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Abstract
In this thesis, we focus on the so-called spectrum management’s joint problem: efficient al-
location of primary and secondary channels in channel bonding wireless local area networks
(WLANs). From IEEE 802.11n to more recent standards like 802.11ax and 802.11be, bonding
channels together is permitted to increase transmissions’ bandwidth. While such an increase
favors the potential network capacity and the activation of higher transmission rates, it comes
at the price of reduced power per Hertz and accentuated issues on contention and interference
with neighboring nodes. So, if WLANs were per se complex deployments, they are becom-
ing even more complicated due to the increasing node density and the new technical features
required by novel highly bandwidth-demanding applications. This dissertation provides an in-
depth study of channel allocation and channel bonding in WLANs and discusses the suitability
of solutions ranging from heuristic-based to reinforcement learning (RL)-based.

To characterize channel bonding in saturated WLANs, we first propose an analytical model
based on continuous-time Markov networks (CTMNs). This model relies on a novel, purpose-
designed algorithm that generates CTMNs from spatially distributed scenarios, where nodes
are not required to be within the carrier sense range of each other. We identify the key factors
affecting the throughput and fairness of different channel bonding policies and expose critical
interrelations among nodes in the spatial domain. By extending the analytical model to support
unsaturated regimes, we highlight the benefits of allocating channels as wide as possible all
together with adaptive policies to cope with unfair situations.

Apart from the analytical model, this thesis relies on simulations to generalize channel
bonding in dense scenarios while avoiding costly, sometimes unfeasible, experimental testbeds.
Unfortunately, existing wireless network simulators tend to be too simplistic or too computa-
tional demanding. That is why we develop the Komondor wireless network simulator, with the
essential advantage over other well-known simulators lying in its high event processing rate.

We then deviate from analytical models and simulations and tackle real measurements
through the Wi-Fi All-Channel Analyzer (WACA), the first system specifically designed to
simultaneously measure the energy in all the 24 bondable Wi-Fi channels at the 5 GHz band.
With WACA, we perform a first-of-its-kind spectrum measurement in areas including urban
hotspots, residential neighborhoods, universities, and even a football match in Futbol Club
Barcelona’s Camp Nou stadium. Our experimental findings reveal the underpinning factors
controlling throughput gain, from which we highlight the inter-channel correlation.

As for solution proposals, we first cover heuristic-based approaches to find satisfactory
configurations quickly. In this regard, we propose dynamic-wise (DyWi), a lightweight, de-
centralized, online primary channel selection algorithm for dynamic channel bonding. DyWi
improves the expected WLAN throughput by considering not only the occupancy of the target
primary channel but also the activity in the secondary channels. Even when assuming signif-
icant delays due to primary channel switching, simulations reveal important throughput and
delay improvements.

Finally, we identify machine learning (ML) approaches applicable to the spectrum manage-
ment problem in WLANs and justify why model-free RL suits it the most. In particular, we put
the focus on the adequate performance of stateless variations of RL and anticipate multi-armed
bandits as the right solution since i) we need fast adaptability to suit user experience in dy-
namic Wi-Fi scenarios and ii) the number of multichannel configurations a network can adopt
is limited; thus, agents can fully explore the action space in a reasonable time.
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Resum

En aquesta tesi ens centrem en el problema conjunt de la gestió de l’espectre: assignació de
canals primaris i secundaris a xarxes d’àrea local sense fils (WLAN) amb channel bonding. Des
de l’estàndard IEEE 802.11n fins a estàndards més recents com el 802.11ac, el 802.11ax i el
802.11be, s’han anat proposant amplades de banda més grans per permetre agrupar canals, aug-
mentant aixı́ l’amplada de banda total per transmissió. Tot i que aquest augment en l’amplada
de banda afavoreix la capacitat potencial de les xarxes, suportant aixı́ els requeriments de les
noves aplicacions Wi-Fi, també redueix la potència per Hertz i accentua els problemes de con-
tenció i interferència entre nodes veı̈ns. En resum, si les xarxes WLANs ja eren complexes per
se, s’estan tornant encara més complexes a causa de l’augment de la densitat de nodes i de les
noves prestacions incloses als darrers estàndards.

Primer proposem un model analı́tic basat en xarxes Markov en temps continu (CTMN)
per caracteritzar channel bonding en WLANs saturades. Aquest model es basa en un nou
algorisme que genera CTMNs a partir d’escenaris distribuı̈ts espaialment, on no és necessari
que els nodes estiguin dins del rang de contenció de la resta. Identifiquem els factors claus
que afecten el rendiment i l’equitat de les diferents polı́tiques de channel bonding i mostrem
l’existència d’interrelacions crı́tiques entre nodes en forma de reacció en cadena. D’això se’n
desprèn que no hi ha una polı́tica channel bonding òptima única per a cada escenari. En ampliar
el model analı́tic per donar suport a règims no saturats, destaquem els avantatges d’assignar els
canals tan amplis com sigui possible a les WLAN i implementar polı́tiques d’accés adaptatiu
per fer front a les situacions que poden aparèixer tant en termes de rendiment com d’equitat.

A part dels models analı́tics, aquesta tesi es basa en simulacions per generalitzar esce-
naris evitant costosos bancs de proves experimentals, de vegades inviables. Malauradament,
els simuladors de xarxes sense fils existents solen ser massa simplistes o molt costosos com-
putacionalment. És per això que desenvolupem el simulador de xarxes sense fils Komondor,
concebut com una eina de codi obert accessible (llesta per utilitzar) per a la investigació de
xarxes sense fils. L’avantatge essencial de Komondor respecte d’altres simuladors sense fils
coneguts rau en la seva elevada velocitat de processament d’esdeveniments.

A continuació ens desviem de models analı́tics i simulacions i abordem mesures reals a
través del Wi-Fi All-Channel Analyzer (WACA), el primer sistema que mesura simultàniament
l’energia de tots els 24 canals que permeten channel bonding a la banda Wi-Fi dels 5 GHz.
Amb WACA, realitzem un estudi únic de localitzacions que inclouen nuclis urbans, barris res-
idencials, universitats i fins i tot un partit a al Camp Nou, un estadi ple amb 98.000 aficionats i
12.000 connexions Wi-Fi simultànies. Les dades experimentals revelen els factors fonamentals
que controlen el guany de rendiment, a partir dels quals ressaltem la correlació entre canals.
També mostrem la importància del conjunt de dades recopilades per trobar nous factors claus,
que d’una altra manera no seria possible, atès que els models d’ocupació de canals simples
subestimen els guanys potencials.

Pel que fa a solucions, primer discutim propostes basades en heurı́stiques per trobar con-
figuracions satisfactòries ràpidament. En aquest sentit, proposem dinàmicament (DyWi), un
algorisme de selecció de canal primari en lı́nia, descentralitzat i eficient per xarxes channel
bonding. DyWi millora el rendiment esperat tenint en compte no només l’ocupació del canal
primari objectiu, sinó també l’activitat dels canals secundaris. Fins i tot quan suposem retards
significatius a causa del canvi de canal primari, observem millores importants en termes de
rendiment i retard.

viii



“main” — 2020/11/19 — 10:04 — page ix — #9

Finalment, identifiquem els enfocaments d’aprenentatge automàtic (o machine learning)
aplicables al problema de la gestió de l’espectre a les WLAN i justifiquem per què l’aprenentatge
del tipus reinforcement learning (RL) és el més adient. En particular, ens centrem en el
rendiment adequat de les variacions d’RL sense estats i proposem multi-armed bandits com
la solució adequada, ja que i) necessitem una adaptabilitat ràpida per millorar l’experiència
d’usuari en escenaris Wi-Fi dinàmics i ii) el nombre de configuracions multicanal que una
xarxa pot adoptar és limitat; per tant, els agents poden explorar completament l’espai d’acció
en un temps raonable.

ix
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Chapter 1

INTRODUCTION

Wireless local area networks (WLANs), with IEEE 802.11 as the most widely used standard,
are a cost-efficient solution for wireless Internet access that can satisfy most of the current com-
munication requirements in domestic, public, and business scenarios. Modern applications like
augmented reality, virtual reality, or real-time 8K video are pushing next-generation WLANs to
support ever-increasing performance demands along with 5G systems and beyond. Wi-Fi relies
on basic service sets (BSS’s)1 composed of an access point (AP) and one or multiple stations
(STAs). The AP provides access to the Internet to the STAs in downlink and uplink manner.
This simple and flexible architecture has been a success since the first commercial deployments
of Wi-Fi back in 1999.

Wi-Fi2 works primarily with the carrier sense multiple access with collision avoidance
(CSMA/CA) method,3 where nodes attempt to avoid collisions by initiating transmissions only
after the channel is sensed idle during a random backoff time. This listen-before-talk scheme
is critical to ensure fairness in the industrial, scientific, and medical (ISM) bands, license-
free bands that everyone can use. So, before transmitting in a given channel, a Wi-Fi device
must wait to sense that channel free during a time indicated by the backoff counter. Once
the backoff expires, frame transmissions can be initiated. Since the introduction of channel
bonding in the IEEE 802.11n [4] amendment, multichannel transmissions were also permit-
ted to support larger bandwidths and reach higher capacities. Current and future amendments
like 802.11ac/ax [5, 7] and 802.11be [6], respectively, extend channel bonding capabilities to
support higher bandwidths and more channel combinations.

CSMA/CA is Wi-Fi’s cornerstone and has been performing extraordinarily well for single
and multichannel transmissions in previous years, when channels were vacated most of the
time, so one could typically transmit without significant delays nor losses due to interference.
However, the random nature of CSMA/CA altogether with the scarce shared frequency spec-
trum at the ISM bands and the emergence of new Wi-Fi features mandates adequate spectrum
management to handle today’s and future’s Wi-Fi complexity.

Indeed, the number of hungry-bandwidth devices accessing the Internet through WLAN
APs such as laptops, smart-phones, tablets, and wearables is increasing drastically at the same

1Some works in the literature use the term WLAN to refer to a BSS. However, it is more formal to separate
such concepts as we do in this dissertation.

2The terms WLAN and Wi-Fi are often used interchangeably, as in this thesis. Nonetheless, a WLAN can be
built on various wireless technologies, including Wi-Fi (i.e., the IEEE 802.11 standards).

3New IEEE 802.11 amendments like 802.11ax introduce other medium access methods based on scheduling.
However, CSMA/CA is still the most common access method due to its simplicity.
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time that users’ performance requirements do. The cause of such increasing demand is accentu-
ated by the explosion of new high-definition, tactile-like, and real-time interacting multimedia
applications. In short, more devices per area lead to more contention, and better performance
requirements lead to a major use of bandwidth. Further, the non-coordinated Wi-Fi nature,
where any user can instantly deploy a new BSS on its own, hinders the problem even more.
Figure 1.1 shows how the hot-spot (or AP) density evolution has remarkably risen in the past
few years.

(a) Density map in 2012. (b) Density map in 2020.

Figure 1.1: Wireless hot-spots density map: approximated location of APs in (a) in 2012, and
(b) in 2020. [Source: www.wigle.net]

In dense WLANs scenarios like home apartments or sports stadiums – where there may
be 1 user/m2 and multiple neighboring BSS’s – providing users with such high performance
is even a more arduous task. When Wi-Fi nodes are close to each other, they often overlap if
they share any channel during simultaneous transmissions. This increases packet losses as a
consequence of the co-channel and adjacent channel interference. Therefore, efficient resource
allocation is necessary to relieve the performance degradation caused by overlapping networks
and the problems arising from it (i.e., hidden and exposed nodes, among others).

As for the spectrum management, a new paradigm is required to overcome the challenges
arising from the heterogeneous and highly dynamic next-generation WLANs, where channel
bonding BSS’s may have demanding and varying traffic load needs. That is, apart from widen-
ing the Wi-Fi bands to support more channels, it is becoming critical to raise the spectrum
efficiency of the current channelization. In this regard, as we show later in this dissertation
through on-the-field measurements, there is still plenty of room for increasing efficiency.

1.1 Spectrum management in uncoordinated Wi-Fi networks

This thesis focuses on the spectrum management problem in uncoordinated channel bonding
WLANs. That is, distributively assigning chunks of the band to channel bonding BSS’s. Chan-
nel allocation determines the set of basic channels – ofB = 20 MHz width in the 5 GHz band –
a BSS may use, composed of the primary and secondary channels. It is especially convenient to
appropriately allocate the primary channel in order to avoid contention with neighboring nodes.
When channel access is gained, the final combination of channels to transmit depends on the

2
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channel allocation, the channel bonding policy, and the frequency spectrum status. In partic-
ular, channel allocation is configuration-dependent, and channel bonding acts on a per-frame
basis according to the sensed spectrum activity.

Channel bonding is a key mechanism for increasing Wi-Fi data rates as the maximum data
rate increases in proportion to the total channel bandwidth. The Shannon-Hartley theorem for n
channels of bandwidth B establishes that the information-theoretic capacity of a link is defined
(in bits per second) as

C = nB log2

(
1 +

S/n

N

)
, (1.1)

where S/N is the signal-to-noise-ratio (SNR) that would be perceived at the receiver when the
transmitters use single-channel (n = 1). So, in regimes where the SNR is kept sufficiently
high, leading to a constant modulation and coding scheme (MCS) regardless of the bandwidth,
the capacity grows linearly with the number of channels. However, the theoretical capacity is
sub-linear with the bandwidth (or the number of channels) as expressed by the term S/n

N
in the

logarithm of (1.1). The reason lies in the fact that for a given transmit power, the power per
unit-Hertz halves when doubling the bandwidth, thus reducing the SNR and potential MCS as
a consequence.

Notice that channel bonding is practical only in the 5 GHz band rather than in the 2.4 GHz:
while the former has 25 non-overlapping channels, the latter only provides 3. Figure 1.2 and
Figure 1.3 show Wi-Fi’s 2.4 and 5 GHz channelization, respectively.
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Figure 1.2: Channelization within the 2.4 GHz band (image retrieved from [8]).
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Figure 1.3: Channelization within the 5 GHz band (-A region).

In brief, WLAN spectrum management entails channel allocation and channel bond-
ing. The main objective of spectrum allocation is to avoid interference between poten-
tially overlapping nodes, and the main objective of channel bonding is to maximize the
network capacity.

3
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Unfortunately, it is unavoidable per definition to transmit in higher bandwidths while reduc-
ing the interference with neighboring nodes: the objectives are in principle in contradiction.
However, the trade-off between lowering interference and maximizing capacity has aspects
that we can leverage. For instance, BSS’s are not always saturated, which means that two over-
lapping BSS’s may share a channel and support moderate traffic loads. At the same time, as
mandated by (1.1), by increasing the bandwidth, we reduce the power per unit-Hertz, reducing
the absolute interference per channel as well, which may ultimately favor the contention of
large bandwidth transmissions.

Implementing efficient spectrum allocation and channel bonding is not straightforward be-
cause WLANs often operate in permanent transitory systems with varying traffic loads. Hence,
performance estimations computed through optimization models are not accurate enough. Due
to such a lack of certainty and required flexibility, a new paradigm seems necessary to endure
spectrum management in Wi-Fi networks. In this context, there is a trend in the literature to-
wards the use of artificial intelligence and machine learning (ML) for addressing the challenges
raised by next-generation high-density WLANs.

1.2 Contributions
In light of spectrum management’s importance to present and future WLANs, in this thesis, we
characterize channel allocation and channel bonding and study different approaches to tackle
them, including the use of responsive solutions aided with heuristics and reinforcement learn-
ing. We categorize the contributions of this thesis into conceptual and methodological/tools:

• Conceptual:

C1. First, we conduct an in-depth study of how channel bonding policies perform in
saturated and unsaturated WLANs. Among the gathered findings, we observe that
while being greedy with dynamic channel bonding – transmitting over the maxi-
mum possible bandwidth – usually raises the individual throughput; there are sce-
narios where more conservative policies reach both higher individual throughput
and fairness. It follows that different policies per BSS may be required to maxi-
mize the system’s metric of interest (e.g., throughput, delay, or fairness). We also
find that it is more convenient in terms of individual delay to use conservative ap-
proaches under low traffic loads because of the chain-reactions resulting in a re-
duced contention.

C2. Next, we analyze channel bonding policies’ feasibility through on-the-field mea-
surements of the Wi-Fi 5 GHz spectrum at different locations of interest. Our exper-
imental findings reveal the underpinning factors controlling throughput gain, from
which we highlight the inter-channel correlation. Also, the Camp Nou stadium’s
measurement campaign reveals that, even under extremely high average load, short
durations of lower load can be exploited to yield significant throughput gains.

C3. Then, we discuss heuristic-based spectrum management solutions and propose a
lightweight, decentralized, online primary channel selection algorithm for dynamic
channel bonding. Dynamic-Wise (DyWi) improves the expected WLAN through-
put by considering the occupancy of the target primary channel and the activity of
the secondary channels.

4
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C4. Lastly, we envision the need for machine learning to cope with the spectrum man-
agement problem in high-density and dynamic settings. We justify the suitability
of a stateless variation of reinforcement learning (RL) through multi-armed ban-
dits (MABs) suits the task of adapting fast in uncoordinated deployments. Results
from extensive experiments show the responsiveness of MABs in front of other RL
approaches.

• Methodological/tools:

M1. First, we design an analytical model based on continuous-time Markov networks
(CTMNs) to capture the behavior of spatially-distributed WLANs implementing
channel bonding policies under saturated and unsaturated regimes. This is the first
CTMN model to capture partial overlaps in channel bonding WLANs. Part of con-
tribution C1 is derived from analyses through this model.

M2. Second, we develop Komondor, a wireless network simulator for assessing the
novel IEEE 802.11 features in high-density WLAN deployments. Komondor pro-
vides reliable simulations with much lower execution times than other well-known
simulators such as ns-3. Findings on high-density deployments in contribution C1
are gathered through Komondor. Besides, our wireless network simulator is also
used for contributions C3 and C4.

M3. Finally, we design and build WACA, a novel spectrum analyzer covering all the
Wi-Fi’s 5 GHz band. We use it to gather a unique dataset covering multiple places
of interest, including a sold-out game in the Camp Nou stadium. The key novelty
of WACA is its ability to measure all the basic channels simultaneously. Through a
trace-driven framework, we discover novel insights into channel bonding otherwise
not possible to get. These insights compose contribution C2.

To make our research results more accessible to the community, all the work made in this
thesis has been disclosed in open access. To that purpose, we have made publicly available all
the resources developed to undertake our research, including results, code, and datasets. The
tools used to enable open access are GitHub and Zenodo. We provide links to such sources
through the chapters of this dissertation.

1.3 Document structure
This thesis is a compendium of articles resulting from the characterization and benchmarking
of channel bonding and channel allocation in Wi-Fi deployments. We refer to the thesis pub-
lications attached at the end of this document (§8) as paper #1 to paper #6. Apart from the
the list of publications, a monograph is provided to introduce the research topic and emphasize
the main findings. This document is structured as follows. Chapter §2 introduces the problem
of spectrum management in Wi-Fi networks. In Chapter §3, we depict the three main enabler
tools of this thesis. Next, in Chapter §4 we employ the presented enablers to assess spectrum
management performance in a plethora of scenarios. The use of heuristics to cope with the
problem at issue is discussed in Chapter §5. Then, Chapter §6 treats the convenience of state-
less reinforcement learning and benchmarks different solutions. Finally, Chapter §7 concludes
with the summary and future work.
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Chapter 2

SPECTRUM MANAGEMENT IN IEEE
802.11 WLANS

In this chapter, we briefly depict the Wi-Fi CSMA/CA operation and the features related to
the spectrum management in IEEE 802.11 WLANs. Spectrum management techniques can be
mainly divided in spectrum allocation (or channel allocation) and channel bonding.

2.1 Channel allocation
The WLAN spectrum covers different frequency bands inside the ISM bands. The most sig-
nificant are the 2.4 GHz (802.11b/g/n/ax) [4] and 5 GHz (802.11a/h/j/n/ac/ax) [5] bands, but
there are other bands like 3.65 GHz (802.11y) or 60 GHz (802.11ad/ay). Future amendments
like the 802.11be [6] will also use the 6 GHz band. In the 2.4 GHz band, there are 14 channels
of 22 MHz, from which just 3 of them (channels 1, 6, and 11) do not overlap. Instead, in the 5
GHz band, there are 25 non-overlapping basic channels of 20 MHz, from which 24 are bond-
able, as shown in Figure 1.3. Nonetheless, different limitations exist depending on the country.
For instance, in 2007, the Federal Communications Commission (FCC) began requiring that
devices operating in the United States on basic channels 52 to 144 must employ dynamic fre-
quency selection (DFS)1 and transmission power control capabilities to avoid interference with
weather-radar and military applications [1].

As with any wireless communication technology, Wi-Fi nodes use electromagnetism to
communicate through the channels mentioned above. What channels to use in a given transmis-
sion depend on two factors: the channel allocation and the channel bonding policy. Channel
allocation (CA), also known as spectrum allocation, channel assignment, or channel selection,
refers to the process of allocating the potential transmission channels of a BSS or a group of
BSS’s. Such allocation contemplates (mandatorily) the primary channel and (optionally) one or
multiple secondary channels. Naturally, proper channel allocation planning should contribute
to reducing interference while assigning sufficient bandwidth to each BSS.

Channel allocation (or spectrum allocation) refers to assigning the primary and sec-
ondary channels to one or multiple BSS’s.

1DFS is the process by which the AP must detect the signature of existing government weather radar and other
priority radio systems and vacate the channel accordingly during the time specified by the corresponding regulator.
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For the sake of clarity, let us define below the concepts related to spectrum management we
use throughout this dissertation:

• Basic channel: the Wi-Fi 5-GHz frequency spectrum is split into basic channels of width
B = 20 MHz.

• Primary channel: the primary channel pw of a BSS w is a basic channel with different
roles depending on the node status. It is used to sense the medium’s occupancy i) for
decrementing the backoff when the primary channel is found free, and ii) for selecting
the transmission channel once the backoff expires. The primary channel must be the
same in all the nodes (AP and STAs) in the BSS.

• Channelization: the channelization C is the set of possible combinations of basic chan-
nels to transmit. Depending on the channelization C, different restrictions may be taken
into consideration when transmitting. For instance, only channel combinations whose
number of basic channels is a power of two are considered for contiguous channel bond-
ing in the 802.11ac/ax standard (see Figure 1.3). In particular, any 160 MHz sub-band
(composed of 8 basic channels) is channelized as follows by the 802.11ac/ax standards,

C = {{1}, {2}, ..., {8}, {1, 2}, {3, 4}, {5, 6}, {7, 8}, {1, 2, 3, 4}, {5, 6, 7, 8}, {1, ..., 8}}.

So, for instance, bonding basic channels {3, 4} and {5, 6, 7, 8} is allowed, whereas bond-
ing basic channels {4, 5} and {4, 5, 6, 7} is not permitted.

• Channel allocation: a channel allocation Cw ∈ C consists of a contiguous set of basic
channels containing the primary channel, i.e., pw ∈ Cw. The rest of the channels in Cw
are called secondary channels. The channel allocation Cw limits the possible channels to
use for transmitting, C tx.

• Channel bonding policy: the channel bonding policy D establishes the set of rules for
selecting those channels in Cw found free at the backoff termination.

• Transmission channel: when the backoff of a transmitter in BSS w expires, it first
detects the basic channels found free in Cw. Then, it selects the range of basic channels
to transmit C tx ⊆ Cw according to the channel bonding policy D.

Channel allocation in the literature

Traditional channel allocation relied on a fixed assignment of channels to each BSS. However,
with the appearance of dynamic channel allocation (DCA), channel selection tried to adapt
to the environment in different ways by monitoring the available channels for the BSS’s and
tracking the changing conditions. DCA usually develops a cost metric that is used to evaluate
various channel plan options. The cost metric is often associated with RSSI values comprised
of interference, noise, user sensitivity thresholds, and load (if enabled). Changing the channel
of an AP is potentially disruptive, and care must be taken to evaluate apparent improvements.
This is where next-generation DCA excels.

Several DCA approaches can be found in the wireless communications literature tackling
specific goals. While some approaches aim to provide fairness [89], some others try to grant
more resources to nodes with higher traffic demands [127]. A survey on CA is provided in [46].

8
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Figure 2.1: Coordinated DCA system. BSS’s A and B suffer from co-channel interference,
reduced by switching A’s channel from #1 to #3.

Technique Description Ref.

Graph coloring By assuming that APs are vertices and non-overlapping channels
are colors, graph coloring is applied to minimize adjacent inter-
ference.

[39, 64]
[94, 110]

[111, 121]

ILP Integer Linear Programming (ILP) is used to place APs and as-
sign channels by considering load balancing.

[85]

Priority-map A floor plan is divided into pixels, which are assigned different
priorities. Then, both CA and AP placement is solved according
to built priorities.

[127]

Patching algorithm An algorithm for joint AP placement and channel assignment is
proposed to maximize throughput and maintain fairness through a
time-efficient local searching heuristic called patching algorithm.

[89]

Coverage-oriented Linear programming is used to optimize CA and AP placement
via two objective functions.

[55]

Conflict-free coloring Channel assignment and load balancing based on a conflict set
coloring formulation that explicitly captures interference effects
at clients and intrinsically exposes opportunities for better chan-
nel re-use.

[96]

Local coordination Both APs and clients need to measure the interference sensed in
all the frequency channels in order to derive an optimal solution
for CA.

[44]

Table 2.1: Coordinated approaches for channel allocation

Many of the reviewed techniques imply a central node that makes the channel assignment,
which is infeasible for uncoordinated networks such as in residential scenarios. In contrast, de-
centralized or uncoordinated mechanisms allow DCA based only on local information. How-
ever, many of them require inter-AP communication entailing non-negligible overheads and
may lead to counterproductive solutions.

Coordinated approaches allow to effectively provide optimal (or close-to-optimal) solutions
to the channel allocation problem since complete knowledge and control on the network is
granted. Moreover, in [23], it is shown that coordinated approaches allow to significantly
improve a network’s performance, even with the existence of independent devices that operate
with random channel selection. Table 2.1 collects some representative solution proposals for
coordinated CA.
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Technique Description Ref.
Least congested chan-
nel search

APs listen to all the channels and select the one with the lowest
sensed interference. Other parameters, such as traffic information,
are also considered.

[9]

MinMax Based on the assumption that heavily loaded APs degrade the net-
work performance, MinMax aims to minimize the maximum effec-
tive channel utilization of those devices.

[86, 138]
[137]

Weighted coloring Uses the sensed interference and the number of overlapping devices
to minimize an objective function.

[95]

Pick-rand & pick-first Based on the sensed interference, a new channel is chosen randomly
or according to a ranking list (also based on the power sensed).

[12, 60]
[13]

Channel hopping With MAXchop, APs first obtain the hopping sequences of other
interfering APs, and then compute the hopping sequence that max-
imizes their throughput.

[97]

Table 2.2: Uncoordinated approaches for channel allocation

Many limitations arise in the real world regarding coordinated approaches. First, overlap-
ping BSS’s are usually independent, so they cannot be managed by a central entity. Besides, the
required underlying communication adds a higher degree of complexity, which solutions may
lead to obtaining counter-productive overhead. Table 2.2 collects some representative works
on uncoordinated approaches for CA.

2.2 Channel bonding
Channel bonding (CB) is the technique whereby nodes are allowed to use a set of idle basic
channels for transmitting in larger bandwidths, thus potentially achieving higher throughput.2

In Wi-Fi, while the basic channel width remains 20 MHz, the maximum bonded channel width
has increased from 40 MHz in 802.11n [4] to 160 MHz in 802.11ac/ax [5, 7], and 320 MHz in
802.11be [6]. During this time, the standard has evolved to not only support wider bandwidths,
but also to enable more sophisticated channel bonding policies: in 802.11n, only static channel
bonding was allowed in which a fixed group of pre-configured basic channels must always be
bonded. Today, the standard enables a far richer set of capabilities including dynamic selection
of channel width as well as bonding both contiguous and non-contiguous channels through
preamble puncturing.

Channel bonding refers to selecting, on a per-frame basis, the basic channels to bond
(or aggregate) within the channel allocation.

CSMA/CA operation in channel bonding WLANs

How does channel bonding work? According to the CSMA/CA operation, when a transmitter
node belonging to BSSw has a data packet ready for transmission, it measures the power sensed

2In this dissertation, we refer to channel bonding as any technique that combines multiple basic channels in
the transmission bandwidth. However, in the literature, channel bonding is sometimes referred exclusively to
contiguous channels, whereas channel aggregation also comprises non-contiguous channels.

10
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in primary channel pw. Once the primary channel has been detected free, i.e., the power sensed
at pw is smaller than the clear channel assessment (CCA) threshold, the node starts the backoff
procedure by selecting a random initial value of BO ∈ [0,CW− 1] time slots of duration Tslot.
The contention window is defined as CW = 2qCWmin, where q ∈ {0, 1, 2, ...,m} is the backoff
stage with maximum value m, and CWmin is the minimum contention window. When a frame
transmission fails, q is increased by one unit, and reset to 0 when the frame is acknowledged.

After computing BO, the node starts decreasing the backoff counter while sensing the pri-
mary channel. Whenever the power sensed at pw is higher than its CCA, the backoff is paused
and set to the nearest higher time slot until pw is detected free again, at which point the count-
down is resumed. When the backoff counter reaches zero, the node selects the transmission
channel C tx based on the set of basic channels found free and on the channel bonding policyD.

The selected transmission channel C tx is normally kept throughout the whole frame ex-
changes between the transmitter and receiver involved in the transmission of a data frame,
which may aggregate multiple data packets. Namely, a request to send (RTS) – used for notify-
ing the selected transmission channel – a clear to send (CTS), and an acknowledgment (ACK)
or block ACK frame are also transmitted in C tx. Any other node that receives an RTS in its pri-
mary channel with enough power to be decoded will enter in network allocation vector (NAV)
state, used for deferring channel access and avoiding packet collisions. Notice that with the
introduction of the adaptive RTS/CTS mechanism for dynamic bandwidth in the 802.11ac [5],
the receiver can modify the original transmission channel of the RTS if it detects any secondary
channel in C tx busy. If so, the transmission bandwidth is reduced, and the receiver responds
with a CTS packet in a subset of C tx.
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Figure 2.2: CSMA/CA temporal evolution of a node operating under (a) single-channel, (b)
static channel bonding, (c) dynamic channel bonding, and (d) stochastic channel bonding, re-
spectively, in an IEEE 802.11ax channelization scheme. While legacy packets (RTS, CTS,
and ACK) duration is the same no matter the bandwidth, the data duration is reduced when
transmitted in higher bandwidths.
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Channel bonding policies

When the backoff terminates, the transmitter in w must identify the secondary channels free
within its channel allocation Cw.3 Then, its channel bonding policyD determines the transmis-
sion channel C tx ⊆ Cw. We propose a generalization of contiguous channel bonding policies
restricted to the 802.11ac/ax channelization,4 which select the transmission channel as follows:

• Only-primary (OP) or single-channel: pick just the primary channel pw for transmit-
ting. It is the traditional channel access where no bonding is performed.

• Static channel bonding (SCB): exclusively pick all the channels in Cw when found
free. If any channel c ∈ Cw is found busy, the transmission is aborted, and a new backoff
counter is generated. This was the first type of bonding introduced in the 802.11n [4]
amendment.

• Dynamic channel bonding (DCB) or always-max (AM): pick the widest possible chan-
nel found free in Cw for transmitting including pw and fulfilling channelization C.

• Stochastic channel bonding: pick different subsets in Cw permitted by C at random
according to a certain distribution. In this thesis, we study probabilistic uniform (PU)
[26], which assigns the same probability to all the permitted channel ranges found idle at
the backoff termination.

For the sake of illustration, let us consider the example shown in Figure 2.2 showing the
evolution of a node implementing different CB policies. In this example, a node can transmit
in the set of basic channels Cw = {1(p), 2, 3, 4}, where pw = 1 is the primary channel. While
OP picks just the primary channel, the rest of the policies try to bond channels differently. In
this regard, SCB is highly inefficient in scenarios with partial interference. In fact, no packets
can be transmitted with SCB in this example since the basic channel {3} ∈ Cw is busy during
the PIFS duration previous to the backoff terminations. However, more flexible approaches
like AM and PU can transmit more than one frame in the same period. On the one hand, AM
adapts in an aggressive (or greedy) way to the channel state. Specifically, it is able to transmit
in 40 and 80 MHz channels at the end of the first and second backoff, respectively. On the
other hand, the stochastic nature of PU makes it more conservative than AM. In the example,
the node could transmit in 1 or 2 basic channels with the same probability (1/2) at the end of
the first backoff. Likewise, after the second backoff, a channel composed of 1, 2, or 4 basic
channels could be selected with probability (1/3).

Channel bonding poses several challenges [19, 40]. For instance, while RSSI provides
information about signal quality and usually corresponds to the distance between transmitter
and receiver, authors in [54] show that throughput is not always monotonic with RSSI. Besides,
governmental regulations mandate that devices transmit below a maximum transmission power.
Therefore, by doubling the channel bandwidth, the SNR is effectively decreased by 3dB, and
thus, the transmission rate may decrease, whereas reception errors tend to increase [105]. Fur-
ther, it is possible that increasing the bond size reduces the overall throughput of the network

3The 802.11ac/ax amendments mandate that secondary channels must be idle during at least a PIFS duration
before the backoff terminates in order to use them for transmitting.

4While non-contiguous channel bonding is defined in the 802.11ax [3] in the form of preamble puncturing, it
is yet not present in commercial devices. We study channelization-unrestricted policies in §4.3.

12



“main” — 2020/11/19 — 10:04 — page 13 — #35

due to the fact that the bond may cause harmful co-channel and adjacent channel interference.
As for energy efficiency, any increase in channel bandwidth implies that more power will be
required to transmit if the coverage range is kept. Besides, extra power is wasted when nodes
exchange control messages for multichannel sensing and operation.

Literature on channel bonding

Throughput gains of channel bonding have been demonstrated previously in testbeds. In partic-
ular, IEEE 802.11n static channel bonding has been shown to be affected not only by link signal
quality, but also by the power and rates of neighboring links [52]. Likewise, intelligent channel
bonding management was shown to benefit from identifying the signal strength of neighboring
links and interference patterns [54]. High bandwidths were shown to be vulnerable to increased
thermal noise or the power per Hertz reduction [18,19]. Finally, an experimental study of IEEE
802.11ac channel bonding (both static and dynamic) showed that unplanned primary channel
selection and bandwidth allocation may severely degrade the throughput of links operating at
wider channels [141].

Type Description Ref.

Survey Complete survey of CB schemes for wireless networks. [40]
Survey of bandwidth aggregation solutions in heterogeneous wireless networks. [108]

Research

Discusses the impact of CB as well as the effects of both co-channel and adjacent
channel interference on network performance.

[52]

MAC protection mechanism to combat the hidden node problem on non-primary
channels.

[59]

Overviews 802.11 channel bonding. Simulation results show that DCB outper-
forms SCB MHz scheme when the secondary channels are occupied with moder-
ate traffic loads.

[104]

Provides a network detector that identifies interference conditions for predicting
the impact on performance and make CB decisions accordingly.

[54]

Assesses the suitability of CB for enhancing the performance of short-range
WLANs, which are highly susceptible to external interference.

[33]

Analyzes the interactions between groups of neighboring WLANs that use CB
and evaluates the impact of those interactions.

[32]

An analytical framework showing that CB is generally beneficial, though the ex-
tent of the benefits depend on features like the packet size and the total number
of channels available for bonding.

[72]

Analyzes via CTMN models the performance of channel bonding/aggregation
strategies when primary channels are not time slotted and the time scale of pri-
mary activities is at the same level as the secondary users.

[71]

The system model of NC-OFDM transmission for non-contiguous CB is pre-
sented and the system performance is studied by simulation. Results show that
non-contiguous CB achieves better symbol error rate performance and results in
slightly higher peak to average power ratio compared with contiguous CB.

[123]

Table 2.3: Representative works on channel bonding.

Simulation studies and analytical models have also been employed to study channel bond-
ing, e.g., early simulation studies demonstrated throughput gains of channel bonding compared
to single-channel transmission [59, 104]. Likewise, analytical models have been proposed to
study channel bonding, especially through Markov chains [31, 33, 56, 78, 135]. For instance,
high-density deployments are evaluated in [31], showing exposure to unfairness in groups of

13
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overlapping BSS’s. Analytical models for unsaturated traffic have been also proposed [78].
Table 2.3 collects some relevant works on channel bonding.

The joint problem of spectrum management

The joint problem of spectrum management refers to dealing with channel allocation and chan-
nel bonding at the same time. That is, selecting the primary and secondary channels to boost
the performance of channel bonding policies.

The joint problem of spectrum management refers to performing channel allocation
in channel bonding WLANs to raise performance.

As discussed before, there are many valuable works in the literature dealing with channel al-
location and channel bonding in wireless networks. However, only a few of them treat the joint
problem altogether in the context of WLANs. We cover heuristic-based and ML approaches
for the joint spectrum management problem in chapter §5 in chapter §6, respectively.

Chapter summary
This chapter described channel allocation and channel bonding and reviewed relevant works
on the matter. We have seen that channel allocation is for assigning the primary and secondary
channels, and channel bonding for selecting the transmission bandwidth on a per-frame basis.
We also discussed the challenges posed by these techniques and proposed a generalization of
channel bonding policies to be later studied. Next, we depict the enablers and tools we have
used for getting the main results of this dissertation.

14
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Chapter 3

METHODOLOGY AND ENABLERS

This chapter presents the methodology and the different enablers we used throughout the thesis,
including the modeling of channel bonding WLANs through CTMNs, the Komondor wireless
network simulator, and the WACA spectrum analyzer.

3.1 Modeling spectrum management through continuous time
Markov networks

We introduce below our model for channel bonding WLANs based on CTMNs. The thesis
papers of reference are #1 [26] and #2 [28].

3.1.1 CTMNs for channel bonding in spatially-distributed WLANs

A Markov chain or Markov network is a stochastic process that satisfies the Markov property,
meaning a process that depends only on the present state to make predictions of future states,
not on the sequence of events that preceded it. This Markov assumption allows for a significant
reduction in the number of parameters when studying stochastic processes. Markov chains are
used to compute the probabilities of events occurring by viewing them as states transitioning
into other states or transitioning into the same state as before. A continuous-time Markov chain
(CTMC) or network (CTMN) is a Markov chain in which, for each state, the process will
change the state according to an exponential random variable and then move to a different state
as specified by the transition probabilities.

The analysis of CSMA/CA networks through CTMN models for saturated WLANs was
firstly introduced in [38]. Such modelling approach was later applied to IEEE 802.11 networks
in [30, 32, 33, 35, 56, 73, 78], among others. Experimental results in [88, 103] demonstrate that
CTMN models, while idealized, provide remarkably accurate throughput estimates for current
IEEE 802.11 systems. A comprehensible example-based tutorial of CTMN models applied to
different wireless networking scenarios can be found in [34]. Nevertheless, to the best of our
knowledge, the works that model channel bonding through CTMNs study standard channel
bonding policies or assume fully overlapping scenarios. Therefore, there is an essential lack
of insights on more general Wi-Fi scenarios, where such conditions usually do not hold, and
interdependencies among nodes have a critical impact on their performance.

15
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In this section, we depict our extended version of the algorithm introduced in [56] for gen-
erating the CTMNs corresponding to spatially distributed WLAN scenarios implementing any
channel bonding policy. The corresponding thesis paper is #1 [26]. Notice that the CTMN
model considers additive interference, which results from the combination of different simul-
taneous interfering transmissions. With this extension, as fully overlapping networks are no
longer required for constructing the corresponding CTMNs, we can make more factual obser-
vations from spatially distributed deployments.

Implications of the use of CTMNs to model WLAN dynamics

It is worth pointing out some assumptions made by the CTMN model. First, only downlink traf-
fic is assumed, and the interference produced in the uplink (i.e., CTS and ACK control packets)
is not considered. Second, modeling WLAN scenarios with CTMNs requires the backoff and
transmission times to be exponentially distributed. It follows that, because of the negligible
propagation delay, the probability of packet collisions between two or more nodes within the
carrier sense range of the others is zero. The reason is that two BSS’s will never end their
backoff at the same time, and therefore they will never start a transmission at the same time
either. Also, it is shown that the state probabilities are insensitive to the backoff and trans-
mission time distributions [88, 114]. However, even though the authors in [56] prove that the
insensitivity property does not hold for channel bonding networks, the sensitivity to the backoff
and transmission time distributions is minimal. Therefore, the analytical results obtained using
the exponential assumption offer a good approximation for deterministic distributions of the
backoff, data rate, and packet length. Despite all those are unrealistic assumptions, the model
is particularly useful to depict inter-BSS interactions.

A crucial disadvantage of the CTMN model is its computational cost when characterizing
crowded deployments. Indeed, modeling dense scenarios becomes intractable since the number
of feasible states increases in a combinatorial manner with the number of BSS’s and basic
channels. However, the CTMN model is very useful to understand the new kind of inter-BSS
interactions resulting from channel bonding in spatially-distributed deployments. Besides, it
allows us to validate the implementation of the spectrum management techniques developed in
the Komondor wireless simulator we present later in §3.2.

3.1.2 Constructing the CTMN
A state in the CTMN is defined by the set of active BSS’s and the basic channels on which they
are transmitting. Essentially, we say that a BSS is active if it is transmitting in some channel
and inactive otherwise. For simplicity, we consider that each BSS is composed by one AP
and one STA. Hence, we simply refer to the BSS activity as a single entity.1 We define two
types of state spaces: the global state space (Ψ) and the feasible state space (S). A global state
ψ ∈ Ψ is a state that accomplishes two conditions: i) the channels in which the active BSS’s are
transmitting comply with the channelization scheme C, and ii) all active BSS’s transmit inside
their allocated channels. That is, Ψ only depends on the particular channelization scheme C
in use and on the channel allocation of the BSS’s in the system. In contrast, a feasible state
s ∈ S ⊆ Ψ exists only if each of the active BSS’s in such state started their transmissions by

1Notice that the model could also estimate the long-run mean performance of multiple STAs by generating
new states indicating the receiver STA corresponding parameters like the SINR or data rate.
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accomplishing the CCA requirement (or contention) derived from the assigned channel bonding
policy. Namely, given a global state space, S depends only on the spatial distribution and on
the channel bonding policies assigned to each BSS.

The first step for constructing the CTMN is to identify the global state space Ψ, which is
simply composed of all the possible combinations given by the channelization under consider-
ation and the channel allocations of the BSS’s. The feasible states in S are later identified by
exploring the states in Ψ. The transitions among feasible states are represented by the transi-
tion rate matrix M . Essentially, as long as there are discovered states in S that have not been
explored yet, for any feasible state sk ∈ S not explored, and for each BSS w in the system,
we determine if w is active or not. If w is active, we then set possible backward transitions to
already known and unknown states. To do so, it is required to fully explore Ψ by looking for
states where: i) other active BSS’s in the state remain transmitting in the same transmission
channel, and ii) BSS w is not active.

On the other hand, if BSS w is inactive in state sk, we try to find forward transitions to
other states by fully exploring Ψ looking for states where i) other active BSS’s in the state
remain transmitting in the same transmission channel, and ii) w is active in the new state as
a result of applying its channel bonding policy Dw. It is important to remark that in order to
apply such a policy, the set of idle basic channels in state sk must be identified according to
the power sensed in each of the basic channels allocated to w and on its CCA threshold. Each
transition between two states s and s′ has a corresponding transition rate Ms,s′ . For forward
transitions, the packet transmission attempt rate (or simply backoff rate) has an average duration
λ = 1/(E[BO]Tslot), where E[BO] is the expected backoff duration in time slots, determined
by the minimum contention window, i.e., E[B] = (CWmin − 1)/2. Furthermore, for backward
transitions, the departure rate (µ) depends on the duration of a successful transmission, i.e.,
µ = 1/Tsuc,2 which in turn depends on both the data rate given by the selected MCS and
transmission channel width, and on the expected frame length. In this regard, the data rate
and packet error rate of a BSS w depends on the state of the system, which collects such
information, i.e., µw(s).

Figure 3.1: Deployment and channel allocation of toy scenario I.

In order to depict how to generate CTMNs given a WLAN deployment and channel allo-
cation, let us consider toy scenario I shown in Figure 3.1, composed of two fully overlapping
BSS’s, A and B, with primary channel pA = 1 and pB = 2, respectively. Both BSS’s are
allocated the same two channels, i.e., CA = CB = {1, 2}.3 So, the set of valid transmis-
sion channels according to the 802.11ac/ax channelization is C = {{1}, {2}, {1, 2}}. Due
to the fact that both BSS’s are inside the carrier sense range of each other, their APs could

2The duration of a successful transmissions is the sum of the different delays involved in a packet exchange,
Tsuc = TRTS + TSIFS + TCTS + TSIFS + TDATA + TSIFS + TBACK + TDIFS + Tslot

3This toy scenario is selected for conveniently depicting the algorithm. CTMNs corresponding to non-fully
overlapping scenarios can be also generated with the very same algorithm.
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Figure 3.2: CTMN corresponding to toy scenario I. Transitions edges are dashed for referring
to those that may be given or not depending on the channel bonding policy. For instance, state
s6 is only reachable for single channel and stochastic policies. The discovery order of the
states and transitions in the algorithm (displayed in blue) corresponds to the stochastic channel
bonding policy.

transmit simultaneously at any time t only if their transmission channels do not overlap, i.e.,
C tx

A (t) ∩ C tx
B (t) = ∅. Notice that slotted backoff collisions cannot occur because their coun-

ters decrease continuously in time, and therefore two transmissions can be neither started nor
finished at the same time.

The CTMN corresponding to toy scenario I is shown in Figure 3.2. Regarding the notation,
we represent the states by the most left and most right basic channels used in the transmission
channels of each of the active BSS’s. For instance, state s6 = A1

1B2
2 refers to the state where

A and B are simultaneously transmitting in channels C tx
A = {1} and C tx

B = {2}, respectively,
whereas state s3 = A2

1 refers to the state where only A is transmitting in channels C tx
A = {1, 2}.

Concerning the state spaces, state ψ7 /∈ S is not reachable (i.e., it is global but not feasible)
for any policy because of the overlapping channels involved. Further, state s6 is only reachable
when single-channel or stochastic channel bonding is used. So, it would be not feasible when
using static channel bonding or dynamic channel bonding given that, at any time t that BSS
A(B) finishes its backoff and B(A) is not active, A(B) picks the widest available channel, i.e.,
C tx

A (t) = {1, 2} or C tx
B (t) = {1, 2}, respectively.

Every feasible forward transition rate from state s to s′ is weighted by a transition probabil-
ity vector ~αw,s(s′) – dictated by the channel bonding policy of w – whose elements determine
the probability of transiting to each of the possible states. As a consequence, ~α must follow the
normalization condition

∑
s′ ~αw,s(s

′) = 1. Table 3.1 shows the transition rate probabilities for
the different channel bonding policies in toy scenario I. Notice that both the reachable states
and transition rates may vary depending on the channel bonding policy.

Since there are a limited number of possible channels to transmit in, the constructed CTMN
will always be finite. Furthermore, it will be irreducible because backward transitions between
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D |S| ~αA,∅(s2) ~αA,∅(s3) ~αB,∅(s4) ~αB,∅(s5)

OP 4 1.0 0.0 1.0 0.0
SCB 3 0.0 1.0 0.0 1.0
AM 3 0.0 1.0 0.0 1.0
PU 6 0.5 0.5 0.5 0.5

Table 3.1: Transition probabilities of A and B in toy scenario I for different channel bonding
policies.

neighboring states are always feasible. Therefore, a steady-state solution to the CTMN always
exists. However, due to the possible existence of one-way transitions between states, the CTMN
is not always time-reversible, and the local balance may not hold [75]. Accordingly, it prevents
to find simple product-from solutions to compute the equilibrium distribution of the CTMNs.
Nonetheless, we can rely on the equilibrium distribution vector ~ν, which represents the fraction
of time the system spends in each feasible state. Hence, we define ~ν(s) as the probability of
finding the system at state s. In order to obtain ~ν we can use the transition rate matrix M given
the system of equations ~νM = 0. Once ~ν is computed, estimating the average throughput
experienced by a BSS w is straightforward,

Γw := E[L]

(∑

s∈S
{SINRw(s) > CE : 0, 1}µw(s)~ν(s)

)
, (3.1)

where E[L] is the expected data packet length, SINRw(s) is the SINR perceived by the STA in
BSS w in state s and CE is the capture effect. The system aggregate throughput is therefore the
sum of the throughputs of all the BSS’s in the WLAN, i.e., Γ :=

∑M
w=1 Γw.

3.1.3 Extending CTMNs to unsaturated regimes

In thesis paper #2 [28], we propose an extension of the algorithm for constructing the CTMNs
to support traffic loads. That is, we extended the model presented in paper #1 [26] by consid-
ering unsaturated regimes as proposed in [83]. As discussed before, a transition between two
states s and s′ in the CTMN has a corresponding transition rate Ms,s′ . Now, when considering
unsaturated regimes, for forward transitions, the average packet transmission attempt rate is
ρwλ, where λ = 1/(E[BO] · Tslot).

Parameter ρw is the long-run stationary probability that BSS w has packets ready for trans-
mission when the primary channel is sensed idle and so the backoff counter is active. Con-
sequently, ρw depends on the traffic load `w of BSS w. A BSS becomes saturated (ρw = 1)
whenever it is not able to deliver its traffic load, i.e., whenever it generates more packets than it
transmits. As for backward transitions, the departure rate µ is independent on the load, so it is
still determined by the duration of a successful transmission Tsuc. Note that the unknown ρ pa-
rameters must be obtained by solving a non-linear system of equations, which in general does
not have a closed-form. As done in [32], we use an iterative fixed-point approach for updating
the ρ values until the throughputs of all the BSS’s converge to their corresponding traffic load
or the BSS’s become saturated.
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3.1.4 A Matlab framework for constructing WLAN CTMNs
The spatial-flexible CTMN (SFCTMN) framework4 is the tool we have developed for automat-
ically constructing the CTMNs of spatially-distributed WLANs with channel bonding capabil-
ities. Namely, SFCTMN generates the CTMN corresponding to any spatial distribution and
channel allocation of any WLAN scenario. Therefore, both the data and carrier sense ranges
given by the power settings (i.e., transmission power, CCA level, sensitivity, path loss model,
etc.) are entirely configurable.

(a) Channel allocation. (b) WLAN deployment.

(c) Resulting CTMN.

Figure 3.3: Generation of the CTMN for a set of BSS’s implementing dynamic channel bond-
ing.

The procedure followed to generate the CTMN corresponding to a given WLAN scenario
can be summarized in 3 general steps:

1. Generate the global state space Ψ: only some channel ranges for transmitting will be
permitted depending on the input channel allocation and on the channelization consid-
ered. In this regard, a global state ψ ∈ Ψ, is a state that could be given if all BSS’s oper-
ated in isolation (i.e., without contention). For instance, in Figure 3.3a, if a 802.11ac/ax
channelization was selected, D6

5 would be a global state (i.e., D6
5 ∈ Ψ), while D5

4 would
not (i.e., D5

4 /∈ Ψ) since it is not compliant with the standard.

4All of the source code of SFCTMN is open, encouraging sharing of algorithms between contributors and
providing the ability for people to improve on the work of others under the GNU General Public License v3.0.
The repository can be found at https://github.com/sergiobarra/SFCTMN.
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2. Compute sensed power: after the global state space Ψ is generated, the power sensed
by each BSS’s AP in each of the assigned channels (i.e., primary and secondaries) is
computed for ∀ψ ∈ Ψ. Notice that the coverage areas in Figure 3.3b are represented
for 20 MHz transmissions, but the power is actually reduced whenever doubling the
bandwidth.

3. Generate the feasible state space S: a feasible state s ∈ S is a state that considers
carrier sense restrictions. Namely, active APs in s started transmitting in their corre-
sponding channel ranges because i) the interference power in such channels was low
enough to start them, and ii) their channel bonding policies determined to use such chan-
nels. For instance, in Figure 3.3c, we see a forward transition from A2

1 ∈ S to A2
1D

8
1 ∈ S

as APs A and D do not overlap because of their spatial separation and because dynamic
channel bonding is implemented in all the BSS’s. Moreover, we note that the CTMN also
captures the backward transitions that occur unidirectionally. For instance, it is possible
to transit from state D8

5 to ∅, but not the other way around because D will always pick the
widest channel combination whenever the rest of BSS’s are inactive as occurs in state ∅.

3.2 The Komondor wireless network simulator
In this Section, we present Komondor,5 an open-source, event-driven simulator based on the
CompC++ COST library [43]. For details, please, refer to thesis paper #3 [29].

3.2.1 The need of a new simulator
Komondor aims at fulfilling the need for assessing the novel features introduced in recent and
future IEEE 802.11 amendments. The motivation for developing Komondor arises from i)
the lack of next-generation WLAN-oriented simulators, ii) the complexity of extending cur-
rent simulators comprising an exhaustive implementation of the physical (PHY) layer, iii) the
large – and sometimes intractable – execution time required by other simulators to simulate
high-density deployments, and iv) the need for conveniently incorporating ML features in the
simulations. In short, Komondor is designed to efficiently implement new functionalities by
relying on flexible and simplified PHY layer dependencies, to be faster than most off-the-shelf
simulators, and to provide reliable simulations and a gentle learning curve to new users.

Wireless network simulators can be categorized into continuous-time and discrete-event.
On the one hand, continuous-time simulators continuously keep track of the system dynamics
by dividing the simulation time into minimal periods. On the other hand, in discrete-event
simulators, events are used to characterize changes in the system. Accordingly, events are
ordered in time and typically allow running faster simulations than continuous-time simulators.
Besides, discrete-event simulators allow tracing events with higher precision. From the family
of discrete-event driven network simulators, only a few ones are publicly available. Table 3.2
highlights the essential characteristics of the overviewed network simulators and Komondor.

Among the family of discrete-event simulators, we use ns-3 as a baseline for comparing
against Komondor because of its popularity. Despite the plethora of features supported in

5All of the source code of Komondor, under the GNU General Public License v3.0., is open, and potential
contributors are encouraged to participate. The repository can be found at https://github.com/wn-upf/
Komondor
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Simulator Open-
source

Source
lang. Complexity GUI 11ax

features
ML/based

module

ns-3 [112] Yes C++ High No Partial No
ns-2 [68] Yes C++/OTcl Low No No No

OMNET++ [120] No C/C++ Medium Yes No No
OPNET [42] No C++ Medium Yes No No
NetSim [109] No Java Low Yes No No

Komondor [29] Yes C/C++ Low No Partial Yes

Table 3.2: Comparison of discrete-event driven wireless network simulators.

ns-3, it has some inherent limitations, such as the high complexity for developing new fea-
tures/models as an extension of the simulator core. In particular, compatibility with the already
existing/supported models is required and must be carefully ensured. Moreover, the integration
of new features strongly depends on the community’s willingness to contribute to development.

3.2.2 Design principles
Komondor aims at realistically capturing the operation of WLANs at the MAC layer. Hence-
forth, it reproduces actual transmissions on a per-packet basis. To that purpose, Komondor is
based on the COST library, which allows building interactions between components (e.g., wire-
less nodes, buffers, packets) through synchronous and asynchronous events. While the former
are messages explicitly exchanged between components through input/output ports, the latter
are based on timers. In practice, components perform a set of operations until a significant
event occurs. For instance, a node decreasing its backoff may freeze it when an overlapping
node occupies the channel. The beginning and end of such a transmission are significant events,
whereas decreasing the backoff counter is not. Nevertheless, events may be triggered by differ-
ent timers.

Komondor entails a long-term project initiated and supervised by Sergio Barrachina-Muñoz
and Dr. Francesc Wilhelmi. Currently, several contributors are involved in the extension of new
modules. That is, the simulator is continuously evolving to include novel techniques and gen-
erally improve performance. The current version of Komondor (v2.0) includes, among others,
the following thoroughly tested 802.11ax features: distributed coordination function, buffering
and dynamic packet aggregation, channel bonding policies, dynamic MCS, bandwidth adaptive
RTS/CTS, and NAV states. Future development stages are under progress, including features
such as custom spatial reuse, MU-MIMO transmissions, and beamforming.

The current version of Komondor supports intelligent agents embedded to APs to monitor
BSS’s performance, run ML methods, and suggest new configurations to be applied by the BSS
or the whole WLAN. The application of intelligent agents with Komondor has been previously
studied in [128, 131], where decentralized learning is employed to both transmit power control
(TPC) and carrier sense threshold (CST) adjustment. Also, results in this dissertation we use
Komondor for reinforcement learning (see §6.5.3).

Komondor’s core operation relies on states representing the status (or situation) in which
a node can be involved. A state diagram summarizing both states and transitions is shown
in Fig. 3.4. Roughly, a given node starts in the SENSING state, where multiple events can
occur (e.g., a new packet is buffered or a new transmission is detected). Then, according to the
noticed event, the node transits to the corresponding state.
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Figure 3.4: Komondor’s state diagram and events. a) States are reachable by different transi-
tions. b) Simultaneous events are properly processed through delay offset correction.

As for the events, each time a node performs an action that can affect the system (e.g., it
starts transmitting a frame), an event is announced. Events in Komondor are lined up on the
time axis and handled by the core entity. Events’ management is similar in ns-3. However,
the latter exhibits a significant limitation since events scheduled simultaneously can be exe-
cuted in any order, leading to unpredictable results. That is, inconsistencies may occur if the
execution order affects multiple simultaneous events (e.g., two packets arriving at the same
time). To solve this, Komondor employs temporal variables to compare the exact timestamps
at which two or more events were generated. As a result, Komondor can successfully simulate
simultaneous events’ behavior while keeping the states’ logic.

In summary, Komondor is a wireless network simulator that stems from the need to provide
a reliable and low-complexity simulation tool able to capture the operation of novel WLAN
mechanisms like channel bonding or spatial reuse. Komondor’s operation has been validated
against the ns-3 simulator and analytical tools such as CTMNs and Bianchi’s DCF model. In
this regard, we have shown in [29] its effectiveness when dealing with high-density scenar-
ios, thereby outperforming ns-3 with respect to the simulation time. Finally, we emphasize
the potential of Komondor regarding complex scenarios and ML integration. In particular, a
preliminary ML-based architecture is already implemented [132], so that intelligent agents can
rule self-configuring operations at different communication levels.

