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Abstract  
 
Acute lymphoblastic leukemia (ALL) is a blood cancer characterized 

by a high proliferation and maturation arrest of the lymphoid 

precursors which can either be from B or T-cell lineage. In adult 

patients, this type of cancer is considered a rare disease and the 

outcome is worse than children, especially for those presenting the 

T-Cell ALL (T-ALL) type. In order to get insights on the evolution 

of adult T-ALL under therapy, we have whole genome sequenced 

leukemic samples at diagnosis and relapse of 19 adult patients with 

T-ALL who relapsed after standard treatment. We report the somatic 

driver alterations and active mutational process and compared them 

to other ALL cohorts. We pinpoint candidates of therapy resistance 

by looking at relapse-enriched alterations (e.g. genes NT5C2, 

ABCB1 and SMARCA4). In most cases, the relapse clone is 

estimated to diverge from the primary the previous year to the 

diagnosis, by which time, the relapse-fated subpopulation size ranges 

from few to millions of cells. We have also simulated different 

scenarios of primary and relapse leukemias and concluded that the 

relapsed leukemias of the sequenced cohort are driven by genetic 

resistance. In this project we provide an integrated vision of the 

mutational evolution of T-ALL adult cases and highlight the 

relevance of finding cancer driver genes of resistance. In line with 

that, we have also generated a compendium of mutational cancer 

driver genes across different cancer types through the analysis of 

thousands of tumors with a whole new framework for driver gene 

discovery (IntOGen).  
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Resum 
 
La leucèmia limfoblàstica aguda (LLA) és un càncer de sang que es 

caracteritza per una altra proliferació i arrest en la maduració dels 

precursors limfoblàstics que poden ser del llinatge B o T. En pacients 

adults, aquest tipus de càncer és considerat una malaltia rara i 

presenten pitjor pronòstic que els pacients pediàtrics en especial en 

aquells adults del tipus T-LLA. Per tal de conèixer millor l'evolució 

de la T-LLA en adults en tractament, hem seqüenciat el genoma 

sencer de mostres a diagnòstic i recaiguda de 19 pacients adults amb 

T-LLA que van recaure després de rebre el tractament estàndard. 

Reportem les alteracions somàtiques driver i els processos 

mutationals actius en comparació amb d’altres cohorts de LLA. 

També assenyalem candidats de resistència al tractament tot mirant 

les alteracions abundants en recaiguda (per exemple als gens NT5C2, 

ABCB1 i SMARCA4). En la majoria dels casos, el clon de recaiguda 

s’estima que va divergir del clon primari l’any previ a la diagnosi, 

moment pel qual, les cèl·lules destinades a fer la recurrència 

constitueixen una subpoblació cel·lular que va de poques a milions 

de cèl·lules. Mitjançant simulacions de diferents escenaris de 

leucèmies primàries i de recaiguda, concloem que les leucèmies de 

recaiguda d’aquesta cohort seqüenciada es deuen a una resistència 

genètica. En aquest projecte donem una visió integrada de l’ evolució 

mutacional de les T-LLA en casos adults i resaltem la rellevància de 

trobar gens driver de resistència. En aquesta línia, també hem generat 

un compendi de gens driver mutacionals de diferents tipus càncer a 

través de l'anàlisi de milers de tumors amb una nova plataforma de 

detecció de gens driver (IntOGen).   
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1. INTRODUCTION      

1.1 Cancer is an evolutionary process 
  

Cancer is a term that comes from the greek word for crab «karkinos» and 

comprises a set of diseases that present abnormal cells that uncontrollably 

divide and invade the proximal tissues and/or spread to other parts of the 

body [1,2]. It presents a high heterogeneity among its different forms (more 

than 100 different ones) with particular risk factors and epidemiology [3]. 

However, global numbers point out that cancer is the second leading cause 

of death worldwide and approximately one third of the cancer deceases are 

due to the following risk factors: high body mass index, low fruit and 

vegetable intake, lack of physical activity, tobacco and alcohol use [4]. 

 

In general, cancer is also defined as a genetic disease as it is caused by 

changes in the genome that triggers the loss of division and growth control 

of the cells. The genome is formed by deoxyribonucleic acid (DNA) which 

is a molecule in the shape of a double helix of polynucleotide1 chains 

(strands). Alterations can appear at different levels of the genome: from the 

sequence of a gene2 to each one of the packing levels of the DNA (see 

Figure 1). The necessary information for the cell to develop, function, grow 

and reproduce is stored in this molecule in the cellular nucleus. Unrepaired 

alterations from damaged DNA can cause cancer if it affects specific 

cellular functions that lead to abnormal division of the cells and the 

                                                 
1 The monomeric units of DNA are called nucleotides which are formed by a 
desoxyribose, a phosphate group and a nitrogenous base. There are 4 possible 
nitrogenous bases of two types: pyrimidines (thymine or T and cytosine or C) and 
purines (guanine or G and adenine or A; see Figure 1). 
2 Def. gene: DNA sequence of fixed position (locus) with the basic physical unit of 
inheritance. 
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formation of a tumoral mass or neoplasm. The acquisition of the 

“malignancy” of the cancerous cell is a progressive inner-process called 

tumorigenesis or carcinogenesis.  

 
Figure 1. Illustration by Terese Winslow. DNA structure consists of different levels 
of DNA wrapping and packing. 

Our knowledge of this disease has grown as a result of the advances in 

genetics. The first notorious approaches towards the comprehension of 

cancer disease started in the late nineteenth century [5]. David von 

Hansemann who was a pathologist, noticed that some tumor cells presented 

multipolar mitosis which resulted in abnormal chromosomal numbers in 

daughter cells [6,7]. Contemporary to his work, the german zoologist 

Theodor Boveri, observed an unequal number of chromosome distribution 

in the daughter cells of a double-sperm fertilized sea-urchin eggs [8]. The 

phenotypic differences between the chromosomal imbalanced daughter 

cells drove him to the hypothesis that cancer is a cellular disease. He 
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proposed that tumors also arise as a consequence of abnormal segregation 

of chromosomes that provide the capacity of unrestricted growth to the 

daughter cells [9]. These german scientists were the first ones to link 

aberrant chromosomal distributions of daughter cells to the aetiology of 

cancer. 

 
In the following decades, experimental advances were made in the field of 

chemical carcinogenesis which allowed the connection between exposure 

to chemical agents and the cause of cancer in humans [10]. 

 

In the 70s and 80s the first cancer-causing genes were described. Bishop 

and Varmus observed how normal avian cells turned malignant with the 

presence of transferred Rous Sarcoma Virus (src) sequences [11]. They 

discovered that the src sequences were already present in the normal avian 

genome thus realizing that viral cancer-causing genes were altered 

sequences of already existing genes of the normal cells. This finding 

introduced the concept that cancer might emerge from mutated versions of 

genes. A few years later, this was consolidated by the description of a single 

mutation at codon 12 which was able to activate the oncogenicity of HRAS 

gene human bladder cancer [12]. 

1.1.1 Hallmarks and ecological features of cancer 

 
The somatic mutation theory [13] (SMT) presents tumorigenesis in humans 

as a multi-step process in which the accumulation of defects in the 

regulatory circuits that rule the normal cell disrupt their homeostasis to 

transform it into its malignant counterpart [14]. There are multiple ways for 

a cell to acquire a cancerous state. Unfortunately, this implies that cancer is 

a complex disease in which each patient has a unique tumoral manifestation 

of it (analogously coined as “malignant snowflakes” since ultimately they 
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are all different [15]). Paradoxically, zooming out of its complexity there 

are six well-defined traits that characterize malignant cells called the 

“Hallmarks of cancer” by Hanahan and Weinberg [14,16] (see Figure 2).  

 

1. Evading growth suppressors 

 

This means to gain insensitivity to growth-inhibitory (antigrowth) 

signals. This hallmark reunites tumor suppressor gene discoveries. 

Two of the most notorious examples are RB protein which controls 

cell-cycle progression and TP53 which acts as a sensor of aberrant 

cell functionality and can halt cell-cycle or even trigger apoptosis 

if needed.  

 

2. Sustaining proliferative signaling 

 

There are many ways in which a cell can maintain its proliferative 

capacity. Cancer cells can stimulate their surrounding environment 

into the production of proliferative ligands. Another possibility is 

the autocrine way in which tumoral cells produce growth factors 

and the corresponding receptors themselves. Furthermore, cells can 

just increase the expression of growth factor receptors or modify 

their structure to make them active and ligand-independent. 

Alternatively, a cell can become ligand-independent by acquisition 

of mutations in downstream effectors of proliferation related 

pathways. For example, activating mutations in Ras protein break 

the intrinsic negative feedback-loop that regulates the Ras GTPase 

activity. Another example are loss-of-function PTEN mutations 

that prevents phosphatidylinositol (3,4,5) trisphosphate (PIP3) 

from degradation and constitutively PI3K signaling activates PI3K 

proliferative signaling. 
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3. Activating invasion and metastasis of the tissues 

 

One of the most studied cancer dissemination processes is the 

“epithelial-mesenchymal transition” (EMT) mechanism. This is a 

developmental regulatory program that apart from being involved 

in embryonic morphology it also acts in the transformation towards 

malignancy of epithelial cells in cancer. The transcriptional factors 

such as Snail, Slug, Twist and Zeb1/2 are the players of this process 

in which they modify the cell into an invasive phenotype by making 

it matrix in-adherent, creating a fibroblastic morphology, 

increasing its capacity for motility and resistance to apoptosis. 

Another important element related to this hallmark, is the 

disruption of normal signaling between cancer cells and the 

surrounding stromal cells. For example, in some occasions, 

macrophages can supply with metalloproteases and cysteine 

cathepsin proteases to degrade the matrix bindings and promote cell 

invasion. Apart from EMT, there are other forms of dispersion 

described like nodules of cancer cells invading in mass (“collective 

invasion”) or cancer cells acquiring ameboid motility to slight 

thought the tissue. 
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Figure 2. The Hallmarks of Cancer reprinted from Hallmarks of cancer: The next 
generation (v.144, p.647) by Hanahan and Weinberg, 2011 Cell. 

4. Enabling replicative immortality 

That is limitless replicative potential which is acquired by 

overcoming two proliferative barriers: senescence and crisis (cell 

death). The first term means that cells enter a nonproliferative but 

viable state and the second one means overcoming an apoptotic 

crisis phase of senescent cell population and becoming immortal. 

Most of the cell lines used in cancer research are immortalized and 

by studying them it has been discovered that telomeres (the 

protective ends of chromosomes) play a central role in this 

enduring cell state. Telomeres are eroded along the cell descendant 

generations giving a finite replicative potential to it. In fact, most 

of the immortalized cells have functional levels of expression of 

telomerase (the specific DNA polymerase that adds the repetitive 

telomeric segments). Apart from this function, there are evidences 

of other involvements of telomerase in tumorigenesis that are 
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telomere-independent. The protein subunit TERT has been 

associated with cell proliferation, apoptotic resistance and DNA-

damage repair involvement. 

5. Inducing angiogenesis and sustain it 

Angiogenesis is the physiologic process of creating new blood 

vessels from existing ones. It is very active during embryogenesis 

and transiently activated in adults in concrete processes like wound 

healing or female reproductive cycle. The purpose of angiogenesis 

is to ensure good tissue irrigation so that cell metabolic exchange 

of nutrients and waste is guaranteed. In order to sustain highly 

demanding neoplastic growth, it has been observed that there is an 

angiogenic switch during tumor progression. However, 

neovascularization patterns in tumors is highly variable among 

tumor types, some of them being hypovascularized (e.g. pancreatic 

ductal adenocarcinomas) and others hypervascularized (e.g. 

pancreatic neuroendocrine carcinomas). Some immune innate 

system3 cells are associated with the angiogenic switch 

contributing to tumor growth and local invasion. 

6. Resisting cell death 

Apoptosis or “cell suicide” is a programmed cell death that serves 

as a normal mechanism to eliminate damaged cells and maintain 

tissue homeostasis. When it is impaired, there is a loss of control of 

cell proliferation and, therefore, it contributes to tumor progress. 

There are two circuits to trigger apoptosis, one cell extrinsic and 

                                                 
3 Immune innate system: immunity mechanism against pathogens. It is 
phylogenetically conserved among multicellular organisms. Cell members of it are 
macrophages, neutrophils, mast cells, and myeloid progenitors. 
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the other with cell intrinsic origin. The first one starts by the 

activation of an external receptor (tumor necrosis factor receptor 

superfamily) and the intrinsic one is normally triggered by inner 

cell stress (e.g DNA damage). Both stimulate the caspase enzymes 

(caspase 8 and 9 respectively) which provokes the interaction of 

those with apoptotic inhibitors and the Bcl-2 family members 

which some are pro- and some anti-apoptotic regulators. This ends 

up lising the outer membrane of the mitochondria and releasing 

cytocrom c which in turn activates other caspases that initiates 

proteolytic activities to induce disassembly of the cell. One way to 

resist apoptosis is by the overexpression of anti-apoptotic proteins 

like Survivin or Bcl-2. On the contrary, deactivating mutations in 

pro-apoptotic regulators also contributes to inhibit apoptosis. 

Another notorious example is the loss of function of TP53 which 

implies a disruption of a critical damage sensor within the intrinsic 

apoptotic circuit.   

The 6 original hallmarks were defined in 2000 and were embraced as a 

research guidance by the scientific community. However, as some pointed 

out some years later [17], there is not much difference between benign 

tumor mass and a malignant one in terms of the the features described in 

the seminal paper by Hanahan and Weinberg meaning that except for the 

tissue invasion and metastasis hallmark, most of them are shared between 

the two. In 2011 the hallmarks were re-defined and updated to a past decade 

of research. In addition, a new approach was presented with the distinction 

of two concepts surrounding cancer: “enabling characteristics'' and 

“hallmarks of cancer”. The acquisition of hallmarks is possible by two 

consequential characteristics of neoplasias (i.e. enabling characteristics): 

genome instability and mutability and tumor promoting-inflammation. The 

first one refers to the successive acquisition of genomic alterations that 
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provide the characteristics of the hallmarks to the cells. Examples of these 

alterations are gains and losses of copy number and/or genome 

rearrangements favoring dysregulation of cell homeostasis or inactivating 

mutations in key players of genome integrity maintenance. This settles a 

wide mutational space for the cell to explore and acquire favorably 

mutagenic genotypes.  

The second enabling characteristic implies the observed infiltration of 

innate and adaptive immune system cell members in tumors. Inflammation 

associated to the immune response can foster tumor progression and 

contribute to the hallmark capabilities of cancer since it releases signaling 

factors for the acquisition of them. 

Other novelties of the reviewed seminal paper is the addition of two  

hallmarks emerged in line with the recent scientific advances such as 

deregulating cellular energetics and avoiding immune destruction. The first 

one comes from observed altered energy metabolism in many different 

cancer types. Some cancer cells switch to an “aerobic glycolysis” in which 

they take energy prioritizing glycolysis only instead of mitochondrial 

oxidative phosphorylation. It is believed that this preference provides the 

cell with lots of glycolysis intermediates that can serve to fuel biosynthesis 

pathways. Some of the related alterations with this energy switch are 

upregulation of GLUT1 (glucose transporter) and activation of oncogenes 

like RAS that among other things upregulates glycolysis. Regarding the 

second new hallmark (avoiding immune destruction), immune surveillance 

acts as the natural barrier against tumorigenesis and cancer progression so 

some solid tumors have managed to avoid detection and therefore 

destruction by the immune system. Transplantation experiments with 

immunodeficient mice have shown that cancer cells arising on those are 

inefficient when injected in immunocompetent hosts. 
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Some other lines of criticisms have emerged regarding this summarized 

view of cancer by Hanahan and Weinberg accusing them of considering 

cancer only as a cell-based disease caused by alterations in the DNA and 

without taking into account other points of view [18]. These critical voices 

pointed out the ignored evolutionary view of cancer that defines it more like 

a tissue-based disease. Among other arguments, they specifically call in 

question whether proliferation is an acquired cancer cell characteristic and 

therefore quiescence seems to be the base state of normal cells (as it has 

been suggested in the seminal paper). Instead, they claim that 

carcinogenesis is caused by a faulty interaction of the cells and their 

environment (other cells, extracellular matrix) which, in their opinion, is 

the real regulator against a default proliferative state of all cells which, in 

addition, resembles to what happens in organogenesis. This perspective of 

cancer model is collected in the tissue organization field theory (TOFT) 

which has not been as widely accepted as SMT over the past years of cancer 

research. However, the debate that surrounded both serves to remind the 

research community that cancer is more complex than it seems and 

multidisciplinary efforts must join to elucidate the biology behind and 

eventually find suitable cures [19,20]. 

Following this reasoning it seemed necessary that, despite the effort in the 

comprehension of the genetics and cellular biology of cancer, other aspects 

like the dynamics along time and space of tumors must also be taken into 

account for the clinical battle against it. Therefore, some years later, new 

ways to characterize tumors have emerged. With the advances in 

knowledge of cancer progression and tumor adaptability plus the 

technological improvements that allowed to retrieve several layers of 

information from tumors, some cancer researchers with evolutionary 

perspectives proposed a two dimensional framework to classify cancer 

according to the genetic, environmental and kinetics main characteristics of 
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it [21]. The two components of this classification are and Evo-index to 

capture the evolvability4 of the tumors and the Eco-index that measures the 

environmental viability of the neoplastic cells. 

This system provides up to 16 different categories when splitting each index 

into two subdivisions. The Evo-index rounds up the heterogeneity of 

neoplasms in space and time by relying on the concepts of diversity (D) and 

change over time (Δ). On the other hand, the Eco-index can be summarized 

into the hazards (H) or the deathly hurdles that cells must face and resources 

(R) that are fundamental for the cell maintenance (see Figure 3). For 

example, a tumor with low diversity (D) among its tumor cells, with a low 

mutation rate or genome instability (Δ) that ensures homogeneity, suffering 

from an hypoxic situation (H) that attracts immune response and limited 

resources to keep the growth rate (R), has little capacity to evolve and seems 

easy to eradicate. Contrary, the worst possible scenario would be a tumor 

that evolves rapidly (high D and Δ) and has plenty of resources (high R) 

which is highly adaptive to changes in the environment or any other 

affecting interventions (H: like immune evasion or therapy).  

                                                 
4 The concept of a neoplasm as an evolving system is extended in the next section 
(1.1.2). Here, the definitions are limited to provide a general understanding of the 
classification 
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Figure 3. The Eco and Evo-index adapted and reprinted from Classifying the 
evolutionary and ecological features of neoplasms (v.17, p.605-619) by Maley et 
al., 2017 Nature Reviews Cancer 

Both the hallmarks and the Eco-evo indexes emerge from the perspective 

of the cancer genomics research field. These initiatives define cancer 

disease as they provide ways to characterize them. However, there are other 

classifications (sometimes more specific) based on other criteria such as 

histological origin, histological stage and well defined biomarkers. Those 

are addressed below to guide where acute lymphoblastic leukemia settles. 

The concept of evolvability of this disease is relevant to this piece of work 

and is extended in the following section. 

1.1.2 Darwinian evolutionary theory in cancer 

The Darwinian evolutionary theory describes how populations of 

organisms change over time due to variation and the effect of natural 
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selection5 on the heritable traits that influence the fitness6 of individuals. 

The same rationale can be applied to neoplasms. In 1976, Peter Nowell [23] 

analogously characterized cancer development as an evolutionary process. 

In other words, a tumor can be understood as a population of individuals 

(cells) that accumulate changes (alterations) in the genome which are then 

subjected to the pressures of selection. The unrepaired genome variability 

can be advantageous to the cell and create a clonal expansion. That is, the 

cocktail of alterations is heritable to the daughter cells and is transmitted to 

the following generations making a quick population growth that 

outcompetes the rest of the cells. Various beneficial alterations carried by 

different mutant clones present a dynamic competitive scenario between 

cellular populations that we call intratumoral heterogeneity [24] (ITH or 

diversity as mentioned in the previous section). This diversity does not only 

imply changes in functional parts of the genome (i.e coding regions). There 

are increasing lines of evidence that epigenetic changes such as DNA 

methylation, chromatin remodeling and post-translational modification of 

histones are also sources of ITH [25].   

There are several little clonal expansions that can create tissue mosaicism 

or benign forms of cell growth in certain normal tissues with particular 

constraints. However, occasionally, a cell can accumulate sufficient 

mutagenic load to become malignant to proliferate and invade. 

Heterogeneity can serve to reveal the tumor’s life history as it is explained 

                                                 
5 Charles Darwin observed that species have changed overtime as it is evidenced 
in the fossil records.  He also noticed that the offspring of some species presents 
variation that makes them more suitable to survive “the struggles of existence” 
increasing their chances to reproduce and transmit their advantageous 
characteristics to the next generation. Therefore, he inferred that nature is able to 
select the favoral variability of the individuals and called that natural selection [22]. 
According to him and Alfred Russel Wallace, evolution happens by natural 
selection.  
6 Darwinian fitness is defined as the ability of an individual to survive and have 
fertile offspring 
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in the coming sections. Not only does it open the possibility to explore the 

past trajectory of the tumor but can also provide hinds for forecasting its 

progression and most likely outcome. In other words, ITH provides the 

tumor with high capacity of adaptability which usually challenges 

effectiveness of treatment and can result in a therapy-resistant tumor form. 

1.1.3 Molecular cancer data 

In 1971, the U.S government declared the “war on cancer” which stated a 

commitment to support research to reduce the incidence, morbidity and 

mortality from cancer [26]. A few years later, in 1986 it became apparent 

the need to obtain the full sequence of the cancer genome to systematically 

detect the mutated genes that cause it [27]. From 1990 to 2003 scientific 

efforts resulted in the sequencing of the human genome as part of the 

Human Genome Project (HGP) [28] and inspired other initiatives to 

sequence tumor genomes to reveal the basic cancer mechanisms setting the 

bases of the cancer genomics research field. A summarized definition of it 

is the following: “Cancer genomics is the study of the totality of DNA 

sequence and gene expression differences between tumor cells and normal 

host cells. It aims to understand the genetic basis of tumor cell proliferation 

and the evolution of the cancer genome under mutation and selection by the 

body environment, the immune system and therapeutic interventions.”[29] 

1.1.3.1 The revolution of Next Generation Sequencing in Cancer 
Genomics 

 
The increment in knowledge due to cancer genomes research initiatives 

fostered the improvement of sequencing technologies and vice versa. It 

started with Sanger Sequencing, then continued by identifying mutations 

with capillary-based sequencing  in exons that were individually amplified 

and then sequenced and has evolved to large-scale analysis of hundreds of 
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cancer genomes with massively parallel sequencing (MPS) (see Figure 4, 

[30]). Even within MPS technologies there has been a great improvement 

from 1 gigabase (GB) in a single run to more than 600 gigabases per run 

around 2012 [31]. Not only it provides higher-throughput but also it is 

possible to cover the whole-genome with a much more reasonable price, 

thus, increasing the chances to systematically apply genome sequencing to 

the clinics (see the sequencing cost of a human genome through years 

compared to Moore’s Law in here [32]). 

 

 
Figure 4. Improvements in the rate of DNA sequencing over the past 30 years and 
into the future reprinted from The cancer genome (v. 458, p.719-724) by Stratton 
et al., 2009 Nature. 

First generation sequencing  

 
Maxam-Gilbert and Sanger sequencing technologies are considered the 

“First Generation Sequencing”. Maxam and Gilbert used radiolabeled DNA 

treated with chemicals to break the chain at specific bases and determine 

the position of the specific nucleotides by the length of the cleaved 

fragments in a polyacrylamide gel [33]. However, in 1977 Frederik Sanger 
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presented the “chain termination” method (also known as Sanger 

Sequencing; [34]) becoming one of the major breakthroughs in the history 

of biology and medicine. The key of this approach is that it mixes dye-

labelled normal deoxynucleotides (dNTPs) and dideoxy-modified dNTPs 

(ddNTPs). The last ones are analogs of the first ones that are unable to bind 

to the next dNTP and halts DNA extension. Doing 4 of these reactions (1 

per each ddNTPs) on 4 lanes in a gel generates fragments of elongated 

DNA. The shorted fragments migrate faster. The terminal base of those can 

be identified by autoradiography so the sequence can be inferred as there is 

a radioactive band in a given position of one of the specific lanes. 

 

Several improvements were done to the Sanger Sequencing in the following 

years, especially introduction of capillary base electrophoresis. The first 

semi-automated sequencing machine was commercialized by Applied 

Biosystems in 1987 based on Leroy Hood improvement to Sanger 

Sequencing. 

Second generation sequencing 

 
The first commercialized “Next Generation Sequencing” (NGS) machine 

was Roche 454 sequencing system that used pyrosequencing method to 

provide mass parallelisation of sequencing reactions. This method differed 

from the past technologies because it does not use radio- or fluorescently-

labelled dNTPs. Instead it infers the sequence by measuring the amount of 

pyrophosphate produced when a base is incorporated. The release of the 

pyrophosphate triggers an enzyme reaction that involves luciferase and so 

producing light [35].  

 

Another important landmark was the Solexa Genome Analyzer, the first 

“short-read” sequencing platform that was launched and commercialized 
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by Solexa and lately acquired by Illumina [36]. This technology does also 

sequencing-by-synthesis7 using reversible dye-terminators chemistry. The 

following years, Illumina developed the HiSeq platforms (models 

2500/2000/1500/1000) which currently dominate the sequencing services 

and facilities. Short-read sequencing implied a methodological switch from 

chain-termination and electrophoresis to fragmented DNA, clonally 

amplified, loaded in newly developed microchips with improved 

chemistries that allows massively parallel sequencing and, therefore, 

reduces sequencing time and costs.  

Another short-sequencing platform is SOLiD (Supported Oligonucleotide 

Ligation and Detection) System. As its name suggests sequencing is based 

on DNA fragments for ligation to oligonucleotide adapters using DNA 

ligase and not by synthesis like in sequencing-by-synthesis. Another 

notorious sequence-by-ligation (SBL) is Complete Genomics “DNA 

nanoballs” technique. Even though Illumina technology is more spread and 

used, both SBL technologies remain competitive [33].  

Third and fourth generation sequencing 

There is a diffuse boundary that separates second and third generation 

sequencing but here [33], the latter is defined as those technologies that are 

able to sequence single molecules and avoid DNA amplification. There are 

two main commercialized technologies worth mentioning here: single 

molecule real time (SMRT) platform from PacificBioscience (PacBio 

machines) and nanopore sequencing performed in GridION and MinION 

platforms by Oxford Nanopore Technologies (ONT). However, there are 

great differences between these two. The PacBio uses DNA polymerase 

                                                 
7 Sequencing-by-synthesis refers to methods that need DNA-polymerase during 
sequencing. We can distinguish two subcategories: cyclic reversible termination 
and single nucleotide addition [35]. 
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attached to the bottom of a “well-structure” called zero-mode waveguide 

(ZMW) with a small diameter. Fluorescent nucleotides are incorporated 

inside the ZMW which provide real-time bursts of fluorescent signal 

without interference of signals of other nucleotides. On the other hand, 

nanopore sequencing first requires the denaturalization of the strands of the 

DNA so that one strand enters the nanopore, a protein channel pore 

embedded in a synthetic membrane. The sequence is inferred as each base 

that enters the pore creates a different membrane current. Both technologies 

provide sequencing results of long-reads which are very useful in the novo 

assembly of genomes or to gain resolution to determine the breakpoints that 

define structural variants. 

The fourth generation sequencing is known as “in situ” sequencing. It adds 

a new layer of information since the distribution of the reads coming from 

RNA are a reflection of the heterogeneity of the tissue sequenced [37]. 

Other sequencing technologies such as Single-Cell, Hi-C or ATAC-seq are 

being used to study cancer and cover other aspects to understand tumors 

(increase the resolution to the level of individual tumoral cells or analyzing 

chromatin interactions and accessibility). 

Sequencing analysis and bioinformatics 

With all the contemporary advances and market variability that came with 

nucleotide sequencing it also became apparent the need to standardize the 

huge amount of raw data that these technologies were producing (and that 

currently still produce). Since the Solexa Genome Analyzer II (GAII) 

platforms by Illumina have proven to be the ones with highest penetration 

in the market and the main representatives of NGS, the up-coming section 

is mainly focused in the data management and analysis of the genomic data 

of this technology. The processing of the great amount of sequencing data 
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consolidated a discrete but already existing field: bioinformatics. Also 

known as computational biology, it is defined as the research area that 

involves the storage, organization and analysis of biological, medical and 

health information using computers, databases, maths and statistics [38].  

One of the first things that IT departments and/or bioinformaticians faced 

was storage. In one run of a GAII platform, 115,200 Tiff formatted files are 

produced per run, each at about 8 megabytes (MB) in size which sum-up to 

1 terabyte (TB) [39]. The intensities of the images are processed to provide 

base calls in BCL format file (Binary Base Call). Those are then converted 

into FASTQ format which is a text-based sequencing data file that contains 

both raw sequence data and quality scores [40]. When the reads in the 

FASTQ format are aligned or mapped to the human reference genome, the 

output file can vary from 8 to 150 and also up to 300 GB depending on the 

read length (36-250 base pairs or bp), the depth and the breadth of the 

coverage that the reads provide [39,40]. There are different formats to 

represent the alignment files: SAM, BAM, CRAM format. The first one 

refers to Sequence Alignment Map (SAM) which is the human-readable 

form of the alignments. Each SAM file starts with a header followed by a 

row for every read together with 11 tab-delimited fields describing that 

read. BAM and CRAM files are compressed versions of SAM files. BAM 

files are the most widely used format since most of the processing 

algorithms take BAMs as the default input.  

After some years of sequencing projects, there is now one gold standard 

pipeline for doing alignments and creating BAMs: “GATK Best Practices”. 

These are a series of workflows (each adapted to a particular experiment 

design) of the best way to use the Genomic Analysis ToolKit (GATK) 

which has been developed and maintained by the Broad Institute [41]. 

These workflows are the result of many years accumulating knowledge of 
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how to analyze high-throughput sequencing data (HTS). There are different 

experimental HTS designs: whole-genome sequencing (WGS), whole-

exome sequencing (WXS), targeted or panel of genes sequencing (TGS) 

and RNA-sequencing. Regarding the DNA-seq methods each one of them 

is more adequate to help answer a particular research question and/or 

clinical necessity (see Table 1) depending on the genomic region(s) of 

interest as well as the project budget. For example, sequencing of a panel 

of genes targeting specific alterations is often used for accurate diagnostics 

of the (sub)type of cancer contributing to a better precision medicine 

whereas sequencing the whole-genome is more used for research purposes. 

 
Platform 

Cost 
(per sample, 

USD) 
Sites 

Region 
size (bp) 

Depth Data size 

WGS 
$1000–
$3000 

All coding 
and non-
coding 
regions 

~3 x 109 
30-
60x 

Depending 
on coverage 
~60-350 GB 

WXS 
$500–
$2000 

Exonic 
regions 

~6 x 107 
150-
200x 

Depending 
on coverage 
~5-20 GB 

TGS 
$300–
$1000 

Specificall
y targeted 

regions 

Varies by 
panel size 
~1 x 105 - 

1 x 107 

200-
1000

x 

Varies by 
panel size 

and 
coverage 

~100 MB– 
5 GB 

Table 1. Different types of Next Generation Sequencing for genomics reprinted 
from Applications and analysis of targeted genomic sequencing in cancer studies 
(v.17, p.1348) by Bewicke-Copley et al., 2019 Computational and Structural 
Biotechnology Journal 

Once the alignments are done, alterations can be detected by using variant 

callers. These are algorithms that report the variability of the sample 

genome and that is why it is said that they “call” variants. Many callers have 

been developed in the past few years [42–45]. The first caller distinction is 
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whether they differentiate between germline and somatic variants. 

According to the glossary added in Vogelstein et al., 2013 [46]: 

● “Germline variants: Variations in sequences observed in different 

individuals. Two randomly chosen individuals differ by ~20,000 

genetic variations distributed through-out the exome.” 

● “Somatic mutations: Mutations that occur in any non-germ cell of 

the body after conception, such as those that initiate 

tumorigenesis.” 

In most cancer sequencing projects, two samples are taken from each 

patient: one of normal tissue (or control) and another of the tumor mass. By 

sequencing, aligning and comparing both we can differentiate the germline 

variants as those present in both the normal and tumoral samples that are 

different from the reference genome from the somatic variants which are 

those exclusive to the tumoral sample. Even though we tend to associate 

tumor initiating alterations with a somatic acquisition process, there are 

many inherited germline variants that predispose to cancer. One of the most 

notorious cases is the inheritance of one alterated copy of BRCA1 and 

BRCA2 genes which increases the risk of developing various types of 

cancer [47]. One of the most widely used germline callers is 

HaplotypeCaller developed by the Broad Institute and distributed as part of 

the GATK.  

Usually, callers are specific of one, or maximum two, types of alterations 

● Single Nucleotide Variants (SNVs): A single nucleotide change in 

the sequence. 

● Small Insertions or Deletions (InDels): Small gains (insertions) or 

losses (deletions) in the DNA sequence (from 1 to 100 bp). 
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● Copy Number Variants (CNVs): Sometimes also considered as 

intermediate SV but often distinguished and referred to as gains and 

losses of DNA fragments greater than 1 kilobase (kb) but less than 

5 megabase (mb) [48]. In other words, can be summarized as 

detecting more or less copies of a DNA region from the expected 

two copies of a human diploid genome. Therefore, the gain in a 

DNA fragment does not refer to a de novo inserted sequence but to 

increase of a copy(ies) of a fragment.  

● Structural Variants (SVs): A region of DNA that suffers a change 

in copy number (deletions, insertions and duplication), orientation 

(inversions) or chromosomal location (translations) [49]. Can be 

also understood as rearrangements of DNA sections, thus, some 

people consider whole-genome duplications and chromosomal 

aneuploidies as CNVs but not SVs. 

In the current manuscript, “mutation” refers to SNVs and InDels but it is 

also used as a synonym of alteration by the community. In addition, as 

shown above, there is a distinction of CNVs from the rest of SVs as a 

different genomic alteration category. There are many callers that are 

specific for CNVs only. This is the reason why sometimes they are treated 

separately. 

Before diving into the great variety of variant callers, there are other highly 

used sequencing techniques for detecting CNVs and SVs apart from short-

read sequencing. The first one is BAC array-comparative genomic 

hybridization (array-CGH). This technique is widely used especially in 

clinical diagnostics. It provides detection of imbalances but lacks accuracy 

to provide absolute copy numbers. A contemporary method that also 

provides SV analysis is representational oligonucleotide microarray 
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analysis (ROMA). Another common method is the usage of SNP8 array data 

to infer copy number variants. All of them have specific software to 

estimate copy numbers. However, with the coming up of NGS, especially 

of paired-end sequencing9, it has been possible to detect SVs with a better 

resolution [49].  

With all the available variant callers one can find themselves a bit lost when 

choosing which one is more appropriate. In that case, searching for 

benchmark publications helps in deciding. One of the best guidance when 

picking aligners and variant callers is the work of Alioto et al., 2015 where 

they used tumor-normal pair samples that were publicly available to 

compare sequencing methods, pipelines and validation methods to call 

variants [42]. According to their paper, Strelka obtained some of the highest 

precision and recall measures when tested with different datasets and using 

BWA as an aligner. The highest precision score was obtained when 

intersecting MuTect2 [41] and Strelka. Others have also benchmarked 

different callers and conclude that MuTect2 and Strelka seem to be 

performing better [51]. 

As mentioned above, there are certain algorithms specialized only on 

detecting copy number changes and contrary, there are others that have been 

designed to detect all (or most) of the SVs. Table 2 is divided into two, the 

upper one describes computational tools specified in CNVs detection 

whereas the bottom one lists some of the most used SVs callers. Columns 

are the same except for the one which differentiates: 

                                                 
8 SNP: Single Nucleotide Polymorphism. A polymorphism, it has to occur in at 
least one in 100 people [50].  
9 Paired-end sequencing: Both ends of the DNA fragments are sequenced which 
provides better alignment and increases the quality of the sequencing.  
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- Segmentation algorithm used in CNV detection. These are 

changepoint algorithms that serve to define transition boundaries to 

localize and quantify copy number changes [52].    

- Signal method used to detect breakpoints in SV analysis. There are 

4 different signals to detect them [45]: 

- Read-depth: uses changes in read depth to identify regional 

rearrangements. 

- Paired-end: uses the abnormally mapped pair of reads 

(such as unexpected distance and direction) of the DNA 

segments to infer a SV event 

- Split-read: it works by splitting the short-reads in smaller 

fragments and then re-mapping them separately to the 

reference genome. The location of the breakpoint is 

revealed by the orientation and location of the splitted-

remapped reads.  

- Local-assembly: it is used along with any of the above 

signals. It re-assembles reads that are already aligned to 

provide a better resolution of the breakpoint.  
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The great variety of variant callers and the specificity of those to certain 

genomic alterations are a reflection of the amount of attention driven to the 

sequencing of tumors and the will for a precise characterization of those.  

Pan-Cancer Initiatives and precision medicine 

Due to the expansion of NGS, large-scale studies sequencing tumor samples 

of patient cohorts of different cancer types have been possible. These 

initiatives have aimed to uncover the main somatic alterations driving 

tumors with the ultimate goal of providing knowledge for more effective 

precision medicine approaches.  

One of this first pan-cancer initiatives is The Cancer Genome Atlas (TCGA; 

[53]) which started in 2005 and it is a joint effort from multiple institutes. 

It began with a pilot project of only 3 cancer types and extended into two 

phases and ended up molecularly characterizing over 20,000 primary tumor 

samples from 33 different cancer types. It comprises not only genomic but 

also epigenomic, transcriptomic and proteomic data. With these data, it was 

possible to have the first genomic broad overview of different cancer types 

(12 at that moment) [54]. Furthermore, as a result of the analysis of lung 

squamous cell carcinoma cohort of TCGA a new clinical trial for lung 

cancer was launched (Lung-MAP; [55]) inspired by the results of the study 

[56]. The TCGA project has evolved to the Pan-Cancer Atlas [57,58] which 

is a resource that covers all the relevant findings from the published work 

derived from it. 

As a consequence of TCGA and other large cancer sequencing projects 

(such as the Cancer Genome Project from the Wellcome Trust Sanger 

Institute), in 2008 the International Cancer Genome Consortium (ICGC; 

[59]) was built with the aim of coordinating large-scale cancer genome 
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studies. Under the umbrella of the ICGC, new advances in the 

understanding of tumor evolution of breast cancer revealed that the most 

recent common ancestor within the cancer cell populations appeared early 

in time so that there is a lot of subclonal diversification before diagnosis 

[60]. 

Most of the data collected in the ICGC data portal is focused on coding 

regions of the genome.  In order to explore the non-coding parts of the 

genome and to study common patterns of mutations The Pan-Cancer 

Analysis of Whole Genomes (PCAWG) was launched. This large-scale 

project comprises more than 2600 cancer whole-genomes sequenced [61] 

and its analysis has revealed non-coding alterations relevant for cancer [62] 

as well as brought genomic analysis of somatic alterations closer to 

precision medicine [63] among other things.  

Precision medicine also referred to as personalized medicine are used 

interchangeably but are indeed different things. Any medical appointment 

and any clinical decision made is personalized to the particular patient. In 

other words, physicians operate in an individualized way for each one of 

their patients and, therefore, medicine is intrinsically personalized. Having 

clarified that, precision medicine means applying medical procedures based 

on genetic, environmental, and lifestyle factors of the patient for better 

treatment efficiency [64]. Cancer genomics field boosted with the NGS 

outbreak anticipated to revolutionize oncology by identifying cancer 

specific events that can guide clinical decision-making [31,65]. Currently, 

targeted sequencing panels of cancer genes for diagnosis, prognostic and 

prediction of drug-response outcome are being used by clinicians to adjust 

treatments (e.g MSK-IMPACT panel from the Memorial Sloan Kettering 

Cancer Center [66]). However, there are still several bottlenecks between 

the huge amount of data generated from all the large and medium-scale 
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cancer studies and the delivered information that finally is evaluated for 

clinical decision-making. Concretely, the major bottleneck is the 

interpretation of the clinical significance of the genomic events which is 

very well summarized in Good et al., 2014 (Figure 5). 

 

Figure 5. The interpretation bottleneck of personalized medicine reprinted from 
Organizing knowledge to enable personalization of medicine in cancer (v. 15, p.1-
9) by Good et al., 2014 Genome Biology. 

1.1.3.2 Acquisition of somatic alterations 

Cancer genomics has been studying the acquisition of somatic alterations: 
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1) to understand the relevant somatic events that can be tackled to stop 

the cancer growth, spread potential and therapy resistance 

2) from an evolutionary perspective to comprehend the cancer 

progression 

3) to learn about the mutational processes that the tumoral cells are 

going through  

Driver and passenger mutations 

 
As mentioned before, it is of common knowledge that cancer arises due to 

the accumulation of genomic abnormalities. However, noticing the large 

mutation burden per sample of different cancer types it becomes evident 

that not all the alterations (ranging from 41 and 2.5 million point mutations 

per genome according to Radhakrishnan and Pich et al., 2017 [63]; see 

Figure 6) are responsible for tumorigenesis and cancer progression.  

Therefore, one of the main goals of cancer genomic researchers has been to 

identify the alterations that are truly driving carcinogenesis. From here, we 

define as “driver” alterations those genomic events that confer growth 

advantage to the cells harboring them and that have been positively selected 

during the evolution of the tumor. The rest of non-driver alterations are 

called “passengers” which are not contributing to the cancer development 

and provide no functional consequence [30]. Passenger alterations are 

carried along in the clonal expansion derived from selection upon drivers. 

From Figure 6, one can see that in all cancers, passenger mutations 

outnumber drivers making their identification more challenging. The 

general focus has been to identify “cancer genes” which by definition are 

those carrying driver mutations (hence, also called driver genes).  
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The main approach to systematically find cancer genes has been to detect 

signals of positive selection by analyzing the somatic mutations from 

sequenced tumors of large cohorts of cancer patients (e.g. TCGA/ICGC). 

