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Abstract

Advanced numerical techniques for inverse problems in geophysics

Olga Ortega Gelabert

This thesis presents an efficient methodology to couple Model Order Reduction
techniques within the framework of geophysical probabilistic inversion problems. Ac-
curate models of the interaction between Earth inner processes and surface features
are essential to make reliable predictions of the observables which are a fundamen-
tal part of Bayesian inference. Markov Chain Monte Carlo (MCMC) methods have
become standard in dealing with probabilistic inversions and they rely on sampling
strategies that require solving forward problems many times. Computationally ex-
pensive large-scale forward problems are the principal bottleneck that can limit the
capabilities and potential of multi-observable geophysical probabilistic inversions. In
particular, dynamical effects arising from the sub-lithospheric mantle flow are not
usually taken into account in the estimation of surface elevation due to the high com-
putational cost of the associated 3D Stokes flow problem.

The main idea of this thesis is to use the Reduced Basis (RB) method as a sur-
rogate of the true forward problem (3D Stokes flow) to provide fast and accurate
approximations. The surrogate is then used to generate samples of the posterior dis-
tribution at a much lower computational cost. RB strategies are based on expressing
the solution of a problem in a low dimensional space, i.e. a reduced basis. Taking
advantage of the convergence nature of the MCMC, we propose a greedy strategy
that builds the reduced basis on the fly and as required by the inverse problem. In
doing so, the basis is specifically tailored to the posterior features of the problem. In
addition, to guarantee an accurate surrogate we define a goal-oriented error estimator
which focuses on a particular Quantity of Interest of the problem and, therefore, it
guides the basis to achieve the required accuracy in such particular features. All this
translates into a problem-shaped basis that is more compact and smaller than if it
had to be accurate everywhere in the domain. Moreover, to deal with the costly as-
sembly of matrices, we use the specific parametrization of the problem and sampling
strategy to define an assembly procedure that efficiently updates the matrices only
with the contribution of the elements that changed between successive inversion steps.
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The benefits and limitations of the method are illustrated through several nu-
merical examples. Finally, to demonstrate the applicability of the method two more
realistic inverse problems are presented. The first one uses dynamic topography to
infer the Lithosphere-Asthenosphere Boundary depth of a spherical domain repre-
senting a portion of Earth and the second one is applied to a larger problem in which
the African lithospheric structure is discretized in 1225 inversion parameters.
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Chapter 1

Introduction

1.1 Motivation

One of the main challenges in modern lithospheric research is the understanding and
characterization of the present-day physical state of the thermal and compositional
structure of the Earth’s lithospheric and sub-lithospheric mantle. This is essential to
develop any evolution model of the Earth as well as to understand the relation be-
tween surface features and inner processes. Current knowledge comes from two main
sources of information: geophysical observables (e.g., elevation, gravity anomalies,
travel time data, surface heat flow, etc.) and mantle samples brought to the surface.
They all can be used to make inferences about the upper mantle. Geophysical ob-
servables have a larger spatial and temporal coverage, but inferring composition and
temperature structures presents more difficulties. Instead, exhumed mantle samples
represent a direct evidence of the inner structure but their coverage is discontinuous
and limited which implies large uncertainties. It is well known that independent mod-
els constraining single data sets typically fail at providing satisfactory fits to other
observables (Afonso et al., 2013b, 2016b; Forte, 2007). Fitting simultaneously more
than one observable certainly allows to obtain more consistent models since, for in-
stance, different geophysical observables exhibit different sensitivities to variations of
temperature, composition as well depth and, therefore, it can help to distinguish and
constrain the model (Afonso et al., 2008; Fullea et al., 2009).

Joint inversions of long-wavelength gravity and seismic data at global scale repre-
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1. Introduction

sent a classic example pioneered by Forte et al. (1994) and more recently expanded in
Simmons et al. (2010). Despite being one of the most advanced approaches to date,
these global studies were necessarily based on linearized deterministic inversions and
therefore not well suited for quantifying the associated uncertainties, nonlinearities,
and/or rigorously considering the stochastic nature of the data noise. Moreover, al-
though all inversions aim at minimizing the misfit between predicted and observed
data, deterministic or traditional approaches look for a single best model, i.e. the
model that best fits the data. Therefore, they can not account for the possible non-
uniqueness of the solution inherent in geophysical problems. Probabilistic inversion
schemes (Gregory, 2005; Kaipio and Somersalo, 2007; Mosegaard and Tarantola, 2002;
Tarantola, 2005) represent an attractive option that can overcome some or all of these
difficulties. Unlike deterministic strategies, they look for a statistical description of
the model parameters so that the inverse solution is not a single model but a prob-
ability density function (PDF) over the space of model parameters. This PDF, the
so-called posterior distribution, represents our best state of knowledge of the model
after combining data, physical theories and prior information.

Probabilistic inversions typically rely on sampling techniques that require solv-
ing the forward problem many times, thus posing a real challenge when the forward
problem is computationally expensive (as in the case of 3-D Stokes flow with varying
viscosity). Recently, Baumann et al. (2014) and Baumann and Kaus (2015) demon-
strated the viability of a probabilistic formulation for the geodynamic inverse problem
incorporating realistic assumptions about the mechanical behavior of the lithosphere
and upper mantle. These authors used this approach to constrain rheological param-
eters and subsurface density at lithospheric scales. However, due to the high compu-
tational cost of the forward evaluations they kept the domain relatively small and,
moreover, their implementation relied heavily on a priori knowledge of the tempera-
ture and compositional structure of the model, something that is not straightforward
in most regions of the world. Integrated approaches that jointly invert a number of
data sets also sensitive to the thermochemical structure of the Earth (e.g., Afonso
et al., 2013a,b, 2016b; Khan et al., 2008, 2011) represent a more general approach
which can also help reducing the number of forward evaluations. The recent work
of Afonso et al. (2013a,b, 2016b) presents a multi-observable probabilistic inversion
method that simultaneously inverts the most appropriate data sets (with the neces-
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sary complementary sensitivities) for the temperature and compositional structure
of the lithosphere and upper mantle: Rayleigh wave dispersion data, teleseismic P
and S traveltimes, gravity anomalies, geoid height, satellite-derived gravity gradients,
surface heat flow, and absolute elevation; P wave receiver functions have also been
implemented recently (Tork Qashqai et al., 2016, 2018).

Dynamic contributions to the absolute elevation are included in Afonso et al.
(2016b). Their rationale is based on decoupling the lithospheric and sublithospheric
contributions (cf. Molnar et al. (2015) for a discussion about dynamic topography).
Surface elevation is predominantly controlled by density variations in the lithosphere.
The lithosphere is assumed to be cold enough to be considered essentially rigid, and,
therefore its “static” contribution to surface elevation is accounted for by a simple
lithospheric isostatic balance. Instead, density variations in the sublithospheric man-
tle combined with its lower viscosity, can evolve into flow which is transferred to the
surface via viscous normal stresses, the so-called dynamical effects. The dynamic con-
tribution from the instantaneous sublithospheric flow is superimposed to the static
contribution to obtain a better prediction of the absolute elevation. However, their
implementation of the associated Stokes forward problem was inefficient and based on
a number of simplifying assumptions to make the problem tractable in the probabilis-
tic framework. In order to exploit the full capabilities of joint geophysical-geodynamic
probabilistic inversions, a more efficient implementation of the Stokes flow problem
for large-scale models is required. This establishes the starting point and purpose
behind this thesis.

1.2 State of the art

There is a large variety of problems whose governing equations are represented by
parameters (e.g. material properties, initial or boundary conditions, geometry param-
eters, etc). Many engineering and science problems usually require the evaluation of
models many times and for different values of the input parameters (Benner et al.,
2015). They are often called many-query applications or problems (Rozza et al., 2007;
Peherstorfer et al., 2018). Solving many large-scale and complex models usually de-
mands huge computational resources which in some situations are unattainable. The
ideal solution would be to generate a low-cost parametric reduced model that is able
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1. Introduction

to approximate the original and complex full order model over a wide range of pa-
rameters.

The design of surrogates or low-fidelity models is an ongoing research topic. Low-
fidelity models can be classified in three groups: hierarchical models, data-fit models
and reduced-order models. All of them have advantages and disadvantages and when
to use each of them is problem dependent. Hierarchical models can be used any
time the problem allows to. They use the physics of the problem or implementa-
tion details to lower the accuracy and reduce the cost. For instance, losening toler-
ances, simplifying physics (Tarvainen et al., 2010), coarse grids (Arridge et al., 2006;
Kolehmainen et al., 2009; Efendiev et al., 2006), polynomial chaos (PC) expansions
(Yan and Zhang, 2017; Yan and Zhou, 2019). Instead, data-fit models are not based
on the physics of the problem and rely on interpolation strategies from high-fidelity
models to link input parameter and output variables (Kennedy and O’Hagan, 2001).
Therefore, they can be built using the high-fidelity model as a black box. Build-
ing reduced-order models is more intrusive since they are obtained by projecting the
governing equations of the problem onto a subspace of reduced dimension. However,
as an advantage, they retain the structure of the underlying physical model which
allows deriving rigorous error bounds and estimates (Prud’homme et al., 2002; Rozza
et al., 2007; Grepl and Patera, 2005; Patera and Rozza, 2006) which are essential to
guarantee accurate approximations. In this sense, data-fit models are more limited.

Model Order Reduction (MOR)

Reduced-order techniques, aka Model Order Reduction (MOR), are based on the idea
of expressing the solution of a problem in a low dimensional space. They are specially
suitable to solve large number of problems with similar characteristics. Classical ap-
proaches are divided into an offline stage where all costly computations are performed
once and an online stage where fast solutions are obtained.

The Reduced Basis (RB) method is a MOR technique based on the idea of the
snapshots. Snapshots are a collection of full or high-fidelity solutions evaluated at
specific locations of the parameter space which combined together form a basis (Pa-
tera and Rozza, 2006; Rozza et al., 2007; Quarteroni et al., 2016; Hesthaven et al.,
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2016). Although the construction of the basis is straightforward, the main challenge
lies on where to select the snapshots and how many are required to generate a basis
that accurately represents the parameter space (without ill-conditioning the reduced
system). Structured and random sampling are suitable for small number of param-
eters, whereas for larger values (> 10) more sophisticated sampling strategies are
required. The greedy sampling approach is an iterative strategy that uses an initial
training set of parameters and an error estimator of the reduced model to adap-
tively decide which is the next sampling point, i.e. the one with the highest error
(Prud’homme et al., 2002; Grepl and Patera, 2005; Veroy et al., 2003). The advan-
tage of the greedy approach is that it uses the underlying structure of the problem to
guide the search. A wide range of error estimators have been successfully used, from
the classical minimum-residual approach (Rozza and Veroy, 2007), to goal-oriented
error estimators to target relevant locations or features of the problem (Florentin
and Díez, 2012; Larion et al., 2020). Variations from the standard greedy approach
have also been developed. For instance, Hesthaven et al. (2014) proposed a greedy
strategy that adaptively enriches the initial parameter training set whereas Maday
and Stamm (2013) use the greedy search to locally adapt the basis. In Bui-Thanh
et al. (2008), a model-constrained optimization problem over the continuous space
of parameters is solved to find the new snapshot location and a similar strategy is
proposed by Lieberman et al. (2010) whose optimization problem also accounts for
prior information. The so-called Proper Orthogonal Decomposition (POD) can be
understood as a particular case of RB, or a suitable complement, aimed at eliminat-
ing possible redundancies of the basis. It generates an orthonormal basis which is
optimal in a least-square sense. Reduced Basis methods relying on snapshots have
been applied to a wide range of fields, for instance, control of fluid flows (Ravindran,
2000; Ito and Ravindran, 1998), parametrized steady incompressible Navier-Stokes
equations (Veroy and Patera, 2005), heat conduction problems (Wang and Zabaras,
2005), nonlinear combustion problems (Galbally et al., 2009), electromagnetic prob-
lems (Hess and Benner, 2014), thermo-hydro-mechanical coupled problems (Larion
et al., 2020), magnetothellurics (Manassero et al., 2020), among others.

Unlike classical offline/online approaches, other attractive strategies propose to
use the online stage to update the reduced model to fit possible changes or variations
in the problem. Peherstorfer andWillcox (2015) proposed a data-driven reduced order
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model that incorporates information from sensors of the online stage to dynamically
adapt the reduced model. It avoids new expensive offline computations from scratch
which makes it suitable for real-time decision making problems. Adaptation during
the online stage is also used in Maday and Stamm (2013) to select the specific set of
snapshots that participate in each reduced approximation. Florentin and Díez (2012)
proposed a strategy to automatically generate and enrich the basis with snapshots
during a Monte Carlo process and as needed to guarantee a certain accuracy.

Another kind of MOR is the so-called Proper Generalized Decomposition (PGD).
Unlike RB or POD, it does not base its solution on snapshots but it relies on a separate
representation of parametric basis functions to provide an explicit parametric solution
of the problem (Chinesta and Ladevèze, 2014; Chinesta et al., 2014). Since the online
part does not imply solving any reduced problem, it has been successfully applied to
real-time monitoring or decision making problems, for instance electrical power flow
problems (García-Blanco et al., 2018), thermal processes (Aguado et al., 2014), but
also to design lattice parametric materials (Sibileau et al., 2018), in water agitation
in harbours (Modesto et al., 2015), heat conduction geophysical applications (Zlotnik
et al., 2015) or inverse problems (Berger et al., 2016).

Inverse problems and surrogates

Usually, in many-query situations, the large number of model evaluations can be seen
as part of a loop where each iteration consists in receiving an input, evaluating the
model and providing an output. When the main goal or result of the application is
not the individual evaluations, but an outer-loop result obtained at the end, they are
called outer-loop applications. For instance inverse problems, optimization problems,
uncertainty propagation, sensitivity analysis among others (Peherstorfer et al., 2018).

The Bayesian approach to solve an inverse problem considers the input parameters
of the model as random variables and the goal is to find the probability density func-
tion (PDF) that characterizes them. It requires sampling the parameter space, for
instance by means of Markov Chain Monte Carlo (MCMC) methods and performing
forward evaluations of the model at the chosen locations in order to approximate the
distribution. Two main problems can arise related to the high cost of probabilistic
inverse problems. First, sampling high-dimensional input parameter spaces is compli-
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cated and, second, it requires many large-scale forward evaluations whose cost easily
becomes computationally unaffordable (Frangos et al., 2010). Frangos et al. (2010)
classified the approaches to reduce the computational cost in three different groups:

• Reducing the cost of each individual forward evaluation by means of using sur-
rogates or low-fidelity models. For instance, Wang and Zabaras (2005); Berger
et al. (2016); Lieberman et al. (2010); Cui et al. (2014); Manzoni et al. (2016).

• Reducing the input parameter space. Sometimes the parameter space is linked to
the spatial discretization of the problem and a different representation using the
inherent structure of the field could reduce the dimension. For instance using
the truncated Karhunen-Loeve (K-L) expansion (Marzouk and Najm, 2009) or
the approach proposed by Lieberman et al. (2010) that applies the reduced
basis strategy typical from MOR techniques to the parameter space.

• Reducing the number of forward evaluations. Such methods are aimed at im-
proving the efficiency of the sampling algorithm so that a lower number of
high-fidelity evaluations are required. This is typically achieved by combining
low fidelity models (any of the ones above) with high-fidelity ones (Christen and
Fox, 2005; Cui et al., 2014; Florentin and Díez, 2012; Lieberman et al., 2010;
Efendiev et al., 2006).

Different strategies are devised aiming at reducing the computational cost in any
of the aspects above or a combination of them. The simplest strategy is a surrogate-
based MCMC in which the high-fidelity model is directly replaced by the low-fidelity
one (Wang and Zabaras, 2005; Galbally et al., 2009). In doing so, the speedup is
remarkable, but at expenses of a lower accuracy of the outer-loop result since the
low-fidelity is simply providing an approximation of the input-output relationship
which may yield to a biased posterior distribution. The accuracy of the outer-loop
result is strongly determined by the accuracy of the low-fidelity model. Using surro-
gates inevitably brings the common trade-off between reducing computational cost
and guaranteeing a certain accuracy.

One option to control the bias induced in the posterior distribution by the use
of surrogates is by means of error bounds or a posteriori error estimators (Rozza
et al., 2007; Grepl and Patera, 2005; Florentin and Díez, 2012). In some situations,
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if properly controlled, it is benefitial to accept some bias or inaccuracy if it brings an
improvement in variance reduction of the posterior for a given computational effort
(Cui et al., 2014). Or in other words, the bias introduced by an approximation is small
with respect to the variance introduced by the length of the MCMC chain. Some au-
thors studied the error between the true posterior distribution (i.e. the one obtained
if sampling only uses the high-fidelity model) and the posterior approximated by the
surrogate (Cui et al., 2014; Yan and Zhang, 2017; Yan and Zhou, 2019). They proved
error bounds on the Kullback-Leibler and Hellinger distance and showed that they
can be bounded in terms of the error of the low-fidelity forward model with respect
to the high-fidelity.

Another approach to correct the bias is to introduce an error model to account for
the error of the surrogate in the inversion. Kaipio and Somersalo (2007) proposed the
so-called approximation error model (AEM), where the low-fidelity model performs
the inference, but includes an additional term that quantifies the error between the
low and high-fidelity models. The error term is considered a random variable and
is modeled as an additive Gaussian noise. The AEM is also used in Arridge et al.
(2006) for a diffuse optical tomography problem where the low-fidelity model is a
coarse grid approximation. Tarvainen et al. (2010) applied the AEM to a simplyfied
physics low-fidelity model and Berger et al. (2016) to a PGD reduced model for a
heat transfer problem. Cui et al. (2011), instead, proposes to adapt the AEM during
the MCMC inversion. Alternative reduction error models have also been proposed.
For instance, Yan and Zhou (2019) use a second surrogate to approximate the differ-
ences between the full model and the first surrogate, whereas Manzoni et al. (2016)
presents a comparison between three reduced error methods: the AEM, a radial basis
interpolation of the errors and a log-linear regression model using error bounds.

A complete different approach to control the bias are the multifidelity methods.
They use the low-fidelity model to speed up the problem, but keep the high-fidelity to
retain accuracy and convergence to the true posterior distribution. A very nice and
detailed survey about multifidelity methods can be found in Peherstorfer et al. (2018).
Some methods use the low-fidelity as a filter to indicate whether the high-fidelity has
to be solved, either because it fulfills some criteria or because the low-fidelity is not
accurate enough. Multistage MCMC methods are widly used aiming at increasing
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the number of samples for a given amount of computational time (Christen and Fox,
2005; Cui et al., 2011, 2014; Efendiev et al., 2006; Laloy et al., 2013). Christen
and Fox (2005) proposed a two-stage delayed acceptance method to sample the true
posterior distribution. A candidate sample is first tested by the acceptance crite-
ria using the low-fidelity model and, only if accepted, it is then evaluated with the
high-fidelity model to decide whether the candidate is finally accepted or rejected.
The main advantage is that the first stage discards a lot of samples and it increases
the acceptance probability in the second stage. However, the number of high-fidelity
models needed in the second stage to guarantee some accuracy is still large which
implies a significant computational effort. A similar approach is the one presented by
Efendiev et al. (2006) that uses coarse-scale meshes to precondition the MCMC and
avoid the cost of a high-fidelity solution on proposals that would be rejected. Cui
et al. (2014) uses a two-stage delayed acceptance strategy with a RB method as a
low-fidelity model. Unlike the previous case, an initial RB is used to generate many
samples using a standard Metropolis Hastings algorithm with the idea of decreasing
correlations between samples. The last sample is then used as a candidate for the sec-
ond stage where the high-fidelity model is used to compute the acceptance probability.

Finally, an interesting strategy which can be used in combination with any of
the above is the data-driven approach. Normally surrogates are build offline and are
defined on the span of the prior information of the parameters (Wang and Zabaras,
2005; Galbally et al., 2009). Although improvements have been achieved in terms of
greedy sampling strategies, for instance by solving model-constrained optimization
problems to account for the physics of the forward model (Bui-Thanh et al., 2008;
Lieberman et al., 2010) or by refining the training set (Hesthaven et al., 2014), they
are still based on prior information, i.e. prior-based surrogates. Since the posterior
distribution essentially includes the gain in information with respect to the prior after
considering the data, posteriors are expected to concentrate in a much smaller region
of the parameter space (Cui et al., 2014; Li and Marzouk, 2014; Yan and Zhou, 2019).
Some authors proposed to use the posterior information to adapt surrogates during
the MCMC so that accuracy is focused on the posterior region. Therefore, unlike
offline/online strategies, the low-fidelity models are constructed/refined on the fly
(Florentin and Díez, 2012; Cui et al., 2014; Yan and Zhou, 2019; Li and Marzouk,
2014; Zhang et al., 2020; Manassero et al., 2020). Cui et al. (2014) implements a
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data-driven approach based on an error estimator to decide whether the surrogate is
accurate enough. If the error is larger than a specified tolerance, the initial reduced
basis is updated with the snapshot obtained from sampling the posterior distribution
using a Gram-Schmidt procedure. In doing so, the model reduction strategy is tai-
lored to inverse problems since exploration of the posterior and model reduction are
pursued simultaneously. Instead, Yan and Zhou (2019) initially generates a certain
amount of samples with the surrogate model. Then, the acceptance probability of the
last sample is computed with the high-fidelity model and the real error between the
low- and high-fidelity model is evaluated to decide whether enrichment is required. If
so, enrichment is performed by generating random samples around the candidate and
using their high-fidelity solutions to refine the surrogate with local approximations.
The adaptive strategy of Zhang et al. (2020) is slightly different. Initially random
samples are generated from the prior distribution to build a first surrogate which is
used to run the MCMC and approximate the posterior. This approximated posterior
is far from the true one, but closer than the prior. Therefore, some random samples
are generated from it to update the surrogate and run MCMC to obtain a more accu-
rate posterior approximation. This refinement process is repeated a certain number
of times before obtaining an accurate final posterior approximation.
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1.3 Objectives and outline

The main goal of this thesis is to couple Bayesian probabilistic inverse methods with
Model Order Reduction (MOR) techniques within the context of high-dimensional
and large-scale geophysical inverse problems. The role of the MOR is to provide fast
and accurate solutions to cope with the large number of costly forward evaluations,
a major bottleneck in probabilistic inversions. In particular, the main objectives of
this thesis are:

• Understand from a methodological point of view the efficiency and behaviour of
the Reduced Basis (RB) acting as a surrogate in the probabilistic formulation
of inverse problems that use Markov Chain Monte Carlo (MCMC) methods,
specifically, the Metropolis-Hastings algorithm.

• Implement the coupling between the MCMC and RB to reduce the computa-
tional cost of probabilistic inversions.

• Apply the methodology to a realistic geophysical inverse problem. The RB
is used to approximate the solution of 3D Stokes flow problems which allow
the estimation the dynamic topography and, from it, infer the lithospheric
structure.

This thesis is organized as follows. Chapter 2 presents the geophysical prob-
lem and the approximations considered in the corresponding modelling equations.
Chapter 3 is devoted to the forward problem. Section 3.1 describes the full order
model in the context of Finite Elements (FE) and Section 3.2 introduces the reduced
order techniques. In particular, it describes the Reduced Basis method, strategies
to quantify the RB error and the classical approaches to construct the basis within
an offline/online scheme. Chapter 4 is devoted to the inverse problem and the
probabilistic framework to solve it using the Metropolis-Hastings algorithm. It also
includes a first inversion example using the full order model that will be used as a
reference in later examples. Chapter 5 focuses on the coupling between the MCMC
and RB. In Section 5.1 a new strategy to build the basis on the fly and tailored to the
inverse problem is presented and the effect of the RB error in the inversion results is
studied with some examples. The remaining sections of the chapter analyse the main
aspects involved in the cost of obtaining RB approximations: the basis size and the
assembling efficiency of the matrices. Section 5.2 studies the influence of goal-oriented
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error estimators, Section 5.3 the characteristics of the inverse problem and Section
5.4 focuses on the influence of the MCMC solver and presents additional strategies to
control the basis size. Finally, Section 5.5 describes procedures to efficiently assembly
the stiffness matrices based on the idea of updating local changes. In Chapter 6,
the MCMC+RB method is applied to two more realistic examples. First, the dy-
namic topography is used as observable in a spherical domain representing a portion
of Earth. Second, the mantle velocity field is used in a larger inversion problem to
determine the lithospheric structure and sublithospheric upper mantle flow beneath
the African continent. Chapter 7 summarises the conclusions obtained in previous
chapters and discusses further improvements and possible future work.
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Chapter 2

Geophysical problem statement

2.1 Lithosphere and upper-mantle

Plate tectonics is a unifying framework in which to study geodynamic processes. It
divides the outer shell of the Earth into a number of thin and rigid plates which
are in relative horizontal motion one with respect to the other. They are continu-
ously created at ocean ridges and consumed at approximately the same rate at ocean
trenches (Turcotte and Schubert, 2002). At ocean ridges, the plates diverge (seafloor
spreading) and the hot mantle ascends to fill the gap, cools and is added to the plates
to create new area. Conversely, at ocean trenches, the plates converge and one bends
and descends beneath the other (subduction). Nevertheless, determining the detailed
present-day physical state of the thermal and compositional structure of the Earth’s
interior is still an open research topic. Most of the information from the inside must
be inferred from indirect observational quantities, physical experiments or by study-
ing rocks which have been brought to the surface due to different internal processes.

The three major divisions on the Earth interior according to the composition are
the crust, the mantle and the core. The crust is the first layer that goes from the
surface down to an average of 7km below the oceans and 42km below the continents,
receiving the name of oceanic and continental crust, respectively. Oceanic crust is
young (between 1 and 180Myr) and is constantly created at spreading centers and
subducted back to the mantle, whereas continental crust is older (around 2000Myr)
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2. Geophysical problem statement

and does not usually subduct. The first compositional discontinuity appears below
the crust and is called Moho (Mohorovičić discontinuity). It separates the crust which
contains silicic (continental) and basaltic (oceanic) rocks from the ultramafic rocks in
the mantle (Schubert et al., 2004; Ranalli, 1995). Since the crustal rocks are less dense
than the mantle rocks, the crust is gravitationally stable with respect to the mantle.
The mantle goes from the Moho down to ∼ 2900km. It presents two major seismic
discontinuities that separate it in three regions. The upper mantle which goes from
the Moho down to 410km. Followed by a transition region ranging from 410km until
the second discontinuity at 660km. At such depth there is a phase change with large
contrasts of viscosities and densities. This discontinuity defines the lower boundary
of the seismicity of the Earth. Below 660km there is no seismic activity and we find
the lower mantle which extends down to 2900km. In addition, the subducting slabs
have difficulties crossing from the transition zone to the lower mantle which suggests
that there must be two different convecting regions in the mantle. Finally, the core
is the last part and continues until the center of the Earth.

It is interesting to describe the region composed by the crust and the first hun-
dreds of kilometers of the mantle from a mechanical point of view. In this sense, we
can distinguish the lithosphere and the asthenosphere. The lithosphere is the outer
shell of the Earth which is made of cool and stiff rocks. The low temperature of the
lithosphere allows rocks to resist deformation on time scales of up to 109 years and,
therefore, it is able to transmit elastic stresses without significant deformation. In
contrast, below the lithosphere the rocks are hot enough to deform and flow viscously
when subjected to long-time forces. This second part is called asthenosphere. The
isotherm at approximately 1400K defines the boundary between the lithosphere and
the asthenosphere and is usually named LAB (Lithosphere-Asthenosphere Boundary).
Similarly to the crust, the lithosphere can be split into the continental lithosphere
which has an average thickness of 200km and the oceanic lithosphere with an average
thickness of 100km. The lithosphere includes the crust and the uppermost mantle
and, therefore, it is composed of both crustal and mantle rocks. Although the crust
is gravitationally stable with respect to the mantle due to its buoyant rocks, the
thickness of the oceanic crust is not enough to prevent the subduction of the oceanic
lithosphere. Therefore, the oceanic lithosphere can be seen as the upper thermal
layer of the mantle convection system. Instead, the thickness of the continental crust
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together with its buoyancy (lower density) is enough for the continental lithosphere
to remain above the mantle (Turcotte and Schubert, 2002).

There is a characteristic decoupling on the Earth behaviour between short and
long timescales. Over long timescales (geological timescales, > 104 years) the mantle
behaves as a viscous fluid and its internal deformation mechanism is the so-called
solid-state creep. Instead, on short timescales (human timescales, seconds to days),
the mantle exhibits an elastic behaviour which allows the propagation of seismic
waves. Regarding the upper lithosphere, due to its low temperature and pressure, it
shows elastic rheology even over long time scales. Therefore, the big picture of the
dynamics of the Earth at geological timescales is of blocks of lithosphere floating on
a fluid mantle.

The solid-state creep is the main deformation mechanism of the mantle of the
Earth. It is a thermally activated process which consists in the motion of atoms and
ions in a crystalline lattice when subjected to stresses resulting in a slow deformation
(like a fluid). There are two types: diffusion creep and dislocation creep. Difussion
creep occurs predominantly at very low stress levels. It is the result of diffusion of
atoms through the interior and along the boundaries of crystalline grains due to the
presence of vacancies (empty sites in the crystalline lattice). At any given nonzero
temperature, in a crystalline lattice there is an equilibrium concentration of vacan-
cies and this concentration is temperature dependent. When thermally activated,
atoms migrate due to the movement of adjacent vacancies and, therefore, grains de-
form leading to rock strain (Schubert et al., 2004; Ranalli, 1995). Diffusion creep
corresponds to a Newtonian fluid behaviour, in which strain rate and shear stress
are linearly related. Dislocation creep is dominant at high stresses and is the result
of migration of dislocations which are imperfections (line or one-dimensional) in the
crystalline lattice structure. Since dislocation density strongly depends on stresses,
it results in a non-linear (non-Newtonian) relationship between the strain rate and
stress.

The physical properties of rocks which control the mechanical behaviour of the
mantle and lithosphere (density and viscosity) strongly depend on temperature. There-
fore, it is essential to characterise its internal thermal state. Observations of the sur-
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face heat flow from the Earth and of plate movements, imply that by conservation laws
there must be large-scale movements in the mantle with internal heat transfer. Such
heat transfer cannot only be explained by conduction and it requires convection to
be the dominating mechanism of heat transfer (Ranalli, 1995; Turcotte and Schubert,
2002). The thermal convection of the mantle is a consequence of the non-equilibrium
density configurations within the mantle which produce gravitational instabilities. In
other words, density variations produced by thermal expansion or contraction origi-
nate buoyancy forces that drive convection. A material which is heated from below
expands and ascends due to its lower density with respect to the surrounding. Then,
it releases heat to the surface, cools down and due to its now higher density de-
scends to close the cycle. Generally, inside a convecting fluid, the mean temperature
increases with depth following approximately an adiabatic gradient, i.e. the temper-
ature increases due to the compression (by the weight from the overlying rocks), but
there is no heat transfer with the surrounding during this process. The temperature
gradients near the surface are very high around 25K/km and the temperature distri-
bution is mostly by conduction. All these processes produce very complex structures
which are difficult to characterise.

