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Prologue 

This Doctoral Thesis manuscript has been divided into four main parts: a general introduction 

on gold(I) catalysis and three research chapters. These are preceded by the abstract and the 

general objective of the Thesis and are followed by the general conclusions. Each research 

chapter is divided itself into five sections including a specific introduction on the topic of the 

chapter, the objectives, the results and discussion, the conclusions, and the experimental part. 

The numbering of the compounds as well as the one of scheme, tables, and figures is organized 

by chapter, while the refences, reported as footnotes are numbered continuously along the 

manuscript. 

The General Introduction covers the basic principles of homogeneous gold(I) catalysis and 

gives an overview on the activation of alkynes, the cycloisomerization of enynes, and the 

intermolecular reactions of alkynes with alkenes in presence of gold(I) complexes. 

“Chapter I” presents a series of intra- and intermolecular reaction of bromoalkynes with 

alkenes catalyzed by either gold(I) or indium(III). Detailed mechanistic studies allowed the 

identification cyclic-bromonium cation as common intermediate for the reactions. In addition, 

the investigation on the nature of key intermediates of the reaction are presented. This work was 

conducted in collaboration with Dr. M. Elena de Orbe and Dr. Ophelie Quinonero and, therefore, 

some of their results are discussed in the chapter for coherence. This work has been published 

in ACS Catal. 2019, 9, 7817–7822. 

“Chapter II” comprehends our studies on the gold(I)-catalyzed [2+2] cycloaddition and (4+2) 

cycloaddition of ynol ethers with alkenes to form phenoxycyclobutenes and chromans. This 

work has not yet been published. 

“Chapter III” presents the selective alkynylation of C(sp3)-H bonds in −position to an oxime 

catalyzed by iridium(III). This work was done in collaboration with Dr. E. Tan and his results 

will be presented too to give a complete picture of the research project. This work has been 

published in Angew. Chem. Int. Ed. 2020, 59, 10470-10473. 
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Abbreviations and Acronyms 

In this manuscript, the abbreviations and acronyms most commonly used in organic 

and organometallic chemistry have been used following the recommendations of 

“Guidelines of Authors” of the Journal of Organic Chemistry. 

Additional abbreviations and acronyms used in this manuscript are listed below: 

 APCI  atmospheric pressure chemical ionization 

 BAr4
F-  tetrakis[3,5-bis(trifluoromethyl)phenylborate] 

 dr  diastereomeric ratio 

 ESI  electrospray ionization 

 JohnPhos (2-biphenyl)di-tert-butylphosphine 

 IBO  intrinsic bond orbital 

 IMes  1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene 

 Int  intermediate 

 IPr  1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene 

 L  ligand 

 MALDI matrix assisted laser desorption ionization 

 Mes  2,4,6-trimethylphenyl 

 MS  mass spectrometry/molecular sieves 

 MW  microwave irradiation 

 NBO  natural bond orbital 

 NLMO  natural localized molecular orbital 

 NTf2
-  bis(trifluoromethyl)imidiate 

 OTf-  triflate 

 ORTEP  oak ridge thermal ellipsoid plot 

 tBuXPhos 2-(di-tert-butylphosphino)-2´,4´,6´-triisopropyl-1,1´-biphenyl 

 TS  transition state 
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Abstract 

In the past twenty years, homogeneous gold(I) catalysis has been widely used as versatile tools 

for the generation of molecular complexity starting from simple substrates under mild 

conditions. In this context, our group focused on the development of reliable methods for the 

activation of multiple C-C bonds both in intramolecular and intermolecular settings. In general, 

the intermolecular reaction of alkynes with alkenes are more challenging compared with the 

intramolecular ones due to competing side reactions and therefore less examples have been 

reported. In this Doctoral Thesis, we mainly focused on the development of a series of new 

gold(I)-catalyzed intermolecular reactions of alkynes directly bounded to heteroatoms and the 

investigation of their mechanisms experimentally and using DFT calculations.  

We discovered that 1-bromo-1,6-enyes can undergo a cycloisomerization/elimination sequence 

in a formal dehydro-Diels-Alder reaction to give substituted naphthalenes. On the other hand, 

the intermolecular reaction of alkynes with allylsilanes leads to the formation of skipped enynes 

or skipped dienes in a cross-coupling-type transformation. Mechanistic studies revealed that the 

two reactions proceed via an unprecedented rearrangement of a cyclic bromonium cation 

intermediate that can evolve either into a gold(I)-vinylidene or a vinylidenephenonium gold(I) 

cation depending on the substrates. The two intermediates have different reactivity, namely 

gold(I) vinylidenes can undergo hydroarylation or C-H insertion, while vinylidenephenonium 

gold(I) cations undergo 1,2-arylmigration. In the context of our study both reactivities have been 

studied. 

Ynol ethers are versatile building blocks that can be involved in the formation of up to four C-

C bonds in a single process. However, their high reactivity in the presence of a Lewis acids is 

limiting to just a few examples their use in gold(I) catalysis. Considering the lack of precedents 

and our previous experience with haloalkynes, we aimed at the development of intermolecular 

reactions of ynol ethers with alkenes. In our study, we found that terminal ynol ethers undergo 

efficiently [2+2] cycloaddition with alkenes to form cyclobutene derivatives that can be easily 

transformed into the corresponding cyclobutanones. We also found that internal ynol ethers 

react with -methyl styrenes in a formal (4+2) cycloaddition. DFT calculations demonstrated 

that the intermediate (2-alkyne)gold(I) complex resemble a metalated ketene. 

Considering the presence of alkynes in bioactive molecules and the wide range of 

transformations that involve alkynes, the development of a direct and selective C-H alkynylation 

reaction is an important goal. In this regard, an array of transformations that allows the 

functionalization of C(sp2)-H bonds has been reported, while the alkynylation of C(sp3)-H bonds 
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is still limited. For this reason, to conclude this Doctoral Thesis we focused on the development 

of an Ir(III)-catalyzed -alkynylation of oximes derived from both alcohols and carbonyl 

compounds. The reaction displays an exquisite selectivity towards the primary C(sp3)-H bonds, 

even when more activated aliphatic C-H bonds are present. 
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General Objectives 

The objective of this Doctoral Thesis was the development of novel transition metal-catalyzed 

intermolecular reactions of haloalkynes and ynol ethers. Specifically, we focused on the 

following goals: 

▪ The study of intra- and intermolecular gold(I)-catalyzed reactions of haloalkynes and 

the computational and experimental study of their mechanisms. 

▪ The use of ynol ethers in gold(I)-catalyzed intermolecular reactions with alkenes and 

the study of the reaction mechanism. 

▪ The development of an Ir(III) catalyzed alkynylation of C(sp3)-H bonds using oximes 

as directing group. 

Each Chapter of this manuscript provides a more detailed description of the corresponding 

objective. 
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Historical Perspective of Gold Catalysis 

For long time gold has been considered in the chemical community as generally inert and a poor 

catalyst for reactions commonly catalyzed by other transition metals, up to the point to be 

defined “catalytically dead”.1  

It was necessary to wait until 1986 to see the appearance of homogeneous gold(I) catalysts on 

the chemical scene, when Ito and Hayashi published the first gold(I)-catalyzed asymmetric 

nucleophilic attack of isocyanide to aldehydes.2 However, this ground-breaking work remained 

the only one in the field for almost other ten years until Teles and coworkers reported in 1998 

the synthesis of acetals by addition of alcohols to alkynes catalyzed by gold(I) complexes 

bearing a phosphine ligand (Scheme 1a).3 The same gold(I) complex activated by protonolysis 

allowed later Tanaka and coworkers to achieve the Markovnikov-type hydration of alkynes to 

access ketones and aldehydes (Scheme 1a).4 Almost at the same time, Hashmi demonstrated 

that gold(III) salts could be used for the activation of multiple carbon-carbon bonds, specifically 

for the synthesis of phenols starting from a furan with an appended alkyne (Scheme 1b). 5 

 

Scheme 1. A) Gold(I) catalyzed hydration of alkynes to generate acetals or ketones. B) Gold(III) catalyzed 

synthesis of phenols. 

Since then, the number of transformations of multiple C-C bonds catalyzed by gold increased 

exponentially and homogeneous gold catalysis became a versatile and efficient tool for the 

construction of complex molecules under mild conditions.6 

 
1 Schmidbaur, H Naturwiss. Rundsch, 1995, 48, 443-451. 

2 Y. Ito, M. Sawamura, T. Hayashi, J. Am. Chem. Soc. 1986, 108, 6405–6406. 

3 J. H. Teles, S. Brode, M. Chabanas, Angew. Chem. Int. Ed.1998, 37, 1415–1518. 

4 (a) E. Mizushima, K. Sato, T. Hayashi, M. Tanaka, Angew. Chem. Int. Ed. 2002, 41, 4563-4565. (b) E. 

Mizushima, T. Hayashi, M. Tanaka, Org. Lett. 2003, 5, 3349-3352. 

5 A. S. K. Hashmi, T. M. Frost, J. W. Bats, J. Am. Chem. Soc. 2000, 122, 11553–11554. 
6 a) A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208–3221. b) C. Obradors, A. M. Echavarren, Acc. Chem. 

Res. 2014, 47, 902–912.c) L. Fensterbank, M. Malacria, Acc. Chem. Res. 2014, 47, 953–965.d) E. 

Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326–3350. e) R. Dorel, A. M. Echavarren, 

Chem. Rev. 2015, 115, 9028–9072. 
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Consequences of the Relativistic Effects in Homogeneous Gold(I) Catalysis 

Compared to other transition metals, gold complexes display a unique reactivity, and a deep 

understanding of homogeneous gold catalysis can be obtained taking into account the relativistic 

effects on the gold atom.7 

The term “relativistic effect” refers in general to every effect generated by the Dirac treatment 

of the Schrödinger equation, where the special relativity is taken into account and therefore the 

speed of light is considered as non-infinite and the speed of the particles as significant, relative 

to c.8 In this context, the mass of a moving particle tends towards infinite as its velocity 

increases.  

For a given atom the radial velocity of its electrons is proportional to the atomic number, 

therefore for heavy atoms the increase of the speed and consequently of the mass of the electron 

close to the nucleus is considerable (it has been calculated that for Hg the relativistic mass of 

the 1s electrons is around 20% more of their rest mass). The increase of mass of the internal 

electrons causes a contraction of the Bohr radius of their orbits, being this inversely proportional 

to the mass. This contraction applies not only to the 1s orbitals, but to all the s and p orbitals. 

Having contracted internal orbitals makes the electrons on the d and f orbitals more shielded and 

makes them suffer a weaker nucleus attraction. As a result, the external d and f orbitals are 

highly diffused. 

When it comes to practical aspects, a simpler treatment is sufficient for light atoms, but the 

relativistic contraction of the internal orbitals and the expansion of the external ones become 

considerable for atoms having the 4f and the 5d orbitals filled (such as Pt, Au and Hg), and it 

reach its maximum for gold. 

The relativistic contraction explains the superior Lewis acidity of gold, its high electronegativity 

(χ = 2.4) and its “aurophilicity”9 which is the tendency of gold to make strong Au-Au 

interactions, whose strength is in the order of the one of hydrogen bonds. Also, the electrons 

located in the expanded 5d orbital suffer less electron-electron repulsion and can easily interact 

with p filled orbitals of multiple bonds activating preferentially “soft” electrophiles. In addition, 

the contracted 6s orbital on gold atom causes a strong Au-L interaction, where L is a general 

ligand. Therefore, the outcome of gold(I) catalyzed reactions can be tuned by modulating the 

 
7 a) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395–403. b) P. Pyykkö, Angew. Chem. Int. Ed. 2004, 43, 

4412–4456. c) P. Pyykkö, Inorg. Chim. Acta 2005, 358, 4113–4130. 

8 a) D. R. McKelvey, J. Chem. Educ. 1983, 60, 111. b) K. S. Pitzer, Acc. Chem. Res. 1979, 12, 271–276. 

c) P. Pyykko, J. P. Desclaux, Acc. Chem. Res. 1979, 12, 276–281.  

9 F. Scherbaum, A. Grohmann, B. Huber, C. Krüger, H. Schmidbaur, Angew. Chem Int. Ed. 1988, 27, 

1544–1546. 
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electronic and the steric of the assisting ligand.10 As a general trend, the use of phosphite ligands 

generates highly electrophilic complexes that usually display high reactivity. On the other side, 

the use of highly -donating NHC ligands lowers the electrophilicity of the gold complexes and 

a general lower reactivity but higher selectivity is observed. Phosphine ligands, instead, present 

an intermediate behavior between these two extremes, and bulky dialkyl biarylphosphine 

ligands, initially introduced in the context of Pd-catalyzed reactions, are privileged scaffolds for 

highly versatile and efficient catalysts.11 

 

Figure 1. Ligand effect on the electrophilicity and reactivity of gold(I) complexes. 

The tendency of gold(I) to form di-coordinated linear complexes can be explained by an 

efficient s/p and s/d orbital hybridization due to a reduced energy gap between atomic orbitals 

resulting from relativistic effects. This fact, together with a general lower nucleophilicity 

compared to other coinage metals, justifies the reluctance of gold(I) complexes towards 

oxidative addition, a fundamental step in redox catalytic cycles common for other late transition 

metals.12 Besides practical aspects, like the possibility to run gold(I) catalyzed reaction without 

exclusion of air and a general functional group tolerance, the redox stability of gold(I) 

complexes allows accessing activation modes usually precluded to other transition metals. 

Nevertheless, in recent years, it has been demonstrated that by careful ligand design, gold(I) can 

also undergo oxidative addition with activated substrates bringing the reactivity of gold beyond 

the -activation.13 

Due to the difficulty in increasing the coordination number, to activate the substrate it is 

necessary to generate a formal vacancy by ligand abstraction. A first approach to generate 

catalytic active species is to activate in situ neutral gold(I)-chloride complexes upon chloride 

abstraction, which is usually done with a silver salt. However, these commonly used chloride 

scavengers can lead to the formation of less reactive chloride-bridged dinuclear gold(I) 

complexes or other side-species, a type of phenomena that has been named as “the silver 

 
10 D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351–3378. 
11 G. Zuccarello, M. Zanini, A. M. Echavarren, Isr. J. Chem. 2020, 60, 360–372. 

12 M. Livendahl, C. Goehry, F. Maseras, A. M. Echavarren, Chem. Commun. 2014, 50, 1533–1536. 

13 For a review: M. Joost, A. Amgoune, D. Bourissou, Angew. Chem. Int. Ed. 2015, 54, 15022–15045. 
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effect”.14 Another approach is to use neutral complexes [LAuX] where X is a weakly 

coordinating anionic ligand (like TfO- or Tf2N-) or cationic complexes with general structure 

[LAuL’]X, where L’ is a neutral labile ligand and X a weakly coordinating anion (like SbF6
-, 

PF6
-, BF4

-, etc.).15 In most of the cases such species are bench stable solids that can be stored 

under ambient conditions and can be engaged directly in the catalytic cycle via associative 

ligand exchange with the substrate. 

Gold(I)-Catalyzed Reaction of Alkynes 

Since the beginning of the investigation on gold(I) catalysis it was observed that gold(I) 

complexes have an “alkynophilic” character, meaning that gold(I) complexes are able to activate 

selectively alkynes in complex molecular settings. The binding mode of gold(I) with unsaturated 

bonds is usually described with the Dewar-Chatt-Duncanson model for donor-acceptor 

complexes, characterized by a substrate-to-metal -donation into an empty d-orbital of the metal 

and a metal-to-substrate -backdonation into an antibonding orbital of the unsaturated ligand.16 

However, the full 5d orbitals of gold are too low in energy to provide a meaningful overlap with 

the * of the substrate and the contribution of the -backdonation to the metal-substrate bond is 

minimal, leading to an electron-deficiency on the substrate that can then easily attacked by a 

nucleophile. 

Studies on the coordination of gold(I) with different C-C -bonds revealed that in many cases 

gold(I) prefers to coordinate alkenes over alkynes.17 However, gold(I) complexes with alkynes 

have lower LUMOs compared to the corresponding gold(I)-alkene complex and the former are 

therefore activated preferentially towards nucleophilic attack.18 This nucleophilic attack usually 

occurs in an anti-fashion and via an outer-sphere mechanism leading to the formation of the 

trans-alkenyl species I with a Markovnikov selectivity (Scheme 2).19 A wide range of carbon 

and heteronucleophiles can be involved in this process, such arene, heteroarenes, alcohols, 

 
14 a) A. Homs, I. Escofet, A. M. Echavarren, Org. Lett. 2013, 15, 5782–5785. b) A. Zhdanko, M. E. Maier, 

ACS Catal. 2015, 5, 5994–6004.c) Z. Lu, J. Han, G. B. Hammond, B. Xu, Org. Lett. 2015, 17, 4534–

4537. 

15 B. Ranieri, I. Escofet, A. M. Echavarren, Org. Biomol. Chem. 2015, 13, 7103–7118. 

16 The description of this model is reported in M.J.S. Dewar, Bull. Soc. Chim. Fr. 1951, 18 ,C71-C79, 

however the publication cannot be found online. Good description of the model can be found anyway 

online 

17 R. E. M. Brooner, R. A. Widenhoefer, Angew. Chem. Int. Ed. 2013, 52, 11714–11724. 

18 M. García-Mota, N. Cabello, F. Maseras, A. M. Echavarren, J. Pérez-Ramírez, N. Lopez, 

ChemPhysChem 2008, 9, 1624–1629. 

19 a) A. S. K. Hashmi, J. P. Weyrauch, W. Frey, J. W. Bats, Org. Lett. 2004, 6, 4391–4394. b) J. J. 

Kennedy-Smith, S. T. Staben, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 4526–4527. c) A. Fürstner, 

Chem. Soc. Rev. 2009, 38, 3208–3221 
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thiols, amines, imines, sulfoxides and N-oxides. The resulting trans-alkenyl gold species I can 

be involved in further transformations to generate the corresponding products.20  

 

Scheme 2. Nucleophilic attack to (2-alkynes)-gold(I) complexes and subsequent trapping with an 

electrophile 

Often, the alkenyl-gold intermediate can react with an electrophile generating carbocationic 

intermediate II partially stabilized by backdonation from the expanded 5d orbital of gold. 

Whether these intermediates should be defined as gold(I) stabilized carbocation (II) or gold(I)-

Fischer-type carbene (III) has been a matter of certain debate.21 

To describe the bonding situation for gold(I) carbene, Goddard and Toste proposed a three-

center four-electron -hyper bond, where both the ancillary ligand and the carbene are donating 

electrons to gold.22 At the same time, gold(I) can backdonate electrons to both the ligand and 

the carbene fragment that compete for the electron density of the metal (Figure 2, top). 

 

Figure 2. Nature of the gold(I) carbene/gold(I) carbocation intermediate and influence of the ancillary 

ligand. 

Under these premises, is it clear that both the carbocationic and the carbenic description of this 

intermediate represent extreme resonance forms of the same species displaying intermediate 

properties and it is possible to generate species displaying either enhanced carbenic or 

carbocationic reactivity modulating the substituent R or the ancillary ligand L. In this context, 

 
20 a) W. Debrouwer, T. S. A. Heugebaert, B. I. Roman, C. V. Stevens, Adv. Synth. Catal. 2015, 357, 2975–

3006. b) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028–9072. c) A. M. Echavarren, M. E. 

Muratore, V. López-Carrillo, A. Escribano-Cuesta, N. Huguet, C. Obradors, Org. React. 2017, 92, 1–

411. 

21 Reviews on the topic: a) Y. Wang, M. E. Muratore, A. M. Echavarren, Chem. Eur. J. 2015, 21, 7332–

7339. B) R. J. Harris, R. A. Widenhoefer, Chem. Soc. Rev. 2016, 45, 4533–4551. 

22 D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Goddard, F. D. Toste, Nat. Chem. 2009, 1, 

482–486. 
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the use of -donating and poor -acceptor NHC ligands favors the -backdonation on the carbon 

fragment, leading to more carbene-like intermediates, whereas phosphorous-based ligands favor 

more carbocation-like species (Figure 2, bottom). 

Gold(I)-Catalyzed Cycloisomerization of 1,n-Enynes 

Homogeneous gold(I) catalysis is associated with the cycloisomerization of 1,n-enynes and 

related substrates. This reaction allows the assembly of complex molecular framework starting 

from relatively simple substrates in a single step and it is usually catalyzed by electrophilic 

metal complexes, among which gold(I) outstands for its higher reactivity and selectivity, as well 

as for the variety of transformations that can induce.  

In this context, the most studied reaction is the cycloisomerization of 1,6-enynes.23 This reaction 

starts by activation of the alkyne of the enyne by gold(I) in intermediate IV via 2-coordination, 

which allows the nucleophilic attack of the alkene to form intermediates V or VI by 5-exo-dig 

and 6-endo-dig cyclization, respectively (Scheme 3). Intermediates of type V and VI are usually 

drawn as a cyclopropyl gold(I) carbene, although, as discussed in the previous section, these 

species have a significant carbocationic character.24 According to computational studies, 

cyclopropyl gold(I) carbenes V are in most cases highly distorted with a relatively long C2-C4 

bond and are in equilibrium with the corresponding homoallylic gold(I) stabilized carbocation 

(Scheme 3, V and V’).24c In this manuscript the intermediates like V and VI will be presented, 

for conciseness, as the carbene form. 

In absence of an external nucleophile, V and VI can undergo several skeletal rearrangements 

depending on the ligand and the substituents on the enyne.25 Intermediate V can open to form 

carbene VII in a process known as “double cleavage rearrangement”, in which the external 

carbon of the alkene is formally inserted in between the two carbons of the alkyne. Upon 1,2-

H-shift and protodeuration, 1,3-diene 1 is formed, usually favoring the formation of the Z 

isomer. Alternatively, intermediate VIII is formed from V upon “single cleavage 

rearrangement”. This process corresponds to a migration of the terminal carbon of the alkene 

on the terminal carbon of the alkyne, in a formal cleavage of the alkene. Homoallyl-carbocation 

VIII then evolves into compounds 2 in a stereospecific manner in which the configuration of 

 
23 a) C. Obradors, A. M. Echavarren, Acc. Chem. Res. 2014, 47, 902–912. b) Y. C. Lee, K. Kumar, Isr. J. 

Chem. 2018, 58, 531–556. c) E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326–

3350. 

24 a) C. Nieto-Oberhuber, S. López, M. P. Muñoz, D. J. Cárdenas, E. Buñuel, C. Nevado, A. M. 

Echavarren, Angew. Chem. Int. Ed. 2005, 44, 6146–6148. b) A. Fürstner, P. W. Davies, Angew. Chem. 

Int. Ed. 2007, 41, 3410-3449. c) I. Escofet H. Armengol-Relats, H. Bruss M. Besora, A. M. Echavarren, 

Chem. Eur. J. (chem.202004237, under revision) 

25 J. M. Mattalia, P. Nava, J. Organomet. Chem. 2014, 749, 335–342. 
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the alkene is maintained in the exo-double bond of the product. Weather intermediate V 

undergoes single or double cleavage depends on the substituents on the alkyne. Thus, electron-

withdrawing substituents favors the double cleavage rearrangement, while electron-donating 

ones lead preferentially to the single cleavage diene. 1,3-Dienes 2 can be also formed from the 

six-membered cyclopropyl gold(I) carbene VI upon ring expansion of the cyclopropane into the 

cyclobutene IX and subsequent ring opening.26 Cyclopropyl gold(I) carbene VI can form 

bicyclo[4.1.0]hept-2-ene derivatives 3 via 1,2-H shift and protodeauration. 

 

Scheme 3. Gold(I)-catalyzed cycloisomerization of 1,6-enynes  

Compounds of general structure 6 are also formed from the same intermediate IX in an endo-

type single cleavage rearrangement, where the internal carbon of the alkene migrates to the 

external carbon of the alkyne.27 

 
26 A. Escribano-Cuesta, P. Pérez-Galán, E. Herrero-Gómez, M. Sekine, A. A. C. Braga, F. Maseras, A. 

M. Echavarren, Org. Biomol. Chem. 2012, 10, 6105–6111. 

27 N. Cabello, E. Jiménez-Núñez, E. Buñuel, D. J. Cárdenas, A. M. Echavarren, Eur. J. Org. Chem. 2007, 

8, 4217–4223. 
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Interestingly, cyclobutenes 4, the product of direct intramolecular [2+2] cycloaddition, are 

formed in just few cases, while their isomers 5 are formed more often by acid catalyzed 

migration of the double bond driven by a less constrain on the ring fusion.28 In contrast, the 

double bond remains located at the ring fusion in the reaction of longer 1,n-enynes (n = 10-16), 

providing macrocycles of up to 15 carbons that incorporate a cyclobutene (Scheme 4). 29 

 

Scheme 4. Gold(I)-catalyzed intermolecular [2+2] cycloaddition of 1,6-enyne to form a 15-membered 

macrocycle  

The reactions of 1,5- and 1,7-enynes follow analogous pathways. In the case of 1,5-enynes the 

endo-pathway in the formation of the cyclopropyl gold(I) carbene is generally favored due to 

the formation of a bicyclo[3.1.0]hexane system less strained compared to the 

bicyclo[2.8.0]pentane system formed in the 4-exo-cyclization. Less studied 1,7-enynes usually 

undergo single cleavage rearrangement through both endo- and exo-cyclopropyl gold(I) 

carbenes.30 

Cycloisomerization of Enynes in Presence of a Nucleophile 

The cyclopropyl gold(I) carbene formed in the first step of the cycloisomerization of a 1,n-enyne 

can be also trapped by a nucleophile. These reactions occur regioselectively and 

stereospecifically and the overall process can be considered as an anti-addition of the 

nucleophile and the electrophilic alkyne to the alkene with Markovnikov selectivity (Scheme 

5).  

 
28 N. Kim, R. E. M. Brooner, R. A. Widenhoefer, Organometallics 2017, 36, 673–678. 
29 C. Obradors, D. Leboeuf, J. Aydin, A. M. Echavarren, Org. Lett. 2013, 15, 1576–1579. 

30 a) N. Cabello, C. Rodríguez, A. M. Echavarren, Synlett 2007, 1753–1758. b) C. Huang, P. 

Kothandaraman, B. Q. Koh, P. W. H. Chan, Org. Biomol. Chem. 2012, 10, 9067–9078. 
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Scheme 5. Markovnikov alkoxycyclization of 1,6-enynes 9 and 11.  

In this context, nitrogen- and oxygen-containing nucleophiles have been widely used in 

intermolecular and intramolecular processes.20b In the same way, 1,3-dicarbonyl compounds 

and electron-rich aromatics can react with cyclopropyl gold(I) carbenes as carbon 

nucleophiles.31 In the case of carbon nucleophiles, whether the attack will occur on the 

cyclopropyl ring or on the carbenic carbon is dependent on the assisting ligand. Thus, for 

example, in the reaction of nitrogen-tethered 1,6-enyne 13 with indole, the cyclopropyl gold(I) 

carbene X is attacked preferentially on carbon 1 when IMesAuCl activated with AgSbF6 is used, 

delivering a 4:1 mixture of products 14 and 15. On the other hand, using a phosphine-based 

ligand, slightly favors the attack on carbon 2 (14/15 = 1:1.3) (Scheme 6). 

 

Scheme 6. Catalyst-dependent chemoselectivity in the reaction of 1,6-enyne 13 with indole.  

Aryl rings can be used also as internal nucleophiles as shown in the reaction of 1,6-enynes 16 

with an aryl-substituted alkyne that undergo formal [4+2] cycloaddition in presence of gold(I) 

 
31 C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C. Ferrer, A. M. Echavarren, J. Org. 

Chem. 2008, 73, 7721–7730. 
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to form the tricyclic products 17 (Scheme 7).32 The reaction is initiated with 5-exo-dig 

cyclization of the enyne to form XI, which undergo opening of the cyclopropyl ring via Friedel-

Crafts-type reaction to form XII, followed by re-aromatization and protodeauration leading to 

the desired product. 

 

Scheme 7. Gold(I) catalyzed formal [4+2] cycloaddition of 1-aryl-1,6-enynes 

Intermolecular Reaction of Alkynes with Alkenes 

Compared to the many transformations developed intramolecularly, the number of 

intermolecular reactions involving alkynes and alkenes to form new C-C bonds is more 

limited.33 In the intermolecular setting in fact, two separate and independent unsaturations with 

analogous affinities for coordination are competing for the binding site of the metal, which 

would slow down the reaction or even suppress the reactivity. In addition, the intrinsic acidity 

of the gold(I)-catalyzed reactions can lead to undesired Brønsted acid-catalyzed dimerizations 

or oligomerizations of electron-rich alkenes34 or other side reactions, which are minimized in 

intramolecular transformations. On top of this, the products of intermolecular reactions of 

alkynes and alkenes usually contain double bonds that can compete with the substrates for the 

coordination with the catalyst and with the starting alkene for the reaction with the alkyne, 

giving rise to the formation of byproducts.  

 
32 a) C. Nieto-Oberhuber, S. López, A. M. Echavarren, J. Am. Chem. Soc. 2005, 127, 6178–6179.b) C. 

Nieto-Oberhuber, P. Pérez-Galán, E. Herrero-Gómez, T. Lauterbach, C. Rodríguez, S. López, C. Bour, 

A. Rosellón, D. J. Cárdenas, A. M. Echavarren, J. Am. Chem. Soc. 2008, 130, 269–279. c) M. C. P. 

Yeh, W. C. Tsao, B. J. Lee, T. G. Lin, Organometallics 2008, 27, 5326–5332. d) C. M. Chao, M. R. 

Vitale, P. Y. Toullec, J. P. Genêt, V. Michelet, Chem. Eur. J. 2009, 15, 1319–1323. 
33 For a review see: a) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem.: Asian J. 2014, 

9, 3066–3082. b) C. Garciá-Morales, A. M. Echavarren, Synlett 2018, 29, 2225–2237. 

34 J. Urbano, A. J. Hormigo, P. De Frémont, S. P. Nolan, M. M. Díaz-Requejo, P. J. Pérez, Chem. 

Commun. 2008, 4, 759–761. 
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As introduced at the beginning of this manuscript, one of the first developed reaction in the field 

of homogeneous gold catalysis has been the synthesis of substituted phenols starting from 

furans.5 Despite the many reported variations of this reaction, its intermolecular version 

remained limited to one single example with low yields for almost a decade35 until our group 

reported that the use of an IPr-based complex allowed to obtain substituted phenols from furans 

such as 18 and phenyl acetylene 19 or other aryl acetylenes (Scheme 8). 36 The reaction starts 

with the formation of the cyclopropyl gold(I) carbene XIV, which rearranges to form gold(I) 

carbene XV. This carbene then undergoes cyclization to form XVI, which leads to oxepine 

XVII. Oxepine XVII is in equilibrium with the arene-oxide tautomer XVIII, whose opening 

leads to the formation of the final phenol 20. 

 

Scheme 8. Mechanism of the gold(I) catalyzed synthesis of phenols starting from furan and alkynes. 

Our group reported in 2010 the first intermolecular cycloaddition of terminal alkynes with 

alkenes to form cyclobutenes in a regioselective fashion (Scheme 9).37 The reaction was initially 

reported for aryl and cyclopropyl-alkynes and was later extended to 1,3-dienes38 and 1,3-

diynes.39 In a following study by our group, it was found that the nature of the counterion of the 

cationic catalyst was crucial in many cases to afford better yields.40 Specifically, switching from 

SbF6
- to the less coordinating and less basic BAr4

F- was the best choice in most of the cases.  

 
35 A. S. K. Hashmi, M. C. Blanco, E. Kurpejović, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 709–

713. 

36 N. Huguet, D. Lebœuf, A. M. Echavarren, Chem. Eur. J. 2013, 19, 6581–6585. 
37 V. López-Carrillo, A. M. Echavarren, J. Am. Chem. Soc. 2010, 132, 9292–9294. 

38 M. Elena de Orbe, A. M. Echavarren, Eur. J. Org. Chem. 2018, 2018, 2740–2752. 

39 M. E. De Orbe, L. Amenós, M. S. Kirillova, Y. Wang, V. López-Carrillo, F. Maseras, A. M. Echavarren, 

J. Am. Chem. Soc. 2017, 139, 10302–10311. 
40 A. Homs, C. Obradors, D. Leboeuf, A. M. Echavarren, Adv. Synth. Catal. 2014, 356, 221–228. 
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Scheme 9. Gold(I) catalyzed [2+2] cycloaddition of alkynes with alkenes and selected examples of the 

product obtained with this methodology. a [IPrAuNCMe]BAr4
F was used as catalyst. 

The reaction starts with the formation of (2-alkene) gold(I) complex XIX, the productive (2-

alkyne) gold(I) complex XX is then formed by an associative ligand exchange that is in many 

cases the rate-determining-step of the reaction. Complex XX reacts with the alkene to form 

cycloproyl gold(I) carbene XXI, analogous to the one formed in the cycloisomerization of the 

enynes (Scheme 10). Complex XXII is formed then via ring expansion and the final product is 

then released though an associative ligand exchange with another molecule of alkene. 

Additionally, XX can evolve into the -complex XXIII and then react with another molecule 

of the catalyst to form the −-digold(I) complex XXIV. 

 

Scheme 10. Mechanism of the gold(I)-catalyzed [2+2] cycloaddition of alkynes with alkenes. 
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−-Digold complexes can be catalysts for a series of transformations with diyenes,41 but they 

are poor catalysts for enyne cycloisomerizations,42 and unproductive for the intermolecular 

[2+2] cycloaddition and other intermolecular reactions.40,43 31P-NMR studies on the gold(I)-

catalyzed intermolecular [2+2] cycloaddition showed that −-digold complex XXIII is, 

together with XIX, the only long-living species formed during the reaction, and its formation 

causes a decrease in the amount of catalytically active gold species. Among the counterions 

tested, BAr4
F- was the one that led to the lowest amount of XXIII, probably because of its lower 

basicity, resulting in an improvement of the efficiency of the reaction. 

Interestingly, under the same conditions a mixture of 1,3-diene 25 and cyclobutene was obtained 

starting from ortho-substituted aryl alkynes (Scheme 11).39 Detailed mechanistic studies mainly 

based on DFT calculations showed that the diene is formed from the same cyclopropyl gold(I) 

carbene XXV that would generate the cyclobutene, but in the case ortho-substituted arylalkynes, 

XXV is also in equilibrium with cyclopropyl cation XXVI generated via C2-migration. Upon 

ring opening, the corresponding 1,3-diene-gold(I) complex XXVII is formed that upon ligand 

exchange forms product 25.  

 

Scheme 11. Gold(I)-catalyzed formation of dienes 25.  

Replacing the aryl ring on the alkyne for a more electron-withdrawing group changes the 

outcome of the reaction. For example, the gold(I)-catalyzed reaction of propiolic acids or esters 

(26 in Scheme 12) with 1,1-di- or trisubstituted alkenes leads selectively to -unsaturated -

lactones by a formal [4+2] cycloaddition (Scheme 12, blue path).44 On the other hand, reaction 

of propiolic derivatives with 1,2-disubstituted alkenes leads to the stereospecific synthesis of 

 
41 These transformations are usually defined as “dual gold catalysis” and will be discussed in more detail 

in the introduction of Chapter 1. 

42 S. Ferrer, A. M. Echavarren, Organometallics 2018, 37, 781–786. 

43 C. Obradors, A. M. Echavarren, Chem. Eur. J. 2013, 19, 3547–3551. 

44 H. S. Yeom, J. Koo, H. S. Park, Y. Wang, Y. Liang, Z. X. Yu, S. Shin, J. Am. Chem. Soc. 2012, 134, 

208–211. 
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1,3-dienes (27, Scheme 12, red path) as observed in the reaction of ortho-substituted 

arylalkynes. Mechanistically, the two products are branching from the same cyclopropyl gold(I) 

carbene intermediate XXIX. 

 

Scheme 12. Gold(I) catalyzed reaction of propiolic acids and esters with alkenes. 

It is important to note that, differently from the cases mentioned above, in this reaction the 

gold(I) carbene is located on the more substituted carbon, highlighting a general trend in the 

selectivity of the formation of cyclopropyl gold(I) carbenes: in the intermolecular formation of 

cyclopropyl gold(I) carbenes the gold(I) carbene is usually located on the carbon bearing the 

most electron-withdrawing substituent. 

In the case of highly substituted alkenes, the partial positive charge on C1 in XXIX is more 

stabilized allowing the attack of the carboxylic moiety leading to the lactone. According to DFT 

calculations, instead, when a 1,2-disubstituted alkene is used, the most accessible transition state 

is the one leading to product 27 through a carbocation intermediate analogous of XXI in Scheme 

11. 

Increasing the complexity of the alkenes partner it is possible to reach high molecular 

complexity in one step. Our group discovered that in presence of a cationic gold(I) complex, 

aryl akynes react with ketoalkenes in a formal [2+2+2] cycloaddition in which two C-C bonds 

and one C-O bond are formed to finally deliver oxabicyclo[3.2.8]oct-3-enes 31 (Scheme 13a).43 

The reaction occurs stepwise starting as usual with the formation of XXX, followed by the attack 

of the carbonyl to the most substituted carbon of the cyclopropyl ring forming oxonium cation 

XXXI. Finally, the seven membered ring is formed by a Prins-type reaction leading to XXXII 

and then to 31 upon metal elimination and ligand exchange. 
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Scheme 13. A) Gold(I) catalyzed [2+2+2] cycloaddition of arylalkynes with ketoalkenes. B) Gold(I)-

catalyzed double cyclopropanation of dienes. 

In contrast, cyclopropyl gold(I) carbene XXXIII formed in the reaction of aryl alkynes with 

1,5-dienes reacts at the carbene by cyclopropanation with the pendant double bond forming the 

tricyclic product 33 (Scheme 13b).37 In this transformation, the (2-alkyne) gold(I) complex of 

phenylacetylene behaves as an equivalent of a 1,2-dicarbene that undergoes double 

cyclopropanation. 

Recently, our group developed a catalytic system that engages acetylene gas in a gold(I)-

catalyzed reaction that leads to the cyclopropanation of alkenes or to the formation of 1,3-dienes 

(Scheme 14).45 Depending on the catalyst used, trans-stilbenes react with acetylene gas, 

generated in situ from CaC2 and H2O, to form stereoselectively ZZ-36 or the bis-cyclopropane 

37 (Scheme 14, top). Moreover, in presence of 1,5-dienes, acetylene 35 undergoes bis-

cyclopropanation to form tricyclic derivatives 39 as single diastereoisomer in analogy with what 

already observed in the case of phenylacetylene. 

 
45 D. Scharnagel, I. Escofet, H. Armengol-Relats, M. E. de Orbe, J. N. Korber, A. M. Echavarren, Angew. 

Chem. Int. Ed. 2020, 59, 4888–4891. 
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Scheme 14. Gold(I)-catalyzed intermolecular reaction of acetylene gas with alkenes. 

Ynamides can also be involved in intermolecular reactions with alkenes (Scheme 15).46 Aryl-

substituted ynamides react in presence a NHC-based gold(I) complex via formal [4+2] 

cycloaddition to form products 42. In this case, the cyclopropyl gold(I) carbene XXXIV 

undergoes Friedel-Crafts-type reaction to furnish the bicyclic product. The cyclopropyl gold(I) 

carbene formed in the reaction of a terminal ynamide with an enol ether reacts with another 

molecule of the alkene, then cation XXXVI undergoes a cyclization forming stereoselectively 

1,3,5-substituted cyclohexenes 43.47 

 

Scheme 15. Gold(I)-catalyzed intermolecular [4+2] and [2+2+2] cycloaddition of ynamides and alkenes. 

 

 
46 R. B. Dateer, B. S. Shaibu, R. S. Liu, Angew. Chem. Int. Ed. 2012, 51, 113–117. 

47 The gold(I)-catalyzed reactions of alkynes substituted with other heteroatoms will be discussed in the 

introduction of Chapter 1 and Chapter 2. 
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Chapter 1 

Gold (I) and Indium(III)-Catalyzed Reactions on Bromo-Alkynes 
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Introduction 

Formation and Reactivity of Gold(I) Vinylidenes 

Transition metal vinylidenes are highly versatile species involved as intermediates in the 

catalytic formation of C-C and C-heteroatom bonds.48 Despite the proposal for the involvement 

of gold(I) vinylidenes as reactive intermediate in certain transformations back in 2004,49 the 

systematic investigation on their generation and reactivity has only been carried out in the last 

10 years. 50  

Structurally related to gold(I) carbenes, gold(I) vinylidenes present an additional unsaturation 

on the carbene causing an intrinsic destabilization due to the inhibition of the -donation from 

the substituents that usually stabilizes gold(I) carbenes (Figure 1.1).51 Intrinsic bond orbital 

(IBO) analysis of different gold(I) vinyldenes and the comparison with the analogous gold(I) 

carbenes showed that for gold(I) vinylidenes the metal participates with a higher -backdonation 

on the carbene from one of the d-occupied orbitals to compensate the absence of stabilizing 

substituents, which results in a higher reactivity of these elusive species. In fact, only in one 

case it has been possible to characterize in solution a gold(I)-vinylidene stabilized by -silyl 

groups.52 

 

Figure 1.1. Structure and resonance forms of gold (I)-vinylidenes. 

 
48 (a) B. M. Trost, A. McClory, Chem.: Asian J. 2008, 3, 164–194. (b) S. W. Roh, K. Choi, C. Lee, Chem. 

Rev. 2019, 119, 4293–4356. (c) Metal Vinylidenes and Allenylidenes in Catalysis: From Reactivity to 

Applications in Synthesis; Bruneau, C., Dixneuf, P. H., Eds.; WILEY-VCH: Weinheim, Germany, 

2008 

49 V. Mamane, P. Hannen, A. Fürstner, Chem. Eur. J. 2004, 10, 4556–4575. 

50 For a review on generation and reactivty of gold(I) vinylidenes: F. Gagosz, Synth. 2019, 51, 1087–

1099. 

51 L. Nunes Dos Santos Comprido, J. E. M. N. Klein, G. Knizia, J. Kästner, A. S. K. Hashmi, Chem. Eur. 

J. 2016, 22, 2892–2895. 

52 R. J. Harris, R. A. Widenhoefer, Angew. Chem. Int. Ed. 2015, 54, 6867–6869. 
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The most common way of access to gold(I) vinylidenes is via the so called “dual gold catalysis” 

on a diyene,53 a transformation discovered separately by Zang54 and Hashmi55 in 2012 (Scheme 

1.1). In these reactions, both triple bonds in 1.1 are activated by the gold(I) catalyst, but in two 

different and complementary ways: in I the terminal alkyne forms a nucleophilic -gold 

acetylide complex that attacks the other triple bond activated by -coordination of another 

cationic gold complex forming the digold species II bearing a gold(I) vinylidene and a -vinyl 

gold(I) moiety. Vinylidenes generated in this way can then undergo hydroarylation, insertion in 

C-H, N-H or O-H bonds, cyclopropanation or nucleophilic attack of oxygen nucleophile.  

 

Scheme 1.1. Generation of gold(I) vinylidenes via dual gold activation and subsequent reactions. 

This mode of activation has been also extended by Hyland and Pyne to enediyenes (Scheme 

1.2).56 In this case, the gold acetylide in III attacks the gold(I)-activated conjugated enyne on 

the double bond forming intermediate IV, having at the same time the vinylidene and an allenyl-

gold moiety, that finally undergoes a cyclization to form isoindolinones 1.3. 

 
53 (a) A. S. K. Hashmi, Acc. Chem. Res. 2014, 47, 864–876. (b) X. Zhao, M. Rudolph, A. S. K. Hashmi, 

Chem. Commun. 2019, 55, 12127–12135. 

54 L. Ye, Y. Wang, D. H. Aue, L. Zhang, J. Am. Chem. Soc. 2012, 134, 31–34. 

55 A. S. K. Hashmi, I. Braun, P. Nösel, J. Schädlich, M. Wieteck, M. Rudolph, F. Rominger, Angew. 

Chem. Int. Ed. 2012, 51, 4456–4460. 

56 F. Zamani, R. Babaahmadi, B. F. Yates, M. G. Gardiner, A. Ariafard, S. G. Pyne, C. J. T. Hyland, 

Angew. Chem. Int. Ed. 2019, 58, 2114–2119. 
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Scheme 1.2. Dual gold catalysis on enediynes 

In an extension of the “dual gold catalysis” approach, the electrophilic alkyne can be replaced 

by other electrophilic moieties like a Lewis acid-activated aldehyde (Scheme 1.3a)57 or a carbon 

bearing an aryl sulfonate leaving group (Scheme 1.3b).58 In the first case, vinylidene VI 

rearranges immediately into the stable gold(I) carbene 1.5 via a four-membered oxonium cation 

VII. In the second one, the vinylidene generated from VIII forms a tight ion pair with the 

tosylate, which then attacks the vinylidene to form the tosyl enol ether 1.7. 

Finally, the group of Zhang reported the synthesis of 2-bromocyclopentenones 1.9 passing 

through a gold(I)-bromo vinylidene intermediate (Scheme 1.4).59 The proposed mechanism 

starts with the formation of the gold acetylide species XI from TMS-protected ynone 1.8, that 

can also be viewed as gold(I)-allenylidene XI’. This intermediate reacts with NBS to form 

vinylidene XII, which leads to the final product via C-H insertion. Overall, the formation of the 

gold(I) vinylidene can be seen as the formal nucleophilic attack of the -gold acetylide complex 

in XI on the electrophilic bromine source.  

 
57 W. Debrouwer, A. Fürstner, Chem. Eur. J. 2017, 23, 4271–4275. 

58 J. Bucher, T. Wurm, K. S. Nalivela, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. 

Ed. 2014, 53, 3854– 3858. 

59 Y. Wang, M. Zarca, L. Z. Gong, L. Zhang, J. Am. Chem. Soc. 2016, 138, 7516–7519. 
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Scheme 1.3. A) Synthesis of gold(I) vinylidenes via nucleophilic attack of a gold acetylide on an aldehyde. 

B) Synthesis of gold (I) vinylidenes via nucleophilic substitution. 

 

Scheme 1.4. Generation of gold(I) vinylidenes in presence of an electrophilic bromide. 
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In addition, gold(I) vinylidenes can be generated via 1,2 migration of a halogen or a silyl-, 

stannyl-, or germanyl group attached to an alkyne activated by -coordination of gold. The 

gold(I)-catalyzed alkyne-vinylidene isomerization was initially proposed in the context of 

hydroarylation of ortho-alkynylbiaryls by the group of Furstner (Scheme 1.5).49 In that work, 

this group observed that for bromoalkyne 1.10b and iodoalkyne 1.10c phenanthrenes 1.11b and 

1.11c were formed selectively instead of the regioisomer formed by direct hydroarylation of the 

triple bond (1.12b,c). Instead, chloroalkyne 1.10a does not undergo cyclization in presence of 

AuCl, but it reacts with InCl3 to form selectively 1.12a via direct hydroarylation. Both 

phenanthrenyl selenides 1.11d and 1.12d can be formed starting from 1.10d using AuCl or InCl3 

respectively.60  

 

Scheme 1.5. Gold(I)- or indium(III)-catalyzed synthesis of phenanthrenes. 

The first mechanistic proposal for the formation of 1.11b hypothesized an initial 1,2-halogen 

migration to form gold(I) vinylidene XIV, followed by a hydroarylation to give 1.23b (Scheme 

1.6, red path). An initial DFT study on the reaction using B3LYP as functional confirmed the 

hypothesis,61 however according to calculations performed with the M06 functional, another 

pathway is favored in which the hydroarylation occurs first forming XVI, followed by 1,2-H 

shift leading to carbene XVIII and a 1,2-Br shift to form the observed product (Scheme 1.6, 

blue path).62 

 
60 W. Lim, Y. H. Rhee, Eur. J. Org. Chem. 2013, 460–464. 

61 E. Soriano, J. Marco-Contelles, Organometallics 2006, 25, 4542–4553. 

62 G. Huang, B. Cheng, L. Xu, Y. Li, Y. Xia, Chem. Eur. J. 2012, 18, 5401–5415. 
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Scheme 1.6. Proposed mechanisms for the gold-catalyzed synthesis of phenanthrene 1.11b. 

1,2-Halogen migration in iodoalkynes has also been found as the initial step for the synthesis of 

dehydro-iodoquinolines63 and 3-iodo-2H-chromenes64 1.15 via hydroarylation of the 

corresponding vinylidene XIX (Scheme 1.7a). In this case, there is a competition between the 

1,2-iodo migration and the direct hydroarylation of the alkyne and the outcome of the reaction 

can be modulated tuning the ligand: NHC ligands, that are known to stabilize gold(I) 

vinylidenes, deliver the product with the iodine in position 3 on the quinoline 1.15, while a 

phosphite-based ligand favors the direct hydroarylation of the iodoalkyne giving product 1.14. 

Gold(I)-iodo vinylidenes formed in this way can be also involved in C-H insertion reaction for 

the synthesis of indenes 1.17 (Scheme 1.7b).65 

 
63 P. Morán-Poladura, S. Suárez-Pantiga, M. Piedrafita, E. Rubio, J. M. González, J. Organomet. Chem. 

2011, 696, 12–15. 

64 P. Morán-Poladura, E. Rubio, J. M. González, Beilstein J. Org. Chem. 2013, 9, 2120–2128. 

65 P. Morán-Poladura, E. Rubio, J. M. González, Angew. Chem. Int. Ed. 2015, 54, 3052–3055. 
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Scheme 1.7. A) Gold(I)-catalyzed synthesis of dehydroiodoquinolines and 3-iodo-2H-chromoenes 1.15 

starting from iodoalkynes. B) Gold(I)-catalyzed synthesis of 2-iodoindene 1.17. 

A different way for the generation of gold(I) vinylidenes was proposed to occur by in the 

cycloisomerization of 1,6-allenynes 1.18 to form hydrindene 1.19.66 It was proposed that, after 

nucleophilic attack of the allene on the activate alkyne, an unusual 1,4-H shift in intermediate 

XXI provides vinylidene XXII, followed by C-H insertion to form the final product (Scheme 

1.8). 

 

Scheme 1.8. Generation of gold vinylidenes via 1,4-H shift. 

Use of Haloalkynes in Gold(I) Catalysis 

Apart from their use as vinylidene precursors presented in the previous section, the main use of 

haloalkynes in gold(I) catalysis is to generate highly functionalized alkenes by 

hydrofunctionalization (Scheme 1.9).67 

 
66 F. Jaroschik, A. Simonneau, G. Lemière, K. Cariou, N. Agenet, H. Amouri, C. Aubert, J. P. Goddard, 

D. Lesage, M. Malacria, Y. Gimbert, V. Gandon, L. Fensterbank, ACS Catal. 2016, 6, 5146–5160.  

67 For a review on metal-catalyzed hydrofunctionalization of haloalkynes with a focus on gold-catalyzed 

processes see: V. Cadierno, Eur. J. Inorg. Chem. 2020, 2020, 886–898. In this manuscript, only 

selected examples will be reported. 
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(Z)--Haloenamides 1.20 can be accessed by Ritter reaction of bromo-and chloro-alkynes with 

nitriles.68 Additionally, the Markovnikov addition of a diphenyl phosphate or a carboxylic acid 

delivers alkenyl-halophosphates 1.2169 and (Z)--iodoenol esters 1.22.70 The hydroarylation 

with aromatic and heteroaromatic compounds leading to products 1.23 has been achieved for 

chloroalkynes.71 The hydrohalogenation is also possible, for instance treatment of iodoalkynes 

with NHC-gold(I) bifluoride complexes in presence of NH4BF4 leads to the formal anti-addition 

of hydrogen fluoride to form 1.24.72 Finally, the addition of water to chloro- and bromo-alkynes 

leads to the formation -haloketones.73 

 

Scheme 1.9. Selected examples of hydrofunctionalization of haloalkynes  

In this context, an interesting example is the anti-thioallylation of haloalkynes for which a 

Au(I)/Au(III) catalytic cycle has been proposed, with the sulfonium cation acting as mild 

oxidant (Scheme 1. 10).74 

 
68 C. Liu, F. Yang, Eur. J. Org. Chem. 2019, 2019, 6867–6870. 

69 B. C. Chary, S. Kim, D. Shin, P. H. Lee, Chem. Commun. 2011, 47, 7851–7853. 

70 P. J. González-Liste, J. Francos, S. E. García-Garrido, V. Cadierno, J. Org. Chem. 2017, 82, 1507–

1516. 

71 C. Liu, Y. Xue, L. Ding, H. Zhang, F. Yang, Eur. J. Org. Chem. 2018, 2018, 6537–6540. 
72 A. Gómez-Herrera, F. Nahra, M. Brill, S. P. Nolan, C. S. J. Cazin, ChemCatChem 2016, 8, 3381–3388. 

73 L. Xie, Y. Wu, W. Yi, L. Zhu, J. Xiang, W. He, J. Org. Chem. 2013, 78, 9190–9195. 

74 J. Wang, S. Zhang, C. Xu, L. Wojtas, N. G. Akhmedov, H. Chen, X. Shi, Angew. Chem. Int. Ed. 2018, 

57, 6915–6920. 
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Scheme 1. 10. Proposed mechanism for the thioallylation of haloalkynes.  

In contrast, the use of haloalkynes in gold(I)-catalyzed reaction with unsaturated C-C bond is 

very limited. For the reaction with alkenes, only few examples of cycloisomerization of 1-

bromo-1,5-enynes are reported in the literature,75 while the intermolecular reaction of 

(chloroethynyl)arenes 1.29a and phenyl chloroethynyl sulfides 1.29b with alkenes has been 

reported to lead to the formation of differently substituted cyclobutenes 1.30 upon [2+2] 

cycloaddition (Scheme 1.11).76 

 

Scheme 1.11. Gold(I) catalyzed [2+2] cycloaddition of 1.29a or 1.29b with alkenes. 

When we started the PhD research project just few other examples involving another alkyne as 

reaction partner were reported. For instance, the head-to-tail dimerization of iodoalkynes 1.31 

under “dual gold catalysis” to give products 1.32 (Scheme 1.12).77 

 

Scheme 1.12. Head-to-tail dimerization of iodoalkynes 1.31. 

However, several relevant studies have been reported in the last two years on the investigation 

of the reactivity of haloalkynes under gold(I) catalysis. The first example was the head-to-head 

 
75 (a) K. Speck, K. Karaghiosoff, T. Magauer, Org. Lett. 2015, 17, 1982–1985. (b) Z. Rong, A. M. 

Echavarren, Org. Biomol. Chem. 2017, 15, 2163–2167. 

76 Y. Bin Bai, Z. Luo, Y. Wang, J. M. Gao, L. Zhang, J. Am. Chem. Soc. 2018, 140, 5860–5865. 
77 S. Mader, L. Molinari, M. Rudolph, F. Rominger, A. S. K. Hashmi, Chem. Eur. J. 2015, 21, 3910–

3913. 
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dimerization of chloroalkynes 1.33 (Scheme 1.13).78 The C-Cl bond is not labile enough to allow 

the formation of the -goldacetylide complex observed for the iodoalkynes, so the reaction starts 

with the direct attack of one of the chloroalkynes to another one activated by -coordination 

with gold(I). On the base of DFT calculations, the head-to-tail (Scheme 1.13, red path, 

intermediate XXV) and head-to-head (Scheme 1.13, blue path, intermediate XXVI) pathways 

are in competition, and the formation of XXV is energetically favored over XXVI. However, 

this first step is proposed to be reversible and the selectivity is determined then by the energy of 

the following steps. Considering this, it was proposed that an irreversible 1,3-chloride shift in 

vinyl cation XXVI to form XXVII shifts the equilibrium towards the formation of the observed 

product 1.34.  

 

Scheme 1.13. Gold(I)-catalyzed head-to-head dimerization of chloroalkynes. 

An analogous mechanism was also proposed later for the gold(I)-catalyzed 1,2-

chloroalkynylation of 1,1-disubstituted alkenes (Scheme 1.14).79 According to DFT 

calculations, the two possible products (1.35 and 1.36) arise from the evolution of two 

regioisomeric cyclopropyl gold(I) carbene intermediates, XXVII and XXIX, respectively. For 

1,2-disubstituted alkenes the formation of XXVIII and its ring expansion towards the 

cyclobutene is favored (Scheme 1.14, red path). In contrast, for 1,1-disubstituted alkenes, the 

irreversible 1,3-chloride shift (only possible from XXIX) is shifting the equilibrium towards the 

formation of cyclopropyl gold(I) carbene XXXIX and allows the formation of 1.36 over 1.35 

(Scheme 1.14, blue path). 

 
78 M. Kreuzahler, A. Daniels, C. Wölper, G. Haberhauer, J. Am. Chem. Soc. 2019, 141, 1337–1348. 

79 M. Kreuzahler, G. Haberhauer, J. Org. Chem. 2019, 84, 8210–8224. 
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Scheme 1.14. Proposed mechanism for the gold(I)-catalyzed 1,2-haloalkynylation of 1,1-disusbstituted 

alkenes. 

Very recently, the haloalkynylation of aryl alkynes to form 1.38 has been reported (Scheme 

1.15).80 Two possible mechanistic pathways have been suggested: 1) the product can be obtained 

from XXX via a 1,3-chloride shift as proposed before. 2) The product is obtained from XXXI 

via formation of chloronium cyclic intermediate XXXII, followed by 1,2-aryl shift. It has to be 

noted that the two enynes 1.38 and 1.38’ are identical apart from the inverted positions of the 

two carbons on the alkyne and can only be distinguished by isotope labelling. According to 

experimental results, the two mechanisms coexist, being the second one the most favored (blue 

path).  

 

Scheme 1.15. Proposed mechanism for the 1,2-chloroalkynylation of alkynes.  

 
80 M. Kreuzahler, G. Haberhauer, Angew. Chem Int. Ed. 2020, 59, 9433-9437. 
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The formation of analogous bromonium cyclic intermediate starting from bromoalkynes and 

alkenes and its evolution into a vinylidenephenonium-gold(I) cation is the main topic of this 

Chapter and it will be discussed in detail in the Results and Discussion section. 

Considering the experimental evidences in the context of the 1,2-chloroalkynylation of alkynes 

and the results presented in this PhD Thesis, it is reasonable to reconsider the mechanism of the 

head-to-head dimerization and the 1,2-chloroalkynylation of alkenes (Scheme 1.13 and Scheme 

1.14) under a unified scenario where the products are formed via the formation of a 5-membered 

halonium cyclic cation (intermediate XXXII and XXXIV) and subsequent rearrangement 

(Scheme 1.16).  

 

Scheme 1.16. A) alternative mechanism for the formation of 1.34. B) Alternative mechanism for the 

formation of 1.36. 

A thorough mechanistic study of these reactions published during the preparation of this 

manuscript confirmed this hypothesis, although depending on the catalyst and the substituents 

on the alkyne the reaction can follow both mechanisms. 81 As mention before, the product 

obtained from each mechanism differs from the other just by the relative position of the carbons 

of the alkyne, so practically there is no difference between them unless one of the alkyne carbons 

is isotopically labelled. 

 
81 M. Kreuzahler, G. Haberhauer, Angew. Chem Int. Ed. 2020, 59, 17739-17749. 
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Objectives 

Haloalkynes are versatile functionalities largely employed in transition metal catalysis. 

However, only few examples of their involvement in gold(I) catalyzed reaction with alkenes 

were reported in the literature, in contrast with the extensively studied reactions of terminal and 

other internal alkynes. Even more, little was known about the mechanisms taking place in their 

reactions. With this basis, we aimed first to explore the intra- and intermolecular reactivity of 

bromoalkynes with alkenes under gold(I) catalysis.  

In the second part of this Chapter, we focus on the elucidation of the reaction mechanism and 

on the determination of the nature of the intermediates involved with the aid of both 

experimental and computational studies.  
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Results and Discussion 

Cyclization of 1-Bromo-1,6-Enynes 

As already mentioned in the General Introduction, gold(I)-catalyzed cycloisomerizations of 1,6-

enynes are well established and widely studied processes. However, haloalkynes are scarcely 

involved in these reactions. So, we selected 1-bromo-1,6-enynes like 1.39 as first class of 

substrates to study. 

Table 1.1 Catalyst screening for the cyclization of 1-bromo-1,6-enyne 1.39. 

 

Entry Catalyst Cl-scavenger Conversion (%)a Yield (%)a 

1 1.A - 53 21 

2 1.B - 35 11 

3 1.C - 8 10 

4 1.D - 30 5 

5 1.E NaBAr4
F 100 19 

6 1.F AgNTf2 40 15 

7 1.G - 14 6 

8 1.H - 61 18 

9 1.I AgNTf2 100 10 

a Conversion and yield determined by 1H-NMR using mesitylene as internal standard 
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We chose enyne 1.39 as model substrate and tested its reactivity with different gold(I) 

complexes (Table 1.1). We discovered that in presence of catalyst 1.A, 2,3-dihydro-1H-

cyclopenta[b]naphthalene 1.40 was formed as exclusive product, albeit in only 21% yield (Table 

1.1, entry 1). Screening of other phosphine gold complexes (1.B-1.D, Table 1.1, entries 2-4) led 

to lower yields and conversions. By changing the counter ion to BAr4
F (Table 1.1, entry 5), the 

starting material was completely consumed, but just 19% of the desired product was obtained. 

It is important to note that in this case, as well as in the others, no other major by-product was 

identified in the NMR of the crude reaction mixture. Precatalyst 1.F together with AgNTf2 as 

chloride scavenger delivered product 1.40 in 15% yield and 40% conversion (Table 1.1, entry 

6). Poor results were obtained with IPr ligand with the coordinanting counterion NTf2 (1.G), 

while the cationic complex with acetonitrile and SbF6
- as counterion 1.H gave analogous results 

(Table 1.1, entries 7 and 8). Finally, complex 1.I with a phosphite ligand caused an increase in 

the decomposition of the starting material leading to a poor yield of 1.40 (Table 1.1, entry 9).  

In addition to gold(I) complexes, we screened a small library of other Lewis acids (Table 1.2). 

Among them, only PtCl2 delivered the desired naphthalene in 35% yield and full conversion of 

the starting enyne (Table 1.2, entry 1). In all the other cases, full decomposition of the starting 

material was observed (Table 1.2, Entries 2-6). At this point, catalysts 1.A, 1.F and 1.H, together 

with PtCl2 were tested at higher temperatures in order to achieve better conversions (Table 1.3). 

With 1.A at 50 °C and 80 °C, 1.40 was obtained in 15% and 28 % yield, respectively, however 

an increase of decomposition of the starting material was observed (Table 1.3, entries 1 and 2). 

The reaction with PtCl2 as catalyst at 80 °C gave the same results than at room temperature 

(Table 1.3, entry 6), while with NHC ligands the increase of temperature caused a slight increase 

of yields being 1.F/AgNTf2 at 80 °C the best catalytic system so far, leading to 1.40 in 45% 

yield after complete conversion of the starting material (Table 1.3, entry 5). Additionally, the 

reaction time decreased to 3 h. 
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Table 1.2. Screening of Lewis acids as catalysts for the cyclization of 1-bromo-1,6-enyne 1.39. 

 

Entry Catalyst Conversion (%)a Yield (%)a 

1 PtCl2 100 35 

2 GaCl3 100 - b 

3 InCl3 100 - b 

4 InBr3 100 - b 

5 AuCl 100 - b 

6 AuCl3 100 - b 

a Conversion and yield determined by 1H-NMR using mesitylene as internal 

standard. b Decomposition of the starting material. 

Table 1.3 Temperature screening for the cyclization of 1-bromo-1,6-enyne 1.39. 

 

Entry Catalyst Cl-scavenger T (°C) Conversion (%)a Yield (%)a 

1 1.A - 50 63 15 

2 1.A - 80 85 28 

3 1.H - 80 82 23 

4 1.F AgNTf2 50 88 32 

5c 1.F AgNTf2 80 100 45 
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6 PtCl2
b - 80 100 35 

a Conversion and yield determined by 1H-NMR using mesitylene as internal standard.  
b 10% of PtCl2 was used. c Reaction time = 3h. 

Different solvents where screened a 60 °C with the best catalytic system (Table 1.4). All of them 

gave poor conversion and yields. 

Table 1.4. Solvent screening for the cyclization of 1-bromo-1,6-enyne 1.39. 

 

Entry solvent Conversion (%)a Yield (%)a 

1 DCE 83 31 

2 1,4-dioxane 30 <10 

3 Toluene 35 <10 

4 THF 20 <10 

5 Cyclohexane 37 <10 

6 EtOAc 20 <10 

7 Acetone 20 <10 

8 MeOH 90 - b 

a Conversion and yield determined by 1H-NMR using mesitylene as internal standard.  
b A major unidentified product is formed instead. 

