LMI Linear Matrix Inequality

KF Kalman Filter

ZKF Zonotopic Kalman Filter

ZF Zonotopic Filter
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Chapter 1

Introduction

This chapter corresponds to the introduction of this PhD thesis document in which all

the work carried out to achieve the planned objectives is detailed. Thereby, the aim of

this chapter is to first describe the main motivations of this PhD thesis in Section 1.1.

Then, the thesis objectives are presented in Section 1.2. Finally, in Section 1.3, a brief

outline of the structure of this dissertation is presented, which provides a summary of

every chapter.

1.1 Motivation

In order to produce efficient and high-quality products, modern processes and systems

must satisfy their function correctly. Consequently, there are some important issues as

safety operation, cost efficiency or environmental protection that must be considered in

engineering applications.

In this context, faults can be the cause for unsatisfactory performance or even in-

stability of the system. There are several possible explanations for occurrence of the

faults, e.g., design errors, implementation errors, human operator errors. Therefore,

Fault Detection and Isolation (FDI) has been an active research topic for the scientific

community since 1970’s. Generally speaking, the goal of FDI theory is devoted to assess

the effect of the fault occurrence on the system in order to detect its presence as quick

as possible, to avoid an unexpected performance. After detecting the fault, maintaining

the overall system stability and having an acceptable performance will be the next target

to be achieved. Therefore, Fault-tolerant Control (FTC) is the name used to describe

3
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all techniques capable of maintaining desirable performance of the system. Since 1980’s,

there has been an increasing interest in FTC for improving the safety and reliability of

the system from academic and industrial communities. In this regard, the first concern

of the FTC techniques is fault diagnosis that includes detection and isolation, and then

designing the suitable controller for the system. Generally speaking, the right state

estimation is required for both Fault Detection (FD) and FTC techniques. Moreover,

FD and FDI rely on the quality of the state estimation. However, there is always the

unavoidable effect of the uncertainties in the system that should be distinguished from

the effect of the fault.

The motivation of this PhD thesis is to design methods for FDI of complex systems

for increasing their performance since even a small fault can have an important influence

on the performance of the system. Set-theoretical approaches, which are quite well

established tools in automatic control, are chosen due to their abilities dealing with the

non-negligible effect of the uncertainties. To evaluate the fault diagnosis performance,

the characterization of the Minimum Detectable Fault (MDF) and Minimum Isolable

Fault (MIF) is done considering different type of actuator and sensor faults. Therefore,

the aim of this dissertation is to be focused on designing novel set-based FDI approaches

by integrating all available ones that can improve their performance. On the other hand,

enhancing the sensitivity to faults with respect to uncertainties, rather than optimizing

the precision of the state estimation is another motivation of this thesis.

1.2 Thesis objectives

Keeping the mentioned issues in previous section in mind, the general objective of this

PhD thesis is to study the advantages and disadvantages of the existing FDI approaches

to design novel set-based algorithms in order to improve their performance. In this

regard, this thesis is divided into different parts to fulfill this general objective. The

roadmap of this dissertation is presented in Figure 1.1.
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Interval observer approach Set-membership approachSet-invariance approach

4. Mixed set-invariance approach and

sensitivity analysis using interval observer

3. Interval observer versus set-membership

using zonotopes

5. Integrated interval observer and

set-invariance approaches ensuring

fault detection and isolation properties

7. Interval observer design for a system subject to

both time-invariant and time-varying uncertainties

I

II

8. Concluding remarks and further extensions

rather than state estimation

6. Interval observer fault detection

1. Intruduction

2. State of the art

III

Figure 1.1: Roadmap of the thesis.
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Furthermore, a sequence of specific objectives were accomplished as well, which are

outlined next:

Objective I Revise and study the advantages and disadvantages of current existing

interval observer approach (IOA) and set-membership approach (SMA) for com-

bining them under specific conditions and figure out under which conditions they

provide better or equivalent FD performance.

Objective II The same objective as in the previous case but now considering the set-

invariance approach (SIA) in order to provide the connection between SIA and

IOA.

Objective III To apply the developed method in characterization of MDF using sen-

sitivity analysis.

Objective IV To complement the developed SMA with set-theoretic methods in or-

der to provide fault detectability and isolability properties to the FDI approach

proposed.

Objective V To provide the connection of IOA and SIA in estimating the magnitude

of MDF and MIF.

Objective VI To provide a method to optimize the FD performance rather than the

state estimation one.

Objective VII Revise and study the advantages and disadvantages of set-based and

trajectory-based interval observers in order to provide the condition between them

under some specific conditions.

Objective VIII Design an IOA for the dynamic system with time-invariant parameter

uncertainty.

Objective IX Complement the developed method in previous objective for the system

subjected to both time-invariant and time-varying uncertainties.

Objective X Apply the obtained results to a real case study to assess their performance

and effectiveness.

1.3 Thesis structure

The structure of this dissertation is described in this section introducing the different

parts and chapters. Thereby, a short description of contents and its related published

papers are provided for each chapter.
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Apart from Chapter 1, where the motivation and general objectives of the thesis and

Chapter 2, where the state of the art of the main topics considered in this dissertation

are described, this PhD thesis is divided into two parts related to different mentioned

objectives as follow:

Part I entitled Contributions contains the following chapters:

• Chapter 3: IOA versus SMA using zonotopes.

• Chapter 4: Mixed SIA and sensitivity analysis using IOA.

• Chapter 5: Integrated IOA and SIA ensuring FDI properties.

• Chapter 6: Interval observer FD rather than state estimation.

• Chapter 7: Interval observer design for a system subject to both time invariant

and varying uncertainties.

Part II entitled Conclusions and future research contains the following chapter:

• Chapter 8: Concluding remarks and further extensions.

Moreover, a short description of contents and the related published papers are pro-

vided for every chapter in the following subsections.

1.3.1 Chapter 3: IOA versus SMA using zonotopes

This chapter mainly focuses on the analysis and comparison of the IOA and SMA from

both state estimation and FD point of view for the case of uncertain linear systems. Both

state disturbance and measurement noise are assumed unknown-but-bounded through

a zonotopic set representation. Both approaches have been mathematically related and

compared in state estimation and FD tasks. A case study based on a two-tanks sys-

tem is used to show the relationship between both approaches while comparing their

performance.

This chapter is based on the following papers:

M. Pourasghar, V. Puig and C. Ocampo-Martinez. Comparison of Set-

membership and Interval Observer Approaches for State Estimation of Uncertain

Systems. European Control Conference (ECC), (pp. 1111-1116), Denmark, 2016.
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M. Pourasghar, V. Puig and C. Ocampo-Martinez. Interval Observer versus

Set-membership Approaches for FD in Uncertain Systems using Zonotope. Inter-

national Journal of Robust and Nonlinear Control, Accepted.

1.3.2 Chapter 4: Mixed SIA and sensitivity analysis using IOA

This chapter focuses on the characterization of the MDF by means of residual sensitivity

integrated with the SIA when using an IOA. Modelling of the uncertainties propagation

is carried out by using zonotopic representation of the set and assuming unknown-

but-bounded nature (i.e., in the set-membership framework). Finally, a quadruple-

tank system is employed to both illustrate and discuss the effectiveness of the proposed

approach.

This chapter is based on the following papers:

M. Pourasghar, V. Puig and C. Ocampo-Martinez. Characterization of the

Minimum Detectable Fault of Interval Observers by using Set-invariance The-

ory. 3rd Conference on Control and Fault-Tolerant Systems (SysTol), (pp. 79-86),

Spain, 2016.

A. R. Kodakkadan, M. Pourasghar, V. Puig, S. Olaru, C. Ocampo-

Martinez and V. Reppa. Observer-based Sensor Fault Detectability: About

Robust Positive Invariance Approach and Residual Sensitivity. IFAC World

Congress, 50(1): 5041-5046, France, 2017.

M. Pourasghar, V. Puig and C. Ocampo-Martinez. Interval observer-based

fault detectability analysis using mixed set-invariance theory and sensitivity anal-

ysis approach. International Journal of System and Science, (pp. 1-22), 2019.

1.3.3 Chapter 5: Integrated IOA and SIA ensuring FDI properties

This chapter focuses on the design of an on-line interval observer-based FDI algorithm

using SIA. In SIA, FDI can be done during the steady-state operation of the system.

The effect of the uncertainties is modeled by considering zonotopes. The MDF and

the MIF are characterized for a given type of faults using the integration of sensitivity

analysis and SIA. Finally, a simulation example based on a two-tanks system is used to

show the effectiveness of the proposed approaches.
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This chapter is based on the following papers:

M. Pourasghar, V. Puig and C. Ocampo-Martinez. Interval observer fault

detection ensuring detectability and isolability by using a set-invariance approach.

10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical

Processes (SAFEPROCESS), Poland, 2018.

M. Pourasghar, V. Puig and C. Ocampo-Martinez. Integrated interval-observer

set-invariance approach ensuring FDI properties. Journal of Franklin Institute,

Under review.

1.3.4 Chapter 6: Interval observer FD rather than state estimation

This chapter focuses on enhancing the sensitivity to faults with respect to disturbances in

the context of the bounded-error paradigm using Zonotopic Kalman Filters (ZKF). The

proposed on-line maximization provides an optimal time-varying observer gain leading

to the so-called FD-ZKF filter that allows enhancing the FD properties. The charac-

terization of MDF magnitude is done based on a sensitivity analysis. The effect of the

uncertainty is modeled utilizing a zonotopic representation of the involved sets. A case

study based on a quadruple-tank system is used both to illustrate and compare the ef-

fectiveness of the results obtained from the FD-ZKF approach compared to a pure ZKF

approach.

This chapter is based on the following paper:

M. Pourasghar, C. Combastel, V. Puig and C. Ocampo-Martinez. FD-

ZKF : A Zonotopic Kalman Filter Optimizing Fault Detection rather than State

Estimation. Journal of Process Control, 73, (pp. 89-102), 2019.

1.3.5 Chapter 7: Interval observer design for a system subject to both

TIU and TVU

This chapter addresses the design of an IOA for linear dynamic systems affected by

both time-invariant uncertainty (TIU) and time-varying uncertainty (TVU). First, the

comparison of set-based IOA and trajectory-based IOA is done. Then, an integrated

set-based and trajectory-based observer is proposed in order to overcome the drawbacks

of using the set-based approach. Furthermore, H∞ performance is considered in order
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to compute the observer gain by using an LMI technique. Finally, a numerical example

and a real case study based on a two-tank system are used to show the effectiveness of

the proposed approach.

This chapter is based on the following papers:

M. Pourasghar, V. Puig, C. Ocampo-Martinez and Q. Zhang. Reduced-order

Interval-observer Design for Dynamic Systems with Time-invariant Uncertainty.

IFAC World Congress, 50(1): 6271-6276, France, 2017.

M. Pourasghar, V. Puig and C. Ocampo-Martinez. On robust interval observer

design for uncertain systems subject to both time-invariant and time-varying un-

certainties. International Journal of Control, Special issue on interval estimation

applied to diagnosis and control of uncertain systems, Under review.



Chapter 2

State of the art

This chapter introduces the main sources of inspiration in this PhD dissertation. A brief

discussion on the different fault diagnosis approaches is given focusing on the passive

robust FD methods based on the available set-based approaches.

2.1 Introduction to fault diagnosis

Over the past century, there has been increased application of control systems. Also, the

control systems are being more and more sensitive to the faults because of their higher

complexity. Therefore, considerably more work will need to be done to determine the

effect of a fault on the systems. Recent developments in control theory have highlighted

the need of working on the FD field for developing methods to allow the system to

achieve the desire performance even in faulty situation. In this regard, researchers have

shown an increased interest in the FD concept since the beginning of 1970’s [BKL+06],

[PC97]. This topic is still an interesting field of research in control theory community

and in the industry.

According to [BKL+06], fault is identified as a deviation of the system structure

or the system parameters from the nominal system. Hence, the fault is known as an

unexpected change of the system behaviour. Generally speaking, the procedure of mon-

itoring the system to detect the fault and finding its locations is called fault diagnosis.

In order to monitor the system, three steps should be done with the following tasks:

• FD that is used to test whether or not a fault has occurred,

11
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• Fault isolation that is used to determine the location of the fault occurrence,

• Fault identification and estimation that is use to estimate the size and type or

nature of the fault.

Moreover, fault diagnosis is often considered as fault detection and isolation, ab-

breviated FDI, in the literature [Pat94, FD97]. Traditionally, fault diagnosis in the

application context is based on hardware redundancy methods. In this context, multiple

sensors, actuators, computers and software are used to measure and/or control a par-

ticular variable. Mainly, a voting scheme is applied to the hardware redundant system

to decide whether and when a fault has occurred and its likely location amongst redun-

dant system components. However, extra equipment and the additional space required

for the equipments and their maintenance costs are known as the major problem with

this approach. Moreover, considering the conflict between the reliability and the cost of

adding more hardware, it is reasonable to use the dissimilar measured values together to

cross check each other, rather than replicating each hardware individually. This concept

is known as analytical redundancy [Fav94].

2.2 FDI approaches

Different methodologies have been studied for FDI that include a great variety of tech-

niques. However, there are two major classifications of FDI methods: those based on

the analytic model of the system [Ger98], called Model-based methods, and the methods

that do not use the model of the system [BN93], called Data-based methods. This thesis

is focused on the study of the Model-based methods, however the techniques that do

not use the system model will be reviewed shortly next.

2.2.1 Data-based methods

Data-based FDI methods include those methods that do not use the mathematical model

for detecting the occurrence of the fault. These methods include hardware redundancy,

limit checking, frequency spectrum analysis and logical reasoning techniques [ZJ08].

• Hardware redundancy : This technique requires to install multiple sensors to mea-

sure the physical quantity. Any significant difference between the measurements
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known as sensor fault. This physical redundancy consists extra cost of hardware

and an additional weight that can represent serious concerns in some applications.

• Limit confirmation: This method is based on comparing the system measurements

with fixed thresholds (limits). Exceeding the threshold indicates a faulty opera-

tion. Since the plant variables can vary widely due to the normal input variations,

the major drawback of this approach is related to the selection of the detection

thresholds in a conservative way. Moreover, the fault isolation is extremely diffi-

cult since the effect of a single fault in a component can spread to many variables

and activate the fault alarms.

• Spectrum analysis: Since most of the plant variables exhibit a typical spectrum of

frequency under normal operation conditions, any deviation, is an indication of a

fault occurrence.

• Statistical process control : In this approach, a large amount of data is required

to find appropriate operation to monitor. Then, specific features of signals are

extracted and compared with the measurements.

2.2.2 Model-based methods

The use of mathematical models to describe the system behaviour is known as the

fundamental concept of model-based FD approaches [Ger98, CP99, CFS16, Com15b].

Therefore, to improve performance of FD is directly related with the quality of the

mathematical model [CP99, BKL+06]. But, in practice, a mismatch between the ac-

tual process and its mathematical model is non-negligible even if there are no process

faults because of the presence of model uncertainty, unknown disturbances and noises

[PMdOB13]. Thus, dealing with uncertainty and noise/disturbance is an important is-

sue that implies developing robust model-based FD approaches [CP99]. In recent years,

several methods have been developed and introduced to explicitly consider such uncer-

tainties in the models [REZ12, Pui10, ULHM15]. See [Kal60], [May82], [Sch68], [Pui10]

and [ULHM15] for more information related to different available ways for modeling the

effect of uncertainties in model-based FDI framework.

FD in model-based approaches relies on checking the consistency of the observed

behavior from measured outputs using sensors and the estimated behavior that is com-

puted by using the system model [Ger98]. This consistency test is based on generating

the residual by computing the difference between the output predicted values from the
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model and the real measured values obtained from the sensors [CP99, Ger15]. Then, the

fault can be detected by comparing that residual with a threshold value that takes into

account the uncertainty associated with measurement noise, disturbances, and the model

mismatch between the real and modeled system behavior [PQES03]. If the residual is

larger than such threshold, the existence of the fault can be proved [Pui10, FPG04].

Otherwise, the system is assumed to be still in healthy operation and working properly.

Moreover, model-based FD can be categorized considering how residuals are gener-

ated: observers (as e.g., KF or unknown input observers), parity equations and parame-

ter estimation [CP12, Ger98]. Then, the decision of the FD module can be made based on

evaluating the residual generated by using the output estimation error [CP12, PQES03].

In particular, in the KF-based approach, the innovation is considered as a residual to

detect the fault (i.e., in the presence of faults, the prediction error is not null). In

this framework, KF, extended KF and unscented KF are different techniques for state

estimation of linear/nonlinear systems where the uncertainties are taken into account

stochastically [Kal60, KB61]. In the set-membership approach, the uncertainties are

assumed unknown but bounded [Pui10, Com13, LSA+13b, PPOM16a]. In the case

of the set-membership-based state estimation [ABC05, NPH12, Jau09], the estimation

characterizes a set of possible states [ABC05, PCQ01, BAC06, Com03].

As in the observer-based approaches, FD using parity equations is based on checking

possible inconsistencies of the measured outputs with suitable analytical redundancy

relations derived from the system model [PA06, FD94, Din08]. On the other hand, it is

possible to detect the fault based on the parameter estimation where the plant is firstly

identified in fault-free scenario (called reference model). Then, the existence of the

fault is proved by checking the reference model with the parameters that are repeatedly

re-identified on-line [Ise05, IBPA05, LC06a]. Some works have explored the relation

between different approaches regarding FD performance [Ger98, Ger97, KPP+17]: for

example, if the residual generators have been designed for the same specification, parity

relation and observer-based approaches can produce identical residuals.

Furthermore, methods that explicitly consider uncertainty in the FD task are known

as robust approaches. Most robust approaches try to maximize the fault sensitivity while

minimizing the sensitivity to uncertainty at the residual generation phase, following the

active robust approach [CP99, Din08, ZDLW03] 1. On the other hand, the passive robust

1In the book [CP12], there is an excellent survey of the active approach.
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approach tries to bound the effect of uncertainty in the residual evaluation phase by

generating adaptive thresholds [Pui10]. In the former class, the main idea is to decouple

the effect of the uncertainty [CP12], and the latter approach is based on enhancing

the robustness of the FD system at the decision-making stage [PQEdlH02]. The main

purpose of the passive FD approach is to determine whether or not there is any member

in the uncertainty set that can explain the measurements. Then, any inconsistency

between the measurement and this set is considered as fault occurrence. Therefore, it

is not necessary to know the exact model of as a fault. In recent years, there has been

an increasing interest in using the passive approach since its main advantage over the

corresponding active approach is to achieve robustness in the FD procedure in spite of

the number of uncertain parameters in the model by using the underlying parameter

representation without any simplification [XTW+17, CQ14, Tab15, TCRZ15, SRHS17].

Moreover, based on [PC97] and [CPZ96], several techniques can be used to model the

noises and disturbances affecting the system. For example, KF is one of the useful tech-

niques addressing this issue, but in these methods, the knowledge about the statistical

distribution of the disturbances and noises should be available. Therefore, the set-based

methods were proposed as an alternative approach to characterize the uncertainties in

the system. In these methods, only the bounds of disturbances and noises are required.

Taking into account the research presented in [Sto11], [ODDSS10], [ABC05], [Com03],

[OMDDS10] and [FTF12], the set-based methods can be classified into the following

categories:

• interval observer approach (IOA) [Pui10, Com15b, XSP+13],

• set-membership approach (SMA) [ABC05, LSA+13b, LSA+13a], and

• set-invariance approach (SIA) [Kof05, KHS07, SDD10, XSP+13, RKKM05].

Then, the FD decision is done using some of the methods in these three categories.

On the other hand, the state estimation problem has become one of the significant is-

sues in control theory since knowing the state of a system is crucial for solving many

problems in both control and FD frameworks. There are several approaches in the liter-

ature for representing the uncertainties. These approaches can be classified in two main

categories: stochastic and deterministic. According to [Kal60], the differences between

these two main families are related to the way of how noises and perturbations are mod-

eled. In stochastic approaches, noises and perturbations are assumed to be described by
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some known statistical distributions (typically Gaussian) while deterministic approaches

consider noises and disturbances as unknown variables with known bounds. Within the

family of deterministic approaches, the IOA and SMA have been introduced separately

[PSQ03, ERCZ13, MB11]. The state estimation provided by both approaches is given

in a form of a set of states at each time instant.

IOA is one of the most common approaches in FD methods. This approach has

appeared in the last decade for systems with uncertainties [BG04], allowing to esti-

mate the state set one time instant ahead based on the set estimated in the previous

time instant [PAR99, ABC05]. Generally speaking, the FD test is done by means of

generating the residual signal by comparing actual measurements with the output pre-

dicted by using the IOA at each time instant, i.e., the FD decision is done by checking

the consistency of threshold (zero in ideal case) with the observations obtained from

some sensors. On the other hand, the SMA state estimation is an alternative approach

for estimating the state of the system including the measured output and bounded

noises [LSA+13c]. Furthermore, the SMA algorithm has been already applied to the

FD framework (see [ABC05], [Com03], [LAC+11] and [Pui10]). In order to compute the

set of states using both families of approaches, there are several geometrical structures

considered in the literature, e.g., polytopes [VZ96], ellipsoids [PNDW04], [Com05] and

zonotopes [PSQ03, LAC+11, LSA+13c, Com03]. In these approaches, the set is approx-

imated by using the outer bounds of the exact uncertain state set at time instant k − 1

and measured output set at time instant k, where k ∈ Z denotes the discrete time.

In addition, set invariance is another approach that can be used in the FDI context.

This approach obtains the residual set in the healthy mode considering unknown-but-

bounded uncertainties. This invariant set can be used for showing the healthy operation

of the system. Therefore, the fault will be detected if the residual in faulty mode is

outside of the healthy invariant set. Thus, as long as both healthy and faulty sets are

separated, the FDI test can be performed.

Moreover, considering a discrete linear time-invariant (LTI) interval model, the ap-

proximated state set can be computed based on a set of point-wise trajectories following

the so-called trajectory-based approach [PSQ05a, Tib93]. In the set-based approach, the

propagation of the state set is affected by several problems such as the wrapping effect,

temporal variance on uncertain parameters (or uncertain parameter time dependency)

and the range evaluation of an interval function, especially in the case of using the inter-

val hull of the set at each iteration. Therefore, conservative and unstable results may be
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obtained (for even a stable system) when using the set-based approach for the simulation

of the system with parametric time-invariant uncertain. The advantage of trajectory-

based approach in comparison with the set-based approach is that allow overcoming the

wrapping effect because uses real trajectories based on selecting a particular value of

the uncertain parameters. Meanwhile, the uncertain parameter time dependency can

be preserved if the set of point-wise trajectories are generated [PSQ05a].

2.3 Set-based state estimation and FD approaches

As it is mentioned, model-based FD relies on the use of a model describing the system

behavior in order to check the consistency with the observations obtained from some

sensors. Therefore, the performance of FD depends on the quality of the mathematical

model and it is vital to obtain a simple mathematical model as proper as possible repre-

senting the behavior of the system to be monitored. The class of systems addressed in

this thesis is that of a discrete-time invariant linear uncertain system with the following

state-space form:

xk+1 = Axk +Buk + Eωωk, (2.1a)

yk = Cxk + Eυυk, (2.1b)

where u ∈ Rnu , y ∈ Rny and x ∈ Rnx are the input, the output and the state vectors,

respectively. Moreover, A ∈ Rnx×nx , B ∈ Rnx×nu and C ∈ Rny×nx are the state-space

matrices. Both state disturbance and process noise vectors are defined by ω ∈ Rnx and

υ ∈ Rny , respectively. Besides, Eω and Eυ are the associated distribution matrices with

appropriate dimensions while k ∈ N indicates the discrete time.

Moreover, the measurement noise and process disturbances are assumed to be un-

known but bounded, i.e.,

W = {ωk ∈ Rnx : |ωk − cω| ≤ ω̄, cω ∈ Rnx , ω̄ ∈ Rnx} , (2.2a)

V = {υk ∈ Rny : |υk − cυ| ≤ ῡ, cυ ∈ Rny , ῡ ∈ Rny} , (2.2b)

where cω, ω̄, cυ and ῡ are constant vectors. Noticed that the inequalities associated to

|ωk − cω| and |υk − cυ| in (2.2) are considered component-wise.
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Furthermore, (2.2) can be rewritten as a zonotopic representation of the set as

W = 〈cω, Rω〉 , (2.3a)

V = 〈cυ, Rυ〉 , (2.3b)

where cω and cυ denote the centers of the disturbance and noise bounding zonotopes,

respectively, with their generator matrices Rω ∈ Rnx×nx and Rυ ∈ Rny×ny , respectively.

Assumption 2.1. The pair {A,C} of the dynamical model (2.1) is detectable. �

Assumption 2.2. Disturbance and noise bounds represented in (2.3) are assumed to

be bounded by a unitary hypercube zonotopes centered at the origin, i.e., ∀ k ≥ 0, ω ∈
[−1, 1]nω = 〈0, Inω〉 and υ ∈ [−1, 1]nυ = 〈0, Inυ〉 where Inω ∈ Rnω×nω and Inυ ∈
Rnυ×nυ denote the identity matrices. �

Henceforth, the index k+ 1 will be replaced by + and k will be omitted for the sake

of simplified notations. Then, the dynamical model (2.1) is simply rewritten as

x+ = Ax+Bu+ Eωω, (2.4a)

y = Cx+ Eυυ. (2.4b)

Consequently, the index k−1 will be replaced by − when it will be needed throughout

the thesis.

2.3.1 IOA

FD test in the IOA consists in testing whether the system measurements are consistent

with the behavior described by the model in healthy operation. The existence of the fault

is demonstrated in the case that measurements are inconsistent with the behavior of the

model. Monitoring the dynamical model (2.4) can be done by designing a Luenberger

observer of the form

x̂+ = Ax̂+Bu+ L(y − ŷ), (2.5)

where x̂ is the state estimation. Moreover, the observer gain L should be computed such

that (A− LC) was a Schur matrix.

Assumption 2.3. The initial state x0 belongs to the set X io0 =
〈
ciox,0, R

io
x,0

〉
, where
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ciox,0 ∈ Rnx denotes the center and Riox,0 ∈ R
nx×nRiox,0 is a non-empty matrix containing

the generators matrix of the initial zonotope X io0 . �

Therefore, according to [XPOM+15], the resulting interval observation of the dy-

namical model (2.4) can be defined by using Proposition 2.1.

Proposition 2.1. (Zonotopic-observer structure) Considering the dynamical model

(2.4), observer (2.5) and Assumptions 2.2 and 2.3, the center ciox and the segment (shape)

matrix Riox of the state bounding zonotope X̂ io, i.e.,

X̂ io =
〈
ciox , R

io
x

〉
, (2.6)

can be recursively computed using

ciox,+ = (A− LioC)ciox +Bu+ Lioy, (2.7a)

Riox,+ =
[
(A− LioC)R̄iox Eω −LioEυ

]
, (2.7b)

where R̄iox =↓q
{
Riox
}

and Lio is the observer gain that provides degrees of freedom to

tune the system monitoring with respect to its aim, e.g., with the goal of optimizing the

state estimation or FD according to some given criterion. Moreover, the state inclusion

property x ∈
〈
ciox , R

io
x

〉
holds for all k ≥ 0 (see Properties B.2 and B.3).

Proof. Assume x ∈
〈
ciox , R

io
x

〉
, ω ∈ 〈0, Inω〉 and υ ∈ 〈0, Inυ〉 where the inclusion prop-

erty (see Property B.2) is preserved by using the reduction operator, which means

xk ∈
〈
ciox , R̄

io
x

〉
. Thus, the set-based interval observation can be written using (2.5)

as

x+ ∈
〈
ciox,+, R

io
x,+

〉
=
〈
(A− LioC)ciox , (A− LioC)R̄iox

〉
⊕ 〈Buu, 0〉

⊕ 〈0, Eω〉 ⊕
〈
Lioy, 0

〉
⊕
〈
0, −LioEυ

〉
.

(2.8)

Thus, based on Definitions B.22 and B.24, ciox,+ and Riox,+ in (2.8) can be derived as in

(2.7).

In [Com15b], an special type of IOA named Zonotopic Filter (ZF) is proposed. This

approach can be viewed as the deterministic counterpart of the stochastic KF when

uncertainties (noise and disturbance) are assumed to be unknown but bounded. The



20 Chapter 2 : State of the art

ZF yields the same zonotopic representations for the set in (2.5) for the state estimation

of (2.4) but using the optimal observer gain given by Theorem 2.1.

Theorem 2.1. Considering x ∈ X̂ io at time k, the optimal observer gain Lio,∗ that

minimizes the F-radius of the state bounding zonotope (2.7) at time instant k + 1 is

computed as

Lio,∗ =
(
ARiox R

io>
x C>

)(
CRiox R

io>
x C> + EυE

>
υ

)−1
. (2.9)

Proof. According to [Com15b], minimizing the F -radius and FW -radius of a zonotope

is equivalent to minimize the trace of its covariance. Therefore, the proof is based on

the minimization of the F -radius and the FW -radius of the zonotope that is computed

by the observer. The F -radius of the zonotope in (2.7) can be obtained as

J =
∥∥Riox,+∥∥2

F
= tr(Riox,+R

io>
x,+) = tr(P+), (2.10)

where J denotes the Frobenius radius and P is the covariance of the zonotope matrix

Riox,+. Likewise, the FW -radius of the zonotope in (2.7) will lead to

JW =
∥∥Riox,+∥∥2

F,W
= tr(Riox,+R

io>
x,+) = tr(WP+), (2.11)

where JW denotes weighted Frobenius radius and WP is the weighted-function covari-

ance of the zonotope matrix Riox . Hence, the Frobenius radius in (2.10) can be written

as

J = tr(
[
(A− LC)R̄iox Eω −LioEυ

] [
(A− LC)R̄iox Eω −LioEυ

]>
).

Then, by considering Qω = EωE
>
ω and Qυ = EυE

>
υ , (2.10) can be rewritten as

J = tr
(

(A− LioC)P (A− Liok C)> + LioQηL
io> +Qω

)
.

Similarly, the weighted Frobenius radius Jw in (2.11) satisfies

Jw = tr
(
W (A− LioC)P (A− LioC)> +WLioQηL

io> +WQω

)
.

Therefore, the minimum Lio is obtained when
∂Jw
∂Lio

= 0, then using the definition of

matrix trace in Definition B.7 yields

∂Lio tr(WLio(CPCT +Qυ)) = 2∂Lio tr(WALioLio
>

),
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where ∂Lio tr(·) is a short notation for
∂tr(·)
∂Lio

. If W is an SPD matrix (see Definition B.1)

and W = W T � 0, by transposition and left multiplication of W−1 and considering

Definition B.7, it can be written that −APC> + Lio(CPC> + Qυ) = 0. Then, the

optimal gain Lio,∗ will be computed as it is written in (2.9) 2. If W is an SPD matrix

(see Definition B.1) and W = W T � 0, by transposition and left multiplication of W−1,

the optimal gain Lio,∗ will be computed as it is written in (2.9).

Moreover, the system output can be predicted using Proposition 2.2.

Proposition 2.2. Considering the dynamical model (2.4) and Proposition 2.1, cioy and

Rioy defining the output-bounding zonotopic set
〈
cioy , R

io
y

〉
can be computed as

cioy = Cciox (2.12a)

Rioy =
[
CR̄iox Eυ

]
. (2.12b)

Proof. Assume that x ∈
〈
ciox , R

io
x

〉
and υ ∈ 〈0, Inυ〉 for all k ≥ 0, where the inclusion

is preserved by using the reduction operator, which means x ∈
〈
ciox , R̄

io
x

〉
. Thus, (2.4b)

can be written as

yk ∈
〈
cioy , R

io
y

〉
=
〈
Cciox , CR̄

io
x

〉
⊕ 〈0, Eυ〉 . (2.13)

Therefore, based on Definitions B.22 and B.24, cioy and Rioy in (2.13) can be expressed

as (2.12). This gives the proof of Proposition 2.2.

Now, the difference between the measurement and the predicted system output,

called residual, can be generated using the Proposition 2.3.

Proposition 2.3. (Residual generation using IOA) Considering Proposition 2.2 and

the measurement equation in (2.4b), the center cior and the generator matrix Rior of the

residual zonotopic set are generated as

cior = yk − Cciox , (2.14a)

Rior =
[
−CR̄iox −Eυ

]
. (2.14b)

Proof. The output (2.4b) can be written as

0 = y − Cx− Eυυk. (2.15)

2The proof follows from the results available in [Com15b].
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Algorithm 2.1 FD test based on IOA
1: k ←− 0
2: X0 =

〈
ciox,0, R

io
x,0

〉
3: while 1 do
4: Computing the center ciox,k+1 and shape matrix Riox,k+1 of the state observer using (2.7)

5: Computing the center cioy,k and shape matrix Rioy,k of the output prediction using (2.12)

6: Computing the center cior,k and shape matrix Rior,k of the residual using (2.14)

7: if 0 /∈
〈
cior,k, b(R

io
r,k)
〉

then

8: Fault← true
9: else

10: Fault← false
11: end if
12: k ←− k + 1
13: end while

Now, considering x ∈
〈
ciox , R

io
x

〉
and υ ∈ 〈0, Inυ〉, (2.15) becomes

0 ∈ 〈y, 0〉 ⊕
〈
−Cciox , −CRiox

〉
⊕ 〈0, −Eυ〉 , (2.16)

where ciox is known using observer (2.7). Thus, considering Definitions B.22 and B.24, cior

and Rior in (2.16) can be expressed as in (2.14). This gives the proof of Proposition 2.3.

Hence, the FD test can be done by checking the satisfaction of 0 /∈
〈
cior , R

io
r

〉
. A

computationally efficient way to implement the detection test without increasing the

false alarm rate consists in testing whether or not 0 belongs to an aligned box enclosing

the zonotope
〈
cior , R

io
r

〉
, i.e.,

0 /∈
〈
cior , b(R

io
r )
〉
, (2.17)

where
〈
cior , b(R

io
r )
〉

is enclosed by an aligned box denoted by b(Rior ).

Algorithm 2.1 summarizes the FD test procedure using IOA in this thesis. The FD

test in Algorithm 2.1 is based on checking if 0 is inside the residual zonotopic set. This

set is propagated online to detect the existence of the fault.

2.3.2 SMA

Alternatively, one possible way for detecting the fault is to make use of the SMA that

is carried out based on [ABC05] and Proposition 2.4.
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Proposition 2.4. Considering the dynamical model (2.4), the center csmx and the seg-

ment (shape) matrix Rsmx of the state bounding zonotope X̂ sm corrected by the ith output,

i.e.,

X̂ smi = 〈csmx , Rsmx 〉 , (2.18)

can be obtained by intersecting the prediction state set Psm =
〈
csmp , Rsmp

〉
, where csmp

and Rsmp denote the center and segments of the zonotope Psmk , respectively, and the set

of states consistent with each output strip Sy as

csmx = csmp + λi(yi − Cicsmp ), (2.19a)

Rsmx =
[
(I − λiCi)Rsmp −λiEυi

]
, (2.19b)

with

csmp =Acsmx,− +Bu−, (2.20a)

Rsmp =
[
ARsmx,− Eω

]
, (2.20b)

where λ is a vector that provides degrees of freedom to tune the system monitoring, e.g.,

optimizing the state bounding zonotope to be as robust as possible with respect to effect

of uncertainties.

Proof. Considering the dynamical model (2.4), the prediction state set can be computed

as a zonotope, i.e.,

Psm =
〈
csmp , Rsmp

〉
, (2.21)

Furthermore, csmp and Rsmp can be calculated using (2.20) at time instant k. Additionally,

a strip Sy is computed by considering each measurement component y as

Syi = {x ∈ Rnx : |Cix− yi| ≤ Eυi} . (2.22)

According to [ABC05], intersection between the zonotope in (2.21) and the obtained

strip in (2.22) provides the state estimation using SMA. In order to compute the inter-

section between a zonotope and a strip, the Property B.4 can be used. Therefore, using

Property B.4 to compute the intersection of (2.21) and (2.22), the time evolution of the

center and the segments of state bounding zonotope (2.18) are given as it is derived in

(2.19).
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Based on (2.19), the obtained state bounding zonotope using SMA is parametrized

by means of a vector λ. Computing the parameter λ can be done using several methods,

e.g., singular value decomposition, segments minimization, volume minimization and

the P-radius minimization [ABC05, LSA+13c].

In this thesis, the optimal value of λ is explicitly computed by using Theorem 2.2.

Theorem 2.2. Considering the dynamical model (2.4) and the state bounding zonotope

(2.19) at time instant k, the optimal value of λ that minimizes the F-radius of the

zonotope (2.19) to be robust with respect to effect of uncertainties at time instant k + 1

is computed as

λ∗i =
(
Rsmx Rsm

>
x C>i

)(
CiR

sm
x Rsm

>
x C>i + EυiE

>
υi

)−1
, (2.23)

where the superscript ∗ denotes the optimal value.

Proof. Based on [ABC05], the obtained zonotopic set can be minimized according

to its generator matrix. Considering Property B.4, the intersection of the zonotope

Psm =
〈
csmp , Rsmp

〉
in (2.21) and the strip Syi = {x ∈ Rnx : |Cix− yi| ≤ Eυi} in (2.22)

creates the zonotope X̂ sm with the generator matrix Rsmx =
[
(I − λiCi)Rsmp −λEυi

]
.

The size of this zonotope depends on the Frobenius norm of its generator. Therefore,

minimizing the predicted zonotope is equal to minimizing the Frobenius norm of matrix

Rsmx . Moreover, for simplification of the computation procedure, Rsmx is considered as

Rsmx = M + λib
>,

where M =
[
Rp 0

]
and bT =

[
−CRp Eυi

]
. Then, using Definition B.8, Rsmx can be

derived as

‖Rsmx ‖2F =
∥∥∥M + λib

>
∥∥∥2

F
= tr(M> + bλ>i )(M + λib

>). (2.24)

Furthermore, (2.24) can be rewritten as

‖Rsmx ‖2F = tr(M>M) + tr(M>λib
>) + tr(bλ>i M) + tr(bλ>i λib

>).

Thus, the Frobenius norm of matrix Rsmx can be modified as

‖Rsmx ‖2F = 2λ>i Mb+ b>bλ>i λi + tr(M>M).
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Algorithm 2.2 FD using the SMA

1: k ←− 0
2: Psm0 =

〈
csmp,0 , R

sm
p,0

〉
3: while 1 do
4: Obtain and store input-output data {uk, yk}
5: Compute the approximate set of estimated states Psmk using (2.20)
6: Compute the strip from the measured output Sy,k using (2.22)
7: if Psmk ∩ Sy,k = ∅ then
8: Fault← true
9: else

10: Fault← false
11: end if
12: k ←− k + 1
13: end while

Moreover, the minimization of matrix ‖Rsmx ‖2F is achieved by imposing
d ‖Rsmx ‖2F

dλ
= 0.