3.3 Trace-driven evaluation of channel bonding

The Wi-Fi All-Channel Analyzer (WACA) is the first platform to simultaneously measure the
energy in all the 24 bondable basic channels in the 5 GHz band with microsecond scale gran-
ularity. With WACA, we perform a first-of-its-kind measurement campaign in areas including
urban hotspots, residential neighborhoods, universities, and a sold-out stadium with 98,000
fans and 12,000 simultaneous Wi-Fi connections. The gathered dataset is a unique asset to find
insights otherwise not possible in the context of multi-channel technologies like Wi-Fi. The
thesis papers of reference are #5 [24] and #6 [25].

23



“main” — 2020/11/19 — 10:04 — page 24 — #46

3.3.1 Why a custom Wi-Fi spectrum analyzer?
Prior work performed spectrum measurements for Wi-Fi traffic, e.g., [36, 50, 65, 80, 81, 92,
107,113,116,118,126]. Example objectives include creating interference maps [65], assessing
interference behavior [62], surveying Wi-Fi usage [50], quantifying spectrum occupancy in out-
door testbeds [107, 118], designing efficient scanning methods [113, 116], modeling spectrum
use [126], opportunistic spectrum access [80, 81], dynamic channel selection [61], and assess-
ing real-world network behavior by examining data from thousands APs [36]. Unfortunately,
no such prior work provided simultaneous measurements across the entire 5 GHz band, which
we require for our channel bonding study. While some papers do provide multi-channel mea-
surements, e.g., [80,81,107,136], they do so via sequential scanning, thus taking on the order of
seconds to change from one channel to the next, orders of magnitude beyond the transmission
time scale for channel bonding. Namely, WACA measures all channels simultaneously using
software defined radios (SDRs) having a sampling rate of 10µsec. Moreover, prior work does
not consider (for example) stadiums, the potential costs of other BSS’s deferring or colliding,
the impact of fine-grained channel correlation, nor a diverse set of channel bonding policies.

Our objective is to capture all Wi-Fi channels simultaneously, i.e., all 24 basic (non aggre-
gated) 20 MHz channels in the 5 GHz band that permit channel bonding. In principle, this
could be achieved with an off-the-shelf spectrum analyzer. However, most spectrum analyz-
ers cannot deal with the required bandwidth of this objective, i.e., they cannot simultaneously
measure the entire Wi-Fi 5-GHz band: 645 MHz ranging from channel 36 to 161 (i.e., from
5170 to 5815 MHz). Moreover, wide-band spectrum analyzers covering this bandwidth lack
resolution to analyze basic channels within the band. Likewise, one could envision a system
comprising 24 off-the-shelf Wi-Fi cards as sniffers, one per basic channel. Unfortunately, such
a system would be quite unwieldy and would introduce a challenge of ensuring synchronic-
ity among wireless cards: restricting the delay between channel measurements to the order
of nano/microseconds is unfeasible due to the hardware interrupt latency and jitter from the
different peripherals [41, 57].

Thus, we design WACA to simultaneously measure power (and I/Q signals if required)
on all the bondable basic channels in the 5 GHz band. Key benefits of WACA include the
simplicity of experimental procedures (from deployment to post-processing), a dedicated RF
chain per channel (covering the whole band and easing hardware failure detection), and the
ease of configuration empowered by the WARPLAb framework [17].6

3.3.2 The WACA platform
The key building blocks of WACA are i) six WARP v3 programmable wireless SDRs [2], ii)
six FMC-RF-2X245 dual-radio FMC daughterboards,7 iii) 24 5-GHz antennas (one per RF
chain), and iv) one Ethernet switch to enable communication between the WARPLab host (e.g.,
a PC) and the WARP boards. The preeminent building block is WARP, a scalable and exten-
sible programmable wireless platform to prototype advanced wireless networks. The FMC-
RF-2X245 module dual-radio FPGA Mezzanine Card (FMC) daughterboard extends the ca-

6All of the source code of WACA is open, encouraging sharing of algorithms between contributors and pro-
viding the ability for people to improve on the work of others under the GNU General Public License v3.0. The
repository can be found at https://github.com/sergiobarra/WACA_WiFiAnalyzer.

7FMC-RF-2X245 datasheet: https://mangocomm.com/products/modules/fmc-rf-2x245, re-
trieved January 30, 2020.
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pability of WARP v3 boards from 2 to 4 RF chains. Therefore, by combining 2 stacks of 3
WARP boards, each with their corresponding FMC-RF-2X245 daughterboards, we realize 24
RF chains (with one 5-GHz antenna each), enabling us to assign a single RF chain per basic
channel. Finally, the Ethernet switch enables the communication from the WARP nodes to the
WARPLab host. Fig. 3.5a shows the assignment of the RF chains to each basic channel allowed
for bonding, and Fig. 3.5b depicts the physical realization of WACA.
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Figure 3.5: The WACA spectrum analyzer.

WACA follows an iterative procedure for collecting power samples. Namely, in each it-
eration, WACA first simultaneously measures the power at each basic channel during Tm and
then takes Tproc to process and forward the measurements to the WARPLab host. Both tasks
are sequentially performed until the end of the measurement campaign. WARP boards install
the MAX2829 transceiver, which has a fixed 10 Msps received signal strength sampling rate.
Accordingly, since the measurement duration in an iteration is Tm = 1 second, the number of
consecutive samples captured per basic channel per iteration is n∗s = 107. Then, in each itera-
tion, we store |R| × n∗s = 24× 107 samples. Nonetheless, to decrease the amount of required
memory, we downsample the gathered samples in each iteration by a 100× factor, thus reducing
the data size per iteration from 60 MB to 600 KB. Essentially, while the transceiver measures
one power sample every 100 ns by default, we keep just one sample every Ts = 10 µs. Notice
that the resulting time scale is also suitable given Wi-Fi timings. Indeed, the short interframe
space (SIFS) is the smallest interframe space and takes 16 µs (> Ts). Once initiated, WACA
operates by itself, and no human intervention is required.

3.3.3 On-field dataset
Using WACA, we perform extensive measurement campaigns8 covering two continents, dense
urban areas, and multiple hours of samples in places of interest such as university campuses,
apartment buildings, shopping malls, hotels and the Futbol Club Barcelona (a.k.a Barça) sta-
dium (Camp Nou), one of the largest sports stadiums in the world. The measurements were
taken from February to August 2019 in Houston, TX, USA, and Barcelona, Spain. The shortest
campaign took 20 minutes and the longest covered more than one week. Table 3.3 lists the
campaign locations. The complete dataset contains 153,033 1-second iterations accounting for
42 hours, 30 minutes, and 3 seconds of actual measurements in the 24 bondable channels of
the 5 GHz Wi-Fi band. Figure 3.6 shows the deployment of WACA during two measurement
campaigns.

8The WACA dataset v1 can be found at https://www.upf.edu/web/wnrg/wn-datasets.
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Id Location Type Duration

1 RVA Rice Village Apart., HOU Apartment 1 day
2 RNG RNG lab at Rice, HOU Campus 1 day
3 TFA Technology for All, HOU Com. center 1 day
4 FLO Flo Paris, HOU Cafe 1 hour
5 VIL Rice Village, HOU Shopping mall 20 min

6 FEL La Sagrera, BCN Apartment 1 week
7 WNO WN group office, BCN Campus 1 day
8 22@ 22@ area, BCN Office area 1 day
9 GAL Hotel Gallery, BCN Hotel 1 day
10 SAG Sagrada Familia, BCN Apartment 3 days
11 FCB Camp Nou, BCN Stadium 5 hours

Table 3.3: Measurement locations.

(a) Press box in the Camp Nou stadium. (b) Shopping mall parking lot.

Figure 3.6: On-field measurement campaigns with WACA: (a) press box in the Camp Nou
stadium (Barcelona, Spain), and (b) parking lot in Rice Village shopping mall (Houston, TX,
United States).

3.3.4 Trace-driven framework

Our objective is to study the performance that a fully backlogged channel bonding BSS, w,
would obtain if it encountered the channels recorded in the measurement campaigns described
above (see Fig. 3.7). The performance is a function of several factors such as which primary
channel the bonding BSS selects, which channel bonding policy it employs, and the spectrum
occupancy. Such factors are explored in §4.3. Here, we describe the overall methodology for
all the experiments.

The datasets captured by WACA at scenario k are represented by a 2-dimensional matrix
Y k of size (Nk

it × nk) × |R|, where Nk
it is the number of iterations of scenario k, and any

element ykt,c represents the power value at temporal sample t in basic channel c. From Y k, we
generate a binary matrix Xk of same size through an occupancy indicator function, where any

26



“main” — 2020/11/19 — 10:04 — page 27 — #49

STAAP

environment
activity

BSS	w

OBSS

Figure 3.7: Diagram of the system model.

element xkt,c represents whether channel c was occupied at temporal sample t (1) or not (0).
Formally, xkt,c = (ykt,c > CCA : 1, 0),∀t, c, where the CCA is set to -83.5 dBm (or 150 10-bit
RSSI units), corresponding to the common CCA threshold -82 dBm plus a safety margin of
-1.5 dBm. While 802.11ac/11ax introduce different CCA levels for the primary and secondary
channels, in this work, we consider a more restrictive approach by assuming the same threshold
in order to fairly compare different channel bonding policies. The mean occupancy at band B
in scenario k is simply defined as

ōkB =

∑
t

∑
c∈B x

k
t,c

Nk
itnk|B|

. (3.2)

We develop a discrete state machine that characterizes how the channel bonding BSS re-
sponds to each power sample (or temporal sample) t according to the current state S(t), and
channel bonding policy D, following the 802.11 standard. Given that the channel bonding
BSS is fully backlogged, the set of possible states is S = {Busy,DIFS,BO,TX/RX}. State
Busy indicates that the primary channel is busy, DIFS represents the period before initiating
the backoff process, the backoff counter is decreased during BO state, and TX/RX represents
the actual frame transmission-reception (including the control frames RTS, CTS, and ACK, the
DATA frame, and the SIFS periods in between). We represent the channel bonding BSS w as
an AP and one or multiple clients that would perceive exactly the same spectrum activity as
WACA captured in the measurement campaigns and must contend accordingly. To focus on
channel bonding effects, we do not consider collisions within the channel bonding BSS, but
only collisions that can occur due to other BSS’s.

The set of basic channels selected for transmitting a frame depends both on the spectrum
occupancy and on the selected channel bonding policy D. Empty slots have a duration Tslot =
10 µs rather than 9 µs (802.11’s default value) to align the duration of an idle backoff slot with
the sample duration. Hence, whenever the channel bonding BSS is in the backoff process at
state BO, every idle sample at the primary channel p results in a backoff counter decrease of
one empty slot. We use Wi-Fi parameters according to IEEE 802.11ax. After running the state-
machine through all the temporal samples in the epoch, we compute the throughput Γ as the
number of bytes in the successfully transmitted data packets nd divided by the duration of the
epoch, i.e., Γ = (ndLd)/Tper, where Ld is the size of a data packet.

We emphasize the significance of the gathered dataset for finding insights, which would not
be possible otherwise, given that simple channel occupancy models severely underestimate the
available gains. An in-depth study on the dataset is conducted in §4.3.
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Chapter summary
This chapter depicted the three key enablers we used throughout this thesis: a CTMN model
for spatially-distributed WLANs, a wireless network simulator for 802.11ax (and beyond), and
a custom spectrum analyzer for simultaneously measuring the whole 5 GHz band. The next
chapter shows the main results and derived findings we got from using such enablers.
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Chapter 4

PERFORMANCE EVALUATION OF
CHANNEL BONDING

We depict next the principal results and derived findings on the performance of channel bonding
in WLANs. These results were gathered in thesis papers #1 [26], #2 [28], #5 [24], and #6 [25].

4.1 Analytical characterization of channel bonding
In paper #1 [26], we use CTMNs to characterize channel bonding policies in saturated WLANs.

4.1.1 States and transitions depend on the policy

Through CTMN modeling (see §3.1), we can get insights into channel bonding WLANs by
observing what states are generated and their transitions. Let us consider now toy scenario
II to discuss further the behavior of the selected channel bonding policies in the system. In
other words, let us see how the CTMN changes according to the selected policies in terms of
reachable states and generated transitions. In particular, toy scenario II is composed of W = 2
overlapping BSS’s, A and B, with channel allocation CA = {1, 2, 3, 4} with primary channel
pA = 2, and CB = {3, 4} with pB = 3 for A and B, respectively. Figure 4.1 shows an
schematic of the deployment and channel allocation. Due to the fact that both BSS’s are inside
the carrier sense range of each other, their APs could transmit simultaneously at time t only if
their transmission channels do not overlap, i.e., C tx

A(t) ∩ C tx
B(t) = ∅.

Figure 4.1: Deployment and channel allocation of toy scenario II.

Now, let us generate the WLAN CTMNs when applying two different channel bonding poli-
cies: dynamic channel bonding (or AM) and stochastic channel bonding with uniform proba-
bilities (i.e., PU). Figure 4.2a and Figure 4.2b show the resulting CTMNs for the former and the
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latter policies, respectively. We observe three main differences: i) there are states only reach-
able with stochastic channel bonding, generating a larger set of reachable states S = {s}, ii)
transitions rates are weighted for stochastic channel bonding according to the transition proba-
bilities (in this case, we assume uniform probabilities, e.g., 1/3 λ from ∅ to {A4

1} since A has
three bonding combinations to choose when all its allocated spectrum is free), and iii) there is
a unidirectional transition from A2

1 to ∅ just for dynamic channel bonding. That is, while it is
possible to reach state A2

1 from A2
1B

4
3 when B finishes its transmission, and then reach ∅ from

A2
1 when A finishes, it is not possible to go from ∅ to A2

1 because dynamic channel bonding
will always select the maximum allowed bandwidth when possible (4 channels, in this case,
resulting always in a transition from ∅ to A4

1).
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Figure 4.2: CTMNs of toy scenario II: (a) dynamic channel bonding and (b) stochastic chan-
nel bonding in the form of PU. For the sake of lightweighting the CTMN representation, we
indicate only some forward transition rates (λ) and obviate backward transition rates (µ).

Finding #1: States and transitions in the CTMN are generated by the WLAN deploy-
ment and the channel bonding policies of the BSS’s, which are determined by their
transition probabilities. Accordingly, while different channel bonding policies share the
same global states, we observe that feasible states may be different, with some policies
never visiting some states. Likewise, unidirectional (backward) transitions from one
state to another can also appear, generating non-time-reversible CTMNs.
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4.1.2 Being greedy is not always convenient
Most often, the best channel bonding policy for increasing the individual throughput, no matter
what policies the rest of BSS’s implement, is dynamic channel bonding. Nonetheless, there are
exceptions like the one we present below. Besides, if achieving throughput fairness between
all BSS’s in the WLAN is part of the goal, more conservative policies are generally preferable.
Therefore, there is not always an optimal standard policy to be implemented by all the BSS’s.
Indeed, there are cases where different policies must be assigned to different BSS’s to increase
both fairness and individual throughput.

Figure 4.3: Deployment and channel allocation of toy scenario III.

Let us consider toy scenario III where W = 3 BSS’s are located in a line in such a way
that they are in the carrier sense range of the immediate neighbor. So, BSS A and C overlap
only with B, and B overlaps with both. The proposed channel allocation is as follows: CA =
CB = CC = {1, 2} and pA = pC = 1, pB = 2. Figure 4.3 illustrates the corresponding
deployment and channel allocation. Table 4.1 shows, for different combinations of channel
bonding policies, the individual and aggregated saturation throughput, Γw and Γ, respectively,
and the Jain’s fairness index,

J =
(
∑W

w=1 Γw)2

W
∑W

w=1 Γ2
w

. (4.1)

We note that, while implementing AM in all the BSS’s the WLAN’s aggregated throughput is
the highest (i.e., Γ = 403.49 Mbps), the throughput experienced by B is the lowest (i.e., ΓB =
3.58 Mbps), leading to a very unfair flow-in-the-middle situation as indicated by J ≈ 0.67.
We also find that it may be much more convenient for B to use stochastic channel bonding
than dynamic channel bonding to maximize its individual throughput. Namely, when A and
C implement dynamic channel bonding (i.e., DA = DC = AM), it is preferable for B to
implement stochastic channel bonding (i.e., DB =PU) and make the WLAN reach states in
the CTMN where A and C transmit only in their primary channels, thus increasing both the
throughput of B and the fairness accordingly.

Policy States Throughput [Mbps] Fair.
DA DB DC |S| ΓA ΓB ΓC Γ J

AM AM AM 5 199.96 3.58 199.96 403.49 0.67
AM PU AM 10 149.41 62.45 149.41 361.27 0.89
PU AM PU 25 109.84 108.44 109.84 328.12 0.99
AM AM PU 9 111.31 106.91 110.33 328.55 0.99

Table 4.1: Policy combinations effect on throughput and WLAN fairness.

Looking at the fairest combinations, we notice that A, C, or both must implement PU to
let B transmit with a similar amount of opportunities. This is achieved by the stochastic nature
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of PU, which lets the CTMN explore more states. Accordingly, B experiences the highest
throughput, and the system achieves complete fairness (i.e., J ≈ 1). Nonetheless, the price
to pay is to decrease the throughput of A and C significantly. In essence, this toy scenario
is a paradigmatic example showing that with less aggressive policies like PU (of probabilistic
nature), not only more states in the CTMN can be potentially explored with respect to AM, but
also the probability of staying in states providing higher throughput (or fairness) may increase.
Therefore, since it generally does not exist a global policy that satisfies all the BSS’s in the
system, different policies should be adopted depending on the target performance metric.

Finding #2: Being greedy with dynamic channel bonding does not always maximize
the individual throughput. There are scenarios where more conservative policies like
stochastic channel bonding are preferable since they tend to force the WLAN to reach
more favorable states in the CTMNs. Besides, we find that there is not a unique policy
for maximizing the performance metrics (e.g., aggregate throughput or fairness). Instead,
the assignation of different policies to different BSS is sometimes required.

4.2 Assessment of high-density deployments
Apart from modeling WLANs through CTMNs, in the thesis papers #1 [26] and #2 [28], we
simulate high-density WLANs deployments under a variety of channel bonding policies, node
densities, and traffic loads. We rely on the Komondor wireless network simulator [29] to sim-
ulate thousands of scenarios in different deployments and configurations.

4.2.1 Type of scenarios
The type of high-density Wi-Fi deployments under evaluation consists of randomly spread
nodes in square maps of different areas. Random primary channel, spectrum allocation, and,
sometimes, channel bonding policy, is assigned to the BSS’s in the WLAN. We deploy W
BSS’s each with one AP and one or multiples STAs. We use typical IEEE 802.11ax parame-
ters.1 In this section, we first assess full-buffer traffic loads and then a Poisson process where
BSS w generates a data packet every tw ∼ Exponential(1/`w), being `w the mean traffic load in
packets per second. We focus on studying a particular BSS in the WLAN, normally named A,
as well as the whole WLAN. An example of the scenarios considered is shown in Figure 4.4.

4.2.2 On the individual throughput and fairness
In thesis paper #1 [26], we study the throughput of saturated BSS’s under full-buffer traffic.

On the individual throughput

We aim to identify the optimal policy that a particular BSS should implement to increase its own
throughput in a high-density, uncoordinated Wi-Fi deployment. We consider three rectangular

1We refer the reader to [26–28] for more details
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Figure 4.4: Example of a high-density deployment consisting of multiple BSS’s with differ-
ent traffic loads, channel allocations, and channel bonding policies in a spatially distributed
WLAN.

maps of decreasing areas (sparse, semi-dense and high-dense) with one BSS (A) located at the
center and W − 1 = 24 BSS’s spread uniformly at random in the area. We assume BSS A has
nSTA,A ∼ U [1, 20] STAs. Channel allocation (including the primary channel) is set uniformly
at random to all the BSS’s, except A. While the central BSS is also set with a random primary
channel, it is allocated the widest channel (i.e., CA = {1, ..., 8}) to provide more flexibility and
capture complex effects. The the rest of BSS’s select their channel bonding policy (OP, SCB,
AM, or PU) uniformly at random and A’s policy is set deterministically to each of them.

OP SCBAM PU OP SCBAM PU OP SCBAM PU
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Figure 4.5: Distribution of the individual throughput experienced by BSS A for different poli-
cies in areas of increasing density.

Figure 4.5 shows the average throughput experienced by A in the considered maps. The first
noticeable result is that, in dense scenarios, SCB is non-viable for BSS’s with wide allocated
channels because they are most likely prevented from initiating transmissions. Regarding the
rest of the policies, on average, A’s throughput is higher when implementing AM in all the
maps. Especially, AM (and SCB in some cases) stands out in sparse deployment. Nevertheless,
there is a clear trend for dense deployments to pick just one channel when implementing AM
or PU. That is why OP provides an average throughput relatively close to the ones achieved
by these policies. Nonetheless, as the throughput’s high standard deviation indicates, there
are important differences regarding ΓA among the evaluated scenarios. The number in red
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inside the boxplot of Figure 4.5 indicates the share of scenarios where AM provides the highest
individual throughput for A: 65%, 62%, and 43% for sparse, dense, and high-density maps,
respectively.

We see that in most cases, AM performs better than PU in terms of individual throughput.
However, in a significant share of scenarios, PU outperforms AM. Also, there are scenarios
where the throughput experienced by PU with respect to AM is extremely higher (up to hun-
dreds of Mbps). This mainly occurs when the neighboring nodes occupy A’s primary chan-
nel through complex interactions caused by network asymmetries, keeping its backoff counter
frozen for long periods. These are clear cases where adaptive policies could significantly im-
prove performance.

Finding #3: In saturated WLANs, dynamic channel bonding normally reaches higher
individual throughput than the rest of channel bonding policies, especially in sparse de-
ployments. However, we find a significant number of scenarios where more conservative
approaches like stochastic channel bonding are preferable in terms of individual through-
put, thus corroborating Finding #2 for denser deployments.

On the bandwidth efficiency and fairness

In order to asses the use of the spectrum, we define the average bandwidth usage of a BSS w as

BWw =
1

Tobs

Nc∑

c=1

ttxw(c)B, (4.2)

where Tobs is the observation (or simulation) duration, Nc = 8 is the number of basic channels
in the system, ttxw(c) is the duration that BSS w is transmitting in a channel containing at least
the basic channel c, and B = 20 MHz is the bandwidth of a basic channel. The mean spectrum
used by all the BSS’s, i.e., BW =

∑W
w=1 BWw is shown in Figure 4.6 for the different channel

bonding policies.
Similarly to the throughput results, while OP and PU do not leverage the free spectrum in

low-density scenarios, SCB and AM do so by exploiting the most bandwidth. Instead, when
the number of nodes per area increases, SCB suffers from heavy contention periods, reiterating
the need for flexibility to adapt to the channel state. In this regard, we note that AM exploits
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Figure 4.6: Total bandwidth usage and throughput Jain’s fairness index vs. node density.
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the most bandwidth on average for any number of WLANs. Nonetheless, neither the average
throughput per BSS nor the spectrum utilization may be a proper metric when assessing the
whole WLAN’s performance. Namely, having some BSS’s experiencing high throughput when
some others starve is often a situation preferable to be avoided. In that sense, we focus on
the fairness, which is suggested by the boxes and outliers in Figure 4.5, and more clearly
represented by the expected Jain’s fairness (4.1) index shown in Figure 4.6.

As expected, the policy providing the highest fairness is OP. No matter the channel alloca-
tion, BSS’s only pick their primary channel for transmitting when implementing OP; hence the
fairness is always maximized at the cost of probably wasting part of the frequency spectrum,
especially when the node density is low. In this regard, PU also provides high fairness while
exploiting the spectrum to a larger extent, which increases the average throughput per BSS
accordingly. Regarding the aggressive policies, SCB is the most unfair policy due to its all or
nothing strategy. Therefore, it seems preferable to prevent BSS’s from applying SCB in dense
scenarios. However, even though being aggressive, AM can adapt its transmission channel to
the spectrum’s activity, thus providing both higher throughput and fairness. Still, as indicated
by the boxes and outliers of Figure 4.5, AM is not per se the optimal policy. There are scenarios
where PU performs better in terms of both fairness and throughput. Consequently, there is room
to improve the presented policies with some smarter adaptation or learning approaches (e.g.,
tuning properly the transition probabilities ~α when implementing stochastic channel bonding).

There are also some phenomena that are worth to be mentioned. Regarding backoff de-
creasing slowness, it can be the case that a BSS w is forced to decrease its backoff counter very
slowly due to the fact that neighboring BSS’s operate in a channel including the primary chan-
nel of w. That is why more fairness is achieved with PU in dense networks as such neighboring
BSS’s do not always pick the whole allocated channel. Thus, they let w decrease its backoff
more often and transmit accordingly. Finally, concerning the transmission power and channel
width, we have observed that transmitting just in the primary channel can also be harmful to
other BSS’s because of the higher transmission power used per 20 MHz channel. While this
may allow using higher MCS, it may also cause packet losses in neighboring BSS’s operating
with the same primary channel due to heavy interference.

Finding #4: Dynamic channel bonding provides the higher bandwidth usage at the ex-
pense of being the most detrimental in terms of fairness.

4.2.3 Traffic load and delay

While saturated regimes offer valuable insights on worst-case scenarios, BSS’s are characteris-
tically unsaturated with traffic patterns that deeply depend on the application/s being supported.
That is, unsaturated traffic patterns fit better to real-world problems and allow us to assess crit-
ical performance metrics like the delay. In such scenarios, overlapping approaches seem to
be even more convenient since the sensed channels usually remain free during larger periods.
Unsaturated BSS’s are studied in thesis paper #2 [28].
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Successful traffic delivery

Figure 4.7 shows the probability of BSS A to successfully transmit its traffic load `A, i.e., PA =
P
(
ΓA ≥ (1 − εΓ)`A

)
. Note that we use an error margin εΓ = 0.05 to cope with the stochastic

packet generation of the performed simulations. So, we say that a BSS w is satisfied if its
throughput satisfaction ζw = Γw/`w is close to 1. As expected, SCB is viable only for a few
scenarios when the traffic load is minimal. This is because the rest of BSS’s most likely prevent
A to initiate any transmission by occupying part of its allocated channel CA. Instead, the other
policies perform much better – especially AM – since they avoid high probability saturation
even for high traffic loads. While A avoids saturation in some scenarios for `A < 92.16 Mbps
with OP and `A < 122.88 Mbps with PU, respectively, the aggressive adaptability nature of
AM allows avoiding saturation in scenarios even where `A = 184.32 Mbps. Nevertheless, we
note that there are scenarios where AM heavily suffers from the hidden node problem since the
SINR at the receiver is notably reduced. Accordingly, even though the AP may find the whole
spectrum free, the STA cannot decode most of the RTS or data frames due to interference. This
effect can be seen in the PA improvement of OP or PU for low traffic loads.
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Figure 4.7: Probability of successfully delivering all the generated traffic load.

Looking for the lowest delay

We now assess the share of scenarios where each policy provides the smallest average packet
delay for BSS A dA under different traffic loads `A. Figure 4.8 compares the share of scenarios
where AM is better than the best combination of OP and PU, i.e., AM is compared against
D = argminOP,PU dA for each of the simulated scenarios. We observe that in most of the cases,
AM outperforms OP and PU, especially for scenarios with mid-high traffic loads. Nonetheless,
for low loads, we note that there is always a better choice than AM for reducing the delay,
corroborating the outcomes from the previous sections. In addition, there is a significant share
of scenarios where OP and, especially, PU provide similar or even smaller delays than AM for
all traffic loads. This mainly occurs when A and its neighboring nodes are able to concurrently
transmit in different channels through interactions that are not given when implementing AM.

Essentially, when A transmits in its whole allocated bandwidth, neighboring BSS’s with
primary channels overlapping with A’s transmission must wait until it finishes. Afterward, such
BSS’s can terminate their backoffs and select a transmission channel including A’s primary in
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Figure 4.8: Share of scenarios providing the lowest delays: AM vs. others. Scenarios where
the delay difference between policies is less than 1 ms are labeled as draw.

turn. This generates all or nothing states that keep A’s backoff frozen for larger periods. Instead,
if A transmits in narrower channels by implementing OP or PU, such BSS’s could transmit at
the same time in non-overlapping channels and enable more successful parallel transmissions.
This effect can also be seen in the average number of packets aggregated per frame: AM
aggregates more packets on average for low traffic loads since the buffer of one BSS can be
filled with more packets during the transmission of the other. In turn, when the backoff expires,
larger frames are sent.

To better illustrate this phenomenon about the smaller delays of OP for low loads, let us
consider a conceptual example with two overlapping BSS’s, A and B, with primary channels
pA = 1 and pB = 2, respectively. Both share a channel allocation containing basic channels
1 and 2. What is better in terms of delay under low loads? To reduce channel access delay by
letting them transmit in parallel, i.e., let A transmit in channel 1 and B transmit in channel 2. By
transmitting in one channel, the other is forced to do the same even if it implements dynamic
channel bonding. So, when A finishes its transmissions, most probably, just the second channel
will be occupied by B, so A can transmit in the first channel again, reducing the contention
accordingly.

In summary, we see that overlapping approaches can significantly enhance traditional single-
channel performance in terms of delay and throughput in uncontrolled high-density deploy-
ments. Still, there are cases when an overlapping approach that always selects the maximum
available bandwidth can be counterproductive. Despite the intrinsic uncertainty of spatially
distributed WLAN deployments, we can state as a rule of thumb that channel bonding is con-
venient when applied through spectrum-adapting policies. Nonetheless, as indicated by the
scenarios where OP or PU outperformed AM, there is room for improvement through smarter
adaptation by adopting policies on a per-BSS basis. Hence, we envision that the most effective
way of using channel bonding is to allocate all the nodes with the whole available frequency
spectrum and assign the primary channel smartly. Moreover, more significant improvements
could be achieved by endowing the nodes with the capability to recover from lousy situations
like flow-in-the-middle, which are more likely to happen when neighboring BSS’s implement
greedy policies.
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Finding #5: While dynamic channel bonding is usually the best in terms of individual
throughput for any traffic load, it is more convenient in terms of delay to use conservative
approaches under low loads. The reason lies in the chain-reaction generated by selecting
(conservative) smaller bandwidths, which tends to allow neighboring BSS’s to pick other
chunks of the spectrum, thus avoiding contention between them and reducing the channel
access delay consequently.

4.3 Trace-driven simulations from real-world measurements
This section collects the main results and findings on the trace-driven analysis of the dataset
gathered with WACA. Details on the experiments and further results can be found in thesis
papers #5 [24] and #6 [25].

4.3.1 A look into the world’s Wi-Fi spectrum
We first assess each location’s entire activity record at band B, where B is a predefined set of
adjacent channels. For instance, U-NII-1 band is defined as B = {1, 2, 3, 4}, corresponding to
basic channels 36, 40, 44, and 48 (see Figure 3.5a).2 Figure 4.9 shows the normalized mean
idleness of each band, i.e., the mean number of samples that were found idle in each channel of
band B, including night hours (if any). We observe that the spectrum is idle most of the time in
all scenarios except the stadium, indicating that the 5 GHz band is still profoundly underutilized
even in densely populated areas.
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Figure 4.9: Mean idleness per band.

Figure 4.10 shows the daily temporal evolution of 4 example locations (2 apartments in the
upper subplots and 2 university campuses in the lower subplots). For the sake of representation,
we plot the normalized occupancy of the whole band averaged in periods of 10 minutes. Con-
cretely, we normalize with respect to the highest 10-minutes average occupancy encountered
in each location. We observe higher activity at working hours in the campus locations and a
much less variable pattern in the apartment locations.

Regardless of the low mean occupancy at all bands, we find peaks of activity in the generic
scenarios (those excluding Camp Nou stadium) yielding maximum occupancy values near 45%

2The rest of bands are sequentially composed of groups of four consecutive 20-MHz channels. So, the next
band is U-NII-2 with channels {5, 6, 7, 8} (basic channels 52, 56, 60, and 64), and the last one is U-NII-3 with
channels {21, 22, 23, 24} (basic channels 149, 153, 157, 161).
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Figure 4.10: Run chart of the normalized occupation for apartments (upper) and universities
(lower) highlighting day (yellow) and night (blue).

over 100 ms periods. As for the stadium, the peaks of activity reach occupancies as high as
99%. So, while significant opportunities for channel bonding are expected under such low
mean occupancy, we focus our study on those challenging peaks of activity to evaluate channel
bonding performance in current and next-generation high-density WLANs.

Finding #6: Overall, the Wi-Fi’s 5-GHz band is currently underutilized even in dense
urban scenarios. However, we find periods of high activity that impose challenges to
channel bonding performance.

4.3.2 Characterization of channel bonding in the real-world spectrum
To provide meaningful experiments, we separately consider two 160-MHz bands composed of
8 basic channels: the U-NII-1&2 and part of the U-NII-2c sub-bands, B1&2 = {1, 2, 3, ..., 8}
and B2c = {9, 10, 11, ..., 16}, respectively. These sub-bands cover from channel 36 to 64 and
from channel 100 to 128, respectively (see Figure 3.5a). Notice that these are the only sub-
bands that allow to perform 160-MHz transmissions in the IEEE 802.11ac/ax channelization.
Moreover, we focus on epochs (or periods) of duration Tper = 100 ms (containing 104 temporal
samples each) for which the mean occupancy at such sub-bands is at least 5%, i.e., ōB ≥ 0.05,
where B ∈ {B1&2,B2c}.

How will other BSS’s respond to the simulated channel bonding BSS? For most experi-
ments, we consider that they will defer their transmissions. Namely, the channel bonding BSS
needs the channels to be available only when its countdown timer expires. If the bonding BSS
does transmit but the trace indicates that a channel would have been occupied at some point
during the transmission, we consider that such other BSS’s will sense the bonding BSS and
defer. The exception is in the experiments on hidden nodes, in which we consider that other
BSS’s are hidden, do not sense the channel bonder, and cause a collision.

Contiguous vs. non-contiguous channel bonding

As we have seen in the previous sections, channel bonding is a mechanism to increase the
instantaneous throughput. We now assess its performance limits by considering unrestricted,
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non-standard compliant policies as for the channelization. In particular, we consider contiguous
channel bonding to bond any combination of consecutive basic channels, including the primary,
and non-contiguous channel bonding, which can utilize additional channels compared to con-
tiguous, by “skipping over” the busy channels to find the next unused one. Here, we explore
the gains of this flexibility as well as (in rare cases) the losses by comparing the throughput
of contiguous and non-contiguous channel bonding in three load regimes: low (ōB ≤ 0.1),
medium (0.1 < ōB ≤ 0.2) and high (ōB > 0.2), respectively.

Figure 4.11: Throughput ratio of contiguous vs. non-contiguous channel bonding. The bar
chart inset depicts the mean aggregated ratio for low (L), medium (M), and high (H) occupancy
regimes.

Figure 4.11 shows the throughput ratio of contiguous to non-contiguous channel bonding
ΓCO(p)/ΓNC(p), where Γπ(p) is the throughput achieved by policy π when selecting primary
p in a given period. We plot the ratio for all possible primaries in B1&2 and B2c. The data
reveals two remarkable phenomena. First, contiguous outperforms non-contiguous in 2.5% of
the cases (albeit with a modest throughput difference of 1.9%). But since non-contiguous is
more flexible, how can it ever do worse? The answer is that the two policies result in different
instants for transmission attempts. The contiguous policy occasionally (and quite randomly
since the traces are the same) ends with more favorable attempt instants.

Nonetheless, in most cases, non-contiguous obtains higher throughput. For example, in
many periods, at least one 20-MHz channel is idle during the whole period, which will always
yield a gain for non-contiguous, but only sometimes yields a gain for contiguous bonding. In
some cases, the difference can be quite high (e.g., a ratio of approximately 0.2 observed in
low load). The origins of such extreme cases are the selection of the primary channel, which
we explore next. Second, the bar chart inside Figure 4.11 reveals that both contiguous and
non-contiguous channel bonding perform quite close on average for all occupancy regimes
(low, medium, and high), and especially for the latter, as high load results in far fewer bonding
opportunities overall.

Finding #7: Non-contiguous almost always outperforms contiguous channel bonding,
and their throughput differences are occasionally over a factor of 5. Nonetheless, their
average throughputs are quite similar, which may ultimately favor contiguous channel
bonding, since it is simpler to implement.
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Primary channel selection

The primary channel selection is critical for channel bonding, as it is where the backoff pro-
cedure runs. Namely, the transmitter must wait for a transmission opportunity on the primary
channel and then explore adding channels. For contiguous channel bonding, there is an ad-
ditional “edge effect”. For example, having the first channel as primary only allows bonding
higher-numbered channels, whereas having a central channel allows both higher and lower, pro-
vided they are contiguous in both cases. To explore this issue, we define the best-throughput
Γ∗(π) of policy π as the throughput achieved when selecting the best primary channel p∗ ∈ B,
i.e., the primary channel that maximizes throughput in each period when implementing π. So,
apart from assessing the throughput when considering all possible primary channels, we also
evaluate an upper bound on performance by focusing only on the best primary channel.
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Figure 4.12: Normalized throughput of the best primary channel (best) and mean throughput
for every primary channel (mean).

Figure 4.12 shows the throughput gain with respect to the throughput achieved by single-
channel transmission, i.e., Γ̂π = Γπ/ΓSC, where ΓSC and Γπ are the throughput achieved by
single-channel transmission and channel bonding policy π, respectively. Such normalized
throughput is presented in two ways for each period: the mean value Γ̂ in the legend refers
to the mean normalized throughput achieved by selecting each of the possible 8 primary chan-
nels per sub-band, and the best value Γ̂∗, to the normalized throughput achieved by the primary
p∗ providing the highest throughput.

First, observe that both contiguous and non-contiguous channel bonding outperform single-
channel by a factor of at least 3 to over 6. Second, observe the region where contiguous chan-
nel bonding has the lowest gains. Strikingly, while selecting the best primary channel boosts
throughput, these lower-gain cases cannot be entirely eliminated with better primary channel
selection. Thus, in these cases, the available spectrum does not have a consistent structure and
only non-contiguous bonding can exploit the gaps (and there are indeed many gaps as the load
is low here). Next, observe the high variance of the throughput due to the spectrum activity
distribution. In particular, throughput differences for similar occupancy values can be up to
1.9× and 1.7× for contiguous and non-contiguous, respectively. Lastly, despite these first two
findings, selecting the best primary channel indeed provides substantial gains and can raise
throughput by up to 68% and 64% for contiguous and non-contiguous, respectively. While
non-contiguous channel bonding might seem impervious to primary channel selection as it can
bond any channels, recall that even non-contiguous requires an idle primary channel to initiate
a transmission.
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Finding #8: The selection of the best primary channel improves average throughput by
over 60%. But for contiguous channel bonding, it cannot overcome high variance and
lower gain scenarios due to the channel occupancy dynamics of the spectrum band.

Inter-channel occupancy correlation

When a transmitter finds its primary channel available for transmission and attempts to bond
channels, it aims to find secondary channels available. Thus, the correlation among channel
occupancies can be expected to help channel bonding performance. Here we study the spectral
correlation of the best primary channel with other channels and compute the mean correlation
coefficient as

ξ =
∑

p∈B,p 6=p∗
%(p∗, p)/

(
|B| − 1

)
, with

%(p∗, p) =
E[(p∗ − p̄∗)(p− p̄)]

σp∗σp

(4.3)

where B ∈ {B1&2,B2c}, thus |B| = 8, %(p∗, p) is the Pearson correlation coefficient of the
temporal occupancy of channels p∗ and p, as a function of the means, p̄∗ and p̄, and standard
deviations, σp∗ and σp, of channel p∗ and p, respectively. Notice that this assessment of spectral
correlation by simultaneously measuring all channels is achieved for the first time by WACA.

Figure 4.13: Distribution and empirical CDF of the best primary channel correlation ξ.

Figure 4.13 shows both the distribution of ξ vs. mean occupancy ōB and the empirical
cumulative distribution function (CDF) of ξ. We observe that ξ ranges approximately from
-0.10 to 0.60, so we define three correlation levels for ease of analysis: low (ξ ≤ 0.1), medium
(0.2 ≤ ξ < 0.4), and high (ξ ≥ 0.5). While we find that most of the periods (62%) fall
inside the low correlation range, 17% of them present medium or higher correlation, indicating
a significant amount of correlated epochs. A key origin of correlation among channels in the
data set may be that the APs are already using channel bonding. Indeed, even though the dataset
does not provide header information, some subsets of traces have multiple contiguous channels
having almost identical busy/idle evolution. This suggests that channel bonding was employed
during some portions of the measurement campaign.

Figure 4.14 shows throughput given selection of the best primary channel, with the sub-
figures highlighting intervals with low, medium, and high correlation. We observe that most
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(a) Low-correlation periods.

(b) Low-correlation periods.

(c) High-correlation periods.

Figure 4.14: Evolution of the best-primary normalized throughput vs. correlation. We use
transparencies at the points to highlight denser regions.

of the measured channel occupancies show minimal inter-channel correlation. However, the
figures for periods of medium and high correlation indicate that with higher correlation among
channel occupancy, the lower performance periods are increasingly avoided, especially for
contiguous channel bonding. Interestingly, this effect holds regardless of the mean occupancy
ōB.

Finding #9: Significant periods present medium to high correlation among channel oc-
cupancies. Such periods improve the performance of channel bonding regardless of the
load. This can provide a hint as to what ideally would happen if multiple BSS’s employ
channel bonding since channel bonding itself creates channel-occupancy correlation.

A Markov model for channel occupancy?

In §4.3.2, we found that even though channels could be considered to be uncorrelated on av-
erage since the activity is expected to be generally from separate BSS’s, traces exhibited a
significant amount of epochs of inter-channel occupancy correlation. With this experiment,
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we aim at pointing out the importance of capturing inter-channel correlation by comparing the
original traces against two simple models.

In particular, we first consider a Markov model that characterizes each channel as an in-
dependent two-state (occupied, not occupied) Markov chain with exponential holding times
for each state. We compute the mean transition rates (and hence mean occupied and not-
occupied time) for each channel from the traces. We then compare the performance between
the parameter-matched Markov model and the actual traces. As a baseline, we also consider
a uniform i.i.d. model in which each temporal sample is occupied or not according to an i.i.d.
Bernoulli distribution, with each channel, again having the mean band occupancy matched from
data. Our objective is not to develop a statistical occupancy model but rather to study the extent
to which simple models can or cannot characterize the behavior we observe. We study below
downlink throughput for these two models as compared to the traces when applying contiguous
channel bonding. Since the primary channel selection impacts the throughput, we evaluate the
selection of the 16 possible primary channels: 8 in sub-band B1&2 and 8 in B2c.
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i.i.d. Markov
0

0.1
0.2
0.3
0.4
0.5
0.6

(b) Error vs. occupancy.

i.i.d. Markov
0

0.1
0.2
0.3
0.4
0.5
0.6

(c) Error vs. correlation.

Figure 4.15: Original vs. synthetic traces.

Figure 4.15a shows the raw throughput (considering every possible primary) of the original
traces and the synthetic model-generated occupancy. While both models capture the general
trend of throughput decaying with increasing occupancy, the difference between datasets is
evident in the scatter plots. Figure 4.15b and Figure 4.15c depict the mean relative error (MRE)
of the models’ throughput with respect to the original traces grouping by load and correlation
regime, defined by the thresholds presented in §4.3.2 and §4.3.2, respectively. We observe that
the i.i.d model is completely misleading, with a mean error of around 50% for high loads and
high correlation. Unfortunately, although the Markov model can capture the mean on and off
times for each channel, we observe that the mean error is still significant (up to 16% and 37%
on average for high load and high correlated periods, respectively). Worse, particular periods
assessed through the Markov model lead to large errors up to 33%, 58%, and 62% for low,
medium, and high occupancy regimes, respectively.
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While we expected the higher relative errors to arise for high load periods, it is surpris-
ingly critical the impact of not capturing correlation on both models. In fact, in contrast to the
correlation distribution of the original traces shown in Figure 4.13, both models present a dis-
tribution similar to a delta function centered at ξ = 0. Given that the original mean occupancy
is kept for all the periods generated by the models, results suggest that missing correlation is
the main cause of outraging the models’ accuracy.

Finding #10: Simple channel occupancy models severely underestimate the available
gains for channel bonding. Thus, modeling occupancy behavior by introducing inter-
channel correlation remains an important avenue for future work.

How much are others hindered?

When other BSS’s defer to a channel bonder, it will add to their channel access latency and
decrease their throughput. Here, we study how much all other BSS’s are hindered due to
channel bonding and introduce a bandwidth deprivation metric ω as the aggregate bandwidth
that would have been active (i.e., was being used by neighbor BSS’s) during the transmissions
of the channel bonding BSS. This metric can serve as an upper bound to how much others are
hindered by viewing that all of these attempts by other BSS’s would be lost vs. deferred. More
formally, let

ω =

(∑nf

f=1

∑
t∈Tf

∑
c∈Btx,f

xt,c
)
BTs

Tper
, (4.4)

where nf is the number of frames transmitted, Tf is the set of consecutive temporal samples
used for transmitting frame f , Btx,f is the set of channels used for transmitting frame f , Ts is
the duration of a temporal sample (10 µs), B = 20 MHz is the bandwidth of a basic channel,
and Tper = 100 ms is the observation duration. We normalize by Tper = 100 ms rather than the
transmission time of each policy to provide a fair comparison. That is, ω represents how much
raw bandwidth is deprived to surrounding BSSs in absolute terms [MHz], without considering
how many transmissions are performed by each policy.

Figure 4.16 shows the distribution (boxplot) of the bandwidth deprivation in MHz and Mbps
for every primary channel using the occupancy categories defined in §4.3.2. To estimate the
corresponding data rate, we assume that all occupied samples are comprised of 20-MHz data
frames also transmitted at MCS 9. The figure illustrates the intrinsic consequences of bond-
ing channels without considering how others might use the spectrum during the transmission.
Namely, a channel bonder may find that most channels are free at backoff termination, sub-
sequently occupying most (or all) of them. However, it may occur that right after starting
the transmission, external activity appears in some of the channels being used, thus hindering
surrounding BSS’s.

Second, we observe that the differences in bandwidth deprivation for non-contiguous vs.
contiguous channel bonding are quite modest, even when non-contiguous channel bonding
achieves higher throughput. The key reason is that most high occupancy periods concentrate
activity in some 20 MHz channels, often leaving at least one 20 MHz channel idle during
nearly the entire period. In contrast to contiguous, non-contiguous channel bonding can al-
ways achieve small throughput gains by bonding those idle channels regardless of the primary
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Figure 4.16: Distribution of bandwidth and data rate lost for other BSS’s for every primary
channel.

channel allocation. Also, despite the low average impact, there are multiple outliers in which
the bandwidth lost by other BSS’s is significantly higher than average, thus manifesting the
worst-case external effect.

Finally, we can ask if channel bonding is simply a zero-sum-game: do the gains of a bonding
BSS subtract from other BSS’s throughput? To address this question, we assess whether the
average throughput gained by channel bonding exceeds the worst-case prevented transmissions
by other BSS’s, using single-channel transmission as a baseline. Thus, we define the ratio

κπ =
Γ̄π − Γ̄SC

ω̄π − ω̄SC
, (4.5)

where Γ̄π and Γ̄SC are the mean throughput of policy π and SC, and ω̄π and ω̄SC are the cor-
responding mean throughput deprivation. A value κπ = 1 would indicate that the trade-off
between the bonding gain and external throughput deprivation is actually a zero-sum-game,
whereas κπ > 1 would indicate net gains. The results indicate that both contiguous and non-
contiguous channel bonding yield substantial net gains over all occupancy regimes. Specifi-
cally, κCO = 95.2, 68.9, 49.4 for contiguous, and κNC = 91.9, 65.7, 45.5 for non-contiguous,
under low, medium, and high occupancy regimes, respectively.

Finding #11: In the worst case, a channel bonding BSS can hinder neighbors by 100’s
of Mb/sec. However, the average hindrance is quite low, and neighbors can defer instead
of not transmitting to reduce the impact. Moreover, the data rate gained by bonding
far exceeds the worst-case data rate lost by neighbors since neighbors are not always
backlogged during bonding epochs.

The hidden cost of hidden nodes

Here, we continue our study of potential detrimental effects of channel bonding by consider-
ing the case of hidden nodes. We again impose a worst-case scenario on the measurements as
follows: channel access occurs as previously with contention occurring on the primary chan-
nel and channel bonding adding channels according to availability and the policy, contiguous
or non-contiguous. However, here we reconsider the measured activity that occurs during the
bonded transmission. While in the previous subsection we considered that the other BSS’s
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Figure 4.17: Distribution of the norm. best-primary-throughput.

would have deferred, here, we consider that other BSS’s are hidden from the bonded transmis-
sion and still transmit and result in frame loss. Thus, this scenario considers that the RTS/CTS
mechanism is not used or fails and disallows capture effects in which the higher signal-to-noise
ratio receiver correctly decodes, e.g., [84]. Thus, in these two ways, this experiment provides
an empirical upper bound as to the damage that hidden terminals could do to a channel bonded
transmission.

In particular, we assume that a frame f is lost if temporal samples are found active in any
of the channels used for transmitting f . Specifically, f is lost if the following expression holds,

∑

t∈Tf

(( ∑

c∈Btx,f

xt,c
)
≥ 1 : 1, 0

)
≥ ε|Tf |, (4.6)

where Tf is the set of consecutive temporal samples required for transmitting frame f , and
the term

∑
c∈Btx,f

xt,c denotes the number of occupied channels at time t. We apply a factor
ε = 0.01 to exclude spurious noise as cause of loss. Thus, we avoid for instance losing an
entire frame when just a single temporal sample was found active during the transmission.

Fig. 4.17a and Fig. 4.17b depict the throughput distribution under hindering (without hid-
den terminals) and hidden-terminal scenarios, respectively. First, observe that throughput is
significantly reduced in comparison to the case with no hidden terminals. For example, for
contiguous channel bonding in high load, mean throughput gains over single-channel transmis-
sion are reduced from 5.2× to 2.6× (50%).

Second, there is significant amount of periods where channel bonding results in extremely
low performance, even for low occupancy values. In fact, there are scenarios in which single-
channel access outperforms bonding (blue areas where Γ̂∗ < 1 in the figure). In particular,
single channel outperforms contiguous channel bonding in 18%, 8% and 8% of the cases for
low, medium and high occupancy, respectively. Even worse, single channel outperforms non-
contiguous channel bonding in 38%, 14%, and 15% of cases respectively. This illustrates that
external traffic patterns may lead to accentuated chances of incurring collisions, thus impairing
the performance of the channel bonder.

Third, due to its more aggressive nature, non-contiguous channel bonding performs slightly
worse than contiguous both in terms of average throughput and how often it is outperformed
by single channel transmission. This, together with the fact that contiguous performs similarly
on average to non-contiguous without hidden terminals, indicates that gains provided by non-
contiguous can be relatively small considering its greater risk and more complex design.
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Finally, also in contrast to Fig. 4.17a, Fig. 4.17b indicates that the decaying trend of mean
normalized best-throughput with load when neighbors defer does not hold with hidden termi-
nals. Indeed, we observe a slight increase of the normalized best-throughput as the occupancy
increases as fewer bonding opportunities also diminish the risk of collisions.

Finding #12: While channel bonding outperforms single-channel transmission in most
cases, it is vulnerable to hidden node interference, with non-contiguous channel bonding
being impacted the most. To avoid the aforementioned worst-case throughput penalties,
nodes can use RTS/CTS, implement capture (to better receive even while a hidden ter-
minal transmission overlaps in time), or increase sensitivity, i.e., reduce the threshold for
sensing channel activity to reduce the frequency of hidden terminal transmissions.

The Camp Nou: a sold out stadium

Finally, we assess if channel bonding can provide throughput gains in areas with persistently
high load over all channels. Figure 4.18 shows normalized throughput under the best primary
channel selection when applying contiguous and non-contiguous channel bonding. Under loads
exceeding 90%, both policies have throughput close to single-channel transmission, indicating
minimal remaining margin for gain. Nonetheless, in transient epochs, where the load is low,
both policies exploit throughput gains. For example, in the stadium during epochs of 20-30%
load, the gain over single-channel throughput is 3.69× and 5.30× for contiguous and non-
contiguous, respectively. In fact, we observe that non-contiguous significantly outperforms
contiguous in a broad regime of “non-extreme” loads given the heterogeneous activity distribu-
tion over channels. For example, at 40-50% average occupancy, contiguous channel bonding
has an average throughput gain of 2.38× whereas non-contiguous has 3.97×, a gain of 67%.
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Figure 4.18: Gains for the bonding BSS assuming others defer.

Lastly, the story can turn quite negative if competing BSS’s do not defer to the channel bon-
der, i.e., if other BSS’s are hidden. In such a worst-case, all bonded transmissions with subse-
quent activity are considered lost. Figure 4.19 shows the results of this scenario for the stadium
traces. As indicated by the blue shadowed areas, most of the periods achieve higher throughput
with single-channel transmission rather than channel bonding. Indeed, single-channel trans-
mission outperforms both channel bonding policies in at least 80% of the epochs over all the
occupancy regimes.
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Figure 4.19: Hidden terminal scenario with the ratio of epochs that single-channel outperforms
bonding shown by the blue curve.

Moreover, comparing similar loads to the other data sets (e.g., 20-30% occupancy), the
stadium performs far worse with hidden terminals. For instance, we find that for 20-30%
average occupancy, even with worst-case hidden terminals, the average throughput gain of
contiguous channel bonding was 2.66×. In contrast, for the stadium, the gain is reduced to
0.59×, i.e., throughput is lost. This indicates that the stadium traffic and channel occupancies
yield greater hidden terminal risk than urban environments, even for the same traffic load. Thus,
similarly to the hindering case, the results suggest that negligible correlation is detrimental in
the presence of hidden terminals.

Finding #13: Even under the stadium’s extremely high average load, short durations of
lower load can be exploited to yield significant throughput gains. However, the risk is
high as hidden terminals could drive the throughput to levels even worse than without
any channel bonding.

Chapter summary
In this chapter, we have depicted the key results on the performance of channel bonding and
derived the corresponding findings. Through our CTMN model and Komondor simulations, we
have identified key characteristics of channel bonding policies, including the fact that different
policies per BSS may be required to maximize the metric of interest. Besides, our experimen-
tal findings of the on-the-field WACA dataset revealed the underpinning factors controlling
throughput gain, from which we highlight the inter-channel correlation. We start depicting po-
tential solutions to the joint spectrum management problem next. In particular, the next chapter
treats heuristic-based approaches to reach satisfactory configurations by forsaking optimal per-
formance.
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Chapter 5

HEURISTIC-BASED POLICIES

A heuristic – derived from the Greek word meaning “to discover” – is any problem-solving
method that employs a practical, flexible, shortcut that is not guaranteed to be optimal but is
good enough for reaching a short-term goal. Heuristics are then used to find quickly satisfactory
solutions in complex systems where finding an optimal solution is infeasible or impractical.

5.1 Heuristics to cope with complexity

As for the problem we deal with in this thesis, there are many valuable works in the literature
about custom channel allocation and channel bonding solutions in wireless networks (e.g.,
[104, 134, 139, 144]). Table 5.1 collects some of them. These solutions rely on certain types of
statistics (e.g., channel occupancy, packet reception rate, or color conflicts) to operate. We call
these prefixed rule-based solutions as heuristic solutions in front of machine learning solutions,
which we discuss in chapter §6.

While there are multiple works treating channel allocation and channel bonding separately,
few of them assess the joint problem altogether in the context of WLANs. We highlight the
following ones. A distributed spectrum assignment for home WLANs relying on out-of-band
measurements is proposed in [63]. Continuous-time Markov networks are employed in [31]
to study a centralized approach for maximizing network fairness. Besides, an algorithm for
primary channel selection based on the bonding direction likelihoods was recently presented
in [77]. However, such likelihoods are estimated by assuming a known number of users in each
channel, which is usually not feasible in real deployments. It is worth noticing that the works
mentioned above consider fully-backlogged traffic, thus missing insights on more realistic pat-
terns with different traffic needs. Conversely, an uncertain traffic channel allocation approach
was presented in [100]. Still, a centralized controller in the backend is required. Recently, we
formulated DyWi (see §5.2), a decentralized, lightweight algorithm, adaptive in the sense that
a new primary channel is only adopted when the BSS performance is under a given satisfaction
threshold [27]. We depict DyWi in the section below.
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Type Ref. Description

Protocol

[53] ARAMIS is a standard-compliant, closed-loop rate adaptation solution that jointly
adapts rate and bandwidth on a per-packet basis. Experiments show that ARAMIS ac-
curately adapts to a wide variety of channel conditions with negligible overhead.

[67] A channel bonding protocol in which a node is allowed to start a transmission as long as
there are some narrow idle channels, and it gradually increases the channel width during
transmission whenever new narrow channels become available.

[76] The AGILE spectrum adaptation system is able to dynamically tune the channel central
frequency and bandwidth of wireless links adapting to the interference and traffic con-
ditions. The developed system can detect under-utilized spectrum fragments and adjust
the occupied spectrum.

[73] A channel allocation algorithm based on an integer nonlinear programming model is
used in a CTMN representation of the system, with the target of maximizing the through-
put in channel bonding WLANs.

[19] ACORN is an auto-configuration framework for enterprise 802.11n WLANs. ACORN
integrates user association and channel allocation functions since they are tightly cou-
pled when wide channels are used.

[143] A MAC protocol which supports discontinuous channel bonding is proposed. The pro-
tocol modifies the traditional frame structure.

[114] A guard-band-aware channel assignment scheme reduces the number of required guard
channels for a given transmission by utilizing adjacent channels.

[67] A channel bonding protocol with collision detection in which a node gradually increases
the transmission bandwidth whenever new narrow channels are found available.

Table 5.1: Channel bonding custom protocols.