Finally, different chloride scavengers were tested (Table 1.5). Thus, AgSbF6, AgBF4, AgOTf 

and NaBAr4
F led to complete conversion of the starting material, however the yields were lower 

compared to AgNTf2 (Table 1.5, entries 1, 3, 4, and 5). With AgPF6, half of the starting material 

was recovered, and the product was obtained in 25% yield (Table 1.5, entry 2). In presence of 

AgOAc no reaction was observed, and the starting material was fully recovered (Table 1.5, entry 

6). 
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Table 1.5. Screening of chloride scavengers for the cyclization of 1-bromo-1,6-enyne 1.39. 

 

Entry Cl-scavenger Conversion (%)a Yield (%)a 

1 AgSbF6 90 30 

2 AgPF6 45 25 

3 AgBF4 100 35 

4 AgOTf 100 27 

5 NaBAr4
F 100 25 

6 AgOAc 0 - 

a Conversion and yield determined by 1H-NMR using mesitylene as internal standard.  

It is important to note that product 1.40 was recovered when submitted to the above reaction 

conditions, excluding its decomposition as a reason for the relatively low yields observed in 

these experiments. 

We also screened a series of additives that could inhibit the decomposition of the starting 

material. The use of KOtBu as well as 3,5-dichloropyrinde and proton sponge suppresses 

completely the reactivity (Table 1.6, entries 1,7, and 9). On the other hand, using NaOtBu, 

NaOAc and 2,6-tertbuthyl pyridine, very low conversion and poor yields were obtained (Table 

1.6, entries 2, 6, and 8). In contrast MgO or K2CO3 have no influence on the reaction giving 

analogous results than in absence of additives. Finally, the yield of the product increased to 68% 

by using BHT as additive (Table 1.6, entry 10). 
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Table 1.6. Additive screening for the cyclization of 1-bromo-1,6-enyne 1.39. 

 

Entry Additive Conversion (%)a Yield (%)a 

1 KOtBu 0 - 

2 NaOtBu 30 8 

3 MgO 100 50 

4 MgOb 100 33 

5 K2CO3
c 100 50 

6 NaOAc 20 10 

7 3,5-Cl-Py 0 - 

8 2,6-tBu-Py 10 5 

9 Proton sponge 0 - 

10 BHT 100 68 

a Conversion and yield determined by 1H-NMR using mesitylene as internal standard. b 4 equiv of 

MgO were used. c 10% of K2CO3 was used. BHT = 2,6-Di-tert-butyl-4-methylphenol.
 

Other known radical scavengers were tested as additives, as well as compounds structurally 

related with BHT. Interestingly, reducing the amount of BHT or using Na-ascorbate or TEMPO 

in different amounts was detrimental for the reaction (Table 1.7 entries 1-4). However, addition 

of other arenes related in structure with BHT led to 1.40 in ca. 50% yield (Table 1.7, entries 5-

10). Finally, the best results were obtained using 0.7 equiv of BHT at 70 °C, allowing the 

isolation of 1.40 in 69% yield (Table 1.7, entry 12). 
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Table 1.7. Second screening of additives for the cyclization of 1-bromo-1,6-enyne 1.39. 

 

Entry Additive (equiv) Conversion (%)a Yield (%)a 

1 BHT (0.2) 100 60 

2 Na-Ascorbate (1) 10 8 

3 TEMPO (1) 0 - 

4 TEMPO (0.2) 0 - 

5 A (1)  100 49 

6 B (1)  100 50 

7 C (1) 100 49 

8 D (1) 100 48 

9 E (1) 100 52 

10 F (1) 100 47 

11 BHT (2) 100 67 

12 BHT (0.7)b 100 71 (69) 

a Conversion and yield determined by 1H-NMR using trichloroethylenes as internal standard. Isolated 

yields in parenthesis. b Reaction performed at 70 °C.
 

 

The reason why the use of BHT as additive improved the outcome of this reaction was initially 

unclear. To answer this question, we investigated the possible decomposition of the starting 
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material. Considering that the formation of 1.40 involves the formation of HBr, we treated enyne 

1.39 with HBr in DCE at 70 °C, in presence or absence of the catalyst (Scheme 1.17). In the 

first case, the starting material was unchanged, whereas in the second one the reaction proceeded 

normally. In the same way, product 1.40 is stable in presence of HBr, in presence or absence of 

the catalyst. The partial decomposition of silver salts can generate an acidic media as well, in 

this case generating HNTf2 that could be responsible of the decomposition. Considering this, 

we treated compound 1.39 with 5% of HNTf2 and, after 3 h at 70 °C, ca. 70% of the starting 

material was decomposed and no formation of the product was observed. Again, 1.40 was stable 

under these conditions. 

 

Scheme 1.17. A) assessment of the stability of 1.39 and 1.40 in presence of acids generated in the reaction 

media. B) Effect of BHT on the decomposition of 1.39 in presence of HNTf2.  
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Under the same conditions, but with the addition of 0.7 equiv of BHT, 1.39 was recovered in 

67% yield after 3 h together with 1.41 resulting from the protodealkylation of BHT (Scheme 

1.17b). Since simple alkenes are known to act as acid traps in reaction such as the Pinnick 

oxidation, we also tested the reaction in the presence of alkenes G-I. Using 2-methyl-2-butene 

(H), we obtained analogous results to those observed before with BHT, although a larger excess 

of alkene and longer reaction times are required (Table 1.8). 

Table 1.8 Screening of simple alkenes as mild acid quenchers. 

 

Entry Additive (equiv) Conversion (%)a Yield (%)a 

1 G (30) 75 44 

2 H (30) 90 64 

3 I (30) 24 14 

4 H (100) 100 56 

5 H (20) 72 58 

6 H (10) 100 69b 

a Conversion and yield determined by 1H-NMR using mesitylene as internal standard.  
b reaction time 14 h.

 

 

Having defined the optimal conditions for the reaction, we explored the scope of the cyclization 

on 1-bromo-1,6-enynes 1.39 into the corresponding naphthalenes 1.40 (Table 1.9). First, we 

demonstrated that both E and Z enynes (1.39a and 1.39b) can form efficiently the same 

naphthalene product. However, we discovered that the reaction is very sensitive to the 

substitution pattern on the aromatic ring. Although the cyclization of enynes with a methyl either 

in ortho or para position of the aryl (1.39c-d) occurs giving the products 1.40c-d in 60% and 

57% yields, respectively, increasing the electron density on the ring led to a drop in yields for 
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compounds 1.40e-g that were obtained in yields ranging from 20 to 45%. Under the standard 

reaction conditions, enynes with electron poor aromatic rings gave poor conversions. The use 

of 3 mol% 1.A instead of the 1.F/AgNTf2 system led to better results (conditions B in Table 

1.9). Under these new conditions, a series of electron-withdrawing groups can be tolerated on 

the aromatic ring with yields ranging from 39 to 54% (1.40g-j). Also, naphthyl-substituted 

enyne 1.39k under conditions A led to the desired product 1.40k in 39% yield. Thiophene 

substituted enyne 1.39l was cyclized under conditions A in poor yield (22%). Finally, the 

malonate spacer can be replaced for methyl-protected alcohols in enyne 1.39m leading to 1.40m 

in 40% yield.  

Table 1.9. Scope of the cyclization of 1-bromo-1,6-enynesa. 

 
a Isolated yields. b 1.40a was obtained in 70% yield starting from 1.39b. c 75% pure. d yield corrected on 

conversion. e reaction time: 14h  

Substrates that failed or gave less satisfactory results in this gold(I) cyclization are shown in 

Figure 1.2. In the case of 1.39n, two regioisomers were formed in 2:1 ratio and in poor yield, 

being favored the attack of the carbon para- to the methoxy (red labelled carbon). The reaction 

of enyne 1.39o-q led to a complex mixture of products. In contrast, enyne 1.39s with an ortho-

methoxy group on the aromatic ring was recovered unchanged. 1-Iodo-1,6-enyne 1.39t was 

found to be light sensitive, while when covering the reaction vial with aluminum foil to avoid 

decomposition, it was fully recovered. 
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Figure 1.2. Other enynes tested in the gold(I) catalyzed cyclization. 

Intermolecular Reaction of Bromoalkynes with Allylsilanes 

We also found that (bromoethynyl)benzene 1.42a reacts with allyltrimethylsilane 1.43a in 

presence of cationic gold(I) complexes in a formal cross-coupling reaction with loss of TMSBr 

forming the skipped enyne 1.44a. Upon optimization,82 we found that both complex 1.C and 

InBr3 can catalyze the reaction giving 1.44a at 23 °C after 14 h in 77% and 81% yield, 

respectively. (Table 1.10, entries 7 and 11).  

We also tested different substitution patterns on both substrates.82 With chloroalkyne 1.42b 

product 1.44a was formed in good yields, although the reaction proceeded slowly (Table 1.11, 

entry 2). In contrast, iodoalkyne 1.42c failed in this reaction (Table 1.11, entry 3). We screened 

also different allyl derivatives and we found that also allyltriphenylsilane 1.43d reacted with 

1.42a giving 1.44a in 66% yield (Table 1.11, entry 6). However, for sake of atom economy, we 

continued in our studies with allyltrimethylsilanes. The reaction of phenylacetylene 1.42e with 

1.43a led to the exclusive formation of cyclobutene 1.45 via [2+2] cycloaddition. 

  

 
82 Experiments performed by Dr. M. Elena de Orbe. 
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Table 1.10. Reaction of bromoalkyne 1.42a with allylsilane 1.43a to form 1,4-enyne 1.44a. 

 

Entry Catalyst (mol%) 1.42a:1.43a Yield (%)a 

1 1.B (5) 1:1 13 (7) 

2 1.C (3) 1:1 50 

3 1.K (5) 1:1 14 

4 1.L (5) 1:1 traces 

5 AuCl (5) 1:1 0 

6 AuCl3(5) 1:1 0 

7 1.C (3) 1:2 (77) 

8 PtCl2 (3) 1:1 traces 

9 GaCl3 (3) 1:1 28-45b 

10 InBr3 (3) 1:1 50-55b 

11 InBr3 (3) 1:2 (81) 

a Yields determined by 1H-NMR using mesitylene as internal standard.  

Isolated yields in parentheses. b Range of yields obtained in different runs. 
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Table 1.11. Optimization of the substitution pattern of the Substrates to form 1.44aa. 

 

Entry 1.42a-e R1 1.43a-g R2 Yield (%)b 

1 1.42a Br 1.43a SiMe3 (77) 

2 1.42b Cl 1.43a SiMe3 68c 

3 1.42c I 1.43a SiMe3 9 

4 1.42a Br 1.43b Si(OMe)3 21 

5 1.42a Br 1.43c Si(iPr)3 23 

6 1.42a Br 1.43d SiPh3 66 

7 1.42a Br 1.43e Bpin 16 

8 1.42a Br 1.43f Sn(nBu)3 14 

9 1.42d SiMe3 1.43g Br -d 

10 1.42e H 1.43a SiMe3 -e,f 

a Substrates 1.42:1.43 in a 1:2 ratio. b Yields determined by 1H-NMR using mesitylene as 

internal standard. Isolated yields in parentheses. c Reaction time was 48 h. d No reaction. e 

Product 1.45 was formed instead. f Reaction at 50 °C. 

 

With the two sets of conditions in hands, we then studied the scope of the formation of 1,4-

enyne under both conditons.82 Substituents on the aromatic ring of the bromoalkyne were well 

tolerated as demonstrated by the synthesis of skipped enynes 1.44a-l with yields ranging from 

40% to 96% for gold(I) and from 43% to 92% in the indium-catalyzed reaction. Polyaromatics 

and heteroaromatic rings at the alkyne led to lower yields compared to phenylacetylene (Table 

1.12, 1.44n-s). The aromatic ring can be substituted by a simple alkene to form 1.44l in moderate 
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yields (Au: 31%, In: 21%). Furthermore, 1,3-di(pent-4-en-1-yn-1-yl)benzene 1.44y is formed 

in a 2-fold formal cross-coupling reaction starting from 1,3-bis(bromoethynyl)benzene (1.42x) 

in 44% and 66% yield with 1.C and InBr3 respectively. 

Regarding the allylsilane partner, different substituents in position 2 can be accommodated, 

furnishing the desired skipped enyne 1.44t-v in moderate to good yields using gold. However, 

the indium-catalyzed synthesis of 1.44u,v failed. Interestingly, the reaction of 3-substituted 

allylsilanes led exclusively to 1,4-enynes 1.44w,x by reaction at the -position of the allylsilane. 

Table 1.12. Scope of the gold(I)- or indium catalyzed synthesis of skipped enyne 1.44a-ya 

 

a Isolated yields. b Reaction at 50 ºC. c Yields determined by 1H-NMR using mesitylene as 

internal standard. 

It is important to note that in the reaction of o-methyl or o-ethyl substituted 

(bromoethynyl)benzenes 1.42k and 1.42l, 3-allylindenes 1.46a and 1.46b were isolated in poor 
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yields, together with the expected enynes when 1.C was used as catalyst (Scheme 1.18). In 

contrast, 1.46a and 1.46b were not detected in the reaction with InBr3.  

 

Scheme 1.18. Gold(I)-catalyzed reaction of ortho-substituted bromoalkynes 1.42k and 1.42l with 

allylsilane 1.43a. (1.42/1.43a in a 1:2 ratio).  

By monitoring the reaction by 1H-NMR, we observed the formation of both 1.44g and 1.46a 

(Figure 1.3). In addition, we found that allylsilane 1.43a partially decomposes into propene after 

the addition of the gold(I) catalyst, although this decomposition stops as the desired gold(I) 

catalyzed reaction starts and the amount of allylsilane decreases linearly with the formations on 

the product. The formation of 1.46a-b is related to the gold(I)-catalyzed synthesis of 2-

iodoindene via C-H insertion shown in Scheme 1.7 and suggests the involvement of a gold(I) 

vinylidene intermediate in the reaction. 
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Figure 1.3. Evolution of the gold(I) catalyzed reaction of 1.42k with 1.43a for the formation of 1.44g and 

1.46a. Substrates 1.42k:1.43a in a 1:2 ratio. Yields determined by 1H-NMR using bromo-mesitylene as 

internal standard. 

Allylation/Hydroarylation Sequence of Bromoalkynes with Allylsilanes83 

Inspired by the C-H insertion observed in o-substituted (bromoethynyl)benzenes leading to 

indenes 1.46a-b, we envisioned that other functionalities could be involved in cascade reactions 

after the initial allylation of the bromoalkyne. In this context, we expected that an aryl 

substituent in ortho position would be involved in an allylation/hydroarylation cascade. To test 

our hypothesis, we submitted biphenyl derivative 1.47a to the standard reaction conditions and 

1.49a was obtained in 33% yield. However, skipped enyne 1.48a was obtained in this reaction 

as the major product (Table 1.13, entry 1). The indium-catalyzed reaction gave 1.48a in 68% 

yield as single product. 

By heating up to 75 °in DCE, a mixture of the 1,4-enyne 1.48a and cyclized product 1.49a were 

obtained in ratio 2:1 in moderate to good yields (Table 1.13, entries 3 and 4). 

 
83 Experiments done in collaboration with Dr. M.Elena de Orbe and Dr. Ophelie Quinonero 
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Table 1.13 Reaction of bromoalkynes 1.47a-c with allysilane 1.43a. a 

 

Entry 1.47 R Catalyst T (°C) 1.48 (%)b 1.49 (%)b 

1 1.47a H 1.C 23 58 33 

2 1.47a H InBr3 23 68 0 

3 1.47a H 1.C 75 53 23 

4 1.47a H InBr3 75 32 17 

5 1.47b Me 1.C 23 58 16 

6 1.47b Me InBr3 23 24 0 

7 1.47b Me 1.C 75 41 26 

8 1.47b Me InBr3 75 21 0 

9 1.47c CF3 1.C 23 10 0 

10 1.47c CF3 InBr3 23 16 0 

11 1.47c CF3 1.C 75 85 0 

12 1.47c CF3 InBr3 75 90 0 

a 1.47a-c:1.43a in 1:2 ratio. b Isolated yields
 

In order to distinguish the two aromatic rings and hence be able to define the position of the 

allyl chain, we prepared also o-alkylbiaryls 1.47b and 1.47c bearing two methyl and two 

trifluoromethyl groups, respectively. In the case of 1.47b, the gold catalyzed reaction delivered 

a mixture of the skipped enyne 1.48b and the allyl phenanthrene 1.49b both at room temperature 

and at 75 °C (Table 1.13, entries 5 and 7). The reaction catalyzed by InBr3 gave only 1.48b in 

UNIVERSITAT ROVIRA I VIRGILI 
Transition Metal-Catalyzed Reactions of Heteroatom- Substituted Alkynes 
Margherita Zanini 



 

81 

 

poor yields (Table 1.13, entries 6 and 8). On the other hand, substrate 1.47c substituted with 

CF3 groups gave exclusively 1,4-enyne 1.48c (Table 1.13, entries 9-12)  

According to these results, allyl-phenanthrene 1.49b is not the product of direct hydroarylation 

of 1.48b but is the product of a formal 1,2-shift of the allyl chain. Additionally, in the reaction 

of deuterated bromoalkyne 1.47d, the deuterium remains on position 10 in phenanthrene 1.49d 

(Scheme 1.19) 

 

Scheme 1.19 reaction of bromoalkyne 1.47d with trimethylallylsilane.  

We also investigated the cyclization of substrates 1.48a-c to form phenanthrenes (Table 1.14). 

Using 1.C as catalyst, 1.48a forms the hydroarylation product 1.50a (Table 1.14, entries 1-3), 

which in this case is indistinguishable from 1.49a. The more electron-rich 1.48b delivers 

quantitatively phenanthrene 1.50b, a regioisomer of 1.49b. As expected, 1.48c did not undergo 

hydroarylation under these conditions.  

Table 1.14. hydroarylation of 1.48a-c to form allylphenanthrenes 1.50a-c. 

 

Entry 1.47 R T (°C) 1.48:1.50a 

1 1.48a H 75 2.5:1 

2 1.48a H 100 1:1.7 

3 1.48a H 120 1:1.7 

4 1.48b Me 100 0:1 (quant. yield) b 

5 1.48c CF3 100 1:0 (no reaction) 

a Determined by 1H-NMR. b Isolated yield. 
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Once we have demonstrated that 1,4-enynes 1.48 are not precursor of phenanthrenes 1.49, we 

evaluated the possibility of an initial hydroarylation of 1.47 followed by an intermolecular 

allylation with 1.43a to form allyl phenanthrene 1.50. Thus, in the absence of 

allyltrimethylsilane 1.43a, 1.47a undergoes 5-exo-hydroarylation even at room temperature 

forming fluorene 1.51, while decomposition was observed when the reaction is carried out at 75 

°C (Scheme 1.20). Treatment 1.51a with allyltrimethylsilane under the optimized reaction 

conditions failed to give any phenanthrene 1.49a. In the same way, commercially available 

bromo phenanthrene 1.52a was fully recovered after the reaction with allylsilane 1.43a.  

 

Scheme 1.20. Studies on the formation of allyl phenantherene 1.49a.  

We also aimed to investigate the role of the spacer aromatic ring by replacing it in 1.53a with 

an aliphatic chain. The reaction of 1.53a with allylsilane 1.43a proceeded slowly at room 

temperature using 1.C as catalyst giving rise to 1,2-dihydronaphtalene 1.54a in 41% yield, 

together with unreacted starting material (Table 1.15, entry 1). To our surprise, the expected 

skipped enyne was not observed in this reaction. Product 1.54a is the result of a formal 1,2-allyl 

shift from the product of direct hydroarylation of the skipped enyne. Rising the temperature to 

75 °C led to full conversion in 18 h and 1.54a was isolated in 64% yield (Table 1.15, entry 2). 

In addition, a 6:1 mixture of 4-bromo- and 3-bromo-dihydronaphthalene (1.55a and 1.56a 

respectively) was isolated in 15% yield. In contrast, InBr3 led to 1.54a in poor yield (Table 1.15, 

entry 3,4). 
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Table 1.15. Reaction of bromoalkyne 1.53a with allylsilane 1.43aa. 

 

Entry T (°C) solv cat 1.53a (%)b 1.54a (%)b 1.55a:1.56a (%)b 

1 23 CH2Cl2 1.C 19 41c - 

2 75 DCE 1.C - 64 15% (6:1) 

3 50 CH2Cl2 InBr3 61 4 - 

4 75 DCE InBr3 85d 11d - 

a Substrates 1.53a:1.43a in a 1:2 ratio. b Isolated yields. c Reaction time 10d. d Yields determined 

by 1H-NMR using mesitylene as internal standard. 

The reaction is very sensitive to the substitution pattern on both the bromoalkyne and the 

allylsilane. Substrates with a methyl group either in para-position on the aromatic ring or on the 

aliphatic chain led to an increase of the direct hydroarylation of bromoalkynes 1.53b and 1.53c 

respectively (Table 1.16, entries 1, 2). With 3-substituted allyltrimethylsilane 1.43c, the desired 

product was obtained in 13% yield, while 1.55a and 1.56a were isolated as 3:1 mixture in 61% 

yield (Table 1.16, Entry 3). 

Table 1.16. Reaction of bromoalkynes 1.53b-c with allylsilane 1.43a,c.a 

 

Entry 1.53 R, R1 1.43 R2 1.54 (%)b 1.55:1.56 (ratio)b 

1 1.53b Me, H 1.43a H 20c 53% (1:0)c 

2 1.53c H, Me 1.43a H 42 36% (5:1) 

3 1.53a H, H 1.43c CH2Cl 13 61% (3:1) 

a Substrates 1.53b-c:1.43a,c in a 1:2 ratio. b Isolated yields. c Yields determined by 1H-NMR using 

mesitylene as internal standard.  
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Mechanism of the Gold(I) Catalyzed Reaction of Bromoalkynes.  

Experimental mechanistic studies 

It has been proposed in some cases that gold(I)-catalyzed reactions of haloalkynes start with the 

displacement of the halogen by the gold complex to form a -gold acetylide complex, which is 

the species that initiates the reaction acting as a nucleophile.84 In the same way, -digold(I) 

alkyne complexes could be formed and be competent in the reaction.85 To prove if this is the 

case for either the cyclization of 1-bromo-1,6-enynes or for the intermolecular reactions of 

(bromoethynyl)benzene, we prepared -gold acetylide complexes 1.M.86 For practical reasons, 

IPr ligand was used in 1.M instead of IMes, so we tested the reaction of 1.39n catalyzed by the 

IPrAuCl/AgNTf2 system and the desired product 1.40n was obtained in 21% yield. (Scheme 

1.21a). Stirring complex 1.M at 75 °C overnight in presence or in the absence of 1.F and 

AgNTF2 did not lead to the formation of 1.40n (Scheme 1.21).  

 

Scheme 1.21 A) Reaction of 1.39n to form 1.40n using IPrAuCl as Precatalyst. B) Experiments with 

−gold acetylide 1.M. L = IPr.  

In the same way, stoichiometric experiments of complexes 1.N-a-b with allylsilane 1.43a with 

several additives revealed that 1,4-enyne 1.44a is not formed starting from the -gold acetylide 

complex (Scheme 1.22). When 1.N-b was used as catalyst in the reaction of 1.42a and 1.43a, 

the desired product was formed in 72% yield, probably because of a ligand exchanged occurring 

on 1.N-b that initiate the reaction. As expected, 1.N-a is not an active catalyst for the reaction 

(Scheme 1.23).  

 
84 See as example Ref 77 

85 P. Nösel, T. Lauterbach, M. Rudolph, F. Rominger, A. S. K. Hashmi, Chem. Eur. J. 2013, 19, 8634–

8641.  

86 Prepared adapting the procedure reported in S. Ferrer, A. M. Echavarren, Organometallics 2018, 37, 

781–786. 
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Scheme 1.22. Stoichiometric experiments with -gold acetylide complex 1.N-a and -digold complex 

1.N-b. L = tBuXPhos. 

 

Scheme 1.23 Experiments with -gold acetylide complex 1.N-a and -digold complex 1.N-b as 

catalysts for the reaction of 1.42a and 1.43a. L = tBuXPhos. 

In this way, we demonstrated that even if -gold complex or -digold complexes are formed 

in the reaction, they do not take part in the formation of the 1,4-enynes.  

Reaction with simple alkenes 

We decided to extend the reaction to simple alkenes by first replacing the trimethylsilyl group 

in 1.43 for a tert-butyl group. Surprisingly, in presence of catalyst 1.C, alkene 1.57 undergoes 

1,2-bromoalkynylation with 1.42a to form 1.58 in moderate yield. No reaction was observed 

with InBr3 (Scheme 1.24). 
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Scheme 1.24. Gold(I)-catalyzed 1,2-bromoalkynylation of alkenes.  

Analogous homopropargyl bromides were formed when 1.42a reacted with cyclohexene and 

cyclopentene (Scheme 1.24). The bromoalkynylation occurs diastereoselectively giving the 

anti-product exclusively in the case of 1.59, while 1.61 led to 10:1 mixture of anti- and -syn- 

isomers 1.62, along with the product of [2+2] cycloaddition 1.63 as minor product. Cyclooctene 

gave rise selectively to the product of [2+2] cycloaddition 1.65 in good yield.87 

13C-labelling experiments  

To get additional insight into the reaction mechanism, we prepared 13C-labelled bromoalkyne 

13C-1.42a. Reaction of 13C-1.42a with 1.43a under the standard reaction conditions with gold 

and indium led exclusively to 1,4-enyne 13C-1.44. Remarkably, the labelled carbon in the 

product is shifted from the - to the −position to the phenyl ring, which indicates that a 1,2-

aryl migration has taken place during the reaction. The same shift was observed in the gold(I)-

catalyzed formation of 13C-1.60 from 13C-1.42a and cyclohexene, which demonstrates that the 

coupling of allylsilanes and the 1,2-bromoalkynylation take place through the same mechanistic 

scenario (Scheme 1.25). 

 
87 A general gold(I)-catalyzed 1,2-haoalkynylation of was later reported: P. D. García-Fernández, C. 

Izquierdo, J. Iglesias-Sigüenza, E. Díez, R. Fernández, J. M. Lassaletta, Chem. Eur. J. 2020, 26, 629–

633. 
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Scheme 1.25. 13C-labelling experiments. 

Computational mechanistic studies88 

With these experiments in hand, we carried out DFT calculations89 to have a better 

understanding of the mechanisms of formation of skipped enynes 1.44 from bromoalkynes 1.42 

and allylsilanes 1.43 and the hydroarylation of 1.47 to form 1.49. In addition to this, we aimed 

also to have a better insight into the mechanism of the cyclization of 1-bromo-1,6-enynes 1.39. 

As presented in the General Introduction, usually gold(I) catalyzed reaction of alkynes with 

alkenes start with the formation of a cyclopropyl gold(I) carbene intermediate. However, for 

haloalkynes, the 1,2-halogen migration to form a god(I)-vinylidenes could compete with this 

event. Both reactions will start with the formation of (η2-alkyne)gold(I) complex Int2a by ligand 

exchange from the more stable Int1 (Scheme 1.26).  

 

Scheme 1.26. Initial associative ligand exchange to form Int2a (L = PMe3. Free energies in kcal/mol). 

The direct isomerization of Int2a into the gold(I)-vinylidene Int3a requires a high activation 

energy (∆G‡ = 20.3, ∆Gº = 18.4 kcal/mol) (Scheme 1.27, top). On the other hand, the double 

bond of allylsilane 1.43a can attack carbon C2 on the alkyne to form cyclopropyl gold(I) 

carbenes Int.4a-c with lower energy barriers (∆G‡ = 12.7-15.9 kcal/mol) (Scheme 1.27, 

bottom). As expected, the attack on carbon C1 to form Int5a-c, where the carbene is located 

close to the phenyl is less favored (∆G‡ = 17.9-20.7 kcal/mol). This is consistent with the general 

 
88 Study performed in collaboration with Dr. M. Elena de Orbe. 

89 See the computational methods in the Experimental Part 
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trend observed in the intermolecular reaction of alkynes with alkenes, where the carbene is 

formed on the carbon bounded to the more electron-withdrawing substituent.  

 

Scheme 1.27 Formation of gold(I) vinylidene Int3a (top) and formation of cyclopropyl gold(I) carbene 

Int4a-c and Int5a-c (bottom). (L = PMe3. Free energies in kcal/mol). a Transformation of Int5b into Int5a 

via C4−C5 bond rotation: ∆G‡ = 5.1, ∆Gº = 2.4. b Transformation of Int5c into Int5a via C4−C5 bond 

rotation: ∆G‡ = 6.2, ∆Gº = 0.2. c Transformation of Int4b into Int4a via C4−C5 bond rotation: ∆G‡ = 8.7, 

∆Gº = 1.2). 

Intermediates Int4a-c are very similar in energy, so for the rest of the mechanistic analysis we 

will focus on the reaction pathways resulting from Int4a. In fact, this intermediate has the right 

conformation to undergo elimination of TMS-Br and consequent formation of gold(I) 

vinylidene Int7a passing through Int6a (Scheme 1.28). Int7a can then undergo exothermic 1,2-

phenyl migration (∆G‡ = 4.0 kcal/mol) to form the skipped enyne coordinated to gold(I) through 

the alkyne (Int8a), while the alternative 1,2-alkyl migration of carbon C3 requires higher energy 

(∆G‡ = 10.20 kcal/mol). The two η2 coordinate enynes (Int8a and Int9a) differ just for the 

relative position of C1 and C2 and the lower barrier to access Int8a is in line with the observed 

1,2-shift in the 13C-labelling experiments (Scheme 1.25). However, the preliminary elimination 

of TMS-Br will not allow the experimentally observed 1,2-bromoalkynylation of alkenes 

reported in Scheme 1.24. Therefore, despite being energetically feasible, the reaction must 

follow another pathway. 
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Scheme 1.28. Elimination of TMS-Br to form gold(I)-vinylidene Int7a and its evolution in skipped enynes 

Int8a and Int9a (L = PMe3. Free energies in kcal/mol). 

The bromide substituent in Int4a can attack carbon C4, which has a partial positive charge 

stabilized by silicon, leading to the formation of an unprecedented bromonium cyclic 

intermediate Int10a with inversion of configuration at C4 (∆G‡ = 6.2, ∆G° = 5.0 kcal/mol) 

(Scheme 1.29).90 The low energy barrier opening of the cyclic intermediate follows leading to 

Int11a, a vinylidenephenonium intermediate, which shows bond distances between the ipso-

carbon an C2 and C1 of 1.51 Å and 1.67 Å, respectively. This intermediate can be converted 

into vinylidene Int11b upon rotation of the C2-Ph bond. However, Int11b lays 6.8 kcal/mol 

above Int11a. 

Vinylidenearenium cations like Int11a are known to rearrange via 1,2-aryl migration.91 Thus, 

in our case, the exothermic 1,2-phenylmigration from Int11a restores the triple bond (∆G‡ = 

3.1, ∆G° = -22.6 kcal/mol) with the substituents on C1 and C2 inverted respect to the starting 

material. The alternative 1,2-alkylmigration of C3 through the less stable linear vinylidene 

Int11b requires a higher 13.4 kcal/mol barrier to form Int13a.  

 
90 Five-membered-ring chloronium cations have been proposed in the Lewis acid-catalyzed opening of 

chloro vinyl epoxides: A. Shemet, D. Sarlah, E. M. Carreira, Org. Lett. 2015, 17, 1878–1881 

91 Depending on the substituents the vinylidenearenium cation can be either an actual intermediate in the 

1,2-migration of one of the aryl substituents or a transition state between the two regioisomer with the 

triple bond. See ref. 92a 
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Scheme 1.29. Rearrangement of cyclopropyl gold(I) carbene into cyclic bromonium cation Int10a and 

opening into vinylidenephenonium gold(I) cation Int11a. (L = PMe3. Free energies in kcal/mol).  

Cyclic bromonium intermediate Int10a can also undergo a concerted ring opening and 1,3-

alkylmigration of carbon C3 to generate Int13a (Scheme 1.29). However, this transformation 

has a higher energy of activation and is inconsistent with the 13C-labelling experiment.  

We then studied the bonding situation for the two intermediates Int11a and Int11b by means 

of NBO analysis. To have a closer picture to the experimental system, we optimized these two 

structures with the complete ligand used in the reaction (tBuXPhos) and we found that two 

intermediates differs in only 0.4 kcal/mol (Scheme 1.30). For Int11b’, carbon C1 has carbene 

character with a filled sp-orbital (occupancy 1.55) and an empty p-orbital (occupancy 0.29) 

(Figure 1.4a). According to the analysis, the main contribution on the stabilization of the 

vinylidene is given by a relatively high -backdonation with a dyz(Au) to 2p(C1) donor acceptor 

interaction (27.53 kcal/mol) and a 6.9% contribution of 2p(C1) in the corresponding NLMO 

(Figure 1.4b). In addition, the substituents on C2 contribute to the stabilization via -

hyperconjugation (6.4 kcal/mol from C2-C3 -bond and 11.40 kcal/mol from C2-Cipso -bond) 

(Figure 1.4c,d). 
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Scheme 1.30. Equilibrium of the two conformers Int11a’ and Int11b’. (L = tBuXPhos. Free energies in 

kcal/mol). 

 

Figure 1.4. A) Plot for the NBO associated the orbitals of C1 of Int11b’. B) Plot for the NLMO associated 

to the -backdonation from Au to C1 of Int11b’. C) Plot for the NLMO associated to the -

hyperconjugation from C2-C3 -bond to C1 of Int11b’. D) Plot for the NLMO associated to the -

hyperconjugation from C2-Cispo -bond to C1 of Int11b’. Cutoff: 0.05. Hydrogen atoms removed for 

clarity. 
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For Int11a’, instead, C1 has not carbene character and no low valence p-orbital is located on 

this carbon. This is due to the fact that the six-membered ring is oriented in such a way that it 

can interact with the p-orbital of C1 that in this case is involved in an actual C-C bond with Cipso. 

This bond has a strong p-character and is highly polarized on Cipso. As additional prove that 

Int11a’ has no vinylidene character, no NLMO associated with -backdonation from gold to 

C1 was found. In contrast, a positive charge was found delocalized around the cyclohexadienyl 

cation. Overall, the structure of Int11a’ corresponds to a gold(I)-vinylidenephenonium cation,92 

where the phenyl ring is stabilizing both the incipient positive charge on C2 generated by the 

1,2-phenylmigration and on C1. The NLMO plots associated with the C1-Cispo bond and the C2-

Cispo bond are shown in Figure 1.5 as an example of the extensive delocalization of the molecular 

orbitals of this species.  

 

Figure 1.5. A) Plot for the NBO associated with the C1-Cipso bond for Int11a’. B) Plot for the NLMO 

associated with the C1-Cipso bond of Int11a’. C) Plot for the NLMO associated with the C2-Cipso bond of 

Int11a’. Cutoff: 0.05. Hydrogen atoms removed for clarity. 

 
92 For generation and 1,2-arylmigration of diphenylvinylidenephenonium cations see: (a) H. Yamataka, 

S. E. Biali, Z. Rappoport, J. Org. Chem. 1998, 63, 9105–9108. (b) Z. Rappoport, S. Kobayashi, A. 

Stanger, R. Boese, J. Org. Chem. 1999, 64, 4370–4375. (c) R. Gronheid, H. Zuilhof, M. G. Hellings, 

J. Cornelisse, G. Lodder, J. Org. Chem. 2003, 68, 3205–3215. 
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Having defined the nature of the key Int11a, we studied the mechanism for the formal 

elimination of TMS-Br. According to calculations, Int17a is formed stepwise in an overall 

gold(I)-assisted TMS-Br elimination (Scheme 1.31). First, LAuBr is released from Int14a 

giving the enyne Int15a with the trimethylsilane still bounded to the double bond. Finally, 

gold(I) complex Int16 reacts with Int15a forming (η2 -alkene)gold(I) complex Int17a. 

 

Scheme 1.31. Mechanism of the gold(I)-assisted elimination of TMS-Br. (L = PMe3. Free energies in 

kcal/mol). 

According to the 13C-labelling experiments, it is reasonable to propose that the reaction of 1.42a 

with simple alkenes (Scheme 1.24) occurs under an analogous mechanism. Even more, the 

diasteroselectivity observed in the formation of the anti-products 1.60 and 1.62 is an additional 

evidence that the bromide migration takes place through a cyclic intermediate. In fact, once the 

endo-cyclopropyl gold(I) carbene is formed (Scheme 1.32), the attack of the bromide on carbon 

C4 occurs by an SN2-type mechanism with inversion of configuration (as observed in the 

formation of Int10a), forming the trans-fused bicyclic intermediate trans-II. The opening of 

the cation, followed by the 1,2-phenyl shift would lead to the formation of observed anti-1.60. 

The same principle can be applied for the reaction of 1.61. However, in this case the selectivity 

towards the formation of the endo-cyclopropyl gold(I) carbene is lower and exo-I can also be 

formed delivering at the end a small amount of syn-1.62. Preliminary calculations performed on 

this system are in accordance with the hypothesis and the formation of endo-I is favored over 

exo-I both kinetically (∆G‡ = 5.8 kcal/mol) and thermodynamically (∆G° = 7.7 kcal/mol). 
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Scheme 1.32. Proposed mechanism for the formation of anti-1.60. 

We then moved our attention to the allylation/hydroarylation sequence to form dienes such as 

1.54 (see Table 1.15). We studied by means of DTF calculations the model reaction of 1.53a 

with allyltrimethylsilane 1.43a that forms efficiently diene 1.54a.  

Starting from Int18a three scenarios are possible for the first step (Scheme 1.33): as for the 

reaction of 1.42a, the alkyne can undergo isomerization to form vinylidene Int3b or can form 

cyclopropyl gold(I) intermediates Int4d and Int5d. In addition, the triple bond can undergo 

intramolecular hydroarylation as observed experimentally. Again, the direct formation of the 

vinylidene requires a high energy barrier (∆G‡ = 20.0 kcal/mol). The formation of cyclopropyl 

gold(I)carbene Int5d (∆G‡ = 19.2 kcal/mol) and 5-exo-hydroarylation to form vinyl-gold(I) 

complex Int19d (∆G‡ = 18.0 kcal/mol) also have high energy barriers. On the other hand, the 

transition states leading to Int4d and Int20d are just 2.5 kcal/mol apart (∆G‡ = 14.2 kcal/mol 

and ∆G‡ = 16.7 kcal/mol, respectively), although cyclopropyl gold(I) carbene is 

thermodynamically favored. This small difference explains the formation of 1.55a in the model 

reaction, and also why the presence of slightly electron donating group such as the methyl in 

1.53b inverts the selectivity towards the 6-exo-hydroarylation path (Table 1.16). 
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Scheme 1.33. Evolution of Int18a. (R = CH2CH2Ph, L = PMe3. Free energies in kcal/mol). 

The possible evolution of the cyclopropyl gold(I) carbene Int4d (Scheme 1.34) is analogous to 

the one of Int4a and, again, the formation of bromonium cation Int10d (∆G‡ = 8.6 kcal/mol) is 

more favored than the elimination of TMS-Br through Int6d (∆G‡ = 21.3 kcal/mol). The 

opening of the cyclic intermediate Int10d to form vinylidene Int11d is almost barrierless. The 

formation of Wheland-type intermediate Int21d requires very low energy and is followed by an 

highly exothermic 1,2-H shift yielding (η2 -dehydronapthalene)gold(I) complex Int22d. The 

turnover of the catalytic cycle happens via gold(I)-promoted TMS-Br elimination and ligand 

exchange between product and substrates, in line with what we computed before for the 

formation of 1,4-enynes 1.44. The 1,2-alkyl migration that would lead to int12d and, 

subsequently to the skipped enyne, is clearly disfavored (∆G‡ = 14.1 kcal/mol), in accordance 

with the experimental results in which the 1,4-enyne is not observed. 
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Scheme 1.34. Evolution of Int4d to form diene Int25d. (R = CH2CH2Ph, L = PMe3. Free energies in 

kcal/mol). a The energy of this TS was calculated by freezing the distance of the bond C−Br which is 

cleaved in this step. 

The cyclization of 1-bromo-1,6 enynes 1.39 leading to products of formal dehydro-Diels-Alder 

reaction occurs under an analogous mechanism. According to DFT calculations, model substrate 

Int26 undergoes exothermic formation of cyclopropyl(I) gold carbene Int27 via 5-exo-dig 

cyclization (Scheme 1.35). This time the partial positive charge on C4 of Int27 is located on a 

stabilized benzylic position, thus favoring the attack of the bromide to form the bicyclic cation 

Int28, which evolves into the gold(I)-vinylidene Int29 via low energy ring opening as seen 

before (∆G‡ = 2.4 kcal/mol). The tricyclic system is then formed by hydroarylation of the 

vinylidene to form more stable Int31. The final 2,3-dihydro-1H-cyclopenta[b]naphthalene 

product is obtained by loss of HBr driven by the aromatization of the second ring. 
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Scheme 1.35. Mechanism of the gold(I)-catalyzed cyclization of 1-bromo-1,6-enynes.  

  

UNIVERSITAT ROVIRA I VIRGILI 
Transition Metal-Catalyzed Reactions of Heteroatom- Substituted Alkynes 
Margherita Zanini 



 

98 

 

Conclusions 

In this Chapter we disclosed a series of new reactions of bromoalkynes with electron rich 

alkenes. The cyclization of 1-bromo-1,6-enyes leads to the formation of 

cyclopenta[b]naphthalenes in a formal dehydro-Diels-Alder reaction with loss of HBr. In 

addition, the intermolecular reaction with allylsilanes delivers 1,4-enynes via a formal cross-

coupling reaction or dehydronaphthalenes arising from an allylation/cyclization cascade. 

Moreover, the reaction was extended to simple alkenes to give homopropargyl bromides via 

1,2-bromoalkynylation. Interestingly, InBr3 is also able to catalyze the formal cross-coupling 

with allylsilanes. 

 

Scheme 1.36 . Novel intra- and intermolecular reactions of haloalkynes catalyzed by gold(I) or indium(III). 

By means of control experiments and DFT calculations we proved that all these reactions 

proceed via a cyclic bromonium cation as common intermediate. When an aryl alkyne is used, 

the cyclic bromonium cation undergoes aryl-assisted ring opening to generate gold(I)-

vinylidenephenonium cation Int11a, which upon 1,2-phenyl migration restores the triple bond. 

In absence of a stabilizing group, such in the case of Int10d, the opening of the bromonium 

cyclic cation leads to the formation of a linear gold(I) vinylidenes such as Int11d. In this case, 
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an almost barrierless hydroarylation occurs selectively. According to 13C-labelling experiments, 

the reaction catalyzed by InBr3 follows an analogous path. 

 

Scheme 1.37. Proposed mechanism for the reaction of haloalkynes with allylsilanes. 
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Experimental Part 

General Information 

Anhydrous reactions were performed under nitrogen or argon in solvents dried by passing 

through an activated alumina column on a PureSolvTM solvent purification system (Innovative 

Technologies, Inc., MA). Analytical thin layer chromatography was carried out using TLC-

aluminium sheets with 0.2 mm of silica gel (Merck GF234) using UV light as the visualizing 

agent and an acidic solution of vanillin in ethanol or potassium permanganate as the developing 

agent. Chromatographic purifications were carried out using flash grade silica gel (SDS 

Chromatogel 60 ACC, 40-60 µm) or automated flash chromatographer CombiFlash 

Companion. Preparative TLC was performed on 20 cm × 20 cm silica gel plates (2.0 mm or 1.0 

mm thick, Analtech). Organic solutions were concentrated under reduced pressure on Büchi or 

IKA rotary evaporators. NMR spectra were recorded at 298 K on a Bruker Avance 300, Bruker 

Avance 400 Ultrashield and Bruker Avance 500 Ultrashield apparatuses. The signals are given 

as δ / ppm (multiplicity, coupling constant (Hertz), number of protons) downfield from 

tetramethylsilane, with calibration on the residual protio-solvent used (δH = 7.26 ppm and δC = 

77.16 ppm for CDCl3). Mass spectra were recorded on a Waters UPLC-QqTOF (Maxis Impact, 

Bruker Daltonics) with ESI and APCI, or a Waters Alliance HPLC-TOF (MicroTOF Focus, 

Bruker Daltonics) with ESI and APCI. Melting points were determined using a Büchi melting 

point apparatus. 

All reagents were used as purchased, with no further purification, unless otherwise stated.  

Complexes [(tBuXPhos)AuNCMe]BAr4
F (1.C),93 [(SPhos)AuNCMe]SbF6 (1.D),94 

[(IPr)AuNTf2] (1.G)95, [(IPr)AuNCMe]SbF6 (1.H)96, 1.N-a and 1.N-b97, the cynnamil 

bromides98, terminal alkynes, cinnamyltrimethylsilane,99 (E)-trimethyl(pent-2-en-1-yl)silane100 

were prepared following literature procedures. The NMR data are in agreement with the ones 

reported in the literature. 

 
93 M. E. de Orbe, A. M. Echavarren, Org. Synth. 2016, 93, 115–126.  

94 W. Xu, M. Chen, N. Sun, Y. Liu, Chem. Commun. 2016, 52, 11000–11003. 

95 M. Chen, N. Sun, H. Chen, Y. Liu, Chem. Commun. 2016, 52, 6324–6327. 

96 J. S. Johnson, E. Chong, K. N. Tu, S. A. Blum, Organometallics 2016, 35, 655–662. 

97 A. Homs, C. Obradors, D. Leboeuf, A. M. Echavarren, Adv. Synth. Catal. 2014, 356, 221–228. 

98 a) J. Miró, T. Gensch, M. Ellwart, S. J. Han, H. H. Lin, M. S. Sigman, F. D. Toste, J. Am. Chem. Soc. 

2020, 142, 6390–6399. b) S. Einaru, K. Shitamichi, T. Nagano, A. Matsumoto, K. Asano, S. 

Matsubara, Angew. Chemie - Int. Ed. 2018, 57, 13863–13867. c) S. Karnakanti, Z. L. Zang, S. Zhao, 

P. L. Shao, P. Hu, Y. He, Chem. Commun. 2017, 53, 11205–11208. d) T. H. West, D. S. B. Daniels, 

A. M. Z. Slawin, A. D. Smith, J. Am. Chem. Soc. 2014, 136, 4476–4479. 

99. N. Selander, J.R. Paasch, K. Szabó K. J. Am. Chem. Soc. 2011, 133, 409–411. 
100.D. W.Terwilliger, D. Trauner, J. Am. Chem. Soc. 2018, 140, 2748–2751. 
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Synthetic Procedures and Characterization Data  

General procedure A for the synthesis of 1-bromo-1,6-enynes 1.39 

 

Dimethyl 2-(prop-2-yn-1-yl) malonate (1 equiv) was added dropwise to a suspension of sodium 

hydride (1,1 equiv) in THF (0.4 M with respect of the limiting reagent) at 0ºC. The mixture was 

stirred at 23ºC until the evolution of hydrogen was completed, then cooled down again to 0ºC 

and the substituted cinnamyl bromide (1,2 equiv) dissolved in THF (0.4 M with respect of the 

limiting reagent) was added. The reaction was stirred overnight at 23ºC, then quenched with 

NH4Cl and the two phases diluted with Et2O and separated. The water phase was extracted with 

Et2O and the collected organic phases washed with brine, dried over Na2SO4 and evaporated. 

The crude product was used directly in the following step without further purification 

considering quantitative the reaction.  

The crude enyne (1 equiv) was dissolved in acetone (0,3 M). Silver nitrate (0.1 equiv) was 

added, followed by N-bromosuccinimide (1.1 equiv). The reaction mixture was stirred at 23 °C 

with exclusion of light for 5 h. Then, solvent was removed, and the crude redissolved in Et2O 

and stirred for 5 minutes with Brine. The two phases were then separated, and the organic phase 

was washed three times with Brine, dried over Na2SO4 and evaporated. The product was purified 

by flash chromatography on silica gel (Eluent = Cyclohexane/Ethyl acetate= 10/1). 

Methyl (E)-2-acetoxy-2-(3-bromoprop-2-yn-1-yl)-5-phenylpent-4-enoate (1.39a) 

Bromoenyne 1.39a was synthetized following general procedure A, 

from dimethyl 2-(prop-2-yn-1-yl) malonate (1.6 mL, 10 mmol) and 

(E)-cinnamyl bromide (2.4 g, 12 mmol). The crude was purified by 

silica gel chromatography to afford 1.39a as a colorless oil (3.32 g 91%). 

1H-NMR (500 MHz, CDCl3) δ 7.35 – 7.27 (m, 5H), 7.25 – 7.20 (m, 1H), 6.51 (dt, J = 15.7 Hz, 

1.3 Hz, 1H), 6.00 (dt, J = 15.5, 7.7 Hz, 1H), 3.76 (s, 6H), 2.95 (dd, J = 7.7, 1.3 Hz, 2H), 2.87 (s, 

2H). 13C-NMR (126 MHz, CDCl3) δ 170.18, 137.05, 134.90, 128.64, 127.69, 126.45, 126.43, 

123.13, 75.01, 57.32, 53.02, 52.96, 41.77, 36.25, 24.33. HRMS (ESI) m/z calculated for 

C17H17BrNaO4 [M+Na]+: 387.0202, found: 387.0207.  

Methyl (Z)-2-acetoxy-2-(3-bromoprop-2-yn-1-yl)-5-phenylpent-4-enoate (1.39b) 
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Bromoenyne 1.39b was synthetized following general procedure A, 

from dimethyl 2-(prop-2-yn-1-yl) malonate (480 L, 3 mmol) and (Z)-

cinnamyl bromide (709 mg, 3.6 mmol). The crude was purified by silica 

gel chromatography to afford 1.39b as a yellow oil (Z:E = 3:1-937 mg, 

87%). 

1H-NMR (300 MHz, CDCl3) δ 7.41 – 7.18 (m, 5H), 6.61 (d, J = 11.7 Hz, 1H), 5.45 (dt, J = 

11.7, 7.5 Hz, 1H), 3.68 (s, 6H), 3.10 (dd, J = 7.5, 1.8 Hz, 2H), 2.84 (s, 2H). 13C-NMR (126 

MHz, CDCl3) δ 170.2, 136.8, 133.4, 128.8, 128.4, 127.1, 126.4, 124.7, 74.7, 57.0, 53.0, 52.9, 

30.8, 24.1. HRMS (ESI) m/z calculated for C17H17BrNaO4
+ [M+Na]+: 387.0201, found: 

387.0199. 

Methyl (E)-2-acetoxy-2-(3-bromoprop-2-yn-1-yl)-5-(o-tolyl)pent-4-enoate (1.39c ) 

Bromoenyne 1.39c was synthetized following general procedure A, 

from dimethyl 2-(prop-2-yn-1-yl) malonate (430 L, 2.9 mmol) and 

(E)-1-(3-bromoprop-1-en-1-yl)-2-methylbenzene (735 mg, 3.5 

mmol). The crude was purified by silica gel chromatography to 

afford 1.39c as a yellow oil (745 mg, 68%). 

1H-NMR (400 MHz, CDCl3) δ 7.39 – 7.33 (m, 1H), 7.19 – 7.09 (m, 3H), 6.74 (dt, J = 15.6, 1.3 

Hz, 1H), 5.86 (dt, J = 15.4, 7.7 Hz, 1H), 3.77 (s, 6H), 2.98 (dd, J = 7.7, 1.3 Hz, 2H), 2.89 (s, 

2H), 2.33 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 170.19, 136.36, 135.31, 133.13, 130.27, 

127.61, 126.18, 126.00, 124.50, 75.01, 57.26, 53.01, 41.73, 36.45, 24.29, 19.84. HRMS (ESI) 

m/z calculated for C18H19BrNaO4 [M+Na]+: 401.0359, found: 401.0365 

Methyl (E)-2-acetoxy-2-(3-bromoprop-2-yn-1-yl)-5-(p-tolyl)pent-4-enoate (1.39d) 

Bromoenyne 1.39d was synthetized following general procedure 

A, from dimethyl 2-(prop-2-yn-1-yl) malonate (254 L, 1.7 

mmol) and (E)-1-(3-bromoprop-1-en-1-yl)-4-methylbenzene 

(431 mg, 2 mmol). The crude was purified by silica gel 

chromatography to afford 1.39d as a yellowish solid (547 mg, 85%). 

M.p. 53-56 ºC. 1H-NMR (400 MHz, CDCl3) δ 7.25 – 7.20 (m, 2H), 7.10 (m, 2H), 6.47 (d, J = 

15.7 Hz, 1H), 5.94 (dt, J = 15.5, 7.6 Hz, 1H), 3.76 (s, 6H), 2.93 (dd, J = 7.6, 1.3 Hz, 2H), 2.86 

(s, 2H), 2.33 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 170.24, 137.52, 134.78, 134.31, 129.34, 

126.37, 122.00, 75.08, 57.38, 53.01, 41.69, 36.27, 24.32, 21.31. HRMS (ESI) m/z calculated 

for C18H19BrNaO4
+ [M+Na]+: 401.0359, found: 401.0367 
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Methyl (E)-2-acetoxy-2-(3-bromoprop-2-yn-1-yl)-5-(4-(tert-butyl)phenyl)pent-4-enoate 

(1.39e) 

Bromoenyne 1.39e was synthetized following general 

procedure A, dimethyl 2-(prop-2-yn-1-yl) malonate (67 L, 

0.45 mmol) and from (E)-1-(3-bromoprop-1-en-1-yl)-4-(tert-

butyl)benzene (137 mg, 0.54 mmol). The crude was purified 

by silica gel chromatography to afford 1.39e as a yellow oil (139 mg, 73%). 

1H-NMR (500 MHz, CDCl3) δ 7.34 – 7.30 (m, 2H), 7.29 – 7.24 (m, 2H), 6.48 (d, J = 15.7 Hz, 

1H), 5.94 (dt, J = 15.5, 7.6 Hz, 1H), 3.76 (s, 6H), 2.93 (dd, J = 7.7, 1.3 Hz, 2H), 2.86 (s, 2H), 

1.31 (s, 9H).13C-NMR (126 MHz, CDCl3) δ 170.23, 150.82, 134.70, 134.32, 126.19, 125.57, 

122.23, 75.07, 57.36, 53.02, 41.68, 36.24, 34.69, 31.42, 24.27. HRMS (ESI) m/z calculated for 

C21H25BrNaO4 [M+Na]+: 443.0828, found 443.0833. 

Methyl (E)-2-acetoxy-2-(3-bromoprop-2-yn-1-yl)-5-(4-methoxyphenyl)pent-4-enoate 

(1.39f) 

Bromoenyne 1.39f was synthetized following general 

procedure A, from dimethyl 2-(prop-2-yn-1-yl) malonate 

(245 mg, 1.4 mmol) and (E)-1-(3-bromoprop-1-en-1-yl)-4-

methoxybenzene (381 mg, 1.7 mmol). The crude was purified 

by silica gel chromatography to afford 1.39f as a yellow oil (111 mg, 24%). 

1H-NMR (500 MHz, CDCl3) δ 7.29 – 7.23 (m, 2H), 6.87 – 6.79 (m, 2H), 6.44 (d, J = 15.6 Hz, 

1H), 5.84 (dt, J = 15.5, 7.6 Hz, 1H), 3.80 (s, 3H), 3.76 (s, 6H), 2.91 (dd, J = 7.7, 1.3 Hz, 2H), 

2.86 (s, 2H). 13C-NMR (126 MHz, CDCl3) δ 170.27, 159.35, 134.30, 129.92, 127.62, 120.78, 

114.07, 75.11, 57.40, 55.45, 53.01, 41.67, 36.26, 24.30. HRMS (ESI) m/z calculated for 

C17H17BrNaO4
+ [M+Na]+: 387.0202, found: 387.0207 

Methyl (E)-2-acetoxy-5-(2-bromophenyl)-2-(3-bromoprop-2-yn-1-yl)pent-4-enoate (1-

39g) 

Bromoenyne 1.39g was synthetized following general procedure A, 

from dimethyl 2-(prop-2-yn-1-yl) malonate (433 l, 2.9 mmol) and 

(E)-1-bromo-2-(3-bromoprop-1-en-1-yl)benzene (960 mg, 3.5 

mmol). The crude was purified by silica gel chromatography to 

afford 1.39g as a yellow solid (904 mg, 70%). 

M.p. 55-60 ºC. 1H-NMR (400 MHz, CDCl3) δ 7.52 (dd, J = 8.0, 1.2 Hz, 1H), 7.44 (dd, J = 7.8, 

1.7 Hz, 1H), 7.27 – 7.22 (m, 1H), 7.13 – 7.04 (m, 1H), 6.84 (d, J = 15.6 Hz, 1H), 5.96 (dt, J = 
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15.5, 7.7 Hz, 1H), 3.77 (s, 6H), 2.98 (dd, J = 7.7, 1.3 Hz, 2H), 2.89 (s, 2H). 13C-NMR (126 

MHz, CDCl3) δ 170.1 (2C), 137.1, 133.9, 132.9, 129.0, 127.6, 127.4, 126.4, 126.4, 123.4, 74.9, 

57.3, 53.1, 53.0, 42.0, 36.3, 24.4. HRMS (ESI) m/z calculated for C17H16Br2NaO4
+ [M+Na]+: 

464.9308, found: 464.9307.  

Methyl (E)-2-acetoxy-2-(3-bromoprop-2-yn-1-yl)-5-(3,5-dibromophenyl)pent-4-enoate 

(1.39h) 

Bromoenyne 1.39h was synthetized following general procedure 

A, from dimethyl 2-(prop-2-yn-1-yl) malonate (299 l, 2 mmol) 

and (E)-1,3-dibromo-5-(3-bromoprop-1-en-1-yl)benzene (852 mg, 

2.4 mmol). The crude was purified by silica gel chromatography 

to afford 1.39h as a white solid (523 mg, 50%). 

M.p. 103-106 ºC. 1H-NMR (500 MHz, CDCl3) δ 7.50 (t, J = 1.7 Hz, 1H), 7.38 (dd, J = 1.7, 0.5 

Hz, 2H), 6.40 – 6.32 (m, 1H), 6.05 (dt, J = 15.5, 7.6 Hz, 1H), 3.76 (s, 6H), 2.93 (dd, J = 7.7, 1.3 

Hz, 2H), 2.85 (s, 2H). 13C-NMR (126 MHz, CDCl3) δ 169.97, 140.57, 132.90, 132.09, 128.13, 

126.74, 123.23, 74.78, 57.14, 53.15, 42.17, 36.28, 24.50. HRMS (ESI) m/z calculated for 

C17H15NaO4Br3 + [M+Na]+: 542.8413, found: 542.8409.  

Methyl (E)-2-acetoxy-2-(3-bromoprop-2-yn-1-yl)-5-(4-fluorophenyl)pent-4-enoate (1.39i) 

Bromoenyne 1.39i was synthetized following general procedure 

A, from dimethyl 2-(prop-2-yn-1-yl) malonate (202 l, 1.35 

mmol) and (E)-1-(3-bromoprop-1-en-1-yl)-4-fluorobenzene (384 

mg, 1.6 mmol). The crude was purified by silica gel 

chromatography to afford 1.39i as a yellow solid (399 mg, 77%). 

M.p. 68-71 ºC. 1H-NMR (400 MHz, CDCl3) δ 7.33 – 7.24 (m, 2H), 7.03 – 6.93 (m, 2H), 6.46 

(d, J = 15.7 Hz, 1H), 5.91 (dt, J = 15.5, 7.6 Hz, 1H), 3.76 (s, 6H), 2.92 (dd, J = 7.7, 1.3 Hz, 2H), 

2.86 (s, 2H). 19F NMR (376 MHz, CDCl3) δ -114.56 – -114.71 (m).13C-NMR (101 MHz, 

CDCl3) δ 170.18, 162.45 (d, J = 246.7 Hz), 133.24 (d, J = 3.3 Hz), 127.96 (d, J = 8.0 Hz), 122.95 

(d, J = 2.3 Hz), 115.55 (d, J = 21.6 Hz), 74.98, 57.30, 53.05, 41.84, 36.24, 24.38. HRMS (ESI) 

m/z calculated for C17H16BrFNaO4
+ [M+Na]+: 405.0108, found: 405.0118. 

Methyl (E)-2-acetoxy-2-(3-bromoprop-2-yn-1-yl)-5-(4-(trifluoromethyl)phenyl)pent-4-

enoate (1.39j) 
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Bromoenyne 1.39j was synthetized following general 

procedure A, dimethyl 2-(prop-2-yn-1-yl) malonate (209 l, 

1.4 mmol) and from (E)-1-(3-bromoprop-1-en-1-yl)-4-

(trifluoromethyl)benzene (445 mg, 1.7mmol). The crude was 

purified by silica gel chromatography to afford 1.39j as a yellow solid (500 mg, 82%). 

1H-NMR (400 MHz, CDCl3) δ 7.54 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 6.53 (d, J = 

15.7 Hz, 1H), 6.13 (dt, J = 15.5, 7.6 Hz, 1H), 3.76 (s, 6H), 2.96 (dd, J = 7.6, 1.3 Hz, 2H), 2.87 

(s, 2H). 19F NMR (376 MHz, CDCl3) δ -62.62. 13C-NMR (126 MHz, CDCl3) δ 170.03, 140.45, 

133.48, 129.48 (q, J = 32.4 Hz), 126.59, 125.59 (q, J = 3.8 Hz), 124.28 (q, J = 271.8 Hz), 74.83, 

57.19, 53.05, 42.01, 36.34, 24.47. HRMS (ESI) m/z calculated for C18H16BrF3NaO4
+ [M+Na]+: 

455.0076, found: 455.0080.  

Methyl (E)-2-acetoxy-2-(3-bromoprop-2-yn-1-yl)-5-(naphthalen-2-yl)pent-4-enoate 

(1.39k) 

Bromoenyne 1.39k was synthetized following general 

procedure A, from dimethyl 2-(prop-2-yn-1-yl) malonate (373 

l, 2.5 mmol) and (E)-2-(3-bromoprop-1-en-1-yl)naphthalene 

(741 mg, 3 mmol). The crude was purified by silica gel 

chromatography to afford 1.39k as a yellow oil (806 mg, 78%). 

1H-NMR (400 MHz, CDCl3) δ 8.10 – 8.04 (m, 1H), 7.84 (dd, J = 8.0, 1.6 Hz, 1H), 7.77 (d, J = 

8.1 Hz, 1H), 7.50 (td, J = 7.7, 1.4 Hz, 3H), 7.43 (dd, J = 8.2, 7.1 Hz, 1H), 7.31 – 7.23 (m, 1H), 

6.02 (dt, J = 15.4, 7.7 Hz, 1H), 3.78 (s, 6H), 3.08 (dd, J = 7.7, 1.3 Hz, 2H), 2.94 (s, 2H). 13C-

NMR (126 MHz, CDCl3) δ 170.24, 134.98, 133.66, 132.55, 131.19, 128.63, 128.09, 126.52, 

126.23, 125.91, 125.73, 124.18, 123.91, 75.07, 57.34, 53.10, 41.89, 36.65, 31.06, 24.47. HRMS 

(ESI) m/z calculated for C21H19BrNaO4
+ [M+Na]+: 437.0359, found: 437.0354 

Methyl (E)-2-acetoxy-2-(3-bromoprop-2-yn-1-yl)-5-(thiophen-3-yl)pent-4-enoate (1.39l) 

Bromoenyne 1.39l was synthesized following general procedure A, 

from dimethyl 2-(prop-2-yn-1-yl) malonate (300 l, 2.0 mmol) and 

(E)-2-(3-bromoprop-1-en-1-yl)naphthalene (487 mg, 2.4 mmol). The 

crude was purified by silica gel chromatography to afford 1.39l as a 

yellow oil (365 g, 49%). 

1H-NMR (400 MHz, CDCl3) δ 7.24 (dd, J = 4.9, 2.8 Hz, 1H), 7.16 (dd, J = 5.1, 1.2 Hz, 1H), 

7.11 (dd, J = 2.8, 1.2 Hz, 1H), 6.50 (d, J = 15.8 Hz, 1H), 5.83 (dt, J = 15.5, 7.7 Hz, 1H), 3.76 

(s, 5H), 2.90 (dd, J = 7.7, 1.2 Hz, 2H), 2.86 (s, 2H). 13C-NMR (126 MHz, CDCl3) δ 170.0, 

UNIVERSITAT ROVIRA I VIRGILI 
Transition Metal-Catalyzed Reactions of Heteroatom- Substituted Alkynes 
Margherita Zanini 



 

106 

 

140.5, 132.9, 132.1, 128.1, 126.7, 123.2, 74.7, 57.1, 53.8, 42.2, 36.3, 24.5. HRMS (ESI) m/z 

calculated for C15H15BrNaO4S+ [M+Na]+: 392.9772, found: 392.9770 

(E)-(7-bromo-4,4-bis(methoxymethyl)hept-1-en-6-yn-1-yl)benzene (1.39m) 

Bromoenyne 1.39m was synthesized following the bromination procedure 

used for the others enynes (second step of the general procedure A) 

starting from known (E)-(4,4-bis(methoxymethyl)hept-1-en-6-yn-1-

yl)benzene101 (312 mg, 1.2 mmol) The crude was purified by silica gel 

chromatography to afford 1.39m as a yellow oil, 7:1 mixture of E:Z isomers (268 mg, 66% 

yield). 