2.2 Conservation and constitutive equations

The starting point to study the behaviour of a body is by stating the appropriate
conservation equations. In the case of thermal convection: mass conservation and mo-
mentum conservation. The mass conservation leads to the continuity equation and
the momentum conservation results in the equation of motion. However, the equation
of motion is general for any continuous media and, therefore, rheological properties
are required in order to completely characterise the behaviour. This is precisely the
role of the rheological equation of state or constitutive equation. The constitutive
equation relates dynamic (e.g. forces of various types) with kinematic (e.g. dis-
placement, velocity and acceleration) quantities or states of a material through some
characteristic material parameters in order to characterise its flow or deformation
behaviour.

Mass conservation. According to the laws of Newtonian mechanics, in any closed
volume the mass must be conserved. The mass balance can be expressed with the
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continuity equation,
∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

with ρ being the density, u the velocity field and t the time. In the case of an
incompressible fluid, the density is constant and its dependency with time vanishes.
Therefore, equation (2.1) reduces to the divergence free of the velocity,

∇ · u = 0. (2.2)

Momentum conservation. The second law of Newtonian mechanics applied to a
fluid states that in a defined portion of volume of fluid, the sum of all forces acting
on it equals its change of momentum. Two different kind of forces can act in a fluid:
volume and surface forces. Volume or body forces correspond to long-range external
forces which penetrate matter and act equally in all points within an element of fluid,
for instance the gravity. Surface forces are short-range molecular forces which are
internal to the fluid and their net effect is on a thin surface layer. The force balance
yields to the equation of motion of a fluid

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ρg +∇ · σ, (2.3)

where σ is the stress tensor and g the gravity vector and they account for surface and
body forces per unit volume, respectively. The term on the left is the acceleration of
an element of fluid times the density. The derivation of equation (2.3) can be found
elsewhere (Ranalli, 1995; Batchelor, 2002; Schubert et al., 2004; Donea and Huerta,
2003).

Constitutive equation. As previously mentioned, at geological timescales the
mantle behaves as a highly viscous fluid. Since it implies that the deformation changes
continuously with time, it is natural to use the velocity as a kinematic quantity in-
stead of the displacement (as in elasticity). Therefore, the dynamic and kinematic
states are characterised with the stress tensor and strain rate tensors, respectively,
and the material parameter is the viscosity. The viscosity is a measure of the resis-
tance of a fluid to flow or, in other words, of the internal friction between contiguous
layers of fluid when moving one with respect to the other.

17



2. Geophysical problem statement

Stress tensor. The surface forces acting on a fluid are divided in two: hydrostatic
forces associated with fluid pressure which are perpendicular to the surface and char-
acterise the magnitude of extension/compression across the surface; and deviatoric
forces which act both perpendicular and parallel to the surface and are caused by
the velocity gradients in the fluid due to viscosity. When a fluid is at rest, the only
surface force is the pressure and, therefore, the stress tensor is isotropic with only
normal stresses,

σij = −pδij, (2.4)

where p = 1
3
(σ11 + σ22 + σ33) is the static fluid pressure (mean normal stress) and δij

the Kronecker delta. When the fluid is in motion, deviatoric forces appear and the
stress tensor can now be decomposed into the isotropic and deviatoric parts

σij = −pδij + τij, (2.5)

with τij known as the deviatoric stress tensor. The deviatoric stresses acting parallel
to a surface are known as shear stresses and they coincide with the off-diagonals of
the total stress, since −pδij = 0 for i 6= j.

Strain rate. The dynamics of the changes of the internal deformation, i.e. rate
of deformation, are defined in terms of the spatial derivatives of the velocity. The
gradient of the velocity ∇u is a second-order tensor defined as,

∇u =



∂u1

∂x1

∂u1

∂x2

∂u1

∂x3

∂u2

∂x1

∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2

∂u3

∂x3


, (2.6)

where ui are the components of the velocity field and xj are the spacial dimensions. It
can be decomposed into its symmetric and skew-symmetric parts, ∇u = ∇su+∇wu
with,

∇su :=
1

2
(∇u+∇Tu) and ∇wu :=

1

2
(∇u−∇Tu). (2.7)

The symmetric part is the so-called strain rate tensor, whereas the skew-symmetric
part is the spin tensor. The components of the strain rate tensor, ε̇ij, are defined as,

ε̇ij =
[
∇su

]
ij

=
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (2.8)
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As explained in the previous section, in geodynamics there are two main mecha-
nisms of rock deformation: diffusion creep and dislocation creep. Each of them has
its constitutive equation. Difussion creep corresponds to a Newtonian fluid behaviour
in which strain rate is linearly proportional to stress. The most general rheological
law for Newtonian fluids is,

σij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂uk

∂xk
δij (2.9)

where λ = µ∗− 2
3
µ, and µ is the dynamic shear viscosity and µ∗ is the bulk or volume

viscosity of the fluid. Using equation (2.8), the stress tensor can be rewritten in a
more compact form as,

σij = −pδij + 2µε̇ij + λε̇kkδij (2.10)

where it is interesting to note that ε̇kk corresponds to ∇ · u. If the fluid is incom-
pressible, ε̇kk = 0, the last term of previous equation vanishes and the total stress
yields to the so-called Stokes law,

σij = −pδij + 2µε̇ij. (2.11)

The dynamic viscosity can be obtained from the ratio of shear stresses and shear
strain rates, or equivalently from the corresponding deviatoric parts, as,

µ =
σij
2ε̇ij

i 6= j or µ =
τij
2ε̇′ij

, (2.12)

where ε̇′ij is the deviatoric strain rate tensor defined as ε̇′ij = ε̇ij − 1
3
ε̇kkδij. For an

incompressible fluid, the last term vanishes and ε̇′ij = ε̇ij.

On the other hand, dislocation creep strongly depends on stresses and it results in
a non-Newtonian behaviour. There is no unique nonlinear rheological equation, but
the most important one is the so-called power-law creep equation in which the strain
rate is proportional to the nth-power of the stress (n > 1). The reader is referred to
Ranalli (1995) and Schubert et al. (2004) for detailed explanations. In this work we
will focus on the Newtonian case.

A viscosity can analogously be defined for non-Newtonian fluids. However, unlike
the Newtonian case, it is not only function of temperature, pressure and material
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parameters, but it is also function of the stress. Therefore, the viscosity of a Non-
Newtonian fluid can not be fully characterised by just fixing parameters, but it has
to be defined at a given stress or strain rate.

2.3 Quasi-static Stokes flow

The conservation of mass and momentum given by equations (2.1) and (2.3) re-
spectively define the so-called Navier-Stokes equations. However, depending on the
process to be modeled, some simplifications can be performed according to the rel-
ative importance of the terms involved in the equations. A dimensional analysis
using nondimensional numbers to justify the following approximations can be found
in Schubert et al. (2004), Ranalli (1995) or Anderson (1989). The mechanical be-
haviour of the upper and transition zone of the mantle is modeled as a quasi-static
flow of a Newtonian, incompressible, viscous fluid by means of the Stokes equations.

In the long timescales and in absence of phase transformations, the density vari-
ations of the rocks are small enough for the fluid to be considered incompressible.
However, the density variations caused by thermal expansion are the ones respon-
sible for the buoyancy forces that drive convection and they must be considered.
Consequently, the incompressibility condition must be relaxed, it cannot be applied
in the usual way (neglecting all density dependencies). In this sense, incompressibility
is applied in terms of the Boussinesq approximation. It states that density variations
are only accounted for in the buoyancy terms, i.e. the gravitational body force term of
the momentum equation, everywhere else density is considered constant. Or in other
words, density variations are so small that only when combined with the gravity field
become significant. The general continuity equation (2.1) for an incompressible fluid
reduces to (2.2); the divergence free of the velocity, ∇ · u = 0.

The mantle is also considered to be a Newtonian fluid. Therefore, the constitutive
relation between stress and strain rate is linear and given by equation (2.10). Since
the fluid is incompressible, it simplifies to the Stokes law from equation (2.11) that
in matrix form is,

σ = −pI + 2µ∇su. (2.13)
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Replacing the linear Stokes law in the momentum equation (2.3) gives,

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ρg +∇ ·

(
2µ∇su

)
−∇p. (2.14)

This equation represents a balance between inertial forces, viscous forces, pressure
forces and the body force due to the gravity field for an incompressible, Newtonian,
viscous fluid.

In the case of highly viscous flow, the convective term (u · ∇)u is neglected with
respect to the viscous and gravitational forces (Batchelor, 2002; Donea and Huerta,
2003). Moreover, since the fluid behaviour of the mantle is exhibited at such long
time scales (creeping flow), the flow is slow enough to assume that at a given instant
in time the problem is static and remains in internal equilibrium. Consequently, the
time derivative of the velocity (acceleration) can also be neglected and the mantle is
approximated as a quasi-static flow. This approximation is called the infinite Prandtl
number (Schubert et al., 2004; Turcotte and Schubert, 2002). The resulting equation
is elliptic and its lack of time dependency implies that changes in a point of the
domain have an immediate influence everywhere else. Finally, the whole inertia force
vanished and the resulting quasi-static Stokes flow is given by,

−∇ ·
(
2µ∇su

)
+∇p = ρg. (2.15)

In the case of the Earth, viscosity is not constant since it depends on temperature,
pressure and (in nonlinear rheological models) on the gradient of the velocity and,
hence it is a function of position.

2.4 Dynamic topography

In general, characteristics of the rheology of the mantle can be inferred from any in-
ternal process that generates observable quantities at the surface which are function
of the rheology (Ranalli, 1995). For instance, with postglacial rebound studies it is
possible to infer an average value of the mantle viscosity. During glaciations periods
there were large loads of ice covering the Earth surface. When glaciers melted and
the load was removed, the isostatic equilibrium was not compensated anymore and
the surface of the Earth raised in order to recover equilibrium. From rebound data
and assuming the mantle is a viscous fluid, Haskell (1935) was able to infer an average
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mantle viscosity of µ = 1021Pa·s. After years of studies this value prevailed.

The topography or elevation of the Earth is one of such observables. It is mainly
explained by the isostasy principle which assumes a series of rigid vertical columns
of lithosphere floating freely on a fluid asthenosphere or sublithospheric mantle. It
considers that there is a depth within the Earth, known as compensation depth, at
which the vertical stresses due to an overlying column of rocks are equal. In other
words, at this depth, all columns weight the same. According to that, the elevation
is controlled by the density structure of the upper, conductive and thermal boundary
layer, i.e. by the buoyancy of the lithosphere. Most of the topography on the Earth
can be attributed to isostatic compensation (Turcotte and Schubert, 2002; Stüwe,
2007).

Although most of the lithosphere is in isostatic equilibrium, some regions cannot
be explained only by isostasy and dynamical effects must be taken into account. The
dynamic topography is the elevation produced by the Earth’s mantle flow. Due to
the low viscosity of the sublithospheric mantle (compared to the viscosity in the litho-
sphere), the density variations in the sublithospheric mantle produce lateral pressure
gradients which can evolve into flow over much shorter time scales than the ones in
the lithosphere (they can last much longer). Such mantle flow is transferred to the
surface via normal viscous stresses which are known as dynamical effects. This cre-
ates a mechanical and temporal decoupling between the long-term rigid lithosphere
and much less viscous sub-lithospheric mantle. A possible example is the African
superswell. Lithgow-Bertelloni and Silver (1998) showed that the excess of elevation
of the Africa superswell can be dynamically supported by the mantle flow upwelling
induced by the density variations beneath the African plate.

Stresses are assumed to be transmitted instantaneously and equilibrium is reached.
Therefore, the forces acting on a column of fluid must balance: the normal viscous
stresses at the surface σnn coming from the mantle flow are balanced with the litho-
static stresses (or lithostatic pressure) of the overlaying material column,

σnn = ρgw (2.16)

where w is the elevation or topography, ρ the density of the column of material above
and g the gravity. The convection of the mantle also produces shear stresses at the
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2.4. Dynamic topography

base of the lithosphere that would contribute to the dynamic topography. However,
we will not consider them since their contribution is typically less than 5% of the to-
pography generated by normal stresses (Marquart and Schmeling, 1989). According
to Marquart and Schmeling (1989), the elasticity of the lithosphere is not important
in thinner regions like the oceanic lithosphere, whereas in the case of thick continental
areas, it may significantly contribute to decrease the topography.

Computing the surface topography is a common geodynamic problem and different
implementations are widely applied. Typically, the normal stress method is used
which imposes a free slip condition on the upper surface and the generated stresses
are used to compute the topography that would balance them (Mckenzie, 1977; Zhong
et al., 1993; Blankenbach et al., 1989). Body-fitting methods consider the topography
a true free surface and follow its deformation with the numerical mesh. This strategy
has the advantage that the natural zero normal stress can be applied on the deforming
surface (Poliakov and Podladchikov, 1992; Fullsack, 1995). Other methods use an
Eulerian grid for the flow problem and a different discretization for tracking the
free surface (Harlow and Welch, 1965; Braun et al., 2008). Another approach to
approximate a free surface is the so-called “sticky-air” method which mimics a free-
surface by extending the domain and including a fluid layer of a low density and low
viscosity on top so that it allows free movements of the interface (Crameri et al., 2012).
See Crameri et al. (2012) for a detailed comparison between different approaches
and additional references. We will use the normal stress method since it is simpler
and computationally cheaper. An explanation of the modelling implementation to
compute the dynamic topography is detailed in Section 6.1.
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Chapter 3

The Forward Problem and Reduced
Basis Method

This chapter is devoted to the strategies to solve the forward problem that describes
the dynamical behaviour of mantle flow. It is divided in two parts: the full order
model (Section 3.1) and the reduced order model (Section 3.2).

In the first part, the full order model is presented and solved with the Finite
Element Method (FEM) which is a general technique to approximate solutions of
partial differential equations. Its main idea consists in dividing the domain of the
solution into a finite number of subdomains, the so-called finite elements, and use a
weak statement to build an approximate solution over the set of subdomains. The
second part focuses on the reduced order model and its low-cost computation with
respect to the full order model. It describes the Reduced Basis (RB) strategy: how
to construct a reduced approximation, how to asses the error of the RB solution with
respect to FE and some classic strategies to construct the reduced basis in an offline
fashion. Finally, the need of a strategy that takes advantage of the inversion scheme
to build a tailored basis by combining the offline and online stages is here briefly
introduced and described in detail in Chapter 5.
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3. The Forward Problem and Reduced Basis Method

3.1 Problem statement and full order solution

A first-order description of the dynamic behaviour of the mantle and its effect on
elevation starts with the formal statement of a Stokes problem (cf. Schubert et al.,
2004)

−∇ · (2µ∇su) +∇p = ρg in Ω (3.1a)

∇ · u = 0 in Ω (3.1b)

u = uD on ΓD (3.1c)

−pn+ 2µn · ∇su = t on ∂Ω \ ΓD (3.1d)

where u and p are velocity and pressure, respectively, Ω ⊂ R3 is the computational
domain and ∂Ω its boundary. The latter is partitioned into Dirichlet, ΓD, and Neu-
mann boundary, ΓN , types. Body forces are given by ρg, being ρ the density and g
the gravity vector. Dirichlet and Neumann boundary conditions are set by uD and t.
Dynamic viscosity µ is also considered part of input data and, as mentioned before,
both density and viscosity vary in space. In what follows, as in (3.1), we indicate
vectors with lowercase bold letters.

Some numerical difficulties arise due to the incompressibility condition in (3.1b),
i.e. the velocity field must be divergence free. This constrain on the velocity, forces
the pressure to be considered a variable not related to any constitutive equation.
The purpose of pressure in the momentum equation is to introduce a new degree of
freedom to satisfy the incompressibility constrain. In other words, the pressure is
meant to adjust itself instantaneously to satisfy the condition of divergence free of
the velocity. It is acting as a Lagrange Multiplier of the incompressibility constrain
and, therefore, velocity and pressure unknowns are coupled (Donea and Huerta, 2003).

The variable formulation that is presented next keeps velocity and pressure as
unknowns resulting in the so-called mixed finite element methods. They entail some
numerical difficulties, e.g LBB compatibility condition, that we will address later.
Other formulations have been proposed, for instance penalty methods that allow to
uncouple velocity and pressure fields. They eliminate the pressure variable from the
momentum equation through a relaxation of the incompressibility condition. How-
ever, they introduce a penalty parameter that may cause loss of accuracy for very
large values and prevent convergence for insufficient large ones.
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3.1. Problem statement and full order solution

3.1.1 Weak formulation

In order to obtain the weak form, we need to define a set of weighting functions as
well as trial solutions for the pressure and velocity fields. For the velocity,

S := {ui ∈ H1(Ω)|ui = uDi on ΓD} (trial solutions) (3.2a)

V := {wi ∈ H1(Ω)|wi = 0 on ΓD} (weighting functions) (3.2b)

where ui and wi, for i = 1, ..., nsd, are the components of u and w, respectively, and
each of them belongs to H1(Ω). For nsd = 3 spatial dimensions, S := [S]3 is an affine
space and V := [V ]3 a vectorial one. Instead, for the pressure, both trial solutions
and weighting functions belong to the same space Q,

Q := {q ∈ L2(Ω)} (trial and weighting functions) (3.3)

We multiply the momentum equation (3.1a) by the test function w and integrate
over the domain Ω,

−
∫

Ω

w · (∇ · (2µ∇su)) dΩ +

∫
Ω

w · ∇p dΩ =

∫
Ω

w · ρg dΩ. (3.4)

We integrate by parts the first two terms: applying the product rule yields{
∇ · (w · 2µ∇su) = ∇w : 2µ∇su+w · (∇ · (2µ∇su))

∇ · (wp) = (∇ ·w)p+w · ∇p
(3.5)

where the following notation has been introduced

∇w : ∇su =
1

2

nsd∑
i=1

nsd∑
j=1

∂wi
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
and replacing them into equation (3.4) gives,∫

Ω

∇w : 2µ∇su dΩ−
∫

Ω

∇·(w·2µ∇su) dΩ−
∫

Ω

(∇·w)p dΩ+

∫
Ω

∇·(wp) dΩ =

∫
Ω

w·ρg dΩ.

The divergence theorem is then applied to the second and fourth terms. Moreover,
since we defined the test functions w such that they vanish on the Dirichlet boundary,
only the Neumann part of the second and fourth terms remains,∫

Ω

∇w : 2µ∇su dΩ−
∫

ΓN

(w·2µ∇su)·n dΓ−
∫

Ω

(∇·w)p dΩ+

∫
ΓN

wp·n dΓ =

∫
Ω

w·ρg dΩ.
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3. The Forward Problem and Reduced Basis Method

Finally, rearranging terms and recalling the Neumann boundary conditions,∫
Ω

∇w : 2µ∇su dΩ−
∫

Ω

p(∇ ·w) dΩ =

∫
Ω

w · ρg dΩ +

∫
ΓN

w · t dΓ. (3.6)

Similarly, the incompressibility equation (3.1b) is multiplied by the pressure test
function q and integrated over the domain Ω,∫

Ω

q(∇ · u) dΩ = 0. (3.7)

The weak form for problem (3.1) reads: find a velocity field u ∈ S and a pressure
field p ∈ Q such that,

a
(
w,u

)
+ b
(
w, p

)
= l
(
w
)

∀w ∈ V , (3.8a)

b
(
u, q

)
= 0 ∀q ∈ Q, (3.8b)

with the operators defined as,

a
(
w,u

)
= 2

∫
Ω

∇sw : µ∇su dΩ (3.9a)

b
(
u, q

)
= −

∫
Ω

q(∇ · u) dΩ (3.9b)

`
(
w
)

=

∫
Ω

w · ρg dΩ +

∫
ΓN

w · t dΓ. (3.9c)

Note that the gradient ∇w has been replaced by its symmetric part ∇sw. The dou-
ble contraction of a skew-symmetric tensor with a symmetric one vanishes. Hence,
in replacing ∇w by ∇sw +∇ww only the symmetric part remains.

Sometimes, it is useful to rewrite the bilinear form a
(
w,u

)
in terms of the strain

rate vector ε̇(u) and the constitutive matrix Cµ as,

a
(
w,u

)
=

∫
Ω

ε̇(w)TCµε̇(u)dΩ (3.10)

where in 3D, the strain rate vector is defined as,

ε̇(u)T =

(
∂u1

∂x1

,
∂u2

∂x2

,
∂u3

∂x3

,
∂u1

∂x2

+
∂u2

∂x1

,
∂u2

∂x3

+
∂u3

∂x2

,
∂u3

∂x1

+
∂u1

∂x3

)
(3.11)
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3.1. Problem statement and full order solution

and the constitutive matrix as,

Cµ = µC = µ



2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (3.12)

The strain rate vector makes use of the symmetry of the strain rate tensor (2.8) to
express it in a vector form that only contains the six relevant components (Donea
and Huerta, 2003).

3.1.2 Space discretization

The weak form is now discretized by means of the Galerkin finite element method.
When applied to the Stokes problem, with velocity and pressure as unknowns, it leads
to a mixed finite element method. The domain Ω is discretized in smaller domains Ωe

(finite elements), resulting in a mesh composed of nodes and elements. The velocity
u and pressure p are approximated inside each element as well as their corresponding
weighting functions w and q. Such approximation is performed in terms of basis
functions and their associated nodal values. The finite dimensional spaces Sh, Vh

and Qh are subsets that approximate the spaces S, V and Q previously defined in
(3.2) and (3.3). Like S, the discretized version Sh := [Sh]3 is also an affine space.
Similarly, the vectorial space V is approximated by Vh := [Vh]3. For the sake of
simplifying notation, we will consider homogeneous Dirichlet boundary conditions,
uD = 0, and hence Sh = Vh. The non-homogeneous case does not bring any other
complication, see for instance the derivation in Donea and Huerta (2003).

The approximation of the velocity is constructed using a large number of basis
functions, the so-called shape functions, Ni(x) for i = 1, . . . , nu, that generate the
discrete sub-space Vh ∈ V ,

Vh = span{N1, . . . , Nnu} (3.13)

with nu being the number of velocity nodes in the mesh. The vector field u(x) is
approximated by uh(x) ∈ [Vh]3, in such a way that each component of the velocity
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3. The Forward Problem and Reduced Basis Method

field belongs to the space Vh. The approximated field is represented by the vector of
nodal values u ∈ R3nu ,

u(x) ≈ uh(x) =
nu∑
i=1

Ni(x)

[u]3(i−1)+1

[u]3(i−1)+2

[u]3(i−1)+3

 (3.14)

where [u]j, for j = 1, . . . , 3nu, are the nodal velocities. Note that u is a function
whereas u stands for a vector. Similarly, the shape functions to approximate the
pressure are Ñi(x) for i = 1, ..., np and they generate the discrete sub-space Qh ∈ Q,

Qh = span{Ñ1, . . . , Ñnp}. (3.15)

with np the number of pressure nodes. The scalar field p(x) is approximated by
ph(x) ∈ Qh and represented by the vector of nodal values p ∈ Rnp ,

p(x) ≈ ph(x) =

np∑
i=1

Ñi(x)[p]i (3.16)

where [p]i are the nodal pressures. In the Galerkin formulation, the same basis func-
tions used to interpolate the space are also used as weighting functions. Therefore,
w(x) and q(x) are approximated as wh(x) ∈ [Vh]3 and qh(x) ∈ Qh, respectively.
Again, each component of the weighting function belongs to Vh.

Introducing these approximations into the weak form and choosing as many
weighting function as unknowns results in a linear system of algebraic equations.
Note that for the velocity field, the unknowns are vectors and each unknown compo-
nent has its own equation. The matrix system of algebraic equations is,[

K G

GT 0

][
u

p

]
=

[
f

0

]
(3.17)

where K is the symmetric stiffness or viscosity matrix with dimensions (nunsd) ×
(nunsd), since the velocity vector u also accounts for the nsd = 3 spatial dimen-
sions (see equation (3.14)). G is the discrete gradient operator and has dimensions
(nunsd)× np since the pressure vector p represents a scalar field and GT is its trans-
pose, the discrete divergence operator. Finally f is the discrete body force vector with
dimensions (nunsd)×1. This matrix system is symmetric, with 2×2 blocks and a null
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3.1. Problem statement and full order solution

submatrix on the diagonal. This particular shape is caused by the saddle-point na-
ture of the variational problem. In order to solve this system, the spaces for velocity
and pressure interpolation cannot be freely chosen, they must satisfy a compatibility
condition known as LBB or inf-sup condition (LBB stands for Ladyzhenskaya (1969),
Babuska (1970) and Brezzi (1974), who determined it). Choosing the appropriate
pairs of spaces guarantees the stability of a mixed method. A detailed discussion can
be found elsewhere (e.g. Brezzi and Fortin, 1991).

One interesting feature of the integral or weak form is that it has the additive
property. Therefore, when the domain Ω is discretized in smaller domains Ωe, the
integral form in (3.4) can be rewritten as the sum of elemental integrals,

−
∑
e

∫
Ωe

w · (∇ · (2µ∇su)) dΩ +
∑
e

∫
Ωe

w · ∇p dΩ =
∑
e

∫
Ωe

w · ρg dΩ. (3.18)

This is the basis of the assembly process in which global matrices K, G and f are
obtained from the assembly of elemental matrices Ke, Ge and f e, respectively:

K = Ae
Ke, G = Ae

Ge, f = Ae
f e. (3.19)

The job of the assembly operator Ae
is nothing else but to add up the coefficients of

the elemental matrices in the corresponding positions in the global matrices.

The elemental matrix Ke is a square symmetric positive definite matrix with
dimension (neunsd)× (neunsd) with neu being the number of elemental velocity nodes.
Using the expression of bilinear form in terms of the strain rate vector from (3.10),
the elemental stiffness matrix can be computed as,

Ke =

∫
Ωe

DeTCµeD
e dΩ (3.20)

with

DeT =


...

DT
i
...

 where DT
i =



∂Ni

∂x
0 0

∂Ni

∂y
0

∂Ni

∂z

0
∂Ni

∂y
0

∂Ni

∂x

∂Ni

∂z
0

0 0
∂Ni

∂z
0

∂Ni

∂y

∂Ni

∂x


(3.21)
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3. The Forward Problem and Reduced Basis Method

where i ∈ ηeu and ηeu are all the velocity nodes belonging to element e and Cµe is the
constitutive matrix from equation (3.12). The elemental matrix GeT is computed as,

GeT = −
∫

Ωe

ÑT(∇ ·N) dΩ (3.22)

with

ÑT =


...
Ñj

...

 and N =
[
· · ·Ni · · ·

]
where Ni =

Ni 0 0

0 Ni 0

0 0 Ni

 (3.23)

where j ∈ ηep and ηep are all the pressure nodes belonging to element e. Finally, using
the same notation, the elemental force vector f e is computed as,

f e =

∫
Ωe

NTρg dΩ (3.24)

where g is a column gravity vector. It is important to remark that the order in which
the elemental nodes ηeu and ηep appear in the previous expressions will result in dif-
ferent elemental matrices. However, the global matrices will be the same provided
the assembly operator places them in the correct position.

The so-called mixed FE problem (3.17), with velocity and pressure as separate un-
knowns, is computationally expensive in large 3-dimensional domains, nFE = 3nu+np

degrees of freedom. Several numerical schemes and preconditioners have been pro-
posed to solve it efficiently. However, the efficiency of such solvers is still insufficient
for large-scale probabilistic inversions where the number of problems to be solved is in
the order of 100K (or higher). The Reduced Basis technique described next attempts
to overcome this problem and is independent of the numerical technique chosen to
solve the forward problem.

3.2 Reduced Basis method

Reduced order techniques, aka Model Order Reduction (MOR), are a family of ap-
proximation methodologies based on the common idea of expressing the solution of a
problem in terms of a basis of reduced size (Chinesta and Ladevèze, 2014; Quarteroni
et al., 2016; Hesthaven et al., 2016; Ito and Ravindran, 1998; Ravindran, 2000). “Re-
duced” in this context refers to a basis (i.e. a family of basis functions) with a cardinal
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3.2. Reduced Basis method

smaller than that resulting from a traditional FE discretization. These techniques
are very useful when trying to obtain approximated solutions to a large number of
problems with similar charateristics. For instance in probabilistic inversions where
a large number of forward problems with small variations in the properties needs to
be solved. The so-called Reduced Basis (RB) method (cf. Florentin and Díez, 2012;
Quarteroni et al., 2016; Rozza et al., 2007, 2013), is particularly attractive for our
purposes as it is easy to implement and well-suited to be coupled with bayesian meth-
ods as will be shown in Chapter 5. In the context of probabilistic inverse problems
a large number of evaluations of the forward problem (typically solutions to PDEs)
are required to approximate the full posterior PDF (Tarantola, 2005; Gregory, 2005;
Gilks et al., 1996; Afonso et al., 2013a,b). While at the beginning of a Markov Chain
Monte Carlo (MCMC) inversion the parameter space may be large, a well-formulated
MCMC algorithm will converge quickly to a reduced region of the parameter space
where all the forward problems will have similar input parameters and predictions.
At this stage, the problems previously solved can be reused to improve the efficiency
of the solver. It is here where a well-trained surrogate model performs the best and
makes the MCMC simulation extremely efficient.

The basis of a FE procedure is the set of all Ni(x) functions used to construct
the solution uh(x) as shown in (3.14) (and equivalently for pressure (3.16)). Note
that each function Ni(x) is associated with a node of the FE mesh and therefore
the number of functions is usually very large and grows when the mesh is refined.
One key aspect of the functions Ni(x) is their local character. This means that the
generated matrices are large and sparse; a useful feature exploited by FE solvers.

The main idea of MOR techniques, and in particular of the RB approach, is to
approximate the solution u (and that for p in mixed formulations) in terms of a
smaller set of functions bm as

u ≈ uRB =

nRB∑
m=1

αmbm (3.25)

where nRB is the number of basis functions and αm the corresponding unknowns. The
new basis {b1, . . .bnRB

} is no longer associated with mesh nodes and thus no longer
local. Therefore, for any new parameter (e.g. viscosity and density) input into (3.1),
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3. The Forward Problem and Reduced Basis Method

we seek a solution to (3.17) in a lower-dimension space nRB � nFE . While simple in
principle, this idea rises three important questions:

1. Given a set of basis vectors bm, how is the solution uRB computed?

2. How accurate is the reduced solution uRB compared to the full-order FE solution
u?

3. How are the basis vectors bm actually obtained?

We answer these three questions in the next three sections. We will first describe the
simpler problem of obtaining reduced solutions uRB and assessing their error assuming
we already have an available set of basis vectors bm.