5.2 Heuristic-based primary channel selection for dynamic
channel bonding

In thesis paper #4 [27], we formulate dynamic-wise (DyWi), a decentralized, lightweight algo-
rithm that leverages information about the sensed spectrum occupancy in the whole allocated
bandwidth of a node (i.e., primary and secondary channels). Based on such occupancy, the pri-
mary channel is selected online to maximize the expected throughput. It does so by considering
the activity of the target primary channel and the potential bonds that could be established with
its adjacent channels. DyWi is adaptive in the sense that a new primary channel is only adopted
when the BSS performance is below a given satisfaction threshold. Besides, since DyWi relies
just on local information, neither neighbor messaging nor a central controller is required. This
property makes DyWi suitable to be implemented in off-the-shelf APs, thus avoiding costly
inter-BSS collaboration. Results in IEEE 802.11ax HD deployments show substantial improve-
ments with respect to traditional primary channel selection, even when considering substantial
delays due to channel switching.

5.2.1 Online selection of the primary channel

Let an AP belonging to BSS w operate under dynamic channel bonding and have allocated the
full available bandwidth according to channel allocation Cw. Is there a way to estimate the best
primary channel inside the channelization, pw ∈ Cw? For the sake of identifying a convenient
primary channel, we propose an iterative online primary selection (OPS) approach.

In essence, the AP of w periodically decides the primary channel selection, where each
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Figure 5.1: Example of the satisfaction-based online primary channel selection. Since w is not
satisfied at the end of iteration t1, the primary channel is switched from pw,1 = p to pw,2 = p′,
determined by a given OPS rule. In contrast, with the new primary, w gets satisfied in t2 and
keeps p′ in t3.

decision instant represents the beginning of an iteration. Specifically, at the beginning of a
given iteration t, the AP of w measures the throughput Γw,t−1 achieved during the last iteration
t − 1 and acts according to a throughput satisfaction condition. In this case, we focus on the
successful downlink traffic as the prime performance metric. However, the algorithm can be
easily extended to consider other parameters, such as latency. Namely, the primary channel
remains the same if w is satisfied because a sufficient share of the generated traffic has been
successfully sent during the last iteration,1 i.e., Γw,t−1 ≥ η`w,t−1, where η is the satisfaction
threshold and `w,t−1 is the actual generated traffic load in that iteration. Otherwise, w will
switch to a new primary channel at the cost of remaining inactive during a period δ, which is
required to announce the new primary channel to the associated stations (STAs) and apply the
new channel configuration. Note that the way the new primary channel is selected depends on
the OPS rule. The temporal evolution of the general procedure is displayed in Fig. 5.1 through
an illustrative example.

Algorithm 1 shows the pseudocode of the online primary channel selection for a generic
OPS rule. Note that any OPS rule relies on the gathered data about the bandwidth occupancy
in the last iteration. Formally, the empirical probability that a subset of n channels in channel-
ization C was free (or idle) during the last iteration t− 1 given a primary pw,t is given by

Fw,t−1(C, pw,t, n) = Et−1

[
Prx(c) < CCA, ∀c ∈ C(pw,t, n)

]
, (5.1)

where Prx(c) is the power received at basic channel c and C(pw,t, n) is the set of basic channels
used in the transmission, which is mandated by the channelization scheme C. For instance, fol-
lowing the IEEE 802.11ac/ax channelization, for primary p = 6 and n = 2, the corresponding
40-MHz bonded channel is C(6, 2) = {5, 6} (channels 52 and 56 in the standard). With slight
abuse of notation, Et−1 represents the expected value function at iteration t− 1.

Three OPS rules are evaluated in this work: dynamic-random (DR), dynamic-free (DF),
and dynamic-wise (DiWy or DW). In the event of an unsatisfactory iteration, DR selects a
new primary channel uniformly at random, DF picks the one found most free during the last

1We rely just on data from the last iteration for lowering memory demands and enabling fast adaptability in
dynamic environments.
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Algorithm 1: Online primary selection. OPS refers to the selected online primary
selection rule.

Input: pw,t, η, OPS, C;
1 iteration t← 0;
2 while BSS w active do
3 while iteration t not finished do
4 CSMA/CA normal operation with dynamic channel bonding;
5 end
6 t← t+ 1;
7 Γw,t−1 ← measure throughput(t− 1);
8 Fw,t−1 ← get idleness(t− 1);
9 if Γw,t−1 < η`w,t−1 then

10 pw,t ← apply ops(pw,t−1,Fw,t−1,OPS,C)
11 channel switch(pw,t, δ);
12 end
13 end

iteration, and DyWi selects it based on the forecast throughput given the probability of bonding
in every possible bandwidth. Such probabilities are estimated by periodically measuring the
energy in all the secondary channels as done during the PIFS period. Apart from DR and DF,
we also consider as baseline the traditional fix primary (FP) allocation, which does not change
the primary channel under any circumstances, so it is not referred in Algorithm 1.

5.2.2 Dynamic-wise primary channel selection

A fundamental question arises when considering DyWi regarding the way the primary channel
should be selected. Assume a scenario where a BSS w is allocated 80 MHz accounting from
channel 1 to 4. At the end of iteration t − 1, w is unsatisfied and changes its primary from
pw,t−1 = 2 to pw,t. Assume also that the probabilities of finding each of its allocated basic
channels free in iteration t − 1 was πw,t−1 = [0.93, 0.38, 0.85, 0.85], where πw,t−1[c] is the
probability of finding the basic channel c free. Then, two main options may be contemplated
as best choice for selecting pw,t to maximize the throughput Γw,t of the upcoming iteration: i)
to pick the primary with highest probability to be free (i.e., pw,t = 1 in this case), or ii) to pick
the primary providing the highest potential average data rate considering both its probability to
be free, as well as the probability of the channels nearby (e.g., pw,t ∈ {3, 4}). Notice that there
is not an evident choice to provide beforehand since multiple parameters apart from πw,t−1 will
impact the performance. For example, dynamic network activity affects to the SINR, MCS, or
packet error rate.

We tackle this point at issue by proposing a lightweight maximization problem for the
forecast data rate of BSS w at iteration t. The idea behind this approach is that maximizing
the successful data rate should maximize the throughput. Thus, despite being a sub-optimal
formulation for maximizing the throughput,2 selecting the primary channel according to the
forecast average data rate is a convenient heuristic, as shown later. In particular, the average
data rate is estimated by the probability of transmitting at each possible bandwidth. Hence, we

2One should consider different complex parameters such as the buffer status and environment dynamics to
define an optimal formulation.

54



“main” — 2020/11/19 — 10:04 — page 55 — #77

can formulate the problem as

argmax
pw,t 6=pw,t−1

r̂w,t(pw,t),with

r̂w,t(pw,t) =
∑

n∈N
Pw,t

(
Fw,t−1, pw,t, n

)
rw
(
n
)
,

(5.2)

where r̂w,t(pw,t) is the forecast average data rate by BSS w at iteration t for new primary pw,t,
and n is the number of bonded channels, which should be permitted by the channelization
scheme. For instance, in the IEEE 802.11ax amendment, n ∈ N = {1, 2, 4, 8}, for 20 to
160-MHz bandwidths. Pw,t(Fw,t−1, pw,t, n) is the probability that w transmits in n contiguous
channels in the starting iteration given pw,t is selected, and rw(n) is the data rate given the
bandwidth nb. Note that r also depends on the MCS index, which will vary according to the
signal-to-noise ratio (SNR) at the STA.

In order to estimate the probability of transmitting in each possible combination of chan-
nels, we rely on the empirical probability Fw,t−1(C, pw,t, n), which was updated during the
CSMA/CA operation in iteration t − 1. Since dynamic channel bonding is implemented, the
largest available bandwidth is always picked in every transmission. Hence, the probability of
transmitting in a certain bandwidth is contingent on the probability of transmitting in higher
bandwidths. Specifically,

Pw,t(Fw,t−1, pw,t, n) = Fw,t−1(C, pw,t, n)−
∑

n′∈{N|n′>n}Pw,t(Fw,t−1,pw,t,n′)

, (5.3)

where the probability of transmitting in wider bandwidths is subtracted due to the constraint
n′ ∈ {N |n′ > n}. For instance, for bands UNII-1 and UNII-2 altogether (i.e., C20-MHz =
{1, ..., 8}), we define P(F , p, 8) = F(C, p, 8) for n = 8 (i.e., 160-MHz). Similarly, on the
other end, P(F , p, 1) = F(C, p, 1) − P(F , p, 2) − P(F , p, 4) − P(F , p, 8) for n = 1 (i.e.,
20-MHz).

As for the complexity of the presented OPS rules, note that they are all computational
lightweight, especially DR, since it does not keep track of any data. Despite DF’s complexity
increases with the number of basic channels, FDF

(
|C20-MHz|

)
, its complexity remains also low.

DyWi’s complexity, however, is bounded by FDW
(
|C20-MHz|(log2 |C20-MHz| + 1)2

)
for the IEEE

802.11ax channelization. Nonetheless, DyWi is completely tractable in operation time by off-
the-shelf network cards since the number of possible bonds in the 5-GHz band is still small.

5.2.3 DyWi performance
Regarding the simulation deployments, we contemplate dense 40x40 m2 scenarios following
the characteristics of the deployments shown in §4.2.1, where BSS A implements dynamic
channel bonding and the rest of BSS’s implement single-channel or dynamic channel bonding
with the same probability 1/2. The simulation time of each scenario is Tobs = 25 seconds. As
for the configuration of the online algorithms, we set the iteration time T = 1 s and threshold
for the satisfaction η = 0.9. Note that we consider a value of η smaller than 1 to provide
stability to the algorithm.

Figure 5.2 shows the average throughput Γ̄A. We observe that DyWi clearly outperforms
FP and DR, even when considering a huge adaptation cost delay δ = 100 ms (i.e., an important
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Figure 5.2: Mean throughput of BSS A for different OPS rules: fixed primary (FP), dynamic
random (DR), dynamic-free (DF), DyWi (DW). Continuous lines assume no switching cost
while dashed lines correspond to 100 ms delay per switch.

10% penalty with respect to the iteration duration T = 1 s). While DR may be counterproduc-
tive for high loads, both DF and DyWi keep a constant performance after saturating. Such a
throughput reduction for DR is caused by the fact that the larger ¯̀

A, the harder to remain satis-
fied, which leads to more frequent channel switching. Then, critically for DR, the random se-
lection of the primary leads to picking each channel with the same probability. Accordingly, the
average throughput converges to FP’s because, on average (for all the scenarios), the primary
channels are equiprobable selected whenever the satisfaction condition is not accomplished.
In summary, results show significant improvements with respect to traditional allocation, even
under high switching adaptation costs.

To assess the temporal evolution of the different algorithms, Fig. 5.3 plots the cumulative
distribution function (CDF) of the number of iterations k required to reach a satisfactory pri-
mary channel for moderate, medium, and high traffic loads. We observe that all the OPS rules
take very few iterations to maximize performance, meaning that the heuristic can usually rely
on its performance estimates. As expected, the lower the load, the higher the value of CDF(k)
for any k. Note that there are few unusual scenarios where the CDF varies for FP. Those are the
cases where the load is almost adequate from the very beginning since the traffic generation’s
stochastic nature makes the throughput vary around the satisfaction threshold as the simulation
progresses.
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Figure 5.3: CDF of the number of iterations k required to reach satisfaction.
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Finding #14: Harnessing heuristics from occupancy of secondary channels in chan-
nel bonding BSS’s is a useful approach to select the primary that maximizes individual
throughput and reaches fast satisfaction under steady environments.

Notice that DyWi and the rest of OPS rules have been assessed under steady environments,
where only one BSS was able to change its configuration. So, the used heuristics are reliable in
the sense that they are not outdated and can provide meaningful hints. For multi-agent setups
where multiple BSS’s may change its configuration, such heuristics are no longer trustful. So,
we leave as future work the design of a CSMA/CA-like mechanism where DyWi can be paused
under the observation of performance inconsistencies and resume after a random period. This
way, agents would generate a more stable environment at the cost of sacrificing short-term
performance maximization.

Chapter summary
This chapter overviewed heuristic-based approaches related to the spectrum management prob-
lem and presented the DyWi algorithm for online primary channel selection. Relying upon
heuristics allows finding rapid good enough configurations by forsaking optimal performance.
In the next chapter, we question whether machine learning can aid further in the problem.
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Chapter 6

MODEL-FREE REINFORCEMENT
LEARNING

This chapter discusses various model-free reinforcement learning approaches to tackle the
problem of channel allocation in distributed, dynamic channel bonding WLANs under varying
traffic load demands. The focus is on the adaptability or learning speed of the multi-agent-
empowered BSS’s to achieve adequate performance. We motivate why stateless RL and par-
ticularly multi-armed bandits are the most suitable approach for the problem. In contrast to
most of the works on RL for spectrum management, we evaluate different MAB exploration
techniques by simulating realistic physical and MAC operation in two different settings: a self-
contained toy scenario with known optimal configurations and generalized random scenarios
to benchmark the MABs under different node densities and traffic load variations.

This chapter has no thesis paper of reference. At the time of depositing this dissertation,
the contents in this chapter are original and have not been submitted for publication.

6.1 A change of paradigm towards reinforcement learning
As discussed in the chapter before, heuristics are low-complex solutions that work well in
steady scenarios. However, in highly dynamic scenarios, its performance is severely under-
mined since they rely on statistics only from recent observations that tend to be outdated when
applied. So, heuristics are limited to the meaningfulness of the gathered observations, and such
meaningfulness is hard to keep when the environment changes. Then, in uncoordinated, high-
density deployments, where multiple BSS’s operating under different traffic regimes adapt their
spectrum configurations at their own, estimating and designing accurate hand-crafted spectrum
management techniques is unfeasible.

Are there alternatives to tackle this dynamism and high complexity imposed by the joint
problem of spectrum allocation and channel bonding? Indeed, ML solutions have been widely
studied in wireless networks for a plethora of problems. In fact, we find a clear trend towards
ML-aided solutions, which are expected to cope with the ever-increasing complexity of new
applications and services like Vehicle to Everything (V2X) communications, Machine Type
Communications (mMTC), or Ultra-Reliable Low-Latency Communication (uRLLC). The ca-
pability of ML for automatically learning (and adapting) to (un)seen situations can cope with
heterogeneous scenarios, including different mobility, connectivity, and performance require-
ments. That is, a change of paradigm towards solutions aided with artificial intelligence and ML
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is getting increasingly common in the context of present and future wireless networks [93,140].
Different surveys on the matter have been published in the last years, from which we high-
light [16, 37, 70, 79, 124, 142] and references therein.

As for the joint problem of channel allocation and channel bonding, multi-channel next-
generation WLANs’ complex dynamics will make it necessary to rely on some sort of learning
to overcome hand-crafted alternatives. That is, relying on prior hard-coded rules and protocols
seems not an option in the quest to support the ever-increasing demands of next-generation
services and applications in terms of very high throughputs and very low delays. Further,
undertaking new protocol designs that could consider all the dynamism and generalize to a
complete set of scenarios is merely hopeless.

6.1.1 What is reinforcement learning?

RL refers to sequentially training ML models based on decisions taken towards maximizing
a cumulative reward. RL relies on agents that ought to learn how to achieve a goal in an
uncertain, potentially complex environment. The agent employs trial and error to come up
with a solution to the problem. To get the agent to do what the programmer (or administrator)
wants, the agent gets either rewards (e.g., throughput) or penalties (e.g., delay) for the actions
it performs (e.g., switch to another primary channel). Its goal is to maximize the total reward
(e.g., mean throughput during an observation time). Although the designer sets the reward
function and policy, i.e., the rules of the game (e.g., the more throughput, the better), he/she
gives the model no hints or suggestions for how to solve the game. It is up to the strategy or
exploration algorithm to figure out how to perform the task to maximize the reward, normally
starting from random trials and finishing with sophisticated tactics.

More formally, RL models an agent that tries to learn how to behave in an environment by
performing actions and observing the collected rewards. At a given iteration t, action a results
in a reward observation drawn from a reward distribution rt(a) ∼ θa. In the context of WLANs,
an agent could be installed into an AP that tries to maximize a certain BSS performance metric
by testing different configuration settings and adapting to the collected reward observations.

Model-based vs. model-free

There are two main RL approaches: i) model-based approach to first estimate the system
model from observations and then apply dynamic programming or a computationally efficient
heuristic policy such as myopic or Whittle index [90] policies, and ii) model-free approach
to learn the policy directly through interactions with the system without estimating the system
model. The model-based approach is less favored for our problem since the user’s limited
observation capability may result in a bad (and most times outdated) system model estimation.

In particular, since the system interactions in the spectrum management problem are com-
plex and generated by multiple actors (nodes), we must undoubtedly rely on model-free ap-
proaches. That is, when getting rid of strong assumptions like Markovian channels (e.g.,
[48, 49, 99]), it would not make sense to have an agent trying to infer what is the model be-
hind the interactions perceived at the varying power levels detected at each of the channels.
Moreover, even in the case where such interference model was stationary (and let us also as-
sume simple enough to be accurately captured through a model), in the very moment that the
agent-empowered AP initiated a transmission, the contention and interference generated to sur-
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rounding nodes may completely change the learned model consequently. Thus, one can easily
derive that having a giant model considering all the possibilities, or a specific models per each
configuration, is not viable.

6.1.2 Why RL and not other ML frameworks?
In plain words, RL seems to fit more naturally to the spectrum management problem than the
other two principal ML alternatives: supervised learning (SL) and unsupervised learning (UL).
We reason why below.

Supervised learning (SL) is the ML task of learning a function that maps an input x to an
output y based on example input-output pairs (xi, yi). It infers a function from labeled training
data consisting of a set of training examples. An SL algorithm then analyzes the training
data and produces an inferred function, which can be used for mapping new examples (i.e.,
generalizing). One way to use SL in our problem would be to try to learn the general and
true WLAN behavior, function f(x) = y, through an estimate hθ(x) = ŷ, where hθ(x) is the
learned function. Then, once the hypothesis hθ(x) is learned – i.e., the error is sufficiently low
with respect to f(x) – one could try to infer the input (or configuration) x̂∗ that maximizes the
performance ŷ∗, hoping that x̂∗ would also result in the actual y∗.

The main three drawbacks of SL for our problem are i) designing the model to fit, which
should consist of a vast number of attributes (e.g., nodes’ locations, configuration parameters,
performance metrics, etc.), ii) it needs a lot of data to learn accurate functions in complex
systems (e.g., multi-parameter non-linear models), so our agents would not have that amount of
time to do so,1 and iii) SL is thought to generalize to unknown scenarios, but this is not the focus
of our problem because we want the agent to adapt to potentially infinite different worlds from
scratch. The only way to overcome such a task with SL would be to measure the performance
of numerous settings in a lot of scenarios (primarily offline), then try to infer some general
behavior from the true and unknown function y = f(x), where input x is the representation of
the action setting and the environment around the agent, and finally predicting the performance
ŷ = hθ(x

′) for unlabeled (unknown) input x′. The significant issues are that the input domain of
x is multi-dimensional (with even categorical dimensions) and tends to infinity. The function f
representing WLANs’ behavior is so complex that learning an accurate estimate hθ for realistic
deployments is simply inconceivable.

Moreover, there is another issue when trying to replicate Wi-Fi through (deep) supervised
learning: the problem of estimating a function is different from the problem of maximizing
an unknown function. That is, even though we could get a good estimator hθ(x) of the true
function, the optimal of such estimated function may be completely different than the true
optimal of f . In other words, our oracle may work well for most of the inputs x but fail for the
input x∗ maximizing f(x). To showcase such an issue, let us introduce the example illustrated
in Figure 6.1, where a unidimensional input x ∈ [0, 20] produces an output y. The true and
unknown function f is plotted in blue. The pairs (x, y) that have been sampled to later feed
the ML model are highlighted in yellow. Finally, the learned function hθ is plotted in red.
We observe that while both functions (h and f ) are really similar (leading to a small mean
prediction error), we fail at inferring the argmax by just looking at hθ (around x∗ = 2, where

1We state that generating a dataset rich enough to generalize is unfeasible since data samples should have large
multi-dimensional attributes to be meaningful. So, for instance, simply by moving one STA one meter away, a
new scenario (or data sample) would be generated.
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the true argmax is around x∗ = 12). Again, it is harder to generalize to an unknown maximum
than to approximate to a function considering all the domain.
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Figure 6.1: Motivation example on the argmax problem.

In unsupervised learning (UL), there are only inputs x and no corresponding output vari-
ables. That is, there is no y. UL’s goal is to model the underlying structure or distribution in the
observed data to learn more about it. It is called unsupervised because, unlike SL there are no
correct answers since samples are unlabeled. Algorithms are left on their own to discover po-
tentially meaningful structures in the data. UL problems can be further grouped into clustering
(to discover the inherent groupings in the data) and association (to discover rules that describe
large portions of your data) problems.

Similarly to SL, the underlying structure of the observed data in the problem at issue is
expected to be so complex that any attempt to model it through UL will be most likely fruitless.
Hence, we believe that following an RL black-box approach is preferable: try to adapt from
scratch to whatever the system’s observations are, no matter its intrinsic nature.

6.2 Mapping the problem to RL
This section depicts the modifiable attributes, actions, system statuses, and states composing
the learning framework for the primary channel and maximum bandwidth allocation in dynamic
channel bonding WLANs. Notice that by defining the primary channel and maximum band-
width, we actually determine the secondary channels since we follow the IEEE 802.11ac/ax
channelization C. We then formally formulate the problem to solve. Finally, we discuss the
alternatives for learning architectures and RL models.

6.2.1 System model

We consider a static WLAN of W potentially overlapping BSS’s {w1, w2, ..., wW}, each com-
posed by one AP and one or multiple STAs. The TMB path-loss model is assumed [10] and
spatially distributed scenarios are captured. Namely, we cover scenarios where the BSS’s may
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not all be inside the carrier sense range of each other. Therefore, the typical phenomena of home
Wi-Fi networks like flow in the middle and hidden/exposed nodes are captured as in [26–28].

As for the channelization, we consider |C| 20-MHz channels (or basic channels), e.g.,
|C| = 8 from channel 36 to 64 following the IEEE 802.11ac/ax standards. Accordingly, a
transmitter may bond up to |C| × 20 MHz (e.g., 160 MHz if |C| = 8). Note that not any
bonding combination is permitted by the IEEE 802.11ac/ax ammendments. For instance, 60
MHz transmission (3 basic channels) are not permitted [5,7]. We assume all the BSSs’ have dy-
namic channel bonding capabilities to bond up to |C| channels. Nevertheless, as explained later
in section 6.2.2, the maximum number of channels to be aggregated is limited by the maximum
bandwidth attribute. For instance, we can easily restrict a BSS to single-channel transmissions
by appropriately setting such attributes. The adaptive RTS/CTS mechanism introduced in the
IEEE 802.11ac standard [5] for dynamic bandwidth is considered.

Data packets generated by a BSS w follow a Poisson process with a mean duration between
packets given by 1/`w, where `w is the mean load in packets per second. Unlike much of the
works in the literature, we consider that the mean traffic load of every BSS may vary over time,
thus introducing mid/long-term dynamism to the problem.

6.2.2 Attributes and actions

While it is clear that the primary channel is critical to the BSS performance since it is where the
backoff procedure runs, the maximum bandwidth is of significant relevance as well. Indeed,
once the backoff expires, the channel bonding policy and maximum allowed bandwidth will
determine the basic channels to transmit in. For instance, in the example in Figure 2.2c, if the
node was allocated 40 MHz (channels 1 and 2) rather than 80 MHz (channels 1 to 4), it would
bond the first 2 channels at the end of the second backoff, rather than 4. Notice that, as stated
by findings #2 and #3, limiting the bandwidth, or being conservative in general, may be much
appropriate to BSS’s in order to reduce adverse effects like unfavorable contention or hidden
nodes. Next, we motivate why the set of possible maximum bandwidth values b has a profound
impact on the BSS performance. So, the more flexible b, i.e., the more values it can get, the
higher the potential performance.

The role of the maximum bandwidth

To illustrate why not restricting the maximum bandwidth can be counterproductive, let us con-
sider toy scenario IV (Figure 6.2a) consisting of BSS’s A and B facing a potential hidden node
situation. Notice that STA A is close to AP B, so STA A experiences disturbing interference
from AP B. Likewise, AP B is far enough from AP A to avoid contention whenever AP A bonds
channel 3 (e.g., when using 80 or 160 MHz). Beyond contention, there is a potential hidden
node issue for STA A. If the power of interest (received from AP A) is not sufficiently high
with respect to the interference power (received from AP B and the background noise), STA
A would not be able to decode any packets from AP A, thus leading to detrimental through-
put. In particular, given that we assume a fixed transmission power, STA A would need AP A
to transmit in 20 or 40 MHz at maximum to receive enough power of interest to decode the
packets. So, in this example, AP A should not transmit in 80 or 160 MHz whenever AP B is
transmitting, even when AP A finds its full allocated spectrum free at the backoff termination.
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(a) 2-BSS’s toy scenario deployment.
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Figure 6.2: Toy scenario IV: effect of limiting the maximum bandwidth. BSS B (always using
single-channel) interferes with STA A, which perceives: (b) negligible interference since the
power of interest from AP A is higher enough than the interference because AP A concen-
trates the transmission power into 40 MHz, and (c) critical interference due to the lower power
reception from AP A at 160 MHz.

With this simple example, we corroborate that, while channel bonding is necessary to im-
prove satisfaction under demanding traffic loads, not limiting the maximum bandwidth may
also raise drawbacks. Such a limitation should be adapted to each scenario given the hetero-
geneity and chaotic nature of Wi-Fi deployments.

Action space

Given the relevance of the primary channel and the maximum bandwidth, we consider below
two configurable attributes each agent-empowered BSS’s can modify during the learning pro-
cess:

• Primary channel pw: primary channel where the backoff procedure is executed, p ∈ Cw,
where Cw is the channel allocation of BSS w.

• Maximum bandwidth b: maximum bandwidth (in number of basic channels), b ∈ β =
{1, 2, 4, ..., |Cw|}. Recall that, with dynamic channel bonding, the transmitter can adapt
to the sensed spectrum on a per-frame basis. So, the bandwidth limitation just sets an
upper bound on the number of basic channels to bond.

We therefore encounter an action space Aw per BSS w of size

O(Aw) = O(Cw)×O(βw), (6.1)

where O(·) represents the number of elements or cardinality of a set, and every action, or
spectrum configuration, a = (pw, bw) ∈ Aw is a pair of the primary channel pw ∈ Cw and
maximum bandwidth bw ∈ βw attributes. Should we consider a central single agent managing
W ′ ≤ W BSS’s, the action space increases exponentially to

O(A) =
W ′∏

w=1

O(Cw)×O(βw). (6.2)

Definition 6.2.1 (spectrum configuration). The spectrum configuration of a BSS w is defined
as the pair primary channel pw and maximum bandwidth bw.
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If we assume that BSS’s have the same attribute spaces C and β, ∀w, then we clearly ob-

serve the exponential growth of the whole action space O(A) =
(
O(C)×O(β)

)W ′
.

6.2.3 Statuses, observations and states
Before discussing what is an state, which its definition highly depends on the RL framework in
use, let us coin a new concept called system status to depict how the whole WLAN looks like
at time t.

Definition 6.2.2 (system status). The system statusHt is the minimum information we need to
describe the entire WLAN in a given time instant t.

The system statusHt of a static WLAN deployment2 at time t is given by three key parame-
ters of each of the W ′ agent-empowered BSS in the WLAN like if we were taking a screenshot
of the system: the primary channel pw,t, the maximum bandwidth bw,t, and the quantized mean
load `w,t. Formally, a status is defined by the set

Ht = {(p1,t, b1,t, `1,t), (p2,t, b2,t, `2,t), ..., (pW ′,t, bW ′,t, `W ′,t)}. (6.3)

First, notice that we only consider the attributes of the agent-empowered BSS’s since the
rest of BSS’s are not allowed to modify its configuration; thus, they do not convey any extra
information for the status. For instance, let us consider a deployment with just a couple of
BSS’s, A and B. Assume A is agent-empowered, whereas B is not, so W ′ = 1 and W = 2. The
system information relies just on the configuration of A since B will never change its own. So,
the number of system statuses is just the number of possible configurations A can take.

Second, we rely on a quantization L of the mean traffic load ` to discretize its continu-
ous domain. Further, notice that the agent cannot modify the load ` by any means since it is
application-dependent. Naturally, the throughput performance depends on the traffic load, the
AP configuration, and the rest of BSS’s configurations and loads.

Definition 6.2.3 (world). The world (or environment) of a particular BSS w is defined as the
combination of configurations and loads of each of the rest BSS’s.

From the point of view of a particular BSS w, the combination of current spectrum con-
figurations and loads of the rest BSS’s conform its world or environment, which is determined
as

Iw,t = {pw′,t, bw′,t, `w′,t|w′ 6= w}. (6.4)

Finally, the amount of possible statuses a certain deployment may have is given by the
possible values each of the status parameters can take,

O(H) =
W ′∏

w=1

O(pw)O(bw)O(`w), (6.5)

which raises again exponentially with the number of agents and size of the attributes’ spaces.
Assuming all the agent-empowered BSS’s have the same capabilities,

O(H) =
(
O(p)O(b)O(`)

)W ′
. (6.6)

2Static refers to the fixed locations of all the nodes in the WLANs, including APs and STAs.
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Naturally, most of the time, the agents cannot know the system’s status in a real-time fash-
ion. However, they could rely on partial and delayed observations to then infer the most ac-
curate state through some discretization function. Besides, since observations are architecture-
dependent – given they may be limited to local sensing capabilities or, on the contrary, be
shared via a central controller – the states’ definition is also strictly dependent on the RL model
under consideration.

6.2.4 Problem definition
In general terms, our goal is to improve the BSS’s performance by maximizing their throughput
and minimizing their delay. The key then is to let the BSS’s find (learn) the best actions (p, b),
where best depends on the problem formulation itself. For instance, we could assess a max-
min approach to maximize the throughput satisfaction experienced by the less favored BSS.
Another common aim in network management is to boost the fairness of some performance
metric among contending BSS’s in the WLAN. This thesis does not stick into one problem
formulation, but we instead evaluate different performance metrics, including individual and
aggregated ones.

In any case, we must define the individual performance metrics of each BSS to assess
whether such metrics tend to improve (i.e., the learning is working) or not. We focus on the
throughput satisfaction ξ and the delay d. First, the throughput satisfaction of a BSS w at
iteration t is simply defined as the ratio of throughput Γw,t to generated traffic load `w,t,

ξw,t =
Γw,t
`w,t

. (6.7)

So, ξw,t ∈ [0, 1],∀w, t. The throughput satisfaction is a commonly used parameter to indicate
the ratio of packets acknowledged to the number of packets generated by a BSS in a given time
window. Thus, a satisfaction value ξ = 1 indicates that all the traffic has been successfully
received at the destination.

Second, the delay is defined as the mean data packet delay, simply computed as the time
difference between a data packet being generated and acknowledged. Unfortunately, the delay
is not bounded, which is convenient for guaranteeing most RL algorithms’ convergence. Thus,
we propose a bounded delay ratio defined as

δw,t =
d∗

dw,t
, (6.8)

where dw,t is the mean delay during iteration t, and d∗ is the known minimum achievable delay
experienced when transmitting a single data packet at maximum MCS 11. So, δw,t < 1,∀w, t
holds because every BSS will always experience a delay higher than d∗ simply due to the MAC
interframes (SIFS, DIFS) and control packets exchange (RTS, CTS, ACK).

Once the two main performance metrics have been defined, we may formulate the reward
function R, the philosopher stone of any RL algorithm. In this work, we assess two definitions
of R: only throughput based,

R(ξ) = ξ, (6.9)

and a throughput-delay mix,
R(ξ, δ) = ξ · δ, (6.10)
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respectively. Notice that we propose the latter’s product operation given the high correlation
between throughput satisfaction and delay. Generally, a high ξ leads to low δ and vice versa.
However, for the cases where ξ = 1, there may exist configurations providing different delay
values. Thus, we anticipate it is worth explicitly considering the delay as well.

Regardless of the reward function R, we aim at maximizing the cumulative reward as soon
as possible,

G =
T∑

t=1

rt, (6.11)

where T is the number of iterations we have to execute the learning, and rt is the reward at
iteration t. Let us emphasize the complexity of the problem by noting that rt depends on the
reward definition R, on the action at selected at t, and also on the world Iw,t.

6.3 RL framework for the spectrum management problem
Now that we have depicted the RL problem, we may discuss the pros and cons of different
model-free RL approaches in terms of the learning architecture (i.e., where the learning is
carried) and RL models (i.e., what algorithms run the learning).

6.3.1 Learning architecture
In broad terms, there are two main types of learning architectures: centralized and distributed.
In a centralized architecture, all the agents must communicate to a central controller and fol-
low its instructions. In other words, agents become dummy in the sense that they only provide
data about their performance and sensing metrics to the controller. It is the central controller
responsible for aggregating this data from the dummy agents and process it to generate the new
actions each edge agent must undertake. In a way, there would be just a single (super agent) at
the central controller conducting the action selection of each BSS w, leading to an aggregated
action space A including all the possible actions of each BSS w, i.e., A = {Aw},∀w. So, a
super action a would be the combination of all the spectrum configurations of each of the W ′

controlled BSS’s, i.e., a = {(p1, b1), (p2, b2), . . . , (pW ′ , bW ′)}.
The centralized architecture has the advantage of counting with a holistic vision of the

WLAN, thus having the capability to identify cause-effect relations between the configurations
of the BSS’s and act explicitly to aid those performing poorly. However, gathering such aggre-
gate data entails non-negligible communication delays from the dummy agents to the central
controller, making the data potentially outdated. Besides, relying on a single entity raises the
risk of failure in the whole WLAN. Moreover, the aggregated action space grows exponentially
with the number of BSS’s (6.2), hindering RL algorithms’ rapid execution.

In contrast to the centralized architecture, decentralized and distributed architectures do
not rely on a single central controller. Instead, multiple controllers are used in the distributed
design, whereas no controllers are present in decentralized architectures. Since a decentralized
architecture can be thought as a composite of different centralized architectures, let us focus
on the distributed one to compare the centralized to a radically different architecture. In a
distributed architecture, agents operate by themselves without any external controller. That
is, agents make decisions on their own, relying on their local data, or via some peer-to-peer
communication with neighboring agents in the case of collaborative settings.
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Distributed architectures are less likely to fail than centralized ones because the decision-
making does not rely on a single entity but all the BSS’s in the WLAN. Besides, the processing
and communication delay to the central controller is no longer an issue since edge agents count
on real-time metrics to conduct their RL algorithms. This is key for efficient and responsive
spectrum management in WLANs. As for the drawbacks, decentralized architectures may
provide inconsistent performance when not properly organized, leading to sub-optimal config-
urations. Further, fairness issues become a challenge when there is no direct way to cope with
low performing BSS’s.

Finally, a hybrid combination of centralized, long-term learning (e.g., big data) and quick,
short-term learning in the edge is a topic that deserves to be studied. In [129], we propose
a realization of the ITU-T ML-aware architecture for IEEE 802.11 WLANs. Through the
definition of ML components and management functions, the ITU-T architecture provides the
necessary flexibility for fulfilling different use case requirements, ranging from centralized
solutions to decentralized approaches.

6.3.2 RL models
Different ML solutions for the spectrum management problem, especially in RL, have been
proposed in recent years. However, certain assumptions these papers have in common hinder
their accurate evaluation. For instance, most papers consider synchronous time slots (e.g.,
[45,47,102,106,122,145]), a strong assumption that does not hold at all in CSMA/CA WLANs.
Also, some papers define a binary reward, where actions are simply good or bad (e.g., [47, 49,
145]). This, while easing the RL framework, is not convenient for rewards taking into account
continuous-valued performance metrics like throughput or delay. Further, most of the papers
consider simple traffic patterns or even fully backlogged regimes (e.g., [74, 101, 133]), thus
overlooking the effects of dynamic traffic loads. Also related to the dynamism assessment,
most of the papers do not consider packet aggregation, which is a critical feature affecting the
throughput and delay. To ease their analysis, some papers even consider conflict graphs rather
than actual carrier sense areas (e.g., [101, 106]), thus disregarding spatial distribution effects.
Last but not least, a majority of the papers provide custom RL solutions that the reader may find
complex to follow. Indeed, in most of cases, the design of states, actions, and rewards is not
justified but simply formulated. This leaves short room to extrapolate such solutions to slightly
different problems, making it harder to reproduce the presented results.

From the set of model-free RL approaches, we highlight MABs, Temporal Difference (TD)
methods like Q-learning, and deep reinforcement learning (DRL).3 We discuss them below in
order of increasing complexity and motivate why we envision MABs as the best choice.

Stateless RL variations

The most common formulations of RL rely on states, which are mapped through a policy π
to an action a, i.e., π(s) = a. However, stateless approaches do also exist. A key benefit of
the stateless RL is precisely the absence of states, which eases its design by relying only on
action-reward pairs. In this regard, the most representative stateless RL model for non-episodic
problems is the MAB formulation. However, stateless variations of TD methods like stateless

3We discard Monte Carlo methods since they require episodes to eventually terminate in order to work, which
contrasts our vision of WLANs in continuous on-line adaptation in a so-called infinite episode.

68



“main” — 2020/11/19 — 10:04 — page 69 — #91

Q-learning have also been studied in the literature. The MAB is a problem in which a fixed
limited set of actions must be selected between competing (alternative) choices to maximize ex-
pected gain. Each choice’s properties are only partially known at the time of selection and may
become better understood as time passes or by allocating resources to the choice [117]. MABs
are a classic RL problem that exemplifies the exploration-exploitation trade-off dilemma.

Various works in the literature on spectrum management use MABs. For instance, the sur-
vey in [87] deals with channel allocation for spectrum scheduling based on conflict graphs. A
channel selection based on UCB1 is studied in [58], where edge agents distributively select
the channel to transmit in a slotted manner. Multi-channel spectrum access through various
types of MABs is assessed in [99]. Authors in [49] follow a particular approach to deal with
opportunistic spectrum access via restless MABs, where a single user must learn the environ-
ment. A recent custom dynamic channel allocation is applied in [119] with chaotic laser the-
ory. Apart from MABs, other works on wireless communications rely on a stateless Q-learning
variation. For instance, an spectrum allocation in cognitive radios through distributed stateless
Q-learning, where each agent has its own Q-table, is studied in [11]. LTE/Wi-Fi coexistence
through time-domain access aided with stateless Q-learning on a single-agent is studied in [45],
where actions are defined as the probability of occupying a channel. Finally, authors in [130]
rely on decentralized, stateless Q-learning to improve spatial reuse in dense wireless networks.

Temporal Difference

TD learning is a combination of Monte Carlo ideas and dynamic programming (DP) ideas
[117]. Like Monte Carlo methods, TD methods can learn directly from raw experience without
a model of the environment’s dynamics. Like DP, TD methods update estimates based on other
learned estimates, without waiting for an outcome (i.e., they bootstrap).

There are two main methods for TD: state–action–reward–state–action (SARSA) and Q-
learning. SARSA and Q-learning work similarly, assigning values to state-action pairs in a
tabular way. The key difference is that SARSA is on-policy, whereas Q-learning is off-policy.
This means that SARSA learns action values relative to the behavior policy (or the policy it
follows), while Q-learning does so by following a greedy policy. In other words, SARSA uses
the value of the action following the same ε-greedy policy all the time. In contrast, Q-learning
uses the maximum value over all possible actions for the next iteration.

Multiple works using TD have been studied in the literature on wireless communications.
Here, we overview some of them and point out the states contemplated. A distributed RL
approach for OFDM subcarrier and power allocation is presented in [66], where a global Q-
table is shared among agents (base stations). The states are defined as a combination of the user
allocation to the subcarriers, interference, and power, and the action is the user allocation to the
subcarriers and the power. A backoff stage selection through Q-learning is proposed in [15],
where the state is defined as the backoff stage itself, whereas the action is to increase/decrease
such stage. Authors in [69] propose centralized Q-learning for spectrum and channel allocation
in cognitive radios, where a single agent is installed in the cluster head. The state is defined as a
combination of parameters like the nodes’ locations, time zones, and band groups, whereas the
action is the channel to select. Q-learning is also the algorithm of choice in [14], where a case
study is provided in the form of contention window selection in an IEEE 802.11ax WLAN.
Similarly to [15], the state is the backoff stage, and the action is to increase/decrease the stage.
Finally, the adaptation of different parameters of a wireless link (i.e., channel bandwidth, MCS,
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or guard intervals) is proposed in [74]. In this case, the learning is done through a distributed
SARSA implementation, where the state is defined the same as the action, consisting of the
tuple of values of each link parameter.

Deep Reinforcement Learning

Deep learning (DL) is a branch of ML based on a set of algorithms that attempt to model
high-level abstractions in data by using multiple processing layers, with complex structures or
otherwise, composed of multiple non-linear transformations. They do so via deep neural net-
works (DNNs) consisting of multiple hidden layers. So, RL’s combination with deep learning
results in DRL, where the RL policy or algorithm uses a DNN rather than arrays or tables. The
most common form of DRL is a deep learning extension of Q-learning, called deep Q-network
(DQN). So, as in Q-learning, the algorithms still work with state-action pairs, conversely to the
MAB formulation. In plain, DQN is a much complex version of the TD methods explained
before. But why would one make the problem more complicated? It turns out that convergence
in tabular Q-learning gets so slow when the number of states and actions increases. That is, it
is so costly to keep gigantic tables that we use DNNs to approximate such a table.

DRL has been gaining attention in wireless communications in the last years. For instance,
an on-demand channel approach through multi-agent DRL is proposed in [106], where a cen-
tral controller aids agents at the edge. The state is defined as a tuple of the current and average
load, and the action is composed of the primary channel and allocated bandwidth. A DQN is
also implemented for contention window optimization in [133], where a single-agent at unique
AP runs the learning. States are defined as a history of collision probabilities, and actions are
simply the AP’s contention window. A joint beamforming, power control, and interference
coordination solution based on DQN executed by a single-agent controlling all the BSS’s at a
central location is studied in [98]. In this work, states are related to positions, power, beam-
forming, and actions to increase/decrease the power by an amount inside a range of possibilities
and beamforming parameters. Similarly, a single-agent DQN is proposed in [122] for channel
selection with binary rewards in the context of cognitive radios. States (or observations) are
a representation of the channel status (busy or idle), and the action is the selected channel.
Finally, the selection of network slices in the form of MCS, CCA, and transmission power
is performed in [51] through a single-agent implementing DQN. The state is defined as the
combination of different configuration parameters (including channel, required throughput, or
RSSI), and the action consists of the tuple MCS, CCA, and transmission power.

For the problem we deal with in this thesis, we propose having a MAB instance in each
agent-empowered AP to adapt to the environment without states. The reason lies in the fact
that meaningful states are intricate to define and its effectiveness heavily depends on the appli-
cation and the type of scenario under consideration. In the end, a state is a piece of information
that should help the agent by fitting it into its policy. If the state is meaningless, or worst, mis-
leading, it is preferable not to rely on states and go for a stateless approach. As we show later,
MABs provide a lightweight and efficient framework to cope with the spectrum management
problem. Section §6.4 treats MABs in detail and the evaluation of different MAB algorithms is
conducted in §6.5.
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Proposed RL approach: First, we envision a distributed architecture rather than a
centralized one to boost the responsiveness and adaptability in highly dynamic environ-
ments. Second, we propose a MAB formulation for the RL problem to speed up the
learning convergence by disregarding states.

6.4 Multi-Armed Bandits
In this thesis, we tackle the spectrum allocation problem in WLANs as a MAB due to its
ready-to-use conception for problems facing the exploration-exploitation trade-off. Namely,
we would like the agent to learn the best action quickly, but at the same time, we want the agent
to perform as good as possible along its quest to find such action.

6.4.1 The MAB problem
The multi-armed bandit problem is a classic RL problem that exemplifies the exploration vs.
exploitation dilemma, where no knowledge on the reward probability distribution of each ac-
tion is assumed. The typical example to introduce the MAB problem is the gambler who faces
multiple slot machines, each with different probability distributions over the money he/she can
get after pulling the slots. Naturally, the gambler wants to get as much money as possible,
thus achieving the highest reward in the mid/long-term. So, what strategy should he/she fol-
low? That is where the MAB problem arises with its different variations. For instance, a naive
approach would be to pull each machine slot a lot of times, so the gambler could guess the “au-
thentic” reward probability of each slot according to the law of large numbers, and then select
always the best slot machine. However, such an approach has obvious pitfalls like determining
how many times are enough to discover the “true” reward probability or wasting too many tri-
als (or iterations) in a priori lousy machines. Further, in environments where the distribution of
such rewards may change due to external actors (as it is the case in WLANs), it would not be
viable to get accurate estimates of the reward probability distributions. Simply because from
one iteration to the other, the underlying reward distribution may be completely changed.

Formally, a MAB can be described as a tuple of the set of actions and the reward function
< A, R >, where:

• There are K arms (slot machines in the previous example or spectrum management con-
figurations in this thesis) with hidden reward probabilities {θ1, . . . , θK}. A is the set of
actions (or action space), each referring to the interaction with one arm.

• At each time step (or iteration) t, we take an action (or arm) a and observe a reward rt
resulting from performing such action.

• We refer to the value of an action a as the expected reward, Q(a) = Eθa [r|a], determined
by the reward distribution θa.

• Finally, the reward function R defines the reward values obtained at any time step t,
rt = R(at). For instance, R(at) could be defined in the previous example as the money
earned in the last slot pull or as the throughput experienced by a BSS when using action
at during the last iteration t.
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Notice the difference betweenR(at) andQ(at). While rt = R(at) is the actual reward observed
when applying action at in iteration t (e.g., throughput observed when playing at at iteration
t), Q(at) is the expected value of playing at (e.g., mean future throughput when playing at
regardless t). In other words, R(at) is a particular outcome of the reward distribution θ(at),
whereas Q(at) is a representation (or statistic) of the arm’s value (e.g., mean reward).

The goal is to maximize the cumulative rewardG over a finite number of iterations T (6.11).
The simplest action selection rule (or policy π) is to select one of the actions with the highest
estimated value, that is, one of the greedy actions, πt = at = arg maxa∈AQt(a). However,
greedy selection always exploits current knowledge to maximize the immediate reward, i.e., it
does not sample the rest of a priori inferior actions. So, what happens if the action that we have
ranked as the best is not? There are more sophisticated selection rule alternatives like ε-greedy
methods, which force exploration with some probability ε to achieve better knowledge on the
rewards of the actions in the whole action space. We depict some of the most relevant ones in
§6.4.3.

6.4.2 MAB taxonomies

There are different types of MABs. They can be categorized according to three main concepts:
the type of reward, the use of contexts, and the temporal horizon.

Reward taxonomy

According to its reward distribution, there are two main classes of MABs: stochastic and adver-
sarial. The stochastic MAB is the most common one, and it is completely determined by the
distributions of rewards {θ1, . . . , θK} of the actions in the action space. In particular, in iteration
t, the distribution of the reward observed by a learner that chose action at ∈ A is θa, regard-
less of the past rewards and actions. The reward for each action is independent and identically
distributed (i.i.d). That is, every time an action is chosen, the reward is sampled independently
from this distribution. Both for simplicity and for guaranteeing theoretical convergence in cer-
tain MAB algorithms, the reward function is bounded, rt = R(at) ∈ [0, 1], ∀a, t, so normalized
performance metrics (e.g., throughput satisfaction) are normally used. The main limitation of
stochastic MABs is the difficulty of finding real-world problems that rely on suitable distri-
butions. Indeed, rewards can be non-stationary; thus, the reward distribution probability for
a given action may change over time. Next, we present adversarial MABs, a paradigmatic
example of non-stationary rewards.

In adversarial MABs, learning is still possible in the sense that the regret can be kept sub-
linear. However, selection rules methods must be completely different from the stochastic ones
since adversarial rewards can be arbitrary, as if they are chosen by an “omniscient adversary”,
so the stochastic assumption on the rewards being generated from a fixed distribution does not
longer hold. In plain, there are no probability distributions to learn whatsoever. Then, what can
the agent do to face such an adversary? The key idea is to introduce noise in the exploration to
choose random actions that the adversary could not expect.

So, what class of MAB suits better the joint spectrum management problem? We anticipate
that the stochastic one. Even though the different actions’ reward distributions are generally
complex to estimate, no omniscient adversary tells what the rewards will be at every itera-
tion. Instead, we have different actors (nodes) that behave according to a certain configuration
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each. Such configurations determine what the actors will do, resulting in a stochastic setting.
Nonetheless, even though the problem is likely to be stochastic, it is so complex that an adver-
sarial approach when we assume that no distributions should (or could) be learned may also
be appropriate to design a fruitful algorithm. Accordingly, we assess in further sections the
convenience of both stochastic and adversarial MABs.

Context taxonomy

While the general MAB formulation does not consider states, contexts may be used to fine-
grain the arm selection based not only on the gathered rewards, but also on further observations
about the world I. Essentially, we may categorize MABs in context-less and contextual MABs.
Context-less are the general MAB formulation where no contexts are assumed.

Conversely, in contextual bandits, reward distributions depend on a context, which is fit
to the RL algorithm before making a decision. Now, the observed reward rt in each iteration
t depends both on the context Ωt and the chosen action at. For instance, assume that an AP
observes that a given basic channel, say basic channel 2, is busy most of the time. The derived
context would then represent that channel 2 is active. Thus, it is not the same to apply the action
corresponding to pick primary p = 2 when the context indicates channel 2 is busy rather than
applying the same action when such channel is idle. Henceforth, it seems that contexts may
aid to the spectrum management problem, especially if we leverage knowledge from previous
contexts (e.g., similar contexts stochastically repeated every day). However, contextual MABs
also pose the challenge of appropriately defining contexts, meaning that a good representation
of the world I should be captured in each context.

There are different approaches within the contextual bandit problem. The simplest one,
while the most versatile, considers a separate MAB per context (as if each context was a state).
Then, the goal is to find the optimal action a∗(Ωt) = π∗(Ωt) per context Ωt.

So, should we go for a contextual bandit approach to tackle the joint spectrum management
problem? We believe that it is better not to. Essentially, defining contexts may be as complex
as defining states. And what would be an appropriate context definition? the current action,
Ωt = at? The current reward, Ωt = rt? A mix of the action selected and the reward Ωt =
f(at, rt)? A mix including also historical information Ωt = f({at−t′ , . . . , at}, {rt−t′ , . . . , rt})?
Unfortunately, we do not find any definition that suits our multi-agent and non-stationary re-
ward problem. The reason lies in the fact that we want to boost the learning speed to raise
the user experience in the short/mid-term. Then, relying on a different MAB per action in a
contextual fashion would entail large and potentially unfruitful learning periods.

Temporal taxonomy

The last taxonomy we identify is the temporal one, defined by the duration imposed by the
programmer to converge to a good solution, which determines the horizon: finite or infinite.
Finite-horizon refers to when there is a need to perform (explore and exploit) during a given
time window (e.g., 5 minutes). So, the number of iterations T the agent counts with is finite.
Thus, the RL algorithm must try to get the most accumulated reward (6.11) with that ending in
mind.

Infinite-horizon, in contrast, poses no time limit to the agent to converge, i.e., T → ∞.
As a matter of fact, in many problems, a finite time horizon cannot be easily specified, so the
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infinite horizon formulation fits more naturally. More importantly, stationary problems with
infinite time horizon lead to optimal stationary strategies, which offer great simplicity.

For the joint spectrum management problem of this thesis, we will rely on finite horizons to
assess the myopic nature of the MABs. We call it myopic in the sense that they try to optimize
rewards now without any explicit use of forecast information or any direct representation of
decisions in the future. Meaning we want BSS’s to improve its performance as soon as possible.

Proposed MAB approach: First, we choose to study stochastic rather than adversar-
ial MABs because of WLANs’ non-adversarial nature. Second, we adopt the standard
context-less formulation of MABs given the unfeasibility of defining lightweight mean-
ingful context. Third, we study the performance of MABs in finite-horizon experiments
because we aim at boosting its learning speed.

6.4.3 MAB exploration strategies

Since any stochastic MAB problem can be seen as an instance of an adversarial problem, we
may apply all the following algorithms regardless of whether contexts are defined or not. We
depict the different action selection strategies of choice below.

Exploration-first. (Algorithm 2 in the Appendix) The most simple MAB algorithm dedi-
cates the first Texp rounds to exploration and the remaining T − Texp rounds to exploitation. We
may mandate the full exploration of the action space, i.e., Texp = K to explore all the arms,
as we do later in the experiments. Notice that in the event of an environment change after the
exploration phase, action rewards may drastically change. Exploration-first copes with this is-
sue by simply ranking actions according to their last observed reward. So, if the best action in
iteration t− 1 turns out to be the worst in t, since its reward is updated, the second-best action
in t − 1 is now the best in t and its pick accordingly in t + 1. Consequently, exploration is
implicitly carried when action rewards vary over time.

Epsilon-greedy. (Algorithm 3 in the Appendix) The ε-greedy or (e-greedy) algorithm takes
the best known action with probability 1 − ε, and explores a random action (previously ex-
plored or not) with probability ε [125]. The action value Q is estimated, such estimation
being represented as Q̂, according to the past experience by averaging the rewards associ-
ated with the target action a that we have observed so far (up to the current time step t), i.e.,
Q̂t(a) = 1

Nt(a)

∑t
τ=1 rτ1[aτ = a], where 1 is a binary indicator function telling whether the

action a was used in a given iteration, and Nt(a) is the number of times the action a has been
selected so far, i.e., Nt(a) =

∑t
τ=1 1[aτ = a]. In an exploring iteration, any action is picked

with same probability, whereas in an exploitation iteration, the best estimated action is picked,
i.e., a = argmaxa∈A Q̂t(a). As for the experiments later presented, we set the original epsilon
value ε0 = 1 to force exploration. Besides, to avoid inefficient exploration after enough itera-
tions, we decrease the parameter ε to reduce the probability of exploring over time as suggested
in [20].

UCB1. (Algorithm 4 in the Appendix) Due to the randomness in e-greedy, we may end
up exploring a bad action that we have confirmed in the past. To avoid such inefficient ex-
ploration, one approach is to decrease the parameter ε in time (as done in ε-greedy), and the
other is to be optimistic about options with high uncertainty and thus to prefer actions for which
we have not had a confident value estimation yet. The Upper Confidence Bounds (UCB1) al-
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gorithm, introduced first in [82] and further analyzed in [20], measures this potential by an
upper confidence bound of the reward value, Ût(a), so that the true value is below the bound,
Q(a) ≤ Q̂t(a) + Ût(a) with high probability. The upper bound Ût(a) is a function of Nt(a); a
larger number of trials Nt(a) should give us a smaller bound Ût(a). In UCB1, we always select
the greediest action to maximize the upper confidence bound: at = argmaxa∈A Q̂t(a) + Ût(a).
For the cases where no prior knowledge on the distributions is given, the upper confidence
bound can be derived as Ût(a) =

√
2 log t
Nt(a)

. So, by looking at Ût(a), for a given value estimation

Q̂t(a), we see that the more times an action is picked – the larger N(a) – the less probable it
becomes since the uncertainty about its reward distribution is reduced.

Thompson sampling. (Algorithms 5 and 6 in the Appendix) We do not assume any prior
on the reward distribution θa of action a in UCB1. Therefore we have to rely on a generalized
estimation of the upper confidence bound. If we know the distribution upfront, we would be
able to make better-bound estimations. For example, if we expect every arm’s mean reward
to be Gaussian, we can set the upper bound as 95% confidence interval by setting Ût(a) to be
twice the standard deviation. In Thompson sampling, we want to select action a according to
the probability that a is optimal. In particular, at each time t, we draw a sample from the prior
distribution of every action a ∈ A, Q̃(a) ∼ θa. The best action is then selected among the
drawn samples: at = argmaxa∈A Q̃(a). After the last actual reward r(at) of the selected action
at is observed, we update its reward distribution parameters (e.g., mean and standard deviation
for the normal distribution, and α and β parameters for the Beta distribution) accordingly,
which is essentially making Bayesian inference to compute the posterior with the known prior
and the likelihood of getting the sampled data.

Exp3. (Algorithm 7 in the Appendix) Unfortunately, reward probability distributions are
so complex that having optimism is arguably naive, especially in competitive scenarios like
WLANs. To conceive rewards that could operate in any manner, the adversarial model was
proposed, where the agent must face an omniscient adversary that secretly chooses a sequence
of rewards at the start of the game. Auer’s illustrative example is to think about a gambler
that plays in a rigged casino [21]. The Exponential-weight algorithm for Exploration and Ex-
ploitation (Exp3) is is a popular algorithm for adversarial MABs [115]. The trick of the agent
is the randomness in his choice of actions. Exp3 works by maintaining a list of weights for
each action, using these weights to decide which action to take next randomly, and increasing
(decreasing) the relevant weights when a payoff is good (bad).

6.5 Evaluation
In this section, we evaluate the performance of the MABs depicted in §6.4.3. We first bench-
mark them against the optimal global configuration in a toy self-contained deployment, from
which we know the optimal configuration for every traffic load. Then, we generalize the results
to denser random deployments by comparing the most promising MABs: exploration-first and
ε-greedy.

6.5.1 Self-contained dataset
We study the deployment illustrated in Figure 6.3a, consisting of W = 4 BSS’s (with one AP
and one STA each) in a system of nC = 4 basic channels. The traffic load is quantized and can
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take three values, `w ∈ L = {20, 50, 150}Mbps ∀w.4 As for the action attributes, the primary
channel can take any of the nC channels in the system, p ∈ {1, 2, 3, 4}, and the maximum
bandwidth is allowed to be set to b ∈ {1, 2, 4} fulfilling the IEEE 802.11ac/ax channelization
restrictions for 20, 40, and 80 MHz bandwidths. So, according to (6.5), the total number of
statuses when considering all BSS’s to have an agent-empowered AP (i.e., W ′ = W = 4)
raises to O(H) = (4× 3× 3)4 = 1, 679, 616. Notice that even a petite deployment like this
one leads to a vast number of possible statuses.
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Figure 6.3: Toy deployment of the self-contained dataset.

