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Abstract

The outstanding progress achieved in the last decades to isolate and manipulate
individual quantum systems has revolutionized the way in which quantum many-
body phenomena, appearing across Nature’s different energy scales, can be investi-
gated. By employing atomic systems such as ultracold atoms in optical lattices, an
enormous range of paradigmatic models from condensed-matter and high-energy
physics are being currently studied using table-top experiments, turning Feynman’s
idea of a quantum simulator into a reality.

Quantum simulators offer the possibility to gather information about complex
quantum systems, which are either not accessible to experiments or whose proper-
ties can not be easily derived using standard analytical or numerical approaches.
These synthetic quantum systems can be designed precisely such that they are
described under the same models as natural systems, and their remarkable con-
trol allows to probe the relevant phenomena associated to them. Apart from their
quantum simulation capabilities, atomic systems can also be employed to gener-
ate quantum matter with novel properties beyond those found in Nature, offering
interesting prospects for quantum technological applications.

In this thesis, we investigate the possibilities that cold-atom systems present to
address, in particular, quantum matter with non-trivial topological properties. Us-
ing mixtures of ultracold atoms, we analyze various quantum simulation strategies
to access several many-body phenomena for which a satisfactory understanding is
still lacking. Moreover, we show how such platforms display strongly-correlated
topological effects beyond those found in natural systems.

We first focus on models inspired by condensed-matter physics. More precisely,
we propose how lattices dynamics, similar to those described by phonons in solid
crystals, can be implemented in an otherwise static optical lattice. By coupling
the former to quantum matter using a mixture of bosonic atoms, we reproduce
typical effects described by electronic systems, such as topological defects or charge
fractionalization. We then extend these results and find novel features, from boson
fractionalization to intertwined topological phases.

We then consider the quantum simulation of high-energy-physics problems. By
using Bose-Fermi mixtures, we show how non-perturbative phenomena character-
istic of non-abelian gauge theories, such as quark confinement, emerge in simpler
models that are within the reach of current technology. Finally, we investigate how
the interplay between gauge invariance and strong correlations gives rise to various
mechanisms to prepare robust topological order in near-term quantum simulators.

In summary, our results show several connections between different areas of
theoretical and experimental physics, and indicate how these can be harnessed
further to advance our understanding of strongly-correlated quantum matter, as
well as to utilize the latter for new technological applications.






Resumen

El enorme progreso llevado a cabo en las iltimas decadas para aislar y ma-
nipular sistemas cuanticos individuales ha revolucionado la manera de investigar
fenémenos cuanticos de muchos cuerpos, los cuales se presentan a diferentes es-
calas energéticas en la naturaleza. Actualmente, una gran variedad de modelos
paradigmaticos en fisica de la materia condensada y de altas energias se estudian
experimentalmente utilizando sistemas atémicos tales como atomos ultrafrios en
reticulos 6pticos, llevando a la realidad la idea de simulador cuantico de Feynman.

Los simuladores cuanticos ofrecen la posibilidad de obtener informacion sobre
otros sistemas cuinticos mas complejos que, o bien no son accesibles experimen-
talmente, o cuyas propiedades no se pueden predecir facilmente utilizando técni-
cas analiticas o numéricas usuales. Estos sistemas cuanticos sintéticos se pueden
disenar de tal manera que se encuentren descritos precisamente por los mismos
modelos que los anteriores y, gracias a su notable control, permiten investigar los
fendbmenos mas relevantes asociados a ellos. Aparte de su uso como simuladores
cuanticos, estos sistemas atomicos se pueden utilizar para crear nuevos tipos de
materia cuantica cuyas propiedades pueden ser diferentes de aquellas encontradas
en la naturaleza, ofreciendo asi aplicaciones interesantes en tecnologia cuéntica.

En esta tesis investigamos las posibilidades que los sistemas de &dtomos frios
ofrecen para obtener materia cuantica con propiedades topologicas no triviales.
Analizamos, en particular, diferentes estrategias de simulaciéon cuéntica para ac-
ceder a varios fenomenos de muchos cuerpos que ain no se entienden de forma
satisfactoria, utilizando para ello mezclas de 4tomos ultrafrios. Mostramos ademés
como estas plataformas pueden dar lugar a efectos topologicos fuertemente correla-
cionados que van mas alla de los encontrados hasta ahora en sistemas naturales.

Primero nos enfocamos en modelos inspirados por sistemas de materia con-
densada. En particular, proponemos como implementar reticulos dindmicos, los
cuales suelen ser estaticos en sitemas 6pticos, de manera que podamos simular las
particulas fononicas que aparecen en solidos cristalinos. Acoplamos estos tultimos
a materia cudntica utilizando una mezcla de 4tomos bosonicos, lo cual nos permite
reproducir algunos de los efectos tipicos que aparecen en sitemas electronicos, tales
como defectos topologicos o fraccionalizacion de la carga. Por tltimo, extendemos
estos resultados encontrando rasgos nuevos, desde la fraccionalizacién de bosones
hasta fases topologicas entrelazadas.

Consideramos ademés simulaciones cuanticas para problemas en fisica de altas
energias. Utilizando mezclas de atomos bosonicos y fermidnicos, mostramos como
algunos fendémenos no perturbativos caracteristicos de teorias gauge no abelianas,
tales como el confinamiento de quarks, pueden aparecer en modelos més sencillos,
los cuales estan al alcance de la tecnologia actual. Finalmente, investigamos como
la interaccion entre simetria gauge y correlaciones fuertes puede dar lugar a nuevos
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Resumen

mecanismos para genera orden topoldgico més robusto en simuladores cuanticos a
corto plazo.

En resumen, nuestros resultados muestras varias conexiones entre diferentes
areas de la fisica teorica y experimental, e indican como estas pueden ser exploradas
para avanzar en el conocmiento de la materia cuantica fuertemente correlacionada,
asi como en las posibles aplicaciones tecnologicas de esta ultima.
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Introduction

Motivation

The last decades have witnessed an unprecedented progress in the degree with
which quantum systems can be controlled experimentally. Within the field of
atomic, molecular and optical (AMO) physics, in particular, several techniques,
such as laser cooling and trapping [CT98, Phi98], are now routinely employed to
isolate and manipulate quantum systems. Such degree of control has allowed to
investigate fundamental properties of these systems at the level of single atoms and
photons [LBMWO03, RBHO1], which has led to the Nobel prize in physics in 2012.

More recently, atomic experiments have moved into the many-body arena.
Sparked by the observation of Bose-Einstein condensation (BEC) in cold and dilute
atomic gases [AEM™95, DMAT95], quantum effects are now investigated at macro-
scopic scales using, among others, systems of neutral atoms [JZ05, BDZ08, LSAT07,
BDN12, LSA17] and trapped ions [CZ95, LBMWO03, BR12, LHN'11, PC04|. The
use of optical lattices, in particular, has allowed access to regimes where, despite the
difference in the characteristic energy scales, atoms behave similarly to electrons
in crystalline solids [JBC198, GME™"02]. In both cases, the relevant dynamics
are described by many-body lattice Hamiltonians, which in the former case can
be engineered in great detail [Blo05|. These synthetic quantum systems can thus
be employed to study the properties of materials that are less accessible in ex-
periments, as it is the case for many solid-state systems. This approach realizes
Feynman’s vision of a quantum simulator [Fey82|, a device that mimics the prop-
erties of other quantum systems, allowing to simulate the mathematical models
that describe the latter in a much more efficient manner than what its classical
counterparts could ever achieve [CZ12, BN09].

With this strategy in mind, cold-atom experiments are already exploring phys-
ical phenomena that fall beyond the capabilities of current analytical and numer-
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ical methods [TCFT12]. One paradigmatic example of this trend involves the
study of the Hubbard model [HF63] and its relation to high-T. superconductiv-
ity [Eme87, ZR88, LNWO06|. The exact mechanism behind this phenomenon re-
mains unknown due to, among other reasons, the limitations of standard numer-
ical approaches [LGST90]. In this context, cold-atom quantum simulators can be
designed to target the Hubbard model [HCZT02, JSGT08|, offering the possibility
to explore the regimes of its phase diagram where other methods fail [MCJ¥17].

An analogous approach can be employed as well to address open questions at
much higher energies, in situations involving the interaction between fundamental
particles and fields [PS95]. As in the condensed-matter case, the study of certain
non-perturbative many-body effects in high-energy physics requires the use of nu-
merical simulations, where similar limitations also appear [GL16]. A representative
example of this situation can be found in the phenomenon of quark confinement,
described by quantum chromodynamics (QCD) [KS03], which is still poorly un-
derstood despite many decades of research [Gre20]. Current experiments involving
the collision of heavy-ions are trying to address such problems [BRvdS18], and
alternative approaches that allow theoretical predictions to be compared with the
experimental results are crucial at this stage. The use of ultracold atoms for this
task is, however, more challenging compared to lower-energy situations. The rea-
son behind this is the presence of local or gauge symmetries in QCD and other
theories that form the standard model of particle physics [Schl4]. Since these
symmetries are in general absent in the relevant low-energy description of atomic
systems, bigger technical efforts are required to design quantum simulators capable
of addressing high-energy phenomena [Wiel3, ZCR15, DM16, BC19, BBC'20].

Despite these challenges, state-of-the-art experiments are starting to construct
the basic building blocks required for this task [SGBT19, GSM™19, MZH™20,
YSO'20]. Although a full-fledged quantum simulator capable of characterizing
the phase diagram of QCD in 3 + 1 dimensions is still a long-term goal, these
near-term quantum simulators can already be employed to investigate simpler but
still relevant models. The goal here is two fold. On the one hand, effects that are
similar to those of interest can appear in simpler models whose simulations is less
challenging. The interest in this strategy lies on the possibility to learn universal
features that could also be present in more complicated models, by targeting only
the relevant information and understanding which non-essential features could be
safely disregarded. On the other hand, one could construct these simulators to
generate novel quantum states of matter that, although inspired by those observed
in natural systems, do not necessarily appear in them. Among other applications,
such states could be helpful to design artificial materials with interesting proper-
ties [BAH17], or to be used as resources in quantum information and quantum
computation technologies [JBC199, JCZ™00].

Recently, the notion of topology has been identified as a paramount tool to
deepen our understanding of quantum many-body systems [Kos17, Hall7]|, and it
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lies nowadays at the center of quantum-simulation efforts [GBZ16], both from a
fundamental and applied perspective. In quantum systems, topological properties
refer to global characteristics that are robust against local perturbations [Nak03].
These properties have been found to be ubiquitous in the description of a plethora
condensed-matter and high-energy phenomena, including several open problems
such as high-T, superconductivity [SF01] and quark confinement [Pol77, Hoo81].
The investigation of topological quantum matter using atomic systems exemplifies
the dual role that synthetic matter plays in current research. Ultracold atoms in
optical lattices have been used to study topological phases of matter [GJOS14,
DGJbuO11]. One of the goals has been the simulation of strongly-correlated topo-
logical phases such as fractional quantum Hall states (FQHS) [Lau99], and to
probe their properties in a controllable fashion [SDL05|. FQHS states, in par-
ticular, present topological order—whose low-energy properties can be described in
terms of gauge theories [Sac18]—and anyonic excitations [Lau83|, and their prepa-
ration would provide an important step towards, not only a better understand-
ing of these strongly-correlated features, but also to build fault-tolerant quantum
computers that are globally-protected against local errors [Kit03]. Beyond their
role as quantum simulators, ultracold atoms are also addressing novel topological
phases that do not have a counterpart in natural materials using, for instance,
techniques such as Floquet engineering [WBU™20], as well as other topologically-
ordered states [DYR"17].

In this thesis, we investigate topological quantum matter using cold-atomic sys-
tems following these two approaches. First, inspired by different condensed-matter
and high-energy systems, we introduce models that, although do not exactly de-
scribe systems found in Nature, could allow the quantum simulation of relevant
quantum many-body phenomena that are harder to access experimentally in the
former. We propose implementation schemes for these models using mixtures of
ultracold atoms in optical lattices, and study their properties using various ana-
lytical and numerical techniques. Second, we show how such atomic setups allow
us to extend many of these phenomena beyond standard situations, as well as to
uncover novel strongly-correlated topological effects.

Content

The thesis is organized as follows. We have divided the content into three different
parts. The first two chapters in part I serve as a review that covers several back-
ground topics that we believe are useful to understand the subsequent parts of the
thesis. An expert in the field might decide to skip these introductory chapters and
jump directly to the results, returning to consult them whenever is required. The
rest of the chapters include the main results of the thesis. Part II contains three
chapters devoted to the study of strongly-correlated topological effects inspired by
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condensed-matter phenomena. Part IIT contains two chapters focused on the study
of high-energy physics in atomic systems. We now briefly summarize the contents
of each chapter.

In chapter 1, we review the basic notions that are behind the description and
classification of topological phenomena in quantum many-body systems. We focus,
in particular, on topological defects and topological phases, and give examples from
condensed-matter and high-energy physics where these effects play an important
role.

In chapter 2, we review the two different but complementary approaches used in
this thesis to investigate strongly-correlated systems: numerical methods based on
tensor networks and quantum simulations using ultracold atoms in optical lattices.

In chapter 3, we describe how to implement a dynamical lattice using a mix-
ture of ultracold bosonic atoms, allowing, on the one hand, to investigate several
paradigmatic condensed-matter phenomena in greater detail, such as Peierls tran-
sitions and charge fractionalization induced by topological defects. On the other
hand, we show how these effects, typical of fermion-phonon systems, also appear
in the case of strongly-interacting bosonic matter.

In chapter 4, we show how synthetic quantum systems can present novel topo-
logical effects that have not been explored in natural materials. In particular, we
extend the results from the previous chapter and find various intertwined topologi-
cal phases, where long-ranger order coexists with non-trivial topological properties.
We characterize several features that arise as a consequence of this interplay, such
as emergent topological symmetry protection or fractional charge pumping.

In chapter 5, we conclude our investigation of strongly-correlated topological
effect in systems with bosonic matter by studying in detail how topological defects
arise in intertwined topological phases. We show how the latter give rise to the
phenomenon of boson fractionalization, and how it could be detected in atomic
experiments.

In chapter 6, we shift the focus and investigate the presence of high-energy
phenomena in synthetic quantum matter, showing how questions associated with
quark confinement can be addressed using an ultracold Bose-Fermi mixture. In
particular, we propose a quantum simulation scheme for a simple lattice model
where quark-like quasi-particles emerge and become deconfined due to the presence
of topological defects. Moreover, we uncover a confinement-deconfinement phase
transition that could be further studied in atomic experiments.

Finally, in chapter 7, we introduce a lattice gauge theory that could be imple-
mented using near-term cold-atom quantum simulators, and show how the interplay
between gauge symmetry and quantum correlations gives rise to new topological
effects, including robust topological order and fermionic deconfinement.
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Preliminaries






Chapter 1

Topological quantum matter

In mathematics, the field of topology investigates the properties of certain ob-
jects, known as topological spaces, that do not change under continuous deforma-
tions [Nak03]. Topological spaces are sets equipped with a topology!, one of the
simplest mathematical structures that allows to define a notion of continuity?. One
can classify topological spaces based on their global properties, also known as topo-
logical invariants, which are invariant under continuous maps, this is, they do not
depend on the local details of the space. As we will see during this chapter, this
classification can be further simplified by noting that, in many cases, these invari-
ants carry an extra algebraic structure, such as a group structure. One can then
use tools from abstract algebra to characterize topological spaces, a branch that is
known as algebraic topology

Topological spaces can appear in the mathematical description of many different
physical systems, as we will see. Topological phenomena are usually associated to
certain robustness to local perturbations. In each situation, in order to understand
these effects it is important first to identify the mathematical structure behind
them that can give rise to non-trivial behavior, as well as the notion of continuity
and its physical interpretation. The strength of this approach lies in the possibil-
ity to predict the behavior of a physical system without paying much attention to
its local details, focusing instead on its global properties. In this first introductory

1 More specifically, a topological space is a pair (X, 7), where X is a set and 7, the topology on
X, is a collection of subsets of X, known as open sets, satisfying the following properties: (1) both
the set X and the empty set belong to 7, (2) any finite or infinite union of elements of T belongs
to 7 and (3) the intersection a finite number of elements of 7 also belongs to 7. In the following,
we denote the topological space by referring to the set X, keeping in mind that a certain topology
is associated to it.

2A map f: X — Y between two topological spaces X and Y is continuous if for every open
set V C Y, the inverse image f~'(V) = {z € X | f(z) € V} is an open subset of X. If f is a
bijection and the inverse map f—! is also continuous, f is called an homeomorphism.
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chapter, we review the main examples where topology plays a role in the description
of a physical system, focusing on those cases that are relevant to condensed-matter
and high-energy physics. In Sec. 1.1, we consider the case of topological defects
in ordered media, which can appear both in classical and quantum systems. In
Sec. 1.2, we review the topological structure behind the description of quantum
states, and how it can give rise to non-trivial observable effects arising from the in-
terplay between topology and quantum statistics. Finally, in Sec. 1.3, we show how
such structure brings about novel phases of matter, with important applications to
different fields, ranging from material science to quantum computation.

Throughout this chapter, we introduce all the required mathematical concepts,
where no prior knowledge on topology will be assumed. Although a full account
on the mathematical details behind topological phenomena is beyond our scope,
we will try at least to convey some basic notions to build an intuition on what is
topological in topological physics. We refer the interested reader to more detailed
references in due course.

1.1 Topological defects

Topological defects are arguable one of the most prominent examples where topol-
ogy can be employed to predict the properties of a physical system. They refer
to stable solutions of partial differential equations that can not be continuously
connected to the vacuum—in a way that we will make more precise soon—caused
by non-trivial topological properties in the boundary conditions of these equations.
A prime example are solitons, wave packets that propagate in dispersive media
without changing its shape due to non-linear effects [ZK65]. They are ubiquitous
across different fields, ranging from hydrodynamics [SR44] and optics [HT73] to bi-
ology [DavT77|. Here we focus on topological defects in many-body systems, relevant
both to condensed-matter and high-energy physics. In that context, the presence
of defects is associated to the spontaneous breaking of certain symmetries [Mer79|,
emerging from the interactions among many microscopic degrees of freedom. We
note that, although in the following we focus mostly on quantum states at T' = 0,
the theory of topological defects presented here is valid also for classical phases at
finite temperatures. In that sense, we could regard topological defects as a classical
phenomena—although quantum effects become relevant whenever defects interact
with quantum matter, as we will see in chapter 5. This is in contrast to the case
of topological phases, introduced in the next section, where non-trivial topology is
found precisely in the structure of quantum states, and, therefore, no classical coun-
terpart exists. In this section, we first review the notion of spontaneous symmetry
breaking in quantum mechanics. We then classify topological defects based on the
topological structure of the resulting ground-state manifold. We finish with some
comments regarding the most common mechanisms to create defects in physical

10



1. Topological quantum matter

systems.

1.1.1 Spontaneous symmetry breaking

In quantum mechanics, a system is said to be symmetric under a certain group
of transformations G3 if the Hamiltonian that governs its dynamics, H (A)—where
A = (A1, A2,...) denotes possible external parameters—commutes with a set of
unitary transformations,

[H(A)vUQ] =0, (1'1)

where {0g}geg forms a unitary representation of the symmetry group [Cor97].
In general, any state can be written as a superposition of states that transform
according to irreducible representations of a group. This fact becomes very useful
to characterize the eigenstates of a symmetric system, and has led, for instance, to
a complete classification of elementary particles in the Standard Model [Sch14].

In condensed matter, the notion of symmetry [Gro96|, together with emer-
gence [And72], constitutes a driving force to understand the vast diversity of ob-
served phenomena. On the one hand, emergence can account for the appearance
of different collective behavior at macroscopic scales, starting from a collection of
many individual particles that interact according to the same microscopic laws.
On the other hand, symmetry can explain how, sometimes, this complexity can
be tamed by understanding the underlying microscopic symmetries. According to
Landau’s paradigm [Lan37], even when the system’s Hamiltonian respects a par-
ticular symmetry (1.1), its ground state |45 (A)), defined up to a global phase,
may not be invariant under a certain subgroup® of transformation, this is,

Uy [t (N)) # [t (N) (1.2)

for at least one g € G. This situation is referred to as spontaneous symmetry break-
ing (SSB). For systems with a finite number constituents, the ground state always
has the same symmetries as the corresponding Hamiltonian. For SSB to take place,
therefore, an infinite number of degrees of freedom is required. This corresponds
to the thermodynamic limit in condensed matter—where, in many situations, the
low-energy physics can be described by an effective quantum field theory—and SSB
allows us to explain many macroscopic phenomena, from magnetism to supercon-
ductivity [AS06]. The situation is analogous in high-energy physics, where SSB

3A group is a set G together with an operation - that takes two elements g1 and g2 from G
to form a new element gj - g2, such that the following properties are fulfilled: (1) g1 - g2 € G
Vg1, 92 € G, (2) g1 - (92 - 93) = (91 - 92) - 93 Vg1, g2, g3 € G, (3) there exists a unique element
e € G, called the identity, such that e- g1 = g1 - e = g1 Vg1 € G and (4) Vg1 € G there exists an
element gfl € G, called the inverse of g1, such that g1 - g; ~ = gfl -g1 = e.

4 A subgroup H of a group G, denoted H < G, is a subset of G that is also a group under the
same group operation as G.

11



1. Topological quantum matter

accounts, for instance, for the separation between electromagnetic and weak inter-
actions that took place shortly after the Big Bang [Wei67], or to the generation of
mass in quantum chromodynamics [NJL61a, NJL61b].

In general, the symmetry does not have to be completely broken after SSB. In
many situations, there is a residual symmetry group H represented by the set of
transformations under which the ground state is still invariant,

H={heG|Up|[tgs)=|t0gs)} <G (1.3)

Note that, for g & H, although [t (X)) and U, [, (X)) are different states (1.2),
they have the same energy—since Ug commutes with the Hamiltonian (1.1). There-
fore, symmetry-broken ground states are always degenerate. Take |5 .) to be one
of them. The set of degenerate ground states (GS) can be obtained by applying
unitary transformations on it, GS C {Ug |g s.) }geg, requiring that the group ele-
ment does not belong to the residual symmetry subgroup, g ¢ H. In particular, it
is easy to show that the elements of GS are in a one-to-one correspondence with
the elements of the quotient set

R=G/H, (1.4)

this is, the set of (left) cosets of H in G, gH = {gh : h € H}. The latter defines an
equivalence relation in G, and G/H denotes to the set of equivalence classes. If H
is a normal subgroup® of G, the quotient set has also the structure of a group.

As an example, consider a scalar field theory with a non-linear potential, V[¢] =
—m?|¢(x)|>+plo(z)|*, where ¢(z) is a complex scalar field and the potential is sym-
metric under U(1) transformations, ¢(x) — e*¢(z). This potential plays an impor-
tant role in the Anderson-Higgs mechanism [And63, EB64, Hig64, GHK64], which
is responsible of giving mass to the gauge bosons in the Standard model [Sch14].
In the classical limit, where no radiative corrections are included, the ground state
corresponds to the field that minimizes the potential V[¢]. For m? < 0, this oc-
curs for |¢| # 0, and the ground state spontaneously breaks the symmetry of the
theory by spontaneously locking to a specific complex phase « (Fig. 1.1(a)). Since
the symmetry is completely broken, H is trivial in this case and GS corresponds to
U(1) (1.4), and different ground states are connected through U(1) transformations
(Fig. 1.1(b)). Here U(1) is an example of a topological group—this is, a group that
has also the structure of a topological space such that both the group operation
and the inverse operation are continuous—which in this case is homeomorphic to
the circle, U(1) ~ S*.

In general, every symmetry group in quantum mechanics is a topological group.
Moreover, the corresponding topological space can also be regarded as a manifold,

5A subgroup A of G is a normal subgroup if and only if gng=! € N’ Vg € G and Vn € N.
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Fig. 1.1 Spontaneous symmetry breaking and ground state manifold: (a)
The potential V(¢) is symmetric under U(1) transformations in the field, ¢ — e**¢. For
m? > 0, it has a minimum at |¢| = 0, which has the same symmetry as the potential. At
me = 0, this point becomes unstable and a new minimum appears at |¢| # 0 for m? < 0,
which is no longer symmetric. (b) The ground state is degenerate, as fields with the
same amplitude and different complex phase have the same energy. Since the symmetry
is completely broken, the ground state manifold GS is in a one-to-one correspondence with
U(1) ~ 8* (1.4), inheriting its topological structure. Different states in GS are connected
through U(1) transformations.

this is, a topological space that is locally homeomorphic to the Euclidian spaceS.
Continuous symmetries, such as U(1), correspond to smooth manifolds’, and are
described by Lie groups. Discrete symmetries, on the other hand, are described
by discrete groups, such as Z (the group of integers under addition), which is the
symmetry group of translations in a crystal. The corresponding manifold is in
this case a 0-dimensional manifold, this is, a discrete set of points equipped with
the discrete topology®. In both cases, GS inherits the topological structure of the
quotient set R = G/H, which depends both on G and H. In the following, we refer
to the former as ground state manifold. It is precisely the non-trivial topological
properties of GS as a topological space that gives rise to topological defects [Mer79|,
as we will see.

6More specifically, an n-dimensional manifold is a topological space for which each point is
contained in an open set that is homeomorphic to an open set in R™

7A differentiable manifold is a manifold with an extra differentiable structure that allows one
to do calculus on it. If this structure is such that derivatives, defined in a precise way, of all orders
exists and are continuous then the manifold is called smooth. We refer the interested reader to
Ref. [Nak03| for more details

8The discrete topology on X is defined by letting all subsets of X be open sets. X is a discrete
topological space if it is equipped with this topology
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1. Topological quantum matter

1.1.2 Order parameter manifold

As we saw in the example above, SSB can occur as the microscopic parameters
A are modified across a critical point A.. This leads to the so-called symmetry-
breaking phase transitions, which can be characterized by local order parameters,
and yields a classification of phases of matter in the Landau paradigm [AS06]. An
order parameter is defined as the expectation value of certain observable O(A) =
(1hg.s. (N)| O [thgs.(N)) with the following properties: the observable O is chosen in
such a way that its eigenstates coincide with the inequivalent states of GS, having
different non-zero eigenvalues, and has zero expectation value for symmetric states.
The set of eigenvalues of O is thus also in a one-to-one correspondence with GS
(1.4). In the following, we refer to this set of eigenvalues as the order parameter
manifold, understanding that it has the same topological structure as GS, and we
denote it by R in a slight abuse of notation.

We consider a medium to be ordered with respect to a certain symmetry if the
corresponding order parameter takes a non-zero value, and disordered otherwise.
Consider, for instance, the case of a superfluid phase, which can appears in sys-
tems of ultracold atoms [PS08|, among others. This phase is characterized by the
spontaneous breaking of the U(1) symmetry associated to the conservation of the
total number of particles. The ground state, therefore, does not possess a well
defined particle number. The superfluid order parameter is defined as ¥ = (@),
where ¥ corresponds to the annihilation operator in second quantization, and takes
a non-zero value in the superfluid phase. As we discussed for the field theory ex-
ample above, we have then R = S', and the order parameter can be written as
U = |¥|ei?, where ¢ is referred to as the superfluid phase (Fig. 1.2(a)). Every
value of ¢, from 0 to 27 labels a degenerate ground state with the same energy.

For a general state, the local order parameter might vary in space. As we did
for the superfluid order parameter, we can always decompose it as the product of
two functions, O(z) = ¢(z)s(z), where ¢ is a smooth function in the d-dimensional
real space (R?) and s takes values in R,

s: RT = R. (1.5)

Each degenerate ground state is associated to a uniform function s, (r) = r Vx € R¢
Here we are interested in non-uniform functions where s(z) is continuous every-
where except in regions of lower dimension m < d. Note that O(z) is not necessarily
singular, as c¢(x) can vanish in those regions. The singular regions of s(x) are called
defects, and the corresponding functions (1.5) are associated to certain solutions of
a partial differential equation, such as the Schrédinger equation. This is particu-
larly interesting whenever these solutions are close in energy to the ground state, as
they can play a role due to the presence of quantum or thermal fluctuations. In the
superfluid case, vortices are examples of point defects (m = 0), where the superfluid
phase ¢(z) becomes singular at the center of the vortex, while the amplitude van-
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1. Topological quantum matter

(a) (b)

Fig. 1.2 Superfluid order parameter: The superfluid order parameter ¥ is repre-
sented in a plane using arrows, where the length and the angle of the arrow at a given
point corresponds to the amplitude and phase of ¥(z). (a) Configuration without vor-
tices, where the order parameter is perturbed only locally from one the uniform ground
state configurations via Goldstone modes. (b) Vortex configuration with a singularity
located at its core. Notice that the singularity in the phase can be avoided in the order
parameter if the amplitude vanishes.

ishes to avoid the singularity in the full order parameter (Fig. 1.2(b)). Vortices are
low-energy solutions of the Gross-Pitaevskii equation, which is a non-linear partial
different equation for the order parameter ¥(z) obtained as a mean-field approx-
imation of the Schrodinger equation. In this formulation, vortices are similar to
other topological defects obtained in classical physics, such as in hydrodynamics or
non-linear optics.

In the literature, the term vortex is used in general for m = d — 2 dimen-
sional defect. Other standard notations include domain walls and monopoles, for
m =d— 1 and m = d — 3, respectively. In high-energy physics, an instanton is a
point defect in a d = 4 Euclidean spacetime, after a Wick rotation to imaginary
time is performed. We note that there also exists a class of topological defects
that do not require singularities, that some authors referred to as topological soli-
tons [BRvW19]. We will not consider them here, however. In the following, we
restrict the term soliton for point defects in d = 1.

1.1.3 Homotopy group and defect classification

An ordered medium is thus characterized by a map between two topological spaces,
the d-dimensional real space and the quotient set (1.5). Given a broken symmetry,
we are interested in classifying different configurations up to continuous transfor-
mations. The reason is that continuous deformations of the order parameter cost
only a finite energy, and can be induced by local quantum and thermal fluctuations.
Examples of excitations associated to these changes are Goldstone modes, which
appear when a continuous symmetry is spontaneously broken, such as spin waves
in the Heisenberg model [Sacl1]. Topological defects, on the other hand, are a dif-

15



1. Topological quantum matter

S———

Fig. 1.3 Winding number: Superfluid vortices are classified by the first homotopy
group 71(S') = Z of inequivalent loops in the circle. In the figure, the dashed and
solid lines corresponds to loops in R? and S*, respectively (f and g in the main text),
and the arrows correspond to the values of the order parameter. (a) If there are no
singularities, the loop in S* can be deformed continuously to a point. The order parameter
configuration is thus trivial and has topological charge @ = 0. (b) and (c) correspond to
vortex configurations with non-zero winding numbers, and topological charges (Q = 1 and
Q@ = 2, respectively.

ferent type of excitation, where an extensive amount of energy is usually required
to remove them from the system. The latter is associated to a global change in
the order parameter, making defects stable against local perturbations and thus
topological.

We associated topological defects with the existence of singular maps. The lat-
ter cannot be continuously deformed into non-singular maps, such as the ones that
characterize a ground state configuration. In algebraic topology, the mathematical
structure that classifies inequivalent maps up to continuous transformations is the
homotopy group [Nak03]. Before entering into more details, let us come back to
our superfluid example and introduce the concept of a loop.

A loop in a topological space X is a continuous function f: [0,1] — X with
f(0) = f(1). If one thinks about a parameter ¢t € [0,1] as a time variable, the
loop traverses a closed contour in X, and f(t) gives the position within the contour
for a given time. Consider now a loop in a superfluid region, given by g: [0,1] —
R2. Since the function s(z) (1.5) maps every point in R? to a point in S, the
composition f(t) = s(g(t)) can be viewed as a loop in the circle (Fig. 1.3). If
g(t) does not encircles any singularity in s(R?), then f(t) will not complete a turn
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Fig. 1.4 Z topological charge: superfluid vortices are characterized by integer charges.
Vortices can be combined forming new defects with a charge given by the sum of its parts.
In the figure, two vortices with charge Q = +1 form a Q = +2 vortex.

around the circle and, therefore, can be continuously deformed into a point. This is
not the case, however, if g(t) encircles a vortex. These two situations are regarded
as inequivalent.

Let us be a bit more precise now. Two loops f1 and fo are said to be homotopic
at xo € X if there exists a continuous function F': [0,1] x [0,1] — X that interpo-
lates between them, this is, if F(0,2) = fi(x) and F(1,2) = fo(x) Va € [0,1], and
F(t,0) = F(t,1) = 2o Vt € [0,1]. The latter defines an equivalence relation in the
set of loops. The set of homotopy classes of loops in X with base point zy has a
group structure, called the first homotopy group 71 (R, o), or fundamental group.
The group operation is defined by “gluing together” loops, this is, the product of
two loops f; and fy is a new loop f defined by traversing first f; and then f5.
Loops that are in the same equivalence class as the constant map are said to be
homotopically trivial, and they correspond to the identity element. If R is abelian,
the groups m1 (R, zo) with different ¢ are all isomorphic to each other [Mer79).

The possible vortices that can appear in a superfluid phase are thus given
by m1(S!) = Z, the group of integers under addition. Each class is determined
by the number of times the loop goes around the circle, which is also called the
winding number of the loop—a notion that will appear again in the classification of
topological phases. The group structure allows us to add topological defects. For
example, two vortices with charges +1 can combine to form a vortex with charge
+2 (Fig. 1.4).

One can define higher homotopy groups. In particular, 7, (R, zo) is the set of
equivalence classes of maps f: [0,1]” — R, where two maps belong to the same
class if they are homotopic to each other. Here [0, 1]™ denotes the hypercube in R™,
and the homotopy relation generalizes straightforwardly from n = 1. In general, an
m-~dimensional defect in a d-dimensional medium is classified by the n-homotopy
group m,(R,xo), where n = d —m — 1 [Mer79]. The equivalence class associated
to the defect is called topological charge, which constitutes a conserved physical
quantity for the defect, quantized up to local perturbations. In the case of S!, every
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1. Topological quantum matter

homotopy group is trivial for n > 1, this is, it consists only on the identity ele-
ment. Therefore, vortices are the only type of defects allowed in a two-dimensional
superfluid. One example where non-trivial higher homotopy groups exists is the
Heisenberg model. In the ferromagnetic phase, the SU(2) does not break com-
pletely, since the ground state remains invariant under U(1) transformations, and
the order parameter manifold corresponds to the 2-sphere, R = SU(2)/U(1) = S2.
In three dimensions, monopoles are thus allowed, characterized by the second ho-
motopy group m(S?) = Z.

So far we have given examples where the spontaneously broken symmetry is
continuous and can be characterized by a Lie group, such as U(1) or SU(2). The
theory of topological defects, however, can be applied to any symmetry group.
As we have mentioned, discrete symmetry groups are 0-dimensional manifolds,
a structure that is inherited by R after SSB. In that case, each path-connected
component reduces to a point, and the n-homotopy group is always trivial for
n > 1. The only non-trivial group is n = 0, which corresponds to the set of
different components, and thus coincides with R. Therefore, if R is discrete, only
d— 1-dimensional defects are allowed in the system. One example are domain walls
in ferromagnetically-ordered spin systems [Sacll]|. Along this thesis, specifically in
chapters 5, 6 and 7, we will encounter examples of topological defects that arise
after the spontaneous breaking of discrete symmetries.

1.1.4 Defects in physical systems

We finish this section with some comments regarding the presence of topological de-
fects in physical systems. The example given so far, such as vortices in superfluids
and domain walls in spin systems, correspond to condensed matter systems. How-
ever, as we mentioned at the beginning, topological defects are general solutions
of the Schrédinger equation that describes many-body systems, associated to the
spontaneous breaking of the system’s symmetries. Therefore, they also appear in
high-energy physics contexts. One example are instantons [VZNS82|, point defects
of non-abelian gauge theories in 3 + 1-dimensional space-time, that are classified
by the third homotopy group.

Other examples include domain walls and topological strings in cosmology, as
analyzed by Kibble in Ref. [Kib76]. This work considers as well the production
of topological defects when the system goes through a symmetry-breaking phase
transition. The so-called Kibble-Zurek mechanism—extended by Zurek to con-
densed matter systems [Zur85]—relates the rate at which a system goes through
a critical point with the density of defects that appear once it equilibrates in the
symmetry-broken phase. For any finite velocity, the adiabatic theorem breaks down
sufficiently close to the critical point, as the gap closes. The final state contains,
therefore, a superposition of the instantaneous ground state and other excited
states, including topological defects.
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1. Topological quantum matter

In general, although topologically non-trivial configurations can be close in
energy to the trivial one, an infinite energy barrier separates both in the thermo-
dynamic limit, since an extensive part of the system must be modified to connect
both. As it occurs in the Kibble-Zurek mechanism, however, pairs of defects can
be created from the vacuum with a finite energy cost, due to, for example, local
quantum or thermal fluctuations. These defects can then separate and, if the sys-
tem is sufficiently large, one can find regions around them that locally resemble
non-trivial topological sectors. Finally, although in this section we only consider
defects as excited states, in chapter 5 we will show how, in the presence of quantum
matter, defects can also appear in the ground state of the system. In that case,
defects are defined with respect to the ordered topologically-trivial vacuum that
appears in the absence of matter.

1.2 The geometry of quantum states

As we mentioned above, there are many examples from classical physics where
topological defects play an important role. There are, however, other topological
phenomena that are specific to quantum systems. In this section, we review some
of them by focusing on the non-trivial topological properties of the set of quantum
states viewed as a topological space. We start the discussion by noting how the
phase indeterminacy in quantum mechanics can give rise to non-trivial geometric
phases in the evolution of a quantum state, such as the Aharonov-Bohm phase.
We discuss the relevant concepts first from a physics perspective, associating them
to specific examples. Finally, we will generalize these notions using the theory of
fiber bundles, where the non-trivialities in the topological structure associated to
interesting physical phenomena will become apparent.

1.2.1 The phase indeterminacy

The first postulate of quantum mechanics associates every quantum system to a
separable complex Hilbert space H. Quantum states, however, do not correspond
to vectors in H. Since the phase of a state can not be measured experimentally,
two vectors [¢) and |¢’) that differ only by a phase factor, this is, 1) = €% |1)),
should represent the same state. Therefore, to properly define quantum states one
introduces first an equivalence relation ~ in H' = H \ {0}. In particular, two
vectors u, v € H' are said to be equivalent, u ~ v, if u = zv for any z € C\ {0}.
The corresponding set of equivalence classes, also known as rays, forms a projective
Hilbert space P(H). Quantum states are then associated to the subspace of P(H)
formed by unit rays, this is, rays with norm one,

)] ={e[¥) | ¢ € R, [l[¥)]| =1} (1.6)
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Fig. 1.5 Aharonov-Bohm effect: A particle moving around a closed loop that encircles
a solenoid picks up a phase 7 = q®, where ® is the flux that pierces the solenoid. This
is true even if the particle is sufficiently far away a traverses a path where the magnetic
field is zero everywhere.

which is itself a projective Hilbert space. This condition makes sure that measur-
able quantities, such as the expectation value of an observable A, (1| A|¢), are
independent of the representative of the class. In the following, we will use any
[1) € [|¥)] to denote the whole class.

The fact that quantum phases are not measurable does not mean that they can
be neglected. For instance, the superposition state ) ¢, [1)y) is in general different
from Y, c,e™n [ih,), even if [¢h,) = €' |¢,) Vn. In other words, the apparent
redundancy in the description of quantum states have physical consequences. This
property is reminiscent to the case of local symmetries in gauge theories. As we
will see at the end of this section, the mathematical structure that lies behind is
the same in both cases.

One of the earliest predictions of the non-trivial consequences of this phase in-
determinacy was the Aharonov-Bohm effect [AB59], where the relation between
phase indeterminacy and gauge invariance is already apparent. The effect consists
on the accumulation of a phase shift when a charged particle travels in a region of
space with a non-zero electromagnetic vector potential A(r), even if the magnetic
field B(r) = V x A(r) is zero along the path. As an example, consider a particle
moving sufficiently far from a solenoid (Fig. 1.5). In this situation, the magnetic
field is non-zero only within the solenoid. Nevertheless, the particle accumulates
a phase v = qfcdr - A(r), where C corresponds to the path of the moving par-
ticle. If the latter is a closed curve around the solenoid, the accumulated phase
can be written as v = { ® using Stokes’ theorem, where ® is the magnetic flux
piercing the solenoid. The Aharonov-Bohm effect can be measured in interference
experiments [Cha60], showing the importance of gauge invariance in the descrip-
tion of electromagnetism. The gauge-dependent vector potential is thus not just
a mathematical construct useful for computations, but a fundamental object with
non-trivial physical consequences. We will now argue that the same is true for the
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phase of a general quantum system.

1.2.2 Geometric phase

The Aharonov-Bohm phase can be regarded as a particular example of the more
general notion of a geometric phase, also known as the Berry phase [Ber84]. As
we will see, the term geometric refers here to the fact that, when such a phase
manifests in a system, its properties will not depend on the dynamics of a certain
process but on the geometric structure of the quantum state [XCN10]. To see
this, let us consider a Hamiltonian H(\;), where A: [0,T] — M is a curve in the
parameter space M, parametrized by a time variable ¢ in the interval [0,7]. In
the following, we assume that M is a smooth manifold. At a given time ¢, the
Hamiltonian can be diagonalized using an orthonormal basis {|n(\;))}n,

H(Ao) [n(A0) = en(Ae) [n(Ar)) (L.7)

Let us prepare the system in the instantaneous ground state [n(Xg)) at ¢ = 0.
According to the adiabatic approximation, if the rate of change in A is sufficiently
small, the time-evolved state |¢,(T)) at ¢ = T coincides, up to a phase, with the
instantaneous ground state |[n(Ar)),

) i (T
[ (T)) = e Dexp [_h/o dten,(Ae) | In(AT)) s (1.8)

where we wrote the possible phase difference as the sum between a phase -, that
we call the Berry phase, and the so-called dynamical phase. By plugging this
expression into the Schrédinger equation, one can express the accumulated phase
~Yn at time ¢t = T as a line integral

(T = /C dX- A" (N), (1.9)

where

A"(A) = i{n(X)] O [n(N)) (1.10)

is a vector field called the Berry connection. Note that, although to calculate the
phase v,(T) we integrate the Berry connection along the curve A(¢) (1.9), the
latter is defined in the whole parameter space A™: M — R™ (1.10). In a slight
but standard abuse of notation, we use A to denote both the curve in M as well
as a general vector in this space.

Let us perform now a local phase transformation, [n(X)) — ¢ [n(X)), where
O(X) varies in general with A, and we only require it to be smooth and single
valued along the path. Since, as we have already pointed out, physically relevant
quantities should be invariant under such transformation, the phase indeterminacy
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1. Topological quantum matter

in quantum mechanics can be regarded as a U(1) gauge symmetry in the structure of
quantum states. One can establish then a parallelism with electromagnetism, where
the Berry connection plays a similar role to the vector potential. In particular, it
transforms in a similar way

AM(A) = A™(A) — OA0(N). (1.11)
The phase v,,(T") is not a gauge invariant quantity in general, with
Yn(T) = n(T) = 0(Ar) +0(Xo). (1.12)

However, if the curve is closed, Ag = Ap, we have O(Ar) — 6(Xg) = 0mod 27,
since O() is single valued. Therefore, 7, mod 27 is a gauge-invariant quantity for
closed curves in the parameter space. This phase is called geometrical since it does
not depend on the specific time evolution, but only on the geometric properties of
the space M—just as in the case of the Aharonov-Bohm effect described above.
In his original paper [Ber84], Berry interpreted the Aharonov-Bohm phase as a
Berry phase. In that case, the Berry connection turns out to be precisely the
electromagnetic vector potential.

Following the parallelism with electromagnetism, we can use the connection A"

to define a Berry curvature
on on | On
8/\><8)\ 8>\>] 13

n QAL  OAL |/ On
Q A) = =4
analogous to the magnetic field. The Berry curvature can also be written as

T oA W P

r,(n) = i Z (n| OH JON* |m) (m| OH JON |n) — (v <> 1) (1.14)

m#n (en o 6m)2 ’

from which a local conservation law follows,
> oan,(a)=o. (1.15)

Using Stokes’ theorem, we can write the Berry phase as an integral over the
surface S enclosed by the path A,

1
Yoo = / AV AN SO, (). (1.16)
S

Moreover, in the case of a three dimensional parameter space, we can define the first
Chern number as the integral of the Berry curvature over a closed two-dimensional

surface,

1
= — . . 1.1
=5 AN Q0 (1.17)
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1. Topological quantum matter

The first Chern number is quantized to integer values that depend on the singu-
larities in () enclosed by the surface S. These singularities occur in general at
degeneracy points (1.14), this is, whenever €, (A) = €,(A), for n # m.

To help illustrate these concepts, let us consider a two-level Hamiltonian, which
can be written in the most general form as

H(hg,h) = hol + h - &, (1.18)

where h = (hy, hy, h,) € R3 is a vector and 6 = (6%,6Y,67), where o/ are Pauli
matrices. In the following, we take hg = 0, since this term is just a shift in
energy and does not change the eigenstates. For a parametrization of the form
h = h (sin 6 cos ¢, sin @ sin ¢, cos #), where h, 8 and ¢ are spherical coordinates, we
can write the eigenstates of the Hamiltonian (1.18) as

.0 = (" 20,7). eon = (025 ), (1.19)

—COSs 9 Sin 5

The corresponding energies are ¢g = —h and ¢; = h. We can calculate the Berry
curvatures using (1.13),

209, ¢) :%sine, Q'0,¢) =— %sin 0, (1.20)

which satisfies the conservation law (1.15). There is only one degeneracy point
located at h = 0. If we compute now the surface integral of each curvature on a 2-
sphere centered at the origin, and thus enclosing the degeneracy point, we obtain for
the first Chern number the values ¢g = 1 and ¢; = —1 (1.17). In electromagnetism,
the Berry connection given by (1.20) corresponds to the magnetic field generated by
a monopole with a quantized charge given by the associated Chern number [Dir31].
In the next section, we will see how this simple example allows us to describe non-
trivial topological phases of matter.

1.2.3 Fiber bundle theory

Before applying the previous concepts to the study of phases of matter, we finish
this section with a brief sketch of the mathematical structures behind them. In
particular, we introduce the notion of fiber bundles, and relate them to the struc-
ture of quantum states. By doing so, we will relate geometrical concepts such as
connections and curvatures, dealing with the local structure of states, with topo-
logical invariants such as Chern or winding numbers, that characterize their global
properties.
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((L) F= ﬂ,—l(p) (b)

Us U,
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Fig. 1.6 Modgbius strip as a non-trivial fiber bundle: (a) As opposed to the
cylinder, the Mdbius strip is an example of a P(S',R) non-trivial fiber bundle. In the
figure, we represent the different elements composing the bundle. The fiber F = R can
be obtained from a point p in M = S* by applying the inverse of the projection map ,
F = 7!(p). For each neighborhood U of S*, 71 (U) is homeomorphic to U x F through
certain homeomorphism ¢. Here we represent the real line as a finite interval for better
visualization. The presence of a twist in the Mobius strip is an obstruction to define a
global trivialization. (a) Example of a local trivialization for the Mobius strip, where the
base manifold S* is expressed as the union of three open sets Us.

Fiber bundles

A fiber bundle is a space that locally looks like a product space, but globally
might not be so. More precisely, it is a structure composed by different ele-
ments, (P, M, 7, F), where P, M and F are topological spaces called total space,
base space and fiber, respectively. The map n: P — M is a continuous surjection
called the projection map that satisfies the so-called local triviality condition: for
every £ € M there is an open neighborhood U C M such that there exists a
homeomorphism ¢: 7=1(U) — U x F, for which 7 o ¢~1(p) = p for every p € U.
A set {(U;, ¢;)} that fulfills this condition is called a local trivialization or atlas of
the fiber bundle, and each pair (U;, ¢;) is referred to as a chart. In general, a fiber
bundle can be trivialized in many different ways. In the following, we will denote
a fiber bundle with P(M, F), keeping in mind that a local trivialization should be
defined to fully characterize it.

A fiber bundle is said to be trivial if there exists a global trivialization, this is,
a global homeomorphism ¢: 771(M) = P — M x F, and non-trivial or twisted
otherwise. In the former case, the bundle is homeomorphic to a direct product,
P ~ M x F. A simple example of a trivial bundle is given by the cylinder, with
P(SY,R) ~ S' x R. A Mbbius strip, on the other hand, is an example of a non-
trivial bundle (Fig. 1.6(a)). Although in both cases the base space and fiber are
the same, the latter is not globally equivalent to a product space since it contains
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1. Topological quantum matter

a twist. The Mobius strip is an example of a vector bundle, this is, a fiber bundle
where the fiber has a vector space structure. In the following, we restrict ourselves
to vector bundles, and assume that the space M is a smooth manifold. Most of
the discussion, nevertheless, applies to more general fiber bundles.

The impossibility to define a global trivialization is in general called an obstruc-
tion. In the case of the Mobius strip, at least two neighborhoods are needed to
completely defined the fiber bundle. Notice again that this can be done in different
ways. Another simple example corresponds to fiber bundles of the form P(S*, S1).
A trivial bundle corresponds in this case to the torus, where T? ~ S' x S'. The
Klein bottle, on the other hand, contains a twist and can not be written globally
as a product space.

Structure group, transition functions and sections

A fiber bundle is locally equivalent to a product space on each neighborhood Uj.
Different neighborhoods can be connected in their overlapping regions U; N U;
through the maps

goigojfleZ-ﬂij}'%:Uiﬂij]-‘. (1.21)

These maps can be characterized in terms of a symmetry group G, called the
structure group or gauge group of the fiber bundle. In particular, G is a topological
group acting continuously and faithfully on the fiber F from the left, this is, a
group of homeomorphism on F. A G-atlas is an atlas where the functions (1.21)
are given by

pioT (2,6) = (.15 (2) €) (1.22)

where t;;: Uy N U; — G are continuous maps called transition functions, which
completely characterize the degree of twisting of a fiber bundle.

Consider again the previous example, P(S!,R), and, as a structure group, the
general linear group GL(R). We choose the following three neighborhoods,

Uy =(0—¢,7m/3+¢),
Us =(7/3 —€,21/3 + ¢€), (1.23)
Us =(27/3 — €,2m + ¢€),

for some € > 0 (Fig. 1.6(b)). In the case of the cylinder, we can define the transition
functions t13 = tog = t31 = 1, where 1: £ — £ is the identity in GL(R). For the
Mobius strip we have t1o = to3 = 1 and t3; = —1, where —1: £ — —¢&. The
impossibility to define trivial transition functions everywhere is an obstruction of
the fiber bundle.

Finally, another feature that characterizes non-trivial fiber bundles is the ab-
sence of global sections. A (local) section, also called vector field in the case of
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5?2 = Uy UUs
SleNﬂUs

Fig. 1.7 Sphere bundle: local trivialization for the non-trivial principal fiber bundle
P(S?,U(1)), formed by two open sets corresponding to the north and south hemispheres,
52 = Ux U Us. The transition function is defined on the intersection S' = Ux N Us.

vector bundles, is a continuous map f: U — P defined on a neighborhood U € M
such that 7(f(z)) = « Vo € U. Global sections are sections defined over the whole
space M. While a global section clearly exists in the case of the cylinder, this is not
true for the Mdbius strip, where one always finds a discontinuity in S'. Something
similar occurs for tangent bundles on the n-sphere S”, a result known as the hairy
ball theorem [Nak03].

Two-level quantum system as a principal fiber bundle

Now that we have all the necessary ingredients, we can go back to the two-level
system introduced in the previous section (1.18). It is easy to realize that the set
of ground states |ug(f, ¢)) is described by the vector bundle P(S2,S!), with an
associated gauge group G = U(1). It is, in particular, a principal fiber bundle, since
S is a principal homogeneous space for U(1)?. We can then identify the fiber with
the gauge group as a topological space, S* ~ U(1), and write P(S?,U(1)).

The states |ug (6, ¢)) form a non-trivial bundle since we can not defined a global
section on it. In other words, we can not find a global gauge choice, this is, a func-
tion ¢(6, ¢) that specifies the total phase of the state |ug(8, ¢)), which is continuous
and single valued everywhere in S2. In Eq. (1.19) we wrote the states using a global
gauge, but this choice is not single-valued. This is the reason why, if we follow the
change in the phase of the state along a circle of fixed 6, we get a change of 7 after
a full circle, which is just the Berry phase (1.9). A possible choice of a local gauge
consist on fixing the phase of the state in each hemisphere of the sphere (Fig. 1.7).
For example, we choose

|ug (6 >—< ,Sm 9¢) |ug (6, ¢)) = <_Sm2§ w), (1.24)

COs 2

9A topological space F is a principal homogeneous space for a group G if G acts freely and
transitively on F, this is, if for every &1, {2 € F, there exists a unique g € G such that {2 =& - g,
where - denotes the right action of G on F.
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In this case, there is just one transition function, which is given by

tns: ST — U(1)

b5 om0 (1.25)
where the intersection Uy NUg = S! corresponds here to the equator of the sphere.
Regardless of the gauge choice, we will always find such a singularity when
trying to define a global gauge. A gauge transformation just moves the singularity
to a different point in the circle. In the language of fiber bundles, this corresponds
to a transformation between sections, given in terms of transition functions defined
by the gauge group acting on the fiber (1.22). The Berry phase, a gauge invariant
quantity, will not change its value, and the same is true for the Chern number.

As we have mentioned before, the transition functions characterize completely
a fiber bundler. A complete classification of the different principal vector bundles
of the type P (52, U(1)) reduces then to the topological classification of the possible
transition functions txg: ST — S!. As we saw in the last section, inequivalent loops
in the circle form the first homotopy group 7 (S*) = Z, and the corresponding
class for each loop is given by an integer winding number. Intuitively, the winding
number characterizes the degree of twisting of the fiber bundle.

In this particular example, the winding number associated to Eq. (1.25) is one,
which coincides with the first Chern number calculated from the Berry curvature
(1.17). This connection is a particular case of the more general Chern-Gauss-
Bonnet theorem, relating global topological invariants with the local geometric
structure given by the curvature. Both connections and curvatures can be defined
for general vector bundles, providing information on how to compare vector fields on
different points of their base manifolds, a crucial requirement to define derivatives.
The same is true for topological invariants. For example, higher Chern numbers
can be defined to characterize the global structure of even-dimensional manifolds.
They are particular examples of characteristic classes, which are used in algebraic
topology to classify principal fiber bundles according to their degree of twisting.
We will not review here the main tools from differential geometry that are necessary
to classify general vector bundles, nor introduce the general Chern-Gauss-Bonnet
theorem. We refer the interested reader to Ref. [Nak03] for further details. For the
purpose of classifying phases of matter, specially in one and two dimensions, the
definitions of the Berry connection and Berry curvature given in Sec. 1.2.2—specific
to fibers describing quantum states—will suffice.

As a summary, we can say that quantum states are described by principal (com-
plex) vector bundles with a U(1) gauge group, P(M,U(1)) [Sim83], and they can
be classified using topological invariants. The conservation law (1.15) implies that
the bundle associated to the whole spectrum of a given Hamiltonian describing the
system is trivial. As we have seen, however, subbundles associated to individual en-
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ergy levels can be non-trivial.!? Here we have defined the bundle of quantum states

as eigenstates of a given Hamiltonian that depends on parameters from a manifold
M. However, we can be more general and take this manifold as the projective
Hilbert space M = P(#), connecting with the definition given at the beginning
of this section, such that quantum states are defined independently of any specific
Hamiltonian. Finally, as we pointed out in the example of the Aharonov-Bohm
effect and Dirac’s monopoles, similar structures appear also in electromagnetism.
In general, gauge theories are principal fiber bundles with a general gauge group
G, which corresponds to the symmetry group of the theory [WY75, DV&0].

1.3 Topological phases

In this section, we show the non-trivial topological structure in the set of quan-
tum states, described in the last section in terms of fiber bundles, can give rise
to novel phases of matter known as topological phases. In Sec. 1.1, we mentioned
how, according to Landau’s paradigm, different phases can be classified according
the different symmetries they break. More specifically, we consider here quantum
phases defined as sets of quantum states that can be adiabatically connected to
each other. According to Landau, these sets of states share the same symmetries,
and they are separated in the phase diagram by phase transitions associated to
the spontaneous breaking of a certain symmetry. Different topological phases, on
the other hand, can have the same symmetries. They are instead characterized
by topological invariants that take different values in different phases. These in-
variants, however, that depend on the topological structure of the quantum states,
will not change within each phase, as long the gap does not close. We focus first
on non-interacting topological phases, which are completely classified in terms of
their corresponding Bloch bundle. We discuss some examples of topological insu-
lators using simple models, where the most important concepts appear. Finally,
we consider the role of interactions, where a full classification is still in progress,
and we discuss both the case of symmetry-protected topological phases as well as
topologically-ordered states.

1.3.1 Bloch bundle

In the last section we have seen examples where the non-trivial topological proper-
ties of the bundle P(M, U (1)) describing the ground state of a system have physical
consequences. In particular, in the Aharonov-Bohm effect, where M = R?\ {0},
the system acquires a non-trivial phase that can be measured in an interference
experiment. This occurs as the system travels in real space along a closed trajec-
tory, which can be imposed by an external force. In general, however, M is not

10A bundle P’ (M, F) is a subbundle of P(M, F) if P’ is a subspace of P and 7’ = 7|p-.
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necessary a subspace of R3, but a general smooth manifold that labels the possible
quantum states up to a phase, as we assumed throughout last section. Neverthe-
less, in the general case one can also find examples of physical observables that can
be expressed in terms of integrals of a Berry connection or curvature over closed
loops or surfaces in M.

In condensed matter, this is the case for certain macroscopic observables such
as the electric conductivity. For the case of non-interacting electrons in a crystal,
M corresponds in particular to the manifold of possible quasi-momenta, this is, to
the Brillouin zone. To see this, let us first consider the single-particle Hamiltonian
of an electron in a periodic potential,

L p
H=—+V 1.26
2m + (r)7 ( )
where V(x + a) = V(r), and a is one of the Bravais lattice unit vectors. Using
Bloch’s theorem [AMT76], we can express the eigenstates of this Hamiltonian for

periodic boundary conditions as Bloch states,

[¥ng(r)) = €97 ung(r)) , (1.27)

where |unq(r+a)) = |unq(r)) has the same periodicity as the potential. Here
q € B.Z. is the quasi-momentum, the possible values of which are given by the
Brillouin zone, which has the structure of a d-dimensional torus, B.Z. ~ T¢. The
number N of different bands, each one labeled by n, depends on the unit cell of the
crystal, in particular the number of sublattices, as well as on other internal quantum
numbers such as the spin of the electron. For example, a system of spinfull fermions
on a bipartite lattice, such as an hexagonal one, possess four different bands in the
tight-binding approximation [AM76].