1H-NMR (500 MHz, CDCl3) δ 7.37 – 7.33 (m, 2H), 7.32 – 7.26 (m, 2H), 7.22 – 7.17 (m, 1H), 

6.43 (d, J = 15.7 Hz, 1H), 6.18 (dt, J = 15.6, 7.7 Hz, 1H), 3.33 (s, 6H), 3.26 (s, 2H), 3.26 (s, 2H), 

2.29 (dd, J = 7.8, 1.3 Hz, 2H), 2.26 (s, 2H). 13C-NMR (major) (101 MHz, CDCl3) 137.77, 

133.32, 128.61, 127.19, 126.21, 125.70, 74.51, 59.46, 42.85, 39.34, 35.72, 23.66. 13C-NMR 

(minor) (101 MHz, CDCl3) δ 137.94, 132.94, 132.90, 127.10, 126.52, 126.16, 73.69, 59.36, 

43.28, 39.81, 36.23, 23.38. HRMS (ESI) m/z calculated for C17H21BrNaO2
+ [M+Na]+: 

359.0617, found: 359.0617. 

Methyl (E)-2-acetoxy-2-(3-bromoprop-2-yn-1-yl)-5-(3-methoxyphenyl)pent-4-enoate 

(1.39n) 

Bromoenyne 1.39g was synthetized following general 

procedure A, from dimethyl 2-(prop-2-yn-1-yl) malonate (254 

l, 1.7 mmol) and (E)-1-(3-bromoprop-1-en-1-yl)-3-

methoxybenzene (463 mg, 2.0 mmol). The crude was purified 

by silica gel chromatography to afford 1.39g as a yellow oil (654 

mg, 97%). 

1H-NMR (300 MHz, CDCl3) δ 7.21 (t, J = 7.9 Hz, 1H), 6.93 (d, J = 7.7 Hz, 1H), 6.88 – 6.84 

(m, 1H), 6.78 (ddd, J = 8.2, 2.7, 0.9 Hz, 1H), 6.47 (d, J = 15.6 Hz, 1H), 5.99 (dt, J = 15.5, 7.6 

Hz, 1H), 3.81 (s, 3H), 3.76 (s, 6H), 2.93 (dd, J = 7.7, 1.3 Hz, 2H), 2.87 (s, 2H). 13C-NMR (101 

MHz, CDCl3) 170.13, 159.89, 138.48, 134.77, 129.60, 123.47, 119.08, 113.16, 111.96, 74.99, 

57.30, 55.35, 53.01, 41.78, 36.23, 24.34. HRMS (ESI) m/z calculated for C18H19BrNaO5
+ 

[M+Na]+: 417.0308, found: 417.0302. 

 
101 R. Miller, J. Carreras, M. E. Muratore, M. Gaydou, F. Camponovo, A. M. Echavarren, J. Org. Chem. 

2016, 81, 1839–1849. 
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General procedure B for the gold(I) catalyzed intramolecular reaction of 1-bromo-1,6-enynes 

1.39 

 

The 1-bromo-1,6-enyne (0.1 mmol, 1 equiv) was dissolved in DCE (1 mL, 0.1M) in a screw cap 

vial. BHT (0.07 mmol, 0.7 equiv) was added followed by the gold(I) pre-catalyst IMesAuCl (5 

mol%) and AgNTf2 (5 mol%) in this order (method A) or catalyst [(JohnPhos)AuNCMe]SbF6 

(3 mol%) (method B). The resulting mixture was stirred at 75 ºC until complete conversion of 

the starting material monitored by TLC or 1H-NMR. Once completed, the reaction was 

quenched with three drops of triethylamine and filtered through a plug of silica. The crude was 

evaporated and submitted to silica gel column chromatography (eluent = cyclohexane:ethyl 

acetate 20:1). The resulting solid was then washed carefully with small aliquots of Et2O to obtain 

the pure tricyclic product. 

Dimethyl 1,3-dihydro-2H-cyclopenta[b]naphthalene-2,2-dicarboxylate (1.40a) 

Compound 1.40a was synthesized following general procedure B 

starting from 1.39a or 1.39b (36,5 mg, 0.1 mmol). The crude 

product was purified via flash chromatography followed by recrystallization from Et2O 

affording 1.40a as a white solid (method A: 19.6 mg, 69%). 

M.p. 146-150 ºC. 1H-NMR (500 MHz, CDCl3) δ 7.75 (dd, J = 6.2, 3.3 Hz, 2H), 7.65 (s, 2H), 

7.39 (dd, J = 6.3, 3.3 Hz, 2H), 3.75 (s, 6H), 3.73 (d, J = 1.1 Hz, 4H). 13C-NMR (126 MHz, 

CDCl3) δ 171.9 (2C), 138.9 (2C), 133.2 (2C), 127.6 (2C), 125.3 (2C), 122.5 (2C), 60.9, 53.0 

(2C), 40.2 (2C). The NMR data match with those reported in the literature102.  

Dimethyl 5-methyl-1,3-dihydro-2H-cyclopenta[b]naphthalene-2,2-dicarboxylate (1.40b) 

Compound 1.40b was synthesized following general procedure B 

starting from 1.39c (38 mg, 0.1 mmol) The crude product was 

purified via flash chromatography followed by recrystallization* 

from Et2O affording 1.40b as a white solid (method A: 18 mg, 60%, purity: 72%). *The 

crystallization did not increase the purity of the product. 

 
102 J. C. Hsieh, C. H. Cheng, Chem. Commun. 2008, 2992–2994. 
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M.p. 148-151 ºC. 1H-NMR (500 MHz, CDCl3) δ 7.80 (s, 1H), 7.64 (d, J = 6.7 Hz, 1H), 7.62 (d, 

J = 8.1 Hz, 1H), 7.32 – 7.27 (m, 1H), 7.24 (d, J = 6.9 Hz, 1H), 3.75 (bs, 8H), 3.72 (d, J = 9.0 

Hz, 2H), 2.66 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 172.1, 138.9, 138.5, 134.0, 133.4, 132.5, 

126.3, 126.2, 125.2, 123.2, 119.0, 61.1, 53.1, 40.7, 40.3, 19.7. HRMS (ESI) m/z calculated for 

C18H18NaO4 [M+Na]+: 321.1097, found: 321.1099. 

Dimethyl 6-methyl-1,3-dihydro-2H-cyclopenta[b]naphthalene-2,2-dicarboxylate (1.40c) 

Compound 1.40c was synthesized following general procedure 

B starting from 1.39d (38 mg, 0.1 mmol). The crude product was 

purified via flash chromatography followed by recrystallization 

from Et2O affording 1.40c as a white solid (method A: 17 mg, 57%). 

M.p. 153-156 ºC. 1H-NMR (500 MHz, CDCl3) δ 7.65 (d, J = 8.3 Hz, 1H), 7.59 (s, 1H), 7.55 (s, 

1H), 7.52 (s, 1H), 7.23 (dd, J = 8.4, 1.8 Hz, 1H), 3.75 (s, 6H), 3.71 (bs, 4H), 2.48 (s, 3H). 13C-

NMR (101 MHz, CDCl3) δ 172.0 (2C), 138.9, 137.9, 134.9, 133.4, 131.4, 127.6, 127.4, 126.6, 

122.2, 121.8, 60.9, 53.0 (2C), 40.3, 40.2, 21.6. HRMS (ESI) m/z calculated for C18H18NaO4 

[M+Na]+: 321.1097, found: 321.1099.  

Dimethyl 6-(tert-butyl)-1,3-dihydro-2H-cyclopenta[b]naphthalene-2,2-dicarboxylate 

(1.40d) 

Compound 1.40d was synthesized following general 

procedure B starting from 1.39e (42 mg, 0.1 mmol). The crude 

product was purified via flash chromatography followed by 

recrystallization from Et2O affording 1.40d as a white solid (Method A: 15 mg, 45%). 

M.p. 129-131 ºC. 1H-NMR (500 MHz, CD2Cl2) δ 7.70 (m, 2H), 7.61 (s, 1H), 7.59 (s, 1H), 7.51 

(dd, J = 8.8, 1.9 Hz, 1H), 3.73 (s, 6H), 3.69 (d, J = 0.8 Hz, 2H), 3.68 (bs, 2H), 1.39 (s, 9H). 13C-

NMR (126 MHz, CD2Cl2) 172.4, 148.7, 139.5, 138.9, 133.7, 131.9, 127.6, 124.8, 123.2, 122.9, 

122.3, 61.42, 53.4, 40.7, 40.6, 35.2, 31.5. HRMS (ESI) m/z calculated for C21H24NaO4
+ 

[M+Na]+: 363.1567, found: 363.1563. 

Dimethyl 6-methoxy-1,3-dihydro-2H-cyclopenta[b]naphthalene-2,2-dicarboxylate (1.40e) 

Compound 1.40e was synthesized following general 

procedure B starting from 1.39f (39.5 mg, 0.1 mmol)). The 

crude product was purified via flash chromatography 

followed by recrystallization from Et2O affording 1.40e as a white solid (method A: 6.4 mg, 

20%). 
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M.p: 162-164 ºC. 1H-NMR (400 MHz, CDCl3) δ 7.64 (d, J = 9.7 Hz, 1H), 7.55 (d, J = 8.4 Hz, 

2H), 7.25(m, 2H), 3.90 (s, 3H), 3.75 (s, J = 3.0 Hz, 6H), 3.70 (s, 2H), 3.69 (s, 2H). 13C-NMR 

(101 MHz, CDCl3) δ 172.1, 157.5, 139.6, 136.6, 134.4, 129.1, 128.8, 122.5, 121.5, 118.1, 106.0, 

61.1, 55.4, 53.1, 40.4, 40.2. 

Dimethyl 5-bromo-1,3-dihydro-2H-cyclopenta[b]naphthalene-2,2-dicarboxylate (1.40f) 

Compound 1.40f was synthesized following general procedure B 

starting from 1.39g (44.4 mg, 0.1 mmol). The crude product was 

purified via flash chromatography followed by recrystallization 

from Et2O affording 1.40f as a white solid (method B: 22 mg, 54%,). 

M.p 159-162 ºC. 1H-NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 7.71 (t, J = 7.6 Hz, 2H), 7.63 (s, 

1H), 7.23 (t, J = 7.8 Hz, 1H), 3.77 (s, 2H), 3.76 (s, 6H), 3.74 (s, 2H). 13C-NMR (101 MHz, 

CDCl3) δ 171.8 (2C), 140.7, 139.9, 134.5, 131.7, 129.4, 127.6, 125.7, 123.0, 122.5, 121.9, 60.9, 

53.1 (2C), 40.4, 40.1. HRMS (ESI) m/z calculated for C17H15BrNaO4
+ [M+Na]+: 385.0046, 

found: 385.0051. 

Dimethyl 5,7-dibromo-1,3-dihydro-2H-cyclopenta[b]naphthalene-2,2-dicarboxylate 

(1.40g) 

Compound 1.40g was synthesized following general procedure 

B starting from 1.39f (52.3 mg, 0.1 mmol). The crude product 

was purified via flash chromatography followed by 

recrystallization from Et2O affording 1.40g as a white solid 

(method B: 22 mg, 49%). 

M.p. 149-152 ºC. 1H-NMR (500 MHz, CDCl3) δ 8.00 (s, 1H), 7.87 (s, 1H), 7.80 (d, J = 1.8 Hz, 

1H), 7.53 (s, 1H), 3.76 (s, 6H), 3.74 (d, J = 1.0 Hz, 2H), 3.73 (s, 2H). 13C-NMR (101 MHz, 

CDCl3) 171.7, 141.4, 141.1, 135.2, 132.1, 130.5, 129.7, 123.3, 122.3, 122.2, 118.4, 60.9, 53.3, 

40.5, 40.2. HRMS (ESI) m/z calculated for C17H14Br2NaO4
+ [M+Na]+: 462.9151, found: 

462.9158. 

Dimethyl 6-fluoro-1,3-dihydro-2H-cyclopenta[b]naphthalene-2,2-dicarboxylate (1.40h) 

Compound 1.40h was synthesized following general procedure 

B starting from 1.39g (38 mg, 0.10 mmol). The crude product 

was purified via flash chromatography followed by 

recrystallization from Et2O affording 1.40h as a white solid (method B: 11.8 mg, 39%). 
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M.p. 68-70 ºC. 1H-NMR (400 MHz, CDCl3) δ 7.73 (dd, J = 9.0, 5.7 Hz, 1H), 7.63 (s, 1H), 7.59 

(s, 1H), 7.36 (dd, J = 10.1, 2.5 Hz, 1H), 7.18 (td, J = 8.7, 2.6 Hz, 1H), 3.76 (s, 6H), 3.72 (s, 2H), 

3.71 (s, 2H). 19F NMR (376 MHz, CDCl3) δ 116.07 (td, J = 9.2, 5.6 Hz).13C-NMR (101 MHz, 

CDCl3) δ 171.9, 160.6 (d, J = 244.8 Hz), 140.3, 138.4, 134.0 (d, J = 9.2 Hz), 130.3, 129.9 (d, J 

= 9.1 Hz), 122.7, 122.0 (d, J = 5.2 Hz), 115.7 (d, J = 25.3 Hz), 110.8 (d, J = 20.5 Hz), 61.0, 

53.2, 40.3 (d, J = 12.9 Hz). HRMS (ESI) m/z calculated for C17H15FNaO4
+ [M+Na]+: 325.0847, 

found: 325.0844. 

Dimethyl 6-(trifluoromethyl)-1,3-dihydro-2H-cyclopenta[b]naphthalene-2,2-

dicarboxylate (1.40i) 

Compound 1.40i was synthesized following general 

procedure B starting from 1.39h (43 mg, 0.1 mmol). The crude 

product was purified via flash chromatography followed by 

recrystallization from Et2O affording 1.40i as a white solid (method B: 14.8 mg, 42%). 

M.p. the compound started to decompose at 131 °C. 1H-NMR (500 MHz, CDCl3) δ 8.05 (s, 

1H), 7.85 (d, J = 8.6 Hz, 1H), 7.72 (d, J = 12.2 Hz, 2H), 7.56 (dd, J = 8.6, 1.7 Hz, 1H), 3.76 (s, 

6H), 3.75 (d, J = 0.5 Hz, 4H). 13C-NMR (126 MHz, CDCl3) δ z171.8, 141.6, 140.6, 134.5, 

132.1, 128.7, 125.5 (q, J = 4.5 Hz), 123.6, 121.1 (q, J = 3.2 Hz), 61.0, 53.2 (q, J = 147.7 Hz), 

53.2, 40.4, 40.3. 19F NMR (376 MHz, CDCl3) -54.80. 

Dimethyl 8,10-dihydro-9H-cyclopenta[b]phenanthrene-9,9-dicarboxylate (1.40j ) 

Compound 1.40j was synthesized following general procedure B 

starting from 1.39k(42 mg, 0.1 mmol). The crude product was 

purified via flash chromatography followed by recrystallization 

from Et2O affording 1.40j as a white solid (method A: 13 mg, 39%). 

M.p. 155-158 ºC. 1H-NMR (400 MHz, CDCl3) δ 8.63 (d, J = 8.0 Hz, 1H), 8.51 (s, 1H), 7.86 

(dd, J = 7.8, 1.1 Hz, 1H), 7.72 – 7.68 (m, 1H), 7.67 (s, 2H), 7.65 – 7.53 (m, 1H), 7.59 – 7.54 (m, 

1H), 3.84 (s, 2H), 3.78 (d, J = 3.9 Hz, 2H), 3.77 (s, 6H). 13C-NMR (101 MHz, CDCl3) 172.1, 

139.5, 139.3, 132.1, 131.8, 130.4, 130.0, 128.6, 127.0, 126.5, 126.4, 123.7, 122.7, 118.0, 61.1, 

5.18, 40.9, 40.5. HRMS (ESI) m/z calculated for C21H18NaO4
+ [M+Na]+: 367.1097, found: 

357.1089. 

Dimethyl 5,7-dihydro-6H-indeno[5,6-b]thiophene-6,6-dicarboxylate (1.40k) 

Compound 1.40k was synthesized following general procedure B 

starting from 1.39j (74.2 mg, 0.2 mmol), the reaction time was 14h. 

The crude product was purified via flash chromatography followed 
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by recrystallization from Et2O affording 1.40k as a white solid (method A: 13 mg, 0.044 mmol, 

22%). 

M.p. 110-112 ºC. 1H-NMR (400 MHz, CDCl3) δ 7.68 (s, 1H), 7.62 (s, 1H), 7.35 (d, J = 5.4 Hz, 

1H), 7.24 (d, J = 5.4 Hz, 1H), 3.75 (s, 5H), 3.68 (s, J = 3.3 Hz, 2H), 3.67 (s, 2H). 13C-NMR 

(101 MHz, CDCl3) 172.9, 139.3, 139.1, 137.3, 137.2, 126.0, 123.6, 119.0, 117.9, 61.3, 53.1, 

40.3, 40.2. HRMS (ESI) m/z calculated for C15H14NaO4S+ [M+Na]+: 313.0505, found: 

313.0511. 

2,2-Bis(methoxymethyl)-2,3-dihydro-1H-cyclopenta[b]naphthalene (1.40l) 

Compound 1.40l was synthesized following general procedure B starting 

from 1.39m (33.7 mg, 0.1 mmol). The crude product was purified via 

flash chromatography followed by recrystallization* from Et2O 

affording 1.40l as a white solid (method A: 11.4 mg, purity 90%, 0.04 

mmol, 40%) * The crystallization did not increase the purity of the product. 

M.p. 83-85 ºC. 1H-NMR (400 MHz, CDCl3) δ 7.76 (dd, J = 6.2, 3.3 Hz, 2H), 7.63 (m, 2H), 

7.40 (m, 2H), 3.42 (s, 4H), 3.38 (s, 6H), 3.00 (d, J = 1.1 Hz, 4H). 13C-NMR (101 MHz, CDCl3) 

δ 141.7, 133.2, 127.5, 125.0, 123.0, 76.0, 59.5, 48.9, 38.6. HRMS (ESI) m/z calculated for 

C17H20NaO2
+ [M+Na]+: 279.1356, found: 279.1351. 

Synthesis of Cyclobutene 1.45 

Ethynylbenzene (22 µL, 0.2 mmol, 1 equiv) was dissolved in dry CH2Cl2 

(0.4 mL, 0.5 M). Allyltrimethylsilane (64 µL, 0.4 mmol, 2 equiv) was 

added, followed by [(tBuXPhos)AuNCMe]BAr4
F (9 mg, 3 mol%). The 

resulting mixture was stirred at 50 ºC for 14 h in a sealed vial. The crude was directly subjected 

to silica gel column chromatography (eluent = pentane) to obtain the pure trimethyl((3-

phenylcyclobut-2-en-1-yl)methyl)silane (colorless oil, 25 mg, 58%). 

1H-NMR (500 MHz, CDCl3) δ 7.43 – 7.31 (m, 4H), 7.29 – 7.24 (m, 1H), 6.41 (d, J = 1.2 Hz, 

1H), 3.05 (dd, J = 12.6, 4.4 Hz, 1H), 3.00 – 2.86 (m, 1H), 2.33 (dd, J = 12.6, 1.7 Hz, 1H), 0.97 

– 0.84 (m, 2H), 0.09 (s, 9H). 13C-NMR (75 MHz, CDCl3) δ 143.7, 135.1, 133.5, 128.2 (2C), 

127.4, 124.3 (2C), 37.8, 35.3, 22.4, -1.0 (3C). HRMS (APCI) m/z calculated for C14H21Si+ 

[M+H]+: 217.1407, found: 217.1406. 

General procedure C for the synthesis of 1,4-enynes 1.44 
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The bromoalkyne (0.2 mmol, 1 equiv) was dissolved in dry CH2Cl2 (0.2 mL, 1 M). The 

allylsilane (0.4 mmol, 2 equiv) was added, followed by the catalyst (3 mol%, method A: 9 mg 

of [(tBuXPhos)AuNCMe]BAr4
F (1.C) or method B: 2 mg of InBr3). The resulting mixture was 

stirred at 23 ºC for 18 h (otherwise stated). The reaction was monitored by TLC or GC-MS. 

Once completed, the crude was directly subjected to silica gel column chromatography (eluent 

= pentane, otherwise stated) to obtain the pure 1,4-enyne. 

Pent-4-en-1-yn-1-ylbenzene (1.44a) 

Enyne 1.44a was synthesized following general procedure C starting 

from (bromoethynyl)benzene (36 mg, 0.2 mmol) and 

allyltrimethylsilane (64 µL, 0.4 mmol). The crude product was purified by flash 

chromatography affording 1.44a as a colorless oil (method A: 22 mg, 77%; method B: 23 mg, 

81%). 

1H-NMR (500 MHz, CDCl3) δ 7.47 – 7.38 (m, 2H), 7.32 – 7.23 (m, 3H), 5.98 – 5.81 (m, 1H), 

5.46 – 5.35 (m, 1H), 5.22 – 5.12 (m, 1H), 3.24 – 3.15 (m, 1H). 13C-NMR (101 MHz, CDCl3) δ 

132.4, 131.6 (2C), 128.2 (2C), 127.7, 123.7, 116.2, 86.5, 82.9, 23.7. The NMR data match with 

those reported in the literature.103 

1-Methoxy-4-(pent-4-en-1-yn-1-yl)benzene (1.44b) 

Enyne 1.44b was synthesized following general procedure C 

starting from 1-(bromoethynyl)-4-methoxybenzene (42 mg, 0.2 

mmol) and allyltrimethylsilane (64 µL, 0.4 mmol). The crude 

product was purified via flash chromatography affording 1.44b as a yellow oil (method A: 23 

mg, 67%; method B: 22 mg, 64%). 

1H-NMR (500 MHz, CDCl3) δ 7.40 – 7.33 (m, 2H), 6.87 – 6.79 (m, 2H), 5.95 – 5.85 (m, 1H), 

5.40 (dq, J = 16.9, 1.8 Hz, 1H), 5.16 (dq, J = 10.0, 1.7 Hz, 1H), 3.80 (s, 3H), 3.18 (dt, J = 5.3, 

1.8 Hz, 2H). 13C-NMR (126 MHz, CDCl3) δ 159.2, 132.9 (2C), 132.7, 116.1, 115.8, 113.8 (2C), 

84.9, 82.6, 55.2, 23.7. The NMR data match with those reported in the literature.103 

 
103 J. Choe, Y. Yang, K. Park, T Palani, S. Lee, Tetrahedron Lett. 2012, 53, 6908–6912. 
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4-(Pent-4-en-1-yn-1-yl)-1,1'-biphenyl (1.44c) 

Enyne 1.44c was synthesized following general procedure C 

starting from 4-(bromoethynyl)-1,1'-biphenyl (51 mg, 0.2 

mmol) and allyltrimethylsilane (64 µL, 0.4 mmol). The crude product was purified via flash 

chromatography affording .144c as a sticky yellow oil (method A: 27 mg, 62%; method B: 35 

mg, 80%). 

1H-NMR (300 MHz, CDCl3) δ 7.66 – 7.31 (m, 9H), 6.04 – 5.84 (m, 1H), 5.52 – 5.38 (m, 1H), 

5.26 – 5.15 (m, 1H), 3.28 – 3.19 (m, 2H). 13C-NMR (75 MHz, CDCl3) δ 140.5, 140.4, 132.4, 

132.0 (2C), 128.8 (2C), 127.5, 127.0 (2C), 126.9 (2C), 122.6, 116.3, 87.2, 82.7, 23.8. HRMS 

(APCI) m/z calculated for C17H15
+ [M+H]+: 219.1168, found: 219.1160. 

1-(tert-Butyl)-4-(pent-4-en-1-yn-1-yl)benzene (1.44d) 

Enyne 1.44d was synthesized following general procedure C 

starting from 1-(bromoethynyl)-4-(tert-butyl)benzene (47 mg, 

0.2 mmol) and allyltrimethylsilane (64 µL, 0.4 mmol). The crude product was purified via flash 

chromatography affording 1.44d as a yellow oil (method A: 28 mg, 71%; method B: 21 mg, 

53%). 

1H-NMR (400 MHz, CDCl3) δ 7.40 – 7.35 (m, 2H), 7.34 – 7.29 (m, 2H), 5.97 – 5.85 (m, 1H), 

5.42 (dq, J = 17.0, 1.7 Hz, 1H), 5.17 (dq, J = 10.0, 1.7 Hz, 1H), 3.20 (dt, J = 5.2, 1.9 Hz, 2H), 

1.32 (s, 9H). 13C-NMR (75 MHz, CDCl3) δ 150.9, 132.6, 131.3 (2C), 125.2 (2C), 120.7, 116.1, 

85.7, 82.9, 34.7, 31.2 (3C), 23.7. The NMR data match with those reported in the literature.103  

1-Bromo-4-(pent-4-en-1-yn-1-yl)benzene (1.44e) 

Enyne 1.44e was synthesized following general procedure C 

starting from 1-bromo-4-(bromoethynyl)benzene (52 mg, 0.2 

mmol) and allyltrimethylsilane (64 µL, 0.4 mmol). The reaction 

was carried out at 50 °C in a sealed vial for 16 h. The crude product was purified via flash 

chromatography affording 1.44e as a yellow oil (method A: 27 mg, 60%; method B: 32 mg, 

73%). 

1H-NMR (500 MHz, CDCl3) δ 7.45 – 7.39 (m, 2H), 7.31 – 7.25 (m, 2H), 5.89 (ddt, J = 17.0, 

10.0, 5.3 Hz, 1H), 5.39 (dq, J = 17.0, 1.8 Hz, 1H), 5.17 (dq, J = 10.0, 1.7 Hz, 1H), 3.18 (dt, J = 

5.3, 1.8 Hz, 2H). 13C-NMR (126 MHz, CDCl3) δ 133.2 (2C), 132.3, 131.6 (2C), 122.8, 122.0, 

116.6 (2C), 88.0, 82.0, 23.9. The NMR data match with those reported in the literature.104 

 
104 A. R. Katritzky, A. A. A. Abdel-Fattah, M. Wang, J. Org. Chem. 2002, 67, 7526–7529. 
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1-(Pent-4-en-1-yn-1-yl)-4-(trifluoromethyl)benzene (1.44f) 

Enyne 1.44f was synthesized following general procedure C 

starting from 1-(bromoethynyl)-4-(trifluoromethyl)benzene (49.8 

mg, 0.2 mmol) and allyltrimethylsilane (64 µL, 0.4 mmol). The reaction was carried out at at 

50 ºC for 40 h. The crude product was purified via flash chromatography affording 1.44f as a 

yellow oil (method A: 26 mg, 62%; method B: 31 mg, 74%). 

1H-NMR (500 MHz, CDCl3) δ 7.55 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 5.90 (ddt, J = 

17.0, 10.3, 5.3 Hz, 1H), 5.40 (dd, J = 17.0, 1.7 Hz, 1H), 5.19 (dq, J = 10.0, 1.6 Hz, 1H), 3.22 

(dt, J = 5.3, 1.8 Hz, 2H). 13C-NMR (126 MHz, CDCl3) δ 132.1, 132.0, 129.7 (q, J = 32.6 Hz), 

127.7, 125.3 (q, J = 3.8 Hz), 124.1 (q, J = 272 Hz) 116.7, 89.6, 81.8, 23.9. 19F NMR (376 MHz, 

CDCl3) δ -62.88. HRMS (APCI) m/z calculated for C12H10F3
+ [M+H]+: 211.0729, found: 

211.0724. 

1-Methyl-2-(pent-4-en-1-yn-1-yl)benzene and 3-allyl-1H-indene (1.44g and 1.46a) 

Enyne 1.44g and indene 1.46a were synthesized 

following general procedure C (methods A and B) 

starting from 1-(bromoethynyl)-2-methylbenzene 

(39 mg, 0.2 mmol) and allyltrimethylsilane (64 µL, 0.4 mmol).  

1-Methyl-2-(pent-4-en-1-yn-1-yl)benzene 1.44a was obtained as a yellow oil (method A: 24 

mg, 77%; method B: 22 mg, 70%). 1H-NMR (500 MHz, CDCl3) δ 7.40 (dt, J = 7.4, 1.1 Hz, 

1H), 7.23 – 7.16 (m, 2H), 7.15 – 7.08 (m, 1H), 5.93 (ddt, J = 16.9, 10.2, 5.2 Hz, 1H), 5.45 (dq, 

J = 17.0, 1.8 Hz, 1H), 5.18 (dq, J = 10.0, 1.7 Hz, 1H), 3.25 (dt, J = 5.2, 1.8 Hz, 2H), 2.44 (s, 

3H). 13C-NMR (126 MHz, CDCl3) δ 140.1, 132.8, 132.1, 129.5, 127.9, 125.6, 123.6, 116.3, 

90.6, 82.0, 24.0, 20.9. The NMR data match with those reported in the literature.103  

3-Allyl-1H-indene 1.46a was obtained by method A. This product was isolated as a colorless 

oil in mixture 10:1 with 1-methyl-2-(pent-4-en-1-yn-1-yl)benzene (method A: 7.5 mg, 24% 

isolated yield, 20% yield according to 1H-NMR using 2-bromomesitylene as internal standard). 

1H-NMR (500 MHz, CDCl3) δ 7.46 (dt, J = 7.3, 1.0 Hz, 1H), 7.37 (dt, J = 7.5, 1.0 Hz, 1H), 7.29 

(tdd, J = 7.5, 1.2, 0.6 Hz, 1H), 7.20 (td, J = 7.4, 1.2 Hz, 1H), 6.25 (t, J = 1.6 Hz, 1H), 6.05 (ddt, 

J = 16.6, 10.1, 6.5 Hz, 1H), 5.19 (dq, J = 17.1, 1.6 Hz, 1H), 5.14 – 5.09 (m, 1H), 3.38 – 3.30 (m, 

4H). 13C-NMR (126 MHz, CDCl3) δ 144.6, 142.6, 139.7, 135.8, 129.1, 126.1, 124.7, 123.9, 

119.3, 116.4, 37.9, 32.6. The NMR data match with those reported in the literature.105 

 
105 S. Silver, A.-S. Leppänen, R. Sjöholm, A. Penninkangas, R. Leino, R. Eur. J. Org. Chem. 2005, 1058–

1081. 
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Mixture of 1-ethyl-2-(pent-4-en-1-yn-1-yl)benzene and 3-allyl-1-methyl-1H-indene (1.5:1) 

(1.44h and 1.46b) 

 Enyne 1.44h and indene 1.46b were synthesized 

following the general procedure C (methods A and 

B) starting from1-(bromoethynyl)-2-ethylbenzene 

(23 mg, 0.1 mmol) and allyltrimethylsilane (64 µL, 0.4 mmol).1.46b was obtained just with 

method A and the products were obtained as an unseparable mixture after purification via flash 

chromatography. 1H-NMR yields were determined using 2-bromomesitylene as internal 

standard. 

1-Ethyl-2-(pent-4-en-1-yn-1-yl)benzene 1.44h was obtained as a yellow oil (method A: 40% 

yield according to 1H-NMR, method B: 18 mg, 53%) 1H-NMR (500 MHz, CDCl3) δ 7.43 – 

7.37 (m, 1H), 7.26 – 7.20 (m, 1H), 7.23 – 7.17 (m, 1H), 7.12 (td, J = 7.3, 1.9 Hz, 1H), 5.92 (ddt, 

J = 17.0, 10.2, 5.2 Hz, 1H), 5.43 (dq, J = 17.0, 1.8 Hz, 1H), 5.21 – 5.14 (m, 1H), 3.24 (dt, J = 

5.2, 1.9 Hz, 2H), 2.82 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H).13C-NMR (126 MHz, CDCl3) 

δ 146.4, 136.0, 133.0, 132.6, 128.3, 128.2, 125.9, 123.2, 116.5, 90.3, 81.9, 24.2, 15.2. 

3-Allyl-1-methyl-1H-indene 1.46b was obtained as a yellow oil (method A: 29% yield 

according to 1H-NMR). 1H-NMR (500 MHz, CDCl3) δ 7.43 – 7.37 (m, 1H), 7.32 (dt, J = 7.3, 

1.1 Hz, 1H), 7.29 – 7.25 (m, 2H), 6.17 (q, J = 1.7 Hz, 1H), 6.04 (ddt, J = 16.8, 10.1, 6.6 Hz, 

1H), 5.19 (dq, J = 7.8, 1.7 Hz, 1H), 5.12 (dq, J = 10.1, 1.5 Hz, 1H), 3.44 (qd, J = 7.5, 2.0 Hz, 

1H), 3.29 (dp, J = 6.6, 1.6 Hz, 2H), 1.30 (d, J = 7.6 Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ 

150.3, 144.6, 141.0, 136.6 (2C), 126.5, 125.2, 122.9, 119.6, 116.6, 44.0, 32.6, 16.6. 

1-Fluoro-2-(pent-4-en-1-yn-1-yl)benzene (1.44i) 

Enyne 1.44i was synthesized following general procedure C starting 

from1-(bromoethynyl)-2-fluorobenzene (40 mg, 0.2 mmol) and 

allyltrimethylsilane (64 µL, 0.4 mmol). The reaction time was 72 h. The 

crude product was purified via flash chromatography affording .144i as a colorless oil (method 

A: 16 mg, 50%; method B: 25 mg, 78%). 

1H-NMR (400 MHz, CDCl3) δ 7.46 – 7.38 (m, 1H), 7.33 – 7.20 (m, 1H), 7.11 – 6.99 (m, 2H), 

5.91 (ddt, J = 17.0, 10.2, 5.2 Hz, 1H), 5.44 (dq, J = 17.0, 1.8 Hz, 1H), 5.19 (dq, J = 10.0, 1.7 

Hz, 1H), 3.24 (dt, J = 5.1, 1.7 Hz, 2H). 13C-NMR (75 MHz, CDCl3) δ 164.3 (d, J (13C-19F) = 

250.6 Hz), 133.5 (d, J (13C-19F) = 1.6 Hz), 132.0, 129.3 (d, J (13C-19F) = 7.9 Hz), 123.8 (d, J 

(13C-19F) = 3.7 Hz), 116.4, 115.4 (d, J (13C-19F) = 21.0 Hz), 112.15 (d, J (13C-19F) = 15.8 Hz), 

92.0 (d, J (13C-19F) = 3.3 Hz), 76.2, 23.8. 19F NMR (376 MHz, CDCl3) δ -110.93. HRMS 

(APCI) m/z calculated for C11H10F+ [M+H]+: 161.0761, found: 161.0755. 
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3-(Pent-4-en-1-yn-1-yl)phenol (1.44j) 

Enyne 1.44j was synthesized following general procedure C starting 

from 1-(bromoethynyl)-3-chlorobenzene (43 mg, 0.2 mmol) and 

allyltrimethylsilane (64 µL, 0.4 mmol). The reaction time was 72 h. 

In the purification pentane and then a 1:1 mixture of pentane:DCM were used. Only 13 mg 

(yellow oil, 42% yield) of the desired product 1.44j were isolated due to a byproduct with almost 

identical Rf. (method A: 63%; method B: 56% yield according to 1H-NMR). 

1H-NMR (400 MHz, CDCl3) δ 7.16 (t, J = 7.9 Hz, 1H), 7.01 (dt, J = 7.6, 1.2 Hz, 1H), 6.89 (dd, 

J = 2.6, 1.4 Hz, 1H), 6.77 (ddd, J = 8.2, 2.6, 1.0 Hz, 1H), 5.89 (ddt, J = 17.0, 10.0, 5.3 Hz, 1H), 

5.40 (dq, J = 17.0, 1.8 Hz, 1H), 5.17 (dq, J = 10.0, 1.7 Hz, 1H), 4.86 – 4.73 (m, 1H), 3.19 (dt, J 

= 5.3, 1.8 Hz, 2H). 13C-NMR (75 MHz, CDCl3) δ 155.2, 132.3, 129.5, 124.9, 124.3, 118.3, 

116.3, 115.2, 86.7, 82.4, 23.7. HRMS (ESI-) m/z calculated for C11H9O- [M-H]-: 157.0659, 

found: 157.0659. 

1-Chloro-3-(pent-4-en-1-yn-1-yl)benzene (1.44k) 

 The title compound (yellow oil, was synthesized according to the 

general procedure starting from. The reaction was carried out at 50 ºC 

in a sealed vial. 

Enyne 1.44k was synthesized following general procedure C starting from 1-(bromoethynyl)-

3-chlorobenzene (43 mg, 0.2 mmol) and allyltrimethylsilane (64 µL, 0.4 mmol). The reaction 

was carried out at 50 °C in a sealed vial. The crude product was purified via flash 

chromatography affording 1.44k as a yellow oil (A: 16 mg, 45%; method B: 15 mg, 43%). 

1H-NMR (400 MHz, CDCl3) δ 7.41 – 7.45 (m, 1H), 7.35 – 7.20 (m, 3H), 5.91 (ddt, J = 16.9, 

10.3, 5.3 Hz, 1H), 5.41 (dq, J = 17.0, 1.8 Hz, 1H), 5.20 (dq, J = 10.0, 1.7 Hz, 1H), 3.21 (dt, J = 

5.3, 1.8 Hz, 2H). 13C-NMR (126 MHz, CDCl3) δ 134.0, 132.1, 131.5, 129.7, 129.4, 128.0, 125.4, 

116.4, 88.0, 81.5, 23.6. HRMS (APCI) m/z calculated for C11H8Cl+ [M-H]+: 175.0309, found: 

175.0309. 

1,3,5-Trimethyl-2-(pent-4-en-1-yn-1-yl)benzene (1.44l) 

Enyne 1.44l was synthesized following general procedure C starting 

from 2-(bromoethynyl)-1,3,5-trimethylbenzene (45 mg, 0.2 mmol) 

and allyltrimethylsilane (64 µL, 0.4 mmol). The crude product was 

purified via flash chromatography using cyclohexane:triethylamine 99:1 as eluent affording 

1.44l as a yellow oil (method A: 36 mg, 98%; method B: 34 mg, 92%). 
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1H-NMR (300 MHz, CDCl3) δ 6.93 – 6.79 (m, 2H), 6.04 – 5.85 (m, 1H), 5.46 (dq, J = 17.0, 1.9 

Hz, 1H), 5.17 (dq, J = 10.0, 1.7 Hz, 1H), 3.29 (dt, J = 5.1, 1.9 Hz, 2H), 2.40 (s, 6H), 2.27 (s, 

3H). 13C-NMR (75 MHz, CDCl3) δ 140.0 (2C), 136.9, 132.9, 127.4 (2C), 120.4, 115.9, 93.9, 

80.6, 24.0, 21.2, 21.0 (2C). HRMS (APCI) m/z calculated for C14H17
+ [M+H]+: 185.1325, found: 

185.1217. 

1-(Pent-4-en-1-yn-1-yl)cyclohex-1-ene (1.44m) 

Enyne 1.44m was synthesized following general procedure C starting 

from 1-(bromoethynyl)cyclohex-1-ene (37 mg, 0.2 mmol) and 

allyltrimethylsilane (64 µL, 0.40 mmol). The crude product was purified via flash 

chromatography affording 1.44m as a yellow oil (method A: 9 mg, 31%; method B: 6 mg, 21%). 

1H-NMR (500 MHz, CDCl3) δ 6.08 – 6.02 (m, 1H), 5.84 (ddt, J = 17.0, 10.2, 5.3 Hz, 1H), 5.32 

(dq, J = 16.9, 1.8 Hz, 1H), 5.11 (dq, J = 10.0, 1.7 Hz, 1H), 3.14 – 3.02 (m, 2H), 2.19 – 2.01 (m, 

4H), 1.72 – 1.48 (m, 4H). 13C-NMR (126 MHz, CDCl3) δ 133.7, 132.9, 120.8, 115.9, 84.7, 83.5, 

29.5, 25.6, 23.6, 22.4, 21.6. HRMS (APCI) m/z calculated for C11H15
+ [M+H]+: 147.1168, 

found: 141.1166. 

9-(Pent-4-en-1-yn-1-yl)phenanthrene (1.44n) 

Enyne 1.44n was synthesized following general procedure C 

starting from 9-(bromoethynyl)phenanthrene (42 mg, 0.15 mmol) 

and allyltrimethylsilane (48 µL, 0.30 mmol). The crude product 

was purified via flash chromatography affording 1.44n as a sticky 

yellow oil (method A: 22 mg, 61%; method B: 20 mg, 55%). 

1H-NMR (400 MHz, CDCl3) δ 8.72 – 8.62 (m, 2H), 8.57 – 8.42 (m, 1H), 7.99 (s, 1H), 7.90 – 

7.78 (m, 1H), 7.74 – 7.51 (m, 4H), 6.03 (ddt, J = 17.0, 10.2, 5.3 Hz, 1H), 5.55 (dq, J = 17.0, 1.8 

Hz, 1H), 5.27 (dq, J = 10.0, 1.7 Hz, 1H), 3.41 (dt, J = 5.4, 1.8 Hz, 2H). 13C-NMR (126 MHz, 

CDCl3) δ 132.5, 131.5, 131.4, 131.3, 130.1, 130.0, 128.4, 127.2, 127.0, 126.9, 126.9, 126.8, 

122.7, 122.5, 120.1, 116.5, 91.2, 81.0, 24.1. HRMS (APCI) m/z calculated for C19H15
+ [M+H]+: 

243.1168, found: 243.1167. 

1-(Pent-4-en-1-yn-1-yl)naphthalene (1.44o) 

Enyne 1.44o was synthesized following general procedure C starting 

from 1-(bromoethynyl)naphthalene (46 mg, 0.2 mmol) and 

allyltrimethylsilane (64 µL, 0.4 mmol). The crude product was 

purified via flash chromatography using pentane and then a 
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pentane:DCM 1:1 mixture as eluent affording 1.44o as a yellow oil (method A: 21 mg, 55%; 

method B: 25 mg, 65%). 

1H-NMR (400 MHz, CDCl3) δ 8.42 – 8.36 (m, 1H), 7.90 – 7.77 (m, 2H), 7.68 (dd, J = 7.2, 1.2 

Hz, 1H), 7.55 (dddd, J = 22.9, 8.1, 6.8, 1.4 Hz, 2H), 7.43 (dd, J = 8.3, 7.1 Hz, 1H), 6.02 (ddt, J 

= 17.0, 10.2, 5.2 Hz, 1H), 5.54 (dq, J = 17.0, 1.8 Hz, 1H), 5.25 (dq, J = 10.0, 1.7 Hz, 1H), 3.39 

(dt, J = 5.3, 1.8 Hz, 2H). 13C-NMR (101 MHz, CDCl3) δ 133.5, 133.2, 132.5, 130.2, 128.2, 

128.2, 126.5, 126.2 (2C), 125.2, 121.4, 116.4, 91.5, 80.9, 24.0. HRMS (APCI) m/z calculated 

for C15H13
+ [M+H]+: 193.1012, found: 193.1012. 

3-(Pent-4-en-1-yn-1-yl)thiophene (1.44p) 

Enyne 1.44p was synthesized following general procedure C starting 

from 3-(bromoethynyl)thiophene (37.4 mg, 0.2 mmol) and 

allyltrimethylsilane (64 µL, 0.4 mmol). The crude product was purified via flash 

chromatography affording 1.44p as a yellow oil (method A: 14 mg, 48%; method B: 13 mg, 

44%). 

1H-NMR (300 MHz, CDCl3) δ 7.39 (dd, J = 3.0, 1.2 Hz, 1H), 7.24 (dd, J = 5.0, 3.0 Hz, 1H), 

7.10 (dd, J = 5.0, 1.2 Hz, 1H), 5.90 (ddt, J = 17.0, 9.9, 5.3 Hz, 1H), 5.39 (dq, J = 17.0, 1.8 Hz, 

1H), 5.17 (dq, J = 10.0, 1.7 Hz, 1H), 3.18 (dt, J = 5.3, 1.8 Hz, 2H). 13C-NMR (126 MHz, CDCl3) 

δ 132.5, 130.1, 128.0, 125.2, 122.8, 116.4, 86.2, 78.0, 23.9. HRMS (APCI) m/z calculated for 

C9H9S+ [M+H]+: 149.0419, found: 149.0419. 

3-(Pent-4-en-1-yn-1-yl)furan (1.44q) 

Enyne 1.44q was synthesized following general procedure C starting 

from 3-(bromoethynyl)furan (25.6 mg, 0.15 mmol) and 

allyltrimethylsilane (48 µL, 0.3 mmol). The crude product was purified via flash 

chromatography affording 1.44q as a yellow oil (method A: 6 mg, 23%; method B: 4 mg, 20%). 

1H-NMR (400 MHz, CDCl3) δ 7.62 – 7.57 (m, 1H), 7.37 (t, J = 1.7 Hz, 1H), 6.45 (dd, J = 1.9, 

0.8 Hz, 1H), 5.90 (ddt, J = 16.9, 9.9, 5.4 Hz, 1H), 5.39 (dq, J = 16.9, 1.8 Hz, 1H), 5.18 (dq, J = 

10.0, 1.7 Hz, 1H), 3.18 (dt, J = 5.4, 1.8 Hz, 2H). 13C-NMR (126 MHz, CDCl3) δ 145.2, 142.6, 

132.4, 116.29, 112.7, 107.8, 88.3, 73.7, 23.8. HRMS (APCI) m/z calculated for C9H9O+ 

[M+H]+: 133.0648, found: 133.0649. 

2-Methyl-5-(pent-4-en-1-yn-1-yl)furan (1.44r) 
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Enyne 1.44r was synthesized following general procedure C starting 

from 2-(bromoethynyl)-5-methylfuran106 (61.7 mg, 0.2 mmol) and 

allyltrimethylsilane (64 µL, 0.4 mmol). The crude product was purified via flash 

chromatography affording 1.44r as a yellow oil (method A: 9 mg, 31%; method B: 7 mg, 22%). 

1H-NMR (500 MHz, Chloroform-d) δ 6.40 (d, J = 3.2 Hz, 1H), 5.94 (dq, J = 3.1, 1.0 Hz, 1H), 

5.86 (ddt, J = 17.0, 10.0, 5.4 Hz, 1H), 5.37 (dq, J = 17.0, 1.7 Hz, 1H), 5.16 (dq, J = 10.0, 1.6 Hz, 

1H), 3.21 (dt, J = 5.4, 1.8 Hz, 2H), 2.28 (t, J = 0.7 Hz, 3H). 13C-NMR (126 MHz, Chloroform-

d) δ 153.3, 135.9, 132.1, 117.0, 115.6, 107.1, 90.9, 73.8, 24.2, 14.1. HRMS (APCI) m/z 

calculated for C10H11O+ [M+H]+: 147.0804, found: 147.0804. 

3-(Pent-4-en-1-yn-1-yl)-1-tosyl-1H-indole (1.44s) 

Enyne 1.44s was synthesized following general procedure C starting 

from 3-(bromoethynyl)-1-tosyl-1H-indole107 (75 mg, 0.2 mmol) and 

allyltrimethylsilane (64 µL, 0.4 mmol). The crude product was 

purified via flash chromatography affording 1.44s as a yellow oil (method A: 58 mg, 87%; 

method B: 13 mg, 19%). 

1H-NMR (500 MHz, CDCl3) δ 8.00 – 7.94 (m, 1H), 7.80 – 7.73 (m, 2H), 7.69 (s, 1H), 7.63 (dt, 

J = 7.7, 0.9 Hz, 1H), 7.34 (ddd, J = 8.4, 7.2, 1.3 Hz, 1H), 7.28 (td, J = 7.9, 1.3 Hz, 1H), 7.21 (d, 

J = 8.2 Hz, 2H), 5.92 (ddt, J = 17.0, 10.3, 5.3 Hz, 1H), 5.44 (dq, J = 16.9, 1.8 Hz, 1H), 5.19 (dq, 

J = 10.0, 1.7 Hz, 1H), 3.26 (dt, J = 5.3, 1.8 Hz, 2H), 2.33 (s, 3H). 13C-NMR (126 MHz, CDCl3) 

δ 145.3, 135.1, 134.3, 132.4, 131.2, 130.1 (2C), 128.5, 127.0 (2C), 125.5, 123.8, 120.6, 116.6, 

113.7, 105.8, 91.1, 73.8, 24.1, 21.7. HRMS (APCI) m/z calculated for C20H18NO2S+ [M+H]+: 

336.1053, found: 336.1065; m/z calculated for C20H17NNaO2S+ [M+Na]+: 358.0872, found: 

358.0887. 

(4-Methylpent-4-en-1-yn-1-yl)benzene (1.44t) 

Enyne 1.44t was synthesized following general procedure C starting 

from (bromoethynyl)benzene (36 mg, 0.2 mmol) and trimethyl(2-

methylallyl)silane (70 µL, 0.4 mmol). The reaction time was 72h. The 

crude product was purified via flash chromatography affording 1.44t as a colorless oil (method 

A and B: 17 mg, 54%). 

 
106 S.K. Moodapelly, G. V. M. Sharma, V. K. Doddi, Adv. Synth. Catal. 2017, 359, 1535–1540. 

107 C. D. Campbell, R. L. Greenaway, O. T. Holton, P. R. Walker, H. A. Chapman, C. A. Russell, G. 

Carr, A. L. Thomson, E. A. Anderson, Chem. Eur. J. 2015, 21, 12627–12639. 
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1H-NMR (300 MHz, CDCl3) δ 7.47 – 7.39 (m, 2H), 7.34 – 7.25 (m, 3H), 5.14 – 5.06 (m, 1H), 

4.94 – 4.85 (m, 1H), 3.14 (bs, 2H), 1.91 – 1.82 (m, 3H). 13C-NMR (75 MHz, CDCl3) δ 140.5, 

131.6 (2C), 128.2 (2C), 127.7, 123.8, 111.8, 87.1, 82.8, 28.1, 22.1. The NMR data match with 

those reported in the literature.108 

(4-Bromopent-4-en-1-yn-1-yl)benzene (1.44u) 

Enyne 1.44u was synthesized following general procedure C starting 

from (bromoethynyl)benzene (36 mg, 0.2 mmol) and (2-

bromoallyl)trimethylsilane (69 µL, 0.4 mmol). The reaction was carried 

out at 50 ºC for 72 h in a sealed vial. The crude product was purified via flash chromatography 

affording 1.44u as a yellow oil (method A: 28 mg, 64% - method B: 0%). 

1H-NMR (500 MHz, CDCl3) δ 7.48 – 7.41 (m, 2H), 7.35 – 7.28 (m, 3H), 6.10 – 6.05 (m, 1H), 

5.62 – 5.58 (m, 1H), 3.58 (t, J = 1.5 Hz, 2H). 13C-NMR (126 MHz, CDCl3) δ 131.6 (2C), 128.3 

(2C), 128.2, 127.1, 123.0, 118.0, 84.6, 84.0, 32.4. HRMS (APCI) m/z calculated for C11H10Br+ 

[M+H]+: 220.9960, found: 220.9952. 

(4-(Chloromethyl)pent-4-en-1-yn-1-yl)benzene (1.44v) 

Enyne 1.44v was synthesized following general procedure C starting 

from(bromoethynyl)benzene (36 mg, 0.2 mmol) and (2-

(chloromethyl)allyl)trimethylsilane (72 µL, 0.4 mmol). The reaction 

time was 48 h. The crude product was purified via flash chromatography affording 1.44v as a 

green oil (method A: 18 mg, 48%; method B: 0%). 

1H-NMR (400 MHz, CDCl3) δ 7.46 – 7.39 (m, 2H), 7.33 – 7.27 (m, 3H), 5.41 – 5.36 (m, 1H), 

5.32 – 5.26 (m, 1H), 4.18 (bs, 2H), 3.34 (bs, 2H). 13C-NMR (101 MHz, CDCl3) δ 140.3, 131.6 

(2C), 128.2 (2C), 127.9, 123.4, 116.4, 85.6, 83.5, 47.4, 24.2. HRMS (APCI) m/z calculated for 

C12H12Cl+ [M+H]+: 191.0622, found: 191.0619. 

(3-Ethylpent-4-en-1-yn-1-yl)benzene (1.44w) 

Enyne 1.44w was synthesized following general procedure C starting 

from (bromoethynyl)benzene (36 mg, 0.2 mmol) and (E)-

trimethyl(pent-2-en-1-yl)silane (40% solution in pentane, 157 mg, 0.44 

mmol).The crude product was purified via flash chromatography affording 1.44w as a yellow 

oil (method A (50ºC, 64 h): 16 mg, 47%; method B (50ºC, 16 h): 25 mg, 73%). 

 
108 D.-M. Cui, N. Hashimoto, S. Ikeda, Y. Sato, J. Org. Chem. 1995, 60, 5752–5756. 
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1H-NMR (400 MHz, CDCl3) δ 7.47 – 7.39 (m, 2H), 7.33 – 7.25 (m, 3H), 5.85 (ddd, J = 17.0, 

10.0, 6.1 Hz, 1H), 5.38 (dt, J = 17.0, 1.6 Hz, 1H), 5.14 (dt, J = 10.1, 1.5 Hz, 1H), 3.23 (dtt, J = 

7.5, 6.0, 1.5 Hz, 1H), 1.77 – 1.56 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H). 13C-NMR (126 MHz, CDCl3) 

δ 138.0, 131.8 (2C), 128.3 (2C), 127.8, 124.0, 115.3, 90.5, 83.8, 37.8, 28.6, 11.6. The NMR data 

match with those reported in the literature.109 

Pent-4-en-1-yne-1,3-diyldibenzene (1.44x) 

Enyne 1.44x was synthesized following general procedure C starting 

from(bromoethynyl)benzene (36 mg, 0.2 mmol) and 

cinnamyltrimethylsilane (76 mg, 0.4 mmol). The crude product was 

purified via flash chromatography affording 1.44x as a yellow oil (method A (20ºC, 5 days): 15 

mg, 35%; method B (20ºC, 20 h): 24 mg, 55%). 

1H-NMR (300 MHz, CDCl3) δ 7.54 – 7.44 (m, 4H), 7.40 – 7.20 (m, 6H), 6.03 (ddd, J = 16.9, 

9.9, 6.1 Hz, 1H), 5.48 (dt, J = 16.9, 1.5 Hz, 1H), 5.22 (dt, J = 9.9, 1.4 Hz, 1H), 4.61 (d, J = 6.1, 

1H). 13C-NMR (75 MHz, CDCl3) δ 140.1, 137.9, 131.7 (2C), 128.6 (2C), 128.2 (2C), 128.0, 

127.7 (2C), 127.0, 123.5, 115.2, 88.6, 85.3, 42.0. The NMR data match with those reported in 

the literature.110  

1,3-Di(pent-4-en-1-yn-1-yl)benzene (1.44y) 

Enyne 1.44y was synthesized following general procedure 

C starting from 1,3-bis(bromoethynyl)benzene (56.8 mg, 

0.2 mmol) and allyltrimethylsilane (175 µL, 1.1 mmol). The 

crude product was purified via flash chromatography affording 1.44y as a colorless oil (method 

A: 18 mg, 44%; method B: 26 mg, 63%). 

1H-NMR (500 MHz, CDCl3) δ 7.50 (t, J = 1.7 Hz, 1H), 7.34 (dd, J = 7.7, 1.6 Hz, 2H), 7.22 (t, 

J = 7.7 Hz, 1H), 5.89 (ddt, J = 17.0, 10.3, 5.3 Hz, 2H), 5.40 (dq, J = 17.0, 1.7 Hz, 3H), 5.17 (dq, 

J = 10.0, 1.6 Hz, 3H), 3.19 (dt, J = 5.3, 1.9 Hz, 4H). 13C-NMR (126 MHz, CDCl3) δ 134.8, 

132.4 (2C), 131.0 (2C), 128.3, 124.0 (2C), 116.5 (2C), 87.2 (2C), 82.3 (2C), 23.8 (2C). HRMS 

(APCI) m/z calculated for C6H15
+ [M+H]+: 207.1168, found: 207.1160. 

General procedure D for Intermolecular reaction of bromoalkynes 1.47 with allylsilanes 1.43 

by gold or indium catalysis 

 
109 H. Li, A. Alexakis,. Angew. Chem. Int. Ed, 2012, 51, 1055–1058. 

110 J. Y. Hamilton, D. Sarlah, E. M. Carreira, Angew. Chem. Int. Ed. 2013, 52, 7532–7535. 
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The bromoalkyne (0.2 mmol, 1 equiv) was dissolved in DCE (0.2 mL, 1 M). The allylsilane (0.4 

mmol, 2 equiv) was added, followed by the catalyst (5 mol%; method A: 15 mg of 

[(tBuXPhos)AuNCMe]BAr4
F (1.C) or method B: 3.5 mg of InBr3). The resulting mixture was 

stirred at 75 ºC for 18 h (otherwise stated). The reaction was monitored by TLC or GC-MS. The 

crude was directly subjected to silica gel column chromatography (eluent = pentane, otherwise 

stated) to obtain the pure 1,4-enyne and 1,4-diene. 

2-(Pent-4-en-1-yn-1-yl)-1,1'-biphenyl and 9-allylphenanthrene (1.48a and 1.49a) 

Enyne 1.48a and phenanthrene 1.49a were synthesized 

following the general procedure D (methods A and B) 

starting from 2-(bromoethynyl)-1,1'-biphenyl (51 mg, 

0.2 mmol) and allyltrimethylsilane (64 µL, 0.4 

mmol).1.48a and 1.49a were separated by flash chromatography using pentane and then a 9:1 

mixture of pentane. 

2-(Pent-4-en-1-yn-1-yl)-1,1'-biphenyl 1.48a was obtained as a colorless oil (method A: 23 mg, 

53%, method B: 14 mg, 32%). 1H-NMR (400 MHz, CDCl3) δ 7.64 – 7.58 (m, 2H), 7.58 – 7.53 

(m, 1H), 7.46 – 7.32 (m, 5H), 7.31 – 7.25 (m, 1H), 5.78 (ddtd, J = 16.6, 10.2, 5.2, 1.3 Hz, 1H), 

5.20 (dp, J = 17.0, 1.6 Hz, 1H), 5.06 (dp, J = 9.9, 1.6 Hz, 1H), 3.09 (dq, J = 5.1, 1.6 Hz, 2H). 

13C-NMR (101 MHz, CDCl3) δ 143.7, 140.7, 133.1, 132.1, 129.4, 129.3 (2C), 127.9, 127.8 

(2C), 127.2, 126.9, 122.0, 116.1, 89.5, 82.4, 23.8. HRMS (APCI) m/z calculated for C17H15
+ 

[M+H]+: 219.1168, found: 219.1168. 

9-Allylphenanthrene 1.49a was obtained as a colorless oil (method A: 10 mg, 23%, method B: 

7 mg, 17%). 1H-NMR (500 MHz, CDCl3) δ 8.74 (dd, J = 7.9, 1.6 Hz, 1H), 8.67 (d, J = 8.1 Hz, 

1H), 8.10 (dd, J = 7.8, 1.7 Hz, 1H), 7.85 (dd, J = 7.7, 1.6 Hz, 1H), 7.74 – 7.54 (m, 5H), 6.20 

(ddt, J = 15.7, 11.2, 6.2 Hz, 1H), 5.19 (bs, 1H), 5.16 (dm, J = 7.1, 1H), 3.90 (bd, J = 6.3, 2H). 

13C-NMR (126 MHz, CDCl3) δ 136.7, 134.4, 131.9, 131.3, 130.7, 129.8, 128.1, 126.7, 126.6, 

126.5, 126.2, 126.1, 124.7, 123.1, 122.5, 116.6, 37.6. The NMR data match with those reported 

in the literature.111 

 
111 M.-B. Li, Y. Wang, S.-K. Tian, Angew. Chem. Int. Ed. 2012, 51, 2968–2971. 
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3',5'-Dimethyl-2-(pent-4-en-1-yn-1-yl)-1,1'-biphenyl and 9-allyl-1,3-

dimethylphenanthrene (1.48b and 1.49b) 

Enyne 1.48b and phenanthrene 1.49b were 

synthesized following the general procedure D 

(methods A and B) starting from 2-(bromoethynyl)-

3',5'-dimethyl-1,1'-biphenyl (57 mg, 0.2 mmol) and 

allyltrimethylsilane (64 µL, 0.4 mmol). 1.48b and 1.49b were separated by flash 

chromatography using pentane as eluent. 

3',5'-Dimethyl-2-(pent-4-en-1-yn-1-yl)-1,1'-biphenyl 1.48b was obtained as a colorless oil 

(method A: 20 mg, 41%, method B: 11 mg, 21%). 1H-NMR (500 MHz, CDCl3) δ 7.54 (dd, J = 

7.7, 1.4 Hz, 1H), 7.40 – 7.30 (m, 2H), 7.29 – 7.24 (m, 1H), 7.24 (s, 2H), 7.00 (s, 1H), 5.80 (ddt, 

J = 17.0, 10.2, 5.2 Hz, 1H), 5.24 (dq, J = 17.0, 1.8 Hz, 1H), 5.08 (dq, J = 10.0, 1.7 Hz, 1H), 3.11 

(dt, J = 5.3, 1.9 Hz, 2H), 2.37 (s, 6H). 13C-NMR (126 MHz, CDCl3) δ 144.2, 140.9, 137.7 (2C), 

133.5, 132.7, 129.78, 129.3, 128.3, 127.5 (2C), 127.1, 122.3, 116.5, 89.8, 82.9, 24.3, 21.7 (2C). 

HRMS (MALDI) m/z calculated for C19H18
+. [M]+.: 246.1403, found: 246.1415. 

9-Allyl-1,3-dimethylphenanthrene 1.49b was obtained as a colorless oil (method A: 13 mg, 

26%). 1H-NMR (500 MHz, CDCl3) δ 8.73 (dd, J = 7.9, 1.8 Hz, 1H), 8.34 (s, 1H), 8.07 (dd, J = 

7.5, 2.1 Hz, 1H), 7.76 (s, 1H), 7.65 – 7.55 (m, 2H), 7.27 (s, 1H), 6.24 – 6.08 (m, 1H), 5.15 (t, J 

= 1.6 Hz, 1H), 5.12 (dq, J = 7.7, 1.7 Hz, 1H), 3.89 (dd, J = 6.2, 1.2 Hz, 2H), 2.70 (s, 3H), 2.56 

(s, 3H). 13C-NMR (126 MHz, CDCl3) δ 137.4, 135.6, 134.6, 133.4, 131.4, 131.2, 130.4, 130.0, 

128.9, 126.6, 126.3, 125.0, 123.8, 123.1, 120.7, 116.8, 38.4, 22.4, 20.1. HRMS (APCI) m/z 

calculated for C19H19
+ [M+H]+: 247.1481, found: 247.1477. 

2-(Pent-4-en-1-yn-1-yl)-3',5'-bis(trifluoromethyl)-1,1'-biphenyl (1.48c) 

Enyne 1.48c was synthesized following general procedure D starting 

from 2-(bromoethynyl)-3',5'-bis(trifluoromethyl)-1,1'-biphenyl (79 

mg, 0.2 mmol) and allyltrimethylsilane (64 µL, 0.4 mmol). The crude 

product was purified via flash chromatography affording 1.48c as a 

yellow oil (method A: 60 mg, 85%; method B: 64 mg, 90%). 

1H-NMR (400 MHz, CDCl3) δ 8.10 (dd, J = 1.7, 0.9 Hz, 2H), 7.96 – 7.81 (m, 1H), 7.60 (dt, J 

= 7.1, 1.3 Hz, 1H), 7.45 – 7.32 (m, 3H), 5.76 (ddt, J = 17.0, 10.0, 5.4 Hz, 1H), 5.17 (dq, J = 

17.0, 1.8 Hz, 1H), 5.07 (dq, J = 10.0, 1.6 Hz, 1H), 3.08 (dt, J = 5.5, 1.8 Hz, 2H). 13C-NMR (101 

MHz, CDCl3) δ 142.5, 140.5, 133.4, 131.7, 131.2 (q, J = 33.2 Hz, 2C), 129.6 (d, J = 3.0 Hz, 

2C), 129.1, 128.4 (2C), 123.5 (q, J = 272.6 Hz, 2C), 122.2, 121.0 (p, J = 3.8 Hz), 116.4, 91.3, 
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81.1, 23.6. 19F NMR (376 MHz, CDCl3) δ -62.88. HRMS (APCI) m/z calculated for C19H11F6
+ 

[M-H]+: 353.0759, found: 353.0759. 