Thus,
d(2λ>i Mb+ b>bλ>i λi + tr(M>M))

dλi
= 0. (2.25)

At the end, after computing the derivative of (2.25), the optimal value of vector λ is

computed as

2Mb+ 2b>bλ∗i = 0,

and hence

λ∗i =
−Mb

bT b
. (2.26)

Now, substituting M and b into (2.26) yields the optimal λ in (2.23).

Remark 2.1. According to [LSA+13a], in order to apply the SMA to the multi-output

case, i.e., ny > 1, the system can be considered as several single-output systems based on

the dimension of the outputs ny. Considering the system as several single-output systems

lead to use Property B.4 and compute the vectors λ1, λ2, . . . , λny , independently.

In general, the FD test using SMA is based on checking the intersection between

the obtained zonotope Psm in (2.21) and the strip Sy in (2.22). In the case that the

intersection is empty, the existence of the fault will be proved, i.e., if

Psm ∩ Sy = ∅, (2.27)

the fault will be detected. Otherwise, the system is considered working in an healthy

operation. Following the FD test based on the SMA, Algorithm 2.2 can be used.
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Remark 2.2. According to [LSA+13a], in order to apply the state estimation using

SMA to multi-measurement cases, i.e., ny > 1, the system can be considered as several

single-measurement systems based on the dimension of the measurement ny. Considering

the system as several single-measurement systems leads to use Property B.4 towards

computing the optimal vectors λ1, λ2, . . . , λny , independently 3.

2.3.3 SIA

Generally speaking, the RPI set defined as a bounded region in state-space that the

system state can be confined, despite of considering the bounded system uncertainties

[SDD10, XSP+13]. Furthermore, the mRPI set is a unique and compact RPI set that

contained in any closed RPI set [SZDDM08, RKKM05].

Given the system (2.4) and considering the observer (2.5), the trajectories of the

residual will ultimately converge to an invariant set. Then, based on [SZDDM08] and

[SODDS11], the constructed RPI set in state space can be projected to the residual

space and whenever the corresponding residual is inside this set, it will remain inside.

Furthermore, the residual can be generated as

r = y − ŷ = Cx̃+ Eυυ, (2.28)

where x̃ = (x− x̂) is the state estimation error whose dynamics can be described using

(2.4) and (2.5) as

x̃+ = (A− LC)x̃+ Edd, (2.29)

where d =
[
ω υ

]>
.

According to [Bla99], the set Φx̃ is an RPI set for (2.29) if and only if for all ω ∈ W
and υ ∈ V,

(A− LC)x̃+ Edd ∈ Φx̃. (2.30)

There is a large amount of reported results describing the construction of Φx̃ [Kof05].

In this thesis, the Ultimate Bound (UB) method reported in [KHS07] will be used in

order to obtain the RPI set. Therefore, Φx̃ can be computed using Theorem 2.3.

Theorem 2.3. [KHS07] Consider the Jordan Conical form of matrix (A − LC) as

3This approach called equivalent single-measurement approach in [LSA+13a].
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J = V (A− LC)V −1, where J is a diagonal matrix corresponding to the Jordan-normal

form of (A − LC) and V is a non-singular transformation matrix. Thus, the state

estimation error x̃ in (2.29) will ultimately converge within the polyhedral RPI set that

is constructed as

Φx̃ =
{
x̃ ∈ Rnx : |V −1x̃| ≤ (I − |J |)−1|V −1|d+ ε

}
, (2.31)

where ε can be any arbitrary small vector with strictly positive components.

Therefore, Φx̃ can be computed straightaway using Theorem 2.3. Then, considering

x̃ ∈ Φx̃ and υ ∈ V, the projection of x̃ to a residual space, i.e., invariant set for the

residual in (2.28) denoted by Φr, can be computed as

Φr = CΦx̃ ⊕ V. (2.32)

According to [XSP+13], if x̃ ∈ Φx̃, then r ∈ Φr. Therefore, the existence of the fault

will be detected based on the SIA whenever

r /∈ Φr. (2.33)

2.4 Summary

This chapter presents the state of art regarding FD with a special emphasis in robust

approaches. It is worth mentioning that the main idea of this chapter is to give the

general picture of the research area. Then, some of the existing set-based FD approaches

related to this research are also reviewed. Therefore, not all details of these knowledge

are presented in this chapter. More details and discussions regarding the advantages and

drawbacks of each mentioned approaches, which can be undrestood as motivations for

the thesis, will be reported in the introduction section at the beginning of each chapter.

After introducing the main background and the required tools for this thesis, the main

objective of the next chapters is to focus on each approach to investigate the advantages

and drawbacks of each mentioned approaches in order to provide new method that

improve the performances in both state estimation and FD frameworks.
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Chapter 3

IOA versus SMA using

zonotopes

This chapter presents both analysis and comparison of the IOA and SMA for the state

estimation and FD in uncertain linear systems. The considered approaches assume that

both state disturbance and measurement noise are modeled in a deterministic context

following the unknown but bounded approach. The propagation of uncertainty in the

state estimation is bounded through a zonotopic set representation. Both approaches

have been mathematically related and compared when used for state estimation and

FD. A case study based on a two-tanks system is employed for showing the relationship

between both approaches while comparing their performance.

3.1 Introduction

IOA and SMA estimators have been introduced separately [ERCZ13, MB11]. IOA has

appeared during the last decade as an attractive approach for the state estimation of

uncertain dynamical systems [PSE+06, BRPN14, RC13]. In this approach, the state set

can be estimated at time instant k based on the state estimation set at time instant k−1

[REZ12, ABC05]. IOA is also nowadays one of the ways for dealing with uncertainty

in FD applications. The fault can be detected using an IOA by generating an adaptive

threshold for the residual signal that allow checking the consistency of the measurements

with the estimated output. Likewise, SMA is an alternative approach that allows to

estimate the system state including the measured output and bounded noises [LSA+13c,

31
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MNPLW13] by means of the intersection between the prediction state set and the set1

of states consistent with the output measurements (as it will be further explained in the

following part of the thesis) [ABC05].

Furthermore, several model-based FD methods have been developed for computing

the minimum magnitude of the fault that can be detected through the use of IOA and

SMA. The difference between the model-based approaches regarding the MDF is related

to the different ways of modeling the fault. A fault in a state estimation scheme can be

modeled as a state or as an unknown input [TB14]. Additionally, the effect of observer

gain and its influence on the computation of the the minimum detectable fault (MDF)

has already been studied in [MPES10].

However, to the best of the authors knowledge, both IOA and SMA are still con-

sidered as two different approaches. Therefore, the main contribution of this chapter

is to analyze and compare both state estimation approaches in order to establish the

advantages and disadvantages of each approach, and also, to find out their relationship

in a formal mathematical framework. Moreover, the comparison is also performed in

the context of FD application by means of proposing a novel FD test to connect the

approaches for the characterization of the MDF. Finally, the relationship between both

approaches when applied to both the state estimation and FD is illustrated by using a

two-tanks case study

The remainder of this chapter is organized as follows: first, the problem formulation

regarding state estimation for each approach and the way to relate them is discussed

in Section 3.2. Then, the approaches are compared into the FD application context

in Section 3.3. In Section 3.4, a case study based on a two-tanks system is proposed

in order to show the aforementioned relationships and present the comparison results.

Finally, in Section 3.5 the main conclusions of the chapter are drawn.

1As it was mentioned in Chapter 2, the set enclosing the state estimation considering uncertainty can
be approximated by means of several geometrical shapes, e.g., polytopes [Bro12, WLSL15], ellipsoids
[ZLX14, TSOMPE12, YL12, Com05] and zonotopes [XPOM+15, LAC+11, LSA+13c, Com03].
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x̂k+1 = Ax̂k +Buk + Lk(yk − ŷk)

ŷk = Cx̂k

Direct image
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Ŷ io
k

(a) State estimation using IOA.

x̂k+1 = Ax̂k +Buk

|Cixk − yk,i| ≤ Eυi

Direct image
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X̂ sm
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(b) State estimation using SMA.

Figure 3.1: Graphical interpretation of state estimation algorithms
using IOA and SMA.

3.2 Comparison of IOA and SMA from the state estima-

tion point of view

The state estimation using SMA and IOA is introduced in Chapter 2 based on [ABC05]

and [Com15b], respectively. The main goal of this section is to compare both approaches

from the state estimation point of view. Just for sake of clarity, the analytical comparison

will be focused on the single-output case in this section as in [ABC05]. But, according

to [LSA+13a], the generalization of the comparison can be easily extended to the multi-

output case considering Remark 2.2. It is worth mentioning that there are other manners

to formulate the state estimation for the multi-output case using SMA approach based

on [LSA+13a].

Moreover, Proposition 3.1 can be used in order to obtain the comparable structure

of the state estimation using IOA and SMA.
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Proposition 3.1. Considering the dynamical model (2.4) and the Luenberger observer

structure in (2.5), the center and the shape matrix of the state-bounding observer, i.e.,

X̂ io =
〈
ciox , R

io
x

〉
can be computed using

ciox = ciop + Lio(y− − Cciop ), (3.1a)

Riox =
[
(I − LioC)R̄iop −LioEυ

]
, (3.1b)

where

ciop =Aciox,− +Bu−, (3.2a)

Riop =
[
AR̄iox,− Eω

]
. (3.2b)

Proof. According [LSA+13a], computation of the state-bounding observer using the Lu-

enberger observer structure in (2.5) for the dynamical model (2.4) can be divided into

two prediction and update steps. In the prediction step the estimated set at time instant

k − 1 is used to compute the priori estate estimation. Then, this prior state estimation

is updated with the information from the measurement (the obtained estimated set in

update step is called posteriori estimated set). Therefore, the prior state estimation set

P io =
〈
ciop , R

io
p

〉
can be computed using the system matrices A and B, and the input at

the previous time step, i.e., u− (using the knowledge of the system) as in (3.2). Then,

the obtained set can be updated using the observer gain Lio as (3.1).

So far, from the comparison of (2.19) with (3.1), it is still not evident how to relate

both state estimation approaches because of the different temporal information of the

measured output used for each approach. More precisely, the state estimation using the

IOA considers information of the output measurements at the previous time instant while

state estimation using SMA is obtained by using the information of the measurements

at the current time instant. But, in the case that the parameter λ in SMA and the

observer gain in IOA are identical, the same width of the state bounding zonotopes will

be obtained. However, the center of the state bounding zonotopes are still different due

to use of different temporal information of the measured output. Therefore, both state

estimation approaches should be synchronized such that both use the measured output

y given at the same time instant.

Thus, following [Oga95], the IOA proposed by [Com15b] can be modified leading to
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a current IOA (CIOA) given by

X̂ cio =
〈
cciox , Rciox

〉
, (3.3)

where cciox and Rciox denote the center and the segments of the zonotope (3.3) bounding

the set of estimated states. Following the same idea as Proposition 3.1, by introduc-

ing the prior estimated set in prediction step as Pciok =
〈
cciop , Rciop

〉
, both center and

segments of X̂ cio can be propagated at the discrete-time instant k as

cciox = cciop + Lcio(y − Ccciop ), (3.4a)

Rciox =
[
(I − LcioC)R̄ciop −LcioEυ

]
, (3.4b)

with

cciop =Acciox,− +Bu−, (3.5a)

Rciop =
[
AR̄ciox,− Eω

]
. (3.5b)

As it can be seen from (3.4), the state estimation set X̂ cio can be obtained based on

the information of the measurement given at the current time instant. When using the

CIOA, the similarity of the cciop with the csmp and also Rciop with Rsmp can be observed by

comparing (3.4) with (2.19). It can also be noted that, using the same initial condition

for both approaches, i.e., x0 belongs to the both initial zonotope X̂ cio0 =
〈
cciox,0, R

cio
x,0

〉
and X̂ sm0 =

〈
csmx,0, R

sm
x,0

〉
, and taking into account the formulation of CIOA, the only

difference between the approaches is related to the different manners of selecting the

observer gain Lcio and the parameter λ.

According to [ABC05], state estimation using SMA is parametrized by means of a

vector λ at each time instant k in (2.18) and the proposed method to minimize the size

of the zonotope (2.18) is designed based on the minimization of its segments as it is

introduced in Theorem 2.2. In addition, the optimal value of λ is obtained as in (2.23)

according to [ABC05]. Therefore, if the observer gain is designed following Theorem 3.1,

the state bounding zonotopes provided by CIOA and SMA are identical.

Theorem 3.1. Considering the dynamical model (2.4) and x ∈ X̂ cio at time k, the

optimal observer gain Lcio,∗ that minimizes the F-radius of the state-bounding zonotope

in (3.3) at time instant k + 1 is computed as
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Lcio,∗ =
(
Rciox Rcio>x C>

)(
CRciox Rcio>x C> + EυE

>
υ

)−1
. (3.6)

Proof. Taking into account the segments of the zonotope X̂ cio are obtained as the

columns of the matrix in (3.4b), the size of the estimated state at each time instant

depends on the Frobenius norm of this matrix. Therefore, the optimal observer gain

Lcio given by (3.6) is computed by minimizing the Frobenius norm of Rciox in (3.4). Fur-

thermore, taking into account the fact that minimizing F -radius of a zonotope (which

plays the same role as P-radius in LMI-based robust stability analysis) is equivalent to

minimize the trace of its covariance and considering Definition B.7, it can be written

that

∥∥Rciox ∥∥2F = tr(Rciox Rcio>x ) = tr

([
(I − Lcio)CRciop
−LcioEυ

] [
(I − Lcio)CRciop −LcioEυ

])

= tr

([(
(I − Lcio)CRciop

) (
(I − Lcio)CRciop

)> (
(I − Lcio)CRciop

) (
−LcioEυ

)>(
−LcioEυ

) (
(I − Lcio)CRciop

)> (
−LcioEυ

) (
−LcioEυ

)>
])

=
(
(I − Lcio)CRciop

) (
(I − Lcio)CRciop

)>
+
(
−LcioEυ

) (
−LcioEυ

)>
.

(3.7)

Therefore, the optimal value of the observer gain Lcio is determined such that

∂
∥∥Rciox ∥∥2

F

∂Lcio
= 0. Thus, by considering (3.7), it can be written that

− 2Rciop Rcio>p + 2Lcio,∗CRciop Rcio>p C> + 2Lcio,∗EυE
>
υ = 0. (3.8)

Finally, after the proper manipulation of (3.8), the optimal observer gain can be

expressed as in (3.6).

In the IOA case, the effect of measurements is considered through the selection of the

observer gain. Thus, if the observer gain Lio is selected as proposed in (2.9) according

to the standard IOA, the value of the observer gain will depend on the relative values

of the measurement noise and input disturbances as in the SMA. It means, the gain in

the IOA and λ in SMA plays the same role for state estimation.

Moreover, by designing the gain of the IOA as proposed by [Com15b], the formulation

of the observer gain and the optimal parameter λ∗ proposed by [ABC05] for the SMA,

are identical because these parameters are independent with respect to the information

of the output measurements. Thus, the temporal synchronization of both approaches
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Figure 3.2: IOA and SMA in state estimation framework.
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can be done if instead of the standard structure of the IOA, the CIOA is used. Later on,

CIOA is proposed based on using the zonotopic definition of the set for modeling the

bounded uncertainties. Consequently, the optimal gain of CIOA is obtained based on

minimizing the size of the obtained zonotope in (3.3) whose center and shape matrix can

be computed using (3.4). Therefore, the similarity of the SMA and the IOA is proved

by introducing the CIOA. Figure 3.2 summarizes the comparison of the IOA and SMA.

3.3 Comparison of IOA and SMA from the FD point of

view

Model-based FD is based on comparing the measured outputs from the system with

their estimation using the model of the healthy system. If an inconsistency is detected,

the existence of a fault will be proved. So far, in this chapter, IOA and SMA are both

described and compared in the state estimation context. In this section, the comparison

of both methods will be performed when applied to FD framework. In addition, the

considered faults can be classified into different categories depending on their locations

as

• actuator faults, which affects the system inputs,

• sensor faults that affect the measurements of the inputs and outputs of the system.

In this thesis, different actuator and sensor faults will be considered. Including their

effect, the dynamical model (2.4) can be rewritten as

x+ = Ax+Bu+ Eωω + Fafa, (3.9a)

y = Cx+ Eυυ + Fyfy, (3.9b)

where vectors fa ∈ Rnu and fy ∈ Rny denote the actuator and output sensor faults with

their associated matrices Fa ∈ Rnx×nu and Fy ∈ Rny×ny , respectively. Furthermore, the

other type of fault that is considered in this thesis is known as input sensor fault which

its effect is considered on the input of the observer (2.5) as

x̂+ = Ax̂+B (u+ Fufu) + L(y − ŷ), (3.10)

where fu ∈ Rnu represents the input sensor fault with its associated matrix Fu ∈ Rnu×nu .
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Figure 3.3: Graphical interpretation of the different actuator and
sensors faults.

Figure 3.3 shows the schematic graphical interpretation of the different actuator and

sensors faults.

Assumption 3.1. The additive fault represented in (3.9) and (3.10) are assumed to be

bounded by a unit hypercube expressed as centered zonotopes, i.e., for all k ≥ 0, f• ∈〈
0, Inf•

〉
, where the subscript • can be respectively assigned to y, u or a associated with

the considered output sensor, input sensor and actuator faults, respectively.

�

The sensitivity of the residual to a fault characterizes how the different considered

actuator and sensor faults affect the residual. Mathematically speaking, it can be ob-

tained as the difference between the residuals that are obtained from healthy and faulty

operations of the system presented in (2.4) and (3.9), respectively, normalized by the

fault size [Ger98].

3.3.1 FD analysis using SMA

As it is mentioned in Appendix B, the FD test based on SMA can be done by using

Algorithm 2.2. The graphical interpretation of the proposed FD test in healthy and

faulty cases is shown in Figure 3.4. As it can be seen from Figure 3.4, Psm and S are

affected by the fault. Then, their intersection is empty. Consequently, the fault can be

detected using Algorithm 2.2.

As shown in Appendix B, Psm in the first step of Algorithm 2.2 can be computed

as in (2.21) using (2.20). Then, given the zonotope Psm in (2.21) and considering the
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ŷk

Psm
k

X̂ sm
k

Sy,k,i

(a) Healthy operation of the system.
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(b) Faulty operation of the system.

Figure 3.4: Graphical interpretation of FD test using the SMA.

vector Ci from each measurement (where index i indicates the ith row), the zonotope

support strip Ssmp can be introduced at time instant k as

Ssmp =
{
x ∈ Rnx : ssmp,i ≤ Cix ≤ ssmp,i

}
, (3.11)

where ssmp,i and ssmp,i are the minimum and the maximum values of the zonotope support

strip, respectively, which can be computed as

ssmp,i = Cic
sm
p +

∥∥∥Rsm>p C>i

∥∥∥
1
, (3.12a)

ssmp,i = Cic
sm
p −

∥∥∥Rsm>p C>i

∥∥∥
1
. (3.12b)

As can be seen in (3.12), the effect of state disturbance is embedded in matrix

Rsmp that can be computed using (2.20b). Similarly, in order to consider the effect of

measurement noise from the second step of the Algorithm 2.2, the strip Sy in (2.22) can
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be rewritten for each output as

Syi = {x ∈ Rnx : |yi − Cix| ≤ Eυ,i} , (3.13)

where yi indicates each output measurement. The normalized form of the strip Sy can

be derived as

Syi =

{
x ∈ Rnx : −1 ≤ yi

Eυ,i
− Ci
Eυ,i

x ≤ +1

}
. (3.14)

In general, each measurement allows to determine a set of consistent states as it is

defined in (3.13), where Sy is the region between two hyperplanes that is normalized in

(3.14). Then, based on [LSA+13b], the computation of measurement strip can be done

using (3.14) that is considered component-wise. Thus, sy,i and sy,i values of the strip

Sy can be calculated at each time instant k by using the measurement data in (3.14) as

sy,i =
yi
Eυ,i

+ 1, (3.15a)

sy,i =
yi
Eυ,i

− 1. (3.15b)

Then, the intersection between the zonotope support strip in (3.11) and the mea-

surement strip in (3.14) is empty if

ssmp,i > sy,i, (3.16a)

ssmp,i < sy,i. (3.16b)

Consequently, the fault will be detected if one of the conditions in (3.16) is satisfied.

Based on conditions (3.16), the minimum detectable abrupt fault will be characterized

for the considered type of faults assuming that are introduced as in (3.9) and (3.10).

Case I: Minimum detectable output sensor fault

The dynamical model (3.9) in the case of output sensor fault can be rewritten as follows:

x+ = Ax+Bu+ Eωω, (3.17a)

y = Cx+ Eυυ + Fyfy. (3.17b)



42 Chapter 3 : IOA versus SMA using zonotopes

Therefore, the minimum magnitude of output sensor fault that can be detected is ob-

tained by considering conditions (3.16) and following Theorem 3.2.

Theorem 3.2. (Minimum detectable output sensor fault) Considering the faulty dy-

namical model (3.17) and the conditions (3.16), the minimum detectable abrupt output

sensor fault can be characterized as

Fy,i fy,i > 2
∥∥∥Rsm>p C>i

∥∥∥
1

+ 2, (3.18)

where the term Fy =
Fy
Eυ

represents the sensitivity with respect to the considered output

sensor fault while the obtained expression for the output sensor fault is normalized using

Eυ. Moreover, the value 2 refers to the consideration of the worst-case scenario, i.e.,

the prediction is considered with the extreme value (it is located at either the lower or

the upper bound of the considered threshold).

Proof. Following Algorithm 2.2, it can be written that

Cic
sm
p +

∥∥∥Rsm>p C>i

∥∥∥
1
<

yi
Eυ,i

− 1. (3.19)

Then, considering the dynamical model (3.17), (3.19) becomes

Cic
sm
p +

∥∥∥Rsm>p C>i

∥∥∥
1
< Cix+

υi
Eυi

+ Fy,i fy,i − 1. (3.20)

Moreover, by considering the worst-case scenario, where the disturbances have a

maximal influence in the opposite direction compared to that of the occurring fault,

(3.20) can be written in faultless scenario, i.e., fy = 0, as

Cic
sm
p +

∥∥∥Rsm>p C>i

∥∥∥
1

= Cix+
υi
Eυi
− 1. (3.21)

Then, considering the worst-case scenario, (3.19) can be written as Cic
sm
p +∥∥∥Rsm>p C>i

∥∥∥
1

= 2
∥∥∥Rsm>p C>i

∥∥∥
1
. It means, x is placed in the border of the zonotope

support strip (the measurement strip is placed in the farthest possible location). Fur-

thermore, minimizing Cix +
υi
Eυi

, the minimum detectable abrupt output sensor fault

can be expressed as in (3.18).
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Case II: Minimum detectable input sensor fault

The minimum detectable input sensor fault can be computed considering the faulty input

that is injected to the model as in (3.10). Therefore, in this case, the model/observer is

affected by the faulty input. In this regard, (2.20) is expressed as

csmp =Acsmx,− +B(u− + Fufu,−), (3.22a)

Rsmp =
[
ARsmx,− Eω

]
. (3.22b)

Now, the FD test is based on Algorithm 2.2. Moreover, the computation of the mini-

mum magnitude of the abrupt input sensor fault that can be detected can be determined

by means of Theorem 3.3.

Theorem 3.3. (Minimum detectable input sensor fault) Considering (3.22) and the

conditions (3.16), the minimum detectable abrupt input sensor fault can be expressed as

Fu,i fu,i > 2
∥∥∥Rsm>p C>i

∥∥∥
1

+ 2, (3.23)

where the term Fu = −CBFu is the sensitivity with respect to the considered input sensor

fault.

Proof. Considering that Algorithm 2.2 can be used for detecting the fault based on SMA,

the FD test is performed by checking the intersection between the zonotope support

strip and the measurement strip that can be computed in the same way as in (3.12) and

(3.15), respectively. Thus, in the case of input sensor fault, the conditions (3.16) can be

rewritten as

Cic
sm
p + Fu,i fu,i +

∥∥∥Rsm>p C>i

∥∥∥
1
<

yi
Eυ,i

− 1. (3.24)

Hence, by assuming the worst-case scenario, the expression (3.23) can be obtained

by the suitable manipulation of (3.24).

It is worth mentioning that the detection of the input sensor fault depends on the

direction of vector C and the input of the system. Thus, the input should be designed

to guarantee that the input sensor fault is not in the orthogonal direction of vector C.

Otherwise, the fault can not be detected.
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Case III: Minimum detectable actuator fault

The faulty dynamical model (3.9) in the case of actuator fault is rewritten as

x+ = Ax+Bu+ Eωωk + Fafa, (3.25a)

y = Cx+ Eυυ. (3.25b)

The minimum magnitude of abrupt actuator fault that can be detected is obtained

by considering (3.16) and following Theorem 3.4.

Theorem 3.4. (Minimum detectable actuator fault) Considering the dynamical model

(3.25) and the conditions (3.16), the minimum detectable abrupt actuator fault can be

computed as

Fa,i fa,i > 2
∥∥∥Rsm>p C>i

∥∥∥
1

+ 2, (3.26)

where Fa = CFa is the sensitivity with respect to the given actuator fault.

Proof. Considering the faulty dynamical model (3.25) and conditions (3.16) to guarantee

the detection of the fault, it can be written as

Cic
sm
p +

∥∥∥Rsm>p C>i

∥∥∥
1
< Cix+

υi
Eυ,i

+ Fa,i fa,i − 1. (3.27)

Therefore, the expression of the minimum detectable actuator fault can be obtained as

it is written in (3.26) by considering the worst-case scenario and adequate manipulation

of (3.27).

Similarly to the case of input sensor fault, the minimum magnitude of the actuator

fault that can be detected is related to the direction of the vector C and the input.

Therefore, the input should be designed to avoid the problem of having the actuator

fault and vector C in the same orthogonal direction.

Remark 3.1. It can be noted that the interpretation of the term 2
∥∥∥Rsm>p

∥∥∥
1

in the case

of SMA stands for the width of the zonotopes Psm in (2.21), where the effect of state

disturbance is taken into account. On the other hand, the effect of measurement noise is

considered through Sy in (3.14). Then, based on the consideration of the two mentioned

uncertainties, it can be guaranteed that a fault to be detectable should have a higher

effect in comparison with the effect of uncertainties. Therefore, the characterized MDF
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Algorithm 3.1 Strip-based FD test using IOA

1: k ←− 0
2: X io0 =

〈
ciox,0, R

io
x,0

〉
3: while 1 do
4: Obtain and store input-output data {uk, yk}
5: Compute the state estimation X̂ iok using (3.1)
6: Compute the strip from the measured output Sy,k using (2.22)

7: if X̂ iok ∩ Sy,k = ∅ then
8: Fault← true
9: else

10: Fault← false
11: end if
12: k ←− k + 1
13: end while

is known as the smallest magnitude of the considered fault whose effect is higher than

the effect of the uncertainties. �

3.3.2 FD analysis using IOA

Now, the IOA is applied to FD in order to characterize the MDF for the same type of

considered faults than in the case of SMA. The standard procedure of the FD test based

on IOA relies on checking the inconsistency of the measurements with their provided

estimations by the observer model. In other words, any inconsistency between the

measured outputs using sensors and the estimated behavior that is computed by using

the system model, called residual, is known as a fault occurrence2.

However, considering the standard method of residual generation in order to charac-

terize the MDF, it is not possible to determine a clear relationship of IOA and SMA in

FD framework since a common FD test that allows relating both approaches is required.

A possible solution in order to homogenize the approaches is to use the zonotope sup-

port strip in the case of IOA for formulating the FD conditions. In this context, the

generated residual is formulated in terms of strip mathematical expression that can be

compared with the SMA. Moreover, the strip Sy can be obtained using (3.14) at each

time instant k, where the effect of the measurement noise is taken into account (same

as the second step in the case of SMA mentioned in Section 2.3). On the other hand,

considering the vector C, the zonotope support strip Siox can be defined for X̂ io based

2See [Ger98] for further details.
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x̂k+1 = Ax̂k +Buk + Lk(yk − ŷk)

Direct imageX̂ io
k

X̂ io
k

Sy,k

yk

|Cxk − yk| ≤ Eυ

Inverse image

(a) Healthy operation of the system.

x̂k+1 = Ax̂k +Buk + Lk(yk − ŷk)

Direct imageX̂ io
k

X̂ io
k

yk

|Cxk − yk| ≤ Eυ

Inverse image

Sy,k

(b) Faulty operation of the system.

Figure 3.5: Graphical interpretation of the strip-based FD test using
IOA.

on using the state estimation of the IOA in (3.1) at each time instant k as

Siox =
{
x ∈ Rnx : siox,i ≤ Cix ≤ siox,i

}
, (3.28)

where siox,i and siox,i are the minimum and the maximum values of the zonotope support

strip, respectively. Furthermore, siox,i and siox,i are determined at each time instant k as

siox,i = Cic
io
x +

∥∥∥Rio>x C>i

∥∥∥
1
, (3.29a)

siox,i = Cic
io
x −

∥∥∥Rio>x C>i

∥∥∥
1
. (3.29b)

Remark 3.2. The effect of the state disturbance is embedded into matrix Riox , which

can be computed using (3.1b). �

Therefore, the existence of the fault will be proved by checking

X̂ io ∩ Sy = ∅, (3.30)
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such that in the case of empty intersection, the fault will be detected. Otherwise, FD

cannot be guaranteed. Thus, one of the following conditions should be satisfied in the

case of faulty operation of the system:

siox,i > sy,i, (3.31a)

siox,i < sy,i. (3.31b)

Algorithm 3.1 summarizes the strip-based FD test using IOA. Moreover, the graphical

interpretation of Algorithm 3.1 is shown in Figure 3.5.

Next, the FD performance for different type of abrupt faults will be characterized

when the FD test in (3.30) is considered.

Case I: Minimum detectable output sensor fault

The system to be monitored in the case of output sensor fault can be described as

(3.17). Considering the zonotope support strip in (3.29) and the normalized form of the

measurements strip in (3.15), the minimum detectable abrupt output sensor fault based

on the IOA can be computed by using Theorem 3.5.

Theorem 3.5. (Minimum detectable output sensor fault) Considering the faulty dy-

namical model (3.17) and the conditions (3.31), the minimum magnitude of the abrupt

output sensor fault that is detectable in one step can be computed as

Fy,i fy,i > 2
∥∥∥Rio>x C>i

∥∥∥
1

+ 2, (3.32)

Proof. Considering the dynamical model (3.17), by substituting the zonotope support

strip in (3.29) and the normalized form of the measurements strip in (3.15) into one of

the faulty conditions (3.31) yields

Cic
io
x +

∥∥∥Rio>x C>i

∥∥∥
1
< Cix+

υi
Eυi

+ Fy,i fy,i − 1. (3.33)

Moreover, considering the worst-case value of x and minimizing Cix +
υi
Eυi

, the

minimum detectable output sensor fault can be characterized as in (3.32) after the

algebraic manipulation of (3.33).
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Case II: Minimum detectable input sensor fault

Considering the faulty input for the observer model (3.10), (3.1) can be rewritten as

ciox = (Aciox,− +B(u− + Fufu,−)) + Lio(y− − C(Aciox,− +B(u− + Fufu,−))), (3.34a)

Riox =
[
(I − LioC)R̄iop −LioEυ

]
, (3.34b)

Now, by considering (3.34), the minimum detectable abrupt input sensor fault can

be calculated by the following Theorem 3.6.

Theorem 3.6. (Minimum detectable input sensor fault) Considering the faulty model

(3.34) and the conditions (3.31), the minimum detectable abrupt input sensor fault can

be characterized as

Fu,i fu,i > 2
∥∥∥Rio>x C>i

∥∥∥
1

+ 2, (3.35)

Proof. Considering the faulty model (3.34), the faulty conditions (3.31) can be rewritten

by using (3.29) and (3.15) as

Cic
io
x + Fu,i fu,i +

∥∥∥Rio>x C>i

∥∥∥
1
<

yi
Eυ,i

− 1. (3.36)

Then, the minimum detectable input sensor fault can be characterized as (3.35) by

assuming the worst-case scenario and the corresponding manipulation of (3.36).

Note from (3.35) that the magnitude of the minimum detectable input sensor fault

depends on the input and the direction of the vector C. Therefore, the input u should

be designed in the way that the orthogonal direction of the vector C and the direction of

the given fault will be different. Otherwise, the input sensor fault will never be detected.

Case III: Minimum detectable actuator fault

Considering the faulty dynamical model (3.25), the minimum detectable abrupt actuator

fault can be computed following the Theorem 3.7.

Theorem 3.7. (Minimum detectable actuator fault) Considering the faulty dynamical

model (3.25) and the conditions (3.31), the minimum detectable abrupt actuator fault
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can be calculated as

Fa,i fa,i > 2
∥∥∥Rio>x C>i

∥∥∥
1

+ 2. (3.37)

Proof. Considering the dynamical model (3.25) and inserting the strips (3.29) and (3.15)

into one of the faulty conditions (3.31) yields

Cic
io
x +

∥∥∥Rio>x C>i

∥∥∥
1
< Cix+

υi
Eυ,i

+ Fa,i fa,i − 1. (3.38)

Consequently, the minimum magnitude of the actuator fault that can be detected is

derived based on (3.38) by assuming the worst-case value of x and υ as it is expressed

in (3.37).

Additionally, the detection of the actuator fault is related to the orthogonal direction

of the vector C. Thus, in order to guarantee the FD, the input u should be designed in

such a way that the orthogonal direction of the vector C and the direction of the given

fault will be different.

3.3.3 Comparative assessment

Algorithm 3.1 leads to obtain the comparable structure of the IOA and the SMA in

FD framework. Consequently, the minimum detectable abrupt fault that is derived

by the presented approaches can be compared with each other under this circumstance.

Therefore, the key point of FD test is to check the intersection between the measurement

strip and the state estimation support strip comparing Algorithm 2.2 with Algorithm 3.1.

Actually, the formulation of the MDF is characterized based on the conditions (3.16)

and (3.31) considering Algorithms 2.2 and 3.1 for both the SMA and IOA, respectively.

As it can be observed from Algorithms 2.2 and 3.1, the effect of the measurement

noise is considered when determining the measurement strip (3.13) in both approaches.

Furthermore, in the case of SMA, the effect of state disturbance is considered through

the computation of zonotope support strip in (3.11), where the state disturbance effect is

embedded in the matrix Rsmp that can be obtained using (2.20b). Moreover, in the case of

IOA, the effect of the state disturbance is taken into account similarly as the IOA through

the zonotope support strip (3.28), where the state disturbance effect is embedded in the

matrix Riox that can be obtained using (3.1b). In both IOA and SMA, the strip from the
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measurement data can be obtained considering the unknown but bounded uncertainties

as in (3.14), where the normalized form of the maximum and the minimum values of

the output prediction can be defined as upper and lower bounds of the strip that is

formulated in (3.15). On the other hand, the supporting hyperplanes are characterized

using the obtained sets from state estimation. Then, according to Algorithm 2.2, the

approximated set of the estimated states Psm can be used for computing the zonotope

support strip in (3.12). Meanwhile, according to Algorithm 3.1, the zonotope support

strip that is computed in (3.29) is generated using the state-bounding zonotope X̂ io.

Furthermore, the minimum detectable sensor and actuator faults are characterized

based on the SMA in (3.18), (3.23) and (3.26), respectively. Besides, the minimum

magnitude of same kind of faults that can be detected are derived in (3.32), (3.35) and

(3.37) based on IOA.

From the mathematical comparison of both approaches, it can be noted that in

the SMA, the MDF magnitude depends on the width of the zonotope Psm, which is

obtained from the first step of its state estimation algorithm. On the other hand, the

characterization of the MDF in the IOA depends on the width of the zonotope X̂ io,
which is obtained from its state estimation. Indeed, the magnitude of the MDF in SMA

is related to the Rsmp that is obtained based on (2.20b) as Rsmp =
[
ARsmx,− Eω

]
. Besides,

the minimum magnitude of the fault that can be detected based on IOA depends on Riox

that, according to (3.1), it can be written as Riox =
[
(I − LioC)R̄iop −LioEυ

]
.

Furthermore, the influence of the observer gain should be considered in computing

the MDF. It means, in the IOA, the observer gain Lio is not only designed to guarantee

the convergence of the observer, but also it can be used to guarantee the desired FD

performance. From the mathematical point of view, when the observer gain is consid-

ered null (Lio = 0), the same formulation of the MDF is obtained in both approaches

since Riox = Rsmp . But, it should be considered that in the case that Lio = 0, the ob-

server becomes a simulator and it can only be used in ideal conditions and with perfect

knowledge of the initial states. Thus, in the case of Lio = 0, the MDF determined by

the SMA and IOA are identical. Otherwise, the FD test using IOA is more conservative

in general than the SMA one.

Moreover, as it was explained before, the difference between the IOA and SMA in

the state-estimation framework is related to the use of different temporal information

from the given measurement y. Therefore, by considering the same initial conditions,
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the same values of λ∗ and Lio,∗ can be obtained in steady state when using (2.23) and

(2.9), respectively. Furthermore, if λ∗ = Lio,∗ and when k tends to infinity, it will be

obtained that Riox,∞ = Rsmp,∞. Then, the only difference is related to the center of the

state bounding zonotope. Therefore, the identical MDF can be computed based on both

IOA and SMA since the mathematical expression of the minimum magnitude of the fault

that can be detected is independent of the center of the state-bounding zonotope.

Furthermore, the advantage of IOA is related to the observer gain that can be tuned

to obtain better FD performance. Moreover, another advantage of IOA in comparison

with SMA is related to fact that after occurrence the fault, it is not possible to monitor

the system behaviour with the SMA. But, IOA can monitor the system even after the

fault occurrence. This issue is a major limitation in the use of SMA in FD applications.

In Section 3.3, the approaches are synchronized by modifying IOA to the form of

CIOA from state estimation point of view. Using the information of the measurements

at current time instant based on the CIOA leads to obtain the same state estimation

using IOA and SMA3. So far, according to Algorithm 3.1, the strip can be obtained using

(2.22) and the state estimation is obtained using (3.4). When the current information

of the output for state estimation is used, both (2.22) and (3.4) are influenced by the

fault, simultaneously. Therefore, the empty intersection cannot be obtained since (2.22)

and (3.4) are moved together by the influence of the fault. Therefore, the intersection

will never be empty. Consequently, the fault will never be detected. Hence, the CIOA

can not be used for FD. Figure 3.6 summarizes the comparison of the IOA and SMA

when applied to FD.