Each Bloch band given by |u,q(r)) for a fixed n can be described by a fiber bun-
dle over the Brillouin zone. This is clear if we first consider the Bloch Hamiltonian
by applying the unitary transformation (1.26),

H(q) = e "I Held™, (1.28)
We can now interpret the quasi-momentum as an external parameter for the N x N
Bloch Hamiltonian H(q). The quantum states |unq(r)), which are now the eigen-
states of (1.28), form a principal vector bundle on the B.Z., given by P(T9, U(1)),

called the Bloch bundle. Therefore, one expects that the topological properties of
the Bloch bundle have consequences on measurable physical quantities.

Zak phase

As a first example, consider an electric field E applied to a one-dimensional crystal.
An electron originally described by a Bloch state will adiabatically evolve with a
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quasi-momentum given by ¢(t) = ¢(0) — eEt. The electric field causes then a
periodic motion of ¢ in the Brillouin zone, B.Z. ~ S, called Bloch oscillation. We
can calculate the Berry phase accumulated after one period,

Yo = dg (un(q)|0q [un(q)) (1.29)
B.Z.

which is usually referred to as Zak phase in this context, and is quantized to values
0 or 7 in the presence of chiral or inversion symmetry [Zak89]. If the Bloch bundle
is non-trivial the electron will acquire a non-zero Zak phase.

Quantized particle transport

Another example where a physical quantity is given in terms of a topological in-
variant is the adiabatic transport of particles in a 1D chain under a periodic per-
turbation, also known as Thouless pumping. As first shown by Thouless [Tho83],
if the system remains gapped at all times during the evolution, the transported
charge after one period is quantized, and its value depends on the Chern number
of an extended 2D system. To see this, let us first write the velocity operator in
terms of the Bloch Hamiltonian

—iqx o

(g, t) = e7%0(t)e'® = 9, H (g, 1) (1.30)

where the velocity is calculated in the Heisenberg picture, 6(t) = d,2(t) = i[H, &(t)],
and the Hamiltonian is periodic in time H(t) = H(t + T).

If the periodic modulation is slow enough, at a given time the eigenstates of the
Hamiltonian are Bloch states of the form €%* |u,(q,t)). In the rotated frame, the
expectation value of the velocity can be expressed as

0(g: 1) = (un(q, 1) (g, ) [un(g, 1)) = Ogenlg,t) — Q" (g; 1), (1.31)

where Q" (g, t) is the Berry curvature defined over a T? manifold, where ¢ and t are
regarded as external parameters. This second term in (1.31) is obtained by con-
sidering first-order corrections to the adiabatic theorem and using Eq. (1.14). The
total current is obtained by considering all occupied states, this is, by integrating
over the B.Z. and summing over the ng filled bands,

==Y [ dan=--3% [ ae@o (1.32)

where the zeroth-order term vanishes due to the periodicity of the B.Z., and the
current is defined with a conventional minus sign due to the negative charge of the
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electrons. The total charge transported during a period can now be expressed as a
sum of Chern numbers corresponding to each filled band,

T
An:/o dtj(t)=— > cn (1.33)

n<ng

Therefore, if the extended 2D system obtained by considering time as a quasi-
momentum in a second dimension is described by a non-trivial Bloch bundle, the
charge transported in the 1D system will be quantized to non-zero integer values.
Although here we considered a non-interacting system, the relation (1.33) holds in
the presence of interactions as long as the gap remains open during the evolution.

Integer quantum Hall effect

As a last example we consider the integer quantum Hall effect (IQHE), a transport
phenomena that, similar to the Thouless pumping described above, is quantized in
terms of topological invariants [Lau81]. The IQHE was discovered experimentally
by von Klitzing in 1980 using a metal-oxide-semiconductor field effect transistor
(MOSFET) [KDP80]. In this type of systems, the electrons are confined to a
two-dimensional plane and, if a perpendicular magnetic field is applied, a trans-
verse current can be measured. This is the so-called classical Hall effect and the
Hall, or transverse, conductivity oy corresponds to the off-diagonal element of the
conductivity tensor,

Jy = ouky (1.34)

where j, is the current in the transverse direction, proportional to the applied elec-
tric field E,, resulting from a longitudinal bias potential. According to the classical
theory, the Hall conductivity is inversely proportional to the applied magnetic field,

1
RyB’
where the Hall constant Ry depends on the specific properties of the material, such
as the carrier’s density. In contrast, at low temperatures, and for strong-enough
magnetic fields, the Hall conductivity is quantized in terms of a combination of
fundamental constants, and do not depend on the details of the sample nor on the
possible presence of disorder or imperfections,

OH = (135)

2
on = %N, (1.36)

with N € Z.
Soon after its experimental discovery, the robust quantization present in the
IQHE was explained theoretically [TKNdNS&2]. In particular, using linear response
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theory, it can be shown how the transverse conductivity can be expressed in terms

of a Berry curvature,
ou,, Oouy, | Ouy,
—( = 1.37

e? ) / d%q Oy,
og = — i —
H h n;{) B.Z. 2T 6qg;
After integrating over the B.Z. one obtains the Hall conductivity as a sum of Chern
numbers over filled bands, each one corresponding to a Bloch bundle P(T?, U(1)),

2
&
on = > e (1.38)

n<ng

1.3.2 Topological insulators

The IQHE is arguably the first manifestation of a topologically non-trivial phase
of matter. Although we described this effect in the presence of a magnetic field,
we will see below that it can also occur in the absence of it. Similarly to the
Aharonov-Bohm effect, which is a specific example of the more general notion of
a geometrical phase, the deeper origin of the IQHE is not the interaction with an
electromagnetic field, but the non-trivial topological structure of the correspond-
ing quantum states. This was first realized by Haldane in 1988 [Hal88|, when he
introduced a model that shows similar properties as quantum Hall systems without
any net magnetic field, a behavior known as the quantum anomalous Hall effect
(QAHE). The Haldane model provides thus the first example of a topological in-
sulator [HK10, QZ11], a phase of matter with non-trivial topological properties.
Above we gave some examples of physical observables that can be written in terms
of topological invariants. Since these are protected against continuous transforma-
tions, this is, those that do not close the gap, they can be used to classify different
phases of matter separated by phase transitions where the gap closes.

Two-band Bloch Hamiltonian

Let us first consider the case of a system with two bands, which is described by a
two-dimensional Bloch Hamiltonian H(q). We can always write this Hamiltonian
in terms of Pauli matrices using Eq. (1.18),

H(q) = h(g)-6 = H’ (h(q)) (1.39)

This implies, in particular, that the Bloch bundle associated to each energy band
can be written as a pullback'! of the sphere bundle by the continuous map h: T? —

1 Consider a fiber bundle P(M,F) and 7: P — M its projection map. A continuous map
f: M’ — M from a topological space M’ to the base space M defines a new fiber bundle f*P
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S2. In the last section, we saw how the sphere bundle describing the eigenstates
of a two-level Hamiltonian is not trivial. In particular, since the sphere encloses a
singularity at h = 0, the ground state has a Chern number equal to one as long
as h # 0. The pullback operation allows us, therefore, to simplify the topological
characterization of the Bloch bundle for the two-band model, since all the infor-
mation is now contained in the map h from the d-dimensional torus to R3, which
is restricted to S? since the normalized eigenstates of the two-level Hamiltonian
do not depend on the length |h| as long as it is non-zero. The Chern number of
the Bloch bundle is then given by the degree of the map, this is, the number of
times that the torus wraps around the sphere under the map, since this counts
the number of times that the singularity is encircled. The degree is a topological
invariant for a continuous map, which coincides with its homotopy class if, like
in this case, the range manifold corresponds to S™—a result known as the Hopf
theorem [MW97]. One can therefore modify h continuously and, as long as h # 0,
this is, if the gap does not close, the bands will preserve their global topological
properties. As we will see in the following examples, the calculation of the Chern
number is very much simplified by writing it as a function of the map h.

Example 1: 2D Chern insulator

Consider the case d = 2, where the B.Z. corresponds to a 2-dimensional torus and
the Bloch Hamiltonian is described by the map h: T? — R3. As q traverses the
B.Z., h describes a closed surface ¥ C R3, which can be projected on S?. Maps
from T? to S? are classified by the corresponding set of homotopy classes. In
particular, one can first compactify the torus onto the sphere. In that case, the
topological classification of h reduces to finding the second homotopy group of the
sphere, which is m3(S?) = Z. Each class is labeled by the first Chern number,
defined in Eq. (1.17) which can be easily shown to be expressed solely in terms of

h as 1 h  [0h Oh
co = — dg, Ndgy —= | =— X — | € Z. 1.40
e B (aqw aqy> (1.40)

This equation can be interpreted as the normalized flux through ¥ from a magnetic
monopole located at the origin. In particular, the Chern number vanishes if 3 does
not completely cover S2, or if it does not contain the origin. Otherwise one obtains
a non-zero integer that corresponds to the number of times that ¥ encircles S2.

As an example of a non-trivial topological insulators in two dimensions, consider
the Haldane model on an hexagonal lattice,

H=tY cle;+t > ewele, +> Mele,, (1.41)
(ind) ((5.9)) i

over M’ with the same fiber F, called the pullback bundle of P by f. The pullback bundle is
defined by f*P = {(p,e) € M’ X P| f(p) = w(e)} with a protection map ©’: f*P — M given by
= ((p,€)) = p.
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(a)

Fig. 1.8 Haldane model: (a) The model is defined on an hexagonal lattice composed
of two triangular sublattices A and B, giving rise to a two-site unit cell. The Bravais lattice
corresponds to a triangular lattice with primitive vectors a; and a;. The nearest-neighbor
tunneling elements connecting sites from the same sublattice A/B carry a complex phase
+¢, creating a £3¢ flux piercing each triangular plaquette. Time-reversal symmetry is
thus broken, opening a gap at half filling, while the net magnetic flux is kept to zero.
Inversion symmetry is also broken by adding a chemical potential imbalance M between
the sublattices. (b) The phase diagram of the Haldane model in terms of the flux ¢
and the imbalance M presents three insulating phases characterized by different Chern
numbers.

where ¢t and ¢ are the nearest and next-nearest tunneling elements, respectively,
connecting sites between different and the same sublattice. For the latter, a com-
plex phase ¢ is added such that a magnetic flux is created on each triangular
plaquette, with different signs in different sublattices (Fig. 1.8(a)). This choice
guarantees that time-reversal symmetry is broken, while the total magnetic flux
vanishes. Moreover, an on-site energy imbalance is added between the sublattices,
My /g = £M, breaking also inversion symmetry in the model. After a Fourier
transform, the Hamiltonian (1.41) gives rise to a two-band single-particle Bloch
Hamiltonian characterized by the maps,

ho(q) =2t'cos ¢ Z cos(q - d)

dEAA
hz(q) =t[1 + cos(q-ai)+ cos(q - as)]
hy(q) =t [sin (q - a1) +sin (g - az)]

h.(q) =M — 2t'sin ¢ Z sin (q - §),
dcAp

(1.42)

where a; and ay are the primitive vectors of the Bravais lattice (Fig. 1.8(a)),
and 0 denotes vectors that connect the nearest-neighbor sites forming triangular
plaquettes A is the sublattice A. The spectrum of the model presents two bands
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separated by a a gap, that only closes at the critical lines, which are given by
|M.| = 3V3t,sin ¢.. (1.43)

These lines separate three distinct insulating phases characterized by their different
Chern numbers (Fig. 1.8(b)). Using Eq.(1.40), one finds the general expression for
the Chern number in terms of the Hamiltonian parameters,

co = % [Sign (ZZI +3V3sin ¢) — sign (]1\5,4 —3V3sin ¢>] . (1.44)

The phases with non-zero Chern number are topologically non-trivial. In particular,
they present an QAHE, this is, a non-zero quantized Hall conductivity in the
absence of a magnetic field. They are examples of 2D Chern insulators. Similar
insulators exists in higher dimensions, in particular there are Chern insulators for
all even dimensions, characterized by higher Chern numbers [CTSR16].

Example 2: 1D Chiral-symmetric insulator

Chern numbers are not defined for odd dimensions. However, we can still use other
topological invariants to classify topologically-distinct phases of matter in these
cases. One example is the Zak phase v defined in Eq. 1.29, that characterizes Bloch
bundles on a 1D B.Z. in the presence of chiral symmetry. For higher dimensions,
one can define Chern-Simon invariants, CS, which reduces to the Zak phase in 1D,
CS = ~/2m. In general, these quantities can take any value. In the presence of
chiral symmetry, however, they are quantized to integer or half-integer values, and
can be used to define a gauge-invariant Wilson loop, W = €275, In this thesis
we consider only quantum systems in dimensions one and two. Therefore, the Zak
phase and the first Chern number will suffice to describe the topological properties
of the models we study. Definitions of the corresponding topological invariants in
higher dimensions can be found in [CTSR16].

As we showed in the previous example, here the computation of the Zak phase
can also be simplified in the case of a two-band Bloch Hamiltonian. Invariance
under chiral symmetry implies the following condition for the single-particle Hamil-
tonian,

TH(K)D ™ = —H(k), (1.45)

where I' is a unitary representation of the symmetry. For a two level-system we
have I' = 7, and the condition (1.45) implies h.(k) = 0. In d = 1, the map that
characterizes the Bloch bundle reduces then to h: S' — S!, and the Zak phase
can be written in terms of it as

1/ ( i b > A
y== | dg(-— x0y— ) -é,, 1.46
2 Jpz. \lk[l = A (1.46)
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which is just 7 times the winding number of h [AOP16], and the different Bloch
bundles are given by the first homotopy group 71(S!) = Z.

As an example of a chiral-symmetric insulator, consider the commonly referred
to as the Su-Schrieffer-Heeger (SSH) model in 1D,

Hgsutit) =t 3 él, (é%+1 + H.c.) > (égiﬂé%” + H.c.) . (147)

This model describes a chain of non-interacting spinless electrons with different tun-
neling elements for even and odd bonds (Fig. 1.9(a)). As we describe in detail in
chapter 3, the Hamiltonian (1.47) is an effective description of the full model intro-
duced by Su, Sherieffer and Heeger to study the physics of polyacetylene [SSHT79],
that includes interactions between fermions and phonons.
The SSH Hamiltonian can be described using a two-site unit cell. For ¢; # to,

a gap opens in the middle of the spectrum, and the system is an insulator at half
filling (Fig. 1.9(b)). The single-particle Bloch Hamiltonian is described by the
maps

he(q) =t1 + t3 cosq,

hy(q) =tasing, (1.48)

h.(q) =0.

We can now compute the Zak phase associated to the lower band using (1.46),
obtaining two topologically-distinct phases (Fig. 1.9(c)): for t; < t2 the ground
state is a topological insulator with v = =, while it is topologically trivial for
t1 > tg, with v = 0. The Zak phase does not change its value until the gap closes
at t; = to, even if we add perturbations to the Hamiltonian—as long as they respect
chiral symmetry. If this symmetry is broken, however, the Zak phase will no longer
be a quantized topological invariant, and we could modify its value continuously
without closing the gap. The topological phase of the SSH model is an example
of a symmetry-protected topological phase (SPT), showing non-trivial topological
behavior only when a protecting symmetry is present. This contrasts with the case
of the Chern insulator described above, where no symmetry is required.

As a consequence of the non-trivial topological structure of the Bloch bundle
that describes one of the insulating phases of the SSH model, the system shows
non-trivial transport properties. This can be seen through a pumping protocol,
where we modulate the Hamiltonian’s parameters periodically in time

Hrai(g) = = D [t (~1)/8(0)] (el + He.) + Al0) Do(-1)'ele;  (1.49)

with
0(p) =0cosp, Ap) =Asine (1.50)
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Fig. 1.9 Su-Schrieffer-Heeger model: (a) The underlying 1D chain can be described
using a two-site unit cell, where the origin of the difference between tunneling elements can
be interpreted from the different distances between lattice sites. (b) The band structure
presents a gap Ac = [t1 — t2| at the Fermi energy ep = 0. At half filling, the ground state
is thus gapped for any ¢1 # t2 and gapless if t1 = ¢2. (b) These two insulating phases
have different topological properties. For t1 < t2, in particular, the loop described by
h(q) as g traverses the B.Z. encircles the gap-closing point where h = 0, giving rise to a
non-zero Zak phase. This is not the case, Fhowever, for t; > t2, and the corresponding
ground state is topologically trivial in that parameter region. (d) Topological insulators
presents protected states localized at points where the topological invariant of the bulk
changes, such as the edge of a finite system or a defect in the bulk.

where the angle ¢: [0,7] — [0,27] is a time-dependent periodic modulation. The
Hamiltonian given by Eq. (1.49) is known as the Rice-Mele model [RM82], where
an on-site energy imbalance between the two sublattices is added to the SSH model.
This term breaks chiral symmetry, allowing us to avoid the degeneracy point at ¢; =
to. If the modulation (1.50) is adiabatic, the ground state encircles the degeneracy
point and, using Eq. (1.33), we find a non-zero quantized charge transported after
each cycle. Notice that the transported charge would be zero if the loop in the
(¢, ¢) parameter space did not enclose any singularity.

As we showed above, this quantization can be understood as the Chern number
of 2D system if ¢ is taken as the momentum of an extra second dimension. We
can construct explicitly the 2D Hamiltonian associated to the Thouless pumping
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in the Rice-Mele model, defined as

2T

0
which can be written in real-space by taking the inverse Fourier transform of ¢,
R S e¥izel , obtaining
11,0 12 11,22

3 A
— E : AT 4 —im(in—1/2) At 4
Hyuun = — (tcil,izcilJrl,iz + 2 emimtinml/ )cil’i20i1,i2+1 + H'C')
11,12

(1.52)
. é —iTi1 A ~ é imiy AT ~ H
E: ¢ CirizCint1in+1 T 56 Cipin41Cig 1,0, T TG )

11,12

This 2D Hamiltonian corresponds to the Harper-Hofstadter-Hatsugai model [Har55,
Hof76, HK90]—describing non-interacting fermions on a 2D lattice under the in-
fluence of a magnetic flux, including nearest and next-nearest neighbor tunnelings
—for a flux equal to w. At half filling, the ground state is a Chern insulator with
Chern numbers ¢y = 0,+1. These are the possible quantized values of the trans-
ported charge after one pumping cycle, being non-zero only if cycle in parameter
space described by the ground state along this process encircles the degeneracy
point at § = A = 0.

Bulk-edge and bulk-defect correspondence

One important feature of topological insulators is the presence of protected states in
the spectrum, exponentially localized at surfaces where the bulk topology changes.
We can see an example of this in the SSH model. In the non-trivial topological
phase, one finds localized edge states at the boundary of a finite chain (Fig. 1.9(d)).
The boundary separates the topological insulator from the vacuum. It is thus an
interface where the corresponding topological invariant, the Zak phase in this case,
changes value. This can only occur if the gap closes at the boundary, which is the
case if the edge states are gapless, i.e. zero-energy in-gap modes. In this example,
chiral symmetry ensures that these states are pinned at zero energy, making them
robust against local symmetry-preserving perturbations [RH02]. This is true for
general edge states in SPT phases. As long as the protecting symmetry is preserved,
the states will remain within the gap, preserving the localization, and will not
disappear until the gap closes and they eventually merge with the bulk bands.
Protected states are not restricted to the boundaries of finite systems, as they
can also appear in the bulk. In Fig. 1.9(d) we can see how a localized states arises at
a topological defect of an otherwise perfectly dimerized chain. The defect separates
regions with different bulk topology, where t; — to changes sign. In the SSH model,
localized states at edges and defects have an associated fermionic charge that is
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Fig. 1.10 Thouless pumping: (a) Band structure of a finite SSH chain showing
spectral flow. At the chiral-symmetric points, the protected edge state are degenerate in
the middle of the gap. During the pumping process, they delocalize into the bulk as chiral
symmetry is broken. At the beginning of the pump, only the left edge state is populated
by a fermion with fractional charge in a half-filled state, which ends up localized at the
right boundary. This changes the center of mass by An = 1/2 — (—1/2), contributing to
the quantized particle transport during the cycle. In the 2D picture, the same spectrum is
associated to a finite cylinder with protected 1D edge states that circulate during the cycle,
where the pumping protocol can be understood as a flux insertion through the cylinder.
(b) The situation is similar if we include defects separating regions with different bulk
topology. In this case, the associated edge states cross twice inside the gap, since the
Chern number difference in the associated cylinder is now double, giving rise to a particle
transport of An = 2 through the defects after each cycle.

fractional. In particular, this charge is +1/2 if the state is occupied or empty,
respectively. We will consider this property in more detail in chapter 5.

The situation is similar in non-trivial Chern insulators. In 2D, for instance,
1D conducting edge states appear at the boundary of the system if the bulk is
characterized by a non-zero Chern number [Hat93b]. These states are responsible
for the non-zero Hall conductivity in quantum states that would be insulators
otherwise, as recognized first by Laughlin [Lau81]. In general, there exists various
index theorems that relate the non-trivial topological bulk properties of topological
insulators and superconductors with the existence of low-dimensional protected
states located at edges and topological defects [CTSR16].

Further insight into the properties of topologically-protected edge states can be
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obtained by applying the Thouless pumping to a finite chain. The quantization of
the transported charge given by Eq. (1.33) requires an infinite system. However, a
non-zero charge can also be transported in a finite system, approaching a quantized
value as the system size increases. In that case, the origin of this particle transport
can be traced to the existence of topologically-protected edge states [HF16], using
a similar argument to Laughlin’s explanation of the IQHE [Lau81].

Consider again the pumping protocol given by Eq. (1.49) for the SSH chain.
Figure 1.10(a) shows the full energy spectrum of the single-particle Hamiltonian
in terms of the pumping parameter p. At ¢ = 0 the half-filled ground state is in
the topological phase, and we find two degenerate edge states in the middle of the
gap. Following the bulk-edge correspondence argument [Hat93b|, the number of
topologically protected edge states at each boundary is equal to the transported
charge |An|, and the sign of An determines the direction of the charge transport.
These states connect the two bands as ¢ is modified, which is commonly referred to
as spectral flow, and are responsible for transporting the charge during the pumping
process. We find a Chern number of ¢y = —1 for this pumping sequence.

Figure 1.10(a) can also be interpreted as the spectrum of the Harper-Hofstadter-
Hatsugai model (1.52) in a cylindrical geometry with open boundary conditions
in the real dimension 7; and periodic ones in the synthetic dimensions io—with
corresponding quasi-momentum . The localized edge states become, in this pic-
ture, the 1D conducting edge states at the boundaries of the synthetic cylinder.
The phase of this synthetic 2D system corresponds to a Chern insulator and, as
opposed to the 1D case, the bulk-boundary correspondence guarantees the pres-
ence of topologically-protected edge states even in the absence of chiral symmetry.
Therefore, this 2D extension through the Thouless pumping establishes a general-
ized bulk-boundary correspondence, where the localized states in 1D can be seen
as remnants of protected edge states in 2D. Abusing the notation, we can associate
Chern numbers to 1D phases, keeping in mind that this requires the specification
of not only the initial state for the pumping protocol, but also of its direction. In
this case, if we reverse the direction of the pumping we would get ¢y = 1. Following
Laughling argument for the IQHE, the variation in the momentum ¢(¢) through
the modulation (1.50) can be interpreted in the 2D cylinder as the insertion of an
axial flux that pierces the cylinder. The circulation of the 1D edge states due to
the change in the flux generates then a quantized Hall current, whose direction
depends on the sign of the Chern number, this is, on the details of the modulation.

A similar argument can be made for the states localized at defects separating
regions with different bulk topology. We first notice that these point defects in
the 1D chain can be understood as extended 1D interfaces between regions with
different Chern numbers in the adiabatic pumping (Fig. 1.10(b)). We consider a
configuration with two of them at ¢ = 0, where four degenerate localized states
appear in the spectrum. Far from the defects, the bulk of the three regions can be
characterized by different Chern numbers: vz = —1, vao = 1 (Fig. 1.10(b)). Again,
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the bulk-defect correspondence predicts that the periodic particle pumping across
one point of the chain will depend on the Chern numbers of the corresponding
regions. In particular, the number of bound states that circulates around each ring
defect is equal to the difference of Chern numbers between the regions it connects.
This can be observed in Figure 1.10(b), where we represent the spectral flow of a
finite chain with two defect. Apart from the two localized states associated to the
edges of the chain, two extra localized states cross the gap connecting both bands.
These are associated with the defects, and cross at the chiral-symmetric points (¢ =
0 and ¢ = 7), where they are degenerate. The extended 2D cylinder consists then of
different regions with different Chern numbers, and the localized states associated
to the defects in 1D can be interpreted as topologically-protected conducting states
that reside at the 1D circular boundaries between these regions. Note that these
states circulate twice as fast compared to the states on the boundaries, since the
Chern number difference is doubled.

The bulk-defect correspondence in the Thouless pumping is true as long as
the 1D bulk has a non-zero topological invariant. In chapter 5, we will use this
connection to uncover the topological origin of localized states in systems where,
even if chiral symmetry is broken and these states are not protected, the bulk
topological invariant is still quantized due to another protecting symmetry.

General classification

Before we consider the role of interactions, we summarize the main results concern-
ing the classification of topological phases of non-interacting symmetric Hamiltoni-
ans. The first example of a topological phase introduced above, the Chern insulator,
belongs to the A symmetry class. This class is formed by the Hamiltonians that do
not require any symmetry to show non-trivial topological phenomena. However, in
the second example, chiral symmetry is essential to protect the topological features
of the SSH model. This model is in the so-called AIIl symmetry class, correspond-
ing to the Hamiltonians invariant under chiral transformations. If chiral symmetry
is broken, the Zak phase will not be a well-defined topological invariant—unless
some other spatial symmetry, such as inversion symmetry, is present in the system,
as we shall see. In particular, its value will not be quantized, but could change con-
tinuously from 7 to 0 without closing the gap. The edge states will no be protected
at zero energy either, and they could be removed by perturbing the system, again
without closing the gap. Non-interacting gapped Hamiltonian, whose ground states
could be either insulators or superconductors, are in general classified in terms of
non-spatial symmetries into ten symmetry classes. These symmetries are the al-
ready mentioned chiral symmetry, as well as particle hole and time reversal, and
the corresponding ten-fold classification was originally described by Altland and
Zirnbauer (AZ) [AZ97].

The complete topological classification of all possible gapped phases of such
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P
Class T C S 0 1 2 3 4 5 6 7
A 0o 00 z 0 zZ 0 zZ 0 Z 0
AL 0 0 1 0 Z 0 zZ 0 Z 0 Z
Al 4+ 0 0 Z 0 0 0 2Z 0 27, 7
BDI + + 1 2, Z 0 0 0 2Z 0 Z
D 0 + 0 7z Z, Z 0 0 0 2Z 0
pm - + 1 0 2z Z Z 0 0 0 2Z
A - 0 0 2Z 0 Z, Z, Z 0 0 0
ctT - - 1 0 2z Z, zZ, Z 0 0
C 0 - 0 0 0 2Z 0 Z, Z, Z 0
aa + -1 0 0 0 22 0 Z, 2, Z

Fig. 1.11 Periodic table of topological insulators and superconductors: Dif-
ferent rows correspond to the ten different symmetry classes, characterized by the time-
reversal (T'), particle-hole (C') and chiral symmetries (S). In the table, 0 corresponds to
the non-symmetric case, while 1 means that S symmetry is satisfied. The corresponding
operators for T and C can square to +1, which is denoted by + and — in the table. Differ-
ent columns represent systems with different topological dimension §, which depends on
the spatial dimension d as well as the dimension of the possible defects. If there are none,
we have 0 = d. Finally, different entries indicate the possible topological phases, where
Z and 27 indicate that they are characterized by an integer or even-integer topological
invariant, while Zs and 0 corresponds to either just two distinct topological phases or only
the trivial one, respectively. Reprinted from Ref. [CTSR16].

symmetric Hamiltonian was achieved by Kitaev [Kit09] and by Ryu, Schnyder,
Furusaki and Ludwig [RSFL10], and can be summarized in the so-called periodic
table of topological insulators and superconductors (Fig. 1.11). This classification
depends on the space dimension d, as well as on the presence of topological defects.
We note that, in this context, the notion of topological defect is not related to any
broken symmetry, such as those we considered in the first section of this chapter.
They correspond to lower-dimensional objects that separate regions in the system
with different bulk topology, hosting localized gapless states that are topologically
protected under the same symmetry as the bulk. In certain situations, as in the
SSH case, these defects also correspond, simultaneously, to topological defects that
emerge after a SSB. We will explore this possibility in detail in chapter 5.

Apart from internal symmetries, topological phases can be protected also by
spatial symmetries, giving rise to crystalline topological insulators [Full]. In chap-
ters 3 and 4 we will analyze in detail one example where, even if chiral symmetry
is broken by interactions, non-trivial topology is still protected by inversion sym-
metry. One important difference between topological phases protected by spatial
and non-spatial symmetries is that the former do not present a bulk-boundary cor-
respondence as the latter do. This means that, even if the bulk is topologically
non-trivial, the system might not present protected edge states at the boundaries.
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The presence of spatial symmetries enlarges the periodic table of non-interacting
topological phases. We will not review the full classification here, and refer the
interested reader to the review [CTSR16| and references therein.

1.3.3 Symmetry-protected topological phases

So far we have only considered non-interacting topological phases, which, as we
have seen, can be classified based on the topological properties of the correspond-
ing Bloch bundle. This approach can not be applied, however, once interactions are
included in the system. The periodic table of topological insulators and supercon-
ductors, in particular, is modified in the presence of interactions [CTSR16]. Some
of these topological phases can be connected to trivial phases adiabatically by mod-
ifying the interaction parameters [FK10]. Other phases, however, can survive to
small interactions, giving rise to correlated topological insulators [Rac18], separated
from trivial ones by symmetry-breaking transitions at sufficiently strong interac-
tions. In some cases, such as fractional Chern insulators [LS09] or the topological
Mott insulator [PB10], the topological properties are enabled by interactions, with
no non-interacting counterpart adiabatically connected to them.

Similar to the non-interacting case, many topological phases of interacting sys-
tems require certain symmetries to protect their non-trivial topological properties.
The term SPT [GW09], therefore, includes these as well as all the non-interacting
topological insulators and superconductors—except from the ones in the A class,
which do not required any symmetry. A general classification of SPT phases in
one dimension has been achieved for fermionic [FK11] as well as for bosonic mat-
ter [CGW11, SPGC11], based on the use of tensor network techniques [VMCO08|
and group cohomology. A full classification of SPT phases for arbitrary dimensions,
however, is still in progress.

Projective representation

To gain more insight into the classification of interacting SPT phases, it is impor-
tant to notice that, although symmetry groups act on the bulk of the system forming
a linear representation, they act on the edge states through a projective represen-
tation, as it was first noted for the case of Majorana edge states [FK11, TPB11]|. A
(unitary) linear representation is a group homomorphism from the symmetry group
G to the unitary group U(H)—formed by unitary operators acting on the Hilbert
space H. Instead, a projective representation is a group homomorphism to the
projective unitary group PU(H) = U(H)/C*, which corresponds to the quotient
group of U(H) by the subgroup of scalar transformations C*, this is, the operators
of the form e*“I, where I is the identity. This means, in particular, that the group
multiplication is preserved only up to a phase,

V(g)V (h) = @MV (gh) (1.53)
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for any g, h € G, and V unitary operators in U(H). If ¢!*(9:") = 1 for every element
of the group, the projective representation is lifted to a linear one. This occurs for
trivial phases of matter. The impossibility to do so, also known as an obstruction,
signals non-trivial topological properties. Different topological phases are then
classified by the different projective representations, which can be characterized
using group cohomology [Nak03].

Edge states are present only for finite systems, and only for certain protect-
ing symmetries. For instance, the Haldane phase that appears in integer spin
chains [Hal83] and other bosonic systems [DTBAO06] is an example of a SPT phase
with a non-trivial bulk but without edge states. However, the analysis introduced
above based on projective representations can be applied to any SPT phase in 1D
by first representing the ground state as a Matrix Product State (MPS), as we will
see in chapter 2.

Many-body Berry phase

An alternative method to detect interacting SPT phases is to generalize some of the
topological invariants we introduced for non-interacting systems. In the previous
section, we introduced the Zak phase (1.29) as a topological invariant to charac-
terize the global properties of a Bloch bundle. This phase is just the Berry phase
calculated by integrating the Berry curvature along the B.Z., where the quasi-
momentum ¢ is regarded as an external parameter. In a system with periodic
boundary conditions, modifying the quasi-momentum is equivalent to introducing
a flux ¢ that pierces the system through one periodic dimension, this is, ¢ — g+ .
In an interacting system, the quasi-momentum can not be used as an external pa-
rameter anymore. However, we can still emulate an external flux by using twisted
boundary conditions (TBC),

‘\Ijn(mla"' 7$i+L7"' 7:EN)> = eiﬁL|‘lln(xla"' s Lyt amN)>7 (154)

where |¥,,) is the many-body ground state for certain interacting Hamiltonian H,
and we require the same boundary condition for every dimension x;. The parameter
k corresponds here to the degree of twisting or, equivalently to the flux that pierces
the system in every dimension. We can now transform the Hamiltonian by applying
the unitary transformation

H' (k) = e 2% Hemtr 2@ (1.55)
The corresponding ground state,

W, (K1, ay)) = €™

\Ijn("{axlv"' va»a (156)

satisfies now periodic boundary conditions, and depends on the parameter k. We
can calculate the Berry phase associated to a closed path in parameter space by
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integrating the corresponding Berry curvature,

2T

m= dr (U7, (k)] 10, |97, (K)) | (1.57)
This many-body Berry phase generalizes the Zak phase used in non-interacting
systems, and can be used to detect non-trivial topological phases in the presence of
interactions. For gapped systems in 1D, for instance, this phase is quantized, and
can take the values 0 or 7, provided that either chiral or inversion symmetry are
satisfied [XCN10]. In 2D, a many-body Chern number is associated to the ground
state by integrating the corresponding Berry curvature, which depends now on two
twisting parameters. In chapters 4, 5 and 7 we use the many-body Berry phase
to characterize the topological properties of various strongly-correlated topological
phases.

1.3.4 Topological order

The quantum states associated to SPT phases are examples of short-range entan-
gled (SRE) states, which means that they can be transformed into product states
using finite-depth quantum circuits [ZCZW19]. On the other hand, states that do
not fulfill this property are referred to as long-range entangled (LRE) states. This
is the case for topologically-ordered states, as witnessed by the presence of a topo-
logical term in the entanglement entropy [LW06, KP06|. In general, ground states
of gapped local Hamiltonian satisfy the so-called area law for the entanglement
entropy [VLRKO03, CC04, Sre93, ECP10],

Sa=adA+... (1.58)

where Sy is the entanglement entropy for a bipartition of the full system into two
subsystems A and B, calculated from the corresponding reduced density matrix
pa = Trp (|¢) (]), this is Sa = Tr(palogpa). Here OA is the area of A, « is
a proportionality constant and the ellipsis denotes subleading terms that can be
neglected in the thermodynamic limit when compared to the area-law contribution.
In contrast, states with topological order include an extra term, S4 = adA—~y+. ..,
where v does not depend on the geometry of A, and serves as a hallmark of LRE.

The term topology order (TO) was first coined in the context of chiral spin
states [Wen90|, introduced in an attempt to explain high-temperature supercon-
ductivity [WWZ89], motivated by the description of their low-energy properties
in terms of topological quantum field theories [Wit89]. There are many of these
states having exactly the same symmetries [Wen89]. Their classification thus falls
out of the scope of Landau’s paradigm. Contrary to SPT phases, this new type
of order is robust in the sense that, even if it is not protected by any symmetry,
it survives to small perturbations that do not close the gap. Although chiral spin
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states were soon discarded as the underlying description of high-temperature su-
perconductors, it was realized that many of its features were shared by fractional
quantum Hall states [KL87], which were discovered experimentally just a few years
earlier [TSG82].

Contrary to its integer counterpart, the fractional quantum hall effect (FQHE),
where plateaus in the Hall conductivity are found at fractional electron densities,
is a genuine quantum many-body effect that requires strong electron-electron in-
teractions [Lau83|, and can not be described in a single-particle picture. In this
case, the Hall conductivity is quantized to fractional values,

e?p
on = . (1.59)
where p and ¢ are co-prime integers. As in the case of the IQHE, where the p/q is
also an integer (1.36), different Hall conductivities correspond to different phases
of matter with the same symmetries. Fractional quantum Hall states are thus
topologically-ordered phases of matter, one of their hallmarks being the presence
of anyonic quasi-particles showing fractional statistics [Lau83].

In general, phases of matter with TO can be characterized by the dependence
of the ground state degeneracy on the topology of the underlying manifold where
the Hamiltonian is defined [ZCZW19|. This means that the number of degener-
ate ground states is different, for instance, if the system is placed on a sphere
or on a torus. But more importantly, this degeneracy is robust: in contrast to
topologically-trivial phases of matter, where the origin of the degeneracy is re-
lated to the symmetry properties of the states, in this case it survives to any
local symmetry-breaking perturbation. To distinguish phases with different types
of TO, however, the presence of degeneracy is not enough. This can be done,
nevertheless, by means of a non-abelian Berry phase [ XCN10]. In Sec. 1.2.2, we
introduced the Berry phase assuming no degeneracy in the spectrum. This abelian
Berry phase can be generalized to its non-abelian version, by promoting the phase
to a n-dimensional matrix, where n is the number of degenerate ground states.
From an experimental point of view, TO can be detected by the presence of quasi-
particles with fractional quantum numbers and fractional statistics, as in the case
of the FQHE [Lau83]. Similar to SPT phases, phases with TO can also present
gapless edge modes, which in this case are topologically-protected again any local
perturbation, even if they break the system’s symmetries.

Toric code

In order to explain some of these properties in more detail, we make use of the Toric
code (TC) as a simple example where most of these can be proven analytically.
The toric code was originally proposed by Kitaev as an error correcting code for
quantum computation [Kit03], where topological qubits can be encoded precisely
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Fig. 1.12 Toric code: (a) The TC Hamiltonian (1.60) contains star and plaquette
operators acting on the links of a two-dimensional spin-1/2 lattice. (b) The ground state
of the model is a superposition of closed strings as the ones shown in the figure, minimizing
the energy corresponding to the star operators, while the plaquette terms connect different
strings.

into its different degenerate ground states, such that global information can be
protected against local errors by exploiting an underlying stabilizer formalism of
the following Hamiltonian,

HTC——JZ H Gl — JZ H 5his) (1.60)

s (ij)es (i.j)ep

with J > 0. 657j) and &fiu') are Pauli operators acting on spin-1/2 degrees of free-
dom located on the links (i, j) of a two-dimensional square lattice, joining neighbor-
ing sites i = (i1,42) and j = (j1, j2) The first part of the Hamiltonian (1.60) contains
the so-called star operators, A, = H(i,j)es &fi,j)’ acting on the four links connected

to each site s, while the second contains the plaquette operators, B H(l $ep (1 5)

that are applied to the four links of each plaquette p (Fig. 1.12(a)).

Since all the operators commute among themselves, [AS, A’S] = [Bp, BZ’,] =
[fls, Bp] = 0, the ground state of the TC Hamiltonian is also an eigenstate of each
of them. Both A, and Bp have eigenvalues £1, and according to the definition of
the Hamiltonian ((1.60)), the ground state will be the common +1 eigenstates of
all plaquette and star operators. One says that the ground state is stabilized by
the A, and Bp operators, which actually span a stabilizer subspace where one can
encode a logical qubit for certain topologies of the underlying manifold, i.e. a topo-
logical qubit. The eigenstates of A,, in particular, have an eigenvalue +1 if an even
number of spins connected to the site s are in the |—) eigenstate of 6%, and —1 if
this number is odd. Therefore, any state composed of closed strings minimizes the
energy corresponding to the first part of (1.60), where a string is formed by a path
in the lattice composed of nearest-neighbor links with spins in the local |—) state,
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Fig. 1.13 Non-local string operators: (a) The string operators (1.61) create pairs
of deconfined electric (e) or magnetic (m) quasi-particles on top of the ground state of
the Toric code. (b) When the system is placed on a torus, one can apply four types of
non-contractible closed strings that do not change the energy.

while the rest is in the |+) state (Fig. 1.12(b)). Since B, transforms every closed
string into another one by flipping the spins around a plaquette p, the ground state
of the full Hamiltonian corresponds to a highly-entangled equal-amplitude super-
position of all such strings, |¢)r¢ = > [I'c). The ground state has an energy
Erc = —2JN,, where IV, is the number of plaquettes in the lattice.

To show that [¢)) has topological order, we demonstrate that it becomes
degenerate when we place it on a torus, which can be exploited to encode topological
qubits and performed active methods to detect and correct local errors. Let us first
introduce two types of string operators,

Wae = H Ty Wae = H T (i) (1.61)
= ()

where v7/# denote strings in the lattice as depicted in Fig. 1.13(a). These operators
create two different types of excitations on top of the ground state. W= creates an

open string with one electric quasi-particle e at each end of the string, while Wff
creates two magnetic quasi-particles at the corresponding end plaquettes with a m
flux. In both cases the excitation energy with respect to the ground state is 2J.
Note that the energy of either of these two quasi-particles does not depend on the
length of the string, and we say that the quasi-particles are deconfined. We will
come back to this notion and study it in more detail in chapters 6 and 7.
Consider now the two types of closed paths in the torus that can not be con-

/ z/z

tracted to a point, v,/ * and 75’ ” (Fig. 1.13(a)). The corresponding string operators
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1. Topological quantum matter

fulfill the following commutation relations,

{vav st} =0, {vaa va} =0,

. R . . (1.62)

[Wv?’ va} =0, {Wﬂ’ Wvé] =0.
and, moreover, the four of them commute with the Hamiltonian. Let us consider the
common eigenstates of VAVA,/II and Wﬁ that have eigenvalues +£1. The anticommuta-
tion relations (1.62) allow us to classify these eigenstates by the number of strings
(modulo two) created by VAV%z and ng. In particular, if |[++) is an eigenstate of

W,e and W,z with an even number of strings of each type, with W |++) = [++)
and Wﬁ |[++) = |[++), we get WWWV; |++) = — Ayg |[++). We can thus iden-

tify W.; |[++) = |—+). Since both operators commute with the Hamiltonian, we
also have HTC |++> = E++ |++> and [:ITC |—+> = }AIT(jW»Y; ‘++> = E++ |—+>
Therefore, both type of states, while being orthogonal, have the same energy. A
similar argument can be made for the states |[+—) and |-—). We conclude that
the whole spectrum of the Toric code Hamiltonian becomes four-fold degenerate
when the system is placed on a torus. This degeneracy is protected since a non-
local operation is required to connect the different degenerate eigenstates, where
the number of local terms increases linearly with the system size, which is con-
sidered a fingerprint of topological order. Accordingly, one can encode two logical
qubits using the non-contractible string operators as their logical operators, and
perform active error correction by measuring all local the star and plaquette opera-
tors to detect possible errors, and correct them without compromising the encoded
quantum information.

Ising gauge theory

We finish this section with another example of a system that displays topological
order. One important feature of topologically-ordered phases of matter that we
have not yet mentioned is the possibility to describe their low-energy properties
using gauge theories [ZCZW19]. The use of gauge theories, characterized by local
symmetries, is ubiquitous in theoretical physics, ranging from the description of fun-
damental particles such as quarks [Sch14]| to the physics behind high-temperature
superconductors [BA88]. In chapter 7, we study a model where fermionic matter is
coupled to dynamical gauge fields, invariant under a local Zy symmetry. Here we
introduce a simpler Zs gauge theory on the lattice, the so-called Ising gauge theory
(IGT) [WegT71], and explain the relation between gauge invariance and topological
order. In chapter 7, we show how the presence of fermionic matter gives rise, more-
over, to novel intertwined topological effects. The IGT in the presence of Ising-type
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1. Topological quantum matter

matter is described by the following spin Hamiltonian [FS79],

HIGT = - QZ ‘A’fi,j) Z H (17.1)

(I,J) P (ijep (1.63)
PRSI R
where 7" /% and &fi/jz) are Pauli matrices acting on spin-1/2 systems located on the

sites i = (i1,142) and links (i,j), respectively, of a two-dimensional square lattice.
In this model, degrees of freedom on the sites and links correspond to matter and
gauge fields, respectively. The first two terms of the Hamiltonian form the pure-
gauge part of the theory, and include the so-called electric field term, as a well as
a plaquette or magnetic field term, similarly to the TC Hamiltonian (1.60). The
second part includes a mass term for the matter fields, as well as the matter-gauge
interaction.

The IGT has a Z, gauge symmetry, this is, the Hamiltonian (1.66) is invariant
under local transformations that can be performed independently on each site,
77— €77 and 67 . — e M6 )e“XJ, with o; € {0,7}. These transformations
are generated by the followmg operators

Gi=# [] oty (1.64)

(i,j)€s

Notice that these local generators coincide with the star operators of the TC Hamil-
tonian (1.60), with an additional matter operator 7i* acting on the sites. Since the
generators commute with the Hamiltonian, []EIIGT,CA;i] = 0, all of them share a
common eigenbasis,

Gily) = (=1)% |9). (1.65)

Each symmetry sector is thus characterized by an extensive number of conserved
quantities, known as Zy static charges ¢; € {0,1}.

Let us consider the even sector, where ¢; = 0 Vi. In this situation, the IGT
presents two different phases (Fig. 1.14), one where matter quasi-particles are de-
confined, similar to the case of the excitations described above for the TC, and
another one where these are confined. In the confined phase, the potential energy
between pairs of quasi-particles increases with the distance between them, instead
of being independent of the distance, as in a deconfined phase. We can connect the
latter to the ground state of the T'C, by using the redundancy implicit in the gauge
symmetry to express the matter degrees of freedom in terms of gauge fields. For
states in the even sector, we can make the substitution 77 = H(i,j)es ;- This

can be formalized in terms of a unitary operations U that decouple both degrees
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Fig. 1.14 Phase diagram of the Ising gauge theory: this model present two
quantum phases at zero temperature, a topologically-ordered deconfined phase and a
topologically-trivial confined phase. In the figure, the dashed and solid lines represent
first-order and continuous phase transitions, respectively.

of freedom in the gauge-invariant Hamiltonian [Fral3], which are just CNOT op-
erations for this particular case [HVAST15]. The IGT Hamiltonian (1.60) is thus
equivalent to a TC Hamiltonian with transverse and parallel fields [TKPS10],

. A N 1
f_ A 1 ~Z
UHigrU'=—9g ) 04y g E: H I(1.5)

(1.3 p (i.jep

1 ~ Az
=522 I oty =22 o
)

i (ijes

(1.66)

which coincides with Eq. (1.60) for g, A — 0. The deconfined phase of the IGT is
thus topologically ordered, while the confined phase is trivial, and the transition
between them is not associated to a SSB process. In the TC model, the con-
fined phase appears for large enough fields [VDS09]. In chapter 7, we show how
confinement can be frustrated by coupling the Z, gauge fields to fermionic matter.

1.4 Summary

In this chapter, we have reviewed the main mathematical tools required to analyze
topological phenomena in quantum many-body systems. In particular, we have
focused on the description and classification of topological defects in ordered me-
dia and topological phases of matter, using tools from differential geometry and
algebraic topology. In parts II and III of this thesis, we will encounter different
situations where topological features are behind some very interesting phenomena
that appear in condensed-matter and high-energy physics, such as confinement or
charge fractionalization. Moreover, we will also see examples where more than one
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1. Topological quantum matter

topological feature appear simultaneously, giving rise to novel intertwined topolog-
ical effects for strong enough interactions. As we mentioned above, the study of
topological effects is far from trivial in the presence of interactions. In the next
and last chapter of this first introductory part, we review two different approaches
to investigate strongly-interacting quantum many body systems.
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Chapter 2

From classical to quantum
simulations

From a computational point of view, the study of quantum many-body systems
is a very complicated task. As the number of particles in the system increases,
the computational resources that are required to fully characterize the relevant
quantum states grow exponentially. This is specially problematic in the case of
strongly-correlated phenomena, which, except from a few paradigmatic situations,
cannot be approximated using other solvable problems, by means, for example,
of perturbation theory or other analytical techniques. This is the case for many
of the interaction-induced topological phenomena described in chapter 1, such as
topologically-ordered phases of matter. In those cases, numerical simulations are
required to investigate the properties of the system. The most fruitful example of
this strategy is based on the use of the quantum Monte Carlo algorithm to study
the equilibrium properties of many lattice models in condensed matter and high-
energy physics. However, this approach fail in many situations, for example when
a finite density of fermionic particles is considered, as well as for systems out of
equilibrium.

In the last decades, two different but complementary approaches have gain
recognition due to their ability to overcome some of these problems. The first one,
that we introduce in Sec. 2.1 of this chapter, involves the representation of quantum
states in terms of tensor networks, allowing for efficient analytical and numerical
studies beyond the possibilities of other classical approaches. These techniques have
been developed to target only the relevant information such that, by disregarding
non-important features, an efficient simulation can be achieved. The second one
aims to develop quantum simulators, where a quantum system is studied using
a different one, which is also quantum and can be controlled experimentally. In
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2. From classical to quantum simulations

Sec. 2.2 we introduce the notion of a quantum simulator, focusing on the case of
ultracold atoms in optical lattices. Along the next parts of this thesis, we will make
extensive use of these two approaches.

2.1 Tensor networks

In this section, we briefly review the notion of tensor networks (TN), and the
numerical methods based on them that were used in this thesis. TN methods
are based on the description of a quantum state as a network of interconnected
tensors, where the focus lies on the entanglement properties of the state. This
description lies at the core of the density matrix renormalization group algorithm
(DMRG) [Whi92, Whi93, OR95, VPC04, Schll], introduced in 1992 by Steven
White, which has been the most successful technique in the last decades to study
one dimensional quantum lattice systems. Since then, many other methods based
on TN have emerged, extending this framework to the study of quantum physics
in many other situations: PEPS for higher dimensions [VMCO08|, MERA for crit-
ical systems [Vid07], tDMRG and TEBD for time evolution [DKSV04, Vid04],
etc. These methods overcome some of the difficulties that are present in other
numerical techniques, such as restrictions in the system size (exact diagonaliza-
tion), the inability to include quantum correlations (mean-field theory) or the sign
problem in the case of fermionic matter and frustrated systems (quantum Monte
Carlo) [Orul4].

2.1.1 Matrix product states

Before explaining the main ideas behind DMRG, we first describe some basic prop-
erties of TN states. A tensor is a multidimensional array of complex numbers. The
dimension of the array, this is, the number of indices, is called rank of the tensor.
They generalize the concept of scalar, vector and matrix, which are tensors of rank
zero, one and two, respectively. Two tensors can be contracted by summing over
the values of repeated indices, forming a new tensor. Consider, for example, the
rank-3 tensor,

Cose=  AaproBser (2.1)
By

which is formed after contracting two of the indices of tensors A and B (Fig. 2.1(a)).
A TN is just a set of tensors connected to each other by contracting some of their
indices according to some pattern [Orul4].

Consider now a quantum many-body system in 1D composed of L particles. A
d-dimensional Hilbert space H is attached to each of them, and the states in H
are given in terms of an orthonormal basis {|i,)}i.=1,...4, with » = 1,..., L. The
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2. From classical to quantum simulations

i1 | | i

Fig. 2.1 Tensor networks: (a) Two tensors A and B can be contracted into a single
one C by summing over its common indices. (b) The tensor describing the coefficients of a
many-body quantum state can be decomposed into a network of smaller tensors contracted
along virtual indices. In the figure, we represent the case of an MPS, describing the state
of a 1D system with six physical indices and five virtual ones.

wavefunction describing a many-body state can be written with respect to the basis
of the tensor product space as

d
W)= > Civisoig linsiz. i), (2.2)

i1,i,...iL=1

where Cj, 4,....4, is a set of d¥ complex numbers, or a rank-L tensor. A TN rep-
resentation of a state consists on the decomposition of the big tensor C on a set
of smaller tensors, with some of their indices contracted [Sch1ll]. Consider, for
example, the decomposition

(2.3)

ay,az” ar—2,ar—-1""ar—1’

Ci17~~-,iL — Z A?lAiz '.AiL—l AiL

at,...ar—1

in terms of rank-3 tensors A (rank-2 on the boundaries) (Fig. 2.1(b)). This is
the standard form of a matriz product state (MPS) [FNW92|, a TN representation
for one dimensional systems, which can be generalized to higher dimensions [?].
The open indices i; are called physical indices, and the contracted ones, a;, virtual
indices. Usually, the dimension of the latter is truncated to a value D, called the
bond dimension of the MPS. By doing this, the state of the system is approximated
by specifying O(LdD?) complex parameters, scaling polynomially with the system
size, rather than the exponential scaling with d parameters of the most generic
state. When the TN is contracted, it gives rise to d” coefficients, which are no
longer independent [Orul4].

The reason why TN are good approximations to interesting quantum states is
related to their entanglement properties. Both the bond dimension and the struc-
ture of the network determines the amount and structure of entanglement in the
state. Although the number of possible many-body states is exponentially large
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3
.

Fig. 2.2 Area law : The number of physically relevant quantum states is very small
compared to the exponentially large Hilbert space H of a quantum many-body system.
Ground states of local gapped Hamiltonians, for instance, have much less entanglement
than general quantum states. In particular, the entanglement entropy corresponding to
a certain subsystem A scales only with its area 0A, a property known as the area law.
Tensor network states can be built to reproduce this property. As the bond dimension
increases (D1 < D2 < D3 < Ds...), this variational family captures larger portions of
‘H. Although to describe every possible state in H D should increase exponentially in the
system size, area-law states can be approximated efficiently with a finite value of D.

in size of the system, in many situations only a small subset of them has physical
relevance. In particular, ground states of local gapped Hamiltonians are known to
obey an area law [VLRKO03, CC04, Sre93, ECP10]. This implies that the entan-
glement entropy between a subsystem and the rest of the system grows only with
the area OA of the former, this is, Sa o< A to the leading order (Fig. 2.2). For the
majority of quantum states, on the other hand, the entanglement entropy increases
with the volume. Moreover, the number of states that can be reached by evolving a
quantum state after a time O(log(L)) is exponentially small [PQSV11]|. Therefore,
starting from a state that belongs to the subset that obeys the area law, most likely
one will end up with a state that also belongs to it. Tensor Network states also
obey this type of area law by construction, making them efficient approximations
of many classes of physically relevant quantum states [Has06, Has07] (Fig. 2.2).
For MPS, in particular, the entanglement entropy corresponding to a block of size
1is S(I) ~ O(D), this is, it is independent of [. Moreover, it grows with D, which
means that the bond dimension controls the amount of entanglement in the MPS.
It can be shown, in particular, that, since the entanglement entropy does not grow
with the system size for ground states of local gapped Hamiltonians in 1D, these
states can be approximated to arbitrary precision in an efficient way using a MPS
with fixed bond dimension [VMCO8].
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2.1.2 Classification of topological phases

From a theoretical point of view, tensor networks can be used to classify different
phases of matter, including topological phases, as we mentioned in chapter 1. To
see this, it is important to consider how the matrices A%  , behave under sym-
metry transformations. In particular, the physical indices transform under linear
representations of the symmetry group, while the virtual ones do so under pro-

jective representations. For simplicity, consider a symmetry transformation acting
on a single physical index, |i;) — U (9);" lij). This transformation should leave the

state invariant up to a phase €%, which induces the following transformation on
the virtual indices,

U(g); At = V=1 (g) AUV (g)e?s. (2.4)

The operators V(g) acting on the virtual space thus form a projective representa-
tion of the group, carrying the same information about the topological properties
of the system as the edge states. One can thus characterize the possible topolog-
ical phases associated to a certain protecting symmetry by studying the different
projective representations of the corresponding symmetry group.

These non-trivial topological properties can be detected by looking at the en-
tanglement spectrum (EE) of the system, which contains information of what can
be regarded as artificial edge states in the bulk. This notion was introduced first
to detect topological order in fractional quantum hall states [LHO8|, and was later
applied to the Haldane phase of spin-1 chains [PTBO10]. The EE is obtained by
first diving the system into two halves, A and B, and calculating the corresponding
Schmidt decomposition,

EDIRUINI DN (25)

The entanglement spectrum &; can be extracted from the Schmidt coefficients
through the relation \; = e~¢/2. The elements of the spectrum can be interpreted
as the energies of a so-called entanglement Hamiltonian Hp, defined in terms of
one of the reduced density matrices, for instance,

pa = Trg ([) (¢]) = e~ 1® (2.6)

where Trg denotes the trace with respect to subsystem B. Using this relation, one
can interpret p as the density matrix of a thermodynamic system described by Hg
at temperature 7' = 1, such that its thermodynamic entropy coincides with the
entanglement entropy,

Sa=Tr(palogpa) = ) _&ie (2.7)
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Al

000

Fig. 2.3 DMRG : Instead of trying to optimize all MPS tensors simultaneously, DMRG
runs iteratively by locally optimizing each tensor A, sweeping through the chain back
and forth until it converges to the global optimum. Each local optimization reduces to a
generalized eigenvalue problem for an effective Hamiltonian Heg, computed by contracting
the Hamiltonian in a MPO form with all the MPS matrices except the one being optimized.
In the figure, we represent the eigenvalue equation in a diagrammatic form , where Wl
are the tensors that form the Hamiltonian MPO.

It can be proven that the EE is doubly degenerate for non-trivial SPT phases [PTBO10],
and that this degeneracy cannot be lifted unless the gap closes or the protecting
symmetry is broken. This degeneracy mimics the double degenerate part of the
energy spectrum corresponding to the edge states of a finite system with real bound-
aries, and it is protected even if edge states are absent. Note that, since TN states
are constructed to reproduce certain entanglement structure, the computation of
entanglement related quantities, such as the topological entanglement entropy and
the entanglement spectrum, is more straightforward than for general states.

2.1.3 Density-matrix renormalization group

As we mentioned, TN states are very useful tools to perform numerical simulations
of quantum many-body systems. In particular, they serve as a variational family
that can be optimized to find relevant quantum states, as in the case of DMRG.
More specifically, the goal of this algorithm is to minimize the ground state en-
ergy of a 1D Hamiltonian as a functional of the tensors A% . forming an MPS,
constrained by the normalization condition of the state,

mingay (G1A] H 16 [A]) - (A 914D) (238)

where we have introduced the Lagrange multiplier A\. In order to calculate the
energy, the Hamiltonian H has to be written first as a tensor network and then
contracted with the MPS. Such a tensor network is known in 1D as a matriz product
operator (MPO),

H= Y S Wamwag Wl linia. . ig) (i, ... 7] (2.9)
(k. (i1} {0}
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The objects W;lljsl are rank-4 tensors with two physical and two virtual in-
dices. The dimension of the former depends on the number of different terms
in H and, if these terms are local, H can be written as an exact MPO of finite
dimension [VMCO0S].