The interference matrix elements in Figure 6.3b indicate the minimum bandwidth in MHz
that causes two APs to overlap. So, we note that this deployment is complex in the sense that
multiple different one-to-one overlaps appear depending on the distance and the transmission
bandwidth in use, leading to exposed and hidden node situations hard to prevent beforehand.
For instance, APA and APC can only overlap when using 20 MHz, whereas APA and APD do
always overlap regardless of the bandwidth because their proximity. Instead, APA and APB

overlap whenever 40 MHz (or 20 MHz) bandwidth is used.
To generate the self-contained dataset, we simulated all the possible statuses H of the de-

ployment in Komondor. So, we first create the deployment, meaning that we deploy the APs
and STAs in fixed positions in the map (as in Figure 6.3a). Then, we define the values of the
modifiable attributes and the mean traffic load that each BSS experiences. Likewise, we set
the configuration capabilities of each BSS, so we empower each agent with the action space
Aw = {{pw}, {bw}}. For simplicity, we consider all the BSS’s to have the same action space
Aw = A = p × b,∀w. Finally, for every WLAN’s global configuration, we must generate all
the input files corresponding to each possible status H to be later simulated with Komondor.
Notice that the input x = H is mapped to the output y, where y is an array containing multiple
performance metrics of each BSS, including throughput and delay. Every statusH is evaluated
during TH = 5 seconds. Given that the WLAN remains steady during any status, we empiri-
cally found that 5 seconds is enough to accurately estimate the long-term mean performance.
We use Wi-Fi parameters according to 802.11ax [27].

Once we gather the whole dataset of the deployment through Komondor, we use it to bench-
mark the performance of the MAB algorithms depicted in §6.4.3 under different traffic patterns.
For the sake of explanation, assume that the WLAN starts at t0 = 0 with status H0. At t1, one
agent-empowered BSS picks an action a1 (e.g., switches the primary channel), leading to status

4The 4-BSS’s self-contained dataset for spectrum management in WLANs can be found at https://www.
upf.edu/web/wnrg/wn-datasets.
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H1. Notice that, since we already have the dataset generated, it is straightforward (and fast) to
check the performance y of all the BSS’s in the WLAN at such given status. We essentially use
the dataset as a lookup table x = H → y, so the computation speed rises.

6.5.2 Benchmarking RL algorithms
Learning under constant traffic demands

We first aim at assessing the learning capacity, including the achievable reward and the corre-
sponding convergence speed of the presented MABs in a WLAN with constant traffic loads.
In essence, we ask: do MABs converge to good rewards under steady load conditions? How
long do they take? We assume each BSS having a high average traffic load, `w = 50 Mbps,
∀w. So, this experiment’s long-term dynamism is due exclusively to the MABs progression in
the multi-agent setting. The inner traffic load condition does not vary, but the spectrum man-
agement configurations (or actions) do. We run a single simulation for each MAB intending to
display a realization of how they behave.
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Figure 6.4: Self-contained toy dataset under constant traffic loads.

Figure 6.4a shows the throughput satisfaction evolution of the MABs. For each MAB, and
for each BSS w, we plot the instant reward rw,t, the normalized cumulative reward Gw,t/t,
the optimal reward of each separate BSS, and the minimum and maximum optimal of the
whole WLAN. Notice that some BSS’s can only achieve their optimal by forcing the others
to underperform, so we refer to the minimum of the WLAN (“min.” in the Figure) as the
most important metric to assess the MAB fairness. We observe that while exploration-first
and e-greedy do converge (learn) to higher satisfaction values close to the optimal, the rest
of MABs seem not to learn at all. This relates to the fact that learning based on parameter
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estimation is fruitless in dynamic and chaotic multi-agent deployments like this. So, it seems
preferable to act quickly with a low-level knowledge of the actions’ rewards. Besides, we
find that win-win relations are established as shown by the minimum and mean convergence
of the whole WLAN. That is, on average, BSS’s tend to benefit from others’ benefits. As for
the learning speed, exploration-first takes approximately a full exploration of the action space
with erratic rewards to provide a super-steady performance, whereas e-greedy keeps switching
configurations throughout the simulation.

Figure 6.4b shows the probability of BSS A (picked as an example) to select each possible
action. We observe that exploration-first and e-greedy tend to use one single action that behaves
sufficiently well, so they waste less time in exploring than exploiting. In contrast, the rest of
MABs waste too many iterations exploring the different actions.

Finding #15: In small deployments with constant traffic load, exploration-first and e-
greedy (so-called ligthweight MABs) achieve near-optimal rewards after enough explo-
ration, showcasing their ability to learn in multi-agent Wi-Fi deployments by establishing
win-win relationships between BSS’s. Further, exploration-first is the only to lead to a
super-steady performance at the cost of experiencing vacillating rewards during the early
exploration phase.

The usefulness of MAB parameters into the spotlight: why do sophisticated MABs not
work?

From the previous experiments, we concluded that UCB1, Thompson Sampling, and Exp3
are not an option for the multi-agent setting of the joint spectrum management problem in
WLANs. Here, we delve deep into why, which is tied to the different parameter estimations
these algorithms must conduct. First, UCB1 cannot profit from computing an estimation of
the upper confidence bound of any action a. In essence, the action selection relies on the sum
of such confidence bound and the estimated value Q̂(a). Given the non-stationarity of the
multi-agent setting, the estimation Q̂(a) is lousy and may highly vary from one iteration to the
other. The algorithm then falls in a loop where most of the actions are selected with similar
probability, thus wasting lots of iterations with low performance and generating even more
dynamism to the WLAN.

Second, even though Thompson Sampling is usually known to outperform the rest of the
presented MABs in stationary environments [91], its performance is well below exploration-
first and e-greedy under the multi-agent setting. Similarly to UCB1, the reason lies in trying to
estimate the parameters (e.g., α and β in the Beta distribution) defining the probability distribu-
tion of the reward of each action while assuming that it is constant, or at least, slowly varying
in time, so it would be worth to learn. However, that is not the case at all in the multi-agent set-
ting, where from one iteration to the other, the actual probability distribution of any action may
completely change. So, the gathered knowledge from past iterations can turn entirely worthless
to estimate the new distribution.

To illustrate the low utility of estimating the probability distribution of an agent’s actions in
a multi-agent setting, let us consider an elementary example. Assume two single-channel BSS’s
overlap, and there are two possible primary channels to pick in the system CA = CB = {1, 2}.
We call the BSS’s A and B, respectively, and assume they have a constant traffic load. From the
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Figure 6.5: Probability distributions of the reward of each action BSS A can take.

point of view of A, its world IA is determined just by B’s action selection. That is, B selecting
primary pB = 1 generates a first world for A where it is better to select pA = 2 to avoid
contention and collisions. Likewise, B selecting primary pB = 2 generates a second world for A
where it is better to select pA = 1. Figure 6.5 shows possible probability distributions (modeled
as Gaussian variables for simplicity) of the reward of A in terms of throughput satisfaction. As
anticipated, it is much better for A to select B’s opposite action, i.e., the probability of getting
a better reward is much higher. So, with this information, would the agent be able to make
better decisions? Indeed, it would. However, since MABs do not count on states, the agent
does not have a separate reward distribution of each action per world (or state). In contrast, it
generates a state-blind distribution like the one shown in the most right plot in Figure 6.5. And
the information contained in there, beyond simple statistics like the mean, is of very little use.5

Finally, Exp3 tackles adversarial settings, where an omniscient adversary may change the
reward distribution of each action at its will. In particular, the urgency of an action is the sum
of two terms: an exponential term in the success of the action for exploitation, and a constant
term for exploration. So, why is Exp3 not working in our multi-player setting? Like UCB1 and
Thompson Sampling, Exp3 relies on estimating the reward for the exponential term related to
exploitation. And, as in the previous algorithms, such estimations are not reliable at all.

Finding #16: In contrast to the sound performance of exploration-first and e-greedy, the
rest of MABs (i.e., Thompson Sampling, UCB1, and EXP3) cannot learn due to their
need to over-exploring the action space for estimating algorithm parameters resulting
flawed and unfruitful in uncoordinated multi-agent setups.

Adapting to varying traffic loads

In the previous experiment, we observed that both exploration-first and e-greedy were able to
reach near-optimal rewards with relatively fast convergence in setups with constant traffic loads.
In this experiment, we focus on the performance of the MABs mentioned above under varying
traffic loads patterns. Are they able to adapt quickly to such changes in the load demand?

We now consider a traffic load pattern where each BSS w changes its mean traffic load
to `w ∈ {20, 50, 150} Mbps every 100 iterations. This time, we focus our analysis only on

5Moreover, notice that generating the reward distribution with accuracy for every state-action pair is a costly
task itself that requires extensive exploration.
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exploration-first and e-greedy because they were the only MABs capable of learning under
non-varying traffic loads.
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(a) Run chart of the instant, cumulative, and optimal reward of each BSS, mini-
mum, and mean of the WLAN in the scenario with varying traffic loads.
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Figure 6.6: Self-contained toy dataset under varying traffic loads

Figure 6.6a shows the throughput satisfaction evolution as in Figure 6.4a, this time con-
sidering load changes every 100 iterations. We find that both exploration-first and e-greedy
can raise their performance after every traffic change, so they learn after every environment
alteration. Again, we observe that exploration-first is much more steady than e-greedy. In fact,
after the initial full exploration phase, exploration-first can quickly adapt to each environment
change.

This steadiness is corroborated by looking at the number of action switches shown in Fig-
ure 6.6b. Exploration-first hardly changes an action after the full exploration phase in the early
stages, whereas e-greedy keeps often changing, although the decreasing update function of the
ε parameter. This number of switches is an essential metric to the BSS performance. After ev-
ery change in the spectrum management configuration, the PHY and MAC overheads required
to set up the AP and STAs in the BSS entail delays hindering the overall performance. In this
regard, exploration-first seems a much more favorable choice. Indeed, one well-known pitfall
of e-greedy is its poor asymptotic behavior because it usually continues to explore long after
the optimal solution becomes apparent [117].

Finding #17: Both exploration-first and e-greedy perform similarly in terms of cumu-
lative (or long-term) reward, getting close to the optimal minimum in the WLAN after
relatively few iterations. Nonetheless, exploration-first adapts much more smoothly than
e-greedy after each load alteration. That is, it requires very few iterations to select its a
priori best action once the first full exploration phase is completed. This has substantial
benefits given that every time a different action is chosen, the configuration should be
broadcast and the STAs in the BSS require some time to adapt to it, leading to service
interruptions and detrimental performance.

Can contexts or states aid learning?

Part of the reasoning we conducted on why MABs seemed the most suitable approach for this
thesis’ problem was related to the fact of avoiding states. This way, there is no need to seek
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meaningful state definitions, and the learning can be executed more quickly since only actions
and rewards are used to execute the policy.

Nonetheless, in this experiment, we go beyond such qualitative reasoning and provide a
quantitative measure on Q-learning performance (relying on states), and contextual MABs (re-
lying on contexts). For the sake of boosting the learning speed, given we consider a relatively
short time-horizon, we define the state s and context Ω the same: as merely the binary through-
put satisfaction of the BSS,

s = Ω =

{
true ξ > 0.95

false otherwise
, (6.12)

where ξ is the throughput satisfaction, which we compare against a 0.95 threshold to provide
a safety margin. Notice that state space S = {true, false} is small and therefore does not pro-
vide much information on the environment. However, other more meaningful state definitions
considering parameters like the selected action or spectrum occupancy statistics would expo-
nentially increase the size of S and reduce the learning speed dramatically. For instance, if the
state was defined simply as the action, i.e., s = a, the state-action table would be 12x12 given
the |A| = 12 actions in the action space. Accordingly, 144 state-action elements would exist.
So, it would take at least 144 iterations to try each of the pairs once. In contrast, the proposed
state space generates a more manageable state-action table of 2x12.6

Q-learning is a temporal difference algorithm seeking the best action to take given the
current state. It is considered off-policy because the Q-learning function learns from actions
outside the current policy, like taking random actions. The learning rate α or step size deter-
mines to what extent newly acquired information overrides old information. A factor α = 0
makes the agent learn nothing (exclusively exploiting prior knowledge). In contrast, a factor
α = 1 makes the agent consider only the most recent information (ignoring prior knowledge to
explore possibilities). We use a high value of α = 0.7 because the non-stationary of the deploy-
ment. The discount factor γ determines the importance of future rewards. A factor γ = 0 will
make the agent myopic (or short-sighted) by only considering current rewards, while a factor
approaching γ → 1 will make it strive for a long-term high reward. We use a relatively small
γ = 0.3 to foster exploitation (for rapid convergence) in front of exploration.

Another way in which agents use partial information gathered from the environment is in
the form of contexts. In plain, contexts can be formulated as states for stateless approaches.
That is, a contextual MAB can be instantiated like a particular MAB running separately per
context. The learning is separated from one context to the other so that no information is
shared between contexts like it is the case for Q-learning and other state-full approaches. In
this case, we propose having a separate MAB instance for each of the two contexts defined
(true and false).

Figure 6.7 is an extension of Figure 6.4a, this time showing the performance of the proposed
Q-learning and contextual MAB. While we observe that both tend to learn, i.e., the individual
reward of all BSS’s increases over time, we find unsteadiness with peaks of low (even zero)
throughput satisfaction throughout all the iterations. Remarkably, such low throughputs may
generate service interruptions causing poor user experience. So, we have seen that, by consid-

6From this brief discussion on the size of the state-action space we can conclude that more complex approaches
like DRL do not suit in the scenarios of this thesis. DRL relies on huge state-action spaces and normally takes
long periods to start learning.
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Figure 6.7: Q-learning and contextual MABs under constant traffic loads.

ering states and contexts, agents also tend to learn in the proposed finite horizon, but at a slower
pace than the lightweight MABs.

We envision using states and context for larger time horizons when the BSS’s may support
periods of poor performance until the WLAN reaches steady dynamics providing even higher
rewards than MABs. In such cases, more complex and larger state spaces may aid the task. We
leave the study of such approaches as future work since this thesis focuses on rapid-adaptation
mechanisms for zero-prior knowledge scenarios.

Finding #18: RL algorithms harnessing states or contexts do not boost the learning rate
in short-term finite horizons like those studied in this thesis. Therefore, we corroborate
that stateless approaches like MABs are a preferable choice for such a task.

6.5.3 Generalization to high-density deployments
One question remains unanswered: what happens if the number of potentially overlapping
BSS’s and their action spaces increase? That is, what happens in even more complex multi-
agent settings? We now leave the holistic toy dataset and assess many random deployments to
generalize the MABs behavior.

Are not heuristics enough? DyWi vs. MABs

Before digging deep in the analysis of lightweight MABs in random high-density deployments,
let us first corroborate that the MAB formulation for the joint problem of primary channel selec-
tion and bandwidth allocation outperforms heuristic-based algorithms. In particular, we com-
pare DyWi [27], the online primary channel selection presented in §5.2, against exploration-
first for the very same scenarios. Notice that DyWi assumes specific knowledge of the environ-
ment in the form of occupancy statistics per each basic channel. Gathering heuristics usually
entails an extra effort in terms of energy consumption, processing, or hardware capabilities.
Further, the statistics may be outdated in multi-agent settings. However, we assume a unique
agent-empowered BSS as we did to analyze DyWi to compare the case of a single-agent vs. a
fixed world.
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Figure 6.8: Mean throughput achieved with DyWi and exploration-first. The number (X:Y) for
exploration-first represent the first and last iteration where the mean is computed.

Figure 6.8 shows the mean throughput achieved with DyWi, as in Figure 5.2, but this time
we include the mean throughput of exploration-first in two iteration windows. The first one
corresponds to part of the early action space exploration (iterations 1 to 12) and the other
window corresponds to the exploitation phase (iterations 20 to 25). We observe two main
phenomena: i) it is much better to rely on heuristics from scratch since they apply their fixed
policy based on statistics no matter the iteration, and ii) when the full exploration phase of
exploration-first finishes, the mean throughput outperforms DyWi’s significantly. So, for steady
worlds where only a single agent may change its configuration, heuristics are a good approach
for immediate adaptation, but MABs can provide higher mid-term rewards. Nevertheless, let
us emphasize that in this single-agent setting, the heuristics gathered by DyWi hold in the sense
that the rest of BSS’s do never change their configuration. Then, in multi-agent settings like
the ones covered in this chapter, heuristics are not a valid option.

Finding #19: Heuristics-based algorithms like DyWi provide immediate adaptation in
steady environments by using fixed policies relying on observable parameters. In con-
trast, MABs, by nature, need to learn in a trial and error fashion, which entails unavoid-
able periods of lower performance at early stages. Nonetheless, MABs provide higher
potential short/mid-term rewards.

Dense multi-agent setups

We propose a 20x20 m2 map where multiple agent-empowered BSS’s (from W ′ = 6 to 16) are
spread at random over the area. We simply force a 4 m separation between APs, and STAs being
separated up to 10 m from their associated AP. As in the previous experiments, each BSS w is
assigned a random initial traffic load `w ∈ {20, 50, 150}Mbps, ∀w. As for the channelization,
we consider now a standard-compliant maximum bandwidth of 160 MHz, thus having 8 pos-
sible 20-MHz channels (e.g., from channels 36 to 64 in the IEEE 802.11ac/ax standards). Ac-
cordingly, the action space of a BSSw isAw = {pw, bw}|pw ∈ {1, 2, ..., 8}, bw ∈ {1, 2, 4, 8},∀w,
thus having 32 (8 x 4) possible configurations. Notice that, in contrast to the self-contained toy
dataset, we now lose the optimal baseline reference since it is unfeasible to simulate all the
statuses of the different deployments. So, we compare the exploration-first and e-greedy algo-
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rithms against an off-the-shelf random configuration we use as a baseline.
In this first experiment, we aim to generalize the assessment on deployments of increasing

BSS density. Are the ligthweight MABs still able to learn? We generate 100 WLAN random
deployments for three different numbers of BSS’s W ′ = W ∈ {6, 10, 16} and run the same
MAB algorithm at every AP in the network. In particular, we simulate exploration-first, e-
greedy, and a fixed random configuration, where agents are idle and do never change the initial
configuration whatsoever. We run each scenario for two different random seeds to contemplate
the randomness of the MAB algorithms.

Figure 6.9: Reward distributions at different iterations.

Figure 6.9 shows the distribution of the throughput satisfaction ξ of every BSS for each
algorithm and each number of deployed BSS’s. Notice that each boxplot inside the subplots
is filled with the reward values gathered at a given iteration (10, 50, 100, 150, and 200) in the
different simulations, thus covering a vast heterogeneous set of deployments. We observe that,
regardless of the node density, exploration-first and e-greedy can learn, thus clearly outper-
forming the static configurations. In particular, exploration-first outperforms e-greedy as the
simulation progresses. However, we also notice that e-greedy is better at earlier stages of the
simulation. This is due to the mandatory rule of exploration-first of exploring the full action
space, no matter whether the agent is satisfied or not. If agents start from zero knowledge on
the reward per action, exploration-first will take more time to converge. Still, once the full
action space is explored, its performance is significantly higher than e-greedy.

Finding #20: Both exploration-first and e-greedy can learn even in high-density de-
ployments, outperforming by far static configurations. Besides, while exploration-first
performs worse than e-greedy at the early stages of the simulation, it reaches much better
performance as the simulation progresses.

On the fairness

We observed that both exploration-first and e-greedy were able to learn for every assessed
BSS density. However, does the WLAN also reach higher fairness values as the simulation
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progresses? Does the greedy behavior of BSS’s contribute to a better performance of the whole
WLAN? We keep studying the 100 WLAN random deployments from the previous experiment.

Figure 6.10: Jain’s fairness distributions at different iterations.

Figure 6.10 shows the distribution of the Jain’s fairness index (4.1) for the throughput sat-
isfaction ξ. Like in Figure 6.9, each boxplot inside the subplots is filled with the reward values
gathered at a given iteration in the different simulations. We observe a similar behavior between
the evolution of the reward (Figure 6.9) and the evolution of the fairness (Figure 6.10): e-greedy
is fairer at the early stages, whereas exploration-first provides significantly higher fairness as
the simulation progresses. This is an interesting result showing that multi-agent settings like
multi-channel WLANs can result in fair settings without coordination between agents. The key
factor is the mutual interests forming a win-win relationship among agents. In plain, always
on average terms, any pair of BSS’s would mutually benefit if they do not overlap when try-
ing to satisfy their traffic load demands. Unfortunately, we also find unfair outlier scenarios
where some BSS’s do not perform well due to different reasons like exposed/hidden nodes. In
that kind of situation, it seems necessary to coordinate, thus changing the local greediness of
the reward definition towards a collaborative one. In turn, that would require communication
overheads and compatibility issues (or conflicts of interests between BSS’s).

Finding #21: The WLAN’s fairness tends to increase, thus reaching global stable config-
urations where most (or all) the BSS’s perform similarly. In particular, exploration-first
tends to outperform e-greedy, leading to more fair setups as simulations progress.

Adaptation to varying traffic load

In the previous experiments on random deployments, we have observed the learning capabil-
ities of exploration-first and e-greedy under unvarying traffic profiles. In this experiment, we
assess how these MABs respond to varying traffic loads, potentially affecting each action’s re-
ward. We provide a direct comparison between exploration-first and e-greedy by assessing each
agent’s reward at every iteration in a 1-vs-1 fashion. In particular, we compute the evolution of
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the probability of each MAB outperforming the other. That is, for every agent, we count the
number of deployments per iteration where one MAB provided the highest instant reward rw,t.

Figure 6.11: Run-chart of the probability of providing the highest instant reward.

Figure 6.11 shows the probability of each MAB outperforming the other in terms of through-
put satisfaction. Notice that the curves do not sum 1 in any of the iterations because of the cases
where both MABs provided the same reward, most often corresponding to maximum satisfac-
tion, ξ = 1. We corroborate that exploration-first is only outperformed by e-greedy in the first
full exploration phase. Afterward, it performs better even after the changes in the traffic loads.
So, it is preferable for every node density we studied to use exploration-first for mid/long term
reward and quicker adaptation to environment changes.

Finding #22: After paying the price of performing the first full exploration phase,
exploration-first outperforms e-greedy both in terms of mid/long-term reward and fast
adaptation in front of environment alternations. We conclude that in situations where
there is room to spend a reasonable time learning, exploration-first should be the MAB
of choice.

Lightweighting the action space

We observed that exploration-first and e-greedy could learn and raise the BSS’s performance
consequently. We now ask if it is possible to increase the learning convergence speed and reach
good performance levels sooner. To that aim, we propose lightweighting the action space of
each agent by reducing the possible values the maximum bandwidth attribute may take: from
b ∈ {1, 2, 4, 8} to b ∈ {1, 8}, i.e., to allow only single-channel (b = 1) or to remove any
bandwidth restriction (b = 8). So, we expect to raise the convergence at the cost of renouncing
to potentially better configurations.

We run the MABs in the same deployments of the two experiments before, but we now
reduce the maximum bandwidth space b to two values: 1 (20 MHz) and 8 (160 MHz). Notice
that the resulting action space has 16 actions rather than 32, i.e., we halve the action space
going from |Aw| = 32 to |Aw| = 16,∀w.

Figure 6.12 shows the mean and standard distribution of the throughput satisfaction when
applying exploration-first with the original and the reduced action space. We observe that both
action spaces have a similar convergence rate for scenarios with moderate density (6 BSS’s).
However, the best performance is only reached with the original action space (i.e., keeping all
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Figure 6.12: Comparison between the original and the lightweight action space when using
exploration-first. The curves represent the mean value of the rewards and the shaded areas
correspond to the standard deviation (STD), respectively.

the configuration options in the max. bandwidth). However, as the node density increases,
it turns out that having a reduced action space allows significantly faster convergence while
reaching a similar performance than the original action space in the long-term.

So, is there any rule of thumb for reducing action spaces? We suggest limiting the domain
of the less critical attributes, always bearing in mind the trade-off between fast convergence and
maximum reachable reward. However, such a task is not straightforward and requires expertise
from the RL designer. In our case, we have proposed reducing the maximum bandwidth’s
possible values {b} and keeping all the values for the primary channel {p} since we know the
primary channel is critical in CSMA/CA networks.

Finding #23: It is preferable to lightweight the action space in challenging (dense and
highly loaded) scenarios since it will help increase the learning speed. The downside is
to renounce to a potentially better long-term performance. So, we suggest reducing the
less critical attributes from the action space whenever possible.

Mixed reward: throughput and delay

Up to now, we have considered the reward to be exclusively dependant on the throughput
satisfaction, i.e., on the throughput and the traffic load (6.7). In this experiment, we aim to
answer whether another reward definition, including the delay, would vary our MAB analysis
in any regard. We repeat the experiments on the action space lightweighting (§6.5.3) and the
direct comparison between exploration-first and e-greedy (§6.5.3), this time using the mixed
throughput-delay reward definition (6.10).

Figure 6.13a and Figure 6.13b show the probability of each MAB outperforming the other
in terms of the mixed reward, and the mean and standard distribution of the throughput satisfac-
tion when applying exploration-first with the original and the reduced action space respectively.
That is, such figures are complementary to Figure 6.11 and Figure 6.12, respectively. We ob-
serve similar patterns in both pairs of figures, only varying the reward scale, which is expected
since the mixed reward is by definition lower than the throughput satisfaction. Therefore, we
conclude that exploration-first also outperforms e-greedy when introducing other performance
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(a) Run-chart of the probability of providing the highest instant
mixed reward (complementary to Figure 6.11).

(b) Original and lightweight action space when using exploration-
first for the mixed reward (complementary to Figure 6.12).

Figure 6.13: Mixed throughput-delay reward assessment.

parameters like the delay in the reward definition R.

Finding #24: Exploration-first keeps learning and outperforming e-greedy for the mixed
throughput-delay reward. We derive that exploration-first is convenient for the Wi-Fi
deployments considered in this thesis regardless of the performance parameters included
in the reward definition.

Chapter summary
In this chapter, we envisioned the need for ML to cope with the spectrum management problem
in high-density and dynamic settings. We justified why a stateless variation of RL in the form
of MABs suits the task of adapting fast in uncoordinated deployments. Results from extensive
experiments showed the responsiveness of MABs in front of other RL approaches.
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Chapter 7

CONCLUDING REMARKS

7.1 Summary

In this thesis, we shed light on the behavior of channel allocation and channel bonding in
WLANs, from its essential characteristics to benchmarking its performance on a variety of
dense deployments with different traffic load requirements. To conduct such an in-depth anal-
ysis, we have developed different enablers: a CTMN model for channel bonding in spatially
distributed WLANs, the Komondor wireless network simulator, and the WACA spectrum ana-
lyzer. We used the latter to generate a unique dataset simultaneously capturing all the channels
in the 5 GHz Wi-Fi channelization. The dataset contains multiple locations of interest, in-
cluding a crowded football match in the Camp Nou stadium. We also covered heuristic-based
approaches and proposed DyWi, an algorithm for online selection of the primary channel of
a dynamic channel bonding BSS. Finally, we explored the use of ML to better cope with the
joint spectrum management problem and conclude that RL is the approach to follow due to its
trial-and-error black-box conception that disregards the implicit nature or model behind multi-
agent WLANs. In this regard, we call into question whether the use of complex RL algorithms
really helps the quest and derive that stateless algorithms, especially in the form of lightweight
MABs, are an efficient solution for rapid adaptation avoiding extensive or meaningless states.

We believe the research carried in this thesis will contribute to the design of novel spectrum
management techniques for next-generation WLANs. We expect that our findings on channel
bonding will help overcome the main challenges imposed by spectrum sharing. Besides, we
hope that our reasoning on why stateless RL algorithms in the form of lightweight MABs
are an efficient solution for rapid deployment will be useful as well for other techniques like
scheduling or transmission power control.

7.2 Future work

There are different research topics to continue exploring concerning spectrum management in
WLANs. First and foremost, we envision the use of RL as a key enabler for next-generation
WLANs. Thus, we will dig deeper into the analysis of multi-agent settings by considering par-
tial and full coordination through other learning architectures that may impose communication
overheads but also a potentially holistic knowledge of the environment. In this settings, where
we count with relatively large periods for conducting the learning process, we do believe that
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the use of more complex state-full RL formulations like DRL can be useful to reach a more
profound judgment on the WLAN deployment by identifying complex long-terms patterns. To
that aim, the trade-off between meaningful and condensed states remains an essential venue for
research.

As for the stateless RL formulation, we believe that the presented lightweight MABs can
be improved in several ways. A mechanism to adapt the iteration duration to the level of
dynamism in the environment is worth to study. In steady environments (e.g., single-agent),
short iterations are enough to estimate action rewards. Instead, under high dynamism, iterations
should be much larger or not used at all. In the latter case, the use of heuristic-based approaches
could help to identify good enough actions and pause the MAB exploration. So, designing a
backoff mechanism that triggers heuristics or RL instructions depending on the reliability of the
estimated action rewards seems promising. Further, the study of asynchronous agents remains
unexplored. While we expect similar behavior to the studied synchronous settings, an in-depth
study on the matter would aid detecting the main differences and potential pitfalls.

Finally, we observe that the inter-channel correlation detected in the on-the-field traces
played a critical role in channel bonding performance. Consequently, simple models relying
just on occupancy severely underestimate the available gains for channel bonding. Thus, we
envision the design of a trace-driven model for spectrum activity that takes into account inter-
channel correlation. We believe such a model will help in building more efficient new spectrum
management algorithms.
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Appendix

MAB exploration algorithms

Algorithm 2: Exploration-first.
1 input: K;
2 initialization:
3 t = 1;
4 Q̂(a) = −1,∀a ∈ [K];
5 while active do
6 # explore unexplored actions with priority
7 at = argmaxa Q̂(a);
8 for (a = 0;a < K;a+ +) do
9 if ~r(a) == −1 then

10 at = i;
11 break;
12 end
13 end
14 # get performance
15 rt ← perform(at);
16 # update reward of action at
17 Q̂(at)← rt;
18 t← t+ 1;
19 end
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Algorithm 3: Implementation of ε-greedy.
1 input: εo, K;
2 initialization:
3 εt = εo;
4 t = 1;
5 N = 0, ∀a ∈ [K];
6 G = 0, ∀a ∈ [K];
7 Q̂(a) = 0,∀a ∈ [K];
8 while active do
9 # select action following ε-greedy

10 at

{
a ∼ U([1,K]), with prob ε
argmaxa∈[K] Q̂, otherwise

;

11 N(a)← N(a) + 1;
12 # get performance
13 rt ← perform(at);
14 G(a)← G(a) + rt;
15 # update estimated reward of action at
16 Q̂(at)← G/N(a);
17 t← t+ 1;
18 # update εt
19 εt ← εo/

√
t;

20 end

Algorithm 4: UCB1 algorithm.
1 input: K;
2 initialization:
3 t = 0;
4 N = 0,∀a ∈ [K];
5 Q̂ = 0,∀a ∈ [K];
6 while active do
7 # sample according to UCB

8 at ← argmaxa∈[K]

(
Q̂(a) +

√
2 log t
N(a)

)
;

9 N(a)← N(a) + 1;
10 # get performance
11 rt ← perform(at);
12 G(a)← G(a) + rt;
13 # update estimated reward of action at
14 Q̂(at)← G/N(a);
15 t← t+ 1;
16 end
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Algorithm 5: Thompson sampling as a Beta Bernoulli sampler.
1 input: K;
2 initialization:
3 t = 0;
4 α = ~1;
5 β = ~1;
6 while active do
7 # draw sample for each arm
8 Q̃(a) ∼ B(α, β),∀a ∈ [K];
9 # pick most probably optimal arm

10 at ← argmaxa∈[K] Q̃(a);
11 # get iteration reward (0 ≤ r′ ≤ 1)
12 Rt ← perform(at);
13 # update α and β
14 α = α+Rt;
15 β = β + (1−Rt);
16 t← t+ 1;
17 end

Algorithm 6: Thompson sampling with normal distribution.
1 input: K;
2 initialization:
3 t = 0;
4 Q̂(a) = 0,∀a ∈ [1, A];
5 N(a) = 0,∀a ∈ [1, A];
6 while active do
7 # draw sample from each arm’s distribution
8 Q̃(a) ∼ N (Q̂(a), 1

N(a)+1), ∀a ∈ [K];
9 # pick most probable optimal

10 at ← argmaxa∈[K] Q̃(a);
11 N(a)← N(a) + 1;
12 # get iteration reward
13 Rt ← perform(at);
14 # update parameters of reward distribution of at
15 Q̂(at)← Q̂(at)N(at)+Rt

N(at)+2 ;
16 t← t+ 1;
17 end
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Algorithm 7: EXP3 algorithm [22].
1 input: K,γ;
2 initialization:
3 t = 0;
4 w(a) = 1,∀a ∈ [K];
5 P(a) = 1/K, ∀a ∈ [K];
6 while active do
7 # sample from posterior
8 at ∼ P;
9 # get iteration reward

10 rt ← perform(at);
11 # update weights and probabilities
12 Q̂← rt/P (a);

13 w(a)← w(a) exp(γQ̂K );
14 P(a)← (1− γ) w(a)∑K

i=1 w(i)
+ γ

K ;

15 t← t+ 1;
16 end
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Chapter 8

PUBLICATIONS

The main publications of this thesis, from paper #1 to paper #6, are appended next in the
format of this dissertation.
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Dynamic Channel Bonding in Spatially Distributed

High-Density WLANs

Sergio Barrachina-Muñoz, Francesc Wilhelmi, Boris Bellalta

Abstract

In this paper, we discuss the effects on throughput and fairness of dynamic channel bonding
(DCB) in spatially distributed high-density wireless local area networks (WLANs). First, we
present an analytical framework based on continuous-time Markov networks (CTMNs) for de-
picting the behavior of different DCB policies in spatially distributed scenarios, where nodes are
not required to be within the carrier sense range of each other. Then, we assess the performance
of DCB in high-density IEEE 802.11ac/ax WLANs by means of simulations. We show that there
may be critical interrelations among nodes in the spatial domain – even if they are located out-
side the carrier sense range of each other – in a chain reaction manner. Results also reveal that,
while always selecting the widest available channel normally maximizes the individual long-term
throughput, it often generates unfair situations where other WLANs starve. Moreover, we show
that there are scenarios where DCB with stochastic channel width selection improves the latter
approach both in terms of individual throughput and fairness. It follows that there is not a
unique optimal DCB policy for every case. Instead, smarter bandwidth adaptation is required
in the challenging scenarios of next-generation WLANs.

1 Introduction

Wireless local area networks (WLANs), with IEEE 802.11 as the most widely used standard, are a
cost-efficient solution for wireless Internet access that can satisfy most of the current communication
requirements in domestic, public, and business scenarios. However, the scarcity of the frequency
spectrum in the industrial, scientific and medical (ISM) radio bands, the increasing throughput
demands given by new hungry-bandwidth applications, and the heterogeneity of current wireless
network deployments give rise to substantial complexity. Such issues gain importance in dense
WLAN deployments, leading to multiple partially overlapping scenarios and coexistence problems.

In this regard, two main approaches to optimizing the scarce resources of the frequency spectrum
are being deeply studied in the context of WLANs: channel allocation (CA) and channel bonding
(CB). While CA refers to the action of allocating the potential transmission channels (i.e., both the
primary and secondary channels) for a WLAN or group of WLANs, CB is the technique whereby
nodes are allowed to use a contiguous set of idle channels for transmitting in larger bandwidths,
thus potentially achieving a higher throughput.

This paper focuses on CB, which was first introduced in the IEEE 802.11n (11n) amendment by
allowing two 20 MHz basic channels to be aggregated into a 40 MHz channel. Newer amendments
like IEEE 802.11ac (11ac) extend the number of basic channels that can be aggregated up to 160
MHz channel widths. It is expected that IEEE 802.11ax (11ax) will boost the use of wider channels
[1]. Nonetheless, due to the fact that using wider channels increases the contention and interference
among nodes, undesirable lower performances may be experienced when applying static channel
bonding (SCB), especially in high-density WLAN scenarios. To mitigate such a negative effect,
dynamic channel bonding (DCB) policies are used to select the bandwidth in a more flexible way
based on the instantaneous spectrum occupancy. A well-known example of DCB policy is always-
max (AM)1 [2, 3], where transmitters select the widest channel found idle when the backoff counter
terminates. To the best of our knowledge, the works in the literature assessing the performance
of DCB only study the SCB and AM policies, while they also assume fully overlapping scenarios
where all the WLANs are within the carrier sense range of the others [2, 4–6]. Therefore, there is an
important lack of insights on the performance of CB in more realistic WLAN scenarios, where such
a condition usually does not hold.

With this work, we aim to extend the state of the art by providing new insights on the per-
formance of DCB under saturation regimes in WLAN scenarios that are not required to be fully

1Some papers in the literature indistinctively use the terms DCB and AM. In this paper, we notate AM as a special
case of DCB.
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overlapping; where the effect of carrier sense and communication ranges play a crucial role due to
spatial distribution interdependencies. Namely, the operation of a node has a direct impact on the
nodes inside its carrier sense range, which in turn may affect nodes located outside such range in
complex and hard to prevent ways. Besides, we assess different DCB policies, including a stochastic
approach that selects the channel width randomly.

In order to evaluate different DCB policies, we first introduce the Spatial-Flexible Continuous
Time Markov Network (SFCTMN), an analytical framework based on continuous-time Markov net-
works (CTMNs). This framework is useful for describing the different phenomena that occur in
WLAN deployments when considering DCB in spatially distributed scenarios. In this regard, we
analytically depict such complex phenomena by means of illustration through several toy scenarios.
Finally, we evaluate the performance of the proposed policies in large high-density 11ax WLAN
scenarios by means of simulations using Komondor, a particular release (v1.0.1) of the Komondor [7]
wireless networks simulator.2 We find that, while AM is normally the best DCB policy for maximiz-
ing the individual long-term throughput of a WLAN, it may generate unfair situations where some
other WLANs starve. In fact, there are cases where less aggressive policies like stochastic channel
width selection improve AM both in terms of individual throughput and fairness. This leads to
the need of boosting wider channels through medium adaptation policies. The contributions of this
paper are as follows:

1. Novel insights on the effects of DCB in high-density scenarios. We depict the complex in-
teractions given in spatially distributed deployments – i.e., considering path loss, signal-
to-interference-plus-noise ratio (SINR) and clear channel assessment (CCA) thresholds, co-
channel and adjacent channel interference, etc. – and discuss the influence that nodes have
among them.

2. Generalization of DCB policies including only-primary (i.e., selecting just the primary channel
for transmitting), SCB, AM, and probabilistic uniform (PU) (i.e., selecting the channel width
stochastically).

3. Algorithm for modeling WLAN scenarios with CTMNs that extends the one presented in [6].
Such an extension allows us capturing non-fully overlapping scenarios, taking into consideration
spatial distribution implications. Moreover, this algorithm allows us to model any combination
of DCB policies in a network.

4. Performance evaluation of the presented DCB policies in high-density WLAN scenarios by
means of simulations. The selected physical (PHY) and medium access control (MAC) param-
eters are representative of single user (SU) transmissions in 11ax WLANs.

2 Related work

Several works in the literature assess the performance of CB by means of analytical models, simula-
tions or testbeds. Authors in [8, 9] experimentally analyze SCB in IEEE 802.11n WLANs and show
that the reduction of Watt/Hertz when transmitting in larger channel widths causes lower SINR at
the receivers. This lessens the coverage area consequently and increases the probability of packet
losses due to the accentuated vulnerability to interference. Nonetheless, they also show that DCB
can provide significant throughput gains when such issues are palliated by properly adjusting the
transmission power and data rates.

The advantages and drawbacks of CB are accentuated with the 11ac and 11ax amendments since
larger channel widths are allowed (up to 160 MHz). Nevertheless, it is important to emphasize
that in the dense and short-range WLAN scenarios expected in the coming years [1], the issues
concerning low SINR values may be palliated. The main reason lies in the shorter distances between
transceiver and receiver, and the usage of techniques like spatial diversity multiple-input multiple-
output (MIMO)[10]. An empirical study on CB in 11ac is followed in [11], where authors show
that throughput increases by bonding channels. By means of simulations, authors in [3, 12] assess
the performance of DCB in 11ac WLANs, resulting in significant throughput gains. Still, they
also corroborate that these gains are severely compromised by the activity of overlapping wireless
networks.

2All of the source code of SFCTMN and Komondor is open, encouraging sharing of algorithms between contributors
and providing the ability for people to improve on the work of others under the GNU General Public License v3.0. The
repositories can be found at https://github.com/sergiobarra/SFCTMN and https://github.com/wn-upf/Komondor,
respectively.
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There are other works in the literature that follow an analytical approach for assessing the
performance of CB. For instance, authors in [4] analytically model and evaluate the performance
of CB in short-range 11ac WLANs, proving significant performance boost in presence of low to
moderate external interference. In [2], authors show that CB can provide significant performance
gains even in high-density scenarios, though it may also cause unfairness. Non-saturation regimes
are considered in [13, 14], where authors propose an analytical model for the throughput performance
of CB in 11ac/11ax WLANs under both saturated and non-saturated traffic loads. An analytical
framework to study the performance of opportunistic CB where 11ac users coexist with legacy users
is presented in [15]. Recently, an analytical model based on renewal theory showed that 11ac/11ax
DCB can improve throughput even in the presence of legacy users [16]. Literature on CTMN models
for DCB WLANs is further discussed in Section 4.

As for particular CB solutions or algorithms, an intelligent scheme for jointly adopting the
rate and bandwidth in MIMO 11n WLANs is presented in [10]. Testbed experiments show that
such scheme (ARAMIS) accurately adapts to a wide variety of channel conditions with negligible
overhead and achieving important performance gains. A DCB protocol with collision detection is
presented in [17], in which a node gradually increases the transmission bandwidth whenever new
narrow channels are found available. A stochastic spectrum distribution framework accounting for
WLANs demand uncertainty is presented in [18], showing better performance compared to the naive
allocation approach. Authors in [19] show that the maximal throughput performance can be achieved
with DCB under the CA scheme with the least overlapped channels among WLANs. A dynamic
bandwidth selection protocol for 11ac WLANs is proposed in [20] to prevent the carrier sensing
decreasing and outside warning range problems. In [16] authors propose a heuristic primary channel
selection for maximizing the throughput of multi-channel users. Finally, [21] proposes a prototype
implementation for commercial 11ac devices showing up to 1.85x higher throughput when canceling
time-domain interference.

We believe that this is the first work providing insights into the performance of DCB in spatially
distributed scenarios, where the effect of partially overlapping nodes plays a crucial role due to the
spatial interdependencies. We also provide an algorithm for generating the CTMNs to model such
kind of scenarios. Besides, we assess the performance of different DCB policies, including a novel
stochastic approach, and show that always selecting the widest available channel may be sub-optimal
in some scenarios.

3 System model under consideration

In this section, we first depict the notation regarding channelization that is used throughout this
article. We also define the DCB policies that are studied and provide a general description of
the carrier sense multiple access with collision avoidance (CSMA/CA) operation in IEEE 802.11
WLANs. Finally, we expose the main assumptions considered in the presented scenarios.

3.1 Channelization

Let us discuss the example shown in Figure 1 for introducing the channel access terminology and
facilitating further explanation. In this example, the system channel Csys counts with Nsys = 8
basic channels and WLAN X is allocated with the channel CX = {1, 2, 3, 4} and primary channel
pX = 3. Note that in this particular example the AP of WLAN X does not select the entire allocated
channel, but a smaller one, i.e., Ctx

X = {3, 4} ⊆ CX. Two reasons may be the cause: i) basic channels
1 and/or 2 are detected busy at the end of the backoff, or ii) the DCB policy determines not to pick
them. More formally, the definitions of the channelization terms used throughout the paper are as
follows:

� Basic channel c: the frequency spectrum is split into basic channels of width |c| = 20 MHz.

� Primary channel pw: a basic channel with different roles depending on the node state.
All the nodes belonging to the same WLAN w must share the same primary channel pw.
Essentially, this channel is used to i) sense the medium for decrementing the backoff when the
primary channel’s frequency band is found free, and ii) listening to control and data packets.

� Channel C: a channel C = {c1, c2, ..., cN} consists of a contiguous set of N basic channels.
The width (or bandwidth) of a channel is N |c|.

� Channelization scheme C: the set of channels that can be used for transmitting is deter-
mined by the channel access specification and the system channel (Csys), whose bandwidth is

3
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Figure 1: Channel access notation.
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Figure 2: Simplified channelization of 11ac and 11ax.

given by Nsys|c|. Namely, all the nodes in the system must transmit in some channel included
in C. A simplified version of the channelization considered in the 11ac and 11ax standards is
shown in Figure 2, C = {{1}, {2}, ..., {1, 2}, {3, 4}, ..., {1, 2, 3, 4}, ..., {1, 2, ..., 8}}.

� WLAN’s allocated channel Cw: nodes in a WLAN w must transmit in a channel contained
in Cw ∈ C. Different WLANs may be allocated with different primary channels and different
available channel widths.

� Transmission channel Ctx
n : a node n belonging to a WLAN w has to transmit in a channel

Ctx
n ⊆ Cw ∈ C, which will be given by i) the set of basic channels in Cw found idle by node n

at the end of the backoff (Cfree
n ),3 and ii) the implemented DCB policy.
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Figure 3: CSMA/CA temporal evolution of a node operating under different DCB policies in an
11ax channelization scheme. The DIFS and backoff in red represent that the sensed interference in
the primary channel forces resetting the backoff procedure. While the legacy packets (RTS, CTS,
and ACK) duration is the same no matter the bandwidth, the data duration is clearly reduced when
transmitted in 40 MHz.

3.2 CSMA/CA operation in IEEE 802.11 WLANs

According to the CSMA/CA operation, when a node n belonging to a WLAN w has a packet ready
for transmission, it measures the power sensed in the frequency band of pw. Once the primary
channel has been detected free, i.e., the power sensed by n at pw is smaller than its CCA threshold,

3Note that, in order to include secondary channels for transmitting, a WLAN must listen them free during at
least a point coordination function interframe space (PIFS) period before the backoff counter terminates as shown in
Figure 3. While such PIFS condition is not considered in the SFCTMN framework for the sake of analysis simplicity,
the Komondor simulator does.
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the node starts the backoff procedure by selecting a random initial value of BO ∈ [0,CW− 1] time
slots of duration Te. The contention window is defined as CW = 2bCWmin, where b ∈ {0, 1, 2, ...,m}
is the backoff stage with maximum value m, and CWmin is the minimum contention window. When a
packet transmission fails, b is increased by one unit, and reset to 0 when the packet is acknowledged.

After computing BO, the node starts decreasing the backoff counter while sensing the primary
channel. Whenever the power sensed by n at pw is higher than its CCA, the backoff is paused and
set to the nearest higher time slot until pw is detected free again, at which point the countdown
is resumed. When the backoff timer reaches zero, the node selects the transmission channel Ctx

n

based on the set of idle basic channels Cfree
n and on the DCB policy. The selected transmission

channel is then used throughout the whole packet exchanges involved in a data packet transmission
between the transceiver and receiver. Namely, request to send (RTS) – used for notifying the selected
transmission channel – clear to send (CTS), and acknowledgment (ACK) packets are also transmitted
in Ctx

n . Likewise, any other node that receives an RTS in its primary channel with enough power to
be decoded will enter in network allocation vector (NAV) state, which is used for deferring channel
access and avoiding packet collisions (especially those caused by hidden node situations).

3.3 DCB policies

The DCB policy determines the transmission channel a node must pick from the set of available
ones. When the backoff terminates, any node belonging to a WLAN w operates according to the
DCB policy as follows:

� Only-primary (OP) or single-channel: pick just the primary channel for transmitting if
it is found idle.

� Static channel bonding (SCB): exclusively pick the full channel allocated in its WLAN
when found free. Namely, nodes operating under SCB cannot transmit in channels different
than Cw.

� Always-max (AM): pick the widest possible channel found free in Cw for transmitting.

� Probabilistic uniform (PU): pick with same probability any of the possible channels found
free inside the allocated channel Cw.

For the sake of illustration, let us consider the example shown in Figure 3, which shows the
evolution of a node implementing different DCB policies. In this example, a node is allowed to
transmit in the set of basic channels Cw = {1(p), 2, 3, 4}, where pw = 1 is the primary channel.
While OP picks just the primary channel, the rest of policies try to bond channels in different ways.
In this regard, SCB is highly inefficient in scenarios with partial interference. In fact, no packets can
be transmitted with SCB in this example since the basic channel {3} ∈ Cw is busy during the PIFS
durations previous to the backoff terminations. However, more flexible approaches like AM and PU
are able to transmit more than one frame in the same period of time. On the one hand, AM adapts
in an aggressive way to the channel state. Specifically, it is able to transmit in 40 and 80 MHz
channels at the end of the first and second backoff, respectively. On the other hand, the stochastic
nature of PU makes it more conservative than AM. In the example, the node could transmit in 1 or
2 basic channels with the same probability (1/2) at the end of the first backoff. Likewise, after the
second backoff, a channel composed of 1, 2 or 4 basic channels could be selected with probability
(1/3).

3.4 Main assumptions

In this paper, we present results gathered via the SFCTMN framework based on CTMNs, and also
via simulations through the Komondor wireless network simulator. While in the latter case we are
able to introduce more realistic implementations of the 11ax amendment, in the analytical model
we use relaxed assumptions for facilitating subsequent analysis. This subsection depicts the general
assumptions considered in both cases.

1. Channel model: signal propagation is isotropic. Also, the propagation delay between any
pair of nodes is considered negligible because of the small carrier sense in the above 1GHz ISM
bands where WLANs operate. Besides, the transmission power is divided uniformly among
the basic channels in the selected transmission channel. We also consider an adjacent channel
interference model that replicates Pν of the power transmitted per Hertz into the two basic
channels that are contiguous to the actual transmission channel.

5
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2. Packet errors: a packet is lost if i) the power of interest received at the receiver is less than
its CCA, ii) the SINR (γ) perceived at the receiver does not accomplish the capture effect
(CE), i.e., γ < CE, or iii) the receiver was already receiving a packet. In the latter case,
the decoding of the first packet is ruptured only if the CE is no longer accomplished because
of the interfering transmission. We assume an infinite maximum number of retransmissions
per packet, whose effect is negligible in most of the cases because of the small probability of
retransmitting a data packet more than few times [22].

3. Modulation and coding scheme (MCS): the MCS index used by each WLAN is the highest
possible according to the SINR perceived by the receiver, and it is kept constant throughout
all the simulation. We assume that the MCS selection is designed to keep the packet error
rate constant and equal to η = 0.1 given that static deployments are considered.4 Note that
the η value is only considered if none of the three possible causes of packet error explained in
the item above are given.

4. Traffic: downlink traffic is considered. In addition, we assume a full-buffer mode where APs
always have backlogged data pending for transmission.

4 The CTMN model for WLANs

The analysis of CSMA/CA networks through CTMN models was firstly introduced in [23]. Such
models were later applied to IEEE 802.11 networks in [2, 4, 6, 13, 14, 19, 24, 25], among others. Ex-
perimental results in [26, 27] demonstrate that CTMN models, while idealized, provide remarkably
accurate throughput estimates for actual IEEE 802.11 systems. A comprehensible example-based
tutorial of CTMN models applied to different wireless networking scenarios can be found in [28].
Nevertheless, to the best of our knowledge, works that model DCB through CTMNs study just the
SCB and AM policies, while assuming fully overlapping scenarios. Therefore, there is an impor-
tant lack of insights on more general deployments, where such conditions usually do not hold and
interdependencies among nodes may have a critical impact on their performance. For instance, an
optimal channel allocation algorithm to achieve maximal throughput with DCB was recently pre-
sented in [29]. However, this work does not consider the implications of either spatial distribution
nor CE.

In this section, we depict our extended version of the algorithm introduced in [6] for generating
the CTMNs corresponding to spatially distributed WLAN scenarios, which is implemented in the
SFCTMN framework. With this extension, as the condition of having fully overlapping networks
is no longer required for constructing the corresponding CTMNs, more factual observations can be
made.

4.1 Implications

Modeling WLAN scenarios with CTMNs requires the backoff and transmission times to be expo-
nentially distributed. It follows that, because of the negligible propagation delay, the probability of
packet collisions between two or more nodes within the carrier sense range of the others is zero. The
reason is that two WLANs will never end their backoff at the same time, and therefore they will
never start a transmission at the same time either. Besides, in overlapping single-channel CSMA/CA
networks, it is shown that the state probabilities are insensitive to the backoff and transmission time
distributions [27, 30]. However, even though authors in [6] prove that the insensitivity property does
not hold for DCB networks, the sensitivity to the backoff and transmission time distributions is
very small. Therefore, the analytical results obtained using the exponential assumption offer a good
approximation for deterministic distributions of the backoff, data rate, and packet length.

4.2 Constructing the CTMN

In order to depict how CTMNs are generated, let us consider the toy scenario (Scenario I ) shown in
Figure 4, which is composed of two fully overlapping WLANs implementing AM.5 The channel alloca-
tion employed in such a scenario can be defined as CA = {1, 2, 3, 4} with pA = 2, and CB = {3, 4} with

4In 802.11 devices, given a minimum receiver sensitivity and SINR table, a maximum decoding packet error rate
of 10% is usually tried to be guaranteed when selecting the MCS index.

5Scenario I is selected for conveniently depicting the algorithm. CTMNs corresponding to non-fully overlapping
scenarios (e.g., Scenario III in Section 5) can be also generated with the very same algorithm.

6
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Figure 4: Scenario I. WLANs A and B are inside the carrier sense range of each other with potentially
overlapping basic channels 3 and 4.

pB = 3. That is, there are four basic channels in the system, and the set of valid transmission chan-
nels according to the 11ax channel access scheme is CI = {{1}, {2}, {3}, {4}, {1, 2}, {3, 4}, {1, 2, 3, 4}}
(see Figure 2). Due to the fact that both WLANs are inside the carrier sense range of each other,
their APs could transmit simultaneously at any time t only if their transmission channels do not
overlap, i.e., Ctx

A (t) ∩ Ctx
B (t) = ∅. Notice that slotted backoff collisions cannot occur because their

counters decrease continuously in time, and therefore two transmissions can be neither started nor
finished at the very same time.

4.2.1 States

A state in the CTMN is defined by the set of WLANs active and the basic channels on which they
are transmitting. Essentially, we say that a WLAN is active if it is transmitting in some channel,
and inactive otherwise. We define two types of state spaces: the global state space (Ψ) and the
feasible state space (S).

� Global state space: a global state ψ ∈ Ψ is a state that accomplishes two conditions: i)
the channels in which the active WLANs are transmitting comply with the channelization
scheme C, and ii) all active WLANs transmit inside their allocated channels. That is, Ψ only
depends on the particular channelization scheme C in use and on the channel allocation of the
WLANs in the system. In this paper, we assume that every transmission should be made in
channels inside Csys that are composed of a = 2k contiguous basic channels, for some integer
k ≤ log2Nsys, and that their rightmost basic channels fall on multiples of a, as stated in the
11ac and 11ax amendments.

� Feasible state space: a feasible state s ∈ S ⊆ Ψ exists only if each of the active WLANs
in such state started their transmissions by accomplishing the CCA requirement derived from
the assigned DCB policy. Namely, given a global state space, S depends only on the spatial
distribution and on the DCB policies assigned to each WLAN.

The CTMN corresponding to the toy Scenario I is shown in Figure 5. Regarding the notation, we
represent the states by the most left and most right basic channels used in the transmission channels
of each of their active WLANs. For instance, state s4 = A2

1B4
3 refers to the state where A and B are

transmitting in channels Ctx
A = {1, 2} and Ctx

B = {3, 4}, respectively. Concerning the state spaces,
states ψ6, ψ7, ψ8, ψ9, ψ10, ψ11, ψ12 /∈ S are not reachable (i.e., they are global but not feasible) for
two different reasons. First, states ψ11 and ψ12 are not feasible because of the overlapping channels
involved. Secondly, the rest of unfeasible states are so due to the fact that AM is applied, thus at any
time t that WLAN A(B) finishes its backoff and B(A) is not active, A(B) picks the widest available
channel, i.e., Ctx

A (t) = {1, 2, 3, 4} or Ctx
B (t) = {3, 4}, respectively. Likewise, any time A(B) finishes

its backoff and B(A) is active, A(B) picks again the widest available channel, which in this case
would be Ctx

A (t) = {1, 2} for A and Ctx
B (t) = {3, 4} for B if A is not transmitting in its full allocated

channel, respectively. Some states such as s5 = A2
1 are reachable only via backward transitions. In

this case, when A finishes its backoff and B is transmitting in Ctx
B (t) = {3, 4} (i.e., s3), A picks just

Ctx
A (t) = {1, 2} because the power sensed in channels 3 and 4 exceeds the CCA as a consequence of

B’s transmission. That is, s5 is only reachable through a backward transition from s4, given when
B finishes its transmission in state s4.

4.2.2 CTMN algorithm: finding states and transitions

The first step for constructing the CTMN is to identify the global state space Ψ, which is simply
composed by all the possible combinations given by the system channelization scheme and the
channel allocations of the WLANs. The feasible states in S are later identified by exploring the

7
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Algorithm 1: CTMN generation of spatially distributed DCB WLAN scenarios.