3.2.1 Reduced Basis approximation

Let us start with answering the first of the three questions presented above: how is
the solution uRB computed? Consider, for instance, the linear system of equations of
the Stokes problem described in (3.17) which has nFE unknowns (number of degrees of
freedom of the mesh). The key idea behind the RB strategy is to create a basis of nRB

independent FE solutions (um,pm) of different realizations of the same problem (e.g.
by varying the material properties). This group of solutions, the so-called snapshots,
will be used as a basis. For the velocity, bm = um, represents a subset of R3nu ,

span{u1,u2, . . . ,unRB
} ⊂ R3nu . (3.26)

Similarly for pressure, the group of solutions pm represents a subset of Rnp ,

span{p1,p2, . . . ,pnRB
} ⊂ Rnp . (3.27)

Despite the smaller number of elements in the basis, it is assumed that R
nRB represents

the space R
nFE accurately enough. Every time a new problem has to be solved, its

solution α = [α1, . . . , αnRB
]T, is sought in R

nRB instead of in R
nFE thus reducing

dramatically the computational cost since nRB � nFE . The reduced solution is found
as a linear combination of the elements of the basis[

u

p

]
≈

[
uRB

pRB

]
=

nRB∑
m=1

αm

[
um

pm

]
=

[
Bu

Bp

]
α (3.28)
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3.2. Reduced Basis method

where α is the vector of unknowns and Bu = [u1, . . . ,unRB
] and Bp = [p1, . . . ,pnRB

]

are matrices representing the reduced basis for velocity and pressure, respectively.
Each column of Bu and Bp correspond to a FE solution. Note that in our imple-
mentation, two separated basis have been defined for velocity and pressure, but both
share the same number of functions nRB and are interpolated using the same α.

The solution to the Stokes problem is obtained by replacing u and p with their
reduced approximations from (3.28) into (3.17) and multiplying both sides by the
basis to obtain, [

Bu

Bp

]T [
K G

GT 0

][
Bu

Bp

]
α =

[
Bu

Bp

]T [
f

0

]
. (3.29)

Performing the multiplications, the system above is written as[
BT

uKBu + BT
uGBp + BT

pGTBu

]
α = BT

uf . (3.30)

Since all elements in Bu are FE solutions, they all satisfy the incompressibility con-
dition, namely GTum = 0, for m = 1, ..., nRB . Therefore,

GTBu = 0 (3.31)

is always satisfied (independently of α) and the second and third terms in the left-
hand side of equation (3.30) vanish. In other words, any reduced solution uRB ob-
tained as a linear combination of the elements of the basis also satisfies the incom-
pressibility condition. Therefore, the final reduced system of equations reads,

KRBα = fRB (3.32)

where the reduced stiffness matrix and reduced force vector are KRB = BT
uKBu and

fRB = BT
uf , respectively. Note that KRB has the size of the reduced basis, nRB × nRB ,

which is significantly smaller than the traditional FE nodal basis. For example, in the
numerical examples presented below, nRB is of the order of 102 while the full FE basis
is > 104, even for the smallest example. It is worthy to remark that the final reduced
system of equations does not depend on the pressure. It allows us to only use the
velocity part of the basis, Bu, and thus reduce even more computational resources
and time. For simplicity, from now on we will drop the subscript u from the basis.
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3. The Forward Problem and Reduced Basis Method

Remark. Note that when using iterative methods to solve the system (3.17), equa-
tion (3.31) is no longer satisfied exactly and, consequently, the terms including G

in equation (3.30) do not vanish and should be explicitly considered. However, the
additional computational cost is insignificant, since not only the matrix G is much
smaller than K, but also the terms including G only change when a new solution is
added to the basis. In this thesis, however, we will use direct solvers and (3.31) holds
exactly.

3.2.2 Error of the RB with respect to the FE solution

In this section we will answer the second question from Section 3.2: how accurate
is the reduced solution uRB compared to the full-order FE solution u? Two different
error indicators will be presented, one global and one goal-oriented. First of all, a
measure of the global error will be introduced based in the energy norm. Secondly, a
goal-oriented error estimator which focuses on a specific feature of the problem, i.e.
a Quantity of Interest, will be obtained by means of introducing an adjoint problem.

Error in the energy-norm

The discrete space described by the reduced basis R
nRB is an approximation of the

FE discrete space R
nFE , and as such, the RB solution uRB has an associated error

with respect to the high-fidelity FE solution u. We must keep in mind that u is
neither an exact solution of the problem, but also an approximation coming from
the FE discretization. The estimation of the errors associated with FE solutions is
a well-known procedure and it has been described in detail elsewhere (Zienkiewicz
et al., 2005; Hughes, 1987). Here, instead of measuring the error with respect to
the analytic solution, we will focus on assessing the error of the RB solution with
respect to the high-fidelity FE one. Specifically, we would like to measure how well
the reduced basis performs, assuming that the best possible solution is that given
by the FE solver. Within this context, we define the errors introduced by the RB
solution with respect to the FE solution as:

eu := u− uRB and ep := p− pRB . (3.33)

The error equation associated with the RB solution is[
K G

GT 0

][
eu

ep

]
=

[
f

0

]
−

[
K G

GT 0

][
uRB

pRB

]
. (3.34)
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Therefore, the residual associated with the RB solution reads,

r = f −KuRB −GpRB , (3.35)

since due to the incompressibility condition in (3.31), the part of the residual cor-
responding to the pressure vanishes identically, −GTuRB = 0. Note, however, that
both the velocity and the pressure RB solutions contribute to the velocity part of the
residual. The residual is usually a good indicator for the energy norm of the error
(Quarteroni et al., 2016; Hesthaven et al., 2016). If the solution uRB and pRB were
exact (i.e. equal to the FE solution), the residual would be zero, and so would the
error. It follows that, in general, a large residual implies a large error in the RB
approximation. This error has a global character since it considers the whole domain
of the problem and it is also directly related to the output. A scalar relative version
of the error indicator in the energy norm er is obtained with,

er =
‖r‖
‖f‖

. (3.36)

Goal-oriented error estimator

Instead of using the full residual in equation (3.35) as a measure of the error in-
troduced by the RB approximation, here we introduce a more suitable goal-oriented
criterion. The key idea is that such criterion is based on a Quantity of Interest (QoI)
which is a specific feature or region of the problem in which we are interested. In
this way, the error indicator is not focused on getting a good global solution, but in
assigning more weight or importance to a specific QoI of the problem and, therefore,
control the maximum admissible error on the chosen QoI (Florentin and Díez, 2012).
This way of measuring the error of the RB approximation helps to maintain the over-
all size of the RB small, as the basis is specifically trained to accurately represent
(within admissible errors) only the relevant part of the solution, that is, the QoI. In
terms of probabilistic inversions, the QoI is typically a model prediction that can be
compared against data or that controls an important output of the model. Therefore,
we do not seek to obtain accurate solutions for the entire numerical domain or for all
model predictions, but rather to guarantee accurate RB solutions to the quantity or
quantities that are of interest for the particular purpose of the inversion.

Two remarks follow. First, the RB approach discussed in this thesis is independent
of how the QoI is defined and it can accept any other error measure. Second, the fact
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3. The Forward Problem and Reduced Basis Method

that the accuracy of a global solution is not assessed does not imply that the approxi-
mation of the solution will be of poor quality. In the limiting case where the QoI is of
“global” character (e.g. if the residual is used to estimate the error), the error will be a
measure of accuracy for the entire domain and the resulting RB approximation will be
trained to reproduce the solution in any region of the domain with the same accuracy.

We start with the derivation of a goal-oriented estimator for a linear QoI and,
later, an extension to a non-linear QoI will be described. The QoI is a scalar quantity
Q, computed as a linear function, lo, that extracts the relevant information from the
global solution u,

Q = lo(u). (3.37)

The discrete version of the linear QoI can be expressed as a product of one vector fo

describing the function and the FE solution u as,

QFE = foTu. (3.38)

In order to obtain an error representation based on the QoI, a dual (or adjoint)
problem is typically defined (e.g. Florentin and Díez, 2012). The weak form of the
dual problm for the Stokes equation reads: find (v, d) ∈ S ×Q such that,

a
(
w,v

)
+ b
(
w, d

)
= lo

(
w
)

∀w ∈ V , (3.39a)

b
(
v, q
)

= 0 ∀q ∈ Q. (3.39b)

This dual problem is discretized in the same FE spaces as the direct problem (3.17),
which gives [

K G

GT 0

]T [
v

d

]
=

[
fo

0

]
. (3.40)

For the Stokes problem discussed here, the stiffness matrix is symmetric and therefore
the dual problem differs from the direct one only in the source term, which corre-
sponds to the discretized linear operator representing the QoI.
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3.2. Reduced Basis method

Finally, using equations (3.17), (3.38) and (3.40), a representation of the error in
the QoI associated with the RB approximation can be defined as,

EQ = QFE −QRB = foT(u− uRB)

= [Kv + Gd]T(u− uRB)

= vTK(u− uRB) + dTGT(u− uRB)

= vT(f −KuRB)

(3.41)

where, in the last step, the incompressibility condition in (3.31) is used to cancel
the term involving GT and the equality vTKu = vTf holds because vTGp = 0

(incompressibility of the dual problem). A residual-like vector is defined as,

r∗ := f −KuRB , (3.42)

and, although different from the residual r in (3.35), vTr∗ = vTr holds because
vTGpRB = 0. Similar to the reduced system of equations (3.32), the representation
of the error using a goal-oriented criterion does not require the reduced approximation
of the pressure term. Thus, upholding the reduction in the resources and computa-
tional cost.

According to equation (3.41), the two ingredients needed to obtain a representa-
tion of the error are: i) the solution to the dual problem v, and ii) the residual-like
vector r∗. A critical point here is that if the solution of the dual problem requires as
much computational effort as the solution of the primal problem, then the method
becomes impractical. We can therefore replace the exact solution of the adjoint prob-
lem with an approximate (and much more efficient) solution, v̂, and define an error
estimator for Q as

EQ ≈ ÊQ = v̂Tr∗ (3.43)

or, its relative version as,

êQ =

∣∣∣∣∣ ÊQQRB

∣∣∣∣∣ . (3.44)

Adjoint solution approximation

There is no unique approach to obtain an approximation of the solution of the adjoint
problem and avoid its explicit and expensive computation. The strategy that best
suits a problem needs to be examined in each specific case. The best (but no feasible)
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3. The Forward Problem and Reduced Basis Method

option would be to compute a full FE solution at each inversion step so that the
error in the QoI is explicitly computed and not estimated. We have tested different
approaches which will be presented ranging from more accurate but computation-
ally expensive to less accurate but more efficient. However, since the approaches are
strongly coupled with the inverse problem and the enrichment strategy for the basis,
only a brief idea will be given here. The reader is referred to the section 5.2.2 where
a detailed description together with illustrative examples are provided.

The first and more computationally expensive option is to build a Reduced Basis
for the adjoint problem. It is built using the same procedure we use for the primal
problem (Section 5.1), except for the error indicator of the adjoint solution which is
computed using the norm of the residual. With this strategy, every time the error
needs to be assessed the adjoint is approximated using its reduced basis. The sec-
ond approach is based on one important property of the adjoint problem: adjoints
are typically less sensitive to perturbations of the parameters than the primal prob-
lem (Florentin and Díez, 2012; García-Blanco et al., 2017; Serafin et al., 2017) and
therefore the same adjoint solution can be used to estimate the error of many simi-
lar primal solutions. With the idea of having a relevant solution for the problem at
hand, the second approach can be divided in three sub-approaches depending on the
frequency of updating the solution of the adjoint problem: a) the adjoint solution
is recomputed after a fixed number of inversion steps, b) the adjoint solution is re-
computed every time the primal reduced basis has been enriched a certain number
of times and, finally, c) the most efficient, but less accurate option and yet providing
good estimators, uses a single solution of the adjoint problem to estimate the errors
of all subsequent primal problems.

Extension to a non-linear QoI

Depending on the problem at hand, and as we will see later in Section 5.2.1, we may
be interested in representing the error on a non-linear QoI. Let us define a simple
non-linear QoI as,

Q = lo(u) = ‖u‖2. (3.45)

The discrete version of the non-linear QoI is,

QFE = uTu. (3.46)
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3.2. Reduced Basis method

Recalling the error of the reduced basis approximation with respect to the finite
elements solution defined in (3.33), u = uRB + eu, and dropping the subindex from
eu for simplicity, we can express the non-linear QoI as,

lo(uRB + e) = (uRB + e)T(uRB + e) = uRB
TuRB + 2uRB

Te +��
�*0

eTe (3.47)

where we have assumed that the norm of the error is much smaller than the rest of
the terms so that it can be neglected. Therefore, the linearised error representation
is,

loL(e) ' lo(uRB + e)− lo(uRB) = 2uRB
Te. (3.48)

The discrete version of loL(·) is the operator fo and it is defined as,

fo = 2uRB . (3.49)

It is sometimes called “extractor” since it extracts the important information from
the vector to whom it is applied. Once fo is defined, there is no other difference with
respect to the linear case and the error is estimated in the same way. An adjoint
problem is defined as in equation (3.40) which leads to the expression of the error
representation in terms of the solution of the adjoint problem and the residual of the
RB solution, equation (3.41).

3.2.3 Classic approaches to build a Reduced Basis

Finally, we answer the last question: how are the basis vectors bm actually obtained?
Typical MOR implementations consist of two stages: 1) the offline stage, where all
costly computations (involving a high-fidelity solver) that depend on Vh are per-
formed; and 2) the online stage, where the reduced order solver or “surrogate” is used
to obtain fast and computationally inexpensive solutions independent of Vh (Quar-
teroni et al., 2016; Hesthaven et al., 2016; Ito and Ravindran, 1998; Prud’homme
et al., 2002; Veroy and Patera, 2005; Rozza and Veroy, 2007; Rozza et al., 2013). The
process of building a basis is typically part of the offline stage, since each element of
the basis is a high-fidelity solution that needs to be computed. The basis functions
are built based on snapshots corresponding to different realizations of the problem
when varying the parameters. For instance, for the Stokes problem here presented,
viscosities and densities would be the parameters that change among snapshots. The
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3. The Forward Problem and Reduced Basis Method

idea of the Reduced Basis is that the basis must be able to represent, up to a certain
accuracy, the solution of any problem within the parameter space. Since the parame-
ter space can not be entirely sampled and solved, some points are chosen to be a good
representation of it. Consequently, the quality of the basis will strongly depend on the
choice of parameters whose solution is to be included as a basis function. Sampling
the parametric space adequately is therefore of the highest importance. If the param-
eter space is poorly sampled, the reduced basis might provide poor approximations.
Moreover, some orthogonality procedure must be applied in order to guarantee that
the elements are not linearly dependent. A description of the most classic approaches
to build an offline reduced basis will be presented next.

The most simple and intuitive strategy would be to sample the parameter space
with uniformly distributed points (e.g. Quarteroni et al., 2016). In doing so, all
regions of the parameter space will be explored (up to the chosen discretization).
However, not only it may entail solving large numbers of high-fidelity problems, but
also not all parameters affect the solution in the same way. In other words, the
solution may not be equally sensitive to the whole parameter space and, with this
strategy, all regions are sampled alike. It would be better to have the basis functions
or snapshots distributed according to the importance of the parameter space. For
large dimensional parameter spaces, regular lattices become impractical and other
sampling strategies should be applied: Monte Carlo random sampling, latin hyper-
cube sampling, sparse grids among others (e.g. Cochran, 1977; Gerstner and Griebel,
1998; Quarteroni et al., 2016; Bui-Thanh et al., 2008). Once a finite dimensional set
of parameters is selected, the corresponding high-fidelity solutions are computed to
obtain a basis of snapshots. However, as previously mentioned, correlations may ex-
ist among snapshots since orthogonality is not enforced and some orthogonalization
strategy must be applied a posteriori. The Proper Orthogonal Decomposition (POD)
method allows reducing the dimension of a data set by means of expressing it in an
orthonormal basis which is optimal in a least-square sense. A correlation matrix is
computed from the high-fidelity snapshots and its eigenvalues and eigenvectors (POD
modes) are obtained (Brunton and Kutz, 2019; Quarteroni et al., 2016; Hesthaven
et al., 2016). The reduction is performed truncating the new basis by only keeping
the largest eigenvalues (up to a chosen tolerance) which are the ones having most
of the information of the original snapshots. The elements of the new basis are the
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3.2. Reduced Basis method

POD modes whose eigenvalues survived. Although this new basis is orthonormal, the
computational offline cost is still very high, not only due to the compression part,
but also due to the large number of high-fidelity problems that need to be solved to
finally only keep a few of them.

The next strategy uses a Greedy approach to build the Reduced Basis (Grepl and
Patera, 2005; Quarteroni et al., 2016; Hesthaven et al., 2016; Larion et al., 2020).
It consists in an iterative sampling of the parameter space in which at each step a
posterior error estimate is computed to decide using an optimality criterion which
is the next sampling point. Initially a training sample of points in the parameter
space is chosen which will be used to select the RB space. The high-fidelity solution
of a starting point is computed and added as a first element in the basis. Then,
the reduced solution of all the other points in the training sample is computed with
the reduced basis and their estimated error evaluated a posteriori. The point whose
solution exhibits the largest error is the next one to be solved with the high fidelity
solver and included in the basis. This process is repeated until the reduced basis
reaches a maximum number of elements or a stopping tolerance is achieved. In doing
so, the Greedy strategy is able to lead the sampling process in the direction which is
worst approximated. In order to keep the basis orthonormal, when a new element is
added to the basis it might be orthonormalized through a Graham-Schmidt procedure.

In both strategies described above, the selection of the initial set of points in the
parameter space or training sample is crucial for a good and reliable basis within the
parameter space. In the context of a probabilistic inverse problem, it is not always
straightforward to predict which snapshots should be computed a priori during the
offline stage, as there is no way of knowing in advance which solutions are most
relevant as the MCMC converges towards a reduced parameter space (i.e. the high
probability regions). Determining the reduced parameter space is exactly the goal of
an inverse problem! Moreover, the larger is the number of parameters to recover by
the inversion, the more difficult is to predict their relevant high-probability regions.
For this reason, a different strategy will be devised to combine the offline and online
stages into a single data-driven stage where the reduced basis is created on the fly and
as needed during the inversion process. It results in a basis tailored to the specific
problem that is being solved. This strategy will be explained in detail in section 5.1,
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since it is strongly coupled with the inverse scheme.
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Chapter 4

The Inverse Problem and Markov
Chain Monte Carlo

Physical theories represent the link between parameters and physical quantities to
completely describe a physical system. A forward or direct problem is one that allows
to make predictions of some quantities given the values of the parameters characteriz-
ing the system. They are usually modelled with a set of partial differential equations
which, given the parameters, provide a unique solution. An inverse problem, instead,
consists in inferring the values of the parameters for a given set of experimental data
or measurements. The main goal of an inverse problem is to find the physical model,
i.e. the values of a set of parameters, that best fits the data. Inverse problems typi-
cally arise when the parameters or quantities we are interested in cannot be directly
measured or the system is very complex. In this situation, inferring them from other
variables that can be measured is the only available option. That is precisely the case
of geophysical inverse problems, where most of the available data is on the surface
and the involved physical systems exhibit large complexity. Unlike forward problems,
inverse problems are typically under-determined and, therefore, more than one con-
figuration of parameters is able to explain the same data.

This chapter is focused on introducing the idea of inverse problems and some
strategies to solve them. The first part presents the general Bayesian framework to
deal with probabilistic inverse problems. The second part is devoted to the Markov
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Chain Monte Carlo methods and in particular, the Metropolis-Hastings algorithm.
Finally, in the last part, one inversion example combining the full order model and
the inversion strategy is shown.

4.1 Inverse problems

A physical system is described by physical laws that express the relationship between
physical variables. In the context of inverse problems it is interesting to separate such
variables in two types: model parameters and observable parameters.

• Model parameters. They are a finite set of parameters mi that approximate
the properties of interest of a physical system. This approximation is called
parametrization and, once a system is parametrized, giving a value to each
model parameter completely characterizes the system. The set of nm model
parameters is represented together in a vector denoted by m,

m = [m1, . . . ,mnm ] (4.1)

In the context of an inversion problem, model parameters are the ones that
can not be directly measured. In this thesis, we will use “model” to refer to a
particular set of values for an already chosen parametrization.

• Observable parameters. They correspond to parameters that can directly
be measured, even though it may require complex experiments. The set of nd
observable parameters is represented by the vector d,

d = [d1, . . . , dnd
] (4.2)

An observable could be for instance the elevation, and the observable parameters
di the different points where it is measured. We will usually refer to d as
“observations” or “data”. When a measurement is performed, the values of the
observable parameters are collected in the data vector dobs = [dobs1 , . . . , dobsnd

].
Not to be confused with different realizations of the same experiment.

A physical theory is developed to connect the model parameters m with the observable
ones d. The relation maps the model space with the data space typically through a
nonlinear and complex function that, when explicit, can be represented as,

d = g(m) (4.3)
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This defines a forward problem which allows us to predict the values of d from a
given model m. Therefore, observable parameters can both be measured by means of
experiments and predicted by solving a forward problem. In an ideal case there would
be a mtrue satisfying dobs = g(mtrue). However, there are two sources of error which
prevent predicted values from being identical to the observed ones: uncertainties in
the measurements and imperfections in the modelization (Tarantola, 2005). We will
address them during this section.

An inverse problem is stated as: given a set of experimental data, dobs, find the
model m that best represents the data. A classical or deterministic approach to
solve an inverse problem leads to an optimization problem where one is looking for a
unique solution, i.e. a set of values for the model parameters that minimizes the misfit
between predicted and measured data. A probabilistic approach for inverse problems
assumes that both experimental data and model parameters have an associated un-
certainty and, thus, their true values can not be known for certain. Consequently
and with this idea in mind, we are not just interested in the model that best fits the
data but in having a complete statistical description of the state of knowledge about
the model parameters. In doing so, the solution of a probabilistic inverse problem
is not a unique model but a probability density function (PDF) over the space of
model parameters. Such idea of state of knowledge allows, among others, to deal
with the non-uniqueness of the solution of inverse problems. Probabilistic strategies
also outplay deterministic ones in accounting for propagation of uncertainties, both
from measurements and modelization, as well as in dealing with cases where data is
scarce or combines different datasets.

The Bayesian approach reformulates the inverse problem in terms of statistical in-
ference by using prior information on the parameters and observational data together
with a forward model that links them (Kaipio and Somersalo, 2005; Tarantola, 2005;
Mosegaard and Tarantola, 2002; Gregory, 2005). Thus, the solution of an inverse
problem can be thought as the gain in information when prior knowledge and data
are combined. Such approach requires that all the variables included in the model
are defined as random variables and, consequently, they all have an associated PDF
representing its current state of information or the knowledge we have about them.
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4.1.1 A priori information and observations

The a priori information on model parameters is all the information on model pa-
rameters that is obtained independently of the measurements. It describes how we
think a priori that the space of parameters is, i.e. the probability of model parameters
m without considering the observations dobs. The state of knowledge on the model
parameters is represented by ρM(m), the prior PDF on the model space.

The observations are the result of experimental measurements. As in any experi-
ment, there is a source of uncertainty due to the measurement errors. Therefore, the
result of a measurement is not simply a set of values dobs, but it is better understood
as a state of information acquired on some observable parameter. The knowledge
gained after some measurements is expressed with a probability density over the data
space, ρD(d).

Since the prior information on model parameters should be by definition indepen-
dent of the observations, in most of the cases the joint prior PDF can be written as
the product,

ρ(d,m) = ρD(d)ρM(m) (4.4)

However, there may be more general situations in which information on m and d is
not independent. In such cases, (4.4) does not hold and we must deal with ρ(d,m).
Assuming independence, we can also express the joint homogeneous probability den-
sity µ(d,m) as the product of two independent marginal homogeneous densities

µ(d,m) = µD(d)µM(m) (4.5)

where µD(d) and µM(m) are the homogeneous probability densities on the data and
model space respectively. The homogeneous probability density is the one that assigns
to each region of the space a probability proportional to the volume of the region
(Mosegaard and Tarantola, 2002; Tarantola, 2005).

4.1.2 Correlations and uncertainties of the physical theory

The second source of error are the modelization imperfections, which may come either
from a not accurate parametrization or from a poor knowledge of the physics itself.
Since the resulting physical theories are not exact, a model m does not exactly predict
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a single d but shows a probability for d. This is expressed as a conditional probability
density θ(d|m), which assigns uncertainties to the predictions made from the physical
theories. Therefore, the exact relation in equation (4.3) is better understood in terms
of probabilistic correlations. The joint probability density describing correlations
that correspond to our physical theory together with the inherent uncertainties of
the theory is written as the product,

Θ(d,m) = θ(d|m)µM(m) (4.6)

where θ(d|m) is the aforementioned conditional probability density of obtaining d

given the model m.

4.1.3 Posterior PDF on model parameters

The most general solution of a probabilistic inverse problem is represented by a prob-
ability density function known as posterior PDF that contains all the information of
the problem at hand. Following Tarantola (2005), the probability density represent-
ing the a posteriori information can be expressed as,

σ(d,m) = k
ρ(d,m)Θ(d,m)

µ(d,m)
(4.7)

where σ(d,m) is the joint posterior PDF of the model and observable parameters
and k is a normalizing constant. The actual solution of the forward problem is the
posterior information in the model space, i.e the marginal PDF in the model space,
which is the result of integrating over the data space,

σM(m) = k

∫
σ(d,m)dd (4.8)

σM(m) describes the probabilities of all possible m considering our knowledge on the
physical theory and observations. Using equations (4.4), (4.5) and (4.6) the posterior
PDF of the model parameters is expressed as,

σM(m) = kρM(m)L(m) (4.9)

where L(m) is the likelihood function,

L(m) =

∫
ρD(d)θ(d|m)

µD(d)
dd (4.10)
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that measures how good a particular set of model parameters m is at reproducing
the observations dobs. The larger the value of the likelihood, the better it reproduces
the observations. Figure 4.1 illustrates from a geometrical point of view the gain
in knowledge from combining initial information ρ(d,m) and physical correlations
Θ(d,m) into a posterior distribution σ(d,m). Specifically, comparing ρM(m) with
σM(m) the benefit of incorporating data ρD(d) and physical correlations Θ(d,m) is
evident.

Figure 4.1: Left: ρ(d,m), joint probability density representing the initial state of informa-
tion both on data and model parameters. Center: Θ(d,m), shows the correlation between
model parameters and data given by a physical theory that is not exact and, therefore, ex-
hibits some uncertainties (thickness). Right: σ(d,m), shows the final state of information
when combining ρ(d,m) and Θ(d,m). The marginal posterior distributions for data σD(d)
and model parameters σM(m) are also shown. Taken from Tarantola (2005).

The result of equation (4.9) is of great importance since it shows that the posterior
PDF on model parameters σM(m) is proportional to the product of their prior PDF
ρM(m) times the likelihood L(m). It will be the base of the method explained in the
next section to solve the inverse problem. As we will see later, in such context the
constant k is irrelevant and it will not be computed.

Likelihood and Gaussian uncertainties

The likelihood L(m) from equation (4.10) accounts for both sources of uncertainty;
in the observations with the term ρD(d) as well as in the physical theory or mod-
elization with θ(d|m). When the uncertainties of the observations follow a Gaussian
distribution, the probability density on the observable parameters is written as,

ρD(d) = k exp
(
−1

2
(d− dobs)TC−1

d (d− dobs)

)
(4.11)
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where Cd is a covariance matrix describing observation uncertainties. When the
uncertainties in the physical theory also follow a Gaussian error model, the conditional
probability is,

θ(d|m) = k exp
(
−1

2
(d− g(m))TC−1

t (d− g(m))

)
(4.12)

with Ct the covariance matrix describing theoretical uncertainties. As shown in
Tarantola (2005), the convolution of two Gaussian distributions also gives a Gaussian
distribution, such that the likelihood from equation (4.10) can be rewritten as,

L(m) = k exp
(
−1

2
(g(m)− dobs)TC−1

D (g(m)− dobs)

)
(4.13)

where CD = Cd+Ct is the covariance matrix accounting for both observation and the-
oretical uncertainties. According to this result, neglecting either of them is achieved
by simply removing the corresponding covariance matrix. It is useful to understand
the argument of the exponential as a misfit error function, e(m), between predicted
and observed data. In doing so,

L(m) = k exp (−e(m)) (4.14)

with,

e(m) =
1

2
(g(m)− dobs)TC−1

D (g(m)− dobs) . (4.15)

When the model m is not good at explaining the data dobs, i.e. the difference between
g(m) and dobs is large, the misfit error function exhibits a large value and, conse-
quently, a smaller likelihood than those models in which the difference g(m) − dobs

is smaller. Note that in all equations k denotes a normalizing constant which is not
necessarily the same in each expression.

In the case of further assuming uncorrelated uncertainties, the misfit expression
can be rewritten as,

e(m) =
1

2

nd∑
i=1

(
gi(m)− d obs

i

σDi

)2

(4.16)

where σDi
are the diagonal entries of CD i.e., the standard deviations accounting for

observations and modelization uncertainties, σ2
Di

= σ2
di

+ σ2
ti
.
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Priors on model parameters

As previously defined, the prior PDF encodes everything we know about the parame-
ter space (i.e. probabilities of m) prior to considering the data dobs and it represents
an important part of any Bayesian inference problem. If the prior information is vague
then the prior distribution is a very broad/flat distribution. Conversely, narrow dis-
tributions indicate that prior knowledge on the respective parameters is accurate.
Gaussian, Laplacian, Poisson, uniform and Jeffreys’ priors are the most common op-
tions in the literature (Mosegaard and Tarantola, 2002; Kaipio and Somersalo, 2005).
Given nm independent model parameters mi the prior PDF accounting for all param-
eters simultaneously can be written as the product of the individual priors ρi(mi),

ρM(m) =
nm∏
i=1

ρi(mi). (4.17)

Uniform distribution. When our knowledge on model parameters is very poor, we
may typically only know the boundaries of our parameters. For instance, the density
can only take positive values and we usually consider it can not be infinity. In such
cases, a uniform distribution is used since it assigns equal probabilities to all values
within the possible region. Given mmin

i and mmax
i as the two boundaries for each

parameter mi, it reads

ρi(mi) =


1

|mmax
i −mmin

i |
for mmin

i < mi < mmax
i

0 otherwise.
(4.18)

Gaussian distribution. Assuming that priors for all parameters follow a Gaussian
distribution, mi ∼ N(νi, σ

2
mi

), it follows that,

ρM(m) ∝ exp (−s(m)) (4.19)

with

s(m) =
1

2

(
m− ν)tC−1

M (m− ν
)

(4.20)

where ν is the vector of mean values for the parameters and CM a covariance matrix
describing prior uncertainties. Similarly to equation (4.15), s(m) can be understood
as a misfit function on the space of model parameters. In this sense, models m which
are close to ν exhibit a higher probability than those models in which the difference
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m − ν is higher. If uncertainties are uncorrelated, the expression for the sum of
squares simplifies to

s(m) =
1

2

nm∑
i=1

(
mi − νi
σmi

)2

(4.21)

where nm is the number of parameters and νi and σi are the mean and standard
deviation of the prior for parameter mi, respectively.