3See the formulation of the state estimation in (3.4).
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Figure 3.6: IOA and SMA applied to FD.
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3.4 Case study

3.4.1 Plant description

The illustration of comparative analysis of IOA and SMA will be performed by using

the two-tanks system, which is based on [Joh00]. For a description of this application

example see Section A.2 in Appendix A.

Moreover, bounded disturbances influencing all the state-space directions and the

measurement noise are modeled respectively with Eω and Eυ as

Eω =

[
0.08 0

0 0.08

]
, Eυ =

[
0.01

]
. (3.39)

3.4.2 State estimation

In this section, the state estimation using IOA, CIOA and SMA is compared in order

to validate the obtained mathematical analyses presented in Section 3.2.

As it is derived in Section 2.3.2, the state estimation using SMA in (2.18) at time

instant k can be obtained by using Proposition 2.4. On the other hand, the state esti-

mation based on IOA at time instant k can be computed using the following information

of the output measurement:

• the information of the measured output at the previous time instant yk−1 using

Proposition 3.1,

• the information of the measured output at the current time instant yk using (3.3),

(3.4) and (3.5).

The state estimation using IOA, CIOA and SMA approaches at time instant k = 100

are shown in Figure 3.7. As can be observed from Figure 3.7, the state estimation

using the IOA and CIOA are different because of the different temporal information

of the measured output. But, when the CIOA is used instead of IOA, the identical

state estimation as SMA will be obtained. Notice that the same initial conditions are

considered for obtaining the results in Figure 3.7. During the simulation, the optimal

value of the parameter λ is determined by (2.23) when using the SMA.
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Figure 3.7: State estimation in the state space.

Table 3.1: The constants Lio,∗, Lcio,∗ and λ∗ in steady state.

SMA Standard IOA CIOA

λ∗∞ =

[
0.6980
0.6221

]
Lio,∗∞ =

[
0.6980
0.6221

]
Lcio,∗∞ =

[
0.6980
0.6221

]
In addition, the observer gain in the case of IOA and the observer gain in the

case of CIOA are computed using (2.9) and (3.6), respectively. Further analysis is

done during steady-state operation of the system in order to compare the distinct gains

using observer-based approaches (i.e., IOA and CIOA) and parameter λ in the SMA

since the computed Lio,∗, Lcio,∗ and λ∗ are constant when k tends to infinity. Looking

at (2.23), (2.9) and (3.6), it can be noted that the values of λ∗, Lio,∗ and Lcio,∗ are

independent parameters with respect to the information of the measured output, i.e.,

these parameters are designed to minimize the size of the state bounding zonotope.

Therefore, by using the same initial conditions, the same values of λ∗, Lio,∗ and Lcio,∗

can be obtained in steady state when using (2.23), (2.9) and (3.6). In this regard,

Table 3.1 shows the obtained results during steady-state operation of the system from

the simulation of the approaches.

Moreover, the time evaluation of the state estimation can be computed at each time
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Table 3.2: MDF during steady state.

Actuator fault Input sensor fault Output sensor fault
fa1 fa2 fu1 fu2 fy1

SMA ±0.285 ±0.66 ±0.2 V ±0.04 V ±0.7 V

IOA ±0.285 ±0.66 ±0.2 V ±0.04 V ±0.7 V

instant. The interval hull of the state estimation is projected into the output space by

using the system matrix C. Figure 3.8 is obtained from the simulation as a result of the

projection of the state estimation into the output space. Note from Figure 3.8 that the

maximum and the minimum bounds of the obtained zonotopic state estimations using

both CIOA and SMA are the same. But, there is one-time-instant delay between the

results obtained using the standard IOA and the other approaches since the information

of the output measurement at k − 1 given k is used in IOA.

In order to emphasize the difference between the IOA and the other approaches, the

center of the zonotopic state estimations are projected into the output space and shown

in Figure 3.8. It can be observed from Figure 3.8, the center of the zonotopic state

estimations are determined using CIOA and SMA approaches are the same.

3.4.3 Application to FD

In this section, the extension of the comparison of both IOA and SMA approaches is

performed when applied to FD. Although, as shown in the previous section, both CIOA

and SMA approaches are equivalent when applied to state estimation CIOA cannot be

used for FD tasks as discussed in Section 3.3. Thus, instead of using CIOA this section

considers IOA for comparison purposes. The comparison is based on the minimum fault

magnitude that can detect the considered approaches. In this regard, the same actuator

and sensor fault scenarios as Section 3.3 are considered in this case study.

The minimum detectable output sensor, input sensor and actuator faults can be

computed using Theorems 3.2, 3.3 and 3.4 for the IOA and Theorems 3.2, 3.3 and

3.4 for SMA, respectively. The obtained results are reported in Table 3.2, all of them

evaluated in steady-state regime.
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(a) Projection of the state estimation into the output space.
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Figure 3.8: State estimation into the output space.
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Figure 3.9: Minimum detectable output sensor fault.

According to Table 3.2, the minimum magnitude of the sensor and actuator faults

able to be detected through the use of both SMA and IOA are identical since the

zonotope-shape matrices of the state estimations are also identical when using both

approaches in steady state, i.e., Riox,∞ = Rsmp,∞. Therefore, as discussed in Section 3.3,

the use of both SMA and IOA results in the same MDF magnitudes in steady state.

For the purpose of further analysis, a sensor fault scenario, affecting the output

sensor, is considered in whole time range (no only in steady state). Figure 3.9 shows the

minimum magnitude of the output sensor fault that can be detected using both SMA and

IOA. Based on the results shown in Figure 3.9, IOA conservativeness is slightly greater

with respect to SMA during the transient regime. However, as already presented in

Table 3.2 and shown in Figure 3.9, the same MDF magnitude is obtained during steady

state since Riox,∞ = Rsmp,∞. Moreover, Table 3.2 shows that if the magnitude of the

considered fault satisfies fy > 0.7 V, it will be detectable for both SMA and IOA.

Otherwise, it will be not detectable by any of both approaches. In the following, this

result will be verified in simulation considering two scenarios where the fault appears at

time instant k = 200 and its magnitude changes as follows:

• Scenario 1: Output sensor fault fy = 0.8, i.e., slightly bigger than 0.7,

• Scenario 2: Output sensor fault fy = 0.6, i.e., slightly smaller than 0.7.
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Figure 3.10: Scenario 1: FD results using SMA and IOA in the case
fy = 0.8V.

(a) Before occurrence of the fault. (b) After occurrence of the fault.

Figure 3.11: The FD test using SMA and strip-based IOA in the case
fy = 0.8 V before and after occurrence of the fault.

Figure 3.10 shows the FD results using both SMA and IOA for Scenario 1 (i.e., when

fy = 0.8 V). From this figure, it can be observed that both SMA and IOA can detect the

fault as it was anticipated in the minimun fault detectability analysis. By comparing

Algorithm 2.2, which introduces the FD test based on SMA, and Algorithm 3.1, which
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introduces the FD using the strip-based IOA, it can be seen that both approaches

use the same information of the measured output for generating the strip. Therefore,

the same strips are computed when applied to FD by both approaches as shown in

Figure 3.10. The only difference between IOA and SMA is the use of different state

bounding zonotopes for checking the intersection with the strip obtained by using the

measurement. More precisely, in the case of SMA, the state bounding zonotope is

computed using (2.20) and, in the case of IOA, the state bounding zonotope is computed

using (3.1) for consistency test.

Figure 3.10 is obtained at time instant k = 201 (one time instant after the fault

occurrence). That figure shows that the existence of the fault is detected by both

SMA and IOA since the empty intersection is obtained between the measurement strip

and the zonotopes computed by (2.20) and (3.1) for SMA and IOA, respectively. In

addition, the state estimation determined by CIOA is also shown in Figure 3.10. It can

be observed that the state estimation using CIOA is affected by the fault based on using

the measurement information from the same time instant of the fault occurrence. Thus,

the state estimation set is moved together with the measurement strip. Consequently,

the empty intersection that indicates the existence of a fault will never occur using

CIOA. For this reason, this approach is not used for FD purposes.

Figure 3.11 shows the FD results using SMA and IOA before and after the fault

occurrence. The existence of the intersection between the strip Sy and the zonotopes

Psm and X̂ io can be seen in Figure 3.11. Then, after detecting the fault with both

approaches, monitoring the system with SMA should be stopped but the system could

still be monitored using IOA as shown in Figure 3.11. Thus, the ability of monitoring

the system after the fault occurrence can be considered as an advantage of IOA with

respect to using SMA.

Now, the FD test results will be presented in the case of Scenario 2, which considers

the fault magnitude as fy = 0.6 V, i.e., satisfying fy < 0.7 V. As shown in Figure 3.12,

the fault cannot be detected by any of the approaches. This figure shows the strip Sy
and the zonotopes Psm and X io at time instant k = 201. Note that Sy ∩ X̂ io 6= ∅ in

this case. Then, when using Algorithm 3.1, the fault cannot be detected by using IOA.

Similarly, using Algorithm 2.2, since Sy ∩ Psm 6= ∅, SMA will neither be able to detect

the fault. Finally, Figure 3.13 shows the FD test before and after the occurrence of the

fault. This figure shows that both IOA and SMA are not able to determine the existence

of the fault in accordance with the results presented in Table 3.2.
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Figure 3.12: Scenario 2: FD results using SMA and IOA in the case
fy = 0.6 V.

(a) Before occurrence of the fault. (b) After occurrence of the fault.

Figure 3.13: FD test using SMA and strip-based IOA in the case
fy = 0.6 V before and after occurrence of the fault.

3.5 Summary

In this chapter, both IOA and SMA are considered for both state estimation and FD

tasks in uncertain linear systems. Both approaches are analyzed and compared from
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the mathematical point of view using a zonotopic representation of the involved sets.

Mathematical and algorithmic formulations of both approaches are introduced to fa-

cilitate a fair comparison. As a result, it has been proved that, in the case that the

observer gain in IOA is designed based on a current IOA, the state estimation bounding

zonotopes are the same as those obtained using SMA. Furthermore, the application of

both IOA and SMA is analyzed when applied to FD tasks for different type of faults.

The performance of both approaches are characterized in terms of a MDF, allowing also

the quantitative comparison. The obtained results show that the use of the strip-based

FD test for IOA leads to demonstrate that both IOA and SMA presents comparable

performance in state-steady regime. Finally, a two-tanks system is considered as a case

study for illustrating the effectiveness of both approaches in state estimation and FD

purposes. So far, this chapter has not only concentrated on the state estimation but

also on FD performance by computing the minimum magnitude of the fault that can be

detected. In this regard, different observer-based approaches will be further investigated

in the next chapter. Furthermore, the relation between the classical IOA and the set

invariance approach (SIA) will be discussed dealing with the computation of MDF.
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Chapter 4

Mixed SIA and sensitivity

analysis using IOA

This chapter addresses the characterization of the MDF by means of residual sensitivity

integrated with the SIA when using an IOA as a FD scheme. Uncertainties (disturbances

and noise) are considered as of unknown but bounded nature. A zonotopic-set represen-

tation towards reducing set operations to simple matrix calculations is utilized to bound

the state/output estimations provided by the IOA. In order to show the connection be-

tween sensitivity and set-invariance analyses, mathematical expressions of the MDF are

derived when considering different types of faults. Finally, a simulation case study based

on a quadruple-tank system is employed to both illustrate and discuss the effectiveness

of the proposed approach. IOA FD scheme is used to test the MDF obtained from the

integration of both residual sensitivity analysis and SIA in the considered case study.

4.1 Introduction

The research of FD approaches able to improve performance of the system consid-

ering both the fault and uncertainty/disturbance effect still is an active area of re-

search [PY17] even though already exist important contributions in the last years

[CP12, Din08, ZDLW03]. In this regard, there are several approaches associated with

generating the residual [Ger98, CP99]. So far, one of the most used approach for gener-

ating the residual is IOA [PQES03]. IOA is mainly used to estimate the states from the

63
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measurements using either stochastic (e.g., KF) or deterministic approaches (e.g., Luen-

berger observers) for modeling the uncertainties. Then, the FD test is based on gener-

ating the residual using the output estimation error [CP99, PQES03, ABC05, Com15b].

Recent developments in the field of model-based FD have led to a renewed interest

in using set-theoretical approaches in FD framework. SIA is one of the techniques where

the invariant sets for the residual can be computed in each healthy or faulty operation

of the system [Kof05, KHS07, SZDDM08, OMDDS10]. Consequently, when the system

reaches the steady state, the corresponding residual trajectory ultimately converges to

one of these invariant sets. As long as both healthy and faulty sets are separated, the

FD can be performed [SZDDM08, OMDDS10].

A Robust Positively Invariant (RPI) set is a bounded region in the state-space that

the system state can be confined in spite of the effect of the bounded system uncertainties

[SDD10, XSP+13]. Furthermore, a minimal Robust Positively Invariant (mRPI) set is

a unique and compact RPI set that is contained in any closed RPI set [SZDDM08,

RKKM05]. One major drawback of the SIA is related to the limitation of computing

the finite description of the RPI set. In recent years, researchers have investigated a

variety of approaches. So far, the proposed approaches can be classified into two main

categories: (i) explicit approaches, where the RPI set is computed using the explicit

formulation of the set boundary [KHS07], (ii) iterative approaches, where the recursive

iteration of the approximation of the system dynamics can be used to reach the RPI set

[AR08, SHO13]. Moreover, the SIA can be used for checking the separation of healthy

and faulty residual sets in steady state.

The MDF is a typical performance index used to characterize the performance of the

FD scheme. The way of computing the MDF depends on the particular model-based

approach and the way that faults and uncertainty are modeled. As it was mentioned

in Section 3.1, one possible way to model the fault is based on considering it either

as a state or as an unknown input of a dynamic system and the estimation of the

fault is done by means of an observer. Alternatively, the fault can be modeled as

a uncertain parameter that should be estimated by means of parameter estimation

schemes [TB14, TTQ13, SDW13]. Moreover, the MDF is highly affected by the gain of

the observer due to its influence in the FD performance. The effect of the observer gain

in FD has already been explored in [MPES10].

In [XSP+13], the relation between the classical IOA and the SIA is discussed. Then,
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in [PPOM16b, KPP+17], the characterization of the minimum magnitude of the fault

that can be detected is proposed using both the IOA and SIA. However, there has been

little discussion about the combination of the mentioned approaches. Then, IOA and

the SIA are still known as two different techniques in FD framework. In this regard, this

chapter is devoted to develop a passive robust FD approach using IOA in combination

with SIA. Moreover, another contribution of the chapter is to determine the MDF using

the proposed approach. System uncertainty is assumed to be unknown but bounded.

This fact implies that the IOA can deliver no just a single punctual estimation for the

output/state but a set that, in this chapter, is bounded using zonotopes. On the one

hand, the characterization of the MDF is done by using the classical sensitivity analysis.

On the other hand, this characterization is carried out by using SIA. Mathematical

expressions of the MDF for different type of sensor and actuator faults are obtained

with the goal of connecting both sensitivity and set-based approaches. Contrary to

most existing FD design techniques, the sensitivity to both faults and disturbances

is evaluated using a set-based approach enclosing all the possible temporal scenarios

of faults and disturbances within specified ranges. The combination of these features

makes the approach original compared to the existing available FD techniques. Finally,

the effectiveness of the proposed approach is illustrated using a case study based on a

quadruple-tank system.

The structure of the chapter is the following: The integrated observer structure is

introduced in Section 4.2. Then, the MDF is characterized in Section 4.3 dealing with

different type of sensor and actuator faults. The case study description and discussion

of the obtained results are presented in Section 4.4. Finally, the general conclusions are

drawn in Section 4.5.

4.2 Integrated FD test

Both mentioned IOA and SIA in Sections 2.3.1 and 2.3.3 are considered as reliable set-

theoretical FD tests that can be used depending on the purpose of the investigation. In

general, the FD test is provided based on checking the consistency of the residual r in

real time, which is computed on-line, with the healthy residual zonotope that can be

computed based on either IOA or SIA. Then, any inconsistencies can be understood as

the occurrence of the fault.
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So far, the thesis has mainly focused on using the zonotopic representation of sets.

But, the obtained set in (2.31) is a polyhedral RPI set of the state estimation error. In

this regard, since the set in (2.31) is symmetric around the origin and considering the

zonotopic representation of sets, Proposition 4.1 implies that X̃ can also be represented

using a zonotope.

Proposition 4.1. (Zonotopic representation of the RPI set for x̃) Consider a state

estimation error dynamics in (2.29), the zonotopic RPI set of the state estimation error

can be computed as

cx̃j+1 = (A− LC) cx̃j , (4.1a)

Rx̃j+1 =
[
(A− LC)Rx̃j Ed

]
, (4.1b)

where j ∈ N denotes the jth element of the set. Then, in the steady state, i.e., when

j →∞, it can be written that

cx̃∞ = 0, (4.2a)∥∥Rx̃∞i∥∥1
= ‖R∞i‖1 , (4.2b)

where i denotes the ith row of the matrices.

Proof. Consider the dynamical model of the state estimation error in (2.29) and assume

that the initial state estimation error x̃0 belongs to the zonotopic set X̃0 = 〈cx̃0 , Rx̃0〉
that is defined as an RPI set, since x̃ ∈ 〈cx̃, Rx̃〉, ω ∈ 〈0, Inω〉 and υ ∈ 〈0, Inυ〉 for all

k ≥ 0, it can be written that

x̃j+1 ∈
〈
cx̃j+1 , Rx̃j+1

〉
=
〈
(A− LC)cx̃j , (A− LC)Rx̃j

〉
⊕ 〈0, Eω〉 ⊕ 〈0, −LEυ〉 , (4.3)

is another RPI set with arbitrarily expected precision enclosing the mRPI set of the

state estimation error in (2.29). Thus, the center and the shape matrix of the set in

(4.3) can be unfolded as in (4.1). Furthermore, the state estimation error will converge

to the RPI set in steady state. Thus, the RPI set of x̃ can be computed by recursive

propagation of the zonotopic set (4.1) starting from the initial set X̃0 = 〈cx̃0 , Rx̃0〉 that

belongs to the RPI set which can be computed using the any available method such as

Ultimate Bound (UB) method recalled in Section 2.3.3. Furthermore, it can be stated
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that if j →∞ (i.e., in steady state), the following conditions will be satisfied:

cx̃j+1 = cx̃j , (4.4a)∥∥Rx̃j+1

∥∥
1

=
∥∥Rx̃j∥∥1

. (4.4b)

Therefore, the same formulations as (4.2) for the center and the shape matrix of X̃ can

be obtained by substitution of conditions (4.4) in (4.1).

Now, considering Proposition 4.1, the zonotopic representation of the residual set in

steady state can be computed by computing the projection of x̃ into the residual space

as

csir,∞ = Ccx̃,∞, (4.5a)

Rsir,∞ =
[
CRx̃,∞i Eυ

]
, (4.5b)

where superscript si denotes the SIA.

Finally, considering the residual that is obtained in (4.5) as a healthy residual set

that is generated based on the nominal model, i.e., considering only the effect of the

uncertainties (noises and disturbances), the FD test with the SIA is done by comparing

the residual that is computed on-line at each time instant, denoted by r, with the RPI

residual set that is computed off-line in steady state. The fault is detected if

r /∈
〈
csir∞ , R

si
r∞i

〉
. (4.6)

Otherwise, the system remains healthy.

Remark 4.1. From the mathematical point of view, in order to check whether (4.6) is

satisfied or not, the Gilbert-Johnson-Keerthi (GJK) algorithm as proposed in [LC06b]

can be used. �

Moreover, Proposition 4.2 can be used in order to combine the FD principles men-

tioned in Sections 2.3.1 and 2.3.3 based on both IOA and SIA.

Proposition 4.2. Considering the steady state and the general Luenberger observer

structure in (2.5), in healthy operation of the system

〈
cior,∞, R

io
r,∞
〉

=
〈
csir,∞, R

si
r,∞
〉
. (4.7)
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Then, the FD test is the same using both IOA and SIA. Thus, it can be done by

checking whether

r ∈
〈
crh,∞, Rrh,∞

〉
, (4.8)

where crh and Rrh are the center and the shape (generator) matrix of the healthy residual

zonotope denoted by rh, respectively (i.e., rh = 〈crh , Rrh〉). Moreover, crh and Rrh can

be computed using either SIA or IOA when k tends to infinity.

Proof. The residual in the case of IOA can be written using the state estimation error

as in (2.28). Moreover, the dynamics of the state estimation error using IOA can be

written using (2.5) as (2.29).

But, based on [XSP+13], considering the steady-state operation of the system, the

size of the residual zonotope in (2.14) during the steady-state operation of the system,

i.e.,
〈
cior,∞, R

io
r,∞
〉
, obtained using the IOA converges towards the smallest residual set

(healthy set) computed by the SIA, i.e.,
〈
cisr,∞, R

is
r,∞
〉
. Therefore, the same residual

zonotopes can be predicted based on both the IOA and SIA, if k tends to infinity

(steady state). Then, since having the same set that introduces the healthy residual,

the same FD principle can be obtained using both approaches.

Then, considering Proposition 4.2, residual (2.28) can be used to compute the healthy

residual zonotope in steady state.

Remark 4.2. Note that for the sake of simplified notation, rh is used instead of rio or

ris for denoting the healthy residual since they are equal in steady state dealing with the

faultless scenario. �

In this regard, the input-output form of the output y in (2.4) can be written using

the shift operator q−1 as

y = Hu(q−1)u+ Hω(q−1)ω + Hυ(q−1)υ, (4.9)

with

Hu(q−1) = Cξ1(q−1)B, (4.10a)

Hω(q−1) = Cξ1(q−1)Eω, (4.10b)

Hυ(q−1) = Eυ, (4.10c)
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where ξ1(q−1) = (qI −A)−1.

On the other hand, the input-output form of the output prediction ŷ can be expressed

using observer (2.5) as

ŷ = Tu(q−1)u+ Ty(q
−1)y, (4.11)

with

Tu(q−1) = Cξ2(q−1)B, (4.12a)

Ty(q
−1) = Cξ2(q−1)L, (4.12b)

where ξ2(q−1) = (qI − (A− LC))−1.

Now, using (4.9) and (4.11), the input-output form of the healthy residual can be

expressed using the shift operator q−1 as

rh = Gu(q−1) u+ Gω(q−1) ω + Gυ(q−1) υ, (4.13)

with

Gu(q−1) =
(
I −Ty(q

−1)
)
Hu(q−1)−Tu(q−1), (4.14a)

Gω(q−1) =
(
I −Ty(q

−1)
)
Hω(q−1), (4.14b)

Gυ(q−1) =
(
I −Ty(q

−1)
)
Hυ(q−1). (4.14c)

As it can be seen from (4.13), the obtained residual is only affected by the additive

uncertainties (disturbance and noise). Furthermore, Gω and Gυ indicate the sensitivity

of the residual with respect to the disturbance and noise, respectively.

Thus, the obtained healthy residual in (4.13) can be used for the FD test in (4.8)

following Proposition 4.3.

Proposition 4.3. Considering the input-output form of the residual in (4.13), the FD

test in (4.8) can be also done by checking the satisfaction of

r∞ ∈ Gui(1)u∞ ± ‖Gωi(1) + Gυi(1)‖1 , (4.15)

where the index i indicates the ith row of the transfer function G . In case that (4.15) is

not satisfied a fault is detected.
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Proof. Since u ∈ 〈u, 0〉, ω ∈ 〈0, Inω〉 and υ ∈ 〈0, Inυ〉 for all k ≥ 0, the healthy residual

set in steady state can be written as

rh∞ ∈
〈
crh∞ , Rrh∞

〉
= 〈Gu(1)u∞, 0〉 ⊕ 〈0, Gω(1)〉 ⊕ 〈0, Gυ(1)〉 . (4.16)

Note that the steady state expression of (4.13) can be obtained by setting q = 1.

Then, (4.16) can also be expressed as a zonotopic representation as

crh∞ = Gu(1)u∞, (4.17a)

Rrh∞ =
[
Gω(1) Gυ(1)

]
. (4.17b)

Now, by considering both Definition B.23 and (4.17), upper and lower bounds of the

residual zonotope, which are respectively denoted by rh and rh, can be computed as

rh∞ = Gui(1)u∞ + ‖Gωi(1) + Gυi(1)‖1 , (4.18a)

rh∞ = Gui(1)u∞ − ‖Gωi(1) + Gυi(1)‖1 . (4.18b)

Thus, considering (4.18) as upper and lower bounds, the fault can be detected if r∞ /∈
[rh∞, r

h
∞].

Hence, the fault can be detected by generating the residual in real time and compar-

ing it with the residual set that was computed off-line using Proposition 4.3. A deeper

discussion about the computation of the minimum magnitude of the fault that can be

detected using the approach presented in this section will be provided in Section 4.3.

4.3 Characterization of the MDF using sensitivity analysis

integrated with a SIA

The characterization of the MDF is presented in this section. In this thesis, MDF is

defined as the minimum magnitude of the fault that can be detected. Furthermore, the

same mentioned sensor and actuator faults introduced in Chapter 3 are also considered

in this chapter.
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Moreover, the combination of classical sensitivity analysis and the SIA (called inte-

grated approach in Section 4.2) is employed to deal with the computation of the MDF.

4.3.1 Minimum detectable output sensor fault

The dynamical model (3.17) is considered to deal with the output sensor fault. There-

fore, the faulty dynamical model (3.17) can be written in input-output form using the

shift operator q−1 as

y = Hu(q−1)u+ Hω(q−1)ω + Hυ(q−1)υ + Hfy(q
−1)fy, (4.19)

where

Hfy(q
−1) = Fy. (4.20)

Furthermore, using the Luenberger observer (2.5), the output prediction can be

expressed in input-output form as in (4.11). Then, the input-output form of the residual

in the case of output sensor fault can be expressed as

r = Gu(q−1) u+ Gω(q−1) ω + Gυ(q−1) υ + Gfy(q
−1)fy, (4.21)

with

Gfy(q
−1) =

(
I −Ty(q

−1)
)
Hfy(q

−1). (4.22)

Therefore, (4.21) encompasses the effect of uncertainties (disturbance and noise)

and also the effect of the fault. Furthermore, Gω(q−1), Gυ(q−1) and Gfy(q
−1) denote the

sensitivity of the residual with respect to the disturbance, noise and output sensor fault,

respectively.

Now, the minimum detectable output sensor fault can be computed following The-

orem 4.1.

Theorem 4.1. (Minimum detectable output sensor fault) Considering the faulty dy-

namical model (3.17) and the observer structure (2.5), the minimum magnitude of the
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output sensor fault can be characterized as

fyj ,∞ = max fyji,∞, fyji,∞ = +2
‖(I − Ciξ2i(1)Li) (Ciξ1(1)Eωi + Eυi)‖1∥∥(I − Cijξ2ij (1)Lij

)
Fyij

∥∥
1

, (4.23a)

fyj ,∞ = min fyji,∞, fyji,∞ = −2
‖(I − Ciξ2i(1)Li) (Ciξ1(1)Eωi + Eυi)‖1∥∥(I − Cijξ2ij (1)Lij

)
Fyij

∥∥
1

, (4.23b)

where fyj ,∞ and fyj ,∞ are upper and lower bounds of the MDF in the case of output

sensor fault, respectively. Additionally, the indices i and j indicate the ith row and

jth column of the transfer functions, respectively. Moreover, the value 2 is included to

consider the worst-case scenario, i.e., the residual is considered to be in the extreme

value (it is located at either the lower or the upper bound of the considered threshold).

Proof. Given the residual in (4.21), considering the faulty residual in the case of an

output sensor fault, and following the FD test presented in Proposition 4.2, the following

condition should be satisfied in steady state in faulty scenario (i.e., fy(q
−1) 6= 0⇒ fy∞ 6=

0):

r∞ /∈ Gui(1)u∞ ± ‖Gωi(1) + Gυi(1)‖1 , (4.24)

where r∞ corresponds to the residual that is obtained at k →∞ using (4.21). Moreover,

since u ∈ 〈u, 0〉, ω ∈ 〈0, Inω〉, υ ∈ 〈0, Inυ〉 and considering Assumption 3.1 in steady

state ∀ i, j, the following condition follows

Gfyij (1)fyj,∞ /∈ 0± 2 ‖Gωi(1) + Gυi(1)‖1 . (4.25)

Therefore, the MDF in the case of an output sensor fault can be calculated by

simplifying (4.25) as

fyj ,∞ /∈ 0± 2
‖Gωi(1) + Gυi(1)‖1∥∥∥Gfyij (1)

∥∥∥
1

. (4.26)

Finally, the MDF can be characterized as it is formulated in (4.23) by the substitution

of (4.14b), (4.14c) and (4.22) into (4.26) to obtain the sensitivity with respect to ω, υ

and fy, respectively.
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4.3.2 Minimum detectable input sensor fault

In this section, the effect of input sensor fault is considered as in Section 3.3.2. It means,

the observer model is influenced by the fault as (3.10).

Thus, the input-output form of the dynamical model (2.4) can be written using the

shift operator q−1 as

y = Hu(q−1)u+ Hω(q−1)ω + Hυ(q−1)υ. (4.27)

Moreover, the observer (3.10) affected by the input sensor fault can be expressed in

the input-output form when using the shift operator q−1 as

ŷ = Tu(q−1)u+ Ty(q
−1)y + Tfu(q−1)fu, (4.28)

where

Tfu(q−1) = Cξ2(q−1)BFu. (4.29)

Therefore, using (4.27) and (4.28), the input-output form of the residual in the case

of an input sensor fault is expressed as

r = Gu(q−1) u+ Gω(q−1) ωk + Gυ(q−1) υ + Gfu(q−1)fu, (4.30)

with

Gfu(q−1) = −Tfu(q−1). (4.31)

Furthermore, (4.30) allows to express the residual in terms of the effect of the un-

certainties (additive disturbance and noise) and the considered type of fault. In (4.30),

Gω(q−1) and Gυ(q−1) indicate the sensitivity of the residual with respect to the distur-

bance ω and the measurement noise υ, respectively. Moreover, the sensitivity of the

obtained residual with respect to the input sensor fault is indicated by Gfu(q−1).

Theorem 4.2 can be used to compute the minimum detectable input sensor fault.

Theorem 4.2. (Minimum detectable input sensor fault) Given a dynamical model (2.4)

and monitoring the system using the observer (3.10), the minimum detectable input
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sensor fault can be computed as

fuj ,∞ = max fuji,∞, fuji,∞ = +2
‖(I − Ciξ2i(1)Li) (Ciξ1(1)Eωi + Eυi)‖1∥∥−Cijξ2ij (1)BijFuij

∥∥
1

, (4.32a)

fuj ,∞ = min fuji,∞, fuji,∞ = −2
‖(I − Ciξ2i(1)Li) (Ciξ1(1)Eωi + Eυi)‖1∥∥−Cijξ2ij (1)BijFuij

∥∥
1

, (4.32b)

where fuj ,∞ and fuj ,∞ are upper and lower bounds of the minimum detectable input

sensor fault, respectively.

Proof. As mentioned in the proof of Theorem 4.1, in the faulty scenario, i.e., fu(q−1) 6=
0 ⇒ fu,∞ 6= 0, the condition (4.24) can be written considering (4.30) and based on

Proposition 4.2. Thus, in the faulty condition (input sensor fault) the satisfaction of the

following condition should be proved ∀i, j:

Gfuij (1)fuj ,∞ /∈ 0± 2 ‖Gωi(1) + Gυi(1)‖1 . (4.33)

Then, the MDF can be computed using (4.33) as

fuj ,∞ /∈ 0± 2
‖Gωi(1) + Gυi(1)‖1∥∥∥Gfuij (1)

∥∥∥
1

. (4.34)

Hence, the same formulation as (4.32) is obtained by substituting (4.14b), (4.14c) and

(4.31) in (4.34) for the sensitivity with respect to ω, υ and fu, respectively.

4.3.3 Minimum detectable actuator fault

The dynamical model including an actuator fault can be written as (3.25). Furthermore,

the measurement equation in (3.25) can be expressed in input-output form using the

shift operator q−1 as

y = Hu(q−1)u+ Hω(q−1)ω + Hυ(q−1)υ + Hfa(q−1)fa, (4.35)

where

Hfa(q−1) = Cξ1(q−1)Fa. (4.36)
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On the other hand, the observer (2.5) can be used for monitoring the dynamical

model (3.25), which can be expressed in input-output form as (4.11). Then, the residual

in the case of the actuator fault in input-output form can be written as

r = Gu(q−1) u+ Gω(q−1) ω + Gυ(q−1) υ + Gfa(q−1)fa, (4.37)

with

Gfa(q−1) =
(
I −Ty(q

−1)
)
Hfa(q−1), (4.38)

where Gfa denotes the sensitivity of the residual with respect to the actuator fault. More-

over, Gω and Gυ indicate the sensitivity of the residual with respect to the disturbance

ω and the measurement noise υ, respectively.

Theorem 4.3 can be used to compute the minimum detectable actuator fault.

Theorem 4.3. (Minimum detectable actuator fault) Considering a dynamical model

(2.4) and the observer in (2.5), the minimum detectable actuator fault can be computed

as

faj ,∞ = max faji,∞, faji,∞ = +2
‖(I − Ciξ2i(1)Li) (Ciξ1(1)Eωi + Eυi)‖1∥∥(I − Cijξ2ij (1)Lij

)
Cijξ1ij (1)Faij

∥∥
1

, (4.39a)

faj ,∞ = min faji,∞, faji,∞ = −2
‖(I − Ciξ2i(1)Li) (Ciξ1(1)Eωi + Eυi)‖1∥∥(I − Cijξ2ij (1)Lij

)
Cijξ1ij (1)Faij

∥∥
1

, (4.39b)

where faj ,∞ and faj ,∞ are upper and lower bounds of the minimum detectable actuator

fault, respectively.

Proof. The way of obtaining the proof is similar to those used for Theorems (4.1) and

(4.2). When considering faulty scenario, i.e., fa(q
−1) 6= 0⇒ fa,∞ 6= 0, using the residual

(4.37) and based on Proposition 4.2, the condition (4.24) should be satisfied and written

∀i, j as

Gfaij (1)faj ,∞ /∈ 0± 2 ‖Gωi(1) + Gυi(1)‖1 . (4.40)

Now, simplifying (4.40) yields

faj ,∞ /∈ 0± 2
‖Gωi(1) + Gυi(1)‖1∥∥∥Gfaij (1)

∥∥∥
1

. (4.41)

Therefore, the minimum detectable actuator fault can be formulated as (4.39) by sub-

stituting (4.14b), (4.14c) and (4.38) in (4.41).
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Table 4.1: Residual sensitivity with respect to different type of
actuator and sensor faults.

Residual sensitivity

Output sensor fault Gfy(q
−1) =

(
I − Cξ2(q−1)L

)
Fy

Input sensor fault Gfu(q−1) = −Cξ2(q−1)BFu

Actuator fault Gfa(q−1) =
(
I − Cξ2(q−1)L

)
Cξ1(q−1)Fa

4.3.4 Comparative assessment

This section attempts to find the bridge between the approaches characterizing the MDF

obtained using the classical sensitivity framework when IOA and SIA are used. As a

result of considering different mentioned actuator and sensors faults, the sensitivity of

the residual with respect to the fault is computed differently. Table 4.1 summarizes

the derived formulation for different sensitivity in previous sections. Consequently, the

characterized formulation for computing the minimum magnitude of the given fault is

different. Table 4.2 summarizes the characterization of the MDF for different type of

considered faults.

Further analysis on the physical meaning of the different type of the considered faults

will be discussed in Section 4.4 based on a case study.

4.4 Case study

4.4.1 General description

A quadruple-tank system used to illustrate the approach proposed in the previous sec-

tions. The quadruple tank is a multi input/multi output process proposed by [Joh00]

and is described in Section A.1 of Appendix A.

Moreover, bounded disturbances influencing all the state-space directions and the
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Table 4.2: Different minimum detectable actuator and sensor faults.

MDF

Output sensor fault
fyj ,∞ = max fyji,∞, fyji,∞ = +2

‖(I − Ciξ2i(1)Li) (Ciξ1(1)Eωi + Eυi)‖1∥∥(I − Cijξ2ij (1)Lij
)
Fyij

∥∥
1

fyj ,∞ = min fyji,∞, fyji,∞ = −2
‖(I − Ciξ2i(1)Li) (Ciξ1(1)Eωi + Eυi)‖1∥∥(I − Cijξ2ij (1)Lij

)
Fyij

∥∥
1

Input sensor fault
fuj ,∞ = max fuji,∞, fuji,∞ = +2

‖(I − Ciξ2i(1)Li) (Ciξ1(1)Eωi + Eυi)‖1∥∥−Cijξ2ij (1)BijFuij
∥∥

1

fuj ,∞ = min fuji,∞, f
uji,∞

= −2
‖(I − Ciξ2i(1)Li) (Ciξ1(1)Eωi + Eυi)‖1∥∥−Cijξ2ij (1)BijFuij

∥∥
1

Actuator fault
faj ,∞ = max faji,∞, faji,∞ = +2

‖(I − Ciξ2i(1)Li) (Ciξ1(1)Eωi + Eυi)‖1∥∥(I − Cijξ2ij (1)Lij
)
Cijξ1ij (1)Faij

∥∥
1

faj ,∞ = min faji,∞, faji,∞ = −2
‖(I − Ciξ2i(1)Li) (Ciξ1(1)Eωi + Eυi)‖1∥∥(I − Cijξ2ij (1)Lij

)
Cijξ1ij (1)Faij

∥∥
1

measurement noise are modeled respectively with Eω and Eυ in (A.3) as

Eω =


0.05 0.01 0 0 0 0 0

0.05 0 0.01 0 0 0 0

0.05 0 0 0.01 0 0 0

0.05 0 0 0 0.01 0 0

 , Eυ =
[
02x5 0.1 I2

]
. (4.42)

Then, the effect of the fault is modeled through the selection of matrix F• where the

subscript • can be assigned by y, u and a depending on the kind of fault considered (see

(3.17), (3.10) and (3.25)).

Furthermore, both state and measurement uncertainty vectors, i.e., ω and υ, and all

the considered fault vectors, i.e., fa, fy and fu, are assumed to be normalized in [−1, 1].

Accordingly, the matrices Eω, Eυ, Fa, Fy and Fu are defined. Furthermore, the observer

gain is computed based on the proposed method in [Com15b].

In this regard, further investigation will be done for the case study by considering

the single additive actuator and sensors faults to compute the minimum magnitude of

them that can be detected in the next section.
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4.4.2 MDF analysis

In this section, the actuator and the sensor faults are considered for the case study as

single additive fault not appearing at the same time. First, the magnitude of MDF is

computed based on the theoretical formulation that are derived in Section 4.3. Then,

the simulation is employed in order to validate the obtained results.