2-(Pent-4-en-1-yn-1-yl)-1,1'-biphenyl-2',3',4',5',6'-d5 and 9-allylphenanthrene-1,2,3,4,10-

d5 (1.48d and 1.49d) 

Enyne 1.48d and phenanthrene 1.49d were 

synthesized following the general procedure D 

(methods A and B) starting from 2-(bromoethynyl)-

1,1'-biphenyl-2',3',4',5',6'-d5 (53 mg, 0.2 mmol) and 

allyltrimethylsilane (64 µL, 0.40 mmol). 1.48d and 

1.49d were separated by flash chromatography using pentane as eluent. 

2-(Pent-4-en-1-yn-1-yl)-1,1'-biphenyl-2',3',4',5',6'-d5 (65% deuterated) 1.48d was obtained as a 

colorless oil (method A: 18 mg, 40%, method B: 16 mg, 36%). 1H-NMR (400 MHz, CDCl3) δ 

7.64 – 7.52 (m, 1H), 7.45 – 7.26 (m, 3H), 5.78 (ddt, J = 17.0, 10.2, 5.2 Hz, 1H), 5.20 (dq, J = 

17.0, 1.8 Hz, 1H), 5.06 (dq, J = 10.0, 1.7 Hz, 1H), 3.09 (dt, J = 5.2, 1.8 Hz, 2H). 13C-NMR (101 

MHz, CDCl3) δ 143.70 (d, J = 4.8 Hz), 140.65 (d, J = 19.3 Hz), 133.2, 132.2, 129.5, 129.3 (2C), 

128.0, 127.9 (2C), 127.3, 126.9, 122.1, 116.2, 89.5, 82.4, 23.8. HRMS (APCI) m/z calculated 

for C17H10D5
+ [M+H]+: 224.1482, found: 224.1471. 

9-Allylphenanthrene-1,2,3,4,10-d5 (65% deuterated) 1.48d was obtained as a colorless oil 

(method C: 11 mg, 24%). The structure was assigned on basis of nOe experiments. 1H-NMR 

(400 MHz, CDCl3) δ 8.77 – 8.71 (m, 1H), 8.13 – 8.08 (m, 1H), 7.71 – 7.57 (m, 2H), 6.29 – 6.12 

(m, 1H), 5.20 (t, J = 1.5 Hz, 1H), 5.16 (dt, J = 6.5, 1.6 Hz, 1H), 3.90 (dt, J = 6.2, 1.5 Hz, 2H). 

13C-NMR (126 MHz, CDCl3) δ 136.8, 134.4, 131.9, 131.4, 130.8, 129.9, 128.3, 126.8, 126.8, 

126.6, 126.4, 126.3, 124.9, 123.3, 122.6, 116.8, 37.7. HRMS (APCI) m/z calculated for 

C17H9D5
+. [M]+.: 223.1404, found: 223.1414. 

Synthesis of Allylphenanthrene 150b 

The title compound (colorless oil, 6 mg, quant.) was synthesized by 

mixing (3',5'-dimethyl-2-(pent-4-en-1-yn-1-yl)-1,1'-biphenyl) (5.7 mg, 

0.023 mmol) with [(tBuXPhos)AuNCMe]BAr4
F (5 mol%, 1.8 mg) in 

DCE (0.46 mL, 0.05 M). The resulting mixture was stirred at 100 ºC for 

18 h under argon. After this time, TLC indicated completion of the reaction and the crude was 

directly subjected to silica gel column chromatography (eluent = pentane) to obtain 10-allyl-

1,3-dimethylphenanthrene (90% pure). The structure was assigned on basis of nOe experiments. 

1H-NMR (400 MHz, CDCl3) δ 8.64 (dd, J = 7.6, 1.7 Hz, 1H), 8.46 (s, 1H), 7.77 (dd, J = 7.6, 
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1.7 Hz, 1H), 7.60 – 7.52 (m, 2H), 7.51 (s, 1H), 7.25 (s, 1H), 6.18 (ddt, J = 17.2, 10.5, 5.4 Hz, 

1H), 5.12 (dq, J = 10.3, 1.8 Hz, 1H), 4.89 (dq, J = 17.2, 1.9 Hz, 1H), 4.05 (d, J = 5.3 Hz, 2H), 

2.92 (s, 3H), 2.56 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 138.6, 135.3, 135.2, 134.9, 133.1, 

132.6, 131.7, 130.2, 129.6, 129.1, 127.7, 126.5, 126.1, 123.1, 121.8, 116.2, 41.4, 25.6, 21.7. 

HRMS (APCI) m/z calculated for C19H19
+ [M+H]+: 247.1481, found: 247.1474. 

Synthesis of 9-(Bromomethylene)-9H-fluorene (1.51a) 

 

2-(Bromoethynyl)-1,1'-biphenyl 1.47a (5 mg, 20 µmol, 1 equiv) was dissolved in CH2Cl2 (40 

µL). [(tBuXPhos)AuNCMe]BAr4
F (1.5 mg, 1 µmol, 5 mol%) was added. The resulting mixture 

was stirred at 23 °C for 18 h. The crude was analyzed by NMR. A mixture of 9-

(bromomethylene)-9H-fluorene and 9-bromophenanthrene was detected in a 95:5 ratio. The 

crude product was purified by flash chromatography affording just 1.51a  

9-(Bromomethylene)-9H-fluorene: 1H-NMR (300 MHz, CDCl3) δ 8.60 (dt, J = 7.6, 0.9 Hz, 

1H), 7.73 (ddd, J = 7.5, 1.3, 0.6 Hz, 1H), 7.69 (ddd, J = 7.6, 1.3, 0.7 Hz, 1H), 7.59 (dt, J = 7.5, 

0.9 Hz, 1H), 7.46 (td, J = 7.5, 1.2 Hz, 1H), 7.41 (s, 1H), 7.42 – 7.34 (m, 2H), 7.33 – 7.26 (m, 

1H). 13C-NMR (101 MHz, CDCl3) δ 141.4, 139.1, 138.8, 138.4, 136.6, 129.4, 128.6, 127.3, 

127.2, 125.7, 120.1, 119.8, 119.8, 105.8. The NMR data were in agreement with the ones 

previously reported in the literature.112 

Attempted synthesis of 1.49a from 1.51a and 1.52a 

 

The crude 95:5 mixture of 1.51a and 1.52a obtained according to the previous conditions was 

filtered through a small plug of silica gel, concentrated under reduced pressure, and subjected 

to the following conditions without further purification. The crude was dissolved in DCE (0.1 

 
112 G. C. Paul, J. J. Gajewski, Synthesis 1997, 5, 524–526. 
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mL). Allyltrimethylsilane (6.2 µL, 40 µmol, 2 equiv) was added, followed by 

[(tBuXPhos)AuNCMe]BAr4
F (1.5 mg, 1 µmol, 5 mol%). The reaction was stirred at 75 °C for 

18 h. The crude was analyzed by NMR. No reaction was detected. 

 

9-Bromophenanthrene (26 mg, 0.1 mmol, 1 equiv) was dissolved in DCE (0.1 mL). 

Allyltrimethylsilane (32 µL, 0.2 mmol, 2 equiv) was added, followed by 

[(tBuXPhos)AuNCMe]BAr4
F (7.6 mg, 5 µmol, 5 mol%). The reaction was stirred at 75 °C for 

18 h. The crude was allowed to cool to room temperature and analyzed by 1H-NMR. No reaction 

was detected. 

3-Allyl-1,2-dihydronaphthalene (1.54a) 

Diene 1.54a was synthesized following general procedure D starting from 

(4-bromobut-3-yn-1-yl)benzene (42 mg, 0.2 mmol) and 

allyltrimethylsilane (64 µL, 0.4 mmol). The crude product was purified by flash 

chromatography affording 1.54a as a colorless oil (method A: 22 mg, 64%). The structure was 

assigned on basis of nOe experiments. 

1H-NMR (400 MHz, CDCl3d) δ 7.17 – 7.06 (m, 3H), 7.03 – 6.95 (m, 1H), 6.25 (bs, 1H), 5.89 

(ddtd, J = 16.8, 10.0, 6.8, 0.9 Hz, 1H), 5.41 – 4.95 (m, 2H), 2.94 (bd, J = 6.7, 2H), 2.82 (t, J = 

8.2 Hz, 2H), 2.26 (bt, J = 8.9, 2H). 13C-NMR (126 MHz, CDCl3) δ 140.1, 135.8, 134.8, 134.4, 

127.2, 126.4, 126.2, 125.5, 123.1, 116.4, 41.8, 28.1, 27.2. HRMS (APCI) m/z calculated for 

C13H15
+ [M+H]+: 171.1168, found: 171.1167. 

3-Allyl-6-methyl-1,2-dihydronaphthalene (1.54b) 

Diene 1.54b was synthesized following general procedure D–method A 

starting from 1-(4-bromobut-3-yn-1-yl)-3-methylbenzene (22 mg, 0.1 

mmol) and allyltrimethylsilane (127 µL, 0.8 mmol). The crude mixture was analyzed by 1H-

NMR using mesitylene as internal standard and product 1.54b was detected in 20% yield. 

1H-NMR (400 MHz, CDCl3) δ 7.40 (s, 1H), 7.05 – 6.96(m, 2H), 6.23 (bs, 1H), 5,90 (ddt, J = 

16.9, 10.0, 6.8 Hz, 1H), 5.19 – 5.08 (m, 2H), 2.96 (dd, J = 12.2, 6.3 Hz, 1H), 2.87 – 2.77 (m, 

3H), 2.40 – 2.38 (m, 2H), 2.32 (s, 3H).  
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3-Allyl-1-methyl-1,2-dihydronaphthalene (1.54c) 

Diene 1.54c was synthesized following general procedure D starting from 

(5-bromopent-4-yn-2-yl)benzene (45 mg, 0.2 mmol) and 

allyltrimethylsilane (64 µL, 0.4 mmol). The crude product was purified by 

flash chromatography affording 1.54c as a colorless oil (method A: 15 mg, 42%).  

1H-NMR (400 MHz, CDCl3) δ 7.18 – 7.09 (m, 3H), 7.04 – 6.94 (m, 1H), 6.23 (p, J = 1.4 Hz, 

1H), 5.87 (ddt, J = 16.9, 10.0, 6.8 Hz, 1H), 5.42 – 4.98 (m, 2H), 3.01 – 2.86 (m, 3H), 2.40 (dddt, 

J = 16.6, 6.7, 1.9, 1.0 Hz, 1H), 2.03 (ddq, J = 16.7, 7.5, 1.0 Hz, 1H), 1.22 (d, J = 7.0 Hz, 3H). 

13C-NMR (101 MHz, CDCl3) δ 139.4, 138.4, 135.7, 134.0, 126.5, 126.3, 125.8, 125.7, 122.5, 

116.5, 41.9, 35.2, 32.3, 20.1. HRMS (APCI) m/z calculated for C14H17
+ [M+H]+: 185.1325, 

found: 185.1323. 

3-(2-(Chloromethyl)allyl)-1,2-dihydronaphthalene (1.54d) 

Diene 1.54d was synthesized following general procedure D starting from 

(4-bromobut-3-yn-1-yl)benzene (42 mg, 0.2 mmol) and (2-

(chloromethyl)allyl)trimethylsilane (72 μL, 0.40 mmol). The crude product was purified by 

flash chromatography affording 1.54d as a colorless oil (method A: 6 mg, 13%).  

1H-NMR (500 MHz, CDCl3) δ 7.17 – 7.11 (m, 1H), 7.11 – 7.08 (m, 2H), 7.04 – 6.99 (m, 1H), 

6.33 (bs, 1H), 5.25 (bs, 1H), 5.10 (q, J = 1.3 Hz, 1H), 4.05 (d, J = 0.9 Hz, 1H), 3.07 (s, 1H), 

2.81 (t, J = 8.2 Hz, 1H), 2.22 (t, J = 7.9 Hz, 2H). 13C-NMR (101 MHz, CDCl3) δ 142.8, 138.0, 

134.5, 134.5, 127.2, 126.6, 126.5, 125.7, 125.1, 116.6, 47.5, 41.5, 28.2, 26.7. HRMS (APCI) 

m/z calculated for C14H16Cl+ [M+H]+: 219.0935, found: 219.0935. 

(4-Bromo-6,6-dimethylhept-1-yn-1-yl)benzene (1.58) 

Compound 1.58 was synthesized following general procedure C 

starting from (bromoethynyl)benzene (36 mg, 0.2 mmol) and 

dimethylpent-1-ene (58 µL, 0.4 mmol). The reaction time was 48 h. 

The crude product was purified by flash chromatography affording 1.58 as a colorless oil 

(method A: 15 mg, 27%). 

1H-NMR (400 MHz, CDCl3) δ 7.47 – 7.40 (m, 2H), 7.35 – 7.30 (m, 3H), 4.20 (tdd, J = 7.3, 5.6, 

3.6 Hz, 1H), 3.07 (dd, J = 17.1, 5.7 Hz, 1H), 2.99 (dd, J = 17.1, 7.3 Hz, 1H), 2.14 (dd, J = 15.5, 

3.6 Hz, 1H), 2.06 (dd, J = 15.5, 7.4 Hz, 1H), 1.05 (s, 9H). 13C-NMR (101 MHz, CDCl3) δ 131.6 

(2C), 128.3 (2C), 128.0, 123.3, 86.6, 82.9, 51.6, 48.0, 32.4, 31.1, 29.7 (3C). HRMS (APCI) m/z 

calculated for C15H20Br+ [M+H]+: 279.0743, found: 279.0740. 

(2-Bromocyclohexyl)ethynyl)benzene (1.60) 
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Compound 1.60 was synthesized following general procedure C starting 

from (bromoethynyl)benzene (36 mg, 0.2 mmol) and cyclohexene (20 

µL, 0.4 mmol).The crude product was purified by flash chromatography 

affording 1.60 as a yellow oil (method A: 16 mg, 60%). The relative configuration has been 

assigned by comparison with the 1H-NMR of the syn product. 

1H-NMR (500 MHz, CDCl3) δ 7.48 – 7.42 (m, 2H), 7.33 – 7.27 (m, 3H), 4.20 (td, J = 8.8, 3.8 

Hz, 1H), 2.95 (td, J = 8.7, 4.0 Hz, 1H), 2.44 – 2.34 (m, 1H), 2.22 (dddd, J = 13.2, 5.4, 3.3, 1.6 

Hz, 1H), 1.93 – 1.82 (m, 1H), 1.82 – 1.74 (m, 2H), 1.63 (dddd, J = 13.7, 10.1, 9.1, 3.2 Hz, 1H), 

1.43 (ddq, J = 12.3, 8.1, 2.4 Hz, 2H). 13C-NMR (126 MHz, CDCl3) δ 132.1, 132.0, 132.0, 128.6, 

128.3, 123.8, 91.5, 83.1, 55.7, 39.5, 36.0, 31.9, 25.5, 24.2. HRMS (APCI) m/z calculated for 

C14H16Br+ [M+H]+: 249.0430, found: 279.0436. 

 

(2-Bromocyclopentyl)ethynyl)benzene (1.62) 

Compound 1.62 was synthesized following general procedure C starting 

from (bromoethynyl)benzene (36 mg, 0.2 mmol) and cyclopentene (18 

µL, 0.4 mmol).The crude product was purified by flash chromatography 

affording 1.62 as a yellow oil (method A: 12 mg, 46%). The relative configuration has been 

assigned by comparison with the 1H-NMR of the syn product. 

Br

Br
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1H-NMR (500 MHz, CDCl3) δ 7.42 – 7.37 (m, 2H), 7.31 – 7.27 (m, 3H), 4.32 (dt, J = 6.5, 5.3 

Hz, 1H), 3.23 (dt, J = 8.0, 5.4 Hz, 1H), 2.49 – 2.38 (m, 1H), 2.33 – 2.25 (m, 1H), 2.09 (ddt, J = 

15.7, 8.6, 5.3 Hz, 1H), 1.98 – 1.80 (m, 3H). 13C-NMR (126 MHz, CDCl3) δ 132.0 (2C), 128.6, 

128.6, 128.3, 123.7, 90.7, 83.1, 55.8, 42.5, 36.8, 31.8, 23.1. HRMS (APCI) m/z calculated for 

C13H14Br+ [M+H]+: 249.0273, found: 249.0274. 

 

6-Bromo-7-phenylbicyclo[3.2.0]hept-6-ene (1.63) 

Compound 1.63 was synthesized following general procedure C starting from 

(bromoethynyl)benzene (36 mg, 0.2 mmol) and cyclopentene (18 µL, 0.4 

mmol).The crude product was purified by flash chromatography affording 1.63 

as a yellow oil (method A: 6 mg, 22%). 

1H-NMR (500 MHz, CDCl3) δ 7.69 – 7.65 (m, 2H), 7.37 (tq, J = 8.2, 1.1 Hz, 2H), 7.33 – 7.28 

(m, 1H), 3.57 (dd, J = 6.9, 3.5 Hz, 1H), 3.42 (dd, J = 7.2, 3.5 Hz, 1H), 1.82 (dd, J = 12.8, 6.0 

Hz, 1H), 1.77 – 1.68 (m, 2H), 1.61 (qt, J = 12.5, 6.1 Hz, 1H), 1.39 – 1.21 (m, 2H). 13C-NMRδ 

143.4, 132.4, 128.7 (2C), 128.5, 126.1 (2C), 111.1, 52.8, 46.7, 26.3, 24.9, 23.2. HRMS (APCI) 

m/z calculated for C13H14Br+ [M+H]+: 249.0273, found: 249.0267. 

(2-Bromocyclopentyl)ethynyl)benzene (1.65) 

Compound 1.65 was synthesized following general procedure C starting from 

(bromoethynyl)benzene (36 mg, 0.2 mmol) and (Z)-cyclooctene (26 µL, 0.4 

Br

Br
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mmol).The crude product was purified by flash chromatography affording 1.65 as a yellow oil 

(method A: 24 mg, 82%).  

1H-NMR (400 MHz, CDCl3) δ 7.66 – 7.51 (m, 2H), 7.40 – 7.34 (m, 2H), 7.32 – 7.27 (m, 1H), 

3.22 – 3.08 (m, 1H), 2.99 (ddd, J = 12.0, 4.5, 2.1 Hz, 1H), 2.06 – 1.99 (m, 1H), 1.92 (dtd, J = 

12.8, 3.3, 1.8 Hz, 1H), 1.80 – 1.70 (m, 1H), 1.70 – 1.61 (m, 1H), 1.61 – 1.34 (m, 8H).  

 

Experimental mechanistic studies 

Experiments with -gold(I) acetylide complexes 

 

The reaction was carried out following the general procedure B starting from 1.39n (33.7 mg, 

0.1 mmol)., and using IPrAuCl (5 mol%, 3.1 mg). The reaction was monitored by TLC and once 

completed the reaction was cooled down to room temperature, the solvent removed under 

reduced pressure and the crude analyzed by 1H-NMR using trichloroethylene as internal 

standard indicating that 1.40n was obtained in 21% yield. 

Synthesis of σ-(Phenylacetylene)gold(I) complex 1.M 

 

An oven dried schlenk tube was loaded with (E)-(4,4-bis(methoxymethyl)hept-1-en-6-yn-1-

yl)benzene (38.8 mg, 0.15 mmol) and THF (1.3 ml), and the mixture was cooled down to -50 

°C. A freshly prepared solution of lithium bis(trimethylsilyl)amide (75 µl, 0.18 mmol) in THF 

(2.4 M) was added dropwise and the reaction was stirred for 30 min at the same temperature. 

Then, (1,3-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-imidazol-2-yl)gold(I) chloride (62.2 

mg, 0.1 mmol) dissolved in THF (2.7 ml) was added dropwise. After 15 min, the cooling bath 

was removed letting the reaction stirring for 10 h at 23 ºC. The crude was then concentrated and 

redissolved in CH2Cl2, filtered through cotton and teflon (0.22). The solvent was removed and 

OMe

OMe

Ph
dry THF, -50 ºC, 15 h

+

LiHMDS (1.8 equiv)

Cl

Au

NN

iPr

iPriPr

iPr
OMe
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the solid washed several times with pentane affording the product as a pale-yellow solid in 73% 

yield.  

1H-NMR (500 MHz, CDCl3) δ 7.46 (t, J = 7.8 Hz, 2H), 7.31 – 7.22 (m, 8H), 7.16 (ddt, J = 7.5, 

6.3, 1.7 Hz, 1H), 7.11 (s, 2H), 6.34 (d, J = 15.8 Hz, 1H), 6.18 (dt, J = 15.6, 7.6 Hz, 1H), 3.23 (s, 

6H), 3.23 – 3.17 (m, 4H), 2.60 (hept, J = 7.0 Hz, 4H), 2.21 (dd, J = 7.7, 1.2 Hz, 2H), 2.16 (s, 

2H), 1.36 (d, J = 6.9 Hz, 12H), 1.21 (d, J = 6.9 Hz, 12H). 13C-NMR (101 MHz, CDCl3) δ 192.0, 

145.8 (4C), 138.4, 134.5 (2C), 132.2, 130.5 (2C), 128.4 (2C), 127.4, 126.7, 126.2 (2C), 124.2 

(4C), 123.1 (2C), 118.7, 100.8, 75.0 (2C), 59.4 (2C), 42.9, 35.3, 28.9 (4C), 24.6 (4C), 24.2 (4C), 

24.0. HRMS (ESI) m/z calculated for C44H57AuN2NaO2
+ [M+Na]+: 865.3978, found: 865.3999. 

 

σ-(Phenylacetylene)gold(I) complex 1.M (10 mg, 12 µmol, 1 equiv) was dissolved in DCE (0.1 

mL). In the second reaction, IPrAuCl (0.7 mg, 1.2 µmol, 10 mol%) was added followed by 

AgNTf2 (0.5 mg, 1.2 µmol, 10%). The mixture was stirred at 75 °C for 15 h. Then, the solvent 

was evaporated, 2-bromo-mesitylene (2.8 µL) was added as internal standard and the crude was 

analyzed by 1H-NMR in CD2Cl2. No reaction was detected. 

 

 

σ-(Phenylacetylene)gold(I) complex 1.N-a (30 mg, 42 µmol, 1 equiv) was dissolved in CD2Cl2 

(0.1 mL). Allyltrimethylsilane 1.43a (13 µL, 83 µmol, 2 equiv) was added, followed (or not) by 

[(tBuXPhos)AuNCMe]BAr4
F (1.9 mg, 1.2 µmol, 3 mol%). The mixture was stirred at 23 °C for 

15 h. Mesitylene (5 µL) was added as internal standard and the crude was analyzed by 1H and 

31P NMR. No reaction was detected. 
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σ-(Phenylacetylene)gold(I) complex 1.N-a (20 mg, 28 µmol, 1 equiv) was dissolved in CD2Cl2 

(0.06 mL). Allyltrimethylsilane 1.43a (13 µL, 83 µmol, 3 equiv) was added, followed by TMS-

Br (7 µL, 55 µmol, 2 equiv) The mixture was stirred at 23 °C for 15 h. 2-Bromo-mesitylene (4,2 

µL) was added as internal standard and the crude was analysed by 1H. No reaction was detected 

 

σ-(Phenylacetylene)gold(I) complex 1.N-a (6 mg, 8.3 µmol, 1 equiv), allyltrimethylsilane 1.43a 

(4 µL, 25 µmol, 3 equiv) and tetra-n-butylammonium bromide (3 mg, 8.3 µmol, 1 equiv) or 

LiBr (0.7 mg, 8.3 µmol, 1 equiv) were dissolved in CD2Cl2 or THF (0.1 mL), respectively. The 

mixture was stirred at 23 °C for 16 h. The crude was analyzed by NMR. No reaction was 

detected. 

 

σ,π-(Phenylacetylene)digold(I) complex 1.N-b (30 mg, 13 µmol, 1 equiv) was dissolved in 

CD2Cl2 (0.1 mL). Allyltrimethylsilane 1.43a (4.3 µL, 27 µmol, 2 equiv) was added, followed 

(or not) by [(tBuXPhos)AuNCMe]BAr4
F (0.6 mg, 0.4 µmol, 3 mol%). The mixture was stirred 

UNIVERSITAT ROVIRA I VIRGILI 
Transition Metal-Catalyzed Reactions of Heteroatom- Substituted Alkynes 
Margherita Zanini 



 

133 

 

at 23 ºC for 15 h. Mesitylene (5 L) was added as internal standard and the crude was analyzed 

by 1H and 31P NMR. No reaction was detected. 

 

σ,π-(Phenylacetylene)digold(I) complex 1.N-b (40 mg, 18 µmol, 1 equiv) was dissolved in 

CD2Cl2 (0.04 mL). Allyltrimethylsilane 1.43a (9µL, 54 µmol, 3 equiv) was added, followed by 

TMS-Br (5,5 µL, 36 µmol, 2 equiv) The mixture was stirred at 23 °C for 15 h. 2-Bromo-

mesitylene (2,8 µL) was added as internal standard and the crude was analysed by 1H. No 

reaction was detected 

 

σ,π-(Phenylacetylene)digold(I) complex 1.N-b (6 mg, 2.7 µmol, 1 equiv), allyltrimethylsilane 

1.43a (1.3 µL, 8.1 µmol, 3 equiv) and tetra-n-butylammonium bromide (1 mg, 2.7 µmol, 1 

equiv) or LiBr (0.2 mg, 2.7 µmol, 1 equiv) were dissolved in CD2Cl2 or THF (5 µL), 

respectively. The mixture was stirred at 23 °C for 16 h. The crude was analyzed by NMR. No 

reaction was detected. 

Experiments with 1.N-a or 1.N-b as catalysts 
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(Bromoethynyl)benzene 1.42a (36 mg, 0.2 mmol, 1 equiv) was dissolved in CD2Cl2 (0.2 mL). 

Allyltrimethylsilane 1.43a (64 µL, 0.4 mmol, 2 equiv) was added, followed by σ-

(phenylacetylene)gold(I) complex 1.N-a (4.34 mg, 6 µmol, 3 mol%) or σ,π-

(phenylacetylene)digold(I) complex 1.N-b (6.7 mg, 3 µmol, 1.5 mol%). The mixture was stirred 

at 23 °C for 15 h. Mesitylene (10 µL) was added as internal standard and the crude was analyzed 

by 1H and 31P NMR. Reaction was detected only in the case of using σ,π-

(phenylacetylene)digold(I) complex 1.N-b, in which the 1,4-enyne 1.44a was formed in 72% 

yield. 

13C-labelling experiments 

 

13C-labeled (bromoethynyl)benzene (36 mg, 0.2 mmol, 1 equiv) was dissolved in dry 

dichloromethane (0.2 mL, 1 M). Allylsilane (64 µL, 0.4 mmol, 2 equiv) was added, followed 

by the catalyst (3 mol%, method A: 9 mg of [(tBuXPhos)AuNCMe]BAr4
F or method B: 2 mg 

of InBr3). The resulting mixture was stirred at 23 ºC for 16 h. The crude was directly submitted 

to silica gel column chromatography (eluent = pentane) to obtain the pure 13C-labeled 1,4-enyne 

(colorless oil, method A: 20 mg, 71%; method B: 19 mg, 68%). 

13C-Labeled (bromoethynyl)benzene 13C-1.42a: 13C-NMR (101 MHz, CDCl3) δ 132.0 (d, J 

= 3.5 Hz, 2C), 128.7 (d, J = 1.3 Hz), 128.3 (2C), 122.7 (d, J = 13.7 Hz), 80.1 (d, J = 203.0 Hz), 

49.7.  

13C-Labeled pent-4-en-1-yn-1-ylbenzene 13C-1.44a: 13C-NMR (101 MHz, CDCl3) δ 132.4 (d, 

J = 2.1 Hz), 131.6 (d, J = 1.8 Hz, 2C), 128.2 (d, J = 5.5 Hz, 2C), 127.7 (d, J = 1.7 Hz), 123.7 
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(d, J = 90.7 Hz), 116.2, 86.2 (d, J = 71.7 Hz), 82.9, 23.7 (d, J = 11.2 Hz). The signal at 127.0 in 

the 13C-NMRspectrum corresponds to a 13C-labeled impurity. 

 

1D INADEQUATE (SELINQUATE) experiment 

We performed a 1D INADEQUATE (SELINQUATE) experiment of compound 1.44a, 

irradiating the C(sp3), to assign each alkyne signal.  
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1D INADEQUATE, 23,91 ppm, 60 Hz (101 MHz, CDCl3)  

 

 

1D INADEQUATE, 23,91 ppm (101 MHz, CDCl3) 

13C {1H} NMR (101 MHz, CDCl3) 

 

UNIVERSITAT ROVIRA I VIRGILI 
Transition Metal-Catalyzed Reactions of Heteroatom- Substituted Alkynes 
Margherita Zanini 



 

137 

 

1D INADEQUATE, 124,11 ppm, 90 Hz (101 MHz, CDCl3)  
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(2-Bromocyclohexyl)ethynyl-1-13C)benzene 

 

13C-Labeled (bromoethynyl)benzene (18 mg, 0.1 mmol, 1 equiv) was dissolved in dry 

dichloromethane (0.1 mL, 1 M). Cyclohexene (20 µL, 0.2 mmol, 2 equiv) was added, followed 

by the catalyst (3 mol%, 4.5 mg of [(tBuXPhos)AuNCMe]BAr4
F). The resulting mixture was 

stirred at 23 ºC for 16 h. The crude was directly submitted to silica gel column chromatography 

(eluent = pentane) to obtain the pure 13C-labeled product (colorless oil, 17 mg, 64%). 

13C-NMR (126 MHz, CDCl3) δ 131.8 (d, J = 2.1 Hz), 128.3 (d, J = 5.5 Hz), 128.0 (d, J = 1.9 

Hz), 123.6 (d, J = 90.5 Hz), 91.3 (d, J = 178.2 Hz), 82.8, 55.5 (d, J = 2.4 Hz), 39.3, 35.8, 31.6, 

25.2, 23.9. 

 

We hydrogenated 13C-1.60 and 1.60 in order to be able to distinguish between the two carbon 

of the alkyne and then assign the position of the labelled carbon in 13C-1.60. 

(2-(2-Bromocyclohexyl)-ethynyl-1-13C)benzene (13C-S1.1) 
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((2-Bromocyclohexyl)ethynyl-1-13C)benzene (18 mg, 0.7 mmol, 1 equiv) and Pd/C (7 mg) were 

suspended in degassed MeOH (0.35 mL, 0.2 M) in a microwave vial, the vial closed and argon 

was bubbled inside for 10 min. Then, the vial was evacuated and backfilled three times with 

hydrogen using a balloon. The mixture was the stirred for 3 h at 23 ºC. Afterwards, the crude 

was filtered thought a pad of Celite® and the pad washed with Et2O. The solvent was removed 

under vacuum to obtain the product (18 mg, 96% yield). 

1H-NMR (400 MHz, CDCl3) δ 7.32 – 7.26 (m, 2H), 7.24 – 7.16 (m, 3H), 3.90 (ddd, J = 11.2, 

10.1, 4.2 Hz, 1H), 2.72 (dddd, J = 125.9, 13.5, 11.1, 5.0 Hz, 1H), 2.69 (ddd, J = 13.6, 10.7, 6.2 

Hz*, 1H) 2.46 – 2.30 (m, 1H), 2.25 – 2.11 (m, 1H), 2.10 – 1.99 (m, 1H), 1.88 (dddd, J = 14.8, 

12.9, 8.1, 3.5 Hz, 1H), 1.82 – 1.64 (m, 3H), 1.63 – 1.46 (m, 1H), 1.40 – 1.23 (m, 3H), 1.22 – 

1.08 (m, 1H). * The signal overlaps with the multiplet at 2.46-2.30 ppm making not possible to 

establish the 1JC-H. 13C-NMR (101 MHz, CDCl3) δ 142.5 (d, J = 43.6 Hz), 128.5 (2C), 128.4 

(2C), 125.9, 60.6 (d, J = 3.7 Hz), 45.7, 38.8, 37.0 (d, J = 34.1 Hz), 32.5, 31.9, 27.5, 25.5. 

 

(2-(2-Bromocyclohexyl)ethyl)benzene (S1.1) 
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((2-bromocyclohexyl)ethynyl)benzene (18 mg, 0.07 mmol, 1 equiv) and Pd/C (7 mg) were 

suspended in degassed MeOH (0,35 mL, 0,2 M) in a microwave vial, the vial closed and argon 

was bubbled inside for 10 minutes. Then the vial was evacuated and backfilled three times with 

hydrogen using a balloon. The mixture was the stirred for 3h at 23 ºC, then the crude was filtered 

thought a pad of Celite® and the pad washed with Et2O. The solvent was removed under vacuum 

to obtain the product (18 mg, 96% yield). 

1H-NMR (400 MHz, Chloroform-d) δ 7.37 – 7.27 (m, 2H), 7.25 – 7.17 (m, 3H), 4.06 – 3.76 (m, 

1H), 2.74 (ddd, J = 13.51, 11.13, 5.05 Hz, 1H), 2.55 (ddd, J = 13.52, 10.66, 6.17 Hz, 1H), 2.44 

– 2.35 (m, 1H), 2.20 (dddd, J = 13.80, 11.14, 6.21, 2.84 Hz, 1H), 2.11 – 2.02 (m, 1H), 1.90 (tdd, 

J = 12.83, 11.18, 3.52 Hz, 1H), 1.74 (ddtd, J = 19.12, 10.31, 7.06, 6.37, 2.97 Hz, 3H), 1.59 

(dddd, J = 13.64, 10.72, 8.67, 5.04 Hz, 1H), 1.43 – 1.26 (m, 2H), 1.16 (tdd, J = 13.87, 8.20, 3.10 

Hz, 1H). 13C-NMR (101 MHz, CDCl3) δ 142.4, 128.5 (2C), 128.4 (2C), 125.9, 60.5, 45.6, 38.8, 

36.9, 32.5, 31.9, 27.5, 25.4. 

Superimposition of the 13C-labeled compound and the unlabeled compound 

 

13C NMR S1.1 (101 MHz, CDCl3) 

 

13C NMR 13C-S1.1 (101 MHz, CDCl3) 
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Theoretical DFT Calculations 

Computational Methods 

Calculations were performed by means of the Gaussian 09 suite of programs.113 DFT was 

applied using M06.114 The LANL2DZ basis set115 was utilized to describe Au, In, and Br with 

ECP and additional polarization function (ζf = 1.050 for Au,116 ζd = 0.143 for In,117 and ζd = 

0.428 for Br117). The 6-31G(d) basis set118 was employed for all remaining atoms (C, H, P and 

 
113 Gaussian 09, Revision B.1, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. 

A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., 

Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, 

M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., 

Nakai, H., Vreven, T., Montgomery, J. A., Peralta, Jr. J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., 

Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, 

A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. 

E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., 

Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R.L., Morokuma, K.,, Zakrzewski, V. 

G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, 

J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian, Inc., Wallingford CT 2009. 

114 Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.  

115 a) P. J. Hay, W. R. J. Wadt, Chem. Phys. 1985, 82, 270−283. (b) P. J. Hay, W. R. J. Wadt, Chem. 

Phys. 1985, 82, 299−310. 

116 A. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. Köhler, R. Stegmann, A. 

Veldkamp, G. Frenking, Chem. Phys. Lett. 1993, 208, 111−114. 

117 A. Höllwarth, M. Böhme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R. Stegmann, 

A. Veldkamp, G. Frenking, Chem. Phys. Lett. 1993, 208, 237–240. 

118 W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257–2261.  

1H NMR S1.1 (400 MHz, CDCl3) 

 

1H NMR 13C-S1.1 (400 MHz, CDCl3) 

 

1JC-H= 125.9 Hz 
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Si). Full geometry optimizations were carried out in CH2Cl2, through an implicit solvent 

SMD.119 The stationary points were characterized by vibrational analysis. Transition states were 

identified by the presence of one imaginary frequency while minima by a full set of real 

frequencies. The connectivity of the transition states was confirmed by relaxing each transition 

state towards both the reactant and the product. The energy for the optimized geometry of some 

specific non-critical structures, that could not be located, was estimated through constrained 

optimizations with distances at reasonable values. These cases are indicated in the main 

schemes. Reported energies are potential energies (E) and free energies (G) in solution, 

computed at 298 K and 1 atm.  

The bonding situation was analyzed using Natural Bond Orbital analysis (NBO 6.0).120 The 

Natural Localized Molecular Orbitals (NLMO) associated to the Au–C1 and C1–C2 interactions 

have been determined.121 And the NLMOs isosurface were visualized using ChemCraft, with 

the surface contour set at 0.05.122 

Computed Structures and Energies 

 

AuOMe3 

 

E = -596.285531 Hartrees 

G = -596.206222 Hartrees 

1.42a 

  

E = -320.690177 Hartrees 

G = -320.624009 Hartrees 

1.43a 

 
119 A.V. Marenich, C. J. Cramer, D.G. Truhlar, J. Phys. Chem. B. 2009, 113, 6378–6396. 

120 E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. 

R. Landis, F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013. 

121 A. E. Reed, F. Weinhold,. J. Chem. Phys. 1985, 83, 1736–1740. 

122 Chemcraft - graphical software for visualization of quantum chemistry computations. 

https://www.chemcraftprog.com. 

 

E = -526.337057 Hartrees 

G = -526.192697 Hartrees 

Int1 

 

E = -1122.666956 Hartrees 

G = -1122.422385 Hartrees 
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E = -917.005188 Hartrees 

G = -916.839399 Hartrees 

TS2a-3a 

 

E = -916.972001 Hartrees 

G = -916.807066 Hartrees 

Int3a 

 

E = -916.974224 Hartrees 

G = -916.810155 Hartrees 

TS2a-4a 

 

E = -1443.341615 Hartrees 

G = -1443.006714 Hartrees 

Int4a 

 

E = -1443.388423 Hartrees 

G = -1443.050093 Hartrees 

TS2a-4b 

 

E = -1443.341355 Hartrees 

G = -1443.010038 Hartrees 

Int4b 

 

E = -1443.389057 Hartrees 

G = -1443.051952 Hartrees 

TS2a-4c 

 

E = -1443.345029 Hartrees 

G = -1443.011914 Hartrees 

Int4c 
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E = -1443.392267 Hartrees 

G = -1443.052591 Hartrees 

TS4a-4a 

 

E = -1443.378962 Hartrees 

G = -1443.038141 Hartrees 

TS2a-5a 

 

E = -1443.332051 Hartrees 

G = -1442.999147 Hartrees 

Int5a 

 

E = -1443.388523 Hartrees 

G = -1443.046143 Hartrees 

TS2a-5b 

 

E = -1443.332906 Hartrees 

G = -1443.003499 Hartrees 

Int5b 

 

E = -1443.385638 Hartrees 

G = -1443.050019 Hartrees 

TS2a-5c 

 

E = -1443.332322 Hartrees 

G = -1442.999974 Hartrees 

Int5c 

 

E = -1443.383649 Hartrees 

G = -1443.046384 Hartrees 
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TS5b-5a 

 

E = -1443.381372 Hartrees 

G = -1443.041744 Hartrees 

TS5c-5b 

 

E = -1443.377199 Hartrees 

G = -1443.036555 Hartrees 

TS4a-6a 

 

E = -1443.360667 Hartrees 

G = -1443.021300 Hartrees 

Int6a 

 

E = -1443.387853 Hartrees 

G = -1443.051538 Hartrees 

TS6a-7a 

 

E = -1443.386079 Hartrees 

G = -1443.047769 Hartrees 

Int7a 

 

E = -1021.052307 Hartrees 

G = -1020.818080 Hartrees 

TS7a-8a 

 

E = -1021.044896 Hartrees 

G = -1020.811813 Hartrees 

Int8a and Int9a 

 

E = -1021.088724 Hartrees 

G = -1020.854108 Hartrees 

TS7a-9a 

 

E = -1021.038332 Hartrees 

G = -1020.801922 Hartrees 
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TMSBr 

 

E = -422.327535 Hartrees 

G = -422.249984 Hartrees 

TS4a-10a 

 

E = -1443.380179 Hartrees 

G = -1443.040235 Hartrees 

Int10a 

 

E = -1443.383549 Hartrees 

G = -1443.042177 Hartrees 

TS10a-11a 

 

E = -1443.377369 Hartrees 

G = -1443.039483 Hartrees 

Int11a 

 

E = -1443.376221 Hartrees 

G = -1443.040214 Hartrees 

TS11a-12a 

 

E = -1443.370089 Hartrees 

G = -1443.034948 Hartrees 

Int12a and Int13a 

 

E = -1443.413467 Hartrees 

G = -1443.07753 Hartrees 

Int11b 

 

E = -1443.368468 Hartrees 

G = -1443.029359 Hartrees 

TS11b-13a 
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E = -1443.359664 Hartrees 

G = -1443.018041 Hartrees 

TS10a-13a 

 

E = -1443.360906 Hartrees 

G = -1443.023592 Hartrees 

Int11a’ 

 

E = -2455.062317 Hartrees 

G = -2454.189742 Hartrees 

Int11b’ 

 

E = -2455.06141 Hartrees 

G = -2454.190399 Hartrees 

Int14a 

 

E = -1443.414110 Hartrees 

G = -1443.075077 Hartrees 

TS14a-15a 

 

E = -1443.400975 Hartrees 

G = -1443.061044 Hartrees 

Int15a 

 

E = -833.734326 Hartrees 

G = -833.495116 Hartrees 

Int16 

 

E = -609.661436 Hartrees 

G = -609.585184 Hartrees 

Int17a  

 

E = -1021.094438 Hartrees 

G = -1020.856693 Hartrees 

1.44 
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E = -424.766500 Hartrees 

G = -424.631895 Hartrees 

Int18a 

 

E = -995.565187 Hartrees 

G = -995.347107 Hartrees 

TS18a-3b 

 

E = -995.532868 Hartrees 

G = -995.315255 Hartrees 

Int3b 

 

E = -995.536834 Hartrees 

G = -995.319683 Hartrees 

TS18a-4d 

 

E = -1521.902552 Hartrees 

G = -1521.517107 Hartrees 

Int4d 

 

E = -1521.954258 Hartrees 

G = -1521.562363 Hartrees 

TS18a-5d 

 

E = -1521.894316 Hartrees 

G = -1521.509162 Hartrees 

Int5d 

 

E = -1521.946050 Hartrees 

G = -1521.554744 Hartrees 

TS18a-19 

 

E = -995.538878 Hartrees 

G = -995.318382 Hartrees 

Int19 
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E = -995.557427 Hartrees 

G = -995.334676 Hartrees 

TS18a-20 

 

E = -995.542198 Hartrees 

G = -995.320466 Hartrees 

Int20 

 

E = -995.557517 Hartrees 

G = -995.335046 Hartrees 

TS4d-10d 

 

E = -1521.941067 Hartrees 

G = -1521.548723 Hartrees 

Int10d 

 

E = -1521.944641 Hartrees 

G = -1521.551452 Hartrees 

TS10d-11d 

 

Frozen distance: d(C1−Br) = 2.56 Å. 

E = -1521.940598 Hartrees 

G = -1521.550227 Hartrees 

Int11d 

 

E = -1521.943863 Hartrees 

G = -1521.550433 Hartrees 

TS11d-12d 

 

E = -1.521,923545 Hartrees 

G = -1.521,534073 Hartrees 

Int12d 

 

E = -1.521,975481 Hartrees 

G = -1.521,582368 Hartrees 

TS11d-21d 

C1
Br
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E = -1521.942163 Hartrees 

G = -1521.549526 Hartrees 

Int21d 

 

E = -1521.951195 Hartrees 

G = -1521.556609 Hartrees 

TS21d-22d 
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Int24d 
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Int25d 

 

E = -1099.715837 Hartrees 

G = -1099.418224 Hartrees 
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E = -1112.178583 Hartrees 

G = -1111.900253 Hartrees 

TS26-27 

 

E = -1112.169439 Hartrees 

G = -1111.890997 Hartrees 

Int27 

 

E = -1112.214437 Hartrees 

G = -1111.932123 Hartrees 

TS27-28 

 

E = -1112.203238 Hartrees 

G = -1111.919938 Hartrees 

Int28 

 

E = -1112.203418 Hartrees 

G = -1111.921250 Hartrees 

TS28-29 

 

E = -1112.200428 Hartrees 

G = -1111.917490 Hartrees 

Int29 

 

E = -1112.201022 Hartrees 

G = -1111.920020 Hartrees 

TS29-30 

 

E = -1112.200078 Hartrees 

G = -1111.917848 Hartrees 

Int30 

 

E = -1112.210068 Hartrees 
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G = -1111.926307 Hartrees 

TS30-31 

 

E = -1112.193675 Hartrees 

G = -1111.911351 Hartrees 

Int31 

 

E = -1112.293826 Hartrees 

G = -1112.007327 Hartrees 
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Gold(I)-Catalyzed Cycloaddition of Ynol Ethers with Alkenes 
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Introduction 

Synthesis of Cyclobutanones via [2+2] Cycloaddition of Ketenes with Alkenes 

Cyclobutanes, and cyclobutanones as their subclass, are of high interest due to their presence in 

the scaffold of natural products123 as well as in pharmaceutical relevant compounds (Figure 2.1, 

top).124 Their importance is not limited to their synthesis, but also as versatile intermediates. In 

fact, cyclobutyl derivatives are characterized for a high ring strain,125 calculated to range from 

18 to 27 kcal/mol depending on the substituents and the hybridization of the carbons of the four-

membered ring. Therefore, the release of this strain is an excellent driving force for many 

transformations.126 Favored by thermodynamics then, a variety of ring expansion can be 

performed accessing larger carbocycles127, including lactones and lactams128. Acyclic 

compounds can be also obtained by ring opening reactions.  

 

Figure 2.1. Selected examples of cyclobutyl derivatives in natural occurring products and pharmaceuticals 

(top). Ring strain in kcal mol -1 for small carbocycles (bottom). 

Cyclobutanones present an even higher synthetic value due to the high electrophilicity of the 

carbonyl group that represents an additional handle for functionalization. Especially relevant in 

 
123 a) F. Secci, A. Frongia, P. P. Piras, Molecules 2013, 18, 15541–15572. b) J. Li, K. Gao, M. Bian, H. 

Ding, Org. Chem. Front. 2019, 7, 136–154. c) J. P. Deprés, P. Delair, J. F. Poisson, A. Kanazawa, A. 

E. Greene, Acc. Chem. Res. 2016, 49, 252–261. d) A. Sergeiko, V. V Poroikov, L. O. Hanus, V. M. 

Dembitsky, Open Med. Chem. J. 2008, 2, 26–37. 

124 a) G. S. Bisacchi, A. Braitman, C. W. Cianci, J. M. Clark, J. Med. Chem. 1991, 34, 1415–1421. b) E. 

D. Deeks, Drugs 2019, 79, 463–468. c) M. D. Tricklebank, Idrugs 2000, 3, 228–231. 

125 For an overview on ring strain: a) J. F. Liebman, A. Greenberg, Chem. Rev. 1976, 76, 311–365. b) K. 

B. Wiberg, Angew. Chem Int. Ed. 1986, 25, 312–322. 

126 For two reviews on the topic: a) T. Seiser, T. Saget, D. N. Tran, N. Cramer, Angew. Chem. Int. Ed. 

2011, 50, 7740–7752. b) E. Lee-Ruff, G. Mladenova, Chem. Rev. 2003, 103, 1449–1483. 

127 For selected examples see: a) J. A. Dabrowski, D.C. Moebius, A.J. Wommack, A.F. Kornahrens, J.S. 

Kingsbury, Org. Lett. 2010, 12, 3598–3601. b) E. Leemans, M. D’Hooghe, N. De Kimpe, Chem. Rev. 

2011, 111, 3268–3333. c) T. Seiser, N. Cramer, Chem. Eur. J. 2010, 16, 3383–3391. d) S. A. Miller, 

R. C. Gadwood, J. Org. Chem. 1988, 53, 2214–2220. e) M. H. Shaw, J. F. Bower, Chem. Commun. 

2016, 52, 10817–10829. 

128 K. S. Petersen, B. M. Stoltz, Tetrahedron 2011, 67, 4352–4357.  
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this context is their use as reactive center for desymmetrization.129 Therefore, several 

transformations have been developed for the synthesis of cyclobutanones, among which the 

[2+2] cycloaddition alkenes 2.2 with ketenes 2.1 is the most direct and atom economical 

strategy130 (Scheme 2.1).  

 

Scheme 2.1. [2+2] Cycloaddition of ketenes with alkenes to form cyclobutanones. 

Diphenylketene 2.5, a stable and isolable compound described by Herman Staudinger in 1905, 

is formed by dehalogenation of chlorodiphenylacetyl chloride 2.4, and is the first reported 

representative of these reactive intermediates (Figure 2.2a).131 Nowadays, ketenes can be 

generated thermally and photochemically, but probably the most popular method is the 

dehydrohalogenation of acid chlorides with tertiary amines or under reductive conditions in 

analogy with the Staudinger experiment.  

 

Figure 2.2. A) First ketene synthesis from Staudinger. B) frontier orbital structure and partial charges on 

the heteroallene moiety of a ketene. 

Structurally, ketenes are characterized for a linear “heteroallenic” moiety where the reactions 

take place. NMR and computational studies revealed that the HOMO of the ketene is located 

perpendicular to the plane and mainly on the oxygen and the -carbon, while the LUMO lays 

on the plane of the double bond and is mainly located on the -carbon. Therefore, a significant 

partial negative charge is located on -carbon making this prone to react with electrophiles, 

 
129 J. Sietmann, J. M. Wiest, Angew. Chem. Int. Ed. 2020, 59, 6964–6974. 

130 a) T. T. Tidwell, Acc. Chem. Res. 1990, 23, 273–279. b) C. M. Rasik, M. K. Brown, Synlett 2014, 25, 

760–765.c) A. D. Allen, T. T. Tidwell, Chem. Rev. 2013, 113, 7287–7342. d) A. D. Allen, T. T. 

Tidwell, Eur. J. Org. Chem. 2012, 1081–1096. 

131 a) Staudinger, H. Ber. Dtsch. Chem. Ges. 1905, 38, 1735. b) Staudinger, H. Justus Liebigs Ann. Chem. 

1907, 356, 51. c) (b) Staudinger, H. Ber. Dtsch. Chem. Ges. 1907, 40, 1145. 
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while a partial positive charge is located on the -carbon that is easily attacked by nucleophiles 

(Figure 2.2b). 

Due to the high polarization of ketenes, their stability is also highly influenced by the attached 

substituents: substituents donating electron density through s-p conjugation as well as -

acceptors stabilize the ketene that can eventually be isolated, while -donors and electronegative 

substituents lead to species more reactive towards [2+2] cycloaddition, and more difficult to 

handle. Considering the limited number of isolable ketenes, the general approach in their [2+2] 

cycloaddition with alkene is the generation of these reactive intermediates and their trapping in 

situ. It is important to note that, in general, unsubstituted ketene or mono-substituted ketenes 

are poorly reactive even with activated alkenes and can undergo decomposition or 

polymerization. In addition to this, the parent ketene is a highly toxic species with a bp of -56 

°C and whose preparation requires high temperatures (>500 °C) and a specific equipment132.  

 

Scheme 2.2. Limitation of the [2+2] cycloaddition of ketenes with alkenes (top). Use of chloro- and 

thioketenes as ketene surrogates (bottom). 

 
132 Mitzel, T.M. and Pigza, J.A. (2009). Ketene. In Encyclopedia of Reagents for Organic Synthesis, 

(Ed.). doi:10.1002/047084289X.rk000.pub2 
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An expedient way to access -unsubstituted or -monosubstituted cyclobutanones is to use the 

more reactive chloro-133 or thioketenes134 as ketene surrogate (2.6 and 2.7 in Scheme 2.2). Once 

the corresponding cyclobutanone is formed, the -substituents can be then removed under 

reductive conditions with Zn(0) or Bu3SnH to form the unsubstituted cyclobutanone 2.3c. In 

alternative, the substituents can be used as reactive centers for the insertion of other functional 

groups in −position. 

Ynol Ethers: A General Introduction 

Alkynes directly bounded to a heteroatom, namely ynamides, ynamines, alkynyl thioethers and 

ynol ethers (also known as ynol ethers) are valuable building blocks especially for reactions of 

carbon-carbon bond formation. All these species are characterized for a low steric hindrance 

due to the linear geometry and a highly polarized triple bond. In this sense ynol ethers like A 

resemble ketenes, since a partial positive charge is located on the carbon attached to the oxygen 

(C1 in Scheme 2.3) and a partial negative charge is located on the other carbon of the alkyne 

(C2 in Scheme 2.3). For this reasons ynol ethers can react both as nucleophiles (at C2) and as 

electrophiles (at C1) and up to 4 new bonds can be forged in a single transformation135 (Scheme 

2.3). Upon their reaction with an electrophile followed by addition of a nucleophile enol ether 

C is formed, which can further react with a new electrophile to generate intermediate D. 

Intermediate D can evolve into the highly substituted carbonyl compound F or undergo final 

nucleophilic attack to form ether E. 

 

Scheme 2.3. General reactivity of ynol ethers. 

 
133 Fieser, L.F., Fieser, M., Ho, T., Ho, T.‐L., Fieser, M., Fieser, L., Danheiser, R., Roush, W. and Smith, 

J. (2006). Dichloroketene. In Fieser and Fieser's Reagents for Organic Synthesis (eds L.F. Fieser, M. 

Fieser and T. Ho). doi:10.1002/9780471264194.fos03663 

134 M. D. Lawlor, T. W. Lee, R. L. Danheiser, J. Org. Chem. 2000, 65, 4375–4384. 

135 For a review on synthesis and applications of alkynyl ethers see: V. J. Gray, J. D. Wilden, Org. Biomol. 

Chem. 2016, 14, 9695–9711. 
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Despite the potential of these compounds, their use in synthesis is more limited compared to 

their nitrogen- or sulfur- analogous, mainly because of a general difficulty in their preparation 

and isolation. However, this lack of stability confers to ynol ethers unique reactive features. In 

fact, O-ethyl or O-tert-butyl ynol ethers 2.8a-b can easily undergo retro-ene reaction upon 

thermal treatment forming an ketene and extruding one molecule of ethylene or isobutylene, 

respectively. The reactive ketene can be then trapped intramolecularly by an appended alcohol 

or amine to generate lactones 2.9 or lactams 2.3135,136 (Scheme 2.4, blue). When the reaction is 

performed in a sealed tube the transient ketene can be trapped with a molecules of substrate in 

a [2+2] cycloaddition to form cyclobutenone 2.11 which can lead to symmetric diketone 2.12 

after hydrolysis (Scheme 2.4, green).137  

For aryl substituted O-tert-butyl ynol ethers the thermal retro-ene reaction occurs at 75 °C and 

the more stable ketene has been trapped with different external nucleophiles to form ketones, 

amides, esters, cyclobutanones, quinolines or allenes (Scheme 2.4, red). 138 Ketenes generated 

from 1-tert-butoxy-1,6-enyne undergo intramolecular [2+2] cycloaddition forming cis-fused 

cyclobunanones 2.14 (Scheme 2.4, orange). 139 

 
136 See as example: a) T. G. Minehan, Acc. Chem. Res. 2016, 49, 1168–1181. b) X. Y. Mak, R. P. 

Ciccolini, J. M. Robinson, J. W. Tester, R. L. Danheiser, J. Org. Chem. 2009, 74, 9381–9387. c) L. 

Liang, M. Ramaseshan, D. I. MaGee, Tetrahedron 1993, 49, 2159–2168. d) For the application of the 

reaction in total synthesis see: R. M. Moslin, T. F. Jamison, J. Am. Chem. Soc. 2006, 128, 15106–

15107. 

137 M. A. Pericàs, F. Serratosa and E. Valentí, Synthesis, 1985, 1118-1120. 

138 W. Zhang, J. M. Ready, Angew. Chem. Int. Ed. 2014, 53, 8980–8984. 

139 V. Tran, T. G. Minehan, Org. Lett. 2011, 13, 6588–6591. 
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Scheme 2.4. Thermal retro-ene reaction of O-alkyl ynol ethers to form transient ketenes and trapping with 

different reagents. 

The scope of possible ketene precursors has also been expanded to allyl or benzyl ynol ethers 

2.15, which upon [3,3] sigmatropic rearrangement form the corresponding allyl ketenes III 

(Scheme 2.5). For benzyl ynol ethers, the intermediate ketene undergoes a cyclization to form 

2-indanones 2.16.140 In case of allyl ynol ethers, the corresponding ketene is then trapped by 

alcohols or amines to form -unsaturated esters and amides 2.17.141 

 

Scheme 2.5. [3,3]-Sigmatropic of allyl or benzyl ynol ethers rearrangement to generate ketenes. 

Compared to the aliphatic ynol ethers, silyloxy- and aromatic ynol ethers are generally more 

stable since they cannot undergo neither retro-ene reaction or sigmatropic rearrangement. For 

example, aryl ynol ethers have been used as directing groups in transition metal catalyzed C-H 

 
140 a) H. Olsman, A. Graveland, J. F. Arens, Chemistry of acetylenic ethers 71. Rec. Trav. Chim. Pays-

Bas 1964, 83, 301−306. b) A. Wunderli, J. Zsindely, H.J. Hansen, H. Schmid, Chimia, 1972, 26, 

643−645. c) A. A. Tudjarian, T. G. Minehan, J. Org. Chem. 2011, 76, 3576–3581. 

141 a) A. Christopher, D. Brandes, S. Kelly, T. Minehan, Org. Lett. 2006, 8, 451–454. b) J. R. Sosa, A. A. 

Tudjarian, T. G. Minehan, Org. Lett. 2008, 10, 5091–5094. 
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functionalization142 and, due to the polarized nature of the triple bond, are suitable substrates to 

undergo migratory insertion in presence of a transition metal.143 Of particular relevance for the 

following discussion is the reactivity of ynol ethers in presence of either a Brønsted or Lewis 

acid that will presented in the next section. 

Brønsted and Lewis Acid Mediated Reaction of Ynol ethers 

As for the other alkynes, ynol ethers can be converted into electrophiles with of both Brønsted 

and Lewis acids. 

In presence of HNTf2 silyloxyalkynes 2.18 are protonated forming ketenium ion IV which can 

be intercepted by an aromatic ring or an alkene in a 6-exo-trig cyclization delivering a tetralone 

or a cyclohexanone, derivative respectively (Scheme 2.6a).144 The same concept has been 

applied applied for the Brønsted acid initiated cyclization of 1-siloxy-1,5-diynes 2.20(Scheme 

2.6b). Interestingly, in this case 5-exo-dig cyclization is favored over the 6-exo-trig cyclization 

and the reaction occurs with the concomitant incorporation of a halogen extracted from the 

solvent.145 The reaction is proposed to start in the same way as the previous cases with the 

formation of the ketenium ion VI followed by cyclization to form alkenyl cation VII that then 

abstract the halide from the solvent. A final hydrolysis of the silyl dienol ether VIII delivers the 

-unsaturated ketone 2.21. 

 
142 a) Y. Minami, Y. Shiraishi, K. Yamada, T. Hiyama, J. Am. Chem. Soc. 2012, 134, 6124–6127. b) Y. 

Minami, K. Yamada, T. Hiyama, Angew. Chem. Int. Ed. 2013, 52, 10611–10615. c) T. Mitsui, Y. 

Tokoro, R. Haraguchi, K. Sugita, M. Harada, S. I. Fukuzawa, Y. Minami, T. Hiyama, Bull. Chem. Soc. 

Jpn. 2018, 91, 839–845. 

143 B. L. Coles-Taylor, M. S. McCallum, J. S. Lee, B. W. Michel, Org. Biomol. Chem. 2018, 16, 8639–

8646 
144 L. Zhang, S. A. Kozmin, J. Am. Chem. Soc. 2004, 126, 10204–10205. 

145 L. Zhang, J. Sun, S. A. Kozmin, Tetrahedron 2006, 62, 11371–11380. 
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Scheme 2.6. Bronsted acid catalyzed cyclization of silyloxyenynes and diyenes. 

Lewis acids like ZnBr2 and InI3 have been used for the carbometallation of terminal and internal 

ynol ethers 2.22, using silyl ketene acetals 2.23 as nucleophiles Scheme 2.7).146 According to 

calculations, the coordination of the metal to the -system of the ynol ether enhances the partial 

positive charge on C1 which is attacked by the nucleophile in an anti-fashion generating the 

corresponding -anti-metalated enol ether 2.24. Upon quenching with a proton source or other 

electrophiles a series of highly substituted enol ethers 2.25 were synthesized with excellent 

regio- and stereocontrol.  

 
146 a) Y. Nishimoto, K. Kang, M. Yasuda, Org. Lett. 2017, 19, 3927–3930. b) K. Kang, Y. Nishimoto, 

M. Yasuda, J. Org. Chem. 2019, 84, 13345–13363. 
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Scheme 2.7. Lewis acid mediated regio- and stereoselective anti-carbometallation of ynol ethers. 

Furthermore -acyloxy enol ethers like 2.28 can be prepared using Ag2O as catalyst, through 

the formation of -anti-metalated enol ether (Scheme 2.8, top).147 On the other hand, the 

silver(I)-catalyzed hydroamination of silyloxy ynol ethers proceeds with syn-selectivity to form 

2.30 (Scheme 2.8, bottom). 148 The nucleophilic attack on the activated alkyne in this case takes 

place through a six-membered chelated transition state with the oxygen of the nucleophile 

coordinated to silver. 

 

Scheme 2.8. Silver catalyzed hydrofunctionalization of ynol ethers. 

The [2+2] cycloaddition of silyloxy ynol ethers 2.31 with unsaturated carbonyl compound 2.32 

to form silyloxy cyclobutene derivatives 2.33 can be catalyzed by AgNTf2.149 The reaction was 

proposed to start with the activation of the alkyne by coordination with silver forming the 

zwitterionic species IX, which undergo 1,4-addition with the Michael-acceptor generating 

ketenium ion X, followed by ring closure to form the product (Scheme 2.9). 

 
147 a) L. Zeng, Z. Lai, S. Cui, J. Org. Chem. 2018, 83, 14834–14841. b) L. Zeng, B. Huang, Y. Shen, S. 

Cui, Org. Lett. 2018, 20, 3460–3464. 

148 J. Sun, S. A. Kozmin, Angew. Chem. Int. Ed. 2006, 45, 4991–4993. 

149 R. F. Sweis, M. P. Schramm, S. A. Kozmin, J. Am. Chem. Soc. 2004, 126, 7442–7443 
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Scheme 2.9. Silver catalyzed [2+2] cycloaddition of silyloxyalkynes with -unsaturated carbonyl 

compounds. 

Based on this fist report on the reaction of ynol ethers as nucleophiles, the reaction was expanded 

towards different electrophiles such phthalazines150, aldehydes151, and Lewis acid activated 

acetals152. 

Gold(I)-Catalyzed Reaction of Ynol ethers 

Compare to other alkynes, the number of transformations of alkynyl enol ether catalyzed by 

gold are rather limited153.The first example, reported in 2004 by Kozmin154, was the reaction of 

silyloxy enynes like 2.18 in presence of AuCl to form cyclohexadienes 2.34a and 2.34b (Scheme 

2.10). Once the cyclopropyl-gold(I) carbene XI is formed a series of 1,2-alkyl shifts via XII and 

XIII leads to gold(I) carbene XIV, which gives the final products that via 1,2-H-shift. It is 

interesting to note that the same substrate cyclizes in presence of a Brønsted acid to form 

cyclohexyl enol ether 2.19 (see Scheme 2.6). 

 
150 a) Y. E. Türkmen, T. J. Montavon, S. A. Kozmin, V. H. Rawal, J. Am. Chem. Soc. 2012, 134, 9062–

9065. b) Few years later the same authors reported that the silver catalyst can be replaces either by 

copper or nickel salts: C. S. Sumaria, Y. E. Türkmen, V. H. Rawal, Org. Lett. 2014, 16, 3236–3239. 

151 Sun, V. A. Keller, S. T. Meyer, S. A. Kozmin, Adv. Synth. Catal. 2010, 352, 839–842. 

152 a) V. Tran, T. G. Minehan, Org. Lett. 2012, 14, 6100–6103. b) W. Zhao, Z. Li, J. Sun, J. Am. Chem. 

Soc. 2013, 135, 4680–4683. 
153 Alkyl alkynyl ethers that are reported to undergo retro-ene reaction at around 80 °C in our hands 

decomposed into the ketene in presence of catalytic amount of gold(I) complexes already at room 

temperature. 