4.2 Markov Chain Monte Carlo:

Metropolis-Hastings algorithm

As we have seen in the previous section, the most general solution of an inverse prob-
lem is a probability distribution over the model parameters space. However, only
when the probability density is simple analytical techniques can be used. For in-
stance in problems where the relation between model and data parameters is linear
or with Gaussian statistics with a single maximum. Otherwise, a different strategy
must be adopted. A general approach in order to characterise a posterior distribution
is by generating samples of it and using their relative occurrences to approximate it.
Obviously, sampling requires a thoroughly exploration of the space of model param-
eters. If the number of parameters is small enough, such exploration can be done
systematically. Nevertheless, for high-dimensional problems a systematical approach
is not feasible since the number of required sampled points grows too fast with the
number of dimensions of the model space and, instead, a random exploration must be
performed. A general and efficient way of exploring a large space is by using Monte
Carlo methods.

The idea of Markov Chain Monte Carlo (MCMC) algorithms is to generate a
random walk on the parameters space {m1,m2, . . . ,mn} such that its transition
kernel, i.e. the probability of a jump p(mi|mi−1), only depends on the previous jump
(Markov chain) and generates samples of m with a probability density equal to the
posterior distribution. In other words, the transition kernel must be such that after
an initial burn-in period and independently of the initial sample, the Markov chain
will eventually converge to a unique stationary distribution which is the posterior
distribution (Tarantola, 2005; Gregory, 2005). So, how to construct a Markov chain
such that its stationary distribution is precisely the posterior distribution we are
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looking for? A common procedure to construct the desired transition kernel is the
Metropolis-Hastings algorithm.

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is a very
well known and simple strategy to generate a random walk that approximates the
posterior distribution. It is specially powerful for sampling high-dimensional distri-
butions, i.e. physical models with high number of parameters.

From a known probability distribution it is quite simple to create a random walk
by generating random samples of it. The Metropolis basic idea is to tune this random
walk with some acceptance criteria such that some proposed samples are rejected and
the remaining ones approximate the posterior distribution. A complete deduction and
proof can be found in Mosegaard and Tarantola (2002) and Kaipio and Somersalo
(2005). To implement this approach in the context of an inverse problem, let us first
recall equation (4.9),

σM(m) = k ρM(m)L(m)

where the posterior distribution on the model parameters σM(m) is proportional to
its prior ρM(m) times the likelihood L(m). Then, random samples of m are generated
from the prior distribution to generate a random walk in the parameter space in which
each sample only depends on the immediate previous one. In this case, the random
walk would simply approximate the prior ρM(m). To sample σM(m) instead, each
proposed model is combined with its respective likelihood L(m) to decide whether
it is accepted according to a criterion that compares it with the previous accepted
sample. In doing so, the random walk is shaped according to the misfit between
predicted and observed data. The algorithm can be summarized in the following two
steps:

1. Proposal step. A random sample mnew is generated either directly from its prior
distribution ρM(m) or by means of a proposal distribution q(mnew|mold) which
should be easy to evaluate.

2. Acceptance step. The proposed sample is subjected to an acceptance test based
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on the value of the so-called Metropolis ratio, rm,

rm =
σM(mnew) q(mold|mnew)

σM(mold) q(mnew|mold)
(4.22)

If rm > 1, the proposed sample mnew is accepted; otherwise, it is accepted with
probability r which depends on how similar the two posteriors are (the more
similar, the more likely to be accepted). If a proposed sample is not accepted,
the random walk remains at the current value mold and a new proposed sample
is generated. This second step can be summarized by defining an acceptance
probability,

α mold←mnew = min (1, rm) = min
(

1,
σM(mnew) q(mold|mnew)

σM(mold) q(mnew|mold)

)
(4.23)

When this process is repeated many times, i.e. the number of accepted samples
is large enough, the Metropolis algorithm guarantees that the relative ocurrence of a
parameter mi in the random walk is proportional to its posterior density. Although
simple, this algorithm is very powerful since it can explore the space while preventing
the random walk from getting stuck in a local maximum or high probability area by
just including the case rm < 1. Note that for a symmetric proposal distribution, the
terms q(·|·) cancel and the Metropolis ratio just compares the corresponding poste-
riors. This was the original algorithm that was later generalized by Hastings (1970)
to account for non-symmetric proposals. Moreover, one important consequence of
using a ratio as an acceptance criterion is that probability densities do not need to
be normalized and, therefore, computing the constant k can be avoided. It is also
important to mention that randomness is the main idea behind Monte Carlo methods
where the generated samples are ideally expected to be independent. However, this
is not the case in the explained algorithm, where samples of the random walk exhibit
strong correlations since, by definition of Markov Chain, each sample depends on the
previous one. To guarantee independence, not all accepted samples are then consid-
ered to estimate the posterior PDF, but only every lth sample, being l the chosen
interval to ensure samples are not related.

The proposal distribution q(·|·) has a key role in the Metropolis algorithm. Al-
though any proposal used to sample the prior will converge to the same stationary
distribution, its choice completely determines the efficiency of the algorithm, i.e. the
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rate of convergence. Let us for instance imagine a proposal which is a multivariate
Gaussian distribution with mean the current sample, mnew, and standard deviation
σp. The size of σp governs how efficiently the space of parameters is explored: if σp
is large (big jumps) the search is explorative; whereas if σp is small (small jumps)
the search is exploitative. None of them is good on its own and some problems can
arise. With an explorative search, we are rapidly moving around the whole space of
parameters, but it is highly unlikely to accept new movements (very low acceptance
probability). Instead, in the exploitative case, the random walk is moving very slowly
which increases the acceptance probability, but at the same time it may require much
longer chains to explore the whole space (poor mixing). A compromise is essential
(Tarantola, 2005; Gilks et al., 1996). From all the possible random walks that will
converge to the posterior distribution, the goal is to design one that efficiently ex-
plores the whole space getting neither lost nor stuck. This is achieved by generating
samples whose perturbation on the likelihood is as small as possible (to increase the
acceptance rate and therefore likely to be accepted) but large enough in the param-
eter space to rapidly explore it. In other words large jumps in the model space that
produce small perturbations in the data space. According to Gelman et al. (1996);
Roberts et al. (1997), an optimal acceptance rate is approximately 50% for problems
with one or two dimensions and decreases to 23% for high-dimensional problems.
Finding the proposal that optimizes this behaviour is not straightforward and de-
pends on the problem at hand. However, one thing is known, the more similar the
proposal to the posterior, the more efficient the sampling.

An efficient sampling is particularly important in high-dimensional spaces (which
is often the case for inverse problems). The main and intrinsic challenge of sampling
high-dimensional spaces is that they are almost empty. In other words, the chances
of “hitting” a high-probability region are very scarce and this is precisely the goal of
sampling the posterior density. What is more, not only the posterior represents a
small part of the whole space, but also not much is known about its location. That
is the reason why the acceptance probability tends to be very low when sampling
high-dimensional spaces and an efficient proposal is crucial. Although plenty of meth-
ods are developed focused on improving the sampling strategies (delayed-rejection,
delayed-acceptance, parallel tempering, adaptive Metropolis and a long etcetera) we
will mostly work with a simple Metropolis algorithm in this thesis, so that any addi-
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tional improvement in the sampling will mostly have a positive impact on the whole
algorithm. However, in section 5.4.1 the effect of the sampling strategy on the order
reduction is analysed. Additionaly, an adaptive Metropolis will be presented in sec-
tion 5.4.2 together with some examples to see its influence on the order reduction.

The following pseudo-code summarizes the Metropolis-Hastings algorithm ex-
plained above.

Algorithm 4.1 Metropolis-Hastings algorithm
1: mold ← get an initial model parameter mo

2: repeat
3: Generate new sample mnew from a proposal distribution q(mnew|mold)
4: Compute σM(mnew) as the product ρM(mnew)L(mnew)
5: Compute metropolis ratio rm

rm =
σM(mnew) q(mold|mnew)

σM(mold) q(mnew|mold)

6: if rm > 1 then
7: sample mnew is accepted: mold ←mnew

8: else rm < 1
9: sample mnew is accepted with probability rm

10: end if
11: until the number of samples is long enough

Lines 6-10 are equivalent to: mnew is accepted with probability α mold←mnew , as it
directly combines the two cases. In general, in order to implement how to take a de-
cision according to a probability one uses a uniform distribution. A random number
u is obtained from a uniform distribution U(1, 0); if u < rm, the condition is true;
otherwise it is false.

Despite its many advantages relative to traditional matrix-based inversions (Taran-
tola, 2005; Afonso et al., 2013a, 2016a), the use of MCMC methods to solve inverse
problems has the drawback of having to evaluate L(m) at each inversion step, which
involves computing a full forward problem, thousands to millions of times. Conse-
quently, the possibility of using a probabilistic approach to solve an inverse problem
relies entirely on having efficient and accurate solvers for the forward problems (Sec-
tion 3.2).
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4.3 Application to a geophysical problem

The goal of all the inversions presented in this thesis is to infer the thickness of the
lithosphere or equivalently the depth of the Lithosphere-Asthenosphere Boundary
(LAB) from some synthetic observations: either the topography or the vertical man-
tle velocities. The forward problem associated to the inversion links the LAB values
with the topography. More specifically, from the values of the LAB we can compute
the viscosities and densities within the domain to characterize a Stokes problem. The
solution of the Stokes problem is a velocity field which allows us to compute the
normal stresses at the surface and, hence, the topography.

In this section a small synthetic example of an inversion is presented. The
Metropolis algorithm is used as inversion algorithm and the Stokes flow associated
to the forward problem is solved with a full order Finite Elements Method. The
purpose of this example is to outline the basic setup and discuss several numerical
considerations in order to characterize the problem prior to the coupling between the
Model Order Reduction and the inversion. Moreover, the need for Model Order Re-
duction will be clearly grasped from the intrinsic high cost of solving a large number
of forward problems with full order methods.

4.3.1 Model discretization and parametrization

In all the examples of this thesis the domain represents a portion of the Earth and
is discretized with Taylor-Hood hexahedral elements. They are elements of order
two for velocity and order one for pressure (Q2-P1) and satisfy the LBB condition
(Figure 4.2). This element requires 8 vertex nodes for the pressure, and 20 nodes for
the velocity. Unlike the 27 nodes hexahedral, the 20 nodes one does not include a
node in the middle of the faces.

Figure 4.2: Taylor-Hood hexahedral element (Q2-P1)
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This discretization generates a numerical domain that can be seen as a collection
of nonoverlapping adjacent rectangular columns (Figure 4.3). On the boundary of the
domain we apply free slip boundary conditions; the box is confined (normal velocity is
zero) and there is no friction on the boundary (tangential stresses are zero). Denoting
the boundary surfaces as ΓS the free slip boundary conditions read,u · n = 0 on ΓS

n · στi = 0 on ΓS
(4.24)

where n is the normal vector and τi, for i = 1, 2, are the two corresponding tangential
directions such that they build an orthonormal system of vectors {n, τ1, τ2}. When σ
is replaced by the Stokes law (2.13), we obtain n·(∇su)τi = 0 since the pressure term
vanishes due to the orthonormality between n and τi. However, due to the nature
of the Finite Elements method, the Neumann boundary conditions are automatically
enforced and, therefore, only the first equation needs to be implemented.

A unique model parameter is assigned to each of the columns of the domain
representing the LAB depth at that location (Figure 4.3). Therefore, the vector
of model parameters m to be retrieved by the inversion is composed of the LAB
depths for all columns in the numerical domain. In doing so, the LAB is completely
characterized.

Figure 4.3: Parameters of the inversion describing the LAB depth for two different exam-
ples. The example on the left also shows the corresponding velocity field (black arrows)

59



4. The Inverse Problem and Markov Chain Monte Carlo

Viscosity and density

The LAB depth is the main parameter controlling the flow pattern inside the numer-
ical box as it defines the internal temperature distribution, which in turn controls
the viscosity and internal buoyancy forces. For illustrative purposes, the temperature
inside each column is assumed to follow a linear profile defined by the temperature
at the surface (T0 = 293 K) and that at the LAB depth (TLAB = 1523 K) for the
listhosphere. In the asthenosphere, we also assume a constant linear gradient between
TLAB and a fixed bottom temperature (T660 = 1873 K). Absolute pressure is assumed
to follow a lithostatic profile,

p = ρ0gz, (4.25)

where g and z are gravity acceleration and depth, respectively.

The buoyancy forces that drive convection are produced by density variations of
thermal character. Therefore, the density is computed as a deviation from a reference
value with,

ρ = ρ0(1− α(T − T0) + β(p− p0)) (4.26)

where ρ0 is the reference density at T0 and p0, and α and β are the coefficients of
thermal expansion and compressibility, respectively.

Both experiments and theory indicate that a general form of relationship between
strain rate and deviatoric stress valid for diffusion and dislocation creep is given by,

ε̇ = A
( τ
G

)n( b
d

)m
exp

(
−E + pV

RT

)
(4.27)

where A is the pre-exponential factor, G is the shear modulus, d is the grain size,
b is the lattice spacing, E is the activation energy, V is the activation volume, R
is the universal gas constant, n is the stress or flow law exponent and m the grain
size exponent, (Schubert et al., 2004). As we can see, with n = 1 the relation
between strain rate and deviatoric stress is lineal resulting in a Newtonian rheology
(e.g. difussion creep), whereas for n > 1 the relation is nonlinear resulting in a
nonlinear viscous rheology (e.g. dislocation creep). This parametric relationship can
be calibrated experimentaly both for diffusion and dislocation creep mechanisms.
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Generalizing it into a full constitutive relation by making use of invariants, we can
identify from equation (2.12) the viscosity function as a power-law of the form,

µ = A
−1/n
D ε̇

(1/n)−1
II exp

(
E + pV

nRT

)
(4.28)

where ε̇II = (1/2)εijεij is the second invariant of the strain rate and AD a constant
depending on the material. As usual in geodynamic simulations, a threshold (max-
imum) viscosity, µmax, is imposed. All values used are listed in Table 4.1. Because
the methodology presented here is suited for linear problems we linearize the Stokes
equations by assuming a constant strain rate ε̇II = 10−15 s−1. We note, however, that
the methodology can be adapted to nonlinear problems and it is independent of the
specific parametrization used here.

Symbol Name Value Units
g gravity 9.8 m s−2

ρ0 reference density 3300 kg m−3

p0 reference pressure 0 MPa
T0 reference temperature 293 K
TLAB LAB temperature 1523 K
T660 bottom domain temperature 1873 K
α thermal expansion coefficient 10−5 K−1

β compressibility coefficient 10−5 MPa−1

µmax threshold for maximum viscosity 1024 Pa s
AD 1.1× 105 MPa−n s−1

ε̇II second invariant of the strain rate 10−15 s−1

E activation energy 5.3× 105 J mol−1

V activation volume 14 J MPa−1 mol−1

R universal gas constant 8.314 J mol−1 K−1

n power flow exponent 3.5

Table 4.1: Values of the parameters used to compute material properties

Finally, due to the high contrasts between viscosities and densities, in geophysical
problems it is typical to scale them. In doing so, their orders of magnitude are brought
closer and matrix conditioning problems reduced.

4.3.2 Synthetic observables

Two different kinds of synthetic measurements or observations will be used in this
thesis: vertical mantle velocities and topography. Actually, mantle velocities cannot
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be directly observed and other indirect observables such as the topography need to be
used. However, a number of additional assumptions and secondary quantities need to
be considered in order to obtain topography from the forward problem. Therefore, in
order to focus on the intrinsic features and performance of the proposed method, we
prefer starting with velocity as an observable and avoid the extra complexity intro-
duced by the topography model. The synthetic measurements used on first examples
will be the vertical mantle velocities at specific points within a predefined observation
region Γ. In addition, velocities allow us to better isolate and analyse the main RB
effects within the MCMC simulations that are presented in Chapter 5. A more com-
plex example using topography as observable is studied in Section 6.1 and all details
thoroughly explained.

We create a dataset of synthetic observables to be used in our MCMC simulations
from a reference or “true” model, i.e. a particular set of mi values. The vertical
components of the velocity field are computed at nd points and define the dataset
of synthetic observables, dobs. The number of data points is specified for each ex-
ample and vary depending on the number of unknown parameters in the inversion.
A Gaussian noise, r ∼ N(0, σd), is used to introduce some controlled error in the
synthetic observables. The standard deviation of the data errors, σd, is chosen to be
a percentage of the maximum absolute value in the dataset dobs,

σd = σe max |dobs|. (4.29)

Since here we are interested in studying the method rather than the actual solution to
the inverse problem, in the following examples the error in the data is only included
in the likelihood function; i.e. no noise is actually added to the synthetic data. The
reason for this choice is that when perturbations are added to the synthetic data,
the posterior PDFs will not necessarily converge to the reference model, but to a
“perturbed” model that best fits the contaminated observables, thus complicating the
performance analysis of the method. In the same way, since we want to be sure
that the synthetic data are within the interpolating space, the mesh used to compute
the synthetic observables is the same as the one used during the inversion to predict
them. This is the so-called inverse crime (Kaipio and Somersalo, 2007). Although we
acknowledge it can lead to too optimistic results, our main goal is not to get accurate
results but to study the features and main factors controlling the coupling between
MCMC and RB (Chapter 5). One example including perturbations to the observ-
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ables and another one using a different mesh (twice finer) to create the synthetic
observables are included in Appendix A.2 and A.1, respectively.

The observation region Γ is defined as a box of 100km along the true model of
parameters (±50km on each side). This region is defined in accordance with the a
priori information on the parameters used in the MCMC simulation which is chosen
to cover as well ±50km around the true model. In doing so, the observation region
is placed exactly where the main changes in the velocity field are expected or, in
other words, where the model parameters will have the largest influence. Moreover,
as explained in Section 5.2.1, such region also matches the region of interest used to
compute the QoI and controls the accuracy of the RB solution.

4.3.3 Priors, sampling strategy and likelihood function

In order to test the inversion in adverse conditions, a relatively uninformative initial
scenario is defined. As previously mentioned, the prior PDF for all parameters is set
as uniform within a range of 100km (i.e. ±50 km from the reference LAB value).
With these priors, all gain of information, as contained in the posterior PDF, will be
controlled exclusively by the likelihood since prior terms will cancel in the Metropolis
ratio. This allows a readily interpretation of the results.

The prior PDF is sampled using a multivariate Gaussian proposal distribution
centered at the current state of the chain mold,

mnew ∼ N(mold, σ
2
p). (4.30)

and with σp determining the size of the move. Its value will be specified independently
for each example. For each proposed move mnew, only one parameter mi, i ∈ [1, nm],
is modified with respect to mold. In other words, each parameter has its own one-
dimensional proposal distribution from which it is sampled, mi,new ∼ N(mi,old, σ

2
p).

Therefore, we modify the LAB structure by changing only one column per iteration.
Symmetric proposal distributions lead to the initial Metropolis algorithm which only
includes posterior terms and proposal ones do not appear.

For the likelihood function, so far we neglect modeling errors and assume that
observation uncertainties are uncorrelated. Moreover, we assume that all observations
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exhibit the same standard deviation. The misfit function is then,

e(m) =
1

2σ2
d

∑
i∈Γ

(
uzi(m)− d obs

i

)2 (4.31)

where i ranges from 1 to the number of points nd in the region of interest Γ and dobsi

and uzi(m) are the “observed” (synthetic) and predicted vertical velocities at point i,
respectively. The standard deviation σd is related to the error in the measurements
and is defined in equation (4.29).

An important numerical aspect to consider about the likelihood is its possibility
to underflow. If the number of observables is very large, the misfit function from
equation (4.16) (also (4.15)) can exhibit very large values causing the likelihood to be
very small and in some situations to numerically underflow to zero. Or equivalently,
since the likelihood is a product of terms, if such terms are smaller than one, their
multiplication gives even smaller values which may lead to underflow. To avoid such
situation, sometimes it is useful to define the log-likelihood. Working with logarithms
transforms the products in sums avoiding, therefore, getting values which are too
small to be represented by a floating point number. The log-likelihood equivalent to
the likelihood from equation (4.14) is defined as,

logL(m) = log k − e(m) (4.32)

where the logarithm corresponds to the natural logarithm, i.e. the logarithm with
base e. In order to use the log-likelihood in the Metropolis ratio, equation (4.22)
must be also rewritten in terms of logarithms. Therefore, the logarithmic Metropolis
ratio (considering uniform priors and symmetric proposals) reduces to,

log rm = log

(
L(mnew)

L(mold)

)
= e(mold)− e(mnew) (4.33)

The acceptance condition is now: if log rm > 0, the proposed samples mnew is ac-
cepted; otherwise, it is accepted with probability log rm. Although in most of the
cases the use of the likelihood or the log-likelihood produce exactly the same results,
the log-likelihood formulation is safer.

4.3.4 Example results

The domain represents a portion of the Earth of 400km × 400km going from the sur-
face down to 660km depth and is discretized in 10×10×20 elements. The LAB shape
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to be recovered (Figure 4.4a) is described with 25 parameters in such a way that each
parameter covers four columns of finite elements. The initial model (starting point
of the Markov chains) has a constant LAB at 130 km depth, except in one column,
where the LAB is at 100 km depth (Figure 4.4b). This is simply to avoid an initial
problem with zero velocity field. Regarding the number of synthetic observables, we
fixed nd = 675 data points within the observation region Γ (Figure 4.7a).

Figure 4.4: 3D cartesian domain discretized in 10×10×20 mixed elements representing a
portion of Earth of 660km depth and 400km in the two directions along the surface. (a)
Synthetic reference LAB and (b) initial model configuration.

We run a total of 105 steps in the MCMC simulation. The first 104 values con-
sidered burn-in and thus discarded for later analyses. The standard deviation of the
proposal distribution in (4.30) is set at σp = 5 km and the percentage of the intro-
duced noise in (4.29) is σe = 10−1. The results of this inversion are summarized in
Figure 4.5. Despite the uninformative initial scenario (uniform priors and flat initial
state), these results demonstrate that the MCMC+FE inversion algorithm succeeded
in obtaining an accurate representation of the posterior PDF for all parameters. The
gain in information is clear. The trace plots also show that the inversion converged
quickly to the true posterior PDF (LAB values + their associated uncertainties). At
the beginning most of the parameters started far from the true value, but after the
burn-in period they all converged to the true value and remained oscillating around.
The posterior distributions for each parameter exhibit mean values which coincide
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well with the reference synthetic LAB depths; all within one standard deviation (Ta-
ble B.1 from Appendix B). The acceptance rate of the inversion is around 40%.

Figure 4.5: Random walk (top) and posterior PDF (bottom) for each of the 25 parameters.
In each plot: prior distribution (black dashed line), reference LAB value used to generate
the synthetic velocity field (solid black line) and initial value (red dot). The burn-in period
has been discarded in the estimation of the posterior PDF. Values of the mean and the
standard deviation for each posterior PDF are found in Table B.1 from Appendix B.
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An inherent problem of all Monte Carlo methods is where to stop the search being
sure that all space has been sufficiently explored and no high probability regions are
missed. These convergence issues are problem dependent and we do not discuss them
here (cf. Gelman and Rubin, 1992; Brooks and Gelman, 1998). Similarly, the length
of the burn-in period is also problem dependent and we do not pursue to implement
any specific method (cf. Geweke, 1991). Instead, given the synthetic character of
the example, both the length of the simulations (as a convergence criterion) and the
burn-in period are chosen by visual inspection of the chains during the simulation.
In this particular example we reduced the number of inversion steps due to the high
cost of FE.

Another interesting way to see convergence is by plotting the evolution of the misfit
e(m) between predicted and observed data, equation (4.15). The misfit evolution is
shown in Figure 4.6. The initial misfit is around 2300 but we made zoom in the y-axis
for a better visualization.

Figure 4.6: Evolution of the misfit e(m) during the inversion.

Initially the difference g(m)−dobs is very large because the model m is not good
at explaining the data dobs and the misfit exhibits large values. However, as the ran-
dom walk converges to the true value, the misfit quickly decreases until it stops and
remains oscillating around. Although plotting the misfit helps checking the conver-
gence of the inversion as a whole, it does not guarantee that convergence is achieved
for each parameter individually. To guarantee that, each random walk must be in-
spected individually (Figure 4.5).
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It is also very important to check whether the proposed models of parameters are
truly predicting the synthetic data values. Figure 4.7a shows the location of the 675
data points where the synthetic observables are computed. They all lay within the
observable region Γ (±50km along the true model parameters, Section 4.3.2) and are
distributed in 3 layers. We selected 49 points of the second layer whose location is
shown in Figure 4.7b. However, we checked all of them to ensure their behaviour is
the same.

Figure 4.7: (a) Location of the 675 data points within the observation region Γ and (b)
location and ID of the 49 data points (red circle) chosen to plot their predicted values in
Figure 4.8.

Figure 4.8 shows histograms of the predicted values during the inversion for the
49 selected observable data points. The fact that all histograms include the synthetic
value is a good indicator, since it means that each synthetic observable can actually
be predicted by a certain configuration of model parameters. Moreover, not only
histograms include the synthetic value, but they are also centered around them,
which indicates that mean values are successfully recovered by the inversion.

The width of these distributions indicates how sensitive each observable is to per-
turbations of the parameters. Those observables exhibiting wider distributions are
more sensitive since the same perturbations are able to produce a larger range of data
values. Instead, a very insensitive observable would exhibit a very narrow distribu-
tion because no matter what is the size of the perturbation, but the predicted value
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Figure 4.8: Histograms of the predicted data values for 49 data points (out of 675). In each
plot: synthetic data value (red line) and histogram of the predicted values. The burn-in
period is also discarded. All values of the x-axis should be multiplied by 10−13. The physical
location of each observable is shown in Figure 4.7.

would not be affected.

The MCMC+FE inversion scheme required to solve as many full forward prob-
lems as inversion steps. In this particular example, we solved 105 FE each of them
taking around 6 seconds. This corresponds to a total of 166 hours or approximately
7 days. Consider now a large-scale high-dimensional geophysical inversion, where
each forward solution is much more expensive and longer simulations are required
to obtain reliable posteriors for each parameter. The total computational cost turns
unaffordable and the MCMC+FE approach is not feasible anymore. It is obvious
that to deal with such problems, an efficient solver for the forward problem is crucial.
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Chapter 5

Coupling Markov Chain Monte Carlo
with Reduced Basis Method

In this chapter the Markov Chain Monte Carlo (MCMC) is coupled with the Reduced
Basis (RB) approach for the solution of inverse problems and the main features are
studied. The probabilistic approach of solving inverse problems requires the solution
of a large number of high-fidelity forward models whose high computational cost is
usually an important bottleneck for the inversions. Considering the characteristics
and similarities between the forward problems to be solved during the inversion, the
RB strategy is an excellent approach at reducing the cost. In addition, the converging
nature of MCMC-based inversion makes the option of RB solvers extremely attrac-
tive, as it is a situation where RB performs at its best.

In Section 5.1 the strategy MCMC+RB is explained with a description of the
procedure to build a basis and its main characteristics followed by an illustrative
example. The remaining sections of this chapter are devoted to analyse the aspects
controlling the cost of solving a RB forward problem within the MCMC+RB scheme.
Generally, the cost of obtaining a RB solution is mainly determined by the time
required to create the reduced system (specifically KRB), since solving the reduced
problem has no further complication due to its low dimension. The reduced stiffness
matrix KRB = BTKB requires a fast computation and it depends on two factors: the
size of the reduced basis B and the assembly process. Sections 5.2, 5.3, 5.4 are focused
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on controlling the basis size, whereas 5.5 is based on the assembling efficiency. Some
results presented in this chapter are published in Ortega-Gelabert et al. (2020).

5.1 Building a basis tailored to the inverse problem

Classical Reduced Order methods include an offline stage where all costly computa-
tions are performed and an online stage where the reduced order solver is used to
obtain fast an computationally inexpensive solutions (Quarteroni et al., 2016; Hes-
thaven et al., 2016; Ito and Ravindran, 1998; Prud’homme et al., 2002). In classical
approaches, the process of building the reduced basis is usually part of the offline
stage since it requires computing many high-fidelity solutions. The success of such
strategies depends essentially on the sampling of the parameter space in order to cre-
ate a reliable and accurate reduced basis. While in principle a similar splitting can
be used in the context of a probabilistic inverse problem (Galbally et al., 2009; Wang
and Zabaras, 2005; Lieberman et al., 2010), it is not always straightforward to define
the sampling, that is, to predict which high-fidelity solutions (snapshots) should be
computed a priori during the offline stage to be used later during the inversion, as
there is no way of knowing in advance neither the high probability region nor the
path the MCMC will take to find it. This is precisely the goal of the inverse problem!
For this reason, we prefer to combine the offline and online stages into a single stage
where the reduced basis is created on the fly as a response to the need of the inversion
process. In other words, the process of building the reduced basis is coupled within
the inversion scheme.

We propose a greedy approach, in which the basis B is initially empty and is
subsequently enriched with FE (high-fidelity) solutions as the inversion progresses.
The first forward problem required by the inversion is solved with the high-fidelity
FE solver and its solution is added to the basis. From then on, every time a new
forward problem needs to be solved, the solution is sought in the RB space R

nRB and
the error of the RB approximation is assessed. If the error is larger than a predefined
tolerance, eRB , the problem is solved using FE and the new high-fidelity solution is
added to B (i.e. the basis is enriched). Therefore, the basis is only enriched when the
accuracy of the RB solution is below the specified tolerance. Figure 5.1 shows the
flowchart of the building process of a reduced basis simultaneously coupled within an
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inversion framework.

Figure 5.1: Flowchart of the greedy approach to build a reduced basis within a probabilistic
inversion scheme

Since a MCMC inversion gradually converges to an equilibrium distribution which
usually spans only a limited region of the initial parameter space, it is expected that
the basis will initially grow until it becomes rich enough to provide accurate approx-
imations (within a tolerance) to any subsequent forward evaluation. In this way, the
basis does not need to provide accurate solutions for the entire parameter space, but
it is automatically tailored to provide accurate solutions within the region of high
probability as sampled by the MCMC. A similar data-driven strategy to build the
reduced basis is implemented by Cui et al. (2014). Unlike classical approaches where
the choice of snapshots is based on a priori information, with this greedy strategy the
exploration of the parameter space to choose the snapshots is lead by the posterior
distribution. Consequently, the size of the basis to attain the same accuracy (in the
high-probability regions) is smaller in comparison with the offline approach.

One slight drawback of this approach is that instead of relying on fast RB solu-
tions since the beginning of the inversion, some computational cost must be spent in
creating the basis on the fly. In most practical cases, however, this is not a prob-
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lem. The overall cost involved in computing the basis during the inversion process
is significantly less than that invested in creating sufficiently accurate basis in an
offline stage, except when the parameter space is relatively small (an uncommon case
in geophysical inversions). Moreover, the basis created in one inversion can always
be reused in subsequent inversions of similar characteristics. Either by using it as a
starting basis (instead of an initially empty basis) which is enriched as the inversion
requires or as a in classic offline/online stage approach.