Minimum detectable actuator fault

The actuator is electrically driven allowing to manipulate the valve. Moreover, the valve

actuator can be either open/closed or in intermediate positions. As it is mentioned in

the description of the case study, the range of flow parameter is considered between 0

and 1. This parameter is related to the position of the valve during the experiment and

the flow to the lower and upper tanks are affected by the position of the valve through

γjKpjvj and (I − γj)Kpjvj with j = 1, 2, respectively.

Furthermore, the effect of actuator fault can be simulated based on (faulty) dynami-

cal model (3.25) through matrix Fa and the vector fa. In this case, single actuator fault

is considered based on the elements of the vector fa , i.e.,

fa =

[
fa1

fa2

]
, (4.43)

where fa1 and fa2 indicate the fault affecting each actuator. Furthermore, the following

matrix Fa is selected to simulate the actuator fault:

Fa = 5B. (4.44)

All the previously mentioned points are considered to simulate the actuator fault for

the case study. Then, considering Theorem 4.3, the minimum magnitude of the actuator

fault that can be detected is obtained in steady state as

fa1 = ±0.0879, (4.45a)

fa2 = ±0.4095. (4.45b)

In this case study, the flow parameters are considered as γ1 = 0.7 and γ2 = 0.6.
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As it can be seen in (4.45), the magnitude of the minimum actuator fault that can be

detected is ±0.0879 for f1 and ±0.4095 for f2. It means that when the magnitude of

the actuator fault is higher than the magnitudes obtained in (4.45) can be detected.

Otherwise, fault of smaller magnitude are not detectable. Considering γ1 > 0.7±0.0879

or γ2 > 0.6± 0.4095, the fault is detected.

Furthermore, the size of the MDF is obtained based on the simulation by increasing

the magnitude of the actuator fault from 0 until the magnitude that can be detected at

the end of the simulation, i.e., steady state. The following magnitude are obtained form

the simulation:

f◦a1
= ±0.0650, (4.46a)

f◦a2
= ±0.3800, (4.46b)

where the superscript ◦ shows the magnitude is obtained from the simulation.

Now by comparing (4.45) with (4.46), there is no significant difference between the

obtained MDF using the theoretical approach and the simulation is found. Thus, (4.46)

confirms the obtained magnitude in (4.45) using Theorem 4.3.

For the goal of further analysis, the magnitude of fault f2 in the pump valve is

considered as a single step additive fault considering the following scenarios to assess

the FD performance:

• slightly bigger than 0.4095,

• slightly smaller than 0.4095.

In Figure 4.1, the obtained residuals from the simulation are shown in the case that

the position of the γ2 is considered as a faulty parameter with γ2 > 0.6± 0.4095 and γ1

is considered healthy in steady state. Precisely, the fault is added to the valve actuator

through the dynamical model (3.25) at k = 200 with the magnitude bigger than 0.4095

for the case of actuator fault. In addition, the projection of the invariant residual sets

that are generated based on the healthy mode of the system (considering both outputs)

is shown in Figure 4.1.

As seen in Figure 4.1, from time step k = 0 until k = 200, both actuators are healthy

and working with γ1 = 0.7 and γ2 = 0.6. Thus, the generated residuals are inside the

healthy invariant sets. On the other hand, the residual sets change at k = 200 due to
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Figure 4.1: FD test in the case of actuator fault with the magnitude
bigger than 0.4095.

the occurrence of the fault and go outside of their obtained invariant sets.

Now, the IOA and SIA can be compared in the proposed FD framework. As it can

be seen in Figure 4.1, using the IOA, the fault can be detected sooner since, according to

Algorithm 2.1, FD test considering the IOA is done only by cheeking if 0 /∈
〈
cior , b(R

io
r )
〉
.

But, based on the SIA, the existence of the fault is proved when the residual (that is

determined iteratively at each time instant) satisfies rk /∈
〈
cisr∞ , Rris∞i

〉
. Thus, moving

the residual from the healthy set to the faulty residual set can take more time in com-

parison with only cheeking if 0 /∈
〈
cior , b(R

io
r )
〉
. Therefore, the existence of the fault is

proved later. What is interesting from Figure 4.1 is that, by considering the proposed

FD approach, both IOA and SIA are able to detect the fault with the magnitude slightly

bigger than 0.4095 (bottom plot in Figure 4.1 shows the applied fault magnitude). The

FD decision is indicated by 1 in case the fault is detected and 0 otherwise.

Considering Remark 4.1, the computational burden of the IOA comes from the type

of the considered sets (here zonotopes) in order to bound the effect of uncertainties.

As it was mentioned before, the computationally efficient way to implement the FD

test without increasing the false alarm rate is to check whether or not 0 belongs to an
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Figure 4.2: FD test in the case of actuator fault with the magnitude
smaller than 0.4095.
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Figure 4.3: Runtime comparison using interval and zonotopic
observer-based approaches at each time step.

aligned box enclosing the zonotope 〈crio , Rrio〉. In this regard, Figure 4.3 compares the

runtime of the FD test considering 0 /∈ 〈crio , b(Rrio)〉 (known as IOA) versus the FD test

using the exact zonotope (known as zonotopic IOA) at each time instant. Furthermore,
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Table 4.3: Runtime comparison using interval and zonotopic
observer-based approaches considering the whole time
range of the simulation.

Runtime [s]

IOA 1.6240

Zonotopic IOA 3.0430

Table 4.3 compares the runtime for considering the whole time range of the simulation.

It can be observed from both Figure 4.3 and Table 4.3 that the computational burden

when using the aligned box enclosing the zonotope 〈crio , Rrio〉 for detecting the fault is

less than the case of using the exact zonotope.

Likewise, the FD test is applied to the case that the magnitude of the actuator fault

is slightly smaller than 0.4095, as shown in the bottom plot of Figure 4.2. It can be

observed from Figure 4.2 that the fault is not detectable for both SIA and IOA since

neither Algorithm 2.1 nor (4.6) are satisfied. Therefore, the fault with the magnitude

smaller than 0.4095 cannot be detected.

Minimum detectable output sensor fault

The MDF analysis in the case of output sensor fault is based on Theorem 4.1. As it is

mentioned, the outputs of the quadruple-tank system are the water levels in Tanks 1

and 2 that are obtained as voltages from the measurement devices. In this case study,

the height of each tank is 20 cm. Then, each output of the system is between 0− 10 V

since Kc = 0.50 V/cm.

In this case, the simulation of the fault is carried out based on the dynamical model

(3.17) and the element of vector fy, i.e.,

fy =

[
fy1

fy2

]
, (4.47)

where fy1 and fy2 show the effect of the fault influencing each output. On the other
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hand, matrix Fy is defined with the whole range of the measurement as

Fy =

[
10 0

0 10

]
. (4.48)

Turning now to the main goal of this section, the minimum detectable output sensor

fault can be determined in steady state using (4.23) based on Theorem 4.1 as

fy1 = ±0.2808 V, (4.49a)

fy2 = ±0.5710 V. (4.49b)

Thus, note that output sensor faults with a magnitude bigger than 0.2808 V for fy1

and 0.5710 V for fy2 are detectable in steady state. In this case, the operating points

that are considered for the water levels of the Tanks 1 and 2 are around 12.4 cm (or 6.2

V) and 12.7 (or 6.35 V), respectively. Thus, the existence of the fault can be detected

on each sensor, in the case that the corresponding magnitude is bigger magnitude than

the obtained results in (4.49).

Moreover, the following magnitude of MDF is obtained based on the simulation by

increasing the size of the output sensor fault until the magnitude that can be detected

in steady state, i.e., at the end of simulation:

f◦y1
= ±0.2750 V, (4.50a)

f◦y2
= ±0.5650 V. (4.50b)

The similarity of results is apparent from the comparison of the two magnitudes

presented in (4.49) and (4.50) using theoretical approach and simulation to compute

MDF. Therefore, (4.50) can be considered as a validation of (4.49) which is obtained

based on Theorem 4.1. Regarding the FD performance, the following scenarios are

considered when one of the output measured voltages from the level measurement devices

(e.g., fy1) is influenced by a single additive step fault:

• slightly bigger than 0.2808 V,

• slightly smaller than 0.2808 V.
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Figure 4.4: FD test in the case of output sensor fault with the
magnitude bigger than 0.2808 V.

The output sensor fault is simulated for the case study from k = 200 until the end

of the simulation and the FD test presented in Algorithm 2.1 is used in order to show

the FD performance. In the first scenario, the FD test is applied when the magnitude of

te fault is slightly bigger than 0.2808 V. Figure 4.4 shows the obtained results from the

simulation of the first scenario. As can be seen from Figure 4.4, the system is working

properly until k = 200 since the residual is inside of the healthy invariant set. But, after

the occurrence of the fault at k = 200, the residuals are effected by the given fault and

the empty intersection can be found between the residual sets and the healthy invariant

sets. Thus, the fault alarm is activated (equal to one) indicating the detection of the

fault (see the bottom plot in Figure 4.4). The other point that is worth mentioning

regarding Figure 4.4 is related to the comparison of IOA and SIA from the detection

time point of view. It can be seen in Figure 4.4 that the decision of the fault occurrence

is faster using the IOA in comparison with the SIA. As it is mentioned, the satisfaction

of FD test in (4.6) based on SIA required more time than the use of Algorithm 2.1. This

faster FD decision shows the advantage of IOA in comparison with the SIA. But, the

point regarding the Figure 4.4 is that the fault with the obtained magnitude based on

the theoretical formulation is detectable for both mentioned approaches.
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Figure 4.5: FD test in the case of output sensor fault with the
magnitude smaller than 0.2808 V.

Furthermore, the FD test is applied to the case that a fault occurs with a magnitude

slightly smaller than 0.2808 V. Figure 4.5 shows the simulation of this scenario. The

overlap between the residual set and the invariant set can be observed from Figure 4.5.

Therefore, the effect of the fault is not detectable since this overlap exists. Thus, if

the output sensor fault occurs with the magnitude smaller than 0.2808 V, the fault

cannot be detected. In other words, a difference grater than 0.2808 V between the

output measurement and its actual value can be associated with the occurrence of the

fault. Therefore, the fault with the magnitude shown in bottom plot of Figure 4.5 is not

detectable for both SIA and IOA since neither Algorithm 2.1 nor (4.6) are satisfied.

Minimum detectable input sensor fault

As mentioned in Section 4.3.2, this type of fault affects the output estimation provided

by the observer. The fault effect is simulated through the observer (3.10) for monitoring

the dynamical model (2.4). Simulation of the fault is carried out through the elements
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of vector fu, i.e.,

fu =

[
fu1

fu2

]
, (4.51)

where fu1 and fu2 denote the effect of the fault influencing each observer input. Fur-

thermore, matrix Fu is defined with the whole range of the input as

Fu =

[
5 0

0 5

]
. (4.52)

Now, using all the points that are mentioned above, the minimum detectable input

sensor fault can be theoretically obtained using (4.32) based on Theorem 4.2 as

fu1 = ±0.0878 V, (4.53a)

fu2 = ±0.6416 V. (4.53b)

As mentioned before, the system input is the voltage increment around 3 V (the

linearization point) for both pumps. Thus, considering the values presented in (4.53),

the fault with bigger magnitude than 0.0878 V influencing fu1 and 0.6416 V influencing

fu2 is detectable. To ensure the obtained results in (4.53), the MDF is determined based

on the simulation by increasing the magnitude of the fault from 0 V until the magnitude

that is detectable. The following magnitude of the fault is obtained at the end of the

simulation (steady state):

f◦u1
= ±0.0850 V, (4.54a)

f◦u2
= ±0.6200 V. (4.54b)

Similar to previous cases (actuator and output sensor faults), no significant difference

is obtained by comparing (4.53), obtained from Theorem 4.2, and (4.54), with the value

obtained from the simulation. Hence, (4.54) confirms the magnitude of the fault in

(4.53).

Finally, the FD performance is assessed considering the following scenarios:

• slightly bigger than 0.0878 V,

• slightly smaller than 0.0878 V.
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Figure 4.6: FD test in the case of input sensor fault with the
magnitude bigger than 0.0878 V.

Figure 4.6 shows the FD test in the case that the fault is considered in the input

of the observer model as a single additive step fault with the magnitude slightly bigger

than 0.0878 V. Moreover, the occurrence of the fault is simulated from time instant

k = 200 and it remains until the end of the simulation.

As it can be seen from Figure 4.6, from time instant k = 0 untilk = 200 both

residual sets are inside of the healthy invariant sets. It means, the system inputs are not

affected by the fault. Therefore, the system is working properly. But, after k = 200 the

residual sets moves toward the outside of the healthy invariant sets due to the fault effect.

Hence, the existence of the fault is proved after k = 200 since the intersection between

the invariant sets that show the healthy operation of the system and the residual sets

that are generated iteratively during the simulation can be found empty. Furthermore,

the fault with this magnitude can be detected since 0 /∈
〈
cior , b(R

io
r )
〉
. Thus, Figure 4.6

shows the activation of the fault alarm proving the existence of the fault. But, as it

is explained previously, it can be observed that the FD decision is faster using IOA in

comparison with the SIA.

Now, the FD test is applied when the fault occurs in the input of the observer with
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Figure 4.7: FD test in the case of input sensor fault with the
magnitude smaller than 0.0878 V.

the magnitude slightly smaller than 0.0878 V and the result from the simulation is shown

in Figure 4.7. This figure also shows that the residual sets are inside of the invariant

sets in all the considered time range. Therefore, fault magnitude that is shown in the

bottom plot of Figure 4.7 is not detectable since neither Algorithm 2.1 nor (4.6) are

satisfied. The overlap between the invariant sets and the residual sets proves that the

fault can not be detected with the magnitude smaller than 0.0878 V. The fault can never

be detected if the overlap between the invariant set and the residual exists.

4.4.3 Discussion

This section discusses the computation of the MDF using IOA and SIA considering

the classical sensitivity analysis. In order to detect the fault using both IOA and SIA,

first the residual set in healthy operation of the system is obtained. Then, the residual

(obtained in real-time) is compared with the healthy one. Furthermore, the FD test

using both approaches is almost similar. In the IOA, the residual zonotope is calculated

on-line and the fault detection test is based on checking if zero is inside. On the other

hand, in the SIA, the healthy residual set (RPI set), which is computed off-line, defines
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the non-faulty behaviour.

Since the FD principles can be integrated as it is introduced in Section 4.2. It

particular, the healthy zonotopic residual set using an IOA in steady state, i.e., when

k →∞, converges toward the healthy residual set computed using SIA. Then, assuming

the initial state estimation error x̃0 belongs to the zonotopic set X̃0 = 〈cx̃,0, Rx̃,0〉 that

is defined as an RPI set, the corresponding residual set is computed as a zonotopic set

using Proposition 4.1.

By understanding the possible way to ingrate the FD test using IOA and SIA as

in Proposition 4.2, minimum detectable sensors and actuator faults are characterized

in (4.23), (4.32) and (4.39) using the integrated FD principle, respectively. Using the

classical sensitivity analysis, the MDF formulations in Section 4.3 is obtained considering

the steady state operation of the system that lead to establish a bridge between SIA

and IOA in FD framework. Further research is carried out in this section based on

using the considered case study to assess the effectiveness of the obtained expressions

for computing minimum magnitude of the fault that can be detected.

Three different mentioned fault scenarios in Section 4.3 are considered for the case

study in order to test the obtained MDF formulations for the case of actuator and sensor

faults. First, the magnitude of each type of fault that can be detected is computed

theoretically based on Section 4.3. Then, the MDF magnitudes are compared with

the one that are obtained form the simulation where the size of the fault is increased

until the detectable magnitude for each case. Then, for completeness of the analysis,

the FD test using the IOA and SIA are simulated based on Algorithm 2.1 and (4.6)

for both slightly bigger and slightly smaller magnitudes of the fault that are obtained

theoretically in order to show the effectiveness and advantage of the IOA in comparison

with the SIA. As it can be observed from Figures 4.1, 4.4 and 4.6, both IOA and SIA are

able to detect the fault whose the magnitudes are simulated bigger that the obtained

MDF. But, the IOA is faster in detecting the fault in comparison with SIA since the

corresponding FD test is based on cheeking if 0 /∈
〈
cior , b(Rr)

io
〉
. On the other hand,

FD decision with SIA is based on checking rk /∈
〈
cisr,∞, R

is
r,∞i

〉
that requires more time

than IOA FD test. Faster decision about the existence of the fault can be undrestood as

an advantage of IOA in comparison with SIA. Furthermore, the FD test based on both

approaches is also applied considering the slightly smaller magnitudes that the obtained

MDF. Figures 4.2, 4.5 and 4.7 show that the faults whose magnitudes are not detectable

for the both IOA and SIA. Therefore, using sensitivity analysis with the integrated IOA
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and SIA allows to determine the minimum magnitude of the fault that can be detected

for both IOA and SIA.

4.5 Summary

This chapter has developed a study to characterize the MDF for linear uncertain systems

when the IOA is used. Moreover, sensitivity analysis and SIA have been integrated for

the FD purposes. Accordingly, the MDF has been characterized based on the sensitivity

analysis integrated with SIA considering all the possible uncertainties in state and output

measurement. Comparing both approaches yields to the same value of the MDF. Finally,

a case study based on quadruple-tanks system is used to illustrate the obtained results.

So far, this method has only been applied to compute the MDF and less attention has

been paid to compute the MIF. In this regard, a robust FDI approach that combines

both a zonotopic IOA and a SIA will be provided in the next chapter dealing with

not only the computation of MDF, but the computation of the MIF. Moreover, the

computation of the MDF is done only during the steady state operation of the system.

This limitation will be more relaxed in the next chapter and the MDF and MIF will be

characterized in both transient and steady states.



Chapter 5

Integrated IOA and SIA

ensuring FDI properties

The aim of this chapter is to provide a robust FDI approach that combines both zono-

topic IOA and SIA approaches. The effect of the uncertainty is taken into account

considering zonotopic-set representations in both the transient and steady states. The

SIA is used to characterize the fault detectability and isolability conditions in the steady-

state operation of the system. The MDF and the MIF are characterized for several type

of faults in separate formulations utilizing the integration of classical sensitivity analysis

and SIA. Finally, a simulation example based on a two-tanks system is employed to both

illustrate and discuss the effectiveness of the proposed approach.

5.1 Introduction

So far, one of the most widely used paradigms for generating the residual is the observer-

based approach [PQES03]. Observer-based approaches provide state and output es-

timations from the measurements and the model either stochastic (e.g., Kalman fil-

ters) or deterministic approaches (e.g., Luenberger observers) uncertainties. Then,

the FD test is based on generating the residual using the output estimation error

[CP99, PQES03, ABC05, Com15b].

Recently, there has been an increasing interest in using set-theoretical approaches

in FDI framework. Among them, SIA is one of the most used FDI techniques. There

is a large number of published studies describing the SIA [Kof05, KHS07, SZDDM08,

91
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OMDDS10, SDD10, XSP+13, RKKM05]. One major drawback of the set-invariance

approach is related to the limitation of computing the finite description of its boundary

in all cases. There is a large number of published studies describing the computation of

invariant sets1.

Recently, researchers have highlighted the interest of using the capability of the SIA

in FDI framework during the transient operation of the system using the set-theoretical

approaches [XSP+13, PPOM16b, KPP+17]. In this regard, the main contribution of

this chapter is to integrate the observer-based and SIA to develop a FDI scheme that

can be used in both transient and steady-state operations of a system. Furthermore, the

MDF and the MIF are characterized based on the combination of the classical sensitivity

analysis and the SIA. Finally, a well-known benchmark based on the two-tank system

is used as a case study to illustrate the results obtained in the chapter and show the

effectiveness of the proposed approach.

The structure of the chapter is the following: on-line propagation of the residual set

and the FDI design integrating the observer-based and set-invariance approaches are

proposed in Section 5.2. In Section 5.3, the application of the proposed approach to a

two-tank system is used in order to illustrate its effectiveness. Finally, the conclusions

are drawn in Section 5.4.

5.2 Zonotopic FDI observer design

The main objective of this section is to design a zonotopic FDI observer that can benefit

from IOA and SIA approaches in order to combine the benefits of them and overcome

their drawbacks.

5.2.1 On-line propagation of the residual set

Given the observer (2.5) and considering unknown but bounded uncertainties, two main

approaches that are presented in Chapter 4 to detect faults, i.e., i) IOA and ii) SIA,

are also considered in this chapter. As it is mentioned in Section 5.1, each of them has

its own advantages and drawbacks. In the former approach, the FD principle leads to

detect the fault in both transient and steady-state operations of the system since its

1More information was reported in Section 4.1.
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residual generation is performed on-line. The latter approach only works in steady state

since its residual generation is performed off-line.

Therefore, the most serious weakness of the SIA in comparison with the IOA is

related to its limited use in transient state. On the other hand, one important feature of

SIA is the ability of providing both detectability and isolability properties in comparison

with IOA. Therefore, the purpose of this chapter is to propose an FDI approach based

on IOA that integrates IOA and SIA that can

• be used during the whole time range (both transient and steady states), and

• guarantee both detectability and isolability properties.

According to [AR08] and [SHO13], the RPI set in SIA (see Section 2.3.3), can be

alternatively computed by recursive iteration of x̂. Thus, the dynamical model (2.4)

and the zonotopic state bounding observer in Proposition 2.1 can be used to obtain the

zonotopic representation of the state estimation error and consequently the RPI set.

Coming back to the main issue discussed at the beginning of this section, it is now time

to compute the RPI set of the state estimation error. In this regard, Proposition 4.1

implies that Φx̃ can also be represented as a zonotope. Moreover, Proposition 4.1 can be

used to project the state estimation error x̃ into the residual space as (4.5). Therefore,

considering Proposition 4.1, the residual set in steady state is invariant and can be

considered as a set that combines the polytopic UB method with the zonotopic iterative

approximation. Then, when the system is working in either healthy or faulty modes,

the residual set characterizing these modes can be computed. The benefit of generating

the residual in this way is to track the residual trajectories not only in steady state but

also in transient state. Furthermore, in the case of having several types of faults, as

long as the faulty and the healthy sets are separated, the proposed FDI approach will

be able to work correctly.

In the case of IOA, the fault is detected by testing the consistency of the obtained

residual based on the current behavior of the system and a fixed threshold (ideally 0).

On the other hand, in the case of SIA, the residual invariant set in the healthy operation

of the system is fixed and determined off-line. Then, the fault is detected by means of

checking the inconsistency of the obtained residual of the current behaviour and the

healthy residual set. Now, considering the zonotopic representation of an RPI set using

Proposition 4.1 and through its iterative capability to generate the residual set, both FD
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principles can be combined. That is by using the same concept of SIA for FD test, that

is based on checking if the obtained residual set belongs to healthy residual set of the

system, instead of zero in the case of IOA. The healthy residual set can be generated at

each time instant and compared with the current residual set. In this regard, not only

the fault can be detected in both steady and transient states but also the fault can be

isolated since the separated invariant sets representing different behaviors of the system

can be obtained.

5.2.2 FDI design

As mentioned before, the IOA can detect the fault in both transient and steady-state

mode of a system. On the other hand, the FD test using the SIA can be applied only in

steady state. But, in SIA, the invariant residual set that introduces the healthy mode

of the system is computed off-line. In this regard, both healthy and faulty residual sets

can be separated and considering this separation, the fault can be both detected and

isolated. Furthermore, both on-line and off-line analysis can be used to generate the

invariant set characterizing the residual, i.e.,

r = y − ŷ
on-line

= C(x− x̂) + Eυυ

off-line

. (5.1)

The proposed method suggested in Proposition 4.1 leads to compute the residual

in an on-line way. Therefore, after reaching the state state, the computed residual

set can be considered as an invariant set that combines the polytopic UB expression

with the zonotopic iterative approximation. Then, if the system is working in healthy

operation, this set introduces the healthy operation (that can be computed in both

transient state and steady-state). Alternatively, in the case of occurrence of the fault,

the residual trajectories can be bounded by another set that characterizes the faulty

operation of the system. Then, the separation of the healthy and fault sets is due to a

fault occurrence. Moreover, in the case of having several families of the fault, such an

observer is also be able to ensure the isolability property. Given the classical Luenberger

observer (2.5), it is possible to design one or several observers using Proposition 4.1 to

satisfy the separation of the healthy and faulty sets to guarantee both detectability and

isolability properties. Similar to the Chapter 3, different actuator and sensor faults will

be considered in this chapter. Furthermore, the dynamics of state estimation error in
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(2.29) can be rewritten in faulty operation of the system as

x̃+ = (A− LC)x̃+ Edd+ Ff, (5.2)

where

F =
[
Fa −LFy −BFu

]
, (5.3a)

f =
[
fa fy fu

]>
. (5.3b)

It is worth mentioning that, based on Assumption 3.1, only one fault can be con-

sidered at the same time in the observer structure. Therefore, those elements of F

and f that are related to the given fault are retained and the remainder elements are

eliminated, e.g., in the case of an actuator fault, F =
[
Fa

]
and f =

[
fa

]
. Considering

f 6= 0, the effect of the uncertainty and fault should be considered when computing the

zonotopic set bounding state estimation error that is defined in Proposition 5.1.

Proposition 5.1. Consider the dynamical model (3.9) and the observer (3.10), the

decomposition of the center cx̃ and the shape matrix Rx̃ of the zonotopic set bounding

the state estimation error in (5.2) into the effects of the disturbance and fault can be

recursively defined as

x̃+ ∈
〈
cx̃d+ , Rx̃d+

〉
⊕
〈
cx̃f+ , Rx̃f+

〉
, (5.4)

with

cx̃d+ = (A− LC) cx̃d , (5.5a)

Rx̃d+ =
[
(A− LC)R̄x̃d Ed

]
, (5.5b)

cx̃f+ = (A− LC) cx̃f , (5.5c)

Rx̃f+ =
[
(A− LC)R̄x̃f F

]
. (5.5d)

where the subscripts d and f denote the effects of uncertainties (i.e., state disturbance

and measurement noise) and the fault, receptively.

Proof. Assume x̃ ∈ 〈cx̃d , Rx̃d〉 ⊕
〈
cx̃f , Rx̃f

〉
and consider Assumptions 2.2 and 3.1, the
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zonotopic form of the state estimation error in (4.1) can be expressed as

x+ ∈ 〈(A− LC)cx̃d
, (A− LC)Rx̃d

〉 ⊕
〈
(A− LC)cx̃f

, (A− LC)Rx̃f

〉
⊕ 〈0, Ed〉 ⊕ 〈0, F 〉 . (5.6)

Furthermore, consider that the superposition principle can be explicitly invoked in

the linear setting. Therefore, using Definition B.22, the center and the generator matri-

ces in (5.6) can be reorganized as in (5.5). Thus, x̃+ ∈
〈
cx̃d+ , Rx̃d+

〉
⊕
〈
cx̃f+ , Rx̃f+

〉
.

Consequently, the state estimation error can be projected into the residual space

using (5.1). Thus, Proposition 5.1 allows to derive the residual set decomposing the

effects of the disturbance and fault as

crd+ = Ccx̃d+ , (5.7a)

Rrd+ =
[
CRx̃d+ Eυ

]
, (5.7b)

crf+ = Ccx̃f+ , (5.7c)

Rrf+ =
[
CRx̃f+

]
. (5.7d)

Furthermore, the effects of the uncertainty and fault on the residual set can be

known as the residual sensitivity with respect to the uncertainty and fault. Therefore,

this type of on-line observer can be used in both transient and steady state to guarantee

detectability and isolability in the case of satisfaction of conditions in Theorems 5.1 and

5.2.

Theorem 5.1. (Detectability condition) Consider Definition B.25 and the decomposed

form of the residual set in (5.7), the fault will be detected if

sf•,l > sdu , (5.8a)

sf•,u < sdl , (5.8b)

with

sf•,l =
(
Cicrf• −

∥∥CiRrf•∥∥1

)
+
(
Cicrd − ‖CiRrd‖1

)
, (5.9a)

sf•,u =
(
Cicrf• +

∥∥CiRrf•∥∥1

)
+
(
Cicrd + ‖CiRrd‖1

)
, (5.9b)

sdl = Cicrd − ‖CiRrd‖1 , (5.9c)

sdu = Cicrd + ‖CiRrd‖1 , (5.9d)
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where i corresponds to the ith row of the vector C. Moreover, sfl and sfu are the

minimum and the maximum values of the zonotope support strip in the faulty case,

respectively. Furthermore, sdl and sdu are the minimum and the maximum values of the

zonotope support strip in the healthy case, respectively.

Proof. Consider (5.7) in faultless scenario, i.e., f• = 0, r ∈ 〈crd , Rrd〉. But, in the case

of faulty operation of the system r /∈ 〈crd , Rrd〉. Therefore, it can be written that

〈crd , Rrd〉 ⊕
〈
crf• , Rrf•

〉
/∈ 〈crd , Rrd〉 . (5.10)

Then, by computing the zonotope support strip using Definition B.25 for the residual

sets in both healthy and faulty operations of the system, (5.10) will be obtained if the

inequality in (5.8) is satisfied.

Theorem 5.2. (Isolability condition) Consider the decomposed form of the residual

set in (5.7) and Definition B.25 to compute the zonotope support strip, a necessary

condition that should be added to detectability condition in Theorem 5.1 in order to

ensure the isolation of a fault f•p from a fault f•q is

sf•,lp > sf•,uq , (5.11a)

sf•,up < sf•,lq , (5.11b)

with

sf•,lp = Cicrf•p −
∥∥∥CiRrf•p ∥∥∥1

, (5.12)

sf•,up = Cicrf•p +
∥∥∥CiRrf•p ∥∥∥1

, (5.13)

sf•,lq = Cicrf•q −
∥∥∥CiRrf•q ∥∥∥1

, (5.14)

sf•,uq = Cicrf•q +
∥∥∥CiRrf•q ∥∥∥1

, (5.15)

where sf•,lp and sf•,up are the minimum and the maximum values of the zonotope support

strip in the case of occurrence of f•p, respectively. Furthermore, sf•,lq and sf•,uq are the

minimum and the maximum values of the zonotope support strip in the case of occurrence

of f•q , respectively.

Proof. The proof follows in the same way than Theorem 5.1. Then, consider (5.7) and
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(5.8), it can be written that f•p is isolable from f•q if〈
crf•p , Rrf•p

〉
/∈
〈
crf•q , Rrf•q

〉
. (5.16)

Thus, (5.16) can be written using Definition B.25 as (5.11) for the purpose of isolation

of f•p from f•q

5.2.3 Characterization of MDF and MIF

Up to now, the chapter has focused on detectability and isolability properties of the

proposed approach during both transient and steady-state operations of the system.

It is mentioned that the detectability and isolability can be achieved in the case of

satisfaction of the Theorems 5.1 and 5.2. Then, MDF and MIF can be characterized

using the input-output forms of the measurement y, output prediction ŷ and the residual

r derived in Section 4.3. Then, considering all the mentioned points and the detectability

conditions in Theorem 5.1, the minimum magnitude of the fault that can be detected

can be characterized following Theorem 5.3.

Theorem 5.3. (MDF) The MDF is characterized using conditions in (5.8), Proposi-

tion 5.1 and the decomposed form of the residual set in (5.7) as

fDet
min•j,∞

= max fDet
min•ji,∞

,

fDet
min•ji,∞

= +2
‖Gdi(1)‖1∥∥∥Gf•ij (1)

∥∥∥
1

,
(5.17a)

fDet
min•j,∞

= min fDet
min•ji,∞

,

fDet
min•ji,∞

= −2
‖Gdi(1)‖1∥∥∥Gf•ij (1)

∥∥∥
1

,
(5.17b)

where the superscript Det refers to the detectable fault and the factor 2 appears because

the worst-case scenario is considered, where the uncertainties have a maximum influence

in the opposite direction compared to that of the fault occurrence. The indices i and j

refer to the ith row and jth column of the transfers Gd and Gf (residual sensitivity with

respect to the uncertainty and fault), respectively.

Proof. Based on (5.7), in the time domain and in steady state (limit as k →∞), r∞ ∈〈
crd∞ , Rrd∞

〉
⊕
〈
crf∞ , Rrf∞

〉
. On the other hand, considering fDet

min•
∈ [fDet

min•
, fDet

min•
], it
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can be written that

fDet
min• ∈

〈
cfDet

min•
, RfDet

min•

〉
, (5.18)

where cfDet
min•

and RfDet
min•

show the center and the shape matrix of the MDF zonotope, re-

spectively. Considering the worst-case scenario, the limit of the MDF can be understood

as a maximum and minimum value of its zonotope support strip that can be computed

using (5.18) and Definition B.25. Therefore, the MDF is known as

fDet
min•j

= max fDet
min•j

= CicfDet
min•

+
∥∥∥CiRfDet

min•

∥∥∥
1
, (5.19a)

fDet
min•j

= min fDet
min•j

= CicfDet
min•
−
∥∥∥CiRfDet

min•

∥∥∥
1
. (5.19b)

Then, consider ω ∈ 〈0, Inω〉 and υ ∈ 〈0, Inυ〉, in the steady state for the faulty case,

i.e., f• 6= 0, it is satisfied

r∞ ∈ 〈Gu(1)u∞, 0〉 ⊕ 〈0, Gd(1)〉 ⊕
〈
Gf•(1)cfDet

min•
, Gf•(1)RfDet

min•

〉
. (5.20)

Moreover, the decomposed form of the center and the shape matrix of residual zono-

tope in steady state can be computed using (5.20) as

crd∞ =Gu(1)u∞, (5.21a)

Rrd∞ =
[
Gd(1)

]
, (5.21b)

crf•,∞ =Gf•(1)cfDet
min•

, (5.21c)

Rrf•,∞ =
[
Gf•(1)RfDet

min•

]
, (5.21d)

where the subindex rd∞ and rf∞ show the residual sensitivity with respect to the effect

of uncertainty and fault in steady state, respectively.

Now, consider Theorem 5.1 in the faulty mode of the system, i.e., satisfaction of the

detectability conditions in (5.8), it can be stated that in steady state, the fault will be

detected if

sf•,l,∞ > sdu,∞ , (5.22a)

sf•,u,∞ < sdl,∞ . (5.22b)
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Then, consider (5.21) and Definition B.25, it follows that

sf•,l,∞ =
(
Cicrf•,∞ −

∥∥CiRrf•,∞∥∥1

)
+
(
Cicrd∞ −

∥∥CiRrd∞∥∥1

)
, (5.23a)

sf•,u,∞ =
(
Cicrf•,∞ +

∥∥CiRrf•,∞∥∥1

)
+
(
Cicrd∞ +

∥∥CiRrd∞∥∥1

)
, (5.23b)

sdl,∞ = Cicrd∞ −
∥∥CiRrd∞∥∥1

, (5.23c)

sdu,∞ = Cicrd∞ +
∥∥CiRrd∞∥∥1

, (5.23d)

Next, by considering the worst-case scenario, i.e., the residual is considered with the

extreme value (it is located at either the lower or the upper bound of the zonotope

support strip of the considered threshold), it can be written that the fault can be detected

if (
Cicrf•,∞ −

∥∥CiRrf•,∞∥∥1

)
> +2

∥∥CiRrd∞∥∥1
(5.24a)(

Cicrf•,∞ +
∥∥CiRrf•,∞∥∥1

)
< −2

∥∥CiRrd∞∥∥1
(5.24b)

Finally, the MDF can be characterized considering (5.19) and by substitution of

residual sensitivity (5.21) and (5.23) in (5.24), which in (5.17).

The condition in Theorem 5.1 is sufficient only for detecting the fault and the MDF,

which is characterized in Theorem 5.3. Moreover, the fault can be isolated if the inter-

section between the residual sets (computed based on different type of faults) is empty.

Therefore, the condition in Theorem 5.2 should also be satisfied together with condition

(5.8) in order to guarantee both detection and isolation of the fault.

Furthermore, using residual in (5.7) and condition in Theorem 5.2, the minimum

magnitude of the fault that can ensure both detection and isolation is characterized

following Theorem 5.4.

Theorem 5.4. (MIF) The MIF of a fault f•p from a fault f•q is characterized using

the conditions in Theorems 5.1 and 5.2, and also, considering the decomposed form of

the residual set in (5.7) as
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f Iso
min•pj,∞

= max f Iso
min•pji,∞

,

f Iso
min•pji,∞

= +2
‖Gdi(1)‖1∥∥∥Gf•pij (1)

∥∥∥
1

+

∥∥∥Gf•qi (1)
∥∥∥

1∥∥∥Gf•pij (1)
∥∥∥

1

,
(5.25a)

f Iso
min•pj,∞

= min f Iso
min•pji,∞

,

f Iso
min•pji,∞

= −2
‖Gdi(1)‖1∥∥∥Gf•pij (1)

∥∥∥
1

+

∥∥∥Gf•qi (1)
∥∥∥

1∥∥∥Gf•pij (1)
∥∥∥

1

,
(5.25b)

where the superscript Iso refers to the isolable fault and the factor 2 appears because the

worst-case scenario is considered considering the effect of uncertainties d and fault f•q

that have a maximum influence in the opposite direction compared to that of the fault

occurrence f•p.

Proof. The proof follows a similar procedure than the one used in Theorem 5.3. In this

regard, based on (5.7), it can be written in the time domain and in steady state (limit

as k → ∞) that r∞ ∈
〈
crd∞ , Rrd∞

〉
⊕
〈
crf•p,∞ , Rrf•p,∞

〉
in the case of occurrence of

f•p . Moreover, r∞ ∈
〈
crd∞ , Rrd∞

〉
⊕
〈
crf•q,∞ , Rrf•q,∞

〉
in the case of occurrence of f•q .