154 L. Zhang, S. A. Kozmin, J. Am. Chem. Soc. 2004, 126, 11806–11807. 
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Scheme 2.10. Gold(I)-catalyzed cyclization of 1-silyloxy-1,5-enynes. 

Silyloxy alkynes activated by gold(I) complexes react in [4+2] cycloadditions 2-pyrones 2.36 

or isoquinoline N-oxides 2.37to form functionalized salicylic acids 2.38 and naphthols 2.39, 

respectively, upon fragmentation and TIPS-removal (Scheme 2.11).155 

 

Scheme 2.11. Gold(I)-catalyzed [4+2] cycloaddition of silyl alkynyl enol ethers. 

Furans tethered with an ynol ether moiety form dihydrobenzofurans and chromanes in the 

presence of AuCl3 as catalyst.156 Noteworthy, For substrates of type 2.40 tetracyclic systems 

such as 2.41 are formed (Scheme 2.12).157 The 6-endo-dig cyclization is favored for these 

substrates leading to the formation of cyclopropyl gold(I) carbene 2.XV that undergoes a 

 
155 J. R. Cabrera-Pardo, D. I. Chai, S. Liu, M. Mrksich, S. A. Kozmin, Nat. Chem. 2013, 5, 423–427. 

156 A. Stephen, K. Hashmi, M. Rudolph, J. W. Bats, W. Frey, F. Rominger, T. Oeser, Chem. Eur. J. 2008, 

14, 6672–6678. 
157 A. S. K. Hashmi, M. Rudolph, J. Huck, W. Frey, J. W. Bats, M. Hamzić, Angew. Chem Int. Ed. 2009, 

48, 5848–5852. 
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Friedel-Crafts-type leading to XVI, which gives the final product by re-aromatization and 

protodemetalation. 

 

Scheme 2.12. Gold(I) catalyzed furan-yne cyclization. 
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Objectives 

We aimed to extend our previous studies on gold(I)-catalyzed intermolecular [2+2] 

cycloaddition between alkynes and alkenes to the reaction of terminal and internal ynol ethers 

with alkenes with the objective to develop a general method for the synthesis of cyclobutanones. 
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Results and Discussion 

Gold(I)-Catalyzed [2+2] Cycloaddition of Terminal Ynol ethers with Alkenes 

To start our study on the gold(I)-catalyzed reaction of ynol ethers with alkenes we selected 

phenoxyacetylene 2.42a and -methyl styrene 2.43a as model substrates. Substrates of type 

2.42a can be prepared in just two steps from commercially available compounds and can be 

stored neat in the freezer for months with minimal decomposition. The reaction under the 

optimal conditions developed for the gold(I)-catalyzed [2+2] cycloaddition of terminal alkynes 

with alkenes38 led regioselectively to phenoxycyclobutene 2.44a in 54% yield a (Table 2.1). 

Table 2.1. Optimization of the gold(I)-catalyzed [2+2] cycloaddition of 2.42a with 2.43a to form 2.44a. 

 

Entry Catalyst solvent 2.42:2.43a Yield (%)a 

1 2.A CH2Cl2 1:2 54 

2 2.B CH2Cl2 1:2 71 

3 2.C CH2Cl2 1:2 46 

4 2.D CH2Cl2 1:2 15 

5 2.A PhCH3 1:2 50 

6 2.A 1,4-Dioxane 1:2 37 

7 2.A CH2Cl2 1:3 64 

8 2.A CH2Cl2 2:1 14c 

9 2.A CH2Cl2
b 1:2 54 

10 2.B CH2Cl2 1:3 87 (85) 

a Yields determined by 1H-NMR using trichloroethylene as internal standard,  

isolated yields in parenthesis. b Reaction performed in 0.25 M concentration.  
c 22% conversion of limiting starting material. 
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Changing the catalyst from 2.A to the more active 2.B increases the yield of the reaction up to 

71%, while using NHC-ligand based gold(I) complex (2.C) and phosphite-gold(I) complex 

(2.D) led to lower yields (Table 2.1, entries 2-4). Solvents different from CH2Cl2 gave the same 

or lower yields using 2.A as catalyst (Table 2.1, entries 5 and 6). A larger excess of alkene 

(2.42a:2.43a = 1:3) gave 2.44a in 64% yield, while and excess of the alkyne caused a drastic 

drop in yield and conversion (Table 2.1, entries 7 and 8). Finally, using 2.B as catalyst in CH2Cl2 

and with a 1:3 ratio of 2.42a/2.43a gave 2.42a in 85% isolated yield (Table 2.1, entry 10). 

Having in hand a good set of conditions for [2+2] cycloaddition of terminal ynol ethers, we 

explored the scope and limitation of the reaction (Table 2.2). The reaction can accommodate 

differently substituted -methyl styrene derivatives with good to very good yields (2.44a-d). 

However, increasing the size of the -substituent on the styrene the yield starts to drop and 

2.44e was obtained in 40% of yield and larger substituents such in 2.43q or 2.43r failed to give 

the expected products (Figure 2.3). Simple styrenes are suitable substrates for the reaction 

although an electron rich substituent is necessary and 2.44f was obtained in 37% yield. The 

reaction could also be performed with aliphatic alkenes, and a series of 1,1-disubstituted, 1,2-

disubstituted, trisubstituted and tetrasubstituted alkenes successfully yielded the desired 

products 2.44g-k in yields ranging from 45 to 77%. Terminal, monosubstituted alkenes instead 

are inert towards the desired cycloaddition and in the rection of 2.42a with isoprene, 2.44l was 

obtained selectively in 34% yield. In an analogous way, in the reaction with -caryophyllene 

only the most reactive trisubstituted double bond undergoes the cycloaddition and product 

2.44m is obtained in 57% yield as a 3:1 mixture of regioisomers. In this case, the enol ether 

suffers partial hydrolysis to form ketone 2.45a. The highly activated allyltrimethylsilane is the 

only monosubstituted aliphatic alkene that led to the desired product 2.4p, although in only 24% 

yield. Sterically hindered enol ethers are also suitable substrates for the reaction giving rise to 

substituted cyclobutyl enol ethers 2.44n and 2.44o in 79% and 92% yield, respectively.  
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Table 2.2. Scope of the gold(I)-catalyzed [2+2] cycloaddition of ynol ethers with alkenes. a 
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Figure 2.3. Selected examples alkenes that failed in the reaction. 

In contrast smaller enol ethers (2.43x and 2.43y in Figure 2.3) underwent decomposition in 

presence of the gold(I) catalyst. Interestingly, although the products of the [2+2] cycloaddition 

contain an enol ether, further addition of the enol ether to the starting ynol ether was never 

observed during the reaction. We also tested few other aromatic substituents on the ynol ether 

(2.42b-d): while 2.44q and 2.44r where obtained in 58% and 78% of yield respectively, 2.44s 

was obtained in only 22% yield even if with complete conversion of the starting ynol ether. It 

is important to note that even in presence of the highly activated phenolic ring in 2.42d the 

product of (4+2) cycloaddition was never observed. 

Gold(I)-Catalyzed Reaction of Internal Ynol ethers with Alkenes 

In an intent to expand the scope of the [2+2] cycloaddition using internal ynol ethers, chromane 

2.47a was obtained in 49% yield as a 1:2.5 mixture of E:Z isomers from phenyl acetylene 

derivative 2.46a, while the expected cyclobutene was not detected (Scheme 2.13).  

 

Scheme 2.13. Gold(I) catalyzed (4+2) cycloaddition of internal ynol ether with alkenes. 

This outcome can be explained according to the mechanistic hypothesis presented in Scheme 

2.14158. In analogy with the other gold(I)-catalyzed reaction of alkynes with alkenes, the reaction 

could start with the formation of cyclopropyl gold(I) carbene XVIII, evolves into Wheland 

intermediate XIX via Friedel-Crafts-type reaction with the more electron rich aromatic ring. 

The catalytic cycle is then closed by re-aromatization and protodeauration. This mechanism 

resembles the one already proposed by Hashmi in the intramolecular reaction of furanyne.Errore. 

Il segnalibro non è definito. 

 
158 The mechanism of this reaction will be discussed in more detail in the following section. 
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Scheme 2.14. Proposed mechanism for the (4+2) cycloaddition of internal ynol ethers with alkenes. 

In this case, using just 2 equiv of alkene resulted in slightly better yield (55%) of 2.47a and no 

substantial changes in the stereoselectivity (Table 2.3, entry 1). Several phosphine supported 

complexes where then tested and among them 2.A outperformed above the others delivering the 

product in 76% isolated yield, as a 1:1 E/Z mixture (Table 2.3, entry 2). Using complexes 2.E-

2.G as catalysts the product was obtained in yields ranging from 30 up to 57%, but slightly 

better stereoselectivity (Table 2.3, entries 3-5). Analogous results were obtained when NHC- 

and phosphite-based ligands were used (Table 2.3, entries 6 and7). Based on our experience 

with bromoalkynes, we evaluated also different ndium salts as catalyst (Table 2.3, entries 8-10). 

However, InOTf3 and InCl3 caused the complete decomposition of 2.46a without formation of 

the desired product, while using InBr3 2.47a was obtained in moderate yield (40%), but 

remarkably just the Z-isomer was detected in the crude mixture. However, in this last case, quite 

surprisingly, only the Z-isomer was detected in the crude mixture. We also tested TFA as a 

potential catalyst (Table 2.3, entry 11), although the starting material was recovered unchanged. 
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Table 2.3: Catalyst screening for the intermolecular reaction of 2.46a with 2.43a. a 

 

Entry Catalyst Yield (%)b E:Zb 

1 2.B 55 1:3 

2 2.A 79 (76) 1:1 

3 2.E 30 1:2 

4 2.F 44 1:1.7 

5 2.G 57 1:4 

6 2.C 49 1:1.2 

7 2.D 45 1:3 

8 InBr3 40 >1:20 

9 InOTf3 - c - c 

10 InCl3 - c - c 

11 TFA - d - d 

a Substrates 2.46a:2.43a in a 1:2 ratio. b Yields determined by 1H-NMR using trichloroethylene  

as internal standard. Isolated yields in parentheses. c decomposition of 2.46a. d No reaction 
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Different solvents were also evaluated with 2.A as the best catalyst (Table 2.4). As a general 

trend the solvent does not have a remarkable effect on both yield and stereoselectivity and 2.47a 

is obtained with yields ranging from 47% in THF (Table 2.4, entry 4) up to 79% in both CH2Cl2 

or 1,4-dioxane (Table 2.4, entries 1 and 9). Interestingly, the reaction can also be performed in 

absence of solvent (Table 2.4. entry 10) and 2.47a is obtained in 60% yield with a 1.3:1 E/Z 

ratio.  

Table 2.4. Solvent screening for the intermolecular reaction of 2.46a with 2.43a. a 

 

Entry Solvent Yield (%)b E:Zb 

1 CH2Cl2 79 (76) 1:1 

2 DCE 67 1:1 

3 PhCH3 77 1.3:1 

4 THF 47 1:2 

5 PhCF3 77 1:1 

6 CH3NO2 77 1:1 

7 EtOAc 69 1:1 

8 Hexane 62 1.5:1 

9 1,4-Dioxane 79 1.4:1 

10 Neat 60 1.3:1 

a Substrates 2.46a:2.43a in a 1:2 ratio. b Yields determined by 1H-NMR  

using trichloroethylene as internal standard. Isolated yields in parentheses.  

We finally evaluated the role of other parameters such as catalyst loading, temperature, and ratio 

between the reagents. We found that decreasing the catalyst loading to 1%, as well as increasing 
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it to 5% led to lower yield (Table 2.5, entries 1 and 2) delivering 2.47a in 36% and 48% yield, 

respectively. In the first case, 2.46a was partially recovered, while an excess of catalyst probably 

favors side reactions leading to the decomposition of the starting ynol ether. Increasing the 

temperature to 45 °C allowed the reaction to reach complete conversion in 20 min, but with a 

decrease of yield (60%, Table 2.5, entry 3). While at lower temperatures (0 °C and -20 °C) 2.47a 

was obtained in analogous yields and stereoselectivity, but with longer reaction times (Table 

2.5, entries 4 and 5). The ratio between 2.46a and 2.43a was found to be crucial to achieve good 

yields as demonstrated in entries 6-8 of Table 2.5 where the product was obtained in moderate 

to good yields when higher or lower amounts of 2.43a were used. 

Table 2.5. Screening of conditions for the gold(I) catalyzed (4+2) cycloaddition of 2.46a with 2.43a. 

 

Entry Cat. loading (%) 2.46a:2.43a T (°C) Yield (%)a E:Za 

1 1 1:2 23 36 1.2:1 

2 5 1:2 23 48 1.1:1 

3 3 1:2 45 60 1:1 

4 3 1:2 0c 75 1.2:1 

5 3 1:2 -20d 71 1.4:1 

6 3 1:3 23 58 1:1 

7 3 1:1 23 62 1:1 

8 3 3:1 23 42 1.5:1 

a Yields determined by 1H-NMR using trichloroethylene as internal standard.  
b reaction time 20 minutes. c Reaction time 4 h. d Reaction time 14h. 

We observed that the E/Z ratio changed during the purification of 2.47a by column 

chromatography, leading to also to the formation of third product identified as endo-2.47a 

(Scheme 2.16).  
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Scheme 2.15. equilibrium and energy barriers for the three stereoisomers of 2.47a. 

According to DFT calculations159 Z-2.47a is slightly the most stable of the three isomers (by 

just 0.2 kcal mol-1).  

Treatment of a 1:1 mixture of E-2.47a and Z-2.47a with silica gel led to 1:2 mixture of Z.2.47a 

and endo-2.47a (Table 2.6, entries 1 and 2). The same result was obtained when the mixture 

was treated with 1 equiv of acetic acid for 1 h (Table 2.6, entry 4). Using HCl or citric acid led 

to a 1:1 and 3:1 Z/endo mixture, respectively (Table 2.6, entry 3,5). Finally, when the mixture 

was treated for 1 h with one equiv of p-TSA·H2O endo-2.47a was formed selectively, albeit in 

only in 40% yield (Table 2.6, entry 6). Probably, the enol ether suffers hydrolysis to form open 

ketone under these conditions. 

Table 2.6. Attempts towards the isomerization of the double bond in 2.47a. 

 

Entry Conditions c E:Z:endoa 

1 Silica gel - 40 minutes -:1:2 

2 Silica gel - 4 h -:1:2 

3 2 M HCl in water (1 equiv) - 15hd -:1.3:1 

4 Acetic acid (1 equiv) - 1h -:1:2 

5 Citric acid (1 equiv) - 1h -:3:1 

 
159 Calculations were performed with B3LYP/6-31G(d,p) (C,H,O) in CH2Cl2 (SMD). See experimental 

section for full details. 
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6 (1 equiv) - 1h -:-:1b 

a ratio between the isomers determined by 1H-NMR using trichloroethylene as internal standard. b 

endo-2.47a was obtained in 40% yield determined by 1H-NMR using trichloroethylene as internal 

standard. c Reaction performed at 23 °C. d Reaction performed at 40 °C. 

Exploring the scope of the reaction, we found that depending on the alkene involved in the 

reaction internal ynol ethers can undergo exclusively (4+2) cycloaddition (Table 2.7, section 

A), exclusively [2+2] cycloaddition (Table 2.7, section B), or a mixture of the two products can 

be obtained (Table 2.7, section C). 

The reaction of substrate 2.46a with differently substituted -methyl styrenes led to the selective 

formation of the (4+2) product (2.47a,b,d) in good yields (70-84%) but with no 

stereoselectivity. In the same way 2.47e was isolated in 78% yield with a 1.6:1 E/Z ratio, starting 

from the o-MeO substituted 2.46b. On the other hand, the more electron rich p-MeO-styrene 

led to 2.47c in 74% yield with 1:10 E/Z ratio. Complete stereoselection was achieved in 2.47f 

which was obtained as single Z-isomer and 92% yield. 

Substrate 2.46a undergoes selectively [2+2] cycloaddition with cycloalkenes allowing the 

access to a series for bicyclic products in yields from moderate (2.44t, 43% yield) to good 

(2.44u, 85% yield). In addition, the reaction can accommodate different aromatic rings on the 

alkynyl part of the ynol ether giving 2.44v and 2.44w in 72% and 70% yield, respectively.  

In the presence of alkenes with electronic properties intermediate between the electron rich 

styrenes and cycloalkenes, 2.46a can undergo both (4+2) and [2+2] cycloadditions leading to a 

mixture of the two products (Table 2.7, section C)  

Interestingly an analogous behavior is observed when electron-donating substituents are 

introduced on the alkynyl aromatic ring: 2.47j and 2.44bb were obtained in fact as a separable 

mixture in 17% and 43% yield, respectively. It is important to note that 2.44bb was obtained as 

a single regioisomer which is the opposite of the one obtained with the other alkynes. The 

structure of 2.44bb has been confirmed by GOESY correlation.160 Finally, 2.46e reacted with 

2.43a under the standard conditions resulting in an inseparable mixture of 2.47k and 2.44bb in 

75% overall yield. 

 
160 More details regarding the unusual regioselectivity observed in the formation of 2.44aa will be given 

in the computational study section of this chapter. 
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Table 2.7. Scope of the gold(I)-catalyzed reactions of internal ynol ethers 2.46a-e with alkenes 2.43 to 

form either 2.47a-k or 2.44s-cc.  

 

Figure 2.4 shows the ynol ether that failed under the developed conditions. Thus 2.46f was 

highly unstable and just traces of product where detected in the crude 1H-NMR of the reaction. 

On the other hand, 2.46g and 2.46h were recovered unchanged after 24h at 23 °C or 60 °C.  
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Figure 2.4. Unsuccessful ynol ethers. 

When a highly electron withdrawing substituent is appended to the phenol ring of the alkyne in 

2.46i, dihydronapthalene derivative 2.48 was obtained in 37% yield (Scheme 2.16). This 

product is most likely formed by Friedel-Crafts-like rection between the phenyl ring attacked to 

the alkyne and the cyclopropyl ring 

 

Scheme 2.16. Gold(I)-catalyzed reaction of 2.46i with 2.43a to form 2.48. 

Completely different behavior was displayed by 2.46j which underwent oxoalkynylation of 

2.43a forming 2.49 in 50% yield under the standard reaction conditions (Scheme 2.17). This 

product can be formed by a mechanism resembling the one followed by bromoalkynes in the 

reaction with allylsilanes presented in Chapter 1. Thus, we propose the initial cyclopropyl 

gold(I) carbene XXII is converted into oxonium cation XXIII (analogous of the bromonium 

cation reported in Chapter 1). Finally, aromatic ring-assisted ring opening, and phenyl migration 

gives the final product. 

 

Scheme 2.17. Gold(I)-catalyzed reaction of 2.46j and 2.43a to form 2.49. 

UNIVERSITAT ROVIRA I VIRGILI 
Transition Metal-Catalyzed Reactions of Heteroatom- Substituted Alkynes 
Margherita Zanini 



 

180 

 

One-pot Synthesis of Cyclobutanones Starting from Ynol ethers 

With the exception of 2.44m, the isolation and characterization of enol ethers 2.44 did not 

presented any problem due to their eventual hydrolysis. However, we expected that under the 

proper conditions it would be possible to access directly to the corresponding cyclobutanones. 

To do so, we pursued a one pot- two step approach starting with the already optimized conditions 

for the [2+2] cycloaddition followed by acidic hydrolysis of the enol ether moiety and we 

selected again 2.42a and 2.43a as model substrates (Table 2.8).  

Table 2.8. Optimization of the one pot-two steps synthesis of cyclobutanone 2.45b.a 

 

Entry Conditionsb 2.45b (%)c 2.50 (%)c 

1 H2O (100 equiv) -d -d 

2 p-TSA·H2O (0.15 equiv), water 37 31 

3 p-TSA·H2O (1 equiv), water 73 (69) - 

4 p-TSA·H2O (2 equiv), water 68 11 

5 10% HCl in water (HCl 1 equiv) 43 43 

6 1M TFA in water (TFA 1 equiv) 44 35 

7 1M H2SO4 in water (H2SO4 1 equiv) -d -d 

8 1M AcOH in water (AcOH 1 equiv) -d -d 

a 2.42a:2.43a = 1:3. b reaction time 14 h, temperature = 23 °C. c yield determined by 1H-NMR 

using trichloroethylene as internal standard. Isolated yield in parenthesis. d 2.44a fully recovered. 

By simple addition of water after to the reaction and stirring overnight at 23 °C, 2.44a was 

recovered in 83% yield and no hydrolysis was observed (Table 2.8, entry 1). Using p-TSA·H2O 

as catalyst together with water as cosolvent, the enol ether was completely consumed, however 

UNIVERSITAT ROVIRA I VIRGILI 
Transition Metal-Catalyzed Reactions of Heteroatom- Substituted Alkynes 
Margherita Zanini 



 

181 

 

a 1:1 mixture of the desired ketone and the acetal 2.50 was obtained (Table 2.8, entry 2). 

Nevertheless, treatment of pure 2.44a under the same acidic conditions leads instead to the 

complete hydrolysis of the enol ether into the ketone in almost quantitative yield (Scheme 2.18). 

Increasing the amount of acid up to 1 equiv gave ketone 2.45b in 69% yield and no formation 

of the acetal 2.50 was detected (Table 2.8, entry 3). With a larger excess of acid, small amounts 

of the undesired acetal was detected in the crude 1H-NMR (Table 2.8, entry 4). By addition of 

an aqueous solution of HCl or TFA, a mixture of the ketone and the acetal was obtained (Table 

2.8, entry 5 and 6). Interestingly, the enol ether formed in the first step was completely recovered 

after stirring for 14 h at 23 °C in presence of H2SO4 or acetic acid. (Table 2.8, entry 7 and 8). In 

the first case, the reaction failed most likely due to solubility issues, while acetic acid is probably 

not acidic enough to promote the reaction. 

 

Scheme 2.18. Hydrolysis of enol ether 2.44a to form 2.45b. 

With this approach, 2-monosubstituted cyclobutanones could be accessed starting from the 

internal ynol ether 2.46a and an aliphatic alkene, giving the product of [2+2] cycloaddition. 

Using the best conditions we found for the hydrolysis of the unsubstituted substrates the desired 

cyclobutanone was obtained in 49% yield and a 2.5.1 dr, although 38% of the enol ether 

intermediate 2.44u remained unreacted (Table 2.9, entry 1). By increasing the temperature to 

40 °C during the hydrolysis step, full conversion was achieved and 2.45c obtained in 75% yield 

and a 2:1 dr (Table 2.9, entry 2). Interestingly, when the reaction was conducted at 65 °C and 

using toluene as solvent the diastereoselectivity increased up to 4:1, but the yield was lower 

(Table 2.9, entry 3). Finally, HCl turned out to give better results and the desired product was 

isolated in 75% yield as a 4.5 :1 mixture of diastereoisomers (Table 2.9, entry 4). 

Table 2.9. Optimization of the one pot-two steps synthesis of cyclobutanone 2.45c.a 
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Entry Conditions b T (°C) 2.45e (%)c d.r.c 

1 p-TSA·H2O (1 equiv), water 23 49d 2.5:1 

2 p-TSA·H2O (1 equiv), water 40 75 2:1 

3 p-TSA·H2O (1 equiv), watere 65 50 4:1 

4 2M HCl in water (HCl 2 equiv) 40 (75%) 4.5:1 

5 2M HCl in water (HCl 2 equiv)e 65 55 3:1 

a 2.46a:2.43 = 1:2. b reaction time 14 h. c yield determined by 1H-NMR using trichloroethylene as internal 

standard. Isolated yield in parenthesis. d 2.44u was also obtained in 38% yield.e Reaction performed in 

toluene. 

Table 2.10 shows the cyclobutanones that we obtained in the one pot-two steps process starting 

from the ynol ether and the alkene. Interestingly, the cyclobutanone 2.45a generated from the 

reaction of 2.42a and -caryophyllene was obtained in 63% yield, and the -OTBS group of 2.45e 

remained in place after the hydrolysis of the enol ether, although the product was obtained in 

moderate yield. In general, the one-pot approach for the generation of the cyclobutanone 

requires less time and product manipulation, although performing the two steps separately led 

to better overall yields. 

Table 2.10. Scope of the one-pot two-steps synthesis of cyclobutanones 2.45a-e.a 
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Mechanism of the Gold(I) Catalyzed Reactions of Ynol ethers 

According to our previous studies,39 it was reasonable to propose that both the mechanism of 

the [2+2] and the formal (4+2) cyclization start with the formation of the cyclopropyl gold(I) 

carbenes XXIV and/or its regioisomer XXV (Figure 2.5). Therefore, we performed DFT 

calculations to elucidate the role of the different parts towards the observed selectivity.161 

 

Figure 2.5. Different driving forces for the formation of the cyclopropyl gold(I) carbene. 

We started our study with the [2+2] cycloaddition of terminal ynol ether 2.42a and 2.43a. The 

computed structure of 2.42a displays a short C(sp)-O distance (1.30 A) and, as expected, a 

partial charge separation on the alkyne (Figure 2.6). The η2 complex with gold(I) (Int2a) is 

highly distorted and gold is located at 2.1Å from C2 and 2.8 Å from C1. The coordination also 

causes an elongation of the C-C triple bond and the shortening of the C-O bond and the two 

bonds now have almost the same length (1.25 Å and 1.26 Å, respectively). Hence the resulting 

structure resemble a metalated ketene similar to the zwitterionic intermediate IX proposed by 

Kozmin149. Also, by coordination of gold(I) the separation of the partial charges on the triple 

bond increases and C1 results even more electrophilic. 

 

Figure 2.6. Computed structures of 2.42a and Int2a with charge distribution expressed. Positive charges 

in blue and negative charges in red. (L = PMe3). 

The associative ligand exchange between Int1a and the ynol ether gives (η2-alkyne)gold(I) 

complex Int2a. Interestingly, in this case the (η2-alkene)gold(I) complex Int1a is less stable 

 
161 See the computational methods in the Experimental part 
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than Int2a. Comparing the energy barriers for the formation of the four possible cyclopropyl 

gold(I) carbenes Int3a-b and Int4a-b, the attack of the styrene on carbon C2 to form 

cyclopropyl gold(I) carbenes Int4a-b (∆G‡ = 14.7 - 15.5 kcal/mol) is highly exothermic due to 

the stabilization of the oxygen (∆G° = -22.8 - -23.0 kcal/mol). However, the formation of Int3a-

b (∆G‡ = 6.0 - 7.4 kcal/mol) is favored kinetically by ca 7-9 kcal/mol (Scheme 2.19). 

Interestingly, Int4a-b present a highly carbenic character due to the stabilization of the oxygen 

on C1, while in Int3a-b the cyclopropyl ring is more open and the intermediate is closer to a 

homoallylic gold(I)-stabilized cation with the benzylic carbon positively charged. 

 

Scheme 2.19. Formation of cyclopropyl gold(I) carbene Int3a-b and Int4a-b (L = PMe3. Free energies in 

kcal/mol). 

We then continued our study following the evolution of both Int3a and Int4a (Scheme 2.20), 

considering that Int3a/Int3b and Int4a/Int4b have almost the same energies, the choice of one 

of these diastereoisomers over the other has no influence on the final conclusions of this study.  
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Scheme 2.20. Evolution of Int3a and Int4a. (L = PMe3. Free energies in kcal/mol). 

Starting from Int3a, Int5a can be formed upon exothermic ring expansion (∆G‡ = 7.2 kcal/mol), 

which will lead to the observed product 2.44a upon ligand exchange with another molecule of 

substrate. Alternatively, the aromatic ring can attack the benzylic carbon on the cyclopropyl ring 

in a Friedel-Craft-type reaction forming Wheland intermediate Int6a (∆G‡ = 11.2 kcal/mol). 

Thus, for terminal alkynes this second pathway is disfavored both kinetically and 

thermodynamically. 

In the case of Int4a, the attack of the aromatic ring is disfavored because of the increased 

carbenic nature of the intermediate. Instead Int7a can be formed via ring expansion (∆G‡ = 28.2 

kcal/mol) or Int8a can be generated upon migration of carbon C3 on the gold(I) carbene(∆G‡ = 

31.1 kcal/mol). The energy barriers for these two transformations are too high to compete at 

room temperature with the formation of Int5a from Int3a, in full agreement with the 

experimentally observed regioselective formation of the cyclobutene derived from Int5a. 

We then moved to the study of the reaction of internal alkyne 2.46a with alkene 2.43a. The 

reaction starts as before with the formation of four possible cyclopropyl gold(I) carbenes 

Int11a-b and Int12a-b, two diastereoisomers for each of the regioisomers (Scheme 2.21). 

UNIVERSITAT ROVIRA I VIRGILI 
Transition Metal-Catalyzed Reactions of Heteroatom- Substituted Alkynes 
Margherita Zanini 



 

186 

 

 

Scheme 2.21. Formation of cyclopropyl gold(I) carbene Int11a-b and Int12a-b (L = PMe3. Free energies 

in kcal/mol). 

Compared to the previous case, the difference in activation energy for the formation of the two 

regioisomers is smaller: for Int11a we found ∆G‡ = 8.6 kcal/mol and for Int12a ∆G‡ = 9.9 

kcal/mol, but still the attack of the alkene on carbon C1 remains favored. As we did before, we 

selected Int11a and Int12a to continue our investigation.  

In Scheme 2.22 are represented the possible evolutions of Int11a, analogous of the one 

calculated for Int3a. However, in this case the attack of the aromatic ring to form Int14a is 

favored over the ring expansion towards Int13a (∆G‡ = 9.6 kcal/mol vs ∆G‡ = 13.7 kcal/mol). 

Wheland intermediate Int14a then undergoes deprotonation and protodeauration in highly an 

exergonic sequence (∆G° = -39.3 kcal/mol) delivering the observed product. This model agreed 

with the observed selectivity towards the (4+2) cycloaddition for the internal ynol ethers and 

suggests that the product initially formed has the E-configuration. 

 

Scheme 2.22. Evolution of Int11a. (L = PMe3. Free energies in kcal/mol). and computed structure of 

structure of Int11a. 
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On the other hand, Int12a evolves to the open carbocation Int16a (∆G° = 3.6 kcal/mol) 

stabilized by the oxygen. Starting from this intermediate two paths are possible. First, it can 

undergo ring expansion to form Int17a, regioisomer of Int13a, with an energy barrier of 12.4 

kcal/mol. In alternative, the attack of the oxygen on the open carbocation to form the 5-

membered oxonium cation Int18a is almost barrierless (∆G‡ = 1.4 kcal/mol). This species is 

analogous of the bromonium cation presented in Chapter 1 and, in the same way, can undergo 

aryl-assisted ring-opening via a vinylidenephenonium gold(I) cation, which in this case is not a 

minimum, but a transition state connecting Int18a and the (η2-alkyne)gold(I) complex Int19a.92 

 

Scheme 2.23. Evolution of Int12a. (L = PMe3. Free energies in kcal/mol). 

In the case of 2.46a, the formation of Int11a is favored over Int12a accounting for the formation 

of 2.47 and 2.44. However, experimentally we observed that the formation of the cyclobutene 

2.44u and 2.49 are possible in presence of electron rich substituents. So, we decided to 

investigate computationally the step of formation of the cyclopropyl gold(I) carbene between 

2.46d and 2.43a. Interestingly, we found that two geometries that differs only by 0.4 kcal/mol 

are possible for the (η2-alkyne)gold(I) complex. The first one is analogous of Int2a with the 

gold atom closer to C2 (C2-Au = 2.20Å Vs C1-Au = 2.58 Å) and activating C1 as electrophile. 

In the second one, the gold atom stays closer to C1 (C1-Au = 2.15Å Vs C2-Au = 2.63 Å) due 

to the electron density provided by the electron rich aromatic ring to the alkyne. In this second 

coordination mode, the distribution of the partial charges is inverted and C2 is more electrophilic 

of C1. Starting from Int20a, the formation of Int22a (∆G‡ = 8.0 kcal/mol - ∆G° = -13.0 
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kcal/mol) was found to be favored over Int21a (∆G‡ = 10.5 kcal/mol, ∆G° = -6.4 kcal/mol) in 

line with the experimental result. The same findings can be extended also for the electron rich 

alkyne 2.46j, even if in this case the corresponding cyclopropyl gold(I) carbene will undergo 

migration of the phenoxy group to form finally 2.49.  

 

Figure 2.7. Computed structures of the two possible (η2-alkyne)gold(I) complex with 2.46d, with 

charge distribution on the alkyne expressed. Positive charges in blue and negative charges in red. (L = 

PMe3. Free energies in kcal/mol). 

 

Scheme 2.24: Formation of cyclopropyl gold(I) carbene Int21a and Int22a. (L = PMe3. Free energies in 

kcal/mol). 
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Conclusions 

In this Chapter we summarize our study on the gold(I)-catalyzed intermolecular reaction of ynol 

ethers with alkenes. We found first that terminal ynol ethers undergo [2+2] cycloaddition with 

electron rich alkenes to form the corresponding phenoxycyclobutenes. In addition, we found 

that cyclobutanones can be accessed in a one pot process with a gold(I) catalyzed [2+2] 

cycloaddition/hydrolysis sequence. The cyclobutanones obtained in this way are the products 

of formal [2+2] cycloaddition of the parent ketene with an alkene. Hence, terminal ynol ether 

can be seen as practical ketene surrogate for the synthesis of cyclobutanones. 

Internal aryl ynol ethers undergo either formal (4+2) cycloaddition with electron rich styrenes 

or [2+2] cycloaddition with cycloalkenes. The outcome of the reaction is highly substrate-

dependent and in many cases a mixture of the two possible products is obtained.  

 

Mechanistically, the [2+2] and the (4+2) cycloaddition branch from the same cyclopropyl 

gold(I) carbene intermediate. Depending on the substitution pattern on the reagents, either ring 

expansion to form the cyclobutene or a Friedel-Crafts like reaction take place.  
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Experimental Part 

General Information 

The general information is provided in the Experimental Part of Chapter 1. All reagents were 

used as purchased, with no further purification. 

Ynol ethers 1.42a-d162 and 2.46h163,1-(tert-butyl)-4-(prop-1-en-2-yl)benzene, 4-(prop-1-en-2-

yl)-1,1'-biphenyl, 1-methylene-1,2,3,4-tetrahydronaphthalene, (3-methylbut-3-en-1-

yl)benzene164, tert-butyl(cyclohexylidenemethoxy)dimethylsilane, tert-butyl 4-

(methoxymethylene)piperidine-1-carboxylate165 were synthesized according to previously 

reported procedures. The NMR data are in agreement with the ones reported in the literature. 

Synthetic Procedures and Characterization Data  

General procedure A: Gold(I)-catalyzed reaction of 2.42 with 2.43. 

 

The needed ynol ether (0.2 mmol, 1 equiv) was dissolved in CH2Cl2 (0.2 mL, 1 M). The needed 

alkene (0.6 mmol, 3 equiv) was added followed by [(JohnPhos)AuNCMe]SbF6 (2.B, 3 mol%, 

4.6 mg). The resulting mixture was stirred at 23 °C for 3 h. The reaction was monitored by GC-

MS or UHPLC-MSD. Once completed, the reaction was quenched with few drops of 

triethylamine and the solvent evaporated. The crude product was purified by flash 

chromatography on silica gel (eluent = pentane:Et2O gradient from 100:0 to 50:1, otherwise 

stated) to obtain the pure oxy-cyclobutene. 

(1-Methyl-3-phenoxycyclobut-2-en-1-yl)benzene (2.44a)  

Cyclobutene 2.44a was synthesized following general procedure A starting from 

(ethynyloxy)benzene (23.6 mg, 0.2 mmol) and -methylstyrene (78 µL, 0.6 

mmol). The crude product was purified by flash chromatography affording 2.44a 

as a colorless oil (40 mg, 85%). 

 
162 K. Graf, C. L. Rühl, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chemie - Int. Ed. 2013, 52, 

12727–12731. 

163 T. Aechtner, D. A. Barry, E. David, C. Ghellamallah, D. F. Harvey, A. De La Houpliere, M. Knopp, 

M. J. Malaska, D. Pérez, K. A. Schärer, et al., Synth. 2018, 50, 1053–1089. 

164 C. García-Morales, B. Ranieri, I. Escofet, L. López-Suarez, C. Obradors, A. I. Konovalov, A. M. 

Echavarren, J. Am. Chem. Soc. 2017, 139, 13628–13631. 

165 M. Mato, C. García-Morales, A. M. Echavarren, ACS Catal. 2020, 10, 3564–3570. 
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1H-NMR (400 MHz, CDCl3) δ 7.42 – 7.30 (m, 6H), 7.25 – 7.11 (m, 4H), 5.19 (s, 1H), 2.91 (d, 

J = 12.6 Hz, 1H), 2.87 (d, J = 12.6 Hz, 1H), 1.61 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 155.0, 

149.5, 148.0, 129.7, 128.2, 126.1, 125.9, 124.2, 119.5, 109.1, 47.3, 41.4, 28.4. HRMS (APCI) 

m/z calculated for C17H17O+ [M+H]+: 237.1274, found: 237.1273. 

1-(tert-Butyl)-4-(1-methyl-3-phenoxycyclobut-2-en-1-yl)benzene (2.44b)  

Cyclobutene 2.44a was synthesized following general procedure A starting from 

(ethynyloxy)benzene (23.6 mg, 0.2 mmol) and 1-(tert-butyl)-4-(prop-1-en-2-

yl)benzene (105 mg, 0.6 mmol). The crude product was purified by flash 

chromatography affording 2.44b as a colorless oil (52 mg, 89%). 

1H-NMR (400 MHz, CDCl3) δ 7.40 – 7.30 (m, 6H), 7.20 (m, 3H), 7.18 – 7.12 

(m, 1H), 5.18 (s, 1H), 2.91 (d, J = 12.6 Hz, 1H), 2.85 (d, J = 12.6 Hz, 1H), 1.61 (s, 3H), 1.35 (s, 

9H). 13C-NMR (101 MHz, CDCl3) δ 155.1, 149.4, 148.6, 144.9, 129.7, 125.8, 125.1, 124.2, 

119.5, 109.3, 47.3, 41.0, 34.5, 31.6, 28.3. HRMS (ESI) m/z calculated for C21H25O+ [M+H]+: 

293.1900, found: 293.1898. 

1-Fluoro-4-(1-methyl-3-phenoxycyclobut-2-en-1-yl)benzene (2.44c)  

Cyclobutene 2.44c was synthesized following general procedure A starting from 

(ethynyloxy)benzene (23.6 mg, 0.2 mmol) and 1-fluoro-4-(prop-1-en-2-

yl)benzene (82 mg, 0.6 mmol). The crude product was purified by flash 

chromatography affording 2.44c as a colorless oil (34 mg, 67%). 

1H-NMR (500 MHz, CDCl3) δ 7.35 (tt, J = 6.8, 1.0 Hz, 2H), 7.32 – 7.28 (m, 

2H), 7.19 – 7.14 (m, 2H), 7.14 – 7.11 (m, 1H), 7.02 – 6.92 (m, 2H), 5.13 (d, J = 0.7 Hz, 1H), 

2.87 – 2.80 (m, 2H), 1.57 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 162.3 (d, J = 243.7 Hz), 

155.0, 149.6, 143.7, 143.7, 129.7, 127.6 (d, J = 7.8 Hz), 124.3, 119.5, 114.9 (d, J = 21.0 Hz), 

108.9, 47.4, 40.9, 28.4. 19F-NMR (376 MHz, CDCl3) δ -117.87.  

4-(1-Methyl-3-phenoxycyclobut-2-en-1-yl)-1,1'-biphenyl (2.44d)  

Cyclobutene 2.44d was synthesized following general procedure A starting from 

(ethynyloxy)benzene (23.6 mg, 0.2 mmol) and 4-(prop-1-en-2-yl)-1,1'-biphenyl 

(117 mg, 0.6 mmol). The crude product was purified by flash chromatography 

affording 2.44d as a white solid (56 mg, 90%). 

1H-NMR (500 MHz, CDCl3) δ 7.66 – 7.61 (m, 2H), 7.61 – 7.55 (m, 2H), 7.50 – 

7.44 (m, 4H), 7.42 – 7.33 (m, 3H), 7.24 – 7.21 (m, 2H), 7.17 (td, J = 7.3, 1.2 Hz, 1H), 5.23 (s, 

1H), 2.97 (d, J = 12.7 Hz, 1H), 2.92 (d, J = 12.7 Hz, 1H), 1.67 (s, 3H). 13C-NMR (126 MHz, 

CDCl3) δ 155.0, 149.6, 147.1, 141.2, 138.9, 129.7, 128.9, 127.2, 127.2, 127.0, 126.6, 124.3, 
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119.5, 109.1, 47.4, 41.2, 28.3. HRMS (APCI) m/z calculated for C23H21O+ [M+H]+: 313.1587, 

found: 313.1568. 

3-Phenoxy-3',4'-dihydro-2'H-spiro[cyclobutane-1,1'-naphthalen]-2-ene (2.44e)  

Cyclobutene 2.44e was synthesized following general procedure A starting from 

(ethynyloxy)benzene (23.6 mg, 0.2 mmol) and 1-methylene-1,2,3,4-

tetrahydronaphthalene (87 mg, 0.6 mmol). The crude product was purified by 

flash chromatography affording 2.44e as a brownish oil (21 mg, 40%). 

1H-NMR (400 MHz, CDCl3) δ 7.57 (dd, J = 7.5, 1.6 Hz, 1H), 7.42 – 7.34 (m, 2H), 7.28 – 7.23 

(m, 2H), 7.21 – 7.06 (m, 4H), 5.00 (s, 1H), 2.84 (dd, J = 7.8, 4.3 Hz, 2zH), 2.01 – 1.90 (m, 3H), 

1.82 (dddd, J = 18.7, 9.1, 7.5, 4.0 Hz, 1H). 13C-NMR (126 MHz, CDCl3) δ 155.1, 150.5, 141.8, 

137.4, 129.7, 129.0, 126.2, 126.2, 125.7, 124.2, 119.3, 110.6, 49.6, 40.6, 36.0, 30.4, 22.1. 

HRMS (APCI) m/z calculated for C19H19O+ [M+H]+: 263.1430, found: 263.1429. 

1-Methoxy-4-(3-phenoxycyclobut-2-en-1-yl)benzene (2.44f)  

Cyclobutene 2.44f was synthesized following general procedure A starting 

from (ethynyloxy)benzene (23.6 mg, 0.2 mmol) and 1-methoxy-4-

vinylbenzene (81 mg, 0.6 mmol). The crude product was purified by flash 

chromatography affording 2.44f as a yellow oil (19 mg, 37%). 

1H-NMR (400 MHz, CDCl3) δ 7.40 – 7.34 (m, 2H), 7.28 – 7.19 (m, 4H), 7.15 (ddt, J = 8.5, 7.0, 

1.2 Hz, 1H), 6.90 – 6.84 (m, 2H), 4.97 (d, J = 1.0 Hz, 1H), 3.81 (s, 3H), 3.66 (dt, J = 4.6, 1.3 

Hz, 1H), 3.24 (dd, J = 13.0, 4.6 Hz, 1H), 2.52 (dd, J = 13.0, 1.6 Hz, 1H). 13C-NMR (101 MHz, 

CDCl3) δ 158.4, 155.0, 150.1, 136.2, 129.7, 127.7, 124.2, 119.4, 113.9, 105.3, 55.5, 41.9, 36.8. 

HRMS (ESI) m/z calculated for C17H17O2
+ [M+H]+: 253.1223, found: 253.1221 

9-Phenoxybicyclo[6.2.0]dec-9-ene (2.44g)  

Cyclobutene 2.44g was synthesized following general procedure A starting from 

(ethynyloxy)benzene (23.6 mg, 0.2 mmol) and (Z)-cyclooctene (78 L, 0.6 

mmol). The crude product was purified by flash chromatography affording 2.44g 

as a yellow oil (21 mg, 45%). 

1H-NMR (400 MHz, CDCl3) δ 7.32 (tt, J = 7.5, 2.2 Hz, 2H), 7.18 – 7.12 (m, 2H), 7.12 – 7.06 

(m, 1H), 4.60 (d, J = 1.0 Hz, 1H), 2.96 (ddd, J = 12.0, 4.2, 2.0 Hz, 1H), 2.48 – 2.37 (m, 1H), 

1.91 (dtd, J = 14.4, 3.9, 1.9 Hz, 1H), 1.76 – 1.68 (m, 1H), 1.68 – 1.57 (m, 2H), 1.53 – 1.23 (m, 

8H). 13C-NMR (101 MHz, CDCl3) δ 155.3, 152.0, 129.6, 123.8, 119.2, 104.5, 48.5, 39.2, 30.6, 

30.0, 28.3, 26.4, 26.3, 24.5. HRMS (ESI) m/z calculated for C16H21O+ [M+H]+: 229.1587, 

found: 229.1586. 
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((3,3,4-Trimethylcyclobut-1-en-1-yl)oxy)benzene (2.44h)  

Cyclobutene 2.44h was synthesized following general procedure A starting from 

(ethynyloxy)benzene (23.6 mg, 0.2 mmol) and 2-methylbut-2-ene (64 L, 0.6 

mmol). The crude product was purified by flash chromatography affording 2.44h 

as a yellow oil 7:1 mixture of regioisomers (29 mg, 77%). Major regiosomer (Mr), minor 

regioisomer (mr). 

1H-NMR (400 MHz, CDCl3) δ 7.36 – 7.29 (m, 3H, Mr + mr), 7.19 – 7.12 (m, 2H, Mr + mr), 

7.09 (td, J = 7.3, 1.2 Hz, 1H, Mr), 7.06 – 6.96 (m, 0.15H, mr), 4.73 (s, 1H, Mr), 4.56 (d, J = 1.0 

Hz, 0.15H, mr), 2.69 (q, J = 7.1 Hz, 1H, Mr), 2.21 – 2.14 (m, 0.15H, mr), 1.19 (s, 3H, Mr), 1.18 

(s, 0.7H, mr), 1.12 (s, 0.7H, mr), 1.09 (d, J = 7.2 Hz, 3H, Mr), 1.07 (s, 3H, Mr), 1.03 (d, J = 6.8 

Hz, 1H, mr). 13C-NMR (101 MHz, CDCl3) δ 155.4 (mr), 152.6 (Mr), 129.5 (Mr), 129.5 (Mr), 

123.8 (Mr), 122.7 (mr), 119.4 (mr), 119.2 (Mr), 117.9 (mr), 110.0 (Mr), 102.2 (mr), 48.8 (Mr), 

45.1 (mr), 40.4 (mr), 37.3 (mr), 28.1 (Mr), 24.8 (Mr), 22.7 (Mr), 19.6 (mr), 15.6 (mr), 12.6 (Mr). 

HRMS (ESI) m/z calculated for C13H17O+ [M+H]+: 189.1274, found: 189.1273. 

((3,3,4,4-Tetramethylcyclobut-1-en-1-yl)oxy)benzene (2.44i)  

Cyclobutene 2.44i was synthesized following general procedure A starting from 

(ethynyloxy)benzene (23.6 mg, 0.2 mmol) and 2,3-dimethylbut-2-ene (72 L, 

0.6 mmol). The crude product was purified by flash chromatography affording 

2.44i as a colorless oil (24 mg, 59%).  

1H-NMR (400 MHz, CDCl3) δ 7.36 – 7.28 (m, 2H), 7.19 – 7.14 (m, 2H), 7.09 (ddt, J = 7.7, 7.0, 

1.2 Hz, 1H), 4.60 (s, 1H), 1.19 (s, 7H), 1.10 (s, 7H). 13C-NMR (101 MHz, CDCl3) δ 156.5, 

155.5, 129.5, 123.8, 119.4, 107.4, 48.8, 40.5, 24.3, 21.5. HRMS (ESI) m/z calculated for 

C14H19O+ [M+H]+: 203.1430, found: 203.14.32. 

2-Phenoxyspiro[3.5]non-1-ene (2.44j)  

Cyclobutene 2.44i was synthesized following general procedure A starting from 

(ethynyloxy)benzene (23.6 mg, 0.2 mmol) and methylenecyclohexane (58 mg, 

0.6 mmol). The crude product was purified by flash chromatography affording 

2.44j as a colorless oil (32 mg, 74%).  

1H-NMR (500 MHz, CDCl3) δ 7.36 – 7.29 (m, 2H), 7.16 – 7.13 (m, 2H), 7.11 (tt, J = 7.3, 1.2 

Hz, 1H), 4.98 (s, 1H), 2.37 (s, 2H), 1.62 – 1.38 (m, 10H). 13C-NMR (126 MHz, CDCl3) δ 155.3, 

149.9, 129.6, 123.9, 119.3, 110.8, 43.4, 39.5, 37.3, 26.0, 25.1. HRMS (APCI) m/z calculated 

for C15H19O+ [M+H]+: 215.1430, found: 215.1428. 

((3-Methyl-3-phenethylcyclobut-1-en-1-yl)oxy)benzene (2.44k)  
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Cyclobutene 2.44k was synthesized following general procedure A starting from 

(ethynyloxy)benzene (23.6 mg, 0.2 mmol) and (3-methylbut-3-en-1-yl)benzene 

(87.6 mg, 0.6 mmol). The crude product was purified by flash chromatography 

affording 2.44k as a colorless oil (29 mg, 59%).  

1H-NMR (500 MHz, CDCl3) δ 7.39 – 7.32 (m, 2H), 7.29 (t, J = 7.5 Hz, 2H), 7.24 – 7.18 (m, 

3H), 7.18 – 7.10 (m, 3H), 4.88 (s, 1H), 2.73 – 2.61 (m, 2H), 2.54 (d, J = 12.7 Hz, 1H), 2.44 (d, 

J = 12.7 Hz, 1H), 1.90 – 1.78 (m, 2H), 1.31 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 155.2, 

148.7, 143.1, 129.6, 128.4, 125.8, 123.9, 119.3, 110.7, 44.3, 42.7, 37.9, 32.8, 24.8. HRMS 

(APCI) m/z calculated for C19H21O+ [M+H]+: 265.1587, found: 265.1585. 

((3-Methyl-3-vinylcyclobut-1-en-1-yl)oxy)benzene (2.44l)  

Cyclobutene 2.44l was synthesized following general procedure A starting from 

(ethynyloxy)benzene (23.6 mg, 0.2 mmol) and isoprene (60 l, 0.6 mmol). The 

crude product was purified by flash chromatography affording 2.44l as a 

colorless oil (13 mg, 34%).  

1H-NMR (500 MHz, CDCl3) δ 7.38 – 7.29 (m, 2H), 7.17 – 7.14 (m, 2H), 7.14 – 7.10 (m, 1H), 

6.06 (dd, J = 17.2, 10.4 Hz, 1H), 5.06 (dd, J = 17.2, 1.6 Hz, 1H), 4.94 (dd, J = 10.4, 1.6 Hz, 

1H), 4.84 (s, 1H), 2.61 (d, J = 12.7 Hz, 1H), 2.55 (d, J = 12.7 Hz, 1H), 1.34 (s, 3H). 13C-NMR 

(126 MHz, CDCl3) δ 155.1, 148.9, 145.8, 129.7, 129.6, 124.1, 119.3, 111.2, 109.4, 45.5, 39.8, 

24.1. HRMS (ESI) m/z calculated for C13H15O+ [M+H]+: 187.1117, found: 187.1122. 

(1R,11S)-4,13,13-Trimethyl-10-methylene-6-phenoxytricyclo[9.2.0.04,7]tridec-5-ene 

(2.44m) and (1R,11S)-4,13,13-trimethyl-10-methylenetricyclo[9.2.0.04,7]tridecan-6-one 

(2.45a)  

The cyclobutene 2.44m and the cyclobutanone 2.45m were 

synthesized following general produced A starting from 

(ethynyloxy)benzene (23.6 mg, 0.2 mmol) and -Caryophyllene (170 

l, 0.6 mmol). The crude product was purified by flash 

chromatography affording a mixture of 2.44m and 2.45a in a ratio changing during time. Few 

fractions of pure 2.44m as 1:1 mixture of regioisomers were separated (8 mg, 10%) and used to 

assign the structure by 1H-NMR and 13C-NMR, however 2.44m was fully converted into 2.45a 

overnight, and no HRMS was measured. A second purification by flash chromatography 

afforded 2.45a as a yellow oil, 3:1 mixture of regioisomers (21 mg, 43%).  

(1R,11S)-4,13,13-Trimethyl-10-methylene-6-phenoxytricyclo[9.2.0.04,7]tridec-5-ene 

(2.44m) (Mr = major regioisomer, mr = minor regioisomer) 
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1H-NMR (400 MHz, CDCl3) δ 7.36 – 7.30 (m, 4H, Mr + mr), 7.16 (dq, J = 7.9, 1.3 Hz, 4H, Mr 

+ mr), 7.13 – 7.08 (m, 2H, Mr + mr), 4.95 (t, J = 1.3 Hz, 1H, mr), 4.93 (s, 1H, Mr), 4.86 (d, J = 

1.5 Hz, 1H, mr), 4.85 (s, 1H, Mr), 4.66 (s, 1H, Mr), 4.48 (d, J = 1.1 Hz, 1H, mr), 2.86 (dd, J = 

12.9, 2.7 Hz, 1H, Mr), 2.54 – 2.38 (m, 6H, Mr + mr), 2.09 – 2.00 (m, 1H, mr), 1.95 – 1.86 (m, 

3H, Mr + mr), 1.86 – 1.69 (m, 5H, Mr + mr), 1.63 (m, 6H, Mr + mr), 1.56 – 1.40 (m, 3H, Mr + 

mr), 1.41 – 1.25 (m, 2H, Mr + mr), 1.23 (s, 3H, mr), 1.14 (s, 3H, Mr), 1.04 (s, 3H, mr), 1.02 (s, 

3H, Mr), 1.00 (s, 6H, Mr + mr). 13C-NMR (101 MHz, CDCl3) δ 155.3, 153.2, 152.6, 151.7, 

129.5, 123.8, 119.3, 119.2, 110.4, 109.5, 101.0, 54.8, 50.2, 49.3, 49.2, 43.1, 41.9, 40.6, 39.7, 

36.9, 34.4, 34.0, 34.0, 33.9, 32.9, 30.1, 30.1, 29.2, 26.9, 26.3, 25.7, 24.8, 24.5, 21.8, 19.3. 

(1R,11S)-4,13,13-Trimethyl-10-methylenetricyclo[9.2.0.04,7]tridecan-6-one (2.45a) (Mr = 

major regioisomer, mr = minor regioisomer) 

1H-NMR (400 MHz, CDCl3) δ 4.95 (d, J = 1.2 Hz, 1H, Mr), 4.92 (t, J = 1.3 Hz, 0.3H, mr), 4.85 

(d, J = 1.6 Hz, 0.3H, mr), 4.84 (q, J = 1.1 Hz, 1H, Mr), 3.15 – 3.07 (m, 0.3H, mr), 3.06 – 2.99 

(m, 1H, Mr ), 2.78 (dd, J = 16.8, 2.9 Hz, 1H, Mr), 2.69 (dd, J = 18.0, 8.1 Hz, 0.3H, mr), 2.55 

(dd, J = 16.8, 2.1 Hz, 1H, Mr), 2.49 – 2.33 (m, 2H, Mr + mr), 2.33 – 2.22 (m, 1H, Mr), 2.05 – 

1.97 (m, 1H, Mr), 1.96 – 1.80 (m, 3H, Mr + mr), 1.69 – 1.51 (m, 8H, Mr + mr), 1.51 – 1.33 (m, 

2H, Mr + mr), 1.12 (s, 1H, mr), 1.12 (s, 3H, Mr), 1.00 (s, 6H, Mr), 0.99 (s, 1H, mr), 0.98 (s, 1H, 

mr). 13C-NMR (126 MHz, CDCl3) δ 216.3(mr), 211.6 (Mr), 152.6 (mr), 152.2 (Mr), 110.6 (Mr), 

109.3 (mr), 63.9 (mr), 62.9 (Mr), 60.1 (Mr), 55.6 (Mr), 54.9 (mr), 49.6, 48.2, 45.5, 44.8, 38.1, 

37.0, 36.9, 34.4, 34.3 (mr), 34.2, 33.9, 33.5, 32.9, 32.4, 30.1 (mr), 30.1 (Mr), 25.7, 24.8 (mr), 

24.5 (Mr), 21.9 (Mr), 21.7 (mr), 20.1 (Mr), 14.1 (mr). 

tert-Butyldimethyl((3-phenoxyspiro[3.5]non-2-en-1-yl)oxy)silane (2.44n) 

Cyclobutene 2.44n was synthesized following general procedure A starting 

from (ethynyloxy)benzene (23.6 mg, 0.2 mmol) and tert-

butyl(cyclohexylidenemethoxy)dimethylsilane (136 mg, 0.6 mmol). The 

crude product was purified by flash chromatography affording 2.44n as a yellow oil (54 mg, 

79%).  

1H-NMR (400 MHz, CDCl3) δ 7.37 – 7.28 (m, 2H), 7.18 – 7.09 (m, 3H), 4.58 (d, J = 0.8 Hz, 

1H), 4.12 (d, J = 0.8 Hz, 1H), 1.82 – 1.70 (m, 2H), 1.70 – 1.61 (m, 2H), 1.61 – 1.45 (m, 2H), 

1.44 – 1.32 (m, 2H), 1.32 – 1.12 (m, 2H), 0.90 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H). 13C-NMR 

(101 MHz, CDCl3) δ 162.0, 155.2, 129.6, 124.4, 119.8, 100.8, 72.8, 55.5, 33.8, 30.4, 26.1, 26.1, 

24.4, 23.5, 18.4, -4.2, -4.5.  

tert-Butyl 3-methoxy-1-phenoxy-7-azaspiro[3.5]non-1-ene-7-carboxylate (2.44o)  

UNIVERSITAT ROVIRA I VIRGILI 
Transition Metal-Catalyzed Reactions of Heteroatom- Substituted Alkynes 
Margherita Zanini 



 

196 

 

Cyclobutene 2.44o was synthesized following general procedure A starting 

from (ethynyloxy)benzene (23.6 mg, 0.2 mmol) and tert-butyl 4-

(methoxymethylene)piperidine-1-carboxylate (136 mg, 0.6 mmol). The 

crude product was purified by flash chromatography affording 2.44o as a colorless oil (64 mg, 

92%).  

1H-NMR (400 MHz, CDCl3) δ 7.39 – 7.30 (m, 2H), 7.20 – 7.11 (m, 3H), 4.78 (d, J = 0.8 Hz, 

1H), 3.77 (d, J = 0.8 Hz, 1H), 3.70 – 3.47 (m, 4H), 3.33 (s, 3H), 1.93 – 1.79 (m, 3H), 1.72 (ddd, 

J = 12.7, 7.8, 3.9 Hz, 1H), 1.47 (s, 9H). 13C-NMR (101 MHz, CDCl3) δ 161.8, 155.2, 154.7, 

129.7, 124.8, 119.7, 98.7, 80.1, 79.4, 56.9, 53.2, 28.6, 28.6.  

Trimethyl((3-phenoxycyclobut-2-en-1-yl)methyl)silane (2.44p) 

Cyclobutene 2.44o was synthesized following general procedure A starting 

from (ethynyloxy)benzene (23.6 mg, 0.2 mmol) and allyltrimethylsilane (95 

l, 0.6 mmol). The crude product was purified by flash chromatography 

affording 2.44p as a colorless oil (11.6 mg, 25%). 

1H-NMR (500 MHz, CDCl3) δ 7.40 – 7.25 (m, 3H), 7.15 – 7.11 (m, 2H), 7.10 (dt, J = 7.3, 1.2 

Hz, 1H), 4.80 (d, J = 0.9 Hz, 1H), 2.94 (dd, J = 12.9, 4.2 Hz, 1H), 2.57 (tdt, J = 7.5, 4.2, 1.3 Hz, 

1H), 2.22 (dd, J = 12.8, 1.5 Hz, 1H), 0.79 (d, J = 7.6 Hz, 2H), 0.01 (s, 9H). 13C-NMR (126 

MHz, CDCl3) δ 155.2, 148.3, 129.6, 123.9, 119.3, 108.7, 40.9, 29.8, 23.3, -0.9.  

1-((3-Methyl-3-phenylcyclobut-1-en-1-yl)oxy)-4-(trifluoromethyl)benzene (2.44q)  

Cyclobutene 2.44q was synthesized following general procedure A 

starting from 1-(ethynyloxy)-4-(trifluoromethyl)benzene (37.2 mg, 0.2 

mmol) and -methylstyrene (78 µL, 0.6 mmol). The crude product was 

purified by flash chromatography affording 2.44q as a colorless oil (44 

mg, 72%).  

1H-NMR (400 MHz, CDCl3) δ 7.72 – 7.54 (m, 2H), 7.47 – 7.33 (m,4H), 7.31 – 7.14 (m, 3H), 

5.32 (s, 1H), 2.94 (d, J = 12.7 Hz, 1H), 2.89 (d, J = 12.7 Hz, 1H), 1.63 (s, 3H). 19F NMR (376 

MHz, CDCl3) δ -62.0. 13C-NMR (101 MHz, CDCl3) δ 157.7, 148.4, 147.5, 128.3, 127.1 (q, J = 

3.7 Hz), 126.1, 124.2 (q, J = 271.6 Hz), 119.2, 111.2, 47.3, 41.7, 28.3.  

1,3-Dimethoxy-5-((3-methyl-3-phenylcyclobut-1-en-1-yl)oxy)benzene (2.44r)  

Cyclobutene 2.44r was synthesized following general procedure A 

starting from 1-(ethynyloxy)-3,5-dimethoxybenzene (35.6 mg, 0.2 

mmol) and -methylstyrene (78 µL, 0.6 mmol). The crude product was 
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purified by flash chromatography affording 2.44r as a colorless oil (13 mg, 22%).  

1H-NMR (300 MHz, CDCl3) δ 7.42 – 7.29 (m, 4H), 7.21 (ddt, J = 8.5, 6.4, 1.6 Hz, 1H), 6.36 

(d, J = 2.2 Hz, 2H), 6.26 (t, J = 2.2 Hz, 1H), 5.27 (s, 1H), 3.79 (s, 6H), 2.88 (d, J = 12.8 Hz, 

1H), 2.87 (d, J = 12.8 Hz, 1H), 1.60 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 161.5, 156.7, 148.9, 

147.9, 128.2, 126.1, 125.9, 109.9, 97.9, 96.3, 55.6, 47.3, 41.5, 28.4.  

1-((3-Methyl-3-phenylcyclobut-1-en-1-yl)oxy)naphthalene (2.44s)  

Cyclobutene 2.44s was synthesized following general procedure A starting 

from 1-(ethynyloxy)naphthalene (34 mg, 0.2 mmol) and -methylstyrene 

(78 µL, 0.6 mmol). The crude product was purified by flash chromatography 

affording 2.44s as a colorless oil z (34 mg, 58%).  

1H-NMR (400 MHz, CDCl3) δ 8.18 (ddt, J = 6.4, 3.6, 0.8 Hz, 1H), 7.91 – 7.83 (m, 1H), 7.65 

(dt, J = 8.2, 1.0 Hz, 1H), 7.57 – 7.49 (m, 3H), 7.44 (dd, J = 8.2, 7.6 Hz, 1H), 7.41 – 7.36 (m, 

2H), 7.36 – 7.29 (m, 3H), 7.25 – 7.19 (m, 1H), 5.20 (s, 1H), 2.99 (d, J = 12.7 Hz, 1H), 2.95 (d, 

J = 12.7 Hz, 1H), 1.62 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 150.8, 149.7, 148.0, 135.0, 

128.2, 127.9, 126.6, 126.2, 126.1, 125.9, 125.6, 124.2, 122.1, 114.4, 109.6, 47.3, 41.4, 28.4. 

Synthesis of Internal Ynol ethers 

Internal ynol ethers 2.46a-d,i were synthesized following a modified reported procedure166: 

General procedure B: Synthesis of internal ynol ethers 

 

The phenol (1.2 equiv) and K2CO3 (1.2 equiv) were suspended in dry DMF (0.3 M) and stirred 

for 30 minutes, then the needed 2-bromoketone (1 equiv) was added and the mixture was stirred 

at 50 °C until complete conversion monitored by GC-MS. 

The reaction was then quenched with water and the crude product was extracted three times 

with EtOAc. The collected organic phases were washed several times with KOH 2M in H2O 

and Brine, dried over Na2SO4 and the solvent evaporated. The crude product was filtered 

through a plug of silica gel and used in the following step without further purifications.  