The proposed greedy approach to build the RB does not guarantee orthogonality
between the members of the basis. Redundant (linearly dependent) basis elements
may still be included in the basis, which would result in an ill-conditioned reduced
linear system to be solved (3.32). In practice, however, we have not observed this
behaviour. The condition number of the reduced system in our problems remains
almost constant as the basis grows, indicating that the basis is not deteriorated by
the greedy character of the algorithm. In fact, by construction, solutions which are
linearly dependent (according to a predefined tolerance) should not have been added
to the basis. Nevertheless, in the case of having redundant information in the basis, a
Singular Value Decomposition procedure (Quarteroni et al., 2016; Brunton and Kutz,
2019) can be applied on the fly to obtain an orthogonal basis. Other possibilities in-
clude orthogonalizing the reduced basis every time a new snapshot is added, as in
Lieberman et al. (2010), Cui et al. (2014), and Bui-Thanh et al. (2008).

Finally, as the Markov chain moves to a more restricted parameter space, the
space R

nRB can be inspected at regular intervals and processed to remove bases that
are not contributing with significant information (Section 5.4.3). The result is a more
compact and data-driven basis tailored for the specific problem at hand. However,
care must be taken, since it may happen that the element of the basis that is taken
as irrelevant is proposed again in the future. In such situation and if the element
was previously removed from the basis, an extra FE would be required since the re-
duced basis would no longer be able to represent it. Therefore, there exists a trade-off
between a slightly larger basis and the possibility of future additional high-fidelity
computations.

In the next three subsections the greedy approach to build the basis is explained.
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The first one presents a small but important modification to guarantee a fair coupling
between the MCMC and RB. Then, the inversion example from Section 4.3 is repeated
with the MCMC+RB coupled approach. And, finally, the effect of the additional error
introduced by the RB approximation is analysed.

5.1.1 Metropolis ratio and a tailored basis

The success of the Metropolis algorithm depends on the acceptance criterion which
is the responsible of adding new samples to the chain. It is based on the Metropo-
lis ratio, equation (4.22), that compares the value of the posterior for the current
sample σ(mold) with the posterior of the proposed one σ(mnew). The evaluation
of the posterior requires the solution of a forward problem which has an associated
error/accuracy. For this comparison to be fair, both posteriors should be evaluated
with solutions computed with methods exhibiting the same level of accuracy. In other
words, it is not fair to compare a model whose solution is obtained with FE with a
model whose solution is obtained with RB, as the space in which each solution in
sought is different.

This is precisely what happens in the greedy procedure to build the reduced basis
explained above. Consider the case when the error of the RB solution for a pro-
posed model is above the predefined threshold and thus a high-fidelity FE solution
is required. If the forward problem of the current state in the chain was accurately
solved in a previous step with the RB surrogate, the comparison in (4.22) is now per-
formed between a RB approximation (current) and a high-fidelity FE solution (new
proposed model). Since both of these solutions have different intrinsic accuracies/er-
rors, the comparison is no longer objective, and the Metropolis criterion is corrupted.
In practice, significant differences in their respective errors are not uncommon and
may result in a divergent chain and/or an inaccurate representation of the posterior.
When this is the case, all random walks typically become “stuck” as new proposed
models tend to have higher misfits and therefore are rejected (Figure 5.2). Not only
the random walks stop oscillating, but they also generate high-probability peaks in
the posterior PDF at usually wrong values. The richer is the basis, the lower are the
chances of getting stuck, since RB solutions are closer to FE ones. Now consider the
opposite case, where the proposed model is accurately solved with the RB surrogate
and the current model was solved with a high-fidelity FE solver. The comparison
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in (4.22) remains nonobjective. However, unlike the previous case, the random walk
does not get stuck since, here, the current model is the most accurate one, i.e. solved
with the high-fidelity solver.

Figure 5.2: Example of a “stuck” random walk for a representative parameter (top) and
evolution of the misfit (bottom). From around step 104 onward, all proposed models exhibit
significantly larger misfits (gray) than the already accepted current value (green). Conse-
quently, the models are rejected and the random walk cannot move to any other value.

It is important to remark that this unfair scenario mainly takes place during
the building process of the reduced basis since it is when high-fidelity solutions are
present. Once the basis is rich enough, all successive problems are fairly solved using
the same RB and, therefore, relying on fair comparisons. The number of “wrong”
samples that may end up accepted (or not) is statistically insignificant in compari-
son with the length of the random walk and even more considering that they mostly
occur during the burn-in period which is always discarded for the estimation of the
posterior PDF. Finally, the chances of getting stuck minimise as the basis gets richer,
since RB solutions are closer to FE ones and, therefore, comparisons tend to be
more objective. However, in order to guarantee a fair comparison and to prevent the
inversion from getting stuck, two modified procedures to build the basis are proposed.
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The problem described above can be avoided with a small modification to the
original algorithm. Given the Markovian property of the chain (i.e., dependence only
on the current state of the chain), the only strong requirement is that the comparison
in (4.22) remains objective. One possible solution is to duplicate FE solutions: every
time a proposed model is solved with FE, we also recompute the previous model with
FE (unless it was already FE). In doing so, the comparison is always performed with
solutions in the same space and exhibiting the same accuracy. The recomputed FE
solution of the previous model is only used for the comparison in (4.22) and is not
added to the basis; otherwise, it would provide redundant information to it. While
this simple approach guarantees that the comparison is objective, it has the drawback
of requiring additional FE solutions.

Another modification to circumvent the comparison problem consists on excluding
all high-fidelity FE solutions from the comparison. When the error of a RB solution is
above the tolerance, the high-fidelity solution is computed and the basis is enriched.
However, no comparison is performed and a new sample is proposed for the same
inversion step. Additionally, the RB solution of the current sample is recomputed
with the new enriched basis. In doing so, high-fidelity solutions are relegated to only
build the basis and comparison is always fair. Both strategies have been implemented
and no differences were observed in the inversion results. However, following the idea
of reducing the number of high-fidelity solutions required during the inversion, the
second modification is the one used in all the examples presented in this thesis. Figure
5.3 shows the flowchart of the procedure.

This modification might affect the ergodicity and detailed balance condition of
the chain. However, it only occurs during the building process of the basis which es-
sentially coincides with the burn-in period and those samples are directly discarded.
Therefore, convergence properties for the remaining part of the chain remain intact.
Other approaches can certainly be devised; a complete description of them, as well
as the effect on the convergence and ergodicity of the chain are not part of this thesis
and is left as future work. In Manassero et al. (2020), the Metropolis ratio is modified
using the idea of the Delayed Rejection algorithm proposed by Mira (2001) so that
ergodicity of the method is guaranteed.

This difficulty does not exist in simpler approaches where a single surrogate is
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Figure 5.3: Modification of the greedy approach to build a reduced basis within a proba-
bilistic inversion scheme to avoid an unfair RB-FE comparison in the Metropolis ratio.

created offline and used unmodified during the inversion (e.g. Galbally et al., 2009;
Lieberman et al., 2010; Wang and Zabaras, 2005). Having a precomputed basis
guarantees that the comparison will be always between RB approximations. However,
it is at the expense of a larger and more general basis which does not take advantage
of the convergence feature of the MCMC inversion to shape it to the specific problem
at hand.

5.1.2 MCMC+RB application to a 3D geophysical problem

The goal of this section is to provide a simple example of the coupling between the
MCMC method and the simultaneous procedure of building the reduced basis. The
inversion example from Section 4.3.4 is repeated by implementing the procedure de-
scribed above in order to create a tailored basis that allows us to reduce the number
of high-fidelity solutions required during the inversion. The process of the basis en-
richment requires assessing the error of the RB solution with respect to the FE one,
so that it is enriched when the error is below a predefined tolerance. This strategy
is independent of how this error is assessed. To start with and to keep the coupling
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simple, we will measure the error in the energy norm by using the residual as in
equation (3.36) which will give us a global error of the whole RB solution. In the
next sections we will introduce goal-oriented error estimators. The chosen tolerance
in this problem is eRB = 10−2, or in other words, RB solutions are allowed to have an
error in the energy norm up to 1%.

The evolution of the basis size as function of the inversion steps is shown in Figure
5.4 (left axis). The red dashed line represents the cost of an inversion using FE only
(Section 4.3.4). In the same figure we include the trace plot or random walk for a
representative parameter (right axis), showing rapid convergence and stationarity of
the chain.

Figure 5.4: Differences between the number of full FE problems solved during the inversion
using the RB approach (green solid line) and using standard FE (red dashed line) are shown
on the left axis. The right axis shows the random walk for a parameter. The flattening of
the basis size curve shows that most inversion steps are being solved without the need to
solve the full FE problem. Once the basis is rich enough to represent the space tested by
the inverse solver, its size stops increasing as any solution is properly addressed by the RB
and almost no new full FE solver are required.

During the initial steps of the inversion, the high-probability regions of the pa-
rameter space are poorly known and large changes in the parameter space exploration
are expected. This, together with the fact that the basis is very small, makes that
the initial number of FE solutions required is relatively large. As the random walk
converges, the size of the basis stabilizes. It is interesting to note the two moments
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in which the basis behaviour slightly deviates from its tendency to flatten, at around
steps 2 × 104 and 9 × 104. Looking at the same instants on the right axis, we can
see they coincide with moments when the random walk is moving to new regions
that are probably not yet explained by the basis and, therefore, FE solutions are
required. However, the basis behaviour is not only determined by the exploration
of the space of a single parameter but by the simultaneous combination of all them.
The behavior shown in Figure 5.4 illustrates the key benefit of the coupled MCMC +
RB scheme; namely, the flattening of the basis size curve means that most inversion
steps use RB solutions rather than full FE solutions. Once the basis is rich enough to
approximate well forward problems within the high-probability space, its size stops
increasing. Strictly speaking, the parameter space is not “fully” explored until all
combinations of model parameters have been visited by the random walk. This is
obviously unattainable and it is the main reason for MCMC algorithms. Therefore,
although small, there will always exist the possibility of sporadic enrichment.

For the present example only 445 full FE solutions are required to perform 105

inversion steps, this is a 0.4% of the total number of forward evaluations, making the
RB approach extremely efficient. Moreover, the longer the MCMC simulation, the
more favorable/efficient the RB strategy becomes, since the fraction of RB solutions
will become smaller. With the available computational resources and for this partic-
ular problem, a FE solution takes around 6s whereas the time for a RB solution with
500 basis elements is on average 0.12s (see Section 5.5 for details). This constitutes a
staggering gain in efficiency, since the CPU time of using the MCMC+RB strategy is
only 2.4% of the time required for the full MCMC+FE option (i.e., one FE solution
per MCMC step). Although the metric in Figure 5.4 is not actually comparing CPU
time, and it may give the impression that the RB solution is obtained at zero cost,
the small RB times show that the real cost is little significant compared to the FE
and, therefore, the metric used can be trusted. In addition, not only the MCMC+RB
scheme implies a gain in efficiency, but it also opens the possibility of much longer
simulations resulting in more reliable statistics for the inversion parameters.

Regarding the result of the inversion, it is important to validate whether the
random walks and posterior PDFs using a MCMC+RB strategy coincide with those
generated with a MCMC+FE. Figure 5.5 shows the results for both strategies.
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Figure 5.5: Random walk (top) and posterior PDF (bottom) for each of the 25 parameters.
The results using the RB approach (green) are plotted together with the ones previously
obtained in Figure 4.5 using only FE (black). In each plot: prior distribution (black dashed
line), reference LAB value used to generate the synthetic velocity field (solid black line)
and initial value (red dot). The burn-in period has been discarded in the estimation of the
posterior PDF. Values of the mean and the standard deviation for each posterior PDF are
found in Table B.1 from Appendix B.
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It can be seen convergence to the true value for the parameters is achieved and
there is an excellent agreement between strategies. Values of the mean and standard
deviation of each of the 25 posterior PDFs can be found in Table B.1 from Appendix B.
To allow their comparison and due to the expensiveness of the MCMC+FE strategy,
both simulations run for only 105 inversion steps. However, longer simulations would
definitely improve the small discrepancies among the posterior distributions.

5.1.3 Error of the RB approximation

The solutions sought in the reduced space introduce an additional error to the approx-
imation of each forward problem. Consequently, the random walk does not sample
the “true” posterior distribution (here defined as the full order model), but an approx-
imated one induced by the reduced space. How similar are both posteriors depends
on the accuracy of the RB approximations and, ultimately, on the error tolerance set
for the construction of the basis. This results in a trade-off between accuracy and
computational cost and the goal is to create low-cost surrogates that do not compro-
mise the inversion results.

To test to which extent the posterior distribution is affected by the RB error, we
run four identical MCMC inversions: three of them using a MCMC+RB approach
with different error tolerances eRB = 10−1, 10−2 and 10−3 and one using full FE
solutions at every step of the inversion. To be consistent in the comparison we limited
all simulations to 105 inversion steps. Figure 5.6 compares the results from these four
strategies for a representative model parameter (all other parameters behave in a
similar way, and therefore, are not shown here).

Results demonstrate that all MCMC simulations are in excellent agreement. The
MCMC+RB strategy is not significantly affected by the RB error (up to these tol-
erances) and performs properly as a surrogate of a FE forward model both in terms
of accuracy and, particularly, in efficiency. It can also be seen that for eRB = 10−1,
the random walk took longer to converge to the true value. Since the tolerance eRB

is larger, the additional error in the RB approximation makes the search of the high-
probability region more difficult. However, once it is found, the behaviour among all
simulations is exactly the same. In addition, the initial differences correspond to the
burn-in period which is discarded for the estimation of the posterior PDF. Values of
the mean and standard deviation of the 25 posterior PDFs for each case are found
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Figure 5.6: Influence of the error of the RB approximation on the (a) random walk, (b)
posterior PDF and (c) basis size. The same simulation is performed with eRB = 10−1

(purple), eRB = 10−2 (green), eRB = 10−3 yellow and one using only FE (black). Plots (a)
and (b) show one representative parameter. All the others behave in the same way. Values
of the mean and standard deviation of each of the 25 posterior PDFs are shown in Table
B.1 from Appendix B.

in Table B.1 from Appendix B. The basis size strongly depends on the tolerance as-
signed to the RB error indicator, eRB . In the examples shown here, the basis sizes are
around 1600, 445 and 76 for errors of 10−3, 10−2 and 10−1, respectively. According
to these values and with the idea of keeping the basis as small as possible (within
the limits of the observables error, detailed below), we decided to use eRB = 10−2 for
the remaining examples. Some tests performed with larger tolerance values showed
a significant posterior bias with respect to the FE case. In those tests, not only the
RB error (eRB > 10−1) exceeded the noise level introduced in the data (σd = 10−1),
but also the large errors may have prevented the RB approximations from explaining
most of the features of the FE solution.

The error introduced by the RB approximation is considered in the inversion in
the form of modelling/theoretical uncertainties as described in Section 4.1.2. In most
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of the cases they are negligible compared to the uncertainties in the observations.
In our case, as a first-order correction to indirectly account for them, we decided to
always keep the error of the RB approximation one order of magnitude smaller than
the uncertainty in the data. We acknowledge that other strategies to account for
modelling uncertainties in Bayesian inversions could also be considered (see Linde
et al. (2017) for a review), for instance, via a full covariance matrix defining model
errors (see also a discussion in Afonso et al. (2013a,b)). Another option could be
to assign priors to these errors and let them be modelled as part of a hierarchical
Bayesian inversion (Titus et al., 2017; Malinverno and Briggs, 2004).

Another interesting way to show agreement between MCMC simulations is by
plotting the evolution of the misfit e(m) between predicted and observed data during
the inversion. Figure 5.7 shows the misfit for each of the cases described above. Note
that the initial misfit for all of them is around 2300 but we made zoom in the y-axis
for a better visualization.

Figure 5.7: Evolution of the misfit e(m) during the inversion for four different cases:
MCMC+RB with eRB = 10−1 (purple), eRB = 10−2 (green), eRB = 10−3 yellow and finally
MCMC+FE (black).

After a burn-in period, the misfit for all inversions successfully decreased and
remained oscillating around the same value. Again, a slightly different behaviour
is observed initially for the case with larger error in the RB approximation, eRB =

10−1. Its misfit needs more inversion steps to decrease to the same level as the other
inversions. However, once there, the RB error does not seem to play any other role
and all misfits behave similarly.
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5.2 Influence of the error indicator on the order

reduction

In the previous section the coupling between the RB method and the MCMC strat-
egy was described. The procedure used to build the reduced basis requires an error
indicator of the RB approximation with respect to the full FE solution. Although the
MCMC+RB procedure does not depend on the type of error indicator, the final basis
size and, hence, the computational time to obtain a RB solution does. In this section
the influence of the type of error indicator on the order reduction is analysed. In
particular, unlike the energy norm used in the previous section, here a goal-oriented
error estimator based on a Quantity of Interest (QoI) is adopted aiming at reducing
the basis size, and tailoring the basis to reproduce the relevant features only.

In the first place, the QoI is defined to obtain a goal-oriented error estimator
by means of an adjoint problem and the time reduction is shown with an inversion
example. Secondly, the adjoint solution accuracy is studied to see its influence in the
error estimator. And, finally, an extension using a non-linear QoI is presented.

5.2.1 Goal-oriented error estimator

In order to further reduce the basis size, we want to enhance and shape the error
indicator for the specific problem at hand. Taking advantage of the fact that within
an inversion framework, the solution of the forward problem is used to compute an
output quantity, i.e. the observables, and, therefore, our main interest is to predict
accurately the observables rather than obtain a globally accurate solution. A goal-
oriented error estimator is the excellent instrument for this situation, since it is able
to characterise the error and drive the basis towards some particular region or quan-
tity of interest. Since the basis is built to represent accurately such feature, its size
will be smaller than if it had to be accurate everywhere.

As detailed in Section 3.2.2, we define a goal-oriented measure of the RB error,
that is, we quantify the errors in some particular region of interest and for some par-
ticular QoI. The QoI summarizes the important part of the solution into one scalar
number, so it is typically an integrated quantity. Considering that the observables of
the inversion are the vertical velocities within the interest region Γ (see Section 4.3.2),
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a possible definition of QoI would be the integral of the vertical velocity within the
region of interest Γ. However, for the incompressible Stokes problem, this integral
vanishes identically for some configurations (e.g. a horizontal LAB). This is an un-
desired property, as the estimated error might be zero independently of the solution
provided by the basis. Therefore, considering future (real) inversions where surface
elevation and GPS velocities will be used as observables, it is more appropriate to
define an error estimator that measures the gradient of the vertical velocity along the
vertical direction (as this is a quantity from which dynamic topography effects can
be estimated, equation (6.1)). Having this in mind, we define the QoI as,

Q =

∫
Γ

∂uz
∂z

dΩ. (5.1)

The QoI allows us to define the adjoint or dual problem to get a representation of the
error via equation (3.41). Two ingredients are required to get an error representation:
the solution of the adjoint problem and the residual of the RB solution. Since the
error has to be computed at each inversion step and solving the adjoint problem
requires as much computational effort as solving the direct one, we replace the exact
adjoint solution with an approximation to obtain an error estimator, equation (3.44).
Several approaches to estimate the adjoint solution are proposed in Section 3.2.2.
The simplest one is to solve the adjoint problem once at the beginning of the MCMC
simulation and reuse its solution for assessing the error in all subsequent iterations (see
Section 5.2.2 for accuracy details). This strategy is based on the fact that the adjoint
problem has a weaker parametric dependence than the original problem. Again, the
same simulation is repeated with a goal-oriented estimator and its evolution is shown
in Figure 5.8.

Figure 5.8 shows a reduction in the basis size when the goal-oriented error esti-
mator is used instead of a measure of the error in the energy-norm. The reduced
basis only needed 116 full FE solutions compared to the 445 FE required with the
energy-norm. Since the basis is targeting the QoI, it does not need to provide solu-
tions exhibiting the same accuracy everywhere in the domain. Therefore, the required
number of basis elements is much smaller. It is important to remark that the use of
a goal-oriented estimator does not mean that, as a consequence, the solution of the
forward problem is badly approximated in the rest of the domain. In other words, the
accuracy is guaranteed in the region or QoI, and elsewhere the solution is as accurate
as needed to fulfill the accuracy in the QoI region.
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Figure 5.8: Evolution of the basis size during the inversion for three different cases: using
a goal-oriented error estimator (orange), assessing the RB error in the energy-norm (green)
and solving a full FE at each inversion step (black).

The posterior results of the inversion are shown in Figure 5.9. Again, convergence
to the true values is achieved and random walks exhibit the same behaviour. The
values of the mean and standard deviation (Table B.2 from Appendix B) indicate
excellent agreement with the results obtained using any of the previous strategies:
MCMC+FE or MCMC+RB with an energy-norm error. In all cases, the incorpora-
tion of the information coming from the likelihood, notoriously narrowed the prior
distributions towards the true value. The gain in information on the model parame-
ters after the inversion is significant.

The use of goal-oriented error estimators allows us to tailor the basis not only
to the high-probability regions of the parameter space, but also to a specific output
for the inverse problem. Consequently, the basis size is remarkably reduced. Cui
et al. (2014) proposed a similar strategy using a delayed acceptance algorithm with a
criteria to enrich the basis directly based on the observables (i.e. based on the scaled
error of the reduce order model in the data space). When the estimated error of
the reduced order model is greater than one standard deviation of the measurement
noise, the RB solution is discarded.
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Figure 5.9: Random walk (top) and posterior PDF (bottom) for each of the 25 parameters.
The results using the RB approach with a goal-oriented error estimator are plotted. In
each plot: prior distribution (black dashed line), reference LAB value used to generate the
synthetic velocity field (solid black line) and initial value (red dot). The burn-in period has
been discarded in the estimation of the posterior PDF. Values of the mean and the standard
deviation for each posterior PDF are found in Table B.1 from Appendix B.
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5.2.2 Accuracy of the adjoint solution

As previously mentioned, obtaining an error representation requires both the solu-
tion of the adjoint problem, v, and the residual of the RB approximation, r∗. Since
computing the adjoint solution at each inversion step is not feasible (same compu-
tational cost as solving the primal problem), we approximate it. In the previous
example the adjoint solution is solved once at the beginning of the simulation and
reused for assessing the error in the successive steps. Our goal here is to analyse how
the accuracy of the adjoint solution affects the error estimator and, in particular, to
which extent it affects the basis size. The more accurate is the estimator the more
computationally expensive it is, so that some compromise should be sought. Some
options are presented next exhibiting a variety of accuracies and costs. They can be
classified in two groups:

1. The solution of the adjoint problem is approximated with a Reduced Basis. A
basis Badj is built for the adjoint problem using the same procedure that is
used for the primal problem. Analogously, the reduced system for the adjoint
problem is,

BT
adjKBadjβ = BT

adjf
o (5.2)

and the RB adjoint solution is obtained as v ' vRB = Badjβ. Creating a basis
for the adjoint problem also requires an error measure and in this case we use
the energy-norm.

2. The adjoint problem is solved with FE and its solution is reused for a certain
number of inversion steps. This option is based on one important property of
the adjoint problem: adjoints are typically less sensitive to perturbations of the
parameters than the primal problem (Florentin and Díez, 2012; García-Blanco
et al., 2017; Serafin et al., 2017) and the same adjoint solution can be used to
estimate the error of many similar primal solutions. Due to the convergence
nature of the inversion, a relevant adjoint solution may not be relevant for the
problem at hand after a certain number of inversion steps during the burn-in
period. As the inversion progresses, the adjoint solution is updated after a
certain number of inversion steps in order to guarantee that it remains relevant.
The following three options only differ in the updating frequency.

a) The adjoint solution is recomputed after a fixed number of inversion steps.
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5. Coupling Markov Chain Monte Carlo with Reduced Basis Method

b) The adjoint solution is recomputed every time the primal reduced basis
has been enriched a certain number of times.

c) The adjoint problem is solved once. (Examples of previous Section 5.2.1.)

In order to check the accuracy of the goal-oriented error estimator, we compute
its effectivity index, ηeff, defined using equations (3.41) and (3.43) as,

ηeff =
estimated error, ÊQ
exact error, EQ

=
|v̂Tr∗|

|lo(u)− lo(uRB)|
, (5.3)

where v̂ is the approximated adjoint solution. If ηeff > 1, the estimator has overes-
timated the error of the RB solution, whereas if ηeff < 1 the error has been under-
estimated. Therefore, we are interested in an error estimator whose effectivity index
is close to 1. As a reference, values of ηeff between 0.1 and 10 are usually taken as
acceptable. If the adjoint solution was computed with FE, then ηeff = 1. This can
be used to check that the implementation is correct. Computing the effectivity index
involves the FE solution u and therefore it can only be computed for small test cases.

We run five inversions to study how the accuracy of the adjoint solution influences
the goal-oriented error estimator of the direct RB solution and its basis size. We use
the linear QoI from equation (5.1) and the error tolerance for the basis is set at
eRB = 10−2 (1% of error). Details of the five strategies are summarized next:

1. Adjoint problem is approximated with RB for every inversion step. The error
tolerance for the adjoint RB solution is:

a) eadj = 10−2 (1% of error)

b) eadj = 10−1 (10% of error)

2. Adjoint problem is solved with FE and reused for a certain number of steps

a) Recomputed every 2000 inversion steps

b) Recomputed every time the primal basis is enriched 10 times.

c) Solved once

Since we are more interested in the magnitude of the effectivity index than the
value itself, we define a new effectivity index as the logarithm, η̃ = log10(ηeff). In
doing so, if η̃ > 0 the error has been overestimated, if η̃ < 0 it is underestimated
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5.2. Influence of the error indicator on the order reduction

and when η̃ = 0 the error estimator is exact. Acceptable values for η̃ are between -1
and 1. From now on, we refer to η̃ when talking about the effectivity index. Figure
5.10 shows the evolution of the effectivity index of the error estimator of the direct
solution, the error of the adjoint solution and the size of the basis for the strategies
1a and 1b. Results for strategies 2a, 2b and 2c are shown in Figure 5.11.

Figure 5.10: Evolution of the logarithm of effectivity index of the error estimator of the
direct solution, error of the adjoint solution and basis size during 3 × 104 inversion steps.
In both cases the adjoint solution is approximated with a RB: eadj = 10−2 (1a, top); and
eadj = 10−1 (1b, bottom).

In both strategies from Figure 5.10 the adjoint solution is approximated for every
inversion step. The error of the adjoint is always kept below the tolerance and when
it is larger, the problem is solved with FE and the basis is enriched. Looking at the
effectivity index plot it is clear that for the case where the adjoint solution is more
accurate (1a) the effectivity index is closer to 0, i.e. the estimated error is closer to the
exact error. However, the last plot shows there is no relevant difference in the basis
size of the direct problem (94 and 95 basis elements for cases 1a and 1b, respectively).
Contrarily, the basis size of the adjoint problem is considerably different and this is

91



5. Coupling Markov Chain Monte Carlo with Reduced Basis Method

what determines the actual cost of computing the error estimator. The basis size
of the adjoint problem for case 1a is 268, whereas for case 1b is only 42. Moreover,
in case 1a, although both direct and adjoint solutions have the same error tolerance
(eRB = eadj = 10−2) the final adjoint basis is larger than the direct one. The reason
is that the error for the adjoint is measured in the energy-norm (global) whereas the
error for the direct is goal-oriented (local).

Figure 5.11: Evolution of the logarithm of the effectivity index of the error estimator of the
direct solution, error of the adjoint solution and basis size during 3 × 104 inversion steps.
Adjoint solution: recomputed after 2000 inversion steps (2a, top), recomputed every time
the primal RB is enriched 10 times (2b, center) and only computed once (2c, bottom).

92



5.2. Influence of the error indicator on the order reduction

The three options reusing the adjoint solution are analysed next and their results
presented in Figure 5.11. In this case, the behaviour of the adjoint error is slightly
different. The error is initially zero and it grows while the random walks evolve
from the initial point until the adjoint is recomputed. The error then decreases to
zero and starts growing again. Since the adjoint solutions are reused for successive
problems, their errors can be large. In case 2c, although there is only one solution to
be reused, the error stabilizes as the random walk finds the high probability regions
of the parameter space. The greedy approach from case 2b uses information from
the basis of the direct problem to know when to recompute the adjoint solution.
Therefore, they mostly occur at the beginning of the inversion, when the basis growth
is faster, until they, eventually, are no longer necessary. Instead, case 2a recomputes
the adjoint solution indistinctly every 2000 steps, which results in a computational
cost that increases with the length of the inversion. Regarding the effectivity index,
the three cases show values around 0. The wider dispersion of values exhibited by
case 2c coincides with the also larger adjoint errors. Finally, the sizes of the reduced
basis of the direct problem coincide with previous cases using a RB, all between 91
and 97 elements. Values of the mean m̃ and standard deviation σ̃ of the effectivity
index as well as basis sizes and number of adjoint FE solutions for each of the five
cases are summarized in Table 5.1.

Case Basis size Adjoint
m̃ σ̃(#FE) (#FE)

1a 94 268 0.0001 0.004
1b 95 42 -0.0001 0.06
2a 92 16 -0.02 0.20
2b 91 10 0.01 0.16
2c 97 1 0.05 0.51

Table 5.1: Results with a linear error estimator. Basis size of the direct problem, number
of full FE adjoint solutions, mean m̃ and standard deviation σ̃ of the effectivity index for
the five cases. Adjoint solution: RB with eadj = 10−2 (1a), RB with eadj = 10−1 (1b),
recomputed every 2000 inversion steps (2a), recomputed every time primal RB is enriched
10 times (2b) and only computed once (2c).

We try next to quantify the behaviour of the different approaches to compute the
adjoint solutions and the corresponding error estimators. The error estimator can
predict the exact error, overestimate it or underestimate it. Although overestimation
is not the ideal situation, underestimation is more problematic. It makes us believe
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a solution has a certain accuracy when it actually has not. In the effectivity index
plots from Figures 5.10 and 5.11, all values below the horizontal black line have been
underestimated to some extent. It is interesting to show the extent of the underesti-
mation, i.e. a measure of the dispersion of underestimated errors with respect to 0.
Having N− underestimated values we define,

m̃− =
1

N−

∑
i∈{I−}

η̃i and s̃−
2

=
1

N−

∑
i∈{I−}

(η̃i − 0)2 (5.4)

Note that if dispersion was computed with respect to m̃−, it would be a variance.
Equivalently, for the N+ overestimated values we can define m̃+ and s̃+2 . These
values are computed at the beginning of the inversion (first 2000 values) and at the
end (last 2000 values) and results are summarized in Table 5.2.

Case m̃+ s̃+ m̃− s̃− Critical
first last first last first last first last underestimation

1a 0.003 0.001 0.01 0.001 -0.002 -0.001 0.01 0.002 0.01 %
1b 0.05 0.02 0.10 0.05 -0.05 -0.02 0.12 0.04 0.03 %
2a 0.20 0.07 0.36 0.12 -0.27 -0.07 0.45 0.12 0.08 %
2b 0.12 0.06 0.22 0.10 -0.16 -0.06 0.28 0.10 0.09 %
2c 0.36 0.30 0.52 0.43 -0.38 -0.27 0.56 0.42 0.11 %

Table 5.2: Results with a linear error estimator. Values of the parameters characterizing
the overestimation (m̃+, s̃+) and the underestimation (m̃−, s̃−) for the 2000 first and last
values for the five cases. Also, percentage of the critical underestimations. Adjoint solution:
RB with eadj = 10−2 (1a), RB with eadj = 10−1 (1b), recomputed every 2000 inversion
steps (2a), recomputed every time primal RB is enriched 10 times (2b) and only computed
once (2c).