1 i := 1; .........# Index of the last state found

2 k := 1; ....... # Index of the state currently being explored

3 sk := ∅; ......# State currently being explored

4 S := {sk}; # Set of feasible states

5 Q := [ ]; ....... # Transition rate matrix
6 # Generate the global state space Ψ

7 Ψ := generate psi space() ;
8 while sk ∈ S do
9 foreach WLAN X do

10 # If WLAN is active in sk

11 if ∃a, b s.t. Xba ∈ sk then
12 foreach ψ ∈ Ψ do
13 # If there exists a backward transition

14 if sk −Xba == ψ then
15 if ψ 6∈ S then
16 i := i+1;
17 k′ := i;
18 S := S ∪ ψ;

19 else
20 # Get index of state ψ in S
21 k′ := get index(ϕ∗);
22 # New backward transition sk → sk′

23 Qk,k′ := µX(sk)

24 # If WLAN is NOT active in sk

25 else
26 Φ := ∅; . # Set of global states reachable from sk

27 Φ∗ := ∅; . # Set of feasible states reachable from sk
28 # Find possible forward states

29 foreach ψ ∈ Ψ do

30 if ∃a, b s.t. sk+X
b
a == ψ then

31 Φ := Φ ∪ ψ;

32 # Function f finds feasible states and corresponding transition probabilities according to the

DCB policy D and the basic channels found free

Cfree
X (sk) := {P rx

X (sk, CX) < CCAX : 0, 1};
33 {Φ∗, ~α} := f(D, Cfree

X , Φ);
34 foreach ϕ∗ ∈ Φ∗ do
35 if ϕ 6∈ S then
36 i := i+1;
37 k′ := i;
38 S := S ∪ ϕ∗;
39 else
40 # Get index of state ϕ∗ in S
41 k′ := get index(ϕ∗);
42 # New forward transition sk → sk′

43 Qk,k′ := ~α(ϕ∗)λX;

44 k := k+1;

8
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Figure 5: CTMN of Scenario I when applying AM. Circles represent states. All the states are global.
Specifically, feasible states are displayed in white, while non-feasible states are gray colored. Two-
way transitions are noted with forward and backward rates λ, µ, respectively, to avoid cluttering in
the figure. The only backward transition is colored in red. The blue pair of numbers beside the
transition edges represent the algorithm’s discovery order of the forward and backward transitions,
respectively.

states in Ψ. Algorithm 1 shows the pseudocode for identifying both S and the transitions among
such states, which are represented by the transition rate matrix Q.6

Essentially, while there are discovered states in S that have not been explored yet, for any state
sk ∈ S not explored, and for each WLAN X in the system, we determine if X is active or not. If
X is active, we then set possible backward transitions to already known and not known states. To
do so, it is required to fully explore Ψ looking for states where: i) other active WLANs in the state
remain transmitting in the same transmission channel, and ii) WLAN X is not active.

On the other hand, if WLAN X is inactive in state sk, we try to find forward transitions to other
states. To that aim, the algorithm fully explores Ψ looking for states where i) other active WLANs
in the state remain transmitting in the same transmission channel, and ii) X is active in the new
state as a result of applying the implemented DCB policy (D) as shown in line 33. It is important
to remark that in order to apply such policy, the set of idle basic channels in state sk, i.e., Cfree

X (sk),
must be identified according to the power sensed in each of the basic channels allocated to X, i.e.,
P rx

X (sk, CX), and on its CCA level. Thereafter, the transmission channel is selected through the f
function, which applies D.

Each transition between two states si and sj has a corresponding transition rate Qi,j . For
forward transitions, the packet transmission attempt rate (or simply backoff rate) has an average
duration λ = 1/(E[B] · Tslot), where E[B] is the expected backoff duration in time slots, determined
by the minimum contention window, i.e., E[B] = CWmin−1

2 . Furthermore, for backward transitions,
the departure rate (µ) depends on the duration of a successful transmission, i.e., µ = 1/Tsuc =
(TRTS+TSIFS+TCTS+TSIFS+TDATA+TSIFS+TBACK+TDIFS+Te)−1, which in turn depends on both the
data rate (r) given by the selected MCS and transmission channel width, and on the packet length
E[Ldata]. In the algorithm, we simply consider that the data rate of a WLAN X depends on the
state of the system, which collects such information, i.e., µX(s).

Depending on the DCB policy, different feasible forward transitions may exist from the very same
state, which are represented by the set Φ∗. As shown in line 43, every feasible forward transition
rate is weighted by a transition probability vector (~α) whose elements determine the probability of

6Notice that we use Xb
a ∈ s to say that a WLAN X transmits in a range of contiguous basic channels [a, b] when the

CTMN is in state s. With slight abuse of notation, s−Xb
a represents the state where all WLANs that were active in s

remain active except for X, which becomes inactive after finishing its packet transmission. Similarly, s+Xb
a, represents

the state where all the active WLANs in s remain active and X is transmitting in the range of basic channels [a, b].

9
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transiting to each of the possible global states in Φ. Namely, with a slight abuse of mathematical
notation, the probability to transit to any given feasible state ϕ∗ ∈ Φ is ~α(ϕ∗). As a consequence, ~α
must follow the normalization condition

∑
~α(ϕ∗) = 1.

For the sake of illustration, in the CTMNs of Figures 5, 7 and 9, states are numbered according to
the order in which they are discovered. Transitions between states are also shown below the edges.
Note that with SFCTMN, since non-fully overlapping networks are allowed, transitions to states
where one or more WLANs may suffer from packet losses due to interference are also reachable (see
Section 5).

4.3 Performance metrics

Since there are a limited number of possible channels to transmit in, the constructed CTMN will
always be finite. Furthermore, it will be irreducible due to the fact that backward transitions between
neighboring states are always feasible. Therefore, a steady-state solution to the CTMN always
exists. However, due to the possible existence of one-way transitions between states, the CTMN
is not always time-reversible and the local balance may not hold [31]. Accordingly, it prevents to
find simple product-from solutions to compute the equilibrium distribution of the CTMNs. The
equilibrium distribution vector ~π represents the fraction of time the system spends in each feasible
state. Hence, we define πs as the probability of finding the system at state s. In order to obtain ~π
we can use the transition rate matrix Q given the system of equations ~πQ = 0.

As an example, for Scenario I, considering that its elements are sorted by the discovery order of
the states, ~π = (π∅, πA4

1
, πB4

3
, πA2

1B4
3
, πA2

1
). Besides, the corresponding transition rate matrix is

Q =




∗ λA λB 0 0
µA(s2) ∗ 0 0 0
µB(s3) 0 ∗ λA 0

0 0 µA(s4) ∗ µB(s4)
µA(s5) 0 0 λB ∗




,

where λA, λB and µA(s), µB(s) are the packet generation and departure rates in state s of WLANs
A and B, respectively. The diagonal elements represented by ‘*’ in the matrix should be replaced by
the negative sum of the rest of items of their row, e.g., Q4,4 = −

(
µA(s4)+µB(s4)

)
, but for the sake

of illustration we do not include them in the matrix. Once ~π is computed, estimating the average
throughput experienced by each WLAN is straightforward. Specifically, the average throughput of
a WLAN w is

Γw := E[L]

(∑

s∈S
{γw(s) > CE : 0, 1}µw(s)πs

(
1 − η

))
,

where E[L] is the expected data packet length, γw(s) is the SINR perceived by the STA in WLAN
w in state s, CE is the capture effect, and η is the constant packet error probability. The system
aggregate throughput is therefore the sum of the throughputs of all the WLANs, i.e., Γ :=

∑M
w=1 Γw.

Besides, in order to evaluate the fairness of a given scenario, we can use P :=
∑M
w=1 log10 Γw and/or

F :=
(∑M

w Γw
)2
/
(
M
∑M
w Γ2

w

)
, for proportional fairness and the Jain’s Fairness Index, respectively.

4.4 Captured phenomena

Even though most of the well-known wireless phenomena are captured by SFCTMN, there are some
important features that cannot be implemented due to its mathematical modeling nature. Essen-
tially, the main limitations are the inability to capture backoff collisions and the constraints in terms
of execution time for medium size networks. Besides, only the overhead of the RTS/CTS packets are
considered in SFCTMN, i.e., the time of a successful transmission takes also the transmission time
of such packets into account. However, the main purpose of the RTS/CTS mechanism of avoiding
hidden nodes is not captured by the generated CTMNs since no packets are actually transmitted.
That is, only average performance is captured through states modeled without differentiating from
the type of packet being transmitted.

To cope with the abovementioned limitations, we make use of a simulator in Section 6. Basically,
when we lose the benefits of analytically modeling the networks, with Komondor we are allowed to
simulate large networks and get more realistic insights. A comparison of the features implemented
in each tool is shown in Table 1.

10
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5 Interactions in frequency and space

In this section, we draw some relevant conclusions about applying different DCB policies in CSMA/CA
WLANs by analyzing four representative toy scenarios with different channel allocations and spatial
distributions. To that aim, we use the SFCTMN analytical framework and validate the gathered
results by means of the Komondor wireless network simulator.7

In summary, the main outcomes derived from the analytical analyses performed below in this
section are: i) the feasible system states depend on the DCB policies followed by each of the WLANs,
ii) maximizing the instantaneous throughput may not be the optimal strategy to maximize the long-
term throughput, iii) in non-fully overlapping scenarios, cumulative interference and flow starvation
may appear and cause poor performance to some WLANs, iv) there is not a unique optimal DCB
policy. Note that, otherwise stated, in this paper the optimal DCB policy D∗w for WLAN w is the
one that maximizes its throughput, i.e., D∗w = argmaxD Γw.

5.1 Feasible states dependence on the DCB policy

In Table 2 we show the effect of applying different DCB policies on the average throughput experi-
enced by WLANs A and B (ΓA and ΓB, respectively), and by the whole network (Γ) in scenarios I
and II (presented in Figures 4 and 6, respectively). Let us first consider Scenario I. As explained in
Section 4 and shown in Figure 5, the CTMN reaches 5 feasible states when WLANs implement AM.
Instead, due to the fact that both WLANs overlap in channels 3 and 4 when transmitting in their
whole allocated channels – i.e., Ctx

A = CA = {1, 2, 3, 4} and Ctx
B = CB = {3, 4}, respectively – the

SCB policy reaches just three feasible states. Such states correspond to those with a single WLAN
transmitting, i.e., S = {∅, A4

1, B4
3}. In the case of OP, both WLANs are forced to pick just their

primary channel for transmitting and, therefore, S = {∅,A2
2,B

3
3,A

2
2B3

3}. Notice that state A2
2B3

3 is
feasible because A and B have different primary channels and do not overlap when transmitting in
them.

Table 1: Tool features comparison.

Tool SFCTMN Komondor

Type Analytical model Simulator
DCB policies X X

Hidden & exposed nodes X X
RTS/CTS 7(a) X

Flow-in-the-middle X X
Information asymmetry X X

Backoff collision 7 X
Scalable(b) 7 X

(a)RTS/CTS overhead considered in throughput measurements.
(b)Assumable execution time for up to 300 nodes.

Table 2: DCB policy effect on the average throughput [Mbps] in Scenario I and Scenario II. The
values obtained through Komondor are displayed in parentheses, while the other correspond to the
SFCTMN framework.

Policy Scenario I Scenario II

D |S| ΓA ΓB Γ |S| ΓA ΓB Γ

OP 4
109.36 109.36 109.36

4
109.36 109.36 109.36

(109.36) (109.36) (109.36) (109.36) (109.36) (109.36)

SCB 3
132.75 132.75 132.75

3
102.65 102.65 102.65

(123.21) (137.09) (130.15) (102.24) (102.24) (102.24)

AM 5
206.68 199.67 203.17

3
102.65 102.65 102.65

(204.70) (201.91) (203.31) (102.24) (102.24) (102.24)

PU 10
142.70 142.00 142.35

6
109.30 109.30 109.30

(142.69) (142.01) (142.35) (109.29) (109.27) (109.28)

The last policy studied is PU, which is characterized by providing further exploration of the

7For the sake of saving space, the evaluation setups and corresponding results of the scenarios considered through
the paper are detailed in https://github.com/sergiobarra/data_repos/tree/master/barrachina2018performance

11
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Figure 6: Scenario II. WLANs A and B are inside the carrier sense range of each other with
potentially overlapping basic channels 1 and 2.
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Figure 7: CTMN corresponding to Scenario II. Transitions edges are dashed for referring to those
that may be given or not depending on the DCB policy. For instance, state s6 is only reachable
for the OP and PU policies. The discovery order of the states and transitions (displayed in blue)
corresponds to the PU policy.

global state space Ψ. It usually allows expanding the feasible state space S accordingly because
more transitions are permitted. In Scenario I, whenever the CTMN is in state ∅ and the backoff of
A or B expires, the WLANs pick each of the possible available channels with the same probability.
Namely, the CTMN will transit to A2

2, A2
1 or A4

1 with probability 1/3 when A’s backoff counter
terminates, and to B3

3 or B4
3 with probability 1/2 whenever B’s backoff counter terminates.

Likewise, if the system is in state B3
3 and A terminates its backoff counter, the CTMN will

transit to the feasible states A2
2B3

3 or A2
1B3

3 with probability 1/2. Similarly, whenever the system is
in state A2

2 or A2
1, and B finishes its backoff, B will pick the transmission channels {3} or {3, 4} with

same probability 1/2 making the CTMN to transit to the corresponding state where both WLANs
transmit concurrently. These probabilities are called transition probabilities and are represented
by the vector ~αX,s(s

′). For instance, in the latter case, the probability to transit from s = A2
2 to

s′ = A2
2B3

3 when B terminates its backoff is ~αB,A2
2
(A2

2B3
3) = 1/2.

5.2 Instantaneous vs. long-term throughput

Intuitively, one could think that, as it occurs in Scenario I, always picking the widest channel found
free by means of AM, i.e., maximizing the throughput of the immediate packet transmission (or
instantaneous throughput), may be the best strategy for maximizing the long-term throughput as
well. However, the Scenario II depicted in Figure 6 is a counterexample that illustrates such lack
of applicable intuition. It consists of two overlapping WLANs as in Scenario I, but with different
channel allocation: CA = CB = {1, 2} with pA = 1 and pB = 2, respectively. The CTMNs that
are generated according to the different DCB policies – generalized to any value the corresponding
transition probabilities ~αA,∅, ~αB,∅ may have – are shown in Figure 7.

Regarding the transition probabilities, Table 3 shows the vectors ~αA,∅, ~αB,∅ that are given for
each of the studied DCB policies in Scenario II. Firstly, with OP, due to the fact that WLANs are
only allowed to transmit in their primary channel, the CTMN can only transit from state ∅ to states
A1

1 or B2
2, i.e., ~αA,∅(s2) = ~αB,∅(s4) = 1. Similarly, with SCB, WLANs can only transmit in their

complete allocated channel, thus, when being in state ∅ the CTMN transits only to A2
1 or B2

1, i.e.,
~αA,∅(s3) = ~αB,∅(s5) = 1. Notice that AM generates the same transition probabilities (and respective
average throughput) than SCB because whenever the WLANs have the possibility to transmit –
which only happens when the CTMN is in state ∅ – both A and B pick the widest channel available,

12
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Figure 8: Scenario III. Yellow and blue arrows indicate the carrier sense range of WLANs A and C,
respectively. T1-noCE and T3-noCE refer to topologies T1 and T3 when B does not accomplish the
capture effect condition. SF and Sim refer to the values obtained through SFCTMN and Komondor,
respectively.

i.e., Ctx
A = Ctx

B = {1, 2}. Finally, PU picks uniformly at random any of the possible transitions that
A and B provoke when terminating their backoff in state ∅, i.e., ~αA,∅(s2) = ~αA,∅(s3) = 1/2 and
~αB,∅(s4) = ~αB,∅(s5) = 1/2, respectively.

Note that state A1
1B2

2, when both WLANs are transmitting at the same time, is reachable from
states A1

1 and B2
2 for both OP and PU. In such states, when either A or B terminates its backoff

and the other is still transmitting in its primary channel, only a transition to state A1
1B2

2 is possible,
i.e., ~αA,s2(s6) = ~αB,s4(s6) = 1.

Table 3: Transition probabilities from state ∅ of WLANs A and B in Scenario II for different DCB
policies.

D |S| ~αA,∅(s2) ~αA,∅(s3) ~αB,∅(s4) ~αB,∅(s5)

OP 4 1.0 0.0 1.0 0.0
SCB 3 0.0 1.0 0.0 1.0
AM 3 0.0 1.0 0.0 1.0
PU 6 0.5 0.5 0.5 0.5

Interestingly, as shown in Table 2, applying OP in Scenario II, i.e., being conservative and
unselfish, is the best policy to increase both the individual average throughput of A and B (ΓA,
ΓB, respectively) and the system’s aggregated one (Γ). Instead, being aggressive and selfish, i.e.,
applying SCB or AM, provides the worst results both in terms of individual and system’s aggregate
throughput. In addition, PU provides similar results than OP in average because most of the times
that A and B terminate their backoff counter, they can only transmit in their primary channel
since the secondary channel is most likely occupied by the other WLAN. In fact, state A1

1B2
2 is the

dominant state for both OP and PU. Specifically, the probability of finding the CTMN in state
A1

1B2
2, i.e., ~πs6 , is 0.9802 for OP and 0.9702 for PU, respectively. Therefore, the slight differences on

throughput experienced with OP and PU are given because of the possible transition from ∅ to the
states A2

1 and B2
1 in PU, where WLANs entirely occupy the allocated channel, thus preventing the

other for decreasing its backoff.
Despite being a very simple scenario, we have shown that it is not straightforward to determine

the optimal DCB policy that the AP in each WLAN must follow. Evidently, in a non-overlapping
scenario, AM would be the optimal policy for both WLANs because of the non-existence of inter-
WLAN contention. However, this is not a typical case in dense scenarios and, consequently, AM
may not be adopted as de facto DCB policy, even though it provides more flexibility than SCB. This
simple toy scenario also serves to prove that some intelligence should be implemented in the APs in
order to harness the information gathered from the environment.

Concerning the throughput differences in the values obtained by SFCTMN and Komondor,8 we
note that the main disparities correspond to the AM and SCB policies. It is important to remark
that while SFCTMN considers neither backoff collisions nor NAV periods, Komondor actually does
so in a more realistic way. Therefore, in Komondor, whenever there is a slotted backoff collision, the
RTS packets can be decoded by the STAs in both WLANs if the CE is accomplished. That is why
the average throughput is consequently increased.

Regarding the NAV periods, an interesting phenomenon occurs in Scenario I when implementing
SCB, AM or PU. While the RTS packets sent by B cannot be decoded by A because its primary

8In Komondor the throughput is simply computed as the number of useful bits (corresponding to data packets) that
are successfully transmitted divided by the observation time of the simulation.
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Figure 9: CTMN corresponding to Scenario III-T3. For the sake of visualization, neither the
transition rates nor the transmission channels are included in the figure. The discovery order of the
transitions is represented by the pairs in blue.

channel is always outside the possible transmission channels of B (i.e., pA = 2 /∈ Ctx
B = {3, 3} or

{3, 4}), the opposite occurs when A transmits them. Due to the fact that the RTS is duplicated in
each of the basic channels used for transmitting, whenever A transmits in its whole allocated channel,
B is able to decode the RTS (i.e., pB = 3 ∈ Ctx

A = {1, 2, 3, 4}) and enters in NAV consequently.

5.3 Cumulative interference and flow starvation

When considering non-fully overlapping scenarios, i.e., where some of the WLANs are not inside
the carrier sense range of the others, complex and hard to prevent phenomena may occur. As
an illustrative example, let us consider the case shown in Figure 8a, where 3 WLANs sharing a
single channel (i.e., CA = CB = CC = {1}) are deployed composing a line network. As the carrier
sense range is fixed and is the same for each AP, by locating the APs at different distances we
obtain different topologies that are worth to be analyzed. We name these topologies from T1 to
T4 depending on the distance between consecutive APs, which increases according to the topology
index. Notice that all the DCB policies discussed in this work behave exactly the same way in
single-channel scenarios. Therefore, in this subsection, we do not make distinctions among them.

The average throughput experienced by each WLAN in each of the regions is shown in Figure
8b. Regarding topology T1, when APs are close enough to be inside the carrier sense range of each
other in a fully overlapping manner, the medium access is shared fairly because of the CSMA/CA
mechanism. For that reason, the throughput is decreased to approximately 1/3 with respect to
topology T4. Specifically, the system spends almost the same amount of time in the states where
just one WLAN is transmitting, i.e., π(A1

1) = π(B1
1) = π(C1

1) ≈ 1/3. The neighbor overlapping
case in topology T2 is a clear case of flow-in-the-middle (FIM) starvation. Note that A and C can
transmit at the same time whenever B is not active, but B can only do so when neither A nor C
are active. Namely, B has very few transmission opportunities because A and C are transmitting
almost permanently and B must continuously pause its backoff consequently.

An interesting and hard to prevent phenomenon occurs in the potential central node overlapping
case at topology T3. Figure 9 shows the corresponding CTMN. In this case, the cumulated interfer-
ence perceived by B from both A and C, prevents the former to decrease its backoff, thus generating
a new FIM-like scenario such as in topology T2. However, in this case, B is able to decrement the
backoff any time A or C are not transmitting. This leads to two possible outcomes regarding packet
collisions. On the one hand, if the capture effect condition is accomplished by B (i.e., γB > CE)
no matter whether A and C are transmitting, B will be able to successfully exchange packets and
the throughput will increase accordingly. On the other hand, if the capture effect condition is not
accomplished, B will suffer a huge packet error rate because most of the initiated transmissions
will be lost due the hidden node effect caused by the concurrent transmissions of A and C (i.e.,
γB < CE when A and C transmit). This phenomena may be recurrent and have considerable impact
on high-density networks where multiples WLANs interact with each other. Therefore, it should be
foreseen in order to design efficient DCB policies.

Finally, in topology T4, WLANs achieve the maximum throughput, as expected. The fact is that
they are isolated (i.e., outside the carrier sense range of each other), which allows holding successful
transmissions without having to pause their backoff.

Concerning the differences on the average throughput values estimated by SFCTMN and Komondor,
we observe two phenomena with respect to backoff collisions in topologies T1 and T3. In T1, due
to the fact that simultaneous transmissions (or backoff collisions) are permitted and captured in
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Komondor, the throughput is slightly smaller or higher depending on whether the capture effect
condition is accomplished (T1) or not (T1-noCE), respectively. Note that backoff collisions have a
negligible effect in T2 since B suffers from heavy FIM and it hardly ever transmits.

The most notable difference is given in T3. In this topology, SFCTMN estimates that B is
transmitting just the 50.15% of the time. That is, since A and C operate like in isolation, most of
the time they transmit concurrently, causing backoff freezing at B. However, Komondor estimates
that B transmits about the 75% of the time, capturing a more realistic behavior. Such a difference
is caused by the fact that the insensitivity property does not hold in this setup, since the Markov
chain is not reversible. For instance, whenever the system is in state s6 = A1

1C1
1 and A finishes

its transmission (transiting to s4 = C1
1 ), B decreases its backoff accordingly while C is still active.

Therefore, it is more probable to transit from s4 to s7 = B1
1C1

1 than to s6 = A1
1C1

1 again because, in
average, the remaining backoff counter of B will be smaller than the generated by A when finishing
its transmission. This is in fact not considered by the CTMN, which assumes the same probability
to transit from s4 to s6 than to s7 because of the exponential distribution and the memoryless
property.

5.4 Variability of optimal policies

Table 4: Policy combinations effect on throughput and fairness in the WLANs of Scenario IV. The
complete table can be found at Appendix B of the supplementary material.

Policy States Throughput [Mbps] Fair.
DA DB DC |S| ΓA ΓB ΓC Γ J
AM AM AM 5 199.96 3.58 199.96 403.49 0.67853
AM PU AM 10 149.41 62.45 149.41 361.27 0.89679
PU AM PU 25 109.84 108.44 109.84 328.12 0.9999
AM AM PU 9 111.31 106.91 110.33 328.55 0.9997

Most often, the best DCB policy for increasing the own throughput, no matter what policies
the rest of WLANs may implement, is AM. Nonetheless, there are exceptions like the one presented
in Scenario II. Besides, if achieving throughput fairness between all WLANs is the objective, other
policies may be required. Therefore, there is not always an optimal common policy to be implemented
by all the WLANs. In fact, there are cases where different policies must be assigned to different
WLANs in order to increase both the fairness and individual throughput. For instance, let us
consider another toy scenario (Scenario IV ) using the topology T2 of Scenario III, where three
WLANs are located in a line in such a way that they are in the carrier sense range of the immediate
neighbor. In this case, however, let us assume a different channel allocation: CA = CB = CC = {1, 2}
and pA = pC = 1, pB = 2.

Table 6 shows the individual and aggregated throughputs, and the Jain’s fairness index for
different combinations of DCB policies. We note that, while implementing AM in all the WLANs the
system’s aggregated throughput is the highest (i.e., Γ = 403.49 Mbps), the throughput experienced
by B is the lowest (i.e., ΓB = 3.58 Mbps), leading to a very unfair FIM situation as indicated
by J ≈ 0.69. We also find a case where implementing AM does not maximize the individual
throughput of B. Namely, when A and C implement AM (i.e., DA = DC = AM), it is preferable
for B to implement PU and force states in which A and C transmit only in their primary channels.
This increases considerably both the throughput of B and the fairness accordingly.

Looking at the fairest combinations, we notice that A, C or both must implement PU in order to
let B transmit with a similar amount of opportunities. This is achieved by the stochastic nature of
PU, which lets the CTMN to explore more states. Accordingly, B experiences the highest through-
put and the system achieves complete fairness (i.e., J ≈ 1). Nonetheless, the price to pay is to
significantly decrease the throughput of A and C. In this regard, other fairness metrics like P would
determine the optimality of a certain combination of policies in a different way. For instance, in the
scenario under evaluation, the combination providing the highest proportional fairness is AM-PU-
AM (i.e., P ≈ 6.16) followed closely by the rest of scenarios with some WLAN implementing PU
(i.e., P ≈ 6.11).

In essence, this toy scenario is a paradigmatic example showing that with less aggressive policies
like PU (of probabilistic nature), not only more states in the CTMN can be potentially explored with
respect to AM, but also the probability of staying in states providing higher throughput (or fairness)
may increase. Therefore, since most of the times it does not exist a global policy that satisfies all
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the WLANs in the system, different policies should be adopted depending on the parameter to be
optimized.

6 Evaluation of DCB in dense WLANs

In this section, we study the effects of the presented DCB policies by simulating WLAN deployments
of different node densities in Komondor. We first draw some general conclusions from analyzing the
throughput and fairness when increasing the number of WLANs per area unit. Then, we discuss
what is the optimal policy that a particular WLAN should locally pick in order to maximize its own
throughput. The evaluation setup (11ax parameters, transmission power, path loss model, etc.) is
extensively detailed in Appendix C of the supplementary material.

6.1 Network density vs. throughput

Figure 12 shows the general scenario considered for conducting the experiments presented in this
section. For the sake of speeding up Komondor simulations, we assume that each WLAN is composed
just of 1 AP and 1 STA. Due to the fact that APs and STAs are located randomly in the map, the
number of STAs should not have a significant impact on the results because only downlink single-
user traffic is assumed. Essentially, we consider a rectangular area Amap = 100× 100 m2, where M
WLANs are placed uniformly at random with the single condition that any pair of APs must be
separated at least dmin

AP-AP = 10 m. The STA of each WLAN is located also uniformly at random at
a distance dAP-STA ∈ [dmin

AP-STA, d
max
AP-STA] = [1, 5] m from the AP. The channelization C counts with

Nsys = 8 basic channels (160 MHz) and follows the 11ax proposal (see Figure 2). Channel allocation
is also set uniformly at random, i.e., every WLAN w is assigned a primary channel pw ∼ U [1, 8] and
allocated channel CX containing Nw ∼ U{1, 2, 4, 8} basic channels.

For each number of WLANs studied (i.e., M = 2, 5, 10, 20, 30, 40, 50), we generate ND = 50
deployments with different random node locations and channel allocations. Then, for each of the
deployments, we assign to all the WLANs the same DCB policy. Namely, we simulate NM ×ND ×
NP = 7× 50× 4 = 1400 scenarios, where NM is the number of different M values studied and NP is
the number of DCB policies considered in this paper. Besides, all the simulations have a duration
of Tobs = 20 seconds.

In Figure 10, we show by means of boxplots the average throughput per WLAN for each of the
presented DCB policies. As expected, when there are few WLANs in the area, the most aggressive
policies (i.e., SCB and AM) provide the highest throughput. In contrast, PU, and especially OP,
perform the worst, as they do not extensively exploit the free bandwidth. However, when the
scenario gets denser, the average throughput obtained by all the policies except SCB tends to be
similar. This occurs because WLANs implementing AM or PU tend to carry out single-channel
transmissions since the PIFS condition for multiple channels are most likely not accomplished. In
the case of SCB, part of the bandwidth in the WLAN’s allocated channel will most likely be occupied
by other WLANs, and therefore its backoff counter will get repeatedly paused. Thus, its average
throughput in dense scenarios is considerably low with respect to the other policies.

In order to asses the use of the spectrum, we first define the average bandwidth usage of a WLAN

w as E[BWw] = 1
Tobs

∑Nsys

c=1 t
tx
w (c) · |c|, where ttxw (c) is the time that WLAN w is transmitting in a

channel containing at least the basic channel c. The average spectrum used by all the WLANs,
i.e., BW =

∑M
w=1 E[BWw] is shown in Figure 11 for the different DCB policies. Similarly to the

throughput, while OP and PU do not leverage the free spectrum in low-density scenarios, SCB and
AM do so by exploiting the most bandwidth. Instead, when the number of nodes per area increases,
SCB suffers from heavy contention periods, which reiterates the need for flexibility to adapt to the
channel state. In this regard, we note that AM is clearly the policy exploiting the most bandwidth
in average for any number of WLANs. Nonetheless, neither the average throughput per WLAN
nor the spectrum utilization may be a proper metric when assessing the performance of the whole
system. Namely, having some WLANs experiencing high throughput when some others starve is
often a situation preferable to be avoided. In that sense, we focus on the fairness, which is both
indicated by the boxes and outliers in Figure 10, and more clearly represented by the expected Jain’s
fairness index shown in Figure 11.

As expected, the policy providing the highest fairness is OP. In fact, no matter the channel
allocation, WLANs only pick their primary channel for transmitting when implementing OP; hence
the fairness is always maximized at the cost of probably wasting part of the frequency spectrum,
especially when the node density is low. In this regard, PU also provides high fairness while exploiting
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Figure 11: Node density effect on total bandwidth and fairness.

the spectrum more, which increases the average throughput per WLAN accordingly. Regarding the
aggressive policies, SCB is clearly the most unfair policy due to its all or nothing strategy. Therefore,
it seems preferable to prevent WLANs from applying SCB in dense scenarios because of the number
of WLANs that may starve or experience really low throughput. However, even though being
aggressive, AM is able to adapt its transmission channel to the state of the medium, thus providing
both higher throughput and fairness. Still, as indicated by the boxes and outliers of Figure 10, AM
is not per se the optimal policy. In fact, there are scenarios where PU performs better in terms of
both fairness and throughput. Consequently, there is room to improve the presented policies with
some smarter adaptation or learning approaches (e.g., tunning properly the transition probabilities
~α when implementing stochastic DCB).

There are also some phenomena that we have observed during the simulations that are worth
to be mentioned. Regarding backoff decreasing slowness, it can be the case that a WLAN w is
forced to decrease its backoff counter very slowly due to the fact that neighboring WLANs operate
in a channel including the primary channel of w. That is why more fairness is achieved with PU in
dense networks as such neighboring WLANs do not always pick the whole allocated channel. Thus,
they let w to decrease their backoff more often, and to proceed to transmit accordingly. Finally,
concerning the transmission power and channel width, we have observed that transmitting just in
the primary channel can also be harmful to other WLANs because of the higher transmission power
used per 20 MHz channel. While this may allow using higher MCS and respective data rates, it
may also cause packet losses in neighboring WLANs operating with the same primary channel due
to heavy interference, especially for OP.

6.2 Local optimal policy

With the following experiment, we aim to identify what would be the optimal policy that a particular
WLAN should adopt in order to increase its own throughput. In this case, we consider three
rectangular maps (sparse, semi-dense and high-dense) with one WLAN (A) located at the center,
and M − 1 = 24 WLANs spread uniformly at random in the area (see Figure 12). Besides, we
now consider that WLAN A has NA ∼ U [1, 20] STAs.9 Channel allocation (including the primary

9Note that the average results considering just one STA per WLAN are really similar to the ones presented in this
work.
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Figure 12: Central WLAN deployment with A placed in the middle and 24 WLANs spread uniformly
at random.

channel) is set uniformly at random to all the WLANs, except A. While the central WLAN is also
set with a random primary channel, it is allocated the widest channel (i.e., CA = {1, ..., 8}) in order
to provide more flexibility and capture complex effects. While the DCB policies of the rest M − 1
WLANs are picked uniformly at random (i.e., they will implement OP, SCB, AM or PU with same
probability 1/4), A’s policy is set deterministically. Specifically, for each Nb = 3 map sizes (i.e.,
75, 100 and 150 m2), we generate ND = 400 deployments following the aforementioned conditions
for each of the DCB policies that A can implement. That is, we simulate Nm × ND × NP = 4800
scenarios. The simulation time of each scenario is also Tobs = 20 seconds.

Figure 13 shows the average throughput experienced by A in the considered maps. The first
noticeable result is that, in dense scenarios, SCB is non-viable for WLANs with wide allocated
channels because they are most likely prevented to initiate transmissions. In fact, A is not able to
successfully transmit any data packets in 61%, 84% and 99% of the scenarios simulated for SCB
in the sparse, semi-dense and high-dense maps, respectively. Regarding the rest of policies, on
average, A’s throughput is higher when implementing AM in all the maps. Especially, AM (and
SCB in some cases) stands out in sparse deployment. Nevertheless, for dense deployments, there
is a clear trend to pick just one channel when implementing AM or PU. That is why OP provides
an average throughput relatively close to the ones achieved by these policies. Nonetheless, as the
high standard deviation of the throughput indicates, there are important differences regarding ΓA

among the evaluated scenarios. Table 5 compares the share of scenarios where AM or PU provide
the highest individual throughput for A. We say that AM is better than PU if E[ΓAM

A ]−E[ΓPU
A ] > δΓ,

and vice versa. We use the margin δΓ = 1 Mbps for capturing the cases where AM and PU perform
similarly.

We see that in most of the cases AM performs better than PU. However, in some scenarios, PU
outperforms AM. This improvement is accentuated for the high-density map, where a significant
57% (19% + 38%) of the scenarios achieve the same or highest throughput with PU. Also, there are
a scenarios where the throughput experienced by PU with respect to AM is significantly higher (up
to 61.5, 127.4 and 41.9 Mbps of improvement for the sparse, semi-dense and high-dense scenarios,
respectively). This mainly occurs when the neighboring nodes occupy A’s primary channel through
complex interactions caused by information asymmetries, keeping its backoff counter frozen for
long periods of time. These are clear cases where adaptive policies could importantly improve the
performance.

Therefore, as a rule of thumb for dense networks, we can state that, while AM reaches higher
throughput on average, stochastic DCB is less risky and performs relatively well. Nonetheless, even
though PU is fairer than AM on average, it does not guarantee the absence of starving WLANs
either. It follows that WLANs must be provided with some kind of adaptability to improve both
the individual throughput and fairness with acceptable certainty.

7 Conclusions

In this work, we show the effects on spatially distributed WLANs of different DCB policies, including
a new approach that stochastically selects the transmission channel width. By means of modeling
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Figure 13: DCB policy effect on central WLAN A.

Table 5: Share of scenarios where AM or PU provide the highest individual throughput for WLAN
A.

DeploymentPU best AM best Draw

Sparse
150 m2

90/400
(23%)

260/400
(65%)

50/400
(13%)

Semi 100
m2

61/400
(15%)

246/400
(62%)

93/400
(23%)

High 75
m2

77/400
(19%)

172/400
(43%)

151/400
(38%)

WLAN scenarios through CTMNs, we provide relevant insights such as the instantaneous vs. long-
term throughput dilemma, i.e., always selecting the widest available channel found free does not
always maximize the individual throughput. Besides, we show that often there is not an optimal
global policy to be applied to each WLAN, but different policies are required, specially in non-fully
overlapping scenarios where chain reaction actions are complex to foresee.

Simulations corroborate that, while AM is normally the optimal policy to maximize the individual
long-term throughput, there are cases, particularly in high-density scenarios, where stochastic DCB
performs better both in terms of individual throughput and fairness among WLANs. We conclude
that the performance of DCB can be significantly improved through adaptive policies capable of
leveraging gathered knowledge from the medium and/or via information distribution. In this regard,
our next works will focus on studying machine learning based policies to enhance WLANs spectrum
utilization in high-density scenarios.
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Appendices

A Dynamic channel bonding flowchart

In Figure 14, a simple flowchart of the transmission channel selection is shown.

B Optimal combination of DCB policies

Table 6 shows the individual and aggregated throughputs, and the Jain’s fairness index for all the
combinations of DCB policies in Secnario IV.
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Figure 14: Flowchart of the transmission channel selection. In this example channel 5 is the primary
channel and a DCB policy D = AM is applied.

Table 6: Effect of different DCB policy combinations on throughput and fairness in the WLANs of
Scenario IV. The values obtained through Komondor are displayed in parentheses, while the other
correspond to the SFCTMN framework.

Policy States Throughput [Mbps] Fairness
DA DB DC |S| ΓA ΓB ΓC Γ J

AM AM AM 5
199.96 3.58 199.96 403.49 0.67853
(199.35) (4.76) (199.37) (403.48) (0.68247)

AM PU AM 10
149.41 62.45 149.41 361.27 0.89679
(128.72) (86.88) (128.72) (344.31) (0.97131)

PU AM PU 14
109.84 108.44 109.84 328.12 0.99996
(109.49) (109.13) (109.51) (328.13) (1.00000)

AM AM PU 9
111.31 106.91 110.33 328.55 0.99970
(109.64) (109.06) (109.49) (328.19) (1.00000)

AM PU PU 12
111.29 106.94 110.33 328.56 0.99971
(109.63) (109.07) (109.49) (328.18) (1.00000)

PU PU PU 14
109.85 108.44 109.85 328.13 0.99996
(109.52) (109.10) (109.51) (328.13) (1.00000)

C Evaluation setup

The values of the parameters considered in the simulations are shown in Table 7. Regarding the path
loss, we use the dual-slope log-distance model for 5.25 GHz indoor environments in room-corridor
condition [32]. Specifically, the path loss in dB experienced at a distance d is defined by

PL(d) =

{
53.2+25.8 log10(d) if d ≤ d1 m
56.4+29.1 log10(d) otherwise

, (1)

where d1 = 9 m is the break point distance.
The MCS index used for each possible channel bandwidth (i.e., 20, 40, 80 or 160 MHz) was the

highest allowed according to i) the power power budget established between the WLANs and their
corresponding STA/s, and ii) the minimum sensitivity required by the MCSs. As stated by the
11ax amendment, the number of transmitted bits per OFDM symbol used in data transmissions is
given by the channel bandwidth and the MCS parameters, i.e., r = YscYmYcVs, where Ysc is the
number of data sub-carriers, Ym is the number of bits in a modulation symbol, Yc is the coding rate,
and Vs = 1 is the number of single user spatial streams (note that we only consider one stream per
transmission).

The number of data sub-carriers depends on the transmission channel bandwidth. Specifically,
Ysc can be 234, 468, 980 or 1960 for 20, 40, 80, and 160 MHz, respectively. For instance, the data
rate provided by MCS 11 in a 20 MHz transmission is s = (234× 10× 5/6× 1)σ−1 = 121.9 Mbps.
However, control frames are transmitted in legacy mode using the basic rate rleg = 24 bits per
OFDM symbol of MCS 0, corresponding to sleg = 6 Mbps since the legacy OFDM symbol duration
σleg must be considered. With such parameters we can define the duration of the different packets
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Table 7: Parameters considered in the presented scenarios.

Parameter Description Value

fc Central frequency 5 GHz
|c| Basic channel bandwidth 20 MHz
LD Frame size 12000 bits
Na No. of frames in an A-MPDU 64
CWmin Min. contention window 16
m No. of backoff stages 5
MCS 11ax MCS index 0 - 11
η MCS’s packet error rate 0.1
CCA CCA threshold -82 dBm
Ptx Transmission power 15 dBm
Gtx Transmitting gain 0 dB
Grx Reception gain 0 dB
PL(d) Path loss see (1)
Pν Adjacent power leakage factor -20 dB
CE Capture effect threshold 20 dB
N Background noise level -95 dBm

Te Empty backoff slot duration 9 µs
TSIFS SIFS duration 16 µs
TDIFS DIFS duration 34 µs
TPIFS PIFS duration 25 µs
TPHY-leg Legacy preamble 20 µs
TPHY-HE-SU HE single-user preamble 164 µs
σleg Legacy OFDM symbol duration 4 µs
σ 11ax OFDM symbol duration 16 µs
LBACK Length of a block ACK 432 bits
LRTS Length of an RTS packet 160 bits
LCTS Length of a CTS packet 112 bits
LSF Length of service field 16 bits
LMD Length of MPDU delimiter 32 bits
LMH Length of MAC header 320 bits
LTB Length of tail bits 18 bits

transmissions, and the duration of a successful and collision transmission accordingly:

TRTS = TPHY-leg+

⌈
LSF+LRTS+LTB

rleg

⌉
σleg,

TCTS = TPHY-leg+

⌈
LSF+LCTS+LTB

rleg

⌉
σleg,

TDATA = TPHY-HE-SU+

+

⌈
LSF+Na(LMD+LMH+LD)+LTB

r

⌉
σ,

TBACK = TPHY-leg+

⌈
LSF+LBACK+LTB

rleg

⌉
σleg.
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[7] Sergio Barrachina-Muñoz, Francesc Wilhelmi, Ioannis Selinis, and Boris Bellalta. Komondor:
a wireless network simulator for next-generation high-density wlans. In 2019 Wireless Days
(WD), pages 1–8. IEEE, 2019.

[8] L. Deek, E. Garcia-Villegas, E. Belding, S. Lee, and K. Almeroth. The impact of channel
bonding on 802.11n network management. In Proceedings of the Seventh Conference on emerging
Networking EXperiments and Technologies, page 11. ACM, 2011.

[9] M. Y. Arslan, K. Pelechrinis, I. Broustis, S. V. Krishnamurthy, S. Addepalli, and K. Papagian-
naki. Auto-configuration of 802.11n WLANs. In Proceedings of the 6th International Conference,
page 27. ACM, 2010.

[10] L. Deek, E. Garcia-Villegas, E. Belding, S. Lee, and K. Almeroth. Joint rate and channel width
adaptation for 802.11 MIMO wireless networks. In Sensor, Mesh and Ad Hoc Communications
and Networks (SECON), 2013 10th Annual IEEE Communications Society Conference on,
pages 167–175. IEEE, 2013.

[11] Y. Zeng, P. Pathak, and P. Mohapatra. A first look at 802.11 ac in action: Energy efficiency and
interference characterization. In Networking Conference, 2014 IFIP, pages 1–9. IEEE, 2014.

[12] M. X. Gong, B. Hart, L. Xia, and R. Want. Channel bounding and MAC protection mechanisms
for 802.11ac. In Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, pages
1–5. IEEE, 2011.

[13] M. Kim, T. Ropitault, S. Lee, and N. Golmie. A Throughput Study for Channel Bonding in
IEEE 802.11ac Networks. IEEE Communications Letters, 2017.
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versitat Politècnica de Catalunya (UPC) in 2002 and the Ph.D. in Information
and Communication Technologies from UPF in 2007. His research interests are
in the area of wireless networks, with emphasis on the design and performance
evaluation of new architectures and protocols. The results from his research
have been published in more than 100 international journal and conference
papers. He is currently involved in several international and national research
projects, including the coordination of the ENTOMATIC FP7 collaborative
project. At UPF he is giving several courses on networking, queuing theory
and wireless networks. He is co-designer and coordinator of the interuniversity
(UPF and UPC) master’s degree in Wireless Communications.

24



“main” — 2020/11/19 — 10:04 — page 134 — #156

To Overlap or not to Overlap: Enabling Channel Bonding in

High-Density WLANs

Sergio Barrachina-Muñoz, Francesc Wilhelmi, Boris Bellalta

Abstract

Wireless local area networks (WLANs) are the most popular kind of wireless Internet connection
because of their simplicity of deployment and operation. As a result, the number of devices accessing
the Internet through WLANs such as laptops, smartphones, or wearables, is increasing drastically at
the same time that applications’ throughput requirements do. To cope with these challenges, channel
bonding (CB) techniques are used for enabling higher data rates by transmitting in wider channels,
thus increasing spectrum efficiency. However, important issues like higher potential co-channel and
adjacent channel interference arise when bonding channels. This may harm the performance of the
carrier sense multiple access (CSMA) protocol because of recurrent backoff freezing, while making
nodes more sensitive to hidden node effects. In this paper, we address the following point at issue:
is it convenient for high-density (HD) WLANs to use wider channels and potentially overlap in the
spectrum? First, we highlight key aspects of DCB in toy scenarios through a continuous time Markov
network (CTMN) model. Then, by means of extensive simulations covering a wide range of traffic
loads and access point (AP) densities, we show that dynamic channel bonding (DCB) – which adapts
the channel bandwidth on a per-packet transmission – significantly outperforms traditional single-
channel on average. Nevertheless, results also corroborate that DCB is more prone to generate unfair
situations where WLANs may starve. Contrary to most of the current thoughts pushing towards
non-overlapping channels in HD deployments, we highlight the benefits of allocating channels as
wider as possible to WLANs altogether with implementing adaptive access policies to cope with the
unfairness situations that may appear.

1 Introduction

Although remarkable technological improvements have been achieved in the last decades, wireless local
area networks (WLANs), with IEEE 802.11’s Wi-Fi as the most widely used standard, still face important
challenges that degrade their performance. Particularly, the frequency spectrum is becoming scarce
and inefficient because of the rising number of wireless devices, the characteristically heterogeneous and
random WLAN deployments, and the raising throughput demands (e.g., some virtual reality applications
require more than 1 Gbps to operate properly [1]). All these circumstances lead to dense or high-dense
(HD) scenarios with coexistence issues since WLANs try to selfishly serve their users in non-collaborative
deployments.

As a result, there is a clear need of exploiting the spectrum in a more efficient way by maximizing
transmissions’ bandwidth. One of the most promising techniques to overcome such a challenge is channel
bonding (CB). The main idea behind CB is to allow using wider bandwidths in order to transmit at
higher transmission rates, increasing the potential throughput accordingly.1 CB for WLANs was firstly
introduced in the IEEE 802.11n-2009 amendment [2] by letting two separated 20 MHz channels (or basic
channels) get combined into a 40 MHz channel. Later, IEEE 802.11ac-2013 [3] introduced the capability
of transmitting also in 80 and 160 MHz channels. Future amendments like the IEEE 802.11ax-2019 [4]
or EXtreme throughput (XT) [5], which is expected to support up to 320 MHz transmissions, will boost
the use of wider channels. A survey of CB schemes for different types of wireless networks is provided
in [6].

There are important drawbacks, however, when it comes to transmitting in wider channels: essentially,
the larger the bandwidth used for transmitting, the wider the spectrum suffering from co-channel and

1According to the well-known Shannon-Hartley capacity theorem, the capacity (or raw throughput) of a channel increases
with the bandwidth.
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adjacent channel interference at neighboring nodes. That is, CB may be counterproductive since WLANs
nearby are more likely to partially overlap, causing severe performance degradation due to the listen-
before-talk nature of the carrier sense multiple access (CSMA) protocol. This effect is further exacerbated
when following static channel bonding (SCB) [7]. Besides, the signal-to-interference-plus-noise ratio
(SINR) at the receiver decreases for wider channels since the transmission power is spread through the
whole transmission bandwidth (or subcarriers). Accordingly, situations like the hidden node problem
are more prone to occur when implementing CB [8].

In this regard, dynamic channel bonding (DCB) allows adapting the selected transmission bandwidth
to the channel status right before transmitting. This provides a higher degree of flexibility that improves
the instantaneous throughput in a simple and efficient way. Then, we can differentiate two approaches
with respect to spectrum management in WLANs: i) fostering transmissions in non-overlapping basic
channels, or ii) enabling faster transmissions in wider channels that may potentially overlap in the
spectrum. Alas, in high density (HD) spatially distributed scenarios,2 the complex interrelations among
nodes (located inside or outside the carrier sense range of each other) complicate the task of a priori
estimating the optimal spectrum management approach on a per-WLAN basis.

Significant research has been conducted on the impact of DCB on spatially distributed WLANs’
performance under saturation regimes. However, to the best of our knowledge, the effects of unsaturated
traffic patters, which fit better to real world problems, are still unknown. While saturated regimes offer
valuable insights on worst-case scenarios, WLANs are characteristically unsaturated with load patterns
that deeply depend on the application/s being supported. In such scenarios, overlapping approaches
seem to be even more convenient since the sensed channels usually remain free during larger periods of
time.

In this paper, we compare the performance of traditional single-channel with channel bonding (in-
cluding a stochastic variant) in networks under different traffic load regimes. To do so, we first introduce
an analytical model to depict the behavior of the aforementioned CB approaches (or policies) in spa-
tially distributed WLAN networks. The model is based on continuous time Markov networks (CTMNs)
and captures both saturated and unsaturated regimes. Then, by means of simulations, we evaluate the
performance of the CB policies in terms of throughput and delay in toy scenarios and HD WLAN de-
ployments. We find that for low individual and neighboring traffic loads single-channel can improve CB
in terms of delay since the time to access the channel is reduced. However, in general, DCB significantly
outperforms traditional single-channel in most of the evaluated scenarios. Nonetheless, DCB is more
prone to cause starvation and hidden nodes, which may lead to unfair scenarios with highly unbalanced
performance among WLANs. Results suggest that future WLANs should be allocated all the available
bandwidth and dynamically adapt to the spectrum.

The remainder of this article is organized as follows. In Section 2, we introduce CB for IEEE 802.11
WLANs, present the related work, and define the policies considered in this work. Then, in Section 3
we analytically model the interactions of DCB in spatially distributed deployments and point out key
aspects of its performance through toy scenarios. DCB in HD WLANs is assessed in Section 4 by means
of simulations. We conclude with some final remarks at Section 5.

2 Channel bonding

2.1 Channel bonding in IEEE 802.11 WLANs

CB is a technique whereby nodes, i.e., access points (APs) and stations (STAs), are allowed to use
contiguous sets of available basic channels for their transmissions, thus potentially achieving higher
throughput. Namely, by doubling the channel bandwidth, approximately the double data capacity can
be achieved if the modulation coding scheme (MCS) is kept. CB for WLANs was firstly introduced in
the IEEE 802.11n-2009 amendment [2], where high throughput (HT) STAs are allowed to transmit in
more than one 20 MHz channel (or basic channel). Specifically, this amendment allowed bonding up to
two basic channels composing a 40 MHz channel in the 2.4/5 GHz bands. Works in the literature [8–10]
show important improvements achieved with CB in IEEE 802.11ac networks when properly adjusting
the transmission power and data rates in WLANs operating at 5 GHz. Note that in the traditional 2.4

2In spatially distributed scenarios, nodes are not necessarily within the carrier sense range of each other. Thus, different
groups of potentially overlapping WLANs may be given.
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GHz band, CB has been found to be counterproductive since only three non-overlapping basic channels
are allowed [11].

Later, the IEEE 802.11ac-2013 amendment [3] increased the maximum number of bonded 20 MHz
channels to 8, allowing very high throughput (VHT) STAs to transmit in up to 160 MHz in the 5 GHz
band. Currently, the IEEE Task Group 11ax (TGax) is working on the IEEE 802.11ax amendment [4],
which is expected to be published by 2019. As in IEEE 802.11ac, high efficiency (HE) STAs are also
allowed to bond up to 8 basic channels. Moreover, the frequency spectrum efficiency is expected to be
boosted in IEEE 802.11ax by combining orthogonal frequency-division multiple access (OFDMA) [12]
with preamble puncturing, an optional capability for enabling non-contiguous CB. Recently, the EXtreme
throughput (XT) study group [5] has been created with the objective of increasing the peak throughput
and capacity of WLANs. The motivation behind XT are the expectations that more than 1 GHz
of additional unlicensed spectrum may be available around 2020. Thus, it will allow exploiting further
spectrum at the 6 GHz band by transmitting in bandwidths up to 320 MHz. Note that in this manuscript
we consider only contiguous bandwidths. That is, we use representative values of IEEE 802.11ax (e.g.,
78.125 kHz subcarrier spacing or up to 1024-QAM MCS) to provide results in an appropriate scale when
assessing its potential on contiguous DCB. Non-contiguous CB is left for future works, that can take the
results presented in this paper as a baseline.

Notwithstanding, implementing CB in ever-increasingly complex WLAN deployments requires a care-
ful balance of trade-offs. First, regarding channelization,3 the density of neighboring nodes and the
number of independent basic channels (which are regulated by governmental institutions) determine the
feasibility of deploying interference-free networks. Essentially, as transmission channels get wider, fre-
quency spectrum reuse becomes arduous, and the probability of packet collisions due to co-channel and
adjacent channel interference increases. Secondly, the higher the bandwidth, the smaller the transmitted
power per Hz and corresponding coverage range. This, on the one hand, reduces the interference with
other WLANs operating in a (partially) overlapping spectrum. On the other hand, it reduces the SINR
at the destination STAs, resulting in lower transmission rates if the receiver is not close enough to the
transmitter. In addition, higher packet loss rates can arise because of the hidden node problem resulting
from the lower SINR at higher bandwidths. In this regard, authors in [13] show that parameters like the
strength of neighboring links and interferer loads strongly affect the performance of CB.

In short, the multiple spatial distribution factors such as transmission powers, clear channel assess-
ment (CCA) levels, allocated channels, or environment’s path loss, make it really difficult to generalize
to an optimal set of rules for transmission channel selection. It follows that bandwidth adaptation is
required in order to cope with the challenging scenarios of next-generation WLANs.

2.2 Related work

Since its emergence in the IEEE 802.11n amendment, CB has shown a great potential in WLANs. In [8–
10], authors provides insight into the factors affecting CB performance in IEEE 802.11ac WLANs. These
works show that increasing the bandwidth incurs into a lower SINR at the receivers, thus compromising
its effectiveness. The fact is that transmitting in larger channel widths entails a reduction of Watt/Hertz,
which accentuates the vulnerability to interference. In order to palliate the inherent limitations, several
solutions have been proposed for 802.11 WLANs. Authors in [14] propose ARAMIS, a CB solution for
simultaneously adapting the rate and channel bandwidth, boosted by spatial diversity in multiple-input
multiple-output (MIMO) IEEE 802.11ac WLANs. Alternatively, [15] formulates a distributed CB scheme
based on adaptive channel clear assessment (CCA).

Newer amendments like IEEE 802.11ac or IEEE 802.11ax broaden the capabilities of CB by providing
larger channel widths (up to 160 MHz), thus accentuating the advantages and drawbacks of potential
spectrum access solutions. Nonetheless, it is worth noting that next-generation deployments will be
characterized by short-range WLAN scenarios [12]. This reduction of the AP-STA distance, altogether
with the usage of techniques like spatial diversity MIMO[14], contributes to palliate issues regarding low
SINR values. There are several works on CB for IEEE 802.11ac relying on simulations. For instance,
[7, 16, 17] show significant throughput gains compared to single-channel. Authors in [18] conduct an
empirical study corroborating the performance gains of CB in IEEE 802.11ac WLANs. However, these

3Channelization is the process of setting independent channels on neighboring APs in order to avoid interference among
their WLANs.
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Figure 1: CSMA/CA temporal evolution of a node operating under different CB policies in a IEEE
802.11ax channelization scheme (from [17]). The DIFS and backoff durations in red represent that the
sensed interference in the primary channel forces reseting the backoff procedure. While the duration of
the legacy packets (RTS, CTS and ACK/BACK) is the same no matter the bandwidth, the data duration
is clearly reduced when transmitted in 40 and 80 MHz.

works also highlight that such gains are importantly affected by the operation of neighboring networks. To
the best of our knowledge, there are not experimental works yet on CB for preliminary implementations
of IEEE 802.11ax.

One of the first fine-grained spectrum access design to dynamically change both the channel width
and center frequency was formulated in [19]. This approach, compatible with IEEE 802.11a WLANs, was
proven to significantly outperform static allocations. More recently, a frame-level wideband spectrum
adaptation prototype supported by specially-constructed preambles and spectrum detection is presented
in [20]. In this regard, a collision detection protocol for DCB is presented in [21]. Authors in [22]
designed a dynamic bandwidth selection protocol to diminish the carrier sensing decreasing and outside
warning range problems. Other works proposed a heuristic primary channel selection for CB users [23],
a probabilistic spectrum distribution framework considering uncertain traffic load [24], or a prototype
implementation for IEEE 802.11ac based on time-domain interference cancellation [25].

Analytical models have been also widely used in the literature on CB in WLANs[23, 26–29]. CB
in short-range IEEE 802.11ac WLANs is assessed in [26], where authors show significant gains under
moderate neighboring activity. High-density deployments are evaluated in [27], showing the exposure
to unfairness situations. Opportunistic CB under the presence of legacy users is assessed in [28]. The
authors in [30] propose an optimal channel allocation algorithm for DCB WLANs, showing by means
of a CTMN model that the scheme with the least overlapped channels provides the highest throughput.
An analytical throughput model under unsaturated traffic loads is formulated in [29] for CB in IEEE
802.11ac and IEEE 802.11ax. Also extendable to IEEE 802.11ax WLANs, authors in [23] propose a
model based on renewal theory for studying the performance of CB with coexisting legacy users.

While the literature on CB and general spectrum access has extensively covered a wide variety of
scenarios under different assumptions, this work focuses on spatially distributed HD WLANs under non-
fully-backlogged buffers. The presented results allow us to assess whether (and under what circumstances)
it is convenient or not to apply overlapping approaches in front of traditional non-overlapping schemes.
To the best of our knowledge, this is the first work on DCB policies considering both spatial distribution
and non-saturated traffic regimes in HD WLANs.

2.3 CB policies and CSMA/CA operation

All the aforementioned 802.11 WLAN standards operate essentially the same way when the well-known
CSMA with collision avoidance (CSMA/CA) protocol is enabled. CSMA/CA works as follows: when a
node n belonging to a WLAN w has a packet ready for transmission, it measures the power sensed in

4
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its primary channel pw, and determines whether it is idle or occupied according to the CCA level. Once
pw has been detected idle during a DCF interframe space (DIFS), n starts the backoff procedure by
selecting a random initial value b ∈ [0,CW− 1], where CW is the contention window. After computing
b, the node starts decreasing its counter while sensing the primary channel. Whenever the power sensed
by n at pw is higher than its CCA, the backoff is paused until pw is detected free again, at which point
the countdown is resumed. When the backoff timer expires, the node selects the transmission channel
Ctx
n based on the set of idle basic channels4 and on the implemented spectrum management rules. In

this paper we refer to such rules as CB policies. Namely, when the backoff terminates, the node operates
according to the implemented policy D as follows:

� Only-primary (OP): if CB is not considered, we simply refer to the traditional single-channel
(or only-primary operation), i.e., a node can only pick its primary channel for transmitting.