Note: In some case larger excess of phenol was necessary and after the filtration through silica 

gel the product was obtained as a mixture with residual phenol. The presence of the phenol does 

 
166 J. R. Sosa, A. A. Tudjarian, T. G. Minehan, Org. Lett. 2008, 10, 5091–5094. 
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not affect the following step as far as its amount remains less than the 20% of the total. In case 

of a larger excess a second washing with KOH 2M in H2O it will be necessary. 

 

Bis(trimethylsilyl)amine (2.5 equiv) dissolved in THF (1 M with respect of the limiting reagent) 

under argon was cooled to 0 °C in an ice bath and butyllithium (2.5 M in hexane, 1.5 equiv) was 

added dropwise. After 10 minutes, the mixture was cooled to -78 °C and a solution of the crude 

mixture from the previous step (1 equiv) in THF (1 M) was added dropwise. The reaction 

mixture was stirred for 1 h at -78 °C, and then a solution of 1,1,1-trifluoro-N-phenyl-N-

((trifluoromethyl)sulfonyl)methanesulfonamide (1.5 equiv) in 1:1 mixture DMPU:THF (total 

volume: 1 M with respect of the limiting reagent) was added rapidly (1s). The mixture was 

allowed to warm to room temperature and then was stirred for 1 h. The reaction mixture was 

quenched with ice-cold saturated NaHCO3 solution and was then diluted with ether. The phases 

were separated, and the aqueous layer was back-extracted with ether. The combined organic 

phases were then dried over Na2SO4, filtered, and concentrated in vacuo. The crude triflate was 

dissolved in THF (1 M) under argon and cooled to -78 °C. A solution of KOtBu in THF (1 

molar, 2.5 equiv) was added dropwise, and the reaction mixture darkened in color. After 20 

minutes, a saturated solution NaHCO3 was added and the mixture was allowed to warm to room 

temperature with stirring. Et2O was added, and the phases were separated. The aqueous layer 

was back-extracted with Et2O and the combined organic phases were then dried over Na2SO4, 

filtered, and concentrated in vacuo. Purification of the residue by flash chromatography silica 

gel afforded the ynol ether. 

Notes: 1) The crude triflate can be stored without solvent and under argon for up to three days 

in the freezer and then used in the second step without erosion of the final yield.  

2) Highly electron-rich ynol ethers are generally unstable, and the final purification has to be 

carried on quickly and eventually using neutral alumina instead of silica gel. 

3) The reported procedure can be followed without modifications for amounts of starting 

material up to 1g. On larger scale the overall yield dropped drastically. 

(Phenoxyethynyl)benzene (2.46a)  
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Ynol ether 2.46a was synthesized following general procedure B starting from 

2-bromo-1-phenylethan-1-one and phenol. The second step of the synthesis was 

carried out on 1g of crude and after purification by flash chromatography on 

silica gel 2.46a was obtained as an orange oil (609 mg, 67%). 

1H-NMR (300 MHz, CDCl3) δ 7.51 – 7.44 (m, 2H), 7.44 – 7.28 (m, 7H), 7.22 – 7.14 (m, 1H). 

Data in agreement with the one reported in literature166. 

1-Methoxy-2-((phenylethynyl)oxy)benzene (2.46b)  

Ynol ether 2.46b was synthesized following general procedure B starting 

from 2-bromo-1-phenylethan-1-one and 2-methoxyphenol. The second 

step of the synthesis was carried out on 340 mg of crude and after 

purification by flash chromatography on silica gel 2.46b was obtained as 

an orange oil (239 mg, 76%). 

1H-NMR (400 MHz, CDCl3) δ 7.56 (dd, J = 8.1, 1.6 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.31 – 7.23 

(m, 3H), 7.09 (ddd, J = 8.0, 7.6, 1.6 Hz, 1H), 6.96 (ddd, J = 8.1, 7.6, 1.5 Hz, 1H), 6.92 (dd, J = 

8.0, 1.5 Hz, 1H), 3.87 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 148.3, 145.5, 131.9, 128.4, 127.5, 

125.1, 123.1, 120.9, 115.1, 112.7, 92.7, 56.2, 46.3. 

1-(Phenoxyethynyl)-2-(trifluoromethyl)benzene (2.46c)  

Ynol ether 2.46c was synthesized following general procedure B starting 

from 2-bromo-1-(2-(trifluoromethyl)phenyl)ethan-1-one and phenol. The 

second step of the synthesis was carried out on 390 mg of crude and after 

purification by flash chromatography on silica gel 2.46c was obtained as an 

orange oil (179 mg, 49%). 

1H-NMR (400 MHz, CDCl3) δ 7.67 (ddd, J = 7.9, 1.4, 0.7 Hz, 1H), 7.61 (ddt, J = 7.7, 1.4, 0.7 

Hz, 1H), 7.49 (tdd, J = 7.6, 1.4, 0.7 Hz, 1H), 7.45 – 7.34 (m, 5H), 7.21 (tt, J = 6.6, 1.5 Hz, 1H). 

19F-NMR (376 MHz, CDCl3) δ -62.5. 13C-NMR (101 MHz, CDCl3) δ 156.1, 134.1, 131.5, 

130.0, 127.1, 126.0 (q, J = 5.1 Hz) , 124.9, 124.0 (q, J = 273.2 Hz), 122.6, 121.7 (q, J = 2.3 Hz), 

115.2, 97.4, 43.2. 

1-Methyl-4-(phenoxyethynyl)benzene (2.46d)  

Ynol ether 2.46d was synthesized following general procedure B starting 

from 2-bromo-1-(p-tolyl)ethan-1-one and phenol. The second step of the 

synthesis was carried out on 340 mg (assumed 1.5 mmol) of crude and after 

UNIVERSITAT ROVIRA I VIRGILI 
Transition Metal-Catalyzed Reactions of Heteroatom- Substituted Alkynes 
Margherita Zanini 



 

200 

 

purification by flash chromatography on silica gel 2.46d was obtained as an orange oil (219 mg, 

70%). 

1H-NMR (400 MHz, CDCl3) δ 7.45 – 7.31 (m, 7H), 7.22 – 7.11 (m, 3H), 2.37 (s, 3H). 13C-

NMR (101 MHz, CDCl3) δ 156.3, 137.6, 131.8, 129.8, 129.2, 124.5, 119.8, 115.2, 92.0, 46.4, 

21.5. 

1-Nitro-4-((phenylethynyl)oxy)benzene (2.46i)  

Ynol ether 2.46i was synthesized following general procedure B starting from 

2-bromo-1-(p-tolyl)ethan-1-one and 4-nitrophenol. The second step of the 

synthesis was carried out on 1 g (assumed 3.9 mmol) of crude and after 

purification by flash chromatography on silica gel 2.46i was obtained as an 

orange oil (507 mg, 55%). 

1H-NMR (400 MHz, CDCl3) δ 8.36 – 8.28 (m, 2H), 7.53 – 7.46 (m, 4H), 7.35 (tt, J = 3.7, 2.6 

Hz, 3H). 13C-NMR (101 MHz, CDCl3) δ 160.5, 144.6, 132.0, 128.6, 128.3, 126.1, 121.9, 115.9, 

90.8, 48.6. 

Internal ynol ethers 2.46e,g,j were synthesized following a modified reported procedure167: 

General procedure C: Synthesis of internal ynol ethers 

 

 

15 mL pressure tube was charged with the phenol (1.4 equiv), 2,2'-bipyridine (0.4 equiv), K3PO4 

(6.2 equiv), and copper(I) iodide (0.2 equiv). The tube was fitted with a rubber septum, 

evacuated under high vacuum and backfilled with argon. Dry and degassed toluene (0.25 M) 

was next added followed by the needed 1,1-dibromo-1-alkene (1 equiv) The rubber septum was 

replaced by teflon-coated screw cap and the heterogeneous suspension heated at 110 °C for 2 

days, cooled to room temperature, filtered through a plug of silica gel and concentrated under 

reduced pressure. 

The crude product was then dissolved in dry dioxane (0.4 M) and treated with potassium tert-

butoxide (2 equiv). The resulting mixture was stirred overnight at room temperature, filtered 

 
167 K. Jouvin, A. Coste, A. Bayle, F. Legrand, G. Karthikeyan, K. Tadiparthi, G. Evano, Organometallics 

2012, 31, 7933–7947. 
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through a plug of silica gel (washed with EtOAc), and concentrated in vacuo. The crude residue 

was purified by flash column chromatography eluting with hexane. 

1-Methoxy-4-(phenoxyethynyl)benzene (2.46e)  

Ynol ether 2.46e was synthesized following general procedure C starting 

from 1-(2,2-dibromovinyl)-4-methoxybenzene (672 mg, 2.3 mmol) and 

phenol. After purification by flash chromatography on neutral alumina 

2.46e was obtained as an orange oil (162 mg, 31%).  

1H-NMR (500 MHz, CDCl3) δ 7.43 – 7.37 (m, 2H), 7.38 (m, 1H), 7.37 

– 7.31 (m, 2H), 7.19 – 7.12 (m, 1H), 6.89 – 6.82 (m, 2H), 3.81 (s, 3H). 13C-NMR (126 MHz, 

CDCl3) δ 159.2, 156.4, 133.3, 129.8, 124.5, 115.2, 114.1, 91.4, 55.4, 46.1, 27.3. HRMS (APCI) 

m/z calculated for C15H13O2
+ [M+H]+: 225.0910, found: 225.0909. m/z calculated for C15H13O2

+ 

[M+CH3OH+H]+: 257.1172, found: 257.1171. 

(Hex-1-yn-1-yloxy)benzene (2.46g)  

Ynol ether 2.46g was synthesized following general procedure C starting 

from 1,1-dibromohex-1-ene (726 mg, 3.0 mmol) and phenol. After 

purification by flash chromatography on silica gel 2.46g was obtained as 

colorless oil (236 mg, 45%).  

1H-NMR (500 MHz, CDCl3) δ 7.37 – 7.31 (m, 2H), 7.25 (dtd, J = 7.7, 2.1, 0.9 Hz, 2H), 7.14 – 

7.07 (m, 1H), 2.28 (t, J = 6.9 Hz, 2H), 1.60 – 1.51 (m, 2H), 1.51 – 1.42 (m, 2H), 0.94 (t, J = 7.3 

Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ 156.6, 129.8, 129.7, 124.0, 116.7, 115.0, 83.4, 44.8, 

31.6, 22.1, 17.1, 13.8. Data in agreement with the one reported in literature167 

1,3,5-trimethyl-2-(phenoxyethynyl)benzene (2.46j)  

Ynol ether 2.46j was synthesized following general procedure C starting 

from 2-(2,2-dibromovinyl)-1,3,5-trimethylbenzene (720 mg, 2.4 mmol) and 

phenol. After purification by flash chromatography on neutral alumina 2.46j 

was obtained as a red oil (194 mg, 33%). The product is highly unstable and 

decomposed within three days stored under argon in the freezer. 

1H-NMR (400 MHz, CDCl3) δ 7.45 – 7.35 (m, 4H), 7.21 – 7.14 (m, 1H), 6.90 (s, 2H), 2.45 (s, 

6H), 2.30 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 156.5, 140.0, 136.8, 129.9, 127.9, 127.7, 

124.4, 119.6, 115.1, 100.0, 44.1, 21.4, 21.4. HRMS (APCI) m/z calculated for C17H17O+ 

[M+H]+: 273.1274, found: 273.1275. 

General procedure D: Gold(I)-catalyzed reaction of 2.46 with 2.43. 
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The needed ynol ether (0.2 mmol, 1 equiv) was dissolved in CH2Cl2 (0.2 mL, 1 M). The alkene 

(0.4 mmol, 2 equiv) was added followed by [(tBuXPhos)AuNCMe]BAr4
F

 (2.A, 3 mol%, 9.2 

mg). The resulting mixture was stirred at 23 °C for 1 h. The reaction was monitored by GC-MS 

or UHPLC-MSD. Once completed, the reaction was quenched with few drops of triethylamine 

and the solvent evaporated. The crude product was purified by flash chromatography on neutral 

alumina (eluent = pentane:Et2O gradient from 100:0 to 20:1) to obtain the pure product. 

2-Benzylidene-4-methyl-4-phenylchromane (2.47a) 

chromane 2.47a was synthesized following general procedure D starting 

from (phenoxyethynyl)benzene (38 mg, 0.2 mmol) and -methylstyrene (52 

µL, 0.4 mmol). The crude product was purified by flash chromatography 

affording 2.47a as a greenish oil (E:Z = 1:1, 47 mg, 76%).  

1H-NMR (400 MHz, CDCl3) δ 7.34 – 7.17 (m, 13H, E+Z), 7.17 – 7.09 (m, 4H, E+Z), 7.09 – 

7.00 (m, 6H, E+Z), 6.98 – 6.88 (m, 4H, E+Z), 6.30 (s, 1H, E), 5.56 (d, J = 1.1 Hz, 1H, Z), 3.21 

(dd, J = 14.5, 0.9 Hz, 1H, E), 3.06 (d, J = 16.7 Hz, 1H, Z), 2.83 (dd, J = 14.5, 1.2 Hz, 1H, E), 

2.71 (dd, J = 16.7, 1.2 Hz, 1H, Z), 1.75 (s, 3H), 1.69 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 

156.9, 154.9, 152.5, 150.1, 147.9, 146.6, 139.9, 135.8, 134.7, 131.1, 129.7, 129.1, 128.3, 128.3, 

128.2, 128.1, 127.6, 127.2, 127.0, 127.0, 126.6, 126.4, 126.3, 126.1, 125.9, 124.3, 121.7, 120.8, 

116.6, 108.7, 104.4, 44.4, 42.1, 40.3, 38.1, 27.8, 27.8.  

2-Benzylidene-4-(4-fluorophenyl)-4-methylchromane (2.47b)  

chromane 2.47b was synthesized following general procedure D starting 

from (phenoxyethynyl)benzene (38 mg, 0.2 mmol) and -fluoro-4-(prop-1-

en-2-yl)benzene (54 µL, 0.4 mmol). The crude product was purified by flash 

chromatography affording 2.47b as a colorless oil (E:Z = 1:1, 46 mg, 70%).  

1H-NMR (500 MHz, CD2Cl2) δ 7.38 – 7.32 (m, 2H, E+Z), 7.31 – 7.26 (m, 

2H, E+Z), 7.26 – 7.21 (m, 3H, E+Z), 7.21 – 7.15 (m, 1H, E+Z), 7.15 – 7.11 (m, 2H, E+Z), 7.10 

– 7.08 (m, 2H, E+Z), 7.08 – 7.05 (m, 2H, E+Z), 7.05 – 6.94 (m, 8H, E+Z), 6.93 – 6.88 (m, 3H, 

E+Z), 6.25 (s, 1H, E), 5.52 (d, J = 1.3 Hz, 1H, Z), 3.25 (dd, J = 14.6, 0.7 Hz, 1H, E), 2.98 (d, J 

= 16.6 Hz, 1H, Z), 2.80 (dd, J = 14.6, 1.4 Hz, 1H, E), 2.74 (dd, J = 16.6, 1.4 Hz, 1H, Z), 1.73 
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(s, 3H), 1.67 (s, 3H). 19F NMR (471 MHz, CD2Cl2) δ -117.8, -118.2. 13C-NMR (126 MHz, 

CD2Cl2) δ 162.9, 161.0, 157.5, 155.2, 152.8, 150.5, 144.1, 144.1, 143.0, 140.0, 136.1, 135.1, 

131.4, 130.6, 130.2, 129.4, 129.2, 129.2, 129.1, 129.1, 129.0, 128.8, 128.8, 127.7, 127.5, 126.6, 

126.6, 126.5, 126.3, 125.0, 122.2, 121.2, 117.0, 115.4, 115.2, 115.1, 115.0, 109.0, 104.4, 44.2, 

42.4, 40.3, 38.3, 28.4, 28.3. 

2-Benzylidene-4-(4-methoxyphenyl)chromane (2.47c)  

chromane 2.47c was synthesized following general procedure D starting 

from (phenoxyethynyl)benzene (38 mg, 0.2 mmol) and 1-methoxy-4-

vinylbenzene (54 µL, 0.4 mmol). The crude product was purified by flash 

chromatography affording 2.47c as a yellow oil (E:Z = 1:10, 48 mg, 73%).  

1H-NMR (500 MHz, CDCl3) δ 7.38 – 7.32 (m, 2H, E+Z), 7.25 – 7.22 (m, 

0.2H, E), 7.22 – 7.15 (m, 3H, E+Z), 7.15 – 7.10 (m, 1H,Z), 7.10 – 7.06 (m, 0.2H, E), 6.94 (dd, 

J = 7.5, 1.3 Hz, 1H, Z), 6.92 – 6.87 (m, 2H, Z), 6.85 (dq, J = 7.7, 0.9 Hz, 1H, E+Z), 6.38 (s, 

0.1H, E), 5.69 (d, J = 1.0 Hz, 1H, Z), 4.36 – 4.18 (m, 1H, Z), 4.10 (dd, J = 7.9, 5.2 Hz, 0.1H, 

E), 3.82 (s, 3H, Z), 3.80 (s, 0.3H, E), 3.12 (ddd, J = 14.3, 5.1, 0.9 Hz, 0.1H, E), 2.97 (ddd, J = 

14.3, 7.9, 1.1 Hz, 0.1H, E), 2.90 (ddd, J = 16.6, 7.4, 0.9 Hz, 1H, Z), 2.84 (ddd, J = 16.6, 9.3, 1.1 

Hz, 1H, Z). 13C-NMR (126 MHz, CDCl3) δ 158.5, 157.0, 155.0, 135.8, 135.3, 134.9, 129.8, 

129.4, 127.7, 127.0, 125.8, 125.6, 124.3, 120.6, 114.1, 104.9, 55.4, 44.5, 35.0.Here just the 

signal of the major isomer are reported. 

2-Benzylidene-4-(4-(tert-butyl)phenyl)-4-methylchromane (2.47d)  

Chromane 2.47d was synthesized following general procedure D starting 

from (phenoxyethynyl)benzene (39 mg, 0.2 mmol) and 1-(tert-butyl)-4-

(prop-1-en-2-yl)benzene (70 mg, 0.4 mmol). The crude product was purified 

by flash chromatography affording 2.47d as a yellow oil (E:Z = 1:2.3, 61 

mg, 83%).  

1H-NMR (300 MHz, CDCl3) δ 7.38 – 6.99 (m, 16H, E+Z), 6.98 – 6.89 (m, 4H, E+Z), 6.34 (s, 

0.4H, E), 5.71 – 5.55 (m, 1H, Z), 3.18 (dd, J = 14.4, 1.0 Hz, 0.4H, E), 3.06 (d, J = 16.6 Hz, 1H, 

Z), 2.85 (dd, J = 14.4, 1.1 Hz, 0,4H, E), 2.72 (dd, J = 16.6, 1.3 Hz, 1H, Z), 1.78 (s, 3H, Z), 1.71 

(s, 1.2H, E ), 1.36 (s, 9H, Z), 1.33 (d, J = 1.1 Hz, 4H, E). 13C-NMR (126 MHz, CDCl3) δ 156.7, 

155.1, 150.5, 149.0, 148.7, 147.5, 147.3, 144.7, 140.1, 137.9, 134.6, 129.7, 129.0, 128.9, 128.5, 

127.1, 127.0, 126.9, 126.8, 126.6, 126.4, 126.1, 125.9, 125.1, 125.0, 124.2, 123.2, 120.6, 116.4, 

108.4, 105.0, 44.0, 42.2, 39.9, 34.5, 31.5, 31.5, 31.5, 30.9, 27.8.  

2-Benzylidene-8-methoxy-4-methyl-4-phenylchromane (2.47e) 
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chromane 2.47e was synthesized following general procedure D starting 

from 1-methoxy-2-((phenylethynyl)oxy)benzene (45 mg, 0.2 mmol) and -

methylstyrene (52 µL, 0.4 mmol). The crude product was purified by flash 

chromatography affording and the two isomers were separated affording 

(E)-2.47e as a yellow oil (33 mg, 48%) and (Z)-2.47e as a yellow oil (20 mg, 29%). 

(E)-2-benzylidene-8-methoxy-4-methyl-4-phenylchromane  

1H-NMR (400 MHz, CDCl3) δ 7.37 – 7.19 (m, 5H), 7.18 – 7.08 (m, 2H), 7.08 – 6.99 (m, 2H), 

6.99 – 6.93 (m, 2H), 6.92 (dd, J = 7.1, 1.4 Hz, 1H), 6.90 – 6.85 (m, 1H), 5.40 (s, 1H), 3.76 (s, 

3H), 3.14 (d, J = 16.6 Hz, 1H), 2.75 (dd, J = 16.6, 1.1 Hz, 1H), 1.76 (s, 3H). 13C-NMR (101 

MHz, CDCl3) δ 157.2, 151.7, 148.1, 143.3, 139.9, 134.9, 128.7, 128.1, 127.3, 126.8, 126.4, 

126.2, 125.9, 125.7, 125.5, 122.8, 121.1, 113.0, 102.0, 56.0, 44.4, 42.0, 27.7.  

(Z)-2-benzylidene-8-methoxy-4-methyl-4-phenylchromane  

1H-NMR (400 MHz, CDCl3) δ 7.30 – 7.21 (m, 4H), 7.22 – 7.15 (m, 2H), 7.14 – 7.09 (m, 2H), 

7.05 – 6.98 (m, 2H), 6.90 (dd, J = 8.1, 7.4 Hz, 1H), 6.86 (dd, J = 8.1, 2.0 Hz, 1H), 6.64 (dd, J = 

7.4, 1.9 Hz, 1H), 6.45 (s, 1H), 3.95 (s, 3H), 3.18 (dd, J = 14.4, 0.9 Hz, 1H), 2.84 (dd, J = 14.4, 

1.1 Hz, 1H), 1.69 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 149.6, 147.9, 146.6, 142.0, 135.7, 

131.9, 129.0, 128.3, 127.0, 126.5, 126.1, 121.1, 119.4, 110.3, 109.4, 56.2, 40.5, 38.0, 27.8.  

(E)-4-Methyl-4-phenyl-2-(2-(trifluoromethyl)benzylidene)chromane (2.47f) 

chromane 2.47f was synthesized following general procedure D starting 

from 1-(phenoxyethynyl)-2-(trifluoromethyl)benzene (54.2 mg, 0.2 

mmol) and -methylstyrene (52 µL, 0.4 mmol). The crude product was 

purified by flash chromatography affording 2.47f as a colorless oil (70 

mg, 92%).  

1H-NMR (500 MHz, CD2Cl2) δ 7.66 – 7.61 (m, 1H), 7.43 (tdt, J = 7.6, 1.4, 0.7 Hz, 1H), 7.37 – 

7.30 (m, 1H), 7.28 – 7.22 (m, 3H), 7.22 – 7.17 (m, 1H), 7.10 – 7.06 (m, 2H), 7.06 – 7.02 (m, 

1H), 6.98 (td, J = 7.5, 1.3 Hz, 1H), 6.95 – 6.89 (m, 1H), 6.39 (d, J = 2.8 Hz, 1H), 3.05 (dd, J = 

14.6, 0.9 Hz, 1H), 2.70 (dd, J = 14.5, 1.3 Hz, 1H), 1.67 (s, 3H). 19F NMR (471 MHz, CD2Cl2) 

δ -61.3. z13C-NMR (126 MHz, CD2Cl2) δ 152.8, 151.9, 147.0, 134.7, 132.3, 132.1, 131.5, 128.8, 

128.8, 128.0, 127.4, 127.1(d, J = 3.9 Hz), 126.3 (q, J = 5.4 Hz),124.9 (q, J = 273.8 Hz), 122.4, 

116.9, 105.5, 40.6, 38.8, 30.3, 28.0. HRMS (APCI) m/z calculated for C24H20F3O+ [M+H]+: 

381.1461, found: 381.1464. 

6-Phenoxy-7-phenylbicyclo[3.2.0]hept-6-ene (2.44t)  
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Cyclobutene 2.44t was synthesized following general procedure D starting from 

(phenoxyethynyl)benzene (38 mg, 0.2 mmol) and cyclopentene (37 µL, 0.4 

mmol). The crude product was purified by flash chromatography affording 2.44t 

as a colorless oil (24 mg, 46%).  

1H-NMR (400 MHz, CDCl3) δ 7.51 – 7.45 (m, 2H), 7.38 – 7.28 (m, 4H), 7.21 – 7.15 (m, 1H), 

7.15 – 7.08 (m, 3H), 3.52 (dd, J = 7.3, 3.6 Hz, 1H), 3.21 (dd, J = 6.7, 3.6 Hz, 1H), 1.87 (dd, J = 

12.6, 5.8 Hz, 1H), 1.80 – 1.63 (m, 2H), 1.57 – 1.48 (m, 1H), 1.32 (tt, J = 12.3, 6.8 Hz, 1H), 1.11 

(ddt, J = 13.0, 12.2, 7.2 Hz, 1H). 13C-NMR (101 MHz, CDCl3) δ 155.1, 143.0, 133.1, 129.6, 

128.5, 126.4, 126.3, 123.6, 119.4, 119.0, 47.9, 38.6, 26.1, 24.6, 23.3.  

7-Phenoxy-8-phenylbicyclo[4.2.0]oct-7-ene (2.44u)  

Cyclobutene 2.44u was synthesized following general procedure D starting from 

(phenoxyethynyl)benzene (38 mg, 0.2 mmol) and cyclohexene (42 µL, 0.4 

mmol). The crude product was purified by flash chromatography affording 2.44u 

as a colorless oil (24 mg, 43%). 

1H-NMR (400 MHz, CDCl3) δ 7.50 – 7.45 (m, 2H), 7.32 (qd, J = 6.7, 1.8 Hz, 4H), 7.20 – 7.15 

(m, 1H), 7.14 – 7.07 (m, 3H), 3.23 (q, J = 5.1 Hz, 1H), 2.94 (q, J = 5.1 Hz, 1H), 1.89 (ddt, J = 

14.1, 9.6, 4.4 Hz, 1H), 1.83 – 1.72 (m, 1H), 1.67 – 1.55 (m, 2H), 1.52 – 1.24 (m, 4H). 13C-NMR 

(101 MHz, CDCl3) δ 155.2, 146.3, 134.0, 129.6, 128.5, 126.3, 126.2, 123.7, 121.4, 119.1, 41.5, 

32.4, 23.7, 22.4, 18.6, 18.2.  

9-Phenoxy-10-phenylbicyclo[6.2.0]dec-9-ene (2.44v)  

Cyclobutene 2.44v was synthesized following general procedure D starting from 

(phenoxyethynyl)benzene (38 mg, 0.2 mmol) and (Z)-cyclooctene (52 µL, 0.4 

mmol). The crude product was purified by flash chromatography affording 2.44v 

as a colorless oil (52 mg, 85%). 

1H-NMR (400 MHz, CDCl3) δ 7.41 (dt, J = 8.3, 1.3 Hz, 2H), 7.30 (qd, J = 6.8, 1.7 Hz, 4H), 

7.21 – 7.12 (m, 1H), 7.12 – 7.05 (m, 3H), 3.16 (ddd, J = 11.4, 4.6, 2.4 Hz, 1H), 2.88 (dd, J = 

10.5, 4.3 Hz, 1H), 2.23 – 2.04 (m, 1H), 1.75 – 1.63 (m, 1H), 1.61 – 1.43 (m, 7H), 1.42 – 1.30 

(m, 1H), 1.25 – 1.13 (m, 1H). 13C-NMR (101 MHz, CDCl3) δ 155.3, 145.2, 132.9, 129.6, 128.4, 

126.6, 126.3, 123.2, 123.0, 118.0, 48.0, 39.4, 30.4, 30.1, 26.3, 26.1, 25.4, 24.4.  

9-Phenoxy-10-(p-tolyl)bicyclo[6.2.0]dec-9-ene (2.44w) 
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Cyclobutene 2.44w was synthesized following general procedure D starting 

from 1-methyl-4-(phenoxyethynyl)benzene (41.7 mg, 0.2 mmol) and (Z)-

cyclooctene (52 µL, 0.4 mmol). The crude product was purified by flash 

chromatography affording 2.44w as a white oil (46 mg, 72%). 

1H-NMR (500 MHz, CDCl3) δ 7.35 – 7.29 (m, 4H), 7.15 – 7.10 (m, 4H), 

7.08 (dt, J = 7.3, 1.2 Hz, 1H), 3.17 (ddd, J = 11.7, 4.5, 2.0 Hz, 1H), 2.97 – 2.76 (m, 1H), 2.34 

(s, 2H), 2.22 – 2.04 (m, 1H), 1.71 (dtt, J = 8.2, 4.5, 2.1 Hz, 1H), 1.64 – 1.44 (m, 5H), 1.39 (dtd, 

J = 10.0, 7.2, 3.4 Hz, 1H), 1.27 – 1.15 (m, 1H). 13C-NMR (126 MHz, CDCl3) δ 155.5, 144.1, 

136.0, 130.1, 129.6, 129.1, 126.6, 123.3, 123.0, 117.9, 47.9, 39.3, 30.5, 30.1, 26.4, 26.1, 25.5, 

24.4, 21.4. 

9-Phenoxy-10-(2-(trifluoromethyl)phenyl)bicyclo[6.2.0]dec-9-ene (2.44x)  

Cyclobutene 2.44x was synthesized following general procedure D starting 

from 1-(phenoxyethynyl)-2-(trifluoromethyl)benzene (52 mg, 0.2 mmol) 

and (Z)-cyclooctene (52 µL, 0.4 mmol). The crude product was purified by 

flash chromatography affording 2.44x as a yellow oil (52 mg, 70%). 

1H-NMR (400 MHz, CDCl3) δ 7.63 – 7.56 (m, 1H), 7.44 – 7.33 (m, 2H), 

7.29 – 7.17 (m, 3H), 7.06 – 6.96 (m, 3H), 3.15 (ddd, J = 11.7, 4.4, 2.0 Hz, 1H), 3.07 – 2.88 (m, 

1H), 1.77 – 1.63 (m, 2H), 1.59 (ddd, J = 12.3, 8.7, 3.3 Hz, 1H), 1.46 (dddd, J = 28.3, 16.9, 13.5, 

5.1 Hz, 5H), 1.34 – 1.13 (m, 2H). 19F-NMR (376 MHz, CDCl3) δ -60.4. 13C-NMR (101 MHz, 

CDCl3) δ 155.1, 147.2, 132.3, 131.8, 131.3, 129.4, 126.7, 125.9 (q, J = 5.6 Hz), 124.4 (q, J = 

273.3), 123.3, 120.3, 118.4, 47.4, 43.0, 42.9, 30.2, 30.1, 26.3, 26.3, 25.9, 24.3.  

2-Benzylidene-4-phenylchromane (2.47g) and (3-phenoxycyclobut-2-ene-1,2-

diyl)dibenzene (2.44y)  

The two products were synthesized following general 

procedure D starting from (phenoxyethynyl)benzene (39 

mg, 0.2 mmol) and styrene (42 mg, 0.4 mmol). The two 

products were partially separated by flash chromatography 

affording 2.47g as a yellow oil, E:Z = 2.6:1 (32% assigned by 1H-NMR using trichloroethylene 

as internal standard) and 2.44y as yellow oil, 4:1 mixture of regioisomers (38% assigned by 1H-

NMR using trichloroethylene as internal standard) 

2-Benzylidene-4-phenylchromane (2.47g) 

1H-NMR (400 MHz, CD2Cl2) δ 7.38 – 7.27 (m, 4H, E+Z), 7.27 – 7.19 (m, 5H, E+Z), 7.18 – 

7.08 (m, 4H, E+Z), 7.06 – 6.96 (m, 5H, E+Z), 6.96 – 6.80 (m, 4H, E+Z), 6.34 (s, 1H, E), 5.67 
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(s, 0.4H, Z), 4.32 (t, J = 7.9 Hz, 0.4H, Z), 4.21 – 4.14 (t, J = 6.6 Hz, 1H, E), 3.11 (ddd, J = 14.4, 

5.4, 1.1 Hz, 1H, E), 3.03 (ddd, J = 14.4, 6.9, 0.9 Hz, 1H, E), 2.95 (ddd, J = 16.6, 7.4, 1.1 Hz, 

0.4H, Z), 2.82 (dd, J = 16.6, 8.5 Hz, 0.4H, Z), 1.53 (s, 3H, E), 1.40 – 1.13 (m, 1.2H, Z).  

(3-Phenoxycyclobut-2-ene-1,2-diyl)dibenzene (2.44y) 

1H-NMR (400 MHz, CD2Cl2) δ 7.42 – 7.27 (m, 10H, Mr+mr), 7.28 – 7.09 (m, 10H, Mr+mr), 

7.07 – 6.96 (m, 1H, Mr), 4.33 (dd, J = 4.9, 1.7 Hz, 0.3H, mr), 3.97 (dd, J = 4.9, 1.7 Hz, 1H, Mr), 

3.23 (dd, J = 13.7, 4.8 Hz, 1H, Mr), 3.00 (dd, J = 10.5, 4.9 Hz, 0.3H, mr), 2.51 (dd, J = 13.7, 

1.7 Hz, 1H, Mr), 2.32 (dd, J = 10.5, 1.7 Hz, 0.3H, mr), 1.53 (s, 3H, Mr), 1.27 (s, 0.9H, mr). 

2-Benzylidene-4-(4-chlorophenyl)chromane (2.47h) and 1-chloro-4-(3-phenoxy-2-

phenylcyclobut-2-en-1-yl)benzene (2.44z)  

The two products were synthesized following general 

procedure D starting from (phenoxyethynyl)benzene (39 

mg, 0.2 mmol) and 1-chloro-4-vinylbenzene (55 mg, 0.4 

mmol). The two products were separated by flash 

chromatography affording 2.47h as a yellow oil, E:Z = 4:1 

(19 mg, 28%) and 2.44z as yellow oil, 2.6:1 mixture of 

regioisomers (25.4 mg, 38%). 

2-Benzylidene-4-phenylchromane (2.47h)  

1H-NMR (500 MHz, CD2Cl2) δ 7.42 – 7.21 (m, 8H, E+Z), 7.21 – 7.10 (m, 3H, E+Z), 7.10 – 

7.06 (m, 2H, E), 7.02 – 6.98 (m, 3H, E+Z), 6.96 – 6.82 (m, 3H, E+Z), 6.35 (s, 1H, E), 5.65 (s, 

0.25H, Z), 4.30 (t, J = 7.7 Hz, 0.25H, Z), 4.16 (t, J = 6.0 Hz, 1H, E), 3.08 (ddd, J = 14.4, 5.4, 

1.2 Hz, 1H, E), 3.01 (ddd, J = 14.5, 6.7, 0.9 Hz, 1H, E), 3.00 – 2.91 (m, 0.25H, Z), 2.82 – 2.74 

(m, 0.25H, Z). 13C-NMR (126 MHz, CD2Cl2) δ 153.5, 150.2, 142.3, 135.9, 133.1, 130.3, 130.2, 

130.1, 130.1, 129.5, 129.3, 129.2, 129.1, 129.0, 128.8, 126.6, 125.8, 124.9, 122.2, 121.1, 116.8, 

109.5, 40.9, 31.1. for the 13C-NMR just the signals of the major isomer are reported. 

(3-Phenoxycyclobut-2-ene-1,2-diyl)dibenzene (2.44z) 

1H-NMR (500 MHz, CD2Cl2) δ 7.50 – 7.42 (m, 1H), 7.43 – 7.35 (m, 3H, Mr+mr), 7.34 – 7.26 

(m, 7H, Mr+mr), 7.26 – 7.20 (m, 3H, Mr+mr), 7.21 – 7.10 (m, 6H, Mr+mr), 4.29 (dd, J = 4.9, 

1.6 Hz, 0.36H, mr), 3.95 (dd, J = 4.9, 1.6 Hz, 1H, Mr), 3.22 (dd, J = 13.7, 4.8 Hz, 1H, Mr), 3.00 

(dd, J = 10.6, 4.8 Hz, 0.36H, mr), 2.47 (dd, J = 13.7, 1.6 Hz, 1H, Mr), 2.35 – 2.16 (m, 0.36H, 

mr). 13C-NMR (126 MHz, CD2Cl2) δ 155.2, 154.3 144.4, 142.0, 133.3, 130.6, 130.3, 130.0, 

129.2, 129.2, 129.0, 128.9, 128.9, 128.9, 127.4l, 126.9, 126.8, 126.7, 126.6, 124.6, 124.2, 121.0, 
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119.5, 119.2, 117.3, 46.9, 41.2, 38.3, 32.0. The signals of 13C-NMR were not assigned to each 

regioisomer. 

2-Phenoxy-1-phenylspiro[3.5]non-1-ene (2.44aa) 

 Cyclobutene 2.44aa was synthesized following general procedure D starting 

from (phenoxyethynyl)benzene (39 mg, 0.2 mmol) and methylenecyclohexane 

(48 l, 0.4 mmol). The crude product was purified by flash chromatography 

affording 2.44aa as yellow solid, (25 mg, 43%). In the crude product also 

chromene 2.47i was identified and quantified by 1H-NMR using trichloroethylene as internal 

standard (27%, E:Z = 4.4:1). 

(3-Phenoxycyclobut-2-ene-1,2-diyl)dibenzene (2.44aa) 

1H-NMR (500 MHz, CDCl3) δ 7.60 – 7.52 (m, 2H), 7.38 – 7.28 (m, 4H), 7.18 – 7.14 (m, 1H), 

7.13 – 7.08 (m, 3H), 2.46 (s, 2H), 2.06 (td, J = 13.1, 3.7 Hz, 2H), 1.77 (dt, J = 12.8, 3.2 Hz, 2H), 

1.72 (dtt, J = 12.4, 3.2, 1.5 Hz, 1H), 1.65 (dq, J = 13.7, 2.0 Hz, 2H), 1.36 (qt, J = 12.7, 3.3 Hz, 

2H), 1.29 – 1.21 (m, 1H). 13C-NMR (126 MHz, CDCl3) δ 155.1, 143.9, 133.4, 129.6, 128.5, 

126.8, 126.6, 125.9, 123.7, 119.1, 42.9, 41.6, 35.4, 25.9, 24.9. 

1-Methoxy-4-(3-methyl-2-phenoxy-3-phenylcyclobut-1-en-1-yl)benzene (2.44bb) 

 Cyclobutene 2.44bb was synthesized following general procedure D 

starting from 1-methoxy-4-(phenoxyethynyl)benzene (44.8 mg, 0.2 

mmol) and -methylstyrene (52 µL, 0.4 mmol). The crude product was 

purified by flash chromatography affording 2.44bb as colorless oil, (29.4 

mg, 43%). In the crude product also chromene 2.47j was identified and quantified by 1H-NMR 

using trichloroethylene as internal standard (17%). 

1H-NMR (400 MHz, CDCl3) δ 7.50 – 7.43 (m, 2H), 7.34 – 7.28 (m, 2H), 7.26 – 7.17 (m, 3H), 

7.16 – 7.10 (m, 2H), 7.10 – 7.00 (m, 3H), 6.81 – 6.74 (m, 2H), 3.78 (s, 3H), 2.70 (d, J = 10.4 

Hz, 1H), 2.61 (d, J = 10.4 Hz, 1H),1.63 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 158.7, 155.5, 

145.5, 145.2, 129.5, 128.4, 128.1, 126.3, 126.2, 123.1, 119.4, 118.1, 113.8, 55.4, 51.4, 39.2, 

25.2. HRMS (APCI) m/z calculated for C24H22O2
+ [M+H]+: 343.1693, found: 343.1695. 

We performed 1H-GOESY experiment on 2.44bb irradiating one of the cyclobutene protons to 

assign the structure of the compound. 
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2-Benzylidene-4-(4-chlorophenyl)chromane (2.47k) and 1-chloro-4-(3-phenoxy-2-

phenylcyclobut-2-en-1-yl)benzene (2.44cc)  

The two products were synthesized following general 

procedure D starting from 1-methyl-4-

(phenoxyethynyl)benzene (41.7 mg, 0.2 mmol) and 1-

 -methylstyrene (52 µL, 0.4 mmol). The two products 

coelute in column and it was not possible to separate them, the yield of the process was 

determined by 1H-NMR using trichloroethylene as internal standard. The recorded NMRs are 

are reported below as they were registered without assigning the signals. 

(E)-2.47k : (Z)2.47k : 2.44cc (1.4 : 1.8k : 1) 

1H-NMR (400 MHz, CD2Cl2) δ 7.50 – 7.44 (m, 2H), 7.36 – 7.28 (m, 6H), 7.28 – 7.17 (m, 12H), 

7.17 – 7.03 (m, 13H), 7.02 – 6.90 (m, 11H), 6.81 (d, J = 7.5 Hz, 1H), 6.23 (s, 1H), 5.55 (d, J = 

1.3 Hz, 1H), 3.28 (dd, J = 14.5, 0.8 Hz, 1H), 2.99 (d, J = 16.6 Hz, 1H), 2.82 (dd, J = 14.6, 1.3 

Hz, 1H), 2.75 – 2.68 (m, 2H), 2.64 (d, J = 10.4 Hz, 1H), 2.33 (s, 4H), 2.30 (s, 2H), 2.28 (s, 4H), 

1.73 (s, 4H), 1.68 (s, 3H), 1.63 (s, 2H). 13C-NMR (101 MHz, CD2Cl2) δ 156.5, 155.9, 155.5, 

153.0, 150.3, 148.5, 147.2, 146.8, 145.8, 140.2, 137.4, 136.3, 136.0, 133.1, 132.3, 131.7, 131.0, 

1H-GOESY, 2.64 ppm (500 MHz, CDCl3) 

1H NMR (400 MHz, CDCl3) 
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130.2, 130.0, 129.4, 129.4, 129.3, 128.8, 128.7, 128.6, 128.5, 128.4, 127.9, 127.9, 127.5, 127.5, 

127.4, 127.1, 126.9, 126.7, 126.6, 126.4, 124.6, 123.7, 122.1, 121.0, 120.3, 118.5, 116.9, 108.7, 

104.9, 51.8, 44.6, 42.4, 40.7, 39.5, 38.3, 32.2, 30.7, 30.3, 28.3, 28.3, 25.3, 23.2, 21.7, 21.6, 21.4, 

14.5. 

1-Methyl-3-(4-nitrophenoxy)-1-phenyl-1,2-dihydronaphthalene (2.48)  

Dihydronaphthalene 2.48 was synthesized following general 

procedure D starting from 11-nitro-4-((phenylethynyl)oxy)benzene 

(48 mg, 0.2 mmol) and  -methylstyrene (52 µL, 0.4 mmol). The 

crude product was purified by flash chromatography affording 2.48 as yellow sticky oil, (26 mg, 

37%). 

1H-NMR (400 MHz, CDCl3) δ 8.14 – 8.05 (m, 2H), 7.32 – 7.25 (m, 3H), 7.22 (ddd, J = 7.0, 

6.2, 1.8 Hz, 2H), 7.16 (tdd, J = 6.7, 3.1, 1.8 Hz, 4H), 7.05 (dd, J = 7.2, 1.7 Hz, 1H), 6.86 – 6.76 

(m, 2H), 5.98 (d, J = 1.6 Hz, 1H), 2.90 (d, J = 16.9 Hz, 1H), 2.76 (dd, J = 16.8, 1.7 Hz, 1H), 

1.80 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 161.3, 153.5, 147.7, 143.4, 139.9, 133.7, 128.4, 

127.4, 127.4, 127.2, 126.9, 126.8, 126.7, 126.0, 118.9, 111.1, 44.5, 42.1, 28.0.  

1,3,5-Trimethyl-2-(4-phenoxy-4-phenylpent-1-yn-1-yl)benzene (2.49)  

Homopropargyl ether was synthesized following general procedure 

D starting from 1,3,5-trimethyl-2-(phenoxyethynyl)benzene 

(71 mg, 0.3 mmol) and -methylstyrene (78 µL, 0.6 mmol). The 

crude product was purified by flash chromatography affording 2.49 

as yellow oil, (54 mg, 50%). 

1H-NMR (500 MHz, CDCl3) δ 7.60 – 7.54 (m, 2H), 7.41 – 7.34 (m, 2H), 7.33 – 7.28 (m, 1H), 

7.19 – 7.07 (m, 2H), 6.95 – 6.88 (m, 1H), 6.86 – 6.80 (m, 2H), 6.78 – 6.67 (m, 2H), 3.22 (d, J = 

16.6 Hz, 1H), 3.13 (d, J = 16.6 Hz, 1H), 2.29 (s, 6H), 2.26 (s, 3H), 1.91 (s, 3H). 13C-NMR (126 

MHz, CDCl3) δ 155.8, 144.6, 140.3, 137.1, 129.0, 128.5, 127.6, 127.5, 126.2, 121.9, 120.6, 

120.5, 93.6, 81.6, 80.9, 36.4, 24.0, 21.4, 21.1. 

General procedure E: one-pot synthesis of cyclobutanones 2.45 starting from ynol ethers 2.42 

or 2.46. 
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The ynol ether (0.2 mmol, 1 equiv) was dissolved in CH2Cl2 (0.2 mL, 1 M). The needed alkene 

(Method A: 0.6 mmol, 3 equiv, Method B: 0.4 mmol, 2 equiv) was added followed by the 

catalyst (Method A: [(JohnPhos)AuNCMe]SbF6 (2.B, 3 mol%, 4.6 mg); Method B: by 

[(tBuXPhos)AuNCMe]BAr4
F

 (2.A, 3 mol%, 9.2 mg). The resulting mixture was stirred at 23 °C 

for 3 h. The reaction was monitored by GC-MS or UHPLC-MSD. Once completed the acid was 

added (Method A: p-TSA·H2O (38 mg, 0. 2 mmol, 1 equiv); Method B: 2M HCl in H2O (200 

l, 0.4 mmol, 2 equiv), followed by 0.1 mL of H2O. The reaction was stirred overnight and then 

diluted with CH2Cl2 and the organic phases was washed three times with H2O. The collected 

organic phase was dried over Na2SO4 and the solvent removed under reduced pressure. The 

crude product was purified by flash chromatography on silica gel using a pentante:Et2O 20:1 as 

eluent and affording cyclobutanone 2.45 

3-Methyl-3-phenylcyclobutan-1-one (2.45b) 

Cyclobutanone 2.45b was obtained synthesized following general procedure E – 

Method A starting from (ethynyloxy)benzene (23.6 mg, 0.2 mmol) and -

methylstyrene (78 µL, 0.6 mmol). The crude product was purified by flash 

chromatography affording 2.45b as a colorless oil (22 mg, 69%). The same reaction 

was performed also on 1.0 mmol scale starting from (ethynyloxy)benzene (118 mg, 1 mmol) 

and -methylstyrene (390 µL, 3 mmol) and using p-TSA·H2O (323 mg, 1.7 mmol, 1.7 equiv). 

and 106 mg of 2.45b were obtained (66% yield). 

1H-NMR (300 MHz, CDCl3) δ 7.42 – 7.29 (m, 4H), 7.29 – 7.21 (m, 2H), 3.58 – 3.39 (m, 2H), 

3.25 – 3.00 (m, 2H), 1.61 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 206.9, 148.4, 128.7, 126.4, 

125.8, 59.4, 34.1, 31.2. Data in agreement with the one reported in literature168 

3-([1,1'-Biphenyl]-4-yl)-3-methylcyclobutan-1-one (2.45c) 

Cyclobutanone 2.45c was obtained synthesized following general procedure E – 

Method A starting from (ethynyloxy)benzene (23.6 mg, 0.2 mmol) and 4-(prop-1-en-

2-yl)-1,1'-biphenyl (117 mg, 0.6 mmol). The crude product was purified by flash 

chromatography affording 2.45c as a white solid (26 mg, 56%). 

1H-NMR (400 MHz, CDCl3) δ 7.65 – 7.56 (m, 4H), 7.50 – 7.43 (m, 2H), 7.43 – 7.39 

(m, 2H), 7.39 – 7.32 (m, 1H), 3.62 – 3.39 (m, 2H), 3.26 – 3.04 (m, 2H), 1.67 (s, 3H). 13C-NMR 

(101 MHz, CDCl3) δ 206.7, 147.4, 140.8, 139.4, 128.9, 127.4, 127.2, 126.3, 59.5, 33.9, 31.1.  

(1R,11S)-4,13,13-Trimethyl-10-methylenetricyclo[9.2.0.04,7]tridecan-6-one (2.45a) 

 

168 K. S. Petersen, B. M. Stoltz, Tetrahedron 2011, 67, 4352–4357. 
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Cyclobutanone 2.45a was obtained synthesized following general procedure E 

– Method A starting from(ethynyloxy)benzene (23.6 mg, 0.2 mmol) and -

Caryophyllene (170 l, 0.6 mmol) The crude product was purified by flash 

chromatography affording 2.45a as a yellow oil 3:1 mixture of regioisomers (34 

mg, 68%). See above for the characterization. 

3-((tert-Butyldimethylsilyl)oxy)spiro[3.5]nonan-1-one (2.45e) 

Cyclobutanone 2.45e was obtained synthesized following general procedure 

E – Method A starting from (ethynyloxy)benzene (12 mg, 0.1 mmol) and 

tert-butyl(cyclohexylidenemethoxy)dimethylsilane (68 mg, 0.3 mmol). The 

crude product was purified by flash chromatography affording 2.45e as a brown oil (11 mg, 

41%). 

1H-NMR (400 MHz, CDCl3) δ 4.14 (dd, J = 6.9, 4.7 Hz, 1H), 3.22 (dd, J = 17.8, 6.9 Hz, 1H), 

2.86 (dd, J = 17.8, 4.7 Hz, 1H), 1.76 – 1.58 (m, 5H), 1.58 – 1.48 (m, 1H), 1.44 (dt, J = 9.1, 2.0 

Hz, 2H), 1.34 – 1.21 (m, 2H), 0.90 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H). 13C-NMR (101 MHz, 

CDCl3) δ 214.4, 68.2, 67.5, 52.8, 31.7, 26.5, 25.9, 25.8, 22.8, 22.6, 18.2, -4.6, -4.9. HRMS (ESI) 

m/z calculated for C15H28NaO2Si+ [M+Na]+: 291.1751, found: 291.1744. 

10-Phenylbicyclo[6.2.0]decan-9-one (2.45c) 

Cyclobutanone 2.45c was obtained synthesized following general procedure E – 

Method B starting from (phenoxyethynyl)benzene (39 mg, 0.2 mmol) and (Z)-

cyclooctene (52 l, 0.4 mmol). The crude product was purified by flash 

chromatography affording 2.45a as a yellow oil 4:1 mixture of diastereoisomer 

(34 mg, 75%). The major diastereoisomer have been assigned by NOESY correlation. M = 

major diastereoisomer; m = minor diastereoisomer. 

1H-NMR (400 MHz, CDCl3) δ 7.37 – 7.27 (m, 2H, M+m), 7.27 – 7.19 (m, 3H, M+m), 7.18 – 

7.11 (m, 0.4H, m), 4.74 (dd, J = 10.9, 2.6 Hz, 0.25H, m), 3.98 (dd, J = 7.9, 2.7 Hz, 1H, M), 3.30 

(ddt, J = 12.4, 9.8, 2.6 Hz, 0.25H, m), 3.19 (ddt, J = 11.9, 9.5, 2.4 Hz, 1H, M), 2.89 – 2.75 (m, 

0.25H, m), 2.57 (dddd, J = 11.9, 10.0, 7.9, 2.4 Hz, 1H, M), 2.11 – 1.91 (m, 2H, M+m), 1.90 – 

1.80 (m, 1H, M), 1.80 – 1.54 (m, 3H, M+m), 1.52 – 1.44 (m, 0.4H, m), 1.44 – 1.33 (m, 2H, 

M+m), 1.33 – 1.09 (m, 2H, M+m). 13C-NMR (101 MHz, CDCl3) δ 212.4 (M), 211.2 (m) 136.7 

(M), 134.1 (m), 129.2 (M), 128.8 (M), 128.5 (M), 127.2 (m), 127.1 (M), 69.3 (M), 66.3 (m), 

61.6 (M), 60.4 (m), 38.0 (M), 36.7 (m), 30.7 (m), 29.9 (M), 29.8 (m), 29.6 (M), 28.4 (M), 27.9 

(m), 26.2 (m), 26.1 (M), 25.9 (m), 25.8 (m), 25.3 (M), 24.1 (M), 20.7 (m). 

Hydrolysis of 2.44a o form cyclobutanone 2.45b 
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Cyclobutene 2.44a (47 mg, 0.2 mmol) was dissolved in CH2Cl2 (0.2 mL) and water (0.1 mL). 

p-toluenesulfonic acid monohydrate (5.7 mg, 0.03 mmol) was then added and the biphasic 

mixture was vigorously stirred at 23°C until complete conversion was observed by monitoring 

the reaction by TLC. The reaction was then diluted with CH2Cl2 and the organic phases was 

washed three times with H2O. The collected organic phase was dried over Na2SO4 and the 

solvent removed under reduced pressure. The crude product was purified by flash 

chromatography on silica gel using a pentane:Et2O 20:1 as eluent and affording 2.45b as a 

colorless oil (30 mg, 94%).  

Theoretical DFT Calculations 

Computational Methods 

Calculations were performed by means of the Gaussian 09 suite of programs.169 DFT was 

applied using B3LYP170. The LANL2DZ basis set171 was utilized to describe Au with ECP and 

additional polarization function (ζf = 1.050 for Au,172). The 6-31G(d,p) basis set173 was 

employed for all remaining atoms (C, H, O and P). Full geometry optimizations were carried 

out in CH2Cl2, through an implicit solvent SMD.174 The stationary points were characterized by 

vibrational analysis.  

 
169 Gaussian 09, Revision B.1, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. 

A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., 

Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, 

M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., 

Nakai, H., Vreven, T., Montgomery, J. A., Peralta, Jr. J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., 

Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, 

A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. 

E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., 

Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R.L., Morokuma, K.,, Zakrzewski, V. 

G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, 
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Transition states were identified by the presence of one imaginary frequency while minima by 

a full set of real frequencies. The connectivity of the transition states was confirmed by relaxing 

each transition state towards both the reactant and the product. Reported energies are potential 

energies (E) and free energies (G) in solution, computed at 298 K and 1 atm.  

Computed Structures and Energies 

E-2.47a 

 

E = -963.742061 Hartrees 

G = -963.426467 Hartrees 

Z-2.47a 

 

E = -963.747967 Hartrees 

G = -963.431486 Hartrees 

Endo-2.47a 

 

E = -963.746057 Hartrees 

G = -963.431189 Hartrees 

AuPMe3 

 

E = -596.467300 Hartrees 

G = -596.386432 Hartrees 

2.42a 

 

E = -383.595111 Hartrees 

G = -383.514415 Hartrees 

2.43a 

 

E = -348.983441 Hartrees 

G = -348.854198Hartrees 

Int1a 

 

E = -945.485454 Hartrees 

G = -945.257300 Hartrees 

Int2a 
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E = -980.101491 Hartrees 

G = -979. 920683 Hartrees 

TS2a-3a 

 

E = -1329.082841 Hartrees 

G = -1328.750289 Hartrees 

Int3a 

 

E = -1329,116422 Hartrees 

G = -1328.778309 Hartrees 

TS2a-3b 

 

E = -1329.081996 Hartrees 

G = -1328.748126 Hartrees 

Int3b 

 

E = -1329.114499 Hartrees 

G = -1328.776556 Hartrees 

TS2a-4a 

 

E = -1329.066469 Hartrees 

G = -1328.73645 Hartrees 

Int4a 

 

E = -1329.134230 Hartrees 

G = -1328.795054 Hartrees 

TS2a-4b 

 

E = -1329.066219 Hartrees 

G = -1328.735176 Hartrees 

Int4b 
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E = -1329.136242 Hartrees 

G = -1328.796505 Hartrees 

TS3a-5a 

 

E = -1329.105228 Hartrees 

G = -1328.766771Hartrees 

Int5a 

 

E = -1329.140088 Hartrees 

G = -1328.801754 Hartrees 

TS3a-6a 

 

E = -1329.101443 Hartrees 

G = -1328.774201 Hartrees 

Int6a 

 

E = -1329.115970 Hartrees 

G = -1328.774201 Hartrees 

Int9a 

 

E = -1329.185666 Hartrees 

G = -1328.843406 Hartrees 

TS4a-7a 

 

E = -1329.086200 Hartrees 

G = -1328.750022 Hartrees 

Int7a 

 

E = -1329.137342 Hartrees 

G = -1328.796644 Hartrees 

TS4a-8a 

 

E = -1329.084923 Hartrees 

G = -1328.745549 Hartrees 

Int8a 
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E = -1329.084923 Hartrees 

G = -1328.797298 Hartrees 

Int10a 

 

E = -1211.1696121 Hartrees 

G = -1210.912826 Hartrees 

TS10a-11a 

 

E = -1560.143145 Hartrees 

G = -1559.738133 Hartrees 

Int11a 

 

E = -1560.175479 Hartrees 

G = -1559.7764342 Hartrees 

TS10a-11b 

 

E = -1560.143667 Hartrees 

G = -1559.736920 Hartrees 

Int11b 

 

E = -1560.175714 Hartrees 

G = -1559.765577 Hartrees 

TS10a-12a 

 

E = -1560.142362 Hartrees 

G = -1559.736200 Hartrees 

Int12a 

 

E = -1560.187043 Hartrees 

G = -1559.774520 Hartrees 

TS10a-12b 

 

E = -1560.141184 Hartrees 

G = -1559.735026 Hartrees 

Int12b 
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E = -1560.190329 Hartrees 

G = -1559.779063 Hartrees 

TS11a-13a 

 

E = -1560.156474 Hartrees 

G = -1559.742500 Hartrees 

Int13a 

 

E = -1560.192807 Hartrees 

G = -1559.778369 Hartrees 

TS11a-14a 

 

E = -1560.164042 Hartrees 

G = -1559.748998 Hartrees 

Int14a 

 

E = -1560.178410 Hartrees 

G = -1559.762132 Hartrees 

(E)-Int15a 

 

E = -1560.242023 Hartrees 

G = -1559.824770 Hartrees 

Int16a 

 

E = -1560.182048 Hartrees 

G = -1559.768789 Hartrees 

TS16a-17a 

 

E = -1560.162576 Hartrees 

G = -1559.749074 Hartrees 

Int17a 

 

E = -1560.203229 Hartrees 

G = -1559.787576 Hartrees 

TS16a-18a 
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E = -1560.181746 Hartrees 

G = -1559.766609 Hartrees 

Int18a 

 

E = -1560.182487 Hartrees 

G = -1559.767991 Hartrees 

TS18a-19a  

 

E = -1560.148883 Hartrees 

G = -1559.738315 Hartrees 

Int19a 

 

E = -1560.190640 Hartrees 

G = -1559.781765 Hartrees 

Int20a 

 

E = -1674.680629 Hartrees 

G = 1674.249155 Hartrees 

Int20a’ 

 

E = -1674.678613 Hartrees 

G = 1674.248496 Hartrees 

TS20a-21a 

 

E = -1674.668192 Hartrees 

G = 1674.232423 Hartrees 

Int21a 

 

E = -1674.700136 Hartrees 

G = 1674.259394 Hartrees 

TS20a-22a 

 

E = -1674.672595 Hartrees 

G = 1674.236355 Hartrees 

Int22a 
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E = -1674.712284 Hartrees 

G = 1674.269795 Hartrees 
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Introduction 

Classical Methods for the Alkynylation Reaction 

Classically, the transfer of an alkyne unit to form internal alkynes relies on the relatively low 

pKa of the terminal proton (pKa = 24-26). By treatment with a strong base the alkyne can be 

metalated and then react with an electrophile -usually alkyl halides, ketones or imines - allowing 

the synthesis of a wide variety of product also in asymmetric fashion (Scheme 3.1a).  

 

Scheme 3.1. Generation of metal-acetylides via (a) deprotonation or (b) Corey-Fuchs homologation and 

its trapping with electrophiles. 

Alkynyl lithium compounds 3.2 can be also obtained starting from aldehydes in the two steps 

Corey-Fuchs homologation175 (Scheme 3.1b). The aldehyde first undergoes alkenylation to form 

the 1,1-dibromoalkene 3.5, which upon treatment with one equiv of nBuLi, gives bromoalkyne 

3.6. Reaction of 3.6 with a second equiv of nBuLi forms 3.2 by lithium-halogen exchange.  

Besides these stoichiometric methods, the catalytic formation of metal-acetylides is central in 

cross-coupling reaction176, being the most prominent example the Sonogashira coupling177 

(Scheme 3.2). This reaction allows the formation of a C(sp2)-C(sp) bond between an aryl or 

alkenyl-(pseudo)halide and a terminal alkyne. Mechanistically this reaction occurs under the 

general cross-coupling mechanistic scheme with the main Pd-catalytic cycle passing through an 

oxidative addition/transmetalation/reductive elimination sequence. The transmetalating partner 

is provided by a second catalytic cycle in which the Cu-acetylide is formed. 

 
175 E. J. Corey, P. L. Fuchs, Tetrahedron Lett., 1972, 3769-3772. 

176 E. I. Negishi, L. Anastasia, Chem. Rev. 2003, 103, 1979–2017. 

177 R. Chinchilla, C. Nájera, Chem. Soc. Rev. 2011, 40, 5084–5121. 
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Scheme 3.2. Mechanism of the Sonogashira coupling. 

Alkynylation via C-H Activation 

Despite their wide application and versatility, the alkynylation methods just presented highlight 

two major drawbacks: 1) catalytic methods of metalation of the terminal alkyne are limited 

mainly to copper. 2) The target carbon on the coupling partner needs to be pre-functionalized. 

On one side the pre-functionalization guarantees high selectivity in the coupling reaction, but at 

the same time presents intrinsic limitations on the range of accessible substrates. 

In this sense is highly desirable to develop catalytic methods that directly transform C-H bonds 

into the desired products, and since the pioneering stoichiometric examples of C-H activation 

mediate by transition metals back in the ‘60s the repertoire of catalytic C-H functionalization is 

continuously growing178. The presentation of a complete picture of the C-H activation and 

functionalization field is out of the scope of this introduction, so just some mechanistic details 

relevant for the following discussion will be provided.  

Generally, the mechanism of the transition metal-catalyzed C-H functionalization reaction, and 

in this sense, C-H alkynylation is not an exception, can be divided in two section: 1) the C-H 

activation step in which the C-H bond is metalated. 2) The functionalization of the C-M bond 

to form the final C-C or C-X bond.  

 
178 For selected reviews on C-H functionalization: a) F. Kakiuchi, N. Chatani, Adv. Synth. Catal. 2003, 

345, 1077–1101. b) J. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2012, 51, 8960–

9009. c) T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc. Rev. 2016, 45, 

546–576. 
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Regarding the C-H activation step with late transition metals in high oxidation state, two paths 

are usually followed. Firstly, after pre-coordination of the catalyst to the -system of a C(sp2)-

H bond, this can be metalated in a SEAr-like process where -complex 3.I is formed first 

(Scheme 3.3, red path), which is followed by abstraction of the proton by an external base to 

form 3.10. Alternatively, the metalation and the deprotonation can occur in a concerted manner 

with a ligand on the metal center acting as internal base passing through a cyclic 4-membered 

transition state 3.II (Scheme 3.3, green path). 

 

Scheme 3.3. Mechanism of the C-H metalation with late transition metals. 

The most common approach to form the final C(sp)-C bond is by an electrophilic alkynylation 

with a pre-functionalized alkynyl derivative such as ethynylbenziodoxolones (EBX) or a 

haloalkyne. This approach is usually denominated “inverse Sonogashira coupling” because 

compared to the original reaction, in this transformation the pre-activated site is switched from 

the sp2 carbon to the alkyne. Despite the inevitable drawback of the stoichiometric generation 

of byproducts due to the elimination of the living group, the use of a pre-oxidized alkyne 

prevents both alkyne-homocoupling and the use of external oxidants to close the redox neutral 

cycle, and consequently allows a wide functional group tolerance.  

 

Scheme 3.4.electrophylic alkynylation and alkynylating agents. 

After coordination to the metal center, three possible mechanism for the electrophilic 

alkynylation branch out.  
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Product 3.13 can be formed in an oxidative addition/reductive elimination sequence (Scheme 

3.5, top). This path seems to be more feasible for EBX alkynes because of their oxidative 

character, although the occurrence of this mechanism for haloalkynes has not conclusively ruled 

out yet. Considering the polarization of the C-X bond, haloalkynes more commonly undergo 

insertion reaction into the C-M bond of 3.11 to form 3.14 that delivers the alkynylated product 

via -halide elimination179 (Scheme 3.5, middle). The 3-center-4-electron bond in EBX reagents 

causes an inversion of charge distribution compared to haloalkynes, thus a third possible path 

opens up where the initial insertion on the C-M bond occurs with inverted regiochemistry 

(Scheme 3.5, bottom), to achieve the final product by an -elimination of iodobenzoate to 

generate the metal-vinylidene 3.16 that upon Fritsch-Butenberg-Wiechell-type rearrangement 

forms 3.13.  