The DMRG algorithm performs an efficient optimization of the MPS by locally
optimizing each tensor Al while keeping the other ones fixed,

min g (A“” AL — \Al Ne[?fA[l]> (2.10)

where H.g is an effective Hamiltonian obtained by contracting H with all the MPS
tensors except from Al (Fig. 2.3). The tensor Ngc]f guarantees that the resulting
MPS is always normalized, and can be transformed into the identity with a proper
gauge choice [VMCO08|. Finding the minimum for this quadratic optimization is
equivalent to solving a generalized eigenvalue equation,

HI AW = AN Al (2.11)

which is a standard optimization problem that can be solved efficiently. The al-
gorithm runs by sweeping the MPS back and forth, optimizing each tensor one
at a time. This procedure is efficient and, moreover, its convergence to a global
minimum is guaranteed [Schl1l].

We finish this section by noting how one can also access the thermodynamic
limit directly using infinite MPS states, where translational invariance is assumed
by considering a repeating unit cell formed by a certain number of A tensors [Sch11].
Similarly to the finite case, one can use an infinite version of the DMRG algorithm
(iDMRG) to calculate the ground state directly in the thermodynamic limit. In
parts IT and III we will make extensive use of both the finite and infinite version
of the MPS-based DMRG algorithm, where the majority of the calculations were
performed using the TenPy library in Python [HP18].

2.2 Cold-atom quantum simulators

Despite the success of TN techniques to study the properties of many strongly-
correlated quantum systems in 1D, there are still limitations when it comes to
higher dimensions [VMCO8]. Here we describe an alternative approach to investi-
gate those situations based on the use of quantum simulators. Quantum simulators
were first introduced by Feynman in 1982 [Fey82|. They consist of quantum sys-
tems with a high degree of controllability that can be used to study the properties
of other quantum systems that are in general less accessible. Although quantum
simulators are not universal quantum computers—in particular, they cannot per-
form any type of computational operation—they can be designed to efficiently solve
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specific problems using current quantum technology [CZ12, BN09]. Here we focus
on analog quantum simulators, whose degrees of freedom can be mapped to those
of the simulated system. The former can be manipulated experimentally in such a
way that its dynamics accurately approximates from a mathematical point of view
those of the latter. Even if the corresponding physical scales differ, this allows to
perform an efficient simulation by first initializing the quantum simulator in the
desired initial state and then measuring the final state after certain time, going
beyond the possibilities of numerical simulations performed in classical computers.

Many atomic, optical and solid-state systems serve as good candidates to build
quantum simulators, due to the large degree of experimental control over its prop-
erties. These include ultracold neutral atoms [JBCT98, JZ05, BDZ08, LSAT07,
LSA17], trapped ions [CZ95, LBMWO03, BR12, LHNT11, PC04|, photonic sys-
tems [AGW12], Rydberg atoms [WML™10], quantum dots [LD98, Man02, BKKY0§]
or superconducting circuits [YN03, vOM96]. These ideas have led to the quantum
simulation of many condensed matter and high energy physics models. Some exam-
ples include spin systems [FSGT08], the Bose [GME'02] and Fermi Hubbard mod-
els [MCJ*17], the Tonks-Girardeau gas [PWMT04], supersolid phases [LLH17],
artificial gauge potentials [AANT11, AAL'13, MSK™13|, lattice gauge theories
[M*16] and black hole physics [LIBT10].

In this thesis, we considered quantum simulators based on ultracold atoms in
optical lattices. These are gases of neutral atoms that can be cooled down to very
low temperatures using different methods such as evaporative cooling in magneto-
optical traps [CT98, Phi98]. In these regimes, quantum effects become relevant
in the macroscopic description of the atomic gas, leading, for instance, to the
Bose-Einstein condensation of dilute gases of bosonic atoms [AEM 95, DMA*95].
One can also use counter-propagating laser beams to create periodic potentials for
the atoms, known as optical lattices. These and other techniques allow to obtain
quantum systems described by a huge variety of many-body Hamiltonians, mim-
icking several condensed matter and high-energy physics models, in a platform
where its properties can be investigated in a controllable fashion. This approach
was first applied to the Bose-Hubbard model [JBCT98], where a quantum phase
transition between a superfluid and a Mott insulating phase was measured experi-
mentally [GMET02].

In this section, we review the main ingredients that are required to describe ul-
tracold atoms in optical lattices. First, we show how the latter can be implemented
using off-resonant lasers, and how atoms in periodic potentials present similar band
structures as electrons in crystals. Then, we introduce atomic interactions, and how
they can be simplified in the ultracold regime. Finally, we derive the many-body
lattice Hamiltonians that describe cold atoms, focusing on bosonic species with one
or more internal states.
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2. From classical to quantum simulations

We

lg)

Fig. 2.4 Level structure of a two-level atom with ground state |g) and excited state |e),
separated by an energy difference w.. We also represent the frequency w of a laser beam,
red-detuned with respect to we. by a frequency §.

2.2.1 Optical lattices

Neutral atoms can be trapped with the help of off-resonant laser fields. These fields
generate attractive potentials that can be engineered to create periodic arrays of
atoms, resembling the structure of ions in solid crystals [JBCT98]. To see this, let
us consider a single atom under the influence of the electric field associated to a
laser. The latter will be considered classical and, moreover, we neglect the back
action of the atom onto the field. The atomic part of the Hamiltonian is given by

-2
A P
H, = %4'%:%‘ lej) (el (2.12)

where m is the mass of an atom with momentum p, and |e;) denote the internal
levels of the atom with corresponding energies w;, where we have shifted the zero
of energies such that it corresponds with the internal ground state |g). The in-
teraction between one Alkali atom and the electric field is described in the dipole
approximation by the Hamiltonian

Hy=—ji-E(#,t)+Hec, (2.13)

where E (7,t) = E () e “!e is the field generated by a laser with frequency w,
polarization € and spatial profile E(7), and it = er is the corresponding dipole
operator for the electron in the highest partially-occupied orbital, with charge e
and position 7.

We restrict the discussion to the case of a two-level atom, where we denote
the ground state and excited state by |g) and |e), respectively. In the interaction
picture, the total Hamiltonian takes the form

HI = eiﬁat <Ea =+ ﬁd) C_U:Iat

Q(7)
2

(2.14)

= 2 st tel+ (21t + He )
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2. From classical to quantum simulations

where § = w, —w and Q(F) = —2E () (e| i+ - €|g) are the detuning and the
Rabi frequency, respectively, and we have neglected highly oscillating terms. This
approximation, known as the rotating-wave approximation (RWA), is valid as long
as Q (1) € we + w.

If the detuning is large, § > (), we can obtain an effective Hamiltonian acting
on the ground state of the atom, by considering second-order processes induced by
the last term of the Hamiltonian (2.14), which lead to a so-called ac-Stark shift

that can be rewritten as i

p .
Heg = T +V(r), (2.15)
where the potential is given by V () = —|Q (7) |2 /46, which is proportional to the
intensity of the laser field, |E (#)|?. For a red-detuned laser (§ > 0), the atom
feels attracted towards the high intensity regions, whereas for a blue-detuned laser
(0 < 0) it does so to the low intensity regions.

A periodic trapping potential can be generated by using two counter-propagating
laser beams with the same polarization in each spatial dimension, giving rise to
standing waves of the form E (;) = E{ cos(k;#;), for i € {x,y,z}, where k = 27/
and A is the wavelength of the laser. The total potential is then given by

V(r)= ZWCOSQ(/’C@), (2.16)

forming an optical lattice with separation d = A/2 between different minima.
The lattice depth Vj is usually expressed in terms of the so-called recoil energy
E, = h*k?/2m. Eq. 2.16 is an example of a cubic lattice. By modifying the
intensity, phase and frequency of the laser beams many other geometries can be
implemented [BDZ08].

Band structure

In the single-particle picture, the wavefunction of one atom in an optical lattice
can be expressed in terms of Bloch wavefunctions, ¢,q(r) = €' u,q(r), similarly
to the case of electrons in a crystal. In one dimension, the periodic function u,q(x)
is given by the solution of the following eigenvalue equation,

(p + hq)?

2m

+ V(2)]| tng(z) = Epgng(x) (2.17)

obtained by substituting the Bloch wavefunction in the Schrédinger equation under
the effective Hamiltonian (2.15). Eq. (2.17) can be solved by taking the Fourier
transform of both the wavefunction and the potential. In Fig. 2.5 we represent the
band structure corresponding to a 1D optical lattice given by a sinusoidal potential
for different lattice depths. If the lattice depth is zero, the bands present a parabolic
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Fig. 2.5 In rhe figure, we represent the band structure corresponding to an atom in an
optical lattice for different potentials depths V5. The energy E is given in terms of the
recoil energy E, and the quasi-momentum q is represented in the first Brillouin zone.

dispersion relation. Any finite value of Vj opens a gap between each pair of bands,
which become more flat for larger values of Vj

In certain cases it is more useful to write the single-particle wavefunctions in
a different basis. The so-called Wannier basis consists on wavefunctions that are
localized on the potential minima, and are defined via the Fourier transformation
of the Bloch wavefunctions,

1 —iqx; T
w (2 — ;) = ﬁiqje Yan () (2.18)

where L is the number of lattice sites. At very large lattice depths, the Wannier
functions approach the eigenfunctions of a harmonic oscillator located at site x;
with frequency wgo = VAV E, [JZ05]. We will use this basis below to write the
atomic Hamiltonian in the presence of interactions for large lattice depths.
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2. From classical to quantum simulations

2.2.2 Atomic interactions

So far we have considered only a single atom in an optical lattice. To describe
many-body phenomena, however, it is important to take into account the effect
of the atomic interactions. As we will see, in certain circumstances we can forget
about most of the microscopic details and describe the interactions using a single
parameter [BDZ08].

Scattering length

Let us first introduce some basic concepts from scattering theory to describe the

collision between quantum particles [Lan37]. Consider two particles interacting

during a short time through a spherically symmetric potential V' (r), where r is the

inter-particle distance. Long before and after the interaction time the particles are

considered to be free, and can be described asymptotically by the wavefunction
eikr

Y(r) = e 4 £(6) — (2.19)

The first term in this expression corresponds to an incoming plane wave in the z
direction, and the second represents an outgoing spherical wave, where f(0) is the
so-called scattering amplitude and 6 is the angle between both waves.

We introduce now the differential cross section, defined as the ratio between the
probability per unit of time of a particle passing through the differential surface
dS = r2dQ, where Q is the solid angle, and the current density of the incoming
wave, which can be expressed as

do = |£(6)]?dQ (2.20)

The scattering amplitude can be expanded as a superposition of Legendre polyno-
mials P;(x) corresponding to different angular momenta [ (partial wave approxi-

mation),
oo

> @1+ 1) (e ®) — 1)Py(cos b). (2.21)
=0

f(e):ﬂ

where 6;(k) are known as phase shifts [PS08|. Using this expansion, and integrating
the differential cross section in terms of the solid angle, we arrive to the following
expression for the total cross section,

o= /dQ |£(0)]? = g > sin®d. (2.22)
=0

For low energies, this is, if the wavelength of the particles colliding is large compared
to the range R of the potential (kR < 1), the phase shifts in the expansion (2.21)
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2. From classical to quantum simulations

can be approximated by powers of the momentum, § ~ k?*!. The dominating
term corresponds to the zeroth order with | = 0, known as s-wave scattering. In
the low-energy limit, one can disregard the rest of the terms and write the cross
section in terms of a single parameter called the scattering length, o = 4ma?, with

a = — lim 0o (k)
k—0 k

(2.23)

The scattering length can be positive or negative, and its value depends on the
specific type of atom-atom interaction. Moreover, it can be tuned with the help of
magnetic fields by making use of Feshbach resonances [BDZ08].

Ultracold limit

At low energies, all the details about the atom-atom interactions are contained in
the scattering length. In particular, we can substitute the exact atomic potential
by a contact interaction given by,

V(x) = 2:;—a5(x) = gd(x) (2.24)
where §(x) is a Dirac delta, this is, two atoms interact only when they are at the
same position. This interaction is attractive for positive scattering lengths, and
repulsive for negative ones.

For neutral atoms, the regime where the s-wave approximation is correct is
known as the ultracold limit. To estimate this regime, consider the cut-off Van der
Waals potential,

Vir) = {—C/r6 if r > 7. (2.25)

00 ifr<wr.

This potential describes a Van der Waals interaction between two atoms at large
distances and a hardcore repulsion when the atoms are closer than a distance r. of
the order of the atomic radius. For non-zero values of the angular momentum [ # 0
this potential has a centrifugal barrier with a height E ~ h%13/ma?, where a, =
(2mC/ hz)l/ 4 is a characteristic length. For energies smaller than this barrier, only
the s-wave scattering is relevant. Converting it to temperatures, we can estimate
that, for typical atoms, this occurs at around 1mk. In this ultracold regime, all the
scattering channels with [ # 0 are effectively frozen, and we can substitute the Van
der Waals potential by a contact potential (2.24). Sub-milikelvin temperatures can

be reached in atomic experiments using several cooling techniques [Phi98].

2.2.3 Many-body Hamiltonians

Now that we have discussed all the necessary ingredients, we can introduce the
complete many-body Hamiltonian describing ultracold atoms in optical lattices.
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2. From classical to quantum simulations

We start with the case of a single bosonic species, described by the Bose-Hubbard
Hamiltonian [JBCT98|, that we will then generalize to take into account spinor
gases with more than one internal state.

The Bose-Hubbard model

The Hamiltonian of a system of interacting bosonic atoms on an optical lattice can
be expressed in second quantization as

A A 2 A
i = [ardt [—va? Vo) F(2) o

2.26
+ % /dr dr’ Ut ()T (e )V (r — ¢/ )T ()T (r).

The first part include the single-particle terms, where Vi corresponds to the exter-
nal potential, including the periodic lattice (2.16) as well as a possible (harmonic)
trapping potential Vir(r). The second part includes the two-body atomic inter-
actions given by a contact potential V(r — r') as the one described above (2.24).
Finally, \iﬁ(r), \if(r) are creation and annihilation field operators, respectively, ful-
filling the bosonic commutation relations,

[B(r,t), Ui t)] = 6 (r — /). (2.27)
These operators can be expanded in terms of Wannier functions (2.18), since the
latter form a complete orthonormal basis. For deep enough lattices, and for low

enough temperatures, one can make use of the tight-binding approximation and
consider only terms that correspond to the lowest energy band,

U(r) ~ Zwo(r —r)b;, (2.28)

where b; (j,;r) are bosonic operators annihilating (creating) a particle on lattice site

i on the lowest band, with [b;, IAJ;L] = 0;;. Inserting the expressions (2.28) into the

Hamiltonian (2.26) we obtain the Bose-Hubbard model

- U
= 1 T - Nt — — o
H=— <Z> ig(blby + hee) 5 D iy = 1) = Y pi (2.29)
3 ? ?

where the first sum runs over pairs of nearest-neighbor sites and 7, = lA)IlAJZ is the
local bosonic density. The parameters in the Hamiltonian can be expressed in terms
of overlaps between Wannier functions, where

h2
tij=— /drw*(r — 1) [vaQ + cht} w(r —r;) (2.30)
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is a tunneling element between nearest-neighbor sites and

U, = g/dr lw(r —r;)|* (2.31)

is the on-site density-density interaction. In Eq. 2.29 we have assumed that the
Wannier function are strongly localized around lattice sites, and we neglect tunnel-
ing elements beyond nearest-neighbors sites and interactions that are not on the
same site [JZ05]. The last term in (2.29) corresponds to a local on-site energy given
by the external trap

i =— /dr Vr(r)w(r —r;) =~ Vp(r;). (2.32)

If the external potential is sufficiently homogeneous we can regard these parameters
as site independent, ¢;; = t and p; = p. This approximation is valid if the trapping
potential Vp(r) varies slowly.

The parameters of the Bose-Hubbard Hamiltonian depend only on the scatter-
ing length a, the mass of the atoms m and the properties of the optical potential,
which is characterized by the lattice depth V5 and the wavelength A. In the limit
of very deep lattices these parameters are approximated by the following expres-

sions [BDZ0§],
4 Vo \ ¥/ Vo V2
t~ —FE,. | = -2 = 2.
b (5) e -2(p (2.33)

i Vo 3/4

U~ V8ma—E, () . (2.34)
s E,

The ratio between the tunneling and the Hubbard interactions characterizes the

phase diagram of the model, and can be easily controlled by modifying the lattice

depth
k Vo\'?
U/t ~ a—exp <2 (EO> > (2.35)

At zero temperature, the Bose-Hubbard model presents two different phases sepa-
rated by a quantum critical point at a certain value U/t [FWGF89]. For U/t <
U./t, the system is in a gapless superfluid phase characterized by off-diagonal long-
range correlations (except for d = 1, where the correlations decay algebraically).
For U/t > U./t, it enters into a Mott insulating phase with a finite gap and
exponentially-decaying correlations. The transition between the two of them was
shown experimentally by Greiner et al. [GMET02] using a system of bosonic atoms
by modifying the depth of the optical lattice. This seminal experiment showed
the possibility to quantum simulate strongly correlated many-body systems using
ultracold atoms.

and
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2. From classical to quantum simulations

Spinor gases

At the beginning of this section, we showed how the internal structure of neutral
atoms can be used to engineer periodic optical potentials using off-resonant lasers.
These potentials act effectively on the internal ground state of the atoms, and so
far we have disregarded the presence of other energy levels. The Bose-Hubbard
model (2.29), in particular, describes the many-body dynamics of ultracold atoms
in an optical lattice using scalar field operators, and does not take into account
processes that change the internal state of the atoms. This model can be general-
ized, however, to take into account the atomic spin and to describe the so-called
spinor gases [SKKO01, LSA17, JBCT98].

In general, cold-atom experiments use alkali atoms. In their outer energy level,
the latter posses one unpaired electron in the s orbital, with a corresponding elec-
tronic spin S = 1/2 and zero orbital angular momentum, L = 0. The total elec-
tronic angular momentum is thus J = 1/2. Taking into account the nuclear spin
I, the total angular momentum of the atom F can take two values, |I 4+ 1/2|
and |I — 1/2|. In the absence of a magnetic field, each of them consists on a de-
generate manifold of hyperfine levels, labeled by the magnetic quantum number
mp = —F,..., F. The corresponding Hamiltonian has a SU(2F + 1) symmetry,
which is explicitly broken if a magnetic field is present, lifting also the degeneracy.

Spinor gases are described by the following many-body Hamiltonian, which
generalizes Eq. (2.26) to include more than one bosonic state [SKKO01],

N A h2 o

H=>" /dr Wl (r) (W <—2mv2 + V2 (r) + Ea(30)> + Qaﬁ(r)) W 4(r)

a,pB

+ > % / dr dr’ U, () BF (1) Vagsy (r — v') s (x) T, (')

aBéy
(2.36)

where the Greek indices denote the different hyperfine and, possibly, Zeeman sub-
levels {—F,... F}. Although here we are considering only one type of atom, the
Hamiltonian (2.36) can also describe atomic mixtures. The non-interacting part of
the Hamiltonian includes, apart from the usual single-particle terms corresponding
to each hyperfine level—where E%(By) corresponds to the Zeeman shift due to an
external magnetic field Bp—a term that couples different levels through two-photon
Raman or microwave transitions [JBC98], proportional to a Rabi frequency Q7.
The second part of the Hamiltonian describes to the interaction terms, including
both intra-species as well as inter-species two-body collisions.

As we have seen, in the ultracold regime each potential V,gs(r —r’) depends
only on a single parameter, the scattering length (2.24), that can be different
for different internal states. In the presence of symmetries, however, the number
of independent parameters can be greatly reduced. In particular, the total spin
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2. From classical to quantum simulations

f = F1 + F2, where F; and F5 are the corresponding spins of two atoms, is
conserved in atomic collisions. If all the atoms have a spin F', the total spin f of
the two-body system can take values from 0 to 2F, with only even (odd) values
allowed for bosonic (fermionic) atoms. The number of different scattering channels,
and the corresponding scattering lengths, is therefore reduced from (2F + 1)*

F + 1. The interaction potential can be written as a sum over these channels,

Vire-1)= —5 (r—r ZafPf (2.37)

where Py is the projector operator to the states with total spin f, and Vags(r —
r') = (af| V(r—r') [07). This sum can also be written using spin operators [Ho98|,

(r—r') (Z an (F > 5(r—r') (2.38)

Consider as an example the case F' = 1, which corresponds, for instance, to one
of the hyperfine manifolds of the bosonic species 2*Na, that will appear again in
chapter 3. In this case, the total spin during a collision can be either 0 or 2, and
the interaction potential can be written as

Vir—r) = (go + g F 1%) 5(r—1) (2.39)
with o0
T (lf:2 —+ af:0
= —— 2.40
90 m 3 ) ( )
AT aj—9 — ay—o
gg=————" (2.41)

m 3

The total Hamiltonian reduces to

=y Jar ) (57 (~ o0+ Vi) + B () ) + 970 ) 850

+Z /drdr

aﬁ&w

g0l () UL ()T, (1) T4 (x)

+ 9 Z (‘I/T )a ﬂqﬁ (r )) : (\ilé(r)(Fn)é,'y‘i/'y(r,))] )

(2.42)
where the second term will be responsible for the so-called spin-changing collisions.
By expanding the spinor field in terms of Wannier functions (2.28) we obtain the
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following lattice Hamiltonian in the tight-binding approximation,

H= "3 "t200 b g+ >0 > USLS0 b by by (2.43)

a,B 4,5 i,4.k,l @, 3,6,y

where the Hubbard interactions U > ﬂ 6 7 present the same internal structure as the
corresponding scattering lengths. As We mentioned before, the Hamiltonian (2.43)
can be easily generalized to include more than one type of atom, as well as both
bosonic and fermionic species. Along this thesis, we will do so by considering
Bose-Bose (chapter 3) as well as Bose-Fermi (chapter 6) atomic mixtures.

2.3 Summary

In this second introductory chapter, we have reviewed two different approaches to
investigate strongly-correlated physics that will be used in the rest of the thesis.
First, we considered how to perform efficient numerical simulations, in particular in
low-dimensional systems, by representing the corresponding quantum states with
tensor networks. These approximate physically-relevant states efficiently by tar-
geting relevant entanglement structures. However, they also show limitations, in
particular in higher dimensions where the contraction of the corresponding tensor
networks required to calculate expectation values cannot always be performed ef-
ficiently. The second approach considered in this chapter tries to overcome these
problems by using quantum simulators to investigate quantum systems that are
not accessible either experimentally or by classical simulations. We focused on
the case of ultracold atoms, that can be used to engineered several many-body
Hamiltonians relevant both to condensed matter and high-energy physics.
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Solid-state physics in optical
crystals
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Chapter 3

Bosonic Peilerls insulators

3.1 Introduction: electrons and phonons

The study of interactions between particles and lattice degrees of freedom is of
central importance in solid-state physics. The interplay between electrons and
phonons has been extensively studied, leading to the description of paradigmatic
effects such as superconductivity, polaron formation or charge density waves [AS06,
Emil2|. The analogous problem for bosonic matter, on the other hand, has been
less investigated. The basic feature of phononic systems is that the lattice degrees of
freedom can fluctuate and order at various wavelengths. In one dimension, a system
of itinerant particles on a deformable lattice can undergo a Peierls transition [Pei55],
characterized by the spontaneous breaking of the lattice translational symmetry.
This gives rise to long-range order, with a periodic modulation that depends on
the particle density. For fermionic particles, the statistical correlations induced
by Pauli’s exclusion principle are sufficient to drive such effect, where a gap opens
around the Fermi surface. Although the latter is absent in the bosonic case, we will
see how similar effects appear in the presence of sufficiently strong interactions.
The study of boson-lattice problems becomes very relevant in the context of
quantum simulators, where model Hamiltonians can be engineered with an unprece-
dented degree of control [BN09, CZ12], as we introduced in chapter 2. Ultracold
atoms in optical lattices, in particular, allow to experimentally address systems of
strongly-correlated bosons and to study their properties in detail [JZ05, BDZ08,
LSA17]. One of the earliest examples was the observation in 2002 of a quantum
phase transition between a Mott insulator and a superfluid [GMET02], using an
atomic system described by the Bose-Hubbard model [FWGF89]. Since then, many
different bosonic models have been implemented, showing how quantum simulators
can be used not only to study the properties of materials that are found in Nature,
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8. Bosonic Peierls insulators

but also to investigate new quantum many-body phenomena using synthetic matter
[SDS05, DGH*15, GJOS14, DGJbuO11, BHS06, DTBA06].

The strongly-correlated regime is usually accessed through optical lattices cre-
ated with laser beams, mimicking the crystalline structure of solids and enhancing
atomic interactions. However, as discussed in the previous chapter, these lattices
are static and do not present quantum fluctuations. The particles do not in-
fluence the lattice structure and, therefore, phonons are usually not taken into
account. Systems of trapped ions can also simulate many-body Hamiltonians
[BR12, SPS12, JVWO09]. In these systems, phonons appear naturally [LBMWO03],
and can be used to mediate interactions between the ions [PC04|. However, trapped
ions are confined at lattice sites, making the simulation of itinerant particles more
challenging. Recently, advances in designing systems composed of both neutral
atoms and ions [NGIT14, BCN*13, GND*12, JNG14, HD14, GCOcvacVac09,
ZPSK10, SHD10] suggest the possibility of simulating itinerant particles and dy-
namical lattices simultaneously. This strategy was explored for a chain of fermionic
atoms, where a Peierls transition was predicted [BCNT13]. Alternative approaches
include the use of molecules in self-assembled dipolar lattices [PGM™08|, opti-
cal cavities [MMRO7, LDML08, BGBE10, PS14, LHD%16, MRP17| or trapped
nanoparticles [GTCT12].

In this and the following chapters composing the second part of the thesis,
we propose and analyze a one-dimensional model of interacting bosons coupled to
a simplified dynamical lattice, the Zs; Bose-Hubbard model, and discuss possible
implementation schemes using mixtures of ultracold bosons. This allows to consider
analogous phenomena to those encountered in electron-phonon systems in cold-
atomic setups. In particular, we discover a bosonic analog of the Peierls transition,
leading to various Peierls insulators for commensurate bosonic densities. Moreover,
the investigation of the topological properties of these phases leads to different
intertwined topological effects, which arise from the interplay between symmetry
breaking and symmetry-protected topology.

Before entering into more details, we devote the rest of this section to intro-
duce some relevant concepts from solid-state physics. We do so by focusing on
a particular electron-phonon model, the Su-Schrieffer-Heeger model (SSH), where
most of these concepts appear. In Sec. 3.2, we show how to simulate lattice degrees
of freedom in cold-atomic systems using bosonic mixtures. Finally, in Sec. 3.2,
we investigate the presence of bosonic Peierls insulators in the Zy Bose-Hubbard
model.

3.1.1 The Su-Schrieffer-Heeger model

The SSH model is a paradigmatic model in solid-state physics [SSH79|. This model
was first introduced to study the properties of polyacetylene (Fig. 3.1(a)), a quasi-
one-dimensional conducting polymer with solitonic excitations [HKSS88]. The orig-
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Fig. 3.1 Polyacetylene: (a) Trans-(CH), molecule showing a dimerized structure
of single and double covalent bonds between carbon atoms. (b) Soliton in the bond
structure.

inal SSH Hamiltonian describes a one-dimensional atomic chain where electrons are
coupled to phononic degrees of freedom,

1= =3[t + (s = dis)] (6] 1600 + He.)

1,0

9
i K N . 2
+ 1- 2M+5 EZ (Gi — Gi+1)”

(3.1)

Here atoms are located at sites i, and é;a and ¢, , are the corresponding fermionic
creation and annihilation operators, respectively, acting on those sites for a spin
state o € {1,1}, with {el ,é. ,} = 9i,j00,0- The movement of the atoms around

©,00 ~j,0'
their equilibrium positions is described by quantum harmonic oscillators with po-
sition and momentum operators ¢; and p;, respectively, with [¢;, p;] = id; ;. The

first part of the Hamiltonian describes the electron tunneling, which depends on
the atom positions. The second part corresponds to a set of coupled harmonic
oscillators with frequency wg = /K /M, where K is an elastic constant and M is
the mass of the atoms.

In the original formulation of the SSH model, electrons interact with acous-
tic phonons. Alternatively, one can consider a model of optical phonons [SSCO03],
by replacing the atomic positions with bond operators, ¢; — §i+1 — §ii+1. The
latter are also described by a set of, now uncoupled, harmonic oscillators. Such
replacement simplifies the treatment of the model without modifying its main prop-
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erties [WAH15]. The optical SSH model can be written in second quantization as

H=- Z [t +9(a; 41 + 51;”1)] (ézoéiﬂﬁ + H.c.)

1,0
; (3.2)
+wo § :ai,i+1a‘i,i+1
i
At R . . s .
where a; ; ; and a, ;. ; are bosonic creation and annihilation operators, respectively,

with [&;Hl, a; j+1) = dij, and the coupling constant is given by g = a/v/2Muwy.

3.1.2 Peierls transitions

In the following, we focus on the spinless version of the SSH model. Let us con-
sider first the case of half filling, with an electron density of p = N/L = 1/2,
where N is the number of electrons and L is the number of sites. According to
Peierls’ theorem [Peib5], within the mean-field approximation, the ground state of
a 1D chain spontaneously breaks translation invariance through a lattice distortion,
where (@, ;. + djl +1) acquires a non-homogeneous value. This is easy to see in the
large mass limit, M — oo (wg = 0), where the phonons become classical and the
mean-field approximation is exact. In this case, the problem reduces to finding the
set of classical variables (@, ; , + &;i +1) that minimizes the energy of the effective
non-interacting Hamiltonian,

= =3 [t gl + 0l )] (6o +He). (3.3)

K2

At half filling, the electronic energy is minimized for one of the two possible dimer-
ized configurations, (a; ;,, + d;i+1> = 4(—1)%, that are degenerate in the thermo-
dynamic limit. In the classical limit, the amplitude ¢ corresponds to the maximum
atomic displacement. The ground state is then in a bond order wave (BOW) phase,
where a non-zero value of the order parameter O = (2:1-(—1)"(5[62-_|r1 +H.c.)) char-

K3

acterizes the presence of long-range order in the bonds. This spontaneous breaking
of translational symmetry is known as Peierls transition. It is not restricted to
the ground state, but occurs also for finite temperatures lower than a critical one,
T < T. (Fig. 3.2). The BOW phase is an example of a Peierls insulator, where
the insulating properties arise from the interaction between electrons and lattice
degrees of freedom. Another example of a Peierls insulator is the charge density
wave that appear in the Holstein model [Hol59], where phonons are located on the
same sites as electrons and are coupled to the electron density.

In the classical limit, every rational filling gives rise to a Peierls insulator. In
general, it is always energetically favorable to open a gap around the Fermi energy.
This occurs whenever translational invariance is spontaneously broken, giving rise
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Fig. 3.2 Peierls transtion: (a) At high temperature, the atoms are located at their
equilibrium position at zero displacement, (g; ;+1) = 0, and the electronic spectrum con-
sists on a single band. At half filling, the system is thus in a conducting metallic phase.
(b) If the temperature is low enough, the atoms equilibrate in a dimerized configuration,
(Gi.iv1) = (—1)'8, breaking spontancously the translational symmetry of the Hamilto-
nian. Such configuration is energetically favorable at half filling as it opens a gap A, = 2§
around the Fermy i energy er, lowering the electronic energy of the occupied states. The
system is then in a Peierls insulating phase, where one of the two electronic bands are
completely occupied.

to long-range order. The latter can be observed in the structure factor of the
corresponding order parameter—in this case the expectation value of the electron
hopping—which shows a peak at momentum kg = 7/Ag, where A¢ is the length of
the unit cell. In particular, such an ordered state presents two gaps in the single-
particle spectrum, and the Peierls transition implies thus the following relation,

ko ‘ kg (3.4)

1- 2= |1-2%
i ™

where kp = 7p is the Fermi momentum.

For non-zero values of wy, one has to take into account the effect of quantum
fluctuations. If wy is small, however, the mean-field ansatz still provides a good
approximation to the ground state, where the value of § is now reduced, and so is
the size of the gap. A qualitative phase diagram of the model is given in Fig. 3.3. In
the case of quantum phonons, a gapless Luttinger liquid (LL) phase appear if the
value of the coupling is below a critical value g.. The value of the critical coupling
remains finite for any value of wg, and a quantum Peierls transition always leads to
a BOW phase at T' = 0 for sufficiently strong electron-phonon interactions [FH83|.
For other fillings, the Peierls gap is smaller, and the quantum Peierls transition
occurs at higher values of g..

As a final comment, notice that the effective Hamiltonian (3.3) corresponds to
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1/LL)[)

LL

0 g e [e¢]
Fig. 3.3 Qualitative phase diagram of the spinless SSH model at 7' = 0: In
the classical limit (wo = 0) the ground state is in a BOW phase for any coupling g # 0.
Quantum fluctuations move the critical point g.(w) to a finite value. For g < g., the
ground state is a gapless LL phase.

the one considered in chapter 1 as an example of a model with a chiral topolog-
ical insulator (1.47). As explained there, one of the two degenerate ground state
configurations of the BOW phase corresponds to a topological insulator, while
the other one is trivial. Such topological BOW (TBOW) phase is an example of
an intertwined topological phase, where long-range order coexists with non-trivial
topological properties. The interplay between symmetry breaking and symmetry
protection that appear in this kind of matter-lattice models is crucial to observe
various intertwined topological effects, as we show in the next chapters.

3.1.3 Solitons

As we have seen, Peierls insulators are associated with the SSB of translational
invariance. It is then natural to ask about the possibility of finding topological
defects in the spectrum of the theory. Indeed, the presence of solitons in the
ground state of polyacetylene was the original motivation to introduce the SSH
model [SSH79]. In chapter 1 we associated the presence of defects to the topological
structure of the ground state manifold in the ordered phase. We can directly
apply the theory of topological defects to the present case by first interpreting
discrete translational invariance in the disordered phase as the product of a Z,
symmetry within a n-site unit cell and translations of the whole unit cell, this is,
of integer multiples of n sites. After a Peierls transition leading to an ordered
state characterized by a momentum ko = 7/n, the Z, symmetry is completely
broken, while the unit-cell translational invariance remains intact. As indicated
in Sec. 1.1, a broken discrete symmetry in 1D can only give rise to 0-dimensional
defects. The possible defects are given by the number of connected components of
the 0-dimensional ground-state manifold, which corresponds to Z,, in this case.
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3. Bosonic Peierls insulators

One interesting feature of topological defects in Peierls insulators is that they
appear not only as excited states for a certain electron filling, but also in the
ground state when the system is doped with extra electrons or holes. In the SSH
model, in particular, one soliton-antisoliton pair appears as we dope the half-filled
BOW state with one fermion. Each defect interpolates between the two degenerate
ground-state configurations at half filling (Fig. 3.1(b)), where the mean-field atom
displacement is given by

(i) = (~1) tanh ( ‘5) (35)

where g is the location of the defect and ¢ its localization length [HKSS88]. These
defects are not bound to each other and can move freely along the chain due to the
remaining translational symmetry.

The reason why solitons appear in the ground state of the system is that they
create electronic states in the middle of the gap. In the SSH model, if only a few
extra fermions are introduced in the system above a certain rational filling, it is
thus more favorable to create defects that will accommodate these particles rather
than to rearrange the whole system into a new ordered configuration. When the
doping increases to reach a new rational filling, however, a new Peierls insulator
will form characterized by a new wavelength. The fermionic states associated with
the solitons present fractional charges. The phenomenon of charge fractionalization
was first studied in the context of quantum field theory by Jackiw and Rebbi [JR76],
and was later investigated in solid-state physics [SS81]. In chapter 5, we show how
similar effects can also take place in cold-atomic system and, in particular, how
bosonic matter can also fractionalize.

3.2 Synthetic dynamical lattice

In this section, we introduce a modified version of the SSH model, better suited to
implement lattice degrees of freedom in cold-atomic systems. We also extend the
standard matter-lattice models to include bosonic matter, and propose an experi-
mental implementation using bosonic mixtures.

3.2.1 Rotor SSH

The Hilbert space associated to each phonon subsystem is infinite dimensional. To
simulate it with cold atoms it is necessary first to truncate it in a controlled way,
and to approximate it by a finite-dimensional space. We use here the Holstein-
Primakoff transformation to formalize the truncation process [HP40]. These trans-
formation represents angular momentum operators in terms of bosonic creation
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and annihilation operators,

~ ata
St =v2541- 2%

25
N ata 3.6
§™=v2Say/1- 22, (36)
25

57 =S-a'a
where S is the total angular momentum and St =87 4 ZS’}’ and S— = 5% —iSY
are ladder operators. The angular momentum operators St with i € {x,y,z},
satisfy the commutation relations [S%, 5] = i), eiijk, where €51, is the Levi-

Civita symbol. Finally, 4" and @ are bosonic creation and annihilation operators
satisfying the canonical commutation relations [a,a] = 1. These transformations
(3.6) can be inverted, expressing the bosonic operators in terms of the angular
momentum ones, effectively truncating the infinite Hilbert space to a space of
dimension 25 + 1, with 0 < (a'a) < 25. The error in the approximation decreases,
therefore, as S increases. In particular, in the limit S > 1, we can approximate
the square root in (3.6) by its power expansion,

ata lata

- — = - -2
-5 =1- 555 +0(57) (3.7)

By restricting ourselves to the zeroth-order term we obtain the following expression,

2
ol +a~ /= 5% .
a'+a “SS (3.8)

We can define now an S-dependent rotor SSH Hamiltonian by applying the
Holstein-Primakoff transformation (3.6) to the spinless SSH Hamiltonian intro-
duced in the last section, and using the approximation (3.8),

Hs = —tz [t + gsgf,iﬂ} (é;‘réi+1 + H'C') —Wo Z Sf,i+1’ (3.9

with gg = g\/g . Let us consider now the importance of the approximation (3.8)
for different physical regimes:

e High-frequency limit (wg > ¢, gs): in this regime the number of phonons is
small at low energies, a'a < 25, and the approximation (3.8) holds even for
small values of S.

e Low-frequency limit (wg < t, gs): in this case, there are large fluctuations in
the photon number, while a 4+ a' becomes well defined, so the truncation is
not justified. However, as we will see, the relevant physics survives even in
this limit.
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3. Bosonic Peierls insulators

After a spin rotation, we can expressed the rotor SSH model as

Hs =t Z {t + gsgz'z,iﬂ} (é;‘rém-l + H-C-) + wo Z S’zi+1ﬂ (3.10)

3.2.2 Quantum simulation with bosonic mixtures

We propose how to simulate a dynamical lattice using a mixture of ultracold bosons
trapped in an optical lattice. The simulated Hamiltonian extends the rotor SSH
model (3.10) introduced above, allowing us to simultaneously investigate the in-
teraction between both fermionic and bosonic matter coupled to lattice degrees of
freedom. We focus here on a particular choice for the atomic species. However, the
proposed implementation is valid for other bosonic species.

Experimental Setup

We employ two different atomic species, “Li and 23Na, both having a total hyperfine
angular momentum F' = 1 with three internal levels given by the magnetic quantum
number mp € {—1, 0, 1} (Fig. 3.4). In the following, we restrict ourselves to the
levels mp = 1 for lithium and mp € {0, 1} for sodium. Both species are trapped
using an optical dipole trap (ODT) [GWOO00]. The latter uses three laser beams,
one for each spatial dimension, and generates the following harmonic trapping
potential for the atoms,

1
Vi(2,y,2) = gma(wia? +wpy’ +wis?), (3.11)

where m; is the mass of the atomic species s € {N, L} and w® are the trapping
frequencies, which are independent of mp.

On top of the ODT we add a Ti-Sapphire laser in the y (axial) direction that
can be tuned to a wavelength where the beams are blue detuned for “Li and red
detuned for 23Na [KHJ*17]. Two counter-propagating lasers create a periodic
lattice potential for each species (shifted by half period) [MOO06],

Vi (y) = Vi cos®(ky)

3.12
V¥ () = V¥ sin®(ky). (3.12)

where k = 27“ and A is the wavelength of the laser. The lattice spacing is a = % We
assume that the potential strength VON/ Uis independent of the magnetic quantum
number and can be controlled with the laser intensity and the detuning |&|N/%.
The minima of V{¥(y) (resp. V{N(y)) represent the sites (resp. bonds) of the model,

hosting the matter (resp. lattice) degrees of freedom.
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8. Bosonic Peierls insulators

Fig. 3.4 Bose-Bose mixture: In the figure, we represent the proposed experimental
setup to implement the rotor SSH model (3.10). Two bosonic species, sodium (green)
and lithium (orange), simulate the matter and lattice degrees of freedom, respectively.
A single optical lattice generates a periodic potential for each species, shifted by half a
period. The optical potential for the sodium atoms is shallow, and they are described by a
Bose-Hubbard model. The potential is much deeper for lithium, preventing any tunneling
between different minima, and allowing the description of its two internal states in terms
of spin operators.

Finally, the atoms also feel a gravitational force in the z direction, Vi(z) =
—mggz. With this, the total potential for each atomic species is

VE(x) = Vi(z,y,2) + Vi (y) + VE(2)- (3.13)

Atomic Hamiltonian

For each atomic species, we can write the non-interacting part of the atomic Hamil-
tonian in second quantization as

R 2v72 R
Hy® = / 3l () {h VLV + By (Bo) | e (), (3.14)

2m

where a corresponds to the allowed internal states (v = 1 for lithium and « € {0, 1}
for sodium). E?(Bp) includes the linear and the quadratic Zeeman shifts due to an
external magnetic field By. In the following, we denote V?(x) = V*(x) + ES(By).
The bosonic field operators 77/;37a(x) fulfill the canonical commutation relations,

(00,00, 5(9)] = dovrdapd (x — ). (3.15)

Moreover, we can drive transitions between the two internal states of sodium using
a radio-frequency field,

HYW = Q/ (@/A’L,O(XWNJ (x) + H'C') J (3.16)

where  is the corresponding Rabi frequency. The total non-interacting Hamilto-
nian is Hy = H(I;xl _,_H(l)\ﬂo + Hé\l,l —l—Hé\I’Ol.
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3. Bosonic Peierls insulators

The interacting part of the Hamiltonian takes into account both intraspecies
and interspecies collisions, where we assume contact interactions and conservation
of the total hyperfine angular momentum during the collisions [LSAT07]. The
intraspecies interactions are given by

o K AL RS TSt (3.17)

and
Y = B[ 0 0 (9 10 (3.18)
28 [0 0 ) (3.19)
s [ L ) () ) (3.20)

with
9s = 4;22 ass. (3.21)

s : : : N _ N _ N _ L _
ags are the scattering coefficients given by ayy = ayy = 55ap, agy = 53ap, ayy =

akty = 6.8ap, al, = 12.5ap, and ap is the Bohr radius. The interspecies part of
the interaction is described by

Y = g [ 000010, (), () (3.22)
g [ oo o (x4 (R ) (323)

with
By = 2T v (3.24)

and aOQ = aw = 19.65ap, a)" = 20ap. The interaction Hamiltonian is given by
HI H + HL + HNL and the total atomic Hamiltonian by H= HO + HI
Tight-Binding Approximation

If the lattice is deep enough, we can expand the field operators in the tight-binding
approximation in terms of localized Wannier wavefunctions (2.18), as we introduced
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in chapter 2,

z wlo& lOL?
~ s As
(x) = Zwi,i+1,a X bi,i—f—l,av
i

(3.25)

where i (4,7 + 1) is the lattice site (bond) denoting each potential minimum in the
axial direction, and bfl and b; , are bosonic creation and annihilation operators, re-

spectively, fulfilling the canonical commutation relations [bf > bj ﬁT] = 05,5/04,j00,3-

In the following, we denote BZ a = I;L and G; ;41,0 = IA)I it1.a tO simplify the no-
tation. Introducing the tight- blndlng approxnnatlon (3. 25) into the atomic Hamil-
tonian we obtain the tight-binding model H = HN + H™ + HNL. In the case of
sodium we have assume that the potential is so deep that the tunneling between
different sites can be safely neglected,

TN _ Ugo A1 o1 - A U11 Z
H™ = 2 Z ai’iJrl;Oa'i,iJrl,Oai,i+1,0ai,0 + a’L i+1, laz i+1, laz i1, laz ,i4+1,1
i

NN“Af At oo X X X
+ Uy Z G 511,195,004 i41,0% 41,1 T Q Z (ai,i+1,0ai,i+1,1 + H~C~)
i i

Nt Nt s
- E Hio0@i+1,0% 41,0 — E Hii41,1% 541,1% 41,1
i i

(3.26)
The lithium atoms, on the other hand, are described by the standard Bose-Hubbard
model,

e 3 (Bl + ) + 11 ZbTbjblbl S ukbl,. (3.27)

Finally, we restrict the sodium-lithium interactions to nearest-neighbor density-
density as well as density-dependent tunneling terms,

NL NL 4 . NL ~ N
H Z (bTb + bz+1b1+l) (UIO a;'r,i+1,0ai,i+l,0 + Uiy al,i—&-l,lai,z‘—&-l,l)

i

(3.28)

S5 2t 3\ (FINLAt 4 SN A .

+ Z (b;’rbi—i-l + bg-i-lbi) (Ulo a;r,oai,o + Uiy a;‘r,i+171ai,i+171) .
i

Finally, the tight-binding coefficients depend on the different scattering lengths as
well as on the properties of the Wannier functions.
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3. Bosonic Peierls insulators

Angular Momentum Representation

We can express the previous Hamiltonian in terms of angular momentum operators
acting on the bonds by representing them in terms of Schwinger bosons,

S 7 T N
L7 D) (ai,i+1,0ai,i+1,0 - ai,i+1,1ai,i+1,1) )
A 1

(3.29)
Liina D) (d;'r,i+1,1di7i+170 + H.c.) .

_ 1t 4 N ~
The angular momentum | = 3 (ai7i+1,0ai7i+1)0 +ai)i+171ai’i+17l) is a conserved
quantity since the total number of atoms on each bond is conserved to great accu-
racy. The total atomic Hamiltonian can be written as

H=-%" [t + gﬁf,m} (@@H + H.c.) + gzz:n(n 1) - Zi:m-ﬁi

; (3.30)
+Q Z Liin+V Z Li7 + Z AL 01— 9 Z(ﬁz + Aip1) L4,
where N N
U U,
N UN
A= (=) (52 - B - Gl - ),
g= UFIL _ U%H (3.31)

p NL NL

g=Un" —Uyg"

t=1—1(UNY 4+ UNE),

pi =y = 200" + Uf9),
and we denote U = U}. In the hard-core limit (U/t — 00), the atomic Hamil-
tonian (3.30) coincides with the rotor SSH model (3.10) up to some extra terms.
In the following, we do not take into account the last interaction term and make
g = 0. A more detail investigation is required to obtain the values of the tight-
binding coefficients in terms of the experimental parameters, as well as to the effect

that the extra terms could have on the phase diagram presented below. We also
assume an homogeneous system and denote p = p; and A = A;.

3.3 Interacting bosons on a dynamical lattice

In this section, we show that the rotor SSH model gives rise to similar phenomena
as the original SSH model. We focus in particular on the S = 1/2 case—and we
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8. Bosonic Peierls insulators

refer to it as the Zs Bose-Hubbard model (Z;BH)—where the truncation of the
phononic Hilbert space is maximal. This choice simplifies both the classical and
quantum simulation of the model. However, we will see how, even if quantum
fluctuations are enhanced in this case as compared to the large S case, the relevant
phases are equivalent to those that appear in the phonon model. Moreover, we
investigate how the departure from the hardcore boson limit affects the Peierls
insulators.

3.3.1 The Z, Bose-Hubbard model

The Z;BH Hamiltonian describes the minimal model of interacting bosons coupled
to lattice degrees of freedom. It takes the following form,

. . U
Hz,Bn = — tzi: [t+ad]; ] (blberl + H.c.) En'( -1)

ORIV

where 67 and 67 are Pauli operators associated with Ising fields living on the
bond between sites ¢ and ¢ + 1. The parameters of the Hamiltonian coincide with
those of the atomic system (3.30) by identifying o = ¢g/2 and g = /2. Apart
from the standard terms present in the Bose-Hubbard Hamiltonian [FWGF89], the
Z>BH Hamiltonian includes a lattice-dependent boson tunneling (Fig. 3.5). The
total hopping through a bond is maximized (resp. minimized) for a spin in the
“up" (“down") state. Finally, the last two terms control the spin dynamics. We
note that the Hamiltonian (3.32) bears similarities with other models with spin
dependent hopping elements, such as quantum link models [Wiel3].

Consider first the static lattice case, with 8/t = 0. In the hardcore boson limit,
U/t — oo, a Jordan-Wigner transformation maps the system to a model of spinless

(3.32)

fermions [JW28], b; — €™ S %¢;, bib, — cle,. The transformed Hamiltonian
is quadratic in the fermionic operators

It[ == Z [t + a&f”ﬂrl} ( CiCit1 +h.c. ) /J/an + = ZUZ i1 (333)

%

where éj and ¢; are creation and annihilation fermionic operators, respectively, and
n; = ézéi is the number of fermions at site 4. This Hamiltonian (3.33) describes a
system of non-interacting fermions coupled to classical degrees of freedom. For a
given configuration of the classical variables, the Hamiltonian can be diagonalized
analytically using a single-particle picture.

For large enough values of A/t the fermionic and spin subsystems decouple. The
spin configuration that minimizes the total energy is the one with all spins down.
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Fig. 3.5 Scheme of the bosonic Peierls transition: (a) Representation of the lattice
model of bosons coupled to an Ising field according to Eq. (3.32). Bosons (red dots) reside
on the lattice sites, where they interact with strength U, and can tunnel through the links
with a Zg-valued tunneling strength —t + «, which depends on the configuration of the
Ising field on the links (yellow arrows). These fields can be represented by a two-level
system (inset) with energy difference A, and spin-flipping strength 8. (b,c) Interaction-
induced Peierls transition between a bosonic quasi-superfluid (qSF) in a homogeneous
Ising background, and a bond-ordered wave (BOW) in a Néel-ordered type background,
such that translational invariance is spontaneously broken. The BOW phase can be
understood as an alternation of bonding o1, and anti-bonding o}, units with a different
distribution of the bosons within the bonds. The homogeneous SF phase is characterized
by an algebraic decay of correlations.

Conversely, for A/t = 0 the spin configuration in the ground state of the system is
the one that minimizes the energy of the fermion subsystem. For p ¢ {0, 1}, this
happens when all spins are in the up state, making the fermion hopping uniform
and maximal. For other values of A/t, the energies of these two configurations
become comparable and other spin configurations are possible in the ground state.

We focus on the half-filling case (p = 1/2). In the uniform “down" and “up"
spin configurations, the ground state energy per site is e = —A/2 —2(¢t — a) /7 and
e =A/2—2(t+ )/, respectively. There is another important spin configuration,
the Neel ordered or staggered spin structure. In this configuration, the values of
the fermion hopping are also staggered (¢ + «), the unit cell doubles and a gap
opens around the Fermi energy. There are two branches of single-particle energies
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in the reduced Brillouin zone (—7/2 < k < 7/2),

ex (k) = £2t1/62sin’ k 4 cos? k , (3.34)

where § = a/t. This leads to a ground state energy per site of ¢ = —2tE(1 — §2)/x
where E(z) = 077/2 dk(1 — zsin® k)'/? is the complete elliptic integral of the second
kind. By comparing the aforementioned energies, we conclude that the staggered

spin pattern energy is lower between two critical values of the parameter A,

4t

™

AE [0+ (E(1 —6%) —1)]. (3.35)
On the other hand, the uniform “down" and uniform “up" configurations have a
lower energy for A > A} and A < A7 respectively. We have checked numerically
that, indeed, these configurations correspond to the ground state of the system in
the respective regimes, being the only possible ones at half filling.

From the fermions’ viewpoint, this leads to the development of a staggered
order on the bonds, this is, to a BOW phase, and the system becomes insulating.
Since the latter is associated to a lattice deformation, which breaks translational
invariance, and the resulting order depends on the fermionic density, with kg = 2kp,
we consider such phase a Peierls insulator. Our minimal model is thus capable of
describing analogous phenomena to those appearing in more complicated fermion-
lattice systems [HKSS88]|, such as the SSH model introduced in the last section.

3.3.2 Bosonic Peierls transitions

For finite values of U, we enter into the strongly-correlated boson regime, where the
mapping to non-interacting fermions is no longer possible. To calculate the ground
state of the system, we use a DMRG algorithm with bond dimension D = 40
[Sch1l]. We consider a system size of L = 60 sites (and L — 1 bonds), and work
with open boundary conditions. We truncate the maximum number of bosons
per site to ng = 2. This approximation is justified for low densities and strong
interactions. In the following, we fix the values of the parameters to a = 0.5¢ and
B = 0.02t.

At the bosonic density p = 1/2, the Neel order survives for finite values of U,
and disappears for small interactions. Strong correlations are needed, therefore,
to obtain a bosonic Peierls insulator (Fig. 3.5). The Bose-Hubbard model on a
fixed bond-dimerized lattice was previously studied, revealing an insulating phase
at p = 1/2 [BPV04], and the presence of topological edge states [GHF13]. Here,
the same superlattice structure is obtained dynamically, in the spirit of the original
SSH model for fermions and phonons [HKSS88|. In chapter 4, we investigate in
detail the topological properties of the corresponding BOW phase at half filling, as
well as the interaction-induced nature of the bosonic Peierls transition.
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Fig. 3.6 Bond order waves: Spatial structure of bond (a) and site (b) expectation
values for A = 0.85 and different bosonic densities, showing some of the representative
orders that can develop. From above to below: p =1/2, p =1/242/60, p = 2/3 —2/60,
p = 2/3 and p = 0.88. Different colors represent different sublattice elements, making
explicit the long-wavelength modulations on top of the underlying order.

For U = 10¢, we study the phase diagram of the model in terms of A and p.
For A > a or A < «, the spin configuration in the ground state is uniform. The
bosonic part of the Hamiltonian (3.32) is qualitatively similar to the Bose-Hubbard
model [FWGF89], with a Mott insulator (MI) and a quasi-superfluid phase (aSF).
In an intermediate regime (A a 0.6 — 1.0), the translational symmetry is broken in
the ground state for a substantial range of densities. Figure 3.6 shows the spatial
structure on the bonds (a) and sites (b) for A = 0.85¢. For p = 1/2 and 2/3, the
unit cell is enlarged to two and three sites, respectively. Similarly to p = 2/3, a
trimer configuration appears for p = 1/3 at a different A. For densities close to the
mentioned ones, long wavelength modulations appear on top of the corresponding
patterns. These are solitonic configurations where the underlying order—staggered
in the half-filled case—is reversed periodically forming kinks; the extra bosons or
holes lead to increased density modulations, located around the kinks (2nd or 3rd
row in panel (b)). Finally, close to p = 1, long wavelength structures appear.

The bosonic hopping <IA):[ZA)Z 41 +h.c.) presents the same spatial pattern as (57)

3
in all the cases. We therefore focus on the latter quantity for simplicity. The

ground states shown in Fig. 3.6 possess long-range order in the bonds, and the
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Fig. 3.7 BOW - SF quantum phase transition: (a) Structure factor at ko in terms
of A/t, serving as an order parameter that distinguishes between the BOW and the SF
phases. Inset: (a) Structure factor S, (k) in the BOW phase, for p = 0.733 and A = 0.90.
A clear peak is observed at ko = 87/15. (b) Finite-size scaling of S, (k) for p = 0.55
(circles) and p = 0.85 (squares), for k = ko(p) (continuous line) and k = 7 (dashed line).
(b) The exact location of the critical points (dotted lines) between the SF and S phases
is found using the fidelity susceptibility xrs. In the figure, xrs is represented in terms of
A for different system sizes. The critical points are located by extrapolating the positions
of the peaks, where xrs grows algebraically with the system size, xrs/L ~ L*. In the
inset, the scaling of the value of xrgs at the peak is represented for the left (black) and
right (red) ones. The critical coefficients p are obtained by fitting it to a line.

corresponding quantum phases are BOW phases. We consider the spin structure
factor

1 i—Ti )kt )~z iy ~Z Iy
Se(k) = Tz Z el@i—z;)k <(J“-+1 — O'Z) (Uj7j+1 — O'Z)> , (3.36)
%,J

with 6% = >,(6;)/L, where the summations run over all bonds. This quantity
develops a peak for some kg in the presence of long-range order, and its height
can be used as an order parameter. Figure 3.7(a) shows S in terms of A for
p = 0.733, which qualitatively distinguishes a uniform SF phase from a BOW phase.
The inset (a) presents S, for A = 0.90, where a peak develops for ky = 87/15,
which fulfills the Peierls relation. The inset (b) shows the scaling of S, (k) with the
system size, for k = kg and k = 7w and for two BOW phases: p = 0.55 and p = 0.85.
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n/t
Fig. 3.8 Staircase of bosonic Peierls insulators: Density p and maximum structure
factor S™” in terms of the chemical potential p/t for A = 0.87¢t and L = 60. The
structure factor has non-zero values for the BOW phases. Plateaus in the density are
related to incompressible phases. Insets: ko vs p for t' = 0 and ¢’ = 0.2. The straight line
indicates that the Peierls relation is satisfied for very BOW phase.

The fit, containing terms up to O(1/L?), shows that the long-range order exists in
the thermodynamic limit.

Although the BOW and superfluid phases can still be qualitatively distinguished
using the structure factor as an order parameter, the exact location of the corre-
sponding critical points can be challenging for small system sizes. For this reason,
we use the fidelity susceptibility x ps [GU10] to find the critical points in the ther-
modynamic limit. This quantity can be calculated using the following expression,

Xrs(A) = lim —2log [(Wo(A)[¥o(A +9))|

lim = . (3.37)

The fideliy susceptibility xrs shows a clear peak near a quantum phase transition,
even for small systems. Figure 3.7(b) shows xrg in terms of A for different system
sizes and a fixed density of p = 0.733. The critical points are found at Ay = 0.865
and A, = 0.940, by extrapolating the position of the peaks in the thermodynamic
limit. In those points, the value of x pg grows algebraically as xps/L ~ L* (inset).
The critical exponents are different in the two transitions.