On the other hand, considering f Iso
min•p

∈ [f Iso
min•p

, f Iso
min•p

], it can be written that

f Iso
min•p

∈
〈
cf Iso

min•p
, Rf Iso

min•p

〉
, (5.26a)

f Iso
min•q

∈
〈
cf Iso

min•q
, Rf Iso

min•q

〉
, (5.26b)

where cf Iso
min•p

, Rf Iso
min•p

and cf Iso
min•q

, Rf Iso
min•q

show the center and the shape matrix of the

MIF zonotope in the case of occurrence of the f•p and f•q , respectively. Furthermore,

considering the isolability condition in Theorem 5.2, in the case of occurrence of f•p ,

i.e., f•p 6= 0, and when k →∞, it can be derived that

r∞ ∈ 〈Gu(1)u∞, 0〉 ⊕ 〈0, Gd(1)〉 ⊕
〈

Gf•p (1)cf Iso
min•p

, Gf•p (1)Rf Iso
min•p

〉
. (5.27)

On the other hand, for the case of occurrence of f•q , it is satisfied

r∞ ∈ 〈Gu(1)u∞, 0〉 ⊕ 〈0, Gd(1)〉 ⊕
〈

Gf•q (1)cf Iso
min•q

, Gf•q (1)Rf Iso
min•q

〉
. (5.28)
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Now, the residual sensitivity with respect to the effect of uncertainties in steady state

can be obtained as in (5.21a) and (5.21b). Furthermore, the residual sensitivity with

respect to the effect of faults f•p and f•q in steady state can be computed as

crf•p ,∞ =Gf•p (1)cf Iso
min•p

, (5.29a)

Rrf•p ,∞ =
[
Gf•p (1)Rf Iso

min•p

]
, (5.29b)

crf•p ,∞ =Gf•q (1)cf Iso
min•q

, (5.29c)

Rrf•q ,∞ =
[
Gf•q (1)Rf Iso

min•q

]
. (5.29d)

Besides, the isolability condition in (5.11) can be rewritten during steady state as

sf•,lp,∞ > sf•,uq,∞ , (5.30a)

sf•,up,∞ < sf•,lq,∞ , (5.30b)

where

sf•,lp,∞ =
(
Cicrf•p ,∞ −

∥∥∥CiRrf•p ,∞∥∥∥1

)
+
(
Cicrd∞ −

∥∥CiRrd∞∥∥1

)
, (5.31a)

sf•,up,∞ =
(
Cicrf•p ,∞ +

∥∥∥CiRrf•p ,∞∥∥∥1

)
+
(
Cicrd∞ −

∥∥CiRrd∞∥∥1

)
, (5.31b)

sf•,lq,∞ =
(
Cicrf•q ,∞ −

∥∥∥CiRrf•q ,∞∥∥∥1

)
+
(
Cicrd∞ −

∥∥CiRrd∞∥∥1

)
, (5.31c)

sf•,uq,∞ =
(
Cicrf•q ,∞ +

∥∥∥CiRrf•q ,∞∥∥∥1

)
+
(
Cicrd∞ −

∥∥CiRrd∞∥∥1

)
. (5.31d)

Then, by considering the worst-case scenario for both uncertainties and the consid-

ered fault (here f•q) with respect to the other faults (here f•p), the isolability condition

can be rewritten as(
Cicrf•p ,∞ −

∥∥∥CiRrf•p ,∞∥∥∥1

)
>
(
Cicrf•q ,∞ +

∥∥∥CiRrf•q ,∞∥∥∥1

)
, (5.32a)(

Cicrf•,∞ +
∥∥CiRrf•,∞∥∥1

)
<
(
Cicrf•q ,∞ −

∥∥∥CiRrf•q ,∞∥∥∥1

)
. (5.32b)

Finally, the MIF can be characterized considering (5.26) and by substitution of the resid-

ual sensitivity with respect to disturbances (5.21a), (5.21b) and the residual sensitivity

with respect to faults (5.29) in (5.32) results in (5.25).

The minimum magnitude of the fault that establishes if a fault is detectable and
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isolable according to Theorems 5.3 and 5.4. Therefore, it can be written that in the

case of satisfaction of both conditions in (5.8) and (5.11), the fault can be detected

and isolated. Furthermore, another possible manner to guarantee both detection and

isolation at the same time can be achieved by considering (5.32). This condition shows

that the isolation of the fault depends on the direction of vector C. Thus, in the case of

having the occurrence of the faults in different directions, the fault can be isolated with

the same magnitude of the MDF. In this regard, further analysis of the approaches will

be discussed in Section 5.3 based on a case study.

5.3 Case study

5.3.1 Plant description

The proposed FDI scheme will be tested using a two-tank system based on the well-

known benchmark proposed in [Joh00] as in Appendix A.

As it is explained in Section A.2, the input of the two-tank system is the pump flow

rate that is determined when applying voltage v of the pump. Therefore, the action

of the pump is to pour the tanks by extracting the water from the basin. Moreover,

Tank 1 is placed below Tank 2. But, in this chapter, the outputs of the process are

the water levels in both upper and lower tanks that are obtained as voltages from the

measurement devices. Therefore, in this chapter, matrices A and B are considered the

same as system matrices in Section 3.4.1. So far, since the purpose is to measure the

water levels in both upper and lower tanks, matrix C in (A.7) is considered as

C =

[
0.5 0

0 0.5

]
. (5.33)

Furthermore, taking into account the state disturbance and the measurement noise,

Eω and Eυ are simulated in (A.3) with

Eω =

[
0.05 0

0 0.05

]
, Eυ =

[
0.01 0

0 0.01

]
. (5.34)

As it can observed in (5.34), Eω is used to define a disturbance influencing all the



104 Chapter 5 : Integrated IOA and SIA ensuring FDI properties

Figure 5.1: State estimation in healthy operation of the system.

states and the measurement noise affecting both outputs is modeled through Eυ.

5.3.2 Performing FDI

Healthy operation of the system

The first step in the FPI process is to obtain the state estimation. In this regard,

the additive uncertainties (ω and υ) are assumed unknown but bounded based on the

zonotopic definition of a set during the simulations as in (2.3). Figure 5.1 shows the pro-

jection of the computed state-bounding zonotope into the state-space when the system

is working in its healthy mode.

As discussed in Sections 2.3.1 and 2.3.3, there are two different approaches for bound-

ing the effect of uncertainty in the residual. On the one hand, the on-line IOA that is

able to generate the residual set in both transient state and steady state. On the other

hand, the SIA that is an off-line procedure to compute the residual set in steady state
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(a) k=1. (b) k=10. (c) k=20.

(d) k=30. (e) k=40. (f) k=50.

Figure 5.2: On-line propagation of residual set using zonotopic IOA
during transient state and healthy operation of the
system.

(see (5.1)). Figure 5.2 presents the residual set based on on-line IOA that is obtained

from the transient operation of the healthy system. The obtained residual zonotopes at

time instants k = 1, k = 10, k = 20, k = 30, k = 40 and k = 50 are shown in Figure 5.2

for the healthy functioning of the system in (A.3). From the results in Figure 5.2, it

can be seen that the residual generated using the proposed on-line zonotopic observer

(the green zonotopes) ultimately converges to the one that is represented by the black

solid line. Based on the system description, outputs of the considered two-tank system

are the water level in both upper and lower tanks. Therefore, the residual zonotopic set

can be generated as a plane zonotope (2D zonotope) at each time step, where r1 and

r2 denote the difference between the predicted values of the h1 and h2 with their real

measured values given by the sensor, respectively.

From the results in Figure 5.2, it can be observed that the residual generated by

an on-line zonotopic observer is also converging to the one that is shown in Figure 5.3,

which can be considered as an RPI set for the residual. Furthermore, Figure 5.3 shows

the obtained residual set from the SIA based on (2.31).
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Figure 5.3: Comparison of the residual set using on-line and off-line
approaches in steady state.

What is interesting in Figure 5.3 is related to the comparison of the residual zono-

topes obtained based the off-line and on-line approaches. A comparison of the two

results reveals that no significant differences were found between the size of the residual

zonotopes in steady state. Therefore, the obtained RPI set for the residual based the

proposed on-line zonotopic IOA is confirmed by the use of SIA. Furthermore, it is true

that the difference between the computed RPI set is not significant but the size of the

RPI set that is computed on-line is a bit tighter than the one computed off-line. Thus,

it can be considered that the off-line SIA is more conservative than the on-line IOA

since the RPI set is computed off-line. This result may be explained by the fact that

the iterative propagation of the uncertainties in zonotopic IOA is more accurate than

the off-line computation procedure. Furthermore, the mathematical burden is increased

using the on-line approach but it allows obtaining a more accurate result.

This section presents the analysis of the system in healthy operation. The next step

is to test the proposed so-called on-line IOA during the faulty case.

Faulty operation of the system

Following Section 5.2, the MDF can be computed using Theorem 5.3 for different types

of actuator and sensor faults. The effect of faults on the state and the measurements
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are modeled through the components of matrix F in (5.3). Furthermore, in order to

analyze the effect of different type of faults on the system, actuator and sensor faults

are simulated, separately.

In the first simulation, the actuator fault is considered. In this regard, the position

of the valve is controlled by using the electrical actuator. As it is explained in the

description of the case study, the position of the valve during the experiment is related

to the flow parameter γ in the range between [0, 1]. Thus, the flow to the lower and upper

tanks is influenced by the valve position through γKpω and (1−γ)Kpv, respectively. To

simulate the single actuator fault, faulty dynamical model (3.9) is considered as (3.25).

From (3.25), it can be observed that system is affected by the actuator fault through

matrix Fa and the vector fa, i.e.,

Fa = 10B, fa =
[
fa

]
, (5.35)

where matrix Fa is selected to simulate the actuator fault. Moreover, fa denotes the

direction of the fault effect on the actuator. Then, considering all the details mentioned

regarding to the system simulation and simulation of the actuator fault, Theorem 5.3

can be used in order to compute the MDF. Therefore, the minimum magnitude of the

actuator fault that can be detected is obtained using (5.17). Thus, the MDF in the case

of actuator fault is computed during steady-state operation of the system as

fDet
mina = ±0.3310. (5.36)

To test the obtained magnitudes, the occurrence of the fault is simulated at k = 500,

which simulates the fault in steady state. Furthermore, based on the description of the

case study, the flow parameter is considered as γ = 0.6. In this regard, the two following

scenarios for a single step additive actuator fault are considered in steady state:

• scenario (i): fa = 0.3330, i.e, slightly bigger than the magnitude fDet
mina

= ±0.3310,

• scenario (ii): fa = 0.3280, i.e, slightly smaller than the magnitude fDet
mina

= ±0.3310.

Figure 5.4 shows the FD test results for both scenarios. As it can be seen in Fig-

ure 5.4, the residual sets obtained in healthy and faulty operation are separated in the

case of fault occurrence considering the first scenario. Therefore, the fault can be de-

tected. But, considering the second scenario, the overlap between the healthy and faulty
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(a) fa = 0.3330 at k = 500.

(b) fa = 0.3280 at k = 500.

Figure 5.4: FD results in the case of occurrence of the actuator fault
during steady state, i.e., k = 500.

residual sets means the fault with the considered magnitudes is not detectable.

Further analysis is carried out for the case of actuator fault at k = 500 by project-

ing the faulty residual set into each residual space as can be seen on the left side of

the Figure 5.4. It can be observed that the threshold, i.e., ideally in classical IOA is

considered zero, is out of the area between the upper and lower bounds of the residual

set in Figure 5.3.2. Then, the existence of the fault will be proved. On the other hand,

the threshold is between the area of the maximum and minimum bounds of the residual

set in Figure 5.3.2, where the second scenario is considered for the fault magnitude.

Therefore, the fault with the magnitude fa < 0.3310 is not detectable. Hence, Fig-

ure 5.4 confirms through simulations the obtained results in (5.36). This illustrates that

proposed on-line zonotopic IOA is well suited to the fault detectability of the classical
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IOA.

Remark 5.1. The healthy zonotopic set that is shown in Figures 5.2 and 5.3 is obtained

without considering the reduction operator ↓q since the computational burden is not to

much for this case study. But, in the faulty operation of the system since the computa-

tional burden is increased, the reduction operator ↓q is used to fix the dimension of the

generator matrices with the maximum value. Due to this reason, the healthy residual set

that is shown in Figure 5.3 and Figure 5.4 are not exactly the same. �

Moreover, the MDF analysis is done considering the output sensor fault. In this

regard, the faulty dynamical model (3.17) is considered.

As mentioned in the description of the case study, the outputs of the system are the

water levels in Tanks 1 and 2 that can be measured using the measurement devices as

voltages. Based on the physical features, the height of each tank is 20 cm. Then, each

output of the system is between [0 10] V since Kc = 0.50 V/cm. To simulate the output

sensor fault, the terms Fy and fy in (3.17) is considered in the simulation as

Fy =

[
10 0

0 10

]
, fy =

[
fy1

fy2

]
, (5.37)

where the matrix Fy is defined with the whole range of the measurement. Moreover, fy1

and fy2 present the influence of the fault on each output. Then, the minimum magnitude

of the sensor fault that can be detected can be computed based on Theorem 5.3. Using

(5.17), the minimum magnitude of the output sensor fault that can be detected is

computed during steady-state operation of the system as

fDet
miny =

[
±0.2575 V

±0.0082 V

]
. (5.38)

As further analysis, the occurrence of the output sensor fault is separately simulated

at k = 500, in order to test the obtained magnitude during steady state. Furthermore,

based on the description of the case study, the operating points that are considered for

the water levels of the Tanks 1 and 2 are around 12.4 cm (or 6.2 V) and 1.8 (or 0.9 V),

respectively. Then, the FD test is done considering the following scenarios for a single

step additive output sensor fault are considered during steady state:
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• slightly bigger than the magnitude fDet
miny

=

[
±0.2575 V

±0.0082 V

]
,

• slightly smaller than the magnitude fDet
miny

=

[
±0.2575 V

±0.0082 V

]
.

Following the explained scenarios, there are four different magnitudes to be tested

on each sensor as

• scenario (i): fy1 = 0.2580 V, i.e, slightly bigger than the magnitude fDet
miny1

=

±0.2575 V,

• scenario (ii): fy1 = 0.2570 V, i.e, slightly smaller than the magnitude fDet
miny1

=

±0.2575 V,

• scenario (iii): fy2 = 0.0084 V, slightly bigger than the magnitude fDet
miny2

=

±0.0082 V,

• scenario (iv): fy2 = 0.0080 V, slightly smaller than the magnitude fDet
miny2

=

±0.0082 V.

It is worth mentioning that subscripts 1 and 2 denote the effect of the fault on the

sensor that is measuring the water level of Tanks 1 and 2, respectively. The results from

the implementation of the scenarios are reported in Figures 5.5 and 5.6.

Looking at Figures 5.5 and 5.6, it can be observed that separation of the healthy and

faulty residual sets is obtained when slightly bigger faults than the magnitudes obtained

in (5.38) are considered and the existence of the fault can be detected by means of the

obtained separations. Considering the second scenario, which corresponds to a fault

slightly smaller than the obtained magnitudes in (5.38) is considered, the fault can not

be detected since the healthy and faulty residual sets overlap. Furthermore, it can be

seen that the threshold, i.e., zero, is out of the area between the upper and lower bounds

of the residual set when implementing the first scenario of the two cases. Then, this

is an indication of the occurrence of the fault. Moreover, threshold is inside of the

area between the upper and lower bounds of the faulty residual set when implementing

the second scenario of the two cases and it can be considered that the fault with this

magnitude is not detectable. Thus, Figures 5.5 and 5.6 confirm through the simulation

the obtained results previously presented in (5.38).
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(a) fy1 = 0.2580 V at k = 500.

(b) fy1 = 0.2570 V at k = 500.

Figure 5.5: FD results in the case of occurrence of the sensor fault
(fy1) during steady state, i.e., k = 500.

The last simulation that is considered for the case study is related to the case of

input sensor fault. As mentioned before, the input sensor fault is a type of the fault

that the input of the observer is influenced by the fault (see (3.10)). The simulation of

the input sensor fault is carried out through the matrix Fu and the vector fu, i,e.,

Fu = 5, fu = fu, (5.39)

where matrix Fu is defined with the whole range of the input which is between [0, 5]

V. Furthermore, fu denotes the effect of the fault influencing observer input. Then, the

minimum magnitude of the input sensor fault is computed using Theorem 5.3 as

fDet
minu = ±0.6620 V. (5.40)
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(a) fy2 = 0.0084 V at k = 500.

(b) fy2 = 0.0080 V at k = 500.

Figure 5.6: FD results in the case of occurrence of the sensor fault
(fy2) during steady state, i.e., k = 500.

Similar to the actuator and output sensor faults, the MDF in the case of input sensor

fault is obtained during steady-state operation of the system. Then, regarding the FD

performance in this case, the fault is simulated at k = 500 to illustrate the steady state.

Furthermore, the following scenarios are considered for the implementation of the FD

test:

• scenario (i): fu = 0.6640 V, slightly bigger than the magnitude fDet
minu

= ±0.6620 V,

• scenario (ii): fu = 0.6600 V, slightly smaller than the magnitude fDet
minu

=

±0.6620 V.

Figure 5.7 shows the FD test considering the mentioned scenarios during steady state

for the case of input sensor fault. As can be seen in Figure 5.7, considering the input
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(a) fu = 0.6640 V at k = 500.

(b) fu = 0.6600 V at k = 500.

Figure 5.7: FD results in the case of occurrence of the input sensor
fault during steady state, i.e., k = 500.

sensor fault with bigger magnitude reported in (5.40), the separation of the healthy and

faulty residual sets is obtained. Thus, the existence of the fault is proved. Also, the

obtained overlap between the healthy and faulty residual sets when considering output

sensor fault with smaller magnitude is presented in Figure 5.7 corresponding to the

magnitude that cannot be detected in steady state.

Further analysis is done by projecting the residual set into each residual space. It

can be seen from the left side of the Figure 5.7, when the first scenario is simulated,

zero is out of the area between the upper and lower bounds of the residual set. Then,

the fault will be detected. On the other hand, when the second scenario is simulated,

zero is inside of the area between the upper and lower bounds of the residual set. Then,

the fault cannot be detected.
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Table 5.1: MDF during steady-state operation of the system.

Actuator fault Output sensor fault Input sensor fault
fDet
mina

fDet
miny1

[V] fDet
miny2

[V] fDet
minu

[V]

Theoretical ±0.3310 ±0.2575 ±0.0082 ±0.6620

Simulation ±0.3200 ±0.2900 ±0.0078 ±0.6900

Furthermore, Table 5.1 summarizes the obtained MDF in all the cases (actuator and

sensor faults) using Theorem 5.3. Furthermore, those magnitudes of the fault that can

be still detected at the end of the simulation, i.e., in steady state is obtained using the

simulation and reported in Table 5.1.

From Table 5.1, the magnitude of the fault that can be detected considering the

whole time range of the simulation is almost the same as the one obtained based on the

theoretical approach. However, in the case of sensor fault and due to the re-injection of

the fault involved by the observer structure leading to some transient behavior (see the

overshoot in Figures 5.5 and 5.6), the magnitude of the detectable fault is improved on

the whole time range of the simulation compared to steady state only.

As it is mentioned before, the fault with the magnitude obtained using Theorem 5.3

is only related to the detectability analysis and this magnitude of the fault is not valid

in the case of isolability analysis. After detecting the fault by means of obtaining the

separated sets in healthy and fault operation of the system, the isolation of the fault

depends on satisfaction of the conditions in Theorem 5.2. In this regard, the magnitude

of the different faults that are obtained using MIF analysis in Theorem 5.4 for the case

study are reported on Table 5.2.

It can be seen from the results that are presented in Table 5.2, there are some cases

that do not exist in the considered case study. These cases are denoted by − in Table 5.2.

Furthermore, there are some other cases that the faults always can be isolable if they are

larger than the MDF magnitude. These cases are shown by # in Table 5.2. A possible

explanation for having # might be related to the direction of the fault in the case study

that always there are some faults with the different directions, e.g., minimum isolable

input sensor fault with respect to the output sensor fault. In these cases, after obtaining

the separation between the healthy and faulty sets, the faulty sets are also separated.

Figure 5.8 illustrate one of the cases that always can be isolable with MDF magnitude
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Table 5.2: MIF during steady-state operation of the system.

fa fy1 [V] fy2 [V] fu [V]

f Iso
mina

− # # ±0.3460

f Iso
miny1

±0.2808 − # ±0.2691

f Iso
miny2

±0.0089403 ±0.008571 − ±0.0085701

f Iso
minu

±0.7219 # # −

since the direction of the faults are always different for the considered case study.

The implementation of the fault is done using the magnitudes that are obtained

based on Theorem 5.3 and reported in Table 5.1 as fu = 0.6640 V that is slightly

bigger than the magnitude fDet
minu

= ±0.6620 V for the case of occurrence of fu and

fy2 = 0.0084 V that is slightly bigger than the magnitude fDet
miny2

= ±0.0082 V for the

case of occurrence of fy2 . As can be seen in Figure 5.8, the occurrence of the input

sensor fault fu and output sensor fault fy2 are always separable by the magnitude that

is obtained based on Theorem 5.3.

However, the overlap can be obtained between the faulty residual sets in some cases

implementing the fault with the obtained magnitude in Table 5.1. Figure 5.9 illustrates

one of the cases, e.g., the case of occurrence fy2 and fa at the same time.

In this case, the fault magnitudes are considered fa = 0.3330 that is slightly bigger

than fDet
mina

= ±0.3310 and fy2 = 0.0.0084 V that is slightly bigger than fDet
miny2

=

±0.0082 V for the case of occurrence of fa and fy2 , respectively. Figure 5.9 shows that

the separation between the faulty sets cannot be obtained when the occurrence of the

faults are simulated with the magnitudes reported in Table 5.1.

Then, the magnitudes that are obtained in Table 5.2 are implemented in the simula-

tion for the considered cases: fy2 = 0.009V and fa = 0.35. Therefore, as can be seen in

Figure 5.10, the fault with the magnitude using Table 5.2 can be not only detectable, but

also, can be isolable since the intersection between the faulty residual sets are obtained

empty and the faulty sets are separated from each other and the healthy residual set.

Further analysis is done based on the simulation of the case of occurrence of all type

of possible faults for the case study by considering slightly bigger magnitudes than the
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Figure 5.8: Always separable (ISF and OSF (II) denote the residual
set when simulation input sensor fault fu and output
sensor fault fy2 , respectively).

Figure 5.9: FD results when the obtained magnitude using MDF is
considered for the case of occurrence of fy2 and fa at the
same time (AF denotes the residual set when simulation
actuator fault fa).

maximum MIF for the faults obtained in Table 5.2 as

fa = 0.35,

fy1 = 0.29 V,

fy2 = 0.0095 V,

fu = 0.73 V.
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Figure 5.10: FD results when the obtained magnitude using MIF is
considered.

Figure 5.11: FD results when the maximum magnitude that obtained
using MIF analysis in Table 5.2 for each type of faults is
simulated.

Figure 5.11 presents the case of occurrence of the fault with the maximum value

obtained in Table 5.2, all type of faults are perfectly separated. This case correspond to

a fault magnitudes that properly detectable and isolable.
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5.4 Summary

This chapter has proposed a zonotopic interval observer-based FDI algorithm integrated

with the SIA. As a novelty, in the proposed FDI design, fault detectability and fault

isolability can be guaranteed in both transient and steady states. The influences of all

possible state disturbance and measurement noise are addressed using the zonotopic-set

representation of a set. Furthermore, MDF and MIF have been characterized based

on the sensitivity analysis integrated with SIA. Finally, a case study based on two-

tank system is used to illustrate the obtained results. In model-based approaches, the

observer gain plays an important role since it determines the MDF for a given type of

fault and allows enhancing the observer FD properties. There has been little discussion

about the effect of the observer gain in the previous chapters. Therefore, the effect of

the observer gain over the state-bounding observer will be further analyzed in order

to improve the algorithm for enhancing the sensitivity to the fault with respect to the

influence of disturbance with the goal of improving the FDI performance in the next

chapter.



Chapter 6

Interval observer FD rather

than state estimation

Enhancing the sensitivity to faults with respect to disturbances, rather than optimiz-

ing the precision of the state estimation using KF is the subject of this chapter. The

stochastic paradigm (KF) is based on minimizing the trace of the state estimation er-

ror covariance. In the context of the bounded-error paradigm using Zonotopic Kalman

Filters (ZKF), this is analog to minimize the covariation trace. From this analogy and

keeping a similar observer-based structure as in ZKF, a criterion jointly inspired by set-

membership approaches and approximate decoupling techniques coming from parity-

space residual generation is proposed. Its on-line maximization provides an optimal

time-varying observer gain leading to the so-called FD-ZKF filter that allows enhancing

the FD properties. The characterization of MDF magnitude is done based on a sensitiv-

ity analysis. The effect of the uncertainty is addressed using a set-membership approach

and a zonotopic representation reducing set operations to simple matrix calculations.

A case study based on a quadruple-tank system is used both to illustrate and compare

the effectiveness of the results obtained from the FD-ZKF approach compared to a pure

ZKF approach.

6.1 Introduction

Within the context of model-based FDI approaches, a large and growing amount of

literature has reported several approaches to improve the FD methods such that the

119
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residual is obtained to be insensitive to the uncertainty, while at the same time sensitive

to the faults [CP12, Din08, ZDLW03]. This is the case of FD filters that are designed

by considering the robustness against disturbance, noise or any uncertainties using,

e.g., H∞ optimization, LMIs or µ design techniques [ZDLW03, SCP96]. But, recent

results show that the filter design technique considering only the rejection of the effect

of uncertainties has not been successful since the sensitivity to the fault needs to be

considered in FD filter design [LZ07]. This is the case of [HP96] where the multi-

objective FD design based on H−/H∞ techniques is considered. Indeed, the worst case

of the fault sensitivity is taken into account by the smallest not null singular value of the

transfer function matrix from fault to residual at either ω = 0 or over a given frequency

range [LWY05, Hen10]. Then, a significant amount of literature has been published

discussing this multi-objective design task formulated as an optimization problem, e.g.,

H∞/H∞, H2/H∞ or H2/H2 problems [LZ07, JLP06, WYL07, DJFD00].

On the other hand, a considerable amount of literature has been reported on dif-

ferent state-bounding algorithms based on stochastic and deterministic approaches. A

recent study, proposed by [Com15b], deals with the standard Kalman filtering together

with the zonotopic state estimation. This work establishes an explicit bridge between

stochastic/Gaussian and set-based/zonotopic frameworks relying on the analogy be-

tween covariances and covariation. Then, in [Com15a] and [Com16], both deterministic

(bounded) and stochastic (Gaussian) disturbances have been taken into account in order

to propose the extended version of Zonotopic and Gaussian Kalman Filter with the aim

of merging Gaussian Kalman filtering and zonotopic state bounding to achieve robust

FD. Furthermore, there is a large volume of reported studies about fault detectability, in

particular [MPES10], where the main objective is to compute the minimum magnitude

of the fault that can be detected when an IOA is used.

The main contribution of this chapter is to make use of a similar observer-based

structure as in ZKF in order to propose an approach enhancing the sensitivity to faults

with respect to disturbances, rather than only optimizing the precision of the state

estimation as is usually considered in KF. As for ZKF, a generic discrete-time linear time-

varying (LTV) dynamic model of the system is considered. Contrary to most existing

multi-objective FD design techniques, the sensitivity to both faults and disturbances

is evaluated using a set-based approach enclosing all the possible temporal scenarios

of faults and disturbances within specified ranges. Moreover, the proposed criterion

combining the sensitivity to both faults and disturbances makes it possible to efficiently
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obtain on-line time-varying optimal FD observer gains, without any requirement on the

considered frequency ranges. The combination of these features makes the approach

original compared to most multi-objective optimization-based FD techniques. Finally,

the effectiveness of the proposed approach is illustrated using a case study based on

quadruple-tank system.

Regarding the structure of the chapter, the problem formulation is addressed in Sec-

tion 6.2. The observer structure and the FD algorithm are discussed in Section 6.3.

The computation of a time-varying observer gain optimizing a set-based criterion mod-

eling the trade-off between the sensitivity to faults and the robustness to disturbances is

proposed in Section 6.4. The discussion of the comparative assessment and the charac-

terization of the MDF for the FD-ZKF and ZKF approaches are presented in Section 6.5.

The application to a quadruple-tank system is used in order to illustrate the effectiveness

of the proposed approach in Section 6.6. Finally, conclusions are drawn in Section 6.7.

6.2 Problem formulation

This chapter addresses the problem of FD in dynamical systems modeled as an uncertain

time-varying state-space representation in discrete-time as

xk+1 = Akxk +Bu,kuk + Ekυk, (6.1a)

yk = Ckxk +Du,kuk + Fkυk, (6.1b)

where k ∈ N indicates the discrete time. Furthermore, x ∈ Rnx is the state vector,

u ∈ Rnu and y ∈ Rny denote the known input and the known output (measurement)

vectors, respectively. The system matrices of appropriate dimensions are A ∈ Rnx×nx ,

Bu ∈ Rnx×nu , C ∈ Rny×nx and Du ∈ Rnx×nu . Moreover, the random vector υ ∈ Rnυ

denotes an additive uncertainty that is bounded by a unit hypercube expressed as a cen-

tered zonotope, i.e., ∀k ≥ 0, υk ∈
[
−1, 1

]nυ
=
〈
0, Inυ

〉
, where Inυ ∈ Rnυ×nυ denotes

the identity matrix. Furthermore, E and F are non-empty matrices with appropriate

dimensions. Moreover, the bounded uncertainty vector υk is considered as the combina-

tion of the disturbance and the fault. Therefore, the decomposed form of υk is written

as

υk =

[
dk

fk

]
,
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where d ∈ [−1, 1]nd =
〈
0, Ind

〉
and f ∈ [−1, 1]nf =

〈
0, Inf

〉
, respectively, modeling

the disturbances and faults that possibly influence the system. Consequently, Ek and

Fk can be decomposed as

Ek =
[
Bd,k Bf,k

]
,

Fk =
[
Dd,k Df,k

]
,

where Bd, Bf , Dd and Df denote non-empty matrices with suitable dimensions.

Henceforth, the index k + 1 will be replaced by + and k will be omitted for the

sake of simplified notations. Then, the dynamical model (6.1) is simply rewritten while

remaining fully LTV as

x+ = Ax+Buu+ Eυ, (6.2a)

y = Cx+Duu+ Fυ. (6.2b)

The initial state x0 belongs to the zonotopic set X0 =
〈
c0, R0

〉
, where c0 ∈ Rnx

denotes the center and R0 ∈ Rnx×rR0 is a non-empty matrix containing the generators

matrix R0 of the initial zonotope X0. The pair (A,C) is assumed to be detectable.

Moreover, monitoring the system with the dynamical model (6.2) considering the influ-

ence of disturbances and the possible effect of the fault (when it exists) can be done

deriving a set-membership observer from the expression

x+ = Ax+Buu+ Eυ +G(y − Cx−Duu− Fυ), (6.3)

where G is the observer gain that provides degrees of freedom to tune the system mon-

itoring with respect to its aim, i.e., with the goal of optimizing the detection of faults

according to some given criterion. In order to highlight the link with an observer that

will be formalized in Section 6.3.1, it can be noticed that replacing the variables in

the right-hand side of (6.3) by the zonotope they belong to, the terms corresponding

to centers will result in a classical Luenberger observer with observer gain G (6.4a),

while the generator/shape matrix terms will provide an explicit way to parameterize

with G the zonotopic enclosures of the classical observation error (6.4b). An optimal

tuning of the time-varying observer gain matrix G based on a set-based optimization

criterion expressing the desired FD performance (rather than the only state estimation)

is addressed in the following of the chapter.
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6.3 Structure of the observer-based FD tests

6.3.1 General observer structure

In this chapter, the observer-based FD is performed by means of a KF using zonotopic

sets instead of Gaussian probability density functions (PDF), known as ZKF. Consider-

ing the one-step ahead predictor form, also called delayed form of the KF, the underlying

observer structure is determined using the ZKF approach proposed in [Com15b] and fol-

lowing the same idea as Proposition 2.1, which can be further tuned with respect to the

FD purpose to increase the FD performance. Therefore, the following Proposition 6.1

is obtained based on (6.3).

Proposition 6.1. (Observer structure) Considering the dynamical model (6.2), the

center c and the shape matrix R of the zonotopic observer can be recursively defined as

c+ = (A−GC)c+ (Bu −GDu)u+Gy, (6.4a)

R+ =
[
(A−GC)R̄, (E −GF )

]
, (6.4b)

where R̄ =↓q {R}. Furthermore, the state inclusion property x ∈
〈
c,R

〉
holds for all

k ≥ 0.

Proof. Assuming x ∈
〈
c, R

〉
and υ ∈

〈
0, Inυ

〉
for all k ≥ 0 where the inclusion property

is preserved, (6.3) can be written using the reduction operator as

x+ ∈
〈
c+, R+

〉
=
〈
(A−GC)c, (A−GC)R̄

〉
⊕
〈
(Bu−GDu)u, 0

〉
⊕
〈
0, (E−GF )

〉
⊕
〈
Gy, 0

〉
.

(6.5)

Thus, based on Definitions B.22 and B.24, the center c+ and the shape matrix R+ in

(6.5) can be expressed as in (6.4), where the center c can be interpreted as a classical

punctual state estimate of the unknown state x and the shape matrix R characterizes a

zonotopic enclosure of the classical observation error e = x− c.

6.3.2 FD based on the innovation term

The standard form of FD test is based on checking the consistency of the measurements

with a fault-free model. In this work, the fault-free model is obtained by setting f = 0
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in (6.1). Then, υ =

[
d

0

]
.

The innovation is usually defined as the difference between the measured value of

a variable at time k and the optimal forecast of that value based on the information

available prior to time k. In this work, the measured value of the output is y, and c,

which will result from iterations based on (6.4a) with some optimal G, stands for the

above mentioned optimal forecast in the considered one-step ahead predictor form (or

delayed form) of KF. The reader interested in additional material about formal/detailed

links between the set-membership and stochastic paradigms and their joint use for the

design of some innovation-based FD tests is referred to [Com15b] and [Com15a, Com16],

respectively. In particular, explicit links with the computation and evaluation forms of

prediction error/residuals are formalized in [Com15a, Com16].

Proposition 6.2. (FD test design) Considering a faultless scenario (f = 0), the center

cε and the shape matrix Rε of a zonotope containing the origin 0, i.e., satisfying 0 ∈〈
cε, Rε

〉
at time k is

cε = y − (Cc+Duu) , (6.6a)

Rε =
[
−CR, −F

]
. (6.6b)

Proof. The output equation (6.2b) can be rewritten as follows:

0 = y − Cx−Duu− Fυ. (6.7)

Substituting x ∈
〈
c, R

〉
for x in (6.7) and υ ∈

〈
0, Inυ

〉
yields

0 ∈
〈
y, 0

〉
⊕
〈
− Cc,−CR

〉
⊕
〈
−Duu, 0

〉
⊕
〈
0, −F

〉
, (6.8)

which completes the proof by applying Definition B.22 and Property B.24.

It is worth noting that the time-varying center cε can be equivalently identi-

fied/interpreted at time k as:

i) a prediction error which is homogeneous to the system output in terms of physical

units,

ii) a residual r whose computation form corresponds to the right term of (6.6a), and
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Algorithm 6.1 FD test based on the innovation term

1: k ←− 0
2:
〈
c,R

〉
=
〈
c0, R0

〉
3: for k = 0 : (kmax − 1) do
4: (y, u) = GetMeasurementAndControlInput

5: G = OptObsGain(c,R)
6:

〈
c+, R+

〉
using (6.4)

7:
〈
cε, Rε

〉
using (6.6)

8: if 0 /∈
〈
cε, b(Rε)

〉
then

9: Fault← true
10: else
11: Fault← false
12: end if
13: end for

iii) an innovation term ε, as explained in the text introducing the Proposition 6.2.

Since
〈
0, Rε

〉
=
〈
Rε
〉

is a centered zonotope and, as such, a centrally symmetric

domain, and since ε = r = cε, it can be noticed that 0 ∈
〈
cε, Rε

〉
as stated in Propo-

sition 6.2 equivalently can be rewritten as ε ∈
〈
Rε
〉

and/or r ∈
〈
Rε
〉
. As a result, the

zonotope shape matrix Rε (6.6b) gives explicit information for the evaluation of the

residual r.

Therefore, the FD test is based on computing (6.6) and the fault is detected when

0 /∈
〈
cε, Rε

〉
. A computationally efficient way to implement the detection test without

increasing the false alarm rate consists in testing whether 0 belongs or not to an aligned

box enclosing the zonotope
〈
cε, Rε

〉
0 6∈

〈
cε, b(Rε)

〉
, (6.9)

where
〈
cε, b(Rε)

〉
is enclosed by an aligned box characterized by b(Rε) = diag(|Rε|1),

considering that |.| is the element-by-element absolute value operator, 1 is a column

vector of ones and diag(.) returns a diagonal matrix from a vector of diagonal elements.

Algorithm 6.1 summarizes the FD test in Proposition 6.2. Note that the first step of

Algorithm 2.1 is related to initialization. Then, the explicit value of the optimal observer

gain should be computed using either an observation-based or an FD-based criterion.

Moreover, a function G = OptObsGain(c,R) implementing such computations will be

presented later in the chapter. Then, the one-step ahead state prediction
〈
c+, R+

〉
as

well as the value of the residual vector r = cε and its adaptive threshold b(Rε) can be

computed based on u, y and G. So, the FD test is based on computing the next-step



126 Chapter 6 : Interval observer FD rather than state estimation

bounding set with the computed optimal gain and Proposition 6.1. Finally, the residual

is generated using Proposition 6.2 and the fault is detected when 0 /∈
〈
cε, b(Rε)

〉
.

6.4 Optimal zonotopic observer gain

6.4.1 Observer structure

The observer gain has important implications in the behavior of the state bounding

observer resulting from Proposition 6.1. Contrary to a first intuition, it is not clear

that those computed observer gains that are suitable for the observation purpose are

also suitable for the purpose of FD. In this regard, using the same observer structure,

the focus of this section will be placed on first giving a brief overview of computing

the observer gain with only state observation purposes. Then, computing the optimal

observer gain regarding FD will be considered by using a disturbance/fault reach set-

based criterion.

In order to characterize them as functions of the tuning matrix G, the reach sets

describing the influence of the disturbances and the effect of a fault on the estimated

state sets, the observer structure in Proposition 6.1 can be decomposed and rewritten

as shown in Proposition 6.3.

Proposition 6.3. (Superposed form of the observer structure) Considering the dynam-

ical model (6.2), the decomposition of the center c and the shape matrix R of the state

bounding observer into the effects of the disturbance and fault can be recursively defined

as

x+ ∈
〈
cd+ , Rd+

〉
⊕
〈
cf+ , Rf+

〉
, (6.10)

with

cd+ = (A−GC)cd + (Bu −GDu)u+Gy, (6.11a)

Rd+ =
[
(A−GC)R̄d, (Bd −GDd)

]
, (6.11b)

cf+ = (A−GC)cf , (6.11c)

Rf+ =
[
(A−GC)R̄f , (Bf −GDf )

]
, (6.11d)

where R̄d =↓q {Rd} and R̄f =↓q {Rf}. Additionally, the inclusion property is preserved

for all k ≥ 0, i.e., x ∈
〈
cd, Rd

〉
⊕
〈
cf , Rf

〉
.
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Proof. Assuming x ∈
〈
cd, Rd

〉
⊕
〈
cf , Rf

〉
at time instant k, d ∈

〈
0, Ind

〉
and f ∈

〈
0, Inf

〉
,

it is possible to write the zonotopic form of the observer in (6.3) as

x+ ∈
〈
(A−GC)cd, (A−GC)Rd

〉
⊕
〈
(A−GC)cf , (A−GC)Rf

〉
⊕
〈
(Bu −GDu)u, 0

〉
⊕
〈
Gy, 0

〉
⊕
〈
0, (Bd −GDd)

〉
⊕
〈
0, (Bf −GDf )

〉
.