The general procedure is to compare the mutational patterns with their 

expectation under neutral mutagenesis. During the last few years, many 

genomic research groups have developed algorithms and computational 

tools that search for the following characteristics of the mutational pattern 

of genes that constitute signals of positive selection:  

 

- Mutational recurrence of genes. That is, genes that are found 

recurrently mutated across many cancer patients in a cohort which 

points towards a relevant role of the gene in the tumorigenesis of 

that particular cancer type. To computationally identify those, most 

algorithms search for genes mutated more frequently than the 

expected background level (understood as the background mutation 

rate). Examples of that are MuSiC [67] and MutSigCV [68]. 

Searching for recurrent mutated genes was the first step to find 

candidate driver genes [69]. It has also dragged with it some 

controversy since a good estimation of the background mutation 

rate is the key to avoid false positives and false negatives [70–72]. 

Currently, new approaches have emerged accounting for many 

confounders to improve the modeling of the background mutation 

rate to accurately measure the excess of mutations in genes. These 

approaches assert gene-specific positive and negative selection by 

measuring mutation count bias while correcting for covariates 

(regional genomic characteristics, mutational processes and 

consequence type). Methods that apply this are also quite recent 

like dNdScv [73] and cBaSE [74].  

- Detection of functional impact (FI) bias. Identification of genes 

with a bias towards the accumulation of somatic mutations with 
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high FI. A score is given to each mutation. Some of the methods 

that assess the FI of non-synonymous mutations10 are SIFT, 

PolyPhen2, MutationAssessor or CADD framework. Those 

provide scores that have been used in OncodriveFM [75] (and its 

evolved version: OncodriveFML [76]) to compute the bias and 

identify cancer drivers.  

- Uncovering of mutational clusters. Find genes that have mutations 

clustered in particular regions of the sequence affecting specific 

amino acids of the protein. There are sequence-based clustering 

approaches such as OncodriveCLUST [77] (and its evolved 

version: OncodriveCLUSTL [78]), protein three-dimensional 

clustering approaches such as HotMAPS [79] and clustered 

mutations in protein-domains like smRegions [80] 

- Detection of tri-nucleotide specific bias. Taking into account the 

number of mutations and nucleotides context (5’ and 3‘ flanking 

bases) of point mutations (thus,“tri”-nucleotide) helps to identify 

cancer genes. This is a very recent approach [81] that takes into 

account the differential probabilities of each nucleotide context.  

All these approaches are complementary to each other so one gene can show 

more than 1 signal of positive selection. In fact, the accumulation of 

evidence of positive selection helps to accurately define a list of candidate 

driver genes. One of the leading initiatives that particularly focuses on 

providing the most complete list of cancer genes is IntOGen (Integrative 

OncoGenomics) platform. It is a framework that automatically identifies 

                                                 
10 SNVs are also known as point mutations or single-base substitutions (SBS) 
which can be classified as synonymous or non-synonymous. A synonymous 
mutation (also referred as silent mutations) means that the nucleotide change results 
into a codon which translates for the same amino acid (AA) as the original 
sequence. Non-synonymous therefore, means that there is a change in the AA 
residue of the protein and are further classified according to their consequence type 
in: missense (if it changes the AA) or nonsense (if it creates stop codon and as 
consequence the protein translation is prematurely terminated). 
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and characterizes cancer genes. It has a pipeline implemented which runs 7 

driver discovery algorithms (dNdScv, CBaSE, MutPanning, 

OncodriveCLUSTL, HotMAPS, smRegions, OncodriveFML  and dNdScv) 

and combines their results to create a compendium of driver genes and a 

repository of the mutational features associated to them that help to explain 

their mechanism of action (see Figure 7). The workflow is available in the 

Web platform (https://www.intogen.org/search) together with the results 

from the analysis of 28000 sequenced tumors from many projects and 

genomic dataset repositories such as cBioPortal, pediatric cBioPortal, 

ICGC , TCGA, PCAWG, Hartwig Medical Foundation, TARGET and St. 

Jude Cloud. Relevant results from the analysis of all these mentioned 

datasets can be found in Martínez-Jiménez et al., 2020 [82] as well as a 

historical revision of the identification of cancer genes.  

 



 36
 

Fi
gu

re
 7

.  
S

ys
te

m
at

ic
 id

en
ti

fi
ca

tio
n 

of
 c

an
ce

r 
ge

ne
s 

re
pr

in
te

d 
fr

om
 A

 C
om

pe
nd

iu
m

 o
f M

ut
at

io
na

l C
an

ce
r 

D
ri

ve
r 

G
en

es
 b

y 
M

ar
tín

ez
-J

im
én

ez
 e

t a
l.,

 2
02

0 
N

at
ur

e 
R

ev
ie

w
s 

C
an

ce
r.
 



 

37 

 
As mentioned before, cancer genes can be classified according to their 

mode (or mechanism) of action. Vogelstein  et la., 2013 define cancer genes 

as [46]: 

- Oncogene: A gene that, when activated by mutation, increases the 

selective growth advantage of the cell in which it resides 

- Tumor suppressor gene: A gene that, when inactivated by mutation, 

increases the selective growth advantage of the cell in which it 

resides. 

 

Previously mentioned, oncogenes were first identified in cancer-causing 

retroviruses [11]. Normal cell genes involved in relevant processes that, 

when altered are activated and have oncogenic potential, are called proto-

oncogenes. We call this type of activating changes gain-of-function 

mutations which normally affect specific protein AA residues that confer 

them with a constitutively activated protein form. Since these are very 

specific places in the sequence, oncogenes tend to accumulate missense 

mutations in particular positions. Other alterations affecting oncogenes are 

duplications that lead to an overexpression of the gene or translocations that 

bring genes under the control of a different promoter or enhancers causing 

its overexpression [83].  

 

On the other hand, mutations affecting tumor suppressors are called loss-

of-function mutations which, as the name explicitly reveals, create a 

nonfunctional protein. Nonsense mutations creating truncated versions of 

the proteins are abundant among tumor suppressors. This type of cancer 

genes normally encode for relevant regulators of the cell such as 

checkpoint-control proteins of the cell cycle, enzymes of DNA repair or 

cascade members of apoptosis for example. The pattern of loss-of-function 
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mutations in tumor suppressor genes show more positional variability along 

the sequence compared to oncogenes [46].  

 

The most reliable source of cancer genes together with related information 

such as their cancer incidence and their mode of action is the Cancer Gene 

Census (CGC; [84,85]). This is a catalog of genes (approximately 700 

drivers) curated from the literature. Most of the tools mentioned above have 

tested their accuracy based on their ability to recover CGC genes. As a 

result of a driver discovery exercise one ends up with a list of candidate 

driver genes. There are also methods to infer their mechanism of action.  

 

Endogenous and exogenous mutational processes 

 
The great amount of data coming from the somatic mutational catalogs that 

the global cancer sequencing initiatives have produced, opens a new 

opportunity to understand the mutational processes that the tumor cells have 

suffered.  

 

More than a decade ago, Gerd P. Pfeifer showed the presence of certain 

mutation patterns in TP53 sequence in lung and skin tumors which coincide 

with the mutation types observed experimentally after the exposure to 

particular carcinogens. Him and colleagues reported that G>T/C>A 

transversions were more abundant in smoking patients than nonsmokers 

and these transversions are also more abundant in lung cancers compared 

to other cancer types pointing towards a mutagenic signature caused by 

tobacco carcinogens such as benzo(a)pyrene damaging the DNA [86,87]. 

Also, he described the abundance of C>T and CC>TT mutations as the 

result of the replication errors of the polymerase when encountering 

pyrimidine dimers in dipyrimidine sites caused by the exposure to UV light 

in skin cancers [88]. These observations were limited to a tumor suppressor 
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gene under positive selection. However, similar observations were made 

also in more comprehensive somatic catalogs of malignant melanoma and 

lung cancer in the following years [89,90].  

 
It became apparent the need to explore mutational patterns of other cancer 

types with less evident associative relation (tobacco smoke → lung; UV 

light → melanoma) to understand the underlying mutational processes 

operating. Many considerations must be taken into account to design an 

approach to detect these types of mutational imprints. First of all, the cell 

has different mechanisms of repair that attenuate and, consequently, shape 

the signals left by the DNA damaging agent. For example, in the above 

mentioned studies they associate the presence of transcriptional strand bias 

in lung cancer as a reflection of the past activity of transcription-coupled 

nucleotide excision repair. Second, several exogenous and endogenous 

carcinogens might be acting in the same tumor development, therefore, 

mixing the particular “signature” of each one. The unique combination of 

mutation types imprinted in the DNA by specific mutational processes are, 

indeed, called mutational signatures. Each one can be understood as a 

probability distribution of the 96 types of mutations (in this particular 

context, “mutation” refers to SBS). The different mutations types can be 

summarized into 6 different substitutions C>A, C>G, C>T, 

T>A, T>C and T>G taking as reference the pyrimidines (C,T) and therefore 

adding the reverse complement counts to the corresponding type. These 

substitutions are usually referenced with their sequence context: the 5’ and 

3’ nucleotides of the flankings from the substitution position. Thus, 96 

comes 6 substitutions * 4 possible 5’ nucleotide context * 4 possible 3’ 

nucleotide context. The 96 substitution types are usually represented as a 

mutational profile (also called mutational spectrum) in which one can easily 

visualize the trinucleotide channels with the amount of substitutions 

showing the mutational process activity. Apart from signatures, any 
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somatic mutation catalog from a tumor sample can also be represented as a 

mutational spectrum. In fact, most of the computational frameworks to 

detect signatures take mutational spectra as the input data structure with the 

counts for each of the 96 different mutations of each sample. As highlighted 

above, the general idea behind all signature computational approaches is 

that the somatic mutational catalogue is a combination of different 

signatures reflecting the mutational processes in which the ones with the 

higher activity during the tumor development have more weight in the 

required decomposition exercise to detect them [91].  

 

We can distinguish two ways to detect the mutational signatures present in 

a somatic catalogue of a sample or group of samples (such as a cohort of a 

particular cancer type): 

 

- de novo extraction: This approach aims to discover novel 

signatures. 

The first and most notorious method to extract mutational 

signatures was first used here [92] as part of the Breast Cancer 

project within the ICGC and, after,  fully described in the landmark 

paper of Ludmil B. Alexandrov at the beginning of 2013 [93]. This 

computational framework implemented in SigProfiler uses a 

decomposition algorithm called Non-negative Matrix Factorization 

(NMF). This algorithm requires the somatic catalog as an input 

matrix data and the number of mutational signatures to be 

deciphered. Thus, they also included a model selection approach to 

determine the number of signatures. The application of this method 

to 507 whole genomes and 6,535 from exome sequenced tumors 

from 30 different cancer types revealed the first mutational 

signature profiles [94]. With the data from PCAWG the list of 

mutational signatures was amplified [95]. All of them are publicly 



 

41 

available in COSMIC [96] which not only includes the SBS 

signatures but also doublet base substitutions signatures and small 

InDels ones.  

 

Following the Alexandrov model there are other de novo extraction 

methods developed such as SignatureAnalyzer 

(https://github.com/broadinstitute/SignatureAnalyzer-GPU/). 

 

- fitting of signatures: The goal in this approach is to infer which 

signatures are active in the somatic catalog from a set of reference 

signatures such as the ones in COSMIC. Two examples are 

deconstructSigs [97] which solves the fitting using multiple linear 

regression model and sigfit [98] which adopts a Bayesian NMF 

approach. 

 

There are more than 60 signatures detected in cancer. Some of them are of 

unknown etiology and some of them are believed to be sequencing artifacts. 

For example, Figure 8 shows some of the mutational signatures of known 

etiology. Signature 4 is found mostly in lung cancers (lung adenocarcinoma 

and squamous cell carcinoma) and it has been associated with tobacco 

smoking. In addition, there are 4 different signatures, all called signature 7 

(a,b,c,d), that have been related to UV light damage (example in signature 

7a in Figure 8). Furthermore, signature 1 and signature 5 are called “clock-

like” signatures because mutations attributable to these tend to accumulate 

at a constant rate over time and, therefore, are proportional to the 

chronological age of the sequenced patient [99]. In fact, not only have they 

been detected in tumor samples but are also found in normal tissue 

[100,101]. Signature 1 shows high abundance of C>T mutations in (N)CG 

trinucleotide contexts which can be attributable to an endogenous 

mutational process associated with age. It has been observed that 
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spontaneous and/or enzymatic deamination of 5-methylcytosine to thymine 

generates mismatches in the double helix that if unrepaired at the time of 

replication become fixed as a C to T substitution which match with the 

observed pattern in signature 1.  Regarding signature 5, there is no clear 

etiology. The number of mutations attributable to this signature correlates 

well with the age of the individuals. However the rates of signature 5 

acquisition differ between cancer types without presenting a correlation 

with the stem cell division of each particular tissue of origin.  
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Figure 8. Mutational profiles of SBS signatures. Bar plots taken from COSMIC. The x-axis 
has each one of the 96 mutation types given as trinucleotide contexts. The y-axis represents 
the percentage of them. From above to below profiles of signature 4, signature7a, signature 
5 and signature 1.  

Currently, there is special interest in sequencing healthy tissue and pre-

malignant neoplastic forms [102–105]. Some of these studies have shown 

that known mutational signatures of cancers can be recovered from healthy 

tissues (especially signature 1 and 5) [106,103,107,108]. Moreover, novel 

signatures are being detected in healthy cells which might reflect 

endogenous mutational processes specific to the tissue. One example of that 

is as a characteristic mutational profile detected in hematopoietic stem-cell 
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population and acute myeloid leukemia samples [101,109] which seem to 

be characteristic of the hematopoietic cell lineage. 

 

Other interests regarding the analysis of mutational patterns involves the 

study of the consequences of chemotherapies. These treatments affect both 

cancerous and healthy cells. The damage in normal tissue may eventually 

translate into fixed mutations which may contribute to long-term secondary 

effects. There have already been described some therapy-related signatures 

such as signature 11 which is related to temozolomide, signature 31 which 

is associated with platinum-based drugs or signature 32 detected in post-

treatment samples with azathioprine [94,95,110]. The detection of novel 

signatures seems to be going into this direction with very interesting recent 

projects in which they describe several footprints of chemotherapies in 

metastatic tumors including the novel capecitabine and fluorouracil (5-FU) 

signature [111] or another novel signature related to thiopurine treatment in 

pediatric relapse samples of acute lymphoblastic leukemia (now included 

as signature 87 in COSMIC; [112]). 

 

1.1.3.3 Positive selection in cancer vs Neutral tumor evolution 

 
During the 90's and early 2000's some speculative controversies took-off 

among cancer researchers. On the one hand, due to the first genomic 

characterization of tumor samples (especially from colorectal cancers) it 

started to prevail the idea that carcinogenesis might require genome 

instability and the acquisition of a hypermutator phenotype to develop and 

establish [113,114]. On the other hand, others argued against it since: (1) 

many tumors do not show chromosomal instability nor present alterations 

in key pathways that enhance mutability of the genome such as DNA repair 

pathways and (2) stressed the power of selection, instead of increased 

mutation rate, to force sporadic tumors to appear due to clonal selection and 



 

45 

expansion of cells harboring drivers [115,116]. As pointed out in here 

[117], these opposing views are not necessarily mutually exclusive. For 

some cancer types such as colorectal and endometrial cancers with defects 

in members of the DNA mismatch repair pathway, the mutator phenotype 

hypothesis adjusts well. The increase in the mutation rate provides a wider 

mutational spectrum upon which selection can act. For some other cancers, 

it seems that the normal mutation rate might be sufficient to account for the 

observed tumor development characteristics without the need of 

hypermutation [30]. 

 

Another debate dominated the past few years. The dNdScv framework [73] 

is not just a driver discovery method but it has provided an approach to 

estimate positive selection beyond the sequence of a gene. It can also be 

applied to a group of genes or even in the entire exome of the tumors 

revealing genome-wide measures of selection in cancer. The core of the 

approach is that it applies the normalized ratio of non-synonymous to 

synonymous mutations (dN/dS) which has historically been used in species 

evolution studies, to quantify selection (positive and negative) in cancer 

genomes. This apparent simplistic model has been refined to account for 

covariates to provide a good estimate of the background mutation rate at 

different scales (both locally and globally). The application of the method 

to PCAWG data showed no evidence of negative selection on coding point 

mutations. Also the analysis of gene sets revealed no clear signals of 

purifying selection. Therefore, except for driver mutations all the rest of 

coding somatic substitutions (~99%) seem to accumulate neutrally. The 

absence of negative selection contrasts with other studies applying also 

dn/ds (with slight differences) in which essential cellular genes turn to be 

negatively selected along with detected negative signals in the proteins 

controlling peptide exposition and the immunopeptidome itself [118].  
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Some years later, a paper came out describing that some colorectal tumors 

came from a single expansion and the cell subpopulations observed had 

driver alterations private to each one of them which appeared at very early 

stages of the tumor growth. This cancer growth behavior was named the 

“Big Bang” model [119]. A few years ago, a new approach to measure 

selection came out inspired by the Big Bang model and hypothesized that 

this mixture of subclones might be explained by neutral tumor growth 

dynamics. As a summary, they argue that mutations arising during the 

neutral expansion follow an accumulation distribution of 1/f power-law 

where f represents the allelic frequency. Then, adjusting a R2 goodness-of-

fit to the cumulative distribution of 1/f they indicated a threshold of R2 

≥0.98 to call for neutrality [120]. A proportion of tumors sequenced 

(approximately ⅓) across cancers presented neutrality under the model, 

especially gastric and colon cancers.  

 

The relative simplicity of the model raised criticism among The PCAWG 

Evolution and Heterogeneity Working Group which argue that excessive 

assumptions were taken. Among the points stressed in the reply note [121], 

they run dN/dS for subclonal mutations previously considered as neutral 

which resulted in signs of significant positive selection. In the reply to the 

reply note, the authors of the original paper re-analyzed the data with dN/dS 

(excluding some problematic patients) and stressed that the neutrality 

detected in the original paper was confirmed by non-significant positive 

selection result [122].   

 

All in all, the interest to detect natural selection and to better understand the 

evolution of tumor population cells is a cancer genomics hot topic which 

reflects its relevance towards studying driver alterations within the intra 

tumoral heterogeneity of neoplasias to avoid therapy resistance. In addition, 

the combination of methods should shed light for a better comprehension 
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of cancer rather than cloud over it. The scalability of methods designed for 

illuminating specific questioned areas must be taken with caution.  

1.1.3.4 Evolution patterns through space and time 

The somatic catalog of sequenced cancer cells represents a snapshot in the 

evolution of the tumor. The identification of drivers and the deciphering of 

the mutational processes acting, are approaches to a better understanding of 

tumorigenesis. However, inferring the ITH and how this mixture of 

populations of cells have evolved is fundamental to have the whole picture. 

The relevance of it lies in avoiding treatment failure. Therapy can eliminate 

most of the tumoral cells and therefore reduce the competence of the 

resistant ones that can progress again and cause recurrent cancer. When it 

happens, it is sometimes classified as advanced cancer or stage IV in the 

clinics. The majority of the cancer-related deaths happen at this point.  

Treatment resistance, relapse and metastasis 

The failure of the therapy to completely eliminate tumoral cells can 

manifest as the patient undergoing a second malignancy in a post-treatment 

period after the primary one was believed to be eradicated. This is called a 

relapse. When a second neoplasia appears in a different region 

(tissue/organ) from the primary site of the first cancer is called metastasis. 

Metastases diagnosed after the treatment of the first primary tumor are also 

called relapsed metastasis. In contrast, in situ cancer recurrence is 

sometimes called just relapse.  

 

Metastases occur due to a multistep process which involves the 

dissemination of cancer cells to anatomically distant organs followed by the 

adaptation to the new particularities of the tissue microenvironment. This 

is called invasion-metastasis cascade and can be summarized in the 

following steps [123,124]: 
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1) locally invade the adjacent tissue through the surrounding 

extracellular matrix (ECM) and stromal cell layers 

2) intravasation into lymphatic system and/or bloodstream 

3) survive the circulation and vasculature and stop at the capillary 

system of a distant organ  

4) extravasation into the new tissue location 

5) colonize by overcoming the microenvironment hazards 

6) generating a viable niche to grow 

 

The development of the metastasis implies genetic and epigenetic changes 

that settle an heterogeneous scenario for selection to favor some traits under 

the pressure of these successive bottlenecks. Some of these changes have 

been well studied. For example, in carcinomas (epithelial derived cancers), 

cells undergo some phenotypic changes in which they lose intercellular 

adhesion and polarization and acquire motility and invasiveness 

characteristics called epithelial-mesenchymal transition (EMT) with a 

similar cellular program that in embryonic development.  

 

It is thought that a lot of “seed” cells of the primary tumor die during this 

process especially during colonization [124]. Since usually, this is the 

critical point, it has also been observed that some cells that reach a distant 

tissue (micrometastasis) undergo dormancy state and sprout when the 

conditions are favorable to create a macrometastasis. The circulating tumor 

cells (CTCs) found in the bloodstream of patients have been observed to 

travel isolated alone as well as in clusters which may give rise to polyclonal 

metastatic seeding [125]. The genetic and epigenetic commonalities and 

differences observed when comparing primary and metastatic samples of 

the same individual can provide hinds of the seeding process. Intriguingly, 

there are primary tumors with “preferences” for certain metastatic sites such 
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as breast cancer which frequently metastasize in lung, bones, liver and 

brain.  

 

The origin of such tumor heterogeneity which contributes to treatment 

failure and recurrence has motivated different explanations. One of those is 

the cancer stem cell model (CSC) which describes how self-renewing 

malignant stem cells maintain the clonality of the tumor. It is conceived as 

hierarchical organization of the tumor cell populations being the CSC at the 

top of it and therefore multipotent. Their tumor-initiating and clonal 

maintenance capacity have been observed through repopulation assays 

either by serial transplantation in recipients or in situ tracking studies 

[126,127]. When the first papers supporting this model came out, there was 

some controversy as it was seen as an opponent explanation to the clonal 

evolution model [128]. First, the CSC model explains ITH by an aberrant 

differentiation program whereas the clonal evolution model relies on 

competition among neighboring subpopulations of cells to produce such 

mixture. Second, the CSC model assumes that only a small pool of cells 

(CSC) contribute to tumor progression and therefore, are the ones that  

mutate and eventually become more aggressive which differs from the 

clonal evolution model which supposes that any tumoral cell acquires 

mutations and has the potential to progress. Third, regarding therapeutic 

resistance, the clonal evolution model considers that there is selection 

towards tolerant clones whereas the CSC model presumes that CSC are 

drug-resistant. 

 

Apart from these differences, there are also some commonalities. In both 

theories, the tumor originates from a single cell that accumulates alterations 

and acquies proliferative power. Moreover, stem-cell like property is 

something compatible with both since not only can be a characteristic from 

the tumor cell of origin but also can be an advantageous trait to be selected 
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[128]. In fact, there are some explanations to reconcile both models, for 

example, by clarifying the term “stemness” (gain and maintain a stem-cell 

state). Stemness is influenced by cancer genetic and epigenetic diversity 

and the tumor microenvironment [126]. In fact, there is increasing evidence 

that the niche of the CSCs plays also an important role in the division of 

these cells which has been observed not to be as an asymmetric mitotic 

process as it was believed [129] but rather a more dynamic model. Also, for 

some cancers it is difficult to distinguish CSC from non-CSC since it seems 

to be a stemness generalized among tumoral cells as well as there are 

cancers in which it has been observed a reversing transition process 

between stem and non-stem cell states [126,129]. Related to that, the term 

“cancer stem cell” has also brought confusion into its origin since not all 

the CSC derive from normal stem cells. The concept of “stemness” should 

be restricted to its cell functionality independently on whether it refers to 

normal or malignant ones [130]. Besides, it is also difficult to isolate CSC 

since there are just a few clear markers (e.g. CD44+ in some solid tumors 

or CD34+/CD38- in leukemia) among cancer types and there is high 

variability in their frequency between tumors [131]. As a consequence of 

the previous reasoning, CSC term should be found restricted to  tumor-

initiating cell (T-IC) or leukemia-initiating cell (L-IC) which are [126]: (1) 

able to create a xenograft that is representative of the original tumor (2) able 

to self-renew in assays of serial passage in xenografts with different clonal 

cell dosages, (3) able to give rise to daughter cells that can proliferate but 

unable to establish or maintain the tumor in serial passage assays. 

 

The lab of John E. Dick has extensively studied the role of L-IC in the 

context of acute myeloid leukemia (AML). Performing transplantation 

assays into severe combined immune-deficient (SCID) mice, they were the 

first to isolate and characterize them as CD34+/CD38- and they proved their 

self-renewing capacity [132,133]. Among other contributions, in 2011 he 
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discovered that L-IC clones of B-cell acute lymphoblastic leukemia 

harbored distinct genetic alterations and demonstrated a branched multi-

clonal evolution model of leukemogenesis, thus, linking CSC and genetic 

evolution models to describe tumor heterogeneity [134].  

 

Independently of the origin of ITH, tumors that present high ITH have more 

probability of treatment failure [135]. In a neoplastic mass, the more 

diverse, the more chances of the presence of chemoresistant cells, which 

are the major cause of relapse. Resistance is classified into two types of 

resistance [136]: 

- intrinsic resistance: the factors mediating resistance are already 

present in the bulk before administration of the treatment. 

- acquired resistance: it is developed during treatment by diverse 

therapy-induced adaptive responses. For example, it can occur in 

initially sensitive tumors that acquire resistant alterations during 

treatment or by an upregulation of an alternative compensatory 

signalling pathway of the therapeutic target. 

 

Apart from the starting point of the resistance, some common mechanisms 

of resistance have been described, some which are dependent on the 

treatment and others that are more general [136]: 

1) Drug transport and metabolism 

- drug efflux: some cell membrane transporters have been 

related to chemotherapy resistance by pumping out drugs. 

The most notorious case is the ATP-binding cassette 

(ABC) transporter family. Especially, overexpression of 

the gene MRD1 (ABCB1) has been related to multi-drug 

resistance in various cancers such as lung [137], breast 

[138] and leukemia [139,140].  
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- drug activation and inactivation: some drugs are delivered 

as prodrugs and are activated by cellular enzymes, so in the 

absence of those the cell tolerates the drug. Contrary, some 

cellular metabolites can inactivate chemotherapeutic 

agents. For example, platinum drugs can be inactivated by 

thiol glutathione. 

2) Alterations in drug targets: alterations and/or changes of expression 

of the target can also create resistance. A notorious case is to find 

mutations in gatekeepers residues of kinases. This is a conserved 

residue at the opening of the ATP-binding pocket. Examples of that 

are mutations found in specific residue of the BCR-ABL1 

oncogenic kinase, formed by rearrangement in chronic myeloid 

leukemia (CML), which conferred resistance to imatinib [141]. 

3) DNA damage repair: the effectiveness of chemotherapeutic agents 

inducing DNA damage depends on the cell capacity to activate 

DNA repair pathways. Thus, mutations that affect the response to 

DNA damage and DNA repair may increase the chance of survival 

of cells with large quantities of DNA lesions, such as those exposed 

to certain chemotherapies. 

4) Downstream resistance mechanisms: that is, even though the cell 

accumulates anticancer agents and the target is inhibited, which 

should ultimately induce cell death, the cancer cell finds ways to 

survive like generating deregulation of apoptosis.  

5) Resistance-promoting adaptive responses: these responses can be 

listed as: 

- activation of prosurvival signaling 

- oncogenic bypass and pathway redundancy: this is also 

called kinome reprogramming. It has been observed that 

due to the treatment, which is effectively inhibiting the 
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target (i.e. EGCF), an alternative kinase becomes 

activated.  

- undergoing EMT: it is also believed that resistance can 

happen in some tumors as cells present certain plasticity to 

acquire stem-cell-like properties (like in EMT) 

6) Tumor Microenvironment: It has been observed that stroma-

induced resistance to different therapeutic agents. These 

interactions can change the sensitivity of tumor cells to some drugs 

[142]. Some of the observed influences of it are changes in 

expression of integrins and cytokines and growth factors such as 

autocrine, paracrine and endocrine activation of oncogenic 

signaling by growth factors.  

7) Cancer Stem Cells: There is increasing evidence that CSCs confer 

resistance to chemotherapies, which are described somewhere 

[143] and some of them summarized here. First, it has been studied 

that the CSC niche provides protection against the exposure to 

drugs. For example, it has been observed that CSCs are surrounded 

by hypoxic conditions, for example, it has been demonstrated that 

hypoxia-inducible factor-1 (HIF1alpha) is required for the 

maintenance of L-IC in CML mouse models [144]. Paradoxically, 

a perivascular niche has also been reported to be essential for 

maintaining CSCs in certain tumors.  

 

In addition, as chemotherapy and radiotherapy target fast 

proliferating cells, it has been observed that CSCs are slow-dividers 

and most of the time acquired quiescent states, thus, avoiding the 

attack of these therapies. Finally, it has also been reported a high 

drug efflux by ABC transporters in CSC as well as some other 

general resistant characteristics described above.  
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Inferences of clonal populations and their dynamics 

 
ITH fosters tumor evolution and can engender drug resistance, thus, it has 

attracted a lot of attention due to its clinical relevance [24]. As a 

consequence, many research groups have focused on disentangling the 

architecture of tumor and its different subclonal populations as well as 

deciphering the history of the tumor progression.  

 

There are different mathematical models aimed to infer population 

dynamics described here [145] and summarized as follows. One of the first 

ones described was the multistage theory which models the probability of 

developing cancer as a function of the age. The kinetics of tumor initiation 

and progression such as the number of rate-limiting steps of the cancer 

(transforming steps towards carcinogenesis) can be estimated from age-

incidence curves. In fact, in general, 6 rate-limiting steps have been inferred 

in cancer development which is quite close to the average number of driver 

alterations estimated in tumors (4-5 drivers [61]). Other more sophisticated 

models of population genetics have been applied in cancer research to study 

the evolution of tumors. For example, Wright-Fisher model can be used to 

simulate cell populations with a specific number of generations and study 

the accumulation of driver mutations through clonal expansions. 

Applications of it allow creating multiple cell types representing genetically 

different subclones of the tumoral mass using multinomial sampling and 

also accounting for number of mutations, selection force and genetic 

instability.  

 

Phylogenies of the tumoral populations of a neoplasm are also widely used 

to represent the inferred reconstruction of evolutionary cancer processes 

[146]. In these representations, the clonal subpopulations represent the taxa 

of the phylogenetic tree. Most of the computational tools developed to infer 
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these phylogenies rely on the detected somatic SNVs and/or CNVs. In the 

case of SNVs detected, trees are built upon the inference of clones from the 

allele frequencies of the mutations. These are calculated with the number 

of reads mapping to the reference genome that harbor the variant respect to 

the total aligned and must be corrected by copy number changes affecting 

the regions as well as the normal contamination of the sample. This way, 

we can obtain the number of cancer cells having each substitution (also 

called Cancer Cell Fraction or CCF). After, the SNVs can be clustered by 

common frequencies into sets of mutations as a proxy of the subpopulations 

of cells in the tumor. This process is commonly known as clonal 

deconvolution. Some tools are more oriented to quantify ITH and only 

perform clonal deconvolution without inferring phylogenies such as 

SciClone [147] and Pyclone [148] but are useful when combined with other 

phylogenetic methods to infer trees [149].  

 

Most of the algorithms developed to build cancer phylogenetic trees borrow 

classic evolution methods such as maximum parsimony, neighbor joining, 

UPGMA or Bayesian probabilistic inference methods and also a 

combination of some of those. For example, for bulk sequencing sample 

data, both PhyloWGS [150] and Canopy [151] are based on probabilistic 

models using Markov chain Monte Carlo (MCMC) sampling to obtain 

phylogenies that are consistent with the mutation frequencies. In addition, 

as more projects use single-cell sequencing, similar probabilistic 

approaches but specific to this data are used such as SCITE [152]. Related 

to the above, the diversity of the data has led a great variety of methods that 

can be divided in [146]:  

- cross-sectional methods: gives information about the common 

progression of a population building trees from many tumor 

samples of a cohort. 
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- regional bulk sequencing: builds trees from single-patient data 

using samples of different tumor sites. This particular group of 

methods are the ones prone to combine deconvolution of clones and 

phylogenies. 

- single-cell methods: uses the detectable cell-to-cell variation to 

create phylogenetic trees. Not only there are algorithms based on 

single-cell sequencing of DNA but also some preceding the 

sequencing technique that use  fluorescence in situ hybridization 

(FISH) markers.  

Notably, a simplistic but accurate phylogenetic representation of samples 

was developed by Nik-Zainal and colleagues within the Peter Campbell’s 

group at the Wellcome Trust Sanger Institute [60] which has been later 

applied to many other followed-up research projects [153,154]. They 

“manually” build trees based on a deductive reasoning approach using the 

mutational frequencies of SNVs and borrowing the concept of “the most-

recent common ancestor” (MRCA) from population genetics. The approach 

makes the following assumptions which seem reasonable within the 

evolutionary cancer setting:  

1) Mutations occurred only once during tumor development. In other 

words, a position cannot be mutated twice which is referred to as 

the “infinite sites assumption”. 

2) Mutations cannot be undone or lost. In other words, back-mutations 

do not happen. 

From these, one can deduce that two clone subpopulations harboring the 

same mutation implies that they share a common ancestor clone that had 

acquired the mutation and had transferred it to the daughter cells. Their 

approach follows three steps: 
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1) Phasing with Battenberg11: map mutations with adjacent germline 

heterozygous SNPs12 to the copy number events which allows to 

determine whether a mutation is on the retained or subclonally 

deleted parental copy of a chromosome. 

2) Bayesian Dirichlet process to perform a clustering of subclonal 

subtitutions 

3) Apply the Pigeonhole Principle (PHP): an easy and very well-

explained example of the principle is given here [155] as follows. 

According to the PHP no sum of the subpopulations can exceed the 

CCF of the ancestor. Imagine a deconvolution of the CCF that gives 

three different subclusters of mutations at 100%, 80%, 40%. Then 

100%+80% > 100% therefore the subclone 80% must be a 

descendant of the 100% subclone. On the other hand, 80%+40% > 

100% as a consequence 40% subclone must be a descendant of 80% 

one.  

Usually, in this type of studies they use multiregional samples of the tumor 

and the phylogenetic trees show a trunk that represents the clonal mutations 

that are shared in all tumoral cells in every sample and the branches are 

subclonal cluster mutations. The length of the trunk and the branches 

represents the number of mutations specific to each lineage. This type of 

studies revealed that in breast cancer, primary tumors had a subclone 

lineage representing a 50% of tumoral cells [60] and that clones seeding 

metastasis disseminated late from the primary neoplasms but still acquired 

private mutations with some clinical actionable potential [154]. In contrast, 

the patterns of subclonal composition among the cohort of patients with 

multi-sampled breast tumors showed great variability [153]. 

 

                                                 
11 copy number caller presented in the same paper [60] 
12 such as the list of SNPs derived from the 1000 Genomes Project. 
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Apart from studying ITH and evolution patterns, cancer phylogenies trees 

also drove the interest to decipher the temporal sequence of driver events. 

There are different approaches to study the order of genomic events [156]. 

One way is to compare the driver alterations at different tumor development 

stages. For example, private mutations of metastatic sites that are enriched 

in particular genes or pathways in a cohort inform about the final phases of 

tumor evolution. Similarly, others have looked at displasias [100,105,157] 

or even normal cells [103,158] of the tissue to detect precursor lesions in 

cancer. For example, positive selection of oncogenic mutations in drivers 

of cutaneous squamous cell carcinomas such as NOTCH1 have been 

detected in normal skin [103].  

 

The most obvious thing to do would be to take serial samples of each patient 

but, usually, this is impossible. In general, one can say that clonal 

mutations, meaning mutations with CCF closer to 1, correspond to 

relatively early events in tumor evolution, most likely happening previous 

or at the time of the most recent clonal expansion, whereas subclonal 

mutations are usually considered later events. A pan-cancer analysis of 

TCGA [159] with single-patient primary data revealed that known cancer 

genes have a tendency to be clonal within across cancer types and that 

APOBEC-mediated mutagenesis happens late in tumor evolution and 

contributes to the acquisition of subclonal driver mutations. Furthermore, 

as seen before, multiregional sampling of a single biopsy serves to study 

tumor evolution and also to time its main genomic alterations. Those can 

be ordered by checking the relationship between SNVs and the surrounding 

copy number gains. For example, mutations are called “early” when they 

are present in the two alleles of the duplicated region because they must 

have happened before the gain event whereas mutations are called “late” 

when those are detected in a single allele since they most likely occurred 

after the duplication. In a similar way other events can also help order 
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mutations such as whole-genome duplications (WGD) or copy neutral loss-

of-heterozygosity. Applying this reasoning the PCAWG Evolution & 

Heterogeneity Working Group revealed that across cancer types, mutations 

in the driver tumor suppressor TP53 are usually early events, WGD happen 

in intermediate phases of the tumor evolution and copy number changes are 

typically late being losses earlier than gains [160]. In addition, they also 

used age-related mutations, which accumulate at a constant rate through 

time, as a calibrated “molecular clock” to get chronological time estimates 

of the WGD resulting in genome doublings happening several years before 

diagnosis. Other contemporary multi-cancer studies have also revealed that 

for some patients with synchronously diagnosed metastases, the systemic 

seeding can happen very early (approximately 2-4 years before diagnosis 

of the primary; [161]) 

  

The more we learn about the occurrence and latency of driver genetic 

aberrations the closer to early detection and prevention of cancer 

recurrence.  

1.2. Overview of Leukemia 

1.2.1 What is leukemia? 

 
Blood and plasma cells are created through a highly regulated process 

called hematopoiesis. In this process the hematopoietic stem cells (HSC) 

differentiate and mature to form erythrocytes, megakaryocytes, and 

immune cells of myeloid, lymphoid, or monocytic lineage (see Figure 9) in 

bone marrow or lymphatic tissues (spleen, thymus and lymph nodes) which 

are tissues and organs composing the hematopoietic system. Genetic and 

epigenetic aberrations affecting HSC can cause a maturation arrest and 

uncontrolled proliferation of immature cells. When these cells (of any 
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lineage and hematopoietic immature stage) create a clonal expansion in the 

bone marrow, infiltrate and circulate at elevated numbers in the 

bloodstream we call it leukemia [162]. In certain cases (lymphoid lineage), 

there is also abnormal proliferation of the lymphatic tissues. Contrary, when 

the lymphatic tissues present malignant masses of well-differentiated 

lymphoid cells (lymphocytes) the disease is called lymphoma. There are 

two types of lymphoid cells, the T-cell and B-cell lineages which, as shown 

below, are often used to classify related malignancies.  

 

 
Figure 9.  Illustration by Terese Winslow. Hematopoiesis process to produce blood 
cell types. 

1.2.2 Cancer classification of leukemias 

 
Different criteria allocates leukemia in distinct cancer groups. According to 

its cell of origin, leukemia belongs to the group of hematopoietic 

malignancies. However, due to its histological nature the different leukemia 

types are also classified as “liquid” cancers. Officially, the World Health 
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Organization (WHO) made the following general categories [163,164] in 

2016 (on each group of the classification backbone, there are only written 

the malignant forms that are considered leukemias in bold): 

Lymphoid malignancies: 

● B Cell Neoplasm 

○ Precursor B cell Neoplasms 

■ B-lymphoblastic leukemia/lymphoma (with 

several subtypes) 

○ Mature B cell Neoplasms 

■ Chronic lymphocytic leukemia/small 

lymphocytic lymphoma 

■ B-cell prolymphocytic leukemia 

■ Hairy cell leukemia 

● T Cell and NK Cell Neoplasms 

○ Precursor T cell Neoplasms 

■ T-lymphoblastic leukemia/lymphoma 

○ Mature T cell Neoplasms 

■ T-cell prolymphocytic leukemia 

■ T-cell large granular lymphocytic leukemia 

■ Adult T-cell leukemia/lymphoma 

● Hodgkin's Lymphoma  

● Posttransplant lymphoproliferative disorders (PTLD) 

● Histiocytic and dendritic cell neoplasms 

 

Myeloid malignancies: 

● Myeloproliferative neoplasms  

○ Chronic myeloid leukemia (CML) 

○ Chronic neutrophilic leukemia (CNL) 

○ Chronic eosinophilic leukemia 
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● Myelodysplastic and lymphoid neoplasms with eosinophilia and 

abnormalities of PDGFRA,PDGFRB and FGFR1 

○ Chronic myelomonocytic leukemia (CMML)  

○ Atypical chronic myeloid leukemia (aCML), BCR-

ABL12  

○ Juvenile myelomonocytic leukemia (JMML) 

● Myelodysplastic and myeloproliferative neoplasms 

● Myelodysplastic syndromes 

● Acute myeloid leukemia and others 

○ Acute myeloid leukemia (AML) (with several subtypes) 

○ Acute myelomonocytic leukemia  

○ Acute monoblastic/monocytic leukemia  

○ Pure erythroid leukemia  

○ Acute megakaryoblastic leukemia  

○ Acute basophilic leukemia 

○ Myeloid leukemia associated with Down syndrome 

Acute leukemias of ambiguous lineage: 

● Acute undifferentiated leukemia  

● Mixed phenotype acute leukemia 

 

Since the WHO classification is based on the cell of origin, some forms of 

leukemia and lymphomas are considered different manifestations of the 

same disease. For example, chronic lymphocytic leukemia (CLL) and small 

cell lymphoma (SLL) are both part of mature B-cell neoplasms or T-cell 

lymphoblastic leukemia and T-cell lymphoblastic lymphoma are joined 

under the same category (T-ALL/T-LBL). Sometimes, these types of cases 

are differentiated and separated in leukemias and lymphomas depending on 

whether the malignant cells prevail in bone marrow and blood or the lymph 

nodes and therefore distinguishing between “liquid” and “solid” 

hematopoietic malignancies. Therefore, clinically, a more used 
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classification for leukemias are lineage (myeloid or lymphoid) and 

condition (acute or chronic) which results in the four major types of 

leukemias: chronic lymphocytic leukemia (CLL), chronic myeloid 

leukemia (CML), acute lymphoblastic leukemia (ALL), acute myeloid 

leukemia (AML). Also lineage serves to distinguish solid hematopoietic 

cancers as myelomas and lymphomas. Usually, the latter are subdivided 

into Hodgkin Lymphomas (HL) and Non-Hodgkin Lymphoma (NHL) [50].  