Bosonic Peierls transitions, and the corresponding BOW phases, appear for
a large range of densities forming a staircase structure. Figure 3.8 depicts the
density p in terms of p/t for A = 0.87t. Here, a superfluid phase occurs for
0 < p < 1/2, and BOW phases appear for 1/2 < p < 1. Finally, p = 1 corresponds
to a MI. The plateaus in the u — p line signal the incompressible nature of the
BOW phases. One of the principal features of the theory of Peierls transition
is the relation between the order wavevector and the Fermi wavevector [Peib5].
In one-dimensional systems with a two-point Fermi surface, the theory predicts
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Fig. 3.9 Phase diagram of the Z;BH model (3.32) for a system size of L = 60 in terms
of A/t and p/t. The solid black lines delimit the incompressible phases (cBOW and MI).
The maximum value of the structure factor is represented by the color plot, qualitatively
distinguishing between the iBOW and SF phases. The dotted lines correspond to the cuts
for p = 0.5 (Fig. 3.7) and A = 0.87 (Fig. 3.8). For the former, the red squares mark two
critical points in the thermodynamic limit.

ko = 2kp = 2pm, independently of the fermion dispersion and the form of the
fermion-lattice interaction. Remarkably, we found the same relation for bosonic
Peierls transitions (inset), where the Fermi surface is absent. This relation holds in

the presence of next neighbor hopping —t" >, (l;jl;z 1ot h.c.) , where even hard-core

bosons cannot be mapped onto fermions.

For a wide range of values of A/t, we calculate the plateau size and the maxi-
mum structure factor in terms of p/¢. These two properties are sufficient to iden-
tify all the phases of the model. The results are summarized in the phase diagram
(Fig. 3.9). Inside the MI, the spins are uniform and (67) changes continuously
from +1 to —1 as A increases. As a consequence, the boundary between this phase
and the SF is modified. The phase diagram also shows the extensions of the BOW
phases, the most stable one being at p = 1/2.

3.4 Summary

In this chapter, we have investigated how a dynamical lattice can be implemented in
cold-atomic systems. In particular, we have presented a proposal to simulate lattice
degrees of freedom using bosonic mixtures, by first truncating the infinite phonon
Hilbert space with finite-dimensional rotors. We then focused on the simplest
version of a dynamical lattice, where matter particles are coupled to spins, and
showed that the main properties of electron-phonon systems survive in this limit.

Moreover, we have shown how these properties can be extended to strongly-
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correlated bosons, and we demonstrated the possibility of obtaining bosonic analogs
of the Peierls insulator. We characterized the phases of the system in the quasi-
adiabatic limit (slow lattice dynamics), using the spin structure factor. We found,
besides the uniform SF and MI phases, different BOW phases for a large range of
bosonic densities. In these phases, the Peierls relation is satisfied even in the ab-
sence of a Peierls surface, provided that bosonic interactions are sufficiently strong.
Although the boson-spin interaction o might be difficult to tune in an experiment,
the phases we study in this chapter are present for a broad range of values of this
parameter, provided that A is suitably chosen. The different phases could be de-
tected by measuring the spin structure factor [HDY 15, PMC*16, MCJ 17| and
the compressibility in the atomic system [SHWT08, SPOT09].
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Chapter 4

Intertwined topological phases

4.1 Introduction: from symmetry breaking to sym-
metry protection

The notion of symmetry is paramount to unveil the fundamental laws of Nature,
while spontaneous symmetry breaking (SSB) is essential to understand Nature’s
different guises [Gro96]. As we introduced in chapter 1, at long length-scales, var-
ious phases of matter can be understood by the pattern of SSB and corresponding
local order parameters [Lan37]. Although different SSB patterns tend to compete
with one another, a genuine cooperation can also arise in strongly-correlated sys-
tems with intertwined orders [FKT15]. More recently, topology has been recognised
as an exotic driving force shaping the texture of Nature, and leading to phases char-
acterised by topological invariants rather than by local order parameters [Wenl17].
It is no longer the breaking of certain symmetries but, actually, their conserva-
tion [CTSR16], which gives rise to novel states of matter, the so-called symmetry-
protected topological (SPT) phases [Senl5|. In the non-interacting limit, topo-
logical insulators and superconductors provide well-understood examples of this
paradigm [QZ11], while current research aims at understanding strong-correlation
effects, such as the competition of SPT and SSB phases due to interactions [Rac18].

Alternatively, a cooperation between SPT and SSB may allow for intertwined
topological phases that simultaneously display a local order parameter and a topo-
logical invariant. For integer and fractional Chern insulators, such intertwined
orders have been already identified in the literature [RQHZ08, SYFK09, KD14].
Nonetheless, in these cases, the topological phases exist in the absence of any pro-
tecting symmetry. In more generic situations, the existence of intertwined topo-
logical phases will depend on how the symmetry responsible for the SPT phase
can be embedded into the broader symmetry-breaking phenomenon. Arguably,
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the first instance of this situation is the Peierls instability [Pei55] in polyacetylene,
introduced in chapter 3. There, we saw how such instability leads to a dimerized
lattice distortion and a bond-order-wave (BOW), where electrons are distributed
in an alternating sequence of bonding and anti-bonding orbitals. A closer inspec-
tion shows that neither chiral nor inversion symmetry are broken after SSB, which
leads to a topological quantization of the electronic polarization [HPB11], and is
ultimately responsible for the protection of the SPT phase.

In chapter 3, we studied the Z, Bose-Hubbard model model in the context of
bosonic Peierls transitions, as the Zs field can be considered as a simplified version
of a dynamical lattice with the vibrational phonons substituted by discrete Ising
variables. The focus there was the elucidation of this bosonic Peierls mechanism for
different bosonic densities, as well as the study of topological solitons (i.e. kinks)
interpolating between different bond-density modulations at commensurate fillings.
The latter are a direct consequence of the degeneracies associated to the symmetry-
breaking process. In this chapter, we focus on a different topological aspect: we give
compelling evidence that, at various fillings, the bond-ordered wave (BOW) caused
by the bosonic Peierls mechanism corresponds to an interaction-induced SPT phase.
This topological phase occurs simultaneously with the Landau symmetry-breaking
order described by the bond-density modulation. We will show that, in addition to
the BOW phases, the pattern of broken symmetry also allows for topological bond-
ordered waves (TBOW) phases that display all the characteristics of an interaction-
induced SPT phase: (1) the appearance of non-vanishing bulk topological invariants
for the many-body interacting model, and (2) the presence of non-trivial many-
body edge states. We will emphasize how interactions and symmetry breaking are
fundamental necessary ingredients for these topological effects to take place.

The goal of this chapter is to present a thorough description of the ground
state of the Zy Bose-Hubbard model at various fillings, showing that it can host
interaction-induced intertwined topological insulators. In Sec. 4.2, we will show
that a one-dimensional bosonic SPT phase arises at half filling for finite boson-
boson interactions, and cannot be adiabatically connected to the non-interacting
system. This SPT phase occurs via the spontaneous breaking of lattice translational
invariance, which also produces a long-range order in the bond density of bosons.
Therefore, the bosonic ground state combines a topological-insulating behavior
with Landau-type order, leading to a particular instance of intertwined topological
insulators: a topological bond-order wave (TBOW). These results constitute the
first instance of a bosonic interaction-induced intertwined topological insulator.

In Sec. 4.3, we study a hitherto unknown possibility: the occurrence of an in-
tertwined topological phase when the SSB pattern does not generally imply the
existence of a protecting inversion symmetry. Instead, this protecting symmetry
emerges from a larger set of configurations allowed by the SSB. We demonstrate this
topological mechanism in the Zs-Bose-Hubbard model at various fractional fillings,
such that its interplay with topology and strong correlations endows the system
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with very interesting, yet mostly unexplored, static and dynamical behavior, in-
cluding interaction-induced topological phase transitions constrained by symmetry
breaking, as well as a self-adjusted fractional pumping.

4.2 TBOW at half filling

In this section, we provide a thorough description of our findings supporting the
existence of bosonic TBOW in the Zy Bose-Hubbard model (3.32) at half filling. In
Sec. 4.2.1, we show our model exhibits a spontaneous breaking of the translational
symmetry, similarly to the SSH model, giving rise to long-range Landau-type order.
We study this phenomenon in detail, focusing first on the hardcore boson limit.
Using a Born-Oppenheimer approximation for quasi-adiabatic Z, fields, we predict
the opening of a single-particle gap at half filling, associated to a dimerization in
the structure of the Zy fields. We show that one of the symmetry-broken sectors
of this ordered phase leads to a topological hardcore-boson insulator: a TBOW,
which is characterized by a quantized topological invariant, the Zak phase. We
check that this TBOW phase survives in the softcore regime as the interaction
strengths are reduced, and show how the size of the gap decreases, suggesting that a
quantum phase transition may occur at finite interactions that would prove that the
TBOW phase is a bosonic instance of an interaction-induced intertwined topological
insulator. In Sec. 4.2.2, we test these predictions numerically using the density
matrix renormalization group algorithm. We give several signatures to characterize
the TBOW as a SPT phase, and discuss the existence of fractional many-body edge
states. We also analyze the phase transition between the topological insulator and a
non-topological superfluid phase for small interactions, presenting a phase diagram
of the mode, and showing the importance of strong correlations to stabilize the
topological phase.

4.2.1 Born-Oppenheimer mean-field approach
Hardcore bosons coupled to Z, fields

Let us analyze first the case of hardcore bosons, where clear analogies with the
standard Peierls transition in fermion-phonon systems can be drawn, and discuss
the interplay between symmetry breaking and symmetry protection.

Born-Oppenheimer ground-state ansatz.— Let us elaborate on the analogy we in-
troduced in chapter 3 between the ground state behavior of the Z;BHM (3.32) to
the standard Peierls transition and SSH-type phenomena . The hardcore-boson
limit U — oo is a good starting point to draw these analogies, since the strongly-
interacting bosons of Eq. (3.32) can be transformed into free spinless fermions
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coupled to the Z, fields. By applying the Jordan-Wigner transformation in the
hardcore-boson limit, we find

. A
nggl-?o :Z(_(t + aaz‘,i+1)c;rci+1 + gaf,wl + Zaf,iJrl + HC) (4.1)

As we commented in the last chapter, a background Néel-type anti-ferromagnetic
ordering of the Z, fields ‘ o Mic v i Tt +) introduces a dimerized
pattern of the fermionic tunneling strengths (see Fig. 3.5(a)). This would constitute
a Zs analogue of the dimerized lattice distortion that underlies the fermionic Peierls
instability at half filling [Pei55]. However, the dynamics of the Z, fields differs from
the acoustic vibrational branch of the original (SSH) Hamiltonian [SSH79], which
can lead to crucial differences.

In order to understand these differences, we shall focus on the quasi-adiabatic
regime $ < t, where the Z, fields are much slower than the lattice bosons. Fol-
lowing a Born-Oppenheimer-type reasoning, we consider that the hardcore bosons
adapt instantaneously to the background static spins. In this way, they provide an
effective potential energy for the Zs fields which is used, in turn, to determine the
ground state spin configuration. In our context, this can be formalized by means
of the following variational ansatz

Oiit1 vy

|Wgs ({dn, 0)) = [t ({dn})) @ '3 75 Tt | =), (4.2)

where |Y¢({dn}) = ), dn|n); is a generic fermionic wavefunction. This wave-
function is defined by the set of variational amplitudes {d,} in the Fock ba-
sis [n); = |n1,--- ,nn); with n; € {0,1} fermions at site ¢ € {1,---,L}. On
the other hand, this ansatz (4.2) describes the slow Zs fields in terms of spin
coherent states with variational angles = (012...0; 11...), and reference state
|=)s = ®i([Ts,i41) — Waiv1))/V2.

Our Born-Oppenheimer-type variational ansatz (4.2) can be applied at arbitrary
boson filling, where complex Z, fields patterns (i.e. solitonic, incommensurate) may
arise due to Peierls instability [GCGDL18|. Here we focus on the half-filled case
in which, according to the previous discussion, a Peierls instability can lead to the
doubling of the unit cell. Therefore, for periodic boundary conditions, it suffices
to consider only two variational angles, namely 6 = (04,605) for the links joining
odd-even (even-odd) lattice sites. As detailed in Appendix A.l, the variational
problem reduces to the minimization of the following ground-state energy

| Do

€es(0) = — =t(0)E(1 — 5%0))

+

(4.3)

| >3

(sinf4 + sinfp) — g(cosf)A + cosfp),
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Fig. 4.1 Born-Oppenheimer phase diagram of the Z, Bose-Hubbard model:
(a) Representation of the magnetization difference |(c%) — (05)| between the even-odd
sub-lattices for the variational ground state obtained by minimizing Eq. (4.3) for differ-
ent parameters (A/t, a/t,3/t). The yellow region corresponds to the two possible Néel
configurations of the Z, fields leading to a bond-density order parameter, and a symmetry-
broken TBOW. (b) Representation of the magnetization sum |[(c%) 4+ (c%)| between the
even-odd sub-lattices for the variational ground state obtained by minimizing Eq. (4.3) for
different parameters (A/t, a/t, 3/t). The red and blue regions correspond to the fully po-
larized configurations of the Zs fields, which do not induce any modulation of the bosonic
tunnelings, and thus lead to trivial insulators.

where we have introduced #(8) = ¢ + $(sinfa + sinfg), 6(0) = a(sinfs —
sinfp)/(2t+a(sinf4+sinfp)), and E(z) = Oﬂ/z dk(1—zsin® k)'/? is the complete
elliptic integral of the second kind. Note that this minimization shall yield the par-
ticular angles 8* = (6%, 0%), which determine the Zs-field background experienced
by the hardcore bosons.

At this variational level, we can draw a clear analogy between the Z;BHM (3.32)
and the standard Peierls instability of the SSH model [SSH79|. In the SSH model,
the energy reduction of the fermions due to a gap opening in the 1D metal compen-
sates for the elastic energy increase of the lattice distortion (i.e. static limit of the
acoustic branch) [Pei55]. In our case, the quadratic elastic energy of the standard
Peierls problem is substituted by a trigonometric function describing the energy of
the Zo-field background (see the second line of Eq. (4.3)). A direct consequence of
this difference is that, whereas the 1D metal of the SSH model is always unstable
towards a BOW phase at T = 0 in the large mass limit, M — oo (which corre-
sponds to the 8 = 0 case here), the Zs Peierls instability of our hardcore bosons
does indeed depend on the ratio A/q, such that one can observe a Peierls transition
even at zero temperatures.

Born-Oppenheimer excitation ansatz.— In order to carry further this analogy, we
discuss the gap opening in the ZoBHM (3.32), which requires generalizing the Born-
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Oppenheimer ansatz (4.2) to account for the low-energy single-particle excitations.
In a first step, we consider that the spin fluctuations about the Zs-field back-
ground are small, and introduce a spin-wave-type [BBM102] formulation based on
a Holstein-Primakoff transformation [HP40], namely

0Fip1 = cosOr; g (ai + ag) —sind;, 4 (2a3ai — 1) ,

(4.4)

Ofip1 ™ sin@ZiH (ai + af) + cos HZHI (Qazai — 1) ,

where aZT, a; are bosonic creation-annihiliation operators for the excitations of the

Zs fields localized at link (é,7 + 1).

In a second step, we introduce a family of single-particle excitations over the

previous variational ground-state | ¥y ({d,, 0*})) obtained from Eq. (4.2) by setting
to the optimum variational angles 8* = (6%, 6%), namely

N
e () = ( S s + Zns,ial) Uo({d,07)),  (45)

keBZ i=

where 1 = (95, 7s,;) are the variational amplitudes, and 7,:7 . are Bogoliubov-type
fermion creation operators in the single-particle conduction band of the hardcore
boson sector (see Appendix A.1 for details). In this case, the variational functional
for the excitation energies depend on

(6% = 2t(0*)\/cos2 q+62(6%)sin? q,

€5;,_1(0™) = 2L cos 0% — sin 0% <§ — 2aBA(0*)) , (4.6)
S * * : * A *
€5,(0%) = 2f cos 0 — sin by 5 2aBp(0%) |,

which themselves depend on the properties of the variational ground state, such
as the the fermionic bond densities between odd-even sites B4(0*) = Bg;_1,2;, and
between even-odd sites Bg(6*) = Ba; 2i41, where B; j = (c;rcj>gs +c.c..

The variational minimization then yields two types of low-energy excitations:
(i) delocalized fermion-like excitations with ecx.(6*) = €i(6*) Vk € [-3,5), or
(ii) localized spin-wave-type excitations with ewc(0*) = €(0*) Vi € {1,---N}.
Therefore, in our context, the gap opening is caused by a Néel-type alternation of
the spins 6% — 0% # 0, which leads to §(8*) # 0 and, according to Eq. (4.6), to the
aforementioned gap opening

Ae = mingeexc(8*) = 2¢(6%)]6(6%)| > 0. (4.7)
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Adiabatic regime: Peierls transition and SPT phases.— After introducing this vari-
ational machinery, we can explore the rich physics of the Z>;BHM (3.32) by focusing
first on the adiabatic regime g = 0, where various results can be obtained analyt-
ically. In this limit, where the spins are static, it is possible to solve analytically
the variational minimization of Eq. (4.3) for the ground-state ansatz (4.2), finding
two critical lines
Af:%(éiE(l—(SQ)ﬂFl), (4.8)

where we have defined § = « /t. These critical lines, represented in the lowest pla-
nar sections of Fig. 4.1, are in perfect agreement with our previous results (3.35).
For A > A} (A < A7), the Zo-field background 6% = 05 = =% (0% =05 = %)
yields a polarized state [L) --- 1) (|11 --- 1)), such that the translational invari-
ance remains intact. Instead, for A € (A, A7), the variational minimization
leads to the spontaneous breaking of the translational symmetry, yielding two pos-
sible perfectly-ordered Néel states, either |[[T{1---[1]) for 0% = -0 = —F, or
[TI1) -+ 141) for 0% = —0% = +7. Let us now use the variational ansatz for the
excitations (4.5) to show that this phase transition is marked by a gap opening, as
occurs for the standard Peierls instability in 1D metals.

According to our previous discussion (4.7), as a consequence of |§(+7/2, F7/2)| =
§>0,a gap of magnitude Ae = 2t6 will be opened. This signals a Peierls transition
accompanied by a BOW density modulation

Ba (—g +g) = 7r(125) (E(l —§2) — §K(1 - 52)) :
(4.9)
Bx (—g +g) = 7r(12+5) (E(l — 62) 4 5K(1 — 82)) :

where we assume the symmetry-broken state ||1--- 1)) (for |1] ---]1), the ex-
pressions for the A and B sublattices must be interchanged), and make use of

the complete elliptic integral of the first kind K(z) = 077/2 dk(1 — zsin® k)~1/2.
Note that By = B = 2/7 for 5 — 0, whereas in the limit 5 — 1, we recover
the alternation B4 = 0,Bp = 1 between perfect antibonding-bonding links (see
Fig. 3.5(b)). For spin-boson couplings « < ¢, there will be a period-two modula-
tion with a smaller antibonding-bonding character. Let us emphasize again that,
contrary to the SSH ground state that is always unstable towards the Peierls in-
sulator for arbitrary fermion-phonon couplings, the ZoBHM (3.32) does support a
Peierls transition as the spin-boson coupling is modified in the adiabatic regime.
Let us now discuss the interplay of symmetry-breaking order and symmetry-
protected topological features in this BOW phase. The direct-product structure of
our Born-Oppenheimer ansatz (4.2) allows us to extract an effective Hamiltonian
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for the hardcore boson sector when A € (A_,AY),

(Val{dn). (5.2 0| Y [} (5. 72D
= (r({dn})| Hssu(t £ a, t F @) [ ({dn})) ,

(4.10)

which corresponds to two possible instances of the static SSH model (1.47). The
corresponding dimerization parameter depends on the two possible symmetry-
breaking patterns for the case of hard-wall boundary conditions:

(a) If the Zo fields break the translational symmetry by adopting the Néel
configuration |11} - - - 1J1), the hardcore bosons are subjected to Hssp (t+ o, t —a)
with the pattern of dimerized tunnelings {t(1 +6),t(1 —8)--- ,t(1 —8),t(1 + )},
where we recall that § > 0. According to our discussion in chapter 1, in this regime
the ground state corresponds to a trivial insulator with a vanishing Zak phase
(1.46) v = 0.

(b) If the Z, fields, instead, break the translational symmetry via [J1)1 -+ J1)),
the hardcore bosons are subjected to Hsgn(t — o, t + «), and thus see the pattern
of dimerized tunnelings {t(1 —6),¢(140)--- ,t(1+4),t(1 —6)}. According to our
discussion in chapter 1, in this case the half-filled ground state is a BDI topolog-
ical band insulator with a non-vanishing Zak phase v = 7 for 6 < 2. Note that
the symmetry-breaking long-range order of the BOW phase (4.9) occurs simul-
taneously with the symmetry-protected topological invariant v = w. Moreover,
both of these orders develop in the same degree of freedom: the hardcore bosons.
Accordingly, our model yields a clear instance of an intertwined topological insula-
tor [KD14|: a topological bond-ordered wave (TBOW). Let us also emphasize that
this interplay between spontaneous symmetry breaking and symmetry-protected
topological phases is characteristic of our model of lattice bosons coupled to Ising
fields (3.32), and cannot be accounted for with the dimerised Bose-Hubbard model
studied in [GHF13].

Another feature of this non-trivial topological state is the presence of localized
edge states for finite system sizes. In the hardcore limit, chiral symmetry guar-
antees that these edge states are protected against perturbations that respect the
symmetry, as long as the gap does not close [RH02]. The bulk-boundary corre-
spondence relates a quantize topological invariant in the bulk of the system with
protected edge states at the boundaries [AOP16].

Finally, we note that, since the two Néel configurations are degenerate in the
thermodynamic limit, both can be obtained experimentally in the ground state of
the system. After a symmetry-breaking transition, one of the two will result due
to quantum fluctuations. By introducing a small staggered field, ezi(fl)iaf’iﬂ,
the degeneracy is broken and one specific configurations can be selected: (a) trivial
for e > 0 and (b) topological for e < 0.
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Quasi-adiabatic regime: fluctuation-induced topological phase transitions.— We
have seen that the Born-Oppenheimer ansatz (4.2) allows us to draw a clear anal-
ogy with the Peierls transition in the § = 0 limit, and a transparent understanding
of intertwined topological insulators in the ZoBHM (3.32). We can extend this
analysis to the quasi-adiabatic regime 8 < t, expanding thus the analytical un-
derstanding of the bosonic Peierls mechanism presented in chapter 3 to a situation
where the Zs field dynamics introduce quantum fluctuations that can modify the
Peierls mechanism.

As shown in Fig. 4.1, the quantum dynamics of these fields competes against
the formation of the bond-ordered density modulations, modifying the static phase
boundaries (4.8) that delimit the TBOW phase. In fact, it is possible to get an-
alytical expressions of how these critical lines get deformed by considering the
variational energies (4.3) of the previous polarized/Néel-type phases for small de-
viations of the angles € around the corresponding values 8*. A comparison of these
energies leads to the following critical lines

1 G G R e
AZ - §+(E(1-6%) -1 :F4t5E(1—52)7 (4.11)
which are represented by the dashed white lines of Fig. 4.1, and yield a very good
approximation of the yellow region enclosing the symmetry-broken TBOW phase.
As advanced previously, these critical lines predict that the area of the TBOW
phase decreases as [ increases, and lead to fluctuation-induced topological phase
transitions connecting the TBOW phase to other trivial band insulators as the Zs
field dynamics becomes more relevant.

Softcore bosons coupled to Z, fields

In the previous subsection, we have presented a Born-Oppenheimer variational
treatment of the ZoBHM (3.32) in the limit of hardcore bosons and quasi-adiabatic
Zs fields. Our variational ansatz for the ground state (4.2) and low-energy exci-
tations (4.5) has allowed us to draw a clear analogy with the Peierls instability
of 1D metals via the fermionization of the hardcore bosons: at U — oo, a Fermi
surface emerges and an energy gap can be opened. This analogy has allowed us to
show that symmetry-breaking quantum phase transitions can take place at various
(ac, Ac), delimiting a finite region of a TBOW for hardcore bosons (see Fig. 4.1).
The question we would like to address in this subsection is if such a TBOW phase
can only be defined at the singular “U = oo” point or if, on the contrary, it persists
within the physically-relevant regime of finite Hubbard interactions.

The regime of strong, yet finite, interactions can give rise to interesting strongly-
correlated behavior that cannot be accounted for by considering solely the “U = oo”
point. For instance, for the Fermi-Hubbard model close to half-filling, whereas
the ground state is a fully-polarized ferromagnet [Nag66, SKA90, LYBT12| for
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infinite interactions, the regime of finite repulsion 0 < t/U < 1 gives rise to
anti-ferromagnetic super-exchange interactions [And59, MGY88| that are believed
to play a key role in high-temperature superconductivity [And87]. Similar super-
exchange interactions also appear in the strongly-interacting limit of two-component
Bose-Hubbard models [DDL03]. Such spin-spin interactions are absent in the
single-component Bose-Hubbard model, where one obtains density-density inter-
actions between bosons at nearest-neighboring sites, as well as density-dependent
correlated tunnelings [Caz03].

We note that in our ZoBHM (3.32), despite consisting of single-component
bosons, the strongly-interacting limit can be richer as the virtual tunnelings are
dressed by the corresponding Z, link fields. Therefore, in addition to the aforemen-
tioned effects, an effective spin-spin interaction between the spins at neighboring
links can also appear as corrections to the U — oo limit are studied. To leading
order in a 0 < max{t/U, a/U} < 1 expansion, we find that the ZoBHM (3.32) can

be expressed as Hz,gH ~ Hg i + AH, where the leading corrections are

4t? < .
Al =77 (1 + 200741 + 52) MiNit1
i
22 . . . ] T
+ T (1 +0(07 i1+ 07 1042) +0 0i7i+1oi+17i+2> (ciniJrlciJr2 + H.c.) ,
7

(4.12)
The first term describes the second-order process where the boson virtually tun-
nels back and forth to a neighboring occupied site, giving rise to a virtual double
occupancy and to density-density couplings, which cannot be accounted in the
hardcore-boson limit U — oco. Note that this virtual tunneling is mediated by
the link Zs field, which can thus modify the strength of the density-density cou-
pling depending on the background configuration of the spins. The second term
describes the second-order process where a boson virtually tunnels between two
sites apart via an intermediate occupied site, giving rise to a density-dependent
correlated tunneling. Note again, that this virtual tunneling is dressed by the link
Zo fields, and its strength can depend on their configuration, including spin-spin
correlations. From a different perspective, these mediated virtual tunnelings give
rise to an effective coupling between neighboring link spins, as announced above.
As discussed in the hardcore-boson limit below Eq. (4.9), the Born-Oppenheimer
approximation allows us to extract an effective Hamiltonian for the bosonic sec-
tor, which depends on the Zs field configuration in the ground state. Due to the
finite U corrections (A.15), the effective Hamiltonian for softcore bosons contains
interaction terms and cannot be reduced to a single-particle model. Moreover,
these terms break the chiral symmetry of the system, which protects the TBOW
phase in the limit U — oo. Nevertheless, the effective Hamiltonian with correc-
tions (A.15) is still invariant under a bond-centered inversion symmetry [GHF13].
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4. Intertwined topological phases

Therefore, in analogy to the Bose-Hubbard model with dimerized fixed tunnel-
ings [GHF13], the ground state of the effective Hamiltonian shall correspond to a
SPT phase protected by inversion symmetry as long as the Zs field displays a Néel-
type anti-ferromagnetic ordering and the gap remains open. Following a topological
argument, as long as the gap remains open and the symmetry is present, the many-
body generalization [XCN10] of the topological invariant (1.29) will be quantized
to the same value as in the hardcore limit, even in softcore regimes away from the
singular “U = 00” point. In the next subsection, we will confirm this prediction by
computing numerically the topological invariant in the strongly-correlated bosonic
regime.

In order to show that the energy gap remains open in the softcore regime, we
can explicitly calculate how the variational excitation energies (A.12) get modified
due to the perturbations in Eq. (A.15). Our variational ansatz for the excitations
allows us to go beyond standard mean-field theory, and obtain corrections to the
excitation branches of Eq. (4.6), giving rise to dispersive spin-wave-type excitations,
or coupled spin-boson quasi-particles. For the many-body gap, as discussed in
Appendix A.1, the TBOW energy gap (4.7) is shifted to

2 ~ ~
Ae ~ 24(%)|5(6%)| — % (1 +leq- 52)) (1 + 6 (sin 0%, + sin a*B)) o (4.13)
™

to leading order in 5 < 1. At the level of our Born-Oppenheimer ansatz, we see
that the energy gap remains finite, such that the TBOW phase extends to the
soft-core regime. Moreover, one can also see that the TBOW gap decreases as the
interactions are lowered. This trend can be also be understood from the following
alternative perspective. As discussed above, the virtual tunnelings give rise to an
effective coupling between neighboring link spins. Since fermions are much faster
than the spins, and the ¢/U corrections (A.15) are assumed to be small, the value
of this coupling can be approximated using the fermionic unperturbed ground state

in Eq. (4.2) (¢:({dn})] (c;»rni+1ci+2 + H.c.) [s({dn})). We can evaluate this ex-

pectation value by applying Wick’s theorem, as the variational ansatz is built with
free spinless fermions. This calculation shows that effective spin-spin interaction is
ferromagnetic, which would compete against the Néel-type order of the Zs fields,
making the TBOW phase less stable (i.e. lowering the corresponding energy gap).

Although it cannot be captured by our variational approach, this tendency
opens the possibility that the energy gap closes for sufficiently small interactions,
such that a quantum phase transition to a non-topological phase takes place. Ac-
cordingly, the TBOW phase may not be adiabatically connected to a bosonic non-
interacting SPT phase, and one could claim that it is an instance of an interaction-
induced intertwined topological insulator. In order to explore this possibility fur-
ther, and to benchmark the qualitative correctness of our predictions based on the
Born-Oppenheimer variational approach, we now move onto a quasi-exact numer-
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Fig. 4.2 Symmetry-breaking order parameters: Spin pattern (67,.,) and particle
density B; ;41 on the bonds of the lattice for a half-filled system. Different colors depict
even and odd bonds. (a) Symmetry-broken sector with the Z fields in the approximate
Néel configuration |t 1) --- T41), which leads to a period-two strong-weak modulation of
the bond density. (b) Symmetry-broken sector with the Z, fields in the approximate Néel
configuration |[J1}1 --- J1}), which leads to a period-two weak-strong modulation of the
bond density.

ical method based on the density-matrix renormalization group (DMRG).

4.2.2 Density-matrix renormalization group approach

We use now the DMRG algorithm [HP18] to study the properties of the TBOW
phase. In the following, we use open boundary conditions and fix the bond dimen-
sions to D = 100. We also truncate the maximum number of bosons per site to
ng = 2. We benchmark the previous variational results by exploring the strongly-
correlated regime of finite Hubbard interactions U, and dynamical Z, fields 8 > 0.
We start by giving compelling evidence to show that the BOW phase is indeed a
SPT phase protected by a bond-centered inversion symmetry. To this end, we use
both the entanglement spectrum and a local topological invariant to characterize
the topological nature of the phase. We also show the presence of many-body local-
ized edge states with a fractional particle number. Finally, we study the transition
from the TBOW phase to a non-topological quasi-superfluid (qSF) phase as the
Hubbard interactions are lowered, and present a phase diagram of the model. Our
numerical results clearly show the need of both strong interactions and symmetry
breaking in order to stabilize the TBOW phase, which cannot be connected to a
non-interacting topological insulator.

Symmetry-breaking order parameters

According to our variational ansatz in the hardcore limit, and the discussion be-
low Eq. (4.9), there should be a finite region of parameter space hosting a TBOW
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phase (see Fig. 4.1). Figure 4.2 shows the numerical DMRG results for the or-
der parameters characterizing the BOW phase of the ZoBHM (3.32), focusing on
strongly-correlated bosons coupled to quasi-adiabatic Zg fields (i.e. U = 20¢, and
B = 0.01t). For these results, and for the rest of the section, we use a chain of
L = 30 sites and fix the rest of the Hamiltonian parameters to o = 0.5¢, A = 0.8t,
unless we explicitly say otherwise. As described above, the BOW phase is par-
tially characterized by the spontaneous breaking of translational invariance, which
is captured by the alternation of the Zy magnetization <O’i i+1), and the modulation
of the bond density B;;.1. Moreover, this phase is gapped and incompressible, as
it was shown in chapter 3. Long-range order develops in the system after the sym-
metry breaking, whereby the unit cell of the system is doubled. The two possible
symmetry-broken ground-states of Figs. 4.2 (a) and (b) are completely degenerate
in the thermodynamic limit, and they can be connected by a one-site lattice trans-
lation. For finite lattice sizes, they differ at the edge of the system. Let us remark,
however, that these bonding/antibonding order parameters do not suffice to cap-
ture all the physics of the BOW phase, as they do not account for the topological
features that make the two symmetry-broken sectors fundamentally different from
each other.

Topological characterization of the TBOW

Entanglement spectrum.— We first explore numerically the entanglement prop-
erties of the ground-state. In particular, we compute the entanglement spec-
trum [LHO8]. We define a bipartition of the system, and write the ground-state as
[Vas) = 30, A [¥n) e @ |1hn)gr, where £ and R are the two subsystems, and {\,}
are the corresponding Schmidt coefficients. The entanglement spectrum is defined
as the set of all the Schmidt coefficients in logarithmic scale €, = —2log(A,). It
has been established that the entanglement spectrum is degenerate for symmetry-
protected topological phases [PTBO10]|. In particular, this degeneracy is robust
against perturbations that respect the symmetry as long as the many-body gap of
the system is open.

In Fig. 4.3 (left panel), we present the entanglement spectrum for the BOW
phase in the hardcore-boson limit. We consider a bipartition at the middle of the
chain, and explore the two possible degenerate ground-state configurations that
appear as a consequence of the spontaneous breaking of translational symmetry. As
discussed below Eq. (4.9), we expect that the weak-strong bond-density modulation
(Fig. 4.2(b)) due to the symmetry-broken background of Z, fields gives rise to a
SPT phase. As follows from Fig. 4.3 (left panel), the entanglement spectrum is two-
fold degenerate for one of the ground-states, while it clearly lacks an exact two-fold
degeneracy for the other configuration. These numerical results provide a clear
signature of the topological nature of the BOW phase, and confirm the scenario
of the interplay between symmetry breaking and SPT phase of the ZoBHM (3.32)
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Fig. 4.3 Entanglement spectrum degeneracies: Lower 20 eigenvalues of the en-
tanglement spectrum for different states in the TBOW and the quasi-SF phases. For the
former, we show the spectrum in the two different symmetry-breaking sectors. We can see
how the spectrum is double degenerate in one case, which corresponds to the non-trivial
topological sector (see our discussion below Eq. (4.9)). We observe how the degenera-
cies survive in two strongly-correlated regimes: for hardcore bosons (U = o) coupled to
dynamical Z. fields (8 = 0.1t), and for soft-core bosons (U = 10t) coupled to static Zs
fields (8 = 0). This degeneracy is lost for small enough interactions in the non-topological
quasi-SF phase.

predicted by the Born-Oppenheimer variational approach.

In the central panel of Fig. 4.3, we show the entanglement spectrum for strongly-
correlated bosons on a static lattice (U = 10¢, 8 = 0), thus exploring the departure
from the hardcore constraint. As discussed below Eq. (4.13), for strong yet finite
interactions, we expect that the energy gap is finite, and that the TBOW phase
persists as one lowers the interactions. This expectation is supported by our numer-
ical results, which again display a clear two-fold degeneracy of the entanglement
spectrum in one of the symmetry-broken ground states. Let us finally note that,
for sufficiently weak interactions (U = 5t, § = 0), the degeneracy of the spectrum
is completely lost for the single ground-state of the system (see the right panel of
Fig. 4.3). This non-topological phase for the weakly-interacting bosons corresponds
to the quasi-superfluid (SF), that will be discussed in more detail below. The latter
facts again support our claim that this strongly-correlated TBOW phase has an
interaction-induced nature, as the topological features are completely absent in the
weakly-interacting regime.

Let us finally emphasize that our entanglement spectrum analysis away from
the hardcore limit has been restricted to static Zo fields, which is necessary as
the calculation of the entanglement spectrum requires a bipartition of the system
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that respects the protecting symmetry of the topological phase. In the case of
hardcore bosons, the system is protected by chiral symmetry and the half-chain
bipartition respects that symmetry. On the other hand, for finite interactions,
the phase is instead protected by inversion symmetry (see our discussion below
Eq. (A.15)). For our DMRG implementation, the presence of the Zs fields does
not allow us to cut the system into two halves in such a way that the two parts
respect the bond-centered inversion symmetry. This is only possible for static spins
(8 = 0), since they form a product state and do not contribute to the entanglement
properties of the system. This particularity of our model prevents us from using the
entanglement spectrum to characterize the topological properties in the regime of
strongly-correlated bosons coupled to dynamical fields (U finite, 8 > 0), although
the topological nature of the TBOW phase must also be preserved as the transverse
field 3 is slightly increased (see Fig. 4.1). For this reason, we introduce now a robust
topological invariant that yields an alternative route to characterize the topological
properties of the BOW phase in any parameter regime.

Berry phase.— We now characterize the topology with the help of the local Berry
phase introduced by Hatsugai [Hat06]. It is a topological invariant that serves
as a local “order parameter" to distinguish symmetry-protected topological phases
in the presence of interactions. Considering a periodic Hamiltonian H()), which
depends on an external parameter A € [\g, A¢] through an adiabatic cyclic evolution
H(Xo) = H(\t). As shown in [?], if there exists an antiunitary operator © = KUg,
where Ug is unitary and K is the complex conjugation, which commutes with
H()), the Berry phase [Ber84| acquired by the ground state |t),) during the parallel
transport on a loop C' with A\ = g,

Yo = l]{;d)\ w,\\&\w,\)mod%r, (414)

is quantized to finite values 0 and 7. Let us note that, for non-interacting systems,
considering the quasi-momentum as the cyclic parameter A = k as one traverses the
Brillouin zone, Eq. (4.14) reduces to the previously-introduced Zak’s phase (1.29).
However, this free-fermion topological invariant cannot be directly applied to in-
teracting systems. Alternatively, we shall use Eq. (4.14) with a different adiabatic
parameter that introduces the notion of locality, and allows us to generalize the
topological invariant to a many-body scenario.

This quantity is topological in the sense that it cannot change without closing
the gap, as long as the corresponding symmetry is preserved. One can add, in
particular, a local perturbation to the initial Hamiltonian (3.32), like a local twist
in one of the hopping strengths t — t\ = te*?, which does not close the gap of the
BOW phase. Note that this is similar to the use of twisted boundary conditions to
calculate the Zak phase in the presence of interactions (1.57). However, as noticed
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Fig. 4.4 Local Berry phase quantization: local Berry phase (4.15) calculated for
each bond 7Y (¢, 4+ 1), such that even and odd bonds are depicted in different colors.
We use a value of N = 5 for three different ground states: (a) and (b) correspond
to the trivial and topological symmetry-broken sectors of the BOW phase, respectively,
for U = 20t and 8 = 0.02t. In the bulk, the phases are quantized to values 0 and m,
alternating between even and odd bonds, and for each bond between the two sectors. (c)
Configuration for a state in the quasi-superfluid phase, with U = 5¢ and 8 = 0.02, where
the translational symmetry is not broken. In this case, the phases are not quantized since
the phase is not a SPT phase.

by Hatsugai [Hat06], this perturbation should not be necessarily put on the edges
of the system, but can be placed on any bond as long as it preserves the symmetry.
This choice is appropriate in our case, since we can add local perturbations that
respect inversion symmetry, and constitute therefore a local measure in the bulk of
the system. Moreover, it only depends on quantities that decay exponentially and,
thus, this measurement is valid not only for periodic, but also for open hard-wall
boundary conditions, as long as the perturbation is not applied too close to the
edge of the system.

In practice, the integral of Eq. (4.14) can be challenging to compute as the in-
tegrand is gauge dependent (the integral on the loop, however, is gauge invariant),
requiring a numerical gauge fixing at each discretized point of the loop. Alter-
natively, we compute here the integral using a Wilson loop formulation, which is
gauge invariant and avoids the gauge fixing problem [Hat06, FHS05], namely

N-1

v = Arg [ @nlthnsa) (4.15)

n=0

where [¢,) = [, ) (¥, ) ¢ is the projection of a reference state |¢) onto the
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Fig. 4.5 Many-body edge states: Real-space configuration of the bosonic occupation
number (7;), using different colors for even and odd sites. (a) The trivial topological
sector of the BOW phase is characterized by the absence of edge states in the bosonic
sector. The non-trivial sector is represented in (b) and (c) for one extra particle and
one extra hole, respectively. We can see how the extra particle (resp. hole) generates two
edge states, each one carrying a fractional particle number of +1/2 (resp. —1/2).

adiabatic ground state, with Ao, A1,..., Ay = Ag being the N points in which the
loop C' is discretized. The discretized local Berry phase (4.15) depends in general
on N and on the way the loop is discretized, but not on the reference state as far as
it has a finite overlap with the ground-state. However, we note that 'yg converges
rapidly to the local Berry phase (4.14) in the large N limit.

We define the local phase 'yg (i,i + 1), corresponding to the bond (4,7 + 1),
by adding a local perturbation to the bare tunneling coefficient, te?? /N with
n € {0,...N}. Note that this perturbation preserves the bond-centered inversion
symmetry, and thus does not present the limitations of the entanglement spec-
trum mentioned in the previous section. Therefore, we can use it to explore the
topological features of the TBOW phase away from the hardcore boson limit and
considering dynamical Z, fields in the quasi-adiabatic regime. Figure 4.4 shows the
local Berry phases at every bond for the TBOW and the qSF phases. Figs. 4.4(a)
and (b) correspond to the two degenerate ground states of the TBOW for U = 20t
and 8 = 0.02t, where we observe a Berry phase quantized to values of 0 and 7 in
the bulk of the system. The quantized values alternate for even and odd bonds,
and the pattern is reversed for the two ground states, allowing us to assign two
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different SPT sectors using the following reasoning.

For finite system sizes, we define the two-site unit cells in such a way that the
even bonds—(i,4 + 1) with ¢ even—are intercell, whereas the odd bonds are intra-
cell (i.e. they couple bosons within the same unit cell). If we then focus only on
the intercell bonds (green in the figure), we can see how the corresponding local
Berry phases are all quantized to 0 (Fig. 4.4(a)) for the Zo-field configuration of
Fig. 4.2(a) adiabatically connected to [f/1] --- 141), which is in agreement with
our variational ansatz that predicted a trivial band insulator for such symmetry-
breaking pattern. On the other hand, the local Berry phases for intercell bonds
for the configuration (Fig. 4.2(b)) adiabatically connected to [[J1 --- [1]) are all
quantized to 7w (Fig. 4.4(b)), which again is in accordance with our variational
ansatz predicting a inversion-symmetric SPT phase. Using this convention, the
latter can be regarded as the non-trivial topological configuration, and the value
of the local Berry phase connects to that of the Zak phase obtained in the previ-
ous section for hardcore bosons in the Born-Oppenheimer approximation. These
results confirm our previous expectation that the TBOW phase extends to the
softcore regime and for dynamical Zs fields, and is characterized by a many-body
generalization of Eq. (1.29) with the same quantized value. For U = 5¢, the ground
state is in a non-topological qSF phase, and the Berry phase does not show a quan-
tized pattern. We will show now that this ground state support many-body edge
states with fractional particle number.

Many-body edge states and fractionalization

For a system with boundaries, an alternative signature of the topological nature of
the TBOW phase is the presence of localized edge states, which lie in the middle
of the gap for 1D SPT phases with chiral symmetry [RH02]. These edge states
are topologically robust against perturbations that respect the symmetry and do
not close the gap. Let us note that this bulk-boundary correspondence does not
always hold for generic SPT phases, since the presence of edge states might not
be guaranteed even if the bulk presents non-trivial topological properties, as is the
case of phases protected by inversion symmetry [TZV10, HPB11]. In some of these
cases, however, localized edge states can be observed in the spectrum as remnants
of the protected edge states of a extended two-dimensional system [Hat93b|. As
shown below, this is precisely the situation for the Zo;BHM (3.32).

Figure 4.5 shows the real-space density configuration of bosons for the two de-
generate ground state configurations of the symmetry-broken BOW phase for finite
Hubbard interactions (U = 20t, 8 = 0.02t). In the topologically-trivial configura-
tion, which is characterized by the long-range order displayed in Fig. 4.2(a), which
leads to a period-two strong-weak alternation of the bonds, we do not observe
any localized edge states (Fig. 4.5(a)). On the contrary, for the long-range order
characterizing the other symmetry-broken sector in Fig. 4.2(b), which leads to a
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period-two weak-strong alternation of the bonds, we see localized peaks or drops in
the occupation number when we either add (b) or subtract (c), respectively, one
particle above or below half filling.

These many-body edge states possess a fractional particle number of +1/2,
which constitutes a bosonic analogue of the predicted charge fractionalization in
fermionic quantum field theories [JR76]. In particular, the occupation number
(f;), which is equal to 1/2 in the bulk, differs at the edges for the two states.
Fractionalization implies that an extra particle or hole is “divided" into two separate
quasi-particles, each carrying half of the particle number. These quasi-particles
are localized in different parts of the system and are independent of each other,
although they can only be created/annihilated in pairs. The latter can be formed
by two fractional +1/2 particles, two fractional +1/2 holes, or one of each.

As already mentioned, the bulk-boundary correspondence only guarantees the
presence of protected edge states in SPT phases protected by chiral symmetry.
This is the case for hardcore bosons, where we find protected localized states at
the boundaries of the system. However, our DMRG results show that these states
are still present for finite Hubbard interactions, even if the protected symmetry is
changed from chiral symmetry to a bond-centered inversion symmetry. Although
we can not guarantee the protection of these states, their origin can be understood
if we extend the chain to a two-dimensional system, where the bulk-boundary
correspondence is restored, and the topological bulk guarantees the existence of
one-dimensional conducting states at the boundaries [Hat93a).

With the help of these three observables, we have characterized the topologi-
cal nature of the BOW phase. In particular, using both the entanglement spec-
trum and the local Berry phase (4.15), we proved that one of the two degenerate
symmetry-broken states of the BOW phase has a non-trivial bulk topology. More-
over, this topological property persists for finite Hubbard interactions and dynam-
ical Zs fields. These numerical evidences confirm the qualitative predictions of the
Born-Oppenheimer approximation, and can also be used to explore regimes that
lie beyond the applicability of the variational ansatz. Finally, we discussed the
presence of many-body edge states in the TBOW phase. All these signatures allow
us to regard the TBOW phase as an interaction-induced intertwined topological
insulator protected by a bond-centered inversion symmetry.

Interaction-induced nature of the TBOW

In this section, we discuss the importance of strong correlations for the existence
of the TBOW phase. Using the Born-Oppenheimer approximation, we were able
to calculate the single-particle gap in the hardcore boson limit (4.7), and show
that it gets reduced if we introduce corrections (A.15) for large but finite Hubbard
interactions (4.13). This result suggested the existence of a phase transition for
small enough values of U, such that the TBOW phase cannot be adiabatically
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Fig. 4.6 Phase diagram: Phase diagram of the Hamiltonian (3.32) in terms of the
parameters A/t and t/U for the half-filled case using DMRG. The rest of the parameters
are fixed to @ = 0.5t, 8 = 0.02t. The staggered magnetization m for a system size L = 60
is represented by the color plot: it has a non-zero value in the TBOW phase and goes
to zero in the gSF, allowing the distinction between these two phases. The black dots
(with the corresponding error bars) represent the critical points in the thermodynamic
limit obtained by a finite-size scaling of m (see Fig. 4.7), and the dashed line connecting
them is drawn to guide the eye. The dotted vertical line corresponds to the transition for
A = 0.80 represented in Fig. 4.7. For small enough values of the interaction strength, the
ground state of the system is in a qSF phase for any value of A. This supports our claim
that the TBOW phase is an interaction-induced intertwined topological insulator.

connected to a non-interacting SPT phase. Moreover, in the previous subsection
we showed how the signatures of non-trivial topological properties —such as the
degeneracies of the entanglement spectrum (Fig. 4.3) and the quantization of the
local Berry phase (Fig. 4.4)—disappear for small interactions, where one expects
the ground state to be in a non-topological qSF phase. In this section, we explore
this conjecture and show that, indeed, the TBOW phase can be considered as an
interaction-induced SPT phase as one starts from a qSF, and crosses a quantum
critical point by increasing the Hubbard interactions.

To support this claim, we present in Fig. 4.6 the phase diagram of the model
at half filling in terms of A/t and ¢/U using DMRG. The color plot represent the
staggered magnetization,

m= 1 31 ), (416)

for a system size of L = 60. This order parameter allows one to distinguish between
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Fig. 4.7 Finite-size scaling for the quantum phase transition between the
TBOW and the gSF phase: (a) Rescaling of the staggered magnetization m as a
function of the interaction strength U/t for A/t = 0.80 and for different system sizes. The
former serves as an order parameter to distinguish between the TBOW phase, where it
has a non-zero value, and the qSF phase, where it vanishes. The critical point, U. = 7.67¢,
is located at the crossing point between the different lines, by assuming the critical expo-
nents of the Ising universality class, 8 = 1/8 and v = 1. Inset: These coefficients lead to
the collapse of the data to a single line. (b) The location of the critical point is confirmed
using the fidelity susceptibility xr. This quantity develops a peak near the critical point,
and its hight diverges with the system size. In the inset, the critical point is found by
extrapolating the location of the peaks for different sizes.

the TBOW and the gqSF phase. The phase diagram also shows the critical line
obtained in the thermodynamic limit, separating the TBOW and the SF phase
for small enough values of U.

We now discuss the the analysis required to calculate one the critical points. In
particular, Figure 4.7(a) shows the change of m in terms of U for a fixed value of A
and for different system sizes. By introducing a proper rescaling factor, we observe
how all the lines cross at the quantum critical point U.. In the inset, we show
the collapse of the data to a universal line, m?/¥ ~ f (LI/V(U — UC)), where we
observe good agreement using the critical exponents of the Ising universality class,
B =1/8 and v = 1. This contrasts with other transitions in the one-dimensional
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BHM between an insulator and a SF phase, for which the universality class is of
the Kosterlitz-Thouless type [CCGT11]. Figure 4.7(b) depicts the scaling of the
fidelity susceptibility,

o —2log|(p(U 4 6U)|y(U))|
XF_(S%}IEO oU? '

(4.17)

which provides an alternative confirmation of the existence of a quantum phase
transition. This quantity is super-extensive at the critical point [GU10], allowing to
extract its location by extrapolating the position of the peak to the thermodynamic
limit, L — oo (inset). Since the TBOW phase cannot be adiabatically connected
to the non-interacting boson limit (U = 0), it can be regarded as an interaction-
induced symmetry-broken topological phase, where the interplay between strong
correlations and spontaneous symmetry breaking is crucial to stabilize the SPT
phase.

4.3 TBOW at fractional fillings

In this section, we study the intertwined topological phases that appear at various
bosonic densities other than half filling. In particular, at one-third and two-third
filling, and for sufficiently-strong interactions, we find a period-3 BOW with a three-
fold degenerate ground state that displays a non-zero Berry phase. We show that
inversion symmetry emerges from the larger SSB landscape of a bosonic Peierls’
mechanism, protecting the intertwined topological BOW, and making it fundamen-
tally different from other non-topological BOWs (Fig. 4.8). We unveil a rich phase
diagram with first- and second-order quantum phase transitions caused by the inter-
play of this emergent symmetry, topology and strong correlations. We also identify
a dynamical manifestation of the underlying topology that is genuinely rooted in
strong correlations and the interplay of the emergent and symmetry-broken sym-
metries: a self-adjusted fractional pump. As discussed by Thouless et al. [Tho83,
NT84]|, the quantization of adiabatic charge transport in weakly-interacting insula-
tors uncovers a profound connection to higher-dimensional topological phases, as re-
cently exploited in cold-atom experiments [NTTT16, LSZ116]. Strong interactions
can lead to fractional pumped charges [MCO15, TCR™ 17|, showing a clear reminis-
cence to the fractional quantum Hall effect (FQHE) [TT83, BK08, GSF12, BA13].
We show that, following a dynamical modulation of the interactions in the Zo-
Bose-Hubbard model, the system self-adjusts within the landscape of SSB sectors,
allowing for a cyclic path that displays a fractional pumped charge 1/3, such that
the correlated intertwined topological phase has no free-particle counterpart.
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Fig. 4.8 Emergent symmetry protection: We represent qualitatively a ground state
manifold where different quantum phases are characterized by their symmetry and topo-
logical properties, and use spin patterns on the bonds of a 1D lattice to exemplify the
different configurations. (a) Ground state satisfying both translation (7) and inversion
(I) symmetry, but lacking any non-zero topological invariant (). The spontaneous break-
ing of translation symmetry results in a phase with a three-site unit cell, represented in
(b) with different arrows accounting for the three possible magnetizations, which may not
respect the inversion symmetry, lacking a non-zero topological invariant. Remarkably,
such inversion symmetry can emerge from all the possible configurations constrained by
the SSB pattern, leading to the low-energy sectors depicted in (c, d). Note that these two
phases are not only distinguished by the SSB pattern but also, and more importantly, by
topology. Accordingly, whereas (c) is topologically trivial, (d) presents both a local order
parameter and a non-zero topological invariant, and thus corresponds to an intertwined
topological phase where the protecting symmetry emerges.

4.3.1 Emergent symmetry protection

We fix the bosonic density to p = 2/3 (similar results appear for p = 1/3). As we
showed in chapter 3, for A < ¢t and A > ¢ the spins are uniformly polarized in the
z direction, (07, 1) = 00, with o9 > 0 and 0¢ < 0, respectively. For intermediate
values, a Peierls-type SSB leads to a trimerization of the Z, fields, namely a periodic
repetition of a 3-site unit cell with bonds characterized by arbitrary expectation
values (07 ,),(053),(054). The resulting phase is an insulator, with a gap that
increases with the value of the coupling a. Note that this trimerization still leaves
freedom for various bond configurations that do not necessarily imply a protecting
symmetry for the bosons (Fig. 4.8(b)). One of the main results described in this
section is to show how, for certain parameter regimes, such a protecting symmetry
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Fig. 4.9 Simultaneous orders in intertwined topological phases: Real-space
configuration of (a) the Zy field (07,;;1) and (b) the bosonic bond-densities B;it1 =
(b:-rb¢+1) +c.c., using different colours for each element of the unit cell at 8 = 0.01¢. Differ-
ent permutations within the unit cell lead to a 3-fold quasi-degenerate ground state, each
obtained from one another by translating the modulation patterns of the ferrimagnetic
and BOW orders. The quasi-degeneracy comes from the finite-size effects, but degener-
acy is recovered in the thermodynamic limit. (c) The local Berry phases v* display a
quantized value of 0 (U = 10¢) or m (U = 15t) on the bonds preserving the inversion
symmetry of the unit cell, allowing us to distinguish between the trivial and topological
BOW phases. We note that the topological BOW phase (right panels) does not have
a fermionic analogue [GC15] in the ground state of the SSH model [SS81, Su83|, which
instead realizes the trivial BOW (left panels) for energetic reasons.

becomes effective at low energies, whereas higher-energy excitations of the Zy fields
do not necessarily lead to it. Therefore, the inversion symmetry can be understood
as an emergent symmetry that is crucial to protect the intertwined TBOW; /3
(Fig. 4.8(d)). In the following, we set o = 0.5¢ and A = 0.85¢.

We first study a system of L = 30 with sites and open boundary condi-
tions using DMRG [HP18|!, for 8 = 0.01¢ and different Hubbard interactions
U. For weak interactions (U g 9t), the Z, field is polarized along the same
axis (Fig. 4.8(a)), and the bosons display a quasi-superfluid behavior with alge-
braically decaying off-diagonal correlations. Increasing the interactions leads to a
bosonic Peierls transition, whereby translational symmetry is spontaneously bro-

IFor the finite-size calculations we used a matrix product state (MPS) based algorithm with
bond dimension D = 100. To directly access the thermodynamic limit we used an infinite MPS
(iMPS) with a repeating unit cell composed of three sites and D = 150. The Hilbert space of the
bosons is truncated to a maximum number of bosons per site of ng = 2.
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ken, leading to a three-fold degenerate ground-state with ferrimagnetic-type order-
ing (07 5) = (03 3) > (03 4), together with a bosonic period-3 BOW that displays
inversion symmetry with respect to the central inter-cell bond (see Fig. 4.9(a,b),
left panel). The BOW phase describes here exhibits similar properties to the charge
density waves in extended Hubbard models [GSF12, BA13], albeit without the need
of longer-range interactions. We note that a fermionic counterpart of this phase has
been predicted in charge-transfer salts [SS81, Su83]. To characterize its topology,
we use again the local Berry phase v# = ifo% dO(yH(0)|0ey"(6)), where |1f) is the
u-th ground state of the Hamiltonian (5.11) with a single bond twisted according
to t — te' [Hat06]. The left panel of Fig. 4.9(c) depicts the local Berry phase for
one of the ground states, which clearly vanishes on the inter-cell bonds relevant for
the inversion symmetry of Fig. 4.8. We note that the three possible ground states
become degenerate in the thermodynamic limit, which can be characterized by the
total Berry phase y = 3 x 7 In this limit, the value of v* for the three degenerate
states on a fixed bond coincides, up to permutations, with the value of this quan-
tity on the three bonds of the unit cell for each one of the states. Therefore, the
sum gives the same value in both cases. For the present BOWjy /3, we find v = 0,
indicating that this phase is topologically trivial.

By further increasing the interactions, a phase with a different SSB pattern
(0f9) = (033) < (03,) arises (right panels Fig. 4.9(a,b)). Although the ferri-
magnetic and BOW patterns look rather similar to the previous case, the local
Berry phase at the inter-cell bonds is now quantized to 7, = m (right panel Fig.
4.9(c)). Note again that this phase presents three degenerate ground states in
the thermodynamic limit, and we find a total Berry phase v = =, indicating a
non-trivial TBOWjy,3 phase. This exemplifies the scenario of Fig. 4.8: from all
the trimerized configurations possible a priori, the system chooses one with ad-
ditional bond-centered inversion symmetry, allowing for a topological crystalline
insulator [CTSR16]. In combination with the local order parameters (right panel
Fig. 4.9(a,b)), this shows that the TBOW; 3 is an interaction-induced intertwined
topological phase in which, contrary to the half-filled case described in the last
section, the protecting symmetry is emergent and not fixed a priori by the SSB
pattern. The occurrence of this mechanism is a hallmark of our Zs-Bose-Hubbard
model and does not have an analogue in the standard SSH model [SS81, Su83].