As expected, in terms of both overestimation and underestimation the error esti-
mator that performs the best is 1a, followed by 1b, 2b, 2a and finally 2c. Moreover,
in all cases there is a clear improvement as the inversion progresses: mean values get
closer to 0 and dispersion values get smaller. At the beginning (first 2000 values)
underestimation seems to have a slightly larger effect than overestimation, but this
behaviour disappears, and in some cases reverses, as the inversion continues (last
2000 values).

In general, previous tables and figures may give the impression the error is under-
estimated many times. However, in the context of building a reduced basis, the ones
that do really present a problem are those whose error estimator indicates the error
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is below the given tolerance, but the real error is not. We call this situation critical
underestimation. In critical underestimations, if we had known the exact error, the
RB solution would not have been considered accurate, a FE solution would have been
required and the basis would have been enriched. Instead, the solution is wrongly
considered accurate and some error is likely to be introduced in the likelihood. This
situation is rare. For the less accurate error estimator (2c), the percentage of critical
underestimations (with respect to the total number of estimations) is 0.11%, whereas
for the more accurate case (1a), the percentage is 0.01%. The rest of underestimated
errors do not present a problem since they are within the tolerance threshold, i.e.
allowed error.

Since all direct basis have similar sizes, the computational cost is basically deter-
mined by the number of adjoint solutions that must be computed with FE during
the inversion. Looking at Table 5.2, the error estimator that shows an optimal cost-
accuracy relationship is 2b. It performs a greedy update of the adjoint solution while
keeping the cost of each inversion step controlled. Regarding the accuracy of the error
estimator, although we may be interested in achieving the highest accuracy (case 1a),
the error estimator is only used to determine if the basis needs to be enriched. Since
the percentage of underestimated errors that skip the enrichment is very small (even
smaller for longer simulations) and it mostly occurs at the beginning of the inversion
(discarded as burn-in period), the corresponding “wrong” samples that appear in the
random walk become statistically insignificant. In addition, in all the options pre-
sented here, no differences are observed in terms of MCMC results. Or in other words,
means and standard deviations of the posterior PDFs coincide among the five cases
and with the MCMC+FE reference approach. This is a clear indicator that, in all
tested cases, the RB approximation errors are under control and do not significantly
bias the posterior approximation while allowing to reduce its computational cost.

5.2.3 Extension to a non-linear QoI

Within our inversion framework, the goal of the QoI is to characterise the relevant
part of the solution which is to be used later in the likelihood estimation. That is,
the observables. In the misfit expression of the likelihood (4.31), the observable terms
are not linear, i.e. they appear to the second power. With the idea of correlating the
misfit and QoI as much as possible, another interesting option is to define a non-linear
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QoI as,

Q = lo(u) = ‖obs(u)‖2 (5.5)

with d = obs(u), where obs is an operator that computes the predicted observables
d from the velocity field u. In doing so, although the observables are the vertical
velocities, the QoI does not vanish anymore. We can follow the same strategy than
in Section 3.2.2 to obtain a linearlised error representation as,

loL(e) ' lo(uRB + e)− lo(uRB) = 2 obs(uRB)Tobs(e) = foTe (5.6)

with fo being the discrete version of loL(·). Since fo depends on uRB , the source vector of
the adjoint problem will change at each inversion step and the new problem will have
to be solved to assess the error. Again, this is not feasible. As the inversion proceeds,
the predicted observables are closer to dobs and the approximation obs(uRB) ' dobs

can be used,

loL(e) ' 2 dT
obsobs(e) = foTe. (5.7)

Once fo is defined and analogously to the linear case, an adjoint problem is used to
obtain an error representation in terms of the solution of the adjoint problem and the
residual of the RB solution. Similar to the linear example above, the adjoint problem
is solved once at the beginning of the MCMC simulation and its solution is reused
for assessing the error in all subsequent iterations.

We repeated the inversion from Section 5.2.1 using the non-linear QoI for 106

inversion steps. The results of the posterior PDFs show excellent agreement with
previous cases. Specific values for means and standard deviations of each of the pos-
terior PDFs are shown in Table B.2 from Appendix B. The final size of the basis is
of 129 elements, which is just slightly larger than the 116 of the linear case.

Regarding the accuracy of the non-linear error estimator, we implemented three
of the five cases presented above: (1b) adjoint problem approximated with RB with
eadj = 10−1, (2b) adjoint problem recomputed every time the primal basis is enriched
10 times and (2c) adjoint solution is computed once. We define the effectivity index
ηnleff as,

ηnleff =
estimated error, ÊQ
exact error, EQ

=
|v̂Tr∗|

|loL(u− uRB)|
. (5.8)
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Again, we are more interested in the magnitude than the value itself, so that we
use its logarithm, η̃nl = log10(ηnleff). In the definition from (5.8) the linearised error is
considered as the exact one, so that the linearization is already assumed a valid and
accurate approximation. Therefore, the effectivity index is only accounting for the
error introduced by the approximation of the adjoint solution v̂ and the approxima-
tion obs(uRB) ' dobs. Since the latter is only accurate when the parameters model m

is close to the real one, we expect that the beginning of the inversion the non-linear
error estimator estimates the error very poorly, whereas as the inversion converges
and model parameters get closer to the true ones, the approximation obs(uRB) ' dobs

applies and the estimation improves. Summarizing, if we want the non-linear error
estimator to be exact (η̃nl = 0), we need two things: an exact adjoint solution and
that m is the real one.

Figure 5.12 shows the evolution of the effectivity index of the nonlinear error
estimator of the direct solution, the error of the adjoint solution and the size of the
basis for the strategies 1b, 2b and 2c during 3 × 104 inversion steps. Values of the
mean m̃ and standard deviation σ̃ of the effectivity index as well as basis size and
number of adjoint FE solutions are summarized in Table 5.3. Finally, parameters
characterising overestimation and underestimation as well as the percentage of critic
underestimations are shown in Table 5.4.

Case Basis size Adjoint
m̃ σ̃(#FE) (#FE)

1b 95 148 -0.04 0.27
2b 105 11 -0.10 0.45
2c 123 1 -0.06 0.63

Table 5.3: Results with a non-linear error estimator. Basis size of the direct problem,
number of full FE adjoint solutions, mean m̃ and standard deviation σ̃ of the effectivity
index for the three cases. Adjoint solution: RB with eadj = 10−1 (1b), recomputed every
time primal RB is enriched 10 times (2b) and only computed once (2c).

Looking at the effectivity index plots from Figure 5.12, it can be seen that all
values are around 0. However, their dispersion is larger than in the previous linear
cases and it is confirmed by the standard deviation values from Table 5.3. Although
plots do not seem to show a clear improvement in the effectivity index as the inversion
progresses, values of the mean and dispersion of both the overestimation and under-
estimation from Table 5.4 show a reduction for the 2000 last values compared to the
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Figure 5.12: Evolution of the logarithm of the effectivity index of the error estimator of the
direct solution, error of the adjoint solution and basis size during 3 × 104 inversion steps.
Adjoint solution: RB with eadj = 10−1 (1b, top), recomputed every time the primal RB is
enriched 10 times (2b, center) and computed once (2c, bottom).

first 2000. For the case 2c, the reduction is less relevant than for 1b and 2b since the
same adjoint solution is reused for the whole inversion and, therefore, does not play
any role in improving the error estimator. As we explained, the adjoint solution is not
the only responsible term in obtaining a good error estimator. The approximation
obs(uRB) ' dobs is only valid when the random walk is actually close to the true
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Case m̃+ s̃+ m̃− s̃− Critical
first last first last first last first last underestimation

1b 0.26 0.11 0.43 0.25 -0.22 -0.14 0.38 0.28 0.31 %
2b 0.43 0.26 0.60 0.42 -0.49 -0.26 0.67 0.41 1.15 %
2c 0.48 0.45 0.65 0.63 -0.53 -0.47 0.71 0.64 0.64 %

Table 5.4: Results with a non-linear error estimator. Values of the parameters charac-
terizing the overestimation (m̃+, s̃+) and the underestimation (m̃−, s̃−) for the 2000 first
and last values for the five cases. Also, percentage of the critic underestimations. Adjoint
solution: RB with eadj = 10−1 (1b), recomputed every time primal RB is enriched 10 times
(2b) and only computed once (2c).

parameter model which is certainly not true at the beginning of the inversion. This
explains why the effectivity index in general terms is worse than for the corresponding
linear cases. It is clearly seen in the underestimation dispersion values as well as in
the percentage of critic underestimated errors. All this is translated in larger reduced
basis for the direct problem. In case 1b, the basis size for the adjoint problem is even
larger than the basis for the direct problem which is something that did not happen
for the linear case with these error tolerances. Not only this nonlinear QoI performs
poorer than the linear options, but it also has a higher computational cost.

For the nonlinear case, it also makes sense to define the effectivity index as
ηnleff = |v̂Tr∗|/|lo(u− uRB)|. In doing so, the error introduced by the linearitzation is
also considered in the effectivity index. However, results are similar and we do not
show them.

In all cases, the results of the inversions are in excellent agreement with the
MCMC+FE and all other MCMC+RB options presented so far and do not seem to
be visibly affected by the accuracy of the error estimator. However, if available, we
certainly prefer a more reliable error estimator like the corresponding linear options,
which, on top of that, have a lower computational cost.

99



5. Coupling Markov Chain Monte Carlo with Reduced Basis Method

5.3 Influence of the inverse problem definition on

the order reduction

In previous sections we analysed how to create a reduced basis which is tailored to the
high-probability regions of the parameter space and to a specific quantity of interest
simultaneously. Since it is specifically shaped, its size is much smaller than if it had to
reproduce the whole domain. These two strategies allowed us to reduce drastically the
computational cost of solving forward problems. The goal of this section is to study
how the variables defining the inverse problem affect the basis size. In particular, the
number of inversion parameters and the uncertainty in the observables.

5.3.1 Number of inversion parameters

One of the main things defining the inverse problem is the number of parameters to
be retrieved by the inversion. So far, in all the simulations the LAB was characterized
by 25 parameters. We will now increase them and study the basis behaviour. The
inversion will certainly have more difficulties in converging to the true parameters
and the number of required inversion steps will be larger in order to have enough
samples to approximate the posterior. Intuitively, it is expected that the size of the
basis would be proportional to the size of the parameter space. This is because more
parameters allow to describe a richer family of solutions and, therefore, the amount
of information required to span all possible solutions grows as well.

Like in previous examples, the domain represents a portion of Earth of 400km ×
400km going down to 660km depth and is discretized in 10×10×20 finite elements.
The LAB structure is now discretized with 100 parameters and the number of syn-
thetic observables is increased to 2700 to make the overall sensitivity comparable to
that in the example with 25 parameters. Each LAB depth (inversion parameter) is
associated with one column of the finite elements mesh, whereas previously each LAB
value covered four columns. The setup of the MCMC simulation is identical to that
of the previous examples: same priors and starting configuration, Gaussian proposal
with σp = 5 km, percentage of the introduced noise σe = 10−1 and tolerance for the
RB approximation is set at eRB = 10−2. Regarding the error estimator, we used the
goal-oriented approach with the linear QoI and one reference solution for the adjoint
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problem. We run a total of 106 inversion steps.

The basis needed about 262 elements (0.03% of the inversion steps required full
FE solutions) to create an accurate surrogate for all simulation steps, which again
represents a drastic reduction. In this case, the time to obtain a RB approximation
is around 0.05 seconds which translates into a 0.8% of the overall CPU cost if using
FE only. The difference between RB times with respect to the 25 parameter case
(0.1 seconds for a basis of around 250 elements) is due to the parameter-column
relationship since the number of columns modified per inversion step is here smaller
(see Section 5.5 for a complete explanation). Figure 5.13 summarizes the posterior
PDF for the LAB structure as the mean of each of the parameters.

Figure 5.13: Result of the inverse problem. Mean values of the posterior PDFs for each of
the 100 parameters of the unknown LAB structure.

The algorithm succeeded in obtaining an accurate representation of the solution.
Differences between mean values of the posterior PDF and the reference synthetic
LAB are again within one standard deviation. Plots of the random walks (Figure
B.1) and posteriors PDFs (Figure B.2) for each of the 100 parameters and values
of means and standard deviations (Table B.3) can be found in Appendix B. The
standard deviations of the posteriors range approximately between 2km and 6km.
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These values are very close to the ones obtained in the previous examples. This is
to be expected, since we increased the number of observables to make the overall
sensitivity comparable in both examples. If the number of data points is kept fixed,
the posterior distributions become wider as the number of parameters increase. This
suggests that the sensitivity of the velocity field to perturbations of a single param-
eter is reduced as the number of parameters increases. Or in other words, when the
number of parameters increases, their individual influence area is reduced. This be-
haviour is well-known in inverse problems, where a trade-off always exists between
the number of parameters needed to represent a model versus the number that can
be well-constrained by the data. Less sensitivity to model parameters requires ex-
ploring larger areas of the parameter space, which typically results in longer chains
with wider posteriors.

Figure 5.14 shows the evolution of the basis size for different number of parame-
ters: 25, 100 and 225. The number of synthetic observables is increased proportionally
so that sensitivity is not a controlling factor: 675, 2700 and 6075 data points, respec-
tively. For the 225 parameters case the same domain is discretized in 15×15×20 finite
elements, whereas for cases with 25 and 100 parameters it remains 10×10×20.

Figure 5.14: Evolution of the basis size during the inversion for three different number of
model parameters: 25 (dashed red), 100 (solid yellow) and 225 (turquoise dotted).

In all cases, the growth of the basis (i.e. the number of full FE problems) reaches
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a “plateau” or a “saturation” level after which all MCMC steps are computed with
the RB approximation. As expected, the final basis size increases with the number of
parameters. To solve 106 inversion steps the inversion needed to solve 138, 262 and
636 full FE solutions for cases with 25, 100 and 225 parameters, respectively. The
reduction in computational cost with respect to the unfeasible MCMC+FE case is
outstanding. This example illustrates the scalability of the method. Although the
size of the basis grows with the number of parameters, the method remains practical.

5.3.2 Uncertainty in the observables

An inverse problem uses data to obtain information about the model parameters that
are more likely to explain such data. Definitely, the larger the uncertainty in the data,
the less constrained the parameter space will be. Since the basis size is mainly de-
termined by the high-probability region of the parameter space, a poorly constrained
space will require a larger basis to accurately reproduce all possible solutions.

In the following example we see how the amount of error or uncertainty in the
data affects the results of the inversion and the basis size. Three identical inversions
are performed with data errors: 1%, 5% and 10%. Figure 5.15 shows the effect of the
error level in (a) the random walk, (b) the posterior distribution for a representative
parameter and (c) the evolution of the basis size.

The simulations run for 106 inversion steps and accurately recovered the posterior
PDFs for 100 parameters. As expected, the range of possible model parameters
explaining the data increases with larger errors. When the knowledge about the data
is very precise (1% of error), the algorithm is more strict in accepting models to
the random walk. Instead, when we are not so sure about data (10% of error), the
algorithm is more permissive and the range of variability of models is larger which
translates in wider chains and posterior PDFs. If the number of models whose solution
needs to be explained by the basis is larger, the basis size will increase in order to
include them.
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Figure 5.15: Influence of noise size in (a) random walk, (b) posterior distributions and (c)
basis evolution size for three different noise levels: σe = 0.01 (dotted purple), σe = 0.05
(dashed green) and σe = 0.1 (solid yellow).

5.4 Influence of the MCMC solver on the order

reduction

In previous sections we studied how the error indicator required in the process of
building the basis as well as the characteristics of the inverse problem definition af-
fected the basis size. In this section we analyse some aspects of the inverse MCMC
solver which can be used to have a better control of the basis. Firstly, we study the
influence of different sampling strategies. Then, an adaptation procedure is imple-
mented to automatically explore the parameter space in an efficient way. And, finally,
two strategies to dynamically inspect and control the basis are presented.
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5.4.1 Sampling strategy

The sampling strategy of the parameter space is a key factor in solving an inverse
problem and becomes crucial in high-dimensional spaces. An optimized and efficient
search of the parameter space can determine whether an inversion is feasible. With
an explorative sampling, the random walk is rapidly moving around the whole space
of parameters but it is unlikely to accept new movements (very low acceptance rate).
Instead, if the sampling is exploitative and detailed, the random walk is moving very
slowly which increases the acceptance probability, but at the same time it may require
longer chains to explore the whole space (poor mixing) (Tarantola, 2005; Gregory,
2005). From an inversion point of view, the goal is to design a random walk that
efficiently explores the whole space getting neither lost nor stuck. This is achieved by
generating samples whose perturbation on the likelihood is as small as possible (to
increase the acceptance rate and, therefore, likely to be accepted) but large enough
in the parameter space to rapidly explore it. In other words large jumps in the model
space that produce small perturbations in the data space.

In our MCMC+RB coupled approach the sampling of the parameter space is per-
formed simultaneously with the generation of the reduced basis. More specifically,
the process of adding snapshots or elements in the basis is led by the exploration
of the parameter space. Therefore, an efficient strategy from the inversion point of
view, may be counterproductive in terms of order reduction. Imagine for instance the
situation in which an efficient strategy requires a very large reduced basis (i.e. a lot
of FE solves). Although the search is optimal, every likelihood evaluation is very ex-
pensive in a computational sense, which means inefficiency in the inversion as a whole.

Many methods have been developed with the idea of improving the sampling
strategy and solve the problems described above among many others. Since our goal
is not to find the best strategy but to study their relation with the order reduction,
we will not attempt complex strategies. Instead, we will keep it simple and focus in
two characteristics of the sampling strategies that will help us understand its main
influence in the order reduction. Firstly, we will see the effect of sampling the prior by
means of a proposal distribution. Secondly, the influence of the number of parameters
mi that are sampled at each inversion step. For all the examples presented next, the
prior PDF about model parameters is relatively uninformative and it is represented
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by a uniform distribution covering a range of 100km (i.e. ±50 km from the reference
LAB value). The joint prior PDF is the product of the individual priors ρi(mi) for
each model parameter mi.

Sampling with a proposal distribution

Generating a sample from the prior can be performed in two different ways: directly
generating a random value or using a proposal distribution to sample it. Let us
start with the former and simpler case. At each inversion step the proposed sample
is directly generated from the corresponding prior distribution. In our case, since
the priors are uniform, all values are equally likely to be proposed. Consequently,
each proposed sample is independent of the previous one. This independence allows
a rapid exploration of the space, but at the same time reduces the acceptance rate
because perturbations can be very large. Additionally, this kind of exploration re-
sults in a space equally sampled, without giving different importance to high and
low probability regions. The other option is to use a proposal distribution to sample
the prior. Let us assume a one-dimensional Gaussian proposal distribution (used in
previous examples): centered at the current state of the chain mi,old with standard
deviation σp determining the size of the move. In doing so, each proposed sample
depends on the previous one and the exploration is more controlled. Using a proposal
allows a more exhaustive exploration (more samples) of high probability regions of
the parameter space and less exhaustive (less samples) in low probability regions. In
terms of the basis size, this is essential since it allows generating a basis tailored to
the high probability regions.

The design of efficient proposals is crucial for the success of any MCMC algo-
rithm and an important research topic in the MCMC literature (Roberts et al., 1997;
Roberts and Rosenthal, 2001). Next, the effect that different proposals have on the
basis size is analysed. Three identical inversions are run with different jump sizes:
(a) σp = 5km, (b) σp = 10km and (c) σp = 20km. The behaviour of the random walk
and the basis size is shown in Figure 5.16.

The simulations run for 106 inversion steps and accurately recovered the posterior
PDFs for 100 parameters. In Figure 5.16, the values of the samples that are accepted
as part of the random walk according to the Metropolis ratio rm are shown in grey,
whereas all the samples proposed during the inversion are indicated in colors. Unsur-
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Figure 5.16: Influence of the proposal distribution in the random walk (top) and in the
basis evolution size (bottom) for three different proposals: (a) σp = 5km, (b) σp = 10km
and (c) σp = 20km. All proposed samples by the inversion (yellow, orange, red) and samples
which are accepted (grey).

prisingly, the width of the random walk of accepted moves (gray) and, therefore, the
width of the corresponding posterior PDFs coincide. This confirms that, indepen-
dently of the chosen proposal, the random walk will eventually converge to the same
stationary distribution. The difference, however, is how efficiently this convergence
will be. As expected, the acceptance rate values decrease with increasing jump size:
50%, 20% and 16% for values 5km, 10km and 20km, respectively. For comparison,
if no proposal distribution is used and random samples are directly generated from
the prior, the acceptance rate reduces to 8%. According to Gelman et al. (1996) an
optimal acceptance is approximately 50% for one dimension and decreases to 23% as
dimensions increase.

We also see a significant influence in terms of basis size. Similar to the effect of
increasing σe, larger values of σp (i.e. large proposed moves) result in a larger domain
for which accurate solutions are required from the surrogate, which in turn requires
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larger basis sizes. The size of the basis for each σp case is also shown in Figure 5.16
(bottom): 262, 356 and 528 for 5km, 10km and 20km, respectively. The key point
is that, even if a sample is not accepted, its forward problem has to be solved and,
therefore, it may contribute to increase the basis size. In the extreme case of directly
sampling the prior (equivalent to a very large σp), the whole space is sampled alike
which results in an even larger basis, 628 FE.

Our main point here is that care must be taken with the trade-off between efficient
sampling in terms of inversion and in terms of order reduction. In the example
presented here, according to optimal efficiency rates we should go for a σp around
10km, which represents a larger basis size than the 5km option. If an increase in
basis size implies a substantial increase in computing time for the RB solutions, it
may even be favourable to have longer random walks (less sampling efficiency), but
faster RB solutions (more efficient forward evaluations). This situations is problem
dependent and should be analysed for each particular case.

Sampling the prior distribution by blocks

In previous examples just one parameter mi was modified at a time and the rest re-
mained at their current value. In other words, between mnew and mold only one value
was different. This is itself a sampling approach designed to increase the acceptance
rate since the corresponding perturbations in the data space are smaller than if the
whole vector is changed at the same time. However, for high-dimensional parameter
spaces this may lead to a very slow exploration and, therefore, an inefficient inversion.
Here, with the idea of moving faster and improving the mixing of the chain, we study
the influence of modifying a few parameters simultaneously.

The results presented next are based on ideas from Section 5.5 (advice: read it
first!). Three identical inversions are performed with σp = 5km by varying the number
of randomly chosen parameters to be sampled per inversion step: 1, 4 and 10. Note
that each parameter corresponds to a column of 20 finite elements. Table 5.5 shows
final values of acceptance rates as well as the time required to evaluate the stiffness
matrices K and KRB per inversion step.

On one hand, the acceptance rate decreases with increasing number of modified
parameters, 50%, 10% and 0.9%, because they generate larger perturbations in the
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#modified #modified
K KRB

Acceptance
parameters elements rate

1 20 0.030s 0.009s 50 %
4 80 0.045s 0.036s 10 %
10 200 0.080s 0.113s 0.9 %

Table 5.5: Values of the acceptance rate and time required to evaluate the stiffness matrices
K and KRB for cases in which 1, 4 and 10 parameters are modified per inversion step.

data space. On the other hand, values from Table 5.5 show that the time required
to evaluate the stiffness matrices K and KRB also increases as more parameters are
modified. At first glance it my not seem a large increase in time, however, matrices
must be evaluated at each inversion step. For instance, imagine an inversion that
run for 106 inversion steps, the total time required to evaluate the matrices sampling
1 parameter at a time is around 10 hours, whereas the same situation modifying 10
parameters takes 53 hours. Therefore, although the mixing of the chain can be im-
proved by modifying more than one parameter at a time, it is at expenses of longer
matrix evaluations.

The conclusion drawn from all the examples presented in this section is that
in order to increase the computational efficiency of the inversion as a whole, the
traditional acceptance rate optimal values (∼ 35%) should be reconsidered. Higher
acceptance rates will certainly require longer random walks, but the resulting smaller
basis and effortless matrix evaluations can represent a huge difference.

5.4.2 Adaptation (SCAM)

The width of the posterior distribution is not the same for all parameters (Figures
4.5, 5.5, 5.9), indicating that the sensitivity of the velocity field to perturbations
varies. Some parameters have a small influence in the velocity field, which implies
that they are less constrained by the data and, therefore, exhibit wider distributions.
Instead, parameters which produce large perturbations, show narrower distributions.
To increase the efficiency of the sampling, the standard deviation of the proposal
distribution, σp, should be specifically chosen for each parameter.

The adaptive metropolis method proposed by Haario et al. (1999, 2001, 2005)
tunes the proposal distribution during the inversion according to the information of
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previous states of the chain. In this way the variance of the proposal automatically
adapts to the posterior or target distribution. The process loses its Markovian char-
acter, but Haario et al. (2001) proved that, under certain conditions, the process is
ergodic and has the desired stationary distribution. There are two main variants of
the algorithm: the Adaptive Metropolis (AM) and the Single Component Adaptive
Metropolis (SCAM). The main difference is that AM uses a multivariate proposal
distribution and it is adapted using the covariance matrix of the generated chain
(Haario et al., 2001). However, for high-dimensional spaces, sampling all parameters
at the same time can be time consuming both for the covariance evaluation and, as de-
scribed in the previous section, the forward problem itself. Instead, SCAM algorithm
samples one parameter at a time using one-dimensional proposal distributions which
are individually adapted using the variance of each parameter chain (Haario et al.,
2005). The proposal distribution is a Gaussian distribution centered at the current
value of the chain and has a variance that depends on time. Renaming the current
state of the chain for parameter i as mt

i, the variance of its proposal distribution v
t+1
i

for time t+ 1 is adapted as,

vt+1
i =

v0
i t ≤ t0

sVar(m1
i , . . . ,m

t
i) + sε t > t0

(5.9)

where v0
i is an initial proposal variance, Var(m1

i , . . . ,m
t
i) is the sample variance of

the posterior values of the chain up to the current step, ε is a small constant to
prevent the variance from being zero and s = 2.4 is a scaling factor. Its value is set
according to the results of Gelman et al. (1996) in which it is shown that such value
optimizes the mixing properties of the search in the case of Gaussian posteriors and
proposals. The parameter t0 is used as a burn-in period before adaptation starts.
Defining gti = Var(m1

i , . . . ,m
t
i), the variance of the chain values can be efficiently

updated with new samples using the following recursive expression,

gt+1
i =

1

t

[
(t− 1)gti +

t+ 1

t
(mi

t+1 −mt+1
i )2

]
(5.10)

where mi
t+1 is the mean of t+ 1 samples which also satisfies a recursive expression

mi
t+1 =

1

t+ 1

[
t mi

t +mt+1
i

]
. (5.11)

We have implemented the SCAM algorithm and studied its influence in the order
reduction. To be consistent with previous examples we prefer to deal with standard
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deviations, i.e. σ0
i =

√
v0
i . Two simulations of 100 parameters are run with initial

values σ0
i = 2km and σ0

i = 30km. Proposal distributions are updated at intervals
of 50.000 inversion steps which is also the chosen value for t0. The following results
show the evolution of the acceptance rate and basis size compared to the situation in
which adaptation is not performed.

Figure 5.17: Evolution of the acceptance rate and basis size with and without adaptation
with initial standard deviations σ0

i = 2km and σ0
i = 30km for for i = 1, . . . , nm.

Figure 5.17 shows two different behaviours. For the case with a small σ0
i = 2km,

the acceptance rate is initially very high (around 70%) indicating that most of the
jumps are accepted and the space is slowly explored. The SCAM algorithm is able to
correct it by increasing the values of σ0

i (Figure 5.18) so that the acceptance rate de-
creases to more optimal values. Instead, if the initial value of σ0

i = 30km is large, the
behaviour is the opposite. The acceptance rate is initially very small (around 15%)
and, once adaptation starts, the jump sizes reduce to increase the acceptance rate.
After a certain number of adaptations, the acceptance rate in both cases is around
35%. Dashed lines show the resulting acceptance rate curves if no adaptation was per-
formed. Adaptation also controls the evolution of the basis size. It adapts as required
by the new values of σti . For σ0

i = 2km, the basis is initially small, but as adaptation
takes place and σti values increase, the basis needs to provide accurate solutions to
a now larger region of the parameter space and, therefore, a richer basis is required.
A too large initial basis defined by a too large initial σ0

i can also be controlled with
adaptation, but, unlike the previous case, adaptation must take place before the basis
stabilizes. Although the shorter the burn-in time t0, the more evident the effect in
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the basis size, care must be taken to have a relevant number of samples before adap-
tation. Finally, it is important to remark that the resulting posterior distributions
are not affected by adaptation and are in excellent agreement with previous examples.

Figure 5.18 shows the initial and final values of the standard deviation (σ0
i and

σti , respectively) for each of the 100 parameters.

Figure 5.18: Standard deviation values of each of the 100 proposal distributions. Initial σ0
i

and values of σti after the last adaptation for the two cases shown in previous Figure 5.17:
2km and 30km.

For each parameter, the final values of σti are very similar independently of the
starting point and, in fact, they would eventually coincide for a long enough number
of inversion steps. It is also interesting to observe that, as mentioned at the begin-
ning, the final σti values are different among parameters: larger values are exhibited
for those parameters whose posterior distributions are wider. Tuning each proposal
individually would be very difficult without adaptation.

Adaptation is a good approach to deal with the typical compromise between the
wish of a fast exploration of the parameter space and the need of generating samples
which can be accepted. The proposal distribution is automatically adapted to improve
the mixing of the chain and, therefore, convergence is faster. In addition, the basis
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size can also be controlled and adapted as the inversion requires, either if initially is
too small or too large.

5.4.3 Dynamic control of the basis size

There are two main reasons to perform a dynamic control of the basis size: 1) orthog-
onalize the basis and 2) remove irrelevant information as the Markov chain moves to
a more restricted parameter space, i.e. high-probability regions. In doing so, the idea
is to obtain a smaller, compact and data-driven basis.