1.2.3 Epidemiology and etiology 

 
The incidence of leukemias worldwide is of 6.1 per 100,000 in males 

compared to 4.3 per 100,000 for females. Mortality is also higher in males 

than females (4.2 per 100,000 vs 2.8 per 100,000 respectively) [162]. ALL 

is considered a rare cancer in adults whereas CLL and AML are the most 

frequent ones. In contrast, ALL is the most frequent leukemia among 

children (75% of all leukemias in pediatric compared to 12% in adults [50]). 

The rest of the leukemias written above (1.2.2) also have a low incidence 

and are different from the four major ones as they involve transformed cells. 

Acute leukemia forms are among the most common pediatric cancers 

therefore, the incidence of them by age follows a bimodal distribution. 

Contrary, chronic leukemia incidences increase with age (see Figure 10). 
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Figure 10. Hematopoietic cancer distributions of incidences by age between 2015-
2017 in the UK. Female (pink) and male (blue) cases per 100,000 are differentiated. 
Data collected by the Cancer Research UK, entry August 2020 source: 
cruk.org/cancerstats 

 
In hematopoietic cancers with pediatric incidence such as acute leukemias, 

mortality rate is higher in adults than in children. Concretely, the average 

mortality of age groups in the UK population according to the data of the 

Cancer Research UK is 0.517 per 100,000 in adults compared to 0.262 per 

100,000 in pediatric patients in ALL and 9.84 per 100,000 vs 0.187 per 

100,000 in children in AML. Similar population numbers are given for US 

cases [162]. However, in general, leukemia one-year diagnosed survival 

rates have increased from 34% in 1971-1972 to 68.5% in 2010-2011 as well 

as the five-year survival rates that have also improved 38.5 points [165] 

over the last years as reported by Cancer Research UK. 
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Among different populations, the US incidence data shows that the 

prevalence of leukemias is higher among White-Caucasian people than the 

rest except for ALL in pediatric patients which is higher among the Hipanic 

community [162].  

 
The identified risk factors for developing leukemia are [162,166,167]: 

- radiation (therapeutic, occupational and wartime-related). It has 

been observed that ionizing radiation among survivors of the 

atomic bombs, workers of nuclear plants and radiologists previous 

to the 50s manifested leukemia at higher rates than other population 

groups.  

- chemical exposures (residential and occupational): high exposures 

to hydrocarbons in common products, industrial disinfectants and 

some building materials showed associations with leukemia as well 

as some pesticides (especially in children) 

- chemotherapy: Therapy-related secondary AMLs can occur after 

chemotherapy employed as treatment of a primary malignancy.  

- family history: e.g. people with CLL/SLL relatives have more 

chances to develop leukemia.  

- genetic syndromes: some examples such as Down syndrome, Li-

Fraumeni syndrome, Fanconi anemia and Bloom syndrome. 

- Infections: There are different examples that support  a causality by 

infection. For example DNA herpesvirus EBV in association with 

Burkitt’s lymphoma or retrovirus human T‑lymphotropic virus 1 

(HTLV‑1) in adult T-cell leukaemia/lymphoma. In addition, the 

proposed double hit theory by Mel Greaves also states a causal 

relation between infection and ALL. H e proposed that some 

ALL are driven by a first in utero event which creates pre-leukemic 

clones that together with a “delayed infection” can cause a second 

aberrant genetic event and trigger leukemia transformation [168]. 
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1.2.4 Scientific and clinical advances in the history of leukemias 

 
At the beginning of 1800, and during the following 50 years, several 

contemporary scientists diagnosed and defined leukemia for the first time 

[169]: 

- In 1811 Peter Cullen describes a peculiar case of “milky” blood in 

a patient with  “splenitis acutus” (acute hyperplasia of the spleen) 

- In 1825 Alfred Velpeau reported a case of a patient with “pus- 

filled” blood and enlarged liver and spleen that presented swelling 

of the abdomen, fever, weakness, and urinary stones (first time 

description of leukemia symptoms) 

- In 1844 Alfred Donné was the first physician to perform a 

microscopic examination and description of immaturance 

presented by the white blood cells 

- In 1845 John Bennett was the first physician to realize that the 

accumulation of leukocytes was a primary systemic blood disorder 

and not a secondary manifestation of other diseases and call it 

leucocythemia. Two years later, Rudolf Virchow introduced the 

term leukämie to name a disease with unbalanced red and white 

cell quantity in blood. 

 

It was not until 1869 that Ernst Neumann connected leukemia origin and 

the bone marrow as he was one of the first to realize that leukocytes were 

formed there [170]. There was a great advance in knowledge of this disease 

by the mid-20th century due to the discovery of several chromosomal 

abnormalities characteristic of different types of leukemias. Mel Greaves 

has summarized these advances into clinical and biological in the following 

timeline ([167]; see Figure 11). 
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Figure 11. Scientific and clinical leukemia discoveries reprinted from Leukaemia 'firsts' in 
cancer research and treatment by Greaves 2016 Nature Reviews Cancer. 

One of the most notorious discoveries was the observation of the 

Philadelphia (Ph) chromosome in CML by David Hungerford and Peter 

Nowell who at that time resided in that city [171]. Later, it was identified 

the translocation of the Ph aberration which involves chromosome 22 and 

9 and, following, it was discovered that the fusion gene BCR-ABL1 

resulting from the translocation has leukemorgenic power not only in CML 

but also in ALL. Another important medical advance as treatment for 

leukemia patients is the allogeneic bone marrow transplantation which 

implicates the administration of healthy hematopoietic stem cells from a 

compatible donor. In fact, Dr. E.D. Thomas and his medical team were 

awarded with the Nobel Prize (1990) for being pioneers in transplants for 

leukemia patients [167].  

1.2.5 Hematopoiesis, lymphoid differentiation and maturation 
HSCs are the common ancestors of all the blood cells. Those are rare and 

quiescent with the ability to self-renew and to differentiate into all blood 

cell lineages. Hematopoiesis happens during embryonic development at 

different stages and sites (e.g. HSCs are present in the fetal liver) but, right 

after birth, HSCs become resident in the bone marrow where hematopoiesis 

takes place during adulthood [172]. The first population derived from HSC 

are multipotent progenitors (MPPs) which have also been defined as 

lympho-myeloid-restricted multipotent progenitors (LMPP) in mouse 
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which can either give rise to common myeloid progenitor (CMP) or 

lymphoid progenitor cells [172,173]. Regarding the lymphoid lineage, the 

studied LMPP can differentiate into a population called early lymphoid 

progenitors (ELPs) which, in turn, differentiate into the thymic early T-cell-

lineage progenitors (ETPs) or into common lymphoid progenitors (CLPs) 

of the bone-marrow. At this point of lymphopoiesis, B and T lineages 

differentiation pathways separate depending on stimuli on CLPs [174] (see 

Figure 12). However, a common biologic process between the two is the 

expression of recombinase activating gene proteins RAG1 and RAG2 

which initiate rearrangement at the immunoglobulin heavy chain (IGH) 

locus in B and also triggers the T-cell receptor gene rearrangement which 

are necessary to create the diversity of Immunoglobulins (Igs) and T-cell 

receptors (TCR).  

B-Cell Development 

CLPs committed to B-lymphoid lineage are called pro-B-cell which start to 

express several markers of differentiation. In the next step, expression of 

CD19 marks the pre-BI-cell population which completes the gene 

recombination in the heavy chain locus. This locus is present in segments 

that code for the variable (V), diversity (D), joining (J), and constant (C) 

regions [174]. RAG1 and RAG2 are responsible for the cleave and shuffled 

bind of the VDJ genes to create the diversity of IGH. When expression of 

the RAG genes halts, the IGH assembles with the IG light chains (IGLs; 

also previously rearranged in a similar way) to form the pre-B-cell receptor 

(pre-BCR). The presentation of pre-BCR serves as a check-point for 

selection of those cells that have Ig functional. The signals generated by the 

pre-BCR triggers a clonal expansion (positive selection process) of the 

harboring cells now called pre-BII cells. Further rearrangements of the light 

chain follow to create a complete assembled BCR which are carried by the 

denominated immature B-cells [173,174]. Those undergo a second check-
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point (negative selection process) in which if they bind to a self-antigen 

with the BCR are either killed or inactivated. All the maturation steps 

previously explained take place at the bone marrow (see Figure 12). The 

resulting cells are mature naive B-cells which migrate into the lymph node 

and spleen for further differentiation. In the inter-follicular region of those, 

they may develop into short-lived plasma cells or enter the germinal center 

(GC) within the follicle where somatic hypermutation and heavy chain 

class-switching takes place. These processes transform the cells into long-

lived plasma cells and memory/marginal zone B cells [175] (see Figure 12).  

T-Cell Development 

Some CLPs migrate to the thymus and become ETPs. Even though it is 

widely accepted that lymphocytes come from lymphoid committed 

precursors characterized as the CLPs there is also evidence that ETPs retain 

myeloid potential [176,177]. In any case, these progenitors reach the cortex 

of the thymus lacking the mature T-cell markers CD4 and CD8 and start 

their differentiation process. They undergo 4 stages of differentiation 

(DN1,DN2,DN3,DN4) detected by the combination of expression of two 

different markers (CD25 and CD44) but still retaining the double-negative 

(DN) phenotype for CD4 and CD8 (see Figure 12). When cells reach DN3 

stage, they initiate rearrangement of TCR loci and expression of pre-T cell  

receptor (pre‑TCR) formed by an already rearranged 𝛽-chain and 

invariant/surrogate 𝛼-chain [172,178]. Pre-TCR signals initiate 

proliferation of DN4 and induce the co-expression to double-positive (DP) 

CD4/CD8 stage. After, the TCRA gene is finally rearranged to get a 

complete TCR. The TCRs are exposed to the major histocompatibility 

complex (MHC). Active interaction positively selects the T-cells into CD8 

or the CD4 positive, depending on whether they recognize MHC class I or 

MHC class II respectively [178]. Another check-point (negative selection 
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process) regarding potential autoreactivity of thymocytes purifies the final 

TCR repertoire [172]. 

 

 
Figure 12. Lymphoid hematopoiesis. Figure inspired by The Biology of Acute 
Lymphoblastic Leukemia Carroll et al., 2011 Childhood Leukemia: A Practical 
Handbook and Lymphoid Hematopoiesis and Lymphocytes Differentiation and 
Maturation Cavalheiro et al., 2017 IntecOpen. Cell illustrations are taken from 
https://reactome.org/icon-lib   

1.3 Acute lymphoblastic leukemia 

 
ALL is a disease caused by a maturation arrest and high proliferation of the 

lymphoid progenitor/precursor cells also called lymphoblasts or just blasts 

in the bone marrow, blood and extramedullary sites [179]. As explained 

above (1.2.3), acute lymphoblastic leukemia is one of the four major 

leukemia types. In general, ALL accounts for 1.5% of all cancers [50]. It is 

more prevalent in children than in adults (75% children vs. 12% in adults 

of all leukemias [50]). Most pediatric patients respond well to treatment 

achieving a 5-year overall survival rate between 85% - 90% [180,181] 

whereas in adults it is 40% approximately [179,180]. Despite the 
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improvements in treatment, relapse ALL forms (15-20% of pediatric and 

40-75% of adult patients recur; [182]) presents a discouraging prognosis to 

the point of becoming the second cause of cancer-related mortality among 

pediatric patients [183].  

Clinically, ALL is differentiated from LBL when there are >20% blast cells 

in the initial diagnostic aspirate of the bone marrow [184]. For example, 

cases of T-LBL manifest with enlargement of mediastinum due to the 

thymus and little dissemination of T-lymphoblasts in blood whereas T-ALL 

present more than 20% of blasts cells infiltrated in bone marrow 

independently of the thymus involvement. In fact, approximately only ⅓ of 

the T-ALL present mediastinal masses, the rest of them lack evidence of it 

and normally correlate with increased circulating blasts in the bloodstream 

[185].  

 

A first morphological inspection to the cells of the aspirate can differentiate 

ALL from AML but as explained hereunder other checks must be 

performed to fully characterize which type of ALL is presented. 

 

1.3.1 Subclassification of the disease: B-cell ALL and T-cell ALL 
similarities and differences 

 
There are two main types of lymphoblasts: T-cell and B-cell lineage, 

therefore, we can distinguish B-ALL and T-ALL disease forms. The first is 

more prevalent both in adults and children (75% B-ALL vs. 25% T-ALL in 

adults and 85-90% B-ALL vs. 10-15% T-ALL in pediatrics; [186,187]).  

 

B-ALL cases commonly present fever, caused by neutropenia (low levels 

of neutrophils) and infection, fatigue due to anemia and bleeding at 

mucocutaneous as a result of thrombocytopenia (low levels of platelets) 

[188]. Other typical clinical manifestations are enlargement of lymph nodes 
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(lymphadenopathy), the spleen (splenomegaly) and the liver 

(hepatomegaly) due to the infiltration of lymphoblasts [189]. Furthermore, 

the infiltration and intramedullary growth of blasts in the bone marrow can 

cause bone pain. Other organs that can be affected by infiltration are 

meninges, testes and ovaries and the central nervous system. Patients 

diagnosed with T-ALL often suffer the same described symptoms as B-

ALL plus, as mentioned before, mediastinal thymic masses and also tend to 

present lower degree of leukopenia (low white blood cell count) [188].  

 

Accurate diagnosis of ALL implied standardized guidelines to classify it 

which comprehensively tackles different aspects such as morphology, 

immunophenotype, (cyto)genetics and genomics.  

Morphology  

 
The French-American-British (FAB) morphological classification of ALL 

is based on the following features of the blasts [186]: cell size, nuclear 

shape, prominence of nucleoli and the amount and appearance of cytoplasm 

(degree of basophilia, presence of cytoplasmic vacuolation). There are three 

groups: 

● L1: small homogenous cells with a regular nuclear shape but its 

contents not clearly visible. It also presents a moderate basophilic 

cytoplasm. Most patients have lymphoblasts fitting this 

description, especially children.  

● L2: large heterogeneous cells with irregular nuclear shape 

accompanied by a cleft in the nucleus. Large and prominent 

nucleoli. There is also heterogeneity in cytoplasm colours and 

moderate abundance of it. This appearance of the blasts is more 

common among old patients.   

● L3: large cells but homogeneous in size. Also homogeneity in 

nucleus shape with oval-to-round form and a prominent nucleoli. 
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In addition, these cells present evident cytoplasmic basophilia and 

vacuolation. Usually, L3 blasts express mature B- lymphoid 

markers. These blasts are detected in patients with leukemia 

secondary to Burkitt's lymphoma. 

Immunophenotype 

 
The WHO further classifies ALL into different subgroups according to the 

markers (proteins or glycoproteins) that are either in the cell surface or 

cytoplasm of the lymphoblasts which are detectable when using flow 

cytometry. The monoclonal antibodies that bind to those markers and emit 

light signals during the immunophenotyping process have been grouped 

into Clusters of Differentiation (CD) [173]. This classification has been 

defined by European Group for the Immunological Characterization of 

Leukemia (EGIL) [184,190] (see Table 3). 

Precursor B-cell leukemia (HLA-DR+, TdT+, CD19+, and/or CD79a+, and/or 
CD22+, and/or CD34+) 

Pro B-ALL (B-I) 
CD19+ CD79a+ cCD22+ (comprises 10% of adult 
ALL patients) 

Common ALL (B-II) CD10+ (comprises 50% of adult ALL patients) 

Pre B-ALL (B-III) CD10+ cIg (comprises 10% of adult ALL patients) 
Mature B-ALL (B-IV) sIg+  kappa or lambda (4% of adult ALL patients) 

Precursor T-lymphoblastic leukemia (TdT+,cCD3+ and CD34+) 

ETP T-ALL 
CD5+ CD7+ CD117+ CD11b+ CD65+ HLA-DR 
(CD13 and CD33 myeloid markers). 15% of pediatric 
and 35% of adult patients of T-ALL cases 

Pro T-ALL (T-I) CD7+  (7% of adult ALL) 

Pre T-ALL (T-II) CD2+ CD5+ CD7+ 

Cortical T-ALL (T-III) 
CD1a+ sCD3+ CD2+ CD5+ CD7+ CD4+ CD8+ (17% 
of adult ALL) 

Mature T-ALL (T-IV) 
sCD3+ CD2+ CD5+ CD7+ CD4+ CD8+ (1% of adult 
ALL) 

Table 3.  ALL immunophenotypes. There are only listed the positive expressed 
markers that characterize each type. A “c” means cytoplasmic and an “s” surface; 
if not indicated assume surface expressed marker. The table is a summary from 
Hoelzer et al., 2016 Annals of Oncology and Abdul-hamid et al., 2011 IntechOpen 
and Follini et al., 2019 International Journal of Molecular Sciences. 
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The immunophenotypes of the lymphoblasts reflect the developmental step 

of the maturation arrest of the lymphoid precursors (see Figure 12 again). 

For example, lymphoblasts in ETP T-ALL are double negative for CD4 and 

CD8 and show a very close transcriptional program with early T-lineage 

progenitors (ETP) [191]. 

(Cyto)genetics 

 
Recurring gross chromosomal rearrangements that alters the regulation of 

key genes and aneuploidies13 are common across ALL and define different 

subtypes (see Table 4). Also common transcriptional programs define these 

subtypes, sometimes triggered by the same genetic aberrations that 

characterize them. Furthermore, since some of the genes dysregulated are 

actually genes involved in lymphoid development there is a correlation 

between the maturation arrest and the aberrations presented [192] as well 

as some enrichment of certain leukemogenic driver alterations on each of 

these subtypes [193]. Mainly, in B-cell lineage, rearrangements cause 

chimeric fusion genes that involve transcription factors of hematopoietic 

development, epigenetic modifiers, tyrosine kinases and cytokine receptors 

which act as oncogenes whereas in T-cell lineage alteration in the 

expression of genes (such as those from the groups mentioned above) are 

caused by the influence of the resulting misplaces regulatory regions of 

TCR. 

Lineage Subtype 
Characteristic 

Aberration 
Genes 

affected 
Frequency (%) 

 adult children 

B-ALL 

Hyperdiploid 
Hyperdiploidy with 

more than 50 
chromosomes 

- 7 20-30 

Hypodiploid 
Hypodiploidy with 

less than 44 
chromosomes 

- 2 2-3 

                                                 
13 Aneuploidies: gains and losses of entire chromosomes 
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ETV6-
RUNX1 

t(12;21)(p13;q22) 
translocation 

ETV6-
RUNX1

, 
TEL-

AML1 

2 15-25 

TCF3-PBX1 
t(1;19)(q23;p13) 

translocation 

TCF3-
PBX1, 
E2A-
PBX 

3 2-6 

BCR-
ABL1/Ph 
positive 

t(9;22)(q34;q11.2) 
translocation 

BCR-
ABL1 

25-30 2-5 

Ph-like 
Ph- but same 

transcription profile 
 20-25 10-16 

CRLF2 
rearrangement

s 

CRLF2 
rearrangements 

IGH-
CRLF2, 
P2RY8-
CRLF2 

10-12 5-7 

MLL 
rearrangement 

t(4;11)(q21;q23) 
translocation 

MLL-
AF4 

? 1-2 

MYC 
rearrangement

s 

t(8;14)(q24;q32), 
t(2;8)(q12;q24), t(2;8) 

(q12;q24) 
translocations 

MYC 4 2 

DUX4 
rearrangement

s 

t(4;21)(q35;q22) 
t(4;14)(q35;q32) 

ERG-
DUX4 
IGH-

DUX4 

5.4 7 

PAX5 
rearrangement

s 
PAX5 rearrangements PAX5 7-9 2-9 

iAMP21 
Intrachromosomal 
amplification of 
chromosome 21 

- 
0.3-
2.1 

2.5 

T-ALL 

TAL1 
dysregulation 

t(1;7)(p32;q35) and 
t(1;14)(p32;q11) 
translocations, 

del(1)(p32p32), 
small insertion→ de 

novo enhancer 

TAL1 12-25 15-18 

LMO2 
dysregulation 

t(11;14)(p15;q11) 
translocation and 5' 

LMO2 deletion 
LMO2 1-6 10 

TLX1 
dysregulation 

t(10;14)(q24;q11) and 
t(7;10)(q35;q24) 

translocations 

TLX1 
[HOX11

] 
30 5-10 

TLX3 
dysregulation 

t(5;14)(q35;q32) and 
t(5;14)(q35;q11)  tran

slocations 

TLX3 
[HOX11

L2] 
5 20-25 
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HOXA 
dysregulation 

(10;11)(p13;q14) and 
t(11;19)(q23;p13) 

translocations 
del(9)(q34;q34) 

PICAL
M-

MLLT1
0, 

MLL-
MLLT1, 

SET-
NUP14 

20 10 

ABL1 
dysregulation 

Episomal 
amplification of 

ABL1 
9q34 amplification 

encoding 
t(9;12)(q34;p13) 
t(9;14)(q34;q32) 

NUP214
-ABL1 

 
ETV6-
ABL1 
EML1-
ABL1 

5-6 6 

NKX2-
1/NKX2-2 

dysregulation 

t(14;14)(q11;q13) 
translocation 

t(14;14)(q13;q32) 
translocation 

+others 

NKX2-1 
NKX2-2 

6-8 8 

Table 4. ALL subtypes defined by gene expression profiles and recurrent 
aberrations. Summary table inspired from from Hunger & Mullighan 2015, Blood, 
Ustwani et al., 2016 Critical Reviews in Oncology/Hematology, Girardi et la., 2017 
Blood, Gu et al., 2019 Nature Genetics, Belver & Ferrando 2016, Nature Reviews 
Cancer, Van Vlierberghe 2012 J Clin Invest. 
 

Apart from the summary of Table 4 there are some other worth mentioning 

characteristics of ALL subgroups [194]: 

 

● Hyperdiploid: this is one of the subgroups with better prognosis and 

it also has more incidence in adolescents than in adults [195]. The 

ploidy gains usually happen in these chromosomes: X, 4, 6, 10, 14, 

17, 18 and 21 being trisomies and tetrasomies the major aberrations 

(over 75 % of patients with hyperdiploid subtype). The project of 

Paulsson et al., 2015 from Lund University revealed recurrent 

mutations in Ras pathway genes as well as histone modifiers [196]. 

Interestingly, through the study of monozygotic twins the lab of 

Mel Greaves showed that the hyperdiploidy condition is acquired 

prenatally in Pre-B cell in utero [197]. 
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● Hypodiploid: in this case, chromosomal loss is associated with a 

bad prognosis. Some [198], further differentiate patients into near-

haploid (24-31 chromosomes) and low-hypodiploid (32-39 

chromosomes). Both show activating mutations in Ras pathway 

and PI3K signalling too. Mutations in TP53 are also very common.  

● ETV6-RUNX1 type: patients in this group have good prognosis. 

Both genes (ETV6 and RUNX1) are involved in normal 

hematopoiesis [199]. There is evidence, again revealed by Greaves 

lab,  that the fusion has a pre-leukemic origin as it has been seen to 

happen prenatally in monozygotic twins that required the 

acquisition of other postnatal genetic alterations to develop ALL 

[200]. Evidence suggests that these second events cooperating with 

the fusion are a consequence of aberrant RAG recombinase activity 

[201] 

● TCF3-PBX1 type: It is more prevalent among African-Americans. 

In general, this one has a good prognosis. It is associated with pre-

B immunophenotype [202]. 

● BCR-ABL1 type: can also be found as Ph or Ph+ in the literature 

since it refers to having the Philadelphia chromosome. Patients 

with this translocation have a dismal prognosis but there are some 

improvements due to incorporation of tyrosine kinase inhibitors in 

treatments. Recurrent deletions of IKZF1, most likely coming from 

aberrant RAG-activity, are associated with this subgroup [203].  

● Ph-like: the name of these was given when they discovered that 

there were patients with similar gene expression profile to Ph 

positive patients but lack BCR-ABL1 fusion [204]. It is considered 

a high-risk group [205]. 

● CRLF2 rearrangement: this category partially overlaps with Ph-

like subtype. Almost 50% of the cases of Ph-like ALL have 

rearrangements in the cytokine receptor-like factor 2 (CRLF2). It 
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is also common among ALL patients with Down Syndrome. The 

majority of CRLF2-rearranged cases co-occur with mutations in 

the JAK-STAT pathway [195]. 

● MLL-rearrangement type: rearrangements in MLL gene (former 

KMT2A) such as the resulting MLL-AF4 is very common within 

infant ALL patients (60% of infant patients younger than one year), 

with special incidence on those with less than 6 months of age 

[193]. In general, has a poor prognosis. 

● MYC rearrangement: dysregulation of MYC by rearrangements is 

also common in Burkitt cell leukemia/lymphoma and therefore, 

also correlates with L3 morphological type. Prognosis has been 

reported to be poor [206] and favorable [194].  

● DUX4 rearrangements: approximately 7% of B-ALL cases have a 

distinct gene expression profile that includes DUX4 

rearrangements. Among these cases 50% to 70% have focal 

deletions in ERG too [207]. In addition, transcriptional 

deregulation of ERG in this subtype can happen due to the 

expression of an ERG isoform (ERGalt) that inhibits the wild-type 

ERG function [208]. Despite having recurrent alterations in IKZF1, 

this group presents good prognostic. 

● PAX5 rearrangements: PAX5 gene plays a role in both lymphoid 

lineages. In B-cells, it is a key player for the cells to commit to the 

lineage. There are many different types of alterations affecting 

PAX5 but the chromosomal translocation ones involve a great 

variety of gene partners. A recent study [209] has redefined B-ALL 

subtypes an differentiates two groups of PAX5 alterations with 

different gene expression profiles: “PAX5alt” meaning PAX5 

alterations (rearrangements, intragenic amplifications or 

mutations) and PAX5P80R referring to PAX5 aminoacid change 

p.Pro80Arg and biallelic PAX5 alterations. According to this 
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study, both subgroups of PAX5 in all patient ages (adults and 

children) presented intermediate to poor outcomes. 

● iAMP21: This name refers to intrachromosomal amplification of 

chromosome 21. It is characterized by at least 3 gain copies of large 

regions of chromosome 21 creating dysregulation of the genes 

within such as RUNX1 [195]. Overall has a poor prognosis both in 

children and adults [210].  

● Other B-ALL subtypes defined are: MEF2D rearrangements and 

ZNF384 rearrangements. The first usually partners with BCL9, 

HNRNPUL1, DAZAP1 and SS18 and overall is considered a high-

risk new subgroup [211] whereas the second usually partners with 

EP300, TCF3 and TAF15 and the clinical prognosis seems to 

depend on the partners [212]. A very rare subtype that has also been 

described is characterized by IL3-IGH [207]. Recently, there have 

been detected some B-ALL cases with similar transcriptional 

profile as ETV6-RUNX1 but negative for the translocation that are 

a new subtype called ETV6-RUNX1-like [207]. 

● TAL1 dysregulation: TAL1 gene is a regulator of hematopoiesis. 

Aberrant expression of it is found in 60% of the T-ALLs in children 

and 45 % in adults but not for all of these cases is possible to find 

molecular evidence of causality [192,213] (e.g. 16%-30% 

rearrangement STIL-TAL1 and 3% translocation t(1;14)(p32;q11) 

in children). TAL1 increased levels are believed to dysregulate 

members of T-cell specific lineage so cell differentiation is halted 

[42]. Samples with TAL1 overexpression profile are associated 

with late cortical immunophenotype [192]. In general, the subgroup 

presents a good prognosis in children. 

● LMO2 dysregulation: Aberrant expression of LMO2 sometimes 

overlaps with TAL1 overexpression too [192]. Apart from TAL1, 

LMO2 aberrant expression can co-occur with LYL1 dysregulation 
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and has also been considered another subgroup [214]. Although 

alterations affecting this gene are found in 10% of pediatric T-ALL, 

there are 45% of cases with LMO2 expression dysregulated 

suggesting different activating mechanisms [215]. In general, it has 

a favorable outcome. 

● TLX1 dysregulation: Also known as HOX11, is upregulated when 

translocations place the control of the gene under TCR enhancers.  

It has been shown that downregulates the rearrangement and 

expression of the TCRA locus which ends up in thymocyte arrest 

in cortical development [178]. Genes associated with TLX1 are 

involved in cell growth and proliferation so, since most treatment 

drugs affect proliferation that might explain the favorable outcome 

of this subtype [192]. 

● TLX3 dysregulation:  This gene is the former HOX11L2, its usual 

fusion partner is BCL11B but also its ectopic expression can be 

regulated by TCR enhancer. This subtype is associated with WT1 

mutations and early cortical development phenotype [214]. It 

presents a dismal prognosis. 

● HOXA dysregulation: This group involves different genomic 

aberrations that alter the expression of the HOXA genes, especially 

HOXA9 and HOXA10. Dysregulation of HOXA genes is common 

among ETP-T-ALL immunophenotypes [178]. 

● ABL1 dysregulation: Not only is involved in B-ALL but also in T-

ALL. NUP214-ABL1 is the most common fusion affecting ABL1 

expression in T-cell lineage, however, the mechanisms (amplified 

episomes and intrachromosomal amplification) to overexpress 

ABL1 are different than in Ph positive patients (translocation) 

[216]. Also the oncogenic power of NUP214-ABL1 is not 

sufficient to drive leukemogenesis so other alterations are required 

[214]. 
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● NKX2-1/NKX2-2 dysregulation: In a study from the Netherlands 

in 2011 [217], they identified another subgroup of unclassified-

subgroup samples which shared dysregulation of either NKX2-1 or 

its paralog NKX2-2 by different genetic aberrations. Both are 

believed to develop a similar oncogenic role in T-ALL and are 

associated with early cortical development arrest [215].  

● Others: In that same study from the Netherlands mentioned above 

[217], they also described another group of samples with distinct 

expression signature. They observed deletions in del(5)(q14) that 

cause upregulation of MEF2C. This subtype is associated with 

immature stages of development so it is believed to play a role in 

the regulation of the genes in early stages of thymocyte 

differentiation. It also presents enrichment in CDKN1B deletions 

[218] and overall is associated with very poor prognosis [215]. 

Other subtypes less frequent are characterized by dysregulation of 

TAL2, LMO1, NKX2-5, MYC and MYB [215]. Since the 

immunophenotype group ETP T-ALL shows a different gene 

expression profile is also considered as a genetic subtype together 

with the ones mentioned above. In fact, ETP is characterized by 

high frequency of JAK mutations and low frequency of NOTCH1 

mutations compared to the other subtypes. It is considered a high-

risk group and is usually associated with treatment resistance [219].  

1.3.2 Primary Genomics of ALL 

 
Along with the dysregulation of gene expression due to the rearrangements, 

there are recurrent genes and pathways altered that contribute to leukemic 

transformation and proliferation. There are substantial differences between 

the B and T-ALL driver alterations. Some of those are enriched in particular 
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immunophenotypes and tend to co-occur with certain rearrangements 

(summary at Figure 13). 

 

 
Figure 13.  Prevalence of genomic alterations at each immunophenotype. a) T-cell 
lineage reprinted from The genetics and mechanisms of T cell acute lymphoblastic 
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leukaemia by Belver & Ferrando 2016 Nature Reviews Cancer and b) B-cell 
lineage adapted from Acute lymphoblastic leukaemia by Inaba et al., 2013 The 
Lancet. 

1.3.2.1 B-ALL driver alterations 

Transcriptional regulation of lymphoid development 
 
IKZF1 (IKAROS Family Zinc Finger 1): The resulting protein from this 

gene is a transcription factor that acts as a chromatin remodeler. During 

lymphoid development, Ikaros protein allows chromatin accessibility 

which is necessary for V(D)J recombination and regulates the expression 

of B-cell-specific genes [173]. In a study of 2008 [203], they described 

recurrent deletions in this gene in B-ALL adult and pediatric patients (61 

out of 304) especially in Ph positive ones which presented more than the 

80% of this subtype cases with deletions. A closer look at the breakpoints 

of these deletions suggested an aberrant RAG-mediated recombination 

activity. The follow-up study of the same group, revealed a poorer 

prognosis outcome of the Ph positive and negative cases harboring IKZF1 

deletions [220]. It commonly co-occurs with CRLF2 rearrangements [194]. 

Some germline variants have been described to create predisposition to 

ALL [221]. 

 

Other members of the Ikaros family have also been found altered in B-ALL 

such as IKZF2 and IKZF3 especially in hypodiploid ALL subtype [198]. 

 

PAX5 (Paired Box 5): This gene is another regulator of B-cell lymphoid 

development which encodes for a transcription factor that represses 

necessary components for T-cell lineage and drives precursors to B-cell 

commitment, activates BCR signalling modulators and also plays a role in 

the maintenance of mature B-cell state [222]. It is altered in 30% of B-ALL 

[194] and mutated cases have recently been divided into two new ALL 
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subtypes [209] as referred above (1.3.1): PAX5alt and PAX5 P80R. The 

last refers to a group of patients that commonly present a different genetic 

profile and all share the same missense mutation p.Pro80Arg in the paired 

box DNA binding domain that constitute a hotspot in it whereas the first 

englobes different types of alterations such as  rearrangements, sequence 

mutations and focal intragenic amplifications. According to the study, both 

types accounted for 9.7% of those cases that were previously unclassified. 

In addition, a recurrent germline mutation (p.Gly183Ser) has been 

described to confer ALL susceptibility [223].  

 

EBF1 (EBF Transcription Factor 1 or Early B Cell Factor 1): This gene, 

together with TCF3 (E2A), regulates the expression of genes of the B-Cell 

lineage and it is essential for the rearrangements of the loci IgH and IgL 

[222]. PAX5 and EBF1 regulate each other in an auto-regulatory loop 

[222]. Focal deletions of this gene leading to haploinsufficiency arrests cells 

at pre-pro-B-cell stage and suggests a contribution to leukemogenesis 

[224]. 

 

RUNX1 (RUNX Family Transcription Factor 1) encodes for the protein 

known as acute myeloid leukemia 1 protein so, as the name suggests, it is 

involved in both acute leukemia forms plus other hematopoietic 

malignancies. In mice, it is expressed to trigger the transformation of 

vascular endothelium cells to primitive HSCs during embryonic 

development but it is not necessary for the maintenance of long-term HSC 

in adult hematopoiesis [222]. 25% of B-ALL cases present dysregulation 

of RUNX1 by the chimeric fusion with ETV6 due to the translocation 

between chromosome 12 and 21 [201]. Although this fusion is required but 

not sufficient for leukemic transformation [225], the oncogenic 

dysregulation of ETV6-RUNX1 happens as RUNX1 binds to its target 

sequences and the recruitment of ETV6 partners inhibits their transcription 
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[226]. ETV6 loss-of-function mutations are also common among B-ALL 

both in ETV6-RUNX1 and non-rearranged ETV6 [227,228].  

 

Other leukemic driver transcription factors of this category are LEF1 

(Lymphoid Enhancer Binding Factor 1) which is a mediator of the WNT 

signalling and has been associated with leukemic transformation [229] and 

ERG (ETS Transcription Factor ERG) previously mentioned at 1.3.1.  

Tumor suppression and cell cycle regulation 

 
TP53 which acts as tumor suppressor in many cancers [82] predicts a very 

dismal outcome in ALL patients harboring alterations in it [230]. The 

majority of the alterations (disruptive mutations and deletions) tend to 

locate in exons 7 and 8 and it is more prevalent (>90%) in hypodiploid 

subtype in both adult and pediatric patients [198]. In this B-ALL subtype, 

not only TP53 is intriguing recurrent but also RB1 [198]. This gene is called 

Retinoblastoma (RB) Transcriptional Corepressor 1 and encodes por pRB 

which is another tumor suppressor that acts as the key regulator of the 

entrance to cell cycle which is also widely altered in different cancers [82]. 

Deletions of the Cyclin Dependent Kinase Inhibitors 2 (CDKN2A and 

CDKN2B) can also be found in B-ALL [203] and they encode for p16INK, 

p14ARF and p15 which are involved in G(1)-S cell cycle transition as they 

inhibit CDK4 and CDK6 that inhibit pRB. 

Cytokine receptors, kinases and RAS signaling 

 
CRLF2 is part of the cytokine interleukin-7 (IL7) receptor which activates 

intracellular signalling through Janus kinases (JAK1-3) that consequently 

activate STAT transcription factors (JAK-STAT pathway) [231]. Cytokine 

receptors are linked not only to the JAK-STAT pathway but also to RAS 

pathway and PI3K-AKT pathways, all of them activating gene expression 
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programs [232]. Dysregulation of these players can alter the normal 

functions of the cell and contribute to leukemogenesis. For example, in Ph-

like ALL it has been observed IL7RA (IL7 receptor alpha) insertions and 

deletions, chimeric fusions of JAK2 due to deletions and translocations, 

rearrangements of the erythropoietin receptor (EPOR-R) and mutations in 

SH2B3 as alterations that keep JAK-STAT signalling activated [233]. 

Regarding RAS signaling, the pathway is abnormally activated by point 

mutations in NRAS and KRAS genes, as well as, loss-of-function mutations 

of negative modulator NF1, upstream regulator PTPN11 and kinase 

receptor FLT3 which activating mutations have been detected [181]. In 

pediatric patients, approximately around 30% have mutations in the RAS 

pathway [234]. Other overexpressed kinases due to fusions are the “ABL1 

type” (ABL1, ABL2, CSF1R, and PDGFRB) which are also common in 

Ph-like ALL [233] and obviously BCR-ABL1 positive.  

Epigenetic regulators 

 
Aberrant acetylation and methylation contribute to changes of the 

transcriptome that can drive important leukemic consequences [195]. It is 

very common to find alterations in DNA and chromatin modifiers in 

different ALL subtypes, some of them enriched in relapse as mentioned 

below. For example, missense mutations in WHSC1 (NSD2) which is a 

histone methyltransferase are found in ETV6-RUNX1 [201] and CREBBP 

known as CREB-binding protein, a H3K18 and H3K27 acetylase is 

recurrently mutated among hypodiploid cases at diagnosis [198]. Also 

histone methyltransferase MLL family members and chromatin remodeling 

genes of the SWI/SNF complex such as ARID family are common in B-

ALL [181]. Another recurrent altered gene is histone acetyltransferase 

EP300 [181]. 
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Other recurrent genes 

 
BTLA (B And T Lymphocyte Associated) and a type I membrane 

glycoprotein called CD200 are involved in lymphoid signaling and are 

recurrently deleted [220]. There are transcriptional cofactors such as 

TBL1XR1, BTG1 and NCOR1 that present deletions in B-ALL [234]. 

Hotspot mutations in ZEB2 have also been reported [235]. Another 

commonly deleted gene but less studied is ADD3 adducin gene [234,236]. 

1.3.2.2 T-ALL driver alterations  

NOTCH1 pathway 
 
NOTCH1 is a transmembrane type I protein of the NOTCH family. In 

children with ALL, it is found mutated in around 60% of the cases (e.g. 

56.2% in Weng et., 2004 [237]) and in adults it seems to vary from 

publication to publication (53% Neumann et., 2014 [238] vs. 86% Kim et 

al., 2020). Anyway, it is one of the most prevalent mutated genes in T-ALL. 

This cellular receptor has an extracellular and intracellular domain 

facilitating transduction of external signals into transcriptional changes in 

the cell. In mammals there are 4 homolog NOTCH genes (NOTCH1-4) 

being NOTCH1 the one playing a major role in leukemogenesis [172]. 

Notch signalling is critical for prenatal hematopoiesis and postnatally it is 

expressed during thymocyte development and determines T-cell fate 

specificity [239]. Concretely, it is involved in the progression of cortical 

thymic developmental stages (DN1-3, see Figure 12), therefore, it is not 

surprising to find it highly mutated in lymphoblasts with early (Pre, Pro T-

ALL) and late cortical immunophenotypes [240,241]. The oncogenic power 

of NOTCH1 pathway in T-ALL is its constitutively active signaling. The 

most common altered form of Notch1 is a truncated protein due to gain-of-

function mutations and deletions in specific domains that produce the active 

intracellular part of the receptor (ICN1) which translocates to the nucleus 
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and constitutively triggers upregulation of PI3K/Akt/mTOR, c-myc, and 

NF-kb [178,240]. The most affected domains, HD and PEST, in NOTCH1 

are those which, once altered, create the active Notch1 form [237]. The first 

is actually divided into two HDN and HDC, these are the heterodimerization 

domains that hold the extracellular and intracellular subunits linked, 

therefore, mutations in it spares Notch1 from being cleaved by proteases to 

release the active ICN1 form. The second domain, is called proline (P) 

glutamate (E) serine (S) threonine (T) rich (PEST), which contains a degron 

for the proteasome-dependent degradation, is responsible of the stability of 

the active ICN1 and, thus, mutations impairing the degron recognition 

contribute to the overactivation of the pathway. Related to that, another 

contributing factor in maintaining NOTCH1 active is the presence of loss-

of-function mutations in FBXW7 which encodes for a subunit of the E3 

ubiquitin protein ligase complex that, among others, regulates NOTCH1 

stability [241]. Mutations in FBXW7 can be found between 15 to 25% of 

the T-ALL patients [241,242]. Another case of constitutively activation of 

NOTCH1 is the chromosomal translocation t(7;9)(q34;q34.3) which 

generates a truncated form of NOTCH1 and can be found in less than 1% 

of the patients [178]. The prognostic impact of NOTCH1/FBXW7 

mutations seems to be favorable with early response to treatment in 

pediatric and adult patients but seems to lack association with a good long-

term outcome and, moreover, differences in therapy protocols suggest a 

dependency of NOTCH1 prognostic value to the intensification of the 

treatment [240].        