 

Scheme 3.5. Possible mechanisms for the transition metal catalyzed C-H alkynylation with haloalkynes or 

EBX reagents. 

Besides the inverse Sonogashira approach, that requires the functionalization of the alkyne 

partner prior to the reaction, the direct coupling of a C-H bond and a terminal alkyne was 

achieved in presence of a stoichiometric oxidant to activate the alkyne and/or close the catalytic 

cycle. This process is normally termed cross-dehydrogenative-coupling and ideally can be the 

most atom economical and environmentally sustainable option when just oxygen or air itself is 

used as oxidant.180 

Probably the main challenge in C-H functionalization is the discrimination of the different C-H 

bond on the substrate. In some cases, the intrinsic reactivity of a specific C-H bond above the 

 
179 For a detailed study on the effect of the metal in the -elimination: B. E. Haines, R. Sarpong, D. G. 

Musaev, J. Am. Chem. Soc. 2018, 140, 10612–10618. 

180 For a review see: S.A.Girard, T. Knauber, C.-J. Li, Angew.Chem.Int. Ed. 2014, 53,74–100 
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others in the molecule can be exploited for this purpose, but this limits the substrate scope to a 

specific group of substrates. In addition, relying on the higher reactivity of one position 

intrinsically restricts the number of positions of a given substrate that can be functionalized. 

For transition metal catalyzed C-H activation, the introduction of a Lewis basic directing group 

in proximity of the target C-H bond is a valuable and widely successful option. 

The first chelation-assisted C-H alkynylation was reported by Chatani and Tobisu in 2009 using 

a simple acetamide as directing group for the palladium-catalyzed ortho-functionalization of 

arenes181. Since then, the number of directing groups, transition metal catalysts and substrates 

has enormously grown for C(sp2)-H alkynylation182. Due to general compatibility of nitrogen-

containing groups with late transition metals and their mild basic character, amides or N- 

heterocycles are probably the most abundant directing groups used in C-H activation, but also 

derivatives such as nitrones, and oximes have been used in this context.183  

Ideally, the directing group has to be easily removed or transformed in a suitable handle for 

further transformation. Thus, the use of common functional groups such as free amines, alcohols 

or carbonyl compounds bypasses the two step sequence of installation/removal of the directing 

group and gains consequently in step economy.  

In this sense, significant progresses have been made in the context of C(sp2)-H alkynylation 

(Scheme 3. 6). For example, ortho-vinylphenols can direct the alkynylation on the vinylic group 

using a modified EBX reagent and Ru(III) as catalyst184 (Scheme 3. 6, red path). Free anilines 

are much more challenging directing groups compared to phenols. Nevertheless, an analogous 

vinyl alkynylation of ortho-vinylanilines 3.19 was achieved with an Ir(III) catalyst and a 

catalytic amount of pyridine to avoid product inhibition185 (Scheme 3. 6, red path). Phenols 

cannot direct the ortho alkynylation on the aromatic ring because this would imply the unlikely 

formation of a 4-membered metallacycle. However 1-naphtols are efficient substrates for the 

Ru(III)-catalyzed peri-alkynylation using a bromoalkyne186 (Scheme 3. 6, green path). 

Replacing the hydroxyl group for a carboxylic acid the alkynylation occurs under similar 

conditions, but this time selectively at the ortho-position (Scheme 3. 6, blue path). 

 
181 M. Tobisu, Y. Ano, N. Chatani, Org. Lett. 2009, 11, 3250–3252. 

182 For a recent review on directed transition metal-catalyzed C-H alkynylation: L. D. Caspers, B. J. 

Nachtsheim, Chem.: Asian J. 2018, 13, 1231–1247. 

183 For the application of different nitrogen containing directing group in C(sp2)-H alkynylation see: F. 

Xie, Z. Qi, S. Yu, X. Li, J. Am. Chem. Soc. 2014, 136, 4780–4787. 

184 P. Finkbeiner, U. Kloeckner, B. J. Nachtsheim, Angew. Chem. Int. Ed. 2015, 54, 4949–4952. 

185 L. D. Caspers, P. Finkbeiner, B. J. Nachtsheim, Chem. Eur. J. 2017, 23, 2748–2752. 

186 E. Tan, A. I. Konovalov, G. A. Fernández, R. Dorel, A. M. Echavarren, Org. Lett. 2017, 19, 5561–

5564. 
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Scheme 3. 6. Examples of transitions metal catalyzed directed C(sp2)-H alkynylation. 

To further expand the scope towards synthetic useful directing group, our group recently 

reported the rhodium(III)-catalyzed alkynylation of C(sp2)-H bond using TIPS-protected 

bromoacetylene directed by ethers, esters, ketones and sulfur containing functional groups187 

(Scheme 3. 6, orange path). Mechanistic studies on this reaction suggested that the C-H 

activation occurs in a concerted manner and it is followed by an electrophilic alkynylation 

occurring via insertion/-elimination sequence. 

Despite the lower bond dissociation energy,188 the metalation of aliphatic C(sp3)-H bonds is 

more challenging compared to the one of C(sp2)-H bonds. In addition, C(sp3)-H bonds are 

ubiquitous in organic molecules and the selective activation of the target C-H bond is hence 

more difficult. Consequently, the number of C(sp3)-H alkynylation reactions is very limited 

compared to the significant advances achieved in the C(sp2)-H counterpart. 

The first example of a transition metal catalyzed C-H alkynylation on aliphatic carbons, reported 

by Chatani in 2011, was the Pd(II)-catalyzed -functionalization of amides directed by 8-

aminoquinoline to form 3.22 (Scheme 3.7).189 The reaction allows the functionalization of a 

 
187 E. Tan, O. Quinonero, M. Elena De Orbe, A. M. Echavarren, ACS Catal. 2018, 8, 2166–2172. 

188 S. J. Blanksby, G. B. Ellison, Acc. Chem. Res. 2003, 36, 255–263. 

189 Y. Ano, M. Tobisu, N. Chatani, J. Am. Chem. Soc. 2011, 133, 12984–12986. 
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series of masked carboxylic acids selectively on secondary -C(sp3)-H bonds. Additionally, the 

directing group can be efficiently recovered upon treatment of the product under acidic 

conditions. The selective targeting of primary C-H bonds in -position of amides (3.23) was 

then achieved by switching the catalyst from a Pd(II) to Pd(0) catalyst coupled with a specific 

NHC or phosphine ligand (Scheme 3.7)190. Also, the bidentate directing group was replaced by 

perfluoroarylamide. In these examples the alkynylation step is probably occurring through an 

oxidative addition/reductive elimination sequence with the bromoalkyne (see Scheme 3.5). 

 

Scheme 3.7. Transition metal catalyzed - or -alkynylation of C(sp3)-H carbons with haloalkynes. 

The same perfluorotolylamine can be used as directing group for the -alkynylation on the side 

chain of protected amino acids with different bromoalkynes using Pd(OAc)2 and a pyridine 

based ligand.191  

A series of natural and unnatural  -amino acids have been used to build dipeptides of general 

structure RHN-Ala-aa-OH (where aa is a general amino acid) and have been used as directing 

group in the Pd(II)-catalyzed alkynylation of the side chain of the alanine fragment192. The 

reaction is not just limited to TIPS-protected bromoalkyne and can accommodate instead 

 
190 J. He, M. Wasa, K. S. L. Chan, J. Q. Yu, J. Am. Chem. Soc. 2013, 135, 3387–3390. 

191 a) H. Fu, P. X. Shen, J. He, F. Zhang, S. Li, P. Wang, T. Liu, J. Q. Yu, Angew. Chem. Int. Ed. 2017, 

56, 1873–1876. b) Q. F. Wu, P. X. Shen, J. He, X. B. Wang, F. Zhang, Q. Shao, R. Y. Zhu, C. Mapelli, 

J. X. Qiao, M. A. Poss, J. Q. Yu, Science. 2017, 355, 499–503. 

192 T. Liu, J. X. Qiao, M. A. Poss, J. Q. Yu, Angew. Chem. Int. Ed. 2017, 56, 10924–10927. 
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different bulky propargyl silyl ethers derived in some cases from natural occurring carbonyl 

compounds delivering a wide variety of compounds of general structure 3.24 (Scheme 3.7). 

The uncommon -alkynylation of alkylamines can be achieved, by generation of the 

corresponding picolinamide derivative and treatment with bromoalkyne 3.21 and Pd(OAc)2 to 

form 3.25 (Scheme 3.7). 193 

Very recently, the Ir(III)-catalyzed -alkynylation of 2-acylimidazoles as masked esters or 

amides has been developed. The reaction proved to be efficient for the functionalization of 

secondary C(sp3)-H bonds with 3.21, however the use of other bulky bromoalkynes seems to be 

limited to the functionalization of C(sp2)-H positions194 (Scheme 3.7). The authors propose also 

in this case that the alkynylation step occurs through an oxidative addition/reductive elimination 

sequence. 

The products of -alkynylation of amides are in principle a suitable substrate for 5-exo-dig 

cyclization to form pyrrolidinones. However, in the palladium catalyzed reaction this 

cyclization was observed just as side reaction with generally low yields, even when silver salts 

were involved in stoichiometric amount. In contrast, in the C-H alkynylation of 8-

aminoquinoline amides 3.27 with terminal alkynes the cyclized products 3.30 are the only one 

formed (Scheme 3.8). 195 According to mechanistic studies, the reaction occurs by cross-

dehydrogenative-coupling via cobaltacycle III and 3.28 is oxidized by silver forming an alkyne 

radical that is intercepted by III to from a Co(IV) species IV, which upon reductive elimination 

releases the alkynylated amide 3.29. A similar reaction has been developed using nickel or 

copper catalysts.196 

 
193 V. G. Landge, A. Parveen, A. Nandakumar, E. Balaraman, Chem. Commun. 2018, 54, 7483–7486. 

194 S. K. Mahato, N. Chatani, ACS Catal. 2020, 9, 10, 5173-5178. 

195 J. Zhang, H. Chen, C. Lin, Z. Liu, C. Wang, Y. Zhang, J. Am. Chem. Soc. 2015, 137, 12990–12996. 

196 (a) C. Lin, J. Zhang, Z. Chen, Y. Liu, Z. Liu, Y. Zhang, Adv. Synth. Catal. 2016, 358, 1778–1793. (b) 

J. Zhang, D. Li, H. Chen, B. Wang, Z. Liu, Y. Zhang, Adv. Synth. Catal. 2016, 358, 792–807. 
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Scheme 3.8. Co(II)-catalyzed C-H alkynylation/cyclization for the synthesis of pyrrolidinones 

Although the cross-dehydrogenative-coupling does not require the functionalization of the C-H 

bonds, the presence of a directing group or a heteroatom - to de carbon to be coupled is 

necessary to facilitate its activation. In this sense, the C(sp3)-H bond next to a nitrogen can be 

easily oxidized either to form the corresponding propargyl amine 3.32a with CuBr/tBuOOH197 

or FeCl2/(tBuO)2
198

 (Scheme 3.9a). An analogous coupling between isochromanes 3.31b and 

terminal arylalkynes can be catalyzed by AgOTf and using DDQ as oxidant (Scheme 3.9b). 199 

The role of the heteroatom next to the target C-H bond is not limited to the assistance in the 

activation but can also be crucial to achieve good regioselectivity. An interesting example is the 

Cu/Ni/Ag co-catalyzed coupling of simple alkanes leading to 3.31c (Scheme 3.9c), where the 

remarkable activation of C-H bond without the assistance of any heteroatom is achieved.200 

However, when the reaction is performed on asymmetric alkanes, the product is obtained as 

mixture of all the possible regioisomers.  

 
197 Z. Li, C. J. Li, J. Am. Chem. Soc. 2004, 126, 11810–11811. 

198 C. M. R. Volla, P. Vogel, Org. Lett. 2009, 11, 1701–1704. 

199 C.-J. Li, C. A. Correia, Heterocycles 2010, 82, 555. 

200 S. Tang, P. Wang, H. Li, A. Lei, Nat. Commun. 2016, 7, 1–8. 
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Scheme 3.9. radical oxidative alkynylation of alkenes. 

Site specific radical C(sp3)-H alkynylation can be remotely directed by allyl or fluoro-

sulfonamides with perfect regioselectivity, leading to 3.35 (Scheme 3.9d). 201  

Oximes as Directing Groups in C(sp3)-H Functionalization 

Oximes have been identified as efficient directing group in transition metal catalyzed C-H 

functionalization of masked ketones and alcohols. Initial experiments on stoichiometric 

cyclopalladiation/oxidation reaction revealed an exquisite selectivity toward the formation of 

the 5-membered palladacycle 3.37 via C-H activation on aliphatic carbons202 (Scheme 3.10a). 

The first oxime-directed catalytic oxidation of C(sp3)-H bonds was reported in 2004 by 

Sanford203 (Scheme 3.10b). The oxime in this case acts as carbonyl equivalent allowing the 

selective Pd(II)-catalyzed oxidation of primary C-H bonds in -position on the nitrogen side of 

the oxime in 3.39 (for the rest of the manuscript we will refer to the carbonyl side of the oxime 

as “N-side”). The high selectivity is guaranteed by the formation of the highly favored 5-

 
201 (a) L. Wang, Y. Xia, K. Bergander, A. Studer, Org. Lett. 2018, 20, 5817–5820. (b) Z. Yin, Y. Zhang, 

S. Zhang, X. F. Wu, Adv. Synth. Catal. 2019, 361, 5478–5482. 
202 J. E. Baldwin, C. Nájera, M. Yus J. Chem. Soc., Chem. Commun., 1985, 126-127  

203 L. V. Desai, K. L. Hull, M. S. Sanford, J. Am. Chem. Soc. 2004, 126, 9542–9543. 
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membered endo-palladacycle.204 The same activation principle was then applied for the 

amidation of this very same position using sulfonamides and K2S2O8 ad stoichiometric oxidant 

to close the catalytic cycle delivering 3.40205. 

 

Scheme 3.10. A) stoichiometric cyclopalladation and subsequent oxidation. B) catalytic oxygenation and 

amidation of primary C(sp3)-H bonds. 

In principle, oximes can act also as alcohol surrogates and direct the C-H metalation on their 

oxygen side (from now “O-side”). The main challenge in the metalation on the O-side resides 

in the necessary formation of an exo-metallacycle (with the double bond of the oxime outside 

of the ring) less favored compared to the endo- one (Scheme 3.11). In order to avoid the 

competition between the two sides it is necessary to block the reactive -positions on the N-

side. Thus, Dong reported in 2012 the use of 2,6-dimethoxybenzyl oxime (3.42) as optimal 

directing group for the Pd(II)-catalyzed oxidation of masked aliphatic alcohols to generate 

protected 1,2-diols 3.43 (Scheme 3.11).206 Remarkably, the reaction is not limited just to methyl 

C-H bonds but, under proper steric and electronic conditions, also secondary and tertiary 

aliphatic C-H bond can be oxidized. The authors then extended the use of this oxime for the -

selective intramolecular C-H functionalization using a free alcohol as nucleophiles, leading to 

the synthesis cyclic ethers 3.44 

 
204 The regioselectivity in cyclopalladation have been studied for several directing groups revealing that 

usually the endo-palladacycle is favored, see as example: R. Y. Mawo, S. Mustakim, V. G. Young, M. 

R. Hoffmann, I. P. Smoliakova, Organometallics 2007, 26, 1801–1810. 

205 H. Y. Thu, W. Y. Yu, C. M. Che, J. Am. Chem. Soc. 2006, 128, 9048–9049. 

206 Z. Ren, F. Mo, G. Dong, J. Am. Chem. Soc. 2012, 134, 16991–16994. 
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Scheme 3.11. Use of the oximes as alcohol surrogate. 

Oximes can also be used as directing groups for the -amidation of C(sp3)-H bonds with 

sulphonyl or aryl-azides under Ir(III) catalysis.207,208 Also in this case either the N-side or the 

O-side of the oxime can be involved in the reaction by proper design of the substrate. (Scheme 

3. 12).  

 

Scheme 3. 12. Use of oximes as directing groups for the Ir(III)-catalyzed amidation of C(sp3)-H bonds. 

A careful directing group design is not just crucial for the selective formation of the exo-

metalacycle over the endo-one but can be also the key to access more distal position on the 

aliphatic chain. A very elegant example was reported recently by Yu in the context of Pd(II)-

catalyzed C-H arylation of aliphatic alcohols (Scheme 3. 13). 209 The use of a pivalic acid 

derivative as directing group in 3.49 first inhibits the activation of the C-H bonds on the N-side, 

and more importantly, confers enough geometry constrain to the system to form the rare 6-

memebered palladacycle V. Key for this uncommon selectivity was the introduction of the 

 
207 T. Kang, Y. Kim, D. Lee, Z. Wang, S. Chang, J. Am. Chem. Soc. 2014, 136, 4141–4144. 

208 T. Kang, H. Kim, J. G. Kim, S. Chang, Chem. Commun. 2014, 50, 12073–12075. 

209 G. Xia, J. Weng, L. Liu, P. Verma, Z. Li, J. Q. Yu, Nat. Chem. 2019, 11, 571–577. 
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double bond in the bicyclic skeleton of V. In this way it is possible to selective arylate the -

position of the O-side210. An analogous approach was applied to the challenging -methylene 

C-H arylation of alcohols, leading to the formation of 3.52.211 This methods relies on the use of 

a salicylic aldehyde derivative as a bidentate directing group (3.51), together with an electron 

deficient pyridinone ligand. The potential of bidentate oximes derivatives was finally 

demonstrated in the palladium-catalyzed oxidation/iodination sequence of C(sp3)-H bonds - to 

a masked carbonyl, since the reaction was not possible with the use of the simple methoxime as 

directing group.212 

 

Scheme 3. 13. Directing group effect for the selective C(sp3)-H arylation of masked alcohols. 

 
210 The selective -arylation of aliphatic ketone directed by oximes was already reported in: (a) P. Gao, 

W. Guo, J. Xue, Y. Zhao, Y. Yuan, Y. Xia, Z. Shi, J. Am. Chem. Soc. 2015, 137, 12231–12240. (b) J. 

Peng, C. Chen, C. Xi, Chem. Sci. 2016, 7, 1383–1387. 

211 G. Xia, Z. Zhuang, L. Y. Liu, S. L. Schreiber, B. Melillo, J. Q. Yu, Angew. Chem. Int. Ed. 2020, 59, 

7783-7787. 

212 R. Y. Zhu, L. Y. Liu, J. Q. Yu, J. Am. Chem. Soc. 2017, 139, 12394–12397. 
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Objectives 

Our first objective was to develop new broad-scope method for the C(sp3)-H alkynylation 

directing by oximes readily prepared from carbonyl compounds. A second objective was to 

extend this reaction to the alkynylation of alcohols derivatized as the corresponding oximes.  
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Results and Discussion 

-Alkynylation of Ketoximes 

We initially centered our attention to the alkynylation of ketoximes, selecting 3.53 as model 

substrate and, based on our previous experience on C(sp2)-H alkynylation,186,187 we aimed to 

use bromoalkyne 3.21 as alkynylating agent(Table 3.1).213 After screening a series of metal 

complexes, we found that Ir(III) complex [Cp*IrCl2] 2 in combination with Ag2CO3 and LiOAc 

gave the expected product 3.54 in 80% yield (Table 3.1, entry 3). Ru and Rh complexes known 

to catalyze the alkynylation of C(sp2)-H bonds were ineffective for the C(sp3)-H alkynylation 

(Table 3.1, entries 1 and 2). Similarly, Pd(OAc)2 failed also as catalyst for this reaction (Table 

3.1, entry 4). To proof that all the components in the reaction are necessary we tested the model 

reaction in absence of Ir(III) complex, silver salts or LiOAc (Table 3.1, entries 5-7 and 10) and 

in all the cases 3.54 was not formed. We additionally tested different silver salts instead of 

Ag2CO3 (Table 3.1, entries 8 and 9), but none of them proved to be efficient in the reaction. 

Table 3.1. Optimization of the Ir(III) catalyzed -alkynylation of ketoximes.a 

 

Entry Catalyst Cl-Scavenger Additive I Additive II Yield (%)b 

1 [Cp*RhCl2] 2 AgSbF6 Ag2CO3 LiOAc - 

2 
[RuCl2(p-

cymene)]2 
AgSbF6 Ag2CO3 LiOAc - 

3 [Cp*IrCl2] 2 AgSbF6 Ag2CO3 LiOAc 80 (78) 

4 Pd(OAc)2 - Ag2CO3 LiOAc - 

5 - AgSbF6 Ag2CO3 LiOAc - 

6 [Cp*IrCl2] 2 - Ag2CO3 LiOAc - 

 
213 The optimization of the reaction was performed by Dr. E. Tan 
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7 [Cp*IrCl2] 2 AgSbF6 - LiOAc - 

8 [Cp*IrCl2] 2 AgSbF6 AgNO3 LiOAc - 

9 [Cp*IrCl2] 2 AgSbF6 Ag2O LiOAc - 

10 [Cp*IrCl2] 2 AgSbF6 Ag2CO3 - - 

a Substrates 3.53 and 3.21 in 1:1.2 ratio. b yield determined by 1H-NMR using biphenyl as internal 

standard. Isolated yields in parenthesis.  

Defined the components to obtain 3.54 in satisfactory yield, we tested different modifications 

on these conditions (Table 3.2). Lower catalyst loading resulted in a decreased yield (Table 3.2, 

entries 1 and 2), and higher or lower reaction temperatures caused a slight decrease of yield 

(Table 3.2, entries 7 and 8). Solvents different from DCE, as well the use of co-solvents (Table 

3.2, entries 3-6) were also less efficient. 

Table 3.2. Optimization of the Ir(III) catalyzed -alkynylation of ketoximes.a 

 

Entry [Cp*IrCl2]2 (mol%) solvent  T (°C) Yield (%)b 

1 3% DCE 70 25 

2 5% DCE 70 50 

3 7% THF 70 50 

4 7% tert-amyl alcohol 70 20 

5 7% DCE:TFE (1/1) 70 50 

6 7% DCE:HFIP (1/1) 70 40 

7 7% DCE 25 60 
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8 7% DCE 80 60 

a Substrates 3.53 and 3.28 in 1:1.2 ratio. b yield determined by 1H-NMR using biphenyl as  

internal standard. 

Having found the conditions for the iridium(III)-catalyzed -alkynylation of 3.53, we explored 

the substrate scope (Table 3.3)214. Thus, the ethoxime (3.53b) or benzyloxime (3.53c) of 2-

methyl-cyclohexanone were also satisfactory substrates leading to products 3.54c and 3.54b in 

72% and 70% yields, respectively. In the case of 3.53b, the C-H activation step can occur in 

principle on either the N-side or the O-side via endo- or exo-iridacycles (Scheme 3.14). 

However, the latter is less favored and as expected, the product of alkynylation of the O-side 

was not observed. 

Differently functionalized methoxime derivatives (3.53d-f) were successfully alkynylated in 

good yields (45-72%) even in presence of the more labile C(sp2)-H bonds. The di-methoxime 

3.53h was mono-alkynylated to give 3.54h in 45% yield. Interestingly, the (E)-isomer of the 

oxime derivative of (L)-fenchone was exclusively alkynylated on the bridgehead methyl to form 

3.54g in 72% yield despite the presence of other two possible reactive sites. In contrast the (Z)-

isomer of (L)-fenchone was unreactive under the optimized reaction conditions, probably 

because of steric reasons that disfavor the C-H activation step. Additionally, acyclic substrates 

such as pinacolone derivative 3.53i was alkynylated in 89% yields, whereas 3.54j was formed 

in 45% yield. -Ketoesthers derivative 3.53k and aldoximes 3.53l,m were be also alkynylated 

in good yields (39-63%). 

Oxime 3.53n, as well as the acetoxime 3.53o and O-allyloxime 3.53p did not provide the desired 

products (Figure 3.1). We tested also other haloalkynes in the reaction 3.21b-d although none 

of them was affective as alkynylating reagent. 

 
214 Experiments mainly performed by Dr. E. Tan. 
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Table 3.3. Ir(III) catalyzed -alkynylation of ketoximes 3.53a-m with 3.28a. 

 
a Isolated yields. b Reaction performed with 6 mmol (1,1 g) of ketoxime 3.53f. 

 

Scheme 3.14. Selective alkynylation of the N-side oxime 3.53b. 
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Figure 3.1. Other oximes and alkynes tested in the reaction. 

The relatively mild conditions of the rection make this methodology suitable also for the 

functionalization of more complex molecules. Thus, (-)-santonine 3.55 was -alkynylated via 

the methoxime 3.53q giving rise to 3.54n in 77% yield. In the same way, the carboxylic acid of 

oleanolic acid (3.56) was protected and the alcohol oxidized to form the corresponding ketone, 

whose oxime was -alkynylated to form a 1.7:1 mixture 3.54o and 3.54o’ in 55% yield. 

Lanosterol derivative 3.53s was alkynylated to give a 4:1 mixture of diastereoisomers 3.54p and 

3.54p’ in 63% yield. In both cases the two isomers were separated, and their configurations 

were assigned based on previously reported C-H functionalization of the same oxime 

derivatives.215 

 
215 The assignment of the configuration of 3.54o, 3.54o’, 3.54p and 3.54p’ based just on NMR was not 

conclusive, see the experimental part for details. 
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Scheme 3.15. Functionalization of natural products. 

-Alkynylation of Oximes Derived from Alcohols 

Although oxime 3.53b selective reacts on the N-side of the oxime, we anticipated that by 

removal of reactive methyls from the ketone part, the alkynylation of oximes as alcohols 

surrogates would be possible with our catalytic system. First, we derivatized 1-methyl-

cyclohexanol with different oximes lacking reactive sites (Scheme 3.16). 2,4,6-

Trimethoxybenzaldehyde derivative 3.58a was fully recovered under our standard conditions. 

Similar negative results were obtained with adamantanone derivative 3.58b. Reducing the steric 

bulk of the directing group, allowed to achieve the alkynylation of product 3.58c in 60% yield. 

Finally, the smaller cyclopentanone derivative 3.58d led to the alkynylation of the methyl group 

in 89% yield. 
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Scheme 3.16.Screening of different directing group for the -alkynylation of alchoximes 3.58 with 3.21a. 

Table 3.4 reports the scope of the iridium(III)-catalyzed -alkynylation of masked alcohols. The 

alkynylation of ethanol derivative 3.58e occurred in 50% yield, while for isopropanol derivative 

3.58f, the mono-alkynylation product was obtained in 44% yield together with 21% of the di-

alkynylated derivative 3.59f’. Also, for tert-butanol derivative 3.58k we obtained 3.59k and 

3.59k’ in 73% yield as a 7:1 inseparable mixture.  

With this methodology a series of -alkynylated secondary alcohol derivatives (3.59f-j,m,p) 

could be efficiently prepared (44-77% yield) with very good selectivity. In all the cases the 

reaction occurred on the methyl whose activation would generate a 5-membered metallacycle 

intermediate, while the -position, which requires the formation of a 6-membered ring, was not 

activated as shown in 3.59g-j. The selective activation of methyl groups was also observed in 

presence of more reactive C(sp3)-H bonds of methylene groups (belzylic, allylic or activated by 

a MeO group) such in the cases of 3.59n-p. Masked tertiary alcohols are also alkynylated in 

very good yields (3.59d,k,l). 
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Table 3.4. Ir(III) catalyzed -alkynylation of ketoximes 3.58d-p with 3.21a.a 

 
a Isolated yields. b Dialkynylated product also isolated in 21% yield. c Obtained as a mixture 3:1 of mono-

:di-alkynylated products. d Yield corrected for conversion (57%). 

The alkyne could be easily deprotected both in the ketone and alcohol derivatives by treatment 

with TBAF, forming 3.60 and 3.61 in excellent yields (Scheme 3.17).  

 

Scheme 3.17. TIPS removal from 3.54f and 3.59d. 
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Removal of methoxime from 3.54a occurred smoothly in presence of formaldehyde and HCl to 

form 3.62 in good yield (Scheme 3.18). 

 

Scheme 3.18. Deprotection of oxime 3.54a to form -alkynylated ketone 3.80. 

However, the generation of the free alcohol from alkylated products 3.59 was more challenging 

(Scheme 3.19). Alkynylated ethanol 3.63a was obtained in 89% yield from 3.59g by treatment 

with an excess of LiAlH4, but the same reaction conditions failed for the deprotection of more 

complex substrates, even increasing the temperature. After screening different conditions, we 

found that secondary alcohols 3.63b,c can be obtained from the corresponding oxime in good 

yields (78% and 79%, respectively) under reductive conditions using NaBH3CN and Zn powder 

in acetic acid. Also, tertiary alcohol 3.63d was deprotected under the same reaction conditions, 

although a cleaner reaction mixture was obtained reducing first the oxime to the corresponding 

hydroxylamine with NaBH3CN, followed by the addition of Zn powder in a one-pot procedure. 

Under these conditions, 3.63d was isolated in 76% yield. In the case of 3.59g, the intermediate 

hydroxylamine 3.64 could also be isolated in 83% yield. The reductive cleavage of the N-O 

bond gave free alcohol 3.63e in 72% yield. 
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Scheme 3.19. Deprotection of oximes alkynylated oximes to form the corresponding alcohol or 

hydroxylamine. 
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Conclusions 

In this Chapter we have presented the iridium(III)-catalyzed -alkynylation of carbonyl 

derivatives and alcohols masked as oxime derivatives. The oxime acts as directing group for the 

selective alkynylation of primary C(sp3)-H bonds and it can be removed either under acidic or 

reductive conditions, restoring then the initial functionality. This methodology tolerates the 

presence of aromatic or alkenyl C-H bonds that can potentially compete with the desired 

reaction. This methodology has also been extended to the alkynylation of oxime derivatives of 

natural products.  

 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
Transition Metal-Catalyzed Reactions of Heteroatom- Substituted Alkynes 
Margherita Zanini 



 

248 

 

Experimental Part 

General Information 

The general information is provided in the Experimental Part of Chapter 1. All reagents were 

used as purchased, with no further purification. 

Haloalkynes 3.71a-d and oxime ether substrates 3.70a-s are synthesized according to previously 

reported procedures216. The NMR data are in agreement with the ones reported in the literature. 

Synthetic Procedures and Characterization Data  

General procedure A: Synthesis of N-alkoxyphthalimide from primary and secondary alcohols. 

 

To a stirred solution of the alcohol (1 equiv), 2-hydroxyisoindoline-1,3-dione (1.2 equiv) and 

triphenylphosphane (1.2 equiv) in THF (0.25 M) at 0 ºC, diisopropyl (E)-diazene-1,2-

dicarboxylate (1.2 equiv) was added dropwise over 1 h, the reaction was then warmed up at 23 

ºC and stirred until no starting material was detected by TLC. The solvent was then removed 

under reduced pressure and the resulting residue was purified by column chromatography on 

silica gel to give the corresponding N-alkoxyphthalimide. 

General Procedure B: Synthesis of N-alkoxyphthalimide from tertiary alcohols 

 

A suspension of N-hydroxyphthalimide (2 equiv) and tertiary alcohol (1 equiv) in 30 mL of 

CH2Cl2, was stirred at 23 ºC for 3h, then cooled down to 0 ºC and BF3·OEt2 (1.1 equiv) was 

added dropwise. The reaction mixture was stirred for at room temperature until no starting 

 
216 For bromo- and iodo-alkynes: a) E. Tan, A. I. Konovalov, G. A. Fernandez, R. Dorel, A. M. 

Echavarren, Org. Lett. 2017, 19, 5561-5564. b) E. M. de Orbe, M. Zanini, O. Quinonero, A. M. 

Echavarren ACS Catal. 2019, 9, 7817- 7822. For oxime ether substrates: c) T. Kang, Y. Kim, D. Lee, 

Z. Wang, S. Chang, J. Am. Chem. Soc. 2014, 136, 4141-4144. d) P. Gao, W. Guo, J. Xue, Y. Zhao, Y. 

Yuan, Y. Xia, Z. Shi, J. Am. Chem. Soc. 2015,137, 12231-12240. e) J. Peng, C. Chen, C. Xi, Chem. 

Sci, 2016, 7, 1383-1387. 
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material was detected by TLC and then a saturated solution of NaHCO3 solution in H2O was 

added. The aqueous layer was extracted three times with CH2Cl2, the combined organic layers 

were dried over MgSO4, filtered, and concentrated under reduced pressure. The residue was 

purified by column chromatography on silica gel to give desired N-alkoxyphthalimide. 

2-((1-Methylcyclohexyl)oxy)isoindoline-1,3-dione (S3.1a) 

N-Alkoxyphthalimide S3.1a was synthesized following general procedure B 

starting from 1-methylcyclohexanol (10 mmol, 1,14 g). The crude product 

was purified by flash chromatography affording S3.1a as white solid (567 

mg, 22%).  

1H-NMR (400 MHz, CDCl3) δ 7.9 – 7.8 (m, 1H), 7.8 – 7.7 (m, 1H), 1.9 (tdt, J = 12.4, 9.0, 3.9 

Hz, 2H), 1.7 (ddt, J = 12.0, 7.2, 3.7 Hz, 1H), 1.5 – 1.4 (m, 2H), 1.4 (s, 2H). 13C-NMR (101 

MHz, CDCl3) δ 166.0, 134.5, 129.5, 123.5, 88.5, 36.4, 25.6, 23.7, 23.2. Characterization data 

are in agreement with the literature217 

2-Isopropoxyisoindoline-1,3-dione (S3.1f) 

N-Alkoxyphthalimide S3.1f was synthesized following general procedure A 

starting from isopropanol (180 mg, 3 mmol). The crude product was purified 

by flash chromatography affording S3.1f as white solid (538 mg, 89%).  

1H-NMR (500 MHz, CDCl3) δ 7.8 (m, 2H), 7.8 – 7.7 (m, 2H), 4.5 (m, 1H), 

1.4 (dt, J = 6.3, 2.2 Hz, 6H). 13C-NMR (126 MHz, CDCl3) δ 164.4, 134.5, 129.1, 123.5, 80.7, 

20.9. HRMS (ESI) m/z calculated for C11H11NNaO3
+ [M+Na]+: 228.0631, found: 228.0632. 

Characterization data are in agreement with the literature.218 

2-(sec-Butoxy)isoindoline-1,3-dione (S3.1g) 

N-Alkoxyphthalimide S3.1g was synthesized following general procedure 

A starting from 2-butanol (1.0 g, 13.5 mmol). The crude product was 

purified by flash chromatography affording S3.1f as white solid (2.42g, 

82%). 

M.p. 59-61 ºC. 1H-NMR (400 MHz, CDCl3) δ 7.8 (td, J = 5.2, 2.1 Hz, 2H), 7.8 – 7.7 (m, 2H), 

4.3 (h, J = 6.3 Hz, 1H), 1.8 (dqd, J = 13.3, 7.5, 5.7 Hz, 1H), 1.7 – 1.6 (m, 1H), 1.3 (d, J = 6.3 

Hz, 3H), 1.0 (t, J = 7.5 Hz, 3H). 13C-NMR (101 MHz, CDCl3) δ 164.5, 134.5, 129.1, 123.5, 

 
217 J. R. Harris, M. T. Haynes, A. M. Thomas, K. A. Woerpel, J. Org. Chem. 2010, 75, 5083–5091. 

218 Z. Ren, F. Mo, G. Dong, J. Am. Chem. Soc. 2012, 134, 16991–16994. 
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85.8, 27.8, 18.3, 9.7. HRMS (ESI) m/z calculated for C12H13NNaO3
+ [M+Na]+: 242.0788, 

found: 242.0789. 

2-(Hexan-2-yloxy)isoindoline-1,3-dione (S3.1h) 

N-Alkoxyphthalimide S3.1h was synthesized following general 

procedure A starting from 2-hexanol (307 mg, 3 mmol). The crude 

product was purified by flash chromatography affording S3.1h as 

yellow oil (719 mg, 97%). 

1H-NMR (500 MHz, CDCl3) δ 7.8 – 7.8 (m, 2H), 7.7 (dt, J = 5.4, 2.6 Hz, 2H), 4.4 (pq, J = 4.8, 

3.0, 1.9 Hz, 1H), 1.8 (ddtt, J = 11.7, 9.9, 6.0, 1.9 Hz, 1H), 1.6 (ddddd, J = 13.5, 10.0, 6.2, 3.8, 

1.8 Hz, 1H), 1.4 (qdd, J = 8.9, 5.5, 2.2 Hz, 2H), 1.4 (ddd, J = 9.9, 5.1, 2.7 Hz, 2H), 1.3 (ddd, J 

= 6.1, 3.7, 1.6 Hz, 3H), 0.9 – 0.9 (m, 3H). 13C-NMR (126 MHz, CDCl3) δ 164.5, 134.5, 129.1, 

123.5, 84.6, 34.7, 27.5, 22.8, 18.9, 14.1. Characterization data are in agreement with the 

literature219 

2-((4-Methylpentan-2-yl)oxy)isoindoline-1,3-dione (S3.1i) 

N-Alkoxyphthalimide S3.1i was synthesized following general 

procedure A starting from 4-methyl-2-pentanol (409 mg, 4.0 mmol). 

The crude product was purified by flash chromatography affording 

S3.1i as white solid (837 mg, 85%). 

M.p. 68-71ºC. 1H-NMR (500 MHz, CDCl3) δ 7.9 – 7.8 (m, 2H), 7.8 – 7.7 (m, 2H), 4.5 (dq, J = 

7.6, 6.0 Hz, 1H), 2.0 – 1.9 (m, 1H), 1.8 (ddd, J = 13.3, 7.6, 6.6 Hz, 1H), 1.4 – 1.4 (m, 1H), 1.3 

(d, J = 6.1 Hz, 3H), 1.0 (d, J = 6.5 Hz, 3H), 0.9 (d, J = 6.6 Hz, 3H). 13C-NMR (126 MHz, 

CDCl3) δ 164.5, 134.5, 129.2, 123.5, 83.0, 44.4, 24.9, 22.9, 22.7, 19.6. HRMS (ESI) m/z 

calculated for C14H17NNaO3
+ [M+Na]+: 270.1101, found: 270.1098 

2-(1-Cyclobutylethoxy)isoindoline-1,3-dione (S3.1j) 

N-Alkoxyphthalimide S3.1j was synthesized following general procedure 

A starting from 1-cyclobutylethan-1-ol (300 mg, 3.0 mmol). The crude 

product was purified by flash chromatography affording S3.1j as yellow 

oil (538 mg, 73%). 

1H-NMR (400 MHz, CDCl3) δ 7.8 (dddd, J = 6.9, 5.0, 3.0, 1.3 Hz, 2H), 7.8 – 7.6 (m, 2H), 4.4 

– 4.2 (m, 1H), 2.7 – 2.5 (m, 1H), 2.1 – 2.0 (m, 3H), 2.0 – 1.7 (m, 3H), 1.2 (dt, J = 6.3, 1.0 Hz, 

 
219 Wang, B. Stefane, D. Jaber, J. A. I. Smith, C. Vickery, M. Diop, H. O. Sintim, Angew. Chem. Int. Ed. 

2010, 49, 3964–3968. 
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3H). 13C-NMR (101 MHz, CDCl3) δ 164.4, 134.5, 134.4, 129.2, 123.5, 88.0, 39.7, 25.9, 24.7, 

18.5, 16.3. HRMS (ECI) m/z calculated for C14H15NNaO3
+ [M+Na]+: 268.0944 found: 

268.0952. 

2-(tert-Butoxy)isoindoline-1,3-dione (S3.1k) 

N-Alkoxyphthalimide S3.1k was synthesized following general procedure B 

starting from tert-butanol (383 mg, 4.0 mmol). The crude product was purified 

by flash chromatography affording S3.1k as white solid (516 mg, 58%). 

 1H-NMR (400 MHz, CDCl3) δ 7.9 – 7.8 (m, 1H), 7.8 – 7.7 (m, 1H), 1.4 (s, 

5H). 13C-NMR (101 MHz, CDCl3) δ 165.8, 134.5, 129.5, 123.6, 86.7, 27.5. Characterization 

data are in agreement with the literature220 

2-((1-Methylcyclopentyl)oxy)isoindoline-1,3-dione (S3.1l) 

N-Alkoxyphthalimide S3.1l was synthesized following general procedure B 

starting from 1-methylcyclopentan-1-ol (401 mg, 4.0 mmol). The crude 

product was purified by flash chromatography affording S3.1l as white solid 

(516 mg, 53%). 

M.p. 112-115 ºC. 1H-NMR (500 MHz, CDCl3) δ 7.8 – 7.8 (m, 1H), 7.7 – 7.7 (m, 1H), 2.1 – 2.0 

(m, 1H), 2.0 – 1.9 (m, 1H), 1.6 (qdd, J = 8.1, 6.6, 4.7 Hz, 1H), 1.6 – 1.5 (m, 1H), 1.4 (s, 2H). 

13C-NMR (126 MHz, CDCl3) δ 165.9, 134.5, 134.5, 129.4, 123.4, 123.4, 97.9, 38.0, 24.5, 24.4. 

HRMS (ESI) m/z calculated for C14H15NNaO3
+ [M+Na]+: 268.0944, found: 268.0950 

2-((1-Phenylpropan-2-yl)oxy)isoindoline-1,3-dione (S3.1n) 

N-Alkoxyphthalimide S3.1n was synthesized following general 

procedure A starting from 1-phenylpropan-2-ol (545 mg, 4.0 mmol). 

The crude product was purified by flash chromatography affording 

S3.1n as white solid (765 mg, 68%). 

M.p. 90-93 ºC. 1H-NMR (500 MHz, CDCl3) δ 7.8 (dd, J = 5.4, 3.1 Hz, 2H), 7.8 – 7.7 (m, 2H), 

7.3 – 7.2 (m, 3H), 7.2 (ddt, J = 7.5, 6.0, 2.0 Hz, 1H), 4.7 – 4.6 (m, 1H), 3.2 (dd, J = 13.8, 5.6 

Hz, 1H), 2.9 (dd, J = 13.8, 7.8 Hz, 1H), 1.3 (d, J = 6.2 Hz, 3H). 13C-NMR (126 MHz, CDCl3) 

δ 164.4, 137.3, 134.6, 129.4, 129.1, 128.6, 126.6, 123.6, 84.8, 41.5, 18.5. HRMS (ESI) m/z 

calculated for C17H16NO3
+ [M+H]+: 282.1125, found: 282.1116 

 
220 S. G. Davies, C. J. Goodwin, D. Hepworth, P. M. Roberts, J. E. Thomson, J. Org. Chem. 2010, 75, 

1214–1227. 
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2-((1-Methoxypropan-2-yl)oxy)isoindoline-1,3-dione (S 3.1p) 

N-Alkoxyphthalimide S3.1p was synthesized following general 

procedure A starting from 1 1-methoxypropan-2-ol (294 l, 3.0 mmol). 

The crude product was purified by flash chromatography affording S3.1p 

as yellow oil (139 mg, 20%). 

1H-NMR (500 MHz, CDCl3) δ 7.7 – 7.7 (m, 2H), 7.7 – 7.6 (m, 2H), 4.5 – 4.4 (m, 1H), 3.6 (dd, 

J = 10.9, 6.1 Hz, 1H), 3.4 (dd, J = 10.8, 3.5 Hz, 1H), 3.2 (s, 3H), 1.3 (d, J = 6.5 Hz, 3H). 13C-

NMR (126 MHz, CDCl3) δ 163.7, 134.3, 128.8, 123.3, 82.4, 74.9, 59.0, 15.8. HRMS (ESI) m/z 

calculated for C12H14NO4+ [M+H]+: 236.0917, found: 236.0922. 

2-((6-Methylhept-5-en-2-yl)oxy)isoindoline-1,3-dione (S3.1p) 

N-Alkoxyphthalimide S3.1p was synthesized following general 

procedure A starting from 6-methylhept-5-en-2-ol (385 mg, 3 

mmol). The crude product was purified by flash chromatography 

affording S3.1p as yellow oil (755 mg, 92%). 

1H-NMR (400 MHz, CDCl3) δ 7.8 (dd, J = 5.5, 3.1 Hz, 2H), 7.8 – 7.7 (m, 2H), 5.1 (ddq, J = 

8.6, 5.8, 1.5 Hz, 1H), 4.4 (h, J = 6.3 Hz, 1H), 2.2 (q, J = 7.7 Hz, 2H), 1.9 (ddt, J = 13.4, 8.6, 6.5 

Hz, 1H), 1.7 (d, J = 1.4 Hz, 3H), 1.6 (m, 4H), 1.6 (d, J = 1.5 Hz, 1H), 1.3 (d, J = 6.3 Hz, 3H). 

13C-NMR (101 MHz, CDCl3) δ 164.4, 134.5, 132.3, 129.1, 123.6, 123.5, 84.2, 35.1, 25.8, 24.0, 

18.9, 17.8. HRMS (ECI) m/z calculated for C16H19NNaO3
+ [M+Na]+: 296.1257 found: 

296.1266. 

General Procedure C: Synthesis of the oximes 

 

To a solution of N-alkoxyphthalimide (1 equiv) in MeOH (0,55 M), hydrazine monohydrate (1 

equiv) was added slowly at 23 ºC. After stirring for 30 minutes, the desired ketone (3 equiv), 

sodium acetate (5 equiv), and water (1,4 M) were added to the reaction mixture. The resulting 

mixture was heated to 65 °C and stirred for 5 h. The mixture was then cooled to room 

temperature, filtered to remove the precipitate and the liquid phase was washed three times with 

Et2O, the collected organic phases were dried over MgSO4, filtered, and concentrated under 

reduced pressure. The crude product was purified by column chromatography on silica gel. 
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(E)-2,4,6-trimethoxybenzaldehyde O-(1-methylcyclohexyl) oxime (3.58a) 

Oxime 3.76a was synthesized following general procedure C starting 

from 2-((1-Methylcyclohexyl)oxy)isoindoline-1,3-dione (S3.1a) (200 

mg, 0.771 mmol) and 2,4,6-trimethoxybenzaldehyde (151 mg mg, 0.771 

mmol) The crude product was purified by flash chromatography 

affording 3.76a as a yellow oil (206 mg, 68%). 

1H-NMR (400 MHz, CDCl3) δ 8.35 (s, 1H), 6.12 (s, 2H), 3.81 (s, 3H), 

3.81 (s, 6H), 1.97 – 1.87 (m, 2H), 1.70 – 1.58 (m, 2H), 1.56 – 1.37 (m, 6H), 1.32 (s, 3H). 13C-

NMR (101 MHz, CDCl3) δ 161.9, 160.1, 142.6, 104.3, 91.4, 78.9, 56.2, 55.5, 36.4, 26.0, 26.0, 

22.5.  

Adamantan-2-one O-(1-methylcyclohexyl) oxime (3.58b) 

Oxime 3.76b was synthesized following general procedure C starting from 2-((1-

Methylcyclohexyl)oxy)isoindoline-1,3-dione (S3.1a) (200 mg, 0.771 mmol) and 

2-adamantanone (348 mg, 2,31 mmol). The crude product was purified by flash 

chromatography affording 3.76b as a yellow oil (137 mg, 68%). 

1H-NMR (400 MHz, CDCl3) δ 3.58 (t, J = 3.3 Hz, 1H), 2.59 – 2.51 (m, 1H), 2.01 

– 1.97 (m, 1H), 1.93 (ddd, J = 13.5, 8.2, 2.9 Hz, 4H), 1.88 – 1.75 (m, 10H), 1.59 – 

1.18 (m, 12H). 13C-NMR (101 MHz, CDCl3) δ 165.7, 77.2, 39.3, 37.9, 36.8, 36.6, 36.4, 29.7, 

28.2, 26.0, 25.9, 22.4. HRMS (ESI) m/z calculated for C17H28NO+ [M+H]+: 262.2165, found: 

262.2164. 

Cyclohexanone O-(1-methylcyclohexyl) oxime (3.58c) 

 Oxime 3.58c was synthesized following general procedure C starting from 2-((1-

methylcyclohexyl)oxy)isoindoline-1,3-dione (S3.1a) (70 mg, 0.27 mmol) and 

cyclohexanone (82 l, 0.8 mmol). The crude product was purified by flash 

chromatography affording 3.58c as a yellow oil (86 mg, 81%). 

1H-NMR (500 MHz, CDCl3) δ 2.53 – 2.47 (m, 2H), 2.23 – 2.17 (m, 2H), 1.83 (ddt, J = 13.1, 

4.9, 2.5 Hz, 2H), 1.68 – 1.61 (m, 2H), 1.58 (p, J = 2.9 Hz, 4H), 1.56 – 1.45 (m, 3H), 1.45 – 1.37 

(m, 2H), 1.37 – 1.28 (m, 2H), 1.24 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 159.2, 77.5, 36.3, 

32.7, 27.4, 26.2, 26.2, 26.0, 25.9, 25.4, 22.4, 15.4. Characterization data are in agreement with 

the literature221. 

 
221 T. Kang, H. Kim, J. G. Kim, S. Chang, Chem. Commun. 2014, 50, 12073–12075. 
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Cyclopentanone O-(1-methylcyclohexyl) oxime (3.58d) 

Oxime 3.58d was synthesized following general procedure C starting from 2-((1-

methylcyclohexyl)oxy)isoindoline-1,3-dione (S3.1a) (317 mg, 1.22 mmol) and 

cyclopentanone (324 l, 2,31 mmol). The crude product was purified by flash 

chromatography affording 3.58d as a yellow oil (204 mg, 85%). 

1H-NMR (400 MHz, CDCl3) δ 2.41 (tdd, J = 7.6, 2.4, 1.1 Hz, 2H), 2.34 (tt, J = 5.2, 1.5 Hz, 2H), 

1.87 – 1.78 (m, 2H), 1.76 – 1.67 (m, 4H), 1.50 (ddt, J = 12.5, 6.9, 3.5 Hz, 3H), 1.46 – 1.25 (m, 

5H), 1.23 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 165.5, 78.0, 36.5, 31.2, 27.7, 26.3, 26.0, 25.4, 

24.9, 22.5. HRMS (ESI) m/z calculated for C12H22NO+ [M+H]+: 196.1696, found: 196.1695. 

Cyclopentanone O-isopropyl oxime (3.58f) 

 Oxime 3.58f was synthesized following general procedure C starting from 2-((1- 2-

isopropoxyisoindoline-1,3-dione (S3.1f) (190 mg, 093 mmol) and cyclopentanone 

(246 l, 2.8 mmol). The crude product was purified by flash chromatography 

affording 3.58f as a colorless oil (104 mg, 80%). 

1H-NMR (500 MHz, CDCl3) δ 4.27 (hept, J = 6.2 Hz, 1H), 2.52 – 2.27 (m, 4H), 1.88 – 1.66 (m, 

4H), 1.21 (d, J = 6.2 Hz, 6H). 13C-NMR (126 MHz, CDCl3) δ 165.8, 74.8, 31.1, 27.8, 25.3, 

24.8, 22.0. HRMS (ESI) m/z calculated for C8H16NO+ [M+H]+: 142.1226, found: 142.1223 

Cyclopentanone O-(sec-butyl) oxime (3.58g) 

 Oxime 3.58g was synthesized following general procedure C starting from 2-(sec-

butoxy)isoindoline-1,3-dione (S3.1g) (219 mg, 1 mmol) and cyclopentanone (265 

l, 3.0 mmol). The crude product was purified by flash chromatography affording 

3.58g as a yellow oil (132 mg, 85%). 

1H-NMR (400 MHz, CDCl3) δ 4.04 (h, J = 6.2 Hz, 1H), 2.42 – 2.31 (m, 4H), 1.76 – 1.68 (m, 

4H), 1.68 – 1.57 (m, 1H), 1.54 – 1.39 (m, 1H), 1.18 (d, J = 6.3 Hz, 3H), 0.89 (t, J = 7.5 Hz, 3H). 

13C-NMR (101 MHz, CDCl3) δ 165.7, 79.8, 31.1, 28.7, 27.7, 25.3, 24.8, 19.5, 9.8. HRMS (ESI) 

m/z calculated for C9H18NO+ [M+H]+: 156.1383, found: 156.1382. 

Cyclopentanone O-hexan-2-yl oxime (3.58h) 

Oxime 3.58h was synthesized following general procedure C starting from 2-

(sec-butoxy)isoindoline-1,3-dione (S3.1h) (340 mg, 1.37 mmol) and 

cyclopentanone (365 l, 4.12 mmol). The crude product was purified by flash 

chromatography affording 3.58h as a yellow oil (203 mg, 81%). 
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1H-NMR (500 MHz, CDCl3) δ 4.08 (h, J = 6.2 Hz, 1H), 2.34 (dddd, J = 13.5, 7.3, 5.1, 1.1 Hz, 

4H), 1.77 – 1.65 (m, 4H), 1.66 – 1.55 (m, 1H), 1.47 – 1.36 (m, 1H), 1.36 – 1.23 (m, 4H), 1.17 

(d, J = 6.3 Hz, 3H), 0.91 – 0.84 (m, 3H). 13C-NMR (126 MHz, CDCl3) δ 165.5, 78.6, 35.7, 31.1, 

27.9, 27.7, 25.3, 24.8, 22.9, 20.1, 14.2. HRMS (ESI) m/z calculated for C11H22NO+ [M+H]+: 

184.1696, found: 184.1696. 

Cyclopentanone O-(4-methylpentan-2-yl) oxime (3.58i) 

Oxime 3.58i was synthesized following general procedure C starting from 2-((4-

methylpentan-2-yl)oxy)isoindoline-1,3-dione (S3.1i) (312 mg, 1.26 mmol) and 

cyclopentanone (335 l, 3.78 mmol). The crude product was purified by flash 

chromatography affording 3.58i as a yellow oil (191 mg, 83%). 

1H-NMR (500 MHz, CDCl3) δ 4.24 – 4.12 (m, 1H), 2.40 – 2.29 (m, 4H), 1.78 – 1.66 (m, 5H), 

1.60 – 1.50 (m, 1H), 1.27 – 1.21 (m, 1H), 1.19 (d, J = 6.2 Hz, 3H), 0.89 (dd, J = 6.7, 5.9 Hz, 

6H). 13C-NMR (126 MHz, CDCl3) δ 165.6, 77.0, 45.1, 31.1, 27.8, 25.3, 25.0, 24.8, 23.1, 23.0, 

20.7. HRMS (ESI) m/z calculated for C11H22NO+ [M+H]+: 184.1696, found: 184.1695. 

Cyclopentanone O-(1-methoxypropan-2-yl) oxime (3.58o) 

 Oxime 3.58o was synthesized following general procedure C starting from 2-((1-

methoxypropan-2-yl)oxy)isoindoline-1,3-dione (S3.1o) (286 mg, 1.2 mmol) and 

cyclopentanone (323 l, 3.6 mmol). The crude product was purified by flash 

chromatography affording 3.58o as a yellow oil (160 mg, 77%). 

1H-NMR (500 MHz, CDCl3) δ 4.28 – 4.19 (m, 1H), 3.45 (dd, J = 10.2, 5.7 Hz, 1H), 3.34 (dd, J 

= 10.3, 4.6 Hz, 1H), 3.31 (s, 3H), 2.38 – 2.31 (m, 2H), 2.31 – 2.26 (m, 2H), 1.72 – 1.59 (m, 4H), 

1.16 (d, J = 6.4 Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ 166.2, 77.4, 75.3, 59.2, 30.9, 27.7, 

25.1, 24.6, 16.9. HRMS (ESI) m/z calculated for C9H17NNaO2
+ [M+Na]+: 194.1151, found: 

194.1149 

Cyclopentanone O-(1-phenylpropan-2-yl) oxime (3.76n) 

Oxime 3.76n was synthesized following general procedure C starting from 

2-((1-phenylpropan-2-yl)oxy)isoindoline-1,3-dione (S3.1n) (338 mg, 1.2 

mmol) and cyclopentanone (319 l, 3.9 mmol). The crude product was 

purified by flash chromatography affording 3.76n as a yellow oil (303 mg, 

74%). 

1H-NMR (400 MHz, CDCl3) δ 7.35 – 7.29 (m, 2H), 7.28 – 7.21 (m, 3H), 4.55 – 4.31 (m, 1H), 

3.06 (dd, J = 13.5, 5.9 Hz, 1H), 2.78 (dd, J = 13.5, 6.8 Hz, 1H), 2.54 – 2.32 (m, 4H), 1.88 – 1.65 
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(m, 4H), 1.24 (d, J = 6.3 Hz, 3H). 13C-NMR (101 MHz, CDCl3) δ 166.2, 139.0, 129.8, 128.2, 

126.1, 79.2, 42.3, 31.1, 28.0, 25.3, 24.8, 19.4. HRMS (ESI) m/z calculated for C14H20NO+ 

[M+H]+: 218.1535, found: 218.1539 

Cyclopentanone O-(6-methylhept-5-en-2-yl) oxime (3.58p) 

Oxime 3.76p was synthesized following general procedure C starting from 

2-((6-Methylhept-5-en-2-yl)oxy)isoindoline-1,3-dione (S3.1p) (362 mg, 

1.32 mmol) and cyclopentanone (334 mg, 3.9 mmol). The crude product was 

purified by flash chromatography affording 3.76p as a pale-yellow oil (258 mg, 93%). 

1H-NMR (400 MHz, CDCl3) δ 5.10 (ddq, J = 8.6, 5.7, 1.3 Hz, 1H), 4.09 (h, J = 6.3 Hz, 1H), 

2.41 – 2.29 (m, 4H), 2.02 (q, J = 7.8 Hz, 2H), 1.75 – 1.67 (m, 4H), 1.65 (t, J = 1.3 Hz, 3H), 1.67 

– 1.58 (m, 4H), 1.57 (s, 3H), 1.50 – 1.38 (m, 1H), 1.19 (dd, J = 6.2, 0.9 Hz, 3H). 13C-NMR (101 

MHz, CDCl3) δ 165.5, 131.5, 124.5, 78.1, 36.0, 31.0, 27.7, 25.8, 25.3, 24.8, 24.2, 20.1, 17.6. 

HRMS (ESI) m/z calculated for C13H24NO+ [M+H]+: 210.1852, found: 210.1855 

Cyclopentanone O-(1-cyclobutylethyl) oxime (3.58j) 

Oxime 3.58j was obtained following the general procedure C starting from 2-(1-

Cyclobutylethoxy)isoindoline-1,3-dione (S3.1j) (300 mg, 1.223 mmol) and 

cyclopentanone (325 l, 3.67 mmol). The crude product was purified by flash 

chromatography affording 3.58j as a colorless oil (195 mg, 88%). 

1H-NMR (500 MHz, CDCl3) δ 4.03 (dq, J = 7.6, 6.2 Hz, 1H), 2.42 – 2.30 (m, 5H), 2.01 – 1.75 

(m, 6H), 1.74 – 1.68 (m, 4H), 1.09 (d, J = 6.2 Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ 165.7, 

82.1, 40.6, 31.1, 27.7, 25.3, 25.2, 24.8, 24.6, 18.4, 17.5. HRMS (ESI) m/z calculated for 

C11H20NO+ [M+H]+: 182.1539, found: 182.1527 

Cyclopentanone O-(1-((1R,3S,5r,7r)-adamantan-2-yl)ethyl) oxime (3.76m) 

Oxime 3.76m was synthesized following general procedure C starting from 2-

(1-((1s,3s)-adamantan-1-yl)ethoxy)isoindoline-1,3-dione (139 mg, 0,427 

mmol) and cyclopentanone (108 mg, 3 mmol). The crude product was purified 

by flash chromatography affording 3.76k as a yellow oil (83 mg, 74%). 

1H-NMR (500 MHz, CDCl3) δ 3.65 (q, J = 6.4 Hz, 1H), 2.40 (dddq, J = 7.2, 

3.5, 2.2, 1.1 Hz, 2H), 2.38 – 2.32 (m, 2H), 1.96 (p, J = 3.2 Hz, 3H), 1.78 – 1.68 (m, 7H), 1.65 

(m, 6H), 1.53 (m, 3H), 1.11 (d, J = 6.5 Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ 165.3, 86.4, 

38.5, 37.5, 36.5, 31.1, 28.6, 27.8, 25.3, 24.8, 13.8. HRMS (ESI) m/z calculated for C17H28NO+ 

[M+H]+: 262.2174, found: 262.2165 

UNIVERSITAT ROVIRA I VIRGILI 
Transition Metal-Catalyzed Reactions of Heteroatom- Substituted Alkynes 
Margherita Zanini 



 

257 

 

Cyclopentanone O-(tert-butyl) oxime (3.76k) 

Oxime 3.76k was synthesized following general procedure C starting from 2-(tert-

Butoxy)isoindoline-1,3-dione (S3.1k) (438 mg, 2.0 mmol) and cyclopentanone 

(505 mg, 6 mmol). The crude product was purified by flash chromatography 

affording 3.76k as a yellow oil (223 mg, 72%). 

1H-NMR (500 MHz, CDCl3) δ 2.48 – 2.25 (m, 4H), 1.83 – 1.65 (m, 4H), 1.25 (s, 7H). 13C-

NMR (126 MHz, CDCl3) δ 165.1, 77.3, 31.1, 27.8, 27.6, 25.3, 24.8. HRMS (APCI) m/z 

calculated for C9H18NO+ [M+H]+: 156.1383, found: 156.1381. 

Cyclopentanone O-(1-methylcyclopentyl) oxime (3.58l) 

Oxime 3.58l was synthesized following general procedure C starting from 2-((1-

methylcyclopentyl)oxy)isoindoline-1,3-dione (S3.1l) (82 mg, 0.33 mmol) and 

cyclopentanone (89 l, 1 mmol). The crude product was purified by flash 

chromatography affording 3.76l as a yellow oil (47 mg, 77%). 

1H-NMR (400 MHz, CDCl3) δ 2.39 – 2.31 (m, 4H), 1.94 (dddd, J = 13.1, 7.2, 3.1, 1.3 Hz, 2H), 

1.70 (m, 6H), 1.58 (m, 2H), 1.52 – 1.41 (m, 2H), 1.37 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 

165.5, 88.5, 38.1, 31.0, 27.5, 25.2, 25.0, 24.7, 24.5. HRMS (ESI) m/z calculated for C11H20NO+ 

[M+H]+: 182.1544, found: 182.1539. 

Cyclopentanone O-ethyl oxime (3.58e) 

 

Ethoxyamine hydrochloride (585 mg, 6,00 mmol, 3 equiv) and sodium acetate (656 mg, 8,00 

mmol, 4 equiv) were added to a stirred solution of cyclopentanone (177 µl, 2 mmol, 1 equiv) in 

Water (4 mL) and EtOH (2 mL) and the mixture was stirred at 65 ºC for 3h. After cooling to 

room temperature, the aqueous layer was extracted with EtOAc and the extracted organic phase 

dried over Na2SO4 filtered and dried under reduced pressure. The residue was purified by 

column chromatography on silica gel with pentane as eluent to give the pure oxime in 40% 

yield. 

1H-NMR (500 MHz, CDCl3) δ 4.05 (q, J = 7.1 Hz, 1H), 2.43 – 2.24 (m, 2H), 1.81 – 1.65 (m, 

2H), 1.22 (t, J = 7.0 Hz, 1H). 13C-NMR (126 MHz, CDCl3) δ 166.1, 69.0, 31.1, 27.7, 25.2, 24.8, 

14.9. HRMS (ESI) m/z calculated for C7H14NO+ [M+H]+: 128.1070, found: 128.1073. 
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General Procedure D: Iridium(III) catalyzed C(sp3)-H alkynylation of oximes 

 

In a glovebox, a microwave vial was charged with [Cp*IrCl2]2 (7 mol %, 0.014 mmol, 11.2 mg), 

AgSbF6 (30 mol %, 0.06 mol, 20.6 mg), LiOAc (30 mol %, 0.06 mmol, 4 mg), Ag2CO3 (100 

mol%, 0.2 mmol, 55 mg) and filled with DCE (1.5 mL). The vial was sealed with and taken out 

of the glovebox. Substrate (0.2 mmol) and (bromoethynyl)triisopropylsilane (3.28a, 120 mol%, 

2.4 mmol, 63 mg) were then added. The reaction was then stirred at 70 °C outside of the 

glovebox overnight. The reaction mixture was then cooled to room temperature and filtered 

through a pad of Celite, washed with CH2Cl2, and the solvent removed under reduced pressure. 

The crude mixture was purified by column chromatography on silica gel. 