� Static channel bonding (SCB): exclusively picks the whole allocated channel if found entirely
free (i.e., all the basic channels inside the allocated channels are free).

� DCB - Always-max (AM): picks the widest possible combination of basic channels found free.

� DCB - Probabilistic uniform (PU): picks with same probability any of the possible combina-
tions of basic channels found free.

Note that the computational complexity of the presented policies is very low and can be easily imple-
mented in off-the-shelf STAs. In fact, the most complex one is PU, which does only require to compute
the outcome of a uniform random variable to determine the number of 20 MHz-channels to bond given
4 possible outcomes at the most (i.e., 1, 2, 4 or 8).

The selected transmission channel is then used throughout the packet exchanges involved in a data
packet transmission (i.e., RTS, CTS, data, and ACK). The duration of a successful transmission is then
given by

Tsuc = TRTS + 3TSIFS +TCTS +TDATA +TBACK +TDIFS +Te, (1)

where TSIFS and TDIFS are the Short Interframe Space (SIFS) and DIFS duration, respectively, and Te

is the duration of an empty backoff slot. TRTS, TCTS, TDATA and TBACK are the transmission duration
of the RTS, CTS, data, and block acknowledgment (BACK) packets, respectively. Likewise, any other
node that receives an RTS in its primary channel with enough power to be decoded will enter in network
allocation vector (NAV) state, which is used for deferring channel access and avoiding packet collisions
(especially those caused by hidden node situations).

In Figure 1, the temporal evolution of a node operating under the different CB policies is shown.
In this example, the node is allowed to transmit in the set of basic channels Cw = {1(p), 2, 3, 4}, where
pw = 1 is the primary channel. While OP picks just the primary channel, the rest of policies try to bond
channels in different ways. In this regard, SCB is highly inefficient in scenarios with partial interference.
In fact, no packets can be transmitted with SCB in this example since the basic channel {3} ∈ Cw is busy
when both backoffs terminate. Instead, more flexible approaches like AM and PU are able to transmit
more than one frame in the same period of time. On the one hand, AM adapts in an aggressive way to
the channel state. In this example, it is able to transmit in 40 and 80 MHz channels at the end of the
first and second backoff, respectively. On the other hand, the stochastic nature of PU makes it more
conservative than AM. In the example, the node could transmit in 1 or 2 basic channels with the same
probability (1/2) when the first backoff terminates. Likewise, after the termination of the second backoff,
a channel composed of 1, 2 or 4 basic channels could be selected with equal probability too (1/3).

3 Understanding the interactions between spatially distributed
WLANs

In this Section, we first analytically model the interactions given in spatially distributed WLANs under
different traffic loads. Essentially, we show that the probabilities of transiting from one state to another

4Note that, in order to include secondary channels for transmitting, a WLAN must listen to them free during at least
a Point coordination function (PCF) Interframe Space (PIFS) period before the backoff counter terminates, as shown in
Figure 1.
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in the generated CTMNs are determined by the CB policies of the WLANs in the network. Later, we
present two toy scenarios and simulate them by means of CTMNs and 11axHDWLANsSim,5 release v1.2.1b
of the Komondor wireless simulator [31].

3.1 The CTMN model for WLANs

CTMNs have been widely used in the literature to model the behavior of WLAN networks. An approach
which accurately models the behavior of unsaturated CSMA/CA networks operating in single-channel
was introduced in [32]. Such a model is extended in [27] to capture the coupled dynamics of a group of
overlapping WLANs using CB. Later, authors in [17] introduced a framework (SFCTMN) which extended
the CTMN algorithm presented in [33] for characterizing CB policies in spatially distributed scenarios
where all WLANs are saturated. However, to the best of our knowledge, spatial distribution effects like
WLAN starvation are not considered in works studying DCB under unsaturated regimes.

Below we model such scenarios through CTMNs too. To do so, we extend the model presented in [17]
by considering unsaturated traffic loads as proposed in [32]. For simplicity, we consider only downlink
traffic and that each WLAN is composed by one access point (AP) and one station (STA). Hence, we
simply refer to the WLAN activity as a single entity.

3.1.1 Assumptions and implications

Modeling WLAN scenarios with CTMNs requires the backoff and transmission times to be exponentially
distributed. We also assume that the propagation delay between any pair of nodes is negligible. This
has a main implication: the probability of slotted backoff collisions between two or more nodes within
carrier sense range is zero. Nonetheless, packet collisions resulting from the cumulated interference of
simultaneous transmissions of nodes outside the carrier sense range are possible. Besides, an infinite
maximum number of retransmissions per packet is assumed. Note that effect of assuming an infinite
maximum number of retransmissions is almost negligible in most of the cases because of the small
probability of retransmitting a data packet more than a few times [34].

3.1.2 States in the CTMN

A state s in the CTMN is defined by the set of active WLANs (i.e., that are transmitting) and the basic
channels selected for the transmission. The set of feasible states is represented by S. Essentially, with
slight abuse of notation, we say that a WLAN w is active in state s, i.e., w ∈ s if it is transmitting,
and inactive otherwise. States are represented by the most left and most right basic channels used in
the transmission channels of each of the active WLANs. For instance, in state s = A2

2B4
1, there are two

active WLANs: A and B. While A is transmitting in the basic channel Ctx
A = {2} (20 MHz), B is doing

so in a bonded channel Ctx
B = {1, 2, 3, 4} (80 MHz). The state in which there is no active WLAN is

represented by ∅.
A transition between two states s and s′ in the CTMN has a corresponding transition rate Qs,s′ .

For forward transitions, the average packet transmission attempt rate is ρwλw, where λ = 1/(E[B] ·
Tslot), being E[B] the expected backoff duration in time slots. Parameter ρw is the long-run stationary
probability that WLAN w has packets ready for transmission when the primary channel is sensed idle
and so the backoff counter is active. Consequently, ρw depends on the traffic load `w of WLAN w. Note
that a WLAN becomes saturated (ρw = 1) whenever it is not able to carry its traffic load, i.e., whenever
it generates more packets than the ones it transmits. For backward transitions, the departure rate (µ)
depends on the duration of a successful transmission (Tsuc), which in turn depends on both the data rate
(r) given by the selected MCS and transmission channel width, and on the average data packet length
(E[L]). Thus, we simply say that the data rate of a WLAN w depends on the state of the system, which
contains such information, i.e., µw(s).

5All of the source code of Komondor is open, encouraging sharing of algorithms between contributors and providing the
ability for people to improve on the work of others under the GNU General Public License v3.0. The repository can be
found at https://github.com/wn-upf/Komondor.
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3.1.3 Analytical performance metrics

The equilibrium distribution vector ~π represents the fraction of time the system spends in each state. We
define ~πs as the probability of finding the system at state s. Hereof, in continuous-time Markov processes
with stationary distribution, ~π is given by solving the system of equations Q~π = 0, where the matrix item
Qs,s′ is the transition rate from state s to s′. Once ~π is computed, estimating the average throughput
experienced by each WLAN is straightforward. Specifically, the average throughput of WLAN w is

Γw := E[L]

(∑

s∈S
{γw(s) > CE : 0, 1}µw(s)πs

(
1− η

))
, (2)

where E[L] is the expected data packet length, γw(s) is the SINR perceived by the receiving STA in
WLAN w in state s, CE is the capture effect threshold, and η is the MCS packet error probability.6

Note that the unknown ρ parameters must be obtained by solving a non-linear system of equations,
which in general does not have a closed-form. As done in [27], in this work we use an iterative fixed-
point approach for updating the ρ values until the throughput of all the WLANs converges to their
corresponding traffic load, or they become saturated.

3.2 Constructing CTMNs for CSMA/CA WLANs

Let us consider the toy Scenario I shown in Figure 2(a), which is composed of two potentially overlapping
WLANs, to depict a small example of how CTMNs are constructed. The channel allocation of this
scenario can be defined as C: CA = {1(p), 2} with pA = 1, and CB = {1, 2(p)} with pB = 2. That is,
there are two basic channels in the system, and the set of valid transmission channels according to the
IEEE 802.11ax channel access scheme is {{1}, {2}, {1, 2}}. We say that both WLANs are potentially
overlapping because they are inside the carrier sense range of each other and thus their signals will
overlap when transmitting in the same channel at the same time t, i.e., when Ctx

A (t) ∩ Ctx
B (t) 6= ∅. In

this case, due to the primary channel allocation, A and B will only overlap when both transmit in their
whole allocated channel {1, 2}.

1 2 f

CA

CB

A B

C

10 m

1
 m

pB

pA

(a) Scheme of toy scenario I.

∅
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(b) CTMN corresponding to toy scenario I.

Figure 2: Toy scenario I. a) WLANs A and B are inside the carrier sense range of each other with
potentially overlapping basic channels 1 and 2. b) Note that certain states and transition edges are not
given in the CTMN depending on the applied combination of CB policies. For instance, state s6 is only
reachable for the OP and PU policies, while the transitions from s1 to s3 and s5 are not possible when
OP is implemented.

6A maximum decoding packet error rate of 10% is usually tried to be guaranteed when selecting the MCS index in
802.11 devices.
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Different feasible states and forward transitions may exist in the CTMN depending on the imple-
mented CB policies. Every feasible transition is weighted by a transition probability vector αw,s(s

′)
whose elements determine the probability of WLAN w to transit from state s to s′. Table 1 collects
the number of feasible states (|S|) and transition probabilities that are given for each of the studied CB
policies in Scenario I. The corresponding CTMNs are shown in Figure 2(b).

Table 1: Transition probabilities from state ∅ of WLANs A and B in toy scenario I for different CB
policies.

D |S| ~αA,∅(s2) ~αA,∅(s3) ~αB,∅(s4) ~αB,∅(s5)

OP 4 1.0 0.0 1.0 0.0
SCB 3 0.0 1.0 0.0 1.0
AM 3 0.0 1.0 0.0 1.0
PU 6 0.5 0.5 0.5 0.5

For instance, with OP, since WLANs are only allowed to transmit in their primary channel, the
CTMN can only transit from state ∅ to states A1

1 or B2
2, i.e., αA,∅(s2) = αB,∅(s4) = 1. Instead, with

SCB, WLANs can only transmit in their complete allocated channel, thus, when being in state ∅ the
CTMN transits to the all or nothing states A2

1 or B2
1, i.e., αA,∅(s3) = αB,∅(s5) = 1. Notice that in this

particular case AM generates the same transition probabilities (and respective average throughput) than
SCB because whenever the WLANs have the possibility to transmit – which only happens when the
CTMN is in state ∅ – they pick the widest channel available, i.e., {1, 2}. Finally, PU picks uniformly at
random any of the possible transitions when the backoff terminates in ∅, i.e., αA,∅(s2) = αA,∅(s3) = 1/2
and αB,∅(s4) = αB,∅(s5) = 1/2, respectively.

3.3 Empirical performance metrics and toy evaluation setup

Note that, even though the analytical expression of the throughput by CTMN (2) is pretty accurate
[17], there are other performance metrics hard to capture with enough accuracy because of the required
assumptions like the nonexistence of backoff collisions. That is why in this work we rely on the event-
based wireless network simulator 11axHDWLANsSim [31]. The performance metrics considered in this work
are defined as follows:

� Throughput Γ: total number of data bits successfully sent (i.e., acknowledged) during the ob-
servation time. That is, only the useful data (i.e., no headers) of each of the transmitted frames is
considered for computing the throughput.

� Access delay δ: average duration between two consecutive channel accesses whenever there is
backlogged data.

� Packet delay d: average delay between a packet arrival (insertion in the buffer queue) and its
corresponding acknowledgment after being transmitted.

� Drop ratio ϕ: ratio of packets that are dropped by the buffer. A packet is dropped if it is
generated when the queue of the buffer is full (i.e., when the buffer already has Nb packets at the
queue).

� No. of aggregated packets per frame na: average number of aggregated packets per frame.
A frame can contain up to Na packets.

The parameters of the simulation setups evaluated in this work7 are collected in Table 2 of the
Appendix, which correspond to the IEEE IEEE 802.11ax simulation setup presented in [17]. However,
for the sake of simplicity, in these toy scenarios we consider for the moment no MCS error rate (η = 0)
and highest MCS corresponding to 1024-QAM 5/6. Regarding the traffic load, note that we consider
that a WLAN w generates a data packet every tw ∼ Exponential(1/`w), following a Poisson process.

7For the sake of saving space, the full details of the evaluation setups (e.g., nodes positions) and corresponding results of
the scenarios considered through the paper are detailed in https://github.com/sergiobarra/data_repos/tree/master/

barrachina2018tooverlap.

8



“main” — 2020/11/19 — 10:04 — page 142 — #164

0 20 40 60 80 100 120 140 160 180 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
AOP

AAM

APU

BOP

BAM

BPU

saturation points

Figure 3: Saturation in toy scenario I. The long-run stationary probability ρ is estimated through
SFCTMN. Traffic load of WLAN A is fixed to `A = 76.8 Mbps. WLAN B gets saturated at different
traffic loads `B depending on the CB policy.

3.4 Toy scenario I: to overlap or not to overlap?

In Figure 3 there is plotted the long-run stationary probability ρ of both WLANs when operating under
different policies and traffic loads. Likewise, in Figure 4, we plot the average throughput, access delay,
packet delay, drop ratio and number of aggregated data packets per frame. While we keep the traffic
load of A constant to `A = 76.8 Mbps, the load of B is the x-axis independent variable `B ∈ [0, 240]
Mbps. We assume that both WLANs implement exactly the same policy in each case.

Given the duration of a successful slot in a CSMA/CA IEEE 802.11ax network (1), the maximum
capacity for a successful transmission of a frame containing Na packets, i.e., r = NaLD/Tsuc(Na), using
MCS 11 is r20 = 109.71 Mbps for single-channel (20 MHz) transmissions, and r40 = 207.18 Mbps for
two bonded channels (40 MHz) transmissions. Thus, even in isolation, whenever the traffic load of a
WLAN surpasses that rates, it gets saturated. Note also the effect of the overhead introduced by the
PHY and MAC layers since the raw transmission data rates provided by 1024-QAM 5/6 are r∗20 = 121.9
and r∗40 = 243.8 Mbps, for 20 and 40 MHz, respectively.

The saturation points of WLAN B are shown in Figure 3, where for OP it gets saturated at ap-
proximately `B ≈ r20. Instead, regarding A’s saturation point, we note that, as single-channel capacity
already copes with `A (i.e., `A < r20), it never gets saturated (i.e., ρA < 1) no matter neither the pol-
icy selected nor `B.8 As expected, with AM, B gets saturated for higher `B since more frames can be
transmitted per unit of time. Note that in isolation, B would saturate for a `B close to r40. In this case,
however, the whole channel is shared with A when both implement AM and saturation is reached at a
lower value `B ≈ 130 Mbps.

In terms of throughput, the higher the traffic load required to saturate a WLAN, the higher its
potential value. That is, AM provides the highest ΓB for high `B, while any policy combination copes
with `A (i.e., `A = ΓA). Regarding the CTMN model, all the throughput estimations completely match
the simulator results with exception of the slight difference given in the BAM and BPU curves. On the
one hand, the main reason lies in the fact that the CTMN model assumes that all the frames contain
exactly Na packets, while the simulator has not such a restriction. Thus, frames containing less than
Na packets are completely possible in the simulations conducted. This effect is specially noticeable at
curve BPU. On the other hand, while simultaneous slotted backoff terminations are not captured by the
CTMN model, the simulator does so. Hence, since in this particular scenario concurrent transmissions
are decodable due to the proximity AP-STA, BAM is slightly smaller than the simulated one.

As it occurs with the throughput, for high `B , it is more convenient for B to use the aggressive CB
approach provided by AM in order to decrease the delay. However, interestingly, we note that for low
`B , OP is the best policy since the delay to access the channels is significantly reduced compared to AM.
The reason is that with AM the two WLANs must share the channel as they transmit using the full 40
MHz spectrum. Consequently, backoff counters get frozen during larger periods of time and the delay
between consecutive channel accesses increases accordingly. This effect can also be seen in the average
number of packets aggregated per frame, where, for low traffic loads, AM aggregates more packets on
average since the buffer of one WLAN is able to be filled with more packets during the transmission of

8Note that ` < r is a mandatory condition in order to ensure unsaturated regimes. The reason lies in the overheads
caused by the headers, control packets and inter frame spaces of the MAC layer.
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Figure 4: Performance metrics of toy scenario I. Results correspond to 11axHDWLANsSim simulations of
1000 seconds each. Traffic load of WLAN A is fixed to `A = 76.8 Mbps. The throughput curves in
red correspond to the only values obtained by the CTMN model (2) that do not completely match the
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Figure 5: Toy scenario II. A neighbor overlapping network where two channel allocations are considered.

the other. In turn, when the backoff expires, larger frames are sent.
In this particular scenario, we see that an overlapping approach is the best both in terms of delay and

throughput when the traffic load is moderate to high. Instead, for low traffic loads, the delay is reduced
with OP, since it avoids overlaps making channel access independent on the other WLAN’s activity.

3.5 Toy Scenario II: drawbacks of overlapping

Toy scenario II shown in Figure 5 comprises a network of three WLANs where the central one (B) is
in the carrier sense range of the other two (A and C). Instead, A and C are outside the carrier sense
of each other (i.e., the edge WLANs never overlap in any basic channel). All the WLANs implement
AM. We consider two different channel allocations for comparing the non-overlapping vs. overlapping
approaches, respectively:

� Cno: CA = CC = {1(p), 2} and CB = {3(p), 4}.

� Cov: CA = CC = {1(p), 2, 3, 4} and CB = {1, 2, 3(p), 4}.

Note that, as shown in Figure 6(a) and Figure 6(b), different states are reached depending on the
channel allocation of the WLANs. On the one hand, Cno allows any combination of concurrent trans-
missions by sacrificing potential allocated bandwidth. On the other hand, WLANs must contend for
the channel when Cov is allocated. In turn, their data transmission rate is approximately doubled with
respect to Cno (i.e., r80 ≈ 2 r40). In Figure 7, the packet delay, throughput, and drop ratio experienced by
the WLANs under different traffic loads is shown. Note that A and C behave exactly the same way since
they are symmetrically deployed and have same channel allocation. We evaluate the aforementioned
performance metrics for three different values of `B (i.e., 76.8, 192.0 and 307.2 Mbps) and a several
values of `A = `C = `e in the range [0, 600] Mbps.

As expected, for the non-overlapping channelization (Cno), there is no dependence among WLANs.
Essentially, performance is just a consequence of the WLANs’ own traffic load. Thus, saturation is
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Figure 6: CTMNs of Toy scenario II.

reached when ` approximates r40 since each WLAN is allocated two basic channels. This saturation
effect can be seen in the throughput and drop ratio curves in Figure 7. Note that packets start to be
dropped in saturation, i.e., when ρ ≈ 1→ ϕ > 0. Besides, due to the fact that channels do not overlap,
the maximum throughput reachable by any WLAN is slightly less than r40.

Regarding the overlapping channel allocation (Cov), results show that B’s performance is really dete-
riorated when the traffic load of A and C increases. Essentially, while A and C can transmit at the same
time whenever B is not active, B can only do so when neither A nor C are active. This is a clear case
of unfair WLAN starvation. Namely, the larger `e, the fewer the transmission opportunities for B, like
A and C transmit during the majority of the time. As a consequence of such flow-in-the-middle (FIM)
starvation, B suffers from high delay, low throughput, and high drop ratio. Interestingly, `B does not
practically affect to dA or dC, since B starves even for lB = 76.8 Mbps when `e is high. Instead, for
low `e, the overlapping setup is more convenient for B when its traffic load is high (see performance for
lB = 307.2 Mbps).

As for the throughput estimation of the CTMN model, we note that only WLAN B at the overlapping
allocation shows different numerical results, even though following the same trend as the simulator. The
main reason lies in two aspects. First, a fixed number of Na data payloads aggregated per frame is
assumed in the CTMN model for every WLAN. Instead, the simulator realistically aggregates up to Na
according to the buffer status of each WLAN. Thus, in the model, A and C access the channel less
frequently than in the simulator for low-moderate loads but do so during larger periods to transmit
larger frames. Instead, since A and C are not saturated in the simulator for such traffic load, shorter
but more frequent frames are transmitted. Second, the simulator’s implementation of the NAV state –
resulting from properly decoding an RTS or CTS of a WLAN within the carrier sense – is not captured
by the CTMN. These make WLAN B at the simulator to have fewer chances to access the channel, thus
experiencing a significantly reduced (and more representative) throughput. While analytical models such
as the presented provide important insights into the system states and behavior of WLANs, inaccuracies
when capturing complex scenarios are hard to prevent. Solving those inaccuracies in the model may be
not possible or require complex extensions. For instance, in our case, we should accurately represent the
buffer occupancy for each node, which would add many more dimensions and states to the CTMN.

In conclusion, we see that, in terms of delay, the non-overlapping channel allocation is the most
convenient for keeping a fair deployment where all WLANs are capable to cope with low to moderate
traffic loads. Besides, while an overlapping approach is really convenient for the edge WLANs in terms
of throughput and delay, it is not the case for the central WLAN B, which actually starves for high edge
traffic load. Nonetheless, when neighboring activity is low, B’s performance is improved for high `B since
it is able to use the full frequency spectrum like in isolation.

The presented toy scenarios suggest that there is not a unique spectrum allocation approach that
suits all the cases. In fact, WLANs’ performance depends on multiple factors like spatial distribution
and traffic loads, but also on the metric objective to be optimized, which may be designed to foster
individual or collaborative behaviors. Nonetheless, we have seen that, as a rule of thumb, AM and
overlapping channel allocations are the most convenient for improving the average performance. In
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Figure 7: Performance metrics of toy scenario II. Results correspond to simulations of 1000 seconds each.
The throughput curves in red correspond to the unique case (Cov:B) where the CTMN model does not
match the simulator.

turn, with AM we run the risk of jeopardizing WLANs that may fall in FIM starvation or hidden node
situations with higher probability, resulting in less fair scenarios.

4 Performance evaluation in HD scenarios

In this section, we analyze the performance of DCB in two different types of IEEE 802.11ax WLAN
deployments. Namely, we first assess the impact of the node density in networks with homogeneous CB
policies and traffic load. We then discuss what is the optimal CB policy that a WLAN should pick in a
completely random HD deployment. The IEEE 802.11ax configuration and other setup parameters used
in the following simulations are detailed in Table 2 in the Appendix A.

4.1 Node density effect on CB policies

In order to get insights into the node density effect on the efficiency of CB, we now assess the performance
of single-channel (non-overlapping approach) and DCB (overlapping approach) in a network consisting
of 6 WLANs randomly located in a square map of different sizes: 20x20, 40x40 and 80x80 m2. All the
WLANs are set with the same policy in each case (OP or AM). In addition, the same traffic load is
assumed for all the WLANs. The minimum distance between any two APs is set to dmin

AP-AP = 8 m and
each WLAN is located uniformly at random at a distance dAP-STA ∈ [dmin

AP-STA, d
max
AP-STA] = [1, 4] m from

the AP. Regarding the channel allocation, all the WLANs are set with random primary channel in the
eight basic channels considered in the system (i.e., pw ∼ U [1, 8],∀w). The set of allocated basic channels
is set to the maximum allowed Cw = {1, ..., 8}∀w for contiguous spectrum transmissions.9 Specifically,
we generate ND = 200 deployments following the aforementioned conditions for each of the NP = 2
policies considered. Besides, we evaluate each policy for N` = 11 values of the homogeneous traffic load
ranging from 0.768 to 150 Mbps in the NM = 3 maps of different sizes. The simulated time of each of
the ND ×NP ×N` ×NM = 13200 scenarios is 20 seconds.

In Figure 8(a) it is shown the average, maximum and minimum throughput experienced by the
network. We note that OP has a clear limitation regarding the maximum achievable value, which leads

9Note that allocating the whole bandwidth to all the WLANs is an interesting extreme case when precalculated channel
allocation is overlooked.

12



“main” — 2020/11/19 — 10:04 — page 146 — #168

0 50 100 150
0

25

50

75

100

125

150

0 50 100 150
0

25

50

75

100

125

150

0 50 100 150
Homogeneous traffic load [Mbps]

0

25

50

75

100

125

150

OPavg AMavg OPmax AMmax OPmin AMmin

80x80 m240x40 m2
20x20 m2

(a) Average, minimum, and maximum throughput.
The legend’s subscripts avg, max and min refer to the
average, maximum, and minimum of the performance
metrics.

1 10 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

OP
low

AM
low

OP
mod

AM
mod

OP
med

AM
med

OP
high

AM
high

40x40 m2 80x80 m220x20 m2

(b) Empirical CDF of the individual delay. The leg-
end’s subscripts low, mod, med, and high refer to
` = 0.768, 30.72, 61.44, 122.88 Mbps, respectively.

0 25 50 75 100 125 150

1

2

5

10

30

80x80
AM

20x20
AM

20x20
OP

40x40
AM

80x80
OP

40x40
OP

Homogeneous traffic load [Mbps]

(c) Average access delay for OP and AM in the three
map deployments considered.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0 50 100 150

Homogeneous traffic load [Mbps]

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

OP0.2 AM0.2 OP0.3 AM0.3 OP0.5 AM0.5

20x20 m2 40x40 m2 80x80 m2

(d) Average starvation ration according to three star-
vation thresholds. Subscripts in the legend represent
the value of ε.

Figure 8: Node density effect on network performance. 6 WLANs with same traffic load and CB policies
are deployed in squared maps of different areas.

to saturation even in the least dense map (80x80 m2). In fact, such maximum is quasi-independent of
the node density and corresponds to the maximum effective data rate provided by 20 MHz transmissions
r20 = 109.71 Mbps. Instead, for mid to low dense scenarios, AM is able to cope with the traffic load in
the majority of the cases as reflected by the average and maximum throughput curves of maps 40x40
and 80x80 m2. As indicated by the minimum throughput, we find more situations with precarious
performance in AM, which corroborates the risky nature of aggressive DCB policies. That is, while
AM is convenient on average, it is more prone to generate unfair scenarios where at least one WLAN
experiences poor performance.

The cumulative distribution function (CDF) of the packet delay experienced by the WLANs is plotted
in Figure 8(b). In contrast to the throughput, studying the CDF is convenient for the packet delay since
its average value may explode even when just one of the WLAN starves. As expected, the higher the traffic
load, the less the probability of achieving small delays regardless of the selected policy. As suggested in
previous sections, we confirm that OP leads to a smaller delay than AM for low loads when WLANs are
likely to overlap (see 20x20 m2 map). Instead, for higher loads, since OP is by default constrained to the
maximum data rate provided by a 20 MHz channel, it is more probable to achieve acceptable delays with
AM. For less dense scenarios, the risk of generating unfair situations is importantly reduced in AM (see
80x80 m2 map). We note that the packet delay matches completely with the average access delay shown
in Figure 8(c). A key aspect to consider in this regard is the effect on the average backoff duration in
presence of multiple hidden node collisions, leading to a significant increase of the contention window.

To conclude our observations on the fairness and intrinsic risk of DCB, we study the average starvation
ratio. We say that a WLAN w starves if it is not able to successfully transmit a certain fraction ε of its
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Figure 9: Network deployment with WLAN A placed in the middle and the rest 24 WLANs spread
uniformly at random in a 100x100 m2 area.

traffic load `w. Specifically, w starves if its average throughput Γw is less than the selected starvation
threshold, i.e., when Γw < ε`w. The starvation ratio ρε of a particular scenario is computed as the
fraction of starving WLANs. For instance, if 2 of 6 WLANs are found to be starving, the corresponding
starvation ratio would be 2/6. The average value of this ratio is plotted in Figure 8(d) for the different
maps. As expected, the higher the traffic load and/or map density, the higher the starvation ratio for
both policies. Looking at the low-mid traffic loads we confirm that OP outperforms AM when it comes to
avoid unfair scenarios in uncontrolled deployments. Indeed, OP completely avoids starvation for each of
the thresholds when the traffic load is low. This contrasts with AM, which outperforms OP for scenarios
under very high loads, but is not able to properly cope with the FIM and hidden node situations in low
density deployments.

4.2 Optimal individual policy in uncontrolled HD WLANs

In this subsection we discuss what is the optimal CB policy that a particular WLAN (A) should lo-
cally implement for improving either its own throughput or delay, i.e., D∗Γ,A = argmaxD ΓA or D∗d,A =

argminD dA, respectively. As shown in Figure 9, we consider a 100 x 100 m2 area with WLAN A located
at the center, and 24 WLANs spread uniformly at random in the area with the single condition that
any pair of APs must be separated at least dmin

AP-AP = 10 m. The STA10 of each WLAN is located also
uniformly at random at a distance dAP-STA ∈ [dmin

AP-STA, d
max
AP-STA] = [1, 5] m from the AP.

Regarding the channel allocation, all the WLANs are set with random primary channel in the eight
basic channels considered in the system (i.e., pw ∼ U [1, 8],∀w). The set of allocated basic channels is
assigned uniformly at random as well. That is, the number of allowed basic channels for transmitting is
|Cw| ∼ U{1, 2, 4, 8},∀w 6= A, with the exception of WLAN A, which is allocated the widest channel (i.e.,
CA = {1, ..., 8}). Besides, we consider now bursty traffic dependent on the average traffic load (`), where
a burst of nb = 10 packets is generated each tb ∼ Exponential(nb/`) in order to provide more realistic
traffic patterns.

While the CB policies of the rest of WLANs are also set uniformly at random (i.e., they implement
OP, SCB, AM or PU with same probability 1/4), A is fixed to a desired policy. Specifically, we generate
ND = 100 deployments following the aforementioned conditions for each of the NP = 4 policies that A
can implement. Besides, we evaluate each policy for N` = 13 values of A’s traffic load ranging from 0.768
to 184.32 Mbps (i.e., from 64 to 15360 packets/s). The rest of WLANs are set with random average traffic
load inside such a range, i.e., `w ∼ U [0.768, 184.32],∀w 6= A. Hence, we simulate ND ×NP ×N` = 5200
scenarios. The simulation time of each scenario is 10 seconds.

10Note that in the considered scenarios, having one or multiple STAs per AP does not significantly affect the obtained
average results. The main reason is that STAs are randomly placed near the AP and the destination is selected at random
for each frame transmission. Therefore, the unique effect of considering more STAs is a probable slight decrease (increase)
on the average throughput because of the performance anomaly resulting from the lower (higher) MCS picked by the STA
placed farthest from (closest to) the AP.
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Figure 10: Throughput analysis of the central WLAN scenario.

Figure 10(a) shows the probability of WLAN A to successfully transmit its traffic load, i.e., PA =
P
(
ΓA ≥ (1 − εΓ)`A

)
. Note that we use a margin of error εΓ = 0.05 to cope with the stochastic packet

generation of the performed simulations. The average throughput of A for each of the policies is plotted in
Figure 10(b). As expected, SCB is viable only for few scenarios when the traffic load is extremely small.
This is because the rest of WLANs most likely prevent A to initiate any transmission by occupying
part of its allocated channel CA. Instead, the other policies perform much better – specially, AM –
since they avoid saturation with high probability even for high traffic loads. While A avoids saturation
in some scenarios for `A < 92.16 Mbps with OP and `A < 122.88 Mbps with PU, respectively, the
aggressive adaptability nature of AM allows avoiding saturation in scenarios even where `A = 184.32
Mbps. Nevertheless, we note that there are scenarios where AM heavily suffers from the hidden node
problem since the SINR at the receiver is importantly reduced. Accordingly, even though the AP may
find the whole spectrum free, the STA is not able to decode most of the RTS packets due to interference.
This effect can be clearly seen in the PA improvement of OP or PU for low traffic loads (i.e., < 46.08
Mbps).

The average packet delay experienced by A under different traffic loads is shown in Figure 11(a). For
the sake of representation, we consider only those scenarios free of outliers.11. Note that we do not plot
the delay of SCB since its performance is clearly deficient, as shown by Figures 10(a) and 10(b). As a
significant result, we note that the smallest average delay is provided by AM for all the studied loads,
except for `A = 0.768 Mbps. This proves that the delay reduction observed by OP at low traffic loads
does also hold for uncontrolled scenarios where neighboring WLANs may have different CB policies and
higher traffic loads.

Despite the average superior performance of AM, there are few scenarios where a less aggressive
approach like PU or even OP outperforms it. In this regard, we assess below the share of scenarios
where each policy provides the smallest average packet delay for WLAN A. In particular, Figure 11(b)
compares AM against OP and Figure 11(c) does so for AM and PU. Finally, Figure 11(d) compares the
number of scenarios where AM is better than the best combination of OP and PU, i.e., AM is compared
against D = argminOP,PU dA for each of the simulated scenario. We say that for any given pair of policies
D1, D2, three types of outcomes are categorized according to a predefined delay margin δd = 1 ms:

if E
[
dD1

A

]
− E

[
dD2

A

]




< −δd, D1 better than D2

> δd, D2 better than D1

otherwise, draw

.

The delay margin allows us capturing those cases where D1 and D2 perform similarly.
We see that in most of the cases AM outperforms OP and PU, specially for scenarios with mid-high

traffic loads. Nonetheless, for low loads, we note that there is always a better choice than AM for
reducing the delay, corroborating the outcomes from previous sections. In addition, there is a significant
share of scenarios where OP and, especially, PU provide similar or even smaller delays than AM for all

11A scenario is labeled as outlier if dA ≥ 100 ms. Only 3% of the scenarios where DA = OP,AM,PU are outliers.
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(c) Share of scenarios where AM or PU provides the
smallest delay for A.
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among OP and PU provides the smallest delay for A.

Figure 11: Delay analysis of the central WLAN scenario.

traffic loads. This mainly occurs when A and its neighboring nodes are able to concurrently transmit
in different channels through interactions that are not given when implementing AM. Essentially, when
A transmits in its whole available bandwidth, neighboring WLANs with primary channels overlapping
with A’s transmission must wait until it is finished. Afterwards, such WLANs are able to terminate their
backoffs and could select a transmission channel including A’s primary in turn. This generates all or
nothing states like the one shown in Scenario I that keep A’s backoff frozen for longer periods of time.
Instead, if A transmits in narrower channels by implementing OP or PU, such WLANs could transmit
at the same time in non-overlapping channels and enable more successful parallel transmissions.

In summary, we see that overlapping approaches can significantly enhance traditional single-channel
performance in terms of delay and throughput in uncontrolled and realistic HD deployments. Still, there
are cases when an overlapping approach that always selects the maximum available bandwidth can be
counterproductive in the mid/long-term. Despite the intrinsic uncertainty of spatially distributed WLAN
deployments, we can state as a rule of thumb that DCB is convenient when applied through spectrum-
adapting policies. Nonetheless, as indicated by the scenarios where OP and/or PU outperformed AM,
there is room for further improvement through smarter adaptation by adopting policies on a per-WLAN
basis. Hence, we envision that the most effective way of using DCB is to allocate all the nodes with the
whole available frequency spectrum, and to smartly assign the primary channel. Moreover, deeper im-
provements could be achieved by endowing the nodes with the capability to recover from lousy situations
like FIM, which are more likely to happen when neighboring WLANs implement aggressive DCB.

5 Conclusions

In this work, we assess the performance of CB in WLANs under different traffic loads. By modeling
and simulating CB policies in spatially distributed scenarios we shed light on the question: is it con-
venient to share wider channels and potentially overlap in the spectrum or not? We show that, while
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the performance of SCB is clearly poor for moderate-high traffic loads, spectrum-adapting DCB can
significantly outperform the traditional single-channel approach in terms of throughput and delay, even
in high-density deployments. However, we also remark two main outcomes concerning DCB: i) the in-
trinsic risk when it comes to generating unfair scenarios as a consequence of the hidden node and FIM
situations, and ii) the exposure to doing more harm than good in terms of delay for low traffic regimes.

In this regard, the intricate nature of uncontrolled WLAN deployments leaves room for further
improvements in spectrum efficiency, while prevents designing effective predefined rules. Therefore, our
next work will focus on two aspects: studying machine learning based DCB policies to efficiently adapt
to traffic load needs, and jointly combining DCB with adequate primary channel allocation.
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A Appendix - Evaluation setup

The values of the parameters considered in the simulations presented throughout this paper are shown
in Table 2. Regarding the path loss, we use the dual-slope log-distance model for 5.25 GHz indoor
environments in room-corridor condition [35]. Specifically, the path loss in dB experienced at a distance
d is defined by

PL(d) =

{
53.2 + 25.8 log10(d) if d ≤ d1 m
56.4 + 29.1 log10(d) otherwise

, (3)

where d1 = 9 m is the break point distance.
The MCS index used for each possible channel bandwidth (i.e., 20, 40, 80 or 160 MHz) was the highest

allowed according to the power power budget established between the WLANs and their corresponding
STA/s and the minimum sensitivity required by the MCSs. As stated by the IEEE 802.11ax amendment,
the number of transmitted bits per OFDM symbol used in the data transmissions is given by the channel
bandwidth and the MCS parameters, i.e., r = YscYmYcVs, where Ysc is the number of data sub-carriers,
Ym is the number of bits in a modulation symbol, Yc is the coding rate, and Vs = 1 is the number of
single user spatial streams (note that we only consider one stream per transmission).

The number of data sub-carriers depends on the transmission channel bandwidth. Specifically, Ysc

can be 234, 468, 980 or 1960 for 20, 40, 80, and 160 MHz, respectively. For instance, the data rate
provided by MCS 11 in a 20 MHz transmission is s = (234× 10× 5/6× 1)σ−1 = 121.9 Mbps. However,
control frames are transmitted in legacy mode using the basic rate rleg = 24 bits per OFDM symbol of
MCS 0, corresponding to sleg = 6 Mbps since the legacy OFDM symbol duration σleg must be considered.
With such parameters we can compute the duration of each packet transmission:

TRTS = TPHY-leg+

⌈
LSF+LRTS+LTB

rleg

⌉
σleg,

TCTS = TPHY-leg+

⌈
LSF+LCTS+LTB

rleg

⌉
σleg,

TDATA(Na) = TPHY-HE-SU+

⌈
LSF+Na(LMD+LMH+LD)+LTB

r

⌉
σ,

TBACK = TPHY-leg+

⌈
LSF+LBACK+LTB

rleg

⌉
σleg.
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Table 2: Evaluation setup (from simulation setup in [17]).

Parameter Description Value

fc Central frequency 5.25 GHz
|c| Basic channel bandwidth 20 MHz
LD Data packet size 12000 bits
Nb Buffer capacity 150 packets
Na Max. no. of packets in a frame 64

CWmin Min. contention window 16
m No. of backoff stages 5

MCS IEEE 802.11ax MCS index 0 - 11
η MCS’s packet error rate 0.1

CCA CCA threshold -82 dBm
Ptx Transmission power 15 dBm
Gtx Transmitting gain 0 dB
Grx Reception gain 0 dB

PL(d) Path loss see (3)
Pν Adjacent power leakage factor -20 dB
CE Capture effect threshold 20 dB
N Background noise level -95 dBm

Te Empty backoff slot duration 9 µs
TSIFS SIFS duration 16 µs
TDIFS DIFS duration 34 µs
TPIFS PIFS duration 25 µs
TPHY-leg Legacy preamble 20 µs

TPHY-HE-SU HE single-user preamble 164 µs
σleg Legacy OFDM symbol duration 4 µs
σ OFDM symbol duration 16 µs

LBACK Length of a block ACK 432 bits
LRTS Length of an RTS packet 160 bits
LCTS Length of a CTS packet 112 bits
LSF Length of service field 16 bits
LMD Length of MPDU delimiter 32 bits
LMH Length of MAC header 320 bits
LTB Length of tail bits 18 bits
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Komondor: a Wireless Network Simulator for

Next-Generation High-Density WLANs

Sergio Barrachina-Muñoz, Francesc Wilhelmi*,
Ioannis Selinis, and Boris Bellalta

Abstract

Komondor is a wireless network simulator for next-generation wireless local area networks
(WLANs). The simulator has been conceived as an accessible (ready-to-use) open source tool
for research on wireless networks and academia. An important advantage of Komondor over
other well-known wireless simulators lies in its high event processing rate, which is furnished
by the simplification of the core operation. This allows outperforming the execution time of
other simulators like ns-3, thus supporting large-scale scenarios with a huge number of nodes.
In this paper, we provide insights into the Komondor simulator and overview its main features,
development stages and use cases. The operation of Komondor is validated in a variety of
scenarios against different tools: the ns-3 simulator and two analytical tools based on Continuous
Time Markov Networks (CTMNs) and the Bianchi’s DCF model. Results show that Komondor
captures the IEEE 802.11 operation very similarly to ns-3. Finally, we discuss the potential
of Komondor for simulating complex environments – even with machine learning support – in
next-generation WLANs by easily developing new user-defined modules of code.

1 Introduction

The Institute of Electrical and Electronics Engineers (IEEE) 802.11 Wireless Local Area Networks
(WLANs) are evolving fast to satisfy the new strict requirements in terms of data rate and user
density. In particular, various IEEE 802.11 amendments have been introduced in the past few years
or are under active development to accommodate the need for higher capacity, exponential growth in
number of devices, and novel use-cases. [1]. An example of next-generation high-density deployment
is depicted in Fig. 1 where multiple WLANs are allocated with different channels and dynamic
channel bonding (DCB) policies.

Of particular interest is the IEEE 802.11ax (11ax) amendment [2], that is under active devel-
opment and which was introduced to address the demands and challenges that WLANs will face
in the congested 2.4/5 GHz bands [3]. Other important amendments for next-generation wireless
networks are the IEEE 802.11ay [4] and EXtreme Throughput (XT) 802.11 [5], which aim to exploit
the 60 GHz and ≤ 6 GHz frequency bands, respectively. Amendments like the aforementioned ones
lay the foundation of next-generation WLANs by including new features such as multiple-antenna
techniques like Downlink/Uplink Multi-User Multiple-Input-Multiple-Output (DL/UL MU-MIMO),
spatial reuse techniques like BSS coloring, and efficient use of channel resources like DL/UL Orthog-
onal Frequency Division Multiple Access (OFDMA). Therefore, it becomes necessary to provide
reliable simulation tools able to assess the performance and behavior of next-generation WLANs in
multiple scenarios/cases, especially in high-density deployments.

In this paper, we present Komondor,1 an open source, event-driven simulator based on the
CompC++ COST library [6]. Komondor is focused on fulfilling the need for assessing the novel
features introduced in recent and future amendments, which may be endowed with applications
driven by machine learning (ML). The motivation for developing and building the presented wireless
network simulator is motivated by:

i) The lack of analytical models for capturing next-generation techniques in spatially distributed
and/or high-density deployments.

ii) The lack of next-generation WLAN-oriented simulators.

*The contribution of the first two authors is the same.
1All of the source code of Komondor, under the GNU General Public License v3.0., is open, and potential contrib-

utors are encouraged to participate. The repository can be found at https://github.com/wn-upf/Komondor

1
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Figure 1: Dense scenario composed of 25 WLANs. Note that each WLAN has its own channel
allocation and DCB policy.

iii) The complexity of extending simulators comprising an exhaustive implementation of the phys-
ical (PHY) layer.

iv) The large (or intractable) execution time required by other simulators to simulate high-density
deployments.

v) The need for conveniently incorporating ML-based agents in the simulation tool.

In short, Komondor is designed to efficiently implement new functionalities by relying on flexible and
simplified PHY layer dependencies, to be faster than most off-the-shelf simulators, and to provide
reliable simulations and a gentle learning curve to new users.

2 Wireless network simulators

Wireless network simulators can be categorized into continuous-time and discrete-event. On the one
hand, continuous-time simulators continuously keep track of the system dynamics by dividing the
simulation time into very small periods of time. On the other hand, in discrete-event simulators,
events are used to characterize changes in the system. Accordingly, for the latter, events are ordered
in time and normally allow running faster simulations than continuous-time simulators. In addition,
discrete-event simulators allow tracing events with higher precision.

From the family of discrete-event driven network simulators, only a few ones are publicly avail-
able. OMNET++ [7] is a component-based C++ simulation library that is not open-source and
is used for modeling communication networks and distributed multiprocessor systems. OPNET is
another commercial simulator that allows the integration of external components. NetSim [8] was
conceived to provide an accurate simulation model oriented to the world wide web. To that purpose,
the simulator was written in Java, which compromises simulation time with programming flexibil-
ity. When it comes to open source network simulators, a MATLAB-based link-level simulator was
presented in [9] for supporting the IEEE 802.11g/n/ac/ah/af technologies. The ns-2 simulator [10]
is another network simulator known for its accuracy and the integration with the network animator.
Finally, the ns-3, which was introduced in 2006 to replace the ns-2, presents significant advantages
over the ns-2 due to its detailed simulation features, becoming very popular among the research com-
munity [11]. Table 1 highlights in a nutshell the most important characteristics of the overviewed
network simulators and Komondor.

Among the family of overviewed discrete-event simulators, we highlight the ns-3 open-source
simulator due to its popularity and use it as a baseline for comparing against Komondor. Despite

2Although ns-2 and ns-3 do not provide a default graphical animation tool, there are tools supporting live animation,
e.g., PyViz or NetAnim for ns-3 and NAM for ns-2.

3An integration with OpenAI Gym has been recently provided to ns-3 [12], but the ML-based operation is not
part of the simulator.
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Table 1: Comparison of wireless network simulators.

Simulator
Open-
source

Source
lang.

Complexity GUI
11ax

features
ML/based
module

ns-3 Yes C++ High No1 Partial No2

ns-2 Yes C++/OTcl Low No1 No No
OMNET++ No C/C++ Medium Yes No No

OPNET No C++ Medium Yes No No
NetSim No Java Low Yes No No

Komondor Yes C/C++ Low No Partial Yes

the plethora of features that are supported in ns-3, it has some inherent limitations, such as the high
complexity for developing new features/models as an extension of the simulator core. In particular,
compatibility with the already existing/supported models is required and must be carefully ensured.
For example, beamforming for previous mature amendments (i.e. IEEE 802.11n/ac) is not available
yet, owing to the effort required to integrate it. Moreover, the integration of new features strongly
depends on the willingness of the community to contribute to the development.

With respect to the IEEE 802.11ax operation – rates and support for information elements are
being developed – the implementation is mostly based on the Draft 1.0 [13]. Such a draft dates
from 2016 and does not include most of the core IEEE 802.11ax functionalities. At the time of
submitting this paper, only the Single-User Protocol Data Unit (SU PPDU) and MIMO with up
to four antennas are supported in ns-3, whereas OFDMA and MU-MIMO are not supported in the
official distribution [14].

Apart from the official resources, we find few ns-3 works publicly available that support IEEE
802.11ax features, which may (or may not) be integrated into future releases. For example, we
highlight the works with regard to the OFDMA that have been carried out by Getachew Redieteab
et al. (based on the IEEE 802.11ax specification framework document [15]) and Cisco [16]. However,
none of these works completely follow the latest developments in the IEEE 802.11ax standard and
have not been validated through extensive simulations and testbed results, as had previously occurred
with the OFDM [17]. In addition to OFDMA, the spatial reuse operation (i.e., BSS Color [18]) is
under active development, whereas extensions of the capture effect have been applied to ns-3 to
follow the IEEE 802.11ax guidelines and studied in [19] and in a testbed [20].

3 Komondor Design Principles

3.1 Architecture

Komondor aims to realistically capture the operation of WLANs. Henceforth, it reproduces actual
transmissions on a per-packet basis. To that purpose, Komondor is based on the COST library, which
allows building interactions between components (e.g., wireless nodes, buffers, packets) through
synchronous and asynchronous events. While the former are messages explicitly exchanged between
components through input/output ports, the latter are based on timers. In practice, components
perform a set of operations until a significant event occurs. For instance, a node that is decreasing
its backoff may freeze it when an overlapping node occupies the channel. The beginning and end
of such a transmission are examples of significant events, whereas decreasing the backoff counter is
not. Nevertheless, events may be triggered by different timers. In the previous example, a node’s
transmission begins once the backoff timer terminates (i.e., the backoff timer triggers the beginning
of the transmission), while the end of the transmission is triggered by the packet transmission timer.
Fig. 2 shows the schematic of a COST component, which is composed of inports, outports, and a
set of timers.

Figure 2: COST component. While inports and outports allow to directly communicate with other
components, timers trigger events specific to the component.

3
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Figure 3: Komondor execution flowchart.

3.2 IEEE 802.11 Features

Komondor entails a long-term project in which several contributors are involved. That is, the
simulator is continuously evolving to include novel techniques and generally improve performance.
The current version of Komondor (v2.0) includes the following fully tested IEEE 802.11ax features:

� Distributed coordination function (DCF): the Carrier Sense Multiple Access with Col-
lision Avoidance (CSMA/CA) captures the basic Wi-Fi operation for accessing the channel.
Moreover, Contention Window (CW) adaptation is considered.

� Buffering and packet aggregation: several traffic generator models are implemented in
Komondor such as deterministic, Poisson or full-buffer. Besides, multiple media access control
protocol data unit (MPDU) can be aggregated into the same PLCP protocol data unit (PPDU)
in order to reduce the generated communication overheads.

� Dynamic channel bonding (DCB): multiple channel widths can be selected during trans-
missions by implementing DCB policies in order to maximize the spectrum efficiency. Some of
these policies were already evaluated in [21], [22].

� Modulation coding scheme (MCS) selection: the MCS is negotiated between any transmitter-
receiver pair according to the Signal-to-Interference-and-Noise Ratio (SINR), thus supporting
multiple transmission rates.

� Ready-to-send/Clear-to-send (RTS/CTS) and Network Allocation Vector (NAV):
virtual carrier sensing is implemented in order to minimize the number of collisions by hidden-
nodes.

Future development stages are under progress including other features such as OFDMA, MU-
MIMO transmissions, beamforming, spatial reuse, and ML-based configuration.

3.3 Execution Flowchart

Komondor is composed of several modules that allow performing simulations with a high degree
of freedom. Fig. 3 summarizes the operational mode of Komondor from a user’s point of view. A
more detailed user’s guide providing a quick-start and guided execution examples is available in the
Komondor’s Github repository.

3.3.1 Input and Setup/Start

as for the execution console command for starting Komondor simulations, arguments are designed
in a simple and efficient way. Examples of console arguments are the file names of the inputs, the
activation flags of the logs, the simulation time and the random seed. In addition, input files (in
CSV format) are used to define the environment and have been conceived in a way that the user can

4
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Figure 4: Komondor’s state diagram and events. a) States are reachable by different transitions. b)
Simultaneous events are properly processed through delay offset correction.

easily modify important simulation parameters such as the traffic load, the path-loss model, or the
data packet size. Once the environment is generated and nodes are initialized, traffic is exchanged
between nodes until the simulation time runs out.

3.3.2 Stop and Output

when the simulation finishes, the closing is handled and statistics are gathered. Then, extensive
and detailed performance statistics are per default provided by Komondor (e.g., throughput, delay,
spectrum utilization, or collisions). Moreover, the user can efficiently include as much as metrics as
desired.

3.4 States and events

The Komondor’s core operation is based on states, which represent the status (or situation) in which
a node can be involved. A state diagram summarizing both states and transitions is shown in Fig. 4.
Roughly, a given node starts in the SENSING state, where multiple events can occur (e.g., a new
packet is buffered or a new transmission is detected). Then, according to the noticed event, the
node transits to the corresponding state.

3.4.1 States

we depict below each state and how a node must behave in front of new events.

� SENSING: a node senses the channel with two main purposes. First, to follow the CSMA/CA
operation to gain access to the channel (in case there is backlogged data in the buffer/s). Sec-
ond, to wait for incoming transmissions, so that either carrier sensing or receiving procedures
are held. In case of being immersed in a backoff procedure, a node detecting a “new trans-
mission” event would sense the power received in its primary channel, and assess whether to
freeze the backoff countdown. Similarly, whenever an “end transmission” event occurs, the
channel is sensed in order to determine whether the backoff counter can be resumed or remain
paused.

� TRANSMIT: a transmitter node is currently transmitting a packet. No matter what events
may occur, during the packet transmission, the node blocks its receiver capabilities and remains
in the same state until the transmission is finished.

� RECEIVE: when a node is receiving and decoding an incoming packet, it will behave in front
of a new event according to its implication in the channel of interest. Of especial importance are
those new transmission events triggered by other nodes that have gained access to the medium.
Specifically, if a new transmission generates enough interference, the ongoing reception will be
discarded, thus leading to a packet loss.

� WAIT states: these states allow modeling the situations where a node that transmitted a
packet is expecting for the corresponding response. Namely, after transmitting RTS, CTS or
DATA packets, the transmitter will wait for the corresponding CTS, DATA or ACK/BACK
packets, respectively. If the response packet is not received before the corresponding timeout

5
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is triggered, the transmitter assumes that either the transmitted packet or the response packet
is lost and resets to SENSING state. Wait states are particularly useful to detect packet losses
when anomalies in the network (e.g., hidden terminal problem) occur.

� NAV: when a node enters in NAV state due to the successful reception of a frame addressed
to a different destination, it sets a NAV timer and keeps listening to its primary channel. If
a new frame is successfully received during the NAV, the timer is updated, provided that the
new NAV time is larger than the current remaining time.

3.4.2 Events

each time a node performs an action that can affect the system (e.g., it starts transmitting a
frame), an event is announced. Events in Komondor are lined up on the time axis and handled by
the core entity. Events management is similar in ns-3. However, the latter exhibits a significant
limitation, since events that are scheduled at the exact same time can be executed in any order.
Such a development feature may lead to unpredictable results and is incompatible with real-world
situations in which events can occur simultaneously. Some inconsistencies may occur in case that
the execution order affects multiple simultaneous events (e.g., two packets arriving at the exact
same time). To solve this, Komondor, which is also a discrete-event simulator, employs temporal
variables to compare the exact timestamps at which two or more events were generated. As a result,
Komondor is able to successfully simulate the behavior of simultaneous events while keeping the
logic of the states.

3.5 Developing new modules

Komondor has been conceived to be easily modified and extended. In particular, several modules
have been provided to represent different simulation capabilities (e.g., propagation, channel access
or traffic generation). Accordingly, Komondor can be potentially extended to support the operation
of other IEEE 802.11 amendments such as 11n, 11ac, 11ad or 11ay. In addition, ML-based modules
can also be introduced. A complete manual can be found at the Komondor’s repository.

4 Validation

In this Section, we validate the operation of Komondor and show its potential for dealing with
high-density scenarios. In particular, we show the reliability of the simulator, despite its reduced
complexity of the PHY.4 The validation of the Komondor’s operation is done through a set of illustra-
tive scenarios, and our results are compared with the ones obtained with ns-3.5 In addition to ns-3,
a mutual validation is performed with the Continuous Time Markov Networks (CTMNs) modeling
introduced in [24], and which is extended for spatially distributed networks in the Spatial-Flexible
Continuous Time Markov Network (SFCTMN) framework [21]. As for high-density scenarios, we
make use of the Bianchi’s DCF analytical model [25] to validate the results in fully-overlapping
deployments, where all the nodes are within the carrier sense of the others. The results shown in the
following subsections were obtained according to the parameters defined in Table 2. The duration
of the RTS, CTS and data frame is computed as follows:

TRTS = TPHY-leg +

⌈
LSF + LRTS

Ls,l

⌉
σleg,

TCTS = TPHY-leg +

⌈
LSF + LCTS

Ls,l

⌉
σleg,

TD = THE-SU +

⌈
LSF + LMH +NaggLD

Ls,l

⌉
σ.

Note that full-buffer traffic is assumed in all the scenarios throughout this work for comparative
purposes. Moreover, we have considered the residential path-loss model recommended in the IEEE
802.11ax [23], which inflicts high losses due to its large number of obstacles (e.g., walls).

4For instance, channel effects are assumed to remain static during the whole transmission of a given frame, and
the propagation delay is considered to be negligible.

5Details on the ns-3 implementation used in the simulations presented throughout this paper can be found at https:
//github.com/wn-upf/Komondor/tree/master/Documentation/Validation/ns-3. For instance, this implementation
includes the 11ax residential scenario propagation loss [23] and has a PLCP training duration updated according to
the 11ax amendment [2].
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Table 2: Parameters considered in the presented scenarios.

Parameter Description Value

fc Central frequency 5 GHz
|c| Basic channel bandwidth 20 MHz

MCS 11ax MCS index 0-11
Gtx Transmitting gain 0 dB
Grx Reception gain 0 dB

PL(d) Path loss (Residential scenario) see [23]
N Background noise level -95 dBm
σleg Legacy OFDM symbol duration 4 µs
σ OFDM symbol duration (GI-32) 16 µs
Nsc Number of subcarriers (20 MHz) 234
Nss Number of spatial streams 1

Te Empty slot duration 9 µs
TSIFS SIFS duration 16 µs
TDIFS DIFS duration 34 µs
TPIFS PIFS duration 25 µs
TPHY-leg Legacy preamble duration 20 µs
THE-SU HE single-user field duration 100 µs
TACK ACK duration 28 µs
TBACK Block ACK duration 32 µs
Tmax
PPDU Max. PPDU duration 5484 µs
Ls,l Size OFDM symbol (legacy) 24 bits
LD Data packet size 11728 bits
Nagg No. of frames in an A-MPDU 1, 64
LRTS Length of an RTS packet 160 bits
LCTS Length of a CTS packet 112 bits
LSF Length of service field 16 bits
LMH Length of MAC header 320 bits
CW Contention window (fixed) 15

4.1 Analyzing toy Scenarios

Komondor has been conceived as a friendly and ready-to-use wireless network simulator that can
be used by researches and teachers to study fundamental networking issues. In particular, scenarios
and environment configurations can be conveniently modified through structured input files. The
scenarios proposed in this Section are a clear example of toy scenarios where different networking
concepts such as flow starvation or additive interference take place. Furthermore, a given user
can easily analyze WLAN scenarios through the implemented logs generation system and statistics
reporting. Accordingly, particular phenomena in the PHY and medium access control (MAC) layers
can be tracked (e.g., channel contention, packet collisions, physical carrier sensing, energy detection,
or buffer dynamics).