Proto-oncogenes expressed by rearrangements 

 
As mentioned before, both T and B-ALL are characterized by 

rearrangements and gene expression profiles determining certain subtypes. 

Due to these rearrangements, transcription factor oncogenes are aberrantly 

expressed under the control of strong enhancers of the TCR loci [215]. 
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These genes are: LIM-only domain (LMO) genes, HOX genes such as 

TLX1(HOX11), TLX3(HOX11L2), HOXA cluster genes, class II bHLH 

transcription factors (TAL1, TAL2, LYL1, BHLHB1), NKX2.(1,2,5) and 

also MYC and MYB [178]. In addition, some of them can also be 

overexpressed by translocations with other non-TCR partners or by other 

lesions such as deletions.  

 

TAL1 overexpression creates an upregulation of a positive feedback loop 

with GATA3, RUNX1 (see below) and MYB. The latest is associated with 

developmental arrest since it has been observed that interference with MYB 

activity affects differentiation [243].  LMO1 and LMO2 are frequently co-

expressed with TAL1 and LYL1 suggesting a cooperative role in T-cell 

leukemogenesis [178]. 

 

HOX genes also play a role in T-ALL. For example, evidence suggests that 

TLX1 contributes to the blocking of T-cell differentiation by dysregulation 

of mitotic checkpoint machinery and thus promoting aneuploidy events 

caused by missegregation of chromosomes [244]. Regarding TLX3, it 

seems that TLX3 and TLX1 have a lot of overlapping set of target genes 

and their transcriptional signature resembles [178]. Both are mainly found 

dysregulated in early cortical stages and co-occur with mutations in tumor 

suppressors such as protein tyrosine phosphatase non‑receptor type 2 

(PTPN2), Wilms tumor 1 (WT1) and PHD finger protein 6 (PHF6) (see 

Figure 13, more information below; [215]).  

 

The transcription factor MYC contributes to cell growth and proliferation 

downstream NOTCH1 signaling. Besides, its protein stability also depends 

on FBXW7. Therefore, alterations in the NOTCH1 pathway transducts in 

upregulation of MYC and acts as a driver of leukaemia-initiating activity 

[178].  
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Tumor suppression and cell cycle regulation 

 
Somatic mutations in tumor suppressors such as ETV6, GATA3 and 

RUNX1 are abundant in the immature ETP immunophenotype and adult 

patients (between 8 to 14 % frequency [214]). ETV6 is essential for the 

development of HSC, GATA3 is an important regulator of development of 

T-cell progenitors and, as previously mentioned in 1.3.2.1, RUNX1 is 

crucial to hematopoiesis [215]. Other altered tumor suppressors that can be 

found in 10-15% of T-ALL are BCL11B (Kruppel‑like C2H2‑type zinc 

finger transcription factor), LEF1 (lymphoid enhancer factor/T cell factor) 

and WT1 (Wilms Tumor 1 transcription factor) [178].  

 

In T-ALL, as well as in B-ALL, dysregulation of cell cycle (a hallmark of 

cancer) can be achieved by altering CDKN2A and/or CDKN2B. However, 

in the T-cell type, around 70% of the cases present deletions in these loci 

[178]. Together with NOTCH1, these are the most altered genes in T-ALL 

with an incidence of more than 50% of the cases having at least one of 

NOTCH1 or CDKN2A/B loci affected [214]. Other deleted genes altering 

the cell cycle are RB1 and CDKN1B (12% frequency) and translocations 

affecting CCND2 which is another cell cycle regulator which have also 

been observed in a few cases (~1%) [215].  

JAK-STAT pathway and RAS signaling 

 
As indicated above (1.3.2.1), Janus kinases are activated either by 

IL7R‑activating mutations that transduce in phosphorylation of JAK1 and 

JAK3 or activating mutations in these two (frequency of each one of these 

genes ranges from 5 to 12 % T-ALL [214]). In both cases, there is activation 

of STAT5 which transcriptionally regulates proliferation and survival 

especially in ETP T-ALL. Other alterations affecting this pathway but less 
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frequent are ETV6-JAK2 fusion, loss-of-function mutations in DNM2 or 

SH2B3 and deletions in PTPN2 [214].  

 

Similarly as in B-ALL, also some T-ALL patients have NRAS and KRAS 

activating mutations (e.g. K-RasG12D) especially in cases of early immature 

arrest. In addition, also the other frequent genes affecting this pathway such 

as FLT3, NF1 and PTPN11 (see 1.3.2.1) have been observed in T-ALL 

[178].  

Epigenetic regulators 

 
In T-ALL, there is a notorious epigenetic regulator called PHF6 which is a 

plant homeodomain (PHD)‑containing factor that is frequently mutated and 

deleted in adult male patients (38 %) [178]. Among its functions, this gene 

encodes for a protein that interacts with nucleosome remodeling 

deacetylase (NuRD) complex and therefore, helps regulate nucleosome 

positioning and transcription. A recent study revealed that Phf6 is 

associated with HSC homeostasis and has oncogenetic power to leukemia 

initiation which suggests that alterations in PHF6 are an early event in 

leukemogenesis [245]. Another epigenetic regulator highly mutated in 

adults compared to pediatric patients, specifically in ETP T-ALL subtype 

[246], is DNMT3A. This gene encodes for DNA methyltransferase 3A 

which has been identified in AML and the preceding stages: 

myelodysplastic syndrome (MDS) and elderly individuals with clonal 

hematopoiesis (CH) [247]. Another group of epigenetic modifiers mutated 

are members of the polycomb complex such as EZH2, SUZ12 and EED 

which normally is involved in transcriptional repression and are also 

abundant among ETP T-ALL cases [195]. Other epigenetic regulations 

altered are lysine demethylase 6A (KDM6A, also called UTX) and histone 

acetylation modifiers (CREBBP, EP300, HDAC7, HDAC5, NCOA3) 

[248].  
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Other recurrent genes  
 
Around 10-15% of T-ALL present loss-of-function mutations or deletions 

in PTEN [178]. The inactivation of this tumor suppressor activates Akt of 

the PI3K-AKT-mTOR pathway. This pathway can also be activated by 

mutations AKT1, PI3KCA, PI3KR1, and IL7R and also by cross-activation 

from other key signaling pathways such as JAK-STAT or NOTCH1 [248].  

 

Other genes mutated are ribosomal protein genes such as RPL5, RPL10, 

and RPL22 which frequency sums up to approximately 20% of the T-ALLs. 

In addition, there have been detected inactivating mutations in CNTO3 

(3.8% almost exclusively in adult patients) which encodes for a subunit of 

the CCR4-NOT complex that regulates mRNA degradation [249].  

1.3.2.3 Somatic mutation rate and signatures 

 
In Figure 6 one can observe that overall, leukemias have a lower number of 

mutations compared to other cancers. Respect to ALL in adults, data from 

samples collected at diagnosis, shows one of the lowest mutation burdens 

[94]. Looking at the number of mutations in T-ALL compared to B-ALL 

the mutation rate is very similar in pediatric patients [234]. However, when 

comparing adults to pediatric patients with ALL, older patients tend to 

accumulate more mutations than the youngests. As mentioned before, all 

organisms accumulate mutations through time so, as time goes by, 

mutational processes attributable to aging tend to increase their 

contributions in the total mutational burden. In fact, the major mutational 

signatures detected in ALL are clock-like signatures (signature 1 and 5) 

both in adult patients [94,99], as well as, in pediatric patients [234]. There 

are some cases of B-ALL that also show activity of APOBEC14 mutational 

                                                 
14 APOBEC here refers to the group of APOBEC cytidine deaminases the activity 
of which generates mutations with specific patterns: Signature 2 and 13 of 
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processes but not in T-ALL. However, APOBEC expression in a few T-

ALL cases has been detected so its mutational activity cannot be discarded 

[250].  

1.3.2.4 Germline mutations and predisposition 

 
Briefly, setting aside somatic mutagenesis, TP53 is the gene with more 

germline detected mutations with predisposition character [251]. Not only 

in ALL but also across pediatric cancers. However, in the most recent 

pediatric pan-cancer study no pathogenic germline mutations were detected 

in T-ALL cases (n=19; [252]). However in both cell lineage types, exist 

some predisposing mutations such as in IKZF1 (as mentioned earlier 

[253]). Other genes that have been observed with predisposing leukemia 

mutations are PAX5, RUNX1 and ARID5B [223,251,253].  

1.3.3 Treatment Resistance and Relapse 

 
As outlined above, the percentages patients undergoing relapse are 15-20% 

of pediatrics and 40-75% of adults [182]. Although pediatric ALL has one 

of the highest cure rates in cancer (around 90% [202]), relapse of this 

disease remains the major cancer-related death cause in children [254]. In 

adults, the outcome is dismal with an overall 5-year survival of around 30-

40% [179]. Different studies have evidenced the existence of minor 

subclones called “relapse-fated” existing at time of diagnosis [255–257]. 

The characterization of subclones contributing to relapse is one of the 

current main research focuses with the objective to find markers of 

recurrence and time its appearance and progression for an early detection 

[182,254]. 

                                                 
COSMIC. These enzymes, most likely APOBEC3A in the majority of cases, are 
responsible for local hypermutation mutagenesis that creates these signatures [96]. 
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1.3.3.1 Clonal evolution and relapse in ALL 
 
Over the last years, different lines of evidence derived from the study of 

clonal evolution suggest that leukemias present more clonal complexity that 

it was initially thought. In the leukemic scenario, during tumor initiation, 

selection happens as normal HSC and early progenitors compete for 

resources whereas, during the progression of the cancer, selection acts upon 

the different leukemic clones [258].  

Pre-leukemic development 

 
As noted earlier, different studies support an in utero origin of pre-leukemic 

clones carrying aneuploidies or fusion gene aberrations in pediatric B-ALL. 

In this review of Dr. Mel Greaves, he summarizes the evidence from his 

own work and others regarding tumor initiation [168]. First, studies of 

monozygotic twins with concordant B-ALL revealed that there are several 

genomic lesions considered founders of B-ALL that are shared in pre-

leukemic clones such as ETV6-RUNX1, Hyperdiploidy, BCR-ABL1 and 

MLL-AF4 and are acquired in utero and transmitted from one twin to the 

other by blood transfusion. Another experiment with pediatric discordant 

twins further confirmed the shared existence of the lesion in pre-leukemic 

cells of the healthy twin. Other studies mentioned in the review backtracked 

early B-ALL events in neonatal blood spots in which for the majority of the 

B-ALL checked patients they confirmed that the ETV6-RUNX1 and MLL-

AF4 fusions were already at birth. All these studies also suggested that, in 

the case of ETV6-RUNX1+ or hyperdiploidy, the event is necessary but not 

sufficient to drive leukemogenesis whereas MLL fusions found in infant 

patients is sufficient by itself. Discordant healthy twins and some further 

studies of cord blood samples in the population also suggested that: (1) 

secondary events are necessary to drive B-ALL, (2) in utero pre-leukemic 

origin is more common than the incidence of B-ALL itself. Therefore, the 
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leukemogenic transition of the pre-leukemic clone to the disease seems low 

which may indicate either a frequent loss of the pre-leukemic population or 

difficulties to acquire secondary leukemic events (strong bottleneck). 

Related to that, Greaves bets for the “delayed infection hypothesis” as a 

plausible explanation of acquisition of post-natal secondary lesion by viral 

causation which could explain the higher incidence of childhood B-ALL in 

modern societies. In addition to B-ALL, the group of Greaves also pointed 

out a prenatal origin of T-ALL with NOTCH1 being detected in neonatal 

blood spots of one pediatric patient [259]. 

 

Unlike AML, where there are measurable pre-leukemic stages such as CH 

and MDS in adult patients, our knowledge of pre-leukemic cells 

progressing towards ALL initiation in adults is scarced. According to 

Greaves, the fact that ETV6-RUNX1 or hyperdiploidy, which are the 

subtypes with more evidences of in utero origin, are less prevalent in adults 

suggests a low persistence of the pre-leukemic clone with aging and points 

towards adults having a different cancer respect to children [168]. Apart 

from that, examples of pre-leukemic stages have been observed in familial 

ALL in which germline mutations are the first event to settle tumor 

initiation. Briefly as an example, in a study of 5-generation kindred with 10 

individuals suffering from B-ALL and other hematological diseases 

(DLBCL, aplastic anemia, and/or thrombocytopenia) they discovered a 

common germline deletion of ETV6 as the most likely predisposition event 

[260].   

Order of acquisition and relapse-enriched alterations 

 
A recent study [261] performed single-cell targeted sequencing in 4 

pediatric patients of T-ALL in pair samples at diagnosis and remission. 

Analysis of the CD34+CD38- multipotent compartment with a graph-based 

algorithm revealed the most probable order acquisition for each patient. 
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According to their results, loss of CDKN2A and known oncogenic fusion 

genes are intermediate events whereas NOTCH1 activating mutations tend 

to happen late. Early events detected were of unknown significance except 

for STAT5B mutation detected in one of the patients. This contrasts with 

the idea of NOTCH1 alterations being an early prenatal event as explained 

above. The notion that NOTCH1 mutation gain can appear as both, an early 

or late event, in T-ALL has already been suggested before as mutations in 

this gene sometimes appear as secondary events [262]. 

 

In a similar study using single-cell sequencing with B-ALL samples, 

CRLF2 rearrangements were mostly early but sometimes can be late events 

in leukemogenesis too [263]. In another study using single-cell sequencing 

combined with bulk sequencing of 6 B-ALL patients, they determined the 

temporal ordering of events and reported that ETV6-RUNX1 translocation 

and structural variation due to RAG-mediated activity are early events, 

followed by clone-specific APOBEC punctuated mutagenesis and showed 

that acquisition of oncogenic SNVs such as proliferative KRAS point 

mutations are late events and not sufficient to boost a clonal dominance in 

the developed primary leukemia [264]. They also showed that VDJ 

recombination can occur at different progression moments of 

leukemogenesis since it can also be ongoing in more evolved clones.  

 

Other alterations are considered late events as they appear in most blasts at 

relapse. Recurrence of the disease happens after a stringent bottleneck 

generated by the treatment which (if fortunate) leads to a disease remission. 

Reasonably, within the mutations carried by the relapse clone there might 

be genomic event/s driving drug resistance. Therefore, a lot of research 

projects are uncovering the relapse genomics. The focus is made on relapse-

enriched genes which are those with mutations retained in diagnosis until 
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relapse (therefore shared between samples of the same patient) or those 

genes with acquired mutations specific or private to relapse. 

 

One of the first ones to look at enriched-relapse alterations was Mullighan 

and colleagues back in 2008 who checked CNA in 61 ALL children 

comparing primary to relapse samples of each [255]. Results revealed a list 

of common deletions of genes in relapse samples: CDKN2A/B, ETV6, 

IKZF1, NR3C1 and TCF3. For some patients, some of these deletions were 

not shared with the primary sample but acquired at relapse. NR3C1 which 

encodes for the glucocorticoid receptor postulated as a treatment-resistant 

driver gene since this type of steroids are administered during treatment of 

ALL. Other genes involved in the glucocorticoid signaling have also been 

detected at relapse samples such as: BTG1/BTG2 and TBL1XR1. The first 

operates as a co-activator of the glucocorticoid receptor and the second is 

involved in regulation of the receptor responsive elements [265]. IKZF1 

deletions have also been recurrently found in relapse samples of B-ALL 

both in pediatric and adult [266,267]. Another relapse enriched altered gene 

is TP53 in which copy number loss and mutations have been associated 

with nonresponse to chemotherapy [230]. 

 

In a mutational landscape study by Dr. Adolfo Ferrando’s lab, NR3C1 is 

not only deleted but relapse-specific mutations in both T-ALL and B-ALL 

have also been detected [257]. In addition, in a recent study the paralog 

NR3C2 has also been reported as relapse enriched [112] together with other 

genes further explained in the upcoming paragraphs. Going back to the 

mutational landscape, one of the highlighted results in Ferrando’s paper is 

the high frequency of activating mutations in members of the RAS-MAPK 

in the relapse samples which seem to have a dual role regarding resistance 

and sensitivity to different chemotherapies.  
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Apart from that one of the main discoveries regarding resistant relapses by 

Ferrando’s team and others is the role of activating mutations in NT5C2 in 

ALL [268,269]. In a back to back publication, both reported that this gene 

encodes for a  5′-nucleotidase enzyme that confers resistance to purine 

analogs and that it was found with relapse-specific mutations in 20% T-

ALL cases and 3-10% of B-ALL. Moreover, other relapse-specific 

alterations have been detected in genes involved in purine metabolism such 

as PRPS1 and PRPS2 which are also related to resistance [112,270]. 

Concretely, PRPS1 gene encodes for an enzyme regulator of the “the novo” 

purine synthesis. The authors reasoned that the resistance to thiopurines 

happens when mutants of PRPS1 protein cannot be inhibited by reduced 

negative feedback loop so they enhanced “the novo” purine synthesis that 

competes with the metabolization of thiopurine drugs and thus generating 

tolerance to them. 

 

Other groups of common relapse genes are epigenetic regulators, metabolic 

genes and mismatch-repair pathway members. Among the genes in the first 

group the most notorious ones are CREBBP (acetyltransferase), its paralog 

EP300, NCOR1 (nuclear corepressor complex), WHSC1 

(methyltransferase), EZH2 (methyltransferase), SETD2 

(methyltransferase), CTCF (zinc finger) and KDM6A (demethylase) 

[265,271]. Deletions and sequence mutations of CREBBP are believed to 

interfere with glucocorticoid responsive genes [272]. Apart from that, in a 

recent study of relapse B-ALL in adults [267], they specifically highlighted 

the enrichment of novel alterations in metabolic genes in the recurrence of 

this disease. Briefly, they detected relapse-specific mutations in FPGS 

(Folylpolyglutamate Synthase) which catalyzes polyglutamylation of 

methotrexate (a step necessary in the processing of this drug) and ABGL1 

(ATP/GTP Binding Protein Like 1) which has a a glutamate decarboxylase 

function also involved in glutamylation processing. FPGS has also been 
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detected in pediatric relapse cases [112]. Related to metabolism, in a recent 

study where relapse clones at diagnosis have been isolated and 

characterized, they detected a gene expression signature of mitochondrial 

metabolism as a hallmark of the relapse subclones [182].  Finally, DNA 

mismatch repair genes such as MSH6, MSH2 and PMS2 are also frequently 

altered in relapse samples [265]. As an example, not only MSH6 deletions 

are detected in relapse samples but it has been seen that knockdown of 

MSH6 gene resulted in higher levels of thiopurines in cells that become 

unable to initiate apoptotic cascade thus, conferring insensitivity to this 

drugs [273].  

 

Although the alterations driving primary ALL in T and B-cell lineages are 

different, since both receive similar multiagent treatment (see 1.3.3.2 

below) the relapse-enriched genes suspicious of being resistant mechanisms 

of the treatment are common among them.  

Relapse patterns and leukemia progression 

 
There are 3 models in which the treatment can accelerate clonal evolution 

in ALL. Landau et al., 2014 called them: 

 

- differential sensitivity model 

- mass extinction and competitive release model 

- chemotherapy-induced mutagenesis model 

 

The first model explains how therapy selects a minor clone containing a 

mechanism of resistance to it which then grows and establishes a relapse 

population. In contrast, the second model refers to cases in which there is a 

heavy cytoreduction which is insufficient to eliminate all leukemic blasts 

but that settles the possibility of a change in the clonal landscape allowing 

a fitter minor clone to expand. If all the remaining clones are equally fitter 
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then the higher the frequency in the population, the more chances to become 

the major clone again and resemble the diagnostic composition of cells. 

 

In many backtracking studies of driver alterations, the majority of ALL 

recurrences come from a minor subclone at diagnosis previous to the 

treatment. For example, in Mullighan et al., 2008, he estimated that 52% of 

the relapse cases came from a pre-existing minor clone [255]. Probably, 

these cases belong to the differential sensitivity model whereas the 34% of 

the relapses that were reported, evolved from diagnosis clone which in this 

case, better fits with the mass extinction and competitive release. In a study 

with 20 pediatric cases with primary-relapse samples, they reported that 

75% of the relapsed B-ALL arised from minor subclones at diagnosis with 

45% of them harboring NT5C2 mutations [256]. In a similar study with T-

ALL, they analyzed a total of 13 cases in which all relapses came from 

subclone at diagnosis. However, 6 out 13 patients had a relapse with 

mutations already detectable at primary leukemia whereas in the rest, the 

major primary clone was lost in relapse pointing towards an ancestral pre-

existing clone. Again, mutations in NT5C2 were observed in 5 of the 

patients. A very recent study used research techniques such as deep digital 

mutation tracking and xenografting to classify 92 cases of childhood ALL 

and concluded that 50% of the times the relapse-fated clone arises from a 

minor clone at diagnosis, 27% comes from the primary major clone and 

18% has a multiclonal origin. Regarding relapse in adults, similar numbers 

were obtained when comparing childhood vs adult B-ALL cases (46% and 

58% respectively) which had a relapsed-leukemia coming from minor 

clones [267].  

 

Given that, it has been shown to what extent chemotherapies can leave a 

mutational footprint or signature due to their DNA damaging effect [111], 

it might be that the chemo-mutagenesis confers therapy-induced resistance 
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to a clone that then expands and generates a relapsed leukemia. In fact, a 

recent study of pediatric ALL, reported a new signature derived from 

thiopurines from which they could estimate the probability of this purine 

analog’s treatment causing relapse-specific driver mutations and found that, 

for some cases, resistant mutations in genes PRPS1, NT5C2 and TP53 were 

most likely chemotherapy-induced [112]. This is a clear example of a 

chemotherapy-induced mutagenesis model. In addition, in another recent 

study [254], mutations in NT5C2 were not detected by ddPCR in primary 

leukemias but were present exclusively in relapse which further support the 

idea that mutations at this gene are acquired during treatment or even due 

to treatment. On top of that, another recent study from the same authors was 

able to isolate relapse initiating clones from diagnosis samples with limiting 

dilution xenografting experiments. Results confirmed the existence of 

relapse clones that in fact, were showing already intrinsic tolerance 

capability to some drugs at diagnostic samples. In addition, two patients 

had NT5C2 at relapse, for one patient, mutations in this gene were not 

detected in the relapse-fated clones coming from its PDX from primary 

samples whereas in the other patient the mutation was at a very low 

frequency at primary PDX [182]. 

 

Related to a previously mentioned study describing a thiopurine signature 

[112], the authors also tried to characterize early from late relapses. 

Concretely, they categorized relapses in three groups according to the 

elapsed time between diagnosis and relapse: very early (less than 9 months), 

early (between 9 and 36 months) and late (more than 36 months). Results 

show that, based on their estimates of population growth, pre-existing 

resistant subclones at diagnosis fit with observed timing of very early 

relapse whereas early relapse adjusts better with a relapse arising from a 

persistent subclone that acquires resistant alteration during treatment 

allowing proliferation before therapy ends. Therefore, later relapse may 
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come from a survivor subclone that restarts proliferation after the therapy 

period is over. In fact, early relapses were the ones presenting more relapse-

specific mutations in known genes associated with resistance than the other 

relapse types (65% over 17% very early or 32% late). They are not the only 

ones to characterize early/late relapses. Another recent study [183], came 

up with a score to represent “clonal dynamics” based on VAF shifts of 

different mutations at different samples (primary-relapse/s). They reported 

more clonal dynamics in early relapses than late and associated this to more 

plasticity of the tumor favoring quick emergence of fitter clones and a 

change in predominant populations post-treatment whereas late relapses 

were considered to arise from quasi-inert persistent clones.  

 

Above all of the relapse population characterization, studies of 

phylogenetic trees built with primary-relapse samples revealed a general 

branching pattern in the evolution of ALL. In a study of 55 pediatric 

patients with ALL [257], the shape of the trees based on mutations detected 

with WXS, showed enough private primary mutations to consider a branch 

instead of a linear evolution process. Another study checking for CNA with 

multiplexing fluorescence in situ hybridization demonstrated a complexity 

in the clonal architecture of ALL and branching evolutionary trajectories 

[274]. 

 

1.3.3.2 Standard treatment  

Diagnosis and risk factors 
 
Usually, identification of lymphoblasts by morphology and cytochemistry15 

and assessment of peripheral blood and bone marrow infiltration is 

                                                 
15 Lymphoblasts lack myeloperoxidase so they stain as Sudan black 
negative. It helps to distinguish AML from ALL [275].  
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performed (>20%). Immunophenotyping determines cell lineage and 

precursor commitment [275]. Cytogenetics identifies main chromosomal 

changes and aneuploidies and helps stratify patients according to most 

likely outcome (adverse/poor, intermediate or favorable/good) as described 

in 1.3.1. In fact, it is believed that part of the overall worst outcome of adults 

compared to children is because older patients tend to present ALL with 

adverse cytogenetics such as hypodiploidy, Ph positive type or ETP T-ALL 

[276].  During the last years, and with the progress of NGS many research 

groups have developed panels of driver genes to perform targeted 

sequencing of the diagnostic sample and fine-tune risk assessment. For 

instance, in a study where they analyzed a panel of genes with main hotspot 

exons of TP53, JAK2, PAX5, LEF1, CRLF2 and IL7R, it was demonstrated 

that mutations in TP53 and JAK2 are associated with poor prognosis since 

they obtained lower overall survival (OS), lower event-free survival (EFS) 

and higher relapse rate (RR) in an heterogeneous cohort of 340 B-ALL 

patients with children and adults [277]. Another example is a study of 

alterations in IKZF1 in two independent cohorts which resulted in very poor 

outcomes for the patients carrying them [220]. There are also controversial 

examples such as deletions in CDKN2A and mutations in NOTCH1 in 

which their assessment as genetic markers have been tested a great number 

of times without concordance in the results. Pediatric patients under the 

ALL-97 (n = 55) protocol and adults in LALA-94 (n = 87) and GRAALL-

2003 (n = 54) clinical trials showed good outcome of individuals harboring 

NOTCH1 and FBXW7 mutations whereas in UKALLXII and ECOG 

protocols presented no significant association [240]. However, although 

there is some disagreement in long-term outcome between studies, in 

general, mutations in the NOTCH1 pathway are associated with good early 

response to treatment. Similarly, in the majority of the studies deletions in 

CDKN2A/B are associated with poor prognosis but there are also some that 

found no prognostic value of it [278]. A recent metastudy seems to support 
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that CDKN2A/B deletions are indeed related to a bad outcome and serve as 

an independent prognostic marker in adults and children [279].   

 

Risk is systematically assessed according to clinical features: age of the 

patient and leukocytes or white blood cells count (WBC). The National 

Cancer Institute has determined as Standard Risk (SR) children between 1-

9 years old and peripheral-blood leukocyte count at diagnosis <50000/𝜇L 

whereas high risk (HR) children are those with 10-15 years old and 

leukocyte count ≥50000/𝜇L [280]. Other determined categories are 

adolescents with ages 16-20 years and young adults with ages of 21-39 

years which are usually referred together as AYAs. Therefore, in some 

cases adults are just considered those older than 40. These categories are 

widely used by the St. Jude Hospital research projects that are cited along 

this work. Later, risk is re-evaluated according to the first response to 

treatment. Concretely, it is performed a quantification of the residual 

disease, called minimal residual disease (MRD) by microscopic 

morphological assessment, which helps monitoring ALL under therapy 

and, so far, it is the strongest predictive feature of this disease [281]. 

Patients whose MRD stays high and never achieve complete remission are 

called refractory.  

Overview of treatment 
 
Following the generalized summary of this recent review [276], front-line 

treatment of ALL has 4 major components which are blocks with specific 

drugs and dosages adjusted for a particular period of time: 

● Induction 

● Consolidation 

● Intensification 

● Maintenance 
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The induction block aims to make the most cytoreduction possible to reach 

a complete remission (meaning absence of detectable disease) and restore 

normal hematopoiesis. It usually lasts 5 weeks approximately. The 

chemotherapy given is a multi-drug cocktail of glucocorticoids 

(immunosuppressor), vincristine (mitotic inhibitor-cytotoxic alkaloid), L-

asparaginase (cytotoxic enzyme) and anthracycline (antitumor antibiotic). 

The most common glucocorticoid is prednisone but some protocols have 

used dexamethasone too which seems to present higher toxicity. Also the 

most used anthracycline is daunorubicin. Patients with BCR-ABL1 

translocations which had very bad prognosis have significantly improved 

their outcomes as tyrosine kinase inhibitors such as dasatinib have been 

incorporated as part of the therapy. Usually, an MRD measure is taken in 

the middle and at the end of induction. A current measure to determine 

whether the patient should follow high-risk or standard-risk procedure is to 

determine an MRD > or < 0.01% respectively. Therefore, intensification of 

the therapy is adjusted according to the risk to reduce toxicity and long-

term effects on those with good prognosis. At this point, allogeneic 

hematopoietic cell transplantation (allo-HSCT) is also considered 

depending on comorbidities and overall status of the patient [282].  

 

The consolidation block consists of administering chemotherapy in 

frequent pulses every 2-3 weeks. The main objective of this block is to get 

rid of the remaining leukemic cells. Induction seems to be more similar 

between protocols compared to consolidation which tends to vary more. 

The usual drugs administered in this phase are:  cytarabine (antimetabolite-

pyrimidine analog), high-dose methotrexate (antimetabolite-folic acid 

analog), vincristine, asparaginase, mercaptopurine (antimetabolite-purine 

analog), and glucocorticoids.  
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The intensification block consists in a reinduction phase so drugs supplied 

are very similar to those in induction. It is also common to use 

cyclophosphamide (alkylating agent). Similarly to consolidation, the aim of 

this phase of treatment is to ensure the eradication of any left leukemic cells. 

High-risk patients that have achieved remission are usually the ones that 

receive this therapeutic block. 

 

The maintenance block is the longest period of treatment (approximately 

up to 2 years from induction). Mercaptopurine is the main drug 

administered in this treatment phase which is daily given. It is normally 

combined with weekly doses of methotrexate. During this period there 

might be short reinductions too in which mercaptopurine and methotrexate 

are interrupted for the delivery of induction drugs.  

 

Apart from these, along the different blocks, patients also receive 

intrathecal chemotherapy (methotrexate, cytarabine, and hydrocortisone) to 

avoid CNS relapse. Furthermore, as mentioned above, allo-HSCT is also 

part of the therapy for high-risk relapsers and poor responders [275]. 

 

Some of the success of cure rates in ALL, especially in children, are due to 

some of the following improvements [275,283]: 

 

- The development of specific drugs to trigger response in blood 

cancers such as folic acid antagonists, corticosteroids, and purine 

analogs such as (6-mercaptopurine and thioguanine) 

- Establishment of multiagent drug schedules to overcome resistance 

and toxicity 

- Prevention and/or treatment of CNS blast infiltration from the very 

beginning of the treatment first by prophylactic cranial irradiation 

and then changed to intrathecal chemotherapy. 
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- Testing of new drugs as well as intensification measures by well 

design clinical trials (e.g incorporation of asparaginase in treatment 

protocols or incorporation of reinduction after consolidation)  

- Stratification of patients due to risk factors and ALL subtypes and 

adjustment of dosages and regimes according to that. Notoriously, 

MRD monitoring to precise patient stratification 

- Allo-HSCT as consolidation for high risk-patients and poor 

responders  

- Incorporation of tyrosine kinase inhibitors to treat Ph+ patients   

- Improvements in AYA patients with therapy that resembles 

pediatric therapeutic regimens.   

 

Recently, new treatments have been developed to improve ALL cure rates, 

especially targeting relapsed leukemias. For example, rituximab and 

inotuzumab ozogamicin are monoclonal antibodies against B-cell lineage 

leukemia markers such as CD20 and CD22 respectively that have shown 

very promising results on relapse and refractory adult patients with 

reasonable toxicity. In fact, inotuzumab ozogamicin has already been 

approved by FDA and EMA16 to treat adult patients with relapsed or 

refractory leukaemia.  Similarly, there are also new antibodies developed 

to target CD19 such as Blinatumomab which has already been approved for 

the treatment of adult Ph negative patients. CD19 can also be targeted using 

immunotherapy with anti-CD19 chimeric antigen receptor (CAR) T cells. 

Results with patients of a wide range of ages showed promising results but 

anti-CD19 CAR T treatment has severe effects and usually is only 

recommended after different alternative lines of treatment have been given 

or after allo-HSCT. 

                                                 
16 FDA: US Food and Drug Administration 
   EMA: European Medicines Agency  
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In the case of T-ALL, there has not been as much improvement as in B-

ALL. A notorious advance is the usage of nelarabine (antimetabolite-purine 

analog) to treat relapsed and refractory T-ALL patients of all ages. Some 

inhibitors of key players in T-ALL such as JAK inhibitors, BCL‐2 

inhibitors are being tested to improve EFS rates. CAR T for T-ALL is also 

under development but issues regarding the similarities between leukemic 

T‐cells and genetically engineered CAR T‐cells must be overcomed [219]. 

 

The poorer outcome in adults compared to pediatric patients may be 

attributable to different factors. As mentioned before, adults tend to have 

more incidence in adverse subtype groups than children. They suffer from 

higher toxicity than children, for instance, severe hepatotoxicity due to 

asparaginase, so as consequence, this drug is not administered at the 

intensity of children or it is even dropout from treatment protocols. Older 

patients also tend to have more comorbidities associated with treatment. 

Another suggested explanation is that, since ALL is rare in adults, there is 

a lack of specialized centers so there is lesser awareness of stratification and 

management of toxicity and most adults are treated outside clinical trials 

[284].  

Described treatment resistance 
 
As indicated before, NT5C2 activating mutations are one of the main 

alterations that drive relapse as they confer resistance to 6-mercaptopurine 

[268].  This gene encodes an enzyme called cytosolic 5′-nucleotidase II 

which is responsible for the dephosphorylation of purine nucleotides. The 

dephosphorylated nucleotides can then be exported out of the cell, therefore 

reducing their intracellular levels. Gain-of-function mutations of NTC52 

increase the export of dephosphorylated purine analogs like 6-

mercaptopurine or thioguanine conferring resistance [285]. Evidence 
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supports that NT5C2 mutations are disadvantageous to the leukemic cells 

as they cause an excess of nucleotide exportation but they provide selective 

advantage when mercaptopurine is administered [286]. Mutations observed 

are classified on those locking the protein in its constitutively active form, 

those blocking the switch-off mechanism and those that truncate the break 

for allosteric activation [285]. In addition to NT5C2 and as mentioned 

above (see 1.3.3.1), PRPS1-mutated clones can also generate tolerance to 

purine analogs since the mutants reduced the feedback inhibition loop of 

the protein which ultimately results in inhibition of the drug metabolization 

into its active damaging form [270].  

 

There are studies associating polymorphisms and mutations of the 

glucocorticoid receptor encoded in NR3C1 with glucocorticoid resistance 

but there was a need for functional studies, such as the ones performed with 

NT5C2, to better understand it [287]. A couple of years ago, a study 

demonstrated how the glucocorticoid receptor associated with CTCF 

interact at lymphocyte-specific open chromatin domains (LSOs) to regulate 

chromatin accessibility critical for the glucocorticoid-induced apoptosis. 

They reported how glucocorticoid resistant cells had an increased 

methylation of DNA at the enhancer preventing formation of DNA looping 

and, therefore, impeding the binding of transcriptional machinery necessary 

to trigger apoptosis [288].  

 

Furthermore, in B-ALL, relapse samples recurrently present mutations in 

CREBBP which have been shown to impair regulation of glucocorticoid-

receptor-responsive genes [272]. Instead of a particular genomic mutation 

conferring resistance, some studies have focused on the overall alteration 

of pathways such as JAK-STAT and PI3K-AKT-mTOR and resistance to 

glucocorticoids [287]. For example, a few years ago, a study with PDX 

showed that in T-ALL with active JAK-STAT  pathway,  removing IL7 or 
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inhibiting JAK-STAT signaling stimulated by IL7 sensitizes cells to 

glucocorticoids and might help to overcome resistance [289]. Another 

mechanism of resistance to chemotherapy has been described with p53 and 

ABCB1. As indicated above (1.1.3.4), the gene ATP-binding cassette sub-

family B member 1 (ABCB1) encodes for P-gp protein which is a ATP-

dependent membrane efflux pump that is able to export several drugs such 

as vincristine, anthracyclines, and glucocorticoids [290]. It has been shown 

that p53 transcriptionally regulates ABCB1 and that mutations and 

deletions in TP53 lead to increased expression of P-gp [287]. A recent study 

reported that cells having TP53 mutants with expressed truncated forms of 

p53 showed insensitivity to doxorubicin whereas when WT expression was 

rescued cells were re-sensitized in B-ALL [291]. 

 

As described above, loss-of-function of mutations in genes that encode for 

members of PRC2 complex (EZH2, EED, or SUZ12) are enriched in 

relapse and are also abundant in adverse subtype ETP-TALL. Depletion of 

PRC2 is associated with resistance to chemotherapy-induced apoptosis in 

human T-ALL cell lines [292]. 

 

Finally, there are other factors contributing to chemoresistance that can be 

cell-extrinsic. Some studies summarized elsewhere [293] have shown that 

the bone marrow microenvironment by modulating cell-cell interactions 

and by the production of soluble factors in the niche induce survival 

signaling which can contribute to chemoresistance. For example, several 

lines of evidence related the abnormal high expression of  surface integrin 

VLA-4 in leukemic cells to chemoresistance, particularly in tests with 

cytarabine. Specifically, the binding of VLA-4 with VCAM-1 (surface 

protein in vascular endothelium cells) mediates activation of pro-survival 

signaling in ALL cells which can shield them against treatment induced 

apoptosis. Another example is, the chemokine receptor CXCR4 which has 
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also been involved in chemoresistance. High expression of this receptor is 

associated with higher relapse rates and inferior survival and its silencing 

has been related with restore of chemosensitivity and induction of apoptosis 

in ALL. 
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2. OBJECTIVES 

 
General goals 

 Study the clonal evolution from primary to relapse of T-ALL in 

adult patients  

 Identify genomic candidates of treatment resistance in adult T-ALL 

 Analyze similarities and differences between T-ALL and B-ALL 

and between the pediatric and adult diseases 

 Contribute to the generation of a compendium of mutational cancer 

genes across tumor types 

Specific goals 

 Characterize the emergence of the relapse clone 

o Estimate the time before clinical presentation when the 

primary and relapse clones diverged 

o Infer the size of the relapse subpopulation at the time of 

diagnosis of the primary 

o Identify recurrent relapse-enriched alterations suspicious 

of conferring resistance  

 Comparison of drivers between different types of ALL  

 Define which are the mutational processes operating in 

leukemogenesis and, also, whether the relapse samples show signs 

of chemotherapy signatures 

 Collect, curate and annotate datasets of tumor somatic mutations 

across cancer types 
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3. RESULTS 

3.1 Chapter 1  

The evolution of adult T-ALL patients 

 
The results section contains the accepted manuscript of my main project 

during the PhD. Like most studies in our field, the publication shows only 

part of the large amount of work done during the project. For this reason, in 

the following introductive part, I decided to describe a detailed overview of 

all the progression of it, to provide a more realistic and complete picture of 

the work carried out. Furthermore, this beginning of the results section, also 

aims to define the contribution of all the people involved in the project since 

there are other authors of our lab and external collaborators in it. 

 

When does the project start? 
 
The research explained in the manuscript of the upcoming section is a 

collaborative project with the lab of Dr. Anna Bigas17 and the group of Dr. 

Josep Maria Ribera18. During my first PhD year, I joined the project at the 

initial planning phase in January 2017 (see the diagram of Table 5).  Given 

the high incidence of childhood B-ALL, most of the genomic knowledge 

generated in the past years such as the implicated genes and pathways and 

the evolution under treatment of ALL is clearly biased towards the pediatric 

disease. Consequently, little is known about the evolution of adult T-ALLs 

under treatment. The motivation of the project was to find mechanisms of 

therapy resistance in T-ALL, check their detection at diagnosis and include 

them in the regular diagnosis test of the Hospital Germans Trias i Pujol for 

                                                 
17 Stem cells and cancer Group-Institut Hospital del Mar d'Investigacions 
Mèdiques (IMIM) 
18 Acute lymphoblastic leukemia Group-Josep Carreras Leukaemia Research 
Institute (IJC) 
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relapse prevention. The project is funded by The Asociación Española 

Contra el Cáncer (AECC)19. The initial plan was divided into two phases: a 

first 3-year phase to sequence samples and to identify candidates and a 

second phase of the following two years to validate the candidates and 

develop xenograft models for further prediction analyses. The group of the 

IJC was already collecting data from adult T-ALL patients from different 

spanish hospitals and the group at IMIM was coordinating the project and 

bringing the experimental expertise to our ensemble. Our role was to lead 

the bioinformatic analysis which had the central weight in the investigation 

as evidenced in the objectives written above.  

 

Project design and sequencing 
 
We have frequently met with our collaborators along the past 4 years. The 

meetings, in particular during the first period, had as main objective to 

revise the clinical data of the patients and the sample availability to decide 

which ones could be included in the project. In order to study the evolution 

of leukemias and to search for alterations of therapy resistance, we selected 

primary and relapse bone marrow aspirates (preferably, otherwise 

peripheral blood) with reasonable sample purity of patients above 18 years 

old. After a few months, our collaborators were able to gather a collection 

of primary, remission and relapse samples (here referenced as trios) per 

individual from a small cohort of 9 adult patients with T-ALL. We decided 

to sequence the whole genome of the samples from this first batch with the 

expectation to sequence an in-house cohort between 20 to 30 T-ALL adult 

patients. However, the sequencing center was not up to us to decide since 

local regulation stated that the election of it must undergo public tender 

procedure. We received the sequences from the first batch of patients in 

June 2018.  

                                                 
19 Translated: Spanish Association Against Cancer  
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Collection of ALL tumor sequences in the public domain 
 
In the meantime, we decided to gather as much data as possible from ALL. 