4.3.2 Interaction-induced topological phase transitions

Topological phase transitions delimiting free-fermion SPT phases, and those found
due to their competition with SSB phases, are typically continuous second-order
phase transitions. In the presence of strong correlations, however, first-order topo-
logical phase transitions may arise [ABCT15, RGS16, JcvacAB17, BSB19]. We
now discuss how critical lines of different orders delimit the intertwined TBOW; /3
in a strongly-interacting region of parameter space, showing that the TBOW; 3
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Fig. 4.10 Interaction-induced topological phase transitions: (a) Unit-cell fields
(0% k1) as we increase U, where k € {1,2,3} are the three different bonds. The left and
right panels correspond to f = 0 and 8 = 0.025¢, respectively. In the first case, there is
an abrupt transition between the trivial and topological BOW. In the second case, the
transition is continuous, and we find a finite region where inversion symmetry is broken.
(b) First derivative of the ground-state energy per unit cell E; through the transition. For
B = 0 there is a discontinuous jump, signaling a first-order topological phase transition.
The inset shows also a jump in the observable O;. For g = 0.025¢, both quantities behave
smoothly. (c) Total berry phase, where the same behaviour is observed. The results
shown are obtained directly in the thermodynamic limit using iDMRG.

cannot be adiabatically connected to a free-boson SPT phase.

In the completely adiabatic regime 8 = 0, we observe that the transition be-
tween trivial BOWy/3 and intertwined TBOW3 /3 is of first order using an infi-
nite DMRG algorithm (iDMRG) [HP18|. Figure 4.10(a) shows the Ising fields
(0 p41) within the unit cell as the Hubbard interaction is increased, while keep-
ing B8 fixed. For 8 = 0 (left column) we observe an abrupt transition char-
acterized by a discontinuity in the first derivative of the ground state energy
0Eg/0U = (Eg(U + AU) — E4(U))/AU [RGS16], signaling a first-order phase tran-
sition (Fig. 4.10(b)). Introducing the bond observables,

Oy = <Eg‘ Ulz,k+1 - 01?+1,k+2 |Eg> (4.18)

with k£ even or odd, we can characterize the corresponding bond-inversion symmetry
within the unit cell. The inset of Fig. 4.10(b) shows how O, displays a discontinuous
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jump. The total Berry phase, computed here with the help of the entanglement
spectrum [ZMP14], also changes abruptly, as depicted in Fig. 4.10(c). To the best
of our knowledge, this is the first topological characterization of a first-order phase
transition in an intertwined topological phase.

The situation changes as one departs from the adiabatic regime. Figure 4.10
(right panel) shows a continuous second-order transition both in 6 E, /6U and in Oy
for 8 = 0.025¢t. Remarkably, there is a finite region between the trivial and topo-
logical BOW phases where the Zs fields have different expectation values, breaking
the emergent inversion symmetry within the larger Peierls’ trimerization. These re-
sults are in accordance with the behaviour of the total Berry phase in Fig. 4.10(c),
which shows a non-quantized value in this intermediate asymmetrical region. In
fact, the appearance of this region originates from a very interesting interplay be-
tween the emergent inversion symmetry and the Peierls SSB phenomenon: a direct
continuous transition between the trivial and topological BOWs would require a
gap closing point in the bosonic sector, where every bond had the same expectation
value and the BOW would disappear. However, this comes with an energy penalty,
since the Peierls’ mechanism favors the formation of a 3-site unit cell [GCGDL18].
Therefore, the system energetically prefers to keep the trimerized unit cell at the
expense of breaking the bond-inversion symmetry within the unit cell, and continu-
ously setting the emergent inversion symmetry responsible for the quantized Berry
phase v = 7 of Fig. 4.10(c). This non-trivial interplay between symmetry pro-
tection and symmetry breaking, driven solely by correlations, is another hallmark
of our Zs-Bose-Hubbard model, absent at other fillings or in the fermionic SSH
model [SS81, Su83|. The intermediate phase could extend up to 8 = 0, although
first-order transitions are also possible for low enough values of 8. An extended
numerical analysis would be required to distinguish between these two situations.

It is interesting to note that, although the ground state of the system preserves
a trimerized unit cell to satisfy the underlying Peierls mechanism and minimize its
energy, the gap of the system does indeed close in this intermediate region, which
guarantees that the TBOWj 3 is a well-defined phase that cannot be adiabatically
connected to the trivial BOWy /3. In order to show the occurrence of such a gap
closure, we use entanglement spectroscopy in the thermodynamic limit.

Fig. 4.11 shows the scaling of the entanglement entropy S(pe) = —Tr{p¢log(pe)},
where py is the reduced density matrix for a bipartition of the ground state into
two blocks. This entanglement entropy is expressed in terms of the infinite matrix-
product state (iMPS) correlation function £ [TdOILO08| for different values of the
bond dimension D and for different Hubbard interactions U, where we set 8 =
0.03t. If the ground state is gapped, this entropy saturates [TdOIL08]. On the
contrary, in a gapless critical point/region, the following scaling relation holds

S = glogg, (4.19)
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Fig. 4.11 Entropy scaling: In (a), (b) and (c) we show the entanglement entropy S for
an iMPS as a function of the correlation length & for a state in the BOWj,3, intermediate
region and TBOWj3, respectively. In the BOW phases, the entropy saturates, signaling
a gapped ground state. In the intermediate region, the scaling is logarithmic. Different
points are calculated using different bond dimensions D, and we set 8§ = 0.03¢t. (d)
Evolution of the Zs field on the bonds of the unit cell (o7 1), with £ € {1,2,3} in
terms of U. The calculations were performed using an iMPS with fixed bond dimension
of D = 150. The three different phases are separated qualitatively by two dotted lines.

for sufficiently large £. To capture this saturation or the logarithmic scaling, instead
of performing a finite-size scaling, one may conduct a finite-D scaling, which shows
how both BOW;,3 (Fig. 4.11(a)) and TBOWjy /3 are gapped (Fig. 4.11(c)). In
the intermediate symmetry-broken region, we find instead a logarithmic scaling of
the entanglement entropy consistent with a conformal charge ¢ = 1 (Fig. 4.11(b)).
Accordingly, we can conclude that both phases cannot be adiabatically connected,
neither at weak nor at stronger transverse fields.

Finally, we present the phase diagram as a function of 8 and U in Fig. 6.8(a)
by depicting the product of 0105 it can only attain a non-zero value if the bond
inversion symmetry within the unit cell is broken (i.e. if the transition occurs
continuously via an intermediate non-symmetric region). Figure. 6.8(b) shows the
phase diagram in terms of the total Berry phase, quantized to 0 and 7 in the regions
with inversion symmetry and with non quantized values in the region where the
symmetry is broken.

4.3.3 Self-adjusted fractional pumping

As we introduced in chapter 1, topology can also become manifest through dynam-
ical effects, such as the quantized transport of charge in electronic systems evolv-

122



4. Intertwined topological phases

(a) 0,0, (b) [l/=
0.0 0.1 0.2 0.3 0.0 0.5 1.0

BOWay5 | TBOWy

00055 13 14

Ut
Fig. 4.12 Phase diagram: (a) In the background, we represent the product of ob-
servables 0102, which has a non-zero value only in the intermediate phase where bond-
inversion symmetry is broken. The black dot marks the first-order critical point separating
the BOW;,3 and TBOW,;,3 phases at 3 = 0. The dotted lines qualitatively denotes the
critical lines for f > 0. For large values of this parameter, we find an intermediate phase
where the bond-inversion symmetry is broken. This phase is separated from the BOWj,3
and TBOWj,3 phases by continuous transitions. This situation might extend up to 8 = 0,
although first order transitions are also possible for small but not-zero values of 8. (b)
We also present the total berry phase. The latter has a non-quantized value in the region
where the protecting inversion symmetry is broken. The phase diagram is calculated in
the thermodynamic limit using iDMRG.

ing under cyclic adiabatic modulations, the so-called Thouless pumping [Tho83].
This topological pumping lies at the heart of our current understanding of free-
fermion SPT phases [QZ11], and can also be generalized to weakly-interacting sys-
tems [NT84]. Moreover, 1D and quasi-1D systems at sufficiently-strong interactions
can exhibit a fractional pumping [?, GMZP15, ZWZ15, ZZS16, LF17, TCR*17]
that cannot be accounted for using non-interacting topological pumping.

Here we show that adiabatic dynamics traversing through intertwined topolog-
ical phases allows for a self-adjusted fractional pumping, due to the interplay of
the SSB mechanism and other gap-opening perturbations. By introducing guiding
fields that only act on a subset of the Zs fields, and raising/lowering the Hubbard
interactions, the free Zsy fields self-adjust dynamically during the adiabatic cycle.
As a consequence, the bosonic sector traverses a sequence of ground states that
are energetically favorable due to the Peierls’ mechanism. In this way, the system
self-adjusts along this adiabatic sequence, allowing for an exotic fractional pumping
induced by interactions [GH14, GMZP15, ZWZ15, ZZS16, LF17, TCR"17]. The
details of this self-adjusted topological pumping are explained in Figure 4.13.

For finite systems, the pumped charge can be inferred from the center of mass
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Fig. 4.13 Self-adjusted pumping protocol: (a) The trivial and topological BOW
phases are three-fold degenerate each. The six different states are represented here as
different points on an effective parameter space characterized by the expectation values
of the bond fields tx = 1+ a/t(of x4+1), with & € {1, 2, 3}. To define an adiabatic
cycle through these different BOWs, the protecting inversion symmetry must be broken
at intermediate states in order to enclose the degeneracy point at ¢t1 = t2 = ¢3. (b)
The Peierls mechanism forces the system to break this symmetry spontaneously when
interactions are increased, connecting states in the trivial and topological BOW phases
(Fig. 4.10(b)). In order to select which state from the degenerate manifold the system will
transition to, we introduce an external inhomogeneous Zs field A that is only applied to a
subset bonds within the unit cell. The fields partially break the degeneracy of the BOWs,
and restrict the possible adiabatic evolution. A sequential combination of local fields
and interaction-driven self-adjustments allows the system to cycle around the degeneracy
point in the effective parameter space. Note that the protocol must be repeated three
times for the ground state to reach the initial configuration.

(COM) Pr(1) = 1 22— Jo) (¥ ()| 7; [¥(7)), where jo is the center of a chain of
size L, and [¢(7)) is the adiabatically-evolved state at time 7. Figure 4.14 shows
the DMRG results describing how the COM changes along the cycle connecting the
BOWj/3 and TBOW,,3 possible ground states for a finite chain of size L = 90. Af-
ter 7 = T, we observe a COM displacement of AnT_,, = Pr_go(T) — Pr—90(0) =
0.316, reflecting the fractional charge. To obtain precisely the charge, we per-
form a finite-size scaling analysis and find Anl = limj . Anf = 1/3 (inset).
At 7 = 2T, the COM displacement reaches a value consistent with 2/3 in the
thermodynamic limit. We note that these fractional values are characteristic of a
strongly-correlated SPT phase with ground state degeneracy, and cannot be found
for any non-interacting topological phase. In our present case, the adiabatic path
in parameter space can be understood as a dynamical analogue of the spatial in-
terpolation between the different ground states, which leads to topological solitons
and fractionally-quantized charges bound to them [SS81|. During each period T,
we interpolate between two such ground states, and a fractional charge is pumped
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Fig. 4.14 Fractional pumping: Center of mass Pr(t) through the cycle for a finite
chain of size L = 90 and for 8 = 0.025¢. The discontinuous jump (red), related to the
presence of edge states, allows us to obtain the total charge transported in the bulk during
one cycle, Anp—go = 0.92. Inset: finite-size scaling yields a transported fractional charge
at 7 =T, and an integer charge at the end of the adiabatic path (7 = 3T).

without creating any spatial solitonic profile.

Let us now turn our attention to the discontinuous jump of the pumped charge
towards —1/3, as this is related to the presence of many-body edge states for a
finite system [HF16], and can be used to define a bulk-boundary correspondence
for our intertwined TBOW,,3. The transported charge across the bulk, An3T | can
be related to the discontinuous jumps during the cycle [HF16], namely An3’ =
— 3" APy(7i), where AP(r;) = Pr(r;") — Pr(7;,) quantify the discontinuities
occurring at instants 7;, and Tii = 7;£€ with € — 0. In the thermodynamic limit, it
converges to the quantized value of the pumped charge An3l = limy_, o, An3’ =1
related to the integer Chern number in an extended 2D system [HF16]. Since
these discontinuities depend on the presence of edge states in a finite system, the
center-of-mass approach establishes a sort of bulk-boundary correspondence that
can be explicitly proven via the adiabatic pumping. Moreover, the COM can be
measured in cold-atomic experiments [WTD13|, and it has been used to reveal the
topological properties of fermionic and bosonic SPT phases [NTT*16, LSZT16].

By estimating the discontinuity, we can extract the transported charge across
the bulk during the whole adiabatic evolution that bring the BOW back to itself
after 7 = 3T, obtaining a nearly quantized value Anjy_gp = 0.92. As it is shown
in the inset, a truly quantized charge is recovered in the thermodynamic limit,
signaling the topological nature of the system. These results allow us to establish
a bulk-boundary correspondence in the pumping process [HF16], even though this
was not guaranteed a priori due to the lack of the global symmetries regarding the
ten-fold classification of topological insulators. In particular, one may understand
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the edge states of the TBOW; /3 as remains of topologically-protected conducting
edge states of an extended 2D system, as we will see now. We note that, even if the
topological degeneracy point does not appear in the phase diagram of the model,
the quantized transported charge reveals its presence in an effective parameter
space, as a non-zero quantized charge can only be obtained when the parameter
modulation encircles such a degeneracy point [BLA11].

Effective single-particle pumping

Before finishing this section, we clarify different aspects of the pumping scheme
introduced above using an effective non-interacting model. We show that, whereas
some qualitative features of the topological pumping in the Z, Bose-Hubbard model
can be understood through a non-interacting analogue, the very fractional nature
lacks a non-interacting simile, and must be consider as a direct manifestation of
the strongly-correlated nature of the TBOW,; /3. To see this consider the following
non-interacting Hamiltonian,

ot ==Y (el +Hc.) (4.20)

where ¢; and é;r are fermionic operators. H of is related to the hard-core boson limit
of the ZoBHM, with U — oo, and a totally adiabatic or classical Zs fields (8 = 0)
that are treated in a mean-field-like manner. Accordingly, one may consider that
the expectation values (67, ;) behave as external parameters that can be used to
control the effective tunneling coefficients, t; = 1 + a/t(67, ).

However, we note that in this simplified effective model, the tunnelings {¢;} are
free model parameters that can be changed adiabatically at will. In particular,
the effective tunneling strengths are changed following the same path as for the
interacting case (Fig. 4.13(b)). Note that the expectation values (67, ) extracted
from the ground states throughout the self-adjusted many-body pumping are dif-
ferent in general for different unit cells. Being non-interacting, the Hamiltonian
(4.20) can be exactly diagonalized, and the band structure can be obtained at any
instant of the adiabatic cycle. This calculation leads to the spectral flow shown in
Figure 4.15(a). Throughout the cycle, the instantaneous energy levels can be ar-
ranged into three different bands separated by two gaps that remain finite through
the whole adiabatic path. Note also that these spectral bands are connected by two
in-gap modes, which correspond to the localized single-particle edge states crossing
at some intermediate instant of the cycle. Let us highlight that, in contrast to
the adiabatic path of the full interacting model that is composed of three adia-
batic cycles, the non-interacting case consists of a single cycle where the effective
tunnelings are periodically modulated.

Fig. 4.15(b) shows the change in time of the center or mass (COM) Pr(r) for
densities p = 1/3 and p = 2/3, i.e. when the lowest or the two lowest bands
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Fig. 4.15 Effective pumping: (a) spectral flow during the adiabatic cycle. At each time
7 we draw the energy levels by diagonalizing the non-interacting effective Hamiltonian
(4.20). We observe three distinct bands that remain open during the cycle. There are
two energy levels corresponding to the localized edge states inside each band gap. These
states connect the different bands and cannot be adiabatically removed without closing
the gap. (b) Change in the center of mass during the cycle for densities p = 1/3 and
p =2/3. A discontinuous jump occurs when the edge states in (a) cross in energy.

are filled, respectively. We consider a finite chain of size L = 90, and show that
in both cases a discontinuous jump occurs when the corresponding edge states
cross in energy, where the COM changes by 1 or —1. For p = 1/3, before this
instant of time only the left edge state is occupied, while it gets empty and the
right edge state gets occupied right after it. This shows the fractionalization of
the edge states: if each possesses a particle number of 1/2, this process changes
the COM by —(—1/2) 4+ (1/2) = 1. For p = 2/3, the opposite process takes place.
From this discussion it is clear the role that the fractionalization of the edge states
plays during the pumping. This pumping appears in both interacting and non-
interacting systems and has topological origin. However, as described below, the
factional pumping can only appear in interacting systems and is related to the
degeneracy of the ground state. In those situations the fractionalization of the
pumping is a different effect that goes beyond the fractionalization of the charge
of the edge states.

As explained above, we can calculate the transported charge in the bulk from the
change in the COM at the discontinuous jumps. We obtain AnlL/:B 90 = —0.94 and

AnlL/z?’ 90 = 0.94. The fact that these are not totally quantized is due to finite-size
effects, and they would converge to strictly quantized values in the thermodynamic
limit. We thus see that this effective model allows for a net transport of a single

quantum of charge across the bulk, either from the left edge to the right one, or vice
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versa. Note however that the period T of this single-particle cycle corresponds to
the three consecutive cycles 3T of the many-body pumping described in Fig. 4.13.
Therefore, the integer nature of the pumped single-particle charge after one cycle
is consistent with the integer value of the pumped many-body charge after three
cycles.

As noted in chapter 1, the transported charge in an infinite chain over one
period, An, gives access to topological phases in higher dimensions. In this case, the
pumped charge can be related to the Chern number of an extended two-dimensional
system, where time is taken as a synthetic dimension (1.33). We can calculate the
associated Chern number for the effective model (4.20) in the thermodynamic limit
using the efficient numerical method [FHSO05|, obtaining ¢; = 1 and ¢; = —2 for
the first and second bands, respectively. Using Eq. (1.33), we obtain the respective
charges, An'/? = —1 and An?/3 = 1.

This quantized pumping allows to shed light on the origin of the edge states of
the trimerized configuration. In contrast to the dimerized half-filling model, the
topological origin of the single-particle edge states in this case is not guaranteed a
priori due to the lack of chiral/sub-lattice symmetry [RH02]. However, they can
be understood as remains of edge states in the extended two-dimensional system,
which are indeed topologically protected even in the absence of chiral symmetry [?].
This is clear from the spectral flow represented in Fig. 4.15(a), which can be seen as
the band structure of a two-dimensional system in a cylindrical geometry [KLRT12].
There, the edge states connect the bands separated by a gap, and this means that
they cannot disappear under perturbations that do not close the gap. Although this
spectral flow can not be computed in the interacting case, we expect the argument
to hold based on the quantization of the pumped charge, and the extension of
Eq. (1.33) for many-body systems [NT84]|. Therefore, the observation of the integer
pumped charge in the Zy-Bose-Hubbard model can be used as a bulk-boundary
correspondence that clarifies the topological origin of the many-body edge states.

A crucial difference between the many-body self-adjusted pumping presented
above and the effective pumping described here is that, for the latter, the robust
fractionalization of the pumped charge is absent. The main reason behind this is
that the ground state of the effective Hamiltonian (4.20) is not degenerate in the
topological phase. Therefore, the adiabatic path can not be decomposed in three
independent periodic cycles as in the protocol presented in the main text. As a
consequence the transported charge after a time 7/3 is not necessarily quantized
to 1/3, only the total charge transported at T' is quantized to 1. This can be seen
clearly in Figure 4.16. There, we present two adiabatic pumping cycles, connected
by a local deformation. Even if in the first case the transported charge might
seem to be fractional quantized for fractions of the period, we observe how this
fractionalization is lost in the second deformed cycle. Since the latter is just an
adiabatic deformation of the first one, we conclude that the fractional charge is not
topologically protected. This is different in the many-body pumping presented in
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Fig. 4.16 Loss of fractionalization: (a) Change in the unit-cell tunneling ¢; during
two pumping cycles which are equal up to an adiabatic deformation. (b) Spectral flow for
each cycle. (c) Change in the center of mass during the two cycles. Even if for the first
case the transported charge at fractions of the cycle might seem quantized, the second
case shows that this is not necessary the case.

the main text: since the total adiabatic path is decomposed in three closed cycles,
any adiabatic deformation would preserve the nature of the pumping, which is
robust and quantized to fractional values .

4.4 Summary

In this chapter, we have characterized the TBOW phases that appears in the
Zo,BHM at various bosonic densities. At half filling, and by focusing first on the
hardcore boson limit, we showed how, for a quasi-adiabatic field, the system under-
goes a spontaneous breaking of the translational symmetry. This can be regarded as
a Peierls transition, where the staggerization of the field opens a gap in the single-
particle fermionic spectrum. Using the Zak phase, we characterized this gapped
phase as an SPT phase protected by chiral symmetry, where the topological effects
coexist with the presence of long-range order. For finite Hubbard interactions,
chiral symmetry is broken, but the phase is still protected by a bond-centered in-
version symmetry. Moreover, the spontaneous symmetry breaking remains, even
though the standard Peierls mechanism cannot be directly applied in the bosonic
case. The TBOW phase extends, therefore, for strong but finite Hubbard interac-
tions. We confirmed numerically our predictions using DMRG. By characterizing
the quantum phase transition between the TBOW and a qSF phase for low in-
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teractions, we have established the importance of strong correlations to stabilize
the former. Our results allow us to regard this phase as an interaction-induced
intertwined topological insulator.

After that we showed how symmetry protection can emerge through an inter-
play between symmetry breaking and strong correlations, giving rise to intertwined
topological phase for certain fractional fillings. The unique properties of these
phases are manifest in the special static and dynamical features we discussed, such
as interaction-induced topological phase transitions and a self-adjusted fractional
pumping. The latter, in particular, could be used to reveal the topological proper-
ties of the system and its fractional nature in cold-atom experiments.
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Chapter 5

Fractionalized ultracold matter

5.1 Introduction: symmetry-protected topological
defects

Topological defects were introduced in chapter 1 as non-perturbative solutions of
the Schriodinger equation that are topologically distinct from the vacuum, which
is usually characterized by a set of broken symmetries. This interplay between
symmetry and topology can give rise, in particular, to soliton configurations in 1D
after a SSB phase transition. Solitons can be seen as relics of the original disordered
phase that distort the symmetry-broken ground state around a certain core/center
where the order parameter vanishes. Moreover, the winding of the order parameter
around such defect cores yields a topological invariant, underlying the topological
characterization of such defects. These winding numbers can only change via non-
local deformations, guaranteeing the robustness of the soliton to physical, primarily
local, perturbations [Mer79|. Let us remark that topological solitons are finite-
energy non-perturbative solutions of classical field equations. Despite the fact that
they can be quantized formally [Jac77], the interesting interplay of symmetry and
topology is, in this case, a classical feature.

Genuine quantum effects can become manifest when these solitons interact with
quantum matter. As we mentioned in chapter 3, topological solitons can bind
quasi-particles with a fractional numbers and exotic quantum statistics. This phe-
nomenon was first predicted in relativistic quantum field theories [JR76, JR81] and,
independently, in linear polymers [SSH79] and p-wave superconductors [RG00]. As
such, these bound fractionalized quasi-particles cannot be adiabatically connected to
the original particle content of the theory, as typically occurs in more standard situ-
ations such as Fermi liquids [Lan56] or, more generally, perturbatively-renormalized
quantum field theories [WK74]. Let us note that, in contrast to the topological soli-
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ton, these quasi-particles are not necessarily protected by any quantized topological
invariant.

With the advent of topological insulators [KM05, BHZ06, KWB*07, HQW 03],
however, a quantum-mechanical protection mechanism has been unveiled [TK10],
giving rise to the concept of symmetry-protected topological defects (SPT-d). Under
certain symmetry constraints, the characterization of the bulk gapped matter com-
prised in between two of these solitons requires yet another topological invariant.
In this case, the relevant topological invariant is no longer the winding number of a
classical field, such as the order parameter, but is instead determined by the Berry
connection of the matter sector via the quantum-mechanical wavefunction. We note
that these invariants are quantized and cannot change under external symmetry-
preserving perturbations, unless these perturbations suffice to close the bulk energy
gap, inducing a quantum phase transition where the protecting symmetry is spon-
taneously broken. Moreover, the so-called bulk-defect correspondence connects this
bulk topological invariant to the fractional quasi-particles bound to the defect, and
justifies the protection of these quasi-particles with respect to symmetry-preserving
perturbations.

The current theory of SPT-d typically assumes a background solitonic profile
that is static and externally fixed, focusing on the properties of the matter sector
and the robustness of the bound quasi-particles [TH17]|. This simplifies the descrip-
tion, as one deals with non-interacting matter in an inhomogeneous classical back-
ground, allowing one to identify the mechanism responsible for their protection, and
even to classify all possible SPT-d according to the underlying global/crystalline
symmetries [CTSR16], as we introduced in chapter 1. Let us emphasize that, in
this limit, there is no intrinsic soliton dynamics, nor any SSB order parameter
that would justify the topological protection of the soliton. Therefore, by assum-
ing/engineering such externally-adjusted solitonic profiles, one is missing half of
the topological robustness of the SPT-d. Moreover, from a fundamental point of
view, this approach misses a key property: SPT-d can only arise in intertwined
topological phases, which simultaneously display SSB and topological symmetry
protection. Although one typically finds claims in the literature about the absence
of any local order parameter characterizing the SPT-d, the reality is that the mat-
ter sector can also display long-range order as a consequence of the SSB, as we
showed in chapter 4. It is the possibility of simultaneously encompassing both SSB
long-range order and topological symmetry protection, which makes these inter-
twined SPT-d so exotic and interesting. This ambivalent role of symmetry is a
consequence of interactions and, by exploring the full non-perturbative nature of
SPT-d, as well as the back action of the matter on the semi-classical topological
soliton, we expect that exotic many-body effects will be unveiled, and new avenues
of research will be open.

In this chapter, we explore the existence of SPT-d in the Z;BH model (3.32).
As discussed in chapter 4, this model gives rise to intertwined topological phases.
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These phases are driven by the interplay of SSB and topological symmetry pro-
tection, both of which occur simultaneously in the ground state at commensurate
fillings. As mentioned above, SSB also allows for the existence of topological de-
fects/solitons and SPT-d. Given the pioneering results on solitons in the fermionic
SSH model [HKSS88], and the number of similarities discussed between this and
the ZsBH model, it is a fair question to assess if topological solitons and frac-
tionalization of bosons could be observed in systems described by the latter. This
question is even more compelling given the possibility of implementing this model
using ultracold bosonic atoms in optical lattices. As substantiated in the following
sections, this implementation would allow for a real breakthrough in the field: the
first direct experimental observation of fractionalization of matter by a non-static
soliton.

The soliton model of SSH has been argued to play a key role in the physics
of a linear conjugate polymer, namely polyacetylene [HKSS88|. Despite indirect
evidence, there has always been a certain degree of controversy about the role of
solitons in the properties of polyacetylene [Lau99]: long-range dimerized order,
let alone a solitonic configuration, has never been observed directly. Moreover,
the spin-full character of electrons in polyacetylene, which is half-filled, masks the
fractionalization. Despite leading to reversed spin-charge relations, which yield
an indirect evidence [HKSS88], this spin doubling of polyacetylene forbids a direct
experimental confirmation of the bound fractionalized nature of quasi-particles. Ac-
cordingly, the existence of topological solitons and bosonic fractionalization shown
below, together with the possible implementation of the ZoBHM in experiments of
ultra-cold atoms, opens a new promising route in the study of SPT-d.

Here we study the Zs Bose-Hubbard model for incommensurate densities, and
characterized the different symmetry-protected topological defects that appear.
The chapter is organized as follows. In Sec. 5.2, we show how topological soli-
tons appear spontaneously in the ground state of the ZoBHM when it is doped
above/below certain commensurate fillings, and we characterize them in terms
of topological charges associated to the underlying SSB sectors. Moreover, we
demonstrate how these defects bind fractionalized bosonic quasi-particles. These
composite objects can propagate through the chain, repelling each other at short
distances. For a finite density of defects, this interaction gives rise to a fractional
soliton lattice. In Sec. 5.3, we explore how the topological properties of the mat-
ter sector can bring extra protection to these bound quasi-particles. In particular,
we characterize the different SSB sectors as intertwined topological phases using
symmetry-protected topological invariants. This allows one to track the origin of
fractionalization in the system through a bulk-defect correspondence. Remarkably,
the later can be generalized to situations where the regions separated by the de-
fects are in the same topological sector. This requires extending the system to two
dimensions using a pumping mechanism, where the 2D topological invariant can
be recovered by measuring the quantized inter-soliton transport.
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5.2 Topological solitons and boson fractionalization

5.2.1 Z, solitons: doping and pinning

As advanced in the chapter 1, topological solitons are stable finite-energy exci-
tations that may arise when different values of the order parameter are allowed
by SSB [Raj82]. These excitations can be dynamically generated by crossing a
symmetry-breaking critical point in a finite time. In this way, the ordered phase
gets distorted by such solitons, the density of which scales with the crossing rate
according to the Kibble-Zurek scaling [Kib76, Zur85]. Let us remark that, once the
phase transition has been crossed, an extensive number of excitations are present
in the system. These solitons evolve in time, scattering off each other, or escaping
through the edges of the system, which gives rise to a complex out-of-equilibrium
problem. In this subsection, we argue that the ZsBH model can host solitons in
the ground state, and that they can be pinned externally, leading to a simpler
equilibrium situation.

The crucial condition to find solitons directly in the ground state is to allow
for their coupling with matter, which turns the situation into a very interesting
quantum many-body problem. This is predicted to occur in the SSH model of
polyacetylene by doping above/below half-filling [SS80, BK81, CB81] and, recently,
also in a system of fermionic atoms inside an optical waveguide [FP19]. As shown
below, solitons also appear in the Z;BH model, with characteristic differences.
For instance, a single boson above half-filling can fractionalize, giving rise to two
quasi-particles bound to a soliton-antisoliton pair in the ground state (see the
qualitative scheme in Fig. 5.1(c)). For one-third and two-third fillings, a single
boson can give rise to a richer profile of topological solitons and bound fractional
quasi-particles (Fig. 5.1(e)). One of the key differences with respect to the soliton
model of polyacetylene is that, during the doping process in the polymer, all sorts
of additional disorder and randomness are inevitably introduced [Kiv0l]. This
disorder is likely the underlying source of difficulties in providing an unambiguous
proof of the dimerized long-range order and the associated solitonic profiles in
polyacetylene [Lau99]. In this context, an advantage of the Z;BH model, and
its potential cold-atom realization, is that the atomic filling does not introduce
impurities. In this way, one gets access to the ground state of the doped system
in a pristine environment, where the existence of solitons/fractionalization is not
masked by uncontrolled disorder.

Let us now present a more systematic study of topological solitons in the Z,BH
model, and provide quantitative evidence of the correctness of Figs. 5.1(c) and
(e). In the introduction, we presented solitons as localized finite-energy solutions
moving at constant speed and, yet, Figs. 5.1(c) and (e) represent static solitonic
configurations. In a continuum model of polyacetylene [TLLMS80], the solitons are
indeed free to move. However, in a realistic situation, charged impurities appear
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Fig. 5.1 Topological solitons in the Z, Bose-Hubbard model: Bosonic parti-
cles (blue spheres) can tunnel between neighboring sites of a chain, and their tunneling
depends on the state of the Zo fields (red spheres) at the bonds. (a) For weak Hub-
bard interactions, the ground state of a half-filled system (p = 1/2) is described by a
bosonic quasi-superfluid delocalized over the chain, and a polarized background where
all Z, point in the same direction. (b) At stronger interactions, the Z, fields order anti-
ferromagnetically according to two degenerate patterns (A and B), spontaneously breaking
translational invariance. Simultaneously, the bosons display a long-range order with an
alternating bond density. Note that, in addition to the bond order wave, one of the SSB
sectors (B) hosts a symmetry-protected topological phase. (¢) As a consequence of the
SSB, the Zs fields may adopt an inhomogeneous configuration with topological solitons,
such as the ABA background hereby displayed. These configurations appear when extra
particles are added above or below half filling, which are then bound to the solitons (blue).
FEach degenerate configuration is characterized by a different non-zero value of an order
parameter. Solitons interpolate between these values in real space, as depicted here by
a solid line. (d)-(e) Analogue situation for the trimer bond-ordered waves phases (valid
for p = 1/3 and p = 2/3). In this case, the Z2 fields order ferri-magnetically according
to three possible patterns (A, B and C), and a richer variety of topological solitons with
bound quasi-particles can form.

upon doping, and play an additional important role: they pin the charged quasi-
particles bound to the solitons at random positions [HKSS88|. Here we introduce
a simple and deterministic pinning mechanism which, as shown below, allows us to
precisely control the position of the solitons and fractional bosons in the Zo;BHM.

Such a deterministic pinning is achieved by introducing a local perturbation of
the Z, fields, H - H + H,,, where

Hy, = Zﬁi olit1, Bi = Z Be (5i—1,jp +5i,jp)- (5.1)
i JpEP

Here, € stands for the relative strength of the pinning potential, and we sum over
all pinning centers labeled by j, € P. Essentially, this perturbation modifies the
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transverse field at two consecutive bonds that surround each of the pinning centers,
B — Po = B(1 + ¢), selecting the corresponding solitonic profile that will depend
on the particular filling.

Solitons with Zs-valued topological charges

Let us start by discussing the simplest situation, and address the appearance of
topological solitons in the ground state of the ZoBHM doped above/below half-
filling. As described above, there is a bosonic Peierls transition where the Ising
spins develop an antiferromagnetic Néel-type order (Fig. 5.1(b)). In this case, the
order parameter can be defined as

i, 9= % 3 sin (g(% - 1)) (07,11, (5.2)

Cog=1 i€u.c.

where Ny . is the number of unit cells (u.c.) labelled by j, and ¢, is averaged over
the elements of such unit cell ¢ € u.c. p is the total average staggered magnetization,
and has two possible values ¢ = £y — £1 depending on the SSB sector. Solitons
will interpolate between these two vacua (Fig. 5.1(c)).

The existence of such solitons can be understood starting from the 8 = 0 limit,
where no quantum fluctuations exist, and they get reduced to static domain walls.
Precisely at half-filling, the Peierls mechanisms results in antiferromagnetic Néel-
like order the Ising spins. We recall that, in the hard-core regime U — oo, the
Peierls transition is solely controlled by A. In this case, one can find analytical
solutions showing that Néel order coexists with a bosonic bond-ordered wave if
A € [A;,Af] (3.35). Conversely, for A ¢ [A_,AT], the spins polarize along the
same direction and the bosons form a quasi-superfluid state.

In this section, we explore a new situation that goes beyond the scope of the
results presented in chapter 4: we set A € [A7, Af], but explore lattices with an
odd number of sites, such that perfect half-filling is never possible. In this case, one
can analytically show that the ground state is not a single Néel antiferromagnet in
the Ising sector and a dimerized bond-ordered wave for the bosons, but that it is
composed of neighboring domains displaying the possible SSB orders. In particular,
we find that the ground state can accommodate for a single domain wall.

As (8 is increased, we show below that these domain walls widen into a soli-
ton profile that coincides with the kink solutions of the (1+41) relativistic ¢* the-

ory [DHNT74]|, namely
¢, = tanh (j—g];,) ) (5.3)

where jp is the soliton center and £ is the width in lattice units. By analogy with the
relativistic scalar quantum field theory, one can define a topological charge [Raj82]
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Fig. 5.2 Z, topological defects: (a) Spin magnetization (o7 ;) with a single topolog-
ical defect modifying the dimerized pattern of the BOW,,, phase, where different colors
are used for the two sub-lattices. The defect corresponds to a domain wall (8 = 0) con-
necting the two SSB sectors. (b) The defect interpolates between two values of the order
parameter ¢;, which converges to —1 and +1 for j = r — j, and j = r + jp, respectively,
with » > £, and has a topological charge @ = 1. (¢)-(d) Analogous topological defect
for 8 = 0.03t, where we observe how quantum fluctuations broaden the defect, leading to
a soliton of finite width £&. The order parameter, which was discontinuous for a domain
wall, is smoothened for 8 > 0, and can be accurately fitted to Eq. (5.3). The parameters
of the model are fixed to U = 10t and A = 0.80¢, and we use a chain with L = 31 sites
and N = 16 particles.

as follows
Q=3 (@j+r — Pip—r) 5 (5.4)

where the order parameter is evaluated at points that are well separated from the
soliton center, namely r/{ — co. In this case, the topological charge of the soliton
is Q@ = 41, whereas anti-solitonic solutions carrying () = —1 can be obtained
with the alternative interpolating profile ¢; = —¢;. These Z5 topological charges,
which cannot be modified by local perturbations, guarantee the robustness of the
soliton.

To make contact with our previous analytical results, we note that the § =0
limit of classical Z; fields should yield an order parameter ¢; ~ 0(j —jp)—0(jp—J),
where we have introduced the Heaviside step function. In this case, the topological
soliton would have a vanishing width, and be localized within a single lattice site.
To verify this prediction, we study the Z;BHM on a chain of L = 31 sites, filled
with N = 16 bosons. The ground-state has been obtained numerically using a
density matrix renormalization group (DMRG) algorithm based on matrix product
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Fig. 5.3 Effect of quantum fluctuations on topological defects: (a) Ground state
energy Fg(jp) with one topological defect as we vary the pinning location j, on a chain of
L = 61 sites, measured with respect to some reference Ey, for f = 0.02¢. Odd and even
sites are represented in different colors, showing the Peierls-Nabarro potential between
them. Note that, far from the boundaries, the state is degenerate due to translational
invariance. (b) Peierls-Nabarro barrier AE, as a function of /¢, which goes to zero as
the quantum fluctuations increase, for L = 91. For 8 = 0 we obtain a non-zero value
for AE,/t (red square). In this limit, the defects are immobile. For 8 # 0 they can
tunnel through the barriers. (c) The pinning perturbation (Eq. (5.1)) localizes the defect
at a certain position. Here we show how the soliton width £ varies as we increase the
pinning strength 8o/, converging to a finite value for an infinite pinning. This finite-size
scaling was performed by fitting the points to a line (black). In every panel, ¢ should be
understood as the converged value. (d) Soliton width £ as a function of 8 for different
values of the Hubbard interaction U, and we now work with a chain of L = 121 sites.
All the calculations where performed for one defect on top of the BOW, /5 phase, with
U =10t and A =0.80¢.

states (MPS) [HP18|.!. Figure 5.2(a) shows the magnetization of the Zj fields in
the ground state. As can be clearly observed, an SS domain wall is formed by
interpolating between the two possible anti-ferromagnetic Néel patterns. In this
case, the defect is generated in the ground state since the odd number of sites does
not allow for perfect half-filling, but rather p = N/L > 1/2. The existence of the
domain wall becomes more transparent in Fig. 5.2(b), where the corresponding
order parameter (5.2) displays the aforementioned step-like behavior.

Let us note that, in this classical limit, the solitons can be centered around any
lattice site j, within the bulk of the system (i.e. the ground state has an extensive
degeneracy). Moreover, in contrast to continuum field theories where solitons are

IFor the rest of the chapter, we use open boundary conditions and bond dimension D = 100.
The maximum number of bosons per site is truncated to ng = 2
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free to move, lattice solitons are static as they find finite energy barriers that inhibit
their transport. These energy penalties, known as Peierls-Nabarro barriers, arise
due to the lack of translational invariance on the lattice, and are typically arranged
forming a periodic Peierls-Nabarro potential [Peid0, Nab47].

As the quantum fluctuations of the Zj fields are switched on, § > 0, the topolog-
ical solitons start tunneling through these barriers, and delocalize along the lattice.
In order to study static soliton properties in this quantum-mechanical regime, it is
important to switch on the pinning terms of Eq. (5.1), which will effectively localize
the soliton to the desired pinning center j,. However, as a result of quantum fluc-
tuations, the soliton is no longer strictly localized to a single site, but will spread
over a width & > 0.

By externally modifying the position of the pinning center j,, we can con-
firm the existence of such Peierls-Nabarro barriers by numerically computing the
ground-state energy as a function of the position of the soliton E,(j,) (Fig. 5.3(a)).
Due to the Peierls’ dimerization, we find a periodic arrangement of energy barri-
ers AFE, separating neighboring unit cells. As shown in Fig. 5.3(b), the height
of these barriers converges to a non-zero value when § — 0, leading to the afore-
mentioned Peierls-Nabarro barrier. This numerical result justifies our previous
statement about the static nature of the solitons in the classical regime: the finite
barriers inhibit the movement of the topological solitons. The small magnitude
of the Peierls-Nabarro barrier also justifies our previous claim: as soon as quan-
tum fluctuations are switched on, the solitons tunnel and delocalize, justifying the
requirement of pinning (5.1).

In Fig. 5.2(c), we represent such a pinned solitonic profile in presence of quan-
tum fluctuations. The pinning center is positioned at the middle j, = (L —1)/2
of a chain of L = 31 sites. As can be observed in Fig. 5.2(d), the order parameter
interpolates between the two SSB ground states according to the smooth profile
of Eq. (5.3), and an accurate fit can be used to extract the soliton width £. In
Figure 5.3(c), we show how the soliton width gets modified as one increases the
strength of the pinning potential, eventually converging to a fixed value as the pin-
ning strength is sufficiently strong 3/8p = 1/(1 + €) — 0. Let us remark, however,
that the modification of the soliton width for moderate pinnings lies at the 10%
level, which is consistent with the contraction effect of other pinning mechanisms,
such as the dopant impurities in the SSH model of polyacetylene [Kiv86]. In Fig-
ure 5.3(d), we represent the widths £ of the topological soliton as a function of the
transverse field strength 3, for different values of the Hubbard repulsion. We note
that in all numerical simulations, we use a pinning strength such that convergence
of the soliton width has been reached. As expected, the width increases (i.e. more
delocalized defects) as the quantum fluctuations are raised. On the other hand, we
observe that the soliton width, at fixed 3, decreases as the Hubbard repulsion U
is increased. This is a clear demonstration of the back-action of the matter sector
on the topological soliton that was briefly mentioned in the introduction: as the
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bosons become more repulsive, eventually reaching the hard-core constraint that
forbids double occupancies, they can be accommodated more comfortably within
the Zsg soliton, which then becomes more localized.

Solitons with Z,-valued topological charges

Let us note that, around half-filling, it is only possible to obtain two types of
topological defects, solitons with charge @@ = +1 and anti-solitons with Q = —1.
By doping, the ground state configuration can only correspond to a succession of
neighboring soliton and anti-solitons, such that the overall charge is either Qo = 0,
or Qiot = £1 (i.e. even and odd topological sectors). For such configurations,
one can imagine externally moving the defect centers by adjusting the pinning
potentials, such that a soliton and anti-soliton scatter, annihilating each other. By
repeating this process, one would reach a final situation where either one or none
topological solitons remains. As discussed below, solitons and possible scattering
are much richer around other fractional fillings.

We shall now focus on two-third filling, where the Peierls’ mechanism can yield
a three-fold degenerate ferrimagnetic ordering in the Ising sector (Fig. 5.1 (d)).
The situation is analogous for filling one-third. The order parameter that can
differentiate between these SSB ground states is

N,

B 1 u.c. B 5 2 . 2 ) .

b= Do Bi= = 3w <;(z - 1)) (7r)s  (55)
u.c. ]:1

1€u.c.

which attains the following values for the the three ground states ¢ € {—2,0,2}.
As there are more SSB vacua, there will be more types of solitons that interpolate
between them. For instance, an anti-soliton interpolating between the A and B
ground states (Fig. 5.1 (e)) can be described as

Ghe = (1 — tanh (j _ngB» , (5.6)

which has topological charge Qap = —1 according to Eq. (5.4). The anti-soliton
interpolating between the B and C is

FBC = (1 + tanh (j ngC>) , (5.7)

which also has topological charge Qpc = —1. Finally, the soliton interpolating
between C and A can be written as
$OA = 2 tanh <3_50A> , (5.8)
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Fig. 5.4 7, topological defects: (a) Spin magnetization (o7, ;) with a topologi-
cal defect distorting the trimerized pattern, and corresponding to an anti-soliton on the
BOW3/3 phase connecting two of the three SSB sectors, A and B, for a chain of L = 43
sites and N = 29 particles. (b) We represent the order parameter ¢;, where j is the
unit cell index. The black line is obtained by fitting ¢; using eq. (5.6) and eq. (5.8). Far
from the defect, the order parameter distinguishes the different SSB sectors, and leads to
an associated topological charge of Q = —1. The parameters of the model are fixed to
B =0.01t, A = 0.85¢t and U = 10¢t. (c)-(d) Same as (a)-(b), but for an anti-soliton
connecting the sectors A and C, for L = 44 and N = 29. This defect has an associated
topological charge of @ = —2.

which has a larger topological charge Qca = +2. We note that solitons with the
inverse orderings BA, CB and AC, are also possible, and would lead to reversed
topological charges, such that solitons are restricted to a Zj4-valued topological
charge.

In Figs. 5.4(a) and (c) we provide numerical confirmation of this phenomenon,
displaying two examples of defects connecting different SSB sectors of the BOW; /3
phase. In both cases, the order parameter (5.5) adjusts very accurately to the
expected shapes in Egs. (5.6) and (5.8) (Figs. 5.4(b) and (d)). As it can be
appreciated in the figure, different types of defects are generated depending on
the bosonic density. In the next section we will analyze this mechanism in detail.
However, before turning into this discussion, let us emphasize that the wider variety
of solitons hereby discussed leads to further possibilities regarding their scattering.
In the ABCA sequence of Fig. 5.1(e), we see that this fractional filling allows for a
richer multi-solitonic profile with respect to the half-filling. In particular, one is no
longer restricted to neighboring soliton-atisoliton pairs, but it becomes possible to
find two neighboring defects with the same topological charges Q4 = Qpc = —1.
In this case, by externally adjusting the pinning potentials, these two defects can
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collide and lead to a larger conserved charge Q 45 + @pc = —2, which corresponds
to a new type of anti- soliton AC with charge Qac = —2 instead of the trivial
vacuum, as occurred for half-filling.

5.2.2 Boson fractionalization

So far, we have only focused on the Ising-spin sector, and proved the existence
of various topological solitons in the ground state of the ZsBH model. Although
the existence of these solitons is triggered by the coupling of the Z, fields to the
bosonic quantum matter, we recall that these solitons can be fully understood
classically, as they are characterized by the topological charge of a classical field,
i.e. the order parameter of Eq. (5.4). In this section, we will explore the bosonic
sector, and show that there are bound quasi-particles localized within the soliton,
which clearly display the bosonic version of the quantum-mechanical phenomenon
of fractionalization. Charge fractionalization was first predicted for relativistic
quantum field theories of fermions coupled to a solitonic background [JR76, NS86],
and find a remarkable analogue in the physics of conjugated polymers [CB81]. As
outlined previously, the direct experimental observation of this effect would be a
real breakthrough in the field, overcoming past limitations in lightly-doped and
disordered polyacetylene [Lau99].

Arguably, the clearest manifestation of fractionalization arises by doping a
Peierls-type system with a single particle above/below a given commensurate fill-
ing, such as half filling. As it turns out, in order to accommodate for this additional
particle, the ground state of the ZoBHM develops a soliton/anti-soliton pair of the
Zs fields, each of which hosts a bound quasi-particle/quasi-hole with a fraction-
alized number of bosons, i.e. the boson splits into two halves. Figure 5.5 (left
column) contains all the numerical evidence that supports this mechanism in a
chain of L = 90 sites filled with N = 46 bosons. Note that this yields precisely an
extra particle above half filling p = N/L=1/2+4+1/L = p* + 1/L.

As shown in Fig. 5.5(a), the Ising sector of the Z;BHM ground state clearly dis-
plays the predicted soliton/anti-soliton profile ABA, and its finite width is a result
of the finite quantum fluctuations of the Ising spins. In Fig. 5.5(b), we represent
the bosonic particle number for the different sites of the chain. As can be observed,
away from the soliton/anti-soliton, the average particle number is consistent with
the half-filling condition. Remarkably, as one approaches the topological defects, a
build-up in density becomes apparent, which signals the presence of a quasi-particle
bound to the topological soliton/anti-soliton. Moreover, the density profile of this
fractional quasi-particle can be accurately fitted to

() = )=t = ggea® (172, (59)

where j = 2i or j = 2i + 1 is the sub-lattice index, and p* is the closest commen-
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Fig. 5.5 Fractionalization of bound quasi-particles: (a) We represent the order
parameter ¢; (5.2) at each unit cell j for the ground state configuration when we add one
extra particle on top of half-filling. In this case a soliton-antisoliton pair is created, divid-
ing the chain into ABA consecutive sectors. In (b), we show the bosonic occupation (n;)
in real space. We observe how, inside the bulk of each sector, the occupation corresponds
to 0.5. Around the defects, however, we find peaks where the occupation increases, with
a different profile for each sublattice. The black line corresponds to a fit to Eq. (5.9). (c)
The integrated particle number N; =37, _,(: ; :) shows how each peak is associated with
half a boson. Each bound bosonic quasi-particle is, thus, fractionalized. The situation is
similar around two-third filling when adding or substracting a single particle above (d),
or below (g) the corresponding filling. We represent the order parameter ¢; (5.5), show-
ing how three defects appear, creating the SSB patterns ABCA, or ACBA, respectively.
The bosonic occupation shows (e) peaks and (h) drops with respect to 2/3 around the
defects (which agains follows accurately Eq. (5.9)). In this case, the each extra boson is
fractionalized into three bound quasi-particles with associated particle number (f) 1/3
and (i) —1/3. The calculations were performed using a chain of L = 90 sites and taking
U = 10t. In the first column we took N = 46 particles, A = 0.80¢ and 8 = 0.02¢. In the
center and right columns we used A = 0.85¢ and § = 0.01¢, with N = 61 and N = 59
particles, respectively. The solitons were pinned as discussed in the previous section.

surate filling (i.e. p* = 1/2 in this case). Remarkably, this expression coincides
exactly with the profile of the zero-modes for the relativistic quantum field theory
of fermions [CB81], providing a clear instance of universality: regardless of having
bosonic/fermionic matter coupled to a Zs/scalar field, the profiles of the solitons
and the fractionalized quasi-particles are completely equivalent.

Finally, in order to display clearly the fractionalization phenomenon, let us
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compute the integrated number of bosons above the half-filled vacuum

N; = Z( n; o, (5.10)

As shown in Fig. 5.5(c), this integrated boson number displays two clear plateaux
connected by jumps of 1/2 in the density. Accordingly, the localized quasi-particles
of Fig. 5.5(b) indeed carry a fractional number of bosons, namely 1/2 boson each,
that is spread within the soliton according to Eq. (5.9).

A similar situation occurs when we dope with extra particles or holes around
two-third filling, as it can be appreciated in the center and right columns of Fig. 5.5.
In both cases, three defects appear in the ground state (Fig. 5.5(d) and (g)),
separating different SSB sectors with a density of 2/3 far from the defects. The
latter are associated with peaks or drops in the density that are localized within
the different solitons/anti-solitons (Figs. 5.5(e) and (h)). Moreover, the integrated
density of bosons (5.10) displayed in Figs. 5.5(f) and (i) is fully consistent with
the fractional +1/3 bosonic quasi-particles.

In Figure 5.6, we summarize the different types of topological solitons and the
fractional particle number of the associated quasi-particles. Around two-third fill-
ing, in particular, the defects can host fractional bosons with particle number +1/3
and £2/3. In addition to the situation discussed in the previous paragraph, we
note that one extra particle could also be fractionalized into two +2/3 and one
—1/3 quasi-particles. However, this configuration would not be homogeneous, and
is not spontaneously realized in the ground state, where we have only found con-
figurations associated to +1/3 fractionalized quasi-particles. We note, however,
that these configurations can still occur as excitations, and are relevant to under-
stand the possible soliton scattering discussed in the previous section, which must
be consistent with the fractionalization phenomena. Recall that the AB and BC
defects can collide and lead to a larger conserved charge Qap + @pc = —2, which
corresponds to a new type of anti-soliton AC with charge Qac = —2. This picture
is also consistent with the bound number of bosons, as the AC defect of Fig. 5.6 is
associated to a fractional value of 2/3 =1/3 +1/3.

5.2.3 Polaron excitations and fractional soliton lattices

Let us now comment on the possibility that the extra bosons/holes about the
commensurate fillings, instead of fractionalizing into quasi-particles bound to the
solitons/anti-solitons, lead to a simpler excitation: a topologically-trivial polaron.
In fact, in the fermionic SSH model, a single fermion above the half-filled ground
state does not lead to the fractionalized pair of quasi-particles. Instead, a lower-
energy quasi-particle is formed, corresponding to the electron being surrounded by
a cloud of phonons, the so-called electronic polaron [SS80, CB81]. We note that,
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p* Defect Occupied | Empty
A-B-C-A +2/3 -1/3
13
A-c-B-A | +13 | —23
1/2 A-B-A v12 | —172
A-B-C-A | 413 | -2/
2/3
A-C-B-A | +2/3 | -1/3

Fig. 5.6 Topological defects and fractionalized states: The table summarizes the
particle numbers associated to the localized states bound to the topological solitons, when
the state is occupied (particle) or empty (hole). We write defect A-B-C-A, for example,
referring to the defects corresponding to each pair of consecutive sectors: AB, BC and
CA, which have the same particle numbers. We highlight the configurations that are
generated spontaneously by doping the commensurate densities p* with one particle or
hole. In shaded areas, we highlight the instances realized in the ground state.

in the context of the SSH model, this polaron solution can be understood as a
confined soliton-antisoliton pair. The separation between both defects d is smaller
than their corresponding widths £, such that the fermion is not fractionalized into a
pair of 1/2 charges bound to each defect, but instead distributed across the entire
polaron with the same total charge [CB81, HKSS88]. If one studies the energy
of the soliton-antisoliton pair as a function of the distance Eg(d), a global energy
minimum is found for the separation of the polaron mentioned above [Kiv86].

In the ZsBH model we can calculate numerically the ground state energy as
a function of the soliton-antisoliton distance Eg4(d), which is controlled though
the pinning centers of the perturbation (5.1). In Fig.5.7(a), we show how this
energy does not present any global minimum corresponding to a polaronic solution,
which in this case would stand for the bosonic particle surrounded by spin-wave
fluctuations.

According to this result, we can rule out the existence of any confining mecha-
nism, and ensure that the ground state corresponds to the distant soliton-antisoliton
pair with fractionalized bound quasi-particles. This results are also useful to discuss
the following type of ground state, the so-called soliton lattice, which corresponds to
the soliton BOW phases presented in chapter 3 for a finite density of bosons above
half filling (Fig. 3.7). Since the energy decreases exponentially with the soliton dis-
tance (see the fit in Fig.5.7(a)), solitons tend to repel each other seeking for ground
state configurations with the maximal inter-soliton distance. If we keep on adding
additional particles above/below half-filling, but do not fix their relative positions
by the external pinning (5.1), the solitons-antisolitons pairs will self-assemble in a
crystalline configuration that maximises the inter-soliton distance: a soliton lattice.
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Fig. 5.7 Polarons and the soliton lattice: (a) Ground state energy E,(x) for a chain
of L = 120 sites filled with N = 62 bosons, as a function of the distance x between the
pinned soliton-antisoliton pair. The absence of a miniminum for a given distnace x¢ shows
that topologically-trivial polarons are absent in the ground state of the Zo;BHM. (b) The
order parameter ¢; (5.2) for a chain of L = 100 sites filled with N = 55 bosons self-
assembled in a periodic configuration of soliton-antisolitons, maximizing the inter-soliton
distance, and leading to the a soliton lattice.. The dotted line represents the corresponding
staggered polarization of the half-filled ground state without any topological defect. (c)
The local boson density displays the localized nature of the bound quasi-particles, which
again display a fractionalized density upon a closer inspection.

Such type of solutions were originally predicted for the SSH model of polyacety-
lene [Hor81, Hor87|, and are also known as kink-antikink crystals in relativistic
field theories of self-interacting fermions at finite densities [TU03, BmcDO08§].

In Fig. 5.7 (b), we represent the Ising sector of the ZoBHM ground state for a
chain with L = 100 sites and N = 55 bosons. As can be readily appreciated, in the
absence of pinning (5.1), the Z, fields self-assemble in a periodic configuration of
soliton-antisoliton pairs that delocalize over the chain while maximising the inter-
soliton distance. In this way, the background spins form a soliton lattice, and lead
to a periodic configuration of fractionalized bosonic quasi-particles: a fractional
soliton lattice (Fig. 5.7(c)). As can be observed in Fig. 5.7 (b), the value of
order parameter in between a consecutive soliton-antisoliton pair does not reach
the value of the defect-free configuration at precisely half-filling. As occurs for the
SSH model [Hor81, Hor87], this can be considered as evidence that the energy gap
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Fig. 5.8 Topological Bond Order Wave phases: (a) The Bond Order Wave phase
at half filling (BOW, ;) is doubly degenerate. The two SSB sectors, A and B, are related
by a one-site translation, and can be distinguished by their topological properties: while
A is topologically trivial, B is a symmetry-protected topological phase. Note that, by
applying a Pz, inversion 0® — —o”, we can transform states in the A sector to states in
the B sector and vice versa. (b) This property is not satisfied, however, at one-third and
two-third fillings. For each of these densities, we find again a BOW phase with a three-
fold degeneracy. A, B and C denote the three SSB sectors, connected again by one-site
translations. Note that now the Pz, transformation takes states from these sectors to a
different phase. We denote the later as TBOW, /3 (respectively TBOW5,3), which is again
three-fold degenerate A, B and C, and appears at stronger Hubbard interactions. The
latter is a symmetry-protected topological phase, as opposed to the BOW, 3 (respectively
BOWj,3), which possesses a zero topological invariant. The fact that, as opposed to
the half-filled case, Pz, do not coincide with the one-site translation has an important
consequence: while in the former case topological defects separate regions with different
topological properties in the bulk, this is not true for the latter, and localized states
associated to the defects are not expected a priori based on topological arguments. We
will see, however, that a topological origin for such states can be recovered by extending
the system to two dimensions through a pumping mechanism.

of the soliton lattice is smaller than that of the defect-free configuration or the
pinned-soliton ground state, signaling that the topological defects in the soliton
lattice are not independent excitations above the perfectly-dimerized ground state.
Instead, the topological defects in the soliton lattice are coupled and form an energy
band, leading to ground states that are fundamentally different from a collection of
uncoupled topological solitons. We would like to emphasize that, although this type
of solutions has been analytically predicted before [Hor81, Hor87, TU03, BmcD08§],
our DMRG results for the Z;BH model provide, to the best of our knowledge, the
first numerically-exact confirmation of their existence without the approximations
underlying previous analytical works (e.g. large-N methods) .
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5.3 Bulk-defect correspondence

So far, we have solely focused on the topological properties of the Z,-field sector,
and discussed the fractionalized nature of the bound bosonic quasi-particles. In
this section, we delve into the full topological characterization of the defects, and
show how the fractionalized matter can bring an extra topological protection to
the ground state, making connections to the notion of symmetry-protected topo-
logical defects (SPT-d). We remark, once more, that previous studies typically
consider the properties of SPT-d in the presence of externally-adjusted static soli-
tons [TK10, TH17|. Here, on the other hand, we focus on the full many-body
problem where the solitons have their own dynamics, and the back action of the
matter sector on the solitons becomes relevant. Moreover, we will unveil the par-
ticular topological origin of the associated fractional bosons through a generalized
bulk-defect correspondence.