4.2 Basic Operation

We first aim to validate the basic IEEE 802.11 operation of the DCF implemented in Komondor when
RTS/CTS is applied. For that, we consider a single Access Point (AP) scenario (we name it Scenario
1 ) with one and two stations (STAs), where full-buffer downlink traffic is held. The two-STAs case
allows us to assess the proper behavior of Komondor in presence of multiple STAs. To validate
this scenario, we compare the Komondor results with the ones provided by ns-3 and the SFCTMN
framework. Fig. 5 shows the simulation results obtained from each tool, for packet aggregation
(Nagg = 64) and no-aggregation (Nagg = 1). We note that the average throughput obtained by each
simulation tool is almost identical, either for packet aggregation or not. In addition, having multiple
STAs leads to the same result as for a single one since the destination STA is picked at random in
every transmission.

7
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Figure 5: Average throughput experienced by the WLAN of Scenario 1, for Nagg = 1 and Nagg = 64.
Results obtained from each simulation tool are shown.
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Figure 6: Topologies and corresponding CTMNs of scenarios 2a-2d. The yellow and blue arrows
represent the area of interference from transmitters in WLANs A and C, respectively, whereby
medium contention is forced.
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Figure 7: Average throughput experienced by each WLAN in scenarios 2a-2d. Nagg = 1 and
Nagg = 64 are represented through solid bars and dashed lines, respectively.

4.3 Complex inter-WLAN interactions

In order to validate the behavior of Komondor in front of more complex inter-WLAN interactions,
we now focus on the three-WLANs scenarios shown in Fig. 6. We name them Scenario 2a-2d. The
interactions occurring in such scenarios are illustrated through CTMNs, where states6 represent
the WLANs that are currently transmitting. Note that each of these scenarios reflects different
situations that are of particular interest since they generalize different well-known phenomena in
wireless networks:

� Fully overlapping (Fig. 6a): all the nodes cause contention to all the others when transmit-
ting. For that, the distance between consecutive APs and between AP and STA of the same
WLAN is set to dAP,AP = dAP,STA = 2 m, respectively.

� Flow starvation (Fig. 6c): contention is triggered in a pair-wise manner, so that WLANA

and WLANC do not interfere each other. For that, the distance is set to dAP,AP = 4 m and
dAP,STA = 2 m. Note that this case could be also extended to show a hidden node effect if
APA or APC were intended to transmit to a STA located at the location of APB.

� Potential overlap (Fig. 6e): contention only occurs at WLANB when both WLANA and
WLANC transmit concurrently. Otherwise, the channel is sensed as free. Note that, in this
case, packets are successfully transmitted in WLANB whenever it access the channel. The
distances are dAP,AP = 5 m and dAP,STA = 2 m for WLANA and WLANC, and dAP,STA = 3
m for WLANB.

� No overlapping (Fig. 6g): none of the nodes causes contention to any other when trans-
mitting. That is, every WLAN operates like in isolation. The distances in this case are
dAP,AP = 10 m and dAP,STA = 2 m.

The average throughput experienced by each WLAN in each scenario is shown in Fig. 7. As
previously done, we compare the performance of Komondor with ns-3 and SFCTMN. Note that
results gathered by both Komondor and ns-3 are very similar in all the cases. Concerning the
differences in the average throughput values estimated by both simulators and SFCTMN, we observe
two phenomena with respect to backoff collisions in topologies of Scenario 2a and 2c. First, in 2a,
the throughput is slightly higher when the capture effect condition is ensured. This is due to the fact
that concurrent transmissions (or backoff collisions) are permitted and captured in the simulators.
Second, the most notable difference is given in 2c, which is caused by the assumption of continuous
time backoffs in the CTMN. These are clear examples of the limitations of the analytical tool.

4.4 High-density and simulator performance

Finally, we assess the performance of Komondor when dealing with high-density scenarios. Notice
that being able to simulate scenarios with a large number of nodes is a key feature due to the ever-
increasing trend towards short-range and dense deployments. In this situation, we show the results

6Note that CTMN states are not related by any means to Komondor states.
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Figure 8: Throughput (average and aggregate) and collision probability vs. number of overlapping
WLANs. Only some ns-3 points are plotted for the sake of visualization.

of different fully-overlapping scenarios, ranging from 1 to 50 WLANs, each consisting in of one AP
and one STA. The validation is performed against the Bianchi’s analytical model and ns-3. The MCS
for all the WLANs is set to 256-QAM. Fig. 8 shows the results in terms of throughput (average and
aggregate) and collision probability obtained for fully overlapping networks of different sizes. For
comparison purposes, the simulation time used in each scenario has been set to 100 seconds, for
both Komondor and ns-3. Notice that such a fully overlapping setting frames a worst-case situation
regarding packet collisions. This impacts on the number of events and the simulation time as the
network density increases. Nevertheless, much more positive results are expected to be achieved in
more realistic non-fully overlapping dense scenarios.

As shown, Komondor maintains its accuracy with respect to Bianchi’s model, even when dealing
with a lot of nodes. Regarding ns-3, slight differences are noticed in the collisions probability due
to the error rate model, where collisions are based on the dropped RTS frames and the use of
the Extended Interframe Space (EIFS). Moreover, differences in the throughput increase with the
number of nodes, as previously addressed in [26].

To conclude this section, we provide insights into the execution complexity of Komondor. Fig. 9
shows the execution time and the number of generated events in Komondor and ns-3 for each number
of WLANs.7 As shown, the execution complexity of ns-3 is significantly higher than in Komondor.
We identify the cause of this difference to be the complex PHY implementation in ns-3, which leads
to a larger number of generated events.

5 Komondor and potential use cases

Apart from small deployments consisting of few WLANs under single-channel operation [27], more
complex scenarios capturing DCB or high-density scenarios have been already validated and an-
alyzed by using Komondor. In this section, we briefly discuss further potential uses such as the
implementation of next-generation WLAN techniques or the inclusion of learning agents to perform
efficient spectrum access and spatial reuse.

5.1 Potential usage

Complex wireless environments can be already extensively simulated by Komondor as a result of
its reduced computational complexity in comparison to other well-known simulators such as ns-
3. A prominent example of a complex scenario mixing both high-density deployments and DCB
is discussed in [21], where authors assessed the performance of different DCB policies versus node
density (see Fig. 1). In [22], a similar deployment is analyzed while considering different traffic loads.
A set of scenarios including DCB is shown in Fig. 10, which were validated in Komondor’s validation
report v0.1.8 New features like spatial reuse, MIMO, beamforming and MU communications through
OFDMA and/or MU-MIMO are currently under development.

7Note that the execution time is strongly dependent of the computer used and its status at the moment of
performing the simulation. In our case, we used an Intel Core i5-4300U CPU @ 1.9 GHz x 4 and 7.7 GiB memory.

8Komondor’s validation report v0.1: https://github.com/wn-upf/Komondor/blob/master/Documentation/Other/

validation\_report\_v01.pdf.
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Figure 9: Execution time and number of generated events vs. number of overlapping WLANs.

Figure 10: Scenarios with different DCB capabilities.
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(a) Agents embedded to APs (b) Learning operation followed by agents

Figure 11: ML-based operation implemented in Komondor.

5.2 Machine learning agents

In addition to simulating advanced techniques proposed by the latest IEEE 802.11 amendments,
Komondor permits including intelligent agents. In particular, agents are embedded to APs (see Fig.
11a) to perform the following operations (see Fig. 11b): i) monitor WLAN’s performance, ii) run
an implemented learning method, and iii) suggest new configurations to be applied by the WLAN,
according to generated knowledge.

The application of intelligent agents has been previously studied in [27,28], where decentralized
learning is employed to both Transmit Power Control (TPC) and Carrier Sense Threshold (CST)
adjustment.
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6 Conclusions

In this work, we presented Komondor, a wireless network simulator that stems from the need of
providing a reliable and low-complexity simulation tool able to capture the operation of novel WLAN
mechanisms like DCB or spatial reuse. The operation of Komondor has been validated against the
ns-3 simulator and analytical tools such as CTMNs and Bianchi’s DCF model. In this regard,
we have shown its effectiveness when dealing with high-density scenarios, thereby outperforming
ns-3 with respect to the simulation time. The provided validation is fundamental for the next
development stages, which contemplate the inclusion of novel techniques in WLANs that have not
been fully implemented in other well-known simulators. Some future implementations contemplate
OFDMA, MU-MIMO, and the spatial reuse operation, naming a few among others. Finally, we
have discussed the potential of Komondor regarding complex scenarios and ML integration. In
particular, a preliminary ML-based architecture is already implemented, so that intelligent agents
can rule self-configuring operations at different communication levels.
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Online Primary Channel Selection for Dynamic
Channel Bonding in High-Density WLANs

Sergio Barrachina-Muñoz, Francesc Wilhelmi, and Boris Bellalta*

Abstract

In order to dynamically adapt the transmission bandwidth in wireless local area networks
(WLANs), dynamic channel bonding (DCB) was introduced in IEEE 802.11n. It has been
extended since then, and it is expected to be a key element in IEEE 802.11ax and future
amendments such as IEEE 802.11be. While DCB is proven to be a compelling mechanism by
itself, its performance is deeply tied to the primary channel selection, especially in high-density
(HD) deployments, where multiple nodes contend for the spectrum. Traditionally, this primary
channel selection relied on picking the most free one without any further consideration. In
this paper, in contrast, we propose dynamic-wise (DyWi), a light-weight, decentralized, online
primary channel selection algorithm for DCB that improves the expected WLAN throughput
by considering not only the occupancy of the target primary channel but also the activity
of the secondary channels. Even when assuming important delays due to primary channel
switching, simulation results show a significant improvement both in terms of average delay and
throughput.

1 Introduction

Modern applications like augmented reality, virtual reality, or real-time 8K video are pushing next-
generation (nextGen) wireless local area networks (WLANs) to support ever-increasing demands
on performance. In addition, the complexity of nextGen high-density (HD) deployments, where
numerous wireless devices will contend for accessing the medium, hinders even more the task of
achieving high throughput and low latency.

In order to improve the performance of nextGen WLANs, we focus in this work on spectrum
management techniques. In particular, two well-known techniques have been widely studied in this
regard: channel allocation (CA) and dynamic channel bonding (DCB). CA is the method to assign
portions of the spectrum (or channels) to one or multiple WLANs. In contrast, DCB is a technique
whereby two or more channels are bonded according to their instant occupancy, enabling wider
bandwidths per transmission, and thus potentially reaching higher data rates.

Although much has been understood from the works on CA and DCB in the literature, little
has been assessed with respect to combining CA with DCB altogether in WLANs, particularly
for high-density (HD) deployments. Nevertheless, while DCB has shown a tremendous potential
to outperform traditional single-channel (SC) [1–3], its performance is severely tied to the CA.
Especially, the primary channel selection is critical since it runs the backoff procedure of the carrier
sense multiple access with collision avoidance (CSMA/CA) protocol. Still, always selecting the
least occupied channel as the primary is no longer appropriate for DCB since potential bonds with
adjacent channels should be also considered.

As for works combining CA and DCB for WLANs, we find a distributed algorithm for jointly
allocating channel center frequencies and bandwidths [4], or a centralized approach for maximizing
the network fairness [5]. In addition, a heuristic-based algorithm for primary channel selection
based on the bonding direction likelihoods was recently presented in [6]. However, such likelihoods
are estimated by assuming a known number of users in each channel, which is normally not feasible
in real deployments. It is worth noticing that the aforementioned works consider fully-backlogged

*All the authors are with the Wireless Networking research group at Universitat Pompeu Fabra, Barcelona, Spain
(e-mail: {sergio.barrachina, francisco.wilhelmi, boris.bellalta}@upf.edu). This work has been partially supported by
the Spanish Ministry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence Programme
(MDM-2015-0502), by a Gift from the Cisco University Research Program (CG#890107, Towards Deterministic
Channel Access in High-Density WLANs) Fund, a corporate advised fund of Silicon Valley Community Foundation,
and by PGC2018-099959-B-I00 (MCIU/AEI/FEDER,UE). The work done by S. Barrachina-Muñoz is supported by
a FI grant from the Generalitat de Catalunya.
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Figure 1: CSMA/CA operation of a node operating under DCB in the IEEE 802.11ac/ax channel-
ization scheme for the UNII-1 and UNII-2 bands. The numbers preceded by a pound symbol (#)
represent a simpler channel indexation.

traffic, thus missing insights on more realistic patterns with different traffic needs. Finally, an
uncertain traffic CA approach was presented in [7]. Still, a centralized controller in the backend is
required.

In this paper, we formulate dynamic-wise (DyWi), a decentralized, lightweight algorithm that
leverages information about the sensed spectrum occupancy in the whole allocated bandwidth of
a node (i.e., primary and secondary channels). Based on such occupancy, the primary channel is
selected in an online manner with the aim of maximizing the expected throughput. It does so by
considering not only the activity of the target primary channel but also the potential bonds that could
be established with its adjacent channels. DyWi is adaptive in the sense that a new primary channel
is only adopted when the WLAN performance is below a given satisfaction threshold. Besides,
since DyWi relies just on local information, neither neighbor messaging nor a central controller is
required. This property makes DyWi suitable to be implemented in off-the-shelf access points (APs),
thus avoiding costly inter-WLAN collaboration.

Simulations of DyWi in IEEE 802.11ax HD deployments show important improvements with
respect to traditional primary channel selection, even when considering substantial delays due to
channel switching.

2 Primary channel selection for DCB

2.1 Dynamic channel bonding

DCB was first introduced in IEEE 802.11n (2009), where two contiguous 20-MHz channels could be
bonded to form a single 40-MHz channel. Then, IEEE 802.11ac (2013) extended the DCB capability
to bond up to 8 20-MHz channels, reaching a maximum of 160-MHz transmission bandwidth. While
IEEE 802.11ax (2019) keeps such a limit, future amendments like EXtreme throughput (i.e., IEEE
802.11be) aim to support up to 320-MHz transmissions. Figure 1 shows the operation timeline of a
node implementing DCB with primary channel p = 1. Note that the bandwidth selection is decided
according to the occupancy of the secondary channels during the PCF Interframe Space (PIFS)
previous to the backoff termination. Accordingly, transmissions of 40 and 160 MHz are performed
after the expiration of the first and second backoff in the example, respectively.

2.2 Online selection of the primary channel

Let an AP belonging to WLAN w operate under DCB and have allocated the full available bandwidth
according to a channelization scheme C . As an example, the channelization (or allowed transmission
channels) in Fig. 1 is C = {{1}, {2}, ..., {8}, {1, 2}, ..., {7, 8}, {1, 2, 3, 4}, {5, 6, 7, 8}, {1, ..., 8}}, where
C20-MHz = {{1}, {2}, ..., {8}} ⊂ C is the set of 20-MHz (basic or non-bonded) channels in C. Then,
since the primary channel must be 20-MHz, p ∈ C20-MHz. Note that throughout the rest of the paper,
we use b = 20 MHz to denote the bandwidth of a basic channel.

For the sake of identifying a convenient primary channel in an online manner, we rely on an
iterative algorithm. In essence, the AP of w periodically makes a decision about the primary channel
selection, where each decision instant represents the beginning of an iteration. Specifically, at the
beginning of a given iteration t, the AP of w measures the throughput sw,t-1 achieved during the last
iteration t−1 and acts according to a satisfaction condition.1 Namely, the primary channel remains

1In this work, we focus on the successful downlink traffic as the main performance metric. However, the algorithm
can be easily extended to consider other parameters such as latency.
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Figure 2: Example of the satisfaction-based online primary channel selection. Since w is not satisfied
at the end of iteration t1, the primary channel is switched from pw,1 = p to pw,2 = p′, determined
by a given OPS rule. In contrast, with the new primary, w gets satisfied in t2 and keeps p′ in t3.

Algorithm 1: Online primary selection. OPS refers to the selected online primary selection
rule.

Input: pw,t, η, OPS, C;
1 iteration t← 0;
2 while WLAN w active do
3 while iteration t not finished do
4 CSMA/CA normal operation with DCB;

5 t← t+1;
6 sw,t-1 ← measure throughput(t-1);
7 Fw,t-1 ← get idleness(t-1);
8 if sw,t-1 < η`w,t-1 then
9 pw,t ← apply ops(pw,t-1,Fw,t-1,OPS,C)

10 channel switch(pw,t, δ);

the same if w is satisfied because a sufficient share of the generated traffic has been successfully sent
during the last iteration,2 i.e., sw,t-1 ≥ η`w,t-1, where η is the satisfaction ratio and `w,t-1 is the
actual generated traffic load in that iteration. Otherwise, w will switch to a new primary channel at
the cost of remaining inactive during a period δ, required to announce the new primary channel to
the associated stations (STAs), and to apply the new channel configuration. Note that the way the
new primary channel is selected depends on the online primary selection (OPS) rule. The temporal
evolution of the general procedure is displayed in Fig. 2 through an illustrative example.

Algorithm 1 shows the pseudocode of the online primary channel selection for a generic OPS
rule. Note that any OPS rule relies on the gathered data about the bandwidth occupancy in the
last iteration. Formally, the empirical probability that a subset of n channels in channelization C
was free (or idle) during the last iteration t− 1 given a primary pw,t is given by

Fw,t−1(C, pw,t, n) = Et−1
[
Prx(c) < CCA,∀c ∈ C(pw,t, n)

]
, (1)

where Prx(c) is the power received at basic channel c, CCA is the clear channel assessment (CCA)
threshold, and C(pw,t, n) is the set of basic channels used in the transmission, which is mandated
by the channelization scheme C. For instance, following the IEEE 802.11ac/ax channelization, for
primary p = 6 and n = 2, the corresponding 40-MHz bonded channel is C(6, 2) = {5, 6} (channels
#52 and #56 in the standard). With slight abuse of notation, Et−1 represents the expected value
function at iteration t− 1.

Three OPS rules are evaluated in this work: dynamic-random (DR), dynamic-free (DF), and
dynamic-wise (DiWy or DW). In the event of an unsatisfactory iteration, DR selects a new primary
channel uniformly at random, DF picks the one found most free during the last iteration, and DyWi
selects it based on the forecast throughput given the probability of bonding in every possible band-
width. Such probabilities are estimated by periodically measuring the energy in all the secondary
channels as done during the PIFS period. Apart from DR and DF, we also consider as baseline
the traditional fix primary (FP) allocation, which does not change the primary channel under any
circumstances, so it is not referred in Algorithm 1.

2We rely just on data from the last iteration for lowering memory demands and enabling fast adaptability in
dynamic environments.
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Regarding the channel switch operation, the 802.11h standard (later included in amendments like
802.11ax) states that the AP may notify the associated STAs through Channel Switch Announcement
(CSA) frames [8]. As depicted in Fig. 3, the channel switch is scheduled so that all the STAs in
the WLAN have the opportunity to receive at least one CSA element before the actual switch.
Specifically, the number of remaining frames to be broadcast until switching to the new primary
channel is known as CSA count value. Accordingly, the switching delay δ is the sum of the time it
takes to broadcast the CSA frames and the time left to STAs to adapt to the new primary channel.

2.3 Dynamic-wise (DyWi) primary channel selection

A main question arises when considering DyWi regarding the way the primary channel should be
selected. Assume a scenario where a WLAN w is allocated 80 MHz accounting from channel 1 to
4. At the end of iteration t-1, w is unsatisfied and changes its primary from pw,t-1 = 2 to pw,t.
Assume also that the probabilities of finding free each of its allocated 20-MHz channels in iteration
t-1 was πw,t-1 = [0.93, 0.38, 0.85, 0.85], where πw,t-1[c] is the probability of finding the basic channel
c free. Then, two main options may be contemplated as best choice for selecting pw,t to maximize
the throughput sw,t of the upcoming iteration: i) to pick the primary with highest probability to
be free (i.e., pw,t = 1 in this case), or ii) to pick the primary providing the highest potential average
data rate considering both its probability to be free, as well as the probability of the channels nearby
(e.g., pw,t ∈ {3, 4}). Notice that there is not an accurate choice to provide beforehand since multiple
parameters apart from πw,t-1 will impact the performance. For example, dynamic network activity
affects to the signal-to-interference-plus-noise ratio (SINR), modulation coding scheme (MCS), or
packet error rate.

We tackle this point at issue by proposing a lightweight maximization problem for the forecast
data rate of WLAN w at iteration t. The idea behind this approach is that maximizing the successful
data rate should lead to maximizing the throughput as well. Thus, in spite of being a sub-optimal
formulation for maximizing the throughput,3 selecting the primary channel according to the forecast
average data rate is a convenient heuristic, as shown later. In particular, the average data rate is
estimated by the probability of transmitting at each possible bandwidth. Then, we can formulate
the problem as

argmax
pw,t 6=pw,t-1

r̂w,t(pw,t),with

r̂w,t(pw,t)=
∑

n∈N
Pw,t

(
Fw,t−1, pw,t, n

)
rw
(
n
)
,

(2)

where r̂w,t(pw,t) is the forecast average data rate by WLAN w at iteration t for new primary pw,t, and
n is the number of bonded channels, which should be permitted by the channelization scheme. For
instance, in the IEEE 802.11ax amendment, n ∈ N = {1, 2, 4, 8}, for 20 to 160-MHz bandwidths.
Pw,t(Fw,t−1, pw,t, n) is the probability that w transmits in n contiguous channels in the starting
iteration given pw,t is selected, and rw(n) is the data rate given the bandwidth nb. Note that r also
depends on the MCS index, which will vary according to the signal-to-noise ratio (SNR) at the STA.

In order to estimate the probability of transmitting in each possible combination of channels,
we rely on the empirical probability Fw,t−1(C, pw,t, n), which was updated during the CSMA/CA
operation in iteration t-1. Since DCB is implemented, the largest available bandwidth is always
picked per transmission. Hence, the probability of transmitting in a certain bandwidth is contingent
on the probability of transmitting in higher bandwidths. Specifically,

3One should consider different complex parameters such as the buffer status and environment dynamics to define
an optimal formulation.
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Table 1: Evaluation setup.

Param. Description Value

fc Central frequency 5.25 GHz
b Basic channel bandwidth 20 MHz
Ld Data packet size 12000 bits
Nb Buffer capacity 150 packets
Na Max. no. of aggregated packets in a frame 64

CWmin Min. contention window 16
m No. of backoff stages 5

MCS IEEE 802.11ax MCS index 0 - 11
η MCS’s packet error rate 0.1

CCA CCA threshold -82 dBm
Ptx Transmission power 15 dBm
Gtx Transmitting gain 0 dB
Grx Reception gain 0 dB

PL(d) TMB indoor path loss for 11ax see [11]
CE Capture effect threshold 20 dB
N Background noise level -95 dBm

C Channelization for UNII-1 & UNII-2 36(1) - 64(8)
|C20-MHz| No. of 20-MHz channels in the system 8
N Allowed no. of bonded channels {1, 2, 4, 8}

OPS Online primary selection rule DR, DF, DW
T Iteration duration 1 s
Tobs Simulation duration 25 s
η Satisfaction ratio 0.9
δ Switching delay 0, 100 ms

Pw,t(Fw,t−1, pw,t, n) = Fw,t−1(C, pw,t, n)

−
∑

n′∈{N|n′>n}
Pw,t(Fw,t−1, pw,t, n

′), (3)

where the probability of transmitting in wider bandwidths is subtracted due to the constraint n′ ∈
{N |n′ > n}. For instance, for bands UNII-1 and UNII-2 altogether (i.e., C20-MHz = {1, ..., 8}), we
define P(F , p, 8) = F(C, p, 8) for n = 8 (i.e., 160-MHz). Similarly, on the other end, P(F , p, 1) =
F(C, p, 1)− P(F , p, 2)− P(F , p, 4)− P(F , p, 8) for n = 1 (i.e., 20-MHz).

As for the complexity of the presented OPS rules, note that they are all computational lightweight;
especially DR since it does not keep track of any data. Despite DF’s complexity increases with the
number of basic channels, FDF

(
|C20-MHz|

)
, its complexity remains also low. DyWi’s complexity,

however, is bounded by FDW

(
|C20-MHz|(log2 |C20-MHz|+ 1)2

)
for the IEEE 802.11ax channelization.

Nonetheless, DyWi is completely tractable in operation time by off-the-shelf network cards since the
number of possible bonds in the 5-GHz band is still small.

3 System model

For evaluating the performance of the OPS rules presented in Section 2, we simulate IEEE 802.11ax
HD deployments using the Komondor [9] wireless network simulator v1.2.1c. For simplicity, we
consider negligible propagation delay, downlink traffic, and WLANs composed by one AP and one
STA. The packet arrival process at each AP follows a Poisson process, generating packets every
tn ∼ Exponential

(
Ld/¯̀

)
, where Ld/¯̀ is the average packet arrival rate given a fixed packet length

Ld and average arrival bit rate ¯̀ [10]. As for the packet reception model, we consider that a packet
is lost if the SINR perceived at the receiver is below the capture effect (CE) threshold. Note that
transmitted power is spread over the channels used in the transmission bandwidth. We also consider
the same CCA (-82 dBm) both in primary and secondary channels to make channel access more
restrictive, as proposed in [1].

5
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Figure 5: Performance metrics of WLAN A for the different primary selection rules. Continuous
lines assume no switching cost while dashed lines correspond to δ = 100 ms.

Regarding the simulation deployments, we contemplate dense 40x40 m2 scenarios like the one
shown in Fig. 4. One WLAN (A) remains always located at the center in every scenario, and other
9 WLANs are spread uniformly at random in the area. The only condition is that any pair of APs
must be separated at least dmin

AP-AP = 10 m. The STA of each WLAN is located also uniformly at
random at a distance dAP-STA ∈ [dmin

AP-STA, d
max
AP-STA] = [1, 5] m from the AP. Note that WLANs are

not required to be within the carrier sense range of the others, i.e., the simulations capture spatial
distribution effects.

Regarding the CA, all the WLANs are set with a random primary channel in the eight basic
channels of the UNII-1&2 sub-bands (i.e., pw ∼ U [1, 8],∀w). The set of allocated basic channels is
assigned uniformly at random as well. That is, the number of allowed basic channels for transmitting
in w is |Cw| ∼ U{1, 2, 4, 8},∀w, except for WLAN A, which is allocated the whole bandwidth in all
the scenarios (i.e., CA = {1, ..., 8}). While A implements DCB, the rest of WLANs implement SC
or DCB with same probability 1/2).

We generate ND = 200 random deployments following the aforementioned conditions and evalu-
ate N` = 17 values of A’s average traffic load ¯̀

A ranging from 1 to 400 Mbps. The rest of WLANs
are set with random average traffic load inside this range, i.e., ¯̀

w ∼ U [1, 400] Mbps. In addition to
traditional FP, we consider the NP = 3 OPS schemes proposed in Section 2 (i.e., DR, DF, DW). For
the latter ones, two switching delay costs δ ∈ {0, 100} ms are assessed.4 Consequently, we simulate
ND×N`× (1 + 2NP) = 23, 800 scenarios. The simulation time of each scenario is Tobs = 25 seconds.
As for the configuration of the online algorithms, we set the iteration time T = 1 s and satisfaction
ratio η = 0.9. Note that we consider a value of η smaller than 1 to provide stability to the algorithm.

6
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4 Performance Evaluation

Figs. 5 and 6 collect key performance metrics of WLAN A in the proposed scenario for different
traffic loads. Namely, Fig. 5a shows the average throughput s̄A computed as the number of bits
successfully transmitted (acknowledged) divided by the simulation time Tobs. The probability PA

of successfully transmitting sufficient traffic is plotted at Fig. 5b. Such a probability is computed
as the portion of scenarios accomplishing s̄A ≥ (1-εs)¯̀

A, where εs = 0.05 is set to deal with the
non-deterministic traffic generation. Finally, Fig. 6 shows the average packet delay d̄A.

As shown by the different metrics, DyWi clearly outperforms FP and DR both in terms of
throughput and delay. In fact, even when considering a huge adaptation cost delay δ = 100 ms (i.e.,
an important 10% penalty with respect to the iteration duration T ), PA is prominently increased for
moderate and medium loads. While DR may be counterproductive for high loads (see Fig. 5a), both
DF and DyWi keep a constant performance after saturating. Such a throughput reduction for DR
is caused by the fact that the larger ¯̀

A, the harder to remain satisfied, which leads to more frequent
channel switching. Then, critically for DR, the random selection of the primary leads to picking
each channel with the same probability. Accordingly, the average throughput converges to FP’s
because, on average (for all the scenarios), the primary channels are equiprobable selected whenever
the satisfaction condition is not accomplished.

As for the average delay, even though we can see by the outliers in Fig. 6 that adopting (2)
does not guarantee optimal performance for every scenario, DyWi outperforms the rest of selection
rules in most of the cases. A phenomenon worth noticing is the reduction of the average delay
from low to moderate traffic loads for online selection algorithms. The reason lies in the buffer
dynamics. Specifically, during the normal operation of an unsatisfactory iteration, while for low
traffic loads, the number of aggregated packets per frame is pretty low, it is much greater for higher
loads. Accordingly, since the buffer tends to remain unsaturated for low loads, during the new
configuration setup after an unsatisfactory iteration, the buffer is normally filled up. As a result, the
first frame of the next iteration – usually containing many aggregated data packets– affects much
more to the average delay for low traffic loads than for high loads.

In order to assess the temporal evolution of the different algorithms, Fig. 7 plots the cumulative
distribution function (CDF) of the number of iterations k required to reach a satisfactory primary
channel for moderate, medium and high traffic loads. As expected, the lower the load, the higher
the value of CDF(k) for any k. Note that there are few unusual scenarios where the CDF varies
for FP. Those are the cases where the load is almost adequate from the very beginning and the
stochastic nature of the traffic generation makes the throughput to vary around η ¯̀

A as the simulation
progresses.

It is also observed that the highest value of the CDF is normally provided by DyWi, which
wisely adapts to the medium. However, DR may be even better for intricate scenarios (high k)
and medium/high loads. This suggests that for such difficult scenarios, relying on (2) may not be
optimal due to the unexpected and harming interactions generated at the moment of changing the
primary. Nevertheless, even though these unusual cases leave room for further improvement, DyWi
is an effective solution that may be adopted in off-the-self WLANs due to its light-weight complexity

4The number and time between CSA frames are configurable (and dependant on the AP manufacturer). In this
work, we consider a practical value δ = 100 ms that allows stressing the performance of the evaluated algorithms.
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Figure 7: Cumulative distribution function of the number of iterations k required to reach satisfac-
tion.

and direct improvement.

5 Conclusions

In this work, we have formulated DyWi, a lightweight and decentralized online primary channel
selection algorithm for WLANs. DyWi aims at maximizing the throughput by iteratively estimating
the occupancy of the primary and secondary channels, thus boosting potential bonds. Results show
significant improvements with respect to traditional allocation, even under high switching adaptation
costs.
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Wi-Fi All-Channel Analyzer

Sergio Barrachina-Muñoz, Boris Bellalta, Edward Knightly

Abstract

In this paper, we present WACA, the first system to simultaneously measure the energy in
all 24 Wi-Fi channels that allow channel bonding at 5 GHz with microsecond scale granularity.
With WACA, we perform a first-of-its-kind measurement campaign in areas including urban
hotspots, residential neighborhoods, universities, and a sold-out stadium with 98,000 fans and
12,000 simultaneous Wi-Fi connections. The gathered dataset is a unique asset to find insights
otherwise not possible in the context of multi-channel technologies like Wi-Fi. To show its
potential, we compare the performance of contiguous and non-contiguous channel bonding using
a trace-driven framework. We show that while non-contiguous outperforms contiguous channel
bonding’s throughput, occasionally bigger by a factor of 5, their average throughputs are similar.

1 Introduction

Channel bonding is a key mechanism for increasing Wi-Fi data rates as the maximum data rate
increases in proportion to the total channel bandwidth. In Wi-Fi, while the basic channel width
remains 20 MHz, the maximum bonded channel width has increased from 40 MHz in 802.11n [1]
to 160 MHz in 802.11ac/ax [2, 3], and 320 MHz in 802.11be [4]. During this time, the standard
has evolved to not only support wider bandwidths, but also to enable more sophisticated channel
bonding policies: in 802.11n, only “static” channel bonding was allowed in which a fixed group of
pre-configured channels must always be bonded. Today, the standard enables a far richer set of
capabilities including dynamic selection of channel width as well as bonding both contiguous and
non-contiguous channels.

In this paper, we make the following three contributions. First, we develop WACA as the first
system to simultaneously measure all 24 Wi-Fi channels at 5 GHz with a 10 µsec sampling rate.
WACA employs multiple synchronized WARP software defined radios (SDRs) and has 24 antennas
and 24 radio frequency (RF) chains to match the number of Wi-Fi channels that allow channel
bonding (from channel 36 to 161) in the IEEE 802.11ac/ax standards. Our approach contrasts with
prior work that uses one or several RF chains, thereby encountering second scale channel switching
delays. Thus, no prior methods capture all channels at the channel-access µsec timescale.

Second, using WACA, we conduct extensive measurement campaigns covering two continents,
dense urban areas, and places of interest such as university campuses, apartment buildings, shopping
malls, and hotels. We also perform measurements in the Futbol Club Barcelona’s Camp Nou, one
of the largest sports stadiums in the world. The shortest campaign took 20 minutes and the longest
covered more than 1 week, and the total number of samples exceeds 1011. In all cases, we record
signal strength on all channels at 10 µsec sample rate, from which we infer the epochs for which each
channel is occupied.12 Notice that the traces compose an unprecedented dataset to find insights
otherwise not possible. We highlight Wi-Fi as the main research application of the dataset but
others can also be taken into account, e.g., cognitive radios, coexistence between Wi-Fi and LTE,
and coexistence between Wi-Fi and Internet of Things (IoT) technologies, to list a few examples.

Third, we introduce a trace-driven framework to evaluate the performance of channel bonding
policies using the aforementioned high-resolution traces of channel activity. As the channel oc-
cupancies are highly dynamic, we group epochs according to their average utilization. While the
stadium measurements have band occupancies as high as 99%, even dense urban scenarios with
many competing basic service sets (BSS’s) yielded maximum occupancies near 45%.

Finally, we use the trace-driven framework to compare the performance of contiguous vs. non-
contiguous channel bonding and find that the increased flexibility of the latter can yield a throughput
improvement of up to 5×. Unfortunately, the scenarios for these gains occur quite rarely yielding

1The WACA dataset v1 can be found at https://www.upf.edu/web/wnrg/wn-datasets.
2All of the source code of WACA is open, encouraging sharing of algorithms between contributors and providing

the ability for people to improve on the work of others under the GNU General Public License v3.0. The repository
can be found at https://github.com/sergiobarra/WACA_WiFiAnalyzer.
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Figure 1: The WACA all WiFi channels spectrum analyzer.

modest average gains of less than 10%, which may ultimately favor contiguous channel bonding,
since it is simpler to implement.

Due to space constrains, we leave the study of key factors such as spectral correlation, bandwidth
prevention, or standard compliant channel bonding policies as future work.

2 Related work

Prior work performed spectrum measurements for Wi-Fi traffic, e.g., [5–15]. Example objectives
include creating interference maps [15], assessing interference behavior [16], surveying Wi-Fi usage
[10], quantifying spectrum occupancy in outdoor testbeds [5, 6], designing efficient scanning methods
[7, 11], modeling spectrum use [8], opportunistic spectrum access [9, 14], dynamic channel selection
[17], and assessing real-world network behavior by examining data from thousands APs [12]. Un-
fortunately, no such prior work provided simultaneous measurement across the entire 5 GHz band,
which we require for our channel bonding study. While some papers do provide multi-channel mea-
surements, e.g., [5, 9, 14, 18], they do so via sequential scanning, thus taking on the order of seconds
to change from one channel to the next, orders of magnitude beyond the transmission time scale
for channel bonding. Namely, WACA measures all channels simultaneously using SDRs having a
sampling rate of 10µsec. Moreover, prior work does not consider (for example) stadiums.

Throughput gains of channel bonding have been demonstrated previously in testbeds. In par-
ticular, IEEE 802.11n static channel bonding has been shown to be affected not only by link signal
quality, but also by the power and rates of neighboring links [19]. Likewise, intelligent channel bond-
ing management was shown to benefit from identifying the signal strength of neighboring links and
interference patterns [20]. High bandwidths were shown to be vulnerable to increased thermal noise
or the power per Hertz reduction [21, 22]. Nonetheless, existing experimental results have targeted
only on one or few controlled links at most. In contrast, we develop WACA as a monitoring system
in order to measure multiple BSS’s in various operational settings, which allows tackling how a
channel bonding BSS interacts with surrounding BSS’s in a broad set of scenarios.

Simulation studies and analytical models have also been employed to study channel bonding, e.g.,
early simulation studies demonstrated throughput gains of channel bonding compared to single-
channel transmission [23, 24]. Likewise, analytical models have been proposed to study channel
bonding, especially through Markov chains [25, 26]. Analytical models for unsaturated traffic have
been also proposed [27, 28]. As well, different channel bonding policies were introduced and modeled
for spatially distributed scenarios [29]. However, such work does not have an experimental validation
as presented here. In this regard, WACA datasets can be used for validation of the aforementioned
methods under real-world channel occupancies in future work.

3 Wi-Fi All-Channel Analyzer

3.1 Overview

Our objective is to simultaneously capture activity on all Wi-Fi channels, i.e., all 24 basic (non
aggregated) 20 MHz channels in the 5 GHz band that permit channel bonding. In principle, this
could be achieved with an off-the-shelf spectrum analyzer. However, most spectrum analyzers are
not capable of dealing with the required bandwidth of this objective, i.e., they cannot simultaneously
measure the entire Wi-Fi 5-GHz band: 645 MHz ranging from channel 36 to 161 (i.e., from 5170 to
5815 MHz). Moreover, wide-band spectrum analyzers that can cover this bandwidth lack resolution
to analyze basic channels within the band.

2
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Parameter Value

Active RFs (channels 36 to 161), R {1, 2, ..., 24}
Iteration’s measurement duration, Tm 1 s
Iteration’s processing duration, Tproc ∼ 9 s
Duration of a complete iteration, Tit ∼ 10 s

Original no. of power samples
per channel per second, n∗s

107

Downsampled no. of power samples
per channel per second, ns

105

Time between consecutive samples, Ts 10 µs

Number of iterations, Nit 125-59500

Table 1: WARPLab setup.

Likewise, one could envision a system comprising 24 off-the shelf Wi-Fi cards as sniffers, one
per basic channel. Unfortunately, such a system would be quite unwieldy and would introduce
a challenge of ensuring synchronicity among wireless cards: restricting the delay between channel
measurements to the order of nano/microseconds is unfeasible due to the hardware interrupt latency
and jitter from the different peripherals [30, 31].

Thus, we design WACA to simultaneously measure power (and I/Q signals if required) on all
5-GHz basic channels. Key benefits of WACA include the simplicity of experimental procedures
(from deployment to post-processing), a dedicated RF chain per channel (covering the whole band
and easing hardware failure detection), and the ease of adaptation/configuration empowered by the
WARPLAb framework [32].

3.2 Building Blocks

The key building blocks of WACA are i) six WARP v3 programmable wireless SDRs [33], ii) six
FMC-RF-2X245 dual-radio FMC daughterboards,3 iii) 24 5-GHz antennas (one per RF chain), and
iv) one Ethernet switch to enable communication between the WARPLab host (e.g., PC) and the
WARP boards. The preeminent building block is WARP, a scalable and extensible programmable
wireless platform to prototype advanced wireless networks. The FMC-RF-2X245 module dual-radio
FPGA Mezzanine Card (FMC) daughterboard extends the capability of WARP v3 boards from 2 to 4
RF chains. Therefore, by combining 2 stacks of 3 WARP boards each with their corresponding FMC-
RF-2X245 daughterboards, we realize 24 RF chains (with one 5-GHz antenna each) enabling us to
assign a single RF chain per basic channel. Finally, the Ethernet switch enables the communication
from the WARP nodes to the WARPLab host. Figure 1a shows the assignment of the RF chains to
each basic channel allowed for bonding and Figure 1b depicts the physical realization of WACA.

3.3 Measurement Methodology

An iterative procedure is followed for collecting power samples. Namely, in each iteration, WACA
first simultaneously measures the power at each basic channel during Tm and then takes Tproc to
process and forward the measurements to the WARPLab host. Both tasks are sequentially performed
until the end of the measurement campaign. Table 1 shows the main WARPLab parameters used for
measurements. Notice that all parameters are fixed except Nit, used for determining the duration
of the measurement campaign.

WARP boards install the MAX2829 transceiver, which has a fixed 10 Msps received signal
strength sampling rate. Accordingly, since the measurement duration in an iteration is Tm = 1
second, the number of consecutive samples captured per basic channel per iteration is n∗s = 107.
Then, in each iteration, we store |R| × n∗s = 24× 107 samples. Nonetheless, to decrease the amount
of required memory, we downsample the gathered samples in each iteration by a 100× factor, thus
reducing the data size per iteration from 60 MB to 600 KB. Essentially, while the transceiver
measures 1 power sample every 100 ns by default, we keep just 1 sample every Ts = 10 µs. Notice
that the resulting time scale is also suitable given Wi-Fi timings. Indeed, the short interframe space
(SIFS) is the smallest interframe space and takes 16 µs (> Ts).

3FMC-RF-2X245 datasheet: https://mangocomm.com/products/modules/fmc-rf-2x245, retrieved January 30,
2020.
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As for the duration of processing and forwarding (period in which no data is collected), Tproc
entails a significant yet unavoidable delay overhead with respect to the total duration of an iteration
Tit = Tm + Tproc. Specifically, for the host PC used in all the scenarios in the dataset (Intel Core
i5-4300U CPU @ 1.9 GHz x 4 and 7.7 GiB memory) and the parameters listed in Table 1, Tproc ≈ 9
s for Tm = 1 s. Once initiated, WACA operates by itself, and no human intervention is required.

3.4 Validation

Before deploying WACA for the measurement campaigns, we perform an extensive set of in-lab
controlled experiments for validation, comprising over 6 × 108 power samples collected in WACA
cross validated with controlled and known transmissions from commercial APs. We conduct the
validation of all the boards by first measuring the power perceived against distance and transmission
bandwidth. Then, we explore the spectrum behavior when setting up different off-the-shelf channel
bonding configurations. The measurements were gathered in an empty and large event room (about
300 m2). Figure 2 shows the complete deployment. In particular, we deploy WACA including the
PC hosting the WARPLab framework (lower part of the figure), 3 PCs receiving iperf traffic (right
part of the figure), and 3 PCs sending iperf traffic with the corresponding 3 APs enabling the iperf
connections (left part of the figure). The AP models we use are Asus RT-AC87U (AS), TP-Link
AC1750 (TP), and Linksys WRT 3200 ACM (LS). Remarkably, all of these APs are only capable of
performing static channel bonding.

Figure 2: Validation testbed at the main events room of Universitat Pompeu Fabra’s Communication
campus.

3.4.1 RSSI vs. central frequency

Ideally, we would like each of the 24 RFs to perceive exactly the same RSSI value when receiving
the same signal modulated at a central frequency f . Besides, we would also like each of the RFs to
perceive exactly the same RSSI value at every central frequency f when the same signal is modulated
at each f . In other words, the RSSI vs. f should be the same flat curve for all the RFs. In order to
validate such premises, we use a WARP node acting as a transmitter and sequentially connect the
transmitter RF (which keeps generating the same 20-MHz signal) to each of the 24 RFs of WACA
for every channel from 36 to 161 via an RF-SMA connector. As shown in Figure 3, a similar RSSI
is perceived at every RF. Besides, a similar flat frequency response is achieved for every RF.

3.4.2 RSSI vs. distance

We measure the RSSI in dBm4 at each basic channel at different distances d from the AP to WACA
ranging from 1.2 to 22.8 meters. We took 105 samples per point. For redundancy, we use 4 RFs to
measure the same channel p = 124.5 As expected, the RSSI tends to decrease with the distance due
to the path loss effect as shown in Figure 3b. For the sake of representation, we also plot the simplified
path loss (SPL) of the mean power received at each point: RSSI(d) = RSSI(d0)−α10 log10(d), with
d = 1 m. Despite the experiments were conducted in a large, empty room without furniture, we can
see the multipath effects in the sparse RSSI values perceived by each RF due to the reflection of the
walls. Such effect is anticipated since the minimum separation between RFs is 6 cm.

4We follow the MAX2829 transceiver data sheet to convert from 10-bit RSSI values to dBm values as done in [34].
5We selected this channel since negligible activity was detected.

4



“main” — 2020/11/19 — 10:04 — page 179 — #201

36 40 44 48 52 56 60 64 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
9

15
3

15
7

16
10

128
256
384
512
640
768
896

1024

RF e-D

RF c-D

(a) RSSI vs. central frequency. Each curve represents
an RF.

0 1.2 5 10 15 20 22.8 25
distance [m]

-75

-70

-65

-60

-55

-50

-45
R

SS
I 

[d
B

m
]

RF-A
RF-B
RF-C
RF-D
SPL

(b) RSSI vs. distance. The curve named SPL stands for
the simplified path loss model with α = 1.15.

5580 (#116) 5600 (#120) 5620 (#124) 5640 (#128)
-100
-95
-90
-85
-80
-75
-70
-65
-60
-55
-50 20 MHz 40 MHz 80 MHz

(c) Transmission bandwidth effect on power.

Figure 3: Validation metrics.

3.4.3 RSSI vs. bandwidth

This experiment aims at measuring the RSSI perceived at a fixed distance (3.6 m) in four basic
channels at the same time for 20, 40, and 80 MHz transmissions. The general procedure followed in
the experiment can be summarized in 4 steps: i) the AS AP is set up with bandwidth b ∈ {20, 40, 80}
MHz and primary channel p = 124; ii) an iperf client is placed close to the AP and associates to
it; iii) an iperf server is located at distance d = 3.6 m from the AP and also associates to it; finally,
iv) the iperf communication is triggered and WACA captures the resulting RSSI at channels 116,
120, 124, and 128, thus covering 80 MHz. Notice that it is enough to use just one WARP board
with the corresponding daughterboard to cover the 4 basic channels of interest. Theoretically, when
doubling the bandwidth, the transmission power gets reduced by a half (3 dB). We corroborate this
fact by looking at the similar reduction factor in the power detected per Hz in Figure 3c.

3.4.4 Controlled testbed evaluation

We now measure the activity of 3 overlapping BSSs’ with static channel bonding capabilities under
different traffic regimes. As shown in Figure 2, we separated the APs from their corresponding
iperf servers by the same distance d = 4.8 m. The WACA platform was placed equidistantly from
the central AP and STA also at d = 4.8 m.

We analyze two particular setups where none and all the BSSs’ saturate. The load of every BSS
is 20 and 150 Mbps in the first and second setup, respectively. Table 2 collects the setups’ details.
Essentially, in the unsaturated scenario, all the BSSs’ share the same primary channel (48) but are
set with different bonding capabilities. The second setup assigns different primary channels and
bandwidth capabilities to each BSS. Note that we changed the primary channels from the previous

5
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Regime AP 36 40 44 48 Thr. [Mbps]

AS p 20
TP p 20

Unsaturated
` = 20 Mbps

LS p 20
AS p 100
TP p 59

Saturated
` = 150 Mbps

LS p 16

Table 2: Setup of controlled experiments. Letter p indicates the primary channel whereas colors
represent the allocated bandwidth to each AP.
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Figure 4: Spectogram evolution of the controlled scenarios. Slots represent the 10-ms mean occu-
pancy.

experiments due to AP hardware restrictions. Nonetheless, we also confirmed that the external
interference at the new band of interest was negligible.

WACA collected 1 second of consecutive RSSI samples during the execution of each setup to
measure the spectrum occupancy. Figure 4 shows the occupancy evolution at each basic channel
for the unsaturated and saturated setups. We confirm that the former setup does not reach full
occupancy in any channel, whereas it is the contrary for the later. Indeed, we observe that the
load (` = 150 Mbps) is high enough to make channels 36 and 40 occupied almost all the time (i.e.,
occupancy at the first 40-MHz band is always close to 1) while not being able to successfully deliver
all the load as indicated by the throughput values in Table 2. This has an important consequence
for the LS AP. Essentially, since static channel bonding is applied, the LS AP does not benefit from
having its primary channel (48) far from the rest of APs. Consequently, its throughput performance
is drastically reduced given that AS and TP introduce inadmissible activity in the first 40 MHz
band.

4 Measurement Campaigns

Using WACA, we perform extensive measurement campaigns covering two continents, dense urban
areas, and multiple hours of samples in places of interest such as university campuses, apartment
buildings, shopping malls, hotels and the Futbol Club Barcelona (a.k.a Barça) stadium (Camp Nou),
one of the largest sports stadiums in the world. The measurements were taken from February to
August 2019 in Houston, TX, USA, and Barcelona, Spain. The shortest experiment took 20 minutes
and the longest covered more than 1 week. The list of locations is shown in Table 3.

Here, we overview the complete dataset: there are 153,033 iterations of 1 second accounting for
42 hours, 30 minutes, and 3 seconds of actual measurements in the 24 20-MHz channels of the 5
GHz WiFi band. We first assess the entire activity record of each location at band B, where B is
a predefined set of contiguous channels. For instance, U-NII-1 band is defined as B = {1, 2, 3, 4},
corresponding to basic channels 36, 40, 44, and 48 (see Figure 1a).6 Figure 5a shows the normalized
mean idleness of each band, i.e., the mean number of samples that were found idle in each channel of
band B. We observe that the spectrum is idle most of the time in all scenarios except the stadium,
indicating that the 5 GHz band is still profoundly underutilized even in densely populated areas.

6The rest of bands are sequentially composed of groups of four consecutive 20-MHz channels. So, the next band
is U-NNI-2 with channels {5, 6, 7, 8} (basic channels 52, 56, 60, and 64), and the last one is U-NNI-3 with channels
{21, 22, 23, 24} (basic channels 149, 153, 157, 161).

6
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Id Location Type Duration

1 RVA Rice Village Apart., HOU Apartment 1 day
2 RNG RNG lab at Rice, HOU Campus 1 day
3 TFA Technology for All, HOU Com. center 1 day
4 FLO Flo Paris, HOU Cafe 1 hour
5 VIL Rice Village, HOU Shopping mall 20 min

6 FEL La Sagrera, BCN Apartment 1 week
7 WNO WN group office, BCN Campus 1 day
8 22@ 22@ area, BCN Office area 1 day
9 GAL Hotel Gallery, BCN Hotel 1 day
10 SAG Sagrada Familia, BCN Apartment 4 days
11 FCB Camp Nou, BCN Stadium 5 hours

Table 3: Measurement locations.
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Figure 5: General spectrum occupancy trends.

Figure 5b shows the daily temporal evolution of 4 example locations (2 apartments in the upper
subplots, and 2 university campuses in the lower subplots). For the sake of representation, we plot the
normalized occupancy of the whole band averaged in periods of 10 minutes. Concretely, we normalize
with respect to the highest 10-minutes average occupancy encountered in each location. We clearly
observe higher activity at working hours in the campus locations and a much less variable pattern
in the apartment locations. In any case, from the low spectrum utilization observed in Figure 5a,
significant opportunities for channel bonding can be expected.

Figure 6a shows a photograph of the WACA setup in the Futbol Club Barcelona’s stadium. We
deployed WACA in the press box of the stadium during a football game with over 98,000 spectators
present. Measurements were taken on August 4, 2019, from 17:24 to 22:30 accounting for a total
duration of 5 hours and 6 minutes. On that date, the Joan Gamper trophy was held, which pitted
the local club (Futbol Club Barcelona) against the visiting club (Arsenal Football Club). Free Wi-Fi
was provided to the audience through thousands of APs primarily installed beneath the seats. We
also obtained data from the stadium’s network management team which indicated that up to 12,000
Wi-Fi clients were simultaneously connected. Downlink and uplink traffic is depicted in Figure 6b7

and the spectogram in Figure 6c. Each slot in the spectogram represents the occupancy of each
channel averaged in 1-second periods. We observe that most channels were highly occupied during
the measurements. Moreover, we can observe the users’ behavior induced nonstationarity of the
traces as the match progressed. Namely, while activity is always high, there is a notable reduction

7Aggregated downlink and uplink traffic was provided by Futbol Club Barcelona’s IT management.
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during play (first and second half) compared to activity before, between halfs, and right after the
game time. We also observe that the majority of the channels are crowded most of the time with
periods reaching mean band occupancy values rising up to 99%. In fact, 22% of the periods are
above 80% occupancy.

(a) WACA deployment. (b) Traffic evolution.
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(c) Spectrum occupancy evolution.

Figure 6: Wi-Fi activity at the Camp Nou stadium: a) WACA deployment in the press box, b)
downlink and uplink Wi-Fi traffic evolution (source: stadium’s IT management), and c) spectrum
occupancy evolution.

5 Evaluation of bonding gains

In this section, we study the performance of channel bonding against the band occupancy. Notice
that, due to the disparate nature of the stadium scenario (recall the contrasting mean idleness in
Figure 5a), we focus our study on the non-stadium measurement campaigns to provide insights on
a more homogeneous dataset. The analysis of the stadium campaign will be covered in future work.

5.1 Evaluation Methodology

5.1.1 Overview

Our objective is to study the throughput performance that a fully backlogged channel-bonding BSS,
w, would obtain if it encountered the channels recorded in the measurement campaigns described
above. An schematic of the system model is illustrated in Figure 7. BSS w consists of an access
point (AP) and a one or multiple stations (STAs) sufficiently close to assume that they perceive the
same RSSI measurements.

The throughput is a function of a number of factors such as which primary channel the bonding
BSS selects, which channel bonding policy it employs, and the spectrum occupancy perceived while
operating. So, here we describe the trace-driven framework we use. The RSSI measurements cap-
tured by WACA at scenario s are represented by a 2-dimensional matrix Y s of size (Ns

it×ns)× |R|,
where Ns

it is the number of iterations of scenario s, and any element yst,c represents the power value
at temporal sample t in basic channel c. From Y s, we generate a binary matrix Xs of same size

8
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through an occupancy indicator function, where any element xst,c represents whether channel c was
occupied at temporal sample t (1) or not (0). Formally, xst,c = (yst,c > CCA : 1, 0),∀t, c, where the
clear channel assessment (CCA) is set to -83.5 dBm (or 150 10-bit RSSI units), corresponding to
the common CCA threshold -82 dBm plus a safety margin of -1.5 dBm. While IEEE 802.11ac/11ax
introduce different CCA levels for the primary and secondary channels, in this work, we consider
a more restrictive approach by assuming the same threshold in order to fairly compare different
channel bonding policies. The mean occupancy at a certain band B in scenario s is simply defined
as

ōsB =

∑
t

∑
c∈B x

s
t,c

Ns
itns|B|

. (1)

To provide meaningful experiments, we separately consider two 160-MHz bands composed of
8 basic channels: the U-NII-1&2 and part of the U-NII-2c sub-bands, B1&2 = {1, 2, 3, ..., 8} and
B2c = {9, 10, 11, ..., 16}, respectively. These sub-bands cover from channel 36 to 64 and from channel
100 to 128, respectively (see Figure 1a). Notice that these are the only sub-bands that allow to
perform 160-MHz transmissions in the IEEE 802.11ac/ax channelization. Moreover, we focus on
epochs (or periods) of duration Tper = 100 ms for which the mean occupancy at such sub-bands is
at least 5%, i.e., ōB ≥ 0.05, where B ∈ {B1&2,B2c}.

5.1.2 State Machine

We develop a discrete state machine that characterizes how the channel-bonding BSS responds to
each power sample (or temporal sample) t according to the current state S(t), and channel-bonding
policy π, following the 802.11 standard. The set of possible states is S = {Busy,DIFS,BO,TX/RX}.
State Busy indicates that the primary channel is busy, DIFS represents the period before initiating
the backoff process, the backoff counter is decreased during BO state, and TX/RX represents the
actual frame transmission-reception (including the control frames RTS, CTS, and ACK, the DATA
frame, and the SIFS periods in between). We represent the channel-bonding BSS w as an AP and
one or multiple clients that would perceive exactly the same spectrum activity as WACA captured
in the measurement campaigns and must contend accordingly.

The set of basic channels selected for transmitting a frame depends both on the spectrum occu-
pancy and on the selected channel-bonding policy π. Figure 8 illustrates an example of the transitions
between states. Empty slots have a duration Tslot = 10µs and we consider Tslot = Ts = 10µs rather
than 9 µs (802.11’s default value) to align the duration of an idle backoff slot with the sample du-
ration. Hence, whenever the channel-bonding BSS is in the backoff process at state BO, every idle
sample at the primary channel p results in a backoff counter decrease of one empty slot. We use
Wi-Fi parameters according to IEEE 802.11ax [3] and assume 256-QAM modulation coding scheme
regardless of the transmission bandwidth. The setup parameters are listed in Table 4. After running
the state-machine through all the temporal samples in the epoch, we compute the throughput Γ as
the number of data packets sent divided by the duration of the epoch Tper.

5.1.3 Channel Bonding Policies and Response

A channel-bonding policy π selects the set of basic channels to aggregate at the end of the backoff
provided that the primary channel is available. Namely, contiguous channel bonding can select a set
of channels both above and below the primary channel, provided they are consecutive. In contrast,

STAAP

environment
activity

BSS	w

OBSS

Figure 7: Diagram of the system model. The fully backlogged channel-bonding BSS, w, operates
under instances of the same environment – or overlapping BSS (OBSS) – that WACA perceived at
the measurement campaigns.
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Figure 8: Example of the transitions between states.

Param. Description Value

CCA CCA threshold -83.5 dBm
MCS MCS index 9 (256-QAM 5/6)
b basic channel bandwidth 20 MHz
Ld Length of a data packet 12000 bit
B Allocated set of basic channels B ⊆ R
p Primary channel p ∈ B
Na Max. no. of agg. packets per frame 64
Te Duration of an empty slot 10 µs

TSIFS SIFS duration 20 µs
TDIFS DIFS duration 30 µs
TPIFS PIFS duration 30 µs
TRTS RTS duration 50 µs
TCTS CTS duration 40 µs
TBACK Block ACK duration 50 µs
TXOP Max. duration of a TXOP 5 ms
CWmin Min. contention window 16
m No. of backoff stages 5

Table 4: Trace-driven setup.

non-contiguous channel bonding can combine all available channels at the time the primary channel
becomes available. We compare both policies in §5.2.