We downloaded the somatic mutational catalogs from the published 

projects that were available at the moment. Logically, most of the data that 

we obtained was coming from pediatric cohorts. Usually, the data we 

collected were somatic mutations from the supplementary MAF files 

reported in publications. At that time, not only was I a first year PhD student 

but also I was finishing my master’s degree so, the first cohort comparison 

and landscape of driver genes carried out served as my master thesis20. 

Soon, we realized that the diversity in mutation calling procedures among 

the cohorts could influence downstream analysis that we were willing to 

perform. For this reason, to continue the investigation, now as my main 

PhD project, we decided to download and re-analyze the raw data ourselves 

to accomplish as much homogeneity as possible between cohorts. Not all 

the published projects provided a link to a public repository from which to 

download the raw data. Finally, we ended up having mostly WGS data from 

pediatric projects of the St. Jude Pediatric Hospital and another pediatric 

project with WXS data from Columbia University [257] that had samples 

trios per patient (a table with the characteristics of the cohorts is provided 

in the manuscript; there were a total of 238 patients). 

 
First steps of the analysis  
 
Since it was the first time that our lab performed sequence alignments and 

calling of somatic variants for such a volume of data, I, with support from 

other lab members, had to come up with a pipeline to systematically analyze 

all the samples. After trying some aligners and exploring GATK 

possibilities, we decided to use Sarek pipeline [294] developed by 

                                                 
20 https://www.upf.edu/web/bioinformatics/projects-2016-2017 
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SciLifeLab in Sweden in nextflow scripting language. At that time, the 

pipeline was still at the beginning of its development and it was called 

CAW. However, the first analysis was done with the alignments and 

somatic calls outputted by CAW of a few cohorts. The pipeline seemed 

appropriate since it was using a pretty standard way to make the BAM files 

while implementing the “Best Practices” of GATK and using Strelka and 

MuTect. After some benchmarking of other calling tools and “trial and 

error” we had the SNVs, InDels, CNV and SV of some of the patients (¼ 

of the total number of patients coming from public repositories). I made the 

first BAMs and test runs myself with the help of Jordi Deu Pons.  

 

However, at some point of the analysis, Dr. Loris Mularoni helped run the 

rest of the alignments and mutation calls with a stable version of Sarek 

while I was working in the first batch and learning about single-cell RNA-

seq.  
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Related to that, a pilot study to try to quantify the heterogeneity of the 

primary tumor and the existence of a relapse form was performed using 1 

patient (the only one at that time with cryopreserved cells). The 

inconclusive results and the lack of material suggested to abandon such 

idea.  

Therefore, we saved that line of investigation for another time and started 

new angles to study clonal evolution from bulk sequencing. Finally, we 

have sequenced the whole genome of sample trios of 19 patients.  

 

Sections of the manuscript and contributions 
 
Figure 1 and 2 of the manuscript correspond to the first part of the project 

in which we decided to compare cohorts of ALL to our in-house cohort of 

T-ALL adults and make a landscape of the disease, as well as, search for 

therapy-resistant candidates. From figure 3 to 5 we decided to focus on the 

leukemic evolution of the in-house cohort. Since this is my main PhD 

project, I have actively participated in all parts of the project, including the 

initial meetings when we decided the samples to sequence, to the 

discussions of experimental validation of mutations. Regarding the 

computational analyses, Dr. Santi González and I have performed all of 

them. I did the analyses of the first part of the project from the somatic 

calling of alterations, the consecutive filtering steps, to the discovery of 

drivers running IntOGen and curating literature and to the fitting of 

mutational signatures. During this period I had constant feedback from 

Santi who helped guide some technical decision-making from one step to 

the next one. The second part of the analysis was built upon many 

discussions with Santi, my supervisors and I, with occasional input help 

from Dr. Ferran Muiños for more mathematical-related technical parts. 

Concretely, I coded a simple model to estimate the divergence time of the 

primary and relapse clones. However, more accurate modelling was needed 
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from where Santi took over this part and designed and implemented the 

mutation rate increment models that resulted in the estimates of the 

divergence time in figure 4.c. Furthermore, after running some tests with 

Clonex [295] for the simulations of cell population growth, Santi and I 

realized it required some adaptation of the code in order to simulate the 

growth of not only a primary tumor but also a relapse. Therefore, he adapted 

Clonex and ran the simulations that resulted in figure 5.c and then compared 

with the observed data in figure 5.d. Ferran implemented the model of 

tumor growth from Li et al., 2019 [112] so I could obtain the doubling time 

that allowed me to infer the population size of relapse at diagnosis that 

corresponds to figure 5.a. The dPCR experiments were conducted by Dr. 

Violeta Garcia-Hernández under the supervision of Dr. Anna Bigas and 

with the help of the Pathology Department in Hospital del Mar.  

 

I have also participated in outlining and discussing the draft of the paper. 

The manuscript has been accepted for publication in Genome Biology for 

Cancer Evolution and Metastasis special issue. 
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Abstract 

Background: Adult T-cell acute lymphoblastic leukemia (T-ALL) is 

a rare disease that affects less than 10 individuals in one million. It 

has been less studied than its cognate pediatric malignancy, which 

is more prevalent. A higher percentage of the adult patients relapse, 

compared to children. It is thus essential to study the mechanisms 

of relapse of adult T-ALL cases. 

 

Results: We profile whole-genome somatic mutations of 19 primary 

T-ALLs from adult patients and the corresponding relapse 

malignancies, and analyze their evolution upon treatment in 

comparison with 238 pediatric and young adult ALL cases. We 

compare the mutational processes and driver mutations active in 

primary and relapse adult T-ALLs with those of pediatric patients. A 

precise estimation of clock-like mutations in leukemic cells shows 

that the emergence of the relapse clone occurs several months 

before the diagnosis of the primary T-ALL. Specifically, through the 

doubling time of the leukemic population, we find that in at least 14 

out of the 19 patients, the population of relapse leukemia present at 

the moment of diagnosis comprises more than one but fewer than 

108 blasts. Using simulations, we show that in all patients the relapse 

appears to be driven by genetic mutations. 

 

Conclusions: The early appearance of a population of leukemic 

cells with genetic mechanisms of resistance across adult T-ALL 

cases constitutes a challenge for treatment. Improving early 

detection of the malignancy is thus key to prevent its relapse. 

 

Keywords: T-ALL, adult acute lymphoblastic leukemia, T-ALL 

evolution under therapy, evolution of leukemia relapse, ALL relapse 
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Background  

Acute lymphoblastic leukemia (ALL) affects 3 children in 100,000 in 

the UK [1]. In the past 5 decades, intense research on this disease 

has succeeded in reducing the mortality of ALL-affected children by 

82% [2]. Recently, with the development of cancer genomics, 

researchers have unraveled the most frequent somatic genetic 

alterations underlying its development [3–14], and molecular 

subtypes, as well as their clinical relevance [15–22]. Genetic 

alterations that elicit some relapse events have also been uncovered 

and the potential role of therapy in the development of such relapse 

cases has been explored [23–31]. 

 

ALL is less prevalent in adults (0.7 patients in 100,000 people [1]). 

Not only are there differences in incidence among age groups, but 

also relapses after treatment appear more frequently in adults (40-

75% vs 15-20% among pediatric patients) [31]. Very few studies 

have been dedicated to understanding the genomic roots of the 

emergence of adult ALL, and in particular, of T-cell ALL (T-ALL) [32–

36]. There is a larger gap in the study of the evolution of this 

malignancy under therapy and its relapse after treatment. Therefore, 

important questions regarding the genomic evolution of adult T-ALL 

remain unanswered. It is not entirely clear, for example, whether the 

same mutational processes are involved in the onset of pediatric and 

adult T-ALL cases, and if the chemotherapeutic drugs employed in 

the treatment leave a mutational footprint in relapse cells, as it has 

been shown for pediatric cases [36]. Furthermore, while some 

genetic mechanisms of resistance to treatment have been identified 

in pediatric ALL [26,27], it is not known whether these also contribute 

to resistance of the adult malignancy. 
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To explore the evolution of adult T-ALL under treatment and address 

these specific questions, we profiled the whole-genome somatic 

mutations of 19 T-ALLs from adult patients who relapsed after 

treatment (in-house cohort; Additional file 1: Table S1). Samples 

were taken at the time of diagnosis (primary) and at recurrence of 

the malignancy after treatment (relapse). We then analyzed the 

genomic evolution of these adult T-ALL cases in comparison with 

238 pediatric and young adult ALL cases (71 with primary and 

relapse samples) available in the public domain (Table 1). Known or 

potential resistance mutations appear in 6 patients of the cohort. 

Nevertheless, our results show that in the 19 cases the relapse is 

driven by genetic mutations, and that resistant cells appear in the 

population of blasts several months before the diagnosis of the 

primary. 

 

Results 

The genomics of primary adult T-ALL 

Previous studies on the genomic basis of pediatric ALL have 

identified somatic mutations across cohorts of patients suffering from 

this disease [5–8,10,12,13,28–30,37–40]. Therefore, we first aimed 

to compare the landscape of somatic alterations observed across 

primary adult T-ALL with that across eight other cohorts of T- and B-

ALL patients of varying age, ranging from infancy to young 

adulthood, which we analyzed with a unified mutation calling 

approach (Table 1; Additional file 1: Table S1 and Table S2). Among 

cancer types, ALL presents a relatively low somatic mutation burden 

[41,42]. Nevertheless, the burden of somatic point mutations of adult 

ALL cases tends to be higher than that of cases of most of the 
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subtypes of the pediatric malignancy, as has been previously 

observed [43] (Fig. 1a). 

 

Mutations in human somatic cells are contributed to by different 

molecular mechanisms involving the interaction of endogenous (for 

instance, spontaneous cytosine deamination or oxidative damage) 

and external DNA damaging agents (such as UV-light, tobacco 

carcinogens or chemotherapies) with the DNA repair machinery 

[41,44–46]. The study of these mutational processes in tumors 

reveals the lifetime exposures of patients to potential carcinogenic 

agents and consequently contributes to shedding light on the 

etiology of malignancies. Thus, we first asked whether the somatic 

mutations observed across nine cohorts of pediatric and adult ALL 

(Table 1) are contributed to by similar or different mutational 

processes. No clear differences are observed between the 

mutational profiles of B-ALL and T-ALL (Fig. 1b, top). However, the 

mutational profiles of pediatric and adult malignancies exhibit 

discernible, albeit slight differences (Fig. 1b, bottom). The same 

mutational processes appear to be active across pediatric and adult 

T-ALL and in pediatric B-ALL (Fig. 1c; Additional file 2: Fig. S1). In 

particular, mutational signature 5 (SBS5), which in blood has been 

demonstrated to behave in a clock-like manner [47], and has been 

associated with the process of hematopoietic cell divisions [48,49], 

appears as one of the main contributors of mutations in the evolution 

of both pediatric and adult ALL. 

 

We next asked whether the driver alterations observed across 

primary adult T-ALL in the in-house cohort are different from those 

observed across pediatric B/T-ALL (Methods; Fig. 1d;  Additional file 

2: Fig. S2; Additional file 1: Table S3 and Table S4). Mutations in 
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some known ALL driver genes, such as NOTCH1 and FBXW7 (the 

E3-ligase charged with its recognition for ubiquitination [50]), are 

overrepresented among both pediatric and adult T-ALL with respect 

to B-ALLs (𝛘2 p=1.05x10-16 and 𝛘2 p=8.37x10-9, respectively). Similar 

overrepresentation of mutations in T-ALLs was found in JAK3 (𝛘2 

p=0.004). In contrast, RAS activating mutations do not appear to be 

differently represented in both ALL types (𝛘2 p=0.05 and 𝛘2 p=0.634 

for KRAS and NRAS). 

 

Genomic alterations driving primary and relapse adult T-ALL 

With the goal to study the evolution of adult T-ALL, the 19 patients 

in the in-house cohort were selected specifically because they 

relapsed several months after treatment (Fig. 2a; Additional file 2: 

Fig. S3; Additional file 1: Table S1). Seventeen of them received the 

same treatment protocol (ALL-HR-11 [NCT01540812]), while the 

remaining two were administered very similar protocols (LAL-07OLD 

and ALL-HR-2003 [NCT00853008]). To uncover the genomic 

similarities and differences between adult and pediatric T-ALL cases 

at relapse, we next compared the in-house cohort with 31 relapsed 

cases from the T-ALL Oshima and T-ALL SJ cohorts (Table 1; 

Additional file 1: Table S3 and Table S4). A list of potential driver 

events across the 19 patients in the cohort is presented in Additional 

file 1: Table S5 and Table S6. 

 

Many NOTCH1 and FBXW7 mutations observed in the primary 

leukemias were also present in the relapse samples (Fig. 2b; 

Additional file 2: Fig. S4). Intriguingly, mutations affecting USP7, a 

known deubiquitinase of NOTCH1 were detected in 3 adult and 3 

pediatric patients, raising the possibility of yet another form of 

alteration of the NOTCH pathway in leukemogenesis [51–53]. 
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Overall, NOTCH1-affecting mutations in adults are distributed along 

the protein-coding sequence in a very similar manner than those 

observed in pediatric patients (Fig. 2c). Nine patients in the cohort 

present multiple mutations of NOTCH1 that affect different protein 

domains (mostly HD and PEST), in agreement with previous reports 

[54]. Interestingly, in 6 patients different NOTCH1/FBXW7 mutations 

were detected in the primary and relapse samples (Fig. 2d). These 

constitute examples of convergent evolution of mutations affecting 

the NOTCH1 pathway, also observed in eight pediatric patients in 

the cohorts analyzed. This suggests that NOTCH1 mutations tend to 

appear late [55] and recurrently (i.e., in several cells) during T-ALL 

development. 

 

DNMT3A-affecting mutations, known to drive acute myeloid 

leukemias (AML), were observed in three adult patients in the in-

house cohort and none of the pediatric T-ALLs. In fact, these three 

patients are classified as Early T-Cell Precursor (ETP), a T-ALL 

subtype that presents myeloid markers [33]. Similarly, PAT5 and 

PAT9, patients with mutations of ROBO2 --a gene associated with 

progression of myelodysplastic syndrome [56] to AML and recently 

reported as mutated in pediatric ALL [57]-- present the ETP 

phenotype. Clonal mutations of PHF6 are overrepresented (𝛘2 

p=0.001) in adult T-ALLs with respect to their pediatric counterparts, 

shared between primary and relapse samples. PHF6 is a zinc-finger 

transcription factor that suppresses ribosomal RNA (rRNA) 

transcription [32]. Loss-of-function mutations of this gene have been 

shown to decrease sensitivity to glucocorticoids [58], which are part 

of the standard first-line treatment of adult T-ALL patients. 

Interestingly, activating mutations of the NT5C2 gene, known to elicit 

resistance to mercaptopurine anti-ALL treatment in pediatric cases 
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[26,27] are also observed across 3 adult cases exposed to this drug 

(Fig. 2a), with PAT16 bearing two mutations of NT5C2 (R238G, 

R367Q, see Additional file 1: Table S5).  In the relapse samples of 

two patients of the in-house cohort, we observed amplifications of 

ABCB1, an ATP-dependent membrane transporter known to 

mediate multidrug resistance in tumors [59,60] (Additional file 2: Fig. 

S5). Finally, SMARCA4 mutations and deletions were also detected 

across adult (2) and pediatric T-ALLs, but almost exclusively in 

relapse malignancies, suggesting a potential role in resistance to 

treatment. 

 

In summary, in 6 of the 19 adult patients of the in-house cohort we 

were able to identify a candidate treatment-resistance mutation. 

 

The evolution of relapse adult T-ALL measured through 

mutations 

We next asked how much do the mutational processes active in 

primary T-ALLs also contribute to the overall burden of mutations of 

relapse adult T-ALLs. The incorporation of new mutational 

processes, like the exposure to chemotherapies used in their 

treatment, could leave a mutational footprint that may be detectable 

in the relapse clone, as recently demonstrated in metastases of 

different solid tumors, and in relapsed pediatric ALL cases [45,61]. 

 

The deconstruction of mutational signatures (representing 

mutational processes active during a person’s life) of primary and 

relapse samples of each patient reveals very similar scenarios for 

primary-private, shared and relapse-private mutations (Fig. 3a). 

Signature 5 (SBS5), which represents a mutational process 

associated with hematopoietic cell division [45]  contributes the vast 
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majority (~80%) of mutations in these three groups. We did not 

detect the mutational footprint of mercaptopurine or any other 

chemotherapy in the relapse samples (Additional file 2: Fig. S6). This 

does not preclude that chemotherapy-related mutations exist below 

the level of detection of the sequencing technology, for example if 

the evolutionary bottleneck caused by the treatment has not 

sufficiently reduced the T-ALL population. 

 

Since signature 5 has been described as a clock-like process [47] 

and this type of mutations are the main contribution to the burden of 

clonal mutations of both primary and relapse T-ALLs, we used them 

to infer a molecular time of divergence between the primary and 

relapse populations (Fig. 3b, Additional file 2: Fig. S7). To this end, 

we counted the number of primary-private, shared and relapse-

private signature 5 clonal mutations (Fig. 3b). In all cases the branch 

that corresponds to relapse-private mutations is longer than that 

representing primary-private mutations, because the relapse clone 

has continued accumulating mutations longer after its divergence 

from the primary (eliminated as a consequence of the treatment). As 

expected, fewer relapse-private mutations accumulate in the cases 

with shorter time elapsed between the diagnosis of the primary and 

the emergence of relapse. 

 

Time elapsed between divergence of primary and relapse 

clones and primary diagnosis  

The number of primary-private, shared and relapse-private signature 

5 clonal mutations can also be used to estimate the precise time of 

the divergence of the primary and relapse clonal populations. To that 

end, we first needed to understand the rate of accumulation of 

signature 5 mutations during T-ALL development. The DNA of 



 

133 

normal hematopoietic cells has been shown to incorporate signature 

5 mutations at a rate of roughly 12 per year (Fig. 4a; Additional file 

2: Fig. S7; [48]). Regressing the number of signature 5 mutations 

across primary and relapse T-ALLs on the age of patients in the in-

house cohort in comparison with healthy hematopoietic stem cells 

(HSCs) yields slightly higher mutation rates and an unanticipated 

high (~400) number of mutations at the start of life of hematopoietic 

cells (intercept of trendline in Fig. 4a). This deviation could be 

explained through an acceleration in the mutation rate that occurs 

upon malignization of hematopoietic cells [62].  

 

To compute the moment of time before diagnosis when this 

acceleration started, as well as the value of the accelerated mutation 

rate, we assumed that the acceleration rate is the same for the 

primary and relapse malignancies of a patient. We then simulated a 

one-time increase of the mutation rate (constant rate model) during 

tumor evolution and, alternatively a steady increase (linear rate 

model) in the mutation rate for successive cell generations 

(Additional file 2: Fig. S8). For each patient, we assayed several 

trendlines of accelerated mutation rate (i.e., starting at different 

timepoints before diagnosis; dotted lines in Fig. 4b) approximating 

the observed number of signature 5 clonal mutations in the primary 

and relapse T-ALL clones. We computed the likelihood of each of 

these trends of acceleration following their accuracy to fit the 

observed number of mutations in the primary and relapse 

malignancies (Fig. 4b and Additional file 2: Fig. S8). For each 

trendline of accelerated mutation rate, the age of the patient at which 

the divergence of the two clones occurred can be computed from the 

number of shared mutations. The difference between this age and 
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the age at diagnosis then yields the time elapsed between this 

divergence and the diagnosis of the primary T-ALL. 

 

Upon application of this approach to each patient in the in-house 

cohort, we obtained a number of estimates of the number of days 

elapsed between the divergence of both clones and the diagnosis of 

the primary T-ALL, each with varying likelihood (green circles, Fig. 

4c). The estimates for each patient may be summarized as their 

weighted (by likelihood) averages (broken lines). The time estimated 

for each patient was subsequently refined using the distribution of all 

patients (see Methods). As a result, we obtained a robust prediction 

of the boundaries of the most likely time elapsed between the 

divergence of primary and relapse clones and the diagnosis of the 

primary malignancy. In the majority of cases shown in the figure (13 

out of 15) less than a year passed between its emergence and the 

diagnosis (Additional file 1: Table S7). 

 

The evolution of relapse of adult T-ALLs 

Both the primary and resistant populations of T blasts across the 

adult T-ALL cohort are composed of a major clone and one or more 

subclones detectable through sequencing (see Additional file 3). In 

all the patients, including four that are refractory to treatment, the 

major clone in the primary and relapse leukemias differ, implying that 

in every case, the treatment obliterates the major clone in the 

primary malignancy. 

 

To understand the effect of the therapy on the clonal architecture of 

adult T-ALLs, we first aimed to estimate the speed of growth of the 

population of T-ALL cells to determine the minimum size of the 

relapse population at the time of diagnosis. This growth speed may 
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be characterized through the doubling time of the population (the 

time needed by a population of cells to duplicate its number). This 

can be computed from the number of blasts estimated by the 

pathologist at remission and relapse, and the amount of time elapsed 

between both events [61] (Additional file 2: Fig. S9a; Methods). We 

computed a doubling time for the T-ALL leukemic population of 10.79 

days (confidence intervals, 10.1-11.36), which is slightly longer than 

that recently estimated for pediatric B-ALL [61] (Additional file 2: Fig. 

S9b). We were then able to compute, with this doubling time, the 

minimum time necessary for the relapse population to achieve 

approximately 7x1011 cells that corresponds to a full grown leukemia 

[61,63]. This minimum time to expand from a single cell upon its 

divergence from the primary population informs us of the likelihood 

that the relapse clone has arisen before the diagnosis of the primary. 

 

In three cases (PAT7, PAT11, PAT12), it is possible that the relapse 

clone appeared during treatment, given the estimated doubling time. 

In two more (PAT9 and PAT10), it is not completely clear whether 

there’s enough time between the start of treatment and relapse to 

allow the emergence of a new clone. In all other cases, the relapse 

clone was most likely already present at the time of diagnosis and 

represented by more than one cell (Fig. 5a). Indeed, for fourteen 

patients in the cohort, the size of the relapse clone at the time of 

diagnosis of the primary malignancy probably comprises more than 

100 of 7x1011 leukemia cells. (Note that this calculation is 

independent from the time elapsed between divergence of the 

primary and relapse clones and the diagnosis computed previously.) 

PAT2, PAT4, PAT5 and PAT17, with more than 0.01% minimal 

residual disease during treatment, show estimates of the relapse 

clone at the time of diagnosis which are, as expected, above 1 in 
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10,000 blasts. We then asked whether the relapse clone could be 

detected in the primary sample of ALL cases by a method with a 

lower limit of detection than Next Generation Sequencing 

technologies. Thus, we aimed to detect two non-synonymous 

SMARCA4 mutations (G1162S and T786I) that are private of the 

relapse sample of two patients in the corresponding primary samples 

of these patients (PAT8 and PAT14). With a limit of detection of 

around one in one thousand cells, a digital PCR was unable to detect 

this mutation in the primary sample of either patient (Fig. 5a and 

Additional file 2: Fig. S10a,b). The fraction of cells of the relapse 

clone estimated to be in the primary sample of these two patients is 

below this limit of detection (1/105 in PAT8 and 1/108 in PAT14). 

These results thus provide further support to the estimation of the 

doubling time and the size of the relapse clone in the primary 

samples derived from it. 

 

Although we were able to pinpoint known or putative resistance 

mutations in several cases, we asked whether other cases of relapse 

could be explained by a failure of the treatment to kill a subset of the 

leukemic cells independent of any genetic mechanism [28,57]. To 

answer this question, we modeled the emergence of the relapse 

clone following both a resistant and a non-resistant (not driven by a 

genetic mutation) scenario (Fig. 5b). First, a population of tumor cells 

with driver and passenger mutations was simulated. Then, to model 

the first scenario, a group of cells sharing one passenger subclonal 

mutation (the resistance mutation) were selected as survivors of the 

treatment, and were expanded again for 20, 40 and 60 generations 

(40 generations correspond roughly to the observed times elapsed 

between primary and relapse diagnoses for the cohort; Additional file 

2: Fig. S11). To simulate the second scenario, a group of cells with 
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the same size as in the first case (but selected randomly and sharing 

no particular subclonal mutation) was selected and expanded for the 

same number of generations. We then compared the change in 

clonal composition --change of cancer cell fraction (CCF) of 

mutations in primary and relapse-- obtained for both simulated 

scenarios with the distribution of CCF in the primary samples of 

mutations fixed in the relapse samples for all patients, represented 

in Fig. 5c. For example, of all mutations fixed in the relapse ALL of 

PAT8 (dashed brown line), approximately 59% were present at CCF 

0-0.1% in the primary. In other words, in the primary sample they 

appeared below the limit of detection of the sequencing, and thus 

correspond to the red star mutations in the toy diagrams in Fig. 5b. 

On the other hand, 30% of the PAT8 fixed mutations were detected 

in the primary ALL at CCF between 0.9 and 1, with the remaining 

mutations at intermediate CCF bins. All patients in the cohort yield 

similar bimodal distributions. 

 

Only in the results of the simulation of the resistant scenario do we 

observe a distribution of CCF of the mutations in the primary sample 

that resembles that of the patients in the in-house cohort (Additional 

file 2: Fig. S10). By contrast, in the results of the simulations of the 

non-resistant scenario, no mutations undetectable in the primary 

leukemia (CCF in the 0-0.1 decile) become fixed in the relapse (Fig. 

5d). This holds if the simulations are run between 20 and 60 

generations, and even if a much higher (unrealistic) fitness is 

assigned to driver mutations. These results suggest that the non-

resistant scenario of evolution under treatment is not feasible given 

the time elapsed between primary and relapse. 
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In summary, in 14 cases in the cohort the relapse population is most 

likely already present before the start of the treatment. Moreover, all 

relapse cases fit the model of genetic resistance --due to one genetic 

event common to all cells in this relapse population-- although we 

are only able to identify the responsible mutation in a few of them. 

 

Discussion 

Advancing our knowledge on how tumors respond to therapies and 

which of their features determine their relapse after treatment is key 

to improving clinical oncology practice. Here, we studied the 

genomic features and the clonal composition of nineteen adult T-ALL 

cases at diagnosis and at the time of relapse to understand their 

evolution and identify commonalities that may predict their likelihood 

to respond to current therapeutic approaches. 

 

Our results suggest that for most adult T-ALL patients, the population 

of leukemia cells that dominate the relapse is already present at the 

moment of diagnosis, that is before the start of the treatment, and 

comprises more than one but fewer than 108 blasts. One evidence 

that supports this notion comes from the fact that, in most cases, the 

span of time between the diagnosis and the emergence of relapse is 

not enough (given the doubling time estimated from the cohort) to 

explain the repopulation of a full leukemic population starting from a 

single cell. This contrasts with the results reported recently for a 

pediatric cohort, in which some relapse cases could be explained by 

resistance mutations appearing during treatment [61]. This finding is 

relevant for the clinical practice, since early identification of such 

potential resistance populations in a patient’s leukemia may support 

making clinical decisions regarding their treatment. 
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We were not able to detect the mutational footprint of 

chemotherapies employed in the treatment of patients of this cohort, 

such as mercaptopurine, which has already been characterized in 

pediatric T-ALL cases [61]. This does not preclude that these 

chemotherapies indeed cause mutations in leukemic cells that 

progress in the relapse. Since upon treatment chemotherapy 

mutations will be private to each blast, and likely many of them 

survive into the relapse, the variant allele frequency of these 

treatment mutations will never rise above the limit of detection of the 

sequencing. The detection in the relapse T-ALL population [61] of 

these treatment mutations would require that only one or few blasts 

survived the treatment, guaranteeing that sufficient numbers of cells 

in the relapse carried the same mutations to make them detectable 

through sequencing. The absence of treatment footprints in the 

relapse is therefore another evidence that the relapse population at 

the time of treatment already contains a large number of cells. 

 

One intriguing result is the detection of multiple mutations affecting 

the NOTCH pathway in the same T-ALL case, which do not appear 

to be exceptions, but rather the rule. It is possible that mutations 

affecting different domains of NOTCH1 increase the fitness of 

leukemic cells more than a single mutation, and provide an 

advantage for relapse. Further studies comparing the pattern of 

NOTCH1 mutations in relapsing and non-relapsing T-ALLs are 

needed to clarify this. 

 

Conclusions 

All results show that, in the T-ALL patients of this cohort, the relapse 

is driven by genetic mutations that appear in the population of blasts 



 

140 

several months before diagnosis, giving rise to a resistant subclone 

of up to several million cells at the beginning of treatment. Upon 

treatment thus, this subclone comes to dominate the T-ALL 

population at relapse.   

 

References 

 1. Acute lymphoblastic leukaemia (ALL) incidence statistics | 

Cancer Research UK [Internet]. [cited 2020 Mar 16]. Available from: 

https://www.cancerresearchuk.org/health-professional/cancer-

statistics/statistics-by-cancer-type/leukaemia-

all/incidence?_ga=2.138922035.1884636715.1584377747-

1833693179.1584377747#heading-Four 

2. Acute lymphoblastic leukaemia (ALL) mortality statistics | Cancer 

Research UK [Internet]. [cited 2020 Mar 16]. Available from: 

https://www.cancerresearchuk.org/health-professional/cancer-

statistics/statistics-by-cancer-type/leukaemia-all/mortality#heading-

Two 

3. Bhojwani D, Pei D, Sandlund JT, Jeha S, Ribeiro RC, Rubnitz JE, 

et al. ETV6-RUNX1-positive childhood acute lymphoblastic 

leukemia: Improved outcome with contemporary therapy. Leukemia. 

Nature Publishing Group; 2012;26:265–270.  

4. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LAA, Miller CB, et 

al. Deletion of IKZF1 and Prognosis in Acute Lymphoblastic 

Leukemia. 2009;  

5. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, 

et al. The genetic basis of early T-cell precursor acute lymphoblastic 

leukaemia. Nature. Nature Research; 2012;481:157–63.  

6. Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, et al. 

Genetic Alterations Activating Kinase and Cytokine Receptor 



 

141 

Signaling in High-Risk Acute Lymphoblastic Leukemia. Cancer Cell. 

2012;22:153–166.  

7. Lilljebjörn H, Rissler M, Lassen C, Heldrup J, Behrendtz M, 

Mitelman F, et al. Whole-exome sequencing of pediatric acute 

lymphoblastic leukemia. Leukemia. 2012;26:1602–7.  

8. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et 

al. The genomic landscape of hypodiploid acute lymphoblastic 

leukemia. Nat Genet. Nature Publishing Group; 2013;45:242–52.  

9. Shah S, Schrader KA, Waanders E, Timms AE, Vijai J, Miething 

C, et al. A recurrent germline PAX5 mutation confers susceptibility 

to pre-B cell acute lymphoblastic leukemia. Nat Genet. Nature 

Publishing Group; 2013;45:1226–1231.  

10. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang Y-L, Pei D, 

et al. Targetable kinase-activating lesions in Ph-like acute 

lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15.  

11. Lindqvist CM, Nordlund J, Ekman D, Johansson A, Moghadam 

BT, Raine A, et al. The mutational landscape in pediatric acute 

lymphoblastic leukemia deciphered by whole genome sequencing. 

Hum Mutat. 2015;36:118–128.  

12. Zhang J, Mccastlain K, Yoshihara H, Xu B, Chang Y, Churchman 

ML, et al. Deregulation of DUX4 and ERG in acute lymphoblastic 

leukemia. Nat Genet. 2016;48.  

13. Ma X, Liu Y, Liu Y, Alexandrov LB, Edmonson MN, Gawad C, et 

al. Pan-cancer genome and transcriptome analyses of 1,699 

paediatric leukaemias and solid tumours. Nature [Internet]. Nature 

Publishing Group; 2018; Available from: 

http://www.nature.com/doifinder/10.1038/nature25795 

14. Gu Z, Churchman ML, Roberts KG, Moore I, Zhou X, Nakitandwe 

J, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic 

leukemia. Nat Genet. 2019;51:296–307.  



 

142 

15. Mullighan CG, Downing JR. Global Genomic Characterization of 

Acute Lymphoblastic. Semin Hematol. 2009;46:3–15.  

16. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic 

leukaemia. The Lancet. Elsevier Ltd; 2013;381:1943–1955.  

17. Hunger SP, Mullighan CG. Redefining ALL classification : toward 

detecting high-risk ALL and implementing precision medicine. Blood. 

2015;125:3977–3988.  

18. Pui CH, Pei D, Coustan-Smith E, Jeha S, Cheng C, Bowman 

WP, et al. Clinical utility of sequential minimal residual disease 

measurements in the context of risk-based therapy in childhood 

acute lymphoblastic leukaemia: A prospective study. Lancet Oncol. 

2015;16:465–474.  

19. Belver L, Ferrando A. The genetics and mechanisms of T cell 

acute lymphoblastic leukaemia. Nat Rev Cancer. Nature Publishing 

Group; 2016;16:494–507.  

20. Inaba H, Azzato EM, Mullighan CG. Integration of next-

generation sequencing to treat acute lymphoblastic leukemia with 

targetable lesions: The St. Jude Children’s Research Hospital 

approach. Front Pediatr. 2017;  

21. Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic 

leukemia. J Clin Oncol. 2017;35:975–983.  

22. Genescà E, Morgades M, Montesinos P, Barba P, Gil C, Guàrdia 

R, et al. Unique clinico-biological, genetic and prognostic features of 

adult early T cell precursor acute lymphoblastic leukemia. 

Haematologica. 2019;haematol.2019.225078.  

23. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA, 

et al. Genomic Analysis of the Clonal Origins of Relapsed Acute 

Lymphoblastic Leukemia. Science. 2008;322:1377–1380.  

24. Yang J, Bhojwani D, Yang W. Genome-wide copy number 

profiling reveals molecular evolution from diagnosis to relapse in 



 

143 

childhood acute lymphoblastic leukemia. \ldots. 2008;112:4178–

4183.  

25. Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, 

Phillips LA, et al. CREBBP mutations in relapsed acute 

lymphoblastic leukaemia. Nature. NIH Public Access; 

2011;471:235–9.  

26. Meyer JA, Wang J, Hogan LE, Yang JJ, Dandekar S, Patel JP, 

et al. Relapse-specific mutations in NT5C2 in childhood acute 

lymphoblastic leukemia. Nat Genet. Nature Publishing Group; 

2013;45:290–294.  

27. Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello 

V, Allegretta M, et al. Activating mutations in the NT5C2 nucleotidase 

gene drive chemotherapy resistance in relapsed ALL. Nat Med. 

Nature Publishing Group; 2013;19:368–71.  

28. Kunz JB, Rausch T, Bandapalli OR, Eilers J, Pechanska P, 

Schuessele S, et al. Pediatric T-cell lymphoblastic leukemia evolves 

into relapse by clonal selection, acquisition of mutations and 

promoter hypomethylation. Haematologica. 2015;100:1442–1450.  

29. Ma X, Edmonson M, Yergeau D, Muzny DM, Hampton OA, 

Rusch M, et al. Rise and fall of subclones from diagnosis to relapse 

in pediatric B-acute lymphoblastic leukaemia. Nat Commun. Nature 

Publishing Group; 2015;6:1–12.  

30. Oshima K, Khiabanian H, da Silva-Almeida AC, Tzoneva G, 

Abate F, Ambesi-Impiombato A, et al. Mutational landscape, clonal 

evolution patterns, and role of RAS mutations in relapsed acute 

lymphoblastic leukemia. Proc Natl Acad Sci U S A. National 

Academy of Sciences; 2016;113:11306–11311.  

31. M., Dobson S, García-Prat L, Vanner RJ, Wintersinger J, 

Waanders E, Gu Z, et al. Relapse fated latent diagnosis subclones 



 

144 

in acute B lineage leukaemia are drug tolerant and possess distinct 

metabolic programs. Cancer Discov. 2020;canres.0472.2019.  

32. Van Vlierberghe P, Palomero T, Khiabanian H, Van der Meulen 

J, Castillo M, Van Roy N, et al. PHF6 mutations in T-cell acute 

lymphoblastic leukemia. Nat Genet. Nature Publishing Group; 

2010;42:338–342.  

33. Neumann M, Heesch S, Schlee C, Schwartz S, Gökbuget N, 

Hoelzer D, et al. Whole-exome sequencing in adult ETP-ALL reveals 

a high rate of DNMT3A mutations. Blood. 2013;121:4749–4752.  

34. De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi 

T, et al. Exome sequencing identifies mutation in CNOT3 and 

ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic 

leukemia. Nat Genet. Nature Publishing Group; 2013;45:186–90.  

35. Neumann M, Vosberg S, Schlee C, Heesch S, Schwartz S, 

Gökbuget N, et al. Mutational spectrum of adult T-ALL. Oncotarget. 

2015;6:2754–2766.  

36. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, 

et al. The genomic landscape of pediatric and young adult T-lineage 

acute lymphoblastic leukemia. Nat Genet. 2017;49:1211–1218.  

37. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton 

J, et al. Germline Mutations in Predisposition Genes in Pediatric 

Cancer. N Engl J Med. 2015;373:2336–2346.  

38. Paulsson K, Lilljebjörn H, Biloglav A, Olsson L, Rissler M, Castor 

A, et al. The genomic landscape of high hyperdiploid childhood acute 

lymphoblastic leukemia. Nat Genet. Nature Publishing Group; 

2015;47:672–677.  

39. Spinella J-F, Cassart P, Richer C, Saillour V, Ouimet M, Langlois 

S, et al. Genomic characterization of pediatric T-cell acute 

lymphoblastic leukemia reveals novel recurrent driver mutations. 

Oncotarget. 2016;7:65485–65503.  



 

145 

40. Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio 

J, et al. RAG-mediated recombination is the predominant driver of 

oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic 

leukemia. Nat Genet. Nature Publishing Group; 2014;46:116–25.  

41. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati 

S, Biankin AV, et al. Signatures of mutational processes in human 

cancer. Nature. Nature Research; 2013;500:415–421.  

42. Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz 

K, Rudneva VA, et al. The landscape of genomic alterations across 

childhood cancers. Nature. 2018;555:321–327.  

43. Liu Y-F, Wang B-Y, Zhang W-N, Huang J-Y, Li B-S, Zhang M, et 

al. Genomic Profiling of Adult and Pediatric B-cell Acute 

Lymphoblastic Leukemia. EBioMedicine. 2016;8:173–183.  

44. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, 

Wu Y, et al. The repertoire of mutational signatures in human cancer. 

Nature. 2020;578:94–101.  

45. Pich O, Muiños F, Lolkema MP, Steeghs N, Gonzalez-Perez A, 

Lopez-Bigas N. The mutational footprints of cancer therapies. Nat 

Genet. 2019;51:1732–40.  

46. Gonzalez-Perez A, Sabarinathan R, Lopez-Bigas N. Local 

Determinants of the Mutational Landscape of the Human Genome. 

Cell. 2019;177:101–14.  

47. Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, 

Nik-Zainal S, et al. Clock-like mutational processes in human 

somatic cells. Nat Genet. Nature Publishing Group; 2015;47:1402–

1407.  

48. Osorio FG, Rosendahl Huber A, Oka R, Verheul M, Patel SH, 

Hasaart K, et al. Somatic Mutations Reveal Lineage Relationships 

and Age-Related Mutagenesis in Human Hematopoiesis. Cell Rep. 

ElsevierCompany.; 2018;25:2308–2316.e4.  



 

146 

49. Maura F, Degasperi A, Nadeu F, Leongamornlert D, Davies H, 

Moore L, et al. A practical guide for mutational signature analysis in 

hematological malignancies. Nat Commun [Internet]. Springer US; 

2019;10. Available from: http://dx.doi.org/10.1038/s41467-019-

11037-8 

50. Mészáros B, Kumar M, Gibson TJ, Uyar B, Dosztányi Z. Degrons 

in cancer. Sci Signal. 2017;10:eaak9982.  

51. Richter-Pechańska P, Kunz JB, Hof J, Zimmermann M, Rausch 

T, Bandapalli OR, et al. Identification of a genetically defined ultra-

high-risk group in relapsed pediatric T-lymphoblastic leukemia. 

Blood Cancer J. 2017;7.  

52. Shan H, Li X, Xiao X, Dai Y, Huang J, Song J, et al. USP7 

deubiquitinates and stabilizes NOTCH1 in T-cell acute lymphoblastic 

leukemia. Signal Transduct Target Ther. 2018;3:29.  

53. Q J, Ca M, Km A, Y Z, Bt G-D, Kk W, et al. USP7 Cooperates 

with NOTCH1 to Drive the Oncogenic Transcriptional Program in T-

Cell Leukemia. Clin Cancer Res. 2018;25:222–39.  

54. Saito Y, Koya J, Araki M, Kogure Y, Shingaki S, Tabata M, et al. 

Landscape and function of multiple mutations within individual 

oncogenes. Nature [Internet]. 2020 [cited 2020 May 26]; Available 

from: http://www.nature.com/articles/s41586-020-2175-2 

55. Mansour MR, Duke V, Foroni L, Patel B, Allen CG, Ancliff PJ, et 

al. NOTCH1 mutations are secondary events in some patients with 

T-cell acute lymphoblastic leukemia. Clin Cancer Res. 

2007;13:6964–6969.  

56. Xu F, Wu LY, Chang CK, He Q, Zhang Z, Liu L, et al. Whole-

exome and targeted sequencing identify ROBO1 and ROBO2 

mutations as progression-related drivers in myelodysplastic 

syndromes. Nat Commun. 2015;6.  



 

147 

57. Waanders E, Gu Z, Dobson SM, Antić Ž, Crawford JC, Ma X, et 

al. Mutational Landscape and Patterns of Clonal Evolution in 

Relapsed Pediatric Acute Lymphoblastic Leukemia. Blood Cancer 

Discov. 2020;  

58. Xiang J, Wang G, Xia T, Chen Z. The depletion of PHF6 

decreases the drug sensitivity of T-cell acute lymphoblastic leukemia 

to prednisolone. Biomed Pharmacother. Elsevier; 2019;109:2210–

2217.  