5.3.1 Symmetry protection of bound quasi-particles

Paralleling our discussion of the previous sections, let us start with the simplest
situation: the half-filled configuration, where the Peierls’ mechanism gives rise to a
two-fold degenerate ground state with a dimerization of the Zs field (see Fig. 5.8).
In the hardcore limit U/t — oo, the bosons can be mapped onto fermions by
means of a Jordan-Wigner transformation [JW28|, which shows that the resulting
ground state has both inversion symmetry and a sub-lattice, so-called chiral, sym-
metry. According to the general classification of symmetry-protected topological
phases [CTSR16], the bulk TBOW, 5 is a clear instance of a BDI topological in-
sulator. The two degenerate ground states A and B can be characterized as trivial
or topological, respectively, with the help of a topological invariant, namely the
local Berry phase v, as we did in chapter 4. In particular, the local Berry phase
takes the value v = 0 in the trivial A phase, and v = 7 in the topological B phase.
Furthermore, the chiral symmetry ensures the so-called bulk-edge correspondence:
a ground state that displays a Berry phase v = 7 will have one edge state at each
boundary of the chain.

Let us now revisit the case of one extra particle above half filling. Figure 5.9(a)
shows the real-space occupation of bosonic in the ground state of a finite system of
L =90 sites. The system displays the pattern A-B-A with two solitons separating
the degenerate SSB configurations. To understand the topological origin of these
states, we show in Fig. 5.9(b) our numerical calculation of the local Berry phase
in real space [Hat06], computed on the intercell bond (i.e. the bond joining two
neighboring unit cells). As can be observed in this figure, the local Berry phase in
the configuration A is equal to v = 0, while the one in the B configuration yields
~ = m. In such a situation, the theory of topological defects [TK10, TH17] predicts
that localized and topologically-protected boundary states will appear at the in-

148



5. Fractionalized ultracold matter

terface of the two topologically-distinct regions. Furthermore, as a consequence of
chiral symmetry, these states have support in just one of the two sub-lattices. This
makes them robust against perturbations that respect the chiral symmetry, but are
not sufficiently strong to close the gap of the system. Therefore, apart from the in-
herent robustness of the classical topological solitons, the total defects formed by a
soliton and a fractionalized bosonic quasi-particle are also protected against chiral-
preserving perturbations, leading to the aforementioned SPT-d [TK10, TH17].

From a pragmatic point of view, these SPT-d constitute an alternative to ob-
serve topological edge states in a cold atom experiment. We note that the presence
of topological edge states at the boundaries of a cold-atom system can be sometimes
hampered by the presence of an additional trapping potential [SGDS10]. Previous
attempts to overcome these difficulties rely on externally adjusting inhomogeneous
configurations [GSN'10], imposing background solitonic profiles on a superlattice
structure [GHF13], or by shaking the optical lattice [PDZ15]. Here, on the con-
trary, the topological solitons are dynamically generated by doping the system, and
self-adjust to certain positions of the chain depending on the doping. In particular,
there are certain configuration where the SPT-d can be found at the middle of the
system (see Fig. 5.2), where the deleterious effect of the trapping potential would
be absent.

Having clarified the topological protection of these SPT-d in the simpler half-
filled and hardcore limits, let us now turn into more complex situations, and assess
the nature of the topological protection of these defects (i) away from the hardcore
constraint, or (7i) around other fractional fillings.

For finite values of the Hubbard repulsion U, the chiral symmetry is explic-
itly broken even in the half-filled case. Nevertheless, the system still possesses
inversion symmetry, which can lead to a quantized non-zero Berry phase and an
intertwined topological phase, as we showed in the previous chapter. We emphasize
that the bulk-boundary correspondence is no longer guaranteed for these phases:
the edge states break the inversion symmetry, and are therefore not protected by
the topology of the bulk. Let us now discuss the situation for fillings above/below
half-filling. Figure 5.9(c) shows the real-space bosonic occupation for U = 10¢. The
soliton-antisoliton pair is still present for such finite interactions but, as a direct
consequence of the loss of chiral symmetry, the support of the fractionalized modes
is no longer restricted to a single sub-lattice. Nonetheless, Figure 5.9(d) shows
that the local Berry phase is still quantized to v = 0 and v = 7 in the bulk of the
trivial and topological configurations, respectively. This quantization is preserved
even in the absence of chiral symmetry, as there still exists the discrete inversion
symmetry. We observe how, in the region where the solitons interpolate between
the two inversion-symmetric ground states, and inversion symmetry is thus not
maintained, the Berry phase attains intermediate values connecting the two quan-
tized values that appear far away from the soliton cores. In summary, the bulk can
be characterized by a topological invariant, but there is no direct bulk-defect cor-
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Fig. 5.9 Topological invariant and fractionalization: (a) Occupation number
(n;) for a chain with L = 90 sites in the hardcore limit, U/t — oo, when we dope a
state in the BOW phase with one extra particle above half filling. At the location of
the defects, two peaks in the occupation can be observed, each one localized only in one
sublattice (represented in different colors) as a consequence of chiral symmetry. (b) Local
Berry phase v calculated on the bonds that separate different unit cells j. This quantity
is quantized to 0 and 7 in the different SSB sectors, and interpolates between these two
values in the region where the defects are located. (c) For a finite value of U we can
still observe peaks in the occupation. These are no longer localized in specific sublattices,
since chiral symmetry is broken. However, the topological Berry phase is still quantized
far from the defects (d) since inversion symmetry is still preserved. In the hardcore limit
we used the parameters A = 0.70t and 8 = 0.03t, and for the softcore case A = 0.80t and
B = 0.02t.

respondence responsible for the protection of the defects. In the following section,
we shall revisit this scenario in search for a generalized bulk-defect correspondence.

Let us now turn to two-third filling, where we recall that the Peierls’ mechanism
gives rise to a threefold degenerate ground state with a trimerization of the Zs fields
(see Fig. 5.8). The resulting phases are insulators that can either be topologically
trivial or non-trivial, depending on the strength of the Hubbard interactions, as
described in chapter 4. Figure 5.8(b) depicts the different ground state configura-
tions for U = 10t (trivial) and U = 15t (topological): the trivial phase has a BOW
pattern with two strong bonds and one weak bond (A), whereas the topological
phase has a BOW pattern with two weak bonds and one strong bond (A). The
topology of these ground states can be characterized with the help of the inter-cell
local Berry phase, which is equal to v = 0 in the trivial phases A, B and C, but
non-zero v = 7 in the topological phases A, B and C. We note that the three
degenerate ground states A, B and C (resp. A, B and A) are related to each other
by a translation of one site, and are thus equivalent in the thermodynamic limit.
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We emphasize here that the three ground states have the same topology, unlike the
half-filled case, where B = A has a different topology with respect to A (Fig. 5.8).

We now move away from the commensurate fillings, and address the topological
characterization of the bound quasi-particles that appear when doping the system
with one particle above the two-third filled ground state, which would correspond
to the trivial BOW phase for U = 10t. As discussed in previous sections, three
topological solitons arise leading to the A-B-C-A configuration (Fig. 5.8(b)), each of
which hosts a localized bosonic quasi-particle with a fractional charge of 1/3. Notice
that, in contrast to half-filling, the defects are no longer separating regions with
different topological bulk properties. According to the theory of SPT-d, since the
solitons do not interpolate between topologically-distinct regions, there is no reason
to expect that a quasi-particle will be bound to the soliton. Nonetheless, such
bound quasi-particles do appear, carry fractionalized charges, and we would like to
understand if they have some generalized topological origin. In the next section,
we show that these quasi-particles can be understood as remnants of topologically
protected defect modes of an extended 2D system, even if this cannot be inferred
a priori in the 1D system.

5.3.2 Quantized inter-soliton pumping

In chapter 1, we show how a generalized bulk-defect correspondence can be es-
tablished by extending topological defects to higher dimension through a Thouless
pumping argument [Tho83]. Here move away from the single-particle scenario, and
explore the pumping of bosons between the topological solitons in the strongly-
correlated ZoBHM. We shall use this pumping to discuss a generalized bound-defect
correspondence that shines light on the topological origin of the bound fractional
bosons. In this case, we implement the adiabatic pumping by modifying the ZoBH
model (3.32) as follows

i
A
Ptz x
+ E 5 Tiitl + E BeiTiit1s
i i

where A,; = 2(—1)'dcos(p) and B,; = (—1)"dsin(p). By choosing § > ¢, we
guarantee that the spins rotate periodically, effectively generating a superlattice
modulation similar to the one we considered in the non-interacting Rice-Mele
model (1.49). In practice, it is enough to fix § = t¢.

In this case, one must consider the many-body ground-state due to the presence
of interactions. Therefore, the notion of the Chern number of the band must be
generalized to that of an interacting system. The latter can be done by defining
the Chern number in a 2D finite size system with the help of twisted boundary

H=- Z {bz(t T O‘Uzi+1)bi+1 + H-C-} + %an(nz —-1)
' (5.11)
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Fig. 5.10 Inter-soliton pumping with Z, solitons: (a) and (b) show the local Berry
phase « calculated at the middle of a finite chain with L = 42 sites as a function of the
pumping parameter . Both correspond to half filling, but starting from the homogeneous
configurations A and A, respectively. Using Eq. (5.12) we can calculate the corresponding
Chern numbers, obtaining vz = —1 and va = +1, respectively. The sign of the Chern
number gives us the direction of the transport, An = —v. This can be observed in (c),
where we represent the real-space bosonic occupation (n;) through the pumping cycle of
a system with two domain walls, starting from the AAA configuration at ¢ = 0. Each
region transports a quantized charge in the bulk, but the direction (dashed arrows) is
different in each of them.

conditions [NTW85al. Alternatively, the Chern number can also be computed for
a cylinder as the change of the Berry phase v(¢) during the pumping cycle [ZMP14,

AHB11]
1 27
1%

“o ), dep 0,7()- (5.12)
We use the latter definition to infer the Chern number and characterize the topology
of our pumping cycle.

We first consider the case of solitons around half filling. Figure 5.10(a) shows
the change in the many-body Berry phase during the pumping, which starts from
the configuration B= A at ¢ = 0. We note that the many-body Chern number can
be calculated from the finite changes of this quantity, which yield vz ~ —1. The
Chern number associated to the reversed pumping starting from the configuration A
is va &~ 1, as shown in Fig. 5.10(b). These results allow us to draw an alternative
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Fig. 5.11 Inter-soliton pumping with Z, solitons: (a), (b) and (c) show the
local Berry phase 7 calculated at the middle of a finite chain with L = 42 sites as a
function of the pumping parameter ¢. They correspond to p = 2/3, but starting from the
homogeneous configurations A, B and C, respectively. Using eq. (5.12) we obtain Chern
numbers equal to (a) vz = —1, (b) vg = 1 and (c) vg = 1. (d) Real space bosonic
occupation (n;) through the pumping cycle of a system with three domain walls, starting
from the ABCA configuration. At the edges of the system, one particle is transported
during the cycle, since the former act as boundaries between the region A and the vacuum,
with a the difference in Chern numbers of —1. Two of the defects separate regions where
this difference is 42, and the charge pumped through these defects is two, while it is zero
across the trivial soliton (center). The direction of the transport (dashed arrows) depends
on the sign of the Chern number, with An = —v.

picture of the topological origin of the fractionalized bound quasi-particles that
appear in the Zo-BHM above/below half filling. Similarly to the non-interacting
case, the fractional bosons bound to the defects can be understood as remnants
of the conducting states localized at the 1D cylindrical interfaces that separate
synthetic 2D regions with different Chern numbers. The difference between the
Chern numbers of these regions predicts the number of bound modes, and its sign
is related to the direction of the particle flow [IZH19]. Figure 5.10(c) shows how
the real-space bosonic occupation evolves for a finite chain with two domain walls.
This figure clearly supports the above prediction: as a consequence of the different
topological invariants, quantised charge is transported between the two existing
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solitons. The latter separate regions with different Chern numbers in the extended
2D system, and the direction of the transport is different for each one.

As stated above, this pumping offers an alternative take on the topological ori-
gin of the fractionalized bosons. However, for the half-filled case, it is not essential
as the topological solitons always separate regions with a different Berry phase,
and one can develop a topological characterization based solely on the equilibrium
properties of the 1D model. Let us now move the case of two-third filling, where
solitons interpolate between regions with the same Berry phase, and pumping be-
comes essential to unravel the topological aspects of the fractionalized bosons. We
first compute the Chern numbers associated to the three degenerate configurations
A, B and C. Figures 5.11 (a), (b) and (c) show the Berry phases for the three
configurations A, B and C, the change of which as a function of the pumping phase
leads to Chern numbers vz = —1, vg = 1 and vg = 1 respectively. Two con-
figurations have therefore the same Chern number, which means that one of the
solitons does not host a topologically-protected conducting state in the extended
2D system. As a consequence, the in-gap state of the corresponding defect does
not connect the valence and conduction bands, and can be thus removed without
closing the gap.

In the full many-body Z,BHM (5.11), the aforementioned absence of spectral
flow means that the BC soliton will not accumulate an integer pumped charge
during the adiabatic cycle. In Figure 5.11(d), we represent the time evolution of
the bosonic density through the cycle for a system with three solitons. It can be
observed how the bosonic density is pumped along distinct directions in the the
three different regions, and that no particle number is being pumped in one of the
defects, which is consistent with the above argument. In the contrary, for the other
AB and CA solitons, the extended interfaces have a different Chern number, and
the quantization of the adiabatic pumping can be thus used for the topological
characterization of the SPTd. Let us highlight once more, that the Berry phase of
all these composite defects are all the same vz = v5 = g = 7. Therefore, although
the fractionalized bound states do not arise in the interface of two topologically
distinct regions in the equilibrium situation, we see that the extended regions via
the pumping do indeed interpolate between regions with a different Chern number,
guaranteeing thus the topological robustness of the pumping between these SPT-d.

It is important to notice that the Chern number, defined here through the
Thouless pumping, is not unique. This is because the Chern number is associated
to an extended 2D system, and there are different 2D systems for the same 1D
topological phase, which depend on the details of the pumping protocol. For ex-
ample, one could reverse the direction of the pumping and the sign of the Chern
numbers will change. For the proposed protocol, the resulting Chern numbers as-
sociated to B and C are the same. This is why there is no charge accumulation in
the soliton separating both, as opposed to the other ones. Again, one could devise
a different protocol and the transport properties would be different. The impor-
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tant point is then that for any of the three possible solitons one can always find
an appropriate pumping protocol such that the soliton corresponds to a 1D defect
in the associated 2D system, separating regions with different Chern numbers, and
thus topologically protected.

As a summary, the pumping argument has allowed us to uncover the topological
origin of the localized bosonic states associated to the Z,4 solitons. As opposed to
the case of Zs solitons, in the later this origin could not be inferred from the
topological properties of the different SSB sectors in 1D, as they all belong to the
same topological phase. We note that, in these simulations, we have pinned down
the defects since everything is computed in the ground state of the system, which
coincides with the time-dependent calculation for an adiabatic evolution. In a cold-
atom experiment, however, the defects are expected to move during the cycle. The
results for the transported charge, however, should hold also in this situation.

5.4 Summary

In this chapter, we have explored the existence of symmetry-protected topolog-
ical defects in intertwined topological phases, where both spontaneous symme-
try breaking and topological symmetry protection cooperate, giving rise to exotic
states of matter. We have analyzed how the topological solitons, which inter-
polate between different symmetry-broken sectors, can host fractionalized matter
quasi-particles, and how the back action of the matter sector on the topological
solitons is crucial to encounter this phenomenon directly in the ground state. We
have presented a thorough analysis of the Zs Bose-Hubbard model, where such
interesting effects appear via a bosonic version of the Peielrs’” mechanism. This
leads to different types of Z,, solitons, showing distinct fractionalized bosonic den-
sities bound to the solitons, and organized according to a rich variety of layouts:
from pinned configurations with few topological defects, to solitonic lattices with
corresponding crystalline densities of fractionalized bosons. The experimental re-
alization of the Zs Bose-Hubbard model, motivated by the remarkable progress
in cold-atom quantum simulators, would allow for the first direct observation of
dynamic topological solitons with bound fractionalized quasi-particles, overcoming
past difficulties in conjugate-polymer science, and giving novel insights in genuinely
quantum-mechanical topological defects.

In addition to the aforementioned static phenomena, we have also explored
the quantization of particle transport in adiabatic pumping protocols. As a conse-
quence of the topological solitons and bound quasi-particles, we have observed that
an integer number of bosons can be pumped between the topological solitons, and
that this phenomenon can be used to derive a generalized bulk-defect correspon-
dence. Given the variety of intertwined topological phases in the Zy Bose-Hubbard
model, it turns out that one can find fractionalized quasi-particles bound to solitons
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that separate regions with the same topological Berry phase. It is only through the
adiabatic inter-soliton pumping of bosons, and the connection to extended 2D sys-
tem with the adiabatic parameter playing the role of an extra synthetic dimension,
that the topological origin of the bound quasi-particles can be neatly understood.
We have shown that, despite appearing at the interface of SSB sectors with the
same topological Berry phase, these quasi-particles bound to the solitons can be
understood, via the pumping scheme, as remnants of protected edge states in 2D
that are bound to the boundaries separating synthetic regions with different Chern
numbers. This generalized bulk-defect correspondence thus clarifies the topological
origin of these quasi-particles via a Kaluza-Klein dimension reduction.
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Chapter 6

A cold-atom approach to quark
confinement

6.1 Introduction: quantum simulation of quantum
field theories

Quantum field theory (QFT) provides a unifying framework to understand many-
body systems at widely different scales. At the highest energies reached so far, the
standard model of particle physics explains all observed phenomena by means of a
relativistic QFT of fermions coupled to scalar and gauge bosons [PS95]. At lower
energies, non-relativistic QFTs of interacting fermionic and bosonic particles form
the core of the standard model of condensed-matter physics [Wen07], which ex-
plains a wide variety of phases via Landau’s seminal contributions of spontaneous
symmetry-breaking (SSB) [Lan37] and quasi-particle renormalization [Lan56]. In
the vicinity of certain SSB phase transitions, the quasi-particles governing the
long-wavelength phenomena can be completely different from the original non-
relativistic constituents [And72], and even be described by relativistic models anal-
ogous to those of particle physics. In fact, it is the careful understanding of this
quasi-particle renormalization, which yields the very definition of a relativistic
QFT [WK74, Wil75, Hol13], and sets the basis for the non-perturbative approach
to lattice gauge theories [Wil74, Kog79].

More recently, the range of applications of relativistic theories has been ex-
tended to much lower energies, as they also appear in experiments dealing with
the coldest type of quantum matter controlled in a laboratory: ultracold neutral
atoms [TGU'12, DLR*15, FRT*16, SGB*19, MZH 20, YSO%20| and trapped
atomic ions [GKZ ™10, GLKT11, MMS™16]. As we introduced in chapter 2, in con-
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trast to the case of condensed matter and high-energy physics, cold-atom /trapped-
ion experiments deal with quantum many-body systems that can be accurately
initialized, controlled, and measured, even at the single-particle level, turning
Feynman’s idea of a quantum simulator (QS) [Fey82, LSAT07] into a practical
reality [BDN12, BR12]. One of the unique properties of cold-atom QSs is the
possibility of controlling the effective dimensionality of the model in an experi-
ment. This is particularly important in a QFT context, where interactions tend
to be more relevant as the dimensionality is lowered [WK74|, bringing in an in-
creased richness in the form of non-perturbative effects. Moreover, the reduced
dimensionality sometimes captures the essence of these non-perturbative effects,
characteristic of higher-dimensional non-Abelian gauge theories, in a much sim-
pler arena. Some paradigmatic examples of this trend are the axial anomaly
of the Schwinger model [Sch62, Man85], the strong-weak duality of the Thirring
model [Thi58, Col75]|, asymptotic freedom and dynamical mass generation in the
Gross-Neveu model [GN74], and the fractionalization of charge by solitons in the
Jackiw-Rebbi model [JR76]. Therefore, the first QSs of QFTs are targeting models
in low dimensions [BC19, ZCR15, DM16, Wiel3, BC20, KJL20].

We note that the flexibility of these platforms offers an exceptional alterna-
tive: rather than using the QS to target a QFT already studied in the realm of
high-energy physics or condensed matter, one can design the QS to realize new
QFTs which, although inspired by phenomena first considered in these disciplines,
lead to partially-uncharted territory and give an alternative take on long-standing
open problems in these fields. For instance, despite the huge success of the stan-
dard model of particle physics, the absence of fractionally-charged quarks from the
spectrum still presents unsolved questions in quantum chromodynamics (QCD),
such as understanding the specific microscopic mechanism for the confinement of
quarks into mesons/hadrons with integer electric charges [Gre20]. One related
problem that remains open is the nature of the confinement-deconfinement tran-
sitions at finite temperatures/densities [KS03| that lead to phases with isolated
quarks and gluons—as well as its relation with the restoration of chiral symme-
try [BDH'19|. Unfortunately, gauge theories in (1+1) dimensions are all confining
regardless of the Abelian or non-Abelian nature of the gauge group. In higher
dimensions, deconfinement is usually driven by four-body plaquette interactions,
which are challenging to implement in cold-atom experiments [DYR ™17, BBC*20].

In this third part of the thesis, we follow two different approaches to investi-
gate open problems in high-energy physics using cold-atom QSs based on current
technology. Similarly to the condensed matter models studied in part II, here we
also consider mixtures of ultracold atoms in optical lattices to simulate the relevant
phenomena. Once again, topology will play an important role to describe many of
these effects, as we will see for the case of quark confinement. In this chapter, rather
than looking for QSs of gauge theories, we exploit the aforementioned flexibility
of QSs to design new QFTs where characteristic phenomena of higher-dimensional
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non-Abelian gauge theories emerge in strongly-correlated phases. In particular,
identify a simple lattice model in (141) dimensions that regularizes a relativistic
Jackiw-Rebbi-type QFT [JR76]| where the interplay between dynamical mass gener-
ation and charge fractionalization leads to confinement-deconfinement transitions of
quark-like quasi-particles, the mechanism of which can be neatly understood at the
microscopic level. Although various mechanisms of confinement in QSs have been
discussed in the literature [ZR11, ZCR12, TCZL13, TCO*13, BPR*16, RDZ™18,
PKI19, LLT*19, TBL*19, BVGM20, NCM20, SMG*20, MDF*20, GCTLB20,
CZLT20, LWB™20], to the best of our knowledge, our work identifies for the first
time a confinement-deconfinement transition between fractionally-charged quasi-
particles. Moreover, the feasibility of our QS proposal with state-of-the-art cold-
atom experiments indicates the possibility of experimentally observing this transi-
tion, together with other QCD-like phenomena, such as chiral symmetry restoration
at finite densities.

In chapter 7.6, we focus instead on a simple gauge theory where spinless fermions
are coupled to Zo gauge fields on a quasi-one-dimensional geometry. We demon-
strate how, even in the absence of a plaquette term, the ground state is in a
deconfined phase, that survives, moreover, to large quantum fluctuations due to a
frustration phenomenon. This phase presents topological order, that intertwines
also with SPT features, giving rise to novel topological effects. These results in-
dicate new paths to access the physics of two-dimensional gauge theories using
near-term quantum simulators, offering also the possibility to prepare strongly-
correlated phases of matter with interesting topological properties.

The rest of this chapter is organized as follows. In Sec. 6.2, we introduce the
Jackiw-Rebbi model and summarize our main results. Starting from a discretized
spin-fermion Hamiltonian on a one-dimensional lattice, we show how the contin-
uum quantum field theory emerges in the long-wavelength limit. Moreover, we
propose a quantum simulation scheme of this theory using a mixture of ultracold
atoms in an optical lattice. In Sec. 6.3, we study the spontaneous breaking of chiral
symmetry in the vacuum of the theory, and the corresponding generation of a dy-
namical mass for the fermionic fields. We derive analytically the phase diagram of
the continuum model in the large-spin limit. We then extend these results numeri-
cally to the lattice, as well as in the presence of quantum and thermal fluctuations,
and show how the latter can restore chiral symmetry. In Sec. 6.4, we analyze the
different regimes of quasi-particles that appear on top of the symmetry-broken vac-
uum. In particular, we calculate the static potential between them, finding how
fermionic quasi-particles with fractional charge modify their interactions from re-
pulsive to attractive as we vary one microscopic parameter. The latter corresponds
to a deconfinement-confinement transition, as we confirm in the case of non-zero
chemical potentials in the thermodynamic limit. Finally, we show how, in the
deconfined phase, chiral symmetry is restored even at zero temperature.
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6.2 The rotor Jackiw-Rebbi model

In this section, we construct the Jackiw-Rebbi model by first introducing a dis-
cretized lattice model, where movable spinless fermions are coupled to spins located
on the lattice sites. In Sec. 6.2.1 we describe the main elements of the correspond-
ing Hamiltonian and we compare it to other models used in high-energy physics
such as lattice gauge theories. We finish by summarizing the phase diagram of
the model, both in the vacuum as well as for finite densities. In Sec. 6.2.2, we
present a detailed quantum simulation scheme for the spin-fermion model using a
Bose-Fermi mixture of ultracold atoms on a single optical lattice, and show how its
whole phase diagram is experimentally accessible. Finally, in Sec. 6.2.3, we take the
continuum limit of the lattice model in the long-wavelength regime, establishing a
precise connection between the atomic system and the Jackiw-Rebbi quantum field
theory.

6.2.1 Lattice discretization

To motivate the nature of our model, we note that imposing non-linear constraints
in QFTs is also a source of non-perturbative phenomena that resemble the phe-
nomenology of non-Abelian gauge theories. The O(N) non-linear sigma model,
where a vector field is constrained to take values on the (N —1)-sphere, also displays
asymptotic freedom and dynamical mass generation [Pol75, Kog79], although the
latter cannot be accompanied by SSB in (1+1) dimensions [Col73|. Remarkably, the
O(3) non-linear sigma model with an additional topological term arises as the long-
wavelength description of Heisenberg antiferromagnetic spin chains [Hal83, Aff85].
For leading antiferromagnetic correlations, these systems are effectively described
by quantum rotor models, which consist of particles rotating in the surface of a
sphere, such that their angular momentum competes with the interactions that fa-
vor a collective orientation [Hal83, Aff85, Sacll|. This motivates our study of con-
strained QFTs involving rotors as mediators of interactions between Dirac fermions.
Let us introduce a (1+1)-dimensional lattice model that can display SSB of a
chiral symmetry, leading to dynamical mass generation, which allows, as we will
see, the emergence of confinement. We consider a Hamiltonian lattice field theory
of fermions c;, c;r and spins S;, both residing at the sites x; = ia of a 1D chain of
N sites and length L = Nsa (see Fig. 6.1). The fermions hop between neighboring
sites with tunneling strength t across a potential landscape set by a spin-fermion
coupling g = ge,, and determined by the spin along the quantization axis

H:Z(*t (030i+1+63+1ci) +g'Sic;cm- 7h~Si) . (6.1)

Additionally, the spins precess under an external field with both longitudinal and
transverse components h = hye, + hie,, the latter controlling the quantum fluctu-
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Fig. 6.1 Discretized rotor Jackiw-Rebbi model: Fermions tunnel with strength
t against an energy landscape set by the lattice spins e;; = g - (S;), which additionally
precess under a magnetic field h. In the figure, we show a possible configuration of the
spins that lead to an energy landscape with a simple gradient. In the text, we show that
other configurations that break translational symmetry appear directly in the equilibrium
states of the model.

ations of the spins. Although Eq. (6.1) bares a certain resemblance to the Kondo
model of fermions coupled to magnetic impurities [Kon64, Kog79], the fermions
are spinless in the present case, and there is no continuous SU(2) symmetry in the
coupling.

Let us briefly summarize our findings. Dispensing with the continuous O(3)
symmetry of the non-linear sigma model [Hal83, Aff85], we show that long-range
antiferromagnetic order can take place even in (1+1) dimensions, as it is the result
of the breakdown of a discrete chiral symmetry (Fig. 6.2(a)). These properties
can be neatly understood in the long-wavelength limit, where we find an effective
Jackiw-Rebbi-type QFT with rotor fields playing the role of the self-interacting
scalar field: a rotor Jackiw-Rebbi model. Interestingly, in contrast to the standard
Jackiw-Rebbi model [JR76], the SSB does not take place at the classical level,
but requires genuine quantum effects that lead to the non-perturbative dynami-
cal generation of a fermion mass. We also explore how different rotor profiles can
arise in the ground state by varying the fermion density, which either leads to
fractionally-charged or fermion-bag quasi-particles, and proof their stability even
in the ultimate quantum limit of spin S = 1/2. In fact, we show that the fermion-
bag quasi-particles can be understood as confined pairs of fractional charges, re-
sembling the confinement of fractionally-charged quarks in mesons that occurs in
the standard model of particle physics (Fig. 6.2(b)). Interestingly, we find that
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Fig. 6.2 Phase diagram of the rotor Jackiw-Rebbi model: (a) In the figure, we
represent qualitatively the different phases that appear in the half-filled vacuum in terms
of the interaction g and the longitudinal field hy, for fixed values of the transverse field
h: and temperature 7. Chiral symmetry is spontaneously broken in the shaded region
(x-SSB), where the fermions develop a dynamical mass and the spins display Néel long-
range order, as depicted in the upper panel of (b). This region is surrounded by a chiral-
symmetric phase with a longitudinal paramagnet for the spins, such that the interacting
massless fermions form a Luttinger liquid (LL). (b) Within the ordered region, we find
two different quasi-particle regimes, separated in the figure by a dashed line. In the first
one, deconfined topological defects in the spins bound repulsive quark-like fermions with
fractional charges. In the second one, the quasi-particles attract each other, forming
meson-like fermion bags with integer charge. For a finite doping density, the two regimes
are separated by a first-order confinement-deconfinement phase transition, which coincides
with a chiral symmetry restoration due to the proliferation of defects.

a confinement-deconfinement transition can be controlled by tuning a single mi-
croscopic parameter, and that this quantum phase transition is associated to the
restoration of chiral symmetry by soliton proliferation.

Similarly to lattice gauge theories, in our lattice model (6.1), fermion-fermion
interactions are mediated by bosonic fields. However, contrary to the former, our
model does not possess gauge invariance, a challenging feature to simulate with
atomic resources [BC19]. We show how this simplification allows one to implement
the lattice model using state-of-the-art cold-atom QSs in a large regime of realistic
experimental parameters. Our results thus show how non-perturbative high en-
ergy phenomena, such as charge confinement, could be investigated using minimal
experimental resources. Let us start with the proposed scheme for the cold-atom

Qs.
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)

Fig. 6.3 Bose-Fermi quantum simulator: (a) Optical lattice potentials for both the
bosonic atoms, here represented by red spheres, and the two-state fermionic atoms, here
represented by green (blue) spheres for the 1 (]) states. The bosons have a tunneling
amplitude ¢, and the Bose-Hubbard on-site interaction U. Conversely, the fermionic tun-
neling is suppressed by the very deep lattice, and the Fermi-Hubbard ons-site interaction
strength is Uy;. When residing on the same lattice site, bosons and fermions interact
with different strengths Uy # Upy. (b) Driving that induces Rabi oscillations between
the fermionic states with Rabi frequency Q4 and detuning Aq.

6.2.2 Cold-atom quantum simulation

The lattice Hamiltonian (6.1) can be realized with a Bose-Fermi mixture of ultra-
1

cold atoms confined in spin-independent optical lattices. We focus on the S = 5
case, as it presents fewer requirements and, moreover, all the relevant phenomena
already appear in this limit of maximal quantum fluctuations. Notice that the roles
of bosonic and fermion degrees of freedom are interchanged here. In particular, we
propose to use hard-core bosons to simulate the dynamical fermionic matter, while
the fermionic atoms will be used to implement the rotor fields. As will become clear
below, this approach is motivated by the specific choice of bosonic and fermionic
species, which presents a well-characterized Feshbach resonance that will allow an
accurate experimental control of the inter-species scattering, the crucial ingredient

in our scheme.

Bose-Fermi Hamiltonian.— We aim at realizing the following grand-canonical
Hamiltonian for the Bose-Fermi mixture (Fig. 6.3)

H:HbJer+Hbf, (6.2)

where H; describes the dynamics of the bosonic atoms of mass my, Hy the one of
the fermionic atoms of mass my, and Hyy the interaction between the two species.
The bosonic part of the Hamiltonian is defined as follows

Hy=—tY (bjbiﬂ + h.c.) + % S bibinib, — > bl

?
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where b; and bz are the bosonic creation and annihilation operators acting on
lattice site 4. This grand-canonical Hamiltonian describes the tunneling of bosonic
atoms in a 1D lattice with strength ¢, and the Hubbard interactions with energy
U. Here, u; = pt — Vj; is expressed in terms of the chemical potential ;¢ and the
on-site optical trapping potential V4 ;, and controls the bosonic filling in the local
density approximation. The fermionic contribution can be divided in two parts
Hy = H}" + H}, where the first term describes the external motional degrees of
freedom

H}n = —ty Z (fitofiJrl,a + H-C-) + UTL Z fiifini,Tfi,i
- Z pitflafin = Z“iif;ifLJ (6.3)

Here, f, . and f;ra are the fermionic creation/annihilation operators acting on lattice
site ¢ with internal state o = {f,]}. Fermions are trapped in a very deep optical
lattice, such that t; < ¢, and we can neglect their tunneling along the 1D lattice
during the timescale of interest. They interact with Hubbard interaction Uy, and
their filling is controlled by the local chemical potentials jt;o = pto — Vy,;, where po
is the chemical potential for the fermionic atoms in each internal state, and Vy; is
an optical trapping potential. In addition, the internal degrees of freedom shall be
described by

Hy =Y eofl fig+ > (Qacoswatf],f, +He.), (6.4)
1,0 7

where we have introduced the atomic energy levels €4, €, for the two states of the
fermionic species, and a local driving of frequency wq that induces local oscillations
between these two states with a Rabi frequency 24, where i = 1 henceforth. As will
become clear below, this driving stems from radio-frequency radiation, which has
a negligible momentum, and one can thus neglect recoil effects that would couple
the internal and external degrees of freedom. Finally, the interaction between the
two species is

Hyp = blb, (UbeiT,Tfi,T + Ub¢fi¢fi,¢) ; (6.5)

which describes the on-site interaction between bosonic and fermionic atoms, and
depends on the internal spin state of the fermions, i.e. in general Uy # Up,.
As will be clear for the particular Bose-Fermi mixture discussed below, there are
also boson-fermion scattering processes where the internal states of the fermions is
changed by populating other bosonic states such that the total angular momentum
along the quantization axis is conserved. Nonetheless, these so-called spin-flipping
collisions of strength Uy are negligible for a sufficiently-large difference of the on-
site energies Uy < |6 — €.
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Fig. 6.4 Bosonic mass generation: Order parameter n. in terms of U/t for the
ground state of a finite chain of different lengths L, with ¢S/t = 1.0, heS = 0.5t and
heS/t = 0.05. The different lines cross at the critical point, consistent with a phase
transition in the Ising universality class (v = 1, 8 = 1/8). The inset shows how the
rescaled lines collapse into a single one.

Let us now discuss the steps to arrive at the desired model (6.1), and find
the relation between the model microscopic couplings and the cold-atom experi-
mental parameters. Using two internal states |1) and |}) with different magnetic
moments, the energy splitting corresponds to the Zeeman energy and can be tuned
via an external magnetic. The driving frequency will be near-resonant and fulfills
wa = (e —€)) — Aq, where Aq is the so-called detuning. Let us note at this
point that the optical trapping potential V;; of Eq. (6.3) is assumed to be state-
independent, which is generally the case, such that it does not modify the above
resonance condition, and need not be included in the present discussion. Moving
to an interaction picture with respect to

Hig=> esll fig: (6.6)
1,0
the fermionic operators become f; , — f; ,(t) = f; ,e”'“"*. Furthermore, assuming

that |Q4],]Ad| < wa, we can perform a rotating-wave approximation such that

Hi(t) ~ Z (%iemdtf;rmfw + H.c.) . (6.7)

i
Finally, by moving to a frame that rotates with the drive frequency, this Hamilto-
nian can be written as the following time-independent term

. Aq o4 P Qg , a0 = A A
1y =3 (S = FLh) + UL+ L)) 69

K2
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where we define the Bloch sphere in a way that Q4 € R, i.e. we use the phase of
the driving as a reference for subsequent measurements. Here, we have introduced
the following relation between the fermionic operators in the original Schrédinger
picture fiya, and those fi,o in the rotating frame

f;ﬁ:,f efi(ET*%%f’
fiv=1, oi(er i )t (09

We can now define the following spin—% operators in terms of these fermionic
annihilation and creation operators

S; = %(f;rTfm - fjifzi) = %(f;,Tfi,T o fiifiai)’
S¢ = 3(Flafo + f1 0 = 5141 et + Hee).

Therefore, to measure the spin operators discussed in the main text, one would have
to lock the phase evolution to the one set by the source that drives the transition.

After these derivations, we should enforce that only 1 fermion resides at each
lattice site, which can be adjusted by the filling, and maintained by working in
the regime where t; < ¢, thus suppressing double occupancies. In this case, we
obtain the desired S = (S7) = 3 limit. Moreover, since the fermion tunneling ¢y
is negligible, super-exchange processes stemming from virtual double occupancies
occurring at order ¢2 / Uy, are also negligible, and we can finally arrive at an effective
description accordmg to the following grand-canonical Hamiltonian

=ty (Blber +he) + 5 S s — 1) — 3 bl

JranzS 72 (heS? + heS?), (6.11)

(6.10)

where the boson operators are not altered by moving to the rotating frame I;i = b;.
In the Hamiltonian above, the coupling constant is defined as

9 =2(Upt — Upy), (6.12)
and the external field given by the driving term
he = —Aq, hy=—9q, (6.13)

the specifics of which are discussed below. The local chemical potential p; will
be adjusted to vary the filling of the bosonic atoms, which is homogeneous in the
central region of the trap. The variation of the filling will allow to explore the
different quasi-particle regimes discussed in the main text.
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Fig. 6.5 Tunneling ratio t/t; as a function of the lattice wavelength. The zero
crossing of the polarizability of Rb at Ay, is indicated by the dashed vertical line. For
the numerical calculation, we have chosen a fixed laser intensity for the lattice, and have
tuned it to a regime where ty/h ~ 5mHz. Since ty is more or less constant throughout
the whole regime, ¢/t illustrates the range of available tunneling couplings for ¢. This
can be optimized further by going to shallower lattice depths.

Softcore bosons.— We can now address the final step in the derivation. Dis-
pensing with the chemical potential, and working in the central region of the trap
to neglect the residual on-site potentials, the Hamiltonian associated to Eq. (6.11)
coincides with the lattice model (6.1) in the hardcore limit, U/t — oo, where bosons
can be mapped to fermions via the Jordan-Wigner transformation. Nevertheless,
we emphasize that the phases investigated in the main text appear also away from
this singular point, i.e. for finite values of U/t, provided that the Hubbard inter-
actions are sufficiently strong. This is true in particular for the AF phase found
in the fermionic case, which survives away from the hardcore limit, giving rise to
the generation of a dynamical mass for strongly-correlated bosons. In Fig. 6.4,
we represent the finite-size scaling for the Néel order parameter, and find that the
disorder-order transitions occurs for interactions of the order U, ~ 10t. Below this
value the soft-core bosons are in a superfluid state, while the spins form a longitu-
dinal paramagnet, similar to the disorder phase in the hardcore limit. Moreover,
we find the the phase transition is also in the Ising universality class.

Once all the steps for the derivation of the target model (6.11) have been dis-
cussed for a generic cold-atom setting, let us estimate the specific parameters for a
mixture of bosonic 8" Rb and spinfull fermionic “°K atoms, and discuss the viability
of the experimental realization. The following main ingredients are relevant for the
implementation:
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6. A cold-atom approach to quark confinement

Optical lattice potential.— The dominant transitions of the two alkali atoms,
bosonic 8’Rb and fermionic *°K are

ARb7D2 ~ 780 nm, )\Rb,Dl ~ 795 nm (614)
)‘K,DQ ~ 767 nm, )\K,Dl ~ 770 nm

which allows for widely tunable polarizabilities and optical-lattice potentials. In
order to achieve a large separation of timescales, it is desirable to achieve a large
ratio of the tunneling couplings ¢/t s, where t is the strength of the tunnel coupling
for the bosonic species, and ¢y denotes the spin-independent tunneling amplitude
of the fermionic species. In essence, this means that the lattice potential expe-
rienced by the bosonic species should be much weaker compared to the one seen
by the fermionic atoms. In order to reduce off-resonant photon scattering, which
would result in additional heating, at the same time the detuning from any inter-
nal transition has to be maximized. Due to the large fine-structure splitting of Rb,
there is a convenient tuning range around the zero crossing of the polarizability at
Aoz = 790nm. This range offers both a wide tunability of the tunneling ratio ¢/t;
(Fig. 6.5) and a large detuning from all resonances to minimize heating. Notice
that a similar strategy was used in chapter 3 to simulate the rotor SSH model with
a Bose-Bose mixture. Contrary to that case, here the periodic potential for both
species is not shifted, so they reside on the same lattice sites.

Tunable interspecies interactions.— In order to provide good control over
the parameter g (6.12) that appears in the effective Hamiltonian (6.11), we pro-
pose to make use of the well-calibrated and easily-accessible interspecies Fesh-
bach resonance between the absolute ground states |F = 1,mg = 1) of 8’Rb and
1) = |F=9/2,mp =—9/2) of YK [SZD*08]. Although there does not seem to
be a Feshbach resonance nearby to tune the scattering length between the ground
state of Rubidium and ||) = |F = 9/2,mp = —7/2) of 4°K, the interaction param-
eter g can still be fully tuned over a wide range of values as shown in Fig. 6.6, as
it depends on the difference of scattering lengths. In this figure, we have plotted
the scattering length a4 according to

apr(B) = ayg (1 - B_ABO> (6.15)

based on the theoretical values reported in Ref. [SZD108§|, i.e. By = 546.75(6) G,
A = —3.1G and apy = —189 ag, where ag is the Bohr radius.The on-site interspecies
interaction energy is determined by

27rha[,
Upy = 2210 / oy () 2 oo (1) P, (6.16)
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Fig. 6.6 Ratio of interactions strengths ¢gS/U as a function of magnetic field.
The tunability here stems from the tunability of the interspecies scattering length apt,
here shown in green and defined in Eq. (6.15).

where ppe = mrpmk/(mgrp + mi) is the reduced mass and mgy, = 86.9u is the
mass of one 87Rb atom and mk = 39.96 u the mass of one “°K atom; u is the atomic
mass unit. The functions wy(r) and w(r) denote the Wannier functions of Rb and
K respectively, which are different because the two species see a lattice potential
of different depth. Through these expressions, we can obtain the parameter g, as
discussed below.

Interaction ratio ¢S/U.— Rubidium in its absolute ground state has a scattering
length of a; ~ 100.4 ag, and the on-site Hubbard interaction is defined as

4 2
gL ‘”’/| r)*dCr, (6.17)

Neglecting the contribution from the Wannier functions, which is dependent on the
lattice depth, we can achieve a wide tunability as illustrated in Fig. 6.6, where we
plot ¢S/U =~ W as a function of the external magnetic field.

Coupling between spin states.— Let us now discuss the specifics of the driving
term discussed previously. The external fields hy, hy can be realized with a radio-
frequency or two-photon microwave transitions at frequency wq almost resonant
with the Zeeman energy difference AEY | = ¢; + — ¢; | between [1) and []) atoms.
For the Feshbach resonance shown in Fig. 6.6, the resonance occurs at By, which
corresponds to AEZ / h ~ 80 MHz, where h denotes Planck’s constant. The energy
offset hy is then reahzed by detumng the coupling frequency from resonance, i.e.
he = AE /P — wa. With single-photon transitions, Rabi frequencies {2q /27r of
several 10 kHz can be easily achieved, which corresponds to the regime |hi| =
|Q24] > t. Moreover, the pair of states |1) and ||) is well isolated from the other
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Fig. 6.7 Detuning of the microwave transition §h,. The residual detuning is
technically limited by magnetic field fluctuations d B. Estimating the residual detuning
serves as a lower bound for the coupling strength w and the control over the detuning h,.

internal states, even in the presence of this coupling. The energetically closest
transition is between the levels ||} and |F = 9/2,mp = —5/2), which is detuned
by ~ 5MHz > Q4/h.

For some of the proposed phenomena, it is desirable to tune the coupling in order
to enter the regime where h; is on the order of the tunnel coupling ¢. The level of
control one can achieve is limited by the stability of the magnetic field that defines
the Zeeman shift AE% ;- We have calculated the detuning from resonance dhy
that occurs due to an imperfect control of the external magnetic field (Fig. 6.7). It
has been demonstrated that the fluctuations in the external field can be suppressed
below 3 x 1079, as reported in Ref. [JDPC17|. The most sensitive regime occurs for
hy = 0, where the lower bound for h; would be on the order of a few 100 Hz, which
coincides with typical experimental values for . Note, that the typical timescale
for these fluctuations is large compared to the duration of the experiment, hence,
the detuning dh, can be assumed constant but will fluctuate between individual
experimental realizations.

To summarize, we have presented detailed calculations of all the relevant pa-
rameters for the Rb-K mixture, demonstrating a wide range of experimentally
tunability. We would like to emphasize that the above ingredients have been re-
alized in current cold-atom experiments, and the QS of the model (6.1) is thus
realistic. We believe that the main experimental challenge will likely be the prepa-
ration of extended regions in the lattice with the proper filling for the bosons and
fermions. In the sections below, we give a detailed account of the results sum-
marized above about the equilibrium states and low-energy quasi-particles of the
Hamiltonian (6.1). When discussing these particular phenomena, we will comment
on specific probing techniques and the temperatures that would be required to
observe them. Let us start by describing these effects by means of an effective
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long-wavelength theory.

6.2.3 Continuum limit

We now derive the continuum Hamiltonian QFT that captures the low-energy prop-
erties of the lattice model (6.1) at half filling, this is, with fermionic density p =
N% Zl(cjc) = 1/2, which will be considered as the vacuum state in the following.
As customary in various (1+41)-dimensional systems [Hal81], one starts by lineariz-
ing the dispersion relation to obtain a Tomonaga-Luttinger model [Tom50, Lut63].
In this case, this amounts to a long-wavelength approximation around the Fermi
points +kp = +7/2a, such that ¢; ~ e 7% /ayp, (z) + et *rei /arp_(x) is ex-
pressed in terms of slowly-varying right- and left-moving fermion fields ¢4 (x). As
detailed in Appendix B.1, this can be recast in terms of the staggered-fermion dis-
cretization of lattice gauge theories [KS75], where one identifies the Fermi velocity
vp = 2ta as the effective speed of light ¢ = vp. To proceed with the contin-
uum limit, the spin operators are also expressed in terms of slowly-varying fields
S; = cos(knx;)Sn(zr) + al(z) with ky = 7m/a, corresponding to the Néel n(z) and
canting £(z) fields [Hal83, Aff85]. Performing a gradient expansion and neglecting
rapidly-oscillating terms yields H =[dazH (z) with

H=T(z) (—icy'O + gs - n(z)) ¥(2) + (gjo(z) — h) - £(z), (6.18)

where W(z) = UT(2)7° is the adjoint for the spinor ¥(x) = (¥4 (x),v_(x))!, the
gamma matrices are 7° = 0%, 4! = —ioY, and the charge-density is jo(z) =
W(x)y¥(z). Additionally, we have introduced the coupling g, = gSe., and 9; =
0/0x.

This relativistic QFT (6.18) can be understood as a Jackiw-Rebbi-type of
model [JR76], in which a Yukawa term couples the fermion-mass bi-linear ¥ (z)¥(z)
to the Néel field n(z), instead of the standard Yukawa coupling to a scalar field
¢(x). Additionally, the rotor dynamics is determined by the precession of the
canting field under g,jo(z)/S — h, instead of the more familiar A¢* term of the
Jackiw-Rebbi QFT. Hence, this precession includes the back-action of the matter
field onto the mediating fields via the charge density. In the large-S limit, and in
phases dominated by Néel correlations, n(x) and £(z) represent, respectively, the
orientation and angular momentum of a quantum rotor lying on the unit sphere,
such that this QFT (6.18) can be understood as a rotor Jackiw-Rebbi (rJR) model.
In contrast to the standard rotor model [Sacll], neighboring rotor fields are not
coupled via O(N)-symmetric interactions, but rotor-rotor couplings will instead
be generated through their coupling to the Dirac fields, and vice versa. As shown
below, the lack of a continuous symmetry in Eq. (6.18) plays a crucial role, and
makes the physics of the rJR model very different form these O(N) counterparts.

If the spins order according to a Néel pattern (n,(z)) # 0, fermions will acquire
a mass by the SSB of the discrete chiral symmetry ¥(z) — v°¥(x) with v = 0%,
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and n,(x) = —n.(z). However, in contrast to the JR model [JR76], this chiral SSB
cannot be predicted classically by looking at the symmetry-broken sectors of the
scalar field, i.e. the double-well minima, of the classical potential in the A¢* theory.
In our case, the bare rotor term only describes precession of the rotor angular
momentum, and does not include a collective coupling of the rotors that would
induce Néel order already classically. Instead, in closer similarity to the Gross-
Neveu model [GN74], chiral SSB shall occur by a dynamical mass generation that
can only be accounted for by including quantum effects (i.e. rotor-fermion loops).
On the other hand, there are important differences, as the Gross-Neveu model uses
an auxiliary Hubbard-Stratonovich field [Col85], whereas our rotor fields represent
real degrees of freedom with their intrinsic quantum dynamics. As discussed below,
this will lead to crucial differences for the chiral SSB, the quasi-particle spectrum,
and confinement.

6.3 Dynamical mass generation

In this section, we study the phenomenon of dynamical mass generation associ-
ated to the spontaneous breaking of chiral symmetry in the theory’s vacuum. In
Sec. 6.3.1, we show how this SSB takes place in a region of the quantum field theory
phase diagram, and uncover the non-perturbative character of this process using
a large-S expansion. In Sec. 6.3.2, we study the effect of quantum fluctuations,
and calculate numerically the phase diagram of the lattice model for various values
of S. Finally, in Sec. 6.3.3, we include thermal fluctuations, and show how the
restoration of chiral symmetry shrinks the region in parameter space where the
fermion fields have a non-zero mass.

6.3.1 Large-S limit

Using a coherent-state basis [Rad71, Fral3], as discussed in App. B.2, the partition
function Z = fD[\If,\IJ,n,E]e_SE can be expressed in terms of an action Sg =
[ d?xzL(x) with the Lagrangian

L=V(x) ("0 +gs - n(x)) ¥(x) + (gjo(x) — h) - £(). (6.19)

Here, x is a 2-dimensional Euclidean space with imaginary time 20 = cr = c(it),

and 2! = z, and the Euclidean gamma matrices are 4° = 7°,4* = —iy'. The Dirac
and adjoint spinors are Grassmann-valued fields ¥(z) = (¢, (7,2),%_(7,2))",
U(x) = (Y_(7,2),%4(7,7)), and the charge density is the Grassmann bi-linear
jo(x) = W(1,2)%¥ (7, 7). Likewise, the spins lead to constrained vector fields
which, in the large-S and Néel-dominated limits, correspond to the position n(x)

and angular momentum £(x) of a collection of rotors with

n(x) n(x)=1, n(x) £(x)=0. (6.20)
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Since the Lagrangian (6.19) is quadratic in Grassmann fields, the fermions
can be integrated out to obtain an effective action for the rotor fields S.g =
—log ([ D[W, ¥]e~®e). In analogy to the Gross-Neveu model [GN74], where dy-
namical mass generation can be derived by assuming a homogeneous auxiliary field,
we consider n(x) = n, £(x) = £, Vo € (0,5] x (0,L]. As shown in App. B.3, the
functional integral leads to

Sus — 6L <(g2; ~ h) e (QZ;TZ)Q <log (gsA.Cnf N 1)) | (6.21)

where we have introduced the UV cutoff A, = 2t set by the bandwith of the bare
fermion dispersion on the lattice (6.1).

Exploiting the analogy to the Gross-Neveu model [GN74], where one deals with
N flavors of Dirac fermions and finds the non-perturbative dynamical mass gener-
ation in the N — oo limit, we will send S — 0o to determine the non-perturbative
phase diagram quantitatively. Since phases not governed by Néel correlations can
also appear, and we are interested in possible quantum phase transitions transi-
tions thereof, we must relax the first constraint in Eq. (6.20). By considering the
explicit construction of the rotor fields in terms of the spin coherent states, we find
the Néel and canting fields

1 1
n= ?(sinﬁA —sinfp)e, — 7(0059,4 —cosfp)e,,
(6.22)

L= %(sinHA +sinfép)e, — %(COSGA + cosfp)es.

The fields are thus parametrized by 04,05 € [0, 7], each of which represents the
angle of the spin coherent state associated to the A (odd sites) and B (even sites)
sub-lattice, pointing along the great circle contained in the 2z plane (see Fig. 6.1).
One can check that the second constraint in Eq. (6.20) is readily satisfied n-£ = 0,
whereas the first one will only be recovered in Néel-dominated phases 64 ~ —fp =
+7/2, where n-n ~ 1.

By inspecting the effective action (6.21), one finds that it is proportional to
Seft = BLSVerz(04,05), such that the large-S limit is obtained through the saddle-
point equations VyVeg|g. = 0. The features of the phase diagram can be un-
derstood in two complementary regimes: (a) For hy/t > hy/t,g/t, the saddle-
point equations will be solved by 6% = 65 = m, such that all spins are maxi-
mally polarised in the direction of the leading transverse field |gwp) = ®;[5,5), ;
where [S,m), ; is the common eigenstate of S7, S{* with eigenvalues S(S 4 1), and
m e {-S,-S+1,---,S5}, respectively. This state can thus be understood as a dis-
ordered transverse paramagnet, with all spins aligned along the equator of Fig. 6.1.
Since (n.) = 0, there is no mass generation, and the chiral symmetry remains in-
tact. Therefore, the fermionic sector will correspond to a metallic Luttinger liquid.
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Fig. 6.8 Dynamical mass generation at finite S: In the background of the different
phase diagrams represented in the figure, we show the absolute value of n, calculated with
the HF method for a periodic chain of N, = 64 sites and Ny = 32 fermions. The different
dots correspond to the critical points separating the AF from the LL phase, obtained
using iDMRG for various values of S. (a) When quantum fluctuations are absent, all
the points coincide with the HF solution and the large-S predictions for the whole phase
diagram. The solid lines correspond to the solution obtained using the large-S expansion
in the continuum model (6.23), agreeing with the lattice critical lines for small values of
gS/t. (b) In the presence of finite quantum fluctuations, the HF solution departs from
the correct ground state, although it provides a good approximation even for small values
of S in the case of small fluctuations. (¢) The AF region shrinks as hyS/t increases, and
it does it faster for smaller values of S. However, this phase can always be found, even in
the limit S = 1/2, provided that gS/¢ and heS/t are sufficiently large.

(b) For hi/t < hg/t,g/t, we find a competition between two distinct phases. If
he > hj or hy < h, , where we have introduced

2
=_9, 1t (98 2ty 1
h€_2i7r5<2t><10g<95’)+2’ (6.23)

the saddle-point equations are solved by 6% = 05 = 7/2 or 0% = 05 = —7/2, re-

spectively. These correspond to disordered longitudinal paramagnets with ground
states |g/p) = ®:19,5). ;, or |gp) = @5, —S), ;, with all spins pointing towards
the north or south poles of Fig. 6.1, respectively. Once again, since {(g7p| n. [g7p) =
0, there is no mass generation and the fermions are described by a massless Lut-
tinger liquid. If h, < hy < h;, the saddle points correspond to 6% = —0% = £7/2,
which yields two Néel antiferromagnets |g§> = Qiea |5, £5),; ®ien |9, F5), ;» In
which chiral symmetry is spontaneously broken, yielding <gﬁ| N, | gﬁ> = +1 re-
spectively. In both cases, the spins of Fig. 6.1 alternate between the north and
south poles, and the Dirac fermions acquire a mass dynamically, accompanied by
a so-called scalar condensate

(T0) = (Wl (2)v— () + ¢! (2)¢4 (2)) = Do. (6.24)

z,17
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Since the spinor components 1 (z) correspond to the long-wavelength excitations
around momenta +krp = =£7/2a, the scalar condensate of the continuum QFT
leads to a periodic modulation of the lattice density (czci) = % + (=1)"Spa. This
phase is reminiscent of a charge-density wave insulator in electron-phonon systems.
However, in these systems, Peierls’ argument shows that the 1D metal is always
unstable towards the insulator [Pei55], instead of showing different phases separated
by quantum critical lines, as occurs for our rotor Jackiw-Rebbi QFT (6.23). Let us
remark once more that, while in the standard JR model [JR76] chiral SSB can be
understood by means of perturbation theory about the classically SSB sectors in
g < 1, the mass is dynamically generated in our case, and cannot be understood
perturbatively, which can be appreciated by the fact that the log(St/g) dependence

in Eq. (6.23) cannot be Taylor expanded for small g.