(6.12)

Furthermore, consider that the superposition principle can be explicitly invoked in the

linear setting. Therefore, using Definition B.22, the center and the generator matrix in

(6.12) can be reorganized as in (6.11). Thus, x+ ∈
〈
cd+, Rd+

〉
⊕
〈
cf+, Rf+

〉
. This gives

the proof by induction.

Since x ∈
〈
cd, Rd

〉
⊕
〈
cf , Rf

〉
is independent from the observer gain at time instant

k, the effect of the disturbance and the fault at time instant k can be reformulated

as a one-step prediction from time instant k − 1 in order to parameterize the effect of

the observer gain. Thus, the effect of the disturbance and fault at time instant k in

Proposition 6.3 can be formulated as

cd = (A− −G−C−)cd− + (Bu− −G−Du−)u− +G−y−, (6.13a)

Rd =
[
(A− −G−C−)Rd− , (Bd− −G−Dd−)

]
, (6.13b)

cf = (A− −G−C−)cf− , (6.13c)

Rf =
[
(A− −G−C−)Rf− , (Bf− −G−Df−)

]
, (6.13d)

where the subscript − is a short notation of k− 1. Therefore, the state-bounding zono-

tope becomes an affine function of the (previous) observer gain x ∈
〈
cd(G−), Rd(G−)

〉
⊕〈

cf (G−), Rf (G−)
〉
.

The use of Proposition 6.3 instead of Proposition 6.1 allows the separation of the

effects of the disturbances and the faults. Therefore, computing the observer gain for

observation purposes is done considering (6.11a) and (6.11b) while tuning the observer

gain for FD purposes is done considering (6.11a) to (6.11d). Then, the expected strength

of the proposed FD scheme lies in the fact that not only the influence of disturbances

is used, but also the relative influence of disturbances and faults can be used to set up

an optimization criterion quantifying the satisfaction level of an FD goal.

6.4.2 Optimal observer gain for observation purposes

When designing the gain for state-observation purposes, the main goal will be only

reducing the effect of state estimation uncertainty. The computation of the optimal
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observer gain for an observation purpose is investigated in [Com15b] which shows that

there is a strong analogy between the KF and ZKF where the usually Gaussian prob-

ability density functions (PDF) are replaced by zonotopic sets. Therefore, the optimal

observer gain G∗ can be obtained by minimizing the F -radius1 of the zonotope
〈
c+, R+

〉
in (6.4). According to [Com15b], minimizing the F -radius of a zonotope is equivalent

to minimizing the trace of its covariation. Therefore, considering Definition B.26, an

accuracy criterion related to the size of the next state-bounding zonotope can be written

as

J = tr(R+R
T
+) = ‖R+‖2F . (6.14)

Then, considering the fault-free model (f = 0) which is the standard approach for a

general purpose state observation, J may be expressed as

J = tr(Rd+R
T
d+

) =
∥∥Rd+

∥∥2

F
. (6.15)

Moreover, given the state-bounding zonotope at time instant k as x ∈
〈
c, R

〉
, G∗ can

be computed explicitly using Theorem 6.1 in order to minimize the effect of uncertainty

over the next state-bounding zonotope x+ ∈
〈
c+, R+

〉
.

Theorem 6.1. Considering x ∈
〈
c, R

〉
at time k, the optimal observer gain G∗ min-

imizing the F-radius of the state-bounding zonotope at time instant k + 1, or precisely,

minimizing the criterion J = tr(R+R
T
+) obtained in (6.15), is computed as

G∗ = AK∗, (6.16)

with

K∗ = LS−1,

L = P̄CT ,

S = CP̄CT +Qω,

where the covariation matrices are introduced as Qω = DdD
T
d , Qυ = BdB

T
d and P̄ =

R̄dR̄
T
d .

Proof. The proof follows from the results presented in [Com15b].

1Further information about Frobenius norm can be found in [Com15b].
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6.4.3 Optimal observer gain for FD purposes

Now, this section will concentrate on the design of the observer gain for FD purposes.

Such a gain is computed to maximize the effect of faults with respect to disturbances.

In this regard, an optimal tuning based on an FD criterion (FD-ZKF) rather than

an observation criterion (ZKF) is used in order to enhance the FD properties of the

observer. By analogy with the KF, minimizing the F -radius of a zonotope is equivalent

to minimizing the trace of its covariation. Therefore, the following accuracy criterion

can be written to maximize the influence of faults while minimizing that of disturbances:

J (G−) =
tr (cov (Rf (G−)))

tr (cov (Rd(G−)))
. (6.17)

Remark 6.1. The criterion proposed in (6.17) follows a general idea that was inspired by

optimal approximate decoupling techniques coming from parity-space residual generation

as presented in [Din08]. Note that the notion of worst-case highly depends on a related

evaluation criterion. An intuitive interpretation motivating the use of the original opti-

mization criterion (6.17) is that it makes it possible to obtain an optimal time-varying

observer gain maximizing the size (covariation) of a reachable set describing the influ-

ence of all the specified faults while minimizing the size (covariation) of a reachable set

describing the influence of all the specified disturbances. This is in contrast with methods

maximizing the influence of extreme faults (e.g. those involving the lowest sensitivity

in terms of H−) while minimizing the influence to extreme disturbances (e.g. those

involving the maximal sensitivity expressed in terms of H∞). Moreover, the proposed

time-varying optimal observer gain can be expressed in a mathematically tractable way

and the complexity of its computation remains compatible with on-line implementations.

Once the optimization criterion based on a matrix parameter is chosen as (6.17),

Proposition 6.4 can be used in order to parameterize the optimization criterion based

on a vector ω rather than a matrix parameter like G−.

Proposition 6.4. Considering the definition of matrix trace and introducing ω =

col (G−), where col(.) denotes the vertical concatenation of the matrix columns, the

FD optimization criterion (6.17) can be parameterized with a parameter vector as

J (G−) =
ωT
(
MT
f Mf

)
ω + 2NT

f Mfω +
(
NT
f Nf

)
ωT
(
MT
d Md

)
ω + 2NT

d Mdω +
(
NT
d Nd

) , (6.18)
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with

Mf =

−((C−Rf−)T ⊗ I)
−
(
DT
f

)
⊗ I

 , Nf =

[
col
(
A−Rf−

)
col
(
Bf−

) ] , (6.19a)

Md =

−((C−Rd−)T ⊗ I)
−
(
DT
d

)
⊗ I

 , Nd =

[
col
(
A−Rd−

)
col
(
Bd−

) ] . (6.19b)

Proof. Taking into account the Definition B.26, the covariation of the matrices Rf and

Rd can be written as

cov (Rf (G−)) = (Rf (G−)) (Rf (G−))T , (6.20a)

cov (Rd(G−)) = (Rd(G−)) (Rd(G−))T , (6.20b)

where both are quadratic functions of the elements of G−. Then, considering the def-

inition of the matrix trace, the trace of both cov (Rf (G−)) and cov (Rd(G−)) can be

expressed based on column vectors as

tr (cov (Rf (G−))) = col (Rf (G−))T col (Rf (G−)) , (6.21a)

tr (cov (Rd(G−))) = col (Rd(G−))T col (Rd(G−)) . (6.21b)

Additionally, using Kronecker product to introduce matrices M and N in (6.19), which

are independent matrices with respect to G− (for both disturbance and fault cases), the

column form of Rd and Rf can be written as

col (Rf (G−)) = Mf ω +Nf , (6.22a)

col (Rd(G−)) = Md ω +Nd, (6.22b)

where the column vector ω = col (G−) is obtained by reshaping the observer gain matrix

G− through a vertical concatenation of its column vectors. Then, the substitution of

(6.22) into (6.21) yields

tr (cov (Rf (G−))) =
(
ωTMT

f +NT
f

)
(Mfω +Nf )

=ωT
(
MT
f Mf

)
ω + 2NT

f Mfω +
(
NT
f Nf

)
,

(6.23a)

tr (cov (Rd(G−))) =
(
ωTMT

d +NT
d

)
(Mdω +Nd)

=ωT
(
MT
d Md

)
ω + 2NT

d Mdω +
(
NT
d Nd

)
.

(6.23b)
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Therefore, after the substitution of (6.23) in (6.17), the parameterized optimization

criterion with FD purposes can be obtained as (6.18).

Before continuing the analysis, some covariation matrices are first introduced

Q̃f =

[
Qf LTf

Lf 0

]
, Q̃d =

[
Qd LTd

Ld 0

]
, (6.24a)

Qf = MT
f Mf , Qd = MT

d Md, (6.24b)

Lf = NT
f Mf , Ld = NT

d Md, (6.24c)

c̃f = NT
f Nf , c̃d = NT

d Nd. (6.24d)

It can be seen from (6.24) that those matrices with subscript f are related to the

effect of the fault while those matrices with subscript d are related to the influence of the

disturbance. Then, the FD optimization criterion (6.18) given in Proposition 6.4, which

is obtained to describe the maximization of the effect of the faults (numerator) with

respect to the effect of the disturbances (denominator), can be rewritten (simplified)

using (6.24) as

J(ω̃) =
ω̃T Q̃f ω̃ + c̃f

ω̃T Q̃dω̃ + c̃d
, (6.25)

where ω̃ =

[
ω

1

]
. The criterion (6.25) is a ratio of two quadratic functions. Apart from

the constant terms in (6.25), the strong formal analogy with the design of parity space

residuals using approximate decoupling techniques [PC91] can be observed. Though

similar mathematical techniques can be used to solve the related optimization as detailed

hereafter in Theorem 6.2, the purpose followed in this work is significantly different since

it consists in obtaining a time-varying update of the gain of a state-bounding observer

with a Kalman-like structure.

Theorem 6.2. (Optimal observer gain with FD purposes) Maximizing the criterion

(6.17) and, equivalently, (6.25) means finding ω̃∗ such that J(ω̃∗) = max
ω̃
J(ω̃). The

solution satisfies ω̃∗ ∈ ker
(
Q̃f − J∗Q̃d

)
and the optimal observer gain G∗ is determined

by reshaping the solution of the generalized eigenvectors related to the greatest generalized

eigenvalue of the pair
(
Q̃f , Q̃d

)
.

Proof. Consider Proposition 6.4 and select ω̃∗ to be the optimal value of ω̃ =
∂J(ω̃)

∂ω̃
= 0.
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Algorithm 6.2 Steps to compute the optimal observer gain based on the FD-ZKF
approach

1: function G = OptObsGain(Q̃f , Q̃d),
2: [V,D] = eig(Q̃f , Q̃d) (to compute the generalized eigenvalue/vector decomposition),

3: D = diag(D),
4: I = find(D == max(D)),
5: J = D(I(1)),
6: ω = V (:, I(1)),

7: ω =
ω

ω(end)
,

8: col(G) = ω(1, (end− 1)),
9: G = reshape(col(G), [nx, ny]).

10: end

Hence, taking the derivative of (6.25) with respect to ω̃ and setting it to zero successively

yields

ω̃T Q̃f ω̃ + c̃f − Jω̃T Q̃dω̃ − Jc̃d = 0,

2ω̃T Q̃f − J2ω̃T Q̃d = 0,(
Q̃f − J∗Q̃d

)
ω̃∗ = 0,

(6.26)

where the symmetric nature of Q̃f and Q̃d is taken into account. Therefore, a non-null

solution satisfies

ω̃∗ ∈ ker
(
Q̃f − J∗Q̃d

)
. (6.27)

Thus, finding ω̃∗ that maximizes J can be achieved by computing the generalized eigen-

values and the related eigenvectors of the pair
(
Q̃f , Q̃d

)
. More precisely, the maximal

value J∗ of J for which a non-null solution exists is the greatest generalized eigen-

value of (Q̃f , Q̃d) since the solutions J to det(Q̃f − JQ̃d) = 0 ensure a non-zero ker-

nel ker(Q̃f − JQ̃d). Then, the generalized eigenvector related to J∗ gives ω̃∗. Fi-

nally, the optimal observer gain matrix is calculated by reshaping ω∗ into a matrix as

G∗ = col−1(ω∗).

The statement and proof of Theorem 6.2 provide the core results of this chapter

leading to Algorithm 6.2 which implements the computation of the optimal observer

gain for the proposed FD-ZKF FD filter.

A graphical representation of the proposed methodology using an observer gain G

(based on the ZKF approach) and the optimal observer gain G∗ (using the proposed
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b) The case of using G∗a) The case of using G

Fault magnitude

Fault direction

Rd

Fault direction

Fault magnitude

Rf

Rf

Rd

Figure 6.1: Intuitive graphical representation of the proposed method
by means of plane zonotopes.

FD-ZKF approach) for designing the state-bounding observer is presented in Figure 6.1:

The image of unit hypercubes modeling the range of the possible disturbances and

faults are illustrated by gray and empty zonotopes, respectively. Then, considering the

same magnitude and direction of the fault f in both cases, the detection of the fault

cannot be guaranteed with the gain G (see Figure 6.1a). Indeed, Figure 6.1a illustrates

a limit case between detection and non-detection: the influence of the fault exactly

compensates that of the worst case disturbance, i.e., the red point is on the border of

Rd. However, in Figure 6.1b, the influence of the fault is far outside from the influence of

disturbances. Therefore, the detection of the fault with the same fault magnitude (and

even smaller ones) can be guaranteed only with G∗, i.e., when the observer gain results

from the optimization of an FD criterion. The richer underlying set-based representation

compared to a basic vector-norm approach provides additional degrees of freedom to

deal with relative directions and bounds in the space characterizing the influence of the

possible disturbance and fault signals.

6.5 Comparative assessment

In this section, a comparative assessment of ZKF which optimizes the state observation

criterion (6.15) and FD-ZKF which optimizes the FD criterion (6.17) is presented. To

that purpose, the MDF will be characterized based on a classical sensitivity analysis

in order to show the effect of the observer gain over the MDF. Then, it is possible to

compare the approaches using the mathematical expression of the MDF based on the

model of a numerical example (which will be discussed in Section 6.6).
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Directly evaluating the MDF through simulations is an alternative way to

show the improvement given by FD-ZKF compared to ZKF. A model-based analy-

sis/characterization of the sensitivity to the faults is proposed in the following of this

section. Here, the MDF is the minimum abrupt (step) fault that can be surely detected

in steady state. For the sake of comparison only, it is assumed that the system is Linear

Time-Invariant (LTI), whereas the general problem formulation of ZKF and FD-ZKF is

still valid for LTV systems.

In order to characterize the minimum magnitude of the fault that can be detected,

the input-output form of the discrete-time dynamical model (6.2) is expressed as

y(z) = Tu(z)u(z) + Td(z) d(z) + Tf (z) f(z), (6.28)

where the transfer function T (z) can be computed as

T (z) = C(zI −A)−1B +D. (6.29)

Notice that the related input, disturbance and fault are denoted by the subscripts of

T (z), B and D as u, d and f , respectively. The subscripts u, d and f are eliminated in

(6.29) for the sake of simplified notations. Alternatively, considering (6.3) rather than

(6.2), the measurement equation can also be expressed as

y(z) = Hu(z)u(z) + Hd(z)d(z) + Hf (z)f(z) + Hy(z)y(z), (6.30)

with

H•(z) =C
(
zI − (A−GC)

)−1
(B• −GD•) +D•, (6.31a)

Hy(z) =C
(
zI − (A−GC)

)−1
G, (6.31b)

where subscript • can be assigned by u, d and f depending on the kind of input consid-

ered. Furthermore, (6.30) can be written as

(I −Hy(z))y(z) = Hu(z)u(z) + Hd(z)d(z) + Hf (z)f(z). (6.32)

Therefore, the input-output form of the residual/innovation term can be written
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using (6.32) as

ε(z) = r(z) =(I −Hy(z))y(z)−Hu(z)u(z)

= Hd(z)d(z)︸ ︷︷ ︸
εd(z)

+ Hf (z)f(z)︸ ︷︷ ︸
εf (z)

, (6.33)

where εd(z) and εf (z) refer to the (observer gain dependent) effect of the disturbance

and the fault on the residual term. Thus, Hd(z) and Hf (z) can be interpreted as the

sensitivity of the residual with respect to disturbances and faults, respectively.

Theorem 6.3. Given an observer as (6.4) and the input-output form of its measurement

equation as (6.30), the MDF in steady state is given under the single-fault assumption

as

f∞
j

= min
i
f∞
ji
, f∞

ji
= 2

‖Hd,i(1)‖1
‖Hf,ij(1)‖1

, (6.34)

where the magnitude fj of the single step faults that are necessarily detected satisfy

fj > f∞
j

or fj < −f∞j , with j = 1, ..., nf . A fault is said to be necessarily detected if

∃k, 0 /∈
〈
cε, b(Rε)

〉
is satisfied. Whereas j is an index for single faults, i refers to the

rows of Hd(z) and Hf (z). More precisely, Hd,i(1) is the ith row of Hd(1) and Hf,ij(1)

is the element at the ith row and jth column of Hf (1).

Proof. Since ε(z) = εd(z) + εf (z) in z-domain, the residual can be expressed in the time

domain and in steady state (limit as k →∞) as

ε∞ = ε∞d + ε∞f = Hd(1)d∞ + Hf (1)f∞. (6.35)

Considering d ∈ [−1, 1]nd =
〈
0, Ind

〉
and a faultless scenario (it means f(z) = 0⇒

f∞ = 0), the residual in steady state can be expressed according to (6.35) as

ε∞ ∈ 0± |Hd(1)|1, (6.36)

where | · | is the element-by-element absolute value operator and 1 is a column vector

of ones of appropriate dimension. Hence, |Hd(1)|1 is a vector whose ith element is the

1-norm (scalar) of the ith row Hd,i(1) of the matrix Hd(1). Thus, the ith element ε∞i

of the residual ε∞ allows the detection of a fault if ε∞i /∈ 0± ‖Hd,i(1)‖1 . Furthermore,

(6.35) can be rewritten ∀i as ε∞i = ε∞d,i + ε∞f,i.

Therefore, in steady state, the condition ensuring the detection of the jth fault from
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the ith component of the residual is:

Hf,ij(1) f∞j /∈ 0± 2 ‖Hd,i(1)‖1 . (6.37)

The factor 2 comes from the worst-case scenario where the disturbances have a

maximal influence in the opposite direction compared to that of the occurring fault.

Thus, it can be written that

f∞j /∈ 0± 2
‖Hd,i(1)‖1
‖Hf,ij(1)‖1

. (6.38)

Equation (6.37) can be rewritten as (6.38) so that f∞
ji

in (6.34) interprets as the

minimum magnitude fj such that the jth fault is necessarily detected by the ith scalar

residual ε∞i taken alone. This results in (6.34) when considering all the scalar compo-

nents of the innovation term.

Finally, the comparison of the ZKF and FD-ZKF approaches can be done in the

FD framework using Theorem 6.3. As it can be seen from (6.31), the transfer functions

Hd and Hf in (6.34) depend on the observer gain. In the ZKF approach, the observer

gain can be computed explicitly based on Section 6.4.2 using Theorem 6.1. In the

FD-ZKF approach, the observer gain can be computed based on Section 6.4.3 using

Algorithm 6.2. Because of their distinct observer gains, the FD performance is expected

to be different between the ZKF and FD-ZKF approaches. In this regard, further

quantitative comparison of the approaches will be discussed in Section 6.6 based on a

case study.

6.6 Case study

6.6.1 Plant description

In this section, the same quadruple-tank system as explained in Section A.1 of Ap-

pendix A is considered to illustrate the approach proposed in this chapter. Therefore,

considering the non-linear model (A.1) and its linearized form (A.2) around the same

working points reported in Section A.1, a discrete-time linear model using the Euler
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discretization with a sampling time of 1s can be written as

h̃+ = Ah̃+Buṽ +Bdd+Bff, (6.39a)

y = Ch̃+Duṽ +Ddd+Dff, (6.39b)

with the same system matrices as (A.4) 2. Moreover, taking into account the state

disturbance and measurement noise, Bdd and Ddd are used in (6.39) with

Bd =


0.05 0.01 0 0 0 0 0

0.05 0 0.01 0 0 0 0

0.05 0 0 0.01 0 0 0

0.05 0 0 0 0.01 0 0

 , (6.40a)

Dd =
[
02x5 0.1 I2

]
. (6.40b)

As it can be seen in (6.40a), the first column of Bd is used to define a disturbance

influencing all the states, e.g., rain simultaneously getting into all the tanks. The idea

of considering the rain that can have large influence on the direction defined by the first

column of matrix Bd in (6.40a) is to model a kind of flow (disturbance) affecting all tanks

at the same time. In addition, disturbances aiming at enclosing modeling errors like,

e.g., linearization and discretization errors, are introduced through the next diagonal

block in Bd. Therefore, bounded disturbances acting in all the state-space directions

and the measurement noise are modeled with Bd and Dd, respectively.

Furthermore, the effect of faults on the state and the measurements is modeled

through the terms Bff and Dff , respectively. The possible faults that are considered

are actuator faults, sensor faults and leakages. Hence, the following matrices are chosen

in the simulation in order to simulate all these faults:

Bf =
[
10Bu 0.3 I4 04x2

]
, (6.41a)

Df =
[
02x6 10 I2

]
. (6.41b)

Consistently with the problem formulation in Section 6.2, the uncertain input vectors

d and f are assumed to be normalized in [-1,+1]. The values of Bd, Dd, Bf and Df are

defined accordingly. Then, a 10% step fault fi is simulated with fi = 0.1 after the fault

2It is worth mentioning that Bu and Du in (6.39) is equal to B and D in (A.3), respectively.
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occurrence.

6.6.2 FD-ZKF filter implementation

The observer gain can be iteratively computed for the quadruple-tank system presented

in (6.39) using Theorem 6.1 in the case of ZKF, and Algorithm 6.2 in the case of FD-

ZKF. In both cases, the FD test is implemented based on Algorithm 6.1.

6.6.3 Performing FD

Two FD tests are considered in this section. Both are implemented using the Algo-

rithm 6.1. They only differ from the observer gain used: it is determined using the ZKF

or FD-ZKF approach as explained in the Section 6.4.

Regarding the disturbance scenario, (6.40) is used to simulate all the possible dis-

turbances acting in all the directions. Furthermore, regarding the fault simulation,

the following fault scenario is set in all the simulations: from time instants k = 0 to

k = 200, the system is healthy. Then, an additive step (abrupt) fault occurs at time

instant k = 200 and it remains in the system until k = 1000. Moreover, single faults are

considered based on the elements of the vector f , i.e.,

f =
[
f1 f2 f3 f4 f5 f6 f7 f8

]T
, (6.42)

where f1 and f2 indicate the actuator faults, f3, f4, f5 and f6 are the leakage faults and

the sensor faults are denoted by f7 and f8.

In the first simulation, the FD test is done when considering the actuator fault f1,

i.e, the faultless scenario is considered from the beginning of the simulation until time

instant k = 200. Then, the occurrence of the actuator fault f1 is simulated at k = 200

and it remains until the end of the simulation. Figure 6.2 shows the projection of the

computed state-bounding zonotope into the state space when the actuator fault occurs

at time instant k = 200. The state estimation in this figure is carried out by considering

Proposition 6.1 using ZKF and FD-ZKF approaches to compute the observer gain. As

it was mentioned before, the fault is simulated after time instant k = 200. Thus, before

this time instant, the system is only affected by the effect of disturbances and noises.

Consequently, the bounds that are obtained at the first 200 time instants show the effect
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Figure 6.2: State estimation in the case of an actuator fault f1

of both disturbances and noises. As it can be seen from the time instant k = 0 until

k = 200 where the system is only affected by the disturbance, the observer can properly

follow the system using both observer gains.

Furthermore, Figure 6.2 shows that the state estimation bounds are a bit more con-

servative with FD-ZKF compared to ZKF for 0 ≤ k < 200. A possible explanation is

related to the criteria used by both approaches. The ZKF optimization criterion is de-

fined considering only the observation purposes whereas the FD-ZKF criterion is defined

considering FD performance. Thus, it is normal to obtain a better state estimation with

ZKF. What is interesting in Figure 6.2 is that even by considering FD purpose with the

FD-ZKF approach, no significant differences are obtained from the perspective of state

estimation in comparison with ZKF.

After time instant k = 200, the effect of the actuator fault can be seen on the state

estimation in Figure 6.2. The inconsistency of the observation by the model using both

ZKF and FD-ZKF approaches and the nominal behaviour of the system allows to detect

the fault. Furthermore, comparing the approaches after the fault occurrence reveals

the improvement provided by the FD-ZKF approach since its estimation envelope has

more changes with respect to the behaviour of the true system, so showing an increased
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Figure 6.3: Zonotopes bounding the innovation/residual before the
occurrence of the fault at k = 100

Figure 6.4: Zonotopes bounding the innovation/residual after the
occurrence of the fault at k = 600

sensitivity to the considered fault. Additionally, it can be observed that the improved

sensitivity of the FD-ZKF approach is persistent, even after reaching the steady state.

For further illustration, the FD test is done based on Algorithm 6.1 considering the

innovation term. As it is shown in Figure 6.3, a threshold (here zero) is included by both

innovation zonotopes generated by ZKF and FD-ZKF approaches, respectively, before
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Figure 6.5: Envelopes of the scalar innovation terms

the occurrence of the fault. But, after the fault occurrence, both zonotopes move and

the fault can be detected since zero is outside of the zonotopes bounding the innovation.

The higher sensitivity of the FD-ZKF approach in comparison with ZKF approach can

be seen in Figure 6.4 since its generated zonotope moves further from the non-faulty

region. Therefore, it can be obsrved that FD-ZKF is more sensitive with respect to the

effect of the fault.

Moreover, for the completion of the analysis, it is also interesting to combine the

innovation terms and see the effect of the fault over both innovation terms together.

In this regard, the ratio between the Euclidean norm of the center and the generator

matrix of the innovation term is computed for both ZKF and FD-ZKF approaches. In

particular, the ratio
‖cε‖2
‖Rε‖2

is compared when the state-bounding observer is designed

using both approaches. Figure 6.6 shows the results obtained in this context.

As expected from the previous results in Figure 6.5, the most sensitive performance is

obtained with FD-ZKF. But, now Figure 6.6 presents a single scalar criterion aggregat-

ing all the scalar components of the innovation that provides a well-defined basis for the

comparison of the approaches. Indeed, directly comparing the values of the optimization

criteria (6.15) and (6.17) is not relevant since they consider different goals. Moreover,
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Figure 6.6: Ratio
‖cε‖2
‖Rε‖2

and the FD test in the case of an actuator

fault f1.

considering independently each scalar term of the innovation as in Figure 6.5 may sig-

nificantly complicate the sensitivity analysis when the number of sensors is greater than

2 or 3. Moreover, the bottom plot in Figure 6.6 shows the FD test decision resulting

from both approaches: 0 means no-fault affecting the system and 1 means the fault is

detected.

The second considered scenario corresponds to a sensor fault. The output of the

system is measured from the level measurement device. Since the height of each tank is

20 cm, the output of the system from the level measurement device is between 0−10 V.

The matrix Df in (6.41b) is defined with the whole range of the measurement. Then,

the simulation of a step sensor fault with a magnitude of 10% of the whole range is

simulated after the fault occurrence with

f =
[
0 0 0 0 0 0 0 0.1

]T
. (6.43)

As in the case of the actuator fault, the ratio between the Euclidean norm of the

center and the generator matrix of the innovation term is computed and reported in

Figure 6.7. Once again, the sensitivity to the fault with FD-ZKF is improved compared
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Figure 6.7: Ratio
‖cε‖2
‖Rε‖2

and the FD test in the case of a sensor fault

f8

to ZKF.

The last scenario considered to test the proposed FD-ZKF approach corresponds

to a leakage fault f3 simulated using Bf as in (6.41a). Figure 6.8 shows a similar

improvement of the sensitivity with FD-ZKF and an analog detection ability compared

to the other fault scenarios (sensor and actuator faults).

6.6.4 MDF analysis

Based on Theorem 6.3, the computation of the MDF is influenced by the observer gain.

In order to compute the MDF for the case study, (6.34) is used. Therefore, based on

the different observer gains G∗∞ obtained with ZKF and FD-ZKF, magnitudes of the

the MDF can be determined. Moreover, the constant observer gain that is obtained in

steady state can be used to compute the MDF that can be detected in order to compare

the performance of the observer when using FD-ZKF and ZKF approaches. In this

regard, the following observer gains are obtained in steady state from the simulation of
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Figure 6.8: Ratio
‖cε‖2
‖Rε‖2

and the FD test in the case of a leakage

fault f3

the two approaches:

FD-ZKF approach: G∗∞ =


0.0679 0.0804

0.0807 0.0746

0.0469 0.0391

0.0484 0.0469

 , (6.44a)

ZKF approach: G∗∞ =


0.0828 0.0730

0.0731 0.0845

0.0446 0.0421

0.0466 0.0475

 , (6.44b)

where G∗∞ is the obtained optimal gain in steady state.

Then, the obtained results based on Theorem 6.3 are reported in Table 6.1. This

means that the detection of the fault with the magnitude either bigger than the obtained

magnitude in Table 6.1 or smaller than the obtained magnitude in Table 6.1 with nega-

tive sign can be guaranteed. Furthermore, from Table 6.1 and for the considered faults,

the size of the MDF is systematically smaller in case of the FD-ZKF. This illustrates
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Table 6.1: MDF (theoretical sensitivity analysis under a steady-state
operation)

Actuator fault Leakage fault Sensor fault
f1 f2 f3 f4 f5 f6 f7 f8

ZKF approach 0.0641 0.5291 0.4340 0.4300 0.4340 0.4300 0.4082 0.5826

FD-ZKF approach 0.0578 0.4812 0.3898 0.3641 0.3898 0.3641 0.3667 0.4934

Improvement 9.8284% 9.0531% 10.1843% 15.3256% 10.1843% 15.3256% 10.1666% 15.3107%

the sensitivity improvement obtained by the proposed optimal tuning of the observer

gain in a FD framework.

Further simulations are carried out for the case study by changing the fault magni-

tudes. It is interesting to see the magnitude of the faults that can be detected considering

not only the steady state (Table 6.2), but also the whole time range of the simulation as

reported in Table 6.3. By increasing the magnitude of the fault, the FD-ZKF detection

test (Algorithm 6.1) is used to see whether the fault with this magnitude can be detected

or not. The results of this analysis are collected in Tables 6.2 and 6.3.

Table 6.2 shows those magnitudes of the fault that can be still detected at the end

of the simulation, i.e., in steady state. Therefore, data from this table can be compared

with the data in Table 6.1, which shows the theoretical MDF magnitudes obtained from

Theorem 6.3. In this regard, by comparing Tables 6.1 and 6.2, no significant differences

are found between the size of the MDF in all the cases. Hence, Table 6.2 confirms

through numerical simulations the theoretical values previously reported in Table 6.1

and the improvement achieved by FD-ZKF. Further analysis is done in Table 6.3 to

obtain the magnitude that can be detectable in whole the time range of the simulation.

Moreover, it can be observed from the comparison of Tables 6.2 and 6.3, that the

magnitude of the fault that can be detected considering the whole time range of the

simulation is almost the same in the case of actuator and leakage fault. However, in

the case of sensor faults and because of the fault reinjection involved by the observer

structure leading to some transient behavior (see the overshoot in Figure 6.7), the mag-

nitude of the detectable fault is improved on the whole time range of the simulation

compared to steady state only. This illustrates that FD-ZKF is well suited to also

address time-varying and transient behaviors to enhance the FD ability.
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Table 6.2: MDF at the end of the simulation

Actuator fault Leakage fault Sensor fault
f1 f2 f3 f4 f5 f6 f7 f8

ZKF approach 0.0472 0.5012 0.4132 0.4121 0.4122 0.4313 0.3990 0.5912

FD-ZKF approach 0.0421 0.4620 0.3621 0.3412 0.3592 0.3552 0.3492 0.4897

Improvement 10.8051% 7.8212% 12.3669% 17.2046% 12.8578% 17.6443% 12.4812% 17.1685%

Table 6.3: MDF by considering the whole time range of the
simulation

Actuator fault Leakage fault Sensor fault
f1 f2 f3 f4 f5 f6 f7 f8

ZKF approach 0.04901 0.4997 0.4139 0.4098 0.4134 0.4231 0.3582 0.5718

FD-ZKF approach 0.0431 0.4631 0.3597 0.3396 0.3517 0.3497 0.3013 0.4698

Improvement 12.0588% 7.3244% 13.0950% 17.1303% 14.9250% 17.3481% 15.8850% 17.8384%

6.7 Summary

This chapter has proposed a new FD observer based on a ZKF, called FD-ZKF, that

enhances the sensitivity to faults while increasing the robustness to disturbances. As a

novelty, in the proposed FD-ZKF approach, the time-varying observer gain is optimized

by considering the FD purposes and it can be perceived as an extended version to FD

of the ZKF approach where the observer gain is only computed for state observation

purposes. In the proposed algorithm, the influences of all possible disturbances and

faults within the specified ranges have been considered to compute the observer gain

with the aim of increasing the sensitivity to faults with respect to disturbances. This is

achieved through the optimization of a set-based criterion explicitly taking the relative

influence of faults with respect to disturbances into account. Furthermore, the MDF is

characterized using a classical sensitivity analysis in order to show the effectiveness of the

proposed time-varying observer gain on FD performance. The comparison of FD-ZKF

and ZKF approaches has been conducted on a case study based on a quadruple-tank

system. The obtained results show a significant improvement of the FD-ZKF approach

in comparison with the ZKF approach in FD performance. Furthermore, a quite small

difference is obtained between the approaches when computing the state-bounding sets.

Thus, a small relaxation of the state observation ability has given sufficient freedom
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degrees to significantly enhance the efficiency of FD. As can be seen from the beginning

of the thesis, almost all the proposed approaches in state estimation and FD frameworks

have only been applied when the system is affected by the time-varying uncertainties

and no research has been done for the case that time-invariant uncertainties influence

the system. Therefore, the main focus of the next chapter will be on the design of

an IOA for linear dynamic systems affected by both time-invariant and time-varying

uncertainties.
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Chapter 7

Interval observer design for a

system subject to both TIU and

TVU

This chapter proposes the design of an IOA for linear dynamic systems affected by both

TIU and TVU. First, set-based and trajectory-based IOA schemes are compared and

analyzed dealing with the different type of uncertainties. Then, an integrated set-based

and trajectory-based observer is proposed in order to overcome the drawbacks of using

the set-based approach, i.e., the non-preservation of the parameter uncertainty time de-

pendency and the wrapping effect. Furthermore, H∞ performance is considered in order

to compute the observer gain by using an LMI technique. Finally, a numerical example

and a real case study based on a two-tank system are employed for both illustrating and

analyzing the effectiveness of the proposed approach.

7.1 Introduction

In order to bound the uncertainty effect in the system using interval observers con-

sidering an unknown-but-bounded deterministic framework, there exist two main

approaches: the set-based IOA [Com15b] and the trajectory-based IOA [PSQ05a].

In the set-based IOA, the set that bounds the outputs/states is determined using

the observer equations based on previous approximated sets and using a one-step

149



150 Chapter 7 : Interval observer design for a system subject to both TIU and TVU

ahead prediction. On the other hand, for the trajectory-based IOA, a set of point-

wise trajectories generated by selecting particular values of the uncertainty is used

[REZ12, PSQ05a, Com15b, PPOMZ17]. Based on the literature, each approach has

its own advantages and disadvantages. The set-based IOA is affected by some problems,

e.g., wrapping effect, range evaluation of an interval function (in this case, the state-

space function) and the uncertain parameter time dependency [PSQ05a]. However, in

the second case, the interval hull of the state estimation is built following real trajectories

generated by selecting particular values of the interval parameter vector. Consequently,

this approach overcomes the wrapping effect and preserves the uncertain parameter time

dependency, but in the case of the trajectory function, the problem of the interval func-

tion range evaluation still remains. On the other hand, set-based IOA present a lower

computationally complexity than trajectory-based IOA and, consequently, they seem to

be more suitable for real-time applications [KP05, LAC+12].

According to [PSQ03], it is possible to classify the approaches dealing with the

time variance of the uncertain parameters into the time-varying approach and the time-

invariant approach. The former class assumes that unknown but bounded uncertain

parameters can vary at each time instant since one-step ahead recursion algorithms are

used. However, in the latter class, it is guaranteed that the unknown but bounded uncer-

tain parameters cannot vary at each time instant [PSQ05a]. Concerning the preservation

of time dependency of uncertainty in the reported approaches in the literature, one pos-

sibility is to evolve the observer dynamics from the initial state to the present state by

driving a functional relationship between states and parameters at every time instant

[PSQ03] but with a high computational cost. To avoid such a complexity, the observer

is usually designed to satisfy the monotonicity condition [ERZ13, KPPOM17] such that

only propagating some trajectories is enough to bound the effect of the uncertainty in

the estimation provided by the observer.

When applying interval observers to FD, additionally to the problem of generating

the detection thresholds by uncertainty propagation, another important problem is how

to design the observer gain to be as robust as possible against the unavoidable effect

of uncertainties. In this regard, there has been an increasing interest in computing

the observer gain in several manners to minimize the effect of uncertainties. Thus, the

observers can be designed by considering the robustness against disturbances, noise or

any other uncertainties using, as e.g., H∞ optimization, LMIs, among other strategies

[SCP96, ZDLW03]. The topic has grown in importance and becomes more challenging
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if the system is affected by both TIU and TVU [REZ12, PPOMZ17].

The main contribution of this chapter is to design a robust IOA whose observer gain

is computed by using LMI techniques to achieve H∞ performance, i.e., to be as robust

as possible against the effect of uncertainty. Furthermore, the relationship between the

set-based IOA and trajectory-based IOA is investigated in order to connect them under

some conditions taking into account both TIU and TVU. The proposed approach is

illustrated through a numerical example and a two-tank real system.

Regarding the structure of this chapter, the problem formulation is addressed in Sec-

tion 7.2. The set-based IOA and trajectory-based IOA structures and their robust design

are discussed in Sections 7.3 and 7.4, respectively. The discussion and the comparative

assessment are presented in Section 7.5. Applications based on both a numerical exam-

ple and a real two-tank system are used in order to illustrate the effectiveness of the

proposed approach in Section 7.6. Finally, conclusions are drawn in Section 7.7.