59. Kosztyu P, Bukvova R, Dolezel P, Mlejnek P. Resistance to 

daunorubicin, imatinib, or nilotinib depends on expression levels of 

ABCB1 and ABCG2 in human leukemia cells. Chem Biol Interact. 

Elsevier Ireland Ltd; 2014;219:203–210.  

60. Ankathil R. ABCB1 genetic variants in leukemias: current insights 

into treatment outcomes. Pharmacogenomics Pers Med. Dove 

Press; 2017;Volume 10:169–181.  

61. Li B, Brady SW, Ma X, Shen S, Zhang Y, Li Y, et al. Therapy-

induced mutations drive the genomic landscape of relapsed acute 

lymphoblastic leukemia. Blood. 2020;135:41–55.  

62. Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S, 

Rosebrock D, et al. The evolutionary history of 2,658 cancers. 

Nature. Nature Publishing Group; 2020;578:122–8.  

63. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, 

Frabetti F, et al. An estimation of the number of cells in the human 

body. Ann Hum Biol. 2013;40:463–71.  

64. Garcia M, Juhos S, Larsson M, Olason PI, Martin M, Eisfeldt J, 

et al. Sarek: A portable workflow for whole-genome sequencing 

analysis of germline and somatic variants. F1000Research. 

2020;9:63.  



 

148 

65. Shen R, Seshan VE. FACETS: Allele-specific copy number and 

clonal heterogeneity analysis tool for high-throughput DNA 

sequencing. Nucleic Acids Res. 2016;44.  

66. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. 

DELLY: Structural variant discovery by integrated paired-end and 

split-read analysis. Bioinformatics. 2012;28:333–339.  

67. Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. 

deconstructSigs: Delineating mutational processes in single tumors 

distinguishes DNA repair deficiencies and patterns of carcinoma 

evolution. Genome Biol. Genome Biology; 2016;17:1–11.  

68. COSMIC. https://cancer.sanger.ac.uk/cosmic/signatures/SBS/.  

69. Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-

Salazar I, Arnedo-Pac C, et al. A compendium of mutational cancer 

driver genes. Nat Rev Cancer. Nature Publishing Group; 2020;1–

18.  

70. Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes 

SA. The COSMIC Cancer Gene Census: describing genetic 

dysfunction across all human cancers. Nat Rev Cancer. 

2018;18:696.  

71. Watson CJ, Papula AL, Poon GYP, Wong WH, Young AL, Druley 

TE, et al. The evolutionary dynamics and fitness landscape of clonal 

hematopoiesis. Science. 2020;367:1449–1454.  

72. Sentís I , Gonzalez S , Genescà E,  Garcia-Hernández V , 

Muiños F , Gonzalez C, Lopez-Arribillaga   E, Gonzalez J, 

Fernandez-Ibarrondo L, Mularoni L , Espinosa L , Bellosillo B  Ribera 

JM , Bigas A , Gonzalez-Perez A , Lopez-Bigas N. The evolution of 

adult T-cell acute lymphoblastic leukemia. European Genome-

phenome Archive. https://ega-archive.org/search-

results.php?query=EGAS00001004750  EGAS00001004750 



 

149 

73. Sentís I , Gonzalez S , Genescà E,  Garcia-Hernández V , 

Muiños F , Gonzalez C, Lopez-Arribillaga   E, Gonzalez J, 

Fernandez-Ibarrondo L, Mularoni L , Espinosa L , Bellosillo B  Ribera 

JM , Bigas A , Gonzalez-Perez A , Lopez-Bigas N. Code of the 

analysis performed in the T-ALL relapse evolution in adult patients 

project.https://github.com/bbglab/evolution_TALL_adults /DOI: 

10.5281/zenodo.4120326 (2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

150 

Figures  

 
Fig. 1. Comparison of primary adult and pediatric ALL cases.  
a) Clonal mutation burden (per megabase) of primary T-ALLs of nine cohorts. Red 
line shows the median mutation burden of the cohorts. Tumors are represented as 
dots, sorted along the x-axis according to their mutation burden.  
b) Mutational profiles of primary ALLs in the nine cohorts in a Uniform manifold 
approximation and projection (UMAP) dimensionality reduction graph (see 
Methods). The UMAP was run on a matrix of the counts of all possible tri-nucleotide 
changes (96) across ALL patients of all cohorts. Each dot represents a patient, 
colored according to their cohort (top panel) or their age (bottom panel). 
c) Mutational processes active across primary ALL cohorts, represented by their 
mean (and standard deviation) contribution of the mutation burden of each cohort. 
SBS1, SBS5, SBS2, SBS9, SBS37, SBS13, SBS36, respectively, single nucleotide 
substitutions signatures 1,5,2,9,37,13,36. 
d) Rate of mutations of selected frequently mutated cancer genes across primary 
T-ALL cohorts. Cohorts are clustered according to the similarity in their profile of 
cancer genes mutation frequency (see Methods). The total number of patients in 
each cohort with mutations of each cancer gene are represented by bars at the right 
side of the graph. Here are represented genes with mutations in at least two patients 
(for the full list see Additional file 2: Fig. S2 and Additional file 1: Tables S3 and S4) 
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Fig. 2. Comparison of different age groups in T-cell acute lymphoblastic 
leukemia. 
a) Schematic representation of the clinical course of all patients in the in-house T-
ALL cohort. Colored boxes (following the legend) at the bottom depict common 
stages in this clinical course. The broken lines represent specific trajectories 
followed by groups of patients, with the numbers in each trajectory.   
b) Summary of driver mutations (single nucleotide variants, InDels, copy number 
variants and translocations) identified in the primary and/or relapse T-ALLs of adult 
and pediatric patients. The original cohorts and ages of the samples included in the 
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table are indicated above it. The sample where the mutation is identified (primary, 
relapse, or both) is indicated by color semicircles and circumference at each cell of 
the table. The total number of patients affected by mutations of each gene are 
indicated as bars at the right-side of the graph. The table contains the genes that 
have alterations in at least two patients of the adult cohort (for full table see 
Additional file 2: Fig. S4 and Additional file 1: Table S5) 
c) Protein affecting mutations identified in NOTCH1 gene within adult (above graph) 
and pediatric (below graph) T-ALLs. Multiple mutations in one patient are 
represented as dashed colored lines that connect the mutated positions. 
d) Clonality change in multi-mutated NOTCH1 pathway genes. Blue and orange 
squares depict, respectively, primary and relapse T-ALL samples of each patient. 
Lines connecting them represent shared (connecting lines) or private (lines ending 
in a cross) NOTCH1 or FBXW7 mutations. In seven out of 19 patients only one 
mutation in this pathway is identified, while in the other 9 multiple mutations are 
detected. We did not detect any mutation affecting this pathway in only 3 of the 19 
patients. 
 

 

 

Fig. 3. Shared and private mutations in major primary and relapse T-ALL 
clones.  
a) Contribution of different mutational processes to the mutation burden of each T-
ALL case in the adult cohort. The contribution to primary-private, relapse-private 
and shared clonal mutations are indicated separately in absolute (top panel) and 
relative (bottom panel) terms.  
b) Molecular evolution of adult T-ALL cases represented in a tree-form showing the 
number of shared clonal mutations (green trunk), clonal private-primary (blue 
branch) and clonal private-relapse (orange branch) mutations. Only signature 5 
mutations are considered to build the tree (for further explanation see Additional file 
2: Fig. S7). The relative length of the trunk and branches is proportional to the 
number of mutations in the respective group. Patients are sorted by decreasing 
order of age. 
 

 



 

153 

 
Fig. 4. Time of divergence between major primary and relapse T-ALL clones.  
a) Relationship between the mutation rate of ALL samples and the age of patients. 
Red line shows the regression line estimated from the data points which are the 
number of mutations attributed to signature 5 (red dots are primary sample and red 
crosses represent the relapse) of the in-house adult T-ALL cohort. In pink the 
regression line estimate for the pediatric primary samples (here represented as pink 
dots). The grey cross and triangle correspond to the signature 5 somatic mutations 
from healthy tissue (MPP and HSC cells) of Osorio et al., 2018 [48]. Pearson 
correlation coefficient (r) is indicated above each of the previously mentioned 
regression lines.  
b) Schematic representation of the different mutation rate increment models to 
decipher the divergence time of the leukemic (primary and relapse) cells.  
c) Divergence time of the primary and relapse clone represented as days before 
diagnosis. The dots are the estimates from the models used and the size of the dots 
represents their likelihood (see Additional file 2: Fig. S8). The dashed line is the 
weighted mean of the likely model estimates (see Additional file 1: Table S7). 
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Fig. 5. Evolution of relapse lymphoblast population.  
a) Estimated size (number of cells) of the relapse population at the time of diagnosis 
according to the computed doubling time. Error bars represent the estimates of cell 
populations from the first and third quartile of the doubling time estimates which are 
10.1 and 11.36 respectively (see Additional file 2: Fig. S9). Horizontal dotted lines 
represent sizes corresponding to one cell and 108 cells (0.01% of the population: 
the threshold of clinical relapse). Patients with asterisk are the ones with estimates 
above the pathologist threshold of 0.01. The resolution limit of the dPCR is also 
represented (~1:10000). 
b) Schematic representation of the two considered scenarios of relapse of T-ALL 
patients after treatment. Mutations in T-ALL cells are represented as different 
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geometric figures. In the first scenario (resistant), one mutation in the primary T-ALL 
below the limit of detection of the sequencing and the digital PCR (red star) provides 
resistance to the treatment. All cells with this mutation survive the bottleneck posed 
by the treatment, and thus this mutation and all other common to the resistant cells 
(hitchhikers) are fixated in the relapse population at CCF 1. In the second scenario 
(non-resistant), a group of cells with an ensemble of mutations survive the 
treatment.  
c) Distribution (frequency) of CCF values of mutations in primary T-ALLs in the in-
house cohort that are identified in their relapse counterparts as fixed (>0.9 relapse 
CCF). Mutations are grouped by CCF bins. Each line represents one patient, for 
example, the dash brown line corresponds to PAT8, discussed in the text.  
d) Distribution (frequency) of CCF values of mutations in synthetic primary T-ALL 
populations in evolutionary simulations following the non-resistant scenario. The 
dots represent mutations binned at different CCF values with the frequency that 
each bin represents with respect to all mutations in each synthetic relapse 
population. The average results of six simulation settings with different values of 
fitness of driver mutations and number of cell generations are presented. 
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Table 1. Summary of ALL cohorts analyzed 

ALL  subtype 
cohort name 

Subtype cohort information Reference^ Sequencing Type 
Num. 

patients 

DUX4-ERG 

Rearrangement and 
overexpression of DUX4 and 
transcriptional deregulation 
or deletion of the 
transcription factor gene 
ERG 

St. Jude WGS B-ALL 30 

Infant MLL-R 

Infant patients with a fusion 
of the N-terminus of the MLL 
gene with the C-terminus of 
a partner gene 

St. Jude WGS B-ALL 21 

Ph positive 

Patients with the 
“Philadelphia” chromosome 
present a translocation of 
chromosomes 9 and 22. This 
translocation creates the 
BCR-ABL fusion 

St. Jude WGS B-ALL 11 

Ph-like 

Cell gene expression profile 
of the lymphoblasts of Ph-
like ALL is similar to that of 
Ph positive ALL; however, 
they do not present BCR-
ABL1 rearrangement 

St. Jude WGS B-ALL 18 

Hyperdiploid 
Hyperdiploid patients are 
characterized by multiple 
chromosomal gains 

St. Jude WGS B-ALL 40 

Hypodiploid 
Hypodiploid patients are 
characterized by 
chromosomal losses 

St. Jude WGS B-ALL 22 

iAMP21 

Patients with 
intrachromosomal 
amplification of chromosome 
21 

St. Jude WGS B-ALL 12 

T-ALL 
Zhang 

Patients with T-cell ALL from 
Zhang et., 2012 Nat Gen 

St. Jude WGS T-ALL 13 

T-ALL 
Oshima 

Patients with T-cell ALL from 
Oshima et al., 2016 PNAS 

Columbia 
University 

WXS T-ALL 
31* 

 

B-ALL 
Oshima 

Patients with B-cell ALL from 
Oshima et al., 2016 PNAS 
(B-cell lineage subtype 
unspecified) 

Columbia 
University 

WXS B-ALL 24* 

T-ALL 
Li# 

Patients with T-cell ALL from 
Li et al., 2020 Blood 

St. Jude WGS T-ALL 16* 

T-ALL 
in-house 

In-house cohort In-house WGS T-ALL 19* 

*Cohorts with primary and relapsed paired samples 
#Mutations called by the authors of the original analysis; in all other cohorts a 
uniform mutation calling pipeline was applied 
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^References: St. Jude cohorts were defined according to their ALL subtype in 
different publications (see Methods) except for the T-ALL pediatric cohort from Li et 
al., 2020 [61].  
WGS: Whole-genome sequencing 
WXS: Whole-exome sequencing 

 

Methods 

In-house cohort selection and samples collection 

Samples from adults (>= 18 years old) with T-cell acute 

lymphoblastic leukemia were collected during 15 years under 

therapy protocols (LAL-07OLD,  ALL-HR-03, LAL-AR-2011) as part 

of the PETHEMA (Programa Español de Tratamientos en 

Hematología) trials (with the exception of patient 16). Patients have 

signed the corresponding consents of the protocols. Cohort clinical 

data is specified in Additional file 2: Fig. S3 and Additional file 1: 

Table S1. There are three collected samples per patient: one taken 

at diagnosis (primary), a second one when the percentage of 

lymphoblasts is reduced during treatment (remission) and a final 

sample when the leukemia reappears after some months (relapse).  

 

Whole genome sequencing 

The short-insert paired-end libraries for the whole genome 

sequencing were prepared with KAPA HyperPrep kit (Roche Kapa 

Biosystems) with some modifications. In short, in function of 

available material 0.1 to 1.0 microgram of genomic DNA was 

sheared on a Covaris™ LE220-Plus (Covaris). The fragmented DNA 

was further size-selected for the fragment size of 220-550bp with 

Agencourt AMPure XP beads (Agencourt, Beckman Coulter). The 

size selected genomic DNA fragments were end-repaired, 

adenylated and ligated to Illumina platform compatible adaptors with 

Unique Dual matched indexes or Unique Dual indexes with unique 

molecular identifiers (Integrated DNA Technologies).  
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The libraries were quality controlled on an Agilent 2100 Bioanalyzer 

with the DNA 7500 assay for size and the concentration was 

estimated using quantitative PCR with the KAPA Library 

Quantification Kit Illumina® Platforms (Roche Kapa Biosystems). To 

obtain sufficient amount of libraries for sequencing it was necessary 

for the low input libraries (0,1 - 0,2 ug) to amplify the ligation product 

with 5 PCR cycles using 2x KAPA-HiFi HS Ready Mix and 10X 

KAPA primer mix (Roche Kapa Biosystems). The libraries were 

sequenced on HiSeq 4000 or NovaSeq 6000 (Illumina) with a paired-

end read length of 2x151bp. Image analysis, base calling and quality 

scoring of the run were processed using the manufacturer’s software 

Real Time Analysis (HiSeq 4000 RTA 2.7.7 or NovaSeq 6000 RTA 

3.3.3). 

 

Analysis of ALL cohorts in the public domain 

We downloaded public whole-genome and whole-exome 

sequencing data from EGA and dbGap. We included samples from 

St. Jude Children’s Research Hospital associated with 

EGAD00001001052 and EGAD00001001432 EGA accession 

codes. We have used the samples from which we could recover 

clinical information given with the associated publications 

[5,8,10,37,38]. We downloaded the DNA sequencing data of Oshima 

et al., 2016 [30] from dbGap under the accession code 

phs001072.v1.p1. The information of the cohorts with the clinical 

information that we could gather for each sample is summarized in 

Additional file 1: Table S2. 

 

For some of the samples we could not find information regarding the 

sex so in those cases we inferred it from the normal sample BAM of 
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each patient. For that, we applied the following reasoning: (1) we 

determined that the patient is a female if the average coverage of 

chromosome X is greater than the minimum of average coverages 

of the autosomal chromosomes and (2) we also assumed that the 

patient is a female if the mean coverage of chromosome Y is 10 

times smaller than the average coverage of the autosomal 

chromosomes of the sample. 

 

All the samples in Additional file 1: Table S2 have been analyzed 

with the same pipeline (for detailed information see the following 

section: Alignment and variant calling). However, in order to 

compare the T-ALL Adult cohort with other T-ALL cohorts with pre- 

and post-treatment samples we added the mutations reported in the 

supplementary materials in Li et al., 2020 [61] only in Fig. 2.a and 

2.b. 

 

Alignment and variant calling 

Alignment, SNV, small InDels: We performed the alignment and 

calling of mutations (SNVs and small InDels) using Sarek pipeline 

v2.2.1 [64]. This workflow performs the alignment from raw FASTQ 

applying the steps referred to as “best practices” according to GATK. 

We converted the downloaded BAMs from public repositories to 

FASTQ with biobambam v2.0.72 and used them as input for the 

pipeline. We used the Strelka caller implemented in Sarek to 

generate mutation calls. Only the T-ALL adult cohort was aligned 

with GEM-mapper v3.6 by the CNAG but the calls were done with 

Strelka. The mutation calls were performed using primary and 

relapse as tumor samples and the remission as “normal” sample. 

Variants have been annotated with VEP v.92 run locally with the 
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canonical flag and using gnomAD r2.0.1 to get population 

frequencies of the potential polymorphisms. 

  

CNV: We have used FACETS v0.5.6 [65] to call copy number 

changes in WGS and WES samples. Following FACETS 

documentation, we first created its input with snp-pileup which 

imputed common SNPs and made the reference and alternative read 

counts at nucleotide resolution. We have run snp-pileup with the 

recommended parameters except for the --min-read-counts that was 

set to 10,0. We run FACETS for WES as mentioned in the 

documentation but setting preProcSample function parameters to 

cval = 15, ndepth = 5, snp.nbhd = 500 and procSample function 

parameters to cval = 80, min.nhet = 20. Similarly, we run FACETS 

for the WGS data as preProcSample(snp.nbhd = 5000, ndepth = 5, 

cval = 75) and procSample(cval = 800, min.nhet = 25).  

SV: We ran Delly v0.7.9 [66] to detect duplications, inversions and 

translocations. First we ran the call function and then the filter 

function of Delly for each one of the alterations mentioned. The map-

quality parameter of the call function was set to 20 and we also 

passed a file provided in the github of Delly with regions to exclude 

through the --exclude argument. The filter function was run with the 

following parameters: --filter somatic --minsize 0 (expect for 

duplications which was set to 100) --qual-tra 0.75  --altaf 0.1. 

 

Filtering steps 

SNVs and InDels: From the VCF output from Strelka we filtered the 

calls labeled as PASS and DP from the FILTER column. For the 

patients with trio samples we recovered the shared mutations 

between primary and relapse that are not PASS or DP but are 

present in the original VCF. This was not possible for patients with 
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paired samples (primary and remission). In addition, we checked for 

miss-called DNVs (dinucleotide variants) by inspecting consecutive 

SNV positions with Samtools v1.4.1 and changed the reference and 

alternative if needed. Once the variants were annotated with VEP, 

we took the variants in the canonical transcript. In case of more than 

one consequence type predicted for the same variant we took the 

most damaging (more impact) one according to VEP. We also 

filtered out mutations with population frequency greater than 0.01 

according to the gnomADg_AF column added. Finally, we discarded 

low coverage variants as the ones with a total depth of 5 reads. 

Further details regarding filters applied to called SNVs are provided 

in Additional file 3. 

 

CNV: We discarded the variants that were called with low reliability. 

Those are the segments reported with NAs in the cellular fraction 

and minor allele copy number columns of FACETS output which, to 

our knowledge, indicate that the region does not have sufficient 

numbers of heterozygous SNPs to guide good estimates (Additional 

file 2: Fig. S5).  

 

SV: We converted the VCFs into bedpe format with bcftobedpe 

function from svtools v0.4.0 and kept the variants with the flag PASS 

in the FILTER column. We manually check recurrent SV that have 

not been described before in the literature by performing BLAT of the 

breakend points (BND) and their flanking regions in the UCSC and 

discarded those that were Alu regions or mappable to many parts of 

the genome. 

 

Purity and clonality estimations 



 

162 

We inferred the purity of the samples from the variant allele 

frequency (VAF) distribution of the mutations as follows. Since the 

overall ploidy of the samples was mostly around 2 (diploid) we 

computed density plots of the VAF multiplied by the CNV of each 

mutation as a rough proxy of the CCF and determined the purity as 

the maximum point. We recomputed the CCF with the inferred purity 

and fitted a beta binomial distribution (betabinom function from scipy 

v1.4.1 python package). For each mutation, we derived a probability 

from it and categorized them as clonal or subclonal according to a 

threshold of 0.01 (above or below it respectively). Exceptionally for 

PAT16, upon inspection of the CCF distributions in primary and 

relapse samples, we detected a more complex clonal structure, and 

thus used a threshold of 0.05 for a clearer categorization of the 

clonality of the mutations. 

 

Signatures analysis 

Several runs of deconstructSigs v.1.8.0 [67] were carried out 

depending on the context of the analysis. Firsty, following the 

guidelines proposed by Maura et al., 2019 [49], we have included all 

hematological meaningful described signatures for the fitting of 

primary samples (see Additional file 2: Fig. S1). From those, we 

selected the signatures that we believed had a substantial activity in 

the primary leukemias in at least one patient of the cohort analyzed 

and re-run deconstructSigs with them (see Fig 1.c). Secondly, we re-

fitted the T-ALL adult samples with only those signatures that 

presented activity (SBS1, SBS5, SBS18) to better estimate their 

contribution in Fig.3.a. Lastly, we have fitted known-treatment 

signatures for the primary and relapse samples to see whether there 

is any contribution of those in the mutational profile of the relapse. In 

this case, we have included Signature 32 (SBS32) which the 
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proposed etiology in COSMIC [68] suggests prior treatment with 

azathioprine. The adult T-ALL patients have not been treated directly 

with this compound but it is known that azathioprine is metabolized 

to 6-mercaptopurine which is used in the maintenance phase of 

received therapy (see Additional file 2: Fig. S3 and Additional file 2: 

Fig S6). Apart from SBS32, we have also included two treatment 

signatures recently extracted in Li et al., 2020 [61] as SBSA_new 

and SBSB_new. They assigned the usage of thiopurines to 

SBSB_new signature so that is why we have decided to include it. 

There is not much said about SBSA_new but since pediatric and 

adult ALL patients receive similar treatment we decided to give it a 

try in the fitting analisis. In all cases we set the signature cutoff 

parameter of deconstructSigs to 0.1. 

 

Clustering of driver genes of ALL subtypes  

The distances computed to build the dendrogram on Fig. 1d were 

based on Jensen-Shannon divergence measures between the 

distributions of the number of patients per mutated gene of each 

cohort. We only took into account genes with mutations in at least 

three patients. 

 

Dimensionality reduction 

We used a Uniform Manifold Approximation and Projection (UMAP) 

implemented in the python package umap-learn v0.3.10 to simplify 

the mutational profiles (96 dimensions that represent each 

trinucleotide channel) into two dimensions with the size of the local 

neighborhood  (n_neighbors) to 20 and minimal distance (min_dist) 

of 0.2.  

 

Identification of ALL driver variants 
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Driver Gene Discovery: We have run the IntOGen pipeline [69] for 

SNVs and small InDels (https://www.intogen.org/search) locally for 

each of the defined cohorts (see above). For each one of the outputs 

we have proceeded as follows. First, we have discarded all genes in 

Tier 3 and 4 that are not in the Cancer Gene Census (CGC) [70]. 

Second, we have discarded all genes in all tiers that have been 

defined as potential artifacts (see this list of genes in 

https://bitbucket.org/intogen/intogen-

plus/src/master/extra/data/artifacts.json). Third, we have manually 

inspected the remaining genes and defined a list of potential false 

positives (FP). From this list of suspicious genes, we have discarded 

those not present in the CancerMine. With the rest of the FP 

candidates that were present in the CancerMine, we have decided 

their level of credibility as driver genes of leukemia according to the 

publications reported. Apart from that, we have also manually 

searched in PubMed for any other missed relation by CancerMine of 

the gene and hematopoietic neoplasms (see Additional file 1: Table 

S3) 

 

Literature lists of cancer genes of ALL: We have defined 3 lists of 

known driver genes in ALL: 

- Genes with SNVs/InDels mutations  

- Genes affected by CNV  

- Genes affected by SV that are know to drive ALL 

The genes and their sources to build these lists are listed in 

Additional file 1: Tables S4.a,b,c respectively.  

 

Annotations of alterations: For SNVs and InDels we have defined as 

potential driver all the mutations with a predicted  protein affecting 

consequence type (in the canonical transcript) according to VEP 
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(transcript_ablation, splice_acceptor_variant, splice_donor_variant, 

stop_gained, frameshift_variant, stop_lost, start_lost, 

transcript_amplification, inframe_insertion, inframe_deletion, 

missense_variant, protein_altering_variant, splice_region_variant, 

incomplete_terminal_codon_variant, start_retained_variant, 

stop_retained_variant) in a cancer gene from the list defined as the 

combination of the results from the Driver Gene Discovery and the 

curated literature list of SNVs and InDels. Results from that are 

summarized in Fig. 1d, Additional file 2: Fig. S2 and Additional file 1: 

Table S5. 

 

For CNV and SV we have flagged the alterations we have found as 

“known driver” (contained in the curated literature lists respectively) 

or with “alteration in gene of interest” if it affects any cancer gene 

related to leukemia of all the lists. In the case of CNV affecting genes 

of interest, we consider as candidate drivers those oncogenes that 

are fully amplified and tumor suppressors affected by any deletion. 

Results are reported with the annotated “classic” Giemsa cytobands 

by mapping where the BND genomic coordinates fall within them 

(see Additional file 1: Table S6 a and b.  

 

We have also annotated the genes affected grouping them by some 

meaningful information such as their protein family, biological 

process or pathway (see  Additional file 2: Fig. S2, Additional file 2: 

Fig S4 and Additional file 1: Table S4). We created those groups with 

information from the sources in Additional file 1: Table S4. 

 

Estimations of divergence time 

Considering the differences between the mutational burden of T-ALL 

samples compared with the expected number of mutations of healthy 
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hematopoietic cells seems clear that some acceleration on the 

mutation rate has occurred (Fig. 4a). Additionally, the regression 

between age and signature 5 of healthy cells and T-ALL show close 

slope (12.21 ∓ 1.24 vs 20.61∓ 6.58, see Fig. 4a and Additional file 

2: Fig. S7) but a much higher intercept (22.35 ∓ 45.53 vs 397.4 ∓ 

251.81, see Fig. 4a and Additional file 2: Fig. S7). We hypothesize 

these similarities on slope and differences on intersect can be 

explained by a late stage acceleration during tumorigenesis that 

affects in a similar way the different T-ALL samples. 

 

Based on this hypothesis of tumorigenesis acceleration of signature 

5 we have built 2 different models which represent the upper and 

lower boundary of the estimations: (I) the change of mutation rate is 

a one-time, discontinuous event, shared between primary and 

relapse; (II) the change on the mutation rate grows linearly during all 

lifetime of the tumor. In both scenarios, the mutation rate can only 

increase and both primary and relapse clones are under the same 

mutational process. In terms of divergence time, the constant model 

is the most conservative showing the earliest times of divergence 

between clones, while the linear model is the one generating larger 

divergences times. The rest of the models based on N acceleration 

steps will generate estimates within the previous described. 

 

We established 120 different time-points tn evenly spaced along the 

10-year period immediately preceding diagnosis: we refer to them as 

“acceleration times”, since they are bound to represent the time-

points when the mutation rate first deviates from neutral, clock-like 

behavior. For each acceleration time we first computed a function 

assigning a plausible mutation rate for each time point, consistently 

with either the constant or linear model. To this end, we fitted the 
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mutation curve to go through the average number of mutations of 

primary and relapse N(t*) at the middle time-point t* between these 

two events. More specifically, the following conditions must hold: 

 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡: 𝑁(𝑡∗) = 𝑁(𝑡 ) + 𝜇 ⋅ (𝑡∗ −  𝑡 )  

𝐿𝑖𝑛𝑒𝑎𝑟: 𝑁(𝑡∗) = 𝑁(𝑡 ) ⋅ (1 + 𝑟)
∗

 

where the values of µ and r have to be determined, depending on 

the model used. Now we did 100 stochastic simulations of the 

mutation curve by randomly sampling 0 or 1 mutations from a beta 

binomial distribution with a 1-day granularity, only in cases the 

mutation rate per day exceeds one a smaller granularity has been 

used. Thus, mean parameter µ(t) may change with time (linear 

model) while correlation parameter ρ=0.0002, estimated with the 

dispersion observed on healthy hematopoietic stem cells described 

on Osorio et al. 2018 [48], remains constant. Therefore the number 

of mutations simulated at time t is defined recursively as:  

𝑁(𝑡 ) ∼ 𝑁(𝑡 )  + 𝐵𝑒𝑡𝑎𝐵𝑖𝑛𝑜𝑚(𝜇(𝑡 ), 𝜌, 1) 

where (tm) is either µ (constant model) or log(1+r)·N(tm-1) (linear 

model). As the 100 stochastic curves generated for each hypothesis 

(determined by the acceleration time and mutation rate model) cut 

the time levels at primary and relapse, they cast a distribution of the 

possible number of mutations about the observed that yields a 

likelihood that the hypothesis explains well the observed number of 

mutations at primary and relapse. Thus each combination of 

acceleration time and mutation rate model has an associated prior 

likelihood. We calculated the Bayes posterior distribution using the 

combinations of parameters with a higher success (likelihood) on the 

cohort which is then used to select the most plausible models 

underlying the observation, then provide a plausible set of 

divergence times weighted by the likelihood. In order to avoid the 



 

168 

deviation of the divergence time estimation due to a long tail of low 

likelihood simulations, only the more likely scenarios have been 

selected (10% percentile). 

 

Doubling time and lymphoblast population estimates 

The doubling time of the T-cell lymphoblast population was 

estimated following a similar approach as in Li et al., 2020 [61]. We 

assumed that blast cell growth is consistent with a logistic model, 

i.e., the population fraction represented by the T-lymphoblast 

population as a function of time t fits a logistic function of the form: 

 

𝜎(𝑡, 𝑎)  =  (1 + 𝑒 )  

where a is the parameter of the logistic model and t is assumed to 

be given in standard time units such that the T-lymphoblast 

subpopulation reaches 50% of the total population at time 𝑡 =0. 

 

Assuming the parameter 𝑎 is known, the doubling time is given by 

the following expression: 

𝑇  =𝑙𝑜𝑔 (2) / 𝑎 

Therefore the doubling time estimate resorts to fitting a logistic model 

to our data, i.e., provide an estimate for the parameter 𝑎. 

 

Our approach intends to provide an estimate of 𝑎 that corrects for 

the likely inconsistencies between time annotations provided in the 

patients’ data. We make the general assumption that some error Δti 

has been introduced for each patient 𝑃 when associating a standard 

time to the T-lymphoblast population measurements -- mainly due to 

the difficulty to estimate the initial time for paired data points with a 

low initial T-lymphoblast population fraction. A standard goodness-

of-fit criterion for logistic models is given by the cross-entropy loss: 
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𝐶(𝑦, 𝑦)  =  −
1

𝑛
𝑦 𝑙𝑜𝑔 𝑦 + (1 − 𝑦 ) 𝑙𝑜𝑔 (1 −  𝑦 ) 

where 𝑦 and 𝑦 are the observed (resp. predicted) data samples. 

 

Our approach intends to simultaneously estimate the errors 𝛥𝑡  and 

the parameter a by minimizing the following cross-entropy loss: 

 

 

𝐿(𝑎, 𝛥𝑡 , … , 𝛥𝑡 )  =  −( 𝐶(𝑦 , ;  𝑡 , ;  𝛥𝑡 )  + 𝐶(𝑦 , ;  𝑡 , ;  𝛥𝑡 )) 

where 𝐶(𝑦;  𝑡;  𝛥𝑡) = 𝑦 𝑙𝑜𝑔 𝜎(𝑡 − 𝛥𝑡, 𝑎)  + (1 − 𝑦) 𝑙𝑜𝑔 (1 − 𝜎(𝑡 −

𝛥𝑡, 𝑎)) 

 

where for each patient 𝑃  the values 𝑦 ,  and 𝑦 ,  are the initial (resp. 

final) population fractions and the values 𝑡 ,  and 𝑡 ,  are the initial 

(resp. final) times. 

 

Minimization of the cross-entropy L was implemented in Python with 

the function “minimize” of the scipy.optimize module. For a more 

robust minimization, we ran it several times with different randomly 

generated initial values (see Additional file 2: Fig. S9).  

 

Upon estimation of the doubling time 𝑇 , we proceed to compute the 

number of cells 𝑁  at the time of diagnosis as a function of the time 

𝛥𝑡 elapsed between diagnosis and relapse: 

 

𝑁 = 𝑁 ⋅ 𝑓 ⋅ 2   /  
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where 𝑁  is an estimate of the total number of bone marrow cells in 

adults (~7.5 ⋅ 10  cells according to [61,63]) and f is the frequency 

of lymphoblasts of the biopsy. 

 

Digital PCR analysis of SMARCA4 mutations 

The dPCR analysis was performed on a QuantStudio 3D dPCR 

System using the manufacturer’s procedure and reagents 

(ThermoFisher Scientific). Data analysis and chip quality were 

assessed using the QuantStudio 3D Analysis Suite software online. 

 

Simulations of relapse scenarios  

In order to understand how likely our observations at primary and 

relapse can be obtained under a non-therapy selective scenario, we 

have performed several simulations using a Wright-Fisher model 

(https://github.com/gerstung-lab/clonex). 

 

Firstly, we have established a set of parameters based on our 

observations of primary samples using a mutation rate of 10-8 and a 

total number of driver and passenger positions of 100 (0.01 fitness 

effect) and 150000 respectively on a population of 106 cells. As a 

result, after 5000 generations the population has fixed a number of 

driver mutations ranging from 3 to 8 (mean 5.2) and 122 to 753 

(mean 505.8) passengers. 

 

Secondly, from the primary population we randomly removed 

between 9*104 and 106 cells to simulate a bottleneck effect. The 

resulting population has grown for 20, 40 and 60 generations which 

covers our estimations about the observed dataset (10% CI: 10.83-

37.89 generations).  
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Finally, we have compared the VAF distribution at primary of those 

variants with a VAF at relapse higher than 90%, considered as fixed 

mutations, between the observed and simulated non-resistant 

scenario. 

 

Due to the lack of fixation of low VAF variants in our simulations, two 

additional scenarios were performed under the previously described 

strategy: (I) A non-resistant simulation increasing the fitness up to 

0.1 (considered as high fitness, [71]) to allow for faster fixation rates. 

(II) A resistant scenario where the bottleneck consists of the 

selection of all cells sharing a low population frequency passenger 

mutation, defined as resistant mutation.  

 

Ethics approval and consent to participate 

All patients were included in protocols (LAL-07OLD, ALL-HR-03, 

LAL-AR-2011) from the PETHEMA group, except PAT16. These 

protocols were approved by the Institutional Research Board (IRB) 

of the participating centers and patients provided informed consent 

before entering into the trials. The study was approved by the Comitè 

d’Ètica de la Investigació (Research Ethics Committee: PI-16-146) 

of the Hospital Germans Trias y Pujol (code approval AEC143). The 

study complies fully with the Helsinki declaration. 

 

Availability of data and materials  

The raw data of the genomic sequencing of the 45 samples (primary-

remission-relapse) of the patients of the in-house cohort is deposited 

in the EGA repository (accession code EGAS00001004750; [72]). 

For the sake of reproducibility, the code of the analysis is available 

here: https://github.com/bbglab/evolution_TALL_adults 

(doi:10.5281/zenodo.4120326; [73]). Raw sequencing data of public 
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datasets produced by St. Jude Children’s Research Hospital-

Washington University Pediatric Cancer Genome Project (see Table 

1) was obtained from the EGA repository (accession codes 

EGAD00001001052 and EGAD00001001432; some BAMS 

corresponding to published projects somewhere else 

[5,6,8,10,14,37]). Raw sequencing data of patients included in the 

study by Oshima et al., 2016 [30] (Table 1) was obtained from dbGap 

(phs001072.v1.p1). The somatic mutations identified in the patients 

included in the study by Li et al 2020 [58] were obtained from the 

Supplementary Data of the original paper.  
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Supplementary Information 

Additional file 1. Additional tables. This file contains the 

supplementary tables referenced in the main text. Table S1 that 

contains clinical information on the adult T-ALL cohort. Table S2 

contains clinical information of the public pediatric cohorts. Table S3 

contains the detected cancer genes by IntOGen. Table S4 contains 

the lists of ALL cancer genes of interest found in the literature 

separated in 3 subtables according to the type of alterations: SNVs 

and InDels (Table S4.a), CNV (Table S4.b), SV (Table S4.c). Table 

S5 contains the mutations (SNVs and InDels) that we consider as 

candidate drivers. Table S6 has the candidate driver CNV (Table 

S6.a) and SV (Table S6.b) of the cohorts analyzed. Table S7 has the 

time of divergence estimates between primary and relapse 

estimated as days pre-diagnosis of each patient. 

Additional file 2. Additional figures. This file presents all 

supplementary figures referenced in the main text. 

Additional file 3. Additional methods. Some of the filtering steps have 

been extended for clarification in this file. 
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Additional file 2 

 

 

 
Fig. S1. Probing for active mutational processes across ALL cohorts. 
Mutational processes active across primary ALL cohorts, represented by their mean 
(and standard deviation) contribution of the mutation burden of each cohort. The list 
of signatures to fit was determined by their activity in any hematopoietic cancer 
according to COSMIC (see Supp. Methods). This linear fitting (Methods), was used 
to select the subset of mutational processes active in ALL tumors of the studied 
cohorts which are shown in the main Figures.   
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Fig. S2. Mutations in driver genes in primary ALLs.  
Rows are driver genes in ALL (collected from the literature or identified across these 
cohorts using IntOGen; see Supp. Methods) grouped by protein family, biological 
process or pathway. Columns are ALL samples grouped by cohort, and sorted by 
age. Each full rectangular cell represents a protein-affecting mutation in a driver 
gene annotated from the literature (grey) or directly detected as driver in that cohort 
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through the IntOGen pipeline (black). The bars on the left represent the total number 
of patients in each ALL cohort with mutations of the gene. 
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Fig. S4. Mutations in driver genes in primary and relapse T-ALL tumors of 
three cohorts. Rows are driver genes in T-ALL (collected from the literature or 
identified across these cohorts using IntOGen; see Supp. Methods) grouped by 
protein family, biological process or pathway. Columns are ALL samples grouped 
by cohort, and sorted by age. We added immunophenotypic information for the in-
house T-ALL cohort. Primary-private and relapse-private mutations are represented 
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as blue and yellow semicircles, respectively. Shared mutations are represented as 
green circles. The total number of patients affected by mutations of each gene 
across the three cohorts are indicated by stacked bars at the right-side of the graph. 
Calls from the X chromosome in the pediatric cohorts are not included (only in 
adults). 
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Fig. S5. Copy Number Variants detected in primary and relapse T-ALLs in the 
in-house cohort.  
In each panel, that corresponds to one T-ALL sample in the cohort, chromosomes 
are represented in the x-axis, with their copy number in the y-axis. Copy number of 
the major allele is represented as a black line and that of the minor allele as a grey 
line. In diploid segments, both the black and grey lines appear close to 1 (total sum 
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of 2) but not overlapping for visual purposes. Red and blue shaded backgrounds 
represent amplifications and deletions, respectively. For all patients (indicated in the 
graph title), the top and bottom plots correspond to the primary and relapse 
samples, respectively. 
 

 

 
Fig. S6. No mutational footprints attributable to treatments are detected. 
Panels represent the absolute (top) and relative (bottom) contribution of mutational 
processes (signatures listed in legend) to the mutation burden of the primary and 
relapse malignancy of each patient. As indicated in the legend, colors of the bars 
indicate the signatures used in the fitting process. Note that, although included in 
the fitting, the mutational signatures (or footprints) of drugs used in ALL treatment 
(recently identified in pediatric relapse tumors; [57]) are not detected in relapse T-
ALLs in the in-house cohort. 
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Fig. S7. The contribution of clock-like Signature 5 to the mutation burden of 
T-ALLs.  
a) Known clock-like signatures 1 (left panel) and 5 (right panel) contribute clonal 
mutations at a steady rate across the lives of T-ALL patients in the in-house cohort. 
Although the number of clonal mutations contributed by each process significantly 
correlates with the patients’ age (signature 1 p=2.30x10-3, signature 5 p=3.64x10-7), 
the correlation is stronger in the case of signature 5, which had been previously 
observed [46]. Moreover, signature 5 contributes more age-related mutations than 
signature 1. Dots are primary and cross relapse samples. Trendlines following the 
regression are added and their equations are indicated at the top right of each panel. 
b,c) Signature 5 also fits well the steady accumulation of mutations in healthy 
hematopoietic stem cells and multipotent progenitors (HSC and MPP; Osorio et al., 
2018 [47]) with aging. Signature 5 contributed mutations fit very well (r=0.98) the 
mutational burden of clonally expanded HSC and MPP (b), implying that it is 
probably the main mutational process active in these cells and that signature 5 
mutations accumulate steadily over time. When a de novo signature extraction 
(rather than the signature deconstruction presented so far in this article; see Supp. 
Methods) is carried out on the mutational profile of HSC and MPP a specific HSC 
population (HSCP) signature is extracted [47,48]. The activity (fraction of 
contributed mutations) of this signature across HSC and MPP cells correlates very 
well (r=0.96) with that obtained for the fitted signature 5. This supports the idea that 
the HSCP signature and signature 5 represent the same underlying mutational 
process active in HSC and MPP. 
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Fig. S8. Models of accelerated mutation rate in T-ALL.  
a) Schematic representation of two extreme models of the accelerated mutation rate 
in T-ALL. The baseline mutation burden increase represents the steady 
accumulation of mutations of HSC and MPP shown in Supplementary Figure 7. The 
linear model consists in a steady acceleration of the mutation rate throughout all the 
evolutionary history of the T-ALL. On the other hand, in the constant model the 
acceleration occurs only once in the evolution of the T-ALL, which after this point 
maintains a steady increase of the mutation burden.  
b) For both, the constant (left plot) and linear (right plot) models, a number of 
simulations of accelerated mutation rate are carried out, represented in these 
schematic graphs by dotted lines. The likelihood of each explaining the observed 
mutation burden of primary and relapse samples is then computed, as explained in 
the main manuscript. 
c) Real examples of the more likely models given the observed data for each patient 
of both types of simulations (constant and linear). The years when the mutation rate 
accelerated and incremented are written above each pair of graphs per patient. 
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Fig. S9. Estimating the doubling time of T-ALL population from the 
pathologists’ observations.  
a) Bootstrapping adjustment of growth logistic curves to the counts of lymphoblasts 
in remission and relapse bone marrow samples carried out by the pathologist. The 
observations at these two points (dot pair) for each patient are represented with the 
same color. Paired-dates of the bone marrow sampling are re-scaled to a 
standardized time where 0.5 blast proportion (y-axis) falls at day 0 (x-axis) of the 
growth trajectory of the malignancy of each patient. 
b) Boxplot with the doubling time estimates resulting from the bootstrapping. The 
line at the center of the boxplot is the mean. The first and third quartile of the 
distribution of bootstrapped doubling times are also represented.  
c) Comparison of the number of relapse cells for all patients in the in-house T-ALL 
cohort computed at time of diagnosis using two different estimates of the doubling 
time of the lymphoblastic population. Light orange bars represent the size of the T-
ALL relapse population computed using the doubling time estimate obtained 
recently for pediatric B-ALLs (Li et al., 2020) Dark orange bars represent the size of 
the T-ALL relapse population computed using the doubling time estimate obtained 
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in (b). Error bars are the estimates corresponding to the doubling time in the first 
and third quartiles of the distribution. 
 