As explained in Section 5.1, our greedy approach to build the basis does not
guarantee orthogonality and it allows some level of linearity due to the predefined
tolerance. Although our tests show it is not relevant in terms of conditioning, redun-
dant information can be eliminated and the basis reduced accordingly. The Singular
Value Decomposition (SVD) is excellent at reducing dimension and eliminating small
dependencies allowed during the construction of the basis. Without getting into de-
tails, the SVD is a numerical tool that factorizes a matrix B ∈ Rm×n into the product
of 3 matrices,

B = UΣVT (5.12)

where U ∈ Rm×m and V ∈ Rn×n are orthonormal matrices and Σ ∈ Rm×n a diagonal
matrix with the singular values of B ordered from largest to smallest. Columns of U

and V are called left and right singular vectors (see for example Brunton and Kutz
(2019) or Quarteroni et al. (2016) for details). Following this idea, our basis B can
be decomposed similarly and the resulting matrix U used as an orthonormal basis.
Since we are also interested in reducing the size, not all columns of U are considered.
Intuitively, columns of U capture the correlations in columns of B and the magnitude
of the corresponding singular value indicates their contribution at explaining B (Fig-
ure 5.19). Therefore, only such columns with a significant contribution are retained.
Deciding where to truncate the matrix is not straightforward and depends on factors
which are problem dependent (maximum desired size, level of noise, etc). Typically
an energy criteria in the accumulated variance is used. Other strategies inspect the
distribution of singular values to identify certain shapes ( “elbows” o “knees”) that
help deciding where to truncate (Brunton and Kutz, 2019).
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However, the SVD does not take into account the problem at hand. In other
words, it is aimed at keeping as much independent information as possible regardless
of its relevance in terms of high-probability regions. For instance, let us consider
a basis element that was added to the basis at the beginning of the inversion from
a region that is never visited again. This element is representing a portion of the
parameter space that is no longer important for the inversion, but it provides in-
dependent information since it is the only one explaining that particular region of
the space. Therefore, its singular value will be considerably high and it will not be
discarded.

Instead, if our interest is to get rid of those basis vectors whose contribution at
explaining the high-probability regions is no longer relevant, a different approach
must be devised. A possible strategy is to check the solution vector α of the reduced
system, equation (3.32). Such coefficients indicate the contribution of each basis el-
ement. A representative reduced system (KRB and fRB) is created for a parameter
vector which is the current average of the chains, m = [m1, . . . ,mnm ], and the system
is solved. Then, basis vectors with coefficients below a given threshold are discarded.
In doing so, the approach filters those solutions which are outside the high-probability
regions of the parameter space and, hence, obtain a more compact and tailored basis.

In our case, since the basis is constructed during the inversion, if relevant infor-
mation is removed by any reduction strategy, extra high-fidelity FE computations
will be required to re-learn such solutions. Although it guarantees that accuracy is
always restored, one must be careful of the resulting additional cost if the basis is
trimmed too much. In other words, although a smaller and compact basis can be
achieved, it is at expenses of extra high-fidelity solutions which imply an additional
cost that should not be underestimated. Therefore, some trade-off should be sought
in order to remove redundancies while keeping all the information.

The two strategies are applied to the 100 parameters inversion (Section 5.3.1)
after 2 × 105 inversion steps. The coefficients of the resulting linear combination as
well as the singular values obtained from applying a SVD procedure are shown in
Figure 5.19 ordered from largest to smallest.
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Figure 5.19: Singular values (SVD) and α coefficients of the representative reduced solution
for each basis vector after 2×105 inversion steps. Values are normalized with respect to the
maximum.

Figure 5.19 shows a difference in importance between both approaches. Values
represented with red asterisks characterise the relative importance or contribution of
each basis element (with respect to the element that contributes the most) at ex-
plaining the high probability regions of the parameter space. Instead, blue circles
express the contribution of each element considering dependencies and correlations
among them. In both curves, the elements exhibiting the lowest contributions are
candidates to be removed. The shape of the curve shown by the singular values (cir-
cles) characterises the amount of linearity allowed during the construction of the basis
(determined by the RB tolerance eRB). This particular shape suggests that the basis
enrichment algorithm is working because, although not fully orthogonal, linearity is
controlled.

Next we will run two identical inversions applying reductions at intervals of 2×105

inversion steps. Two different cut-off tolerances are used for each reduction approach.
First, the basis evolution using the SVD strategy is shown in Figure 5.20.

115



5. Coupling Markov Chain Monte Carlo with Reduced Basis Method

Figure 5.20: Evolution of the basis size using a SVD reduction approach with two different
cut-off tolerances: 10−3 (dashed line) and 10−4 (solid line). Reduction is performed every
2× 105 inversion steps (vertical lines).

It is not trivial to know beforehand which should be the proper cut-off tolerance
that does not imply a subsequent enrichment period, i.e. additional high-fidelity FE
solutions. According to the values from Figure 5.20, it seems a 10−4 cut-off tolerance
is able to get rid of the linearity without implying too many extra solutions, whereas
for the 10−3 case, after reduction there is always an enrichment period. This suggests
that reduction is not only removing correlations, but also important information that
eventually needs to be replaced. Although some of the dependencies removed in the
first reduction are not recovered again, the subsequent enrichment periods confirm
that the algorithm to enrich the basis is working since there is not much redundant
information that can be eliminated without needing it again. According to our tests,
the slight reduction achieved in the basis size does not significantly reduce the cost
of obtaining a RB solution and, in addition, it brings the possibility of extra FE
solutions.

Second, Figure 5.21 shows the basis evolution where the reduction approach aims
to remove basis elements which are outside the high-probability regions.

Figure 5.21 shows that after reduction the basis grows again, suggesting that some
of the removed basis elements were actually relevant. For this approach to be prac-
tical, a fine-tuning of the cut-off tolerance is essential. Since our basis results are
good enough and in our tests the computational gains are not significant, we did not
attempt it. However, if reduction was necessary, it seems reasonable to perform only
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Figure 5.21: Evolution of the basis size using the coefficients of a RB reference solution
to reduce it with cut-off tolerances 10−1 (dashed line) and 10−2 (solid line). Reduction is
performed every 2× 105 inversion steps (vertical lines).

one reduction to discard the uninformative elements added during the burn-in period,
since the chances to need them again are low. In addition, the more advanced is the
inversion before reduction, the more representative is m of the high-probability areas
and, therefore, more accurate is the reduction. This explains the tendency of the
solid curve to converge to a smaller basis size.

More sophisticated strategies could be devised to adaptively control the reduction
of the basis. For instance, evaluating the required time to compute a RB solution
and apply a reduction if it is larger than a certain threshold (e.g. related to the
cost of solving a high-fidelity FE problem). Also, a strategy described in Manassero
(2019) in which reduction is performed when the basis size reaches a certain value.
A maximum basis size is initially fixed and its value is redefined after every SVD
reduction to progressively allow the basis to increase if required.

5.5 Efficient assembly of stiffness matrices

Having a reduced basis is a great improvement in reducing the order of the model and
obtaining fast RB approximations. However, a fast approximation is not only deter-
mined by the basis size (i.e. the size of the reduced linear system), but it also depends
on the assembling efficiency of the matrices involved. The computational cost of the
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assembly of the FE stiffness matrix K and the computational cost of reducing it via
the multiplication BTKB are significant and cannot be neglected. Note that although
the size of the reduced system is small, nRB×nRB , the multiplication BTKB depends
on nFE and can be computationally expensive. All RB methods should efficiently
handle these operations since a high cost could render them impractical. This sec-
tion describes the procedures used to perform these two operations in an efficient way.

Table 5.6 shows the final basis sizes for 9 inversions varying the number of inversion
parameters and the mesh discretization.

Mesh size Length u
Basis size

25 params 100 params
2000 28743 118 262
4500 61728 115 -
8000 107163 119 327
18000 235383 104 332
32000 413403 108 314

Table 5.6: Final basis sizes obtained for the inversion of 25 and 100 parameters for five
different mesh discretizations. For the 25 parameters case the inversion run for 2 × 105

inversion steps, whereas for the 100 parameters they run longer, 106 inversion steps. It also
shows the length of the basis vectors for each mesh discretization.

Two conclusions are drawn from here. First, the number of elements in the basis
does not directly depend on the discretization of the forward problem (if the mesh is
fine enough to describe the solution). In other words, for a fixed number of param-
eters and guaranteeing a certain accuracy for the RB problem, a finer discretization
of the mesh does not affect the number of elements in the basis. Second, although
the basis size does not significantly change, the size of each element u of the basis
increases with the discretization. Therefore, finer discretizations increase the compu-
tational time of performing the multiplication BTKB.

5.5.1 Efficient assembly of the FE stiffness matrix K

The assembly strategies described next are based on two main ideas. On one hand,
they rely on the additive property of the weak form. Essentially, the global stiffness
matrix K can be thought as a sum of elemental contributions Ke. On the other hand,
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the performed assembly strategy takes advantage of the specific parametrization of
the problem and sampling strategy, i.e. at every inversion step, the modification of
the viscosity field is local, only a few elements change.

Combining both ideas, we devise an assembling strategy that, at each inversion
step, only needs to update the part of the global stiffness matrix that has changed
with respect to the previous step. Initially, the global stiffness matrix is computed
by assembling the contribution of all elements in the mesh, whereas in the successive
iterations, only the elemental stiffness matrices of the elements that have been mod-
ified are computed and their contribution is updated in the global matrix. In doing
so, the computational cost of evaluating the stiffness matrix for each inversion step
is remarkably reduced. The required time to evaluate or update K is determined by
the number of elements that have been modified and need to be updated. Figure 5.22
shows the required time to update the stiffness matrix K with respect to the number
of modified elements with a mesh of 2000 finite elements (Q2-P1).

Figure 5.22: Time required to assemble the stiffness matrix K by only updating the con-
tribution of the elements that have changed (each point is an average of 100 different K
updates). For comparison, the time required to perform a full sparse assembly of K is shown
with an horizontal dashed line. The mesh has 2000 finite elements (Q2-P1)

Figure 5.22 indicates that the reduction in computational time is significant when
the modification is local in space. By only updating the contribution of the elements
that have been modified, the required computational time to evaluate K is adapted
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to the amount of change and grows linearly with it. Instead, the original assembly
strategy is always 0.7s per K evaluation regardless of the number of elements that
changed. This behaviour maintains for larger matrices.

5.5.2 Efficient assembly of the reduced stiffness matrix KRB

The reduced stiffness matrix KRB must be evaluated at each inversion step. Perform-
ing the multiplication BTKB can be time-consuming. To avoid such computation
and efficiently obtain the reduced stiffness matrix KRB , the elemental-updating idea
used for K is also applied to compute KRB .

In the normal situation, the reduction is applied at the global level, i.e. once
we have the global matrix via a matrix product: KRB = BTKB. Here, instead, the
reduced approach takes place at the elemental level, which means that the elemental
matrix Ke is the one reduced,

Ke
RB

= BeTKeBe . (5.13)

In doing so, we defined a new basis Be which is essentially B restricted to the degrees
of freedom (nodes) that belong to the element e. Since all reduced elemental matrices
Ke

RB
have the dimension of the final reduced system KRB , all elemental contributions

can be added together directly (no assembly is required),

KRB =
∑
e

Ke
RB

. (5.14)

Following this approach, the full multiplication only needs to be performed once at
the beginning. For all successive iterations the elemental reduced matrix Ke

RB
is only

computed for the elements that are modified and the global reduced matrix KRB is
updated with their contribution. This strategy drastically reduces the cost of the
full multiplication since, essentially, only the relevant parts are actually computed.
Similar to the stiffness matrix, the more elements that need to be modified, the longer
it takes. In addition, not only this strategy is much faster, but it also allows us to
avoid evaluating K at each inversion step.

However, there is an implementation detail that needs to be mentioned. If the
elements that have been modified are adjacent, some of their nodes are shared. Con-
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sequently, since the reduced implementation takes place at elemental level, the re-
duction (basis multiplication) for the nodes that belong to more than one element is
performed separately for each elemental contribution and then added. This implies
that for such nodes, there is an extra number of operations with respect to the global
scenario where the stiffness contribution of these nodes is first assembled ( “added”)
and then reduced (“multiplied”). If the number of adjacent elements that are mod-
ified is very large, the total cost will eventually be higher than performing the full
multiplication at a global level. The optimal number of operations can be achieved if
the reduction is performed at nodes level. The stiffness contribution of all modified
elements is first added together in a matrix Kdof, and then the reduction with Bdof

is performed. The reduced stiffness matrix accounting for all modified elements is,

Kmodif
RB

= BdofTKdofBdof (5.15)

where “dof” refers to the nodes or, in the case of vectorial unknowns, to the degrees
of freedom that have been modified. Note that Kdof is (dof) × (dof) and a special
assembly must be performed to correctly place the modified elemental contributions.

Figure 5.23 shows the time required to update the reduced stiffness matrix KRB

depending on the size of the basis. It is shown for different percentages of modified
elements: 0.05%, 1%, 4% and 100% which correspond to 1, 20, 80 and 2000 modified
elements, respectively.

Similar to the assembly of K, only updating the contribution of the elements that
have been modified represents a drastic reduction in computational time. The time
required to update 1, 20 and 80 elements is always significantly less than performing
the full multiplication BTKB and it grows linearly with the basis size. The time
growth of the full multiplication is also linear with the basis size and reaches around
3s for a basis of 1600 elements (not shown for a better visualization). When all el-
ements are modified, updating them or doing the full multiplication have a similar
cost. The observed difference is due to the extra operations required for the updating
strategy, but it becomes irrelevant for larger basis.

Let us exemplify the benefit of the described strategies with some numbers. Con-
sider, for instance, the inversion from Section 5.3.1: 100 parameters which required a
basis of 262 elements for 106 inversion steps, and sampling 1 parameter (20 elements)
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Figure 5.23: Time required to update the reduced stiffness matrix KRB by only updating the
contribution of the elements that have changed as function of the basis size. For comparison,
the time required to perform the full multiplication BTKB is also shown with blue filled
circles. The mesh has 2000 finite elements (Q2-P1)

per inversion step. The total time required to evaluate K and KRB with the full as-
sembly and doing the full multiplication would be around 132 hours. Instead, the
same number of evaluations taking advantage of the elemental-updating strategies
only needed 4 hours. This represents a 3% of the total full assembly time, a drastic
reduction!

Basis enrichment and KRB assembly

In our coupled approach, the reduced basis is built on the fly during the inversion
process. Consequently, it does not have a fixed size, but it changes as the enrichment
takes place. If the basis is enriched, the elemental-updating strategy described above
can not be performed, because the reduced matrix would be updated with elemental
contributions of a larger dimension. Therefore, whenever the basis needs to be en-
riched we have two alternative ways of proceeding: either the whole multiplication is
performed or a new row and column are added to KRB to include the information of
the new basis element. Both strategies have been tried and according to our results,
performing the multiplication is more efficient than enlarging the matrix KRB to ac-
count for the new element. When the basis is rich enough and FE solutions are no
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longer required, the matrix KRB can be reused and updated at a very low cost for the
rest of the MCMC inversion.

The results of this section demonstrate the benefit of the elemental-updating
strategies both for evaluating K and KRB . The updating strategies always perform
better than the corresponding full assembly or full multiplication regardless of the
number of modified elements. The more elements that need to be modified, the closer
they are with the full strategies, until they become equivalent when all elements are
modified. Moreover, although the basis size is still something to take into account,
its impact can be, to some extent, controlled with the elemental-updating approach.
The sampling strategies described in Section 5.4.1 perfectly suit this approach since
only some parameters are modified per inversion step.
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Chapter 6

Inversion examples

In this chapter the coupled MCMC+RB method is applied to two realistic inversion
examples. To better represent a portion of the Earth, the problem domain is no
longer rectangular but spherical. In the first example the method is applied to a
problem in which the topography is used as synthetic observables to infer the LAB
structure. In the second example, the velocity field is again used in a larger inversion
problem to determine the lithospheric structure and sublithospheric upper mantle flow
pattern beneath the African continent and surroundings. While realistic in nature,
we emphasize that this example is for illustrative purposes only.

6.1 Spherical 3D cartesian model using topography

In this example the surface dynamic topography is used as observable to determine
the LAB structure of a spherical domain representing a portion of Earth. As ex-
plained in Section 2.4, in equilibrium, all forces acting on a column of fluid must
balance (their sum must be zero) so that no movement is allowed. Therefore, the
normal viscous stresses at the surface, σnn, coming from the mantle flow are balanced
with the lithostatic stresses of the overlaying material column, ρgw, of density ρ and
height w, equation (2.16). It is important to remark that equation (2.16) just bal-
ances the dynamic effects. Therefore, the “overlaying material column” does not refer
to the whole topography, but to the extra part that cannot be explained isostatically.
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6. Inversion examples

In our model implementation, the mesh is fixed and we impose that the normal
velocity on the surface is zero (shear stresses are also zero). In doing so, we do not
allow the top boundary of the domain to deform according to the normal viscous
stresses generated below and, as a consequence, the stress σnn on the surface can not
be zero. Instead, the reaction stresses−σnn on the surface indicate which would be the
topography generated to balance the system if movement was allowed. The stresses
on the surface are computed using the velocity field obtained from solving the Stokes
equation so that the final expression for the instantaneous dynamic topography w is,

w =
2µ

ρg

∂un
∂n

, (6.1)

where un is the normal component of the velocity and n the normal direction which, in
our spherical domain, coincides with the radial direction. Note that since un = u ·n,
the normal derivative is obtained as, ∂un/∂n = ∇un · n = (∇u · n + u · ∇n) · n.

The interest region Γ of the QoI also needs to be modified. It was defined in
accordance with the a priori information on the parameters and it was a box of
100km centered in the prior. In previous examples where the observable was the
velocity, it was within this region where the approximated RB solution was sought to
be particularly accurate. Instead, now the topography is computed on the surface so
that the accuracy of the RB solution should not be just within the box, but it should
also account for the surface. Therefore, recalling the QoI from equation (5.1), now
rewritten considering the radial direction,

Q =

∫
Γ

∂un
∂n

dΩ, (6.2)

the interest region Γ is modified by expanding the box upwards to reach the surface.
Note that, in this case, the choice of the QoI coincides with the observables since
both require the gradient of the velocity along the vertical direction.

Next, we compare the behavior of the inversion scheme when using velocity and
topography as observables. The first example, having 25 parameters, uses the LAB
structure from Figure 4.4a and it starts from the same flat configuration, Figure 4.4b.
Topography observations are measured in a 20×20 regular grid on the surface of the
domain. The same simulation is repeated using the velocity as observables adjusting
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6.1. Spherical 3D cartesian model using topography

the number of observations also to 400. Both simulations run for 2 × 105 steps.
Results of the random walks are presented in Figure 6.1.

Figure 6.1: Random walk for each of the 25 parameters using topography (top) and velocity
(bottom) as observables. In each plot: prior distribution (black dashed line), reference LAB
value used to generate the synthetic observables (solid black line) and initial value (red dot).
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Despite the initial uninformative scenario, the random walks in both cases man-
aged to converge to the true LAB values and remained oscillating around. The
proposal standard deviation used is σp = 5km which gives an acceptance rate of
approximately 47% in both cases. The number of full FE solutions required for the
inversion is 199 for the topography and 153 for the velocity. The larger basis for the
topography also coincides with the mostly wider random walks with respect to the
velocity plots. This suggests that, in general terms, topography is less sensitive to
perturbations than velocity. In addition, velocity does not constrain all parameters
equally, whereas topography seems to have a similar sensitivity among parameters.
Other differences are observed between both cases: the length of the burn-in period,
the random walk behaviour, etc. Before getting into details, we will present an ex-
ample which will help to clarify and explain such differences.

This simple example is used to study the dependence of the misfit function be-
tween observed and predicted data, e(m), with respect to the parameters value (LAB
depth). We show that, in this case: i) the misfit has many local minima, ii) the local
minima when the data is the velocity are “deeper” than for the topography and, iii) the
global minimum observed for the topography is “flatter” than for the velocity. This
indicates that, during an inversion, the random walk is likely to find local minima and
the efficiency in escaping from it will be determined by the jump size in each situa-
tion. The evolution of the misfit with the LAB depth shown in Figure 6.2 is achieved
using the following strategy. The observed data is obtained from the LAB structure
from Figure 4.4a. Starting from the same LAB structure shifted 50km upwards (i.e.
shallower), at each step we increase the average depth by increasing the depth of one
parameter in 5km. In doing so, after 25 steps all parameters are increased in 5km and
we recover the initial LAB structure shifted 5km deeper. This process is repeated as
many times as needed to achieve a certain depth. The full forward problem is solved
at each step and the misfit is computed with both observables.

In Figure 6.2, the misfit values for the velocity are larger than for the topography,
indicating again that velocity is more sensitive to perturbations. The evolution of
both misfits shows oscillations with local minima at intervals of 5km. This value is
due to the fact that the increasing step is 5km. As designed, every 5km the same
LAB structure is recovered and the misfit exhibits a minimum. If the moving step
was 20km, the minima would be exhibited at intervals of 20km. This oscillating
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6.1. Spherical 3D cartesian model using topography

Figure 6.2: Evolution of the misfit with respect to the LAB depth for both observables:
vertical velocity and topography. The x-axis shows the averaged depth of the 25 parameters.
At each step one single parameter is modified 5km.

behaviour, although not truly representing the path of a normal inversion, indicates
that local minima do exist. Two characteristics of these plots can be used to compare
the previous inversion examples (Figure 6.1). On one hand, the flatter shape and
lower misfit exhibited for the topography gives more freedom to the random walk to
explore regions near the absolute minimum than for the velocity case. On the other
hand, the amplitude of the oscillations is slightly larger for the topography than the
velocity which suggests that, once in a minimum, it is more difficult to escape from
it for the topography. Their combination makes the topography more prone to get-
ting stuck in local minima. The shape of the random walks from Figure 6.1 is in
accordance with such behaviour: the random walk for the topography seems to move
more slowly within the high probability regions than for the velocity case, although
both show similar acceptance rates. This effect is magnified when the initial guess is
worse (larger initial misfit), since the chances to find minima in the way increase and,
therefore, the convergence gets slower. Summarizing, the misfit behaviour explains
the longer random walks needed for the topography. Moreover, its lower sensitivity
demands for a more sophisticated or refined approach, for instance individually set-
ting proposals for each parameter, ideally with an adaptive strategy.

Another important insight learned from Figure 6.2 is that the observables are
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more sensitive to shallow perturbations than deeper ones. Consequently, the observ-
ables are not able to constrain the deeper parameters as much as the shallow ones.
This is translated in wider random walks and, therefore, deeper parameters tend to
have wider posterior PDFs than shallower ones. The decreasing sensitivity with depth
explains the tendency of the posterior PDFs to loose symmetry and get wider in the
deeper side. As a consequence, their mean is slightly shifted towards deeper values.
This does not mean that such distributions are wrong or inaccurate, they are, indeed,
the actual solution to the probabilistic inverse problem.

Next two inversion examples are aimed at recovering the posterior PDF of 100
inversion parameters using topography values to constrain them. The reference LAB
and the synthetic topography generated for examples A and B are shown in Figure
6.3. Note that on the reference LAB figures (bottom), darker colors represents deeper
LAB values. In the topography figures (top), red colors indicate an uplift of the
surface whereas blue ones correspond to depressed areas.

Figure 6.3: 3D spherical domain discretized in 10×10×20 mixed elements representing
a portion of Earth of 660km depth and 400km in the two directions along the surface.
Synthetic examples A and B: reference LAB (bottom) and the corresponding generated
topography (top). Topography is not to scale.
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6.1. Spherical 3D cartesian model using topography

Both inversions have nd = 400 topography data points with an introduced noise
of σe = 10−1. In order to better control the error in the observables and considering
that for the topography the dispersion of observable values is not as large as with the
velocity, we use their mean value to compute the synthetic data errors (instead of the
maximum value as in equation (4.29)). The prior information of the parameters is
a uniform PDF of 100km (±50km from the reference LAB value). The initial LAB
configuration is obtained by randomly perturbing the reference LAB between 10%

and 20%. The standard deviation of the proposal distribution is set at σp = 5 km
for all parameters and the tolerance for the RB error in the QoI is eRB = 10−2 (1%

of error). Both inversions run for 107 steps and the first 106 are considered burn-in
period. Since the obtained posterior PDFs exhibit quite simple forms, plotting their
mean values and standard deviations is informative enough. Results for examples A
and B are shown in Figures 6.4 and 6.5, respectively.

Figure 6.4: Top view of the results for inversion A. Top images represent the LAB structure:
reference LAB depth (left), mean of the recovered posterior PDF for the LAB depth (center)
and the corresponding standard deviation (right). Bottom images represent the topography
associated for the LAB structure above: synthetic dynamic topography (left) and dynamic
topography computed from the mean posterior (center). Detailed plots of each of the 100
random walks and posterior PDFs are shown in Figures B.3 and B.4 from Appendix B,
respectively.
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6. Inversion examples

Figure 6.5: Top view of the results for inversion B. Top images represent the LAB structure:
reference LAB depth (left), mean of the recovered posterior PDF for the LAB depth (center)
and the corresponding standard deviation (right). Bottom images represent the topography
associated for the LAB structure above: synthetic dynamic topography (left) and dynamic
topography computed from the mean posterior (center). Detailed plots of each of the 100
random walks and posterior PDFs are shown in Figures B.5 and B.6 from Appendix B,
respectively.

Despite the very uninformative initial scenario, both inversions managed to re-
cover a global LAB structure that matches the reference one and most of the reference
values are within ±σ of the posterior PDFs. As expected, since topography is less
sensitive than velocity, the inversion has more difficulties in recovering the exact ref-
erence values and some slight discrepancies are observed within the general shape.
A detailed description and possible solutions are discussed below. However, topog-
raphy plots show excellent agreement between synthetic and computed observables,
the largest difference is around 5 meters. Deeper LAB values exhibit larger standard
deviations and, thus, wider posterior PDFs. Such behaviuour is in accordance with
the fact that topography sensitivity decreases with depth and, consequently, deeper
parameters are less constrained. The inversion acceptance rates are 48% and 45%

for examples A and B, respectively. Regarding the basis size, example A needed 918
full FE solutions whereas example B needed 1233, i.e. 0.009% and 0.012% of the
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6.1. Spherical 3D cartesian model using topography

total number of forward evaluations. In both cases the gain in computational time of
the MCMC+RB approach with respect to the full MCMC+FE is outstanding. This
gain makes feasible to include the dynamic component of the topography within a
multi-observable inversion.

It is worth mentioning a compensation effect that is observed in the inversions
with topography. This compensation occurs when the random walks of adjacent
parameters oscillate around values which are not the reference ones, but their gen-
erated topography fits the data similarly, i.e. their misfit is within the error of the
observables. Figure 6.6 illustrates such behaviour.

Figure 6.6: Evolution of the misfit and random walk for 4 adjacent parameter during the
first 3 × 106 inversion steps for example B. Vertical lines indicate a compensation change.
In each random walk plot: prior distribution (black dashed line), reference LAB value used
to generate the synthetic topography (solid black line) and initial value (red dot).
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6. Inversion examples

Figure 6.6 shows the random walk of four adjacent parameters (their adjacent
neighbours behave similarly) during the first 3 × 106 inversion steps for example B.
Initially, parameter 66 oscillates around the true value and, since it is constrained,
it gives more freedom to the other parameters to move further from their true val-
ues without affecting the misfit. During this time, shallow and deeper values are
compensated in terms of misfit. The rest of parameters also try jumps which bring
them closer to their true values. Around T1, parameter 65 moves closer to its true
value and successfully remains there. Consequently, it removes some of the constrain
on the other parameters, including parameter 66, which can now jump to other re-
gions. Between T1 and T2, it is parameter 65 who oscillates around its true value
whereas the others move freely. Again, their attempts are not successful until T2. It
is important to remark that reaching a high probability region does not depend on
a single parameter but it is a combination of all of them. Therefore, it may happen
that during the path to a high-probability region, a parameter is forced to go through
a low-probability region. Or in other words, the misfit has to increase before being
able to decrease to lower values. The efficiency in converging to the true solution and
the good mixing of the chain completely depend on the proper combination of jump
sizes. Nevertheless, the effect of compensations in the posterior PDFs is reduced with
longer inversions.

In results from Figures 6.4 and 6.5, the compensation effect is responsible of the
chessboard pattern in some parts of the LAB structure. Additional tests performed
with MCMC+FE also present compensations which indicate that it is not an effect
introduced by the MCMC+RB approach, although the RB may intensify it. In fact,
it is a natural effect of probabilistic inversions which is magnified due to the low sensi-
tivity of the observables combined with their uncertainties and a simplistic sampling
strategy. If observables are not sensitive enough, their uncertainties allow for such
compensations without significantly affecting the misfit. An additional example is
included in Appendix A.3 in which observables sensitivity is higher and, hence, the
effect of compensations is much lower. As previously mentioned, the jump size also
plays an important role in the duration of the compensations. The fact that we are
using the same proposal for each parameter is considerably limiting the movement of
the random walks, since some parameters may need larger (or smaller) jumps than
others to efficiently explore the space (Section 5.4.2). In this case, adaptation is an
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6.1. Spherical 3D cartesian model using topography

interesting approach to improve the mixing of the chain and, therefore, reduce the
effect of compensations without having to rely on much longer random walks.

Inversion example B is run again with an adaptation strategy. Initially the pro-
posal distribution is set at σp = 30 km and adaptation is performed at intervals of
5× 104 steps. The inversion run for 5× 106 (half the steps of the previous inversion)
and results are shown in Figure 6.7.

Figure 6.7: Top view of the results for inversion B with adaptation. Mean of the recovered
posterior PDFs for the LAB depth (left), the corresponding standard deviations (center)
and the dynamic topography computed from the mean posteriors values (right).

Adaptation helps to considerably reduce the chessboard pattern and after a much
lower number of inversion steps. Posteriors are sampled with more accurate proposals
that are in agreement with posterior widths, which is confirmed by looking at the
final values of σp of each proposal distribution from Figure 6.8.

Figure 6.8: The initial σp for all proposal distributions is set at 30km (left). During the
inversion proposals adapt to efficiently sample their corresponding posteriors (right)

Generally, wider posteriors require larger jumps to move rapidly around their
space, whereas narrower ones need smaller jumps to increase the chances to hit a
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high probability region without getting lost. However, it is important to have in
mind that such behaviour is true for an efficient sampling of individual parameters,
whereas an efficient simultaneous sampling can be slightly different.

Another possibility to control and reduce compensations would be to include in
the sampling strategy correlations between parameters, since in doing so, parameters
would be somehow linked to their neighbours and compensations among neighbours
would not be possible.

The results presented here show the feasibility of inverting the LAB using topogra-
phy observations only. The proposed method works and makes possible computations
that were previously unaffordable. This encourages the incorporation of the dynamic
component into multi-observable inversions. In that situation, many of the difficulties
studied here will be probably smoothed by the extra information provided by other
observables.

6.2 Large-scale probabilistic inversion: African

lithospheric structure

In this section we apply our method to a larger example to determine the lithospheric
structure and sublithospheric upper mantle flow pattern beneath the African conti-
nent and surroundings. The mantle vertical velocities are used again as observables
to infer a LAB depth described by 1225 parameters. While realistic in nature, we
emphasize that this example is for illustrative purposes only.