How will other BSS’s respond to the channel bonding BSS? We consider that they will defer their
transmissions. Namely, the channel bonding BSS needs the channels to be available only when its
countdown timer expires. If the bonding BSS does transmit but the trace indicates that a channel
would have been occupied at some point during the transmission, we consider that such other BSS’s
will sense the bonding BSS and defer.

5.2 Contiguous vs. Non-Contiguous

For each transmission, non-contiguous channel bonding can utilize additional channels as compared
to contiguous, by “skipping over” the busy channels to find the next unused one. Here, we explore
the gains of this flexibility as well as (in rare cases) the losses by comparing the throughput of
contiguous and non-contiguous channel bonding in three load regimes: low (ōB ≤ 0.1), medium
(0.1 < ōB ≤ 0.2) and high (ōB > 0.2), respectively.

Figure 9 shows the the throughput ratio of contiguous to non-contiguous channel bonding
ΓCO(p)/ΓNC(p), where Γπ(p) is the throughput achieved by policy π when selecting primary p
in a given period. We plot the ratio for all possible primaries in B1&2 and B2c.

The data reveals two remarkable phenomenon. First, contiguous outperforms non-contiguous in
2.5% of the cases (albeit with a modest throughput difference of 1.9%). But since non-contiguous
is more flexible, how can it ever do worse? The answer is that the two policies result in different
instants for transmission attempts. The contiguous policy occasionally (and quite randomly since
the traces are the same) ends up with more favorable attempt instants. Nonetheless, in most cases,
non-contiguous obtains higher throughput. For example, in many periods, at least one 20-MHz
channel is idle during the whole period, which will always yield a gain for non-contiguous, but
only sometimes yields a gain for contiguous bonding. In some cases, the difference can be quite
high (e.g., a ratio of approximately 0.2 observed in low load). The origins of such extreme cases
are the selection of the primary channel. Second, the bar chart inside Figure 9 reveals that both
contiguous and non-contiguous channel bonding perform quite close on average for all occupancy
regimes (low, medium, and high), and especially for the latter, as high load results in far fewer
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Figure 9: Throughput ratio of contiguous vs. non-contiguous channel bonding. The bar chart inset
depicts the mean aggregated ratio for low (L), medium (M), and high (H) occupancy regimes.

bonding opportunities overall.
Finding : Non-contiguous almost always outperforms contiguous channel bonding and their

throughput differences are occasionally over a factor of 5. Nonetheless, their average through-
puts are quite similar, which may ultimately favor contiguous channel bonding, since it is simpler
to implement.

6 Conclusion

In this paper, we introduce WACA, an all-channel Wi-Fi spectrum analyzer for simultaneous mea-
surement of all 24 20 MHz channels that allow channel bonding at 5 GHz. We present extensive
measurement campaigns covering two continents, diverse areas, and many hours of signal strength
samples. The gathered dataset is a unique asset to find insights otherwise not possible to study. We
leave the analysis of key factors like spectral correlation or bandwidth prevention as future work.
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Wi-Fi Channel Bonding: an All-Channel System and

Experimental Study from Urban Hotspots to a Sold-Out

Stadium

Sergio Barrachina-Muñoz, Boris Bellalta, and Edward Knightly

Abstract

In this paper, we present WACA, the first system to simultaneously measure all 24 Wi-Fi
channels that allow channel bonding at 5 GHz with microsecond scale granularity. With WACA,
we perform a first-of-its-kind measurement study in areas including urban hotspots, residential
neighborhoods, universities, and even a game in Futbol Club Barcelona’s Camp Nou, a sold-out
stadium with 98,000 fans and 12,000 simultaneous Wi-Fi connections. We study channel bonding
in this environment, and our experimental findings reveal the underpinning factors controlling
throughput gain, including channel bonding policy and spectrum occupancy statistics. We then
show the significance of the gathered dataset for finding insights, which would not be possible
otherwise, given that simple channel occupancy models severely underestimate the available
gains. Likewise, we characterize the risks of channel bonding due to other BSS’s, including
their missed transmission opportunities and potential collisions due to imperfect sensing of
bonded transmissions. We explore 802.11ax which imposes constraints on bonded channels to
avoid fragmentation and defines different modes that can trade implementation complexity for
throughput. Lastly, we show that the stadium, while seemingly too highly occupied for channel
bonding gains, has transient gaps yielding impressive gains.

1 Introduction

Channel bonding is a key mechanism for increasing Wi-Fi data rates as the maximum data rate
increases in proportion to the total channel bandwidth. In Wi-Fi, while the basic channel width
remains 20 MHz, the maximum bonded channel width has increased from 40 MHz in 802.11n to 160
MHz in 802.11ac/ax [1], and 320 MHz in 802.11be [2]. During this time, the standard has evolved to
not only support wider bandwidths, but also to enable more sophisticated channel bonding policies:
in 802.11n, only “static” channel bonding was allowed in which a fixed group of pre-configured
channels must always be bonded. Today, the standard enables a far richer set of capabilities including
dynamic selection of channel width as well as bonding both contiguous and non-contiguous channels.

In this paper, we provide the first experimental study of channel bonding policies and performance
factors with a high-resolution all-channel measurement study.1 In particular, we make the following
contributions. First, we develop WACA as the first system to simultaneously measure all 24 Wi-Fi
channels at 5 GHz with a 10 µsec sampling rate. WACA employs multiple synchronized WARP
software defined radios (SDRs) and has 24 antennas and 24 radio frequency (RF) chains to match
the number of Wi-Fi channels. Our approach contrasts with prior work that uses one or several RF
chains, thereby encountering second scale channel switching delays. Thus, no prior methods capture
all channels at the channel-access µsec timescale.

Second, using WACA, we conduct extensive measurement campaigns covering two continents,
dense urban areas, and places of interest such as university campuses, apartment buildings, shopping
malls, and hotels. We also perform measurements in one of the largest sports stadiums in the world,
Futbol Club Barcelona’s Camp Nou. The shortest campaign took 20 minutes and the longest
covered more than 1 week, and the total number of samples exceeds 1011. In all cases, we record
signal strength on all channels at 10 µsec sample rate, from which we infer the epochs for which each
channel is occupied.23 Notice that the traces compose an unprecedented dataset to find insights
otherwise not possible. We highlight Wi-Fi as the main research application of the dataset but

1This paper is an extension of Wi-Fi All-Channel Analyzer [3].
2The WACA dataset v1 can be found at https://www.upf.edu/web/wnrg/wn-datasets.
3All of the source code of WACA is open, encouraging sharing of algorithms between contributors and providing

the ability for people to improve on the work of others under the GNU General Public License v3.0. The repository
can be found at https://github.com/sergiobarra/WACA_WiFiAnalyzer.
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others can also be taken into account, e.g., cognitive radios or coexistence between Wi-Fi and LTE
and/or Internet of Things (IoT) technologies, to mention a few examples.

Third, we evaluate the performance of a channel bonding basic service set (BSS) using the afore-
mentioned high-resolution traces of channel activity. As the channel occupancies are highly dynamic,
we group epochs according to their average utilization. While the stadium measurements have band
occupancies as high as 99%, even dense urban scenarios with many competing BSS’s yielded max-
imum occupancies near 45%. Beginning with the non stadium scenarios, we first experimentally
study the foundational elements controlling the gains of channel bonding.

We find that the increased flexibility of non-contiguous channel bonding compared to contiguous
can yield a throughput improvement of up to 5×. Unfortunately, the scenarios for these gains occur
quite rarely yielding modest average gains of less than 10%. Moreover, selection of the primary
channel is critical and improves average throughput by over 60%. This is because the primary
channel must be available before bonding can occur, and for contiguous channel bonding, it defines
the crucially important neighboring channels. We next study correlation among channel occupancies:
while one may expect minimal correlation with different BSS’s using different channels, we observed
that some measured BSS’s employ channel bonding thereby inducing correlation. We show that this
correlation, observed over all traffic loads, aids further channel bonding. Namely, when the primary
channel becomes available, it increases the likelihood that other channels are available too. We also
show that simple channel occupancy models severely underestimate the available gains for channel
bonding. Thus, modeling occupancy behavior by introducing inter-channel correlation remains an
important avenue for future work.

After understanding the sources and factors controlling the gains of channel bonding, we next
turn to potential detrimental effects involving other in-range BSS’s. First, when one BSS channel
bonds, others must defer: is channel bonding simply a zero-sum-game transferring bandwidth from
one BSS to another? We fortunately find that this is not the case, as the experiments indicate that
the channel occupancy dynamics enable the channel bonder to gain at least 45 times what the other
BSS’s lose. Likewise, hidden nodes could also reduce the performance of channel bonding, as failed
transmissions can occur if neighboring BSS’s do not sense and defer to a bonded transmission. Our
analysis shows that such a scenario of hidden other-BSS traffic would be quite costly, and would
often result in single channel transmission outperforming channel bonding, even under relatively low
channel occupancy.

Next, we consider the channelization restrictions imposed by IEEE 802.11ax along with its three
channel bonding modes: static channel bonding, dynamic channel bonding, and preamble punc-
turing. Unfortunately, we find that static channel bonding gives up the majority of the available
throughput gains. Namely, while simple to implement, this “all or nothing” strategy is too often
waiting for all channels to become available which comes at a very high cost of missed opportunities
to use more narrow bandwidths. Dynamic channel bonding and preamble puncturing are special
cases of the above contiguous and non-contiguous strategies but are subject to further channeliza-
tion constraints designed to simplify implementation and avoid channel fragmentation. We find that
802.11ax’s channelization restrictions reduce throughput by up to 19% for dynamic channel bonding.
In contrast, the increased flexibility of preamble puncturing limits the reduction to less than 6%.

Finally, we deploy WACA in a sold-out sports event with over 98,000 attendees. Partnering with
the stadium’s network management team, we find that up to 12,000 Wi-Fi clients were simultaneously
connected via thousands of access points (APs). Despite a peak occupancy over all channels of 99%,
which would yield negligible margin for channel-bonding gains, we observed significant epochs with
opportunities. Namely, transient occupancy lulls of less than 30% can yield gains of up to 5.3×.
Qualitatively, we find that the lulls in network traffic are inversely related to the match’s lulls in
action, e.g., half time yields a traffic boom. Nonetheless, shorter time-scale lulls in occupancy, which
benefit channel bonding, can be observed at all times.

2 Related work

Prior work performed spectrum measurements for Wi-Fi traffic, e.g., [4–14]. Example objectives
include creating interference maps [14], assessing interference behavior [15], surveying Wi-Fi usage
[9], quantifying spectrum occupancy in outdoor testbeds [4, 5], designing efficient scanning methods
[6, 10], modeling spectrum use [7], opportunistic spectrum access [8, 13], dynamic channel selection
[16], and assessing real-world network behavior by examining data from thousands APs [11]. Un-
fortunately, no such prior work provided simultaneous measurement across the entire 5 GHz band,
which we require for our channel bonding study. While some papers do provide multi-channel mea-
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Figure 1: The WACA all WiFi channels spectrum analyzer.

surements, e.g., [4, 8, 13, 17], they do so via sequential scanning, thus taking on the order of seconds
to change from one channel to the next, orders of magnitude beyond the transmission time scale
for channel bonding. Namely, WACA measures all channels simultaneously using SDRs having a
sampling rate of 10µsec. Moreover, prior work does not consider (for example) stadiums, the poten-
tial costs of other BSS’s deferring or colliding, the impact of fine-grained channel correlation, nor a
diverse set of policies.

Throughput gains of channel bonding have been demonstrated previously in testbeds. In par-
ticular, IEEE 802.11n static channel bonding has been shown to be affected not only by link signal
quality, but also by the power and rates of neighboring links [18]. Likewise, intelligent channel
bonding management was shown to benefit from identifying the signal strength of neighboring links
and interference patterns [19]. High bandwidths were shown to be vulnerable to increased thermal
noise or the power per Hertz reduction [20, 21]. Finally, an experimental study of IEEE 802.11ac
channel bonding (both static and dynamic) showed that unplanned primary channel selection and
bandwidth allocation may severely degrade the throughput of links operating at wider channels [22].
Nonetheless, existing experimental results have targeted only on one or few controlled links at most.
In contrast, we develop WACA as a monitoring system in order to measure multiple BSS’s in various
operational settings, thus tackling how a channel bonding BSS interacts with surrounding BSS’s in
a broad set of channel bonding policies and scenarios.

Simulation studies and analytical models have also been employed to study channel bonding, e.g.,
early simulation studies demonstrated throughput gains of channel bonding compared to single-
channel transmission [23, 24]. Likewise, analytical models have been proposed to study channel
bonding, especially through Markov chains [25–29]. For instance, high-density deployments are
evaluated in [26], showing exposure to unfairness in groups of overlapping BSS’s. Analytical models
for unsaturated traffic have been also proposed [28, 30]. As well, different channel bonding policies
were introduced and modeled for spatially distributed scenarios [30, 31]. Lastly, primary channel
selection was studied in [32–35], traffic demands in [36], and QoS constraints in [37]. However, such
work does not have an experimental validation as presented here. In this regard, WACA datasets
can be used for validation of the aforementioned methods under real-world occupancies in future
work.

3 Wi-Fi All-Channel Analyzer

3.1 Overview

Our objective is to simultaneously capture activity on all Wi-Fi channels, i.e., all 24 basic (non
aggregated) 20 MHz channels in the 5 GHz band that permit channel bonding. In principle, this
could be achieved with an off-the-shelf spectrum analyzer. However, most spectrum analyzers are
not capable of dealing with the required bandwidth of this objective, i.e., they cannot simultaneously
measure the entire Wi-Fi 5-GHz band: 645 MHz ranging from channel 36 to 161 (i.e., from 5170 to
5815 MHz). Moreover, wide-band spectrum analyzers that can cover this bandwidth lack resolution
to analyze basic channels within the band. Likewise, one could envision a system comprising 24
off-the shelf Wi-Fi cards as sniffers, one per basic channel. Unfortunately, such a system would
be quite unwieldy and would introduce a challenge of ensuring synchronicity among wireless cards:
restricting the delay between channel measurements to the order of nano/microseconds is unfeasible
due to the hardware interrupt latency and jitter from the different peripherals [38, 39].

Thus, we design WACA to simultaneously measure power (and I/Q signals if required) on all
5-GHz basic channels. Key benefits of WACA include the simplicity of experimental procedures
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(from deployment to post-processing), a dedicated RF chain per channel (covering the whole band
and easing hardware failure detection), and the ease of configuration empowered by the WARPLAb
framework [40].

3.2 Building Blocks

The key building blocks of WACA are (i) six WARP v3 programmable wireless SDRs [41], (ii) six
FMC-RF-2X245 dual-radio FMC daughterboards,4 (iii) 24 5-GHz antennas (one per RF chain), and
(iv) one Ethernet switch to enable communication between the WARPLab host (e.g., PC) and the
WARP boards. The preeminent building block is WARP, a scalable and extensible programmable
wireless platform to prototype advanced wireless networks. The FMC-RF-2X245 module dual-radio
FPGA Mezzanine Card (FMC) daughterboard extends the capability of WARP v3 boards from 2 to 4
RF chains. Therefore, by combining 2 stacks of 3 WARP boards each with their corresponding FMC-
RF-2X245 daughterboards, we realize 24 RF chains (with one 5-GHz antenna each) enabling us to
assign a single RF chain per basic channel. Finally, the Ethernet switch enables the communication
from the WARP nodes to the WARPLab host. Fig. 1a shows the assignment of the RF chains to
each basic channel allowed for bonding and Fig. 1b depicts the physical realization of WACA.

3.3 Measurement Methodology

An iterative procedure is followed for collecting power samples. Namely, in each iteration, WACA
first simultaneously measures the power at each basic channel during Tm and then takes Tproc to
process and forward the measurements to the WARPLab host. Both tasks are sequentially performed
until the end of the measurement campaign. Table 1 shows the main WARPLab parameters used for
measurements. Notice that all parameters are fixed except Nit, used for determining the duration
of the measurement campaign.

Parameter Value

Active RFs (channels 36 to 161), R {1, 2, ..., 24}
Iteration’s measurement duration, Tm 1 s
Iteration’s processing duration, Tproc ∼ 9 s
Duration of a complete iteration, Tit ∼ 10 s

Original no. of power samples
per channel per second, n∗s

107

Downsampled no. of power samples
per channel per second, ns

105

Time between consecutive samples, Ts 10 µs

Number of iterations, Nit 125-59500

Table 1: WARPLab setup.

WARP boards install the MAX2829 transceiver, which has a fixed 10 Msps received signal
strength sampling rate. Accordingly, since the measurement duration in an iteration is Tm = 1
second, the number of consecutive samples captured per basic channel per iteration is n∗s = 107.
Then, in each iteration, we store |R| × n∗s = 24× 107 samples. Nonetheless, to decrease the amount
of required memory, we downsample the gathered samples in each iteration by a 100× factor, thus
reducing the data size per iteration from 60 MB to 600 KB. Essentially, while the transceiver
measures 1 power sample every 100 ns by default, we keep just 1 sample every Ts = 10 µs. Notice
that the resulting time scale is also suitable given Wi-Fi timings. Indeed, the short interframe space
(SIFS) is the smallest interframe space and takes 16 µs (> Ts).

As for the duration of processing and forwarding (period in which no data is collected), Tproc
entails a significant yet unavoidable delay overhead with respect to the total duration of an iteration
Tit = Tm + Tproc. Specifically, for the host PC used in all the scenarios in the dataset (Intel Core
i5-4300U CPU @ 1.9 GHz x 4 and 7.7 GiB memory) and the parameters listed in Table 1, Tproc ≈ 9
s for Tm = 1 s. Once initiated, WACA operates by itself and no human intervention is required.

4FMC-RF-2X245 datasheet: https://mangocomm.com/products/modules/fmc-rf-2x245, retrieved January 30,
2020.
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Figure 2: Validation testbed at the main events room of Universitat Pompeu Fabra’s Communication
campus.

3.4 Validation

Before deploying WACA for the measurement campaigns, we perform an extensive set of in-lab
controlled experiments for validation, comprising over 6×108 power samples collected in WACA cross
validated with controlled and known transmissions from commercial APs. We conduct the validation
of all the boards by first measuring the power perceived against transmission bandwidth.5 Then, we
explore the spectrum behavior when setting up different off-the-shelf channel bonding configurations.
The measurements were gathered in an empty and large event room (about 300 m2). Figure 2 shows
the complete deployment. In particular, we deploy WACA including the PC hosting the WARPLab
framework (lower part of the figure), 3 PCs receiving iperf traffic (right part of the figure), and 3
PCs sending iperf traffic with the corresponding 3 APs enabling the iperf connections (left part of
the figure). The AP models we use are Asus RT-AC87U (AS), TP-Link AC1750 (TP), and Linksys
WRT 3200 ACM (LS). Remarkably, all of these APs are only capable of performing static channel
bonding.

3.4.1 RSSI vs. bandwidth

We measure the RSSI in dBm6 at a fixed distance (3.6 m) in four basic channels at the same time
for 20, 40, and 80 MHz transmissions. The general procedure followed in the experiment can be
summarized in 4 steps: i) the AS AP is set up with bandwidth b ∈ {20, 40, 80} MHz and primary
channel p = 124 since negligible activity was detected; ii) an iperf client is placed close to the
AP and associates to it; iii) an iperf server is located at distance d = 3.6 m from the AP and also
associates to it; finally, iv) the iperf communication is triggered and WACA captures the resulting
RSSI at channels 116, 120, 124, and 128, thus covering 80 MHz. Notice that it is enough to use just
one WARP board with the corresponding daughterboard to cover the 4 basic channels of interest.
Theoretically, when doubling the bandwidth, the transmission power gets reduced by a half (3 dB).
We corroborate this fact by looking at the similar reduction factor in the power detected per Hz in
Fig. 3.
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Figure 3: Transmission bandwidth effect on power.

5Further validations on power vs. central frequency (and RF) and power vs. distance can be found at [3].
6We follow the MAX2829 transceiver data sheet to convert from 10-bit RSSI values to dBm values as done in [42].
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Figure 4: Spectogram evolution of the controlled scenarios. Slots represent the 10-ms mean occu-
pancy.

Regime AP 36 40 44 48 Thr. [Mbps]

AS p 20
TP p 20

Unsaturated
` = 20 Mbps

LS p 20
AS p 100
TP p 59

Saturated
` = 150 Mbps

LS p 16

Table 2: Setup of controlled experiments. Letter p indicates the primary channel whereas colors
represent the allocated bandwidth to each AP.

3.4.2 Controlled testbed evaluation

We now measure the activity of 3 overlapping BSSs’ with static channel bonding capabilities under
different traffic regimes. As shown in Fig. 2, we separate the APs from their corresponding iperf

servers by d = 4.8 m. The WACA platform was placed equidistantly from the central AP and STA
also at d = 4.8 m. We analyze two particular setups where none and all the BSSs’ saturate. The
load of every BSS is 20 and 150 Mbps in the first and second setup, respectively. Table 2 collects the
setups’ details. Essentially, in the unsaturated scenario, all the BSSs’ share the same primary channel
(48) but are set with different bonding capabilities. The second setup assigns different primary
channels and bandwidth capabilities to each BSS. Note that we changed the primary channels from
the previous experiments due to AP hardware restrictions. Nonetheless, we also confirmed that the
external interference at the new band of interest was negligible.

WACA collected 1 second of consecutive RSSI samples during the execution of each setup to
measure the spectrum occupancy. Namely, we just compare the RSSI against the CCA level and say
that a given channel is occupied iff RSSI > CCA. Note that, throughout this paper, we compare
the RSSI directly with the CCA no matter the type of signal being received. This approach is much
more restrictive than relying on carrier sense since CCA thresholds are much smaller than energy
detection (-82 and -62 dBm, respectively). This lets us simplify the experiments and consider
worst-case occupancy values. Fig. 4 shows the occupancy evolution at each basic channel for the
unsaturated and saturated setups. We confirm that the former setup does not reach full occupancy
in any channel, whereas it is the contrary for the later. Indeed, we observe that the load (` = 150
Mbps) is high enough to make channels 36 and 40 occupied almost all the time (i.e., occupancy at
the first 40-MHz band is always close to 1) while not being able to successfully deliver all the load
as indicated by the throughput values in Table 2. This has an important consequence for the LS
AP. Essentially, since static channel bonding is applied, the LS AP does not benefit from having its
primary channel (48) far from the rest of APs. Consequently, its throughput is drastically reduced
given that AS and TP introduce inadmissible activity in the first 40 MHz band.

4 Measurement Campaigns

Using WACA, we perform extensive measurement campaigns covering two continents, dense urban
areas, and multiple hours of samples in places of interest such as university campuses, apartment
buildings, shopping malls, hotels and the Futbol Club Barcelona (a.k.a Barça) stadium (Camp Nou),
one of the largest sports stadiums in the world. The measurements were taken from February to
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Id Location Type Duration

1 RVA Rice Village Apart., HOU Apartment 1 day
2 RNG RNG lab at Rice, HOU Campus 1 day
3 TFA Technology for All, HOU Com. center 1 day
4 FLO Flo Paris, HOU Cafe 1 hour
5 VIL Rice Village, HOU Shopping mall 20 min

6 FEL La Sagrera, BCN Apartment 1 week
7 WNO WN group office, BCN Campus 1 day
8 22@ 22@ area, BCN Office area 1 day
9 GAL Hotel Gallery, BCN Hotel 1 day
10 SAG Sagrada Familia, BCN Apartment 3 days
11 FCB Camp Nou, BCN Stadium 5 hours

Table 3: Measurement locations.
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Figure 5: General spectrum occupancy trends.

August 2019 in Houston, TX, USA, and Barcelona, Spain. The shortest experiment took 20 minutes
and the longest covered more than 1 week. The list of locations is shown in Table 3.

Here, we overview the complete dataset: there are 153,033 1-second iterations accounting for
42 hours, 30 minutes, and 3 seconds of actual measurements in the 24 20-MHz channels of the 5
GHz WiFi band. We first assess the entire activity record of each location at band B, where B is
a predefined set of contiguous channels. For instance, U-NII-1 band is defined as B = {1, 2, 3, 4},
corresponding to basic channels 36, 40, 44, and 48 (see Figure 1a).7 Fig. 5a shows the normalized
mean idleness of each band, i.e., the mean number of samples that were found idle in each channel of
band B. We observe that the spectrum is idle most of the time in all scenarios except the stadium,
indicating that the 5 GHz band is still profoundly underutilized even in densely populated areas.

Fig. 5b shows the daily temporal evolution of 4 example locations (2 apartments in the upper
subplots, and 2 university campuses in the lower subplots). For the sake of representation, we plot the
normalized occupancy of the whole band averaged in periods of 10 minutes. Concretely, we normalize
with respect to the highest 10-minutes average occupancy encountered in each location. We clearly
observe higher activity at working hours in the campus locations and a much less variable pattern
in the apartment locations. In any case, from the low spectrum utilization observed in Fig. 5a,
significant opportunities for channel bonding can be expected.

7The rest of bands are sequentially composed of groups of four consecutive 20-MHz channels. So, the next band
is U-NNI-2 with channels {5, 6, 7, 8} (basic channels 52, 56, 60, and 64), and the last one is U-NNI-3 with channels
{21, 22, 23, 24} (basic channels 149, 153, 157, 161).
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Figure 6: Diagram of the system model.

5 Evaluation Methodology

5.1 Overview

Our objective is to study the performance that a fully backlogged channel-bonding BSS, w, would
obtain if it encountered the channels recorded in the measurement campaigns described above (see
Fig. 6). The performance is a function of a number of factors such as which primary channel
the bonding BSS selects, which channel bonding policy it employs, and the spectrum occupancy.
Such factors are explored in subsequent sections. Here, we describe the overall methodology for all
experiments.

The datasets captured by WACA at scenario s are represented by a 2-dimensional matrix Y s

of size (Ns
it × ns) × |R|, where Ns

it is the number of iterations of scenario s, and any element
yst,c represents the power value at temporal sample t in basic channel c. From Y s, we generate
a binary matrix Xs of same size through an occupancy indicator function, where any element
xst,c represents whether channel c was occupied at temporal sample t (1) or not (0). Formally,
xst,c = (yst,c > CCA : 1, 0),∀t, c, where the clear channel assessment (CCA) is set to -83.5 dBm
(or 150 10-bit RSSI units), corresponding to the common CCA threshold -82 dBm plus a safety
margin of -1.5 dBm. While IEEE 802.11ac/11ax introduce different CCA levels for the primary and
secondary channels, in this work, we consider a more restrictive approach by assuming the same
threshold in order to fairly compare different channel bonding policies. The mean occupancy at
band B in scenario s is simply defined as

ōsB =

∑
t

∑
c∈B x

s
t,c

Ns
itns|B|

. (1)

To provide meaningful experiments, we separately consider two 160-MHz bands composed of
8 basic channels: the U-NII-1&2 and part of the U-NII-2c sub-bands, B1&2 = {1, 2, 3, ..., 8} and
B2c = {9, 10, 11, ..., 16}, respectively. These sub-bands cover from channel 36 to 64 and from channel
100 to 128, respectively (see Fig. 1a). Notice that these are the only sub-bands that allow to perform
160-MHz transmissions in the IEEE 802.11ac/ax channelization. Moreover, we focus on epochs (or
periods) of duration Tper = 100 ms (containing 104 temporal samples each) for which the mean
occupancy at such sub-bands is at least 5%, i.e., ōB ≥ 0.05, where B ∈ {B1&2,B2c}.

5.2 State Machine

We develop a discrete state machine that characterizes how the channel-bonding BSS responds
to each power sample (or temporal sample) t according to the current state S(t), and channel-
bonding policy π, following the 802.11 standard. Given that the channel-bonding BSS is fully
backlogged, the set of possible states is S = {Busy,DIFS,BO,TX/RX}. State Busy indicates that
the primary channel is busy, DIFS represents the period before initiating the backoff process, the
backoff counter is decreased during BO state, and TX/RX represents the actual frame transmission-
reception (including the control frames RTS, CTS, and ACK, the DATA frame, and the SIFS
periods in between). We represent the channel-bonding BSS w as an AP and one or multiple clients
that would perceive exactly the same spectrum activity as WACA captured in the measurement
campaigns and must contend accordingly. To focus on channel bonding effects, we do not consider
collisions within the channel bonding BSS, but only collisions that can occur due to other BSS’s (see
§7.2).
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Figure 7: Example of the transitions between states.

Param. Description Value

CCA CCA threshold -83.5 dBm
MCS MCS index 9 (256-QAM 5/6)
b basic channel bandwidth 20 MHz
Ld Length of a data packet 12000 bit
B Allocated set of basic channels B ⊆ R
p Primary channel p ∈ B
Na Max. no. of agg. packets per frame 64
Te Duration of an empty slot 10 µs

TSIFS SIFS duration 20 µs
TDIFS DIFS duration 30 µs
TPIFS PIFS duration 30 µs
TRTS RTS duration 50 µs
TCTS CTS duration 40 µs
TBACK Block ACK duration 50 µs
TXOP Max. duration of a TXOP 5 ms
CWmin Min. contention window 16
m No. of backoff stages 5

Table 4: Trace-driven setup.

The set of basic channels selected for transmitting a frame depends both on the spectrum occu-
pancy and on the selected channel-bonding policy π. Fig. 7 illustrates an example of the transitions
between states. Empty slots have a duration Tslot = 10µs and we consider Tslot = Ts = 10µs rather
than 9 µs (802.11’s default value) to align the duration of an idle backoff slot with the sample du-
ration. Hence, whenever the channel-bonding BSS is in the backoff process at state BO, every idle
sample at the primary channel p results in a backoff counter decrease of one empty slot. We use Wi-
Fi parameters according to IEEE 802.11ax as shown in Table 4. After running the state-machine
through all the temporal samples in the epoch, we compute the throughput Γ as the number of
bytes in the successfully transmitted data packets nd divided by the duration of the epoch, i.e.,
Γ = (ndLd)/Tper.

5.3 Channel Bonding Policies and Response

A channel-bonding policy π selects the set of basic channels to aggregate at the end of the backoff
provided that the primary channel is available. Namely, contiguous channel bonding can select a set
of channels both above and below the primary channel, provided they are consecutive. In contrast,
non-contiguous channel bonding can combine all available channels at the time the primary channel
becomes available. In §8, we consider additional channelization constraints imposed by 802.11ax.

How will other BSS’s respond to the channel bonding BSS? For most experiments, we consider
that they will defer their transmissions. Namely, the channel bonding BSS needs the channels to
be available only when its countdown timer expires. If the bonding BSS does transmit but the
trace indicates that a channel would have been occupied at some point during the transmission,
we consider that such other BSS’s will sense the bonding BSS and defer. The exception is in §7.2
in which we consider that other BSS’s are hidden, do not sense the channel bonder, and cause a
collision.

9
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6 Evaluation of Bonding Gains and Origins

Here, we experimentally study the foundational elements of channel bonding including contiguous
(CO) vs. non-contiguous (NC) channel bonding, load, primary channel selection, and cross-channel
correlation. Due to the disparate nature of the stadium scenario, we focus our study on the non-
stadium measurement campaigns to provide insights on a more homogeneous dataset. We leave the
stadium’s study for a dedicated section (§9).

6.1 Contiguous vs. Non-Contiguous Aggregation

For each transmission, non-contiguous channel bonding can utilize additional channels as compared
to contiguous, by “skipping over” the busy channels to find the next unused one. Here, we explore
the gains of this flexibility as well as (in rare cases) the losses by comparing the throughput of
contiguous and non-contiguous channel bonding in three load regimes: low (ōB ≤ 0.1), medium
(0.1 < ōB ≤ 0.2) and high (ōB > 0.2), respectively.

Fig. 8 shows the the throughput ratio of contiguous to non-contiguous channel bonding ΓCO(p)/ΓNC(p),
where Γπ(p) is the throughput achieved by policy π when selecting primary p in a given period. We
plot the ratio for all possible primaries in B1&2 and B2c.

The data reveals two remarkable phenomenon. First, contiguous outperforms non-contiguous in
2.5% of the cases (albeit with a modest throughput difference of 1.9%). But since non-contiguous
is more flexible, how can it ever do worse? The answer is that the two policies result in different
instants for transmission attempts. The contiguous policy occasionally (and quite randomly since
the traces are the same) ends up with more favorable attempt instants. Nonetheless, in most cases,
non-contiguous obtains higher throughput. For example, in many periods, at least one 20-MHz
channel is idle during the whole period, which will always yield a gain for non-contiguous, but only
sometimes yields a gain for contiguous bonding. In some cases, the difference can be quite high
(e.g., a ratio of approximately 0.2 observed in low load). The origins of such extreme cases are the
selection of the primary channel which we explore next. Second, the bar chart inside Fig. 8 reveals
that both contiguous and non-contiguous channel bonding perform quite close on average for all
occupancy regimes (low, medium, and high), and especially for the latter, as high load results in far
fewer bonding opportunities overall.

Finding : Non-contiguous almost always outperforms contiguous channel bonding and their
throughput differences are occasionally over a factor of 5. Nonetheless, their average through-
puts are quite similar, which may ultimately favor contiguous channel bonding, since it is simpler
to implement.

6.2 Primary Channel Selection

Selection of the primary channel is critical for channel bonding as it is where the backoff procedure
is run. Namely, the transmitter must wait for a transmission opportunity on the primary channel
and only then can explore adding channels. For contiguous channel bonding, there is an additional
“edge effect”. For example, having the first channel as primary only allows bonding of higher
numbered channels, whereas having a middle channel allows both higher and lower, provided they
are contiguous in both cases. To explore this issue, we define the best-throughput Γ∗(π) of policy

Figure 8: Throughput ratio of contiguous vs. non-contiguous channel bonding. The bar chart inset
depicts the mean aggregated ratio for low (L), medium (M), and high (H) occupancy regimes.
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Figure 9: Normalized throughput of the best primary channel (best) and mean throughput for every
primary channel (mean).

π as the throughput achieved when selecting the best primary channel p∗ ∈ B, i.e., the primary
channel that maximizes throughput in each period when implementing π. So, apart from assessing
the throughput when considering all possible primary channels, we also evaluate an upper bound on
performance by focusing only on the best primary channel.

Figure 9 shows the throughput gain with respect to the throughput achieved by single channel
transmission, i.e., Γ̂π = Γπ/ΓSC, where ΓSC and Γπ are the throughput achieved by single channel
transmission and channel bonding policy π, respectively. Such normalized throughput is presented in
two ways for each period: the mean value Γ̂ in the legend refers to the mean normalized throughput
achieved by selecting each of the possible 8 primary channels per sub-band, and the best value Γ̂∗,
to the normalized throughput achieved by the primary p∗ providing the highest throughput.

First, observe that both contiguous and non-contiguous channel bonding outperform single chan-
nel by a factor of at least 3 to over 6. Second, observe the region where contiguous channel bonding
has the lowest gains. Strikingly, while selecting the best primary channel boosts throughput, these
lower-gain cases cannot be entirely eliminated with better primary channel selection. Thus, in
these cases, the available spectrum does not have a consistent structure and only non-contiguous
bonding can exploit the gaps (and there are indeed many gaps as the load is low here). Next, ob-
serve the high variance of the throughput due to the spectrum activity distribution. In particular,
throughput differences for similar occupancy values can be up to 1.9× and 1.7× for contiguous and
non-contiguous, respectively. Lastly, despite these first two findings, selecting the best primary chan-
nel indeed provides substantial gains and can raise throughput by up to 68% and 64% for contiguous
and non-contiguous, respectively. While non-contiguous channel bonding might seem impervious to
primary channel selection as it can bond any channels, recall that even non-contiguous requires an
idle primary channel to begin transmission.

Finding : Selection of the best primary channel improves average throughput by over 60%. But
for contiguous channel bonding, it cannot overcome high variance and lower gain scenarios due to
the channel occupancy dynamics of the spectrum band.

6.3 Inter-Channel Occupancy Correlation

When a transmitter finds its primary channel available for transmission and attempts to bond
channels, it aims to find secondary channels available. Thus, correlation among channel occupancies
can be expected to help channel bonding performance. Here we study the spectral correlation of the
best primary channel with other channels and compute the mean correlation coefficient as

ξ =
∑

p∈B,p6=p∗
ρ(p∗, p)/

(
|B| − 1

)
, with

ρ(p∗, p) =
E[(p∗ − µp∗)(p− µp)]

σp∗σp

(2)

where B ∈ {B1&2,B2c}, thus |B| = 8, ρ(p∗, p) is the Pearson correlation coefficient of the temporal
occupancy of channels p∗ and p, as a function of the means, µp∗ and µp, and standard deviations,
σp∗ and σp, of channel p∗ and p, respectively. Notice that this assessment of spectral correlation by
simultaneously measuring all channels is achieved for the first time by WACA.

Fig. 10 shows both the distribution of ξ vs. mean occupancy ōB and the empirical cumulative
distribution function (CDF) of ξ. We observe that ξ ranges approximately from -0.10 to 0.60, so
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Figure 10: Distribution and empirical CDF of the best primary channel correlation ξ.

we define three correlation levels for ease of analysis: low (ξ ≤ 0.1), medium (0.2 ≤ ξ < 0.4), and
high (ξ ≥ 0.5). While we find that most of the periods (62%) fall inside the low correlation range,
17% of them present medium or higher correlation, indicating a significant amount of correlated
epochs. A key origin of correlation among channels in the data set may be that the APs are already
using channel bonding. Indeed, even though the dataset does not provide header information, some
subsets of traces have multiple contiguous channels having almost identical busy/idle evolution. This
suggests that channel bonding was employed during some portions of the measurement campaign.

(a) Low-correlation periods.

(b) Medium-correlation periods.

(c) High-correlation periods.

Figure 11: Evolution of the best-primary normalized throughput vs. correlation. We use trans-
parencies at the points to highlight denser regions.

Figure 11 shows throughput given selection of the best primary channel, with the sub-figures
highlighting intervals with low, medium, and high correlation. We observe that most of the mea-
sured channel occupancies show minimal inter-channel correlation. However, the figures for periods
of medium and high correlation indicate that with higher correlation among channel occupancy,
the lower performance periods are increasingly avoided, especially for contiguous channel bonding.
Interestingly, this effect holds regardless of the mean occupancy ōB.

Finding : There are significant periods (17%) presenting medium to high correlation among
channel occupancies. Such periods improve the performance of channel bonding regardless of the
load. This can provide a hint as to what ideally would happen if multiple BSS’s employ channel
bonding, since channel bonding itself creates channel-occupancy correlation.

12
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Figure 12: Original vs. synthetic traces.

6.4 A Markov Model for Channel Occupancy?

In §6.3, we found that even though channels could be considered to be uncorrelated on average
since activity is expected to be normally from separate BSS’s, traces exhibited a significant amount
of epochs of inter-channel occupancy correlation. With this experiment, we aim at pointing out
the importance of capturing inter-channel correlation by comparing the original traces against two
simple models. In particular, we first consider a Markov model that characterizes each channel as
an independent two state (occupied, not occupied) Markov chain with exponential holding times for
each state. We compute the mean transition rates (and hence mean occupied and not-occupied time)
for each channel from the traces. We then compare performance between the parameter-matched
Markov model and the actual traces. As a baseline, we also consider a uniform i.i.d. model in
which each temporal sample is occupied or not according to an i.i.d. Bernoulli distribution, with
each channel again having the mean band occupancy matched from data. Our objective is not to
develop a statistical occupancy model, but rather to study the extent to which simple models can
or cannot characterize the behavior we observe.

We study below downlink throughput for these two models as compared to the traces when
applying contiguous channel bonding. Since the throughput is impacted by the primary channel
selection, we evaluate the selection of the 16 possible primary channels: 8 in sub-band B1&2 and 8
in B2c.

Figure 12a shows the raw throughput (considering every possible primary) of the original traces
and the synthetic model-generated occupancy. While both models capture the general trend of
throughput decaying with increasing occupancy, the difference between datasets is evident in the
form of the scatter plots.

Fig. 12b and Fig. 12c depict the mean relative error (MRE) of the models’ throughput with
respect to the original traces grouping by load and correlation regime, defined by the thresholds
presented in §6.1 and §6.3, respectively. We observe that the i.i.d model is completely misleading
with a mean error around 50% for high loads and/or high correlation. Unfortunately, although the
Markov model is able to capture the mean on and off times for each channel, we observe that the
mean error is still significant (up to 16% and 37% on average for high load and high correlated
periods, respectively). Worse, particular periods assessed through the Markov model lead to large
errors up to 33%, 58%, and 62% for low, medium and high occupancy regimes, respectively.

While we expected the higher relative errors to arise for high load periods, it is surprisingly
critical the impact of not capturing correlation on both models. In fact, in contrast to the correlation
distribution of the original traces shown in Fig. 10, both models present a distribution similar to a
delta function centered at ξ = 0. Given that the original mean occupancy is kept for all the periods
generated by the models, results suggest that missing correlation is the main cause of outraging the
models’ accuracy.

Finding : unfortunately, simple channel occupancy models severely underestimate the available
gains for channel bonding. Thus, modeling occupancy behavior by introducing inter-channel corre-
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Figure 13: Distribution of bandwidth and data rate lost for other BSS’s for every primary channel.

lation remains an important avenue for future work.

7 Whither Other BSS’s

Thus far, we have evaluated how much throughput is gained from channel bonding. However, when
one BSS gains access to multiple channels, nearby BSS’s operating on other channels will have to
defer or could yield hidden terminal collisions. We consider both cases as follows.

7.1 How Much Are Others Hindered?

When other BSS’s defer to a channel bonder, it will add to their channel access latency and could
decrease their throughput. Here, we study how much all other BSS’s are hindered due to channel
bonding and introduce a bandwidth deprivation metric ω as the aggregate bandwidth that would
have been active (i.e., was being used by neighbor BSS’s) during the transmissions of the channel
bonding BSS. This metric can serve as an upper bound to how much others are hindered by viewing
that all of these attempts by other BSS’s would be lost vs. deferred. More formally, let

ω =

(∑nf

f=1

∑
t∈Tf

∑
c∈Btx,f

xt,c
)
bTs

Tper
, (3)

where nf is the number of frames transmitted, Tf is the set of consecutive temporal samples used for
transmitting frame f , Btx,f is the set of channels used for transmitting frame f , Ts is the duration
of a temporal sample (10µs), b = 20 MHz is the bandwidth of a basic channel, and Tper = 100 ms is
the observation duration. We normalize by Tper = 100 ms rather than the transmission time of each
policy to provide a fair comparison. That is, ω represents how much raw bandwidth is deprived
to surrounding BSSs in absolute terms [MHz], without considering how many transmissions are
performed by each policy.

Fig. 13 shows the distribution (boxplot) of the bandwidth deprivation in MHz and Mbps for
every primary channel using the occupancy categories defined in §6.1. In order to estimate the
corresponding data rate, we assume that all occupied samples are comprised of 20-MHz data frames
transmitted also at MCS 9 The figure illustrates the intrinsic consequences of bonding channels
without considering how the others might use the spectrum during the transmission. Namely, a
channel bonder may find that most channels are free at backoff termination, thus subsequently
occupying most (or all) of them. However, it may occur that right after starting the transmission,
external activity appears in some of the channels being used, thus hindering surrounding BSS’s.

Second, we observe that the differences in bandwidth deprivation for non-contiguous vs. contigu-
ous channel bonding are quite modest, even when non-contiguous channel bonding achieves higher
throughput. The key reason is that most high occupancy periods concentrate activity in some 20
MHz channels, often leaving at least one 20 MHz channel idle during nearly the entire period. In
contrast to contiguous, non-contiguous channel bonding can always realize small throughput gains
by bonding those idle channels regardless of the primary channel allocation. Also, despite the low
average impact, there are multiple outliers in which the bandwidth lost by other BSS’s is significantly
higher than average, thus manifesting the worst-case external effect.

Finally, we can ask if channel bonding is simply a zero-sum-game: do the gains of a bonding
BSS simply subtract from other BSS’s throughput? To address this question, we assess whether the
average throughput gained by channel bonding exceeds the worst-case prevented transmissions by

14



“main” — 2020/11/19 — 10:04 — page 202 — #224

Low Med High
0
1
2
3
4
5
6

contiguous

Low Med High
0
1
2
3
4
5
6

non-contiguous

(a) Hindering.

Low Med High
0
1
2
3
4
5
6

contiguous

Low Med High
0
1
2
3
4
5
6

non-contiguous

(b) Hidden terminals.

Figure 14: Distribution of the norm. best-primary-throughput.

other BSS’s, using single channel transmission as a baseline. Thus, we define the ratio

κπ =
Γ̄π − Γ̄SC

ω̄π − ω̄SC
, (4)

where Γ̄π and Γ̄SC are the mean throughput of policy π and SC, and ω̄π and ω̄SC are the corre-
sponding mean throughput deprivation. A value κπ = 1 would indicate that the trade-off between
the bonding gain and external throughput deprivation is actually a zero-sum-game, whereas κπ > 1
would indicate net gains. The results indicate that both contiguous and non-contiguous channel
bonding yield substantial net gains over all occupancy regimes. Specifically, κCO = 95.2, 68.9, 49.4
for contiguous, and κNC = 91.9, 65.7, 45.5 for non-contiguous, under low, medium, and high occu-
pancy regimes, respectively.

Finding : In the worst case, a channel bonding BSS can hinder neighbors by 100’s of Mb/sec.
However, the average hindrance is quite low and neighbors can defer instead of not transmitting to
reduce the impact. Moreover, the data rate gained by bonding far exceeds the worst-case data rate
lost by neighbors, since neighbors are not always backlogged during bonding epochs.

7.2 The Hidden Cost of Hidden Nodes

Here, we continue our study of potential detrimental effects of channel bonding by considering the
case of hidden nodes. We again impose a worst-case scenario on the measurements as follows: channel
access occurs as previously with contention occurring on the primary channel and channel bonding
adding channels according to availability and the policy, contiguous or non-contiguous. However,
here we reconsider the measured activity that occurs during the bonded transmission. While in
the previous subsection, we considered that the other BSS’s would have deferred, here, we consider
that other BSS’s are hidden from the bonded transmission and still transmit and result in frame
loss. Thus, this scenario considers that the RTS/CTS mechanism is not used or fails and disallows
capture effects in which the higher signal-to-noise ratio receiver correctly decodes, e.g., [43]. Thus,
in these two ways, this experiment provides an empirical upper bound as to the damage that hidden
terminals could do to a channel bonded transmission.

In particular, we assume that a frame f is lost if temporal samples are found active in any of the
channels used for transmitting f . Specifically, f is lost if the following expression holds,

∑

t∈Tf

(( ∑

c∈Btx,f

xt,c
)
≥ 1 : 1, 0

)
≥ α|Tf |, (5)

where Tf is the set of consecutive temporal samples required for transmitting frame f , and the term∑
c∈Btx,f

xt,c denotes the number of occupied channels at time t. We apply a factor α = 0.01 to
exclude spurious noise as cause of loss. Thus, we avoid for instance losing an entire frame when just
a single temporal sample was found active during the transmission.

Fig. 14a and Fig. 14b depict the throughput distribution under hindering (without hidden ter-
minals) and hidden-terminal scenarios, respectively. First, observe that throughput is significantly
reduced in comparison to the case with no hidden terminals. For example, for contiguous channel
bonding in high load, mean throughput gains over single-channel transmission are reduced from
5.2× to 2.6× (50%).

Second, there are significant periods where channel bonding results in extremely low performance,
even for low occupancy values. In fact, there are scenarios in which single-channel access outperforms
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bonding (blue areas where Γ̂∗ < 1 in the figure). In particular, single channel outperforms contiguous
channel bonding in 18%, 8% and 8% of the cases for low, medium and high occupancy, respectively.
Even worse, single channel outperforms non-contiguous channel bonding in 38%, 14%, and 15% of
cases respectively. This illustrates that external traffic patterns may lead to accentuated chances of
incurring collisions, thus impairing the performance of the channel bonder.

Third, due to its more aggressive nature, non-contiguous channel bonding performs slightly worse
than contiguous both in terms of average throughput and how often it is outperformed by single
channel transmission. This, together with the fact that contiguous performs similarly on average to
non-contiguous without hidden terminals, indicates that gains provided by non-contiguous can be
relatively small considering its greater risk and more complex design.

Finally, also in contrast to Fig. 14a, Fig. 14b indicates that the decaying trend of mean normalized
best-throughput with load when neighbors defer does not hold with hidden terminals. Indeed, we
observe a slight increase of the normalized best-throughput as the occupancy increases as fewer
bonding opportunities also diminish the risk of collisions.

Finding : While channel bonding outperforms single-channel transmission in most cases, it is
vulnerable to hidden node interference, with non-contiguous channel bonding being impacted the
most. To avoid the aforementioned worst-case throughput penalties, nodes can use RTS/CTS,
implement capture (to better receive even while a hidden terminal transmission overlaps in time), or
increase channel sensing sensitivity, i.e., reduce the threshold for sensing channel activity to reduce
the frequency of hidden terminal transmissions.

8 IEEE 802.11ax Constraints

Here, we consider additional constraints imposed by 802.11ax on channel bonding. Namely, 802.11ax
defines three modes of channel bonding, each of which restrict channel bonding to a subset of
channels [1]. For example, U-NNI-1 and U-NNI-2 restrict channel bonding groups to CB1&2

=
{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {1, 2, 3, 4}, {5, 6, 7, 8}, {1, ..., 8}} so that (for example) a 40 MHz bonded
channel that combines channels 2 and 3 is not allowed. Notice that we do not use the IEEE 802.11
channel indices (e.g., 36, 40, 44,...) in the example above for ease of exposition. While reducing
throughput when only a single BSS bonds, such restrictions can reduce fragmentation if multiple
BSS’s bond. Moreover, such restrictions simplify implementation. Thus, here we study the cost of
802.11ax’s channelization restrictions when a single BSS bonds and compare to the non-restricted
cases explored this far.

Static Channel Bonding (SCB): employs a fixed channel width and therefore must always
use the same set of channels. It can be viewed as an“all-or-nothing” policy: for example, if static
channel bonding uses 8 consecutive basic channels (160 MHz), it must wait until all 8 channels are
free in order to transmit using the entire 160 MHz. Although simple to implement, it is vulnerable
to excessive deferral while waiting for all channels to become available.

Dynamic Channel Bonding (DCB): picks the largest available set of contiguous basic chan-
nels found free subject to both the primary channel being included and the total set of channels
being an allowed set under the restrictions such as above. For example, if channel 4 is selected
as a primary channel, dynamic channel bonding allows bonded transmissions with channels {3, 4},
{1, 2, 3, 4}, or {1, ..., 8}, as well as single channel transmission on channel 4. Other combinations
such as {4, 5} are not permitted.

Preamble Puncturing (PP): allows puncturing wide channels, i.e., aggregating non-
contiguous basic channels. Even though the total channel is still subjected to the above chan-
nelization constraints, preamble puncturing is more flexible than dynamic channel bonding since it
enables non-contiguous channel combinations, provided the primary channel is included [1, 44]. For
example, a transmission using primary channel 3 could transmit on 60 MHz using channels {1, 3, 4},
which would be a punctured subset of {1, 2, 3, 4}. Nonetheless, not every combination of punctured
channels is allowed in the standard. For instance, {1, 3} is not permitted.

Observe that both static and dynamic channel bonding are restricted special cases of contiguous
channel bonding studied previously, whereas preamble puncturing is a restricted special case of
non-contiguous channel bonding.

Here, we compare the throughput of both the (non-restricted) contiguous and non-contiguous
polices with the three 802.11ax policies, all using selection of the best primary channel. Fig. 15 shows
the resulting 802.11ax throughput normalized to the unrestricted case for the respective category of
contiguous or non-contiguous.

First, observe that 802.11ax static channel bonding suffers severe throughput degradation com-
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Figure 15: Best primary throughput ratio of the IEEE 802.11ax policies with respect to contiguous
and non-contiguous channel bonding.

pared to contiguous channel bonding. Namely, the desirable simplicity of static channel bonding
comes with a high performance cost. For example, under heavy load, static channel bonding only
obtains 39% of the throughput compared to contiguous channel bonding, indicating that too much
time is spent deferring to realize significant gains from wide channels. Moreover, static channel
bonding also encounters poorly performing outliers, well below the mean. For example, the 1%-
percentile performance is less than 10% for medium and high loads, even less than single channel
allocation.

Second, comparing 802.11ax dynamic channel bonding to contiguous channel bonding (middle
bars), we observe that it achieves 87% to 81% of the average throughput of contiguous channel
bonding for low and high load respectively, with 1%-percentiles over 65% for any load regime.

Finally, comparing 802.11ax preamble puncturing to non-contiguous channel bonding (right set
of bars), the former obtains 96% to 94% of the throughput of the latter in low and high load
respectively. Further, throughput differences are kept smaller also in the most divergent scenarios,
reaching 1%-percentiles over 77% for all the loads.

Finding : IEEE 802.11ax channelization restrictions have a modest throughput cost compared
to non-restricted. For example, standard-compliant preamble puncturing obtains over 90% of the
throughput of (non-restricted) non-contiguous channel bonding. Unfortunately, the simplest stan-
dard policy, static channel bonding, performs quite poorly.

9 A Sold Out Stadium

Finally, we assess if channel bonding can provide throughput gains in areas with persistently high
load over all channels. To study such a scenario, we deployed WACA in the press box of the Camp
Nou stadium during a football game with over 98,000 spectators present. Measurements were taken
on August 4, 2019, from 17:24 to 22:30 accounting for a total duration of 5 hours and 6 minutes. On
that date, the Joan Gamper trophy was held, which pitted the local club (Futbol Club Barcelona)
against the visiting club (Arsenal Football Club). Fig. 16a shows a photograph of the setup.

We also obtained data from the stadium’s network management team which indicated that up
to 12,000 Wi-Fi clients were simultaneously connected. Downlink and uplink traffic (provided by
Camp Nou’s management) is depicted in Fig. 16b and the spectogram in Fig. 16c. Each slot in the
spectogram represents the occupancy of each channel averaged in 1-second periods. We observe that
most channels were highly occupied during the measurements. Moreover, we can observe the users’
behavior induced nonstationarity of the traces as the match progressed. Namely, while activity is
always high, there is a notable reduction during play (first and second half) compared to activity
before, between halfs, and right after the game time. We also observe that the majority of the
channels are crowded most of the time with periods reaching mean band occupancy values ōB rising
up to 99%. In fact, 22% of the periods have ōB > 0.8. Nonetheless, we pose the question as to
whether the remaining occupancy gaps can be exploited by channel bonding to boost aggregate
throughput.

Fig. 17 shows normalized throughput under best primary channel selection when applying con-
tiguous and non-contiguous channel bonding. Under loads exceeding 90%, both policies have
throughput close to single channel transmission, indicating that there is simply minimal remaining
margin for gain. Nonetheless, in transient epochs where load is low, both policies exploit through-
put gains. For example, in the stadium during epochs of 20-30% load, the gain over single channel
throughput is 3.69× and 5.30× for contiguous and non-contiguous respectively. In fact, we observe
that non-contiguous significantly outperforms contiguous in a wide regime of “non-extreme” loads
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(a) WACA deployment. (b) Traffic evolution.
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Figure 16: Wi-Fi activity at the Camp Nou stadium: a) WACA deployment in the press box, b)
downlink and uplink Wi-Fi traffic evolution (source: stadium’s IT management), and c) spectrum
occupancy evolution.

10 30 50 70 90
0
1
2
3
4
5
6

contiguous

10 30 50 70 90
0
1
2
3
4
5
6

non-contiguous

Figure 17: Gains for the bonding BSS assuming others defer.

given the heterogeneous activity distribution over channels. For example, at 40-50% average occu-
pancy, contiguous channel bonding has average throughput gain of 2.38× whereas non-contiguous
has 3.97×, a gain of 67%. Recall that for the non-stadium experiments in Figure 14a, the gains
during epochs of 20-30% load (considered inside “high” load for the urban scenarios) were 5.19×
and 5.34× for contiguous and non-contiguous bonding. Comparing to the stadium, non-contiguous
channel bonding performs remarkably similarly (5.30 in stadium vs. 5.34 otherwise). In contrast,
contiguous channel bonding performs worse in the stadium (3.69 in stadium vs. 5.19 otherwise)
even under the same average load. The reason may be the minimal inter-channel correlation at the
stadium. Indeed, the stadium management confirmed that no channel bonding was implemented in
any of the stadium’s APs.

Lastly, as shown in §7.2, the story can turn quite negative if competing BSS’s do not defer to the
channel bonder, i.e., if other BSS’s are hidden. In such a worst case, all bonded transmissions with
subsequent activity are considered lost. Figure 18 shows the results of this scenario for the stadium
traces. As indicated by the blue shadowed areas, most of the periods achieve higher throughput with
single channel transmission rather than using channel bonding. Indeed, single channel transmission
outperforms both channel bonding policies in at least 80% of the epochs over all occupancy regimes.
Moreover, comparing similar loads to the other data sets (e.g., 20-30% occupancy), the stadium
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Figure 18: Hidden terminal scenario with the ratio of epochs that single channel outperforms bonding
shown by the blue curve.

performs far worse with hidden terminals. For instance, comparing Figure 18 and Figure 14b, we find
that for 20-30% average occupancy, even with worst-case hidden terminals, the average throughput
gain of contiguous channel bonding was 2.66×, whereas for the stadium, the gain is reduced to
0.59×, i.e., throughput is lost. This indicates that the stadium traffic and channel occupancies yield
greater hidden terminal risk than urban environments, even for the same traffic load. Thus, similarly
to the hindering case, the results suggest that negligible correlation is detrimental in the presence
of hidden terminals.

Finding : Even under the stadium’s extremely high average load, short durations of lower load
can be exploited to yield significant throughput gains. However, the risk is high as hidden terminals
could drive the throughput to levels even worse than without any channel bonding.

10 Conclusion

In this paper, we introduce WACA, an all-channel Wi-Fi spectrum analyzer for simultaneous mea-
surement of all 24 20 MHz channels that allow channel bonding at 5 GHz. We present extensive
measurement campaigns covering two continents, diverse areas, and many hours of signal strength
samples. We use the measurements to explore key aspects of channel bonding spanning from statis-
tics of the channel occupancies to channel bonding standards and policies.
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