 
 
 

 
 
Fig. S10. Results of digital PCR on mutant SMARCA4 in two primary samples. 
Detection of mutations a) G1162S and b) T786I in the relapse-enriched SMARCA4 
gene in primary samples of PAT14 and PAT8 respectively was negative in both 
(VAF= 0). The resolution of the dPCR in PAT14 was 0.089% whereas in PAT8 it 
was 0.11%. The VAF detected of the mutants in relapse derived from the dPCR is 
similar to the one detected by NGS which are both close to the expected 0.5 for an 
heterozygous variant with no normal contamination (0.39 vs 0.403 and 0.44 vs 
0.346). Scatter plots showing the distribution of the data points based on the dyes 
used (VIC and FAM). Blue dots (FAM) represent presence of mutant SMARCA4 
and red dots (VIC) represent wild-type SMARCA4; yellow refers to no amplification 
and green to co-amplified wild-type and mutant species. 
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Fig. S11. Distribution of primary CCF of relapse fixed mutations in the 
simulated resistant scenario.  
Distribution (frequency) of CCF values of mutations in synthetic primary T-ALL 
populations in evolutionary simulations following the resistant scenario defined in 
the toy example of Figure 5b. The dots represent mutations binned at different CCF 
values with the frequency that each bin represents with respect to all mutations in 
each synthetic relapse population. All the results of six simulation settings with 
different values of fitness of driver mutations and number of cell generations are 
presented. 
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Additional File 3 

 

Preprocessing and filters of somatic mutation calls 

As explained in the Methods section we have processed the 

mutations (SNVs and InDels) from the original VCF output of Strelka 

to the final MAF file of calls analyzed. The first thing we did was to 

filter out any mutation non-labelled as PASS or DP in the FILTER 

columns of their corresponding VCF. We noticed that for a few 

patients the number of mutations in the relapse sample was lower 

than the primary, contrary to what we would expect taking into 

account that the relapse cells had more time to accumulate 

mutations compared to the primary. Therefore, we decided to check 

whether there were mutations labeled as PASS or DP in the primary 

that were present in the relapse original VCF that we missed at 

filtering. We realized that this was the case so we decided to also do 

the reverse exercise and add the missed calls to the filtered set of 

mutations of each sample. We have called these shared mutations 

FISHED (see below Additional file 3: Fig. S1 a).  

 

Another critical point was that we observed substantial differences 

between samples of the same patient regarding tumor burden as 

well as within the entire cohort. We suspected that there could be 

some polymorphisms within the somatic calls of the samples. We 

used gnomAD to annotate the variants with population frequencies 

and decide to filter out those with a frequency above 0.01 (see 

Additional file 3: Fig S1b). 

 

The clonal classification, that is separating clonal from subclonal 

mutations, is explained in detail in the Methods section. In the 

Additional file 3: Fig S1 c we are showing the Cancer Cell Fraction 
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(CCF, see equation below) of each mutation in the primary and 

relapse samples colored or shaped according to their clonal 

classification in the primary and relapse respectively. In almost all 

patients, the shared clonal mutations are a well-defined blue dotted 

cloud of points with its centroid approximately at CCF 1 of both axis 

(samples). 

 

𝐶𝐶𝐹 =
𝑉𝐴𝐹 ∗ (𝑝 ∗ 𝑐𝑛 + 2 ∗ (1 − 𝑝)

𝑝
 

 

being 𝑝 the purity of the sample and 𝑐𝑛 the copy number of the region 

where the mutation falls. VAF means variant allele frequency and is 

calculated as follows: 

𝑉𝐴𝐹 =  
𝑎𝑟

𝑡𝑟
 

where 𝑎𝑟 refers to reads mapping to the alternative allele and 𝑡𝑟 the 

total number of reads mapping to that particular position. 

 

Finally, we were notified by the sequencing center (CNAG) that 

PAT3 and PAT4 primary samples seemed to have the DNA 

damaged. In this figure, PAT3 shows evidence of that by its large 

number of mutations and CCF values. We have not included those 

samples and as a consequence, these two patients were out in most 

of our analysis except for reporting protein affecting mutations in 

known ALL cancer genes of interest. 
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Fig. S1. Filter steps of mutations.  
a) Barplot of primary and relapse sample of each patient showing the number of 
SNVs (up panel) and InDels (low panel) that have the PASS label in FILTER column 
of the VCF (red) and the rescued shared variants called FISHED (orange). b) 
Barplot of primary and relapse samples of each patient showing all mutations as the 
proportion of mutations that were filtered out due to their high frequency (> 0.01) in 
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the population as annotated by Gnomad and the proportion that are believed to be 
somatic. c) Scatterplots showing the CCF of each mutation in primary (x- axis) and 
relapse (y-axis). Color and shape of each data point (mutation) is indicated in the 
legend. 
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3.2 Chapter 2 

Compendium of mutational cancer driver genes 

One of the fundamental aims in cancer research is to discover the 

compendium of all cancer driver genes, which are those responsible for 

tumorigenesis and provide the scientific community with new targets for 

precision medicine. As explained in the above section, one of the objectives 

of the leukemia project was to find new drivers of ALL and also candidate 

genes of therapy resistance. With that intention, I joined another project of 

the lab, the generation of a Compendium of Mutational Cancer Driver 

Genes across cancer types (IntOGen project). The aims of the IntOGen 

project were two: i) to provide the research community with an automatic 

identification workflow of cancer genes and ii) generate a list of cancer 

driver genes across tumor types. To achieve the second objective the 

analysis of somatic mutations across a large number of cancer samples was 

required.  At that time, I was already downloading a great amount of 

tumoral data from pediatric ALL cohorts with the intention to detect signals 

of positive selection for the identification of driver genes. I extended the 

search from ALL to somatic mutations in other cancer cohorts, with the aim 

to collect all datasets of tumor somatic mutations available in the public 

domain. Dr. Francisco Martínez-Jiménez and I downloaded, curated and 

annotated the catalogs of somatic mutations from cohorts of tumors in 

public repositories such as cBioPortal (https://www.cbioportal.org/), 

pediatric cBioPortal (https://pedcbioportal.org/login.jsp), ICGC [59], 

TARGET (https://ocg.cancer.gov/programs/target), St. Jude Cloud 

(https://www.stjude.cloud/) and additional cohorts directly obtained from 

literature studies summarized in Figure 2 of the paper. We also included the 

data from Pan Cancer studies such as TCGA [56-57], PCAWG [61] and the 

metastatic tumors from Hartwig Medical Foundation 

(https://www.hartwigmedicalfoundation.nl/en/). In fact, part of the novelty 
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of the framework is the amount of pediatric data and metastatic tumors 

included in the release, which is data frequently not well represented in this 

type of studies. All the data together comprises more than 28,076 tumors of 

66 cancer types. I also provided help and feedback in the elaboration of a 

system for the cancer type annotations. The description of the new pipeline 

and the results of the analysis of all this great amount of data can be found 

published here [82] together with an historical view of the identification of 

cancer drivers genes. Also, all the results are uploaded in the IntOGen web 

(https://www.intogen.org/search).  

The compendium of cancer driver genes which constitutes the main 

outcome of this work was published within the framework of a review 

article. Therefore, it should be considered as an analysis paper, since it 

reports an original research contribution. 

 
 
 
 
 
 
 
 
 
 

Martínez-Jiménez F, Muiños F,  Sentís I , Deu-Pons J , Reyes-Salazar I, 
Arnedo-Pac C , Mularoni L, Pich O , Bonet J , Kranas H , Gonzalez-
Perez A, López-Bigas N. A Compendium of Mutational Cancer Driver 
Genes.  Nature Reviews Cancer 20, 555–572 (2020). 
https://doi.org/10.1038/s41568-020-0290-x 
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4. DISCUSSION 

 
In the Chapter 1 project, we had the opportunity to analyze a unique cohort 

of cancer patients suffering from a rare adult disease called T-cell acute 

lymphoblastic leukemia to shed some light into their treatment response and 

for a better understanding of the leukemogenic process. There are few 

landscape genomic studies focused on T-ALL adult patients and none (to 

our knowledge) looking at the clonal evolution of their relapsed leukemias 

[238,242,246,249]. We have studied 19 T-ALL adult patients from their 

cancer evolution to their genomic characteristics in comparison with other 

ALL forms. 

 

According to our findings, the relapsed leukemia of the majority of these 

patients arises from a population of relapse-fated cells already existing at 

time of diagnosis. Prior studies have also pointed out the therapy-

preexisting origin of relapse in B-ALL [112,182,254,255]. Inspired by one 

of them, Li et al., 2020 [112], we computed the doubling time of the T-

lymphoblasts through the percentage counts in serial measurements during 

treatment (remission and relapse timepoints) assessed by the pathologist. 

Therefore, given the estimated doubling time we could infer the number of 

relapse cells expected at time of diagnosis. The precise relapse population 

size at diagnosis is something that must be taken with caution since we only 

had two measures of blasts per patient, thus, we actually have an aggregated 

doubling time. However, these estimates are robust enough to say that the 

majority of the studied cases had a preexisting clone assumed to be larger 

than 1 cell and that only three patients fit more with a relapse-population 

emerging during treatment. With more timepoints of the emergence of 

relapse plus a bigger cohort size, it would be interesting to see whether there 

are any differences between immunophenotypes of T-ALL. Another 

important line of evidence that, indeed, there is mostly a preexisting relapse 
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subpopulation at diagnosis, is the fact that we cannot detect thiopurine 

treatment associated signature in relapse samples as shown recently in B-

ALL [112]. Imagine a single or few leukemic persistent cells, damaged by 

the 6-mercaptopurine, that after treatment, make a clonal expansion. Then, 

therapy-induced mutations would have been fixed in the relapse population 

leaving a traceable pattern and allowing the detection of the signature. 

However, given the short time between diagnosis and relapse (lots of early 

relapsers in the in-house cohort21) and the lack of evidence of this signature, 

it also points towards an already quite large relapse-fated population at 

diagnosis.  

 

In general, the initial clone from where the relapse arises has therefore 

diverged before diagnosis and has accumulated private mutations becoming 

a “branch” of the evolving leukemia. In order to have an estimate of when 

the divergence between the primary and relapse happened we modeled the 

contribution of signature 5 mutations which are considered to accumulate 

in a clock-like manner. We noticed that although there is an overall good 

linear correlation between the activity of signature 5 and the age of patients 

in our in-house cohort, a direct conversion of the shared number of 

mutations between primary and relapse to the corresponding chronological 

age of each patient was overestimating the time of divergence. We also 

observed that the intercept of the linear regression between the number of 

mutations of signature 5 and the age of patients was exceeding from 0 

(Figure 4.a of the manuscript) which we believed it might be due to some 

acceleration in the mutation rate of this signature. For this reason, we 

considered the accumulation of the signature 5 mutations to be constant 

through time until a certain point (e.g. leukemic transformation) in which 

                                                 
21 median 9.1 months and mean 9.3 months which is a bit early compared to median 
11 reported here [296] and within “early” relapse category in Li et al., 2020 paper 
[112] 
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most likely it starts to increase. For that, we considered as reference, the 

constant mutation rate estimated for healthy hematopoietic stem cells 

published by others [109] and then assumed different moments from which 

the mutation rate started incrementing to fit the actual observations. We 

tried two increments of the mutation rate (a constant one and a linear one) 

and simulated them under a certain plausible variability departing at 

different moments (i.e years) before diagnosis. Each one of these simulated 

outputted models give an estimate of the divergence but still only the ones 

with bigger likelihoods are used in the final estimation of it. Therefore, each 

one of them contributes to a final estimate and grants a reasonable error 

margin making it robust enough. The majority of the patients showed that 

the divergence between primary and relapse clones likely happened the 

previous year to the diagnosis of the leukemia. Therefore, our findings 

suggest that in the majority of the studied cases, the relapse clone lineage 

started within the year prior to primary detection and constitutes a subclonal 

population at time of diagnosis of the primary.  

 

In light of the results, one of the obvious questions is whether we can detect 

the relapse before it creates a full grown second leukemia. For that, we have 

checked which are the relapse-enriched mutations that can help predict the 

relapse and are suspicious of providing treatment-resistance advantage. We 

have identified relapse-specific alterations in known treatment-resistant 

associated genes such as NT5C2, ABCB1 and also a new candidate: 

SMARCA4. Little is known about the involvement of SMARCA4 in 

leukemogenesis and/or resistance but it has been detected exclusively in T-

ALL in primary samples [234,248] and also it has appeared mutated in a 

relapse-specific manner [254,297]. We decided to see whether we could 

detect the relapse SMARCA4 mutations of the two affected patients at low 

allele frequency in the corresponding primary samples with a dPCR that 

would give us deeper resolution than the WGS. This way, we wanted to 
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check whether we can trail the relapse clone at time of diagnosis. Results 

were negative which are in concordance with the estimated relapse clone 

size being below the limit of detection for the two patients tested (Figure 5 

a). On the one hand, that gave us more confidence that the estimate of the 

doubling time and the corresponding computation of the number of relapse 

cells at diagnosis is pretty accurate. On the other hand, it evidenced the need 

for finding ways for relapse prevention. In relation to that, it seems that 

relapse subclones at diagnosis are not always detectable at primary samples 

so a close monitoring of MRD along the treatment seems the best solution 

for relapse prevention [298]. In fact, the assessment of the MRD at the end 

of induction has proven to be of high value to stratify patients according to 

risk and is now widely used [281,298]. Therefore, the analysis of genomic 

markers such as, mutations in genes with bad prognosis, in serial aspirates 

or blood extractions during treatment can help to early detect a change in 

the clonal dynamics. This way, helping to anticipate the emergence of the 

resistant relapse clone, especially for those slow-responders to treatment 

with persistent MRD as shown in here [254]. This type of tracking requires 

the highest sensitivity and quantification of the mutations which can be very 

costly. Therefore, a combination of techniques for this type of monitoring 

such as keeping the morphological assessment at the end of induction but 

trying droplet dPCR or ultra-deep sequencing for the rest of the checkpoints 

seems more reasonable, as well as, the importance of treating patients 

within specialized centers which are more likely the ones guaranteeing such 

tracking. Apart from that, it would be interesting to perform some 

functional analysis with SMARCA4 to understand its involvement in ALL. 

Linking these results with the previous paragraph, given that our estimates 

dated the relapse divergence within the prior year to primary diagnosis, it 

seems crucial to early detect the primary. In other words, the sooner we stop 

the primary leukemia progression the better we avoid the relapse-resistant 

clone evolution.  
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Another thing that drove our attention is the way in which the NOTCH1 

pathway is mutated. First, we detected cases of convergent evolution in 

which primary and relapse clones harbor different mutations in the same 

pathway genes (two different NOTCH1 mutations or NOTCH1 and 

FBXW7 private mutations to one or the other leukemia). In these cases, 

perhaps, the relapse clone is able to tolerate or resist the treatment by any 

genomic mechanism and the success of its progression is due to mutations 

in the NOTCH1 pathway as it is one of the most important signaling 

pathways for proliferation in T-ALL. In the past, clinical studies checking 

the prognostic value of NOTCH1 and FBXW7 have reported different 

results so further studies must be done to clarify it [241,299–301]. The 

combination of a clonal and a subclonal mutation of NOTCH1 pathway 

genes at time of diagnosis should serve to early detect a shift of the clonal 

dominance if a close MRD monitoring is settled and may help prevent 

refractory or relapsed patients. Moreover, we detected patients with 

multiple mutations in the same gene simultaneously. It has been observed 

that co-ocurrant mutations in HD and PEST domain of NOTCH1 in cis 

(same allele) cause a synergistic effect and overactivation of NOTCH1 

[241,302]. It would be interesting to study the implications of NOTCH1 

double mutants in adult T-ALL. In a recent study [302], the authors used 

CisChecker which is an algorithm that can be used for NGS data to infer 

whether the mutations are in cis or trans. Otherwise using Nanopore 

technology would also allow to sequence NOTCH1 gene and check it. 

Again, with a bigger cohort and serial samples of each patient, it would be 

interesting to see to what extent double mutants of NOTCH1 can decrease 

the doubling time and therefore, increase proliferation, and compare these 

types of patients with other non-double mutants in T-ALL. In addition, it 

would be interesting to relate this with clinical data of the patients, such as 

incidence of CNS relapse, survival and other metrics. Another related line 
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of investigation discussed along the project was to quantify the fitness 

advantage of mutations in NOTCH1 and determine the fitness effects of T-

ALL main driver genes found such as PHP6 and RAS mutations in a similar 

way as it has been shown recently with AML drivers appearing in CH cases 

[303]. Unfortunately, with the size of our cohort it was not possible to 

accurately compute that but this is some analysis that is interesting to pursue 

in the future.  

 

One of the main goals of our study in Chapter 1 was to find mechanisms of 

resistance. Obvious candidates have not become apparent for all the 

patients. As a consequence, we asked ourselves whether we could 

distinguish a relapse driven by a non-resistant survivor cell population 

(non-resistant scenario) from a relapse driven by a genetic resistance to the 

treatment (resistant scenario) regardless of the specific mechanism. Since 

there is an increasing evidence that the bone marrow niche can provide 

protection to the leukemic blasts [178,293] against the treatment, perhaps a 

non-resistance scenario would be a niche-protected group of leukemic cells 

not harboring any genomic-resistant mechanism that manage to survive and 

trigger a relapse. Whereas a resistant scenario would be, for example, a 

leukemic cell/s harboring NT5C2 and avoiding mercaptopurine damage. 

After simulating both scenarios we looked at the CCF at time of diagnosis 

of the clonal relapse mutations (those fixed in the relapse cell population) 

and compared them to our real data. In the non-resistant scenario, under 

different parameters but simulated with the observed elapsed time between 

the two leukemias, any of the undetectable mutations in the primary is able 

to get fixed in relapse making it an unrealistic situation. On the contrary, 

resistant simulations where a subgroup of cells carrying a resistant mutation 

are selected, generate a similar scenario to the one observed in our patients. 

Therefore, we are inclined to believe that, in this particular cohort, all 

patients must have a relapse driven by therapy resistance, regardless of the 
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concrete treatment-resistant mechanism. In other words, the relapses of our 

cohort seem to be driven by genetic resistance which implies that there are 

still resistant genomic mechanisms (unusual driver mutations, altered co-

occurrences, epigenetic changes…) to be discovered. In this sense, this 

project evidenced the importance to generate tumoral data for those tumor 

types with low incidence and to study cases with cancer conditions less 

explored, such as relapse tumors or metastasis, to be able to increase the 

compendium of mutational driver genes. The pipeline of IntOGen and the 

whole system presented in Chapter 2 represents an important step towards 

the completion of the list of all cancer driver genes. The implementation of 

this framework has been optimized to facilitate the analysis of new data. As 

more datasets of understudied malignancies and conditions are available 

and fitted into the workflow, more complete snapshots of this compendium 

will be generated. Nevertheless, still many challenges are to be solved, as 

the detection of driver mutations in genes is necessary but not sufficient to 

understand the whole picture of tumorigenesis. 

 

Another lesson learned from Chapter 1 study is the confirmation of T-ALL 

being a different entity from B-ALL. Although the active mutational 

processes in primary leukemias are the same between T and B-ALL, we can 

appreciate important differences in the pathways and altered genes driving 

each one of these ALL forms. In addition, we have computed a different 

doubling time for T-ALL compared to the one previously computed for B-

ALL. Although it might be that these differences are due to age (B-ALL 

samples were pediatric and ours are adults), differences can also be caused 

by the different biology behind the lineage or cell of origin which might 

also greatly influence the tumoral growth and dynamics. Future studies 

would enlarge our knowledge regarding these two ALL diseases and with 

a better understanding there will come improvements in the therapeutic 

opportunities to cure these patients. In fact, it seems that with the advances 
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CAR-T for both leukemic lineages, more patients will benefit from this 

therapy, most likely leading to increased survival rates.  
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5. CONCLUSIONS 

 
 In most adult T-ALL cases that recur, the relapse clone diverged 

from the primary within the year prior to primary diagnosis, by 

which time, its size ranges between a few and millions of cells, but 

below the limit of detection by bulk sequencing. 

 The relapse clone most likely harbors genomic alterations that 

confer therapy resistance. 

 The progression of T-ALL in some of the studied cases is 

characterized by convergent evolution of mutations 

affecting NOTCH1 pathway genes. 

 The mutational processes detected in primary leukemias of B-ALL 

and T-ALL are very similar; moreover, there is no evidence of 

chemotherapy-related signatures in relapse adult T-ALLs, unlike in 

the pediatric malignancy.  

 We identify well-known resistant mechanisms such as mutations in 

NT5C2 and also potential resistance alterations in less studied 

genes such as SMARCA4 and ABCB1 which appear in a relapse-

specific manner in adult T-ALL cases. 

 We have identified 568 mutational cancer driver genes across 66 

cancer types; whereas some of these drive tumorigenesis across 

many cancer types (widespread), the majority are specific of one or 

two malignancies  

 
 
 
 
 



 

264 

 
 
 
 
 
 
 
 
 
 
 
  



 

265 

6. BIBLIOGRAPHY 

1. Cancer [Internet]. [cited 2020 Mar 28]. Available from: 
https://www.who.int/news-room/fact-sheets/detail/cancer 
2. Hajdu SI. A note from history: Landmarks in history of cancer, part 1. 
Cancer. 2011;117:1097–1102.  
3. A to Z List of Cancer Types - National Cancer Institute [Internet]. [cited 
2020 Mar 28]. Available from: https://www.cancer.gov/types 
4. WHO-Cancer [Internet]. [cited 2020 Mar 28]. Available from: 
http://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-
sheet.pdf 
5. Balmain A. Cancer genetics : from Boveri. Nat Rev Cancer. 2001;1:77–
82.  
6. Bignold LP, Coghlan BLD, Jersmann HPA. Hansemann, Boveri, 
chromosomes and the gametogenesis-related theories of tumours. Cell Biol 
Int. 2006;30:640–644.  
7. Hansemann D. Ueber asymmetrische Zelltheilung in Epithelkrebsen und 
derenbiologische Bedeutung. Arch Pathol Anat. 1890;119:299–326.  
8. Boveri T. Uber die konstitution der chromatischen kernsubstanz. 
Verhandlungen Dtsch Zool Ges. 1903;13.  
9. Boveri T. In Zur Frage der Entstehung Maligner Tumoren. Gustav Fish 
Jena. 1914;1–64.  
10. Loeb LA, Harris CC. Advances in chemical carcinogenesis: A historical 
review and prospective. Cancer Res. 2008;68:6863–6872.  
11. Stehelin D, Varmus HE, Bishop JM, Vogt PK. DNA related to the 
transforming gene(s) of avian sarcoma viruses is present in normal avian 
DNA. Nature. 1976;260:170–173.  
12. Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, 
Scolnick EM, et al. Mechanism of activation of a human oncogene. Nature. 
1982;300:143–149.  
13. Fisher JC. Multiple-mutation theory of carcinogenesis. Nature. 
1958;181.  
14. Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 
2000;100:57–70.  
15. Kurzrock R, Giles FJ. Precision oncology for patients with advanced 
cancer: the challenges of malignant snowflakes. Cell Cycle. 2015;14:2219–
21.  
16. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. 
Cell. Elsevier Inc.; 2011;144:646–674.  
17. Lazebnik Y. What are the hallmarks of cancer? Nat Rev Cancer. Nature 
Publishing Group; 2010;10:232–233.  
18. Sonnenschein C, Soto AM. The aging of the 2000 and 2011 Hallmarks 
of Cancer reviews: A critique. J Biosci. 2013;38:651–663.  
19. Baker SG. Paradox-Driven Cancer Research. Disruptive Sci Technol. 
2013;1:143–148.  



 

266 

20. Sigston EAW, Williams BRG. An emergence framework of 
carcinogenesis. Front Oncol. 2017;7:1–14.  
21. Maley CC, Aktipis A, Graham TA, Sottoriva A, Boddy AM, 
Janiszewska M, et al. Classifying the evolutionary and ecological features 
of neoplasms. Nat Rev Cancer. Nature Publishing Group; 2017;17:605–
619.  
22. Darwin C 1809-1882. On the origin of species by means of natural 
selection, or preservation of favoured races in the struggle for life [Internet]. 
London : John Murray, 1859; 1859. Available from: 
https://search.library.wisc.edu/catalog/9934839413602122 
23. Nowell PC. The clonal evolution of tumor cell populations. Science. 
1976;194:23–8.  
24. Mcgranahan N, Swanton C. Review Clonal Heterogeneity and Tumor 
Evolution : Past , Present , and the Future. Cell. Elsevier Inc.; 
2017;168:613–628.  
25. Mazor T, Pankov A, Song JS, Costello JF. Intratumoral Heterogeneity 
of the Epigenome. Cancer Cell. Elsevier Inc.; 2016;29:440–451.  
26. DeVita VT. The “War on Cancer” and its impact. Nat Clin Pract Oncol. 
2004;1:55–55.  
27. Dulbecco R. A turning point in cancer research: sequencing the human 
genome. Science. American Association for the Advancement of Science; 
1986;231:1055–6.  
28. International Human Genome Sequencing Consortium. Finishing the 
euchromatic sequence of the human genome. Nature. 2004;431:931–45.  
29. Cancer genomics - Latest research and news | Nature [Internet]. [cited 
2020 Jun 2]. Available from: https://www.nature.com/subjects/cancer-
genomics 
30. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 
Nature Publishing Group; 2009;458:719–724.  
31. Garraway LA, Lander ES. Lessons from the Cancer Genome. Cell. 
2013;153:17–37.  
32. The Cost of Sequencing a Human Genome [Internet]. Genome.gov. 
[cited 2020 Jun 16]. Available from: https://www.genome.gov/about-
genomics/fact-sheets/Sequencing-Human-Genome-cost 
33. Heather JM, Chain B. The sequence of sequencers: The history of 
sequencing DNA. Genomics. 2016;107:1–8.  
34. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes JC, et 
al. Nucleotide sequence of bacteriophage φX174 DNA. Nature. Nature 
Publishing Group; 1977;265:687–95.  
35. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years 
of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–
51.  
36. Voelkerding KV, Dames SA, Durtschi JD. Next-Generation 
Sequencing: From Basic Research to Diagnostics. Clin Chem. 



 

267 

2009;55:641–58.  
37. Mignardi M, Nilsson M. Fourth-generation sequencing in the cell and 
the clinic. Genome Med. 2014;6:31.  
38. Snapshot [Internet]. [cited 2020 Jun 16]. Available from: 
https://www.cancer.gov/publications/dictionaries/cancer-
terms/def/bioinformatics 
39. Richter BG, Sexton DP. Managing and Analyzing Next-Generation 
Sequence Data. Bourne PE, editor. PLoS Comput Biol. 2009;5:e1000369.  
40. Illumina | Sequencing and array-based solutions for genetic research 
[Internet]. [cited 2020 Jun 18]. Available from: https://www.illumina.com/ 
41. GATK [Internet]. [cited 2020 Jun 20]. Available from: 
https://gatk.broadinstitute.org/hc/en-us 
42. Alioto TS, Buchhalter I, Derdak S, Hutter B, Eldridge MD, Hovig E, et 
al. A comprehensive assessment of somatic mutation detection in cancer 
using whole-genome sequencing. Nat Commun. 2015;6:10001.  
43. Zare F, Dow M, Monteleone N, Hosny A, Nabavi S. An evaluation of 
copy number variation detection tools for cancer using whole exome 
sequencing data. BMC Bioinformatics. 2017;18:286.  
44. Zhang L, Bai W, Yuan N, Du Z. Comprehensively benchmarking 
applications for detecting copy number variation. PLOS Comput Biol. 
Public Library of Science; 2019;15:e1007069.  
45. Ye K, Hall G, Ning Z, Trust W, Campus WG. Structural Variation 
Detection from Next Generation Sequencing Journal of Next Generation 
Sequencing & Applications.  
46. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz Jr. LA, 
Kinzler KW, et al. Cancer Genome Landscapes. Science. 2013;339:1546–
1558.  
47. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, et 
al. Linkage of early-onset familial breast cancer to chromosome 17q21. 
Science. 1990;250:1684–9.  
48. Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy 
number variation (CNV) detection using next-generation sequencing data: 
features and perspectives - Springer. BMC Bioinformatics. 2013;14 Suppl 
1:S1.  
49. Escaramís G, Docampo E, Rabionet R. A decade of structural variants: 
description, history and methods to detect structural variation. Brief Funct 
Genomics. 2015;14:305–14.  
50. Kotarbinski T. Hematopoietic Cancers. Genome.gov [Internet]. [cited 
2020 Jun 25]. Available from: https://www.genome.gov/genetics-
glossary/Polymorphism 
51. Cai L, Yuan W, Zhang Z, He L, Chou K-C. In-depth comparison of 
somatic point mutation callers based on different tumor next-generation 
sequencing depth data. Sci Rep. Nature Publishing Group; 2016;6:36540.  
52. Wiuf C, Andersen CL. Statistics and Informatics in Molecular Cancer 



 

268 

Research. OUP Oxford; 2009.  
53. The Cancer Genome Atlas Program - National Cancer Institute 
[Internet]. 2018 [cited 2020 Jun 29]. Available from: 
https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga 
54. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. 
Mutational landscape and significance across 12 major cancer types. 
Nature. 2013;502:333–339.  
55. Herbst RS, Gandara DR, Hirsch FR, Redman MW, LeBlanc M, Mack 
PC, et al. Lung Master Protocol (Lung-MAP)--A Biomarker-Driven 
Protocol for Accelerating Development of Therapies for Squamous Cell 
Lung Cancer: SWOG S1400. Clin Cancer Res. 2015;21:1514–24.  
56. The Cancer Genome Atlas Research Network. Comprehensive genomic 
characterization of squamous cell lung cancers. Nature. 2012;489:519–25.  
57. Chang K, Creighton CJ, Davis C, Donehower L, Drummond J, Wheeler 
D, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 
2013;45:1113–1120.  
58. The Pan-Cancer Atlas [Internet]. [cited 2020 Jun 29]. Available from: 
http://www.cell.com/pb-
assets/consortium/pancanceratlas/pancani3/index.html 
59. International Cancer Genome Consortium [Internet]. [cited 2020 Jun 
29]. Available from: https://icgc.org/ 
60. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, 
Lau KW, et al. The life history of 21 breast cancers. Cell. 2012;149:994–
1007.  
61. Campbell PJ, Getz G, Korbel JO, Stuart JM, Jennings JL, Stein LD, et 
al. Pan-cancer analysis of whole genomes. Nature. 2020;578:82–93.  
62. Rheinbay E, Morten MN, Abascal F, Tiao G, Hornshøj H, Hess JM, et 
al. Discovery and characterization of coding and non-coding driver 
mutations in more than 2,500 whole cancer genomes. 2017;  
63. Sabarinathan R, Pich O, Martincorena I, Rubio-Perez C, Juul M, Wala 
J, et al. The whole-genome panorama of cancer drivers. bioRxiv. 
2017;190330.  
64. Reference GH. What is the difference between precision medicine and 
personalized medicine? What about pharmacogenomics? [Internet]. Genet. 
Home Ref. [cited 2020 Jul 1]. Available from: 
https://ghr.nlm.nih.gov/primer/precisionmedicine/precisionvspersonalized 
65. Stratton MR. Exploring the Genomes of Cancer Cells: Progress and 
Promise. Science. 2011;331:1553–8.  
66. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, et al. 
Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable 
Cancer Targets (MSK-IMPACT): A Hybridization Capture-Based Next-
Generation Sequencing Clinical Assay for Solid Tumor Molecular 
Oncology. J Mol Diagn. 2015;17:251–64.  



 

269 

67. Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt 
DC, et al. MuSiC: Identifying mutational significance in cancer genomes. 
Genome Res. 2012;22:1589–98.  
68. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, 
Sivachenko A, et al. Mutational heterogeneity in cancer and the search for 
new cancer-associated genes. Nature. 2013;499:214–218.  
69. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. 
The Consensus Coding Sequences of Human Breast and Colorectal 
Cancers. Science. 2006;314:268–74.  
70. Forrest WF, Cavet G. Comment on “The Consensus Coding Sequences 
of Human Breast and Colorectal Cancers.” Science. American Association 
for the Advancement of Science; 2007;317:1500–1500.  
71. Getz G, Höfling H, Mesirov JP, Golub TR, Meyerson M, Tibshirani R, 
et al. Comment on “The Consensus Coding Sequences of Human Breast 
and Colorectal Cancers.” Science. American Association for the 
Advancement of Science; 2007;317:1500–1500.  
72. Rubin AF, Green P. Comment on “The Consensus Coding Sequences 
of Human Breast and Colorectal Cancers.” Science. American Association 
for the Advancement of Science; 2007;317:1500–1500.  
73. Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo 
P, et al. Universal Patterns Of Selection In Cancer And Somatic Tissues. 
Cell [Internet]. 2017; Available from: 
http://biorxiv.org/content/early/2017/04/29/132324 
74. Weghorn D, Sunyaev S. Bayesian inference of negative and positive 
selection in human cancers. Nat Genet. Nature Publishing Group; 
2017;49:1785–8.  
75. Gonzalez-Perez A, Lopez-Bigas N. Functional impact bias reveals 
cancer drivers. Nucleic Acids Res. Oxford University Press; 2012;40:e169.  
76. Mularoni L, Sabarinathan R, Deu-pons J, Gonzalez-Perez A, López-
Bigas N. OncodriveFML : a general framework to identify coding and non-
coding regions with cancer driver mutations. Genome Biol. Genome 
Biology; 2016;1–13.  
77. Tamborero D, Gonzalez-Perez A, Lopez-Bigas N. OncodriveCLUST: 
Exploiting the positional clustering of somatic mutations to identify cancer 
genes. Bioinformatics. 2013;29:2238–2244.  
78. Arnedo-Pac C, Mularoni L, Muinos F, Gonzalez-Perez A, Lopez-Bigas 
N. OncodriveCLUSTL: a sequence-based clustering method to identify 
cancer drivers. bioRxiv. 2018;500132.  
79. Tokheim C, Bhattacharya R, Niknafs N, Gygax DM, Kim R, Ryan M, 
et al. Exome-Scale Discovery of Hotspot Mutation Regions in Human 
Cancer Using 3D Protein Structure. Cancer Res. 2016;76:3719–31.  
80. Martínez-Jiménez F, Muiños F, López-Arribillaga E, Lopez-Bigas N, 
Gonzalez-Perez A. Systematic analysis of alterations in the ubiquitin 
proteolysis system reveals its contribution to driver mutations in cancer. 



 

270 

Nat Cancer. Nature Publishing Group; 2020;1:122–35.  
81. Dietlein F, Weghorn D, Taylor-Weiner A, Richters A, Reardon B, Liu 
D, et al. Identification of cancer driver genes based on nucleotide context. 
Nat Genet. Nature Publishing Group; 2020;52:208–18.  
82. Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, 
Arnedo-Pac C, et al. A compendium of mutational cancer driver genes. Nat 
Rev Cancer. Nature Publishing Group; 2020;1–18.  
83. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. 
Proto-Oncogenes and Tumor-Suppressor Genes. Mol Cell Biol 4th Ed 
[Internet]. W. H. Freeman; 2000 [cited 2020 Jul 5]. Available from: 
https://www.ncbi.nlm.nih.gov/books/NBK21662/ 
84. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al. 
A census of human cancer genes. Nat Rev Cancer. Nature Publishing 
Group; 2004;4:177–83.  
85. Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The 
COSMIC Cancer Gene Census: describing genetic dysfunction across all 
human cancers. Nat Rev Cancer. Nature Publishing Group; 2018;18:696–
705.  
86. Hainaut P, Pfeifer GP. Patterns of p53 G→T transversions in lung 
cancers reflect the primary mutagenic signature of DNA-damage by 
tobacco smoke. Carcinogenesis. Oxford Academic; 2001;22:367–74.  
87. Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, 
Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations 
in smoking-associated cancers. Oncogene. Nature Publishing Group; 
2002;21:7435–51.  
88. Pfeifer GP, You Y-H, Besaratinia A. Mutations induced by ultraviolet 
light. Mutat Res Mol Mech Mutagen. 2005;571:19–31.  
89. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, 
Greenman CD, et al. A comprehensive catalogue of somatic mutations from 
a human cancer genome. Nature. Nature Publishing Group; 2010;463:191–
6.  
90. Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones 
D, et al. A small-cell lung cancer genome with complex signatures of 
tobacco exposure. Nature. Nature Publishing Group; 2010;463:184–90.  
91. Omichessan H, Severi G, Perduca V. Computational tools to detect 
signatures of mutational processes in DNA from tumours: A review and 
empirical comparison of performance. Galli A, editor. PLOS ONE. 
2019;14:e0221235.  
92. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, 
Raine K, et al. Mutational Processes Molding the Genomes of 21 Breast 
Cancers. Cell. 2012;149:979–93.  
93. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. 
Deciphering Signatures of Mutational Processes Operative in Human 
Cancer. Cell Rep. 2013;3:246–259.  



 

271 

94. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, 
Biankin AV, et al. Signatures of mutational processes in human cancer. 
Nature. Nature Research; 2013;500:415–421.  
95. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu 
Y, et al. The repertoire of mutational signatures in human cancer. Nature. 
2020;578:94–101.  
96. COSMIC. https://cancer.sanger.ac.uk/cosmic/signatures/SBS/.  
97. Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. 
deconstructSigs: Delineating mutational processes in single tumors 
distinguishes DNA repair deficiencies and patterns of carcinoma evolution. 
Genome Biol. Genome Biology; 2016;17:1–11.  
98. Gori K, Baez-Ortega A. sigfit: flexible Bayesian inference of mutational 
signatures. bioRxiv. Cold Spring Harbor Laboratory; 2020;372896.  
99. Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-
Zainal S, et al. Clock-like mutational processes in human somatic cells. Nat 
Genet. Nature Publishing Group; 2015;47:1402–1407.  
100. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et 
al. The Origin and Evolution of Mutations in Acute Myeloid Leukemia. 
Cell. Elsevier; 2012;150:264–78.  
101. Maura F, Degasperi A, Nadeu F, Leongamornlert D, Davies H, Moore 
L, et al. A practical guide for mutational signature analysis in hematological 
malignancies. Nat Commun [Internet]. Springer US; 2019;10. Available 
from: http://dx.doi.org/10.1038/s41467-019-11037-8 
102. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, 
Bakhoum SF, et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred 
from Blood DNA Sequence. N Engl J Med. Massachusetts Medical 
Society; 2014;371:2477–87.  
103. Martincorena I, Roshan A, Gerstung M, Ellis P, Loo PV, McLaren S, 
et al. High burden and pervasive positive selection of somatic mutations in 
normal human skin. Science. American Association for the Advancement 
of Science; 2015;348:880–6.  
104. Lee-Six H, Øbro NF, Shepherd MS, Grossmann S, Dawson K, 
Belmonte M, et al. Population dynamics of normal human blood inferred 
from somatic mutations. Nature. Springer US; 2018;561:473–478.  
105. Coorens THH, Treger TD, Al-Saadi R, Moore L, Tran MGB, Mitchell 
TJ, et al. Embryonal precursors of Wilms tumor. Science. 2019;366:1247–
51.  
106. Behjati S, Huch M, Boxtel R van, Karthaus W, Wedge DC, Tamuri 
AU, et al. Genome sequencing of normal cells reveals developmental 
lineages and mutational processes. Nature. Nature Publishing Group; 
2014;513:422–5.  
107. Blokzijl F, Ligt J de, Jager M, Sasselli V, Roerink S, Sasaki N, et al. 
Tissue-specific mutation accumulation in human adult stem cells during 
life. Nature. Nature Publishing Group; 2016;538:260–4.  