6.3.2 Quantum fluctuations and Ising universality class

Let us now benchmark the above large-S calculations with numerical results based
on a Hartree-Fock (HF) [GVO08] self-consistent mean-field method, and a matrix-
product-state (MPS) [Sch1l, HP18] formulation of the density-matrix renormal-
ization group (DMRG) [Whi92]. This serves a two-fold purpose: on the one hand,
both methods are directly applied to the discretized model on the lattice (6.1), and
can thus be used to identify the parameter regime where the continuum QFT pre-
dictions (6.21) are recovered. On the other hand, the quasi-exact MPS method
gives direct access to corrections of the large-S predictions for finite values of
Sed %, 1, %}, testing the dynamical mass generation in the regime of large quan-
tum fluctuations. Likewise, we can adapt the HF method to non-zero temperatures
T and chemical potentials g in order to explore the role of thermal fluctuations and
finite densities (see Appendix A.2).

Figure 6.8 contains our results for the zero-temperature half-filling phase dia-
gram as a function of (¢S/t, heS/t) for various values of the transverse field hyS/t.
In the background, we represent the Néel order parameter, n, = Nl >, €e.n(x), ob-
tained by averaging over the Néel field n(z) = 55 ((S2;) — (S2i-1)). In Fig. 6.8(a),
one can see how the HF predicts an intermediate region, here depicted in red, dis-
playing antiferromagnetic long-range order n, =~ 1 due to the SSB of the discrete
chiral symmetry. In order to test the validity of our QFT predictions based on the
phenomenon of dynamical mass generation, we benchmark these numerical results
against the critical lines of Eq. (6.23), which are depicted as solid black lines in
Fig. 6.8(a). In analogy to the large-N limit of other strongly-coupled QFTs [Col85],
we must rescale the coupling to obtain physical results for S — oo, such that ¢S
remains finite. From the comparison of the HF and large-S results, we understand
that it is the regime of gS <« ¢ (i.e. couplings much smaller than the UV cut-
off), where we can recover the continuum QFT from the lattice discretization, as
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typically occurs in asymptotically-free lattice field theories.

Note that, in fact, the lattice theory already agrees with the continuum predic-
tions for intermediate couplings ¢S ~ 0.25¢, which is a sensible fraction of the UV
cutoff, and signals the wide validity of the aforementioned scheme of dynamical
mass generation. It is worth mentioning, however, that the SSB mechanism that
yields the Néel phase is valid for an even wider range of parameters. Indeed, around
any of the critical lines of Fig. 6.8(a), there will be an effective continuum QFT,
albeit with different renormalized parameters that require us to rely on numerical
methods or experimental QSs. This wider parameter regime is useful in light of the
cold-atom realization presented above, which will be able to probe antiferromag-
netic correlations in a regime more favorable than the one set by super-exchange
mechanisms [DDL03, TCFT08, GUJ*13, BHST16, MCJT17, DJB*20]. In partic-
ular, for larger values of ¢S, the order survives to larger temperatures, as we will
also show below.

The generation of a dynamical mass described in this section can be imple-
mented following the previous cold-atom scheme, and experimentally probed using
standard detection techniques. In particular, the scalar condensate (i.e. charge-
density-wave ordering) can be readily probed by measuring the imbalance I = (n4—
ng)/(na+ng) between the occupation of Rb atoms on A- and B-sublattices by us-
ing superlattices [SSAJP06, FTC*07, TCF*12] or via noise correlations [FGWT05,
RBvO™06, YSOT20|. The antiferromagnetic Néel ordering can be further revealed
by evaluating the imbalance observable, or the noise correlations, for the fermionic
K atoms in a spin-resolved manner, which requires separating the two hyper-
fine states during the detection by means of a Stern-Gerlach sequence [TCFT08],
or other similar techniques [TCS*10, GUJT13]. Since in the SBB phase, how-
ever, there are two energetically-degenerate configurations shifted by one lattice
site, and the experiment will consist of many independent copies of the one-
dimensional chains, the ensemble-averaged observables may fail to signal the phase
transition without an additional term that weakly breaks the symmetry between
the configurations. If a small symmetry-breaking field cannot be globally intro-
duced in all these copies, one may resort to a combination with quantum gas
microscopy [BPT*10, SWE*10, MCJ+17, KHB™20, HOJZ20|, which now also en-
ables full spin and charge read-out.

Let us now explore the effect of finite S and non-zero hy. In Fig. 6.8(a), the
circles represent the critical values of the SSB phase transition for different values
of S, and are obtained with the MPS method based on the iDMRG scheme for an
infinite chain [HP18|. These critical points are estimated by localizing the diver-
gence of the spin susceptibility, xs = dn./9(gS/t), where we use bond dimension
D = 200 and a four-sites repeating unit cell. As can be observed in the figure,
for a vanishing transverse field, the critical points for different S are all arranged
along the same critical line which, furthermore, delimits the Néel-ordered phase
obtained with the HF method, and agrees with the large-S predictions (6.23) in
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Fig. 6.9 Scalar condensate and chiral SSB: We represent the scalar fermion con-
densate Yo = (UW) in terms of ¢S/t for the ground state of a half-filled chain of different
lengths N, with hyS = 0.3t and hS = 0.05¢. The results are obtained using DMRG for
S =1/2. Using the critical exponents of the 2D Ising universality class (v =1, 8 = 1/8),
the lines cross at the critical point obtained for the infinite system with iDMRG, and
collapse for an appropriate rescaling (inset).

the regime where we expect to recover the continuum QFT from the lattice reg-
ularization. We note that, in our model, changing the value of the spin S for a
vanishing hy = 0, does not modify the quantum fluctuations, such that the large-S
prediction works equally well for any value of S. This contrasts the typical sit-
uation in models with O(3) symmetry, where the the classical limit is associated
with S — oo, and quantum fluctuations appear as soon as .S is finite. Moreover,
as outlined in the appendix, we confirm that there is no qualitative distinction in
the underlying physics for integer or half-integer spins, as occurs for models with
a continuous O(3) rotational symmetry.

In Figs. 6.8(b) and (c), we represent the phase diagram as the transverse field
is switched on, which introduces quantum fluctuations on the spins. In this limit,
we observe how the long-range Néel phase shrinks as a result of the competing
quantum fluctuations. We also observe that, as the value of S increases, a better
agreement with the HF and QFT predictions is obtained, confirming the generic
expectation. Note that this agreement is remarkable, given that the considered
values of the spins S are still very far away from the large-S limit.

So far, our numerical benchmark has focused on the SSB captured by the Néel
field. Let us note, however, that the dynamical mass generation refers to the
fermionic sector, and the gap opening is associated to an underlying non-zero scalar
condensate Yo = (V). In order to extract the value of this condensate from the
lattice simulations, we use ¥¢ = i Zi(fl)%czci% where the expectation value
is calculated with the MPS ground state obtained using a DMRG algorithm with
bond dimension D = 200 for finite chains of variable length . = Nga and unit
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Fig. 6.10 Chiral symmetry restoration at finite temperatures: Phase diagram for
different 7'/t and htS = 0.05¢, where we represent the Néel order parameter n, calculated
in the HF approximation. The AF phase, where chiral symmetry is spontaneously broken,
shrinks as the temperature increases. In the high-energy-physics lore, one says that chiral
symmetry is restored at high temperatures.

lattice spacing a = 1. In Fig. 6.9, we represent the finite-size scaling for the
scalar condensate of the S = 1/2 model. The crossing of the lines in the main
panel serve to locate the critical point of the model ¢S./t, which agrees with our
previous iDMRG results based on the Néel order parameter. Hence, this shows
that the chiral-SSB occurs via the simultaneous onset of a Néel antiferromagnet
and a scalar fermion condensate, which corresponds to a charge density wave as
seen from the lattice perspective. Moreover, these results allow us to identify the
universality class of the corresponding chiral phase transition. As proved by the
data collapse shown in the inset of Fig. 6.9, the critical exponents correspond to
those of the (1+1) Ising universality class.

6.3.3 Thermal fluctuations and chiral symmetry restoration

Let us now move on to the study of the corrections due to thermal fluctuations. In
Fig. 6.10, we represent sections of the phase diagram as a function of (¢S/t, heS/t)
for several values of the temperature T obtained with the HF method. One can
observe how the area that encloses a dynamically-generated mass, characterized by
the Néel order parameter n, shrinks with increasing 7'. Therefore, for sufficiently
high temperatures, the chiral SSB phase would eventually disappear in favor of the
disordered paramagnet and the massless Dirac fermions, both of which respect the
chiral symmetry.

As shown in Fig. 6.10, the required temperature scale for a robust observation
of the different phases may lie above that of the tunnel coupling ¢, which is a very
promising feature of our QS scheme. Using state-of-the-art cooling techniques,
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6. A cold-atom approach to quark confinement

temperatures as low as T'/t = 0.2 have been reported for two-component Fermi
gases [MCJ*17] and T/U = 0.05 for bosonic atoms [YSH*20]. As displayed in
Fig. 6.10, the dynamical mass generation leading to the anti-ferromagnetic order
and the scalar condensate can be accessed at larger temperatures T/t ~ 0.4. The
underlying reason is that the onset of antiferromagnetic correlations does not rest
on the super-exchange mechanism, the scale of which is t2/U < U. In our case, the
mechanism is the dynamical breaking of chiral symmetry, the scale /gap of which
is directly set by the interaction coupling g ~ Uy, which can be on the order of
the Rb-K interactions Upy.

Let us now interpret these results in light of thermal chiral symmetry restoration
in the standard model. In particular, for a large region of its phase diagram, the
vacuum of QCD is expected to break spontaneously a chiral symmetry associated
to the quarks’ flavor [CW80]. This mechanism is confirmed experimentally by the
measured mass of light baryons, such as protons and neutrons, where chiral sym-
metry breaking yields the largest contribution to their masses [Wil99], while only a
small part comes from the masses of their constituent quarks. On the other hand,
at very high temperatures or densities, corresponding to the first instants after the
Big Bang or to the dense core of neutron stars, respectively, chiral symmetry is
restored and quarks become massless, as shown in experiments involving heavy-ion
collisions [RW00]. This phenomenon is captured by several effective theories of
nucleons, such as the Nambu-Jona-Lasinio quantum field theory [NJL61a] and, as
discussed above, also occurs in our model.

There are, however, several unsolved questions in QCD regarding the restora-
tion of chiral symmetry. One is whether a phase transition at finite T, or a crossover
exists for intermediate values of the baryon chemical potential ug [BEFT14]|. An-
other one and is the relation to the deconfinement of quarks where, instead of
forming hadronic bound states, deconfinement gives rise to a so-called quark-gluon
plasma [KS03]. For large values of ugp, it is not known if both transitions occur
simultaneously or, alternatively, intermediate phases exist [MP07]|. Many effective
theories, however, fail to address these questions, since they do not include any con-
finement mechanism even if they correctly capture the essence of dynamical mass
generation. As we show in the next section, our model presents such confinement-
deconfinement phase transition between fractionally-charged quasi-particles, allow-
ing for the investigation of the interplay between the latter and chiral symmetry
restoration in a simple setup.

6.4 Emergent quarks and mesons
In this section, we departure from the half-filled vacuum of the Jackiw-Rebbi model,

and study the properties of the system when extra particles are added. In Sec. 6.4.1,
we dope the system in the ordered phase with one fermion, and find a regime
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where the latter fractionalised into two deconfined fermionic quasi-particles bound
to topological defects of the rotor field. We calculate the static potential between
them, and show how it changes from repulsive to attractive in a different parameter
region. This attractive potential confine the quark-like emergent quasi-particles,
forming mesons with integer charge. In Sec. 6.4.2, we investigate these two regimes
for a finite density of extra particles, establishing well-defined deconfined and con-
fined phases in the thermodynamic limit. Finally, in Sec. 6.4.3, we show how these
are separated by a first-order phase transition, associated also to the restoration of
chiral symmetry, and how these effects could be investigated by modifying a single
experimental parameter.

6.4.1 Confinement of fractionally-charged quasi-particles

As mentioned before, the fundamental fields of the QCD sector of the standard
model correspond to fractionally-charged fermion fields, the so-called quarks, cou-
pled to bosonic Yang-Mills fields, the so-called gluons [PS95]. In contrast, the fun-
damental fields of our model (6.18) are fermion fields with integer charges coupled
to the constrained Néel and canting fields. As noted in the introduction, however,
the renormalised quasi-particles of a strongly-coupled QFT may sometimes differ
completely from its fundamental constituents. As shown below, our QFT (6.18)
displays a Jackiw-Rebbi-like mechanism of fractionalisation [JR76], whereby soli-
ton configurations of the Néel field host localized fermions with a fractional charge
q = xe/2, which will play the role of quarks, allowing us to discuss various aspects
of a confinement mechanism.

In Figs. 6.11(a)-(b), we present the MPS numerical results for the real-space
configurations of the Néel lattice field n.(j) = 55((S3;) — (S3;_1)), and the inte-
grated fermion charge above the half-filled vacuum N(j) = Q(j)/e = 3_,; ((cfe;)—
%) when one extra fermion is introduced above half filling. These figures show that
the Néel field presents a kink-antikink pair that interpolates between the different
SSB sectors, and that each of these topological solitons hosts a localized fermionic
excitation with charge ¢ = e/2, henceforth referred to as a ‘quark’ by the anal-
ogy with the fractionally-charged fundamental fermion fields of QCD. We note
that similar quasi-particles with charges ¢ = —e/2 would appear for dopings be-
low half filling, playing the role of ‘anti-quarks’, and that quark-antiquark pairs
could appear in the vacuum due to thermal fluctuations, as they correspond to
higher-energy states of the theory.

Contrary to the general situation in (1+1) lattice gauge theories, which can
only host confining phases [Gre20], we can find regimes where quarks/anti-quarks
can be confined /deconfined depending on the microscopic parameters. In order to
explore this phenomenon, let us remark that the distance of the pair of quarks
of Fig. 6.11(b) is determined by the external pinning of the Néel solitons of
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Fig. 6.11 Fractionalization and confinement: (a) Space dependence of n. in the
ground state of a chain with Ny = 41 sites and Ny = 22 fermions, for ¢S/t = 0.9,
heS/t = 0.4 and htS/t = 0.01. Two solitons appear on the otherwise homogeneous
configuration found at half filling. (b) The accumulated particle density shows how each
defect carries a fermion with fractional charge e/2. (c) The solitons repel each other at
short distances, implying that the composite soliton-charge quasi-particles are deconfined.
(d) At larger values of gS/t, solitons merge forming a quark-bag quasi-particle with integer
charge (e). (f) In this case, the potential energy between the solitons is attractive,
indicating a transition to a confined phase.

Fig. 6.11(a). We introduce an external potential that breaks explicitly the trans-
lational invariance and localizes the solitons, which would otherwise travel freely
through the chain, at the desired positions,

He=—-> e(d)S; (6.25)
with ‘
(1) 1< <
Gl(d) = 6(—1)i+1 0 <i<ig+d (626)
e(—1)" ig+d<i<N,.
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This field breaks translational invariance and pins two solitons, and the associated
fractional fermionic charges, to positions ig and ig + d. This pinning makes our
fractionally-charged quasi-particles static, such that we can discuss the analogue
of the static quark potential [Bal01]. We note that it is a standard practice in
lattice gauge theories to use this terminology whether or not the charges actually
correspond to dynamical quarks [Gre20]. Therefore, the static quark potential
quantifies the interaction energy between any pair of static charges as their distance
is modified, giving information about confinement not only in QCD, but in other
effective models.

In our model, the static quark potential V;(d) = F1(d) — Ey can be obtained
using the MPS numerics by calculating the energy E;(d) of the doped system with
an extra fermion that fractionalizes into a pair of quarks pinned at a distance
d, measured in unit cells (2a), with respect to the energy Ej of a pair pinned far
apart (d > 1). We note that the standard situation of (1+1) lattice gauge theories,
such as the Schwinger model [Sch62], is that the preservation of gauge symmetry
requires that the static charges must be connected through an intermediate electric-
field string, such that the energy increases with the separation d and leads to
a linearly-increasing static quark potential [CJS75, BHV'16]. In our case, the
situation is completely different, as the energy of the deformed Néel field that
connects the two quarks in Fig. 6.11(c) is independent of the pinning distance,
and confinement is thus not enforced a priori. As argued below, there exists a
competing mechanism that either favors confinement or deconfinement depending
on the microscopic parameters of the model.

In Fig. 6.11(c), we depict the distance-dependence of the static quark potential
for the S = 1/2 rotor Jackiw-Rebbi model for coupling ¢S/t = 0.9, and setting
the other parameters such that we lie in the chiral-SSB phase. As can be observed
in this figure, the potential decreases with the distance for small soliton separa-
tions, which means that the quarks repel each other. Hence, in the absence of
the external pinning, the fractionally-charged quasi-particles would move freely at
large distances from each other, and thus appear as asymptotic excitations in the
spectrum of the rJR QFT. As we increase the coupling to ¢S/t = 1.1, Figs. 6.11(d)-
(e) show that a completely-different quasi-particle emerges. In this case, the Néel
field no longer interpolates between the two SSB sectors, but is instead suppressed
within a small region of space where, as shown in Fig. 6.11(e), an integer-charged
fermion is localised. This situation is reminiscent of the so-called quark bag mod-
els [CJJT74, BCD* 75|, where quarks and gluons are locked within a finite region
of space, in which a phenomenological term that compresses the bag compensates
the outward pressure of the quarks that are held inside, and confinement results
from the competition of these two terms. The present situation is closer in spirit
to the soliton quark model [FL77a, FL77b], where the fermions deplete a SSB con-
densate in a finite region of space, gaining kinetic energy at the expense of the cost
of deforming the condensate. In our case, as the Néel field vanishes in the inner
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Fig. 6.12 Static quark-bag potential: (a) Real-space configuration of the Néel field
n.(x) in the ground state of a chain with Ny = 41 sites and Ny = 23 fermions, this is,
two fermions above half filling, for ¢S/t = 1.1, h¢S/t = 0.4 and h:S/t = 0.01. The two
quark-bag quasi-particles are pinned at a certain distance d (see main text). (b) The
potential energy between them decreases with the distance, and the minimum is reached
when they are located at neighbouring sites.

region, there scalar condensate will become zero ¥g(x) = 0,Vz € [xg — &, zo + £],
such that the bound fermions have a vanishing dynamically-generated mass, in-
creasing their kinetic energy and the outward pressure. As mentioned above, this
is compensated by the energy cost due to the inhomogeneous layout of the Néel
field and the accompanying scalar condensate.

To substantiate this neat picture and connect it to the quark confinement, we
should provide evidence that the integer-valued charges shown in Fig. 6.11(e) are
the result of an attractive force between the fractionally-charged quasi-particles
of Figs. 6.11(a)-(b). This evidence of confinement is supported by the numerical
results presented in Fig. 6.11(f), where we show that the static quark potential
increases with the inter-quark distance in this case. Hence, as advanced in the
introduction, it is possible to understand the microscopic confinement mechanism in
our model. In the regime g < g., the outward pressure of the quarks overcomes the
inner force that tends to re-establish the homogeneity of the condensate, such that
the quarks get deconfined and can move synchronous with the kin/antikink. This
changes for g > g., where the inward force to reestablish condensate homogeneity
prevails, and the quarks get confined within the so-called quark bag. For h,S/t =
0.4 and hyS/t = 0.01, we estimate a critical value of this confinement-deconfinement
phase transition to be g.S/t ~ 1.01 (see Fig. 6.13).

We note that similar integer-charged excitations occur in other QFT with a non-
classical scalar condensate due to chiral-SSB, such as the Gross-Neveu model [CJJ " 74].
However, to the best of our knowledge, there is no deconfinement transition where
they become a pair of fractionally-charged fermions and, additionally, they require
at least two fermion flavors to exist, which anyway masks the occurrence of frac-
tionalization as happens for polyacetilene [SSH79, CB82].
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Fig. 6.13 Deconfinement transition and quark-bag instability: (a) Potential
energy between two defects pinned at a distance d (see main text) for a chain with
Ny = 41 sites and Ny = 22, at heS = 0.4¢, hS = 0.01¢ and €S = 0.02t. As ¢S/t
is increased, the repulsive potential between two solitons turns into an attractive one,
signaling a deconfinement-confinement transition.
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Fig. 6.14 Quark crystal and phase separation: (a) Space dependence of the scalar
condensate Yo in the ground state of a chain with Ns = 63 sites and Ny = 35 fermions,
for ¢S/t = 0.9, heS/t = 0.4 and h:S/t = 0.01. For a finite density of particles above half
filling, the deconfined quarks rearrange forming an ordered structure. (b) Long-range
order can be detected using the structure factor S(k), which shows a peak at a momentum
commensurate with the fermionic density, kp/m = 2N;¢/Ns. (c¢) In the confined phase,
the attractive quark bags create an extensive region where the dynamical fermionic mass
is screened to zero. (d) In this case, the peak at kp disappears, while S(k) is non-zero
around kc = m, signaling a reduced but non-vanishing AF order. The insets show the
finite-size scaling of the peak in S(k) for each case, where the density is kept fixed.
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6.4.2 Quark crystals and chiral symmetry restoration

Let us now move towards finite densities, and explore the rJR ground state prop-
erties in the confined and deconfined regimes. In the deconfined regime, we have
shown that the isolated quarks repel each other, such that they will maximize the
inter-quark distance and broaden the density profiles if left unpinned. Accord-
ingly, for finite fermion densities above the half-filled vacuum, one would expect
the formation of a crystalline structure of equidistant kinks and anti-kinks with
the corresponding periodic distribution of fractionally-charged fermions, namely a
quark crystal.

On the other hand, in the confined regime, we have no a priori intuition of the
possible ground state ordering. To gain such intuition, let us first calculate the
static potential between two distant quark-bag excitations, each of which contains
a pair of confined quarks and thus an integer-charged fermion. The static bag
potential can be obtained using the MPS numerics by considering in this case the
energy of the system doped with a pair of fermions that are held inside the bags
E5(d), and pinned at a distance d, Va(d) = Ea(d) — Ey, where Ej is again the
energy of two quark bags pinned far apart. In order to fix the quark-bag distance
as depicted in Fig. 6.12(a), we impose again an external potential that localises
them at two given locations, this is, using now a parallel field (6.25) with

€ = €[(—1)" — 20,4 — 28; 45+a] - (6.27)

Our numerical results show that the static fermion-bag potential of Fig. 6.12(b)
increases with the inter-bag distance, proving that the quark-bags attract each
other. Therefore, if left unpinned, we expect that the two bags will merge yielding
a wider depletion region of the condensate that can accommodate two integer-
charged fermions, each of which can be thought of being composed of two confined
quarks. This trend can be generalized to finite density regimes, where we expect
the appearance of an extensive quark bag that is sufficiently wide to host all of the
extra fermions. In the context of ultracold atoms, this phase can be understood as
a phase separation phenomenon.

Let us now confirm this intuition by presenting the MPS numerics for the finite-
density regime. In Fig. 6.14(a) and (c), we display the real-space dependence of
the scalar condensate for the deconfined and confined regimes without the pinning
potentials. As can be clearly observed, Fig. 6.14(a) presents a periodic sequence
of kinks and antikinks, each of which hosts a single localized quark, giving rise to
the aforementioned quark crystal. On the other hand, as we increase the coupling
strength, Fig. 6.14(c) displays an extensive region where the Néel field vanishes, and
the dynamical fermionic mass is screened to zero. This wide bag accommodates for
all the extra fermions, leading to a phase separation with respect to the region where
the vacuum displays a large dynamically-generated mass inhibiting the penetration
of the massless confined quarks.
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We note that the corresponding phases can be quantitatively distinguished by
means of the static spin structure factor S(k) = N%? D (Sij)eik(i*j), which will
peak at different momenta kp, k¢ for the deconfined/confined phases. For the
deconfined quark crystal, Fig. 6.14(b) shows that the corresponding peak of the
structure factor occurs for a momentum that is commensurate with the fermionic
density modulation of the scalar condensate kp = 2w N;/Ns. Conversely, for the
confined phase-separated bag phase, Fig. 6.14(d) shows that the peak at kp van-
ishes, and one gets instead a non-zero structure factor around k¢ = 7, signaling
Néel order, which is partially broadened by the condensate deformation due to the
quark bag. The inset of both figures displays the finite-size scaling of each peak,
where we increase both the size Ny and the number of fermions N¢, such that the
density p = N¢/Ng remains fixed. The extrapolated non-zero values of the corre-
sponding peaks for 1/L — 0 show that the quark-crystal and phase-separated bag
phases are both stable in the thermodynamic limit.

The vanishing value of of the structure factor at momentum & = 7 in the quark
crystal suggests the possibility of a zero-temperature quantum chiral symmetry
restoration for finite dopings—since this quantity is equivalent to the Néel order
parameter n, used in our discussion of thermal chiral symmetry restoration for the
rJR vacuum. This is confirmed by calculating the average value of the fermionic
condensate Ly = NL > Xo(i), where we get Yy = 0.06 and ¥y = 0.48 for the
parameters used in Fig. 6.14(a) and Fig. 6.14(b), respectively. In this case, it is
not the thermal fluctuations, but instead the finite density of topological solitons,
which reduces the average value of the fermionic condensate to zero (up to finite-size
effects), indicating that chiral symmetry is restored in the quark-crystal phase. In
this phase, therefore, chiral symmetry coexists with deconfinement. The situation
is analogous in QCD, where both properties appear in the quark-gluon plasma.
The presence of a single transition from this phase to a confined symmetry-broken
phase, or the possibility of intermediate phases with only one of these properties,
is still an open question in particles physics [MP07|. The investigation of such
interplay in simple models could help to gain a better understanding of it in more
complicated theories, specially in regimes where the chemical potential is large and
Monte Carlo simulations suffer from the sign problem [BEF*14].

Let us thus explore this interplay in the presence of thermal fluctuations. Fig-
ure 6.15 depicts the HF phase diagram for a finite density of fermions over the
half-filled vacuum for different values of T'/t. To distinguish the two phases, we
use as an order parameter the difference between the structure factor at the two
different momenta of the confined and deconfined phases, O = S(k¢) — S(kp).
This quantity is zero in the disordered paramagnetic phase, which corresponds
to a Luttinger liquid, as in the case of half filling. Positive and negative finite
values of O corresponds, on the other hand, to the quark-bag and quark-crystal
phases, respectively. For T/t = 0, we can clearly distinguished these three phases.
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Fig. 6.15 Deconfinement and chiral symmetry restoration: Phase diagram for
different values of T'/t obtained in the HF approximation for a periodic chain with Ny = 64
sites and Ny = 35 fermions, with hyS = 0.01¢. The order parameter O (see main text)
allows us to distinguish between the three different phases that appear for a finite doping.
As the temperature increases, the phase transition line between the quark-bag and the
quark-crystal phases gets modified, until both of them disappear at a sufficiently high
value of T'/t.

Note that, it is only in the ordered phases, surrounded by a disorder LL, where
the notion of confinement and deconfinement of fractionally-charged quasi-particles
is well defined. Within this region, we observe that both the quark-bag and the
quark-crystal phases have a finite extension, with a phase transition line separating
them. The ordered region shrinks as the temperature increases (Fig. 6.15). It is
interesting to notice that, in our model, the quark crystal disappears more rapidly
than the quark-bag phase.

6.4.3 Confinement-deconfinement phase transition

As we have shown in the previous sections, a characteristic feature of our (1+1)-
dimensional QFT (6.18) is the possibility to understand the mechanism of con-
finement microscopically and, moreover, the existence of a deconfinement quantum
phase transition as we vary the microscopic parameters. In order to study the latter
in more detail, we make use again of the static structure factor peaks, which serve
as order parameters to detect the corresponding phase transitions. In this section,
we study two different types of phase transitions occurring at finite densities with
DMRG, confirming the results obtained above using the HF method. The first one,
corresponding to Fig. 6.16(a), describes the transition between the quark crystal
and a longitudinal paramagnetic phase. As shown in this figure, following the the
spin structure factor at the two characteristic momenta kp and k¢, one can see that
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Fig. 6.16 Deconfinement phase transitions: Structure factor at kp = 2w N¢/Ns
and kc = 7 as a function of ¢S/t for a chain with Ny = 63 sites and N¢ = 35 particles,
at heS = 0.4t and heS = 0.01¢. (a) In this case, S(kp) serves as an order parameter,
signaling a direct transition between a disorder LL and an ordered quark crystal, while
S(kc) remains zero all the way. (b) At higher values of gS/t, we observe a deconfinement-
confinement transition between the two ordered phases, the quark crystal and the quark
bag, where both S(kp) and S(kc) are the respective order parameters.

we start from a disordered phase at small interactions, where both S(kp) and S(kc¢)
are zero. As ¢S/t increases, the quark crystal order parameter reaches a non-zero
value S(kp) > 0, while S(kc) remains zero. This phase transition is continuous,
similarly to the direct order-disorder transition we found for half filling. For larger
values of ¢gS/t, we find another phase transition, again in correspondence with the
HF results. Fig. 6.16(b) shows the transition between the deconfined quark crystal
S(kp) > 0,S(kc) = 0 towards the confined quark-bag phase S(kp) = 0, S(kc) > 0.
In this case, this deconfinement transition is a first-order phase transition. This is
believed to be the case also for the confinement-deconfinement transition in QCD
at finite chemical potential. For h,S/t = 0.4 and hyS/t = 0.01, this transition
is located at g.S/t = 0.94, which roughly agrees with the prediction we obtained
using the static quark potential (i.e. g¢.S/t = 1.01). The difference shows the
presence of many-body effects in the case of a quark crystal, where the interaction
between two quarks is influenced by the presence of a finite density of them. This
agreement supports our claim that the mechanism behind the transition between
a quark crystal and a quark-bag phase is the confinement of quark-like fractional
quasi-particles.

6.5 Summary

In this chapter, we have studied several high-energy non-perturbative phenomena
using a neat (141) quantum field theory, the rotor Jackiw-Rebbi model, and pro-
posed a quantum simulation scheme using a Fermi-Bose mixture of ultracold atoms
in an optical lattice. Dirac fermions, whose interactions are mediated by spin-S ro-
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tors in this model, acquire a dynamical mass through the spontaneous breaking of
chiral symmetry. The generation of a mass term in the theory is accompanied here
by antiferromagnetic order in the rotors, that we predict analytically in the large-S
limit of the continuum model. Using a lattice model that regularizes the theory,
we study the phase diagram at half filling in the presence of quantum and thermal
fluctuation, showing how dynamical mass generation, in particular, survives in the
ultimate quantum limit of S = 1/2. We have also shown how, in this limit, the
chiral symmetry breaking quantum phase transition lies in the Ising universality
class and, moreover, we observed chiral symmetry restoration at sufficiently high
temperatures.

We then focused on the regime of finite chemical potentials, where we find
a confinement-deconfinement phase transition between quark bags and a crystal
of fractional quark-like quasi-particles. This transition is characterized using the
spin structure factor, and its microscopic origin is uncovered by means of the static
quark potential. We have also shown how deconfinement coexists with a restoration
of chiral symmetry, even in the absence of thermal fluctuations. In this case,
the latter occurs due to a proliferation of topological solitons at finite densities,
drawing an interesting analogy to the quark-gluon plasma of QCD. Our results
indicate how confinement between fractional charges could be further investigated
in atomic experiments, shedding light into one of the long-standing questions of
particle physics.

In the future, it would also be interesting to use matrix-product-state simula-
tions to study real-time dynamics, serving as alternative benchmark for quantum
simulations in addition to the finite-density regime hereby studied, where Monte
Carlo simulations for a single flavor of fermion fields are expected to suffer from the
sign problem. The model can also be easily extended to higher dimensions, where
the simulation proposal can be generalized in a straightforward manner by using
higher-dimensional optical lattices, which would also reach the limits of efficient
tensor-network numerical techniques. It is precisely in the cases where numerical
simulations show limitations where cold atoms represent an efficient alternative to
provide a full solution of the quantum many-body problem.
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Chapter 7

Near-term gauge-theory
quantum simulators

7.1 Introduction: topological order and gauge in-
variance

As we have emphasized in different occasions along this thesis, understanding quan-
tum many-body systems is generally a hard problem, as their complexity increases
exponentially with the number of constituents. However, as we have seen, exotic
collective phenomena may arise from this large complexity. A prominent example
are the so-called spin liquids, phases of matter that evade spontaneous symmetry
breaking, and thus long-range order [Lan37]|, down to the lowest possible temper-
atures [And87, Mis10, Ball0]. In spite of this, spin liquids can be characterized
by a different notion of order: topological order [Wenl7|. As we reviewed in chap-
ter 2, systems with topological order have degenerate ground-states, the number
of which depends on the underlying topology. Each ground-state is a strongly-
correlated state, as witnessed by the multipartite long-range entanglement among
the constituents [KP06, LW06]. Besides, the ground-state manifold is separated
from the rest of the spectrum by a finite energy gap and, more importantly, only
non-local perturbations can act non-trivially within it. It is thus a natural subspace
to encode quantum information, and a promising route for fault-tolerant quantum
computers [Kit03, NSST08].

Unfortunately, topological order is very elusive and tends to be fragile, as wit-
nessed by the few materials where it has been observed, requiring in many cases ex-
tremely low temperatures and very high purity in the samples [HHCT12, WYL%19].
In this chapter, we identify a promising route to prepare robust topologically-
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ordered states in cold-atom systems using gauge invariance.

Gauge theories, used to describe strong, weak and electromagnetic interac-
tions [Kog79], have local symmetries that cannot be broken spontaneously [Eli75],
evading thus the standard form of ordering. For this reason [Fral3], emergent
gauge theories also play an important role in long-wavelength descriptions of non-
standard phases of matter, such as high-T.. superconductors [BA88| and frustrated
magnets [RS91]. Formally, gauge theories can be described through Hamiltonians
that commute with an extensive number of local symmetry operators forming a
group, the gauge group [KS75].

Pure gauge theories describe the physics of gauge bosons, the generalization of
photons to arbitrary gauge groups [YM54], and host different phases that can be
characterized by the potential that the bosons mediate between test charges [Kog79,
Grell]. In a deconfined phase, as we saw in chapter 6, particles generated in pairs
of opposite charge can be separated arbitrarily far away with a finite energy cost.
Conversely, there can also exist confined phases where this potential energy in-
creases linearly with the distance. In chapter 6 we studied these phases from an
emergent point of view. Here we look directly at gauge theories where these phases
also appear. At the end of chapter 1, we introduced the Zs or Ising gauge the-
ory (IGT) [Wil74], the simplest gauge theory on the lattice. This theory already
gives rise to a confined-deconfined phase transition without spontaneous symme-
try breaking [Weg71|, where the very nature of this deconfined phase is the key
underlying Kitaev’s toric code [Kit03], a spin-liquid phase allowing for topologi-
cal quantum error correction and fault-tolerant quantum computing [Ter15]. It is
thus important, both from fundamental and applied perspectives, to study the fate
of the IGT deconfined phase and, more generally, its full phase diagram as per-
turbations are introduced [Kit03, TWTT07, HL08, VDS09, TV11]. Understand-
ing such phase diagrams when the gauge fields interact with matter fields, either
bosonic or fermionic, is generally a very hard problem with longstanding open ques-
tions [Kog79]. In the simplest case, the topologically-ordered deconfined phase of
the IGT coupled to dynamical Zs matter can be understood through the toric code
perturbed by both parallel and transverse fields [FS79, Kit03, VTSD09, TKPS10].
While the corresponding phase diagram is known since the late 70s [FS79|, ex-
changing Zs for fermionic matter leads to a much richer scenario, which is only
beginning to be explored [AG16, GRV17, PLM17, GAS*18, KCT19].

These connections have fueled a multi-disciplinary effort towards, not only im-
proving our understanding of these lattice gauge theories (LGTs), but also realizing
them experimentally, either in natural or in synthetic quantum materials, such as
cold atoms in optical lattices [LSA17]. In these systems, atoms are very dilute and
primarily interact by s-wave scattering. Trapping the atoms by an optical lattice
allows to reach the strongly-interacting regime, but the interactions are still limited
to be on-site [BDZ08|. This fact constitutes a major hurdle when trying to realize
lattice gauge theories with ultra-cold atoms [BC19, Wiel3, ZCR15, DM16], as they
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require interactions between all the atoms connected through elementary loops of
the lattice (i.e. plaquettes) [BHHT05, BY06, ZR11, ZCR12, ZCR13a, BBD™13,
TCO'13, TCZL13, ZFRC17|. Aside from this point, the implementation of the
tunneling of matter dressed by the gauge fields is also far from trivial. Floquet engi-
neering in strongly-interacting gases [BP15, DTLZ17, BSAT19], and spin-changing
collisions in atomic mixtures [ZCR13b, KHJ 17, GCZC17, MVE™19], have iden-
tified neat directions towards this goal, which are particularly promising in light
of recent experiments [SGBT19, GSMT19, MZH*20, YSO™20|. Since the realiza-
tion of plaquette terms is currently the major experimental bottleneck to simulate
gauge theories beyond 1D, a timely question would be: is it possible to find char-
acteristic features, such as deconfinement and topological order, in lattice gauge
theories without plaquette terms?

In this chapter, we show that this is indeed possible. By studying a cross-linked
lattice connectivity (see Fig. 7.1), we identify a new avenue for the interplay of
local symmetries and topology in LGTs, as an Aharonov-Bohm instability can in-
duce a magnetic flux in the absence of plaquette terms, giving rise to topological
order, that, in this case, coexists with a symmetry-protected topological (SPT)
phase [Sen15]. The crucial role that gauge symmetry plays in the topological prop-
erties of the system extends to large quantum fluctuations through a frustration
mechanism, allowing deconfinement to survive to the whole phase diagram.

The chapter is organized as follows. In Sec. 7.2, we introduce the Creutz-Ising
ladder, a quasi-1D Zy LGT where the Ising fields are coupled to spinless fermions
hopping in a cross-linked ladder, and summarize our main findings. In Sec. 7.3,
we describe the Aharonov-Bohm instability and the emergence of a magnetic flux,
which gives rise to an SPT phase. We study this phenomenon in the presence of
quantum fluctuations of the gauge fields, and provide a full discussion of the phase
diagram. In Sec. 7.4, we demonstrate that the cross-linked ladder can be under-
stood as the thin-cylinder limit of a 2D LGT, providing a practical scenario where
the ground-state degeneracy is related to the topology of the underlying manifold.
In Sec. 7.5, we explore the mechanism of fermionic deconfinement mediated by
topological solitons, which can be neatly understood in the limit of large quantum
fluctuations through a gauge frustration effect.

7.2 The Creutz-Ising ladder

7.2.1 The model

The Creutz ladder, which describes spinless fermions on a cross-linked ladder [Cre99],
is a lattice model hosting an SPT phase. The tunneling of fermions is dressed by
a static magnetic field that pierces the ladder, which is described by a gauge-
invariant flux that pierces the elementary plaquettes. For a static m flux, the
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Fig. 7.1 The Creutz-Ising ladder: (a) Spinless fermions reside on the sites of a two-
leg ladder (filled circles), and can tunnel along and across the legs forming a cross-linked
pattern. These tunnelings are minimally dressed by Ising spin-1/2 fields, which sit on
the corresponding links (filled rhombi). We represent the Wegner-Wilson fluxes across
the two minimal plaquettes (titled trapezes in grey), and the generators of the local Zs
symmetries (red graphs). (b) Sketch of the phase diagram at half filling in terms of the
electric field h and the imbalance A. We found two phases, both with topological order
(TO). In one case, the latter coexists with a symmetry-protected topological phase (SPT)
in the matter sector. (c) For A > ¢, the fermions populate the lower leg of the ladder. At
h < t, the Ising fields rearranged to spontaneously generate a 7 flux per plaquette through
an Aharonov-Bohm instability, giving rise to TO. For h > t, the latter survives due to a
gauge frustration mechanism. Fermions delocalize by forming bound quasi-particles with
topological defects created in an otherwise dimerized electric field background.

ground-state of this model may correspond to either the BDI, or the Alll class
of topological insulators [CTSR16], a free-fermion insulating SPT phase. Inter-
estingly, the physics of cross-linked ladders has already been explored in experi-
ments of ultracold atoms by exploiting Floquet engineering in two-orbital optical
lattices [KHS18, KHS20]. To go beyond this free-fermion scenario, a natural possi-
bility is to include Hubbard-type interactions [JPR*17], which leads to correlated
SPT phases with interesting connections to relativistic quantum field theories of
self-interacting fermions [BTR 18, TRST19].

We hereby follow a different, and yet unexplored, route: we upgrade the back-
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ground magnetic fields to a Zo LGT by introducing Ising fields on the links (see
Fig. 7.1(a)). This IGT is described by the following Hamiltonian

Her(t, A k) Z Z (—tc;[a(zi)j)cj - hafi)j)) Zsz cic;, (7.1)

i (2,5)

where cz(ci) creates (annihilates) a fermion at site ¢ = (i1,42). Here, iy € Zy =
{0, 1} labels the lower and upper legs of the ladder, and i; € Zy, = {0,--+ , Ny—1}
labels the sites of each of these legs. At the horizontal or diagonal links (2,7)
adjacent to ¢, we introduce the Pauli matrices o(”), E‘ j) as the corresponding
Ising link operators. The first term of Eq. (7.1) describes the tunneling of fermions
dressed by the Ising gauge fields, which has tunneling strength ¢. The second
term introduces an electric transverse field of strength h. Finally, the third term
describes an energy imbalance of magnitude A for the fermions sitting on the upper
s; = +1,0r lower leg s; = —1.

The above Hamiltonian (7.1) displays a local Zy symmetry [Her, G;] = 0,Vi €
Zn, % Zgy, with the generators

CTC. x
G = (0 ] o) (72

(4,3)€s:

displayed in Fig. 7.1(a), where s; denote the set of links connected to site ¢. In addi-
tion, we also depict in this figure the smallest Wegner-Wilson loops, corresponding
to gauge-invariant magnetic fields across two types of trapezia

B,o = H 0l Bin = H oG ) (7.3)

(i.d)e: & (Lieia
with corresponding magnetic fluxes

i = arccos((B, 7)), P> = arccos((B, ey ))- (7.4)

The magnetic flux that threads a plaquette corresponds to the phase accumulated
by a particle that encircles that plaquette. Using this picture, we can write down the
spin operators present in the gauge-invariant tunneling terms of (7.1) as dynamical
Zo Peierls phases, Ua’,j) = ¢'%6.9) , where ©(i,5) has eigenvalues 0 and 7.

We note that, in the standard formulation of IGTs [Kog79], one also introduces
an additional magnetic-field term

Hor(t, A, b, J) = Her(t, A, h) JZ . +Big) . (7.5)

such that the magnetic plaquette coupling J competes with the electric transverse
field h. In the (2+1) pure IGT, this competition leads to a quantum phase transi-
tion between deconfined h/J < h/J|. and confined h/J > h/J|. phases [Weg71].
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These phases are not characterized by a local order parameter, but instead display
Wegner-Wilson loops that scale either with the perimeter (h/J < h/J|.) or with
the encircled area (h/J < h/J|.) of a closed loop, i.e. perimeter or area law.

The Zo symmetry generators (7.2) can be used to define different charge sectors
of the Hilbert space, as the eigenstates of the Hamiltonian |¢) must also fulfill

G ) = (—1)% ), (7.6)
where ¢; € {0,1} are the so-called static Zs charges. Typically, one considers the
vacuum,/even sector {¢;} = {0,0,---,0}, introducing a few static charges on top

of it. For instance, {q;} = {0s,(is,0)s 94, (io+L,0) } describes a pair of static Zy charges
separated by a distance L. In the (241) pure IGT [Kog79], these test charges are
subjected to a potential V(L) = Egs(L)— Egs(0) that either remains constant in the
deconfined phase V(L) « Vjy, or increases with the distance in the confined phase
V(L) < L. We note that (2+1) is the lower critical dimension, since the (1+41)
IGT can only display an area law [Kog79], hosting solely a confined phase. In the
presence of fermionic matter, rather than through the aforementioned area law, the
(141) confined phase can be characterized through the appearance of chargeless
bound dimers [BVGM20].

In this chapter, we argue that fermionic Zy gauge theories in quasi-1D geome-
tries, such as the ladder structure of Fig. 7.1, lead to a much richer playground
in comparison to the strict 1D limit (Fig. 7.1(b)). Let us summarize our main
findings.

7.2.2 Summary of our results

In the pure gauge sector, which is obtained from Eq. (7.5) by setting t = A = 0, we
show that Hci(0,0, h, J) still hosts a quantum phase transition at a critical h/J|c,
separating confined and deconfined phases. We characterize this phase transition
quantitatively using matrix-product-state (MPS) numerical simulations [Schl1],
which allow us to extract the critical behavior of the Ising magnetic fluxes, and
their susceptibilities. We note that the ladder geometry plays a key role to go be-
yond the (1+1) lower critical dimension [Kog79]. By switching on the coupling to
the dynamical fermions, we show that the aforementioned Aharonov-Bohm insta-
bility takes place, and results in an emerging m-flux deconfined phase even in the
absence of the magnetic plaquette term (Fig. 7.1(c)), namely setting J = 0 in the
Creutz-Ising Hamiltonian |:|01(t, A, h,0). We explicitly demonstrate the presence
of topological order by calculating the topological entanglement entropy associated
to the ground-state wavefunction [KP06, LWO06]. As opposed to the pure gauge
theory, we show how the accompanying deconfinement survives in the limit of ar-
bitrary quantum fluctuations set by large transverse fields h (Fig. 7.1(c)). Here,
single Zsy charges can be localized within topological solitons that interpolate be-
tween two different symmetry-breaking orders. We believe that this is a generic
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Fig. 7.2 Aharonov-Bohm instability: Band structure of the Creutz-Ising gauge
theory for J = h = A = 0, and corresponding filling of the fermionic sector. The green
arrows depict the lowest-energy particle-hole excitations of the half-filled ladder. (a)
For an Ising background with a vanishing flux &g = 0, the ground-state corresponds
to a gapless state with macroscopic degeneracy. (b) For ®g = 7, there is destructive
Aharonov-Bohm interference that opens a gap, forming two flat bands, and lowering the
ground-state energy (the semi-transparent lines serve to compare to the ®g = 0 case).

feature of IGTs in the particular charge sector considered here. To the best of our
knowledge, this study provides the first quantitative analysis of such deconfinement
mechanism.

Moreover, as a result of the cross-linked geometry, we also show that the matter
sector may lie in an SPT phase characterized by a non-zero topological invariant.
From the perspective of the fermions, the corresponding topological edge states
can be understood as domain-wall fermions [Kap92, JS92, GJK93| with the nov-
elty that, instead of requiring fine tuning to incorporate chiral symmetry on the
lattice, they are spontaneously generated by the Ising-matter coupling. The fact
that a plaquette term J # 0 is not required to host this exotic behavior is particu-
larly interesting in light of current developments in cold-atom quantum simulations.
Interestingly, the interplay between geometry and gauge-invariant interactions al-
lows us to obtain a topological phase for gauge fields without introducing four-body
plaquette terms, simplifying enormously the experimental implementation. This
point is important since the main building blocks of the model have already been
realized in cold-atom experiments [SGB'19]. Therefore, future quantum simula-
tions of this fermionic IGT will be capable of testing the non-trivial equilibrium
properties described in this chapter.

7.3 Aharonov-Bohm Instability

We start by exploring the limit of zero electric-field strength A = 0. In the fol-
lowing, and unless stated otherwise, we fix J = 0. Here, the Ising fields have
vanishing quantum fluctuations, and the fermions tunnel in a classical Zs back-

199



7. Near-term gauge-theory quantum simulators

ground |{a(i7j)}>, where o(; j) = &1 are the eigenvalues of the o* link operator. In
this limit, there are only two translationally-invariant ground-states corresponding
to the 0- or 7-flux configurations, namely (B,,7) = (Bien ) = £1. The fermions
minimize their energy in these backgrounds by partially filling the corresponding
energy bands €% (k) or €7 (k).

For vanishing imbalance A = 0, and considering periodic boundary conditions,
these band structures read

€L (k) = —2tcosk & 2t|cos k|, €L(k) = £2t, (7.7)

where k € [—m, 7). As depicted in Fig. 7.2(a), for magnetic flux ®g = 0, the
half-filled ground-state corresponds to a gapless state. Conversely, for &g = 7 flux
(Fig. 7.2(b)), the band structure consists of two flat bands, such that the half-filled
ground-state is a single gapped state with a fully-occupied lowest band. By direct
inspection of Fig. 7.2, it is apparent that the m-flux case is energetically favorable.
This is indeed the case, as one finds that EJ, = —2tN; < —(4t/m)Ny = EJ.. Re-
calling the Peierls instability in 1D metals [Pei55], where the underlying lattice
adopts a dimerized configuration and a gap is opened in the metallic band; here,
it is the Ising fields which adopt a m-flux configuration leading to a gap opening
in the fermionic sector. This spontaneous generation of a mw-flux is in accordance
with Lieb’s result for bipartite lattices [Lie94| but, in contrast to the square lat-
tice [AG16, GRV17, GAS™18], it does not lead to a semi-metallic phase with emer-
gent Dirac fermions [WZ89]. In this case, it is an insulator with complete band
flattening caused by destructive Aharonov-Bohm interference at &g = m [AB59),
which can result in many-body localization [KOI20]. Due to the remarkable simi-
larities with the Peierls effect, we call this effect the Aharonov-Bohm instability.

This flux instability is actually generic for any imbalance A > 0, in spite of the
fact that the bands gain curvature. In this case, the corresponding ground-state
energies are

s =2 (e e ).
(7.8)
BT = _% ( 11+ €| E(0:) + |1 —¢| E(éw))Ns’

where we have introduced the parameters £ = A/4t, 6y = 1/(14€2), 0, = 4¢/(1+
€)?,and 6, = —4¢/(1-€)?. Additionally, we have used the complete elliptic integral
of the second kind E(z) = Oﬂ/ %da (1 - 2sin? a)!/2. Once again, one can readily
confirm that Eg, < Egs, such that it is energetically favorable for the ground-state
to lie in the w-flux phase, which is generally gapped except for £ = 1, namely
A = 4t.
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7.3.1 Emerging Wilson fermions and SPT phases

By exploring the imbalanced case at long wavelengths, we can understand the
insulating m-flux phase from a different perspective. Rather than the massless Dirac
fermions that emerge in the square-lattice m-flux phase [AG16, GRV17, GAST1§],
we get the following long-wavelength dispersion around ki = +7/2

i (k+ +p) = £/ (mec?)? + (cp)?,  me = (§£1)/2t (7.9)

where ¢ = 2t is the propagation speed, and m. are two mass parameters. Except
for £ = 1, we get two massive relativistic fermions characterised by a different mass,
which are known as Wilson fermions in a LGT context [Wil77].

The fact that the Wilson masses are different m # m_ turns out to be crucial
in connection to the spontaneous generation of an SPT phase. The Chern-Simons
form Qf = 5= (e (k)| 9k |€™ (k)) dk [RSFL10], equivalent to the Zak phase in 1D
[Zak89], leads to a Chern-Simons invariant after integrating over all occupied quasi-

momenta

st~ [ at = g (suam) — seaton-) ). (7.10)

One can define a gauge-invariant Wilson loop WT = ¢!27CS1 that detects the non-
trivial topology when W] = —1. This occurs when the pair of Wilson fermions
have masses with opposite signs. Accordingly, if || < 1 (i.e. —4t < A < 4t), the
topological Wilson loop is non trivial W7 = —1, and the emerging n-flux phase is
an insulating SPT phase.

This result draws a further analogy between the Peierls and Aharonov-Bohm
instabilities. As we saw throughout part II, in the former, when the instability is
triggered by an electron-lattice coupling that modulates the tunneling [SSH79], one
of the dimerization patterns of the lattice leads to a non-zero topological invariant
and an SPT phase [AOP16]. In our case, there is no dimerization due to SSB since
the local Zy symmetry cannot be spontaneously broken. However, there are two
gauge-invariant fluxes at h = 0, and it is only the w-flux configuration that leads
to a non-zero topological invariant when |A| < 4t. We can thus conclude that, as
a consequence of the Aharonov-Bohm instability, the fermions intertwine with the
Ising fields in such a way that a gap is opened in the fermion sector with non-trivial
topology.

7.3.2 Gauge-matter edge states and fractionalisation

So far, our discussion has revolved around the zero electric field limit h = 0, and
assumed periodic boundary conditions. From now onwards, we abandon this limit
and explore the effect of quantum fluctuations in open Creutz-Ising ladders (i.e.
Dirichlet /hard-wall boundary conditions). Due to the bulk-boundary correspon-
dence, when the bulk of the spontaneously-generated m-flux phase is characterized
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Fig. 7.3 Gauge-matter edge states: (a) Average Ising flux ég in the ground-state
of the Creutz-Ising ladder for A =t and h = 0.1¢, for a ladder of length N5 = 20 filled with
N = 20 particles. Due to the quantum fluctuations, the bulk flux gets lowered &5 < 7.
(b) Fermionic occupation (: n; :) showing boundary peaks that can be identified with
the topologically-protected edge modes. We use red and green to represent odd and even
sites, respectively, of the lower leg, and blue and yellow for the upper one. The solid black
lines are obtained by fitting the latter to eq. (7.13), showing that the excess and defect of
charge is due to the presence of edge states at zero energy. In (c) and (d) we can observe
how, for a higher value of the imbalance (A = 4t), the edge states disappear. The inset
shows the flux in an infinite ladder as a function of h/t for A = 0.1¢.

by a non-zero topological invariant (7.10), one expects that edge states will appear
at the boundaries of the ladder. In the context of LGTs, these states are lower-
dimensional domain-wall fermions [Kap92] with the key difference that, in our case,
they are generated via the Aharonov-Bohm instability.

In Fig. 7.3, we show the real-space configuration of both matter and Ising fields.
We use a MPS-based algorithm [HP18| of the density-matrix renormalization group
(DMRG) [Whi92], setting the bond dimension to D = 200 for a ladder of leg length
Ng = 20 at half-filling, and introduce quantum fluctuations through A = 0.1¢. In
these figures, we display the Ising flux

R
2

averaged over the two trapezoidal plaquettes, and the normal-ordered fermionic
occupation

oY = (7.11)

(i) = (eley) = p. (7.12)
where p = 1/2 at half-filling. As shown in Fig. 7.3(a) and (c), due to the quantum
fluctuations, the Ising flux is no longer fixed at 7. As the transverse field increases,
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®g — m/2, which amounts to an electric-field dominated phase with a vanishing
expectation values of the magnetic plaquettes (B,7) = (Bie ) = 0. In the inset
we show how the flux ®g changes with A in an infinite ladder, where the ground
state was obtained using the iIDMRG algorithm with D = 200 [HP18]. This change
is continuous from h = 0, suggesting that the flux-dominated phase found in the
absence of quantum fluctuations with ®g = 7 extends to finite values of h. In the
next section, we will argue that this flux-dominated phase actually extends to the
whole phase diagram, as in the case of h = 0.

In Fig. 7.3(b), we show that the corresponding fermion distribution is not trans-
lationally invariant, but displays an excess/deficit of charge around the boundaries
of the ladder. This real-space distribution is consistent with the existence of two
topological edge states in the SPT phase, one of them being filled while the other
one remains empty at half filling. We note that, in analogy with the phenomenon
of charge-fractionalization put forth by Jackiw and Rebbi [JR76], when these zero
modes are occupied/empty, an excess/deficit of 1/2 fermion is formed around the
boundaries. This fractionalization can be readily observed in Fig. 7.3(b), where
we also show that the excess/defect of charge with respect to the bulk density on
each leg of the ladder p;, follows

1 o
(N(jin)) — Piy = ir&SGChQ <]§jp> . (7.13)
Here, j = 2i; (resp. j = 2i; — 1) is the sublattice index for the lower (resp. upper)
leg of the ladder, with j, = L (resp. j, = 0), and & is the localization length of
the corresponding edge state. This behavior is a universal feature of zero modes
in relativistic quantum field theories and condensed-matter models [CB81], and we
show that it also holds for LGTs. In Fig. 7.3(b) we observe how the edge states
disappear for higher values of the imbalance A, signaling a transition towards a
trivial phase.

The presence of edge states points towards the robustness of the SPT flux-
dominated phase described in the previous section, which thus persists as one
introduces non-zero quantum fluctuations. Therefore, the SPT phase should extend
to a larger region in parameter space. Let us also highlight that, by looking at the
enlarged fluctuations of the Ising flux close to the boundaries (Fig. 7.3(a)), one
realizes that the edge states are indeed composite objects where both the matter
and gauge degrees of freedom are intertwined. We will unveil a very interesting
consequence of this intertwining below.

7.3.3 Topological phase transitions

We explore the extent of this SPT phase in parameter space (A/t,h/t). The
topological invariant (7.10) is related to the Berry phase v acquired by the ground-
state |Egs(#)) along an adiabatic Hamiltonian cycle H(0) = H(0 + 2m) [Ber84],
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Fig. 7.4 Topological phase transitions: (a) Contour plot of the many-body Berry
phase, which allows differentiating between the SPT with v = 7 and the trivial band
insulator (TBI) with v = 0. The dashed line is obtained by fitting the critical points to
an exponential (see main text). (b) First derivative of the ground-state energy Oa Fgs =
(Fgs(A1) — Egs(A2)) /(A1 — Az) with respect to the imbalance A/t for different values of
h/t. (c) Average Ising flux ®5"¥ as a function of the imbalance A/t. The calculations
were performed directly in the thermodynamic limit for a half-filled ladder.

namely

i 0239 (Bs(6)] 90 | B (0)) (7.14)

For non-interacting fermions in a classical Zs background, one can use quasi-
momentum as the adiabatic parameter § = k, such that v = 27CST (7.10).
However, as the electric field is switched on, the Ising fields fluctuate quantum-
mechanically mediating interactions between the fermions, and the quasi-momentum
is no longer an appropriate adiabatic parameter. Building on ideas of quantized
charge pumping [NT84] and Hall conduction [NTW85b|, one can obtain a many-
body Berry phase by twisting the tunneling t — te'’ that connects the boundaries,
and integrating over the twisting angle 6. Interestingly, this concept can be gen-
eralized to systems with hard-wall boundary conditions [Hat06], since the twisting
can actually be placed locally in any link that respects the underlying symmetry
that protects the SPT phase, e.g. inversion symmetry in this case.

We have computed the many-body Berry phase (7.14) for an infinite Creutz-
Ising ladder using iDMRG [HP18], yielding the phase diagram of Fig. 7.4(a). The
SPT phase is characterized by v = 7 in the red region, and is separated from a
trivial band insulator (TBI) with v = 0 in the blue region by a critical line that
reaches A = 4t for h = 0. This corroborates our previous interpretation (7.10) in
terms of the mass-inversion point of the emergent Wilson fermions at £ = A/4¢ = 1.
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As the electric field h increases, this inversion point flows towards smaller values
of the imbalance A, which can be interpreted as a renormalization of the Wilson
masses due to the interactions mediated by the gauge fields.