The numerical domain is spherical and discretized with 35×35×20 finite elements
from the surface down to a depth of 1000km depth. The lithospheric structure (LAB
depth and temperatures) of the reference model is based on the global lithospheric
model by Afonso et al. (2019). Sublithospheric temperatures are computed based on
the work of Stixrude and Lithgow-Bertelloni (2012) for a reference adiabatic gradient,
with anomalies with respect to that gradient from the work of Steinberger and Becker
(2018). Density and viscosity are computed as a function of temperature and pressure
using equations (4.26) and (4.28), respectively. Figure 6.9 shows the reference LAB
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6.2. Large-scale probabilistic inversion: African lithospheric structure

and two vertical profiles of the generated velocity field obtained by solving the Stokes
problem. Blue indicates flow is going downwards, whereas red moves upwards.

Figure 6.9: (a) Reference LAB discretized with 1225 parameters. (b) Two vertical
profiles showing the flow (velocity) structure.

Since we are attempting to solve a considerably larger problem by only using
the velocity to constrain the parameters, we will slightly relax the uninformative
initial scenario, so that the error introduced in the synthetic observables is reduced
to 5% (σe = 0.05). Moreover, unlike previous velocity examples, the initial LAB
configuration is not flat, but it is obtained by randomly perturbing the reference one
between 10% and 20%. The prior information of the parameters is maintained as
a uniform PDF of 100km (±50km from the reference LAB). We run the inversion
algorithm for 4×106 steps, from which the first 105 samples are discarded as burn-in.
The standard deviation of the proposal distribution is set at σp = 10 km and the
threshold for the error estimator of the RB is set at eRB = 10−2. Mean values and
standard deviations of the posterior PDFs resulting from the inversion are shown in
Figure 6.10.

The results in Figure 6.10 compared to the reference LAB from Figure 6.9 demon-
strate that the inversion succeeded in recovering the mean values of the 1225 true pa-
rameters. Wider posteriors are obtained in areas where the lithosphere is thicker, indi-
cating that the observables are less sensitive to perturbations beneath these columns.
These regions coincide with broad slow downwellings where small local perturbations
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6. Inversion examples

Figure 6.10: (a) Mean and (b) standard deviation of the posterior PDF for each of
the 1225 parameters representing the LAB depth recovered during the inversion.

of the LAB do not change the main velocity pattern or magnitude in any significant
way. The narrowest distributions have standard deviations of around 2km whereas
the widest show values of 26km. A similar example with 225 parameters is shown in
Appendix B with detailed plots of the posteriors and random walks. That example
is also published in Ortega-Gelabert et al. (2020).

The efficiency of the method is again outstanding; to perform 4 × 106 inversion
steps, only 1916 FE solves where required (0.05% of the total number of steps). It is
worth emphasizing that in a real inversion context, more than 4× 106 steps would be
typically run, which will increase even further the efficiency of the method.
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Chapter 7

Conclusions and future work

This work presents the coupling between the Reduced Basis method and a Metropo-
lis algorithm (MCMC method) to efficiently solve geophysical probabilistic inverse
problems. The MCMC+RB method has been applied to two different synthetic ob-
servables, mantle velocities and topography, in order to infer properties of the interior
of the Earth, in particular the LAB structure. The solution of the probabilistic inverse
problem is not unique, but characterised by a posterior PDF which is approximated
by means of generating random samples of it using the Metropolis algorithm. Each
sample requires a forward evaluation of the Stokes problem which is efficiently per-
formed using the RB method. The RB consists of a collection of FE solutions that
form a reduced basis, such that every new forward evaluation is obtained as a linear
combination of the elements of the reduced space R

nRB instead of the full space R
nFE .

Since nRB � nFE , solving the reduced Stokes system is noticeably faster.

7.1 Conclusions

The main achievements and conclusions of this thesis are summarised below:

• Unlike classical offline/online RB strategies, here a greedy approach is proposed
which constructs the reduced basis on the fly and guided by the inversion. Such
approach requires an error estimator to control the maximum error allowed
to the reduced solutions. If the error is larger than a given tolerance, the
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corresponding full FE problem is solved and the basis is enriched with the new
solution. In doing so, the generation of the basis is coupled with the sampling
of the posterior PDF in such a way that the basis is specifically tailored to
the high-probability regions of the parameter space. Due to the converging
nature of the MCMC inversions, the enrichment of the basis also converges
so that, when it is rich enough, it stops growing and stabilizes. This greedy
approach solves the typical problems of offline/online strategies regarding where
to sample the parameter space so that the snapshots are representative enough.
Consequently, the basis size required in order to attain a certain accuracy in
the solution is smaller than using classical strategies.

• The efficiency of the MCMC+RB method is outstanding. The proposed method
is able to successfully solve a probabilistic inverse problem at a largely reduced
cost compared with the MCMC+FE approach and without compromising the
results. Since the time required to obtain a RB solution is remarkably smaller
than a FE one, the number of required full FE gives us an idea of the cost of the
method. For instance, to solve 105 forward problems only 116 were required
with FE, all the rest were obtained at the RB low-cost, this represents only
0.1% of the total number of evaluations. In fact, the longer the inversion, the
more efficient becomes the method. The efficiency of the forward solver allows
solving a larger amount of problems which is translated into a larger number of
posterior samples and, therefore, better accuracy in the posterior results. The
MCMC+RB strategy opens the door to inversion problems that were unfeasible
until now.

• The coupled MCMC+RB method proposed in this thesis is independent of the
solver used to obtain the full FE solutions that form the reduced basis. For
simplicity, here we have used direct solvers. Direct solvers allow reducing even
more the computational cost since the incompressibility condition of the RB
solutions is automatically satisfied and equation 3.32 can be used. Instead, if
using iterative solvers, the terms involving the reduced G matrix do not strictly
vanish and the full reduced system from equation 3.30 is required. However,
the only additional cost is saving the pressure FE solutions into Bp, since
the reduced matrix G is fixed among inversion steps and only needs to be
recomputed if the basis is enriched.
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In order to guarantee fast RB approximations in comparison with the FE ones,
some aspects must be carefully considered. The cost of obtaining a RB solution is
mainly determined by: the basis size and the efficiency in assembling the stiffness
matrices. In this sense, the following points are highlighted:

• The accuracy of the RB solutions is a key factor in determining the basis size.
The smaller is the error requested for the RB approximation, the larger is the
basis. With this idea in mind, we have developed a goal-oriented error estimator
which centers the accuracy of the RB solution on a specific QoI relevant for the
inversion problem. In doing so, the basis is considerably reduced since it only
needs to be accurate for representing the relevant part of the solution. Such
error representation implies the solution of an adjoint problem whose accuracy
does not seem to be a determinant factor for the final basis size. Its accuracy
improves the error estimator, but the difference does not significantly affect the
basis enrichment criterion.

• Ideally, the basis size is expected to be determined by the high probability
regions of the parameter space. Therefore, the more uncertainty in the data,
the less constrained is the parameter space and larger basis are required to
explain it. The basis also grows with the number of inversion parameters. More
parameters imply more combinations which translates into a richer family of
solutions to be represented by the basis. However, we have seen that the basis
growth scales with the number of parameters in a tractable way (up to 1225
parameters)

• In practice, since the high probability regions of the parameter space are to
be determined during the inversion, the basis size is not strictly determined by
them, but also by the sampling strategy. That is, it does not matter whether
a proposed sample is finally accepted to the random walk, since once it is
proposed, it has to be solved. Therefore, its solution can potentially contribute
to increase the basis size. It is crucial to devise efficient sampling strategies
that take into account the basis size. For instance we have shown that a direct
sampling of the prior PDF leads to a very large basis since all regions are
sampled alike. Instead using a proposal distribution with a very small jump
size generates a considerably smaller basis, although at expenses of a very slow
exploration of the parameter space. Adaptation is a useful tool to automatically
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adapt the proposal distribution to efficiently explore the space while controlling
the basis size. With the aim of a small basis, we also proposed a SVD strategy
to remove redundancies and an approach which identifies and eliminates the
basis elements which are not contributing significantly to the high probability
regions. However, it is important to highlight that a too strict reduction may
imply additional FE solutions.

• Finally, we also proposed efficient assembly strategies for the stiffness matrices
K and KRB . We take advantage of the parametrization of the inverse problem
and the sampling strategy. Since only the viscosity of some elements change be-
tween inversion steps, the matrices are not computed from scratch, but they are
updated with only the contribution of the elements that have changed. There-
fore, the assembly time grows linearly with the number of modified elements.
In addition, for the reduced stiffness matrix we also avoid performing the full
multiplication BTKB at a global level and, instead, the reduction is performed
at the elemental one and the reduced elemental matrices are added together.
Again, only the contribution of the modified elements is updated.

To conclude, it is important to remark that in the context of MCMC inversions,
the typical trade-off between fast exploration and the need to be accepted determines
the efficiency of the inversion. However, with the inclusion of reduced order methods,
such trade-off should be rethought, since an efficient sampling in terms of parameter
space does not directly imply efficiency in terms of order reduction. It could happen
that a slightly worse sampling, improves the global efficiency due to faster forward
evaluations.

7.2 Future work

Several aspects of the proposed MCMC+RB method can be further developed:

• The present work deals with a linear rheology since the second invariant of
the strain rate that appears in the constitutive equation (4.28) is kept con-
stant. It would be interesting to also account for nonlinear rheological effects in
which viscosity is defined depending on stress or strain rate. The MCMC+RB
methodology presented in this thesis is still valid for a nonlinear rheological law,
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but some aspects must be carefully analysed. For instance, the need for itera-
tive solvers both for the full and reduced system or the adaptation/rethinking
of the fast assembly strategies of the stiffness matrices for the nonlinear case.

• The on-the-fly strategy to build the reduced basis presented in this thesis re-
quires discarding all samples whose solution is obtained via full FE (or, alterna-
tively, recomputing additional FE solutions). This is to guarantee a fair com-
parison in the Metropolis ratio. It would be interesting to develop an enhanced
algorithm which is able to use the FE solutions in a fair RB-FE comparison
without compromising the results (see for instance the approach in Manassero
et al. (2020)). Another interesting option to be explored is to consider the error
of the RB solutions part of the inversion unknowns, i.e. an inversion parameter.

• More complex strategies could also be devised with the idea of controlling the
basis size during the inversion in a dynamic way. For instance, tracking the
time required to obtain a RB solution and if higher than a threshold (related to
the alternative high-fidelity FE cost) reduce the basis, either with SVD, with
the reduced coefficients approach or even a combination of both.

• It would be interesting to develop more efficient sampling strategies which ac-
count for correlations between parameters and study the possible effects they
may have in the basis size.

• Finally, the main goal behind the MCMC+RB approach presented in this thesis
is to provide a fast Stokes solver which can be coupled with the multiobservable
probabilistic inversion framework (e.g. LitMod3D from Afonso et al. (2013a,b,
2016b)), to improve the estimation of the elevation by means of including the
contribution of the dynamic topography. To achieve this goal, there are two im-
portant points that need to be adapted. First, the MCMC+RB code developed
in this thesis is fully written in MATLAB and should be rewritten in Fortran
so that it can used within LitMod3D. Second, for larger problems and meshes
like the ones LitMod3D deals with, a direct solver is no longer useful and an
iterative and fast FE solver for the Stokes problem is crucial for the generation
of the FE solutions that comprise the reduced basis.

143



7. Conclusions and future work

7.3 Research dissemination
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Appendix A

Additional examples

A.1 Avoiding an inverse crime

In this additional example, the same MCMC+FE simulation as in Section 4.3 has
been performed with the only difference that, in this case and in order to avoid the
so-called inverse crime (Section 4.3.2), the synthetic observables are computed with
a mesh twice finer than the mesh used during the inversion. Therefore, the mesh
used to compute the synthetic observables has 20×20×40 finite elements. Figure A.1
shows the histograms of the predicted values for 49 of the 675 synthetic observables.
All plots are centered at the synthetic data value (vertical red line) and their x axis
ranges from −σd to +σd.

Unlike Figure 4.8, here we can see that the simulation has more difficulties in
predicting the synthetic values since the true synthetic values might be outside the
interpolating space that is later used during the inversion to predict them. It might
even be impossible to exactly predict them. Even though all the predicted values
are within ±σd, their means do not always coincide with the synthetic ones. This
particular example clearly shows that modelization errors do exist. This is what
actually happens in the real life, where there is no finite interpolating space able to
exactly represent nature and the best we can do is approximate it. Consequently,
the random walks are not expected to converge to the true model of parameters but
to the model that best represents the “achievable” synthetic observables. Figure A.2
shows the random walks and posterior PDFs obtained for each of the 25 parameters.
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A. Additional examples

Figure A.1: Histograms of the predicted data values for 49 data points (out of 675). In this example, the
synthetic observables are computed with a mesh of 20x20x40 finite elements. In each plot: synthetic data
value (red line) and histogram of the predicted values. The burn-in period is discarded. All values of the
x-axis should be multiplied by 10−13. The plots are organized in the same order as shown in Figure 4.7.

It can be seen that although the mean values of the posterior PDFs do not always
coincide with the true model, in almost all cases they are within one standard de-
viation of the posterior PDFs. However, to properly include and guarantee that the
true values are within the posterior PDFs, modelization errors should be taken into
account. In the example from Section 4.3, the fact that the same mesh has been used
both for generating the synthetic observables and for predicting them is in accordance
with the decision of neglecting modelization errors, since in such scenario the true
model is achievable, i.e. it is within the interpolating space. In addition, as it has
already been mentioned, guaranteeing that the synthetic observables are within the
interpolating space allows us to better study the features and main factors control-
ling the coupling MCMC+RB. In other words, any additional source of error in the
convergence is removed in order to isolate the MCMC+RB scheme and simplify its
analysis.
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A.1. Avoiding an inverse crime

Figure A.2: (Top) random walk for each of the 25 parameters. (Bottom) posterior PDF for each of the
25 parameters. In each plot: prior distribution (black dashed line), reference LAB value used to generate the
synthetic velocity field (solid black line) and initial value (red dot). The burn-in period has been discarded
in the estimation of the posterior PDF.
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A.2 Adding noise to the synthetic observables

In this additional example, the same MCMC+FE simulation as in Section 4.3 has
been performed with the only difference that, in this case the noise or error is actually
added to the synthetic observables. Figure A.3 shows the histograms of the predicted
values for 49 of the 675 synthetic observables. All subplots are centered at the noisy
synthetic observables (black line) and their x axis ranges from −2σd to +2σd (except
for observable #356 whose bounds are ±4σd). The noiseless synthetic observables
are represented by a vertical red line.

Figure A.3: Histograms of the predicted data values for 49 data points (out of 675). In this example, a
noise is added to the synthetic data values. In each plot: synthetic data value (red line), perturbed synthetic
data value (black line) and histogram of the predicted values. The burn-in period is discarded. All values of
the x-axis should be multiplied by 10−13. The plots are organized in the same order as shown in Figure 4.7.

In Figure A.3 it is seen that although the synthetic observables used as data in
the inversion are perturbed (black line), the inversion predicts values which are closer
to the unperturbed field (red line). The clearer case is the observable #356 whose
predicted values coincide with the unperturbed synthetic and are almost 4σd shifted
from the perturbed one. This situation can be explained by fact that the unperturbed
velocity field is by far smoother than the perturbed one which is, due to the noise,
hardly possible to be exactly predicted by any model of parameters. Therefore, since
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A.2. Adding noise to the synthetic observables

the introduced noise has zero mean, the general “structure” of the field is conserved
in the perturbed observables and the inversion tends to predict it. It is a similar
situation than Annex A.1 example in which the synthetic observables used in the
inversion are outside the interpolating space. Figure A.4 shows the random walks
and posterior PDFs obtained for each of the 25 parameters.

Since the simulation predicts values close to the unperturbed field, the random
walks and posterior PDFs are not significantly affected by the noise addition. How-
ever, some small discrepancies appear in the mean posterior values compared with
the true ones. Since our goal is to study relations and features in the MCMC+RB
scheme, it is important to isolate them from any other factor. Therefore, we prefer
to remove any possible additional source of error in the convergence of the random
walks by not adding the noise to the synthetic observables and only consider data
uncertainty in the likelihood with the σd.
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A. Additional examples

Figure A.4: (Top) random walk for each of the 25 parameters. (Bottom) posterior PDF for each of the
25 parameters. In each plot: prior distribution (black dashed line), reference LAB value used to generate the
perturbed velocity field (solid black line) and initial value (red dot). The burn-in period has been discarded
in the estimation of the posterior PDF.
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A.3. Higher topography sensitivity

A.3 Higher topography sensitivity

This additional example is meant to show that the low sensitivity of the topography
is the main responsible of the compensation effect observed in examples A and B
from Section 6.1. Here, the reference LAB structure from example B is artificially
exaggerated, i.e. the same shape but larger differences between values. In doing
so, the generated dynamic topography shows also larger differences which increase
its sensitivity. In example B, the shallowest and deepest LAB values were 83km
and 180km respectively, compared to the 67km and 208km shown here. Regarding
topography, example B showed values ranging from -98m to 304m, whereas such
range is now from -162m to 606m. All inversion settings are exactly the same as in
example B, except that this one run for a much lower number of inversion, 2 × 106

(instead of 107). The burn-in period is 105

Figure A.5: Top view of the results for an inversion with a higher topography sensitivity.
Top images represent the LAB structure: reference LAB depth (left), mean of the recovered
posterior PDF for the LAB depth (center) and the corresponding standard deviation (right).
Bottom images represent the topography associated for the LAB structure above: synthetic
dynamic topography (left) and dynamic topography computed from the mean posterior
(center).

Unlike Figure 6.5, the top center image from Figure A.5 shows no significant chess-
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A. Additional examples

board pattern which confirms that compensations had a lower effect. Even though
again the same simple sampling strategy has been used, the now higher sensitivity of
the observables together with their uncertainties is not allowing for such compensa-
tions. In other words, “wrong” configurations of model parameters are now affecting
the misfit in a significant way.

Figures A.6 and A.7 show the random walks and posterior PDFs obtained for each
of the 100 parameters in the inversion with a higher topography sensitivity.
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A.3. Higher topography sensitivity
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A.4. African lithospheric structure (225 parameters)

A.4 African lithospheric structure (225 parameters)

In this additional example, the same African lithospheric structure from Section 6.2
is now described with 225 parameters (instead of 1225). In this way, we are able
to show detailed plots of each random walk and posterior PDF. Unless specifically
stated, everything remains the same as described in Section 6.2.

The numerical domain is spherical and discretized with 30×30×20 finite elements
from the surface down to a depth of 1000km depth. The vector of model parameters
contains 225 elements describing the LAB depth (i.e. the FE discretization is twice
as fine as the LAB one). The reference LAB and two vertical profiles of the generated
velocity field are shown in Figure A.8.

Figure A.8: (a) Reference LAB discretized with 225 parameters. (b) Two vertical
profiles showing the flow (velocity) structure.

The input data are again the vertical velocities within the region of interest Γ

which for this example is larger, ±100 km from the reference LAB value. The syn-
thetic observables are contaminated with a Gaussian noise with a larger standard
deviation, 15% (σe = 0.15). The initial LAB configuration is obtained by randomly
perturbing the reference one between 10% and 20%. We run the inversion algorithm
for 106 steps, from which the first 104 samples are discarded as burn-in. The standard
deviation of the proposal distribution is set at σp = 5 km and the threshold for the
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A. Additional examples

error estimator of the RB is set at eRB = 10−2. Mean values and standard deviations
of the posterior PDFs resulting from the inversion are shown in Figure A.9. Plots
of the random walks and posterior PDF for each of the 225 parameters are found in
Figures A.11 and A.10.

Figure A.9: (a) Mean and (b) standard deviation of the posterior PDF for each of
the 225 parameters representing the LAB depth recovered during the inversion.

The inversion managed to recover the African LAB structure. Again wider pos-
teriors are obtained in areas where the lithosphere is thicker since the velocity field
is less sensitive to deep perturbations. The required number of FE solutions is 2360
to perform 106 inversion steps (0.24% of the total number of steps), or equivalently,
one FE solution for every 400 inversions). The larger basis size with respect to the
1225 parameters case is due to the fact that the error of the data is also considerably
larger for this example.
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A.4. African lithospheric structure (225 parameters)
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Appendix B

Posterior PDFs results

Table B.1: Mean and standard deviation of the posterior PDFs for each of the 25 parameters describing

the LAB. Strategies MCMC+FE and MCMC+RB with eRB values of 10−3, 10−2 and 10−1. Inversions run

for 105 steps and the first 104 inversion steps are considered burn-in period and, hence, discarded.

Mean (km) σ (km)

mi true LAB FE energy-norm FE energy-norm
10−3 10−2 10−1 10−3 10−2 10−1

#1 100.0 100.6 100.5 100.5 100.5 1.6 1.6 1.6 1.6
#2 124.5 125.2 125.2 125.2 125.1 1.4 1.4 1.4 1.5
#3 138.8 139.6 139.5 139.8 139.5 2.5 2.3 2.3 2.2
#4 136.7 137.4 137.5 137.4 137.2 2.1 2.0 2.2 2.0
#5 119.2 119.5 119.5 119.5 119.5 1.2 1.2 1.3 1.2
#6 124.5 125.3 125.2 125.3 125.2 1.5 1.4 1.5 1.5
#7 149.1 148.5 148.3 148.5 148.4 2.0 2.0 2.0 2.0
#8 163.3 164.9 165.0 164.8 165.0 3.0 3.0 3.2 3.1
#9 161.2 162.8 162.5 162.7 162.7 2.9 2.5 2.7 2.9
#10 143.7 144.4 144.6 144.5 144.4 2.2 2.2 2.3 2.1
#11 138.8 139.7 139.4 139.8 139.5 2.4 2.2 2.4 2.3
#12 163.3 165.2 165.3 165.0 165.3 3.2 3.0 3.1 3.2
#13 177.5 181.0 179.9 181.1 180.1 5.8 4.7 6.5 4.9
#14 175.4 178.1 178.1 178.2 178.2 4.0 4.4 5.7 4.8
#15 157.9 159.2 159.1 159.2 159.1 2.3 2.0 2.5 2.2
#16 136.7 137.7 137.4 137.6 137.7 2.1 2.1 2.2 2.2
#17 161.2 162.4 162.4 162.4 162.1 2.7 2.6 2.9 2.8
#18 175.4 178.3 177.9 178.1 178.4 4.5 4.4 5.0 4.5
#19 173.4 176.6 176.3 176.7 176.3 4.3 3.9 4.5 4.1
#20 155.9 157.0 156.8 157.0 156.9 2.0 1.9 2.3 2.2
#21 119.2 119.5 119.5 119.5 119.4 1.2 1.2 1.2 1.2
#22 143.7 144.6 144.4 144.6 144.6 2.2 2.2 2.2 2.3
#23 157.9 159.2 159.1 159.3 159.1 2.2 2.1 2.5 2.3
#24 155.9 157.0 156.8 156.9 156.8 2.0 1.9 2.2 1.8
#25 138.4 139.7 139.5 139.5 139.5 2.3 2.2 2.4 2.4

159



B. Posterior PDFs results

Table B.2: Mean and standard deviation of the posterior PDFs for each of the 25 parameters describing

the LAB. Strategies MCMC+FE and MCMC+RB with error indicators: energy-norm, and goal-oriented

with linear and non-linear QoI. Inversions run for 105 steps and the first 104 inversion steps are considered

burn-in period and, hence, discarded.

Mean (km) σ (km)

mi true LAB FE energy QoI QoI FE energy QoI QoI
norm (linear) (nonlinear) norm (linear) (nonlinear)

#1 100.0 100.6 100.5 100.5 100.5 1.6 1.6 1.6 1.6
#2 124.5 125.2 125.2 125.2 125.3 1.4 1.4 1.4 1.4
#3 138.8 139.6 139.8 139.8 139.6 2.5 2.3 2.6 2.4
#4 136.7 137.4 137.4 137.5 137.6 2.1 2.2 2.2 2.0
#5 119.2 119.5 119.5 119.5 119.6 1.2 1.3 1.3 1.1
#6 124.5 125.3 125.3 125.2 125.3 1.5 1.5 1.4 1.4
#7 149.1 148.5 148.5 148.4 148.5 2.0 2.0 2.1 1.9
#8 163.3 164.9 164.8 164.7 165.1 3.0 3.2 3.1 3.1
#9 161.2 162.8 162.7 162.6 162.8 2.9 2.7 2.9 2.7
#10 143.7 144.4 144.5 144.2 144.4 2.2 2.3 2.2 2.2
#11 138.8 139.7 139.8 139.5 139.9 2.4 2.4 2.2 2.4
#12 163.3 165.2 165.0 165.3 165.4 3.2 3.1 3.3 3.0
#13 177.5 181.0 181.1 180.3 180.9 5.8 6.5 5.0 5.4
#14 175.4 178.1 178.2 177.8 178.8 4.0 5.7 4.9 4.3
#15 157.9 159.2 159.2 159.2 159.2 2.3 2.5 2.3 2.2
#16 136.7 137.7 137.6 137.6 137.7 2.1 2.2 2.2 2.0
#17 161.2 162.4 162.4 162.5 162.4 2.7 2.9 2.7 2.6
#18 175.4 178.3 178.1 177.9 179.1 4.5 5.0 4.9 4.7
#19 173.4 176.6 176.7 176.5 176.7 4.3 4.5 4.7 4.0
#20 155.9 157.0 157.0 156.9 157.0 2.0 2.3 2.0 2.1
#21 119.2 119.5 119.5 119.5 119.5 1.2 1.2 1.2 1.3
#22 143.7 144.6 144.6 144.4 144.8 2.2 2.2 2.1 2.2
#23 157.9 159.2 159.3 159.2 159.3 2.2 2.5 2.4 2.2
#24 155.9 157.0 156.9 156.8 157.1 2.0 2.2 2.0 1.9
#25 138.4 139.7 139.5 139.4 139.7 2.3 2.4 2.5 2.2
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Table B.3: Means and standard deviations of the posterior PDF for each of the 100 parameters recovered

in the inversion example in Section 5.3.1 Values of the true LAB used to generate the synthetic velocity field

are also included. Inversion run for 106 steps and the first 105 inversion steps are considered burn-in period

and, hence, discarded.

mi true LAB Mean σ mi true LAB Mean σ
#1 100.0 101.3 3.2 #51 139.8 141.2 3.7
#2 111.6 111.9 2.9 #52 151.4 151.6 2.5
#3 122.2 122.4 1.8 #53 161.9 162.9 3.6
#4 130.8 131.7 2.7 #54 170.6 173.9 4.7
#5 136.9 138.5 3.5 #55 176.7 178.9 4.6
#6 139.8 140.9 3.9 #56 179.6 182.1 4.8
#7 139.3 140.1 3.8 #57 179.1 181.0 4.6
#8 135.4 137.2 3.5 #58 175.2 178.1 4.9
#9 128.5 128.9 2.8 #59 168.3 170.8 4.9
#10 119.2 119.5 2.1 #60 159.0 160.2 3.2
#11 111.6 111.2 3.1 #61 139.3 140.3 3.7
#12 123.1 123.4 1.8 #62 150.9 151.4 2.4
#13 133.7 134.8 2.9 #63 161.4 162.6 3.3
#14 142.4 143.4 3.4 #64 170.1 172.7 5.0
#15 148.5 147.3 3.3 #65 176.2 179.4 5.0
#16 151.4 151.8 2.4 #66 179.1 180.4 5.5
#17 150.9 151.4 2.6 #67 178.6 181.3 5.4
#18 147.0 145.9 3.5 #68 174.7 177.2 5.1
#19 140.1 141.8 3.8 #69 167.8 170.6 4.8
#20 130.7 131.1 3.2 #70 158.5 159.6 3.4
#21 122.2 122.4 1.9 #71 135.4 137.1 3.8
#22 133.7 134.8 2.8 #72 147.0 146.1 3.3
#23 144.3 144.6 3.2 #73 157.6 158.7 2.5
#24 153.0 153.6 2.3 #74 166.3 168.2 4.0
#25 159.0 159.9 2.6 #75 172.3 175.0 4.9
#26 161.9 163.0 3.3 #76 175.2 178.2 4.8
#27 161.4 162.5 3.4 #77 174.7 176.7 5.3
#28 157.6 158.9 2.6 #78 170.8 174.8 5.3
#29 150.7 150.3 2.6 #79 163.9 165.3 4.1
#30 141.3 143.2 3.8 #80 154.6 156.0 2.7
#31 130.8 131.7 2.9 #81 128.5 129.3 2.9
#32 142.4 143.4 3.3 #82 140.1 141.7 3.8
#33 153.0 153.7 2.1 #83 150.7 150.4 2.6
#34 161.7 162.8 3.1 #84 159.4 160.4 3.0
#35 167.7 169.2 4.0 #85 165.4 167.6 4.1
#36 170.6 173.5 4.8 #86 168.3 170.7 4.8
#37 170.1 172.8 4.7 #87 167.8 171.3 4.8
#38 166.3 167.7 4.3 #88 163.9 165.2 4.4
#39 159.4 160.8 3.2 #89 157.0 158.8 3.0
#40 150.0 149.4 2.9 #90 147.7 146.4 3.3
#41 136.9 138.5 3.6 #91 119.2 119.2 2.3
#42 148.5 146.9 3.3 #92 130.7 132.0 3.4
#43 159.0 159.8 2.8 #93 141.3 142.8 3.5
#44 167.7 169.2 4.2 #94 150.0 149.8 2.8
#45 173.8 177.2 4.6 #95 156.1 156.7 2.6
#46 176.7 179.6 4.7 #96 159.0 160.4 3.4
#47 176.2 178.7 4.9 #97 158.5 159.4 3.3
#48 172.3 175.3 5.2 #98 154.6 156.0 3.0
#49 165.4 167.0 4.7 #99 147.7 146.3 3.6
#50 156.1 157.3 2.8 #100 138.4 141.6 4.2
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B. Posterior PDFs results
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B. Posterior PDFs results

F
igure

B
.3:

R
andom

w
alk

for
each

of
the

100
param

eters
using

topography
as

observables
(exam

ple
A
).In

each
plot:

prior
distribution

(black
dashed

line),reference
L
A
B

value
used

to
generate

the
synthetic

velocity
field

(solid
black

line)
and

initialvalue
(red

dot).

164



F
ig
ur
e
B
.4
:
P
os
te
ri
or

P
D
F
fo
r
ea
ch

of
th
e
10

0
pa

ra
m
et
er
s
us
in
g
to
po

gr
ap

hy
as

ob
se
rv
ab

le
s
(e
xa

m
pl
e
A
).
In

ea
ch

pl
ot
:
pr
io
r
di
st
ri
bu

ti
on

(b
la
ck

da
sh
ed

lin
e)
,
re
fe
re
nc
e
L
A
B

va
lu
e
us
ed

to
ge
ne

ra
te

th
e
sy
nt
he

ti
c
ve
lo
ci
ty

fie
ld

(s
ol
id

bl
ac
k
lin

e)
.
T
he

bu
rn
-in

pe
ri
od

ha
s
be

en
di
sc
ar
de

d
in

th
e
es
ti
m
at
io
n
of

th
e

po
st
er
io
r
P
D
F
.

165



B. Posterior PDFs results
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