 

272 

108. Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, Hall 
MWJ, et al. Somatic mutant clones colonize the human esophagus with age. 
Science. 2018;362:911–7.  
109. Osorio FG, Rosendahl Huber A, Oka R, Verheul M, Patel SH, Hasaart 
K, et al. Somatic Mutations Reveal Lineage Relationships and Age-Related 
Mutagenesis in Human Hematopoiesis. Cell Rep. ElsevierCompany.; 
2018;25:2308–2316.e4.  
110. Kucab JE, Zou X, Morganella S, Joel M, Nanda AS, Nagy E, et al. A 
Compendium of Mutational Signatures of Environmental Agents. Cell. 
Elsevier; 2019;177:821-836.e16.  
111. Pich O, Muiños F, Lolkema MP, Steeghs N, Gonzalez-Perez A, Lopez-
Bigas N. The mutational footprints of cancer therapies. Nat Genet. 
2019;51:1732–40.  
112. Li B, Brady SW, Ma X, Shen S, Zhang Y, Li Y, et al. Therapy-induced 
mutations drive the genomic landscape of relapsed acute lymphoblastic 
leukemia. Blood. 2020;135:41–55.  
113. Loeb LA. Mutator Phenotype May Be Required for Multistage 
Carcinogenesis. Cancer Res. American Association for Cancer Research; 
1991;51:3075–9.  
114. Loeb LA. Mutator phenotype in cancer: Origin and consequences. 
Semin Cancer Biol. 2010;20:279–80.  
115. Tomlinson IPM, Novelli MR, Bodmer WF. The mutation rate and 
cancer. Proc Natl Acad Sci. 1996;93:14800–3.  
116. Bodmer W, Loeb LA. Genetic Instability Is Not a Requirement for 
Tumor Development. Cancer Res. 2008;68:3558–61.  
117. Campbell PJ, Martinocorena I, Campbell PJ. Somatic mutation in 
cancer and normal cells. Science. 2015;349:1483–1489.  
118. Zapata L, Pich O, Serrano L, Kondrashov FA, Ossowski S, Schaefer 
MH. Negative selection in tumor genome evolution acts on essential 
cellular functions and the immunopeptidome. Genome Biol. 2018;19:67.  
119. Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP, Zhao J, et al. 
A Big Bang model of human colorectal tumor growth. Nat Publ Group. 
Nature Publishing Group; 2015;47:209–216.  
120. Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. 
Identification of neutral tumor evolution across cancer types. Nat Genet. 
Nature Publishing Group; 2016;48:1–9.  
121. Tarabichi M, Martincorena I, Gerstung M, Leroi AM, Markowetz F, 
Dentro SC, et al. Neutral tumor evolution? Nat Genet. 2018;50:1630–1633.  
122. Heide T, Zapata L, Williams MJ, Werner B, Caravagna G, Barnes CP, 
et al. Reply to ‘Neutral tumor evolution?’ Nat Genet. Nature Publishing 
Group; 2018;50:1633–7.  
123. Gupta GP, Massagué J. Cancer Metastasis: Building a Framework. 
Cell. Elsevier; 2006;127:679–95.  
124. Valastyan S, Weinberg RA. Tumor metastasis: Molecular insights and 



 

273 

evolving paradigms. Cell. Elsevier Inc.; 2011;147:275–292.  
125. Massagué J, Obenauf AC. Metastatic colonization by circulating 
tumour cells. Nature. 2016;529:298–306.  
126. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem 
Cell. Elsevier Inc.; 2014;14:275–291.  
127. Avgustinova A, Benitah SA. The epigenetics of tumour initiation: 
cancer stem cells and their chromatin. Curr Opin Genet Dev. 2016;36:8–
15.  
128. Campbell LL, Polyak K. Breast Tumor Heterogeneity: Cancer Stem 
Cells or Clonal Evolution? Cell Cycle. 2007;6:2332–8.  
129. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 
2017;23:1124–34.  
130. Jordan CT. Cancer Stem Cells: Controversial or Just Misunderstood? 
Cell Stem Cell. 2009;4:203–5.  
131. Visvader JE, Lindeman GJ. Cancer Stem Cells: Current Status and 
Evolving Complexities. Cell Stem Cell. 2012;10:717–28.  
132. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes 
J, et al. A cell initiating human acute myeloid leukaemia after 
transplantation into SCID mice. Nature. 1994;367:645–8.  
133. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a 
hierarchy that originates from a primitive hematopoietic cell. Nat Med. 
1997;3:730–7.  
134. Notta F, Mullighan CG, Wang JCY, Poeppl A, Doulatov S, Phillips 
LA, et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-
initiating cells. Nature. Nature Publishing Group; 2011;469:362–367.  
135. Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C, et 
al. Pan-cancer analysis of the extent and consequences of intratumor 
heterogeneity. Nat Med. 2016;22:105–13.  
136. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer 
drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26.  
137. Triller N, Korošec P, Kern I, Košnik M, Debeljak A. Multidrug 
resistance in small cell lung cancer: Expression of P-glycoprotein, 
multidrug resistance protein 1 and lung resistance protein in chemo-naive 
patients and in relapsed disease. Lung Cancer. 2006;54:235–40.  
138. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, et 
al. A multidrug resistance transporter from human MCF-7 breast cancer 
cells. Proc Natl Acad Sci. National Academy of Sciences; 1998;95:15665–
70.  
139. Kosztyu P, Bukvova R, Dolezel P, Mlejnek P. Resistance to 
daunorubicin, imatinib, or nilotinib depends on expression levels of 
ABCB1 and ABCG2 in human leukemia cells. Chem Biol Interact. Elsevier 
Ireland Ltd; 2014;219:203–210.  
140. Steinbach D, Legrand O. ABC transporters and drug resistance in 
leukemia: Was P-gp nothing but the first head of the Hydra? Leukemia. 



 

274 

2007;21:1172–1176.  
141. Gorre ME. Clinical Resistance to STI-571 Cancer Therapy Caused by 
BCR-ABL Gene Mutation or Amplification. Science. 2001;293:876–80.  
142. McMillin DW, Negri JM, Mitsiades CS. The role of tumour–stromal 
interactions in modifying drug response: challenges and opportunities. Nat 
Rev Drug Discov. 2013;12:217–28.  
143. Zhao J. Cancer stem cells and chemoresistance: The smartest survives 
the raid. Pharmacol Ther. 2016;160:145–58.  
144. Zhang H, Li H, Xi HS, Li S. HIF1␣ is required for survival 
maintenance of chronic myeloid leukemia stem cells. 2012;119:13.  
145. Beerenwinkel N, Schwarz RF, Gerstung M, Markowetz F. Cancer 
Evolution : Mathematical Models and Computational Inference. 2015;64.  
146. Schwartz R, Schäffer AA. The evolution of tumour phylogenetics: 
principles and practice. Nat Rev Genet [Internet]. Nature Publishing Group; 
2017; Available from: 
http://www.nature.com/doifinder/10.1038/nrg.2016.170 
147. Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et 
al. SciClone: Inferring Clonal Architecture and Tracking the Spatial and 
Temporal Patterns of Tumor Evolution. PLoS Comput Biol. 2014;10:1–11.  
148. Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, et al. PyClone: 
statistical inference of clonal population structure in cancer. Nat Methods. 
2014;11:396–398.  
149. Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, et al. 
Distinct evolutionary trajectories of primary high-grade serous ovarian 
cancers revealed through spatial mutational profiling: Evolutionary 
trajectories of ovarian cancers. J Pathol. 2013;231:21–34.  
150. Deshwar AG, Vembu S, Yung CK, Jang GH, Stein L, Morris Q. 
PhyloWGS: Reconstructing subclonal composition and evolution from 
whole-genome sequencing of tumors. Genome Biol. 2015;16:35.  
151. Jiang Y, Qiu Y, Minn AJ, Zhang NR. (Canopy) Assessing intratumor 
heterogeneity and tracking longitudinal and spatial clonal evolutionary 
history by next-generation sequencing. Proc Natl Acad Sci. 
2016;201522203.  
152. Jahn K, Kuipers J, Beerenwinkel N. Tree inference for single-cell data. 
Genome Biol. 2016;17:86.  
153. Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G, Van 
Loo P, et al. Subclonal diversification of primary breast cancer revealed by 
multiregion sequencing. Nat Med. 2015;21:751–759.  
154. Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S, 
Martincorena I, et al. Genomic Evolution of Breast Cancer Metastasis and 
Relapse. Cancer Cell. 2017;32:169–184.e7.  
155. Dentro SC, Wedge DC, Van Loo P. Principles of Reconstructing the 
Subclonal Architecture of Cancers. Cold Spring Harb Perspect Med. 
2017;7:a026625.  



 

275 

156. Jolly C, Van Loo P. Timing somatic events in the evolution of cancer. 
Genome Biol. 2018;19:95.  
157. Makishima H, Yoshizato T, Yoshida K, Sekeres MA, Radivoyevitch 
T, Suzuki H, et al. Dynamics of clonal evolution in myelodysplastic 
syndromes. Nat Genet [Internet]. 2016; Available from: 
http://www.nature.com/doifinder/10.1038/ng.3742 
158. Colom B, Alcolea MP, Piedrafita G, Hall MWJ, Wabik A, Dentro SC, 
et al. Spatial competition shapes the dynamic mutational landscape of 
normal esophageal epithelium. Nat Genet [Internet]. Springer US; 2020; 
Available from: http://dx.doi.org/10.1038/s41588-020-0624-3 
159. McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, 
Swanton C. Clonal status of actionable driver events and the timing of 
mutational processes in cancer evolution. Sci Transl Med. 2015;7:283ra54-
283ra54.  
160. Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S, Rosebrock 
D, et al. The evolutionary history of 2,658 cancers. Nature. Nature 
Publishing Group; 2020;578:122–8.  
161. Hu Z, Li Z, Ma Z, Curtis C. Multi-cancer analysis of clonality and the 
timing of systemic spread in paired primary tumors and metastases. Nat 
Genet. 2020;52:701–8.  
162. Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and Etiology of 
Leukemia and Lymphoma. Cold Spring Harb Perspect Med. 
2020;10:a034819.  
163. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau 
MM, et al. The 2016 revision to the World Health Organization 
classification of myeloid neoplasms and acute leukemia. Blood. 
2016;127:2391–405.  
164. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et 
al. The 2016 revision of the World Health Organization classification of 
lymphoid neoplasms. Blood. 2016;127:2375–90.  
165. Leukaemia (all subtypes combined) survival statistics [Internet]. 
Cancer Res. UK. 2015 [cited 2020 Aug 29]. Available from: 
https://www.cancerresearchuk.org/health-professional/cancer-
statistics/statistics-by-cancer-type/leukaemia/survival 
166. Belson M, Kingsley B, Holmes A. Risk Factors for Acute Leukemia 
in Children: A Review. Environ Health Perspect. 2007;115:138–45.  
167. Greaves M. Leukaemia “firsts” in cancer research and treatment. Nat 
Rev Cancer. 2016;16:163–172.  
168. Greaves M. A causal mechanism for childhood acute lymphoblastic 
leukaemia. Nat Rev Cancer. Springer US; 2018;1.  
169. Kampen KR. The discovery and early understanding of leukemia. 
Leuk Res. Elsevier Ltd; 2012;36:6–13.  
170. Cooper B. The origins of bone marrow as the seedbed of our blood: 
from antiquity to the time of Osler. Proc Bayl Univ Med Cent. 



 

276 

2011;24:115–8.  
171. Nowell PC, Hungerford DA. A minute chromosome in human chronic 
granulocytic leukemia. Science. 1960;132.  
172. Awong G, Zúñiga-Pflücker JC. Development of Human T 
Lymphocytes. Ref Module Biomed Sci [Internet]. Elsevier; 2014 [cited 
2020 Aug 30]. p. B978012801238300115X. Available from: 
https://linkinghub.elsevier.com/retrieve/pii/B978012801238300115X 
173. Carroll WL, Loh M, Biondi A, Willman C. The Biology of Acute 
Lymphoblastic Leukemia. In: Reaman GH, Smith FO, editors. Child Leuk 
Prat Handb [Internet]. Berlin and Heidelberg: Springer Berlin Heidelberg; 
2011. p. 29–62. Available from: 
http://www.springerlink.com/index/10.1007/978-3-642-13781-5 
174. Marti Cavalheiro L, Strachman Bacal N, Camerão Bento L, Patussi 
Correia R, Agostini Rocha F. Lymphoid Hematopoiesis and Lymphocytes 
Differentiation and Maturation. IntechOpen [Internet]. 2017; Available 
from: https://www.intechopen.com/books/lymphocyte-updates-cancer-
autoimmunity-and-infection/lymphoid-hematopoiesis-and-lymphocytes-
differentiation-and-maturation 
175. Jaffe ES, Harris NL, Stein H, Isaacson PG. Classification of lymphoid 
neoplasms: the microscope as a tool for disease discovery. Blood. 
2008;112:4384–99.  
176. Bell JJ, Bhandoola A. The earliest thymic progenitors for T cells 
possess myeloid lineage potential. Nature. Nature Publishing Group; 
2008;452:764–7.  
177. Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T, Katsura Y, et al. 
Adult T-cell progenitors retain myeloid potential. Nature. Nature 
Publishing Group; 2008;452:768–72.  
178. Belver L, Ferrando A. The genetics and mechanisms of T cell acute 
lymphoblastic leukaemia. Nat Rev Cancer. Nature Publishing Group; 
2016;16:494–507.  
179. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a 
comprehensive review and 2017 update. Blood Cancer J. 2017;7:577.  
180. Pui CH. Acute lymphoblastic leukemia. Child Leuk Third Ed. 
2010;332–366.  
181. Ding LW, Sun QY, Tan KT, Chien W, Thippeswamy AM, Yeoh AEJ, 
et al. Mutational landscape of pediatric acute lymphoblastic leukemia. 
Cancer Res. 2017;77:390–400.  
182. Dobson SM, García-Prat L, Vanner RJ, Wintersinger J, Waanders E, 
Gu Z, et al. Relapse-Fated Latent Diagnosis Subclones in Acute B Lineage 
Leukemia Are Drug Tolerant and Possess Distinct Metabolic Programs. 
Cancer Discov. American Association for Cancer Research; 2020;10:568–
87.  
183. Spinella JF, Richer C, Cassart P, Ouimet M, Healy J, Sinnett D. 
Mutational dynamics of early and late relapsed childhood ALL: rapid clonal 



 

277 

expansion and long-term dormancy. Blood Adv. 2018;2:177–188.  
184. Hoelzer D, Bassan R, Dombret H, Fielding A, Ribera JM, Buske C. 
Acute lymphoblastic leukaemia in adult patients: ESMO Clinical Practice 
Guidelines for diagnosis, treatment and follow-up †. Ann Oncol. Elsevier; 
2016;27:v69–82.  
185. Feng H, Stachura DL, White RM, Gutierrez A, Zhang L, Sanda T, et 
al. T-Lymphoblastic Lymphoma Cells Express High Levels of BCL2, 
S1P1, and ICAM1, Leading to a Blockade of Tumor Cell Intravasation. 
Cancer Cell. Elsevier; 2010;18:353–66.  
186. Hamid GA. Classification of Acute Leukemia, Acute Leukemia - The 
Scientist’s Perspective and Challenge. InTech. 2011;  
187. Spinella J-F, Cassart P, Richer C, Saillour V, Ouimet M, Langlois S, 
et al. Genomic characterization of pediatric T-cell acute lymphoblastic 
leukemia reveals novel recurrent driver mutations. Oncotarget. 
2016;7:65485–65503.  
188. Omman RA, Kini AR. Acute leukemias. Rodak’s Hematol Clin Princ 
Appl. Sixth Edit. Elsevier Inc.; 2017. p. 540–54.  
189. Hamid GA. Acute Leukemia Clinical Presentation. Leukemia 
[Internet]. IntechOpen; 2013 [cited 2020 Sep 18]; Available from: 
https://www.intechopen.com/books/leukemia/acute-leukemia-clinical-
presentation 
190. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, et 
al. Proposals for the immunological classification of acute leukemias. 
European Group for the Immunological Characterization of Leukemias 
(EGIL). Leukemia. 1995;9:1783–6.  
191. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, 
Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk 
acute lymphoblastic leukaemia. Lancet Oncol. Elsevier; 2009;10:147–56.  
192. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi 
SC, et al. Gene expression signatures define novel oncogenic pathways in 
T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1:75–87.  
193. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. 
The Lancet. Elsevier Ltd; 2013;381:1943–1955.  
194. Hunger SP, Mullighan CG. Redefining ALL classification : toward 
detecting high-risk ALL and implementing precision medicine. Blood. 
2015;125:3977–3988.  
195. Mullighan CG. The genomic landscape of acute lymphoblastic 
leukemia in children and young adults. Hematology. 2014;2014:174–180.  
196. Paulsson K, Lilljebjörn H, Biloglav A, Olsson L, Rissler M, Castor A, 
et al. The genomic landscape of high hyperdiploid childhood acute 
lymphoblastic leukemia. Nat Genet. Nature Publishing Group; 
2015;47:672–677.  
197. Bateman CM, Alpar D, Ford AM, Colman SM, Wren D, Morgan M, 
et al. Evolutionary trajectories of hyperdiploid ALL in monozygotic twins. 



 

278 

Leukemia. 2015;29:58–65.  
198. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et al. 
The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat 
Genet. Nature Publishing Group; 2013;45:242–52.  
199. Daniel MG, Rapp K, Schaniel C, Moore KA. Induction of 
developmental hematopoiesis mediated by transcription factors and the 
hematopoietic microenvironment. Ann N Y Acad Sci. 2020;1466:59–72.  
200. Alpar D, Wren D, Ermini L, Mansur MB, van Delft FW, Bateman CM, 
et al. Clonal origins of ETV6-RUNX1+ acute lymphoblastic leukemia: 
studies in monozygotic twins. Leukemia. 2015;29:839–46.  
201. Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio J, et 
al. RAG-mediated recombination is the predominant driver of oncogenic 
rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet. 
Nature Publishing Group; 2014;46:116–25.  
202. Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic 
leukemia. J Clin Oncol. 2017;35:975–983.  
203. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, et al. 
BCR–ABL1 lymphoblastic leukaemia is characterized by the deletion of 
Ikaros. Nature. 2008;453:110–4.  
204. Boer MLD, Slegtenhorst M van, Menezes RXD, Cheok MH, Buijs-
Gladdines JG, Peters ST, et al. A subtype of childhood acute lymphoblastic 
leukaemia with poor treatment outcome: a genome-wide classification 
study. Lancet Oncol. Elsevier; 2009;10:125–34.  
205. Jain N, Roberts KG, Jabbour E, Patel K, Eterovic AK, Chen K, et al. 
Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood. 
2017;129:572–81.  
206. Iacobucci I, Papayannidis C, Lonetti A, Ferrari A, Baccarani M, 
Martinelli G. Cytogenetic and Molecular Predictors of Outcome in Acute 
Lymphocytic Leukemia: Recent Developments. Curr Hematol Malig Rep. 
2012;7:133–43.  
207. Lilljebjörn H, Fioretos T. New oncogenic subtypes in pediatric B-cell 
precursor acute lymphoblastic leukemia. Blood. 2017;130:1395–401.  
208. Zhang J, Mccastlain K, Yoshihara H, Xu B, Chang Y, Churchman ML, 
et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. 
Nat Genet. 2016;48.  
209. Gu Z, Churchman ML, Roberts KG, Moore I, Zhou X, Nakitandwe J, 
et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. 
Nat Genet. 2019;51:296–307.  
210. Moorman AV. New and emerging prognostic and predictive genetic 
biomarkers in B-cell precursor acute lymphoblastic leukemia. 
Haematologica. 2016;101:407–16.  
211. Gu Z, Churchman M, Roberts K, Li Y, Liu Y, Harvey RC, et al. 
Genomic analyses identify recurrent MEF2D fusions in acute 
lymphoblastic leukaemia. Nat Commun. 2016;7:13331.  



 

279 

212. Hirabayashi S, Ohki K, Nakabayashi K, Ichikawa H, Momozawa Y, 
Okamura K, et al. ZNF384-related fusion genes define a subgroup of 
childhood B-cell precursor acute lymphoblastic leukemia with a 
characteristic immunotype. Haematologica. 2017;102:118–29.  
213. Ferrando AA, Look AT. Gene expression profiling in T-cell acute 
lymphoblastic leukemia. Semin Hematol. 2003;40:274–80.  
214. Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and 
molecular biology of T-ALL. Blood. 2017;129:1113–1123.  
215. Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute 
lymphoblastic leukemia. J Clin Invest. 2012;122:3398–3406.  
216. on behalf of the GFCH (Groupe Francophone de Cytogénétique 
Hématologique) and the BCGHO (Belgian Cytogenetic Group for 
Hematology and Oncology), Graux C, Stevens-Kroef M, Lafage M, 
Dastugue N, Harrison CJ, et al. Heterogeneous patterns of amplification of 
the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia. 
Leukemia. 2009;23:125–33.  
217. Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, 
Verstegen M, et al. Integrated Transcript and Genome Analyses Reveal 
NKX2-1 and MEF2C as Potential Oncogenes in T Cell Acute 
Lymphoblastic Leukemia. Cancer Cell. Elsevier Inc.; 2011;19:484–497.  
218. Colomer-Lahiguera S, Pisecker M, König M, Nebral K, Pickl WF, 
Kauer MO, et al. MEF2C-dysregulated pediatric T-cell acute lymphoblastic 
leukemia is associated with CDKN1B deletions and a poor response to 
glucocorticoid therapy. Leuk Lymphoma. 2017;58:2895–904.  
219. Luskin MR, DeAngelo DJ. T‐cell acute lymphoblastic leukemia: 
Current approach and future directions. Adv CELL GENE Ther [Internet]. 
2019 [cited 2020 Sep 25];2. Available from: 
https://onlinelibrary.wiley.com/doi/abs/10.1002/acg2.70 
220. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LAA, Miller CB, et 
al. Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia. 
2009;  
221. Perez-Andreu V, Roberts KG, Xu H, Smith C, Zhang H, Yang W, et 
al. A genome-wide association study of susceptibility to acute 
lymphoblastic leukemia in adolescents and young adults. 2015;125:7.  
222. Tijchon E, Havinga J, van Leeuwen FN, Scheijen B. B-lineage 
transcription factors and cooperating gene lesions required for leukemia 
development. Leukemia. 2013;27:541–52.  
223. Shah S, Schrader KA, Waanders E, Timms AE, Vijai J, Miething C, 
et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B 
cell acute lymphoblastic leukemia. Nat Genet. Nature Publishing Group; 
2013;45:1226–1231.  
224. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, 
Dalton JD, et al. Genome-wide analysis of genetic alterations in acute 
lymphoblastic leukaemia. Nature. 2007;446:758–64.  



 

280 

225. Greaves MF, Wiemels J. Origins of chromosome translocations in 
childhood leukaemia. Nat Rev Cancer. 2003;3:639–49.  
226. Hiebert SW, Sun W, Davis JN, Golub T, Shurtleff S, Buijs A, et al. 
The t(12;21) translocation converts AML-1B from an activator to a 
repressor of transcription. Mol Cell Biol. 1996;16:1349–55.  
227. Zhang J, Mullighan CG, Harvey RC, Wu G, Chen X, Edmonson M, et 
al. Key pathways are frequently mutated in high-risk childhood acute 
lymphoblastic leukemia: a report from the Children’s Oncology Group. 
Blood. 2011;118:3080–7.  
228. Lilljebjörn H, Henningsson R, Hyrenius-Wittsten A, Olsson L, 
Orsmark-Pietras C, von Palffy S, et al. Identification of ETV6-RUNX1-like 
and DUX4-rearranged subtypes in paediatric B-cell precursor acute 
lymphoblastic leukaemia. Nat Commun. 2016;7:11790.  
229. Guo X, Zhang R, Liu J, Li M, Song C, Dovat S, et al. Characterization 
of LEF1 High Expression and Novel Mutations in Adult Acute 
Lymphoblastic Leukemia. Bandapalli OR, editor. PLOS ONE. 
2015;10:e0125429.  
230. Hof J, Krentz S, Van Schewick C, Körner G, Shalapour S, Rhein P, et 
al. Mutations and deletions of the TP53 gene predict nonresponse to 
treatment and poor outcome in first relapse of childhood acute 
lymphoblastic leukemia. J Clin Oncol. 2011;29:3185–3193.  
231. Russell LJ, Capasso M, Vater I, Akasaka T, Bernard OA, Calasanz 
MJ, et al. Deregulated expression of cytokine receptor gene, CRLF2, is 
involved in lymphoid transformation in B-cell precursor acute 
lymphoblastic leukemia. Blood. 2009;114:2688–98.  
232. Vainchenker W, Constantinescu SN. JAK/STAT signaling in 
hematological malignancies. Oncogene. 2013;32:2601–13.  
233. Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome–like acute 
lymphoblastic leukemia. 2017;130:9.  
234. Ma X, Liu Y, Liu Y, Alexandrov LB, Edmonson MN, Gawad C, et al. 
Pan-cancer genome and transcriptome analyses of 1,699 paediatric 
leukaemias and solid tumours. Nature [Internet]. Nature Publishing Group; 
2018; Available from: 
http://www.nature.com/doifinder/10.1038/nature25795 
235. Li J-F, Dai Y-T, Lilljebjörn H, Shen S-H, Cui B-W, Bai L, et al. 
Transcriptional landscape of B cell precursor acute lymphoblastic leukemia 
based on an international study of 1,223 cases. Proc Natl Acad Sci. 
2018;115:E11711–20.  
236. Mullighan CG, Downing JR. Global Genomic Characterization of 
Acute Lymphoblastic. Semin Hematol. 2009;46:3–15.  
237. Weng AP, Ferrando AA, Lee W, Iv JPM, Silverman LB, Sanchez-
irizarry C, et al. Activating Mutations of NOTCH1 in Human T Cell Acute 
Lymphoblastic Leukemia. 2004;306:269–272.  
238. Neumann M, Vosberg S, Schlee C, Heesch S, Schwartz S, Gökbuget 



 

281 

N, et al. Mutational spectrum of adult T-ALL. Oncotarget. 2015;6:2754–
2766.  
239. Bigas A, Robert-Moreno À, Espinosa L. The Notch pathway in the 
developing hematopoietic system. Int J Dev Biol. 2010;54:1175–1188.  
240. Tosello V, Ferrando AA. The NOTCH signaling pathway: role in the 
pathogenesis of T-cell acute lymphoblastic leukemia and implication for 
therapy. Ther Adv Hematol. 2013;4:199–210.  
241. Clappier E, Collette S, Grardel N, Girard S, Suarez L, Brunie G, et al. 
NOTCH1 and FBXW7 mutations have a favorable impact on early 
response to treatment, but not on outcome, in children with T-cell acute 
lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 
58951. Leukemia. 2010;24:2023–2031.  
242. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. 
The genomic landscape of pediatric and young adult T-lineage acute 
lymphoblastic leukemia. Nat Genet. 2017;49:1211–1218.  
243. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, 
Cauwelier B, Lambert F, et al. Duplication of the MYB oncogene in T cell 
acute lymphoblastic leukemia. Nat Genet. 2007;39:593–595.  
244. De Keersmaecker K, Ferrando AA. TLX1-induced T-cell acute 
lymphoblastic leukemia. Clin Cancer Res. 2011;17:6381–6386.  
245. Wendorff AA, Quinn SA, Rashkovan M, Madubata CJ, Ambesi-
Impiombato A, Litzow MR, et al. Phf6 loss enhances HSC self-renewal 
driving tumor initiation and leukemia stem cell activity in T-All. Cancer 
Discov. 2019;9:436–451.  
246. Neumann M, Heesch S, Schlee C, Schwartz S, Gökbuget N, Hoelzer 
D, et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of 
DNMT3A mutations. Blood. 2013;121:4749–4752.  
247. Bowman RL, Busque L, Levine RL. Clonal Hematopoiesis and 
Evolution to Hematopoietic Malignancies. Cell Stem Cell. 2018;22:157–
70.  
248. Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematol 
Am Soc Hematol Educ Program. 2016;580–8.  
249. De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T, 
et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes 
RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet. 
Nature Publishing Group; 2013;45:186–90.  
250. Li Z, Abraham BJ, Berezovskaya A, Farah N, Liu Y, Leon T, et al. 
APOBEC signature mutation generates an oncogenic enhancer that drives 
LMO1 expression in T-ALL. Leukemia. 2017;31:2057–2064.  
251. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et 
al. Germline Mutations in Predisposition Genes in Pediatric Cancer. N Engl 
J Med. 2015;373:2336–2346.  
252. Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, 
Rudneva VA, et al. The landscape of genomic alterations across childhood 



 

282 

cancers. Nature. 2018;555:321–327.  
253. Treviño LR, Yang W, French D, Hunger SP, Carroll WL, Devidas M, 
et al. Germline genomic variants associated with childhood acute 
lymphoblastic leukemia. Nat Genet. 2009;41:1001–5.  
254. Waanders E, Gu Z, Dobson SM, Antić Ž, Crawford JC, Ma X, et al. 
Mutational Landscape and Patterns of Clonal Evolution in Relapsed 
Pediatric Acute Lymphoblastic Leukemia. Blood Cancer Discov. 2020;  
255. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA, et 
al. Genomic Analysis of the Clonal Origins of Relapsed Acute 
Lymphoblastic Leukemia. Science. 2008;322:1377–1380.  
256. Ma X, Edmonson M, Yergeau D, Muzny DM, Hampton OA, Rusch 
M, et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-
acute lymphoblastic leukaemia. Nat Commun. Nature Publishing Group; 
2015;6:1–12.  
257. Oshima K, Khiabanian H, da Silva-Almeida AC, Tzoneva G, Abate F, 
Ambesi-Impiombato A, et al. Mutational landscape, clonal evolution 
patterns, and role of RAS mutations in relapsed acute lymphoblastic 
leukemia. Proc Natl Acad Sci U S A. National Academy of Sciences; 
2016;113:11306–11311.  
258. Ferrando AA, López-Otín C. Clonal evolution in leukemia. Nat Med. 
Nature Publishing Group; 2017;23:1135–1145.  
259. Eguchi-Ishimae M, Eguchi M, Kempski H, Greaves M. NOTCH1 
mutation can be an early, prenatal genetic event in T-ALL. Blood. 
2008;111:376–8.  
260. Rampersaud E, Ziegler DS, Iacobucci I, Payne-Turner D, Churchman 
ML, Schrader KA, et al. Germline deletion of ETV6 in familial acute 
lymphoblastic leukemia. Blood Adv. 2019;3:1039–46.  
261. Bie JD, Alberti-servera L, Geerdens E, Segers H, Broux M, 
Keersmaecker KD, et al. Single-cell sequencing reveals the origin and the 
order of mutation acquisition in T-cell acute lymphoblastic leukemia. 
2018;1358–1369.  
262. Mansour MR, Duke V, Foroni L, Patel B, Allen CG, Ancliff PJ, et al. 
NOTCH1 mutations are secondary events in some patients with T-cell acute 
lymphoblastic leukemia. Clin Cancer Res. 2007;13:6964–6969.  
263. Potter N, Jones L, Blair H, Strehl S, Harrison CJ, Greaves M, et al. 
Single-cell analysis identifies CRLF2 rearrangements as both early and late 
events in Down syndrome and non-Down syndrome acute lymphoblastic 
leukaemia. Leukemia. 2019;33:893–904.  
264. Gawad C, Koh W, Quake SR. Dissecting the clonal origins of 
childhood acute lymphoblastic leukemia by single-cell genomics. Proc Natl 
Acad Sci. 2014;111:17947–17952.  
265. Bhatla T, Jones CL, Meyer JA, Vitanza NA, Raetz EA, Carroll WL. 
The Biology of Relapsed Acute Lymphoblastic Leukemia. J Pediatr 
Hematol Oncol. NIH Public Access; 2014;36:413–418.  



 

283 

266. Yang J, Bhojwani D, Yang W. Genome-wide copy number profiling 
reveals molecular evolution from diagnosis to relapse in childhood acute 
lymphoblastic leukemia. \ldots. 2008;112:4178–4183.  
267. Schroeder MP, Bastian L, Eckert C, Gökbuget N, James AR, Tanchez 
JO, et al. Integrated analysis of relapsed B-cell precursor Acute 
Lymphoblastic Leukemia identifies subtype-specific cytokine and 
metabolic signatures. Sci Rep. 2019;9:1–11.  
268. Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, 
Allegretta M, et al. Activating mutations in the NT5C2 nucleotidase gene 
drive chemotherapy resistance in relapsed ALL. Nat Med. Nature 
Publishing Group; 2013;19:368–71.  
269. Meyer JA, Wang J, Hogan LE, Yang JJ, Dandekar S, Patel JP, et al. 
Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic 
leukemia. Nat Genet. Nature Publishing Group; 2013;45:290–294.  
270. Li B, Li H, Bai Y, Kirschner-Schwabe R, Yang JJ, Chen Y, et al. 
Negative feedback–defective PRPS1 mutants drive thiopurine resistance in 
relapsed childhood ALL. Nat Med. 2015;21:563–71.  
271. Xiao H, Wang LM, Luo Y, Lai X, Li C, Shi J, et al. Mutations in 
epigenetic regulators are involved in acute lymphoblastic leukemia relapse 
following allogeneic hematopoietic cell transplantation. Oncotarget. 
2015;7.  
272. Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, 
Phillips LA, et al. CREBBP mutations in relapsed acute lymphoblastic 
leukaemia. Nature. NIH Public Access; 2011;471:235–9.  
273. Evensen NA, Madhusoodhan PP, Meyer J, Saliba J, Chowdhury A, 
Araten DJ, et al. MSH6 haploinsufficiency at relapse contributes to the 
development of thiopurine resistance in pediatric B-lymphoblastic 
leukemia. Haematologica. 2018;103:830–9.  
274. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman 
SM, et al. Genetic variegation of clonal architecture and propagating cells 
in leukaemia. Nature. Nature Research; 2011;469:356–361.  
275. Wynn R, Bhat R, Monagle P. Acute Lymphoblastic Leukemia. Pediatr 
Hematol Pract Guide [Internet]. Cambridge: Cambridge University Press; 
2017 [cited 2020 Sep 27]. Available from: 
http://ebooks.cambridge.org/ref/id/CBO9781139942430 
276. Malard F, Mohty M. Acute lymphoblastic leukaemia. 2020;395:17.  
277. Forero-Castro M, Robledo C, Benito R, Bodega-Mayor I, Rapado I, 
Hernández-Sánchez M, et al. Mutations in TP53 and JAK2 are independent 
prognostic biomarkers in B-cell precursor acute lymphoblastic leukaemia. 
Br J Cancer. 2017;1–10.  
278. Carrasco Salas P, Fernández L, Vela M, Bueno D, González B, 
Valentín J, et al. The role of CDKN2A/B deletions in pediatric acute 
lymphoblastic leukemia. Pediatr Hematol Oncol. 2016;33:415–22.  
279. Zhang W, Kuang P, Liu T. Prognostic significance of CDKN2A/B 



 

284 

deletions in acute lymphoblastic leukaemia: a meta-analysis. Ann Med. 
2019;51:28–40.  
280. Childhood Acute Lymphoblastic Leukemia Treatment (PDQ®)–
Patient Version - National Cancer Institute [Internet]. 2020 [cited 2020 Sep 
28]. Available from: https://www.cancer.gov/types/leukemia/patient/child-
all-treatment-pdq 
281. Pui CH, Pei D, Coustan-Smith E, Jeha S, Cheng C, Bowman WP, et 
al. Clinical utility of sequential minimal residual disease measurements in 
the context of risk-based therapy in childhood acute lymphoblastic 
leukaemia: A prospective study. Lancet Oncol. 2015;16:465–474.  
282. Litzow MR, Ferrando AA. How I treat T-cell acute lymphoblastic 
leukemia in adults. Blood. 2015;833–841.  
283. Samra B, Jabbour E, Ravandi F, Kantarjian H, Short NJ. Evolving 
therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment 
and future directions. J Hematol OncolJ Hematol Oncol. 2020;13:70.  
284. Aldoss IT, Marcucci G, Vinod Pullarkat. Treatment of Acute 
Lymphoblastic Leukemia in Adults: Applying Lessons Learned in Children 
[Internet]. Cancer Netw. 2016 [cited 2020 Sep 29]. Available from: 
https://www.cancernetwork.com/view/treatment-acute-lymphoblastic-
leukemia-adults-applying-lessons-learned-children 
285. Dieck CL, Tzoneva G, Forouhar F, Carpenter Z, Ambesi-Impiombato 
A, Sánchez-Martín M, et al. Structure and Mechanisms of NT5C2 
Mutations Driving Thiopurine Resistance in Relapsed Lymphoblastic 
Leukemia. 2018;19.  
286. Tzoneva G, Dieck CL, Oshima K, Ambesi-Impiombato A, Sánchez-
Martín M, Madubata CJ, et al. Clonal evolution mechanisms in NT5C2 
mutant-relapsed acute lymphoblastic leukaemia. Nature. Nature Publishing 
Group; 2018;553:511–514.  
287. Follini E, Marchesini M, Roti G. Strategies to Overcome Resistance 
Mechanisms in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci. 
2019;20:3021.  
288. Jing D, Huang Y, Liu X, Sia KCS, Zhang JC, Tai X, et al. 
Lymphocyte-Specific Chromatin Accessibility Pre-determines 
Glucocorticoid Resistance in Acute Lymphoblastic Leukemia. Cancer Cell. 
2018;34:906-921.e8.  
289. Delgado-Martin C, Meyer LK, Huang BJ, Shimano KA, Zinter MS, 
Nguyen JV, et al. JAK/STAT pathway inhibition overcomes IL7-induced 
glucocorticoid resistance in a subset of human T-cell acute lymphoblastic 
leukemias. Leukemia. 2017;31:2568–76.  
290. Ankathil R. ABCB1 genetic variants in leukemias: current insights 
into treatment outcomes. Pharmacogenomics Pers Med. Dove Press; 
2017;Volume 10:169–181.  
291. Demir S, Boldrin E, Sun Q, Hampp S, Tausch E, Eckert C, et al. 
Therapeutic targeting of mutant p53 in pediatric acute lymphoblastic 



 

285 

leukemia. Haematologica. 2020;105:170–81.  
292. Ariës IM, Bodaar K, Karim SA, Chonghaile TN, Hinze L, Burns MA, 
et al. PRC2 loss induces chemoresistance by repressing apoptosis in T cell 
acute lymphoblastic leukemia. J Exp Med. 2018;215:3094–114.  
293. Meyer LK, Hermiston ML. The bone marrow microenvironment as a 
mediator of chemoresistance in acute lymphoblastic leukemia. Cancer Drug 
Resist [Internet]. 2019 [cited 2020 Sep 30]; Available from: 
https://cdrjournal.com/article/view/3233 
294. Garcia M, Juhos S, Larsson M, Olason PI, Martin M, Eisfeldt J, et al. 
Sarek: A portable workflow for whole-genome sequencing analysis of 
germline and somatic variants. F1000Research. 2020;9:63.  
295. gerstung-lab/clonex [Internet]. Cancer Data Science; 2019 [cited 2020 
Oct 5]. Available from: https://github.com/gerstung-lab/clonex 
296. Oriol A, Vives S, Hernández-Rivas JM, Tormo M, Heras I, Rivas C, 
et al. Outcome after relapse of acute lymphoblastic leukemia in adult 
patients included in four consecutive risk-adapted trials by the PETHEMA 
study group. Haematologica. 2010;95:589–596.  
297. Kunz JB, Rausch T, Bandapalli OR, Eilers J, Pechanska P, Schuessele 
S, et al. Pediatric T-cell lymphoblastic leukemia evolves into relapse by 
clonal selection, acquisition of mutations and promoter hypomethylation. 
Haematologica. 2015;100:1442–1450.  
298. Meleveedu KS, Litzow M. Advances in measurable residual disease 
monitoring for adult acute lymphoblastic leukemia. Adv CELL GENE Ther 
[Internet]. 2019 [cited 2020 Oct 8];2. Available from: 
https://onlinelibrary.wiley.com/doi/abs/10.1002/acg2.67 
299. Asnafi V, Buzyn A, Le Noir S, Baleydier F, Simon A, Beldjord K, et 
al. NOTCH1/FBXW7 mutation identifies a large subgroup with favorable 
outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): A Group 
for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. 
Blood. 2009;113:3918–3924.  
300. Jenkinson S, Koo K, Mansour MR, Goulden N, Vora A, Mitchell C, 
et al. Impact of NOTCH1/FBXW7 mutations on outcome in pediatric T-
cell acute lymphoblastic leukemia patients treated on the MRC UKALL 
2003 trial. Leukemia. 2013;27:41–7.  
301. Ferrando A. NOTCH mutations as prognostic markers in T-ALL. Leuk 
Off J Leuk Soc Am Leuk Res Fund UK. Nature Publishing Group; 
2010;24:2003–2004.  
302. Saito Y, Koya J, Araki M, Kogure Y, Shingaki S, Tabata M, et al. 
Landscape and function of multiple mutations within individual oncogenes. 
Nature [Internet]. 2020 [cited 2020 May 26]; Available from: 
http://www.nature.com/articles/s41586-020-2175-2 
303. Watson CJ, Papula AL, Poon GYP, Wong WH, Young AL, Druley 
TE, et al. The evolutionary dynamics and fitness landscape of clonal 
hematopoiesis. Science. 2020;367:1449–1454.  



 

286 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

287 

7. APPENDIX 

7.1 Collaboration  
 
I have also been involved in the Liver Cancer Evolution Consortium (LCE). 

This is a collaboration of some researchers in the labs of Dr. Martin S. 

Taylor (Edinburgh University), Dr. Duncan T. Odom (DKFZ), Dr. Paul 

Flicek (EBI), Dr. Núria López-Bigas and Dr. Colin S Semple (Edinburgh 

University). The aim of the consortium was to shed some light into the 

mutagenesis of DEN-induced mouse liver tumors and fully understand the 

progression of hepatocellular carcinomas of a mouse model to get insights 

into the human counterpart. The LCE sequenced 371 whole-genomes from 

liver tumors from DEN-induced C3H and CAST mouse strains. Together 

with Claudia Arnedo-Pac and Oriol Pich, we have searched for driver 

mutations in coding and non-coding regions. 

 

The first study of the consortium was published in Nature this year. 
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