(E)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclohexan-1-one O-methyl oxime (3.54a) 

Alkynylaed oxime 3.54a was synthesized following general procedure D 

starting from (E)-2-methylcyclohexan-1-one O-methyl oxime (28.2 mg, 0.2 

mmol). The crude product was purified by flash chromatography affording 

3.54a as a colorless oil (50 mg, 78%). 

1H-NMR (300 MHz, CDCl3) δ 3.79 (s, 3H), 2.81 (ddd, J = 14.1, 5.6, 3.6 Hz, 1H), 2.73 – 2.59 

(m, 1H), 2.44 – 2.30 (m, 2H), 2.20 – 1.95 (m, 2H), 1.81 – 1.62 (m, 2H), 1.56 – 1.41 (m, 3H), 

1.05 (s, 21H). 13C-NMR (75 MHz, CDCl3) δ 160.3, 107.7, 81.4, 61.2, 41.6, 32.3, 26.2, 24.2, 

24.1, 22.2, 18.8, 11.4. HRMS (ESI) m/z calculated for C19H36NOSi+ [M+H]+: 322.2561, found: 

322.2560. 

(E)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclohexan-1-one O-ethyl oxime (3.54b) 

Alkynylaed oxime 3.54b was synthesized following general procedure D 

starting from (E)-2-methylcyclohexan-1-one O-ethyl oxime (31.0 mg, 0.2 

mmol). The crude product was purified by flash chromatography affording 

3.54b as a colorless oil (55 mg, 72%). 

1H-NMR (300 MHz, CDCl3) δ 4.03 (q, J = 7.0 Hz, 2H), 2.91 – 2.79 (m, 1H), 

2.74 – 2.60 (m, 1H), 2.43 – 2.31 (m, 2H), 2.19 – 1.96 (m, 2H), 1.79 – 1.64 (m, 2H), 1.48 (qt, J 

= 5.4, 1.7 Hz, 3H), 1.22 (t, J = 7.0 Hz, 3H), 1.09 – 1.03 (m, 21H). 13C-NMR (75 MHz, CDCl3) 
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δ 159.9, 108.0, 81.3, 68.9, 41.7, 32.3, 26.1, 24.4, 24.2, 22.2, 18.8, 14.7, 11.4. HRMS (ESI) m/z 

calculated for C20H38NOSi+ [M+H]+: 336.2717, found: 336.2704. 

(E)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclohexan-1-one O-benzyl oxime (3.54c) 

Alkynylaed oxime 3.54c was synthesized following general procedure D 

starting from (E)-2-methylcyclohexan-1-one O-benzyl oxime (31.0 mg, 0.2 

mmol). The crude product was purified by flash chromatography affording 

3.54c as a colorless oil (55 mg, 69%). 

1H-NMR (300 MHz, CDCl3) δ 7.39 – 7.23 (m, 5H), 5.05 (s, 2H), 2.95 (dt, J = 14.0, 4.6 Hz, 

1H), 2.78 – 2.60 (m, 1H), 2.38 (q, J = 3.8 Hz, 2H), 2.25 – 2.10 (m, 1H), 2.02 (ddd, J = 14.7, 9.9, 

4.6 Hz, 1H), 1.70 (t, J = 6.1 Hz, 2H), 1.52 – 1.42 (m, 3H), 1.12 – 0.95 (m, 21H). 13C-NMR (75 

MHz, CDCl3) δ 160.9, 138.5, 128.4, 128.2, 127.7, 107.8, 81.4, 75.5, 41.8, 32.4, 26.2, 24.7, 24.3, 

22.2, 18.8, 11.4. HRMS (ESI) m/z calculated for C25H40NOSi+ [M+H]+: 398.2874, found: 

398.2871. 

(E)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclohex-2-en-1-one O-methyl oxime (3.54d) 

Alkynylated oxime 3.54d was synthesized following general procedure D 

starting from (E)-2- (E)-2-methylcyclohex-2-en-1-one O-methyl oxime (27.8 

mg, 0.2 mmol). The crude product was purified by flash chromatography 

affording 3.54d as a colorless oil (35 mg, 55%). 

1H-NMR (300 MHz, CDCl3) δ 6.53 (tt, J = 4.4, 1.7 Hz, 1H), 3.85 (s, 3H), 3.28 (m, 2H), 2.53 

(m, 2H), 2.20 (m, 2H), 1.70 (m, 2H), 1.10 – 1. 05 (m, 21H). 13C-NMR (126 MHz, CDCl3) δ 

154.4, 133.1, 129.7, 105.9, 83.5, 61.9, 25.2, 23.1, 21.9, 21.3, 18.8, 11.5. HRMS (ESI) m/z 

calculated for C19H34NOSi+ [M+H]+: 320.2404, found: 320.2409. 

(E)-5-(Prop-1-en-2-yl)-2-(3-(triisopropylsilyl)prop-2-yn-1-yl)cyclohexan-1-one O-methyl 

oxime (3.54e) 

Alkynylated oxime 3.54e was synthesized following general procedure D 

starting from(E)-2-methyl-5-(prop-1-en-2-yl)cyclohexan-1-one O-methyl 

oxime (36.3 mg, 0.2 mmol). The crude product was purified by flash 

chromatography affording 3.54e as a colorless oil (30 mg, 42%). 

1H-NMR (300 MHz, CDCl3) δ 4.74 (q, J = 1.4 Hz, 2H), 3.80 (s, 3H), 3.31 

(ddd, J = 13.6, 3.9, 2.1 Hz, 1H), 2.83 – 2.72 (m, 1H), 2.41 – 2.22 (m, 3H), 2.05 (tt, J = 12.1, 3.6 

Hz, 1H), 1.92 (ddd, J = 12.8, 3.4, 2.2 Hz, 1H), 1.74 (t, J = 1.1 Hz, 3H), 1.62 – 1.52 (m, 1H), 

1.46 – 1.24 (m, 2H), 1.06 (d, J = 3.9 Hz, 21H). 13C-NMR (75 MHz, CDCl3) δ 159.2, 148.6, 
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109.5, 108.1, 81.2, 61.4, 45.0, 42.6, 32.4, 30.8, 29.9, 21.7, 20.9, 18.8, 11.4. HRMS (ESI) m/z 

calculated for C22H40NOSi+ [M+H]+: 362.2874, found: 362.2873. αD
589= -23.9 deg.cm2.g–

1(CHCl3, c 0.1, 298 K). 

(E)-5-(Prop-1-en-2-yl)-2-(3-(triisopropylsilyl)prop-2-yn-1-yl)cyclohex-2-en-1-one O-

methyl oxime (3.54f) 

Alkynylated oxime 3.54f was synthesized following general procedure D 

starting from(E)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-one O-methyl 

oxime (35.8 mg, 0.2 mmol). The crude product was purified by flash 

chromatography affording 3.54f as a colorless oil (50 mg, 70%). 

1H-NMR (300 MHz, CDCl3) δ 6.56 – 6.49 (m, 1H), 4.80 – 4.75 (m, 2H), 3.87 (s, 3H), 3.29 (dt, 

J = 3.3, 1.6 Hz, 2H), 3.13 (ddd, J = 16.4, 3.8, 1.7 Hz, 1H), 2.34 (dddd, J = 13.8, 12.6, 6.5, 2.8 

Hz, 2H), 2.13 (dddd, J = 15.4, 12.4, 5.8, 3.0 Hz, 1H), 2.01 (dd, J = 16.4, 12.5 Hz, 1H), 1.75 (t, 

J = 1.1 Hz, 3H), 1.10 – 1.05 (m, 21H). 13C-NMR (75 MHz, CDCl3) δ 154.5, 153.9, 148.0, 132.4, 

129.5, 110.1, 105.8, 83.6, 61.9, 40.3, 30.5, 28.0, 21.7, 20.8, 18.8, 11.5. HRMS (ESI+) m/z 

calculated for C24H36NOSi+ [M+H]+: 382.2561, found: 382.2547. αD
589= -19.6 deg.cm2.g–

1(CHCl3, c 0.1, 298 K). 

(1S,4S,Z)-1,3,3-Trimethylbicyclo[2.2.1]heptan-2-one O-methyl oxime (Z-3.53g) and 

(1S,4S,E)-1,3,3-Trimethylbicyclo[2.2.1]heptan-2-one O-methyl oxime (E-3.53g) 

The title compounds were synthesized according to a reported 

procedure in a separable mixture of isomers (Z:E = 2:1). The 

isomers have been assigned according to the same literature 

precedents222. The two geometrical isomers have been isolated 

and tested separately in the reaction. 

(Z-3.53g): 1H-NMR (400 MHz, CDCl3) δ 3.74 (s, 3H), 1.83 – 1.73 (m, 2H), 1.69 (dq, J = 10.04, 

2.21 Hz, 1H), 1.60 – 1.46 (m, 2H), 1.45 – 1.37 (m, 1H), 1.31 (dd, J = 10.02, 1.52 Hz, 1H), 1.25 

(s, 3H), 1.22 (s, 3H), 1.21 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 172.9, 61.2, 50.1, 48.7, 44.7, 

43.5, 34.6, 25.4, 23.5, 22.7, 17.3. 

(E-3.53g): 1H-NMR (400 MHz, CDCl3) δ 3.70 (s, 3H), 1.83 (tt, J = 4.26, 2.10 Hz, 2H), 1.76 

(dddd, J = 12.15, 9.40, 5.20, 2.85 Hz, 1H), 1.56 (tddd, J = 11.71, 6.68, 5.07, 3.51 Hz, 2H), 1.50 

(s, 3H), 1.46 – 1.36 (m, 1H), 1.13 (s, 3H), 1.11 (s, 4H)*. 13C-NMR (101 MHz, CDCl3) δ 171.1, 

61.3, 52.1, 47.3, 45.3, 45.1, 34.2, 27.2, 25.3, 25.0, 20.2. 

 
222 G. C. Dickmu, I. P. Smoliakova, J. Organomet. Chem. 2014, 772, 42–48. 
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*The methyl signal overlap with the one of a methylene proton. 

(Z)-1,3-Dimethyl-3-(3-(triisopropylsilyl)prop-2-yn-1-yl)bicyclo[2.2.1]heptan-2-one O-

methyl oxime (3.54g) 

Alkynylated oxime 3.54g was synthesized following general procedure D 

starting from (Z)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-one O-methyl oxime 

(36.3 mg, 0.2 mmol). The crude product was purified by flash chromatography 

affording 3.54g as a yellow oil (52 mg, 72%).* 

*(E-3.53g) was recovered in 86% yield when submitted to the reaction conditions. No product 

of alkynylation was detected. 

1H-NMR (400 MHz, CDCl3) δ 3.75 (s, 3H), 2.64 (d, J = 17.4 Hz, 1H), 2.58 (d, J = 17.4 Hz, 

1H), 1.95 (td, J = 12.3, 3.6 Hz, 1H), 1.89 – 1.77 (m, 3H), 1.65 – 1.53 (m, 2H), 1.35 (dddd, J = 

14.3, 11.9, 5.4, 3.2 Hz, 1H), 1.28 (s, 3H), 1.24 (s, 3H), 1.14 – 0.99 (m, 21H). 13C-NMR (101 

MHz, CDCl3) δ 170.4, 106.9, 81.2, 61.3, 52.8, 48.3, 45.1, 40.7, 31.4, 25.4, 23.3, 22.6, 22.3, 

18.8, 11.5. HRMS (ESI) m/z calculated for C22H40NOSi+ [M+H]+: 362.2874, found: 362.2866. 

αD
589= +55.1 deg.cm2.g–1(CHCl3, c 0.1, 298 K). 

The structure of the oxime was confirmed by HMBC correlation. 
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(1E,4E)-2-Methyl-5-(3-(triisopropylsilyl)prop-2-yn-1-yl)cyclohexa-2,5-diene-1,4-dione 

O,O-dimethyl dioxime (3.54h) 

Monoakynylated oxime 3.54h was synthesized following general procedure D 

starting from (1E,4E)-2,5-dimethylcyclohexa-2,5-diene-1,4-dione O,O-

dimethyl dioxime (39 mg, 0.2 mmol). The crude product was purified by flash 

chromatography affording 3.54h as a colorless oil (34 mg, 45%). 

1H-NMR (300 MHz, CDCl3) δ 7.60 (t, J = 1.8 Hz, 1H), 6.94 (q, J = 1.3 Hz, 

1H), 4.01 (s, 3H), 3.99 (s, 3H), 3.52 (d, J = 1.8 Hz, 2H), 2.10 (d, J = 1.4 Hz, 3H), 1.13 – 1.06 

(m, 21H). 13C-NMR (75 MHz, CDCl3) δ 151.2, 149.1, 138.1, 136.1, 116.5, 116.2, 104.2, 84.9, 

62.9, 62.7, 21.7, 18.8, 17.5, 11.5. HRMS (ESI) m/z calculated for C21H35N2O2Si+ [M+H]+: 

382.2561, found: 382.2547. 

(E)-3,3-Dimethyl-6-(triisopropylsilyl)hex-5-yn-2-one O-methyl oxime (3.54i) 

Akynylated oxime 3.54i was synthesized following general procedure D 

starting from (E)-3,3-dimethylbutan-2-one O-methyl oxime (25.8 mg, 0.2 

mmol). The crude product was purified by flash chromatography affording 

3.54h as a colorless oil (55 mg, 89%). 

1H-NMR (300 MHz, CDCl3) δ 3.81 (s, 3H), 2.41 (s, 2H), 1.80 (s, 3H), 1.19 (s, 6H), 1.10 – 1.05 

(m, 21H). 13C-NMR (75 MHz, CDCl3) δ 161.0, 106.2, 82.5, 61.3, 40.4, 31.5, 25.2, 18.8, 11.4, 

10.6. HRMS (APCI) m/z calculated for C18H36NOSi [M+H]+: 310.2561, found: 310.2571. 

(E)-3-Methyl-6-(triisopropylsilyl)hex-5-yn-2-one O-methyl oxime (3.54j) 

Akynylated oxime 3.54j was synthesized following general procedure D 

starting from (E)-3-methylbutan-2-one O-methyl oxime (23 mg, 0.2 mmol). 

The crude product was purified by flash chromatography affording 3.54j as a 

colorless oil (32 mg, 55%). 

1H-NMR (300 MHz, CDCl3) δ 3.81 (d, J = 0.8 Hz, 3H), 2.63 – 2.53 (m, 1H), 2.50 – 2.27 (m, 

2H), 1.79 (d, J = 0.8 Hz, 3H), 1.18 (d, J = 6.9 Hz, 3H), 1.12 – 1.06 (m, 21H). 13C-NMR (75 

MHz, CDCl3) δ 159.5, 106.5, 82.1, 61.3, 39.4, 29.8, 25.1, 18.7, 17.6, 11.4. HRMS (ESI) m/z 

calculated for C17H34NOSi+ [M+H]+: 296.2404, found: 296.2407. 

Ethyl (E)-3-(methoxyimino)-4,4-dimethyl-7-(triisopropylsilyl)hept-6-ynoate (3.54k) 
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Akynylated oxime 3.54k was synthesized following general procedure D 

starting from ethyl (E)-3-(methoxyimino)-4,4-dimethylpentanoate (40 

mg, 0.2 mmol). The crude product was purified by flash chromatography 

affording 3.54k as a colorless oil (48 mg, 63%). 

1H-NMR (400 MHz, CDCl3) δ 4.13 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 3.24 (s, 2H), 2.45 (s, 2H), 

1.28 – 1.14 (m, 9H), 1.10 – 0.95 (m, 22H). 13C-NMR (75 MHz, CDCl3) δ 169.4, 157.8, 105.8, 

82.9, 61.6, 60.9, 40.1, 32.1, 31.4, 24.9, 18.8, 14.2, 11.4. HRMS (ESI) m/z calculated for 

C21H39NNaO3Si+ [M+Na]+: 404.2591, found: 404.2592. 

(E)-2,2-Dimethyl-5-(triisopropylsilyl)pent-4-ynal O-methyl oxime (3.54l) 

Akynylated oxime 3.54l was synthesized following general procedure D 

starting from (E)-pivalaldehyde O-methyl oxime (23 mg, 0.2 mmol). The 

crude product was purified by flash chromatography affording 3.54l as a 

colorless oil (27 mg, 46%). 

1H-NMR (500 MHz, CDCl3) δ 7.36 (s, 1H), 3.80 (s, 3H), 2.35 (s, 2H), 1.19 (s, 6H), 1.17 – 0.98 

(m, 21H). 13C-NMR (126 MHz, CDCl3) δ 156.3, 105.2, 83.1, 61.4, 36.7, 32.1, 25.2, 18.8, 11.4. 

HRMS (APCI) m/z calculated for C17H34NOSi+ [M+H]+: 296.2404, found: 296.2412. 

(E)-6-Methyl-2-(3-(triisopropylsilyl)prop-2-yn-1-yl)hept-5-enal O-methyl oxime (3.54m) 

Alkynylated oxime 3.54m was synthesized following general procedure 

D starting from (E)-2,5-dimethylhex-4-enal O-methyl oxime (31 mg, 

0.2 mmol). The crude product was purified by flash chromatography 

affording 3.54m as a colorless oil (27 mg, 39%). 

1H-NMR (400 MHz, CDCl3) δ 7.22 (d, J = 7.3 Hz, 1H), 5.43 (tq, J = 7.2, 1.5 Hz, 1H), 3.81 (s, 

3H), 2.95 – 2.92 (m, 2H), 2.36 (dt, J = 14.0, 7.2 Hz, 1H), 2.05 (dt, J = 8.8, 7.1 Hz, 2H), 1.67 – 

1.66 (m, 3H), 1.55 (s, 3H), 1.46 – 1.36 (m, 2H), 1.12 – 1.05 (m, 21H). 13C-NMR (101 MHz, 

CDCl3) δ 155.2, 130.7, 125.3, 106.2, 82.7, 61.3, 34.7, 34.0, 30.1, 25.6, 18.8, 18.3, 16.3, 11.5. 

HRMS (APCI) m/z calculated for C21H40NOSi+ [M+H]+: 350.2874, found: 350.2863. 

(3S,3aS,5aS,9bS,E)-8-(Methoxyimino)-3,5a-dimethyl-9-(3-(triisopropylsilyl)prop-2-yn-1-

yl)-3a,4,5,5a,8,9b-hexahydronaphtho[1,2-b]furan-2(3H)-one (3.54n) 

Akynylated oxime 3.54n was synthesized following general procedure D 

starting from (3S,3aS,5aS,9bS,E)-8-(methoxyimino)-3,5a,9-trimethyl-

3a,4,5,5a,8,9b-hexahydronaphtho[1,2-b]furan-2(3H)-one (55 mg, 0.2 

mmol). The crude product was purified by flash chromatography 

affording 3.54n as a white oil (75 mg, 82%).  
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M. p.: 97 -100 ºC. 1H-NMR (400 MHz, CDCl3) δ 6.78 (d, J = 10.2 Hz, 1H), 5.93 (d, J = 10.2 

Hz, 1H), 4.74 (d, J = 11.2 Hz, 1H), 3.91 (s, 3H), 3.78 – 3.62 (m, 2H), 2.32 (dq, J = 12.2, 6.9 Hz, 

1H), 2.02 – 1.92 (m, 1H), 1.90 – 1.79 (m, 1H), 1.74 (ddd, J = 13.1, 3.7, 2.2 Hz, 1H), 1.69 – 1.57 

(m, 1H), 1.47 (td, J = 13.0, 4.4 Hz, 1H), 1.32 – 1.15 (m, 6H), 1.00 – 0.75 (m, 21H). 13C-NMR 

(75 MHz, CDCl3) δ 177.7, 147.4, 144.7, 139.2, 123.3, 113.1, 108.6, 81.9, 78.4, 62.2, 53.2, 41.1, 

41.0, 38.6, 25.7, 23.8, 18.7, 16.9, 12.4, 11.4. HRMS (ESI) m/z calculated for C27H41NNaO3Si+ 

[M+Na]+: 478.2748, found: 478.2751. αD
589= -138.8 deg.cm2.g–1(CHCl3, c 0.1, 298 K). 

Methyl (4aS,6aS,6bR,8aR,9S,12aR,12bR,14bS,E)-10-(methoxyimino)-2,2,6a,6b,9,12a-

hexamethyl-9-(3-(triisopropylsilyl)prop-2-yn-1-yl)-

1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydropicene-4a(2H)-carboxylate 

and Methyl(4aS,6aS,6bR,8aR,9R,12aR,12bR,14bS,E)-10-(methoxyimino)-2,2,6a,6b,9,12a-

hexamethyl-9-(3-(triisopropylsilyl)prop-2-yn-1-yl)1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a, 

12b,13,14b-octadecahydropicene-4a(2H)-carboxylate (3.54o and 3.54o’) 

The two compounds 3.54o and 

3.54o’ were synthesized 

following general procedure D 

starting from methyl 

(4aS,6aS,6bR,8aR,12aR,12bR,14bS,E)-10-(methoxyimino)-2,2,6a,6b,9,9,12a-heptamethyl-

1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydropicene-4a(2H)-carboxylate 

(3.53r) (99 mg, 0.2 mmol). The crude product was purified by flash chromatography and the 

two diasteroisomer could be separated affording overall 74 mg of product (55% yield, d.r. = 

1.7:1). The major diastereoisomer was assigned according to previously reported directed C-H 

functionalization of the oxime derivative of 3.53r.216c,d. 

Methyl (4aS,6aS,6bR,8aR,9S,12aR,12bR,14bS,E)-10-(methoxyimino)-2,2,6a,6b,9,12a-

hexamethyl-9-(3-(triisopropylsilyl)prop-2-yn-1-yl)-

1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydropicene-4a(2H)-carboxylate 

(3.54o) 

White solid. M.p. 217 -219 ºC 1H-NMR (500 MHz, CDCl3) δ 5.30 (t, J = 3.7 Hz, 1H), 3.81 (d, 

J = 1.5 Hz, 3H), 3.63 (d, J = 1.0 Hz, 3H), 2.95 (ddd, J = 17.2, 5.8, 2.4 Hz, 1H), 2.87 (dd, J = 

14.0, 4.6 Hz, 1H), 2.79 (d, J = 16.6 Hz, 1H), 2.35 (d, J = 16.6 Hz, 1H), 2.15 – 2.04 (m, 1H), 

2.02 – 1.89 (m, 3H), 1.78 (dd, J = 11.8, 2.1 Hz, 1H), 1.74 – 1.65 (m, 2H), 1.65 – 1.59 (m, 4H), 
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1.59 – 1.45 (m, 4H), 1.44 – 1.28 (m, 4H), 1.10 (s, 3H), 1.09 – 0.98 (m, 26H), 0.99 – 0.97 (m, 

3H), 0.93 (s, 3H), 0.90 (s, 3H), 0.76 (s, 3H). 13C-NMR (126 MHz, CDCl3) δ 178.4, 162.1, 144.0, 

122.5, 107.8, 81.3, 61.3, 51.7, 50.0, 46.9, 46.7, 46.0, 43.3, 41.9, 41.5, 39.5, 36.7, 34.0, 33.3, 

32.5, 32.3, 31.1, 30.9, 27.8, 25.9, 24.5, 23.8, 23.6, 23.2, 19.3, 18.9, 18.9, 18.7, 17.0, 14.7, 11.5. 

HRMS (ESI) m/z calculated for C43H72NOSi+ [M+H]+: 678.5276, found: 678.5277. αD
589= 

+25.6 deg.cm2.g–1(CHCl3, c 0.3, 298 K). 

Methyl(4aS,6aS,6bR,8aR,9R,12aR,12bR,14bS,E)-10-(methoxyimino)-2,2,6a,6b,9,12a-

hexamethyl-9-(3-(triisopropylsilyl)prop-2-yn-1-yl)1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a, 

12b,13,14b-octadecahydropicene-4a(2H)-carboxylate (3.54o') 

Amorphous solid. 1H-NMR (500 MHz, CDCl3) δ 5.27 (t, J = 3.6 Hz, 1H), 3.81 (s, 3H), 3.62 (s, 

3H), 3.12 (ddd, J = 14.7, 4.4, 2.9 Hz, 1H), 2.85 (dd, J = 13.9, 4.6 Hz, 1H), 2.64 (d, J = 17.0 Hz, 

1H), 2.38 (d, J = 17.0 Hz, 1H), 2.02 – 1.81 (m, 4H), 1.75 – 1.58 (m, 6H), 1.56 – 1.44 (m, 3H), 

1.35 – 1.24 (m, 6H), 1.09 (s, 3H), 1.08 – 0.96 (m, 27H), 0.92 (s, 3H), 0.89 (s, 3H), 0.73 (s, 3H). 

13C-NMR (126 MHz, CDCl3) δ 178.4, 163.0, 144.0, 122.2, 106.0, 82.7, 61.2, 57.8, 51.7, 47.8, 

46.9, 46.0, 43.7, 41.8, 41.4, 39.5, 37.4, 34.0, 33.2, 32.9, 32.5, 30.8, 30.5, 27.8, 26.8, 26.0, 23.8, 

23.6, 23.3, 23.2, 19.4, 18.9, 18.8, 17.5, 16.9, 15.4, 11.5. HRMS (ESI) m/z calculated for 

C43H72NOSi+ [M+H]+: 678.5276, found: 678.5273. αD
589= +30.7 deg.cm2.g–1(CHCl3, c 0.1, 298 

K). 

4S,10S,13R,14R,17R,E)-4,10,13,14-Tetramethyl-17-((R)-6-methylheptan-2-yl)-4-(3-

(triisopropylsilyl)prop-2-yn-1-yl)-1,2,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-3H-

cyclopenta[a]phenanthren-3-one O-methyl oxime and (4R,5R,10S,13R,14R,17R,E)-

4,10,13,14-Tetramethyl-17-((R)-6-methvylheptan-2-yl)-4-(3-(triisopropylsilyl)prop-2-yn-

1-yl)-1,2,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-

one O-methyl oxime (3.54p and 3.54p') 

The two 

compounds 3.54p 

and 3.54p’ were 

synthesized 

following general 

procedure D 

starting from 

(10S,13R,14R,17R,E)-4,4,10,13,14-pentamethyl-17-((R)-6-methylheptan-2-yl)-

1,2,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one O-

methyl oxime (3.53s) (91 mg, 0.2 mmol). The crude product was purified by flash 
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chromatography and the two diasteroisomer could be separated affording overall 80 mg of 

product (63% yield, d.r. = 4:1). The major diastereoisomer was assigned according to previously 

reported directed C-H functionalization of the oxime derivative of 3.53s. 216c,d.. 

(4S,10S,13R,14R,17R,E)-4,10,13,14-Tetramethyl-17-((R)-6-methylheptan-2-yl)-4-(3-

(triisopropylsilyl)prop-2-yn-1-yl)-1,2,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-3H-

cyclopenta[a]phenanthren-3-one O-methyl oxime (3p) 

Amorphous yellow solid. 1H-NMR (400 MHz, CDCl3) δ 3.82 (s, 3H), 3.04 (ddd, J = 16.6, 5.6, 

2.6 Hz, 1H), 2.80 (d, J = 16.6 Hz, 1H), 2.36 (d, J = 16.6 Hz, 1H), 2.13 – 2.07 (m, 4H), 2.04 – 

2.00 (m, 2H), 1.95 – 1.90 (m, 2H), 1.81 (ddd, J = 12.8, 6.1, 2.5 Hz, 1H), 1.71 (d, J = 5.6 Hz, 

1H), 1.54 – 1.47 (m, 3H), 1.35 (m, 2H), 1.26 (m, 5H), 1.11 (m, 2H), 1.06 (m, 5H), 1.03 (m, 

21H), 0.98 (s, 1H), 0.89 – 0.86 (m, 15H), 0.70 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 162.0, 

135.1, 133.5, 107.6, 81.4, 61.2, 50.5, 50.0, 45.9, 44.5, 43.3, 39.5, 36.7, 36.5, 36.5, 34.1, 31.0, 

31.0, 30.4, 29.7, 28.2, 28.0, 26.25, 24.1, 23.8, 22.8, 22.6, 21.0, 19.0, 18.8, 18.7, 18.5, 18.3, 15.9, 

11.4. HRMS (ESI) m/z calculated for C42H73NNaOSi+ [M+Na]+: 658.5354, found: 658.5340 

αD
589= +42.4 deg.cm2.g–1(CHCl3, c 0.15, 298 K). 

(4R,5R,10S,13R,14R,17R,E)-4,10,13,14-Tetramethyl-17-((R)-6-methvylheptan-2-yl)-4-(3-

(triisopropylsilyl)prop-2-yn-1-yl)-1,2,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-3H-

cyclopenta[a]phenanthren-3-one O-methyl oxime (3p') 

Amorphous white solid. 1H-NMR (400 MHz, CDCl3) δ 3.81 (s, 3H), 3.22 – 3.13 (m, 1H), 2.74 

(d, J = 17.0 Hz, 1H), 2.34 (d, J = 17.0 Hz, 1H), 2.07 – 1.96 (m, 4H), 1.94 – 1.88 (m, 2H), 1.82 

(ddd, J = 11.7, 8.0, 3.5 Hz, 2H), 1.70 (q, J = 6.5, 4.9 Hz, 1H), 1.61 – 1.55 (m, 1H), 1.48 – 1.41 

(m, 2H), 1.38 – 1.29 (m, 6H), 1.25 (m, 2H), 1.11 (dd, J = 2.6, 1.4 Hz, 7H), 1.07 – 1.04 (m, 21H), 

1.03 – 0.99 (m, 1H), 0.90 – 0.83 (m, 15H), 0.69 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 162.7, 

134.8, 134.0, 105.7, 82.5, 61.0, 52.8, 50.5, 49.8, 44.4, 43.7, 39.5, 37.2, 36.5, 36.5, 30.9, 30.8, 

28.2, 28.0, 26.4, 26.14, 24.2, 24.1, 22.8, 22.5, 21.0, 19.2, 19.0, 18.7, 18.0, 15.8, 11.3. HRMS 

(ESI) m/z calculated for C42H73NNaOSi+ [M+Na]+: 658.5354, found: 658.5342 αD
589= +1.6 

deg.cm2.g–1(CHCl3, c 0.1, 298 K). 

Cyclohexanone O-(1-(3-(triisopropylsilyl)prop-2-yn-1-yl)cyclohexyl) oxime (3.59c) 

Alkynylated oxime 3.59c was synthesized following general procedure D starting 

from cyclohexanone O-(1-methylcyclohexyl) oxime (40 mg, 0.19 mmol). The 

crude product was purified by flash chromatography affording 3.59c as a pale-

yellow oil (44 mg, 59%). 
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1H-NMR (500 MHz, CDCl3) δ 2.59 (s, 2H), 2.48 (td, J = 5.7, 4.9, 2.2 Hz, 2H), 2.20 – 

2.13 (m, 2H), 1.94 – 1.86 (m, 2H), 1.64 (ddd, J = 13.5, 10.8, 6.3 Hz, 4H), 1.58 (dq, J = 

6.5, 3.9, 3.0 Hz, 5H), 1.52 – 1.43 (m, 4H), 1.25 – 1.15 (m, 1H), 1.10 – 0.95 (m, 21H). 

13C-NMR (126 MHz, CDCl3) δ 159.5, 106.7, 81.7, 79.0, 33.3, 32.6, 30.7, 27.4, 26.2, 

26.2, 25.8, 25.5, 22.0, 18.8, 11.5. HRMS (ESI) m/z calculated for C24H44NOSi+ 

[M+H]+: 390.3187, found: 364.3189. 

Cyclopentanone O-(1-(3-(triisopropylsilyl)prop-2-yn-1-yl)cyclohexyl) oxime (3.59d) 

Alkynylated oxime 3.59d was synthesized following general procedure D 

starting from cyclopentanone O-(1-methylcyclohexyl) oxime (39.1 mg, 0.2 

mmol). The crude product was purified by flash chromatography affording 3.59d 

as a pale yellow oil (67 mg,89%). 

1H-NMR (400 MHz, CDCl3) δ 2.57 (s, 2H), 2.42 (ddd, J = 7.4, 5.1, 2.8 Hz, 2H), 

2.36 – 2.30 (m, 2H), 1.94 – 1.85 (m, 2H), 1.75 – 1.68 (m, 4H), 1.68 – 1.56 (m, 4H), 1.54 – 1.43 

(m, 4H), 1.10 – 1.03 (m, 21H).13C-NMR (126 MHz, CDCl3) δ 165.8, 106.5, 81.7, 79.2, 33.5, 

31.1, 31.0, 27.6, 25.8, 25.4, 24.8, 22.0, 18.8, 11.5. HRMS (ESI) m/z calculated for C23H42NOSi+ 

[M+H]+: 376.3030, found: 376.3044. 

Cyclopentanone O-(4-(triisopropylsilyl)but-3-yn-1-yl) oxime (3.59e) 

Alkynylated oxime 3.59ewas synthesized following general procedure D 

starting from cyclopentanone O-ethyl oxime (25.4 mg, 0.2 mmol). The 

crude product was purified by flash chromatography affording 3.59e as a 

colorless oil (31 mg,50%). 

1H-NMR (400 MHz, CDCl3) δ 4.13 (t, J = 7.1 Hz, 2H), 2.59 (t, J = 7.1 Hz, 2H), 2.45 – 2.31 (m, 

4H), 1.80 – 1.66 (m, 4H), 1.12 – 0.97 (m, 21H). 13C-NMR (101 MHz, CDCl3) δ 167.1, 105.5, 

81.6, 71.8, 31.1, 27.8, 25.3, 24.8, 21.2, 18.7, 11.4. HRMS (ESI) m/z calculated for C18H34NOSi+ 

[M+H]+: 308.2404, found: 308.2403. 

Cyclopentanone O-(5-(triisopropylsilyl)pent-4-yn-2-yl) oxime (3.59f) and cyclopentanone 

O-(1,7-bis(triisopropylsilyl)hepta-1,6-diyn-4-yl) oxime (3.59f’) 
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Alkynylated oxime 3.59f and 3.59f’ were synthesized 

following general procedure D starting from 

cyclopentanone O-isopropyl oxime (25.4 mg, 0.2 

mmol). The two product were separated by flash 

chromatography affording 3.59f as a colorless oil (24 

mg, 44%) and 3.59f’ as a colorless oil (18 mg, 21%). 

Cyclopentanone O-(5-(triisopropylsilyl)pent-4-yn-2-yl) oxime (3.59f) 

1H-NMR (400 MHz, CDCl3) δ 4.35 – 4.21 (m, 1H), 2.64 (dd, J = 16.6, 4.1 Hz, 1H), 2.47 – 2.41 

(dd, J = 16.6, 7.6 Hz, 1H), 2.41 (m, 4H), 1.72 (ddp, J = 5.8, 3.8, 1.9 Hz, 4H), 1.35 (d, J = 6.3 

Hz, 3H), 1.12 – 0.96 (m, 21H). 13C-NMR (101 MHz, CDCl3) δ 166.7, 105.5, 82.0, 76.9, 31.1, 

27.9, 27.1, 25.3, 24.8, 19.0, 18.8, 11.4. HRMS (ESI) m/z calculated for C19H36NOSi+ [M+H]+: 

322.2561, found: 322.2564. 

Cyclopentanone O-(1,7-bis(triisopropylsilyl)hepta-1,6-diyn-4-yl) oxime (3.59f’) 

1H-NMR (400 MHz, CDCl3) δ 4.28 (p, J = 5.7 Hz, 1H), 2.73 (dd, J = 5.8, 1.0 Hz, 4H), 2.46 – 

2.30 (m, 4H), 1.76 – 1.67 (m, 4H), 1.17 – 0.94 (m, 42H). 13C-NMR (101 MHz, CDCl3) δ 167.4, 

104.8, 82.4, 79.0, 31.1, 27.9, 25.3, 24.8, 24.1, 18.8, 18.7, 18.7, 11.4. HRMS (ESI) m/z calculated 

for C30H56NOSi2
+ [M+H]+: 502.3895, found: 502.3896. 

Cyclopentanone O-(6-(triisopropylsilyl)hex-5-yn-3-yl) oxime (3.59g) 

Alkynylated oxime 3.59gwas synthesized following general procedure D 

starting from cyclopentanone O-(sec-butyl) oxime (31 mg, 0.2 mmol). 

The crude product was purified by flash chromatography affording 3.59g 

as a colorless oil (48 mg, 72%). 

1H-NMR (400 MHz, CDCl3) δ 4.06 (tt, J = 7.3, 4.7 Hz, 1H), 2.62 (dd, J = 16.8, 4.4 Hz, 1H), 

2.48 (dd, J = 16.8, 7.2 Hz, 1H), 2.44 – 2.30 (m, 4H), 1.87 – 1.75 (m, 1H), 1.72 (tq, J = 5.6, 2.1 

Hz, 5H), 1.10 – 1.02 (m, 21H). 13C-NMR (101 MHz, CDCl3) δ 166.7, 105.7, 81.9, 81.8, 31.1, 

27.8, 25.8, 25.3, 25.0, 24.8, 18.8, 11.4, 9.9. HRMS (ESI) m/z calculated for C20H38NOSi+ 

[M+H]+: 336.2717, found: 336.2719. 

Cyclopentanone O-(1-(triisopropylsilyl)oct-1-yn-4-yl) oxime (3.59h) 

Alkynylated oxime 3.59hwas synthesized following general procedure 

D starting from cyclopentanone O-hexan-2-yl oxime (37 mg, 0.2 mmol). 

The crude product was purified by flash chromatography affording 

3.59h as a colorless oil (45 mg, 62%). 
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1H-NMR (400 MHz, CDCl3) δ 4.11 (tt, J = 7.5, 4.7 Hz, 1H), 2.62 (dd, J = 16.8, 4.1 Hz, 1H), 

2.47 (dd, J = 16.8, 7.3 Hz, 1H), 2.42 – 2.31 (m, 4H), 1.87 – 1.60 (m, 6H), 1.50 – 1.27 (m, 4H), 

1.15 – 0.94 (m, 21H), 0.90 (t, J = 7.1 Hz, 3H). 13C-NMR (101 MHz, CDCl3) δ 166.7, 105.8, 

82.0, 80.9, 32.6, 31.2, 28.0, 27.9, 25.6, 25.4, 24.9, 23.0, 18.9, 14.2, 11.6. HRMS (ESI) m/z 

calculated for C22H42NOSi+ [M+H]+: 364.3030, found: 364,3031 

Cyclopentanone O-(6-methyl-1-(triisopropylsilyl)hept-1-yn-4-yl) oxime (3.59i) 

Alkynylated oxime 3.59i was synthesized following general procedure 

D starting from cyclopentanone O-(4-methylpentan-2-yl) oxime (37 mg, 

0.2 mmol). The crude product was purified by flash chromatography 

affording 3.59i as a colorless oil (52 mg, 72%). 

1H-NMR (400 MHz, CDCl3) δ 4.19 (tdd, J = 7.4, 5.9, 3.8 Hz, 1H), 2.64 (dd, J = 16.7, 3.8 Hz, 

1H), 2.45 (dd, J = 16.7, 7.6 Hz, 1H), 2.41 – 2.32 (m, 4H), 1.81 (dq, J = 13.4, 6.7 Hz, 1H), 1.76 

– 1.69 (m, 4H), 1.64 – 1.57 (m, 2H), 1.10 – 1.02 (m, 21H), 0.92 (d, J = 6.7 Hz, 6H). 13C-NMR 

(126 MHz, CDCl3) δ 166.6, 105.8, 81.9, 79.2, 41.9, 31.1, 27.9, 26.0, 25.3, 24.9, 24.8, 23.5, 22.6, 

18.8, 11.4. HRMS (ESI) m/z calculated for C22H42NOSi+ [M+H]+: 364.3030, found: 364.3037. 

Cyclopentanone O-(1-cyclobutyl-4-(triisopropylsilyl)but-3-yn-1-yl) oxime (3.59j) 

Alkynylated oxime 3.59j was synthesized following general procedure 

D starting from cyclopentanone O-(1-cyclobutylethyl) oxime (36.3 mg, 

0.2 mmol). The crude product was purified by flash chromatography 

affording 3.59j as a colorless oil (42 mg, 58%). 

1H-NMR (400 MHz, CDCl3) δ 4.06 (td, J = 6.9, 4.4 Hz, 1H), 2.81 – 2.68 

(m, 1H), 2.54 (dd, J = 16.9, 4.4 Hz, 1H), 2.48 – 2.38 (m, 3H), 2.34 (td, J = 7.1, 3.7 Hz, 2H), 

2.04 – 1.96 (m, 2H), 1.95 – 1.82 (m, 3H), 1.82 – 1.75 (m, 1H), 1.72 (ddp, J = 5.7, 3.9, 2.0 Hz, 

4H), 1.09 – 0.98 (m, 21H). 13C-NMR (101 MHz, CDCl3) δ 166.7, 105.7, 83.7, 81.5, 38.2, 31.1, 

27.9, 25.3, 24.9, 24.8, 24.8, 23.4, 18.8, 18.6, 11.5. HRMS (ESI) m/z calculated for C22H40NOSi+ 

[M+H]+: 362.2874, found: 364.2861. 

Cyclopentanone O-(2-methyl-5-(triisopropylsilyl)pent-4-yn-2-yl) oxime (3.59k) and 

cyclopentanone O-(4-methyl-1,7-bis(triisopropylsilyl)hepta-1,6-diyn-4-yl) oxime (3.59k’) 
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Alkynylated oxime 3.59k and 3.59k’ were 

synthesized following general procedure D starting 

from cyclopentanone O-(tert-butyl) oxime (31 mg, 

0.2 mmol). The crude product was purified by flash 

chromatography affording 3.59k and 3.59k’ as a 

inseparable mixture (monoalk : bisalk = 3:1) (56 mg, 

73%). 

Cyclopentanone O-(2-methyl-5-(triisopropylsilyl)pent-4-yn-2-yl) oxime (3.59k)  

1H-NMR (300 MHz, CDCl3) δ 2.55 (s, 2H), 2.42 – 2.29* (m, 4H), 1.70* (tdd, J = 7.6, 3.6, 2.1 

Hz, 4H), 1.36 (s, 6H), 1.09 – 1.02* (m, 21H). 13C-NMR (101 MHz, CDCl3) δ 166.4, 106.5, 

82.1, 78.9, 32.0, 31.1, 29.7, 27.7, 25.5, 25.3, 24.8, 18.8, 11.5. HRMS (ESI) m/z calculated for 

C20H38NOSi+ [M+H]+: 336.2717, found: 336.2716. 

Cyclopentanone O-(4-methyl-1,7-bis(triisopropylsilyl)hepta-1,6-diyn-4-yl) oxime (3.59k’) 

1H-NMR (300 MHz, CDCl3) δ 2.75 (d, J = 16.7 Hz, 2H), 2.64 (d, J = 16.7 Hz, 2H), 2.42 – 2.28* 

(m, 4H), 1.70* (tdd, J = 7.6, 3.6, 2.1 Hz, 4H), 1.44 (d, J = 3.6 Hz, 3H), 1.10 – 1.02* (m, 42H). 

13C-NMR (101 MHz, CDCl3) δ 165.8, 105.6, 81.7, 80.1, 32.0, 31.1, 29.7, 27.7, 25.5, 25.3, 24.8, 

18.8, 11.5. HRMS (ESI) m/z calculated for C31H58NOSi2
+ [M+H]+: 516.4051, found: 516.4050. 

Cyclopentanone O-(1-(3-(triisopropylsilyl)prop-2-yn-1-yl)cyclopentyl) oxime (3.59l) 

Alkynylated oxime 3.59d was synthesized following general procedure D 

starting from cyclopentanone O-(1-methylcyclopentyl) oxime (36.3 mg, 0.2 

mmol). The crude product was purified by flash chromatography affording 3.59d 

as a pale-yellow oil (58 mg,80%). 

1H-NMR (500 MHz, CDCl3) δ 2.71 (s, 2H), 2.40 – 2.30 (m, 4H), 1.97 – 1.89 (m, 

2H), 1.88 – 1.79 (m, 2H), 1.76 – 1.66 (m, 6H), 1.65 – 1.57 (m, 2H), 1.09 – 1.00 (m, 21H). 13C-

NMR (126 MHz, CDCl3) δ 166.4, 106.9, 90.1, 80.9, 35.9, 31.2, 29.4, 27.8, 25.3, 25.1, 24.8, 

18.8, 11.5. HRMS (ESI) m/z calculated for C22H40NOSi+ [M+H]+: 362.2874, found: 362.2871. 

Cyclopentanone O-(1-((1R,3S,5r,7r)-adamantan-2-yl)-4-(triisopropylsilyl)but-3-yn-1-yl) 

oxime (3.59m) 
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Alkynylated oxime 3.59m was synthesized following general procedure D 

starting from cyclopentanone O-(1-((3r,5r,7r)-adamantan-1-yl)ethyl) oxime 

(52.3 mg, 0.2 mmol). The crude product was purified by flash chromatography 

affording 3.59m as a yellow oil (68 mg, 77%). 

1H-NMR (500 MHz, CDCl3) δ 3.75 (t, J = 5.9 Hz, 1H), 2.57 (dd, J = 17.2, 5.9 

Hz, 1H), 2.51 (dd, J = 17.2, 6.1 Hz, 1H), 2.47 – 2.38 (m, 2H), 2.33 (tt, J = 6.3, 

2.3 Hz, 2H), 1.96 (p, J = 3.1 Hz, 3H), 1.71 (m, 10H), 1.64 (m, 6H), 1.16 – 0.92 (m, 21H). 13C-

NMR (126 MHz, CDCl3) δ 165.2, 107.4, 88.7, 81.3, 38.9, 37.4, 37.4, 31.0, 28.5, 27.9, 25.4, 

24.8, 20.4, 18.8, 11.5. HRMS (ESI) m/z calculated for C28H48NOSi+ [M+H]+: 442.3500, found: 

442.3503. 

Cyclopentanone O-(1-phenyl-5-(triisopropylsilyl)pent-4-yn-2-yl) oxime (3.59n) 

Alkynylated oxime 3.59n was synthesized following general procedure 

D starting from cyclopentanone O-(1-phenylpropan-2-yl) oxime (43.5 

mg, 0.2 mmol). The crude product was purified by flash chromatography 

affording 3.59n as a yellow oil (51 mg, 64%). 

1H-NMR (500 MHz, CDCl3) δ 7.26 (h, J = 2.7 Hz, 4H), 7.23 – 

7.17 (m, 1H), 4.34 (tdd, J = 7.1, 5.57, 4.1 Hz, 1H), 3.11 (dd, J = 13.8, 5.6 Hz, 1H), 3.01 

(dd, J = 13.8, 6.9 Hz, 1H), 2.58 (dd, J = 16.8, 4.1 Hz, 1H), 2.48 (dd, J = 16.8, 7.3 Hz, 

1H), 2.44 – 2.29 (m, 4H), 1.72 (ddp, J = 5.9, 3.8, 1.9 Hz, 4H), 1.14 – 1.03 (m, 21H). 

13C-NMR (126 MHz, CDCl3) δ 167.1, 138.5, 129.9, 128.3, 126.3, 105.4, 82.6, 81.3, 

38.8, 31.1, 28.1, 25.3, 24.8, 24.7, 18.8, 11.5. HRMS (ESI) m/z calculated for 

C25H40NOSi+ [M+H]+: 398.2874, found: 398.2874. 

Cyclopentanone O-(1-methoxy-5-(triisopropylsilyl)pent-4-yn-2-yl) oxime (3.59o) 

Alkynylated oxime 3.59o was synthesized following general procedure 

D starting from cyclopentanone O-(1-methoxypropan-2-yl) oxime (34.2 

mg, 0.2 mmol). The crude product was purified by flash chromatography 

affording 3.59o as a yellow oil (36 mg, 51%). 

1H-NMR (500 MHz, CDCl3) δ 4.35 – 4.28 (m, 1H), 3.68 – 3.65 (m, 2H), 3.39 (s, 3H), 2.63 (dd, 

J = 16.8, 4.9 Hz, 1H), 2.57 (dd, J = 16.8, 7.4 Hz, 1H), 2.45 – 2.40 (m, 2H), 2.37 – 2.32 (m, 2H), 

1.71 (m, 4H), 1.09 – 0.99 (m, 21H). 13C-NMR (126 MHz, CDCl3) δ 167.4, 104.9, 82.1, 79.9, 

72.8, 59.5, 31.1, 28.0, 25.3, 24.8, 22.5, 18.7, 11.4. HRMS (ESI) m/z calculated for 

C20H38NO2Si+ [M+H]+: 352.2666, found: 352.2661. 
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Cyclopentanone O-(8-methyl-1-(triisopropylsilyl)non-7-en-1-yn-4-yl) oxime (3.59p). 

Alkynylated oxime 3.59p was synthesized following general procedure 

D starting from cyclopentanone O-(6-methylhept-5-en-2-yl) oxime (42 

mg, 0.2 mmol). The crude product was purified by flash 

chromatography affording 3.59p as a yellow oil (25 mg, 32%). In 

addition, the starting oxime 3.58p was recovered (18 mg, 43%). 

1H-NMR (500 MHz, CDCl3) δ 5.13 (tdq, J = 7.2, 2.9, 1.4 Hz, 1H), 4.11 (tt, J = 7.6, 4.3 Hz, 1H), 

2.64 (dd, J = 16.8, 4.1 Hz, 1H), 2.48 (dd, J = 16.8, 7.5 Hz, 1H), 2.43 – 2.37 (m, 2H), 2.34 (m, 

2H), 2.09 (q, J = 7.3, 6.8 Hz, 2H), 1.84 – 1.69 (m, 7H), 1.67 (d, J = 1.3 Hz, 3H), 1.59 (d, J = 1.3 

Hz, 3H), 1.10 – 1.00 (m, 23H). 13C-NMR (126 MHz, CDCl3) δ 166.6, 131.9, 124.3, 105.7, 81.9, 

80.2, 32.9, 31.1, 27.9, 25.8, 25.5, 25.3, 24.8, 24.1, 18.8, 17.7, 11.4. HRMS (ESI) m/z calculated 

for C24H44NOSi+ [M+H]+: 390.3187, found: 390.3187. 

Deprotection of TIPS-protecting group 

 

 

TIPS-protected alkyne 3.54f or 3.54d (0.2 mmol, 1 equiv) was dissolved in dry THF under argon 

and TBAF (1.0M in THF, 1.1 equiv) was added dropwise at room temperature. The reaction 

mixture was stirred for 1 h and then quenched with NaHCO3, diluted with Et2O and the two 

phases separated. The organic phase was washed two times with water and once with brine, 

dried over Na2SO4 and concentrated and reduced pressure. The crude was then purified by flash 

chromatography on silica gel to yield the terminal alkyne 3.60 or 3.61. 

(E)-5-(Prop-1-en-2-yl)-2-(prop-2-yn-1-yl)cyclohex-2-en-1-one O-methyl oxime (3.60) 

Alkyne 3.60 was synthesized starting from 3.54f following the procedure 

above. The product was obtained as a pale-yellow oil in 85% yield. 

1H-NMR (300 MHz, CDCl3) δ 6.48 (ddq, J = 4.6, 3.2, 1.6 Hz, 1H), 4.81 – 4.73 

(m, 2H), 3.88 (s, 3H), 3.21 (tt, J = 3.0, 1.5 Hz, 2H), 3.13 (ddd, J = 16.5, 3.9, 1.6 
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Hz, 1H), 2.41 – 2.28 (m, 2H), 2.13 (dt, J = 7.9, 2.9 Hz, 1H), 2.08 – 1.95 (m, 1H), 1.75 (d, J = 

1.2 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ 154.4, 147.8, 132.6, 129.0, 110.2, 81.8, 71.1, 62.0, 

40.2, 30.4, 27.9, 20.8, 20.2. HRMS (ESI) m/z calculated for C13H18NO+ [M+H]+: 204.1383, 

found: 204.1381. αD
589=-27.7 deg.cm2.g–1(CHCl3, c 0.1, 298 K). 

Cyclopentanone O-(1-(prop-2-yn-1-yl)cyclohexyl) oxime (3.61) 

Alkyne 3.61 was synthesized starting from 3.58d following the procedure above. The 

product was obtained as a colorles oil (42 mg, 95%).  

 1H-NMR (500 MHz, CDCl3) δ 2.52 (d, J = 2.7 Hz, 2H), 2.48 – 2.41 (m, 2H), 2.34 

(tdd, J = 5.9, 2.3, 1.1 Hz, 2H), 1.95 (t, J = 2.7 Hz, 1H), 1.94 – 1.87 (m, 2H), 1.78 – 

1.67 (m, 4H), 1.61 – 1.51 (m, 4H), 1.47 (m, 3H), 1.23 (dddd, J = 12.1, 10.6, 8.4, 4.4 Hz, 1H). 

13C-NMR (126 MHz, CDCl3) δ 166.4, 82.1, 78.8, 69.8, 33.5, 31.1, 29.3, 27.7, 25.7, 25.3, 24.8, 

21.9. HRMS (ESI+) m/z calculated for C14H22NO+ [M+H]+: 220.1696, found: 220.1688. 

Cleavage of the oxime direct group 

2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclohexan-1-one (3.62) 

 (E)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclohexan-1-one O-methyl oxime 

(3.54a) (32 mg, 0.1 mmol) was dissolved in THF (1 mL) and a 35% aqueous 

formaldehyde solution (1 mL) and a 10% aqueous HCl solution (0.5 mL) were 

then added. The mixture was stirred at 50 °C for 5h, and the mixture was diluted 

with ethyl acetate and neutralized with NaHCO3 aq. The organic layer was dried 

over MgSO4. Evaporation of the solvent and purification by column chromatography on silica 

gel yielded 9a as a corlorless oil in 81% yield. 

1H-NMR (500 MHz, CDCl3) δ 2.69 (dd, J = 17.3, 3.9 Hz, 1H), 2.53 – 2.37 (m, 3H), 2.35 – 2.21 

(m, 2H), 2.15 – 2.03 (m, 1H), 1.93 (dtt, J = 11.3, 3.1, 1.6 Hz, 1H), 1.75 – 1.60 (m, 2H), 1.50 – 

1.38 (m, 1H), 1.08 – 0.98 (m, 21H). 13C-NMR (126 MHz, CDCl3) δ 211.0, 107.0, 81.8, 50.1, 

42.0, 33.3, 27.9, 25.2, 20.4, 18.8, 11.4. HRMS (ESI) m/z calculated for C18H32NaOSi+ [M+H]+: 

315.2115, found: 315.2118. 

4-(Triisopropylsilyl)but-3-yn-1-ol (3.63a) 

Cyclopentanone O-(4-(triisopropylsilyl)but-3-yn-1-yl) oxime (3.59g) (31 

mg, 0.1 mmol) was dissolved in dry diethyl ether. LiAlH4 (190 mg, 5 equiv) 

was added and the reaction mixture was stirred for 48h at room temperature. 

The reaction was then quenched with water, the two phases separated, and the aqueous phase 

UNIVERSITAT ROVIRA I VIRGILI 
Transition Metal-Catalyzed Reactions of Heteroatom- Substituted Alkynes 
Margherita Zanini 



 

274 

 

was extracted two other times with Et2O, dried over MgSO4 and purified by flash 

chromatography to yield 3.63a in 89% yield. 

1H-NMR (500 MHz, CDCl3) δ 3.72 (q, J = 6.0 Hz, 2H), 2.54 (t, J = 6.2 Hz, 2H), 1.79 (t, J = 6.6 

Hz, 1H), 1.15 – 0.99 (m, 21H). 13C-NMR (126 MHz, CDCl3) δ 105.1, 83.2, 61.3, 24.5, 18.7, 

11.3. HRMS (ESI) m/z calculated for C13H27OSi+ [M+H]+: 227.1826, found: 227.1825. 

Adamantan-2-yl)-4-(triisopropylsilyl)but-3-yn-1-ol (3.63b) 

Sodium cyanoborohydride (9,43 mg, 0,150 mmol) was added to a solution of 

cyclopentanone 3.59m (22,09 mg, 0,050 mmol) in Acetic Acid (250 µl). The 

suspension was stirred at 50 °C overnight and then cooled down to room 

temperature. The mixture was filtered through a plug of Celite with K2CO3 

on top. The volatiles were evaporated, and the crude mixture was purified by flash 

chromatography to yield compound 3.63b as a colorless oil (14 mg, 78%). 

1H-NMR (500 MHz, CDCl3) δ 3.25 (dt, J = 9.6, 3.1 Hz, 1H), 2.49 (dd, J = 16.7, 3.4 Hz, 1H), 

2.37 (dd, J = 16.7, 9.6 Hz, 1H), 2.13 (d, J = 3.15 Hz, 1H), 1.99 (p, J = 3.2 Hz, 3H), 1.71 (dq, J 

= 9.9, 2.51 Hz, 3H), 1.69 – 1.60 (m, 6H), 1.53 (dq, J = 12.0, 2.5 Hz, 3H), 1.11 – 1.01 (m, 21H). 

13C-NMR (126 MHz, CDCl3) δ 106.5, 83.7, 77.6, 38.2, 37.3, 36.5, 28.5, 23.0, 18.8, 11.5, 11.4. 

HRMS (APCI) m/z calculated for C23H41OSi+ [M+H]+: 361.2921, found: 361.2924. 

1-Phenyl-5-(triisopropylsilyl)pent-4-yn-2-ol (3.63c) 

The alkynylated alcohol 3.63c was obtained following the same procedure as 

for 3.63b starting from 3.59n (20 mg, 0.05 mmol). The crude product was 

purified by flash chromatography affording 3.63c as a colorless oil (12.5 mg, 

79%). 

1H-NMR (400 MHz, CDCl3) δ 7.35 – 7.29 (m, 2H), 7.27 – 7.22 (m, 3H), 3.98 (dq, J = 7.4, 5.7 

Hz, 1H), 2.96 (dd, J = 13.5, 5.6 Hz, 1H), 2.85 (dd, J = 13.5, 7.3 Hz, 1H), 2.54 – 2.48 (m, 1H), 

2.47 – 2.41 (m, 1H), 1.13 – 1.02 (m, 21H). 13C-NMR (101 MHz, CDCl3) δ 138.1, 129.6, 128.7, 

126.7, 104.6, 84.2, 71.2, 42.6, 28.2, 18.8, 11.4. HRMS (ESI) m/z calculated for C20H32NaOSi+ 

[M+Na]+: 339.2115, found:339.2131. 

1-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclohexan-1-ol (3.63d) 

Sodium cyanoborohydride (9,43 mg, 0,150 mmol) was added to a solution of 

cyclopentanone O-(1-(3-(triisopropylsilyl)prop-2-yn-1-yl)cyclohexyl) oxime 

(3.59n) (18,78 mg, 0,050 mmol) in Acetic Acid (250 µl). The suspension was 

stirred at 23 °C overnight and then zinc powder (32,7 mg, 0,500 mmol) was added 
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together with Water (50,0 µl) and THF (50,0 µl). The mixture was then stirred at 70 ºC for 2 h. 

After that time, the reaction was cooled down to room temperature and filtered through a plug 

of Celite with K2CO3 and MgSO4 on top. The volatiles were evaporated, and the crude mixture 

was purified by flash chromatography to yield compound 3.63d as colorless oil (11 mg, 76%). 

1H-NMR (500 MHz, CDCl3) δ 2.42 (s, 2H), 1.85 (bs, 1H, -OH), 1.64 (m, 4H), 1.58 – 1.51 (m, 

2H), 1.51 – 1.44 (m, 2H), 1.31 – 1.21 (m, 2H), 1.10 – 1.00 (m, 21H). 13C-NMR (126 MHz, 

CDCl3) δ 104.8, 84.3, 70.6, 37.0, 25.8, 22.4, 18.8, 11.4. HRMS (APCI) m/z calculated for 

C18H35OSi+ [M+H]+: 295.2452, found: 295.2451. 

N-Cyclopentyl-O-(6-(triisopropylsilyl)hex-5-yn-3-yl)hydroxylamine (3.64) 

Sodium cyanoborohydride (9,43 mg, 0,150 mmol) was added to a solution of 

cyclopentanone O-(6-(triisopropylsilyl)hex-5-yn-3-yl) oxime (3.59g) (16,78 mg, 

0,050 mmol) in Acetic Acid (250 µl). The suspension was stirred at 23 °C 

overnight. The mixture was filtered through a plug of Celite with K2CO3 on top 

and the volatiles evaporated. The crude mixture was purified by flash 

chromatography to yield compound 3.64 as a colorless oil (14 mg, 83%).  

1H-NMR (500 MHz, CDCl3) δ 3.61 (td, J = 6.9, 3.5 Hz, 1H), 3.51 (tt, J = 6.9, 5.0 Hz, 1H), 2.60 

(dd, J = 16.8, 4.5 Hz, 1H), 2.45 (dd, J = 16.8, 7.0 Hz, 1H), 1.80 – 1.69 (m, 3H), 1.69 – 1.61 (m, 

2H), 1.62 – 1.48 (m, 3H), 1.44 (m, 2H), 1.11 – 0.98 (m, 21H), 0.95 (t, J = 7.4 Hz, 3H). 13C-

NMR (126 MHz, CDCl3) δ 106.0, 82.5, 81.9, 62.0, 30.6, 30.5, 25.6, 24.5, 24.4, 24.3, 18.8, 18.7, 

11.5, 10.1. HRMS (ESI) m/z calculated for C20H40NOSi+ [M+H]+: 338.2874, found:338.2869. 

6-(Triisopropylsilyl)hex-5-yn-3-ol (3.63e) 

Zinc powder (19,36 mg, 0,296 mmol) was added to a solution of N-cyclopentyl-

O-(6-(triisopropylsilyl)hex-5-yn-3-yl)hydroxylamine (3.64) (10 mg, 0,030 mmol) 

in Acetic Acid (118 µl),water (39,5 µl) and THF (39,5 µl). The mixture was then 

stirred at 70 ºC for 2 h. After that time the reaction was cooled down to room 

temperature and filtered through a plug of Celite with K2CO3 and MgSO4 on top. The volatiles 

were evaporated, and the crude mixture was purified by flash chromatography to yield 

compound 3.63e as a colorless oil (5.5 mg, 73%). 

1H-NMR (500 MHz, CDCl3) δ 3.68 (tt, J = 6.8, 5.2 Hz, 1H), 2.51 (dd, J = 16.8, 4.8 Hz, 1H), 

2.39 (dd, J = 16.8, 6.7 Hz, 1H), 1.88 (brs, 1H, -OH), 1.64 – 1.54 (m, 2H), 1.10 – 1.01 (m, 21H), 

0.97 (t, J = 7.5 Hz, 3H). 13C-NMR (126 MHz, CDCl3) δ 104.9, 83.7, 71.5, 29.2, 28.6, 18.8, 

11.4, 10.1. HRMS (APCI) m/z calculated for C15H31OSi+ [M+H]+: 255.2139, found: 255.2140. 
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General Conclusions 

This Doctoral Thesis discusses the study of the reactivity of heteroatom-substituted alkynes in 

presence of different transition metals. The main conclusions for this work are the following. 

In the study of the gold(I) catalyzed reactions of bromoalkynes with alkenes we discovered that 

1-bromo-cyclopropyl gold(I) carbenes rearrange into gold(I) vinylidenes and 

vinylidenephenonium gold(I) cations passing through a cyclic bromonium intermediate 

(Scheme 1). Gold(I) vinylidenes can undergo hydroarylation or C-H insertion, while 

vinylidenephenonium gold(I) cations easily undergo 1,2-aryl shift forming a triple bond. After 

our pioneering mechanistic work, which is summarized in this PhD Thesis, new transformations 

that involve the formation of vinylidenephenonium gold(I) cations as intermediates have been 

uncovered by other authors.80,81,87 

 

Scheme 1. Evolution of the cyclopropyl gold(I) carbene into vinylidenephenonium gold(I) cation or 

gold(I)-vinylidene and their reactivity. 

We have discovered that phenoxycyclobutenes and cyclobutanones can be accessed via gold(I)-

catalyzed [2+2] cycloaddition of ynol ethers with alkenes (Scheme 2). This reaction corresponds 

to the formal [2+2] cycloaddition of the parent ketene or a monosubstituted ketene to an alkene. 

Additionally, internal ynol ethers can undergo (4+2) cycloaddition with electron rich alkenes. 

Computational studies revealed that the (η2-alkyne)gold(I) complex with ynol ethers is highly 

distorted and resemble a metalated ketene 
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Scheme 2. intermolecular gold(I)-catalyzed reaction of ynol ethers. 

Finally, we have developed the iridium(III)-catalyzed -alkynylation of primary C(sp3)-H bonds 

in oximes (Scheme 3). The reaction can take place both on the O-side or the N-side of the oxime 

and after directing group removal the -alkynylated ketone or alcohol are obtained.  

 

Scheme 3. Ir(III)-catalyzed -alkynylation of aliphatic oximes. 
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