7.2 Problem formulation

7.2.1 Problem set-up

This chapter considers that the uncertain system is represented by a discrete-time LTI

model in state-space form as follows:

xk+1 = [A0 + ∆A(θ)]xk +Buk + Eωωk, (7.1a)

y = Cxk + Eυυk, (7.1b)

where u ∈ Rnu , y ∈ Rny and x ∈ Rnx are the input, the output and the state vectors,

respectively. Moreover, A0 ∈ Rnx×nx , B ∈ Rnx×nu and C ∈ Rny×nx are the state-space

matrices. Both state disturbance and process noise vectors are considered as TVU and

defined by ω ∈ Rnx and υ ∈ Rny , respectively. Moreover, Eω and Eυ are the associated

distribution matrices with appropriate dimensions while k ∈ N indicates the discrete

time. Furthermore, it is assumed that the vector of time-invariant uncertain parameter

θ belongs to an admissible set Θ, i.e.,

Θ =
{
θ ∈ Rnθ : θi ≤ θi ≤ θi ∀i = 1, . . . , nθ

}
, (7.2)
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where nθ denotes the number of uncertain parameters. Moreover, the matrix A0 contains

the nominal values of the parameters while ∆A(θ) represents the uncertainty associated

with.

Assumption 7.1. It is assumed that, for all θ ∈ Θ,

∆A < ∆A(θ) < ∆A, (7.3)

where ∆A ∈ Rnx×nx and ∆A ∈ Rnx×nx are constant and known matrices that contain

the minimum and maximum values of ∆A(θ), respectively. �

Additionally, the additive uncertainties, i.e., time-varying measurement disturbance

ω and process noise υ, are assumed unknown but bounded as it is reported in (2.2).

7.2.2 General observer structure

Monitoring the system behavior with the dynamical model (7.1) can be done by design-

ing a Luenberger observer of the form in (2.5) 1.

To take into account the effects of TVU, i.e., ω and υ, and TIU, i.e., ∆A(θ), over the

output/state estimation provided by (2.5), two different strategies are described next:

one based on bounding the uncertainty effect in the observer estimation and the other

based on designing the observer gain L to minimize such effect.

7.3 Set-based interval observation

7.3.1 Set-based interval observer structure

In set-based IOA, the underlying observer structure is determined using the algorithm

proposed by [MdOPB12]. Generally speaking, in this approach, the set of states at time

instant k+ 1 is approximated by using propagation algorithms from the set of states at

time k (for more information see [PSQ05b] and [Com15b]). Moreover, the gain matrix

L can be further tuned with respect to the state estimation purpose, i.e., to increase the

robustness of the state estimation.

1The system matrix A in (2.5) must be replaces by A0 in this chapter based on the dynamical model
(7.1).
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The main idea of the set-based IOA resides in using a structure such as the interval

model to estimate the interval [x̂k+1] from the previous interval [x̂k]. One of the basic

algorithms in this case, which is introduced in [Moo66] and called the Moore’s algorithm,

estimates the states based on the Taylor Series decomposition. Furthermore, different

types of algorithms that are evaluated to estimate the states in the set-based IOA are

described in the survey paper [PSQ05a].

As mentioned before, the effect of uncertainty can be expressed using a zonotopic-set

representation, i.e., a particular type of polytope, reducing the set operations to simple

matrix calculations. In this regard, the zonotopic representation of ω and υ in (2.2)

can be written as (2.3). Moreover, disturbance and noise bounds represented in (2.3)

are assumed to be bounded by a unitary hypercube zonotopes centered at the origin

as it is considered in Assumption 2.2. Now, assuming the initial state x0 belongs to

the zonotopic set X0 = 〈c0, R0〉, where c0 ∈ Rnx denotes the center and R0 ∈ Rnx×rR0

is non-empty matrix containing the generators matrix of the initial zonotope X0, the

zonotopic observer structure can be defined by following Proposition 7.1.

Proposition 7.1. (Zonotopic-observer structure) Considering the observer scheme

(2.5) and the uncertainties modelled as in Assumptions 7.1, 2.2 and 2.3, the center

c and the segment matrix R of the zonotope that bounds the state estimation provided

by the observer (2.5) can be recursively defined as

ck+1 = mid(Aobs(θ))ck +Buk + Lyk, (7.4a)

Rk+1 =

[
�(Aobs(θ)R̄k)

diam(Aobs(θ))

2
ck Eω −LEυ

]
, (7.4b)

where Aobs(θ) = [A0 + ∆A(θ)]−LC, R̄k =↓q {Rk} (see Property B.1), mid denotes the

center and diam is the diameter of the interval. Moreover, the state inclusion property

xk ∈ 〈ck, Rk〉 holds for all k ≥ 0 (see Properties B.2 and B.3) making use of a zonotope

inclusion � (Z) operator.

Proof. Assume xk ∈ 〈ck, Rk〉, ωk ∈ 〈0, Inω〉 and υk ∈ 〈0, Inυ〉, where the inclusion

property is preserved by using the reduction operator, which means xk ∈
〈
ck, R̄k

〉
.

Thus, the zonotopic representation of the IOA can be written using (2.5) as follow:

xk+1 ∈ 〈ck+1, Rk+1〉 =
〈

(Aobs(θ))ck, (Aobs(θ))R̄k

〉
⊕ 〈Buk, 0〉

⊕ 〈0, Eω〉 ⊕ 〈Lyk, 0〉 ⊕ 〈0, −LEυ〉 .
(7.5)
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Thus, based on Definitions B.22 and B.24 and Property B.3, ck+1 and Rk+1 in (7.5) can

be derived as in (7.4).

Both TIU and TVU are considered unknown but bounded in their uncertainty in-

tervals and can vary arbitrarily at each time instant within the interval obtained using

the zonotopic observer approach and Definition B.23.

7.3.2 Robust set-based interval observer design

In order to reduce the effect of uncertainties on the state estimation and achieving the

accurate estimation, the well-known H∞ technique is used in this chapter [Din08].

In this regard, considering Lemma B.2, and according to [CP12], the uncertain

parameter in (7.1a) can be approximated only based on uncertain term. Then, (7.1a)

can be written as

xk+1 = A0xk +Buk + Eωωk + Eθθ, (7.6)

with

∆A(θ) ≈ Eθθ, (7.7)

where Eθ is the associated non-empty distribution matrix of suitable dimensions that

shows the direction of the TIU.

Keeping in mind that the zonotopic observer structure in Proposition 7.1 can be

rewritten using Assumption 7.2 and Proposition 7.2.

Assumption 7.2. The additive TIU represented in (7.7) are assumed to be bounded by

a unit hypercube expressed as the centered zonotopes, i.e., ∀ k ≥ 0, θ ∈ [−1, 1]nθ =

〈0, Inθ〉, where Inθ denotes the identity matrix. �

Proposition 7.2. Considering the observer (2.5) and Assumptions 7.1, 2.2 and 2.3,

the center c and the shape matrix R of the zonotope bounding the observer estimation

can be recursively defined as

ck+1 = (A0 − LC)ck +Buk + Lyk, (7.8a)

Rk+1 =
[
(A0 − LC)R̄k Eω −LkEυ Eθ

]
. (7.8b)

Proof. Assume xk ∈
〈
ck, Rk

〉
, ωk ∈

〈
0, Inω

〉
, υk ∈

〈
0, Inυ

〉
and θ ∈

〈
0, Inθ

〉
for all
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k ≥ 0, where the inclusion property is preserved and (2.5) can be written using the

reduction operator as

xk+1 ∈
〈
ck+1, Rk+1

〉
=
〈
(A0 − LC)ck, (A0 − LC)R̄k

〉
⊕
〈
Buk, 0

〉
⊕
〈
Lyk, 0

〉
⊕
〈
0, Ew

〉
⊕
〈
0, −LEυ

〉
⊕
〈
0, Eθ

〉
.

(7.9)

Thus, based on Definitions B.22 and B.24, the center ck+1 and the shape matrix Rk+1

in (7.9) can be expressed as in (7.8).

Now, the dynamics of the state estimation error considering the model (7.6) and

using the observer (2.5) are introduced in Proposition 7.3.

Proposition 7.3. Given that the state estimation error in the set-based IOA is defined

as

ek = xk − x̂k, (7.10)

then, considering the dynamical model (2.4) and the observer structure (2.5), the dy-

namics of the state estimation error can be obtained as

ek+1 = (A0 − LC)ek + Eddk, (7.11)

where

Ed =
[
Eθ Eω −LEυ

]
, (7.12)

dk =
[
θ ωk υk

]>
. (7.13)

Proof. Based on Lemma B.2, (7.1a) can be rewritten as in (7.6). Therefore, considering

the state estimation error as in (7.10), the dynamics of the state estimation error can

be obtained using (7.1), (7.6), (2.5) and (7.10), yielding (7.11).

Considering the transfer function Ged(z) from uncertainties to the state estimation

error, where z denotes the z-transform, the H∞ norm of Ged(z) is known as the maximum

singular value of Ged(z). Then, according to [Din08], Theorem 7.1 can be used to

compute the observer gain minimizing the effect of the uncertainty and leading to a

robust observer.
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Theorem 7.1. Given a scalar γ > 0, the state estimation error dynamics in (7.11) are

stable and satisfy the following H∞ performance index:

‖Ged(z)‖∞ < γ, (7.14)

if there exists a symmetric positive definite matrix P ∈ Rnx×nx, i.e., P > 0, and a

matrix M ∈ Rnx×ny such that



−P PA0 −MC PEθ PEω −MEυ 0

∗ −P 0 0 0 I

∗ ∗ γI 0 0 0

∗ ∗ ∗ γI 0 0

∗ ∗ ∗ ∗ γI 0

∗ ∗ ∗ ∗ ∗ γI


< 0. (7.15)

In the case that the LMI (7.15) can be solved, the gain of the observer can be computed

as

L = P−1M. (7.16)

Proof. Considering the Proposition 7.3, the transfer function Ged(z) can be obtained as

Ged(z) = (zI − (A0 − LC))−1Ed. (7.17)

Then, according to [Din08], it can be written that (A0−LC) is a stable matrix and∥∥(zI − (A0 − LC))−1Ed
∥∥ < γ. Furthermore, there exists a symmetric positive definite

P such that 
−P P (A0 − LC) PEd 0

(A0 − LC)>P −P 0 I

Ed
>P 0 γI 0

0 I 0 γI

 < 0. (7.18)

Now, by substituting (7.12) into (7.18) and using the Schur complement, (7.18) can

be rewritten as
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

−P P (A0 − LC) PEθ PEω −PLEυ 0

∗ −P 0 0 0 I

∗ ∗ γI 0 0 0

∗ ∗ ∗ γI 0 0

∗ ∗ ∗ ∗ γI 0

∗ ∗ ∗ ∗ ∗ γI


< 0. (7.19)

Now, by introducing the new variable M = PL, the LMI in (7.15) can be obtained.

7.3.3 Guaranteed state estimation using an optimization-based

method

Considering Definition B.29, the size of the zonotope in (7.8) can be measured by W-

radius of a zonotope, e.g., H = 〈c,R〉 with R ∈ BnH , where B = [−1, 1] is a hypercube

with proper dimension, is defined as ιw, and it is computed using

ιw,k+1 = max
%k+1∈B(n%+nx+2ny)

‖Rk+1%k+1‖22,W

= max
%k+1∈B(n%+nx+2ny)

%>k+1R
>
k+1WRk+1%k+1,

(7.20)

where % ∈ Rn% is unitary box and W is weighting matrix. Then, the gain of the

observer can be obtained from minimizing the size of the state-bounding zonotope as in

Theorem 7.2.

Theorem 7.2. Consider that the state-bounding zonotope X̂ in Proposition 7.2 is

parametrized by means of the observer gain, i.e., X̂k+1(L) = 〈ck+1(L), Rk+1(L)〉. Then,

considering ρ ∈ (0, 1) and ε > 0, the minimization criterion of the size of the zonotope

X̂
ιw,k+1 ≤ ριw,k + ε (7.21)

holds if there exist matrices W ∈ Rnx, W = W> > 0, Y ∈ Rnx×ny , diagonal matrices

Γ ∈ Rnx×nx, Υ ∈ Rny×ny , and Ω ∈ Rnx×nx such that
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

ρW ∗ ∗ ∗ ∗
0 Γ ∗ ∗ ∗
0 0 Υ ∗ ∗
0 0 0 Ω ∗

WA0 − Y C WEω −Y Eυ WEθ W


> 0, (7.22a)

Γ > 0, Υ > 0, Ω > 0, (7.22b)

tr(Γ ) + tr(Υ ) + tr(Ω) < ε, (7.22c)

are satisfied.

Proof. Considering (7.20) and (7.21), it follows that

max
%k+1∈B(n%+nx+2ny)

‖Rk+1%k+1‖22,W − max
%̊k∈B

n%̊
ρ
∥∥R̄k%̊k∥∥2

2,W
− ε ≤ 0. (7.23)

Then, for any R̄ and %̊ ∈ Bn%̊ ,

max
%̊k∈B

n%̊

∥∥R̄k%̊k∥∥2

2,W
≥
∥∥R̄k%̊k∥∥2

2,W
. (7.24)

Now, by defining %k =
[
%̊>k α>1 α>2 α>3

]>
, where %̊k ⊂ Bn%̊ , α1 ⊂ Bnω , α2 ⊂ Bnυ

and α3 ⊂ Bnυ , then, a sufficient condition for any % ∈ Bn%+nω+2nυ and %̊ ∈ Bn%̊ can be

obtained as

‖Rk+1%k+1‖22,W − ρ
∥∥R̄k%̊k∥∥2

2,W
− ε < 0. (7.25)

Furthermore, considering the shape matrix of the state-bounding zonotope in (7.8) and

defining Y = WL, it can be derived that

R̃k+1 =
[
WA0 − Y C WEω −Y Eυ WEθ

]
. (7.26)

Then, (7.25) can be rewritten as

Π>R̃>k+1W
−1R̃k+1Π − ρ%̊>k R̄>kWR̄k%̊k − ε < 0, (7.27)
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where Π =


R̄k%̊k

α1

α2

α3

. Thus, if there exist diagonal positive semi-definite matrices Γ , Υ

and Ω, then it can be written for any α1 ∈ Rnx , α2 ∈ Rny and α3 ∈ Rnθ that

α>1 Γα1 =

nx∑
i=1

α2
1Γi ≤ tr(Γ ), (7.28a)

α>2 Υα2 =

ny∑
i=1

α2
2Υi ≤ tr(Υ ), (7.28b)

α>3 Ωα3 =

nθ∑
i=1

α2
3Ωi ≤ tr(Ω), (7.28c)

where Γi, Υi and Ωi are the diagonal elements of Γ , Υ and Ω, respectively. Therefore,

using (7.28), it can be obtained that

tr(Γ )− α>1 Γα1 ≥ 0, ∀α1 ∈ Bnx , (7.29a)

tr(Υ )− α>2 Υα2 ≥ 0, ∀α2 ∈ Bny , (7.29b)

tr(Ω)− α>3 Ωα3 ≥ 0, ∀α3 ∈ Bnθ . (7.29c)

Furthermore, adding (7.29) to (7.27), a sufficient condition of (7.27) can be obtained as

Π>R̃>k+1W
−1R̃k+1Π − ρ%̊>k R̄>kWR̄k%̊k + tr(Γ )− α>1 Γα1 + tr(Υ )

− α>2 Υα2 + tr(Ω)− α>3 Ωα3 − ε < 0.
(7.30)

It means, (7.29) is positive by satisfying the sufficient condition in (7.30) and knowing

that (7.29) is positive. Thus, (7.27) is satisfied. Then, if tr(Γ ) + tr(Υ ) + tr(Ω) < ε in

(7.22b) holds, it can be obtained that

Π>

R̃>kW−1R̃k −


ρW 0 0 0

0 Γ 0 0

0 0 Υ 0

0 0 0 Ω



Π < 0. (7.31)



160 Chapter 7 : Interval observer design for a system subject to both TIU and TVU

Moreover, from (7.31), it can be derived that
ρW 0 0 0

0 Γ 0 0

0 0 Υ 0

0 0 0 Ω

− R̃>kW−1R̃k > 0 (7.32)

Now, using the Schur complement and considering (7.26), the LMI in (7.22) can be

obtained.

In order to overcome the problems associated to the set-based IOA, e.g., wrapping

effect and range evaluation of an interval function, already discussed in Section 7.1, the

state estimation can be computed using the trajectory-based IOA that relies on the

computation of the approximated state set using point-wise trajectories. A discussion

of such approach will be the main topic of the next section.

7.4 Trajectory-based interval observation

7.4.1 Trajectory-based interval observer structure

In the trajectory-based IOA, the value of the parameter uncertainty is unknown but

bounded within an interval and its invariance can be guaranteed at each time instant.

In this approach, the interval of the states can be estimated at each iteration by using

specific state trajectories corresponding to particular values of uncertainties ∆A(θ).

According to [PSQ03], the loss of the time dependency of the parametric uncertainty

in the set-based IOA and the problem of wrapping effect can be avoided by deriving a

function based on the relationship between the states and parameters from the initial

state to the current state by considering the observer dynamics (2.5) as

x̂(k) = (Aobs(θ))kx0 +
k−1∑
j=0

(Aobs(θ))k−1−j Bobs uobsk (j), (7.33)

where

Bobs =
[
B L Eω −LEυ

]
, uobsk =

[
uk yk ωk υk

]>
.
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Then, considering θ ∈ Θ, both upper and lower bounds of the state estimation of

the dynamical model (7.1), i.e., X̂ (k) = [x̂(k), x̂(k)], can be obtained by solving the

following optimization problems:

x̂k = max
θ∈Θ

[
(Aobs(θ))kx̂(0) +

k−1∑
j=0

(Aobs(θ))k−1−j Bobs uobsk (j)
]
, (7.34a)

x̂k = min
θ∈Θ

[
(Aobs(θ))kx̂(0) +

k−1∑
j=0

(Aobs(θ))k−1−j Bobs uobsk (j)
]
, (7.34b)

subject to

x0 ∈ �X0, (7.34c)

where x̂(k) and x̂(k) denote the lower and upper bounds of the interval approximation,

respectively.

Remark 7.1. It is worth mentioning that both upper and lower bounds of the interval

approximation should be solved separately for each component. �

Numerical methods can be used to solve the optimization problems in (7.34) for

computing x̂ and x̂ 2. However, the computational burden is high. Alternatively, when

designing the observer to result in a monotonic system as in [ERP13], the solution of

(7.34) is achieved using the extreme values of θ ∈ Θ. This means that just considering

two different observers, one per each extreme value, for estimating the upper and lower

bounds, is enough for reducing the computational load.

Proposition 7.4. Considering the monotonic system, the time-invariant uncertainty

θ ∈ Θ, Lemma B.1 and Assumption 7.1, the numerical solution of (7.34) is achieved

using the structure of the trajectory-based interval observer approach with the purpose

of estimating the state as

xk+1 = (A0 − LC)xk +Buk + Lyk + Ed dk + ξk, (7.35a)

xk+1 = (A0 − LC)xk +Buk + Lyk + Ed dk + ξk, (7.35b)

2This approach is deeply investigated in [PSQ03].
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with

Ed =
[
Eω −LEυ

]
, dk =

[
ωk υk

]>
, (7.36a)

Ed =
[
Eω −LEυ

]
, dk =

[
ωk υk

]>
, (7.36b)

ξk = ∆A+ x+
k −∆A+x−k −∆A−x+

k + ∆A− x−k , (7.36c)

ξk = ∆A+ x+
k −∆A+x−k −∆A−x+

k + ∆A− x−k , (7.36d)

∆A+ = max
{

0, ∆A
}
, ∆A− = ∆A+ −∆A, (7.36e)

∆A+ = max {0, ∆A} , ∆A− = ∆A+ −∆A, (7.36f)

x+ = max {0, x} , x− = x+ − x, (7.36g)

x+ = max {0, x} , x− = x+ − x. (7.36h)

where L ∈ Rnx×ny and L ∈ Rnx×ny are the gains of upper and lower observers, respec-

tively.

Proof. Considering the monotonic system, the function in (7.33) can be unfolded as

x̂(k) = (A∗(θ))kx0 +
k−1∑
j=0

(A∗(θ))k−1−j
(
Buk(j) + Lyk(j) + Eωωk(j)− LEυυk(j)

)
.

(7.37)

It can be seen from (7.37) that the estimation is not only depends on θ but also depends

on ω and υ. Consequently, the optimization problem in (7.34) can be rewritten as

x̂k = max
θ∈Θ

[
(A∗(θ))kx0 +

k−1∑
j=0

(A∗(θ))k−1−j
(
Buk(j) + Lyk(j) + Eωωk(j)− LEυυk(j)

)]
,

(7.38a)

x̂k = min
θ∈Θ

[
(A∗(θ))kx0 +

k−1∑
j=0

(A∗(θ))k−1−j
(
Buk(j) + Lyk(j) + Eωωk(j)− LEυυk(j)

)]
,

(7.38b)

subject to

x0 ∈ �X0. (7.38c)
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Now, considering the time-invariant uncertainty θ ∈ Θ and using Lemma B.1 and As-

sumption 7.1, the following inequality is stated:

ξk ≤ ∆A(θ)xk ≤ ξk. (7.39)

Then, iteratively solving the optimization problem in (7.38) can be generated by using

(7.35). In this regard, the loss of the time dependency of the parametric uncertainty in

the set-based interval observer approach and the problem of wrapping effect can also be

avoided.

Remark 7.2. In fact, Ed and Ed are the constant matrices computed considering the

gains of upper and lower observers, respectively. Moreover, dk and dk introduce the ex-

treme value of the time-varying uncertainties since considering the unknown but bounded

assumption. Therefore, it is guaranteed that Ed dk < Eddk < Ed dk. �

Consequently, the estimation of the lower and upper bounds of the output measure-

ment y can be computed as

yk = C+xk − C−xk, (7.40a)

yk = C+xk − C−xk, (7.40b)

where C+ = max {0, C} and C− = C+ − C.

7.4.2 Robust trajectory-based interval observer design

There are two issues that should be taken into account when designing the robust

observer in the case of the trajectory-based IOA. First, the convergence of the observer

point should be guaranteed, which will be done based on the H∞ technique. Second,

the monotonicity of the observer in spite of non-monotonicity of the system state matrix

should also be satisfied (see the following Property 7.1 for the monotonicity property).

Property 7.1. (Monotonicity property) If the variation of the state function regarding

to all the states and parameters is positive, the discrete time system will satisfy the

monotonicity property. Moreover, those systems that are satisfied this property are the

monotonic systems.

Therefore, the following condition should be fulfilled together with the Lyapunov



164 Chapter 7 : Interval observer design for a system subject to both TIU and TVU

stability condition:

(A0 − LC), (A0 − LC) > 0, or, (A0 − LC), (A0 − LC) ∈ Rnx×nx+ . (7.41)

The dynamics of state estimation error can be obtained by following Proposition 7.5,

which are required for using the H∞ technique.

Proposition 7.5. Given that the upper and lower bounds of the state estimation error

for trajectory-based IOA are respectively defined as

ek+1 = xk+1 − xk+1, (7.42a)

ek+1 = xk+1 − xk+1, (7.42b)

then, based on (2.4) and (7.35), and also considering Lemma B.2, the upper and lower

bounds dynamics of the state estimation error can be obtained as

ek+1 = (A0 − LC) ek + Eededk , (7.43a)

ek+1 = (A0 − LC) ek + Eed edk , (7.43b)

with

Eed =
[
Ed Eθ

]
, edk =

[
dk eθ

]>
, (7.44a)

Eed =
[
Ed Eθ

]
, edk =

[
dk eθ

]>
, (7.44b)

where eθ and eθ show the effect of the time invariant uncertain parameter θ on the upper

and lower bounds dynamics of the state estimation error, respectively.

Proof. By substituting (7.1) and (7.35) in (7.42a), it can be written that

ek+1 =(A0 − LC)xk − (A0xk − LC)xk + LEυυk + Eωωk

− LEυυk + ξk −∆A(θ)xk − Eωωk.
(7.45)

Then, (7.45) can be rearranged as

ek+1 =

(
(A0 − LC) (xk − xk)

)
+

(
Eω (ωk − ωk)

)
−
(
LEυ (υk − υk)

)
+

(
ξk −∆A(θk)xk

)
.

(7.46)
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Based on (7.39) and introducing the following parameters:

eωk = ωk − ωk, eυk = υk − υk, eξk = ξk −∆A(θk)xk,

(7.46) can be rewritten as

ek+1 =

(
(A0 − LC) ek

)
+

(
Eωeωk

)
−
(
LEυeυk

)
+

(
eξk

)
.

Moreover, considering Lemma B.2, the term eξk can be approximately computed as

eξk ≈ Eθeθ. (7.47)

Hence, considering (7.47), the upper bound dynamics of the state estimation error

can be derived as

ek+1 =

(
(A0 − LC) ek

)
+

(
Eωeωk

)
−
(
LEυeυk

)
+

(
Eθeθ

)
. (7.48)

Therefore, the upper bound dynamics of the state estimation error in (7.43a) can

be obtained by substitution of the terms in (7.44a) and (7.36a) into (7.48). Following

the same procedure, (7.43b) can be obtained for the lower bound dynamics of the state

estimation error.

Now, by defining the transfer function Ged(z) for the upper and lower state estima-

tion error dynamics as Ged(z) and Ged(z), the maximum singular value (H∞ norm) of

transfer functions Ged(z) and Ged(z) are denoted by
∥∥∥Ged(z)∥∥∥

∞
and

∥∥∥Ged(z)∥∥∥
∞

, respec-

tively. Then, Theorem 7.3 can be used design two robust observers for the estimation

of the upper and lower bounds of state-bounding observer considering the effect of un-

certainties. Thus, both convergence and monotonicity properties of the observer are

considered to design such observers.

Theorem 7.3. Taken into account the satisfaction of the monotonicity property and

given a scalar γ > 0, upper and lower state estimation error dynamics in (7.43) are

stable and satisfy the following H∞ performance indices:∥∥∥Ged(z)∥∥∥
∞
< γ,

∥∥∥Ged(z)∥∥∥
∞
< γ, (7.49)
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and, taking into account the satisfaction of the monotonicity property, there exists a

symmetric positive definite matrix P ∈ Rnx×nx and a matrix M ∈ Rnx×ny such that

−P PA0 −MC PEθ PEω −MEυ 0

∗ −P 0 0 0 I

∗ ∗ γI 0 0 0

∗ ∗ ∗ γI 0 0

∗ ∗ ∗ ∗ γI 0

∗ ∗ ∗ ∗ ∗ γI


< 0, (7.50a)

PA0 −MC ≥ 0. (7.50b)

Analogously, for the lower observer, there exists a symmetric positive definite matrix

P ∈ Rnx×nx and a matrix M ∈ Rnx×ny such that

−P PA0 −MC PEθ PEω −MEυ 0

∗ −P 0 0 0 I

∗ ∗ γI 0 0 0

∗ ∗ ∗ γI 0 0

∗ ∗ ∗ ∗ γI 0

∗ ∗ ∗ ∗ ∗ γI


< 0, (7.51a)

PA0 −MC ≥ 0. (7.51b)

Thus, solving the LMIs in (7.50) and (7.51), the gain of the upper and lower ob-

servers, i.e., L and L, can be respectively obtained as

L = P
−1
M, (7.52a)

L = P−1M. (7.52b)

Proof. The proof follows considering the same procedure as in the one used into the

proof of the Theorem 7.1. The only deference is related to the second LMI for upper

and lower observers to satisfy the monotonicity property, i.e., A0 − LC > 0.
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7.5 Integrated set/trajectory approach

7.5.1 Comparative assessment

Using the results presented in Sections 7.3 and 7.4, the state-bounding observer can be

designed by using both (7.8) and (7.35), which corresponds, respectively, to the set-based

IOA and trajectory-based IOA. According to Section 7.3.2, in the set-based IOA, the

satisfaction of the LMI in Theorem 7.1 is required in order to guarantee the robustness

of the interval observation. Moreover, the size of the obtained state-bounding zonotope

can be minimized using the LMI (7.15) in Theorem 7.2. On the other hand, according to

Section 7.4.2, both robustness and monotonicity property of the trajectory-based IOA

can be guaranteed through the satisfaction of the LMIs (7.50) and (7.51) in Theorem 7.3

for computing the gains of the upper and lower observers.

In an attempt to make both approaches comparable, the interval hull 3 introduced

in Definition B.23 is used for the case of set-based IOA. In this regard, the interval hull

of the state-bounding zonotopic set in (7.8) can be written as

xk,sup,i = ck,i + ‖Rk,i‖1 , (7.53a)

xk,inf,i = ck,i − ‖Rk,i‖1 , (7.53b)

where xk,sup ∈ Rnx and xk,inf ∈ Rnx are the maximum and the minimum values of

the X , respectively. Moreover, Moreover, ‖Rk,i‖1 stands for row sum where Rk,i is the

i-th row of Rk. In Figure 7.1, there is a schematic diagram of the interval hull for a

two-dimensional zonotope.

Therefore, considering (7.53) instead of (7.8) leads to compute the extreme values

of the trajectories of the state-bounding set in the set-based IOA. Since the main struc-

ture of the trajectory-based IOA relies on computing the extreme values of the state

estimation, using the concept of interval hull for the set-based IOA allows to compare

the results of the set-based IOA and trajectory-based IOA.

By looking at both approaches with the purpose of further analysis, Proposition 7.6

can be used in order to compare the nominal values of the state estimation that can be

obtained using each approach.

3An interval hull of a set is defined as the smallest centered interval vector that contains the set.
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x1

x2

x1,supx1,inf

x2,sup

x2,inf

c1

c2

Figure 7.1: Schematic diagram of the interval hull of the
two-dimensional zonotope.

Proposition 7.6. Considering the monotonic system with the symmetric parameter

uncertainty, the mean values of computed upper and lower bounds of the state estimation

using (7.35) in the case of trajectory-based IOA play the same role as the center of the

zonotope in set-based IOA, i.e.,
xk + xk

2
= ck. (7.54)

Proof. Considering the monotonic system and assuming that L = L = L, dk = dk and

ξk = ξk, the mean value of xk+1 and xk+1 can be obtained using (7.35) as

(
xk+1 + xk+1

2

)
= (A0 −LC)

(
xk + xk

2

)
+Buk +Lyk +Ed

(
dk + dk

2

)
+

(
ξk + ξk

2

)
.

(7.55)

Therefore, by substitution of (7.54) into (7.55), it can be written that

(
xk+1 + xk+1

2

)
= (A0 − LC)ck +Buk + Lyk + Ed

(
dk + dk

2

)
+

(
ξk + ξk

2

)
. (7.56)
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Now, by considering Assumption 2.2, (7.56) can be rewritten as(
xk+1 + xk+1

2

)
= (A0 − LC)ck +Buk + Lyk. (7.57)

Then, comparing the right-hand side of (7.57) and (7.8a), it can be seen that the

center of the state-bounding observer using the set-based IOA and the mean values of

both xk and xk can be related.

Remark 7.3. It is worth mentioning that the equality in (7.54) exists when the system is

monotonic with the symmetric uncertainty. Otherwise, there exists over approximation

and the condition in (7.54) is not longer satisfied.

On the other hand, the size of the interval bounding the set of states 4 (upper and

lower bounds) that are computed using both approaches for the state estimation is

related in Proposition 7.7.

Proposition 7.7. Given the interval hull in Definition B.23, the relationship between

the shape matrix considering the set-based IOA and the extreme values of the interval

observation provided by the trajectory-based IOA can be written as

xk,sup,i = ck,i + ‖Rk,i‖1 =
xk,i − xk,i

2
, (7.58a)

xk,inf,i = ck,i − ‖Rk,i‖1 =
xk,i − xk,i

2
. (7.58b)

Proof. Based on the structure of the trajectory-based IOA, it can be observed that the

interval computed from the upper and lower observers plays the same role as the interval

hull computed using the set-based IOA. Thus, by considering Proposition 7.6, it follows

that

xk,i −
xk,i + xk,i

2
= ck,i + ‖Rk,i‖1 , (7.59a)

xk,i + xk,i

2
− xk,i = ck,i − ‖Rk,i‖1 . (7.59b)

Then, (7.58) can be obtained after some algebraic manipulations of (7.59).

4This part shows the effect of the uncertainties since the deterministic approach is used.
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7.5.2 Integrated scheme

By considering the relationship between both interval observer approaches, an integrated

scheme combining them is proposed for interval observation. This integrated approach

can be obtained using Propositions 7.6 and 7.7 as it is proposed in Theorem 7.4.

Theorem 7.4. Given Propositions 7.6 and 7.7, the nominal value of the state-bounding

observer xnom can be computed as

xk+1,nom = (A0 − LC)xk,nom +Buk + Lyk. (7.60)

Moreover, the effect of both considered TIU and TVU (by using Lemma B.2) can be

bounded as

xk+1,sup = (A0 − LC)xk,sup + Ed

(
dk − dk

2

)
+

(
ξk − ξk

2

)
, (7.61a)

xk+1,inf = (A0 − LC)xk,inf + Ed

(
dk − dk

2

)
+

(
ξk − ξk

2

)
, (7.61b)

where the gain L = P−1M should be computed using the same LMI in (7.15) to satisfy

the H∞ performance together with the new LMI

PA0 −MC ≥ 0, (7.62)

to satisfy the monotonicity property of (A0 − LC).

Proof. Given Proposition 7.6 and assuming that L = L = L, dk = dk and ξk = ξk,

the nominal value of the state estimation can be obtained using the computed center in

(7.57) as (7.60). Moreover, using Proposition 7.7, the effect of the uncertainties can be

alternatively computed as

xk+1,sup = (A0 − LC)

(
xk − xk

2

)
+ Ed

(
dk − dk

2

)
+

(
ξk − ξk

2

)
, (7.63a)

xk+1,inf = (A0 − LC)

(
xk − xk

2

)
+ Ed

(
dk − dk

2

)
+

(
ξk − ξk

2

)
. (7.63b)

Therefore, (7.61) is obtained by proper manipulation of (7.63). Moreover, the proof
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of the mentioned LMIs in (7.15) and (7.62) to compute the observer gain can be obtained

following the same manner as Theorems 7.1 and 7.3 to satisfy both H∞ performance

and monotonicity property, respectively.

Theorem 7.4 shows that both approaches can be merged, generating a new approach

where the center and segments of the state-bounding observer are propagated indepen-

dently (as in zonotopic approach), but obtaining explicit formulas that do not require

the use of zonotopes. However, since the observer structure in the set-based IOA is

reformulated using the interval hull of the state-bounding zonotope for computing the

upper and lower bounds as in the trajectory-based IOA, the integrated scheme will only

avoid the wrapping effect and preserve the parameter uncertainty time invariance if the

observer gain is designed such that the resulting observer matrix satisfies the mono-

tonicity property. Otherwise, the integrated scheme will not work satisfactorily leading

to an unstable interval observer due to the wrapping effect [PSQ05b]. Moreover, the

robustness of the observer can be guaranteed considering the H∞ performance when

computing the observer gain using Theorem 7.2.

Corollary 7.1. Using Theorem 7.4, set-based IOA and trajectory-based IOA can produce

the same results when the observer is monotonic.

Proof. Given a system dynamic as xk+1 = Axk +Buk. Using the trajectory-based IOA,

the extreme values of upper and lower bounds are computed as

xk+1 = Axk +Bu, (7.64a)

xk+1 = Axk +Bu. (7.64b)

On the other hand, the main concept of using the set-based IOA to compute the state-

bounding observer is to generate both upper and lower bounds using some propagation

algorithms (such as the algorithm mentioned in Proposition 7.1) to compute the set

Xk+1 from Xk. Then, it can be written that

xk+1 ∈ 〈ck+1, Rk+1〉 = 〈Ack, ARk〉 ⊕ 〈Buk, 0〉 . (7.65)

Now, given the relationship obtained in Theorem 7.4, (7.65) can be reformulated using

the concept of the interval hull to compute the same result as in (7.64).
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7.6 Case study

Two examples are used for illustrating the effectiveness of the proposed approaches in the

previous sections: a numerical example and a real application example (the two-tanks

system benchmark). These application examples are selected to show their performance:

i) when the system is non-monotonic, i.e., at least one element of system matrix A is

negative, ii) when the observer is non-monotonic, i.e., at least one element of observer

matrix (A0 − LC) is negative. In both cases, the proposed observer design is used to

overcome the problems using both set-based IOA and trajectory-based IOA.

7.6.1 Numerical example

The first example considered is based on the dynamical model (7.1) with

A =


0.8 + θ11 0.1 + θ12 0.3 + θ13

0 + θ21 0.8 + θ22 0.2 + θ23

0.01 + θ31 0 + θ32 0.8 + θ33

 , B =


0

0

1

 , C =
[
0 0 1

]
, (7.66)

where the TIU parameters are bounded by the interval θij ∈ [−0.01, 0.01], where the

indices i and j refer to the ith row and jth column of ∆A(θ), respectively. Moreover,

the example includes TVU, i.e., the state disturbance and the measurement noise, Eω

and Eυ are used as in (2.4) with

Eω =


0.08 0 0

0 0.08 0

0 0 0.08

 , Eυ =
[
0.2
]
. (7.67)

The input signal u is given by u = sin(t) for t ∈ [0, 3π] with 200 time steps.

Considering the results presented and discussed in this chapter, it is worth comparing

the trajectory-based IOA and set-based IOA for the case of a monotonic system. In

this regard, matrix A is considered as in (7.66). It can be seen that all the entries

of A in (7.66) are positive values. Therefore, the system is monotonic. Then, the

set-based interval observer approach gain is computed using Theorem 7.1 to satisfy

the H∞ performance together with Theorem 7.2 to minimize the size of the obtained

zonotope at each time instant as L =
[
0.2781 0.2855 0.7982

]>
. Furthermore, the

gains of upper and lower bounds of the trajectory-based interval observer approach are
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Figure 7.2: Set-based IOA vs. trajectory-based IOA behavior
considering monotonic system.

computed using (7.50) and (7.51), respectively as L = L =
[
0.3 0.2 0.8

]>
. Figure 7.2

shows the obtained results from the simulation of the monotonic system.

Remark 7.4. It is worth mentioning that the set-based approach allows to estimate the

state set one time instant ahead based on the set estimated in the previous time instant.

But, in order to put both approaches into the comparable framework, the state sets are

projected into the state space, separately.

As it can be seen from Figure 7.2, the behavior of the system can be correctly esti-

mated using both set-based IOA and trajectory-based IOA. Moreover, both approaches

are producing the same results for the case of a monotonic system.