In this figure, we also show that the numerical critical line can be fitted to
an exponential & = {oexp{—h/h¢}, where he is a fitting parameter, and & = 1
is fixed by setting the critical point at A/4t = 1 for h = 0. Let us remark that
this exponential behavior is consistent with the claim that the SPT phase and, in
general, the Aharonov-Bohm instability and the flux-dominated phase, persists to
arbitrarily-large values of the transverse A when the imbalance is A = 0. For zero
imbalance, the appearance of the flat bands described previously endows the SPT
phase with an intrinsic robustness to the interactions mediated by the fluctuating
gauge field.

Let us note that the critical line describes first-order topological phase tran-
sitions, as can be appreciated in Fig. 7.4(b), where we display the derivative of
the ground-state energy OaF o for three different values of electric field strength
(dotted lines of Fig. 7.4(a)). The discontinuous jumps account for the first-order
nature of the phase transitions. A similar discontinuity can be observed in the
average magnetic flux (7.11), evaluated at the bulk of the ladder (Fig. 7.4(c)).

7.4 Topology from Connectivity

The topological properties described in the previous section are associated, loosely
speaking, to the matter degrees of freedom, since they are adiabatically connected
to the static gauge field limit at h = 0—although matter and gauge are intertwined
for any finite value of h. In this section, we focus on different topological effects
that arise due to the dynamical nature of the gauge field. In particular, we provide
quantitative evidence supporting the equivalence between the cross-linked ladder
and a cylindrical geometry. This allows us to interpret our model as the thin-
cylinder limit of a 2D IGT, and to identify various topological properties such as
the ground-state degeneracy or the presence of topological order throughout the
whole phase diagram. We also show that the intertwining of the matter and gauge
fields in the SPT phase leads to a topological flux threading of the cylinder, and
give further arguments for its survival to arbitrary transverse fields.

7.4.1 The effective Creutz-Ising cylinder

Let us, momentarily, switch off the gauge-matter coupling and focus on the pure
gauge theory Hc1(0,0,h,J) in Eq. (7.5). For h/J — 0 (with J > 0), and for
the sake of the argument, we assume that |g) is the single ground-state in a flux-
dominated phase with zero flux per plaquette ®g = 0. We note that the following
argument, first applied to the IGT on a square ladder [Fral3|, is also valid for
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Fig. 7.5 Ground-state degeneracy of the Creutz-Ising cylinder: (a) In the
h/J — 0 limit, the ground-state corresponds to the zero-flux state (green plaquettes),
and excitations correspond to w-flux plaquettes (red) connected by a electric-field string
(red line). By extending the string to the ladder edges, one recovers a different zero-flux
ground-state state. (b) By considering the crossed-link tunnelings of the ladder as two
different paths enclosing an area, the Creutz ladder can be represented as a thin-cylinder
limit of a 2D LGT.

®p = 7 in the case J < 0. As shown in Fig. 7.5(a), flipping the Ising fields via
O’éy j) creates a pair of &g = 7 excitations at neighboring plaquettes, which can
be separated at the expense of flipping additional Ising fields along a path I'y. By
extending this path towards the boundaries of the ladder, the 7 fluxes get expelled,
and one recovers a state |g) = Dy |g) with vanishing flux a &g = 0, where

D= ]I oty (7.15)
(4,9)€r,
is the so-called Dirac string. Similarly to those in Eq. (7.3), one can define a 4-point
correlator involving Ising fields

Be= [[ iy (7.16)
(iaj)ert

where I'; is a vertical path that connects the two legs of the ladder. As demonstrated
below, I'; is equivalent to a path that wraps around a non-trivial cycle of a cylinder,
such that the correlator (7.16) can be interpreted as a Wegner-Wilson loop operator
measuring the flux threading the hole of the cylinder.
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In the lowest panel of Fig. 7.5(a), one can see that the Dirac string shares only
one common link with the 4-point correlator, and thus anti-commutes {Dy, B:} = 0.
Conversely, the Dirac string shares a pair of links with the trapezoidal plaque-
ttes (7.3). and thus commutes with the Hamiltonian [Hgr(0,0,h,.J), D] = 0. As a
consequence, if we assume that Bi|g) = +|g), we immediately obtain B¢|g) = —|g),
whereas Hci(0,0,h,J)|8) = Egslg), Har(0,0,h, J)|g) = Egslg). Accordingly, the
two states are orthogonal and have the same energy Fgys. Our original assumption
of a single ground-state thus needs to be dropped in favor of the existence of a two
dimensional ground-state manifold spanned by {|g),|&)}.

The presence of such ground-state manifold can be a manifestation of topologi-
cal order. As outlined in the introduction, spin-liquid states with topological order
can be characterized by a ground-state degeneracy that depends on the genus of
the manifold in which they are defined [Wen17]. The deconfined phase of the (2+1)
IGT does indeed display this property, which is crucial in studies of fractionalisation
in high-T¢ superconductors [SF00, SF01]. In our case, the cross-linked tunnelings
of Fig. 7.1 can be understood as a planar projection of the two paths that traverse
the different faces of a thin cylinder (see Fig. 7.5(b)). From this perspective, the
4-point correlator (7.16) is actually Wegner-Wilson loop that measured the inner
Zs flux through the hole of the cylinder. As a consequence, the two-fold degeneracy
follows from the non-trivial topology of the manifold: the two states that span the
ground-state manifold |g),|g) have a vanishing flux ®g = 0 through the lateral
surface of the cylinder, but only one of them |g) has a 7 flux through the cylinder’s
hole. This ground-state |g) is sometimes described as a state with a vison (i.e.
vortex excitation) trapped within the hole of the cylinder.

In a finite-size system, at any small but non-zero h/.J, the ground-state degen-
eracy is lifted and the manifold splits into two eigenstates of D, that amount to
the symmetric and anti-symmetric superpositions of |g) and |g). In the thermo-
dynamic limit, the gap in the ground-state manifold closes exponentially, and any
small perturbation tends to select one of the two eigenstates of By, either |g) or |g),
which have a lower entanglement [ZGT*12|. In particular, we note that MPS sim-
ulations with finite bond dimension favor |g), |g) as ground-states with respect to
any other choice. Having less entanglement, their approximation for a fixed value
of the bond dimension is more accurate, and thus their energy lower than the one
of any other linear combination. Below, we show that this effect is also manifest
in the presence of dynamical fermions, and that the specific intertwining of gauge
and matter fields in the SPT phase induce well-defined magnetic fluxes inside the
cylinder.

7.4.2 Magnetic fluxes and Ising susceptibility

We explore now the properties of the ground state as we departure from the limit
h/J — 0. For the pure-gauge case described above, in particular, a phase transition
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Fig. 7.6 Z; magnetic fluxes in the infinite Creutz-Ising cylinder: (a) Z,-flux
susceptibility as a function of the electric field strength. We compare the pure-gauge case,
setting t = 0 and J = 1 (red circles) with the case in which the gauge fields interact with
the fermionic matter, setting ¢t = 1, A = 5¢ and J = 0 (blue circles). In the first case,
the susceptibility shows a diverging peak, signaling a quantum phase transition between
deconfined and confined phases. In the presence of dynamical matter, however, there is
no apparent divergence hinting at the absence of such a transition. (b) Za inner flux
piercing the cylinder ®g,. In the pure-gauge case (red circles), this inner flux displays
non-analytical behavior across a critical transverse field hc. For dynamical matter (blue
circles), this tendency is not abrupt, and the inner flux only attains the value ®g, =~ 7/2
asymptotically without any non-analyticity. (c) Topological flux threading relating the
existence of edge states to a trapped vison inside the cylinder. (d) Similarly to the Berry
phase +, the inner flux ®g, changes from 0 to 7 as one crosses the critical point separating
TBI and SPT. The deviations from those precise are due to quantum fluctuations.

takes place at a finite value of h/J. As announced in Sec 7.2.2, the cross-linked
ladder geometry allows for a confinement-deconfinement phase transition akin to
the (2+1) IGT [Weg71|. This phase transition can be probed by the Zo-flux suscep-
tibility x> = 0®g"!*/9h, evaluated through the magnetic flux (7.11) at the bulk
of the ladder. It can be show that, after a duality transformation, the pure-gauge
Ising gauge theory is equivalent to the quantum Ising model in a transverse field
[Weg71]. In this picture, the Zs-flux susceptibility is equivalent to the suscepti-
bility of the magnetization, which acts as an order parameter in the Ising model.
We use iDMRG to obtain the approximation of the ground-state of the system
defined on an infinitely-long ladder as an MPS. The system is thus equivalent to
a 2 x oo cylinder: the thin-cylinder limit of a 2+1 fermionic IGT. The maximum
bond dimension we have used is D = 200, testing that it is sufficient to achieve a
good convergence. As clearly evidenced by the iDMRG results of Fig. 7.6(a)(red
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circles) , there is a peak in the Zs susceptibility, whose height actually diverges
with the ladder size at the critical coupling h/J|.. In Fig. 7.6(b), we plot the
value of the inner flux ®g, = arccos((B:)) through the hole of the effective cylinder
as a function of the transverse field h (red circles). The plot shows that, in the
h/J — 0 limit, the cylinder has zero inner flux ®g, = 0, and the ground-state is
|g) as anticipated. By increasing the transverse field, quantum fluctuations change
the inner flux, which acts as a non-local order parameter for the transition to the
confined phase displaying a non-analytical behavior as we cross h/J|..

Let us now switch on the gauge-matter coupling, and see how this picture
gets modified by the inclusion of dynamical fermions governed by Her(t, A, h,0) in
Eq. (7.5). First of all, we find that there is no peak in the Zs susceptibility for
any value of h (see blue circles of Fig. 7.6(a)), which suggests the absence of a
phase transition. Furthermore, we plot the value of the inner flux in Fig. 7.6(b),
which again attains the value ®g, = 0 in the h/¢t — 0 limit (blue circles). The zero
inner-flux state can be understood as the generalization of the |g) ground-state to
a situation that encompasses dynamical fermions intertwining with the Ising fields.
As neatly depicted, the Zg flux changes smoothly from ®g, = 0 — 7/2 as the
electric field strength is increased. Therefore, the absence of non-analyticities again
suggests that there is a single flux-dominated phase for arbitrary transverse fields.
Although we did not show here that, for a cylindrical geometry and in the presence
of fermionic matter, this phase exhibits a degenerate ground-state manifold, we will
argue at the end of the section that this is indeed the case using the topological
entanglement entropy. Moreover, in the last section we will demonstrate that, in
this phase, fermionic matter is deconfined.

7.4.3 Trapped Visons from topological flux threading

As discussed above for the pure-gauge limit, topological order becomes manifest
through the two-fold ground-state degeneracy {|g),|g)}, and the absence/presence
of a trapped vison. Yet, in the previous section (see Fig. 7.6(b)), we have only
found the dynamical-fermion generalization of |g). As described in Sec. 7.3, the
Aharonov-Bohm instability can lead to an SPT ground-state or to a trivial band
insulator (see Fig. 7.4(a)). We now discuss the difference of the intertwining of the
gauge and matter fields in these two cases, and unveil a very interesting interplay
between the topological degeneracy and the existence of edge states in the SPT
phase.

To understand this interplay, let us recall Laughlin’s argument for the quantum
Hall effect [Lau81], which states that a single charge is transferred between the edges
of a quantum Hall cylinder when a magnetic flux quantum is threaded through its
hole. In the Creutz-Ising ladder, one can move from the TBI onto the SPT ground-
state by gradually decreasing the imbalance A. As the system crosses the critical
point, topological edge states will appear at the boundaries of the ladder, which
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Fig. 7.7 Topological entanglement in the Creutz-Ising ladder: (a) Scaling of
the entanglement entropy Sy, with Ny setting h = 0.02¢, and for different imbalances
corresponding to the SPT (A = 0.5¢) and TBI (A = 3t) phases. In both cases, the
topological correction to the entanglement entropy is ¢ = log2, signaling topological
order. In (b) we represent this quantity as a function of A/¢. The grey dashed line
denotes the position of the first-order transition for a finite cylinder of length N, = 10.

can be seen as the result of charge being transferred from the bulk to the edges (see
Fig. 7.6(c)). In contrast to Laughlin’s pumping, where it is the external variation of
the flux which leads to charge transport, here it is the transition into a topological
phase and the associated charge transfer which should generate a non-vanishing Zo
inner flux. In Fig. 7.6(d), we confirm this behavior, and show that the Zs inner
flux changes from ®g, ~ 0 (TBI) to ®g, ~ 7 (SPT) at fixed h = 0.01¢.

This effect can be understood as a topological flux threading, where the existence
of edge states gets intertwined with the trapping of a vison through the cylinder’s
hole, giving access to the dynamical-fermion generalization of |g). We note that
this phenomenon cannot be observed with a background static field, such as the
magnetic field of the quantum Hall effect, but is instead characteristic of LGTs with
fermionic matter, unveiling an interesting interplay between the Berry phase and
the inner Z, flux. This offers a neat alternative to the numerical demonstration of
the two-fold ground-state degeneracy, typically hindered by finite-size effects. As
the quantum fluctuations are increased by raising h, we see that one tends smoothly
to the electric-field dominated phase ®g, = 7/2, but the first-order topological
phase transition between SPT and TBI, and the intertwining of the edge and vison
states is still captured by the discontinuity of the inner flux.

7.4.4 Topological entanglement entropy

As argued in the previous section, the ground-state degeneracy and the flux thread-
ing are topological phenomena related to the underlying cylindrical manifold. This
raises the possibility that this quasi-1D IGT (7.5) displays topological order, as
occurs for Kitaev’s toric code [Kit03]. This is indeed the case in other quasi-1D
geometries, such as the thin-torus limit of two-dimensional fractional quantum
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Hall states [BK05, GH14, CSCR™17]. In recent years, quantum-information tools
that quantify the entanglement of the ground-state have turned out to be ex-
tremely useful to characterise various many-body properties [Lafl16]. In particular,
the Von Neumann entanglement entropy for a bi-partition of the ground-state |g)
into two blocks A-B of equal sizes is defined as S(pa) = —Tr{palogpa}, where
pa = Trp{|g)g|} is the reduced density matrix. For a (241) topologically-ordered
ground-state, this entanglement entropy scales as

S(pr) = alA| -, (7.17)

where |0A| is the number of sites that belong to the boundary separating the A-B
regions, « is a constant that characterizes this entanglement area law, while 7; is a
universal sub-leading constant that quantifies the topological corrections [KP06, ?].
Although in a gapped phase the value of ~; is constant, it has already been obseverd
that close to a QPT there are strong finite size effects, and from numerical simula-
tion it is very hard to extract a reliable determination of it [TCL14]. Furthermore,
the value of 74 for bipartitions that are not contractible to a point depends on both
the choice of the bipartition and the choice of the ground-state in the ground-state
manifold [ZGT*12].

In order to reliably extract ¢, we turn to study finite-size Creutz-Ising ladders,
interpreted through the mapping to the thin cylinder of length 2 x Ny of Fig. 7.5(b).
We consider a bipartition separating the two legs, such that |0A| = N;. In the ef-
fective manifold, this corresponds to a longitudinal bipartition of the cylinder (see
Fig. 7.5(b)), such that the entropy (7.17) should scale with the length of the cylin-
der. In this finite-size regime, the ground-state is an eigenstate of D,, and thus
has minimal entropy.  should thus get saturated at its maximum value, namely
~v; = log(2). Our numerical analysis is limited to short ladders, as the particular
bipartition limits the efficiency of the MPS routines. In Fig. 7.7(a), we plot the
entanglement entropy as a function of the ladder length for two points deep in the
SPT and the TBI. The fit of the data allows to confirm that 7; = log2 in both
the SPT and TBI phases. After repeating the same analysis for several values of
the imbalance, we obtain Fig. 7.7(b). In this figure, v is constantly very close to
the expected log(2) within both SPT and TBI phases. It only departs significantly
from that value close to the phase transition, where the larger correlation length
increases the finite-size effects [TCL14]. The presence of a non-zero topological
entropy is a further indication that the complete gauge-matter system is topologi-
cally ordered both in the SPT phase and in the TBI. Due to the lack of signature
of criticality in our numerical results about the fluxes threading the cylinder and
the bulk susceptibility of Figs. 7.6(a) and (b) (blue circles), we are thus confident
that the topologically-ordered phase survives for large values of the electric-field.
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Fig. 7.8 Dimer coverings and soliton deconfinement: (a) In the A > t,J and
A = 0 limit, Gauss law requires that some of the Ising fields will be frustrated due to
the distribution of fermionic matter in the ladder. (b) The frustrated Ising fields can
be identified with dimers (red bonds) that partially cover the lattice. (c) Switching on
A > 0 selects only the A and B dimer coverings. (d) Adding two fermions changes the
dimer covering, and it becomes energetically favorable to create topological defects in the
dimer configurations, which can accommodate for the deconfined charges.

7.5 Zs Fermionic Deconfinement

In this section, we argue that the topologically-ordered flux-dominated phase de-
scribed above shows fermionic deconfinement for any value of the transverse field.
We first introduce the notion of gauge frustration, and how it generates deconfined
topological defects when the system is doped above or below half filling. We then
quantitatively characterize the absence of confinement using static charges, and we
compare it with the more standard case involving string breaking.

7.5.1 Gauge frustration and topological defects

Paralleling the situation in the standard (241) IGT [Fral3], the existence of topo-
logical order in the Creutz-Ising ladder suggests that the ground-state lies in a
deconfined phase despite the lack of plaquette interactions J = 0. As outlined
above, the absence of criticality for large h suggests that this deconfinement may

survive to arbitrarily-large electric-field strengths, which contrasts to the standard
IGT [Kog79].
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Fig. 7.9 Finite doping and soliton-induced deconfinement: (a) Real-space
fermionic occupation for a ladder of length N, = 40 filled with N = 44 particles for
A = 4¢, h = 0.2t and J = 0, where the formation of a periodic crystalline structure
can be appreciated. (b) Integrated charge @; along the ladder, showing that each peak
of excess charge with respect to half filling contains a fermionic number of one. (c)
Corresponding electric field configuration (o((; ) (;+1,0)) in the lower leg of the ladder,
odd links are red and even are green. Topological solitons between the two degenerate
electric field configurations appear, and the peaks of excess charge are located at the
position of the defects.

Let us start by discussing the half-filled regime of the Hamiltonian (7.5) for
h > t and A = 0. In this case, the link Ising fields minimize their energy for
[4+) = (1) +14))/v2. However, the presence of fermions can frustrate some links in
order to satisfy the constraints (7.6), forcing the Ising fields to lie in |—) = (|1) —
11))/v/2. We call this gauge frustration, namely the impossibility of simultaneously
minimizing all the individual Hamiltonian terms due to the Gauss constraint.

In contrast to pure gauge theories, this type of frustration can occur in the even
sector ¢; = 0, as some of the sites might be occupied by a dynamical fermion (see
Fig. 7.8(a)). By plotting only the frustrated links/bonds, one understands that the
ground-state corresponds to a partial covering of the ladder with a single restriction:
each site can be touched by one bond at most (see Fig. 7.8(b)). This is precisely
the definition of a dimer, with the peculiarity that dimer models typically consider
the complete covering of the lattice [Fis61, RK88|, whereas in our half-filled case
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Fig. 7.10 Deconfinement versus string breaking : From (a) to (f) we represent
the ground-state configuration corresponding to a ladder of length Ny = 40 at half filling
with two extra static charges located in the upper leg and separated by L = 20 sites, with
h = 0.2¢. (a) Integrated total charge @; in the even charge sector for A = 3t, showing two
jumps of height one at the location of the static charges. (b) Each static charge creates
a defect electric field to satisfy Gauss law. (c¢) Same as before but for the imbalanced
sector with A = 10¢. (d) In this case, an electric string develops between the charges.
(e) and (f) depicts how, for A = 3t and in the imbalanced sector, a particle-antiparticle
pair is created in the vacuum to screen the static charges, breaking the original string
between them. (g) Potential energy V/t between the two static charges as a function of
the distance = between them, for different values of A, in the even charge sector. (h) A
similar calculation in the imbalanced sector.

the ground-state will be a linear superposition of all partial dimer coverings. We
note that, in the absence of dynamical fermions, the original connection of an IGT
to a quantum dimer model in the large-h limit was put forth by R. Moessner et al.
by introducing a static background Zs charge ¢; = 1 at every site (i.e. odd charge
sector) [MSFO1]. In our case, the dynamical fermions allow for this dimer limit
even in the absence of static charges, albeit only with partial coverings.

So far, the imbalance has been fixed to zero. If we now allow for A > 0, the
fermions will preferably occupy the lower leg, such that only two degenerate cover-
ings are relevant for the large-h ground-state (see Fig. 7.8(c)). These two coverings,
which we label as A and B, are related by a simple lattice translation and, yet, they
are essential for the deconfinement of the Creutz-Ising ladder. If one adds a pair
of fermions at a distance L above half-filling, these must be accommodated in the
upper leg, such that the Ising fields change to comply with the Gauss constraints.
As depicted in Fig. 7.8(d), if we insist on maintaining one of the dimer coverings,
say A, an electric field string must connect the fermions in the upper leg, such that
the energy is E(L) — Ey = hL, and the charges are confined V(L) o L. This is
the standard situation in the (241) IGT in the even sector [Kog79]. In our case,
however, the two-fold coverings allow for a different situation: one can interpolate
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between the A and B configurations, such that F(L) — Ey = 3h, and the charges
are deconfined V(L) o< Vy. The charges, which are no longer confined in pairs
but localized at the topological soliton that interpolates between A and B, carry a
non-zero Zso charge, which is at the very heart of the notion of deconfinement.

To assess the validity of these arguments, and extend them beyond the h > ¢
limit, we explore the Creutz-Ising ladder for finite doping using the MPS numerics.
In Fig. 7.9(a), we depict the occupation 72;, = (: n(;, 0y :) +(: N, 1) ;) summed over
the pair of sites in the upper and lower legs. This density displays an inversion-
symmetric distribution of the extra doped charges, which are localized around dis-
tant centers maximizing their corresponding distances. In Fig. 7.9(b), we represent
the integrated Z, charge from the left boundary of the ladder @Q;, = >_; -, 7j,.
Comparing this profile to Fig. 7.9(c), where we represent the electric-field config-
uration, it becomes manifest that each of the doped fermions is localised within a
topological soliton of the gauge fields. The bound fermion-soliton quasi-particles
are deconfined, as they carry a unit Zs charge (Fig. 7.9(b)), and can interact
among each other forming a crystalline structure (Fig. 7.9(a)). To be best of our
knowledge, our results confirm quantitatively this mechanism for the first time,
and show that it can also appear in fermionic LGTs that combine topological or-
der and SPT phases. We note that a similar deconfinement mechanism has been
suggested for the odd sector of a pure IGT in (141) dimensions [MSF01], based
on an analogy to the Peierls solitons in polymers [SSH79]. Our detailed analysis
shows that, in our case, this type of solitons characterised by charge fractional-
ization [?, GDGT20, GDGT19] are not the underlying mechanism explaining the
deconfinement for the h > t limit of IGTs. As discussed above, the integrated
charge around the solitons is quantized in units of the Zy charge, but there is no
signature of charge fractionalization (Fig. 7.9(b)). This result points to a different
nature of topological defects in the magnetic- and electric-dominated phases, which
will be the subject of detailed future studies.

7.5.2 Deconfinement versus string breaking

In this last section, we argue that the appearance of the mechanism of soliton de-
confinement depends on the particular charge sector (7.6). So far, we have focused
on the even sector, which is characterized by the absence of background Zs charges
¢ = 0,Vi € Zn, X Zs. We now make a full comparison with a different sector,
hereby referred to as the imbalanced sector, where there is a static Zs charge at each
site of the lower leg, namely q; 0y = 1, q(;,1) = 0 Vi € Zy,. In this case, there are
neither frustrated bonds in the ground-state, nor partial dimer coverings or solitons
as in Fig. 7.8. Accordingly, the situation and the confinement properties change
completely. To quantify these differences, we introduce two additional background
charges on the upper leg of the ladder that are separated by a distance L, namely
we add q(;,,1) = q(ig+1,1) = 1 to the two different charge sectors.
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In Figs. 7.10(a)-(b), we represent the total integrated charge Q;, = Q;, +
> i1 <iy (4(j1,0) T 4(j1.,1)), Which includes both the dynamical fermions and the back-
ground charges above the even charge sector. We also depict the underlying av-
eraged electric field, E;, = Ziz,ié <Uﬂ(v(i1,i2),(i1+1,i’2))>/4' The situation is analogous
to the soliton-induced deconfinement discussed in the previous section, but the
location of each solitons is now pinned to the position of the extra static charge,
while in Fig. 7.9 the unpinned solitons tend to maximize their spread and distance
forming a soliton lattice. In Figs. 7.10(c)-(d), we depict the same observables for
the imbalanced sector. It is clear that an electric field line connecting the static
charges is established, which leads to the aforementioned confinement. The new
aspect brought by the dynamical matter is that, by lowering the energy imbalance
A, it can become energetically favorable to create a particle-antiparticle pair that
breaks this string and screens the static Zy charges, as can be observed in Figs. 7.10
(e)-(f). In these figures, one sees that the electric fields are restricted to the re-
gions around the static charges, and that the Zs charges are no longer unity, but
get screened to Q; mod2 = 0, signaling the aforementioned string breaking.

We can make a quantitative study of the difference in the confinement properties
of the two charge sectors by calculating the dependence of the effective potential
with the distance between the static charges V(L). In Fig. 7.10 (g), we present the
results for the even charge sector and different values of A. In all cases, apart from
an even-odd effect due to the so-called Peierls-Nabarro barriers associated with
the defects [Peid0, Nab47], the energy does not grow with the distance, signaling
deconfinement. In contrast, in the imbalanced sector of Fig. 7.10 (h), the potential
grows linearly with the distance until the string breaks at a certain length, signaling
confinement.

7.6 Summary

In this chapter, we have identified novel topological effects in fermionic gauge theo-
ries. In particular, we have introduced a minimal fermionic Zs lattice gauge theory,
the Creutz-Ising ladder, which allows investigating the interplay between topology
and gauge invariance. We have shown how, even in the absence of a plaquette term,
the system presents a magnetic-flux dominated phase, in which a dynamical 7 flux
appears in the ground state as a consequence of an Aharonov-Bohm instability.
This phenomenon results from the interplay between gauge-invariant interactions
and the particular connectivity of the model, which also gives rise to SPT phases
in the fermionic sector. We have characterized the properties of these phases, in-
cluding the presence of protected gauge-matter edge states, through MPS-based
numerical calculations, and use a topological invariant to find first-order phase
transitions between the topological and trivial phases.

Our model can also be interpreted as a thin-cylinder limit of a (2+1) Zy LGT.
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This equivalence allows us to uncover the presence of topological order by calcu-
lating the topological correction to the entanglement entropy. Topological order
is also associated with the degeneracy of the ground-state, which can be charac-
terized by two different fluxes threading the hole of the cylinder (i.e. presence or
absence of a trapped vison). We have shown that, in the Creutz-Ising ladder, the
topological order intertwines with topological symmetry protection, and this con-
nection manifests in the change of the inner flux, and thus the trapping of a vison,
when crossing phase transition lines towards the SPT phase such that edge states
emerge from the bulk and localize within the ladder boundaries. This feature could
facilitate the detection of topological order in future experiments.

Finally, we have shown how fermionic deconfinement, which accompanies topo-
logical order, survives for the whole parameter space considered. This occurs due
to the presence of deconfined topological defects associated to the fermionic quasi-
particles, that appear on a frustrated background of electric fields imposed by gauge
invariance. We have investigated this mechanism using both static and dynamical
charges, and compare it to the more standard confining case where string breaking
usually takes place.

We believe that our results advance substantially the understanding of topo-
logical phenomena in lattice gauge theories. Moreover, we have shown that the
inclusion of dynamical fermions can stabilize a magnetic-dominated deconfined
phase even in the absence of plaquette interactions. Therefore, the results iden-
tify a new avenue for the realization of spin-liquid physics in LGTs, relevant for
both condensed matter and high-energy physics, in cold-atom experiments based
on state-of-the-art building blocks that have already been used for quantum sim-
ulation purposes. This would allow to investigate complex phenomena, such as
topological order and deconfinement, using minimal resources. The methods ap-
plied here can be used to further explore the static and dynamical properties of
Zso fermionic gauge theories, including the phase diagram at different fillings or the
non-equilibrium quench dynamics.
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Throughout this thesis, we have studied a range of strongly-correlated topolog-
ical effects that appear in mixtures of ultracold atoms in optical lattices. We
have shown, in particular, how these atomic systems can be employed as quantum
simulators to investigate several quantum many-body phenomena characteristic of
condensed matter and high-energy physics.

The interest in this approach is two fold. First, cold-atom quantum simulators
allow to experimentally verify certain phenomena that are harder to access in nat-
ural systems. This is the case for charge fractionalization, induced in particular
by topological solitons, that, although predicted decades ago by Su, Schrieffer and
Heeger in polyacetylene, still lacks a direct experimental confirmation. We have
shown that both topological solitons and fractionalization take place in the ground
state of the doped Zy Bose-Hubbard (chapter 3) and the rotor Jackiw-Rebbi model
(chapter 6), and proposed how these can be implemented using Bose-Bose and
Bose-Fermi mixtures, respectively. Thanks to their remarkable control properties,
ultracold atoms could provide a cleaner observation of these effects compared to
their solid-state counterparts.

Second, quantum simulators promise to overcome the limitations associated
to classical computers in their task to solve relevant mathematical models that
describe physical systems. In this thesis, we have focused on quark confinement
which, although a central concept in particle physics, remains poorly understood.
Our approach consists on addressing this problem by studying simpler systems, that
can be more easily simulated with cold atoms, where a confinement-deconfinement
transition appears for the emergent quasi-particles in strongly-correlated phases
(chapter 6).

Moreover, we have also considered the possibilities that cold-atom simulators
offer beyond quantum simulations. More precisely, we have extended charge frac-
tionalization to bosonic matter (chapter 5), and uncover various topological phases
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where the interplay between symmetry breaking and symmetry protection gives
rise to novel topological effects (chapter 4). Finally, we have explored near-term
quantum simulators for gauge theories, where we found a gauge-frustration mech-
anism that could allow to prepare robust topological order in cold-atomic systems
(chapter 7), as well as to explore other two-dimensional gauge theory phenomena
such as fermionic deconfinement.

Our results thus establish new connections between atomic, condensed-matter
and high-energy physics that could prove beneficial for further investigations on
topological quantum matter, both from a theoretical and experimental point of
view.
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Appendix A

Mean-field approach

In this appendix, we include more detailed calculations performed to obtain some
of the results included in the thesis. We present, in particular, the mean-field ap-
proach considered in chapters 4 and 6, including both a Born-Oppenheimer ansatz
(Sec. A.1) and a self-consistent Hartree-Fock method (Sec. A.2).

A.1 Born-Oppenheimer ansatz

In this section, we present various details of the Born-Oppenheimer-type variational
ansatz for the ground-state and low-energy excitations of the Z;BH model used in
chapter 4. In the hard-core limit, we consider the Hamiltonian

o B A
ZEH _Z< t+ aoj 1+1) Ciy1 T 2‘72 it1 T 4 z,i+1 + H.c.). (A1)

For the groundstate, the family of variational states is defined in Eq. (4.2),

Wy ({dn, 01)) = [ ({dn })) Qe o 5t |- (A:2)

The set of variational parameters {d,,, 0} can be fully determined by the minimiza-

tion of
1

€as({dn, 0}) = 7 (Ves({dn, O})| Hz,517° |Ves({dn, 0})) - (A.3)

Since the Zs fields are qua81—statlc with respect to bosons, averaging over the former
in Eq. (A.3) leads to an effective Hamiltonian H¢(0) acting on the state of the
latter, with |¢¢({d,}) as its ground state. Accordingly, the fermionic variational
parameters are fully determined by the Zs-field variational angles d,, = d,,(0) (i.e.
the fermions adapt instantaneously to the slow spins). As discussed in chapter 4,
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for periodic boundary conditions, it suffices to consider only two variational angles,
namely 6 = (64, 05) for the links joining odd-even (even-odd) lattice sites. In such
a case, the effective Hamiltonian H¢(@) turns out to be the static SSH Hamiltonian
introduced in chapter 1 through Eq. (1.47),

Hssin(6) = 11(0) Y e, (s + T ) 4+ 62(0) Y (irtosn + ), (M)

parametrized by the variational fields ¢1(0) = t(0)(1 + §(0)) and t2(0) = t(0)(1 —
0(0)), where

H(6) = t+ 5 (sinfa +sindp),

a(sinfs —sinfp) (A.5)

5(0) = )
) 2t + a(sinf4 +sinfp)

For such Hamiltonian, the variational ground-state energy (A.3) takes analytical
form. To set the notation, and introduce concepts that are also used for the vari-
ational ansatz of excitations, let us present the diagonalization of Hggy(0). We
define Bogoliubov-type fermionic operators as

Vi, + = uk(0)ck + vi(0)crir,

A6
Ve, — = V(0)ck + up(0)Crpr, (A.6)

where we have used the Fourier transformed operators ¢, =
Chpr = 3;(—1)'e"*i¢; /VL, the quasi-momenta k € [-F, T).
ing functions

S e i, /L, and
By using the follow-

is 2t(0) cos k
up(0) = —4/1— —Fg
v2 +9) (A7)
_ b 2t(0) cos k
vk(G) = \/5 1+ 762(9) 5
where s = sgn{d(0)k} and
€(8) = 24(8)/cos? k + 62(8) sin” I, (A8)

one can rewrite the static SSH Hamiltonian in terms of these ~y; + and v, oper-
ators in diagonal form

Hssin(0) = > ek (0) (1 1 = 7 ) - (A.9)
k
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Accordingly, the fermionic part of the variational groundstate can be written as

follows
[¥e({dn})) Zd @) )= [ -0, (A.10)

|k|<m/2

where |0) is the fermionic vaccum, and the variational constants d,, = d,(0) only
depend on the spin variational angles via Eqgs. (A.7). As advanced below, the
fermions adapt instantaneoulsy to the background Z, fields, and the variational
angles can be found by minimizing the groundstate energy of Eq. (A.2), where
the first term stems from the addition of the fermionic single-particle energies in
Eq. (A.8), while the remaining terms are straightforward expectation values over
the spin coherent states.

Let us now turn into the variational ansatz for the low-energy excitations in-
troduced in Eq. (4.5),

e ( S ol +Zn” ) U ({dn.0°))) (A11)

keBZ

The excitation energies are then derived from the minimization of
6exc(e*) = minn (5[77]//\/[77]) ) (A12)

where we have introduced the norm functional N[n] = (Vexe ()| Pexc(n)) and the
excitation energy functional £[n] = (Vexe(n)| HY 55 — €45(0*)[Wexe(n)). In this
part, the Hamiltonian (A.1) is treated within the spin-wave approximation (4.4)

for the Zs fields up to quadratic order,

~ T : T
afﬂ-_H ~ cos@iiJrl (ai +ai> —suat9ziJrl (Zaiai - 1) ,

(A.13)
0} ip1 A sin 9;‘)2»“ (ai + az) + cos 6’% it1 (Qa;rai — 1) ,
such that
Nn] = Z M ke e + Z 15,i"s,i»
(A.14)
8[77] Z 77f kznf k + Z 0* 77:3 1775 N
k

By solving 0y (£[n]/N'n]) = 0 using €exc(60*) = min, {E[n]/N[n]}, one can see
that in the hardcore boson limit, the low-energy excitations can be: (i) delocalized
fermion-like excitations with eexc(6%) = €l (0*) Vk € [-Z,%), or (i) localized
spin-wave-type excitations with €exc(0*) = €(6*) Vi € {1,--- N}, as discussed in
chapter 4.
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Let us now give some details on how the calculation can be generalized for
softcore bosons. To leading order in a 0 < max{t/U,«/U} < 1 expansion, the
Z,BHM (3.32) can be expressed as Hz,gn ~ Hgg,;” + AH, with

4¢2 < 5
AH = —? (1 + 250i,i+1 + 1) ) niMi+1

2t2 N z T2 _z z
+ T Z (1 + 5(Ui,i+1 + JZ-JFLZ-H) + 6202-’1-“01-“’”2) (C;‘r”z‘+1ci+2 + H.c.) .
(A.15)
Considering the leading-order corrections to the ground-state energy eg(0*) +
0egs(07), where 0egs(0*) = (Vos(0%)| AH |Uge(0%)), the excitation energy (A.12)
will be given by €exc(0*) + d€exc(0*), where

O€exc(0%) = ming,y (6E[n]/Nnl) (A.16)
and where the we have introduced the functional

0E(M) = (Vexc ()| AH — 0€g5(0")[Wexe(n)) (A.17)

in terms of the excited-state ansatz (A.11). We can evaluate these corrections by ap-
plying Wick’s theorem, as the variational ansatz is built with free spinless fermions.
Several of the possible Wick contractions will be canceled by the substraction of
the ground-state energy shift degs(6*). For the evaluation of the energy gap pro-
tecting the TBOW phase, the non-vanishing contributions will arise from Wick
contractions that include single-particle correlations between the excited fermion
and the lattice operators, e.g. <fyk7+ci>gs<cicz+1>gs(cify,i,+>gs. By performing the
corresponding calculations in detail, we find the particular correction to the energy
gap expressed in Eq. (4.13),

2 ~, ~
Ac ~ 24(%)|5(6*)| — ‘% (1 +lE0- 52)) (1 + 6 (sin 6 + sin9]*3)) . (A18)
e

to leading order in 6 < 1.

A.2 Self-consistent Hartree-Fock method

In this section, we discuss more in depth the details of the derivation of the self-
consistent mean-field theory used in chapter 6. We start from the Hamiltonian

H= Z (_t (Czciﬂ +C']£L+lci) +g-S;cle, —h- Si) ; (A.19)
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and perform a Hartree-Fock decoupling of the spin-fermion coupling
g-S;ni~g-(S;)n;i+g-5;(ni) —g-(S;)(ni), (A.20)

where we have introduced the number operator n; = cjci. After the Hartree-
Fock decoupling, the Hamiltonian can be expressed as the sum of non-interacting
Hamiltonians for the fermion/spin sectors

Hy = — Ztcjci_|r1 + Z €N, €ri =g - (Sy) (A.21)

Hy=-> hsi-S;, hei =h —g(n;) (A.22)

where f (s) stands for fermions (spins). Accordingly, the fermion tunnel in a
potential-energy landscape er; set by the expectation value of the spins, while
the spins precess in an effective external field, which becomes inhomogeneous de-
pending on the average distribution of fermions.

This mean-field approximation requires the obsrevables {(S,), (n;)}~, to be
determined self-consistently, and we must deal with a number of self-consistency
equations that grows linearly with the number of sites. The self-consistent loop con-
sists in the following steps: We start by setting an initial spin configuration (S;),
and compute the expectations values (n;) by solving the fermionic tight-biding
model (A.21) for a given temperature 7' = 3~!. These mean-field parameters are
then used as input to determine the effective external field in the spin Hamilto-
nian (A.22), which is subsequently diagonalised, such that we can calculate the
corresponding spin expectation values (S;) for a given temperature 7.

This process must be iterated until reaching convergence for the free energy,
which can be expressed as Fyp = Fg + Fs + C, where Fy (Fg) is the free energy
of the fermions (spins) and C is the constant term appearing in the Hartree-Fock
decoupling (A.20). The free energy for the system of fermions can be expressed in
terms of the grand partition function

Zy ="Tr {e_ﬁ(Hf_“Nf)} , (A.23)

where we have introduced the chemical potential u, and the total fermion number
N = ), ni. For the mean-field decoupled model, this partition function can be
readily expressed as

NS
i = H Zen, Lin=1+ e_’B(Ef’"_”), (A.24)
n=1

where Ef ,, are the eigenvalues of the quadratic fermionic Hamiltonian (A.21). The
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free energy, which can be expressed as Fy = —% log Z¢ + %a% log Z; , thus becomes
1
Ff = —BZIOng,n+NZnFD(M;/B)7 (A25)
n n

where ngp(u, 8) = “g’i# = 1/(e#(Prn=r) 1 1) is the so-called Fermi-Dirac distri-
bution. For the spins, the number of which is conserved, the free energy can be
written in terms of the canonical partition function

Z,=Tr{e PH:}, (A.26)

For the mean-field decoupled system, the Hamiltonian (A.22) can be diagonalised
for each spin independently

Ny 25+1
Zo=1]2Zei, Zei=>_ e PP, (A.27)
=1 n=1

where Es,, are the the (25 + 1) energies of the spins, which are identical for all
sites of the chain. The corresponding free energy is

1
F.——-SlogZ, ;. A28
ﬂzz: g Zs, (A.28)
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Appendix B

Quantum field theory tools

This appendix contains further detailes on the quantum field theory tools used in
chapter 6, including the continuum limit of the lattice Hamiltonian (Sec. B.1), the
path integral formulation of the corresponding quantum field theory (Sec. B.2) and
the effective action in the large-S limit (Sec. B.3).

B.1 Continuum limit of the lattice Hamiltonian

In this section, we present the details for the derivation of the continuum Hamilto-
nian field theory for the rotor-Jackiw-Rebbi (rJR) model. Splitting the Hamiltonian
in Eq. (A.19) as H = Hy + Hy + Hy, the bare fermion tunnelling H; leads to a
periodic band structure with a pair of Fermi points at +kp = +7/2a. Making the
long-wavelength approximation

¢ = e T fay y (2) + eTRET L Jay_(2), (B.1)

yields a pair of slowly-varying fields with the correct canonical algebra in the con-
tinuum limit a — 0

69:,:r’

{hy (@), Yy (2")} = 6y 0y = Oz — ). (B.2)

By making a gradient expansion on the slowly-varying fields ¢, (z + a) = ¥, () +

ady ¥y (z) + O(a?), neglecting rapidly oscillating terms, and setting a ;= Jdx
in the continuum limit, the tunnelling term becomes

H; = /dxz wg(x)(—incam)wn(x), ¢ = 2ta, (B.3)
n==+
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where ¢ = 2ta plays the role of an effective speed of light. Defining the two-
component spinors W(z) = (¢ (z),v_(2))t, U(z) = (F (x),wl(x)), one readily
sees that the Hamiltonian corresponds to a relativistic QFT of massless Dirac
spinors
H; = /dx@(m) (—icy'oy) U(z) (B.4)

in a (1+1) Minkowski spacetime 2° = ct,z! = z of metric g, = diag(1, 1),
where 7 = 0%, v = —io¥ are the gamma matrices {v,,7,} = 2d,, in the so-
called Weyl basis, and ¥(z) = ¥ (2)7°. In the context of lattice gauge theories,
the tunnelling Hamiltonian corresponds to the staggered-fermion discretization of
the Dirac equation [KS75] by setting ¢ = 1/2a and applying a Kawamoto-Smit
rotation ¢; — €™/2¢c; [KS81].

Let us now turn our attention to the spin operators, which yield a (25 + 1)-
dimensional representation of the su(2) algebra S; x S; = id; ;S;. We introduce
the so-called Néel n(z) and canting £(x) slowly-varying fields

S; ~ cos(kyx;)Sn(z) + al(z), (B.5)

where the wave-vector ky = 7/a captures the Néel alternation of antiferromagnetic
ordering. These operators satisfy the following algebra in the continuum limit

£(z) x n(x)
£(z) x £(z') ,
n(z) x n(z) (a/8)%,

where one must consider that there is a two-site unit cell, such that the continuum
limit yields 8,4/ /2a — §(x — 2') in this case. In situations dominated by the Néel
field, the contribution of the canting field will be negligible (£(a/S)?) — 0, and
one obtains the algebra of position n and angular momentum £ = n x (—iV,,) of a
quantum-mechanical particle [Hal83, Aff85]. Moreover, in this limit, one also finds
that

i5(£E — 2 )n(z),
i6(x — 2)l(x)
i6(z — 2")€()

(B.6)

n(x) -n(z)=1+1/S (B.7)

such that the particle will be confined to a unit sphere in the large-spin limit
S > 1. Therefore, in the large-S' limit, the Néel and canting fields represent a the
orientation of a quantum rotor and its angular momentum, respectively.

Combining the expressions for the Dirac (B.1) and rotor (B.5) fields, and ne-
glecting again rapidly-oscillating terms, we find that the spin-fermion coupling can
be expressed as

Hy = / dz¥(x)g, - (n(x) + £()7°/S) ¥(z), g, = gSe.. (B.8)
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The first term can be understood as a Yukawa-like term that couples the fermion
bilinear ¥(z)¥(z) to the rotor projection n(z) instead of the standard scalar field
in a Yukawa theory [PS95]. The second term couples the time-like component of
the fermion current j°(x) = U(2)y°¥(z), i.e. the charge density, to the projection
of the rotor angular angular £, (z).

Finally, the continuum limit of the spin precession yields

Hy=— /da: h-£(x). (B.9)

In analogy to the original situation (A.19), the rotor angular momentum is sub-
jected to a magnetic field with both longitudinal and transverse components, being
the latter responsible for introducing quantum fluctuations since [¢,(z), n.(z)] # 0.
Altogether, the continuum limit of the lattice model (A.19) corresponds to the
quantum field theory of Eq. (6.18), H =[daH(x), with

H = U(z) (~icy' 01 + gs - n(x)) U(z) + (gjo(x) — h) - £(z), (B.10)

B.2 Path integral formulation

In this section, we provide a path-integral derivation of the continuum-limit rotor-
fermion QFT (B.10). This derivation serves for two purposes: one the one hand,
it allows to clarify the absence of a topological € term for any spin S, differ-
ing markedly from O(N) non-linear sigma models arising from Heisenberg mod-
els [Hal83]; on the other hand, it sets the stage for a large-S limit approach to
dynamical mass generation.

We are interested in the partition function Z = Tr{e ##}, where H is the
spin-fermion lattice Hamiltonian (A.19). In the 8 — oo limit of zero temperature,
this partition function contains all the relevant information about quantum phase
transitions related to the chiral SSB and dynamical mass generation we are seeking.
Using fermionic and spin coherent states in Euclidean time 7 = it € (0, 8) [Fral3],
this partition function can be expressed as a functional integral in terms of anti-
commuting Grassmann fields for the fermions ¢(7,;), "7, z;) and commuting
vector fields for the spins €(7,z;) lying in a 2-sphere of radius S, which can be
rescaled in terms of unit vector fields (7, x;) = Sw;(7). Using the resolution of
the identity in terms of both types of fields [Fral3], one finds that

2= / D[y, 1, w]e~ 5=l -5 (B.11)

where the Euclidean action Sg = S —1SAwyz can be expressed as a functional over
the fermion and spin fields

B
SE= /0 dr (Z Y7, 2)0- (7, 7)) + H(*, 4, Sw)) : (B.12)
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where H(¢*, 1, Sw) is obtained by substituting the fermion and spin operators in
the normal-ordered Hamiltonian (A.19) by the Grassmann and vector fields. One
also finds the so-called Wess-Zumino term, which corresponds to the area enclosed
by the trajectory of the spin field in the unit 2-sphere

B 1
Awz :/0 d7'/0 dsZwi(s,T) < (Oswi(8,T) X Orwi(s,T)). (B.13)

Here, this area is parametrized by s € [0, 1], such that w;(s,0) = w;(s, ) corre-
spond to the closed trajectories that cover a spherical cap ¥ between w;(0,7) =
w;(7) and the north pole w;(1,7) = e., which is used as the fiducial state in Bloch’s
sphere to define the spin coherent states (see Fig. 6.1).

In O(3)-symmetric situations, such as those arising in antiferromagnetic Heisen-
berg models, this Wess-Zumino term plays a crucial role as it is responsible for
the mapping to a non-linear sigma model with an additional topological 6 term
that depends on the integer or half-integer nature of the spins [Hal83]. In the
present case, however, there is no rotational symmetry in the classical Hamiltonian
H(¢*,1, Sw), and one can see from the particular form of the spin-fermion cou-
pling and the external field that it will suffice to use coherent states pointing along
the meridian at vanishing longitude

w;i(T) = wi(s,T)es +wi(s,T)e,, (B.14)

which correspond to the great circle in the xz plane of Fig. 6.1. Accordingly,
w; - (Osw; X Orw;) = 0 and there is no enclosed area by the precession of the spins,
such that the Wess-Zumino term vanishes Awy = 0.

We can now introduce the equivalent of the slowly-varying quantum fields in
Egs. (B.1) and (B.5) in terms of the Grasmmann fermion fields

D(1,2:) = e (ra) + ey (7, x), (B.15)

and the spin vector fields

wi(7) ~ cos(kyx;)n(r, z) + %E(T, x). (B.16)

Proceeding in analogy to App. B.1, we perform the gradient expansion in the
continuum limit @ — 0, neglect rapidly-oscillating terms, and find Sg ~ [ dz L(x)
with the following Lagrangian density

L(z) =V(x) (40 + gs - n(x)) ¥(2) + (gjo(z) — h) - £(), (B.17)

with coupling gs and external field h defined in Egs. (B.8) and (B.9), respec-
tively. Here, @ = (c7, ) is a 2-dimensional Euclidean space with metric gE’V =
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diag(1,1), and the Euclidean gamma matrices are 4° = 4% 4! = —iy!l. The

Dirac spinor is composed of the right- and left-moving continuum Grassmann fields
U(x) = (y(1,2),9_(7,2))", such that the adjoint becomes ¥(x) = ¥i(x)4° =
(Y_(1,2),¢4+(7,2)). Likewise, the Néel and canting fields are the vector fields

(w2i (1) — wai—1(7)),

NN =

(B.18)

(T, x) = % (woi(T) + w2i—1(7)) .

In the large-S limit, and in situations dominated by Néel correlations [£(a/S)?| — 0,
these fields are additionally subjected to the rotor constraints

n(x) -n(x) =1, n(z) £(x)=0, (B.19)

which can be included in the partition function
7= /D@,\I/,n,z]e—fdzw-””), (B.20)

through the functional integral measure

D[V, ¥, n, 0 = (2547:1) Hd@(x)dxp(x)d?’n(m)d%(w)(s(n? —1)é(n-£). (B.21)

B.3 Effective rotor action and large-S limit

In this section, we give a detailed derivation of the effective rotor action (6.21). As
outlined in chapter 6, one can integrate out the Grassmann fields from the partition

function
Z= /D[n,ﬁ] (/D[\I/, qf]e—fdzw“w)) , (B.22)

since the corresponding functional integral reduces to a product of Gaussian inte-
grals. These integrals are obtained after transforming the fields in terms of Mat-
subara frequencies wy, = %(2n + 1), and quasi-momentum ga € [—, ), according
to

1 .
] ) = 1(wn‘r+qzi)\p "
(7, @) N7 > D e (wn, q),

n€Z qeBZ (B23)

U(r) = 2 30 3 T ),

n€Z qeBZ
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The corresponding integrals lead to

/D[@7 \I}]e_ fd2x[, — e fd2m£,. H det (_lwn + hD(qng . n)) , (B24)

n,q

where we have introduced a renormalised rotor Lagrangian

L= (% - h) e, (B.25)
for a homogeneous canting field €(x) = £. This term (B.25), which contains the
original precession under the external field —h, gets a contribution from the back-
action of the fermion current (B.17). For a homogeneous canting field, and at
half-filling conditions [ dxjo(z) = Ns/2, this back-action renormalizes the external
field to —(h — g/2).

In Eq. (B.24), we have introduced the single-particle Hamiltonian of a (1+1)-
dimensional Dirac fermion

ho(q,m) = cqy® +mA°, (B.26)

with a Dirac mass proportional to the homogeneous Néel field m = g, - n. In the
continuum and 7" = 0 limits, the product of determinants involving these Dirac
Hamiltonians can be expressed in terms of momentum integrals

[T det (~iwn + hp (g, gs - n)) = exere S Flou(k 4@ ) (B.27)
n,q

where we have introduced Euclidean momentum k = (w,,, cq).
This expression, together with Eq. (B.24), leads to an effective action which, up
to an irrelevant term independent of the Néel and canting fields, reads as follows

Set :/d%; ((g - h) v (91'7;‘)2 <1og (g?ﬁnj + 1)) : (B.28)

where the UV cutoff A, = 2¢ appears in the integrals over the Euclidean momentum
[d%k =2 fOA° kdk. Since the fields are homogeneous, this equation leads directly
to the result (6.21) used in chapter 6. This type of effective action, which contains
a non-perturbative contribution o2 log o2, is a characteristic of the dynamical mass
generation of the Gross-Neveu model [GN74], where o is an auxiliary field. In
that case, the above calculation is equivalent to a large-N limit summation of the
leading Feynman diagrams, which contain a single fermion loop and all possible
even numbers of legs for the o field [GN74]. This contributes to an effective po-
tential that develops a double-well structure as soon as g # 0, and thus induces
the dynamical mass generation and chiral SSB. As noted in chapter 6, this SSB is
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Fig. B.1 Saddle points of the effective potential (a) Effective potential for the
south-pole paramagnetic regime hy = h, — §/2, where § = h} — h;. (b) Effective
potential for the Néel anti-ferromagnetic regime hy = h, + /2. (c) Effective potential
for the north-pole paramagnetic regime hy = h,; + 30/2.

dynamical as it requires quantum-mechanical effects via the fermion loops in order
to take place, which makes it different from the classical SSB in the Jackiw-Rebbi
model [?]. In the present case (B.28), the situation is different as the Néel and
canting fields are not auxiliary, but have their own quantum dynamics that results
from the non-commutativity of the rotor position and angular momentum. In par-
ticular, as a result of this competition, the dynamical SSB does not take place for
an arbitrarily small g regardless of the other microscopic parameters, but there
will be critical lines that delimit the phase with a dynamically generated mass, as
discussed in chapter 6.

Let us now describe the large-S limit in more detail. Expressing the Néel and
canting fields in the coherent-state basis (6.22),

1 1
n= E(SinHA —sinfp)e, — 7(0059,4 — cosfp)e,,
o e (B.29)
L= z—a(smHA +sinfp)e, — %(cos 04 + cosbp)e,.

one finds that the effective action (B.28) can be expressed in terms of an effective
potential Seg = BLSVert(04,05), as there are no time derivatives of the fields. By
letting S — o0, the solutions correspond to the saddle point equations 0, Veg|g. =
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0gVett|g- = 0, which lead to the following system of non-linear equations

(gfh)fi 95 2(sin0* —sinf%)lo At ] cos 07
2 ¢ wS \ 2t A B) 108 gS(sin % — sin6%) A

= —hsin @},
2 2
g E(9S\T e s 4t x
g_ S (= - 1
((2 he) + S (2t> (sin¢s —sinf) log <gS(sin€’;1 - sin9*3)> ) cos 0
= —hsin 0%,

(B.30)

Despite the non-linearity, one can readily find an exact analytical solution to these
saddle-point equations in the limit of vanishing transverse fields hy = 0, where the
only possible solutions correspond to cosf% = cosf3 = 0. There are four possible
solutions within 8* € [—m, w) X [—7, 7), namely

(i) North-pole paramagnet: This solution is 0% = 0% = 7/2, where the canting
field points towards the north pole £(x) = (S/a)e.,Vx. The corresponding spin
coherent state is

|g2;>> = |Sv S)g,] 02y |S7 S>z’2 D |Sv S>Z’NS ) (Bgl)

where |S,m),, ; is the common eigenstate of S2, S with eigenvalues S(S + 1) and
m e {-S,—-S+1,---,5 —1,S}. Hence, all spin-S particles are aligned towards
the north pole. We note that this ordering is not caused by collective effects, but
induced by the external longitudinal field, and that is why we refer to this state as
a spin paramagnet.

(i) South-pole paramagnet: This solution is 0% = 0% = —n/2, where the cant-
ing field points towards the south pole €(x) = —(S/a)e,, V&. The corresponding
coherent state is

|g[P> =15,-5),1®[5,=5),,® - ®[5,=5), v, - (B.32)

Hence, all spin-S particles are aligned towards the south pole.
(#ii) Néel anti-ferromagnets: These solutions are 6% = —0% = 7/2, or 6% =
—0% = —n/2. In this case, and it is the Néel field which points towards the north
n(x) = e,V and south pole n(x) = —e,, Ve, respectively. The corresponding

spin coherent states are
|gl—\li_> = |S’ S>z,1 ® |Sv 7S>z,2 Q- ® |Sv S>z,Ns—1 ® |S, *S>z,NS ’ (B 33)
‘gﬁ> = |S’ _S>z,1 ® |S’ S)z,2 Q- |S’ _S>Z,stl ® |S’ S>Z’Ns ’

Hence, all neighbouring spin-S particles are aligned in an anti-parallel manner. We
note that, in this case, this ordering is caused by collective effects, and the north-
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or south-pole solutions occur via the spontaneous symmetry breaking of the Zs
chiral symmetry n(x) — —n(x) mentioned in chapter 6. This is why we refer to
these states as anti-ferromagnets.

In order to decide which of the above orderings occurs in the system, we can
compare the corresponding free energies per unit length (6%, 0%) = %F( 5L 05) =
_%ﬂ log Z(6%, 0% ), namely

((s545) - (§-1) 5

B.34)
T T\ t gS N 2t ¥ (

Comparing these energies, we find two critical lines hzt that separate the Néel
anti-ferromagnet from the two longitudinal paramagnets. The first one

_ gt (9SY ([ (2, L
=4 WS(Qt)(log(gS)H), (B.35)

is obtained from f (—7/2, —7/2) = f (+7/2, —7/2). Accordingly, for hy < h, , the
groundstate corresponds to the south-pole longitudinal paramagnet. Conversely,
for hy > h, , we enter into the Néel anti-ferromagnet. The second line is

2
+_9,t (98 oo (2£Y L B
hy _2+7TS(2t)<Og<gS +2 , (B.36)

and is obtained from f (+7/2, —7/2) = f (+7/2, +7/2). In this case, for hy < b,
the groundstate corresponds to the Néel anti-ferromagnet, while or hy > h}', we
enter into the north-pole longitudinal paramagnet. Both critical lines correspond
to a situation where the effective potential changes from a single minimum into a
double well, as represented in Fig. B.1.

(iv) Equator paramagnet: Finally, before concluding this section, let us discuss
the other limit where one can find a different saddle-point solution. This corre-
sponds to the hy = g = 0 and hy > 0 limit, where both equations (B.30) are
solved when sin#% = sinfj; = 0. In this case, by comparing the corresponding
free energies, one readily sees that there is a unique groundstate corresponding to

* = 0% = m, where the canting field points along the equator €(x) = (S/a)e,, V.
In terms of the spins, this phase corresponds to

|gtP> = |Sv S>z,1 29 ‘Sa S>z,2 R |S7 S)z,Ns ’ (B37)

where all spins align parallel to the external transverse field. Since the ordering is
not due to collective effects, we refer to this phase as a transverse paramagnet.
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