The problem appears if the system is not monotonic. To illustrate this situation, the

scenario to be tested is the case when matrix A contains at least one negative element.
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Figure 7.3: Set-based IOA considering a non-monotonic system.

To this aim, A is now considered as

A =


0.8 + θ11 −0.1 + θ12 0.3 + θ13

0 + θ21 0.8 + θ22 0.2 + θ23

0.01 + θ31 0 + θ32 0.8 + θ33

 . (7.68)

Having a negative element in matrix A leads to test the case that the system is

not monotonic since the positivity condition is not satisfied. The first simulation is the

analysis of the behavior of the set-based IOA and trajectory-based IOA when only the

stability condition is considered for designing the observer through the obtained LMI

in (7.15) for the set-based IOA, and (7.50a) and (7.51a) for the trajectory-based IOA

considering the H∞ technique. Figures 7.3 and 7.4 show the results obtained from the

simulation of the non-monotonic system considering set-based IOA and trajectory-based

IOA, respectively.
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Figure 7.4: Trajectory-based IOA considering a non-monotonic
system.

In Figure 7.3, the zonotopic observer is implemented according to Proposition 7.1

and the observer gain is determined using the LMI in (7.15) for the case of set-based

interval observer approach as L =
[
−1.1376 −1.9167 −1.2604

]>
. It can be observed

from Figure 7.3 that, when the system is non-monotonic, the results from the set-

based interval observer approach is affected by the problem of wrapping effect and this

approach cannot compute the correct state estimation.

On the other hand, in Figure 7.4, the observer in (7.35) is used for implementing

trajectory-based interval observer approach and the observer gain is calculated using

LMIs in (7.50a) and (7.51a) as L = L =
[
0.2754 1.0571 0.7724

]>
. The idea of

considering only (7.50a) and (7.51a) in the case of trajectory-based IOA is to show the

problem that appears when the positivity condition is not satisfied for the observer in

the case that the dynamics of the system are not monotonic.
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Figure 7.5: Set-based IOA vs. trajectory-based IOA considering
non-monotonic system and designing the integrated
monotonic observer.

As it can be seen in Figure 7.4, considering only the convergence of the observer to

compute the observer gain for a non-monotonic system, the trajectory-based IOA meets

a problem to compute the interval for the estimation of the second state of the system

x2 that, according matrix C, is not measured. The only purpose of considering this

case is to show the problems of non-satisfaction of the positivity condition to design the

observer gain in trajectory-based IOA and presenting the wrapping effect for the same

case considering the set-based IOA.

Further analysis is done by implementing the proposed observer design in Section 7.5

to overcome the problems that are presented in Figures 7.3 and 7.4.

As it can be seen in Figure 7.5, the satisfaction of the positivity condition based

on the proposed LMIs in (7.50) and (7.51) allows the trajectory-based IOA to estimate

correctly the system behavior and to solve the problem of estimating the behaviour of x2
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(see Figure 7.4). Moreover, thanks to the obtained similarity between the set-based IOA

and trajectory-based IOA in the case of a monotonic system according to the analysis of

the numerical example and also considering the mentioned points in Section 7.5, it can be

seen that the interval hull of the state-bounding zonotope computed using the set-based

IOA can be converted to the trajectory-based IOA. Having this in mind, Propositions

7.6 and 7.7, and Theorem 7.4 are considered for converting the center and the shape

matrix of the state-bounding zonotope obtained from the set-based IOA. This point is

also shown in Figure 7.5.

As it is mentioned in Section 7.5 and having the integrated observer structure, the

robust observer in Figure 7.5 is obtained by computing the observer gain considering

the H∞ performance and the monotonicity property. It means, in the new proposed

structure in Theorem 7.4, the observer gain is computed considering the LMIs in Theo-

rem 7.1 and also the satisfaction of the LMI in (7.62), which guarantees the monotonicity

property of the observer as
[
0.2892 0.2950 0.8001

]>
. In this regard, the monotonicity

property not only can solve the non-inclusion problem of the trajectory-based interval

observer approach but also the wrapping effect in the set-based interval observer can

be solved. Furthermore, the same results are obtained from both approaches for the

case that the system is non-monotonic and the observers are designed to satisfy the

monotonicity property having this in mind that both time-varying and time-invariant

uncertainties are considered in the simulation.

7.6.2 Two-tank system benchmark

The two-tank system is proposed as the second application example to illustrate the

approach proposed in this chapter. The considered tank process is based on Coupled

Tanks 33− 041, manufactured by Feedback Instruments company. The general descrip-

tion and the mathematical model of the two tanks system can be found in Section A.2

of Appendix A.

Furthermore, in order to design the process in such a way to be applicable with

testing the proposed approach, the TVU, i,e., the state disturbance ω and process noise

υ are generated placing a Pump 2 as can be seen in Figure 7.6.

As it is shown in Figure 7.6, inflows of both tanks can also be affected by the

additional disturbance ω and noise υ that are generated by the uncertain position of
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Figure 7.6: Schematic diagram of the tank system affected by the
state disturbance and process noise.

Valves 3 and 4, respectively. Moreover, the TIU θ is implemented as an additional

inflow using Pump 1. Hence, using the Euler discretization with a sampling time of 1 s,

a discrete-time linear model is obtained as in (7.1) with

A =

[
0.9886 + θ11 0 + θ12

0.0114 + θ21 0.9903 + θ22

]
, B =

[
0.2261

0

]
, C =

[
0 1

]
. (7.69)

Moreover, the TIU parameters are bounded by the interval θij ∈ [−0.3B,+0.3B],

and also, time-varying bounded disturbances influencing all the state-space directions

and the measurement noise are modeled, respectively, with Eω and Eυ as

Eω =

[
0.006 0

0 0.006

]
, Eυ =

[
0.5

0.5

]
.

The input signal u is given as it is shown in Figure 7.7. Two scenarios are considered

in this section. Both are implemented using the same type of uncertainties. They differ

from the observer structure used: set-based IOA vs. trajectory-based IOA as explained
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Figure 7.7: Pump signal.

in previous sections. Furthermore, the zonotopic observer structure is considered based

on Proposition 7.1 and the observer structure in (7.35) is used as a trajectory-based

IOA structure.

As a first scenario, the computation of the observer gain is done using the LMI in

(7.15) for the case of set-based interval observer approach as L =
[
0.6647 0.6542

]>
.

Additionally, a trajectory-based interval observer approach gain is calculated using LMIs

in (7.50a) and (7.51a) as L = L =
[
0.6542 0.6493

]>
. The main purpose of having this

analysis is to check the behavior of the state observation when only the stability condition

is satisfied. Figure 7.8 shows the behavior of the set-based and trajectory-based interval

observer approaches tracking the height of the water in upper and lower tanks (obtained

from the real system).

As it can be seen from Figure 7.8, there is not any problem in lower tank since it

is measurable based on matrix C. But, using the trajectory-based IOA, the correct

estimation of the unmeasured state h1 cannot be obtained. A possible explanation for

this might be that the observer is not monotonic since the positivity condition is not

considered for designing the observer gain. In order to solve this problem, the positivity

condition is guaranteed by considering the LMIs in (7.50b) and (7.51b) for computing

the observer gain together with (7.50a) and (7.51a) in trajectory-based interval observer

approach as L = L =
[
0.001 0.9803

]>
. Figure 7.9 shows the obtained results from the

simulation.

As it can be seen from Figure 7.9, both set-based IOA and trajectory-based IOA

are computing the same state estimation. There exists a small difference between the
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Figure 7.8: Set-based IOA vs. trajectory-based IOA considering
monotonic system and non-monotonic observer.

computed bounds. Looking at the simulation, the set-based IOA is a bit more conser-

vative than the trajectory-based IOA since the interval hull of state-bounding zonotope

is used instead of the exact zonotope. Moreover, similar to analysis of the example in

Section 7.6.1, the new observer structure in Theorem 7.4 is also tested for the real case

study. Figure 7.10 shows the obtained results from the simulation.

As it can be seen in Figure 7.10, set-based, trajectory-based IOA and the integrated

IOA are compared for the case study. Since the considered case study is monotonic,

i.e., all the elements of matrix A are positive, the obtained results from the different

observers are the same. It is worth mentioning that the observer gain in the set-based

interval observer approach is computed by considering the satisfaction of the LMIs in

Theorems 7.1 and 7.2 as L =
[
0.0100 0.9903

]>
. Considering the trajectory-based in-

terval observer approach, the observer gain is designed using the LMIs in (7.50) and

(7.51) as L = L =
[
0.001 0.9803

]>
. Furthermore, observer gain in the proposed inte-

grated observer structure is calculated using Theorem 7.1 to satisfy the H∞ performance



7.6 : Case study 181

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
−10

−5

0

5

10

15

20

h
2 [c

m
]

 

 

h
2

Set−based approach
Trajectory−based approach

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
−5

0

5

10

15

20

25

30

h
1 [c

m
]

Time step

 

 

h
1

Set−based approach
Trajectory−based approach

2135.30922135.30922135.30922135.30922135.30922135.30922135.30922135.30922135.3092
8.6151

8.6151

8.6151

8.6151

 

 

2177.14262177.14262177.14262177.14262177.14262177.14262177.14262177.14262177.1426
6.3735

6.3735

6.3735

6.3735

 

 

2300 2302 2304 2306 2308 2310

18

18.5

19

19.5

 

 

Figure 7.9: Set-based IOA vs. trajectory-based IOA considering
monotonic system and monotonic observer.

together with the LMI mentioned in (7.62) to satisfy the monotonicity property of the

observer as L =
[
0.001 0.9803

]>
. The results obtained in Figure 7.10 show that the

monotonicity and the convergence of the observers can be guaranteed for all different

observers and they can compute almost the same results.

Therefore, both application examples illustrate that having a monotonic observer,

almost the same results can be obtained by using the proposed LMIs to design the set-

based IOA and trajectory-based IOA and it is well suited to also address the TIU and

TVU. Furthermore, using the relationship between the set-based IOA and trajectory-

based IOA, the new interval observer can be proposed based on the interval hull of

the state-bounding zonotope where both problems of the set-based IOA, i.e., preserving

time dependency of the uncertain parameter and wrapping effect, are handled in non-

monotonic systems.
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Figure 7.10: Set-based IOA vs. trajectory-based IOA considering
monotonic system and designing the integrated
monotonic observer.

7.7 Summary

This chapter has proposed the design of an IOA for discrete-time linear systems with

both TIU and TVU. First, the time-varying approach, called set-based IOA, is intro-

duced. In the set-based IOA, H∞ performance and minimization of the size of the

obtained state-bounding zonotope are considered to derive the LMI for computing the

observer gain. Then, it is shown that in the set-based IOA, the time dependency of the

parameter uncertainties cannot be preserved. Furthermore, the wrapping effect problem

appears when considering a non-monotonic system for the case of set-based IOA. So far,

in order to solve the issues of using the set-based IOA, the time-invariant approach,

called trajectory-based IOA, is used. The LMI technique is utilized in trajectory-based

IOA to guarantee the computation of the observer gain in order to satisfy both the H∞

performance and the monotonicity property. As a novelty, based on the comparison of

the mentioned interval observation approaches, it is shown that, using the interval hull of
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the state-bounding zonotope in set-based IOA, both approaches can be connected when

satisfying the monotonicity property. Furthermore, a method for designing the observer

that can connect both type of interval observer approaches is proposed. It is shown that

the proposed approach, which is based on the set-based IOA, has the same performance

of the trajectory-based IOA to preserve the time dependency without having the prob-

lem of wrapping effect. The comparison of the set-based IOA, the trajectory-based IOA

and the proposed IOA has been conducted on two different case studies, i.e., a numerical

example and a real case study based on two-tank system. The obtained results from

both case studies are well suited to address the results in the theoretical part of the

chapter.
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Chapter 8

Concluding remarks and

further extensions

As a concluding remark, the objectives proposed in the beginning of the thesis were

fulfilled. Furthermore, during the thesis development new objectives and tasks have

appeared that enrich the proposed approaches and have complemented the obtained

results. Therefore, this chapter summarizes the main contributions of the thesis. It is

worth mentioning that these contributions were reported at each corresponding chapter.

Furthermore, the proposal of future ways to continue the research developed in the thesis

will be pointed out in this chapter.

8.1 Contributions

In the following, the contributions related to the different proposed objectives are sum-

marized.

• IOA versus SMA

– The analysis of the IOA and SMA has been done in order to establish the

advantages and disadvantages of each approach.

– The relationship between IOA and SMA has been proposed in a formal math-

ematical framework.

– The comparison between IOA and SMA has been performed in the context

of FD framework by means of proposing a novel FD test to connect the

187
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approaches.

– The proposed connection between IOA and SMA in FD framework has been

used to characterize the MDF.

• IOA versus SIA

– The relation between the classical IOA and SIA in FD framework has been

proposed.

– The passive robust FD approach has been proposed using IOA in combination

with SIA.

– The sensitivity to both faults and disturbances has been evaluated using a

set-based approach enclosing all the possible temporal scenarios of faults and

disturbances within specified ranges.

– The integration of the IOA and SIA in FDI has been proposed.

– The characterization of the MDF has been proposed by using the classical

sensitivity analysis.

– The characterization of the MDF has been proposed using using SIA.

– The mathematical expressions of the MDF for different type of sensor and ac-

tuator faults have been proposed with the goal of connecting both sensitivity

and set-based approaches.

– The observer-based FDI design that can be used in both transient and steady-

state operations of a system has been proposed.

– The MIF has been characterized based on the combination of the classical

sensitivity analysis and the SIA.

• Optimizing FD rather than state estimation

– An observer-based approach has been proposed in order to enhance the sen-

sitivity to faults with respect to disturbances, rather than only optimizing

the precision of the state estimation.

– The sensitivity to both faults and disturbances has been evaluated using a

set-based approach enclosing all the possible fault and disturbance scenarios.

– The computation of the online time-varying optimal FD observer gains has

been proposed without any requirement on the considered frequency ranges.
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– The MDF has been characterized using a classical sensitivity analysis in order

to show the effectiveness of the proposed time-varying observer gain on FD

performance.

• Set-based IOA versus trajectory-based IOA

– The design of a robust IOA whose observer gain is computed by using LMI

techniques to achieve H∞ performance has been proposed.

– The relationship between the set-based IOA and trajectory-based IOA has

been investigated in order to connect them under some conditions.

– The design of an observer taking into account both TVU and TIU has been

proposed considering the relationship between the set-based IOA and trajec-

tory IOA.

8.2 Directions for future research

When all the desired tasks were accomplished in order to achieve the planned objectives,

some new perspectives were kept out of the scope of this dissertation. However, this set

of new ideas for future directions is outlined next:

• IOA versus SMA

– The comparison can be extended using Linear Matrix Inequalities (LMI)s for

computing the observer gain L in IOA and the parameter λ SMA to asses

the robustness in state estimation framework.

– The comparison can be extended to the case of nonlinear systems represented

with Takagi-Sugeno or linear parameter-varying (LPV) models to assess the

performance of both approaches regarding both FD and FDI.

• IOA versus SIA

– The influence of the input over the magnitude of the MDF can be further

analyzed in order to apply active diagnosis to design the system input such

that a better performance is achieved in fault detection and isolation.

– Different faults can be considered based on their nature in order to charac-

terize the minimum detectable incipient, multiplicative, permanent or inter-

mediate faults.
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– The effect of the observer gain and the influence of the input over the state-

bounding observer can be further analyzed in order to improve the algorithm

for enhancing the sensitivity to the fault with respect to the influence of

disturbance with the goal of improving fault detection and isolation perfor-

mance.

• Optimizing FD rather than state estimation

– Different type of faults can be considered separately with the purpose of

enhancing the sensitivity of the state estimation to specific kind of faults in

orderer to improve both the fault detection and isolation performances.

• Set-based IOA versus trajectory-based IOA

– The effectiveness of the proposed results can be investigated for enhancing

the sensitivity to faults, rather than only the robust state estimation.
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Appendix A

Tank-based benchmarks

For the purpose of illustrating how the FDI algorithms presented in this thesis works,

there are several application examples that are used. Among them, the tank system

proposed by [Joh00] is one of the most used laboratory process for control and FDI as-

sessment. The main motivation for the use of a tank system in the processes monitoring

and fault diagnosis field is related to the following characteristic: in the tank system,

a collection of tanks sequentially connected through pipes at the bottom and at the

middle part of the tanks is used. Considering these connections and different sets of

available sensors allow to test FDI algorithms in both linear and nonlinear frameworks.

A.1 Four-tank system

The quadruple tank is a multi input/multi output process proposed by [Joh00] as a

control benchmark. The system contains two pumps and four interconnected tanks.

As it can be seen from Figure A.1 and the schematic diagram of the system setup

in Figure A.2, the two process inputs are the pump flows that are determined by the

voltages v1 and v2 (input voltages to the pumps varying between 0 V to 10 V).

Furthermore, the outputs of the process are the water levels in the lower tanks that

are obtained as voltages from the measurement devices in the range between 0 V to

10 V. Tanks 3 and 4 are placed on top of Tanks 1 and 2. In addition, the action of

pumps is to fill the tanks by extracting the water from the basin. Furthermore, Tanks

1 and 2 receive additional water flow from Tanks 3 and 4 because of the gravity effect.
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Figure A.1: The quadruple-tank system
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γ1K1v1 γ2K2v2

Figure A.2: Schematic diagram of the quadruple-tank system
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Table A.1: Model parameters.

Parameter value Unit

A1 = A3 = 28 cm2

A2 = A4 = 32 cm2

a1 = a3 = 0.071 cm2

a2 = a4 = 0.057 cm 2

g = 981 cm / s2

The water flow to each tank is controlled by the position of the valves determined

by γ1 and γ2 in Figure A.2. Furthermore, the position of the valves γ1, γ2 ∈ (0, 1) are

the ratios modeling how the output flows of the pumps are divided between the upper

and lower tanks. Regarding the physical features, the height of each tank is 20 cm and

the connection of the tank and the pump is done using a pipe with a diameter equal to

6 mm.

Considering all the points that are mentioned above, the mathematical model of the

process can be determined based on the mass balance relations and Bernoulli’s law as

dh1,t

dt
= − a1

A1

√
2gh1,t +

a3

A1

√
2gh3,t +

γ1K1

A1
v1,t, (A.1a)

dh2,t

dt
= − a2

A2

√
2gh2,t +

a4

A2

√
2gh4,t +

γ2K2

A2
v2,t, (A.1b)

dh3,t

dt
= − a3

A3

√
2gh3,t +

(1− γ2)K2

A3
v2,t, (A.1c)

dh4,t

dt
= − a4

A4

√
2gh4,t +

(1− γ1)K1

A4
v1,t, (A.1d)

where

• hi with i = 1, 2, 3, 4 is the water level in Tank i,

• Ai is the cross section of Tank i with i = 1, 2, 3, 4,

• ai is the cross section of the outlet pipe with i = 1, 2, 3, 4,

• Kj is the constant of the Pump j with j = 1, 2,

• g is the acceleration due to gravity.
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Table A.2: Value of variables.

Operating point Parameter value Unit

(h?1, h
?
2) (12.4, 12.7) cm

(h?3, h
?
4) (1.8, 1.4) cm

(v?1, v
?
2) (3, 3) V

(K?
1 , K

?
2 ) (3.33, 3.35) cm 3/ Vs

(γ?1 , γ
?
2) (0.7, 0.6) -

The value of the parameters of (A.1) is presented in Table A.1. Furthermore, in order

to apply the approaches proposed in this thesis, the non-linear model (A.1) is linearized

around the working point in Table A.2 and introducing the variables h̃i = hi − h?i and

ṽi = vi − v?i as

˙̃
ht =



− 1

T1
0

A3

A1T3
0

0 − 1

T2
0

A4

A2T4

0 0 − 1

T3
0

0 0 0 − 1

T4


h̃t +



γ1K1

A1
0

0
γ2K2

A2

0
(1− γ1)K2

A3
(1− γ1)K1

A4
0


ṽt, (A.2a)

yt =

[
Kc 0 0 0

0 Kc 0 0

]
h̃t, (A.2b)

where the measured level signals are obtained considering that Kc = 0.5 V/cm and

Ti = Ai
ai

√
2h?i
g , with i = 1, 2, 3, 4 as T1 = 62.7034, T2 = 90.3353, T3 = 23.8900 and

T4 = 29.9930.

Finally, using the Euler discretization with a sampling time of 1 s, a discrete-time

linear model is obtained as

h̃k+1 = Ah̃k +Bṽk + Eωωk, (A.3a)

yk = Ch̃k +Dṽk + Eυυk, (A.3b)
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Figure A.3: Schematic diagram of the two-tank system.

with

A =


0.9841 0 0.0419 0

0 0.9889 0 0.0333

0 0 0.9581 0

0 0 0 0.9667

 , B =


0.2102 0

0 0.0628

0 0.0479

0.0094 0

 ,

C =

[
0.5 0 0 0

0 0.5 0 0

]
, D =

[
0 0

0 0

]
.

(A.4)

Moreover, bounded disturbances ω influencing all the state-space directions and the

measurement noise υ are modeled respectively with Eω and Eυ which are known as the

associated distribution matrices with appropriate dimensions

A.2 Two-tank system

The four tanks system in Section A.1 can be simplified into two tanks system as it is

shown in Figure A.3.
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Using the same information as the case of four tanks system, the mathematical model

of two tanks system is derived using mass-balance relations and the Bernoulli’s law as

follows:

dh1,t

dt
= − a1

A1

√
2gh1,t +

a2

A1

√
2gh2,t +

γKp

A1
ωt, (A.5a)

dh2,t

dt
= − a2

A2

√
2gh2,t +

(1− γ)Kp

A2
ut. (A.5b)

Hence, the linearized model of (A.5) around the working point mentioned in Ta-

ble A.2 can be obtained as

˙̃
ht =

− 1

T1

A2

A1T2

0 − 1

T2

 ˙̃
ht +


γ1K1

A1
0

0
(1− γ1)K1

A2

 ṽt, (A.6a)

yt =
[
Kc 0

]
˙̃
ht, (A.6b)

where ṽt =

[
ωk

vk

]
and Kc is a experimental estimated parameter. Moreover, Ti =

Ai
ai

√
2h?i
g

with i = 1, 2. Considering the same parameter as in Section A.1 and using

the Euler discretization with a sampling time of 1s, the linearized model of this system

can be written in the state-space form as (A.3), where

A =

[
0.9842 0.0407

0 0.9590

]
, B =

[
0.0007

0.0352

]
, D =

[
0 0

]
, C =

[
0.5 0

]
. (A.7)

Moreover, the output y is the voltage obtained from the level sensor. Hence, consid-

ering the physical features of the two-tank system, the range of the measured output is

[0, 10] V since the height of the each tank is from 0 cm up to 20 cm and Kc = 0.5 V/cm.

Moreover, based on the experimental data, the incremental value of the measured output

around the working point of the lower tank is from 4 V up to 8 V (or 8 cm to 16 cm).



Appendix B

Mathematical background

B.1 Matrix definitions and properties

In this section, basic matrix definitions and properties are introduced.

Definition B.1. The Symmetric Positive Definite (SPD) matrix is a matrix whose

eigenvalues are positive. In other words, a square and symmetric matrix A is positive

definite if, for all x ∈ Rnx , x>Ax > 0. �

Definition B.2. A matrix A = A> ∈ Rn×n is called a semipositive-definite matrix,

denoted by A ≥ 0, if τ>Aτ ≥ 0 for all non-zero vectors τ with real entries (τ ∈ R). �

Definition B.3. A matrix A = A> ∈ Rn×n is called a strictly positive-definite matrix,

denoted by A > 0, if τ>Aτ > 0 for all non-zero vectors τ with real entries (τ ∈ R). �

Definition B.4. A matrix A = A> ∈ Rn×n is called a seminegative-definite matrix,

denoted by A < 0, if τ>Aτ ≤ 0 for all non-zero vectors τ with real entries (τ ∈ R). �

Definition B.5. A matrix A = A> ∈ Rn×n is called a strictly negative-definite matrix,

denoted by A < 0, if τ>Aτ < 0 for all non-zero vectors τ with real entries (τ ∈ R). �

Definition B.6. The Euclidean norm of a matrix A ∈ Rn×n is defined by the quantity

x>Ax = ‖x‖2A, where x ∈ Rn and A = A> > 0. �

Definition B.7. The trace of a square matrix A ∈ Rn×n is defined to be the sum of

the elements of its main diagonal. It is obtained as tr(A) =
∑n

i=1 aii. Furthermore, for

199



200 Appendix B : Mathematical background

a matrix X = [Xij ] and, for square matrices A and B, and a scalar α,

tr(A) = tr(A>),

tr(A+B) = tr(A) + tr(B),

tr(αA) = αtr(A),

∂Xtr(AX
>B) = A>B>,

∂Xtr(AXBX
>C) = BX>CA+B>X>A>C>,

hold. �

Definition B.8. The Frobenius norm of a matrix A ∈ Rn×m is defined as

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

|aij | =
√
tr(AA>), (B.1)

where aij are the elements of A. �

Definition B.9. A Linear Matrix Inequality (LMI) with the form

F (x)
∆
= F0 +

m∑
i=1

xiFi > 0, (B.2)

where x =
[
x1 x2 . . . xm

]>
∈ Rm is the vector of decision variables and the matrices

Fi = F>i ∈ Rn×n, with i = 0, . . . , m are called the scalar decision variables.

The LMI in (B.2) is a convex constraint on x, i.e., the set {x ∈ Rm : F (x) > 0} is

convex. The LMI F (x) > 0 will be reduced to a set of scalar linear inequalities, if the

matrices Fi with i = 0, . . . m, are diagonal. Generally speaking, the matrix decision

variables can be used to formulate LMI problems, e.g., the Lyapunov inequality

A>P + PA < 0, (B.3)

where A ∈ Rn×n is a given matrix and P = P> ∈ Rn×n denotes the decision variable

[BEGFB94, DY13]. �

Definition B.10. Schur complement [BEGFB94, DY13]. Consider the LMI[
Q(x) S(x)

S>(x) R(x)

]
> 0, (B.4)
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where Q(x) and R(x) are symmetric matrices and Q(x), R(x) and S(x) are affine in x.

Then, (B.4) is equivalent toQ(x) > 0,

Q(x)− S(x)R−1(x)S>(x) > 0,
(B.5)

or R(x) > 0,

R(x)− S(x)>Q−1(x)S(x) > 0.
(B.6)

Using this definition, nonlinear matrix inequalities in (B.5) and (B.6) can be transformed

into an LMI (B.4). �

B.2 Set definitions and properties

Set-based approaches are used in a large part of this thesis. In this regard, it is necessary

to mention their main definitions and properties. In this context, several set representa-

tions are used in the set-based approaches, e.g., intervals [JKDW01, MKC09], polytopes

[VZ96], parallelotopes [CGZ96], zonotopes [PSQ03, LAC+11, LSA+13c, Com03] and el-

lipsoids [PNDW04, Com05]. But, the most used sets in this dissertation are intervals,

polytopes and zonotopes. Therefore, it is necessary to introduce some basic definitions

and operations used in zonotope and interval frameworks.

Before presenting the zonotope and interval, some of the basic set definitions and

operations are stated.

Definition B.11. A set S ⊂ Rn is called convex, if for any x1, x2, . . . , xk ∈ S with

k ≥ 2, and any α1, α2, . . . , αk ∈ N such that
∑k

i=1 αi = 1 the element
∑k

i=1 αixi is in S.

�

Definition B.12. The smallest convex set containing a given set S, denoted by conv(S),

is called the convex hull of S. �

Definition B.13. The Minkowski sum of two sets S1 and S2 is defined by S1 ⊕ S2 =

{s1 + s2 : s1 ∈ S1 and s2 ∈ S2}. �

Definition B.14. Considering the dynamics xk+1 = f(xk), a set of states Ω ⊆ Rn is

called invariant set if for all x0 ∈ Ω and k ≥ 0, xk ∈ Ω. �
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Definition B.15. Considering the dynamics xk+1 = f(xk, ωk), a set S is called RPI

set, if for all k ≥ 0, both xk ∈ S and xk+1 ∈ S. �

B.2.1 Interval sets

In this thesis, intervals allow enclosing the effect of uncertainties, e.g., state disturbance

or measurement noise, into an interval, by introducing upper and lower bounds of these

uncertainties. The first study of bounding errors by using intervals was reported by

[Moo69]. Some of the most used definitions are stated below.

Definition B.16. An interval [a, b] is defined as the set {x ∈ R : a ≤ x ≤ b}. �

Definition B.17. A strip is defined as a set S(y, d, σ) =
{
x ∈ R :

∣∣y − d>x∣∣ ≤ σ}, where

y ∈ R, d ∈ Rn and σ ∈ N. �

Definition B.18. Consider two given intervals [x] and [y], the four basic operations of

interval analysis are defined as

[x] + [y] = [x+ y, x+ y], (B.7)

[x]− [y] = [x+ y, x+ y], (B.8)

[x].[y] = [min(x.y, x.y, x.y, x.y), max(x.y, x.y, x.y, x.y)], (B.9)

[x]

[y]
= [x].

[
1

y
,

1

y

]
, if 0 /∈ [y]. (B.10)

�

Lemma B.1. Based on [ERP13], if A ≤ A ≤ A for A, A, A ∈ Rnx×nx and x ≤ x ≤ x

for x, x, x ∈ Rnx, then

A+ x+ −A+x− −A−x+ +A− x− ≤ Ax ≤ A+ x+ −A+x− −A−x+ +A− x−,

where A+ = max
{

0, A
}

, A− = A+ − A, A+ = max {0, A}, A− = A+ − A, x+ =

max {0, x}, x− = x+ − x, x+ = max {0, x} and x− = x+ − x.

Proof. The proof follows from the results presented in [ERP13].
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Lemma B.2. Given a system dynamic that is considered to be function of the parameter

vectors as

xk+1 = A(θ)xk +B(θ)uk, (B.11)

with

A(θ) = A+∆A(θ), (B.12a)

B(θ) = B +∆B(θ). (B.12b)

Moreover, by assuming that ∆A(θ) and ∆B(θ) satisfy the following match perturbation

condition: [
∆A(θ) ∆B(θ)

]
= EφΞk

[
Ga Gb

]
, (B.13)

where Ξ is a block diagonal matrix which represents the parameter uncertainties. Fur-

thermore, Ga and Gb are known matrices. In this case, if the parameter vector is

perturbed around the nominal value θ = θ0, the system can be rewritten as

xk+1 = A(θ0)xk +B(θ0)uk + Eφφk, (B.14)

where

Eφ =

[
∂A

∂θ1
| ∂B

∂θ1
| . . . | ∂A

∂θi
| ∂B

∂θi

]
, (B.15)

φk =
[
δθ1x

> | δθ1u
> | . . . | δθix

> | δθiu
>
]
, (B.16)

where the index i refers to the dimension of θ.

Proof. According to [CP12], the parameter perturbation can be approximated as

∆A(θ) ≈
N∑
i=1

ai(θ)Ai, (B.17a)

∆B(θ) ≈
N∑
i=1

bi(θ)Bi, (B.17b)

where Ai and Bi are the constant matrices and ai and bi are unknown scalar vectors.

Then, considering (B.12) and (B.17), the uncertain parameter can be approximated only

based on the disturbance term as
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Eφ1φ1k = ∆A(θ)xk +∆B(θ)uk =
[
A1 . . . AN B1 . . . BN

]


a1(θ)xk

. . .

aN (θ)xk

b1(θ)uk

. . .

bN (θ)uk


, (B.18)

where φ and Eφ show the disturbance term and the disturbance matrix, respectively.

Moreover, by assuming (B.13), φk can be considered as

φk = Ξk

[
Gaxk Gbuk

]
. (B.19)

Thus, if the system is considered to be function of the parameter vectors where the

parameter vector is perturbed around the nominal value θ = θ0 as the dynamical model

in (B.11), it can be written that

xk+1 = A(θ0)xk +B(θ0)uk +
k∑
i=1

{
∂A

∂θi
δθix+

∂B

∂θi
δθiu

}
. (B.20)

Therefore, considering (B.20), the dynamical model in (B.11) can be rewritten as it is

characterized in (B.14).

B.2.2 Polytopic sets

A polytope is a convex geometrical representation of linear constraints widely used con-

trol and optimization. In general, a polytope is a bounded polyhedral set and shaped

by gathering a group of half-spaces [BM08]. Mathematically speaking, the polytopic

representation of a set can be expressed in two distinct manners: I) half-spaces (H-

polyhedron) and II) vertices (V-polyhedron). Both mentioned representations of a poly-

tope are mathematically equivalent and they can convert to each other [Zie94]. Some of

the most used definitions are stated below.

Definition B.19. An Half-space representation or H-polyhedron P ⊂ Rn is an inter-

section of a finite set of closed half-spaces that can be introduced with the following

form:

P =
{
x ∈ Rn : Fx ≤ b, F ∈ Rn×m, b ∈ Rn

}
, (B.21)
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Figure B.1: Zonotope in R3

where fix ≤ bi with i = 1, 2, . . . , n is the ith half-space, where fi is the ith row of F and

bi is the ith component of b. �

Definition B.20. A Vertex representation or V-polyhedron P ⊂ Rn is the Minkowski

sum of the convex hull of a set V = {v1, v2, . . . , vp} ⊂ Rn of points and the cone of a

finite set Y = {y1, y2, . . . , yq} ⊂ Rn of vectors, where P = conv(V)⊕ cone(Y) �

B.2.3 Zonotopic sets

Zonotopes are a particular class of convex polytopes, which are symmetric with respect

to their center. Some of the most used definitions and propertied are stated below.

Definition B.21. A zonotope
〈
c, R

〉
⊂ Rn with the center c ∈ Rn and the generator

matrix R ∈ Rn×p is a polytopic set defined as a linear image of the unit hypercube

[−1, 1]p, i.e., 〈
c, R

〉
=
{
c+Rs, ‖s‖∞ ≤ 1

}
. (B.22)

Moreover, a centered zonotope is denoted by
〈
R
〉

=
〈
0, R

〉
. Any permutation of the

columns of R leaves it invariant. For example, Figure B.1 illustrates the sixth-order

zonotope in R3 with c =


0

0

0

 and R =


1 1 1 −1 0 0

1 −1 0 0 1 −1

0 0 −1 −1 1 1

.

�
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Definition B.22. Consider two given sets A and B, their Minkowski sum is a set

defined as A⊕ B =
{
a+ b| a ∈ A, b ∈ B

}
. Thus, the Minkowski sum of the zonotopes

Z1 =
〈
c1, R1

〉
and Z2 =

〈
c2, R2

〉
is Z1 ⊕Z2 =

〈
c1 + c2,

[
R1, R2

] 〉
. �

Definition B.23. The interval hull of a given zonotope Z = 〈c, R〉, denoted by �Z, is

the smallest interval box that contains Z and can be evaluated for all i = 1, 2, . . . , n as

�Z = {z : |zi − ci| ≤ ‖Ri‖1} , (B.23)

where Ri indicates the ith row of matrix R, and zi and ci are the ith components of z

and c, respectively. �

Definition B.24. The linear image of a zonotope Z = 〈c,R〉 by a compatible matrix

L is L� 〈c,R〉 = 〈Lc, LR〉. �

Definition B.25. Zonotope support strip. Given a zonotope Z = 〈cz, Rz〉 and a vector

C, the zonotope support strip is introduced by S = z : sd ≤ Ciz ≤ su, where i denotes

the ith row of the vector C. Furthermore, sd and su should satisfy sd = minz∈Z Ciz and

su = maxz∈Z Ciz and they can be computed as

sd = Cicz +
∥∥∥CiR>z ∥∥∥

1
, (B.24)

su = Cicz −
∥∥∥CiR>z ∥∥∥

1
. (B.25)

�

Definition B.26. Covariance of a Zonotope. Given a zonotope Z = 〈cz, Rz〉, the

covariance of this zonotope is defined as cov(Z) = RzR
>
z . �

Definition B.27. The F-radius of a given zonotope Z = 〈cz, Rz〉 ∈ Rn is the Frobenius

norm of that zonotope, i.e., ‖Z‖F = ‖Rz‖F . �

Definition B.28. The weighted Frobenius radius (FW -radius) of a given zonotope Z =

〈c, R〉 is the weighted Frobenius norm of that zonotope, i.e., ‖Z‖F,W = ‖R‖F,W . �

Definition B.29. Considering a weighting matrix W ∈ Rnx×nx , W = W>, the

W -radius of a given zonotope Z = 〈c, R〉 is defined as ιw = maxz ‖z − c‖22,W =

maxb ‖Rb‖22,W . �

Property B.1. A reduction operator, denoted ↓q, permits to reduce the number of gen-

erators of a zonotope 〈c, R〉 to a fixed number q while preserving the inclusion property
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〈c, R〉 ⊂ 〈c, ↓q {R}〉. A simple yet efficient solution to compute ↓q {R} is given in

[Com03]. It consists in sorting the columns of R on decreasing Euclidean norm and

enclosing the influence of the smaller columns only into an easily computable interval

hull, so that the resulting matrix ↓q {R} has no more than q columns. �

Property B.2. Given a zonotope Z = 〈c, R〉 ⊂ Rn, a zonotope inclusion (see

[ABC05]), indicated by � (Z), is defined as � (Z) =
〈
c,
[
mid(R) S

]〉
, where S is a

diagonal matrix that satisfies Sii =
∑m

j=1

diam(Rij)

2
, i = 1, 2, · · · , n, with mid(.) and

diam(.) being the center and diameter of the interval matrix, respectively [Moo66]. �

Property B.3. [Küh98, GP08]. Given Xk+1 = AXk⊕Buk, where A and B are interval

matrices and uk is the input at time instant k, considering Xk as a zonotope with the cen-

ter cx,k and the shape matrix Rx,k such Xk = 〈cx,k, Rx,k〉, the zonotopic state at the next

time instant k + 1, defined as Xk+1, is bounded by a zonotope X ek+1 = 〈cx,k+1, Rx,k+1〉,
with

cx,k+1 =mid(A) cx,k +mid(B) uk,

Rx,k+1 =

[
�(ARx,k)

diam(A)

2
cx,k

diam(B)

2
uk

]
,

where �(ARx,k) shows the shape matrix of the state bounding zonotope. �

Property B.4. [ABC05, LSA+13b]. Given the zonotope Z = 〈cz, Rz〉 ∈ Rn, the strip

S =
{
x ∈ Rn :

∣∣C>x− d∣∣ ≤ σ} and the vector λ ∈ Rn, the intersection between the

zonotope and the strip is defined as Z ∩ S = 〈c, R〉, where c = cz + λ (d− Ccz) and

R (λ) =
[
(I − λC)Rz σλ

]
. �
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